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Introduction

From the crystalization of water into snowflakes, the alignment of electron spins in
a ferromagnet, the emergence of superconductivity in a cooled metal, to the very
formation of the large scale structure of the universe, all involve phase transitions.

Understanding this so-called “critical behavior” has been a great challenge and
more than a century has gone by from the first discoveries until a consistent picture
emerged. The theoretical tools and concepts developed in the meantime now belong
to the central paradigms of modern physics.

When the temperature at which a phase transition occurs is suppressed to near
absolute zero, quantum effects become important and the new puzzling behavior that
develops around this “quantum critical point” is still very far from being completely
resolved.

1 From critical opalescence to quantum criticality

A typical material consist of many elementary particles or degrees of freedom. The
fundamental microscopic laws that capture the physics of such systems are known:
we have to solve a Schrödinger equation for an ensemble of about 1023 atoms. This,
however, is like trying to understand the layout of a city by examining it one brick
at a time.

Instead, new ways of thinking are required, ones that can describe the behavior
of complex collections of atoms. Statistical physics, by arguing that although the
individual motions are complex the collective properties acquire qualitatively new
forms of simplicity, does exactly that. Collective behavior is also important at the
unstable interface between two stable states: the critical point.

The notion of a critical phenomenon traces back to 1869, when Andrews [1]
discovered a very special point in the phase diagram of carbon dioxide: at 31◦C and
under 73 atm, the properties of the liquid and the vapar become indistinguishable.
Andrews called this point a “critical point”, and the associated strong scattering
of light displayed by the system close to this point, the critical opalescence.At the
critical point, the system undergoes a transition from one state to another – a phase
transition – in a quest to minimize its free energy. Close to this critical point, the
material is in maximum confusion, fluctuating between the two competing phases.



Seventy years later, pioneering work by Lev Landau [2] proposed that the de-
velopment of phases in a material can be dexcribed by the emergence of an “order
parameter”, a quantity which describes the state of order as it develops at each point
in the material. In this picture, the critical state of the system, close to the phase
transition, corresponds to the development of thermal fluctuations (responsible for
the “confusion” of the system at criticality) over successively larger regions: the
associated length scale ξ diverges at the critical point. In the meantime, the typical
time scale τ that determines the relaxation of the order parameter also diverges at
criticality, verifying:

τ ∼ ξz (1)

where z is the dynamical exponent.

T

R

ordered

disordered

Ordered Disordered Order

state state parameter

Gas Liquid Density difference

Ferromagnet Paramagnet Magnetization

Ferroelectric Paraelectric Polarization

Nematic liquid Isotropic Director

crystal liquid

a) b)

Figure 1: a) Typical phase diagram of a classical continuous phase transition. The
line separating the ordered and disordered states is a line of critical points. b) A
few examples of order parameters and their associated phase transition.

Later on, it was realized that in the vicinity of the critical point, the physical
properties of the system could be described by a handful of numbers: the critical
exponents. The critical exponent z defined above is one of them.

It tunrs out that the same set of these exponents allows to describe phase tran-
sitions with totally different microscopic origins. This feature led to the concept of
universality: the details of the microscopic laws governing the behavior of atoms in
the material are no longer important in specifying its physical properties.

In the mid-seventies, when the study of phase transitions was undergoing a
renaissance triggered by the development of Wilson’s renormalization group, John
Hertz [3] asked the following question: what happens to a metal undergoing a phase
transition whose critical temperature is tuned down to absolute zero?



2 Stirring up a quantum cocktail

What is so special about a zero-temperature phase transition? First of all, if the
temperature is fixed at absolute zero, one needs another control parameter to drive
the system through the critical point: the change of state now results from modifying
pressure, magnetic field, or even chemical composition.

Moreover, at zero temperature, the thermal fluctuations that drive the transition
no longer exist. In this situation, the phase transition os triggered by quantum
fluctuations: due to the uncertainty principle, a particle cannot be at rest at zero
temperature (since then both its position and velocity would be fixed), so that all
particles are in the state of quantum agitation. This “zero point motion” plays the
same role as the random thermal motion of the classical phase transitions: when it
becomes too wild, it can melt the long-range order.

Hertz showed in his original work that the key new feature of the quantum
phase transition is an effective increase of the number of dimensions, associated to
quantum mechanics. While a statistical description of a classical system is based
on an average over all possible spatial configurations of the particles, weighted by
the Boltzmann factor1 e−E/(kBT ), a probabilistic description of a quantum system
relies on averaging all the ways in which a particle moves in time weighted by a
Schrödinger factor e−iHt/~. Due to the close resemblance of these two weighting
factors, a single combined description of a quantum statistical system is possible.
Therefore a quantum phase transition looks like a classical one, except that the
configurations now vary in “imaginary time” in addition to varying in space. The
imaginary time now appears as an extra dimension, or more accurately as z extra
dimensions, where z is the dynamical critical exponent defined in Eq. (1). The
effective dimensionality deff of the model increases compared to the spatial dimension
d according to:

deff = d+ z (2)

One might legitimately wonder why the appearance of such new dimensions do
not invalidate previous classical thermodynamic results. It turns out that at finite
temperature, there always exist a region close to the critical point, where the thermal
fluctuations are much more important than the quantum ones. It follows that, in the
vicinity of a finite temperature critical point, the phase transition can be described
within the framework of classical statistical mechanics. This naturally does not
mean that quantum mechanics plays no role in this case as it might determine the
very existence of the order parameter. This only points out that the behavior of
this order parameter, close to the finite temperature critical point, is controlled by
classical thermal flcutuations.

Hertz’s idea of a quantum critical point may seem like a rather esoteric theoretical
observation. After all, the zero temperature is impossible to access experimentally,

1where E is the energy of the configuration



so that quantum critical points look more like mathematical oddities rather than
observable physical phenomena.

It took several years after Hertz’s work to realize that the quantum critical
point governs the physics of a whole region of the phase diagram: the quantum
critical regime. Moving away from the quantum critical point by increasing the
temperature, one enters a region of the phase diagram where there is no scale to
the excitations other than temperature itself: the system “looks” critical, as the
quantum fluctuations are still very strong. As a consequence, the properties of the
system in this region of the phase diagram are qualitatively transformed in a fashion
that is closely related to the physics behind the quantum phase transition.
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Figure 2: a) Typical phase diagram of a phase transition whose critical temperature
has been tuned to zero, leading to a quantum critical point, and the corresponding
quantum critical region. b) Picturesque view of droplets of nascent order developing
at quantum criticality. Inside the droplet, the intense fluctuations radically modify
the motion of the elctrons (from [4]).

3 Quantum criticality observed

Indeed, the quantum critical region, through its unusual properties, has been ex-
tensively observed experimentally. The best studied examples involve magnetism in
metals.Gold-doped CeCu6Si was among the first ones [5].

When pressure is applied to this compound, the transition towards an anti-
ferromagnetic ordering (associated to the cerium atoms acting as local magnetic
moments) is tuned to occur at zero temperature. In the quantum critical region,
experimentalists found an almost linear resistivity (unseen in both phases surround-
ing the quantum critical region) extending way above the quantun critical point, on
almost a decade in temperature. Since then, more than fifty other compounds, built



on the same recipe of localized moments buried inside a non-magnetic bulk, have
been discovered. We even have an apparent case of a line of quantum criticality
instead of a sinle point.

But the observation of quantum criticality is not limited to these magnetic mate-
rials. Quantum critical behavior has been reported, e.g., in organic material where
the change of pressure or chemical doping leads to quantum critical fluctuations of
the electric charge. Quantum criticality has even been observed in a surprisingly
simple metal: chromium.

Hertz’s original idea of a zero-temperature phase transition was once regarded
as an intellectual curiosity. It has now become a rapidly growing field of condensed-
matter physics.
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Figure 3: a) Temperature-magnetic field phase diagram of YbRh2Si2. Blue regions
indicate normal metallic behavior. Orange regions correspond to the quantum criti-
cal regime (from [6]). b) Resistivity as a function of temperature for the compound
CeCu5.9Au0.1. Solid lines indicate a linear (B = 0) and a quadratic fit (B 6= 0)
(from [5]).

4 Unsolved puzzles

Some of the strange properties reported experimentally in the quantum critical re-
gion echo the predictions of Hertz (and subsequent extensions of his original theory).
But this conventional wisdom is flouted in several aspects, and Hertz thirty-year-old
theory cannot account for present experiments. The discrepancy ranges from an
incorrect order of the transition (like itinerant ferromagnetic systems that turn out



to order magnetically through a first-order transition where a continuous one was
predicted) to a profound inadequacy in the physical properties of the quantum crit-
ical regime (like the antiferromagnetic transition of Ce and Yb-based compounds,
the so-called “heavy fermion” materials).

A series of compounds, which a priori do not seem so different from the ones
matching perfectly Hertz predictions, created the controversy. Some physicists be-
lieve that Hertz theory can be saved, and that provided one can derive a new exten-
sion that could take proper account of the complexity of the material, new experi-
ments can be explained based on Hertz framework of quantum critical phenomena.
However, none of these attempts have been convincing enough, and the “ultimate
extension” of Hertz theory remains to be found.

Others argue that the discrepancy between the canonical theory and the recent
experimental results comes from a failure of Hertz’s original approximations. This
failure can be attributed to an incomplete account of the realities of the materials
(like, say, disorder), or to an unjustified assumption in the mathematical derivation.
This is the point of view we develop in the first part of the present text, where we
show that independently of its failures to explain experimental results, Hertz theory
is bound to break down in the special case of a ferromagnetic quantum critical point.

Finally, a third possibility considers that a new starting point is needed for a
proper examination of the fluctuations: a new framework for quantum phase tran-
sitions is required. If it were the case, such a new development would be quite
remarkable, as the current conventional picture relies on two cornerstones of mod-
ern physics, namely the theory of classical critical phenomena and the quantum
mechanics. In the second part of this work, we develop a new approach towards the
understanding of the quantum critical behavior of heavy fermion materials. Moti-
vated by the failures of Hertz theory to account for the recent experimental results
for these compounds, we seek new insights from an unexplored route towards crit-
icality. Such new elements may help in devising a new mean field theory for the
quantum critical point in these systems.

5 Outline

The present dissertation is divided up into two parts.
In the first part, we study the stability of the ferromagnetic critical point in close

relation with Hertz theory.
Chapter 1 is an introduction to the ideas and assumptions behind Hertz canoni-

cal theory of quantum critical phenomena. After reviewing some of the experimental
successes of the latter, we focus on the main failures and the possible explanations
advanced to account for them.

Chapter 2 presents the phenomenological model used as a starting point of
our analysis. After a short treatment based on a perturbative expansion, we show
what the crucial elements are for deriving a controllable scheme that could describe



the quantum critical behavior of itinerant ferromagnets. We then move on to this
derivation, and alter verify that the various approximations made in the beginning
at indeed justified.

Chapter 3 contains our main results. It presents the computation of the static
spin susceptibility and shows that a non-analytic contribution arises, leading to
a breakdown of the continuous transition towards ferromagnetism below a given
energy scale. This same result is recast within the framework of Hertz theory. We
further argue that the breakdown is a peculiarity of the ferromagnetic case and does
not seem to appear in closely related models.

Chapter 4 recalls the main conclusions of this first part and presents the future
work towards a better understanding of the ferromagnetic quantum critical point.

Some of the results of this first part have been published in a short letter (Pub-
lication 1) but most of the present work is unpublished at the moment and will give
rise to a longer publication, still in preparation (Publication 2). For this reason, we
chosoe to present all technical details either in the main text or in the appendices.

In the second part, we study a large-N approach of quantum impurity models
based on a bosonic representation of the localized spin.

Chapter 5 is an introduction to the Kondo and Anderson models, and to their
modern applications to the physics of quantum dots and heavy fermion materials.

Chapter 6 recalls the main results of the bosonic large-N approach to the
description of the overscreened and underscreened Kondo impurity. We then prove
that contrarily to the common wisdom, the same method can be used to describe
the exactly screened case as well.

Chapter 7 presents an extension of the previous bosonic large-N approach to
the case of two coupled impurities. Our results suggest that the approach is not
only capable of handling magnetic correlations but also to describe the physics of
the quantum critical point. They are in line with previous results for this system.
The results of Chapters 6 and 7 have been grouped in Publication 4

Chapter 8 seeks a generalized method that could cure some of the failures of
the original large-N method. We show that although this promising new approach
do lead to a better description of the exactly screened single impurity, it does not
account for the full physics of the Fermi liquid state. These results led to Publication
5

Chapter 9 concerns an extension of the large-N bosonic approach to the Kondo
lattice model. Some of these results, along with technical derivations of an extended
Luttinger-Ward description of this model, are presented in Publication 3.
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Instability of a Ferromagnetic
Quantum Critical Point
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CHAPTER 1

Introduction and motivations
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In this chapter, we review the canonical quantum critical theory for the itiner-
ant electronic systems, the so-called Hertz-Millis-Moriya theory (HMM). We then
present some of the experimental puzzles related to the ferromagnetic quantum crit-
ical point in these systems as well as some recent analytical studies questioning the
validity of the HMM theory.

1.1 Quantum critical theory of itinerant ferromagnets

The simplest model of a metal is the non-interacting Fermi gas. In such a system,
however, there is an equal number of electrons occupying either spin states in the



Introduction and motivations

conducting band: the motion of up and down spin is uncorrelated, and there are no
magnetic effect to be found. Introducing an interaction between the electrons leads
to correlations and hence magnetism in the Fermi sea.

To be more concrete, we consider a lattice model with repulsion between the
electrons, such as the Hubbard model [7], whose Hamiltonian writes:

H =
∑

k

∑

σ=↑,↓
(εk − µ)c

†

kσckσ + U
∑

i

ni↑ni↓ (1.1)

where we consider the system at low density (to stay far away from the Mott tran-
sition at half-filling). This model Hamiltonian is characterized by a competition
between the kinetic term and the Coulomb interaction U , and as such is a good
candidate for displaying a quantum phase transition between a Fermi liquid (where
the kinetic term dominates) and a magnetically ordered state (where the repulsion
is dominant).

The Coulomb repulsion term can be written in terms of the charge and spin
density variables:

U
∑

i

ni↑ni↓ =
U

4

∑

i

(ni↑ + ni↓)
2 − U

4

∑

i

(ni↑ − ni↓)2 (1.2)

where (ni↑ − ni↓)/2 = φzi is the magnetization, and Ni = ni↑ + ni↓ the total number
of electrons at site i.

1.1.1 Mean-field theory and Stoner criterion

Let’s assume that there exists a net magnetization Mz = 〈φzi 〉 and ask under what
condition this is energetically favorable compared to the unmagnetized state.

Treating this model in a mean-field way, each electron sees an effective magnetic
field Beff = 2UMz due to the magnetization of its fellow electrons, as well as a
renormalization of the chemical potential:

−U (φzi )
2 −→

MF
U(−2Mzφ

z
i +M2

z ) (1.3)

U

4
N2
i −→

MF

U

4

(
2〈N〉Ni − 〈N〉2

)
(1.4)

The variational energy of the ground-state then writes:

Evar(Mz) = 〈Heff〉
= Ekin(Mz)−MzBeff + UM2

z (1.5)

where Ekin(Mz) =
∑

k,σ(εk − µ̃)〈c†kσckσ〉, and µ̃ is the renormalized chemical poten-
tial.
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1.1. Quantum critical theory of itinerant ferromagnets

As we are interested in the onset of ferromagnetism, the spontaneous magneti-
zation Mz can be assumed to be small, so that one can treat the electron gas in the
linear response regime. Introducing the Pauli susceptibility χ0 of the non-interacting
Fermi gas in zero magnetic field, one has:

Ekin(Mz) = Ekin(0) +
M2

z

2χ0
(1.6)

It follows that an instability towards the development of a spontaneous magne-
tization occurs when:

2Uχ0 = 1 (1.7)

which is known as the Stoner criterion [8] for the onset of ferromagnetism in metals.

1.1.2 Hertz-Millis-Moriya effective theory (HMM)

Now that we know from this simple mean field approach that a quantum critical
point is expected as a function of the Coulomb interaction U , we turn to a more
careful analysis of the behavior of the system as one approaches this QCP from the
paramagnetic side.

� Derivation

The derivation of the effective theory was first carried out by Béal-Monod and
Hertz [9, 10, 3]. Starting from the Hubbard model, Eq. (1.2), and performing a
Hubbard-Stratonovich decomposition on the interacting term in the spin channel,
the partition function reads:

Z = Z0

∫

D[c, φ]exp

[

−
∫ β

0

dτ
(

φzi (τ)φ
z
i (τ)−

√
Uφzi (τ)c

†

iα(τ)σ
z
αβciβ(τ)

)]

(1.8)

where we chiefly focused on the spin fluctuations and disregarded the charge ones,
assuming they are unimportant close to the ferromagnetic QCP.

Integrating the fermionic degrees of freedom out of the partition function, one
obtains a purely bosonic effective theory in terms of the order-parameter field φ(x, τ),
given by the Landau-Ginzburg-Wilson (LGW) free energy functional:

Φ[φ] =

∫ β

0

dτ

∫ β

0

dτ ′
[

φi(τ)φi(τ)δ(τ − τ ′)− Tr
(

1−
√
UφiG

ij
0 (τ − τ ′)

)]

=
∑

ωn,q

(1− Uχ0(q, iωn))φ(q, iωn)φ(−q,−iωn)

+T
∑

ωi,qi

u(1, 2, 3, 4)φ(q1, iω1)φ(q2, iω2)φ(q3, iω3)φ(q4, iω4)

×δ(q1 + q2 + q3 + q4)δ(ω1 + ω2 + ω3 + ω4) + . . . (1.9)
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where we expanded in the last expression up to fourth power in φ, and used the
notation G0 for the conduction electron Green’s functions at U = 0.

The bare dynamical susceptibility χ0(q, iωn) is given by a Lindhard expansion
around q = ω = 0 close to the ferromagnetic phase transition:

χ0(q, ωn) = χ0 − b
q2

k2
F

+ a
|ωn|
vF q

(1.10)

The same kind of derivation can be extended to a vector order parameter, so that
the spin rotation invariance is preserved. This only affects the numerical prefactors
so that the effective bosonic theory we refer to in the rest of this chapter ultimately
writes:

Φ[S] =
∑

n

∫
ddq

(2π)d

(

δ + q2 +
|ωn|
q

)

S(q, ωn) · S(−q,−ωn)

+uT
∑

n1,n2,n3,n4

∫
ddq1
(2π)d

· · · d
dq4

(2π)d
δ(q1 + q2 + q3 + q4) δn1+n2+n3+n4

× [S(q1, ωn1) · S(q2, ωn2)] [S(q3, ωn3) · S(q4, ωn4)] (1.11)

where, following Hertz, we assumed that the quartic term u can be approximated
by a constant.

� A few comments

B Landau damping
The dependence on |ωn| of the quadratic term arises because the spin modes S lie

inside the particle-hole continuum of the Fermi liquid (see Fig. 1.1) and are therefore
overdamped: the decay mechanism is Landau damping [11]. In the ferromagnetic
case, the conservation of the order parameter fluctuations enforces the damping rate,
which appears in the denominator, to vanish as q → 0. The overdamping leads, in
the quantum critical regime, to a dynamic exponent z > 1.

B Stoner criterion
Note that the constant appearing in the quadratic term in φ vanishes when the

Stoner criterion is satisfied, i.e. at the transition. This term thus measures the
distance to the magnetic instability.

B Assumptions
In order to derive the effective bosonic action (1.11), one has to make a few

assumptions:

• all other excitations are neglected with respect to the spin fluctuations. In-
deed, in the derivation, we assumed the interaction in the charge channel was

24



1.1. Quantum critical theory of itinerant ferromagnets

unimportant, and disregarded any possible pairing instability. Making this as-
sumption, we only exclude the case of bi-critical points, considering that close
enough to the ferromagnetic QCP, all other excitations are gapped, and can
be safely neglected. In practice, this is true for charge fluctuations. However,
the spin fluctuations can lead to an effective attractive interaction between the
electrons, and eventually to a p−wave superconducting instability.

• the bosonic modes are “slower” than the fermionic ones. This is a necessary
condition to perform the integration over the fermionic degrees of freedom. In
the Hertz derivation, this cannot be justified a priori. However, assuming this
is true, the final result of Eq. (1.11) suggests that the typical bosonic momen-
tum and frequency are related by ω ∼ q3. Comparing this to the low-energy
fermions, for which ω ∼ |k − kF |, we see that there is no contradiction with
the original assumption, which can be seen as an a posteriori justification.1

• the coefficient of the φ4 term can be approximated by a constant. This is again
unjustified a posteriori, and is related to the difficulty of treating this coefficient
exactly. Hertz argued however from a Renormalization Group treatment (see
the next paragraph for the main results) that this φ4 is irrelevant in dimensions
2 and higher.

We argue later in the text (Section 3.1) that these last two approximations are
actually questionable at criticality, and their violation leads, all at once, to the
breakdown of both the HMM theory and the ferromagnetic QCP.

ω ∼ q

ω ∼ q
3

q q

ω ω

a) b)
Figure 1.1: a) Particle-hole continuum (shaded region) and ferromagnetic modes
(red line), b) Schematic view of the bosonic (red) and fermionic (green) dispersion.

1Further in the text, we refer to these regions of the (d+1)-dimensional space of frequency and
momentum, as the fermionic and bosonic mass-shells.

25



Introduction and motivations

� Millis and Moriya additions

In order to obtain a quantitative description, Moriya and Kawabata developed a
more sophisticated theory, the so-called self-consistent theory of spin fluctuations
[12]. This theory is very successful in describing magnetic materials with strong
spin fluctuations outside the quantum critical region. As for the quantum critical
regime of itinerant ferromagnets, this leads to identical results to those of Hertz
theory [13].

Later, Millis [14] revisited the theory developed by Hertz. He considered an
additional scaling equation for the temperature, which allowed him to correct some
of Hertz’ results concerning the crossover behavior at finite temperature.

For these reasons, the quantum critical theory, associated to the effective action
(1.11), is known as the Hertz-Millis-Moriya theory.

� Results

We now present the main results of the HMM theory for the ferromagnetic QCP.
From the effective action (1.11), Hertz applied a Renormalization Group (RG)

treatment. Eliminating the outer-shell defined as:
{
e−l < q < 1
e−zl < ω < 1

(1.12)

where z is the dynamic exponent and l an infinitesimal scaling factor, one can leave
the quadratic and the quartic terms of the effective action unchanged by rescaling q,
ω and S, and imposing scaling conditions on the parameters δ and u. The rescaling
of frequency and momentum requires that z = 3 in order for the q2 term to scale
like the Landau damping.

Incorporating the contribution of the outer-shell beyond the simple rescaling,
this leads to the following:

dδ

dl
= 2δ + 2uf(T, δ) (1.13a)

du

dl
= (4− (d+ z)) u− 4u2g(T, δ) (1.13b)

dT

dl
= zT (1.13c)

where f and g are complicated integrals depending on T and δ. The last equation,
missed by Hertz, was proved by Millis to be important for the finite temperature
crossover regime.

The set of equations (1.13) already suggests the existence of an unstable Gaussian
fixed point at T = u = δ = 0. Moreover, close to this critical point, the interaction
u is irrelevant if d+ z > 4 (i.e. if d > d+

c = 1) , and one then expects the exponents
to be those of the Gaussian model.
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1.2. Experiments

Solving the set of RG equations, one can extract the behavior in temperature of
several physical properties in the quantum critical regime:

Specific heat: Cv ∼ T log

(
T0

T

)

(1.14a)

Resistivity: ρ(T ) ∼ T 5/3 (1.14b)

Susceptibility: χ(T ) ∼ χ0 − χ1T
4/3 (1.14c)

Critical temperature: Tc(δ) ∼ |δ − δc|3/4 (1.14d)

1.2 Experiments

Magnetic quantum phase transitions are among the most studied ones experimen-
tally. In this section, we present some experimental results concerning the quantum
critical regime of some itinerant ferromagnetic compounds.

1.2.1 Successes

The behavior of many physical properties in the quantum critical regime of itiner-
ant ferromagnets, as predicted by the Hertz-Millis-Moriya theory, was observed in
several compounds.

� NixPd1−x

Pd is a strongly enhanced Pauli paramagnet, close to ferromagnetic order. It has long
been known [15] that roughly 2.5% of nickel ions doped into palladium induce such
a ferromagnetic order. Below 10% of doping, the induced structural and magnetic
disorder is rather small and is believed to play only a minor role.

Nicklas and collaborators [16] studied samples of NixPd1−x for doping concen-
trations 0 ≤ x ≤ 1. They observed the following:

• close to x = 0.1, a clear change of slope appears in the logTc vs. log(x − xc)
plot, revealing a (x− xc)3/4 behavior at low doping (see Fig. 1.2). They could
extract from these data that the critical concentration xc = 0.026± 0.002,

• at x = 0.026, the resistivity follows a T 5/3 dependence for more than two
decades (see Fig. 1.2). The exponent changes quickly as one departs form xc
either way, signaling that the quantum critical behavior is limited to a narrow
region around the critical doping,

• the heat capacity linear coefficient Cv/T increases logarithmically towards low
temperature for a range of doping 0.022 ≤ x ≤ 0.028 (see Fig. 1.3),

All these results match the predictions of the HMM theory for the quantum
critical regime.
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a) b)

Figure 1.2: NixPd1−x, data from [16]: a) Curie temperature Tc as a function of x−xc.
The dashed line indicates (x − xc)1/2 and the doted line (x − xc)3/4; b) Resistivity
as a function of temperature for three concentrations: in the paramagnet x = 0.01,
in the ferromagnet x = 0.05, and at the critical doping xc = 0.026. The solid lines
stand for ρ = ρ0 + AT n.

� Zr1−xNbxZn2

Although it is made of non-magnetic constituents, ZrZn2 is a ferromagnetic com-
pound at low temperature. The Curie temperature at which the ferromagnetic
ordering develops can be reduced towards zero by applying pressure (see next para-
graph) or doping with niobium.

Sokolov and collaborators [17] studied the phase diagram of Nd-doped ZrZn2,
for concentrations 0 ≤ x ≤ 0.14. They observed that upon doping, the critical
temperature of the ferromagnetic transition continuously drops like a power-law:
Tc(x) ∼ (x−xc)3/4 (see Fig. 1.3). The critical concentration where the extrapolated
critical temperature terminates is estimated to be xc = 0.083± 0.002.

They could also measure the susceptibility close to this critical doping, in the
paramagnetic region. The temperature dependent part of the susceptibility behaves
as 1/χ∗ = (χ−1 − χ−1

0 ) = aT 4/3 (see Fig. 1.3) close to the QCP. The temperature
T ∗(x) below which this power-law behavior develops is maximum for x = xc and
drops as one departs from it, ultimately vanishing at x = 0.15.

The quantum critical behavior documented by Sokolov et al. is in excellent
agreement with the theoretical predictions of the HMM theory.

1.2.2 Departures from HMM results

Nevertheless, experimental studies have revealed notable differences from the stan-
dard second order behavior predicted by Hertz, Millis and Moriya.
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Figure 1.3: NixPd1−x, data from [16]: a) Specific heat vs. log T for three concentra-
tions. The quadratic temperature dependence has been subtracted from these data,
and the prefactor δ of the logarithmic term is shown in the inset. Zr1−xNbxZn2, data

from [17]: b) Variation of the Curie temperature Tc (white dots) and T
4/3
c (black

dots) as a function of the Nb concentration. The solid lines are fits to Tc ∝ (x− xc)
and T

4/3
c ∝ (x− xc); c) The inverse susceptibility 1/χ∗ = (χ−1 − χ−1

0 ) for x ≥ xc is
proportional to T 4/3 (solid line) for T ≤ T ∗.

� Superconductivity

The first departure from the HMM results concerns the development of a super-
conducting instability. This is actually expected as in order to derive the effective
bosonic action, we made the assumption that all excitations but the spin fluctuations
could be neglected. As a result, it would be quite surprising that the HMM the-
ory predicts the existence of a superconducting phase without including a possible
instability towards that state from the very beginning.

A superconducting instability has been reported at very low temperature in
several compounds, among which ZrZn2 [18], UGe2 [19] and URhGe [20] (see Fig.
1.4).

The existence of such a superconducting state generated a lot of interest as it
seems to develop only inside the ferromagnetically ordered phase, and might have
ties with the magnetic quantum critical point. We choose not to detail here the
various aspects of the controversy these results created, since we will not discuss in
this work the properties of the ordered state.

� First order transition

The second and most interesting departure from the standard results of the HMM
theory stands in the order of the transition towards the ferromagnetic state. Hertz,
Millis and Moriya predicted a second order transition all the way down to the quan-
tum critical point. However, a first order transition at low temperature has been
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observed in almost all the itinerant materials investigated to date2.

UGe2, for example, shows in addition to a low temperature superconducting
phase, a first order transition between the ferro- and the para-magnetic states close
to the QCP (see Fig. 1.4). This first order transition was not predicted by the
HMM theory, but this compound has a complicating factor: it is a strongly uniaxial
(Ising) system.

ZrZn2, however, is a straightforward itinerant ferromagnet, and the neutron
diffraction is consistent with all the hallmarks of a three-dimensional itinerant fer-
romagnet. Although the ferromagnetic transition at ambient pressure is continuous,
the ferromagnetism disappears in a first order fashion as pressure is increased be-
yond pc = 16.5kbar. The experimental magnetization data suggest that a tricritical
point separates a line of first order transitions from second order behavior at high
pressure (see Fig. 1.4).

One last example of a first order transition close to the QCP is MnSi.
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Figure 1.4: ZrZn2, data from [18, 21]: a) (T, p) phase diagram, the ferromagnetic
region appears in blue, and the superconducting phase in red; Magnetization as a
function of pressure for T = 2.3K, the sudden drop at p = 16.5kbar is characteristic
of a first order transition towards the paramagnet; b) Magnetization as a function
of pressure and magnetic field. UGe2, data from [19, 22]: c) (T, p) phase diagram,
the ferromagnetic regions appear in blue, and the superconducting phase in red;
Magnetization as a function of pressure for T = 2.3K, the sudden drop at p =
12.2kbar and p = 15.8kbar are characteristic of a first order transition.

2Some argue that even the compounds which seem to perfectly match the HMM predictions do
present a first order transition, but only at a temperature below the lowest temperature investigated
experimentally.
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1.2.3 The puzzling case of MnSi

For completeness, we present here some of the results associated to MnSi, which was
one of the first itinerant magnet where a first order transition was discovered [23].
It turns out that the behavior of this compound deviates from the HMM picture in
several aspects beyond the simple order of the transition [24, 25].

MnSi is a very well-known system, perhaps the most extensively studied itinerant
electron magnet apart from iron, cobalt, nickel and chromium. At ambient pressure,
the ground-state below the magnetic ordering temperature Tc = 29.5K is a three-
dimensional weakly spin-polarized Fermi-liquid state. As the pressure in increased,
the critical temperature continuously approaches zero. The order of the transition,
however, changes from second order at ambient pressure to first order below p∗ =
12kbar.

The ordered state of MnSi is not a simple ferromagnet: the crystalline structure
lacks an inversion symmetry, and weak spin-orbit interactions (of a Dzyaloshinsky-
Moriya form) destabilizes the uniform ferromagnetic order and introduces a helical
modulation. Further spin-orbit interactions lock the direction of the spiral in the
direction Q = 〈111〉.

The most surprising features of MnSi come from the region of the phase diagram
above the critical pressure pc where the transition temperature vanishes. This region
of the phase diagram seems to be the cleanest example of an extended non-Fermi
liquid (NFL) state in a three-dimensional metal: the bulk properties of MnSi suggest
that sizable quasi-static magnetic moments survive far into the NFL phase. These
moments are organized in an unusual pattern with partial long-range order. The
resistivity displays a power-law behavior ρ ∼ T 1.5, characteristic of the NFL state,
up to the highest pressure achieved experimentally.

MnSi seems to question not only the results of the HMM theory, but the whole
quantum criticality paradigm, and remains an understood puzzle to date.

1.3 Non-analytic static spin susceptibility

1.3.1 Long-range correlations

It is well known that in fluids, that is in interacting many-body systems, there
are long-range correlations between the particles. For example, in classical fluids
in thermal equilibrium, there are dynamical long-range correlations in time that
manifest themselves as long-time tails. However long-range spatial correlations in
classical systems in equilibrium are impossible due to the fluctuation-dissipation
theorem.

In quantum statistical mechanics, though, statics and dynamics are coupled and
need to be considered together, allowing long-range spatial correlations to develop.
In return, this leads to non-analyticities in the limit of small momentum.
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Figure 1.5: a) Temperature vs. pressure phase diagram of MnSi. The insets qualita-
tively show the location and key features of elastic magnetic scattering intensity in
reciprocal space. At high pressure, the neutron scattering signal disappears above
a temperature T0 represented by a dotted line. b) Schematic phase diagram with
applied magnetic field in the third direction. The non-Fermi liquid behavior seems
to extend to the region of finite magnetic field.

Following this idea, Belitz, Kirkpatrick and Vojta (BKV) [26] studied the long-
wavelength properties of the spin-density correlation function (i.e. the spin suscep-
tibility) of a Fermi liquid using a perturbative expansion in the interaction.

The existence of non-analytic corrections to the Fermi liquid theory has a long-
standing history and it has been predicted that such non-analyticities occur in the
specific heat coefficient [27] but was thought not to affect the spin and charge sus-
ceptibilities.

BKV proved that in a three-dimensional Fermi liquid, away from criticality, the
leading long-wavelength dependence of the static susceptibility reads, up to second-
order in perturbation theory:

χ3D(q)

χ3D(0)
= 1 + c3

|q|2
k2
F

log

( |q|
2kF

)

+O(|q|2) (1.15)

where c3 is a negative prefactor.

Later on, Chubukov and Maslov confirmed that a non-analytic dependence of
the static spin susceptibility survives below d = 3 [28, 29], and writes in the two-
dimensional case:

χ2D(q)

χ2D(0)
= 1 + c2

|q|
kF

+O(|q|2) (1.16)

where c2 is, again, a negative prefactor.
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Both groups of authors argued that these non-analytic corrections to the Fermi-
liquid theory originate from the singularities in the dynamic particle-hole response
function.

Following these results, Belitz and collaborators argued that the LGW functional,
derived in the HMM approach, was formally ill-defined as the spin susceptibility en-
ters the quadratic term in φ. The non-analyticities in the static susceptibility would
then prevent a continuous quantum phase transition towards the ferromagnetic or-
der. The authors argued that such a mechanism could explain the failures of the
HMM approach, and the appearance of a first order ferromagnetic transition close
to the QCP.

1.3.2 Effect on the quantum critical regime

It is a priori unclear, however, whether the results of Belitz et al. can be extended
to the quantum critical regime. We emphasize that these results have been derived
in a generic Fermi liquid, away from criticality.

Approaching the quantum critical point, one expects the effective four-fermion
interaction to be strongly renormalized (which is consistent with a divergence of the
effective mass at criticality). This would lead to a breakdown of the simple pertur-
bative expansion performed by Belitz et al. Moreover, the Fermi liquid behavior
does not seem to survive as one approaches the QCP [30, 31] which invalidates the
results derived perturbatively for a Fermi liquid.

The first main motivation of our work is to clarify this issue and check whether
the non-analytic behavior predicted in the Fermi liquid phase survives as one ap-
proaches the QCP (perhaps under a somewhat different form) or is washed out in
the quantum critical regime.

In the next chapters, we re-analyze the problem of the quantum critical regime of
itinerant ferromagnets. We build a controllable expansion close to the QCP, without
integrating out the low-energy fermions, and analyze in details the stability of the
ferromagnetic quantum critical point.

As one can see from (1.15) and (1.16), the effect of long-range correlations is
more dramatic as the dimensionality is lowered. For that reason, we focus in all this
work to the case of a two-dimensional system, close to criticality.
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Eliashberg theory of the
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Eliashberg theory of the spin-fermion model

In this chapter, we describe the starting model for our study of the ferromagnetic
quantum critical point. After a direct perturbative treatment which justifies the need
to include the curvature, we carry out a self-consistent approximate treatment (also
known as “Eliahberg theory”) and check a posteriori that the assumptions made for
these computations are indeed justified.

2.1 Spin-fermion model

We argued in the previous chapter that integrating the fermions out of the partition
function was a questionable way of studying the quantum critical regime, because
of the possible non-analyticities that are missed in such a procedure.

Therefore, our starting point for the study of the ferromagnetic quantum criti-
tal point is a model describing low-energy fermions interacting with Landau over-
damped collective bosonic excitations. These excitations are spin-fluctuations and
become gapless at the quantum critical point.

2.1.1 Low-energy model

The general strategy to derive such a low-energy model is to start with a model
describing the fermion-fermion interaction, and assume that there is only one low-
energy collective degree of freedom near the QCP. This assumption is basically the
same as one of the HMM assumptions: the idea is to exclude all excitations but
the ferromagnetic spin fluctuations we are interested in. One then has to decouple
the four-fermion interaction term using the critical bosonic field as an Hubbard-
Stratonovich field, and integrate out of the partition function all high-energy degrees
of freedom, with energies between the fermionic bandwidth W and some cutoff
Λ [32].

If this procedure was performed completely we would obtain a full Renormaliza-
tion Group treatment of the problem. Unfortunately, there is no controllable scheme
to perform this procedure. It is widely believed, though that although the propaga-
tors of the remaining low-energy modes possess some memory of the physics at high
energies, the integration of high-energy fermions does not give rise to anomalous
dimensions for the bare fermionic and bosonic propagators in the low-energy model.

In practical terms, this assumption implies that the bare propagator of the rel-
evant collective mode is an analytic function of momentum and frequency, and the
fermionic propagator has the Fermi liquid form:

G(k, ω) =
Z0

iω − εk
, (2.1)

where Z0 < 1 is a constant, and εk is the renormalized band dispersion.
Near the Fermi surface,

εk = vFk⊥ +
k2
‖

2mB
. (2.2)
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Here k is the momentum deviation from kF, the parallel and perpendicular com-
ponents are with respect to the direction along the Fermi surface at kF, mB is the
band mass, the Fermi velocity vF = kF/m, and for a circular Fermi surface one has
m = mB.

Following this scheme, the original model of fermions interacting with themselves
can be recast into an effective low-energy fermion-boson model. In the context of
the magnetic QCP, this model is known as the “spin-fermion model” and was first
suggested by Chubukov and collaborators [32].

Close to the ferromagnetic quantum critical point, the low-energy degrees of
freedom are:

• fermions, whose propagator is given by Eq. (2.1));

• long-wavelength collective spin excitations whose propagator (in this case, the
spin susceptibility) is analytic near q = Ω = 0, and is given by:

χs,0(q,Ω) =
χ0

ξ−2 + q2 + AΩ2 +O(q4,Ω4)
. (2.3)

In this last expression, A is a constant, and ξ is the correlation length of the
magnetic spin fluctuations, which diverges at the QCP. We prove, further in this
chapter, that the quadratic term in frequency does not play any role in our anal-
ysis. Indeed, one can argue that the interaction of these collective bosonic modes
with fermions close to the Fermi surface generates a Landau damping of the spin
fluctuations, as we demonstrate in the next section. As a consequence, we neglect
from now on the Ω2 term in the spin susceptibility, and approximate the above bare
propagator by the static one χs,0(q).

The model can then be described by the following Hamiltonian:

Hsf =
∑

k,α

εkc
†
k,αck,α +

∑

q

χ−1
s,0(q)SqS−q + g

∑

k,q,α,β

c†k,ασαβck+q,β · Sq. (2.4)

where Sq are vector bosonic variables, and g is the effective fermion-boson interac-
tion. For convenience, we incorporated the fermionic residue Z0 into g.

We emphasize that the above spin-fermion model cannot be derived in a true
RG-like procedure, and has to be considered as a phenomenological model which
captures the essential physics of the problem.

2.1.2 Forward scattering model

To illustrate how this effective Hamiltonian can, in principle, be derived from the
microscopic model of interacting conduction electrons, we consider a model in which
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Eliashberg theory of the spin-fermion model

the electrons interact with a short range four-fermion interaction U(q) and assume
that only the forward scattering is relevant (U(0) = U):

H =
∑

k,α

εkc
†
k,αck,α +

1

2

∑

q

U
∑

k,k′,α,β

c†k,αck+q,αc
†
k′βck′−q,β, (2.5)

In this situation, the interaction is renormalized independently in the spin and
in the charge channels [33]. Using the identity for the Pauli matrices:

σαβ · σγδ = −δαβδγδ + 2δαδδβγ (2.6)

one can demonstrate [33] that in each of the channels, the Random Phase Ap-
proximation (RPA) summation is exact, and the fully renormalized four-fermion
interaction U full

αβ,γε(q) is given by:

Ufull
αβ,γε(q) = U

[

δαγδβε

(
1

2
+ Gρ

)

+ σaαγσ
a
βε

(
1

2
+ Gσ

)]

, (2.7)

where σaαβ are Pauli matrices (a = x, y, z), and

Gρ ≡
1

2

1

1− UΠ (q)
; Gσ ≡ −

1

2

1

1 + UΠ (q)
, (2.8)

with Π(q) = −m
2π

(1 − a2(q/kF )2) is the fermionic bubble made out of high-energy
fermions, and a > 0.

For positive values of U satisfying mU/2π ≈ 1, the interaction in the spin channel
is much larger than the one in the charge channel. Neglecting then the interaction
in the charge channel, we can simplify the Hamiltonian (2.5):

H =
∑

k,α

εkc
†
k,αck,α +

1

2

∑

q

Ueff (q)
∑

k,k′,α,β,γ,δ

c†k,ασαβck+q,β · c†k′γσγδck′−q,δ. (2.9)

where Ueff(q) = (1/2)U 2Π(q)/(1 + UΠ(q)). Performing a Hubbard-Stratonovich
decomposition in the three fields Sq, one recasts (2.9) into Eq. (2.4) with:







g = U a
2

χ0 = 2
k2

F

Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 =
k2

F

a2

(
2π
mU
− 1
)

(2.10)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0. This coincides with the Stoner
criterion for a ferromagnetic instability [8].

We emphasize that the bosonic propagator in Eq. (2.3) does not contain the
Landau damping term. This is because we only integrated out the high-energy
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a)
q,Ω

b)
k, ω

c)
k, ω

Figure 2.1: a) Polarization bubble b) One-loop fermionic self-energy c) Two-loop
fermionic self-energy. The fermions are represented by straight lines and the bosons
by wavy lines.

fermions, whereas the Landau damping of a collective mode of energy Ω comes from
fermions of energy ω < Ω, and can only be generated within the low-energy theory.
The dynamics of both the bosonic fields Sq and the fermionic c and c† is determined
self-consistently by treating both fluctuations on equal footing.

To put under control the computations carried out later in the text, it is necessary
to extend the model by introducing N identical fermion species, while keeping the
SU(2) spin symmetry. The Hamiltonian (2.4) can then be rewritten as:

Hsf = Hf +Hb +Hint where

Hf =
∑

k,j,α

εkc
†
k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.11)

where the index j = 1 . . .N labels the fermionic species.

2.2 Direct perturbative results

In this section we compute the fermionic and bosonic self-energies for the model pre-
sented in Eq. (2.4) using a perturbative expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping coefficient to the fermion-
boson coupling constant g, to evaluate the significance of the momentum-dependent
part of the fermionic self-energy and to demonstrate the importance of the curvature
of the Fermi surface.

We emphasize that this perturbative expansion is only used as a motivation
for a further, more sophisticated approach detailed in the next sections, and for
illustrative purposes. It is not a self-consistent computation, and most probably
breaks down as one approaches the QCP.
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2.2.1 Bosonic polarization

The full bosonic propagator depends on the self-energy Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (2.12)

At the lowest order in the spin-fermion interaction, the bosonic self-energy is
given by the first diagram in Fig. 2.1, and reads:

Π(q,Ω) = 2Nḡ

∫
d2k dω

(2π)3
G(k, ω) G(k + q, ω + Ω). (2.13)

The curvature of the fermionic dispersion does not affect much the result of
this computation as it only leads to small corrections in q/mBvF . Neglecting the
quadratic term in the fermionic propagators, we introduce the angle θ defined as
εk+q = εk + vF q cos θ and perform the integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω)− θ(ω))

∫ 2π

0

dθ
1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (2.14)

At the QCP, the bosonic mass-shell corresponds to the region of momentum and
frequency space for which the terms in the inverse propagator are of the same order,
i.e. near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows that, at the QCP, near
the bosonic mass shell, vF q/Ω ∼ vF (mḡv2

F/Ω
2)1/3 � 1 at small enough frequency,

so that vF q is the largest term in the denominator of Π(q,Ω). The expression of the
bosonic self-energy then reduces to:

Π(q,Ω) = γ
|Ω|
q
, (2.15)

where γ =
Nmḡ

πvF
.

We see that the lowest order bosonic self-energy recovers the form of the Landau
damping presented in Chapter 1, with a prefactor depending on the fermion-boson
coupling constant.

As explained earlier, this term is larger than a regular O(Ω2) term, and fully
determines the dynamics of the collective bosonic mode.

2.2.2 One-loop fermionic self-energy

We now turn to the fermionic self-energy, right at the QCP, where ξ−1 = 0. To the
lowest order in the interaction, the fermionic self-energy contains one bosonic line,
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2.2. Direct perturbative results

as represented in Fig.2.1.b, and its analytic form writes:

Σfree
1 (k, ω) = 3ig2

∫
d2q dΩ

(2π)3
G0(k + q, ω + Ω)χ(q,Ω). (2.16)

The superscript “free” implies that we use the free fermionic G0(k, ω) in the integral
for the self-energy.

In a direct perturbation theory in g, one would have to use the bare form of the
bosonic propagator, Eq. (2.3), which leads to Σ(ω) ∝ logω. However, this result is
useless, as we already know that the Landau damping term completely overshadows
a regular frequency dependence in (2.3). It makes more sense then to estimate the
perturbative self-energy using the full bosonic propagator Eq. (2.12). This is not a
fully self-consistent procedure, but we use it here to estimate the functional forms
of the self-energy at various orders in perturbation around free fermions.

It is instructive to distinguish between Σ(kF, ω) = Σ(ω) and Σ(k, 0) = Σ(k).
Indeed, there is an asymmetry in the behavior of the fermionic self-energy depending
on whether one computes it at zero frequency or at zero momentum departure from
the Fermi surface. This feature is one of the key elements of the self-sonsistent
treatment presented in the next section.

� Frequency dependence

Substituting the renormalized bosonic propagator with the Landau damping term
into (2.16), the frequency-dependent self-energy reads:

Σfree
1 (ω) =

3iḡ

(2π)3

∫

dΩ qdq dθ
1

q2 + γ |Ω|
q

1

i(ω + Ω)− vF q cos θ
. (2.17)

Here θ is the angle between kF and q, and we linearized the fermionic dispersion.
Evaluating the integral over the angle, and using that the typical internal bosonic
momentum q ∼ Ω1/3 is much larger than Ω ∼ ω, we obtain:

Σfree
1 (ω) =

3ḡ

2π2vF

∫ ω

0

dΩ

∫
dqq

q3 + γ|Ω|
= ω

1/3
0 ω2/3, (2.18)

where

ω0 =
3
√

3ḡ3

8π3v3
Fγ

=
3
√

3ḡ2

8π2Nmv2
F

. (2.19)

This result has been first obtained in Ref. [34, 35] when treating the interaction
of low-energy fermions with singular gauge fields. It suggests that in D = 2, the
interaction between bare fermions and critical bosons leads to a breakdown of the
Fermi-liquid behavior: at low energies, the ω2/3 term in (2.18) is larger than the
bare ω in the fermionic propagator. This obviously makes one wonder if higher
order insertions lead to even more singular contributions.
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� Momentum dependence

Before looking at higher-order self-energy corrections, we compute the one-loop
momentum-dependent self-energy Σ(k), given by:

Σfree
1 (k) =

3iḡ

(2π)3

∫

dΩ qdq dθ
1

q2 + γ |Ω|
q

1

iΩ− εk − vF q cos θ

=
3ḡ

(2π)2
εk

∫
dΩ dq

q2 + γ |Ω|
q

q|Ω|
(Ω2 + (vF q)2)3/2

. (2.20)

One can make sure that the integral is infrared-convergent, i.e. Σfree(εk) ∝ εk, with
an interaction dependent prefactor, which also depends on the upper cutoff of the
theory, Λ.

This suggests that the momentum dependent part of the fermionic self-energy,
unlike the frequency-dependent part derived earlier, is regular at the QCP and only
leads to a finite mass renormalization.

2.2.3 Two-loop fermionic self-energy

As the one-loop frequency-dependent self-energy seems to dominate over the bare ω
term of the fermionic propagator, one could wonder whether higher-order insertions
lead to even more singular contributions.

To investigate this issue, we next calculate the contribution to the fermionic self-
energy Σ(ω) from diagrams at the two-loop level, and focus, for illustrative purposes,
on the diagram presented in Fig. 2.1.c, which writes:

Σfree
2 (ω) ∼ ḡ2

∫

dω1d
2q1

∫

dω2d
2q2 G(kF + q1, ω + ω1) G(kF + q2, ω + ω2)

× G(kF + q1 + q2, ω + ω1 + ω2) χs(q1, ω1) χs(q2, ω2),
(2.21)

where we use the full bosonic propagator, the free fermionic one, and we restrict
ourselves to the frequency dependence of this contribution to the self-energy.

We first compute this integral expanding the dispersion of the internal fermions
to linear order, since the quadratic term was not significant in the computation
of the one-loop bosonic and fermionic self-energy. Choosing the x axis along the
external k = kF and integrating over qx1 and qx2 , we are left with:

Σfree
2 (ω) ∼ ḡ2

v2
Fω

∫ ω

0

dω1dq1y

q2
1y + γ|ω1|

q1y

∫ ω

ω−ω1

dω2dq2y

q2
2y + γ|ω2|

q2y

∼ ω
2/3
0 ω1/3. (2.22)

where ω0 is defined in (2.19).
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At low-energy, this two-loop self-energy diverges faster than the one-loop self-
energy obtained in (2.18). Estimating higher-order diagrams, we find that they form
a series in powers of (ω0/ω)1/3, such that the perturbative expansion around free
fermions breaks down at ω ∼ ω0.

This result is in line with the one obtained by Lawler et al. [36], in the context of a
QCP in the charge channel using a two-dimensional bosonization scheme. The scale
ω0 is related by ω0 = vF/x0 to the spatial scale at which the equal time fermionic
Green’s function G(x), obtained from bosonization, begins decaying exponentially

(G(x) ∝ e−(x/x0)1/3
).

However, the divergence of the perturbation theory can be cured once the cur-
vature of the fermionic dispersion is included, as we now show. We re-evaluate the
two-loop self-energy (2.21), using now the full fermionic dispersion, Eq. (2.2), with-
out neglecting the quadratic term. After integrating over the momentum component
qx1 and qx2 , one has:

Σfree
2 (ω) ∼ ḡ2

v2
F

∫ ω

0

dω1dq1y

q2
1y + γ|ω1|

q1y

∫ ω

ω−ω1

dω2dq2y

q2
2y + γ|ω2|

q2y

1

iω − q1yq2y

mB

∼ m2
B ḡ

2

γ2v2
F

ω log2 ω. (2.23)

When the curvature of the fermionic dispersion is included, we see that the
two-loop self-energy turns out to be small compared to its one-loop counterpart,
at low energy. In a separate study [37], Chubukov and Khveshchenko reconsidered
the bosonization procedure in the presence of the curvature and obtained the same
results as in (2.23).

2.2.4 Conclusion

As a conclusion, this first crude approach suggests that both the fermionic and
the bosonic self-energies are important at the QCP. The bosonic self-energy sets
the dynamics of the bosons, while the fermionic self-energy is non-analytic and
parametrically larger than the bare ω term at low energy, which implies a breakdown
of the Fermi-liquid behavior at criticality.

We argued that only the frequency-dependent part of the self-energy matters, the
momentum-dependent one only leads to a regular renormalization of the effective
mass.

We also found that the curvature of the Fermi surface actually plays a very
important role in regularizing the perturbative expansion, which was missed by
previous studies in comparable low-energy models.

However, the full account of these effects cannot be obtained from this simple
analysis. For example, we did not account here for the mutual effects of the self-
energies onto each other. One has to develop a controllable way to treat the bosonic
and fermionic self-energies on equal footing, in a self-consistent fashion.
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Eliashberg theory of the spin-fermion model

Since we found that only the frequency-dependent Σ(ω) is relevant, a way to
proceed is to verify whether an Eliashberg-like theory, similar to the one developed
in the context of phonon superconductivity[38], may be such a controllable approx-
imation.

2.3 Eliashberg theory

The Eliashberg procedure allows to compute the fermionic self-energy Σ(ω) and the
bosonic polarization Π(q,Ω), by solving the self-consistent set of coupled Dyson’s
equations, neglecting all contributions coming from the vertex corrections and the
momentum-dependent fermionic self-energy.

2.3.1 Self-consistent solution

Specifically the Eliashberg theory follows three steps:

• neglect both the vertex corrections and the momentum dependent part of the
fermionic self-energy, i.e., approximate:

Σ(k, ωn) = Σ(ωn)

gTot = g + ∆g = g (2.24)

• construct the set of self-consistent Dyson’s equations:

G−1(k, ωn) = iωn − vF (k − kF ) + iΣ(ωn)

χs(q,Ωm)
χ0

ξ−2 + q2 + Π(q,Ωm)
, (2.25)

with the following fermionic and bosonic self-energies:

iΣ(ωn) =
k, ω

n

χ−1
0 Π(q,Ωm) =

q,ν
m

(2.26)

The fermionic Green’s functions in (2.26) are full (they are represented dia-
grammatically by a straight line) and χs(q,Ωm) is the full bosonic propagator
(represented by a wavy line).

• check a posteriori that the neglected terms ∆g and Σ(k), are all parametrically
small.
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2.3. Eliashberg theory

The evaluation of the momentum integral for the fermionic self-energy in the
Eliashberg theory requires care. Since fermions are faster than bosons, the leading
contribution to Σ(ω) is obtained if one integrates over the momentum component
transverse to the Fermi surface only in the fermionic propagator and sets this com-
ponent to zero in the bosonic propagator (this implies that the momentum integral
is factorized).

One can show that the corrections that arise from keeping the transverse com-
ponent of momentum in the bosonic propagator are small to the same parameter
as ∆g/g and should therefore be neglected, as keeping them would be beyond the
accuracy of the theory.

The evaluation of the bosonic and fermionic self-energies within the Eliashberg
theory is presented in Appendices A and B. We list here the main results.

� Away from the QCP

At large but finite correlation length ξ and for a bosonic momentum and frequency
satisfying vF q � Σ(Ω) we obtain:







Π(q,Ω) = γ
|Ω|
q

, and

Σ(ω) = λωF (γωξ3) ,

(2.27)

where F (x � 1) = 1 + O(x), and F (x � 1) = 2√
3
x−1/3. The parameter γ is the

same as for free fermions,

γ =
Nmḡ

πvF
, (2.28)

and λ is the dimensionless coupling

λ =
3ḡ

4πvF ξ−1
ḡ = g2χ0 (2.29)

At finite ξ−1 and vanishing ω, the self-energy has a Fermi liquid form:

Σ(ω) = λω. (2.30)

The Fermi liquid theory is stable in this case, and the low-energy quasi-particles
have a finite effective mass:

m∗ = m(1 + λ). (2.31)

The effective mass diverges proportionally to ξ in the vicinity of the QCP.
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Eliashberg theory of the spin-fermion model

� At criticality

At ω � (γξ3)−1, however, the system is in the quantum-critical regime. Here
the Fermi liquid theory breaks down in the sense that the quasi-particles damping
becomes comparable to its energy. We have:

Σ(ω) = ω
1/3
0 |ω|2/3sign(ω), (2.32)

where ω0 = 3
√

3ḡ2/(8π2Nmv2
F ) is the same as in (2.19).

At the QCP, ξ−1 = 0, the region of Fermi-liquid behavior collapses in frequency
space, and the ω2/3 dependence of the self-energy extends down to the lowest fre-
quencies. The expression for Σ(ω) is valid for all frequencies below the cutoff Λ.

However, only frequencies ω ≤ ω0 are actually relevant for the quantum critical
regime, as at higher frequencies the system behaves as a nearly ideal Fermi gas.

2.3.2 A few comments

� General remarks

One has to make a few remarks concerning the Eliashberg solution obtained at the
QCP:

B Curvature

Note that the curvature of the fermionic dispersion is unimportant here for
both self-energies, and only accounts for small corrections containing higher
powers of frequencies.

B Direct perturbative expansion

Comparing (2.27) and (2.32) with (2.15) and (2.18), we see that the self-
energies in the Eliashberg theory coincide with the one-loop perturbative re-
sults around free fermions that we carried out in the previous section. This
arises from the fact that the full fermionic propagator appears in both self-
energies only via the fermionic density of states (DOS):

N(ω) =
i

π

∫

dεk
1

ω + Σ(ω)− εk
. (2.33)

This DOS reduces to N(ω) = Sign(ω), independently on the self-energy: it
remains the same as for free fermions.

B Bosonic momentum and frequency

Note that Eq. (2.27) for the bosonic self-energy is only valid as long as the
interplay between the external momentum and frequency is such that vF q �
Σ(Ω). When this is verified, the Landau damping term no longer depends on
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2.3. Eliashberg theory

the fermionic self-energy, which explains why we recover the same expression
for the self-consistent treatment and the direct perturbative expansion. In the
opposite limit, the vertex corrections cannot be neglected as we argue in the
next section.

� Mass-shells

A lot of the computations we carry out in the further sections are estimated based on
the typical bosonic and fermionic momenta and frequencies. Indeed, from inspect-
ing the propagators, one can isolate a region of the three-dimensional momentum-
frequency space where they are maximum. It follows that the quantities we compute
are dominated by these regions of the phase space.

We thus distinguish two “mass shells”, defined respectively as:

• the fermionic one is given by G(k, ω)−1 ' 0, i.e. at the fermionic mass-shell,
one has:

|k− kF| ∼
ω + Σ(ω)

vF
(2.34)

• the bosonic mass-shell, on the other hand, is given by:

|q| ∼ (γ|Ω|)1/3 (2.35)

In the computations carried out in the next sections, we argue that the result
strongly depends on the typical internal bosonic momentum and frequency. Depend-
ing whether one, two, or none of the components of this internal bosonic momentum
vibrate on the bosonic mass-shell, we end up with very different results.

� Factors of N

We argue in the next scetion that the extension of the model to N fermionic flavors
is essential for the validity of the current approach. However, it can be readily
seen from (2.27) and (2.32) that both self-energy contain factors of N through their
prefators.

It follows that one cannot take the true infinite N limit, as the bosonic suscepti-
bility trivially vanishes and the fermionic self-energy, although dominant because of
its frequency dependence, would be washed out. Our approach has to be considered
as an asymptotic expansion, where we keep N finite, but consider it is large enough
to allow us to neglect higher-powers in N .

For further analysis of the corrections to the Eliashberg theory, it is then conve-
nient to rescale N out of the formulas for Σ(ω) and for Π(q,Ω). This can be done
by rescaling m and kF leaving vF intact:

m→ m/N kF → kF/N. (2.36)
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Eliashberg theory of the spin-fermion model

We emphasize that the fermionic self-energy Σ ∝ ω2/3 and the Landau damping
term in the bosonic propagator do not contain N after rescaling, and therefore must
be included into the new “zero-order” theory about which we then expand using
1/N as a small parameter. This zero-order theory includes:







χ(q,Ω) =
χ0

ξ−2 + q2 + γ|Ω|/q
G(k, ω) =

1

i(ω + Σ(ω))− εk
.

(2.37)

We can reformulate the Eliashberg theory by introducing the following effective
Lagrangian describing the fermion-boson interaction:

L = LF + LB + Lint ,with

LB =T
∑

q,n

Sq,nχ
−1(q,Ωn)S−q,−n,

LF =T
∑

k,n,α,j

c†k,j,n,αG
−1(k, ωn)ck,j,n,α,

Lint =gT 2
∑

n,m,k,q

Sq,mc
†
k,j,nασαβck−q,j,n−m,β, (2.38)

where n,m number Matsubara frequencies, α, β are spin indices, j is a flavor index,
and G and χ are given by (2.37). The upper limit of the frequency summation is
the cutoff Λ.

We emphasize that there is no double counting in the bosonic propagator (2.37a).
The integration of high-energy fermions, above the cutoff Λ leads to the momentum
dependence of the static bosonic propagator, whereas the interaction at frequencies
below Λ gives rise to the Landau damping, without affecting the static part.

To summarize, the Eliashberg-type theory at the QCP contains a non-analytic
fermionic self-energy which scales as ω2/3 and breaks down the Fermi liquid descrip-
tion of fermions. At the same time, the bosonic propagator is regular – the only
effect of the interaction with low-energy fermions is the appearance of a Landau
damping.

We emphasize that the fully renormalized bosonic susceptibility does not neces-
sary coincide with the one in (2.37) and may, in particular, acquire an anomalous
dimension [39].

However, this can only be due to infra-red divergent corrections to Eliashberg
theory, which are fully captured by the effective low-energy model of Eq. (2.38). An
anomalous dimension was proved to emerge at the antiferromagnetic QCP in d = 2
[32, 39], but not in our case.
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Expression Definition Eq.

vF Fermi velocity (2.2)

m bare quasiparticle mass, m = kF/vF (2.2)

m∗ effective (renormalized) quasiparticle mass (2.31)

mB band mass, determines the curvature of the
Fermi surface

(2.2)

g spin-fermion coupling constant (2.4)

ξ ferromagnetic correlation length (2.3)

χ0ξ
2 value of the spin susceptibility at q = 0 (2.3)

N number of fermionic flavors

ḡ=g2χ0 effective four-fermion interaction (2.29)

γ=Nmḡ
πvF

Landau damping coefficient (2.28)

λ= 3ḡξ
4πvF

dimensionless coupling constant, it mea-
sures the mass enhancement: λ = m∗

m
− 1

(2.29)

ω0=
3
√

3ḡ3

8π3γv3F
∼ ḡ2

EF
frequency up to which Σ(ω) dominates
over ω in the fermionic propagator

(2.32)

ωmax=
√

γv3
F ∼
√
ḡEF frequency up to which the fermionic and

the bosonic mass-shells are well separated
(2.42)

α= ḡ2

γv3F
∼ ḡ

EF
small parameter measuring the slowness
of the bosonic modes compared to the
fermionic ones; the same small parameter
justifies the low-energy description

(2.39)

β=mB

mN
small parameter related to the curvature
of the fermionic dispersion

(2.53)

Table 2.1: List of the various parameters used in the text, their expression before
the rescaling in N , and the reference equation where it is defined in the text.
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2.4 Validity of the approach

The essential part of the Eliashberg procedure is an a posteriori verification that the
neglected terms in the self-energies are small. Quite generally, the validity of this
procedure is based on the idea that the fermions are fast excitations compared to
the bosons, and hence the fermionic and bosonic mass shells are well separated in
energy.

When scattering off physical mass-shell bosons, the fermions are forced to vibrate
on the bosonic mass shell, which is far away from their own. The electronic spectral
function near the bosonic mass-shell is then small and this reduces the self-energy
that arises from true fermion-boson scattering. In the case of the electron-phonon
interaction, this is known as the Migdal theorem, and ensures that the corrections
to the electron-phonon vertex are small.

The computation of the fermionic self-energy Σ(ω) gives us an idea of what
the typical intermediate momenta and frequencies are in the problem. One can
make sure that at criticality the typical fermionic momenta k − kF are of order
Σ(ω)/vF = ω

1/3
0 ω2/3/vF . On the other hand, the typical bosonic momenta q⊥ along

the direction of kF (i.e. transverse to the Fermi surface) are of the same order as the
typical fermionic momenta, while the momenta q‖ transverse to kF (i.e. along the

Fermi surface) are of order (γω)1/3 � ω
1/3
0 ω2/3/vF . We see that for a given frequency

ω, the typical |q| =
√

q2
⊥ + q2

‖ are much larger than k − kF , i.e. the effective boson

velocity is much smaller than vF . One then expects that the extension of Migdal
theorem to our model holds.

The ratio of the typical fermionic k − kF and bosonic |q| at the same frequency
ω is (ω0ω/γv

2
F )1/3. At ω ∼ ω0, this ratio then becomes:

α =

(
ω2

0

γv3
F

)1/3

∼ ḡ

NEF
, (2.39)

and the slowness of the bosonic mode is then ensured in the quantum critical regime
provided that α� 1. This condition coincides, in our case, with the condition that
the interaction should be smaller than the bandwidth. This is a necessary condition
for the effective low-energy model to be valid, for if it is not satisfied, one cannot
distinguish between contributions coming from low and from high energies.

However, the smallness of α is not sufficient. In the integral for the fermionic
self-energy, only one component of the bosonic momentum, q‖, is much larger than
k − kF , the other one is comparable: q⊥ ∼ k − kF . One needs to check whether the
corrections to the Eliashberg theory scale as the ratio of k − kF to the modulus of
|q| or one of its components.

To address these issues, we explicitly compute the vertex corrections and the
fermionic self-energy at the two-loop level.
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2.4.1 Vertex corrections

We consider the vertex corrections due to the insertion of one bosonic propaga-
tor (three-leg vertex) and two bosonic propagators (four-leg vertex). The behavior
of these vertex corrections strongly depends on the interplay between the internal
and external momenta and frequencies. We present the results below and discuss
technical details of the calculations in Appendix C.

In the case of the three-leg vertex, the result strongly depends on the interplay
between external as well as internal momentum and frequency. We thus distinguish
between three cases.

� Three-leg vertex with zero external momentum and frequency

We begin with the simplest 3-leg vertex, with strictly zero incoming frequency Ω and
momentum q. The one-loop vertex renormalization diagram contains one bosonic
line and is presented in Fig. 2.2a. In analytic form, it writes:

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ g2

∫

dωd2p G(kF, ω)2 χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1
(

iΣ̃(ω)− vFpx − p2y
2mB

)2 , (2.40)

where we defined Σ̃(ω) = ω+ Σ(ω) and we have chosen kF along the x axis, so that
px = p⊥ and py = p‖.

Since the poles coming from the fermionic Green’s functions are in the same half
plane, the integral over qx is only non-zero because of the branch cut in the bosonic
propagator. At the branch cut px ∼ py, so that we can safely drop the quadratic
term in the fermionic propagators. Introducing polar coordinates, and integrating
successively over the angle between kF and p, then over the modulus p, we obtain:

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ ḡ

γv3
F

∫ ωmax

0

dω
Σ̃(ω)

ω
, (2.41)

where ωmax is the frequency up to which bosons are slow modes compared to
fermions, i.e. up to which Σ̃(ω)/vF � (γω)1/3. This frequency exceeds ω0, so
to find it we have to use Σ̃(ω) ≈ ω. We then obtain:

ωmax ∼
√

γv3
F ∼

√

NḡEF . (2.42)

Note that for small values of α, ωmax � ω0, and the maximum frequency up to
which the bosons can be treated as slow modes well exceeds the upper limit of the
quantum-critical behavior.
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Substituting Σ̃ and ωmax into (2.41), we obtain

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ √α (2.43)

This correction to the vertex can then be neglected provided that α is small.

� Three-leg vertex with finite external momentum

We now turn to the three-leg vertex with zero external frequency but a finite bosonic
momentum q. The one-loop renormalization is given in Fig.2.2, and its analytic form
writes:

∆g

g

∣
∣
∣
∣
q,Ω=0

∼ g2

∫

dωd2p G(kF + p + q, ω)G(kF + p, ω)χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1

iΣ̃(ω)− vFpx − p2y
2mB

× 1

iΣ̃(ω)− vF qx − vFpx − p2y
2mB
− qypy

mB

, (2.44)

where px is the projection of p along kF.
As before, the integral over px can be reduced to the contribution from only the

branch cut in the bosonic propagator. At the branch cut, px ∼ py, hence we can
neglect the quadratic term in the fermionic Green’s function, which then allows us
to integrate over py. Expanding in qx, and subtracting the constant term at zero
momentum calculated in (2.41), we obtain:

∆g

g

∣
∣
∣
∣
q,Ω=0

− ∆g

g

∣
∣
∣
∣
q=Ω=0

∼ i
qx
kF

∫

|vF qx|

dω

|ω| log[iΣ̃(ω)]

∼ qx
kF

log |qx|, (2.45)

When not only the bosonic momentum q is finite but also the external fermionic
momentum is away from kF , the q × log dependence of the static vertex correction
survives, but the argument of the logarithm is the maximum of the bosonic q and
fermionic k − kF (we directed both along x).

In general, the typical value of qx is much smaller than kF , hence the momentum
dependent part of this vertex correction is small. However, we argue in the next
chapter that because of the logarithmic term in (2.45), the insertion of this vertex
correction into the static susceptibility gives rise to a non-analytic term.

We also emphasize that although the calculations of ∆g
g

∣
∣
∣
q=Ω=0

and ∆g
g

∣
∣
∣
q,Ω=0

look

similar, the characteristic bosonic momenta are different for the two cases. At
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q = Ω = 0, the typical bosonic momenta in (2.40) are of order (γω)1/3, i.e. near the
bosonic mass shell. On the other hand, the typical bosonic momenta in (2.44) are
of order Σ̃(ω)/vF , i.e. near the fermionic mass shell. This is why only one of these
two vertex corrections is small in α, as this parameter measures the slowness of the
bosonic modes compared to the fermionic ones.

� Generic three-leg vertex

We next consider the same vertex with small but finite external momentum q and
frequency Ω. This diagram, presented in Fig. 2.2b, reads:

∆g

g

∣
∣
∣
∣
q,Ω

∼ g2

∫

dωd2p G(kF + p + q, ω + Ω)G(kF + p, ω) χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1

iΣ̃(ω)− vFpx − p2y
2mB

× 1

iΣ̃(ω + Ω)− vF qx − vFpx − p2y
2mB
− qypy

mB

, (2.46)

where we have chosen kF along the x axis, so that qx = q⊥ and qy = q‖.
Integrating over px first, one obtains two contributions: one arising from the

poles in the fermionic Green’s functions (which now can be in different half-planes
since Ω is finite), and the other from the branch cut in the bosonic propagator. The
latter leads to the same result as (2.41), up to small corrections due to the finiteness
of the external q and Ω.

Focusing on the other contribution, one has:

∆g

g

∣
∣
∣
∣
q,Ω

∼ i
ḡ

vF

∫ Ω

0

dω

∫

dpy
|py|

γ|ω|+ |py|3
1

iΣ̃(Ω− ω) + iΣ̃(ω)− vF qx − qypy

mB

, (2.47)

where the simplification of the frequency integral comes from the pole structure in
px.

This generic correction to the vertex strongly depends on the interplay between
the external qx, qy, and Ω.

When q and Ω are both finite,

∆g

g

∣
∣
∣
∣
q,Ω

= F
(
vF q

Σ(Ω)

)

, (2.48)

where

F(x) =

∫ 1

0

dz

z1/3

1

(1− z)2/3 + z2/3 + ix
(2.49)

has the following asymptotic behavior:
{
F(x� 1) = O(1)
F(x� 1) = O

(
1
x

) (2.50)
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If the typical external momentum q is on the bosonic mass shell, then q ∼ (γΩ)1/3,
and one has:

∆g

g

∣
∣
∣
∣
q,Ω

∼ Σ(Ω)

vF qx
∼ √α

(
Ω

ωmax

)1/3

. (2.51)

This is obviously small in α.
It turns out that the behavior of the vertex correction is more complex and the

result for ∆g/g strongly depends on the direction of q compared to the direction of
kF .

This directional dependence is important for our purposes as we saw in previous
computations that in the fermionic self-energy, only the y component of the internal
bosonic momentum is near the bosonic mass shell and scales as (γΩ)1/3, while the
x component of the bosonic momentum is much smaller and is actually of the order
of Σ̃(ω)/vF , i.e. is near the fermionic mass shell.

Let’s take a more careful look at this vertex correction, depending on the direc-
tion of q.

For the case where qx ∼ Σ̃(Ω)/vF and qy ∼ (γΩ)1/3, one would argue from (2.51)
that the vertex correction now becomes of order O(1) and is no longer parametri-
cally small. However, the computation that lead to (2.51) cannot be extended to
the strongly anisotropic case as for external qx ∼ Σ̃(Ω)/vF and qy ∼ (γΩ)1/3, the
curvature of the fermionic dispersion becomes relevant and changes the result.

The full dependence on qx and qy is rather complex and we restrict ourselves
to the case when the importance of the curvature ensures that 1

N
mB

m
� 1. In this

situation, q2
y/mB ∼ (vF qx)/β � vF qx, so that the quadratic term in the fermionic

propagator dominates.
Performing the integration, we then find that:

∆g

g

∣
∣
∣
∣
q,Ω

∼ β2

(
γΩ

q3
y

)2/3

log2

[

β
(γΩ)1/3

qy

]

∼ β2 log2 β, (2.52)

where

β =
1

N

mB

m
� 1. (2.53)

It follows that even when only one component of the bosonic momentum is near
the bosonic mass shell, the vertex correction is small if β is small. This is the second
condition for the Eliashberg theory to be controllable at criticality.

The smallness of β can be ensured by either extending the theory to large values
of N , or by considering a very strong curvature of the Fermi surface which implies
that mB � m. Even though the latter can hardly be satisfied for realistic Fermi
surfaces, we emphasize that the curvature of the dispersion plays a crucial role in
the theory, for even in the case of N � 1, the vertex correction is of order O(1)
without this very curvature.
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a)
0, 0

kF, 0

b)
Q, 0

kF, 0

c)
Q, Ω

kF, 0

Figure 2.2: Three-leg vertices: a) zero external momentum and frequency b) finite
momentum c) generic vertex.

� Pairing vertex

By contrast to the previous vertices we studied, the pairing vertex in the Cooper
channel is not sensitive to the curvature of the Fermi surface. This leads to a vertex
of order O(1) even in the large-N limit and the pairing problem then has to be
carried out exactly within the Eliashberg theory.

This vertex renormalization is presented in Fig. 2.3 and its analytic form is given
by:

∆g

g

∣
∣
∣
∣
Cooper

∼ g2

∫

dωd2q χ(q, ω) G(kF + q, ω)G(−kF − q,−ω − Ω)

∼ ḡ

∫
dωd2q
γ|ω|
q

+ q2

1

iΣ̃(ω)− vF qx − q2y
2mB

1

−iΣ̃(ω + Ω)− vF qx − q2y
2mB

.

Integrating over qx, restricting ourselves to the contribution from the fermionic
poles (the one from the branch cut can be proved to be smaller), we find that the
quadratic terms cancel out, leaving us with:

∆g

g

∣
∣
∣
∣
Cooper

∼ ḡ

vF

∫ D

|Ω|

dω

Σ̃(ω + Ω) + Σ̃(ω)

∫ ∞

0

dqy qy
γω + q3

y

. (2.54)

Performing the remaining integral, the prefactor simplifies and we obtain:

∆g

g

∣
∣
∣
∣
Cooper

∼ ḡ

γ1/3ω
1/3
0 vF

log

∣
∣
∣
∣

Ω

D

∣
∣
∣
∣

∼ log

∣
∣
∣
∣

Ω

D

∣
∣
∣
∣
, (2.55)

where we assumed that we were in the quantum critical regime, i.e. |Ω| < ω0.
We emphasize that the prefactor of the log in (2.55) is O(1), even when one

takes into account the curvature of the fermionic dispersion. The result of Eq.
(2.55) confirms previous studies [40] advocating that the system at a ferromagnetic
QCP can lead to a supersoncudcting instability.
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� Four-leg vertex

We consider now higher-order corrections to the vertex through the example of a
four-leg vertex correction with two crossed bosonic lines, also called a Cooperon
insertion. Analytically, the expression for this renormalized vertex, presented dia-
grammatically in Fig. 2.3, writes:

Γ2(q,Ω) ∼ ḡ2

∫

dωd2p χs

(
Ω + ω

2
,
p + q

2

)

χs

(
Ω− ω

2
,
q− p

2

)

×G
(

Ω + ω

2
,kF +

p + q

2

)

G

(
Ω− ω

2
,kF +

q− p

2

)

(2.56)

After integrating over px (projection of p along kF), and ω, were are left with:

Γ2(q,Ω) ∼ ḡ2

vF

Ω

|qy|3
∫

dz

√
(

z2 + q2

q2y

)2

− 4z2

2iΣ
(

Ω
2

)
− vF qx − q2y

4m
(1 + z2)

× 1
(

z2 + 2z + q2

q2y

)3/2

+ γ|Ω|
|qy|3

1
(

z2 − 2z + q2

q2y

)3/2

− γ|Ω|
|qy|3

, (2.57)

where we have changed py into z = py/|qy|.
This renormalized 4-leg vertex Γ2(q,Ω) has to be compared with the bare four-

leg vertex, whose analytic form is given by the bosonic propagator multiplied by
g2:

Γ1(q,Ω) ∼ ḡ

q2 + γ|Ω|
q

. (2.58)

In the case of a typical external momentum qx ∼ qy ∼ (γΩ)1/3, the ratio Γ2/Γ1 is
of order α. For a typical qx ∼ Σ̃(ω)/vF and qy ∼ (γω)1/3, we obtain, to logarithmic
accuracy:

Γ2

Γ1
∼ β � 1. (2.59)

This last result again critically depends on the curvature of the Fermi sur-
face: neglecting the quadratic terms in the fermionic propagators, one would obtain
Γ2/Γ1 = O(1). We see that likewise to the three-loop vertices, the smallness of the
crossed vertex Γ2(q,Ω) requires both α and β to be small.

2.4.2 Self-energy corrections

The second element one has to check in order to validate the Eliashberg procedure
concerns the momentum-dependent self-energy. After verifying on the practical
example of the two-loop self-energy, that the vertex correction analyzed above are
indeed small, we turn to the computation of the momentum-dependent self-energy
and the density of states.
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a)
0,−Ω

kF, 0

b)

kF, 0kF + q, Ω

kF, 0 kF + q, Ω

Figure 2.3: a) Cooper pairing vertex b) Four-leg vertex

� Corrections to the self-energy at the two-loop level

We found in our analysis of the vertex corrections that the result depends on the
interplay between the typical momentum and frequency. In our estimates, we consid-
ered two regions of external q and Ω, namely qx ∼ qy ∼ (γΩ)1/3 and qx ∼ Σ̃(ω)/vF ,
qy ∼ (γΩ)1/3. In both cases, we found that the vertex corrections are small.

We verify here that the two-loop self-energy, obtained by inserting vertex cor-
rections into the one-loop self-energy diagram, is also small.

The two-loop self-energy diagram is presented in Fig. 2.1. We have:

Σ2(ω) ∼ ḡ2

∫

dω1d
2q1

∫

dω2d
2q2 χ(q1, ω1) χ(q2, ω2) G(kF + q1, ω + ω1)

×G(kF + q2, ω + ω2) G(kF + q1 + q2, ω + ω1 + ω2)

∼ ḡ2

∫

dω1d
2q1

∫

dω2d
2q2

q1
γ|ω1|+ q3

1

q2
γ|ω2|+ q3

2

× 1

iΣ̃(ω + ω1)− vF q1x
1

iΣ̃(ω + ω2)− vF q2x − q22y

2mB

× 1

iΣ̃(ω + ω1 + ω2)− vF q1x − vF q2x − q21y

2m
− q22y

2mB

, (2.60)

where we recall Σ̃(ω) = ω + Σ(ω).

Integrating successively over q1x and q2x, and rescaling the remaining momentum
components by introducing x = q1y/(γ|ω1|)1/3 and y = q2y/(γ|ω2|)1/3, we obtain:

Σ2(ω) ∼ mB ḡ
2

v2
F

∫ ω

0

dω2

∫ ω

ω−ω2

dω1
1

(γ2ω1ω2)2/3

∫ ∞

−∞

dxdy

xy + iζ

|xy|
(1 + |x|3) (1 + |y|3)

(2.61)

where ζ = mB
Σ̃(ω+ω1)+Σ̃(ω+ω2)−Σ̃(ω+ω1+ω2)

(γ2ω1ω2)
1/3 .

As the typical frequencies ω1 and ω2 are of order ω, the typical value of ζ is
of order β � 1. Expanding then in (2.61) to first order in ζ and performing the
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remaining integrals, we obtain in the quantum-critical regime:

Σ2(ω) ∼ mḡ2

v2
F

∫ ω

0

dω2

∫ ω

ω−ω2

dω1
ζ log2 ζ

(γ2ω1ω2)2/3

∼ Σ(ω) β2 log2 β, (2.62)

where Σ(ω) = Σ1(ω) = ω
1/3
0 ω2/3 is the self-energy in the Eliashberg theory.

This result agrees with the one obtained in [30], and shows that Σ2(ω) ∼ Σ1(ω)×
∆g
g

∣
∣
∣
q,Ω

where ∆g
g

∣
∣
∣
q,Ω

is given by (2.52). This last result implies that the typical

internal q and Ω for the Eliashberg self-energy and for Σ2(ω) are the same.
It is also instructive to compare these two-loop results, obtained as an expansion

around the Eliashberg solution, to the perturbation expansion around free fermions.
In the latter, we found in Eq. (2.23) that Σ2(ω) ∼ ω log2 ω whereas in the former

we have Σ2(ω) ∝ β(ω
1/3
0 ω2/3) log2 β, Eq. (2.62). The free-fermion result can be

reproduced if we neglect the self-energy in (2.61). We see that the expansion around
free fermions does not reproduce the correct frequency dependence of Σ2(ω). This
obviously implies that if one expands around free fermions, there exist higher-order
terms associated with insertions of the self-energy Σ(ω) into the internal fermionic
lines, which may overshadow the two-loop result around free fermions. Accordingly,
near the QCP, the expansion around free fermions does not converge, even if the
curvature of the fermionic dispersion is included. On the other hand, the expansion
around the Eliashberg solution is regular and holds in powers of the small parameters
α and β.

� Momentum dependence of the self-energy and the density of states

Along with the vertex corrections, we also neglected the momentum dependence of
the fermionic self-energy in order to proceed with the Eliashberg scheme. We now
verify whether the momentum dependent part of the self-energy Σ(k, ω = 0) = Σ(k)
remains small when evaluated with the full fermionic propagator. The k dependent
self-energy is given by:

Σ(k, 0) = 3ig2

∫
d2q dΩ

(2π)3
G(k + q,Ω)χ(q,Ω)

=
3iḡ

(2π)3

∫
dΩd2q

iΣ̃(Ω)− εk+q
q

γ|Ω|+ q3
. (2.63)

Defining the angular variable θ as εk+q = εk + vF q cos θ, integrating over it, and
expanding to linear order in εk we obtain:

Σ(k, 0) = −3iεk ×
ḡ

2π2

∫ ∞

0

dΩ Σ̃(Ω)

∫
q2dq

(q3 + (γ|Ω|))
(

(vF q)2 + Σ̃(Ω)2
)3/2

. (2.64)
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A simple experimentation with the integrals shows that the integration over
momentum is confined to q ∼ Σ̃(Ω)/vF , while the frequency integral is confined to
Ω < ωmax, where ωmax, defined in (2.42), is the scale where (γΩ)1/3 = Σ̃(Ω)/vF .
The computation of Σ(k) is given in the Appendix B, and the result is

Σ(k, 0) = −iεk ×
3× 1.3308

2
√

2π3/2

√
α = −iεk 0.253

√
α (2.65)

Plugging this back into the fermionic propagator, we then obtain that Σ(k, 0) gives
rise to a small, regular correction to the quasiparticle mass εk − iΣ(k, 0) = ε∗k =
v∗F (k − kF ), where

v∗F = vF
(
1− 0.253

√
α
)
. (2.66)

Like the vertex correction at zero external bosonic momentum and frequency,
this small correction is of order O(

√
α) and comes from frequencies of order ωmax.

The momentum dependent self-energy, unlike the frequency dependent part, gen-
erally gives rise to corrections to the fermionic density of states (DOS)

N(ω) ∼ −
∫

dεk
π

ImG(εk, ω). (2.67)

where N0 is the DOS of free fermions.
Assuming that Σ(k) is small and expanding in it in the fermionic propagator,

we obtain, in real frequencies

N(ω) ∼ 1− Im

(

Σ(k)

εk

∣
∣
∣
∣
εk=iΣ̃(−iω)

)

, (2.68)

Substituting (2.65) into (2.68), we find that the density of states just shifts by a
constant. It follows that in order to extract the frequency dependence of the density
of states, one has to evaluate the momentum-dependent self-energy to next order in
εk and on the mass shell, where εk = iΣ̃(ω).

The evaluation of the self-energy near a mass shell generally requires extra cau-
tion as the self-energy may possess mass-shell singularities [33]. We, however, have
checked in Appendix F that in our case the self-energy does not possess any mass-
shell singularity, and the self-energy remains finite on the mass shell.

The calculation of the self-energy to order ε2k is displayed in the Appendix B,
and the result is

Σ(k, ω) = iεk ×
0.45ḡ

8πN

|Σ(ω)|
EF

log
ω1

|ω| (2.69)

Substituting this self-energy into the expression for the DOS and converting to real
frequencies, we find at small ω

N(ω) ∼ N0

(

1−
(
ω

ω1

)2/3

log2 ωmax
ω

)

, (2.70)
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where we explicitly defined

ω1 =
128π5/2

0.453/2 33/4

N2E2
F

ḡ
. (2.71)

2.4.3 Summary

We have shown in this section that there are two conditions for the validity of the
Eliashberg theory that one can recast as the smallness of two parameters:

α ∼ ḡ2

γv3
F

∼ ḡ

NEF
� 1 β ∼ mḡ

γvF
∼ mB

Nm
� 1. (2.72)

The first condition is quite generic for a low-energy theory since it requires that
the fermion-fermion interaction mediated by the exchange of a boson should be
smaller than the Fermi energy. Otherwise, the physics is not restricted to the vicinity
of the Fermi surface anymore. The parameter α plays the same role as the Migdal
parameter for the electron-phonon interaction: it sets the condition that fermions
are fast excitations compared to bosons. In the scattering processes that are small in
α, fermions are forced by the interaction to vibrate at frequencies near the bosonic
mass shell. They are then far from their own resonance and thus have a small
spectral weight.

However, the condition α � 1 is not sufficient to construct a fully controllable
perturbative expansion around the non-Fermi liquid state at the QCP. In spatially
isotropic systems there exist vertex corrections for which the external momentum
has a component on the fermionic mass-shell. These corrections don’t contain α.
However, these corrections are sensitive to the curvature of the Fermi surface, and
are small if β is small which can be achieved either by imposing mB � m or by
extending the theory to a large number N of fermionic flavors.

In evaluating the renormalization of the static vertex, we silently assumed that√
α� β, i.e., ḡ/EF < (mB/m)2/N . At very large N , this is no longer valid, but in

this situation our estimates show that the static vertex is even smaller than
√
α.

Finally, the pairing vertex in the Cooper channel stays of order O(1), signaling
the possibility of a pairing instability close to the quantum critical point. Nev-
ertheless, we assume, based on explicit calculations worked out in [40], that the
quantum critical behavior extends in the parameter space to a region where the
superconductivity is not present.
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Static spin susceptibility
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In this chapter, we revisit the Hertz-Millis-Moriya φ4 theory using the solution of
our Eliashberg scheme at criticality. We then turn to the computation of the static
spin susceptibility, following the remarks of Belitz and collaborators: now that we
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a)

− q,−Ω

q, Ω −q,−Ω

q, Ω

b)

q, Ω

−q,−Ω

0, 0

Figure 3.1: “φ4” and “φ3” type diagram

have derived a controllable way of describing the quantum critical regime, we can
estimate whether the non-analytic corrections associated to the Fermi liquid regime
survivies at criticality. We indeed prove that this non-analytic term does not survive
at criticality but another one, weaker, is till present. Finally, we study whether this
analysis is limited to the ferromagnetic QCP or can be extended to other physical
models.

3.1 Revisiting the Hertz-Millis-Moriya theory

As we argued in the first chapter, it is widely believed that an itinerant fermionic
system near a ferromagnetic QCP is adequately described by a phenomenological
2 + 1D φ4 bosonic theory (in our case, the role of φ is played by the vector field S)
with the dynamic exponent z = 3 and a constant prefactor for the φ4 term [3, 14, 13].
In dimensions d ≥ 4− z = 1, the model lies above its upper critical dimension and
the φ4 term is simply irrelevant.

In this section, we derive the effective φ4 theory from the spin-fermion model
Hamiltonian, and show that it contains two new elements absent from the phe-
nomenological HMM approach. First, the prefactor of the φ4 term strongly depends
on the ratio between the external momenta and frequencies, and contains a non-
analytic term in addition to the constant one. Second, there also exists a cubic φ3

term whose prefactor, although vanishing in the static limit, also strongly depends
on the interplay between the external momenta and frequencies.

3.1.1 φ4 term

In order to derive a quantum critical φ4 model, one has to integrate the fermions out
of the partition function, noticing that the Lagrangian of the spin-fermion model is
quadratic in the fermions.

Expanding then in the number of bosonic fields S, the quartic term in the effective
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action reads:
∫

d2qd2pd2p′ dΩdνdν ′

(2π)9
A(p,p′,q, ν, ν ′,Ω)

[
Sp+q/2 · Sq/2−p Sp′−q/2 · S−p′−q/2

+ Sp+q/2 · S−p′−q/2 Sq/2−p · Sp′−q/2 − Sp+q/2 · Sp′−q/2 S−q/2−p′ · Sq/2−p
]

(3.1)

where p, p′, q are bosonic momenta, and ν, ν ′,Ω are bosonic frequencies.
Our goal here is to prove that the prefactor A is not a regular function of mo-

menta and frequencies. To simplify the presentation, we choose to study only the
dependence of A on q and Ω and set p,p′, ν, ν ′ to zero (see Fig 3.1).

The analytic form of this prefactor then writes (see Appendix B for the technical
details):

A(q,Ω) ∼ Ng4

∫

dω

∫

d2k G(k, ω)2 G(k + q, ω + Ω)2. (3.2)

Defining θ as the angle between k and q, and performing the integration over
εk,and the angular variable, we find:

A(q,Ω) ∼ Nmg4

ω0Ω

∫ 1

0

dz

[(
vF q
Σ(Ω)

)2

− 2
(
z2/3 + (1− z)2/3

)2
]

[(
vF q
Σ(Ω)

)2

+ (z2/3 + (1− z)2/3)
2

]5/2
, (3.3)

where we defined z = ω/Ω, and neglected at this stage a regular part that comes
from large values of εk and for which the curvature is relevant.

We see that A(q,Ω) depends on the interplay between the momentum and fre-
quency. We can identify two regimes

• If |q| ∼ (γ|Ω|)1/3, i.e. if the bosonic momenta are near the bosonic mass shell,
the self-energy in the denominator can be neglected. The frequency factors in
the numerator and the denominator then cancel out, and we obtain:

A(Ω) ∼ Nmg4

γv3
F

∼ 1

χ2
0

αm , (3.4)

We see that A can be safely replaced by a constant O(α). This is consistent
with the previous works of Hertz, Millis and Moriya. The agreement is not
surprising as the relation q ∼ (γ|Ω|)1/3 is assumed in the power counting
based on the fact that the dynamic exponent z = 3. Note that the condition
|q| ∼ (γ|Ω|)1/3 only specifies the magnitude of q, one of its components (e.g.,
qx) can be much smaller.

• If q ∼ Σ̃(ω) ∼ ω
1/3
0 Ω2/3vF (at ω < ω0), i.e. when a boson resonates near a

fermionic mass shell, the scaling arguments of the z = 3 theory are no longer
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applicable. We have in this regime:

A(q,Ω) ∼ Nmg4

ω0Ω
∼ Nm

χ2
0

1√
α

ωmax

Ω
. (3.5)

In this case, A(Ω) is a singular function of frequency, and cannot be replaced
by a constant.

We see therefore that the pre-factor of the φ4 term is actually singular outside
the scaling regime of a z = 3 theory.

3.1.2 φ3 term

In the similar spirit, one can construct a cubic term in the bosonic fields.
∫

d2qd2pdΩdν

(2π)9
B(p,q, ν,Ω) Sp · (Sq−p/2 × S−q−p/2), (3.6)

where the pre-factor B is a convolution of three fermionic Green’s functions as
presented in Fig.3.1, and is given by:

B(q,p,Ω, ν) ∼ Ng3

∫

dω

∫

d2k G(k− p, ω−ν)G
(

k− p

2
− q, ω − ν

2
− Ω

)

G(k, ω)

Proceeding as for the quartic term, we set for simplicity p = 0, ν = 0, and
integrate over εk and the angular variable, leading to:

B(q,Ω) ∼ Nmg3

ω
2/3
0 Ω1/3

∫ 1

0

dz

(
z2/3 + (1− z)2/3

)

[(
vF q
Σ(Ω)

)2

+ (z2/3 + (1− z)2/3)
2

]3/2
, (3.7)

where we again introduced the rescaled frequency z = ω/Ω.
We can again identify two regimes.

• In the z = 3 regime where q ∼ (γΩ)1/3, one can expand for large vF q
Σ(Ω)

, which
leads to:

B(q,Ω) ∼ Nmg

χ0
α

(
Ω

ωmax

)2/3

, (3.8)

where ωmax is given by (2.42). This term is small in the quantum critical
regime where Ω < ω0 ∼ ωmaxα

3/2, and can be safely neglected.

• For q ∼ Σ(Ω), the remaining integral is of order O(1) and the result writes:

B(q,Ω) ∼ Nmg

χ0

1√
α

(ωmax

Ω

)1/3

, (3.9)

which is large and cannot be neglected.

We demonstrate in the next section how the singular behavior of the φ3 and φ4

terms leads to a non-analytic contribution to the static spin susceptibility.
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3.2 Static spin susceptibility

We found that the Eliashberg theory for fermions interacting with gapless long-
wavelength bosons is stable and controlled by two small parameters. We verified
this by calculating the fermionic self-energy in a two-loop expansion around the
Eliashberg solution

One may wonder whether the same conclusions hold for the bosonic self-energy
as well. In particular, what are the corrections to the static susceptibility χs(q, 0)?

For a ferromagnetic SU(2) QCP, for which the massless bosons are spin fluctu-
ations, we show in this section that the corrections to the static spin susceptibility
are non-analytic: they scale like q3/2, and do not contain any prefactor except for
a proper power of kF . Such terms obviously overshadow the regular q2 of the bare
susceptibility at small enough momenta.

The physics behind the q3/2 term in χ(q, 0) at a ferromagnetic QCP is, by itself,
not directly related to criticality: far away from the QCP, the spin susceptibility
also contains negative, non-analytic |q| term as we argued in the first chapter. This
term gradually evolves as the correlation length ξ increases, and transforms into the
q3/2 term at the QCP. Both these non-analyticities, at and away from the QCP,
emerge because the boson-mediated interaction between fermions contain a long-
range dynamic component, generated from the Landau damping.

We now estimate the effect of these singularities on physical quantities. Both
the φ3 and φ4 terms in the effective action give rise to corrections to the φ2 term,
i.e. to the spin susceptibility. These corrections are obtained diagrammatically by
contracting the external legs of the φ3 and φ4 terms, as shown in Fig. 3.2. The
computations are described in detail in Appendix D.

The contributions from the φ4 terms have been considered in Publication 1. The
contributions from cubic terms were missed, and were first considered in [41] in the
analysis of the spin susceptibility in the paramagnetic phase, away from a QCP.

Using the bosonic Dyson’s equation:

χ(q, 0) =
χ0

(ξ−2 + q2 + Π(q, 0))
(3.10)

we define the static polarization bubble at this order by Π = Π1(q, 0) + Π2(q, 0) +
Π3(q, 0)+Π4(q, 0), where the individual contributions are presented in Fig. 3.2, and
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write:

Π1(q, 0) =
ΓS1Nḡ

2

(2π)6χ0

∫

d2kdωd2ldΩ χs(l,Ω) G(ω, k) G(ω + Ω, k + l)

×G(ω + Ω, k + q + l) G(ω, k + q) (3.11a)

Π2(q, 0) =
ΓS2Nḡ

2

(2π)6χ0

∫

d2kdωd2ldΩ χs(l,Ω) G(ω, k)2 G(ω + Ω, k + l)

×G(ω, k + q) (3.11b)

Π3(q, 0) =
ΓS3N

2ḡ3

(2π)9χ2
0

∫

d2kdωd2k′dω′dldΩ χs(l,Ω) χs(q + l,Ω) G(ω, k)

×G(ω + Ω, k + l + q) G(ω′, k′) G(ω′ + Ω, k′ + l + q)

×G(ω, k + q) G(ω′, k′ + q) (3.11c)

Π4(q, 0) =
ΓS4N

2ḡ3

(2π)9χ2
0

∫

d2kdωd2k′dω′dldΩ χs(l,Ω) χs(l,Ω) G(ω, k)

×G(ω, k + q) G(ω + Ω, k + l + q) G(ω′, k′)

×G(ω′ + Ω, k′ + l) G(ω′ + Ω, k′ + l + q) (3.11d)

The factors of N come from the fermionic loops and the numerical prefactors
from the following spin summations:

ΓS1 =
∑

α,β,γ,δ

σZαβσβγσ
Z
γδσδα = −2 (3.12a)

ΓS2 =
∑

α,β,γ,δ

σZαβσβγ · σγδσ
Z
δα = 6 (3.12b)

ΓS3 =
∑

α,β,γ,δ,ε,ζ

σZαβ (σβγ · σδε) (σγα · σζδ)σ
Z
εζ = 8 (3.12c)

ΓS4 =
∑

α,β,γ,δ,ε,ζ

σZαβ (σβγ · σεδ) (σγα · σδζ)σ
Z
ζε = −8 (3.12d)

These four diagrams are related by pairs. To verify this, it is useful to expand
the products of Green’s functions according to:

G(ω1, k1)G(ω2, k2) =
G(ω1, k1)−G(ω2, k2)

G−1(ω2, k2)−G−1(ω1, k1)
. (3.13)

Applying this to Π2(q, 0), we find that it splits into two parts. In one part, the
poles in εk are located in the same half-plane, leading to a vanishing contribution.
The remaining term in Π2(q, 0) is related to Π1(q, 0) in such a way that:

Π1(q, 0) = −2Γ1

Γ2
Π2(q, 0). (3.14)

(see Appendix D for details).
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a)
q, 0

b)
q, 0

c)
q, 0

d)
q, 0

Figure 3.2: Corrections to the polarization bubble from diagrams with one and two
extra bosonic lines

Similarly, Π3(q, 0) and Π4(q, 0) are related as

Π3(q, 0) = −Γ3

Γ4
Π4(q, 0). (3.15)

Collecting all four contributions and using the relations between prefactors, we
obtain:

Π(q, 0) = ΠA(q, 0) + ΠB(q, 0) , (3.16)

ΠA(q, 0) = Π1(q, 0) + 2Π2(q, 0)

= 16
Nḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)G(ω, k)2G(ω + Ω, k + l)G(ω, k + q)

ΠB(q, 0) = Π3(q, 0) + Π4(q, 0)

= 16
N2ḡ3

(2π)9χ2
0

∫

d2kdωd2k′dω′dldΩ χs(l,Ω) χs(q + l,Ω) G(ω, k)

×G(ω, k + q) G(ω + Ω, k + l + q) G(ω′, k′ + q)

×G(ω′, k′) G(ω′ + Ω, k′ + l + q) (3.17)

3.2.1 Away from the QCP

Away from criticality, the correlation length ξ is finite, and at low frequency, the
system is in the Fermi-liquid regime. The fermionic self-energy is given by Σ(ω) =
λω, Eq. (2.30).

The spin susceptibility in this regime has been analyzed in [42, 43, 29, 44, 45,
46, 41]. It was shown there that to the lowest order in the interaction, ΠB(q, 0) =
ΠA(q, 0), i.e., Π(q, 0) = 2ΠA(q, 0). Beyond leading order, ΠB(q, 0) and ΠA(q, 0)
are not equivalent but are of the same sign and of comparable magnitude. For
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simplicity, we assume that the relation ΠB(q, 0) = ΠA(q, 0) holds in the whole Fermi
liquid regime. We will see below that even at the QCP, ΠB(q, 0) and ΠA(q, 0) are
quite similar (at criticality ΠB(q, 0) ' 1.3ΠA(q, 0)).

Introducing cos θ = k·l
|k||l| and cos θ′ = k·q

|k||q|, and successively integrating over |k|,
ω and θ′, (3.16) can be rewritten as:

Π(q, 0) =
8ḡ|q|

π3(1 + λ)vF

∫ ∞

0

dz

∫ π
2

0

dφ

∫ π

0

dθ
1

1
γ̃ξ2

+ tanφ

× cos φ sinφ

(i sinφ− cos θ cosφ)2

z
√

1 + z2(sin φ+ i cosφ cos θ)2
(3.18)

where we defined γ̃ = γvF

1+λ
, and introduced the new variables z and φ, which satisfy

z cos φ = l
q

and z sinφ = (1+λ)Ω
vF q

.

The universal part of Π(q, 0) can be isolated by subtracting from it the constant
part Π(0, 0). The integral over z then becomes convergent. Integrating successively
over z, φ and θ, we obtain:

δΠ(q, 0) = Π(q, 0)− Π(0, 0) = − 4

π2

ḡ

vF (1 + λ)
|q| H

(
1 + λ

γ̃ξ2

)

, (3.19)

where H(0) = 1
3
, and H(x � 1) ≈ 2/(3x2). We do recover the non-analytic |q|

correction to the static spin susceptibility in D = 2, as obtained in earlier studies
[26, 29, 42, 43, 44].

Note that Eq. (3.21) does not contradict the Fermi liquid relation:

χs(q → 0, ω = 0) ∝ (1 + F1,s)

(1 + F0,a)
(3.20)

where F1,s and F0,a are Landau parameters. The Fermi liquid theory only implies
that the static spin susceptibility saturates to a constant value as q → 0, but does
not impose any formal constraint on the q−dependence of χs(q, ω).

As one gets closer to the QCP, λ = 3ḡ/(4πvSξ
−1) diverges and the prefactor of

the |q| term vanishes as:

δΠ(q, 0) = − 16

9π
ξ−1|q|. (3.21)

This is not surprising since the Fermi liquid regime extends on a region of the
phase diagram that shrinks and ultimately vanishes as one approaches the QCP.

Now, two different scenarios are possible:

• the divergence of ξ at the QCP completely eliminates the non-analyticity and
the expansion of Π(q, 0) begins as q2, like in a bare spin susceptibility,

• the self-energy Σ(ω) ∝ ω2/3 at the QCP still leads to a non-analytic term
Π(q, 0) ∝ |q|δ, with 1 < δ < 2, which dominates over the bare q2 term.

We show in the next subsection that the second scenario is realized, and at the QCP,
one has Π(q, 0) ∝ |q|3/2.
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3.2.2 At criticality

At the QCP, we have to take into account two new elements: the bosonic propagator
is massless (ξ−1 = 0) and the fermionic self-energy is no longer Fermi-liquid-like, it
is given by (2.32).

The full calculation of ΠA(q, 0) and ΠB(q, 0) is presented in Appendix D. We
just outline here the main steps of the computation and show where the q3/2 term
comes from.

Consider first ΠA(q, 0). Using (3.16) as a starting point, and substituting the
full form of the spin susceptibility1, Eq. (A.8), we then expand εk+l and εk+q, and
integrate successively over ly (projection of l perpendicular to kF) and εk, leading
to:

ΠA(q, 0) = 16i
mḡ2

(2π)5

∫ 2π

0

dθ

∫ +∞

−∞
dlx

∫ +∞

−∞
dΩ

∫ 0

−Ω

dω
(γ|Ω|)−1/3

(iΣ(ω + Ω)− iΣ(ω)− vF lx)2

h

(√

l2x + c2Σ2(Ω)

(γ|Ω|)1/3

)

1

iΣ(ω + Ω)− iΣ(ω)− vF lx + vF q cos θ
, (3.22)

where c ' 1.19878 (see A.6), and h(x) is the bosonic propagator integrated over the
momentum component ly. The asymptotic behavior of h(x) is given by:

{

h(x� 1) = π
x

h(x� 1) = 4π
3
√

3
+ (log 2− 1)x2 − x2 log x2

2

(3.23)

Since the integrand in (3.22) has poles in lx located in the same half-plane, the
only non-vanishing contributions to Π comes from the non-analyticities in h(x).

There are two non-analyticities in h(x). The first one comes from the 1/x be-
havior at large x, which extends to x ∼ 1. This is a conventional non-analyticity
associated with bosons vibrating near their own mass shell, since at x ∼ 1, lx ∼ ly ∼
(γ|Ω|)1/3.

Subtracting the universal Π
(a)
A (0, 0), expanding in q in (3.22) and substituting

lx ∼ (γ|Ω|)1/3, we find for this contribution to Π:

δΠ
(a)
A ∝ q2 mḡ2

v3
Fγ

5/3

∫ Ωmax

0

dΩ

Ω2/3

∝ √
αq2, (3.24)

where Ωmax ∼
√

γv3
F .

We see that the integration over the momentum range relevant to the z = 3
scaling regime yields a regular q2 contribution to the static susceptibility. Not only

1To account for a possible contribution from bosonic momentum near the fermionic mass-
shell, we have computed in Appendix A, the one-loop bosonic polarization in the regime where
vF q ∼ Σ̃(ω). This is the expression we use here.
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this contribution is regular in q, but it is also small in α. This result is similar to
the one we obtained in (2.41) for the static vertex at a vanishing momentum.

However, Eq. (3.23) shows that h(x) has a non-analytic x2 log x term already
at small x, i.e. far from the bosonic mass shell: the branch cut associated with the
logarithmic term emerges at vF lx ∼ Σ(ω). The typical value of ly in the integral that
leads to this x2 log x term is also of the same order, although larger in the logarithmic
sense. This implies that this second non-analyticity comes from a process in which
the bosons are vibrating near a fermionic mass shell and far from their own.

Furthermore, this logarithmic term in (3.23) comes exclusively from the Landau
damping term in the bosonic propagator – the q2 term in χ(l,Ω) can be safely
omitted. Indeed, one has:

∫ Λ

−Λ

dly
1
γ|Ω|√
l2x+l2y

= f(Λ)− l2x log l2x
2γΩ

. (3.25)
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Figure 3.3: Integration contour: the hatched region stands for a branch cut, and the
cross for a pole.

Substituting the logarithmic term from (3.23) into (3.22), we subtract the non-

universal constant term Π
(b)
A (0, 0), which makes the integral over lx convergent. In-

troducing z = lx/(cΣ(Ω)), one can perform the integral over z over the contour of

70



3.2. Static spin susceptibility

Fig. 3.3, which leads to the following contribution to Π:

Π
(b)
A (q, 0)− Π

(b)
A (0, 0) =

4Nmḡ2

c2π4γvF
q2

∫ π/2

0

dθ

∫ +∞

1

dy

∫ +∞

0

dω

Σ(Ω)2

∫ 1

0

dw
cos2 θ

[c−1 ((1− w)2/3 + w2/3) + y]
3

1− y2

[y + c−1 ((1− w)2/3 + w2/3)]
2
+
(
vF q cos θ
cΣ(Ω)

)2 , (3.26)

where we defined w = ω/Ω. Introducing the new variables t =
(

cΣ(Ω)
vF q cos θ

)3/2

and

v = t
[
y + c−1

(
(1− w)2/3 + w2/3

)]
, it becomes possible to separate the integrals,

leading to the following final result:

Π
(b)
A (q, 0)− Π

(b)
A (0, 0) = −0.8377q3/2 Nmḡ2

π4γv
3/2
F ω

1/2
0

= −0.1053
√

kF q3/2. (3.27)

We emphasize that this dependence comes from bosonic modes vibrating at the
fermionic mass-shell. This explains why the result of (3.27) is not small in α, as
this small parameter measures the softness of the mass-shell bosons compared to
the mass-shell fermions.

The integrals for ΠB(q, 0) cannot be exactly evaluated analytically, but an ap-
proximate calculation, detailed in Appendix E, yields:

Π
(b)
B (q, 0)− Π

(b)
B (0, 0) = −0.14q3/2√pF , (3.28)

such that the total contribution of all four diagrams reads:

Π(q, 0)− Π(0, 0) = −0.25 q3/2
√

kF . (3.29)

We see that Π(q, 0) is still non-analytic in q and the prefactor is negative. At
small q, the negative q3/2 term well exceeds the regular q2 term in the static spin
susceptibility, which reads at criticality:

χs(q, 0) =
χ0

q2 − 0.25 q3/2
√
kF

(3.30)

This implies that the static spin susceptibility is negative at small momenta, i.e. a
ferromagnetic QCP is unstable. We discuss the consequences of this instability in the
concluding chapter. The momentum qmin below which χs is negative is determined
by:

χ−1
s (qmin) ∝ q2

min − 0.25q
3/2
min

√

kF = 0, (3.31)
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which gives qmin = 0.06kF .
Parametrically, qmin is of order kF , which is the largest momentum scale in our

problem. Strictly speaking, this suggests that the whole quantum-critical theory
for the ferromagnetic case is not valid, since the quantum critical behavior extends
up to energies of order ω0, i.e. up to momenta of order q ≤ ω0/vF ∼ α2kF �
kF . Numerically, however, qmin is much smaller than kF . This implies that for
reasonable values of α, there exists an intermediate momentum and energy range
qmin < q < ω0/vF where the system is in the quantum-critical regime, but the static
spin susceptibility is still positive.

The q3/2 non-analyticity can also be viewed as emerging from the momentum
dependence of the static vertex analyzed in the previous chapter. Using Eq. (2.45),
one can rewrite:

Π(q, 0) ∼ Nḡ

∫

d2kdω
1

iΣ(ω)− εk

∆g
g

∣
∣
∣
q,Ω=0

iΣ(ω)− εk+q
(3.32)

Performing the contour integration over εk, and changing variables into y = εk/Σω
and t =

√
ω0ω/((vF q)

3/2), we obtain:

Π(q, 0) ∼
√

kF q
3/2 (3.33)

We note in this regard that the non-analytic momentum dependence of the fermion-
boson static vertex also comes from bosons vibrating near the fermionic mass shell,
i.e. it emerges due to the same physics as we outlined above.

3.3 Related results

3.3.1 Finite temperature result

We can also prove that the non-analyticity appears in the temperature-dependent
uniform static susceptibility χs(T ). We show below that χ−1

s (T ) ∝ T | logT |, again
with a negative prefactor.

In this section, we show that the static uniform susceptibility is negative at
finite temperature above a ferromagnetic QCP. To demonstrate this, we compute
the static uniform ΠA(q = 0, ω = 0, T ) = ΠA(T ), assuming that ξ−1 = 0. The
contribution from ΠB(T ) is of the same sign and comparable in magnitude. We
have

ΠA(0, T ) = 16iN
mḡ2

(2π)3
T
∑

p6=0

Ωp

∫

d2q
1

q2 + γ|Ωp|
q

1
(

iΣ(Ωp)− vF qx − q2y
2m

)3 . (3.34)

Since the poles in qx from the fermionic Green’s functions are all in the same
half-plane, one expects that qTyp

x ∼ (γΩ)1/3 and thus dominates over the q2
y term,
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which in turn can be neglected in the fermionic Green’s functions. It then becomes
possible to perform the integral over qy, which gives

ΠA(0, T ) = 2iN
mḡ2

π3γv3
F

T
∑

p6=0

Ωp

|Ωp|

∫ (γΩp)1/3

0

dqx
q2
x log |qx|

(iΣ̃(Ωp)− vF qx)3
(3.35)

Integrating over the half-space where there is no triple pole, we find that the integral
is determined by the branch cut in log |qx|. Evaluating the integral we obtain

∫
dqxq

2
x log |qx|

(iΣ̃(Ωp)− vF qx)3
= Sign(Ωp)

iπ

v3
F

log

(

EF

|Σ̃(Ωp)|

)

. (3.36)

Thus

ΠA(0, T ) =
2N

3

mḡ2

π2γv3
F

T
∑

p6=0

log
EF
|Ωp|

(3.37)

To perform the summation over p, we notice that when the summand does not
depend on p

T

Λ/T
∑

−Λ/T

A = 2AΛ , (3.38)

is independent on T . Then the same sum but without the term at p = 0 will be
2AΛ− AT . Using this, we obtain with logarithmic accuracy

T
∑

p6=0

log
EF
|Ωp|

= −T log
EF
T

+ ... (3.39)

where dots stand for O(T ) terms. Substituting this into (3.37), we obtain the final
result:

ΠA(0, T ) = −2k2
F

3π2
α
T

EF
log

(
EF
T

)

. (3.40)

Although small, because of the prefactor in α, this term dominates at low tem-
perature over any regular T 2 term. The sign of this T logEF/T term is opposite
to the sign of a conventional correction to the HMM theory, which comes from a
constant part of the prefactor of the φ4 term. In the HMM theory the temperature
dependence of the spin susceptibility is bT d+z−2z, b > 0, which in d = 2 leads to
a linear in T contribution with positive prefactor. The negative sign of the non-
analytic temperature correction in (3.40) implies that the static spin susceptibility
is negative right above the QCP. This is another indication that the ferromagnetic
QCP is unstable.
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kF , ω

Figure 3.4: Three-loop contribution to the fermionic self-energy

3.3.2 Three-loop fermionic self-energy

Finally, we show how one can detect the instability of a ferromagnetic QCP from an
analysis of higher order self-energy diagrams. This analysis is complimentary to the
calculations that we have already done in the previous subsections. We show that
upon inserting the contributions from the diagrams presented in Fig. 3.2 into the
fermionic self-energy, we obtain series of singular corrections in powers of ωmin/ω,
where (γωmin)

1/3 = qmin, and qmin is the scale at which the static susceptibility χs(q)
becomes negative, Eq. (3.31).

To illustrate this, we consider one of the three-loop diagrams, represented in Fig.
3.4. In the case of a spin interaction, we obtained a finite result after collecting the
various diagrams, so we restrict ourselves here with just one of these contributions.
The analytic form of the diagram in Fig. 3.4 writes:

Σ3(ω) ∼ ḡ

∫

dω1d
2q1

A(q1, ω1)

iΣ(ω − ω1)− vF q1x − q21y

2m

(

1

q2
1 + γ|ω1|

q1

)2

, (3.41)

where A(q1, ω1) is the dynamic fermionic bubble given by:

A(q1, ω1) ∼ Nḡ2

∫

d2kdΩ

∫

d2q2dω2
1

q2
2 + γ|ω2|

q2

1

iΣ(Ω) − εk
1

iΣ(Ω− ω1)− εk+q1

× 1

iΣ(Ω + ω1 + ω2)− εk+q1+q2
1

iΣ(Ω + ω2)− εk+q2
. (3.42)

Approximating A(q1, ω1) by its singular static part q
3/2
1

√
kF and substituting into

(3.4) we obtain:

Σ3(ω) ∼ ḡ
√

kF

∫

dω1d
2q1

(
q1

q3
1 + γ|ω1|

)2
q
3/2
1

iΣ(ω − ω1)− vF q1x − q21y

2m

. (3.43)

A simple analysis of this expression shows that the dominant contribution to
Σ3(ω) comes from q1x ∼ q1y ∼ (γω2)

1/3 since the integral over q1x is determined by
the branch cut in the bosonic propagator. One can then safely drop the quadratic
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term in the fermionic propagator and integrate over the angle θ between kF and q1.
This leads to:

Σ3(ω) ∼ ḡ
√

kF

∫ ω

0

dω1

∫

dq1
q
9/2
1

(q3
1 + γω1)

1
√

(vF q1)2 + Σ(ω)2

∼ ḡ
√
kF

vF
√
γ

∫ ω

0

dω1√
ω1

. (3.44)

Collecting the prefactors, we find:

Σ3(ω) ∼ (ḡω)1/2 . (3.45)

We see that the non-analyticity in the static spin susceptibility feeds back into
the fermionic self-energy leading to a contribution from the three loop self-energy
whose frequency dependence is more singular than the ω2/3 dependence that we
obtained assuming that the static susceptibility is regular. Comparing these two
contributions, we see that they become comparable at a frequency:

ω
1/3
0 ω

2/3
min ∼

√
ḡωmin =⇒ ωmin ∼

q3
min

γ
∼ E2

F

ḡ
. (3.46)

where qmin is given by (3.31). Parametrically, qmin is not small since qmin ∼ kF , and
ωmin ∼ EF/α is larger than EF . However, qmin ∼ 0.06kF is small numerically so
that ωmin is four orders of magnitude smaller than EF/α.

3.3.3 Conclusion

To summarize, we found that the Eliashberg theory for an SU(2) symmetric ferro-
magnetic QCP has to be extended to include extra singular terms into both the spin
susceptibility and the fermionic self-energy. These terms originate from the “anti-
Migdal” processes in which slow bosons are vibrating near the fermionic mass shell.
Physically, these extra processes originate from the dynamic long-range interaction
between fermions, which is still present at the QCP despite the fact that fermions
are no longer good quasi-particles.

We demonstrated that these extra non-analytic terms can be understood in the
framework of HMM φ4 theory of quantum criticality. We showed that the prefactor
for the φ4 term is non-analytic and depends on the interplay between momentum
and frequency. The non-analytic bosonic self-energy is the feedback from the non-
analytic φ4 term to the quadratic φ2 term.

We found that these extra terms in the Eliashberg theory make a ferromagnetic
QCP unstable below a certain momentum/energy scale. We detected the instability
by analyzing the momentum and temperature dependence of the spin susceptibility,
and also the fermionic self-energy at three-loop order.
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3.4 Non-SU(2) symmetric case

3.4.1 Discussion

The low-energy model used to describe the ferromagnetic quantum critical point is
actually quite similar to other models. The problem of fermions interacting with
bosonic collective modes with a propagator similar to the one we considered, is quite
general, and one can wonder to what extent our analysis for a ferromagnetic case
can be extended to these systems.

Indeed, even though it arises from very different underlying microsopic models,
one can use an effective Hamiltonian comparable to the spin-fermion one in other
problems, namely:

• fermions interacting with singular gauge fields (as studied in [34, 35, 30]);

• a quantum critical point in the charge channel;

• a quantum critical point towards a nematic-type ordering [47, 36, 48, 49, 50];

• a ferromagnetic QCP with Ising symmetry;

The essential difference between these cases and the ferromagnetic one lies in
the symmetry of the order parameter. In an SU(2) spin-symmetric ferromagnetic
case, the order parameter (magnetization) is a three-dimensional vector, while in
the other cases, it is a scalar.

As we already discussed, the Eliashberg theory, and the analysis of its validity at
the two-loop level can be carried out equally for systems with vector and with scalar
order parameter: the only unessential difference is in the numerical prefactors. On
the other hand, the evaluation of the corrections to the static susceptibility leads to
different results for scalar and vector order parameters, as we now demonstrate.

3.4.2 Ising case

Consider first the situation of a magnetically-mediated interaction, where we change
the spin symmetry of the bosons from SU(2) to Ising. The Ising case was argued to
be relevant for metamagnetic quantum critical points [51].

The use of Ising spins doesn’t change the expression for the Green’s functions but
replaces the Pauli matrix σ at the fermion-boson vertex by σz. As a consequence,
the computations performed for the SU(2) case still hold, but the interplay between
different diagrams changes because of a change in the numerical prefactors. In
particular, instead of Eq. (3.12) we now have:

ΓIsing
1 = ΓIsing

2 = 2,

ΓIsing
3 = ΓIsing

4 = 0. (3.47)
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Under these circumstances, the non-analytic contributions from the diagrams in
Fig. 3.2 cancel each other out. As a result, the static spin susceptibility remains
analytic and scales as χ−1(q) ∝ q2 with a positive prefactor at the QCP.

This result can be extended to the case of a nematic instability, following the
same arguments.

3.4.3 Charge channel

For a charge vertex, one has to replace the Pauli matrices present at the vertex by
Kronecker symbols δαβ. We then have:

ΓCharge
1 = ΓCharge

2 =
∑

α,β,γ,δ

δαβδβγδγδδδα = 2,

ΓCharge
3 = ΓCharge

4 =
∑

α,β,γ,δ,ε,ζ

δαβδβγδδεδγαδζδδεζ = 4.

Substituting these ΓCharge into the expressions for Π, we find that the diagrams
Π1 and Π2, as well as Π3 and Π4 cancel each other out. This leaves only a regular
q2 term in the static charge susceptibility.

3.4.4 Physical arguments

The cancellation of the non-analytic terms in the charge susceptibility is not a direct
consequence of the conservation laws. These laws impose constraints on the behavior
of the susceptibilities in the opposite limit q = 0, ω 6= 0 (χc(q = 0, ω) vanishes as a
uniform perturbation cannot affect a time independent, conserved quantity).

Instead, the absence of the non-analytic terms in the charge channel is related
to the fact that this susceptibility measures the response of the system to a change
in the chemical potential. We showed that the origin of the singular behavior of the
static spin susceptibility lies in the Landau damping term in the bosonic propagator
(see (3.25), (3.29) ). The Landau damping does not depend in a singular way on kF
(i.e. on the density of electrons), and therefore there is no singular response of the
system to a change in the chemical potential.

Conversely, the effect of a magnetic field on the Landau damping is singular. For
a fermionic bubble with opposite spin projections of the two fermions, one has, in
the presence of a small magnetic field H:

Π± ∼
|Ω|

√

(Ω + 2iµBH)2 + (vF l)2
(3.48)

instead of the usual Π± ∼ |Ω|/
√

Ω2 + (vF l)2.
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As a consequence, taking the second derivative of Π± over H and setting H = 0
later, one obtains, for vF l � Ω, the following non-analytic term:

d2Π±
dH2

∼ µB
v3
F

Ω

l3
. (3.49)

This non-analyticity ultimately gives rise to the q3/2 term in the static spin
susceptibility [46, 41]. For an Ising ferromagnet, this effect does not exist as there
are no bubbles with opposite spin projections in the theory.

The above reasoning shows that the non-analyticity appears in the spin response
but not in the charge one. To further verify this argument, we computed the sublead-
ing, three-loop diagrams for the charge susceptibility and found that the non-analytic
contributions from individual diagrams all cancel out. We present the calculations
in Appendix E.

The same argument holds for the self-energy at the three-loop and higher orders.
The singular ω1/2 term obtained in Eq. (3.45) appears in individual diagrams, but
in the case of a QCP in the charge channel (or an Ising QCP in the spin channel)
the total singular contribution cancel out.
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CHAPTER 4

Conclusions and perspectives

We have constructed a fully controllable quantum critical theory describing the
interaction of fermions with gapless long-wavelength collective bosonic modes. Our
approach, similar but not identical to the Eliashberg theory for the electron-phonon
interaction, allows us to perform detailed calculations of the fermionic self-energy
and the vertex corrections at the QCP.

We constructed a controllable expansion at the QCP as follows: we first created
a new, non Fermi-liquid “zero-order” theory by solving a set of coupled equations for
the fermionic and the bosonic propagators, neglecting the vertex corrections as well
as the momentum dependence of the fermionic self-energy, and then analyzed the
residual interaction effects in a perturbative expansion around this new zero-order
theory.

We have proved that this approach is justified under two conditions:

(i) the interaction ḡ should be smaller than the fermionic bandwidth (which we
assumed for simplicity to be of the same order as EF ),

(ii) either the band mass mB should be smaller than m = pF/vF , or the number
of fermionic flavors N should be large. When N = O(1) and mB ∼ m, the
corrections are of order O(1).

We found that the corrections that are small in ḡ/EF come from bosons near
their resonance, as in the Eliashberg theory for the electron-phonon interaction. The
corrections small in mB/(Nm) come from bosons for which one of the momentum
component (the larger one) is near the bosonic resonance, while the other component
is close to the fermionic mass-shell.



Conclusions and perspectives

For an SU(2)-symmetric quantum critical point towards ferromagnetic ordering,
we found that there exists an extra set of singular renormalizations which come from
bosons with both momentum components vibrating near the fermionic mass-shell.
These processes can be understood as a consequence of an effective long-range dy-
namic interaction between quasi-particles, generated by the Landau damping term.
They give rise to a negative non-analytic q3/2 correction to the static spin suscepti-
bility, signaling that the ferromagnetic QCP is unstable.

We also demonstrated that the non-analytic q3/2 term can be understood in the
framework of Hertz-Millis-Moriya φ4 theory of quantum criticality. We showed how
the effective long-range dynamic interaction between fermions affects the structure
of the φ4 theory, once fermions are integrated out: we found that the prefactors of
the φ3 and φ4 terms appearing in the effective action are non-analytic and depend
on the interplay between the typical external momentum and frequency.

We showed that the non-analytic corrections to the bosonic propagator are spe-
cific to the SU(2)-symmetric case when the order parameter is a vector. For systems
with a scalar order parameter, like a QCP in the charge channel, a nematic QCP, or
a ferromagnetic QCP with Ising symmetry, the q3/2 contributions from individual
diagrams cancel out in the full expression of the susceptibility.

The consequences of the instability of the ferromagnetic QCP still needs to be
fully understood. There are two possible scenarios for the behavior of the system:
either the ferromagnetic transition becomes first order [52, 53], or the instability
occurs at a finite q, leading to a second order transition towards an incommensurate
state [54, 55]. The full analysis of these two scenarios is clearly called on.

Note however that in all the experimental examples presented in Chapter 1
where a first order transition has been observed, the latter usually appear at very
low temperature, well below the typical energy scale where the quantum critical
behavior is observed. Such features do strongly suggest that a first order transition
is the most likely to occur in our case.
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APPENDIX A

Bosonic self-energy

In this section, we compute the bosonic self-energy at the one-loop level, in the case
of both free and fully renormalized fermions. We prove that for an external bosonic
momentum on the bosonic mass-shell, this self-energy becomes independent on the
actual form of the fermionic self-energy, and reduces to the usual Landau damping
term, whereas an extra term has to be included if this same external momentum is
on the fermionic mass shell.

After performing the sum over spin matrices, we are left with the following
expression:

Π(q,Ω) = 2Nḡ

∫
d2k dω

(2π)3
G(k, ω) G(k + q, ω + Ω). (A.1)

Introducing the angle θ defined by εk+q = εk + vF q cos θ, this writes:

Π(q,Ω) = N
ḡm

4π3

∫

dω dεk dθ
1

i(ω + Σ(ω))− εk
× 1

i(ω + Ω + Σ(ω + Ω))− εk − vF q cos θ
. (A.2)

Proceeding with a contour integration over εk, and noticing that ω and Σ(ω)
have the same sign, we get:

Π(q,Ω) = iN
ḡm

2π2

∫ +∞

−∞
dω

∫ 2π

0

dθ (θ(ω + Ω)− θ(ω))

× 1

i(Ω + Σ(Ω + ω)− Σ(ω))− vF q cos θ
. (A.3)



Bosonic self-energy

Performing the integration over θ, and rearranging a little bit the integration
over Ω, we are left with:

Π(q,Ω) = N
mḡ

πvF

∫ Ω

0

dω
Sign(Ω)

√

(vF q)2 + (Ω + Σ(Ω− ω) + Σ(ω))2
. (A.4)

We know from direct perturbative calculation that the fermionic self-energy goes
like Σ(ω) = ω

1/3
0 ω2/3, where ω0 ∼ αḡ. It follows that if the external bosonic momen-

tum is on the bosonic mass-shell, i.e. if q ∼ Ω1/3, it dominates over the frequency-
dependent term in the integral, so that:

Π(q,Ω) = N
mḡ

π

∫ Ω

0

dω
Sign(Ω)

vF q

= N
mḡ

πvF

|Ω|
q
. (A.5)

We recover here the expression of the Landau damping term with a prefactor
depending on the details of the interaction considered in our model. This result is
independent on the fermionic self-energy provided that vF q � (Ω + Σ(Ω)).

However, if the external bosonic momentum is on the fermionic mass shell, i.e.
if vF q ∼ Σ(Ω), the frequency-dependent term can no longer be neglected. Defining
z = ω

Ω
, one then has:

Π(q,Ω) = N
mḡ

π

∣
∣
∣
∣

Ω

Σ(Ω)

∣
∣
∣
∣

∫ 1

0

dz
1

√
(
vF q
Σ(Ω)

)2

+ (z2/3 + (1− z)2/3)
2

. (A.6)

This formula is of limited use as it is modified by vertex corrections. For the
calculations of the static spin susceptibility, we will actually only need the leading
O(1/q) and the subleading, O(1/q3) terms in Π(q,Ω) We will show in Appendix
C that these two terms still can be evaluated without vertex corrections (see Eq.
(C.21) below). Expanding (A.6) in 1/q to first two orders, we find, at Ω < ω0,

Π(q,Ω) = γ
|Ω|
q

(

1− c2Σ2(Ω)

v2q2

)

(A.7)

where c ∼ 1.19878. To simplify writing, we will be using the expression for the
polarization operator with Ω dependence in the denominator, i.e., plug Σ2 term
back into denominator, i.e.,

Π(q,Ω) = N
mḡ

π

|Ω|
√

(vF q)2 + c2Σ(Ω)2
, (A.8)

but one should keep in mind that we will actually only need 1/q and 1/q3 terms in
the calculations.
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APPENDIX B

Fermionic self-energy

In this section, we compute the fermionic self-energy at the one, two and three loop
levels, for an external momentum taken to be on the Fermi surface. We also analyze
the momentum dependence of the one-loop fermionic self-energy.

B.1 One-loop

B.1.1 At the Fermi level

After summing over the spin matrices, the fermionic self-energy at the one-loop level
is given by:

Σ(ω) = 3ig2

∫
d2q dΩ

(2π)3
G(kF + q, ω + Ω)χ(q,Ω)

=
3iḡ

(2π)3

∫

dθ
dΩ dq

ξ−2 + q2 + γ |Ω|
q

q

i(ω + Ω + Σ(ω + Ω))− vF q cos θ
, (B.1)

where we defined θ as the angle between k and q, and considered an external
fermionic momentum k ' kF . The i prefactor comes from the convention G−1 =
G−1

0 + iΣ.

Since the pole in q from the fermionic propagator is in a definite half-plane, the
integral in q is dominated by poles coming from the bosonic Green’s function, so
that one can perform the integral over the angular variable and simplify the result



Fermionic self-energy

as follows:

Σ(ω) = − 3g2

(2π)2

∫

dΩ dq
χ0

q3 + γ|Ω|+ qξ−2

q2Sign(ω + Ω)
√

(vF q)2 + (ω + Ω + Σ(ω + Ω))2

= − 3ḡ

(2π)2

∫ +∞

−∞
dΩ

∫ +∞

0

dq
q2Sign(ω + Ω)

vF q

1

q3 + γ|Ω|+ qξ−2
. (B.2)

Defining the new variables z = Ω
ω

and u = vF q
ω

, this leads to:

Σ(ω) =
3ḡ

2π2

ω2

γv3
F

∫ 1

0

dz

∫ +∞

0

du
u

z + au+ bu3
, (B.3)

where we have used a =
1

γvF ξ2
and b =

ω2

γv3
F

Let’s denote by I the last double integral, and define the new variables y =
√

b
a3
z = (ωγξ3)z and t =

√
b
a
u = ξω

vF
u. Now I reduces to:

I =

(
vF
ξω

)2 ∫ γωξ3

0

dy

∫ +∞

0

dt
t

t3 + t+ y

=

(
vF
ξω

)2

h(γωξ3). (B.4)

Substituting this back into our expression for the self-energy:

Σ(ω) =
3

2πmξ2
I(γωξ3), (B.5)

with the following asymptotic behavior: I(x→ 0)πx
2

and h(x→∞) = πx2/3√
3

.

In the two regimes we are interested in, this last result can be rewritten as:

Σ(ω) =

{
λω for ξ−1 � 1,

ω
1/3
0 ω2/3 for ξ−1 → 0,

(B.6)

where the constant prefactors are defined as:







λ =
3

4π

ḡξ

vF
,

ω0 =
3
√

3

8π3

ḡ3

γv3
F

.
(B.7)
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B.1. One-loop

B.1.2 Momentum dependence

For definiteness, we set ξ−1 = 0. We first compute the momentum-dependent part
of the one-loop fermionic self-energy at zero external frequency:

Σ(k, ω = 0) = 3ig2

∫
d2q dΩ

(2π)3
G(k + q,Ω)χ(q,Ω)

=
3iḡ

(2π)3

∫
dΩd2q

iΣ̃(Ω)− εk+q
q

γ|Ω|+ q3
. (B.8)

Expanding εk+q = εk + vF q cos θ and integrating over θ, we obtain

Σ(k, 0) =
3ḡ

4π2

∫

dΩ Sign(Ω)

∫
q2dq

q3 + γ|Ω|
1

(

(vF q)2 + (Σ̃(Ω) + iεk)2
)1/2

. (B.9)

At εk = 0, the integral vanishes by parity. Expanding to linear order in εk we obtain:

Σ(k, 0) = −3iεk ×
ḡ

2π2

∫ ∞

0

dΩ Σ̃(Ω)

∫
q2dq

(q3 + (γ|Ω|))
(

(vF q)2 + Σ̃(Ω)2
)3/2

. (B.10)

Simple estimates show that the result depends on the interplay between (γΩ)1/3

and Σ̃(Ω)/vF . Introducing the scale ωMax, defined as the frequency at which (γΩ)1/3 =
Σ̃(Ω)/vF (see (2.42), and rescaling variables as q = (γωMax)

1/3y, Ω = ωMaxx, we re-
write (B.10) as

Σ(k, 0) = −3iεk ×
ḡωMax

2π2v3
Fγ
I (B.11)

where

I =

∫ ∞

0

dx

∫ ∞

0

dy
xy2

(x2 + y2)3/2(x+ y3)
' 1.3308 (B.12)

Substituting ωMax = (γv3
F )1/2, we obtain (2.65).

To obtain the frequency dependence of the fermionic density of states at small ω,
we have to evaluate the second order term in εk at the mass shell, where εk = iΣ̃(ω)
and convert the result to real frequencies. We therefore will keep both ω and εk
finite, and use

Σ(k, ω) =
3iḡ

(2π)3

∫

dΩd2q
q

γ|Ω|+ q3

1

iΣ̃(ω + Ω)− εk+q
. (B.13)

Writing, as before, εk+q = εk + vF q cos θ and integrating over θ, we obtain

Σ(k, ω) =
3ḡ

4π2

∫
dΩq2dq

γ|Ω|+ q3

sign(ω + Ω)
√

(Σ̃(ω + Ω) + iεk)2 + (vF q)2

. (B.14)
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Fermionic self-energy

We assume and then verify that internal vF q are still larger than Σ̃(ω + Ω) and εk,
and expand

Σ(k, ω) = − 3ḡ

8π2v3
F

∫

dΩ Sign(ω + Ω)

∫
dq

q(γ|Ω|+ q3)

(

Σ̃(ω + Ω) + iεk

)2

(B.15)

The lower limit of the momentum integral is (Σ̃(ω + Ω) + iε)k)/vF . At the mass
shell, iεk = Σ̃(ω). Substituting we find

Σ(k, ω) = − 3ḡ

8π2v3
F

∫

dΩ Sign(ω + Ω)

∫
dq

q(γ|Ω|+ q3)

(

Σ̃(ω + Ω)− Σ̃(ω)
)2

(B.16)

We will need the contributution which is confined to Ω ∼ ω. The contributions
from |Ω| >> |ω| diverge in our expansion procedure, and account for the regular
O(εk) term in the self-energy, and also for regular O(ω) term. The last term is even
smaller in α than the regular (εk) term and is totally irrelevant. As Ω ∼ ω is small,

Σ̃(Ω) ≈ Σ(Ω) = Ω2/3ω
1/3
0 .

Because of sign factor in the numerator of (B.14), there are two distinct contri-
butions from Ω ∼ ω. For both of them, the momentum integral is logarithnic (this
justifies the expansion) and yields (1/3) log(ω1/ω), where ω1 ∼ N2E2

F/ḡ. The first
contribution comes from |Ω| ≤ |ω| and to logarithmical accuracy is

Σ(k, ω)A = − ḡ

8π2v3
Fγ

sign(ω)

∫ |ω|

−ω

dΩ

|Ω| (Σ(|ω|+ Ω)− Σ(|ω|))2 log
ω1

|ω| (B.17)

Rescaling the frequency, we obtain from (B.17)

Σ(k, ω)A = − ḡI1
4π2v3

Fγ
Σ(ω)|Σ(ω)| log

ω1

ω
. (B.18)

where

I1 =
1/2
∫

1

−1

dx

|x|
(
(1 + x)3/2 − 1

)2
= 0.254 (B.19)

Another comes from |Ω| > |ω|, and is

Σ(k, ω)B =
ḡΣ(ω)

4π2v3
Fγ

log
ω1

|ω|

∫ ∞

|ω|

dΩ

Ω
(Σ(|ω|+ Ω) + Σ(Ω− |ω| − 2Σ(Ω))) (B.20)

Rescaling, we obtain

Σ(k, ω)B =
ḡI2

4π2v3
Fγ

Σ(ω)|Σ(ω)| log
ω1

ω
. (B.21)

where

I2 =

∫ ∞

1

dx

|x|
(
(1 + x)2/3 + (x− 1)2/3 − 2x2/3

)
= −0.195 (B.22)
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B.2. Two-loop

Combining Σ(k, ω)A and Σ(k, ω)B, we obtain

Σ(k, ω)= −
0.45ḡ

4π2v3
Fγ

Σ(ω)|Σ(ω)| log
ω1

ω
. (B.23)

where
The neglected terms are either regular in εk or contain a simple log εk additional

contribution, which justifies that we only focus on the most divergent log2 εk term.

B.2 Two-loop

We here compute one of the contributions to the two-loop self-energy, as given by fig.
2.1, which originates from the insertion of the vertex correction into the Eliashberg
self-energy.

We have:

Σ2(ω) ∼ ḡ2

∫

dω1d
2q1

∫

dω2d
2q2 χ(q1, ω1) χ(q2, ω2) G(kF + q1, ω + ω1)

×G(kF + q2, ω + ω2) G(kF + q1 + q2, ω + ω1 + ω2),

(B.24)

which gives, once we replace each propagator by its full expression:

Σ2(ω) ∼ ḡ2

∫

dω1d
2q1

∫

dω2d
2q2

q1
γ|ω1|+ q3

1

q2
γ|ω2|+ q3

2

× 1

iΣ̃(ω + ω1)− vF q1x
1

iΣ̃(ω + ω2)− vF q2x − q22y

2mB

× 1

iΣ̃(ω + ω1 + ω2)− vF q1x − vF q2x − q21y

2mB
− q22y

2mB

, (B.25)

where we use the shorter notation Σ̃(ω) = ω + Σ(ω).
Integrating successively over q1x and q2x, closing each contour on the upper half-

plane, one has:

Σ2(ω) ∼ mB ḡ
2

v2
F

∫

dω1

∫

dω2 Θ(ω, ω1, ω2)

∫

dq1y
|q1y|

|q1y|3 + γ|ω1|

×
∫

dq2y
|q2y|

|q2y|3 + γ|ω2|
1

(γ2ω1ω2)
1/3

1
q1yq2y

(γ2ω1ω2)1/3 + iζ
(B.26)

where ζ = mB
Σ̃(ω + ω1) + Σ̃(ω + ω2)− Σ̃(ω + ω1 + ω2)

(γ2ω1ω2)
1/3

and Θ(ω, ω1, ω2) comes

from the choice of a contour for the integration and is given in our case by:

Θ(ω, ω1, ω2) = (θ(ω + ω1)− θ(ω + ω1 + ω2))

×
(

θ(ω + ω2)− θ(Σ̃(ω + ω1 + ω2)− Σ̃(ω + ω1))
)

.
(B.27)
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Fermionic self-energy

It is convenient at this stage to rescale the perpendicular components of the
bosonic momenta. Introducing x = q1y/(γ|ω1|)1/3 and y = q2y/(γ|ω2|)1/3, we obtain:

Σ2(ω) ∼ mḡ2

v2
F

∫

dω2

∫

dω1

∫ ∞

0

dxdy
Θ(ω, ω1, ω2)

(γ2ω1ω2)2/3

× iζ

x2y2 + ζ2

xy

(1 + x3) (1 + y3)
,

(B.28)

where we rearranged the double integral over x and y to make it real.
Since all internal frequencies typically go like ω, the typical value of ζ is given

by the small parameter β given in (2.53). Expanding the double integral for small
values of ζ, the leading contribution from the integral over x and y reads:

∫ ∞

0

dxdy
1

x2y2 + ζ2

xy

(1 + x3) (1 + y3)
∼ log2 ζ. (B.29)

If one considers now free fermions, it becomes possible to reduce the expression
of the two-loop self-energy to:

Σfree
2 (ω) ∼ m2

B ḡ
2

v2
F

∫ ω

0

dω2

∫ ω

ω−ω2

dω1

log2
(

mBω
(γ2ω1ω2)2/3

)

γ2ω1ω2

∼ m2
B ḡ

2

γv2
F

ω

∫ 1

0

dz2

∫ 1

1−z2
dz1

log2
(
m3

Bω

γz1z2

)

z1z2

∼ β2ω log2 ω, (B.30)

where we only kept the leading contribution in the last expression, and β = mB/mN
is one of the small parameters defined in the text.

Now, in the case of dressed fermions, we need to take Σ̃(ω) = ω
1/3
0 ω2/3. The

procedure is identical to the free fermion case, but the final expression is a bit more
complicated:

ΣDressed
2 (ω) ∼ m2ḡ2

γ2v2
F

ω
1/3
0 ω2/3

∫ 1

0

dz2

∫ 1

1−z2
dz1

1

z1z2

×
[
(1− z1)

2/3 + (1− z2)
2/3 + (z1 + z2 − 1)2/3

]

× log2




(1− z1)

2/3 + (1− z2)
2/3 + (z1 + z2 − 1)2/3

γ2/3

mω
1/3
0

z
1/3
1 z

1/3
2



 . (B.31)

Expanding the log2, one is left with a double integral that only contributes as a
numerical prefactor, and the dominant term is then given by:

Σ2(ω) ∼ Σ1(ω) β2 log2 β, (B.32)

where Σ1(ω) = ω
1/3
0 ω2/3 is the self-energy in the Eliashberg theory.
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B.3 Three loop

We now turn to the computation of the three-loop self energy. We are only interested
here in one diagram, given in fig. 3.4, where we try to analyze the feedback of the
non-analytic susceptibility into the the higher-order diagrams for the fermionic self-
energy. For spin interaction, there is no cancellation between different diagrams
for the static susceptibility, which justifies that we restrict ourselves to just one
contribution.

The analytic expression for this diagram is:

Σ3(ω) ∼ ḡ

∫

dω1d
2q1

A(q1, ω1)

iΣ(ω − ω1)− vF q1x − q21y

2mB

(

1

q2
1 + γ|ω1|

q1

)2

, (B.33)

where A(q1, ω1) is the factor from the fermionic bubble:

A(q1, ω1) ∼ Nḡ2

∫

d2kdΩ

∫
d2q2dω2

q2
2 + γ|ω2|

q2

1

iΣ(Ω + ω1 + ω2)− εk+q1+q2

× 1

iΣ(Ω)− εk
1

iΣ(Ω− ω1)− εk+q1
1

iΣ(Ω + ω2)− εk+q2
. (B.34)

Approximating A(q1, ω1) by its singular static part q
3/2
1

√
kF and substituting into

the expression of Σ3 we obtain:

Σ3(ω) ∼ ḡ
√

kF

∫

dω1d
2q1

(
q1

q3
1 + γ|ω1|

)2
q
3/2
1

iΣ(ω − ω1)− vF q1x − q21y

2mB

. (B.35)

The integral over q1x is determined by the branch-cut in the bosonic propagator and
one then expects that this very integral is dominated by q1x ∼ (γω1)

1/3. It follows
that the term in q1x dominates inside the fermionic propagator allowing us to neglect
the curvature term. Defining the angle θ between kF and q1, and integrating over
it, this leads to:

Σ3(ω) ∼ ḡ
√
kF

vF

∫
dω1dq1 sign(ω − ω1)
√

q2
1 + Σ(ω−ω1)2

v2F

q
9/2
1

(q3
1 + γ|ω1|)2

. (B.36)

Since the dominant contribution comes from q1 ∼ (γω1)
1/3, one can neglect

the fermionic self-energy in the denominator. This in turn allows to simplify the
frequency integral, which then writes:

Σ3(ω) ∼ ḡ
√
kF

vF

∫ ω

0

dω1

∫

dq1
q
7/2
1

(q3
1 + γω1)2

∼ ḡ
√
kF√
γvF

∫ ω

0

dω1√
ω1

, (B.37)
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Fermionic self-energy

where we introduced z = q1/(γω1)
1/3, so that the integral over z just contribute to

the numerical prefactor.
Collecting prefactors, one finally has:

Σ3(ω) ∼ √ḡω. (B.38)
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APPENDIX C

Vertex corrections

In this section, we compute the various vertex corrections analyzed in the text.

C.1 q = Ω = 0

Consider first the simplest 3-leg vertex, with strictly zero incoming frequency Ω and
momenta q, as presented in fig. 2.2a. Its analytic expression writes:

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ g2

∫

dωd2p G(kF, ω)2 χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1
(

iΣ̃(ω)− vFpx − p2y
2mB

)2 ,

where we defined Σ̃(ω) = ω + Σ(ω) and we have chosen kF along the x axis.

Since both poles coming from the fermionic Green’s functions are in the same
half plane, the integral over qx is finite only because of the branch cut in the bosonic
propagator. Since at the branch cut px and py are of the same order, we can drop
the curvature term in the fermionic propagators and introduce polar coordinates for
the internal bosonic momentum. Defining θ as the angle between kF and p, and
integrating over it, one has:

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ ḡ

∫
dωdp

p3 + γ|ω|
p2|Σ̃(ω)|

(

(vFp)2 + Σ̃(ω)2
)3/2

. (C.1)



Vertex corrections

Introducing the frequency ωmax up to which bosons are slow modes compared
to fermions, i.e. up to which (γω)1/3 > Σ̃(ω)/vF , one can split the frequency
integral into two parts, and define in each of them the reduced momentum z =
p/Min((γω)1/3, Σ̃(ω)/vF ) so that the integral over z only contributes to the numer-
ical prefactor, leading to:

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ ḡ

∫ ωmax

0

dω
Σ̃(ω)

γv3
Fω
∼ ḡ

γv3
F

Σ̃(ωmax) (C.2)

One can easily make sure that the frequency ωmax at which (γω)1/3 = Σ̃(ω)/vF
exceeds ω0, such that one should use Σ̃(ω) = ω to find ωmax. Substituting, we
obtain ωmax ∼ (NḡEF )1/2, and

∆g

g

∣
∣
∣
∣
q=Ω=0

∼ √α (C.3)

C.2 q = 0, Ω finite

Considering the same vertex, now with a finite external frequency, one has:

∆g

g

∣
∣
∣
∣
q=0,Ω

∼ g2

∫

dωd2p G(kF + p, ω + Ω)G(kF + p, ω)χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1

iΣ̃(ω)− vFpx − p2y
2mB

1

iΣ̃(ω + Ω)− vFpx − p2y
2mB

, (C.4)

where we chose the x axis along kF.

From the pole structure in px of this expression, one expects two contributions
to this integral. A first term comes from the branch cut in the bosonic propagator,
however this contribution ultimately leads to the same result as the q = Ω = 0 ver-
tex, up to small corrections from the finiteness of Ω. The second contribution arises
from taking the poles in the fermionic propagators. At zero external frequency, these
two poles were in the same half-plane of px, so we could close the integration contour
over a different half-plane and only consider the contribution from the branch but
in the bosonic propagator. At a finite Ω, there is a range where ω and ω + Ω have
different signs, and the two poles are in different half-planes of px. The result after
integration reads:

∆g

g

∣
∣
∣
∣
q=0,Ω

∼ ḡ

vF

∫ Ω

0

dω

∫

dpy
|py|

γ|ω|+ |py|3
1

Σ̃(Ω− ω) + Σ̃(ω)
, (C.5)

where we slightly rearranged the frequency integral.
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C.3. q finite, Ω = 0

Performing the integration over py, we are left with:

∆g

g

∣
∣
∣
∣
q=0,Ω

∼ ḡ

γ1/3vF

∫ Ω

0

dω
ω−1/3

Σ̃(Ω− ω) + Σ̃(ω)

∼ ḡ

(ω0γv3
F )1/3

∼ Const., (C.6)

where we assumed that Ω is small, i.e. Σ̃(Ω) = ω
1/3
0 Ω2/3. This vertex thus reduces

to a numerical constant, that does not contain any small parameter.

C.3 q finite, Ω = 0

Conversely, the same vertex taken at finite external momentum q, but zero external
frequency writes:

∆g

g

∣
∣
∣
∣
q,Ω=0

∼ g2

∫

dωd2p G(kF + p + q, ω)G(kF + p, ω)χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1

iΣ̃(ω)− vFpx − p2y
2mB

× 1

iΣ̃(ω)− vF qx − vFpx − p2y
2mB
− qypy

mB

, (C.7)

where px is the projection of p along kF.

Like its q = 0 counterpart, this vertex is characterized by poles in px from the
fermionic propagators lying in the same half-plane. The only nonzero contribution
then comes from the branch cut in the bosonic propagator. At the branch cut,
px ∼ py which allows us to neglect the quadratic curvature terms in the fermionic
Green’s functions.

This makes possible a direct integration over py. This integral can be separated
from the rest of the expression, and reads:

∫

dpy
p

γ|ω|+ p3
=

1

|px|

∫ +∞

−∞
dz

√
1 + z2

(1 + z2)3/2 + γ |ω|
|px|3

=
2p2

x

γ|ω|

∫ +π/2

0

du
1

|px|3
γ|ω| + (cos u)3

,

(C.8)

where we successively defined z = py/|px| and z = tanu.
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Vertex corrections

This last integral can be approximated by its asymptotic form, namely:

∫
dpy p

γ|ω|+ p3
=







π
|px| , if |px|3 � γω
4π

3
√

3
1

(γ|ω|)1/3 − 1
2
p2x
γ|ω| log p2x

(γ|ω|)2/3

+
(
log 2− 1

2

) p2x
γ|ω| , if |px|3 � γω

(C.9)

The only non-vanishing contribution once we take the integral over px comes
from the log term. After expanding in qx, this contribution reads:

∆g

g

∣
∣
∣
∣
q,Ω=0

− ∆g

g

∣
∣
∣
∣
q=Ω=0

∼ ḡvF
γ
qx

∫
dω

|ω|

∫

dpx
p2
x log p2

x
(

iΣ̃(ω)− vFpx
)3 . (C.10)

Defining the scaled momentum z = vFpx/Σ̃(ω) and performing the integration
over z, one obtains two terms, the dominant one being:

∆g

g

∣
∣
∣
∣
q,Ω=0

− ∆g

g

∣
∣
∣
∣
q=Ω=0

∼ i
ḡ

γv2
F

qx

∫

|vF qx|

dω

ω
log[iΣ̃(ω)], (C.11)

where the frequency integral runs over |Σ̃(ω)| > |vF qx| since as we expanded in vF qx,
we assumed that it was smaller than |Σ̃(ω)|.

Performing the remaining integral, one finds:

∆g

g

∣
∣
∣
∣
q,Ω=0

− ∆g

g

∣
∣
∣
∣
q=Ω=0

∼ qx
kF

log |qx|. (C.12)

C.4 q,Ω finite

Finally, we consider the general vertex where both external bosonic momentum and
frequency are non-zero. In analytic form, this writes:

∆g

g

∣
∣
∣
∣
q,Ω

∼ g2

∫

dωd2p G(kF + p + q, ω + Ω)G(kF + p, ω)χ(p, ω)

∼ ḡ

∫
dωd2p
γ|ω|
p

+ p2

1

iΣ̃(ω)− vFpx − p2y
2mB

× 1

iΣ̃(ω + Ω)− vF qx − vFpx − p2y
2mB
− qypy

mB

,

where px is defined as px = p · kF.
Integrating over px first, there are two contributions. One comes from the branch

cut in the bosonic propagator, and gives similar results to the (q = 0,Ω = 0) and the
(q finite, Ω = 0) vertices up to small correction from the finiteness of the external
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C.4. q,Ω finite

frequency. We neglect it here and focus on the other contribution which comes from
the poles in the fermionic propagators:

∆g

g

∣
∣
∣
∣
q,Ω

∼ i
ḡ

vF

∫ Ω

0

dω

∫

dpy
|py|

γ|ω|+ |py|3

× 1

iΣ̃(Ω− ω) + iΣ̃(ω)− vF qx − qypy

mB

, (C.13)

where the simplification of the frequency integral comes from the poles in px.
This vertex correction strongly depends on the interplay between the external

qx, qy and Ω, and is in particular quite sensitive to the momentum anisotropy. We
now analyze the various possibilities.

For the generic case where qx ∼ qy (we use the notation q to designate them),
one can neglect the quadratic term in the fermionic dispersion, allowing to perform
the integration over py, leaving us with:

∆g

g

∣
∣
∣
∣
q,Ω

∼ i
ḡ

vFγ1/3

∫ Ω

0

dω ω−1/3

iΣ̃(Ω− ω) + iΣ̃(ω)− vF q
. (C.14)

Restricting ourselves to the quantum-critical regime (i.e. Ω ≤ ω0) for which Σ̃(ω) =

ω
1/3
0 ω2/3, one has:

∆g

g

∣
∣
∣
∣
q,Ω

= F
(
vF q

Σ(Ω)

)

, (C.15)

where F(x) =
∫ 1

0
dz
z1/3

1
(1−z)2/3+z2/3+ix

, has the following asymptotic behavior:

{
F(x� 1) = O(1)
F(x� 1) = O

(
1
x

) (C.16)

If the typical q is on the bosonic mass shell, then q ∼ (γΩ)1/3, and one has:

∆g

g

∣
∣
∣
∣
q,Ω

∼ Σ(Ω)

vF q
∼ √α

(
Ω

ωmax

)1/3

. (C.17)

However, we encountered in previous computations (e.g. self-energies) that a
strong anisotropy can be observed between the components of the bosonic momen-
tum, with qy � qx. In this case, the full expression of the vertex correction is a bit
complicated and we choose to present here the most relevant case for which the cur-
vature term dominates over vF qx in the fermionic propagator. The vertex correction
then no longer depends on qx and writes:

∆g

g

∣
∣
∣
∣
q,Ω

∼ ḡ

vF

∫ Ω

0

dω

∫ ∞

0

dpy
py

γω + p3
y

Σ̃(Ω− ω) + Σ̃(ω)
(

Σ̃(Ω− ω) + Σ̃(ω)
)2

+
(
qypy

mB

)2 , (C.18)
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Vertex corrections

Defining u = py/(γω)1/3 and z = ω/Ω, it is possible to rewrite the vertex correction
in this regime as:

∆g

g

∣
∣
∣
∣
q,Ω

∼ G
(

β
(γΩ)1/3

qy

)

(C.19)

where β = mB

Nm
and G(x) is the following double integral:

G(x) =

∫ ∞

0

du u

1 + u3

∫ 1

0

dz z−1/3
(
(1− z)2/3 + z2/3

)

((1− z)2/3 + z2/3)
2
+ u2z2/3

x2

∼ x2 log2 x if x� 1. (C.20)

Finally, for the computations of the full dynamic polarization bubble will also
need the vertex averaged over the directions of q. The generic structure of this
vertex, which we define as < ∆g/g > is the same as in (C.15), i.e.,

〈∆g
g
〉
∣
∣
∣
∣
q,Ω

F̃
(
vF q

Σ̃(Ω)

)

,

F̃(0) = O(1), F̃(x >> 1)O

(
1

x

)

(C.21)

However, it will be essential for our further analysis that the expansion of F̃(x)
at large x holds in odd powers of 1/x, i.e., F̃(x >> 1) = a1/x + a3/x

3 + .... In
particular, there is no term O(1/x2), which we found in the polarization operator
without vertex corrections (see (A.7)).

C.5 4-leg vertex

In this paragraph, we compute the renormalized 4-leg vertex Γ2(q,Ω) presented in
Fig 2.3, which reads:

Γ2(q,Ω) ∼ ḡ2

∫

dω

∫

d2p χs

(
Ω + ω

2
,
p + q

2

)

χs

(
Ω− ω

2
,
q− p

2

)

×G
(

Ω + ω

2
,kF +

p + q

2

)

G

(
Ω− ω

2
,kF +

q− p

2

)

. (C.22)

Performing the integration over px, projection of p along kF, we obtain:

Γ2(q,Ω) ∼ ḡ2

vF

∫ Ω

0

dω dpy
γ(Ω− ω) + (q2 + p2

y − 2qypy)3/2

× 1

iΣ̃
(

Ω+ω
2

)
+ iΣ̃

(
Ω−ω

2

)
− vF qx − q2y+p2y

4mB

×

√

(q2 + p2
y)

2 − 4q2
yp

2
y

γ(Ω + ω) + (q2 + p2
y + 2qypy)3/2

. (C.23)
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C.5. 4-leg vertex

It is convenient at this stage to define the reduced variables z = ω/Ω and y =
py/|qy|:

Γ2(q,Ω) ∼ ḡ
(γΩ)1/3

|qy|3
∫ 1

0

dz dy
γΩ
|qy|3 (1− z) + |1− y|3

|1− y2|
γΩ
|qy|3 (1 + z) + |1 + y|3

× 1

i [(1− z)2/3 + (1 + z)2/3]− vF qx
Σ(Ω)
− 1+y2

β

(
|qy|3
γΩ

)2/3
(C.24)

where we assumed that Ω ≤ ω0, and we used that in all our computations, the
perpendicular component of the bosonic momentum is always either dominant or
comparable to the parallel one, so that one has qy ∼ q.

Comparing this renormalized vertex with the bare one given by Γ1(q,Ω) ∼
ḡq−2

y

1+
γ|Ω|

|qy |3

, one has for the ratio of the two:

Γ2

Γ1

∼ (γΩ)1/3

|qy|

∫ 1

0

dz dy
γΩ
|qy|3 (1− z) + |1− y|3

|1− y2|
γΩ
|qy|3 (1 + z) + |1 + y|3

× 1

i [(1− z)2/3 + (1 + z)2/3]− vF qx
Σ(Ω)
− 1+y2

β
|qy|2

(γΩ)2/3

(C.25)

which only depends on two parameters: the ratios vF qx
Σ(Ω)

and |qy|3
γΩ

.
In the generic case of an external bosonic momentum on the mass shell, i.e.

qx ∼ qy ∼ (γΩ)1/3 one has:

Γ2

Γ1
∼ Σ(Ω)

vF qx
∼ √α

(
Ω

ωmax

)1/3

. (C.26)

On the contrary, for a typical qx ∼ Σ(Ω)/vF and qy ∼ (γΩ)1/3:

Γ2

Γ1
∼ β, (C.27)

up to logarithmic factors.
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APPENDIX D

Static spin susceptibility

D.1 Diagrams

In this Appendix we present the details of our calculations of the singular terms
in the static spin susceptibility. We discuss in great detail the calculation of the
first two diagrams in Fig. 3.2 (vertex and self-energy correction diagrams). These
two diagrams can be computed explicitly both away from QCP and at QCP. We
labeled the total contribution from these two diagrams as ΠA(q, 0). The remaining
two diagrams (their total contribution is ΠB(q, 0)) cannot be computed explicitly at
QCP, and we compute them in an approximate scheme.

In explicit form, the first two diagrams in Fig. 3.2 are given by:

Π1a(q, 0) = Γa
ḡ2

(2π)6

∫

d2Kdωd2ldΩ G(ω, k)2

× G(ω + Ω, k + l)G(ω, k + q)χs(l,Ω) (D.1)

Π1b(q, 0) = Γb
ḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)G(ω, k)G(ω, k + q)

×G(ω + Ω, k + l)G(ω + Ω, k + q + l) (D.2)

where Γa,b are numerical prefactors coming from spin summation. Note that for
symmetry reasons, one has to count the first diagram twice, so that the total con-
tribution reads:

ΠA(q, 0) = 2Π1a(q, 0) + Π1b(q, 0). (D.3)



Static spin susceptibility

D.1.1 First diagram

To prove our point, we try to expand the products of fermionic Green’s functions
into a simpler form:

G(ω, k)2G(ω + Ω, k + l)G(ω, k + q) =
G(ω, k)2G(ω, k + q)

κ(l, ω,Ω)
− G(ω, k)G(ω, k + q)

κ(l, ω,Ω)2

+
G(ω + Ω, k + l)G(ω, k + q)

κ(l, ω,Ω)2
, (D.4)

where κ(l, ω,Ω)i(Σ(ω + Ω)− Σ(ω))− vF lx
The interest of such a splitting up is that one can reduce this drastically by

performing the integration over k. In fact:

∫

dεkG(ω, k)G(ω, k + q) = 0, (D.5)

since all the poles in εk are in the same half-plane.

For this reason, we are left with:

Π1a(q, 0) = 2Γa
ḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)
G(ω + Ω, k + l)G(ω, k + q)

κ(l, ω,Ω)2
. (D.6)

Let’s keep this expression as it is for the moment and move on to the second diagram.

D.1.2 Second diagram

Following the same path, we can rewrite the product of fermionic Green’s functions
as:

G(ω, k)G(ω + Ω, k + l)G(ω + Ω, k + l + q)G(ω, k + q) =

G(ω, k)G(ω, k + q)−G(ω, k)G(ω + Ω, k + l + q)

κ(l, ω,Ω)2

+
G(ω + Ω, k + l)G(ω + Ω, k + l + q)

κ(l, ω,Ω)2

− G(ω + Ω, k + l)G(ω, k + q)

κ(l, ω,Ω)2
, (D.7)

with the expression of κ defined above.

Once again, the integration over εk may give zero if the poles are in the same
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D.2. Away from the QCP

half-plane, which reduces our previous expression to:

Π1b(q, 0) = −Γb
ḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)

×
(
G(ω + Ω, k + l)G(ω, k + q)

κ(l, ω,Ω)2

+
G(ω, k)G(ω + Ω, k + l + q)

κ(l, ω,Ω)2

)

. (D.8)

Changing k into k − q in the second part of the integral, we have:

Π1b(q, 0) = −Γb
ḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)

×
(
G(ω + Ω, k + l)G(ω, k + q)

κ(l, ω,Ω)2

+
G(ω, k − q)G(ω + Ω, k + l)

κ(l, ω,Ω)2

)

. (D.9)

One can then notice that εk−q = εk− vF q cos θ changes to εk+q if one changes θ into
θ − π. This finally leads to:

Π1b(q, 0) = −2Γb
ḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)
G(ω + Ω, k + l)G(ω, k + q)

κ(l, ω,Ω)2
. (D.10)

From what precedes, we have:

ΠA(q, 0) = 2

(

1− Γb
Γa

)

Π1a(q, 0). (D.11)

Spin summation prefactors can be easily computed, and are given by:
{

Γa =
∑

α,β,γ,δ σ
Z
αβσβγ · σγδσ

Z
δα = 6

Γb =
∑

α,β,γ,δ σ
Z
αβσβγσ

Z
γδσδα = −2

This finally leads to:

ΠA(q, 0) =
8

3
Π1a(q, 0). (D.12)

D.2 Away from the QCP

In the Fermi-liquid regime we have

ΠA(q, 0) =
16Nḡ2

(2π)6

∫

d2Kdωd2ldΩ
1

(i(1 + λ)ω − εk)2

1

ξ−2 + l2 + γ |Ω|
l

× 1

i(1 + λ)(ω + Ω)− εk+l
1

i(1 + λ)ω − εk+q
(D.13)
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Static spin susceptibility

where we used for the fermionic self-energy Σ(ω) = λω, since we are deep in the
Fermi liquid phase in this case.

Defining cos θ = k·l
|k||l| and cos θ′ = k·q

|k||q|, and integrating over k and ω, one has:

ΠA(q, 0) = i
16Nmḡ2

(2π)5

∫ 2π

0

dθ

∫ 2π

0

dθ′
∫ +∞

−∞
dΩ

∫ ∞

0

dl l

ξ−2 + l2 + γ|Ω|
l

× Ω

(i(1 + λ)Ω− vF l cos θ)2

1

i(1 + λ)Ω− vF q cos θ′ − vF l cos θ
. (D.14)

The integral over θ′ then gives:

ΠA(q, 0) = −4Nmḡ2

π4

∫ π

0

dθ

∫ ∞

0

dΩ

∫ ∞

0

dl
l

ξ−2 + l2 + γΩ
l

Ω

((1 + λ)Ω + ivF l cos θ)2

1
√

(vF q)2 + (Ω(1 + λ) + ivF l cos θ)2
.(D.15)

It is convenient to rescale the variables at this stage, introducing Ω′ = (1+λ)Ω
vF q

and l′ = l
q
, so that the previous expression reduces to:

ΠA(q, 0) = − 4Nmḡ2

π4vF (1 + λ)2
|q|
∫ π

0

dθ

∫ +∞

0

dΩ′
∫ ∞

0

dl′
l

ξ−2 + γvF

1+λ
Ω′

l′

× Ω′

(Ω′ + il′ cos θ)2

1
√

1 + (Ω′ + il′ cos θ)2
, (D.16)

where we kept only the leading order in q.
Defining z and φ as z cos φ = l′ and z sinφ = Ω′, one is left with:

ΠA(q, 0) = − 4Nmḡ2

π4vF (1 + λ)2
|q|
∫ π

0

dθ

∫ ∞

0

dz

∫ π/2

0

dφ
cosφ

ξ−2 + γvF

1+λ
tanφ

× z sinφ

(sinφ+ i cosφ cos θ)2

1
√

1 + z2 (sinφ+ i cosφ cos θ)2
. (D.17)

Subtracting the constant part ΠA(0, 0) (and neglecting it), and integrating over
z, this leads to:

ΠA(q, 0) =
4Nmḡ2

π4vF (1 + λ)2
|q|
∫ π/2

0

dφ cosφ sinφ

ξ−2 + γvF

1+λ
tanφ

∫ π

0

dθ

(sin φ+ i cosφ cos θ)4 .

(D.18)
The angular integration over θ can be done explicitly and gives:

∫ π

0

dθ

(sin φ+ i cosφ cos θ)4 =
π

2
sinφ(5 sin2 φ− 3). (D.19)
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Substituting this into the expression of δΠA, we are left with the following final
result:

ΠA(q, 0) = − 2ḡ

π2vF (1 + λ)
|q| H

(
1 + λ

γvF ξ2

)

, (D.20)

where H is defined as:

H(x) =

∫ π/2

0

dφ
cosφ sin2 φ(3− 5 sin2 φ)

tanφ+ x
. (D.21)

In the two limits,

H(0) =
1

3
, H(x� 1) ≈ 2

3x2
(D.22)

As one approaches the QCP, ξ gets bigger, and one can take the asymptotic form
of H(x) for small x: H(0) = 1/3. Rearranging the prefactor for this limit, we are
left with:

ΠA(q, 0) =
ξ→∞

− 8

9π
ξ−1 |q|. (D.23)

D.3 At criticality

At the QCP, we have:

ΠA(q, 0) =
16Nḡ2

(2π)6

∫

d2Kdωd2ldΩ
1

l2 + γ |Ω|
l

1

(iΣ(ω)− εk)2

× 1

iΣ(ω + Ω)− εk+l
1

iΣ(ω)− εk+q
(D.24)

where we considered that, close to criticality, the self-energy dominates completely
the bare ω term in the fermionic propagators.

We expand both energies as εk+l = εk + vF lx +
l2y

2mB
and εk+q = εk + vF q cos θ,

and perform the integration over εk, leading to:

ΠA(q, 0) = i
16Nmḡ2

(2π)5

∫ 2π

0

dθ

∫ +∞

−∞
dlx

∫ +∞

−∞
dΩ

∫ Ω

0

dω

∫ ∞

−∞

dly l

γ|Ω|+ l3
1

(

iΣ(Ω − ω) + iΣ(ω)− vF lx − l2y
2mB

)2

× 1

iΣ(Ω − ω) + iΣ(ω) + vF q cos θ − vF lx − l2y
2mB

. (D.25)

The integration over lx brings two contributions. One comes from the poles in
the fermionic propagator, and can be neglected here since both poles are in the
same half-plane. The other contribution comes from the branch cut in the bosonic
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propagator, and since at the branch cut qx ∼ qy, one can safely drop the quadratic
term in the fermionic propagators. This allows us to integrate over ly. Out of
the terms arising from this integral, the only non-vanishing ones come from the
non-analyticities of the integrated bosonic propagator defined as:

∫

dlyχ(l,Ω) =

∫

dly
1

l2 + γvF |Ω|√
(vF l)2+c2Σ(Ω)2

, (D.26)

We use here the full form of the polarization operator, Eq. (A.8) as we will see that
typical vF lx ≥ Σ(Ω), and typical ly are only larger in logarithmic sense.

This integral was performed in a slightly different form in (C.9), but the method
is the same: introducing u such that tan u = vF ly√

(vF lx)2+Σ(Ω)2
, one has:

∫

dlyχ(l,Ω) =
(vF lx)

2 + c2Σ(Ω)2

γv2
F |Ω|

∫ π/2

0

du

cos3 u− δ cos2 u+ ε
, (D.27)

where we introduced δ = c2Σ(Ω)2((vF lx)2+c2Σ(Ω)2)1/2

γv3F |Ω| and ε = ((vF lx)2+c2Σ(Ω)2)3/2

γv3F |Ω| .

In the process of integrating over lx, two non-analytic contributions arise from
(D.27). One comes from lx & (γΩ)1/3 and goes like π

(γ|Ω|)1/3 , Plugging this back into

ΠA and subtracting (and neglecting) a constant term, we obtain

Π
(1)
A (q, 0)N ∼ mḡ2v2

F q
2

∫ +∞

−∞

dlx
|lx|

∫ +∞

−∞
dΩ

∫ Ω

0

dω

(iΣ(Ω− ω) + iΣ(ω)− vF lx)5

where we subtracted ΠA(0, 0) (hence the notation δΠA) and expanded in q.
We further simplify the integrals, noticing that the fermionic propagator is dom-

inated by vF lx since lx ∼ (γΩ1/3):

Π
(1)
A (q, 0) ∼ q2Nmḡ

2

v3
F

∫ ωmax

0

dΩ

∫

dlx
Ω

l6x

∼ q2Nmḡ
2

v3
Fγ

5/3

∫ ωmax

0

dΩ

Ω2/3

∼ √
αq2, (D.28)

where we substituted lx ∼ (γΩ1/3) in the last steps.
The other non-analytic contribution from (D.27) comes from typical vF lx ∼

Σ(Ω). It can be seen from an expansion of (D.27) for small values of both δ and ε,
and goes like:

−(vF lx)
2 + c2Σ(Ω)2

2v2
Fγ|Ω|

log
(
(vF lx)

2 + c2Σ(Ω)2
)
.) (D.29)

One can explicitly verify that to get the logarithm, we only need the polarization
operator Π(l,Ω) to order 1/l3. Like we said in Appendix C, to this order, polarization
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bubble can be evaluated with the full fermionic Green’s functions but without vertex
corrections.

Substituting (D.29) into the expression for ΠA and subtracting a constant part,
we obtain:

Π
(2)
A (q, 0) = i

8Nmḡ2

(2π)5γvF
q

∫ 2π

0

dθ

∫ +∞

−∞
dlx

∫ +∞

−∞

dΩ

|Ω|
∫ Ω

0

dω
cos θ [(vF lx)

2 + c2Σ(Ω)2]

(iΣ(Ω− ω) + iΣ(ω)− vF lx)3

× log ((vF lx)
2 + c2Σ(Ω)2)

iΣ(Ω − ω) + iΣ(ω) + vF q cos θ − vF lx
. (D.30)

Using the θ ←→ −θ symmetry, and splitting the integral over Ω into two parts,
one can rearrange this expression as:

Π
(2)
A (q, 0) = i

Nmḡ2

cπ5γv2
F

q

∫ π

0

dθ

∫ +∞

−∞
dz

∫ +∞

0

dΩ

Ω

∫ Ω

0

dω
1

Σ(Ω)

× cos θ(1 + z2)
(

iΣ(Ω−ω)+Σ(ω)
cΣ(Ω)

− z
)3

log (1 + z2)

iΣ(Ω−ω)+Σ(ω)
cΣ(Ω)

+ vF q cos θ
cΣ(Ω)

− z
, (D.31)

where we defined z = vF lx/(cΣ(Ω)).
Let’s now isolate the integral over z, given by:

J =

∫ +∞

−∞
dz

(1 + z2) log(1 + z2)

(ia− z)3(ia + b− z) , (D.32)

where a = Σ(Ω−ω)+Σ(ω)
cΣ(Ω)

and b = vF q cos θ
cΣ(Ω)

, and a ≥ 0.

Performing the contour integration in the lower half-plane (where lies the branch-
cut), one gets:

J = −2π

∫ ∞

1

dy
1− y2

(y + a)3(y + a− ib)

= −2π

∫ ∞

1

dy
(1− y2)(y + a+ ib)

(y + a)3 ((y + a)2 + b2)
. (D.33)

Once (D.33) is plugged back into (D.31), only the imaginary term survives due
to the symmetry of the integral in θ. We are left with:

Π
(2)
A (q, 0) =

4Nmḡ2

c2π4γvF
q2

∫ π/2

0

dθ

∫ +∞

1

dy

∫ +∞

0

dΩ

∫ 1

0

dw
1

Σ(Ω)2

cos2 θ

[c−1 ((1− w)2/3 + w2/3) + y]
3

× 1− y2

[y + c−1 ((1− w)2/3 + w2/3)]
2
+
(
vF q cos θ
cΣ(Ω)

)2 , (D.34)
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where we changed variables, defining w = ω/Ω.

Introducing the new variable t =
(

cΣ(Ω)
vF q cos θ

)3/2

, this rewrites:

Π
(2)
A (q, 0) =

4Nmḡ2

c3/2π4γv
3/2
F ω

1/2
0

q3/2

∫ π/2

0

dθ (cos θ)3/2

×
∫ +∞

1

dy

∫ 1

0

dw
1

[c−1 ((1− w)2/3 + w2/3) + y]
3

×
∫ +∞

0

dt
1− y2

1 + t4/3 [y + c−1 ((1− w)2/3 + w2/3)]
2 . (D.35)

A final change in variables leads to:

Π
(2)
A (q, 0) =

4Nmḡ2

c3/2π4γv
3/2
F ω

1/2
0

q3/2

∫ π/2

0

dθ (cos θ)3/2

∫ +∞

0

dv
1

1 + v4/3

×
∫ +∞

1

dy

∫ 1

0

dw
1− y2

[c−1 ((1− w)2/3 + w2/3) + y]
9/2

(D.36)

where v = t
[
y + c−1

(
(1− w)2/3 + w2/3

)]3/2

Performing the integral over y, one is left with three independent integrals con-
tributing to the numerical prefactor:

Π
(2)
A (q, 0) = − 32Nmḡ2

105π4γv
3/2
F ω

1/2
0

q3/2

∫ π/2

0

dθ (cos θ)3/2

∫ +∞

0

dv
1

1 + v4/3

×
∫ 1

0

dw
5c+ 2

(
(1− w)2/3 + w2/3

)

(c+ (1− w)2/3 + w2/3)
5/2

(D.37)

These integrals can be performed separately and read:

∫ π/2

0

dθ (cos θ)3/2 =

√
2π3/2

6
[
Γ
(

3
4

)]2 ' 0.8740

∫ +∞

0

dv

1 + v4/3
=

3π
√

2

4
' 3.3322

∫ 1

0

dw
5c+ 2s(w)

(c+ s(w))5/2
' 0.9438 (D.38)

and we used the notation s(w) = (1− w)2/3 + w2/3.
Collecting all integrals, and rearranging the prefactor, the final result for the

contribution of the first two diagrams then writes:

Π
(2)
A (q, 0) = −0.1053

√

kF q3/2. (D.39)
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D.4 Other two diagrams

The computation of the other two diagrams in Fig. 3.2 proceeds along the same
way. Far away from criticality, when γvF ξ

2/(1+λ) is small, and one can just expand
perturbatively in the interaction, the sum of these two “drag” diagrams, which we
label here and in the main text as ΠB, was shown in [41] to be equal to ΠA(q, 0) to
the leading order in ḡ (which in our model is ḡ3, see (D.20 -D.22). Near criticality
such simple relation no longer holds, but ΠA(q, 0) and ΠB(q, 0) remain of the same
sign and of comparable magnitude.

At criticality, we obtained for ΠB(q, 0)

ΠB(q, 0) =

√
2

433/4π4
q3/2
√

kF I (D.40)

where in rescaled variables (e.g., momentum is in units of q)

I =

∫

dΩdxx

∫ 2π

0

dθ
S2(x,Ω, θ)

S1(x,Ω)S1(x+ cos θ,Ω)
(D.41)

and S(x,Ω, θ) and S1(x,Ω) are given by

S(x,Ω, θ) =

∫ Ω

0

dω

∫ 2π

0

dθ1
iΣ∗ − x cos(θ1)

× 1

iΣ∗ − cos(θ + θ1)− x cos θ1

(D.42)

S1(x,Ω) =

∫ Ω

0

dω

x2 + (Σ∗)2
(D.43)

where we introduced Σ∗ = Σ∗(ω,Ω) = (Ω− ω)2/3 + ω2/3.
We could not evaluate this integral explicitly, and we compute it under two

simplifying assumptions

• we compute S1(x,Ω) by expanding to leading order in (Σ∗/x)2, evaluating the
frequency integral and plugging the result back into denominator. This way,
we approximated S1(x,Ω) by

S1(x,Ω) ≈ Ω

x2 + (cΩ2/3)2
(D.44)

where c ≈ 1.2 (see (A.6) This procedure is similar to the one which led to
(A.8), but here we cannot justify that only 1.x and 1/x3 terms are relevant.

• We replace Σ∗ by the same cΩ2/3 in the integrand for S(x,Ω, θ)

• We assume that internal momenta are larger than the external one, i.e x� 1
(x is measured in units of q), neglected terms O(1) compared to O(x) and set
the lower limit of the integration over x at some number b.
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• We choose b by applying the same approximate computation scheme to the first
part ΠA(q, 0) and requesting that the result coincide with the exact expression,
Eq. (D.39).

Carrying out this calculation for ΠB(q, 0) we obtain

Π
(2)
A (q, 0) ≈ −0.14

√

kF q3/2. (D.45)

This is the result that we cited in the text.
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APPENDIX E

Two-loop renormalization of the
charge susceptibility

In this Appendix we show that the singular contributions to the static charge sus-
ceptibility from individual diagrams cancel out in the full expression of χc(q).

1)
q, 0

2)
q, 0

3)
q, 0

4)
q, 0

5)
q, 0

6)
q, 0

7)
q, 0

8)
q, 0

9)
q, 0

10)
q, 0

Figure 5.1: The 10 two-loop diagrams for the charge susceptibility.

There are 10 different two-loop diagrams for the charge susceptibility, presented
in Fig. 5.1. The last two diagrams are identical to the ones we considered in the
main text. We already argued there that these two diagrams cancel out in the case
of a QCP in the charge channel.

The other eight diagrams have to be considered together. We demonstrate that
the total contribution from these eight diagrams vanishes once one linearizes the
dispersion of the intermediate fermions. This still leaves out the contributions from



Two-loop renormalization of the charge susceptibility

non-linear terms in the dispersion, but one can show that these contributions are
regular.

To begin, consider one of these diagrams, e.g., diagram 7 in Fig. 5.1. In analytic
form, the contribution from this diagram is:

Π7(q) = 2

∫

d2q1dω1d
2q2dω2 GkGk+qGk+q1Gk+q2+q

×Gk+q1+q2Gk+q1+q2+qχq1χq2 , (E.1)

where we labeled qi = (qi, ωi), and the combinatoric factor 2 comes from the sum-
mation over spin indices.

Introduce now

GkGk+qi =
1

αqi
(Gk −Gk+qi) , (E.2)

where
αqi = iωi − qi cos θi, (E.3)

and θi is the angle between k ≈ kF and qi. Shortening the notations further as
q1 ≡ 1 and q2 ≡ 2, using the symbolic notation

∫

1,2
for the 6-dimensional integral

over q1 and q2, and applying (E.2), we obtain:

Π7(q) = 2

∫

1,2

χ1χ2

[
Gk+qGk+1+2

α2
1α

2
2

− Gk+qGk+1+2

α1α2(α1 + α2)2
− 2

Gk+qGk+1

α2
2(α

2
1 − α2

2)

]

(E.4)

Similarly,

Π8(q) = 2

∫

1,2

χ1χ2

[
Gk+qGk+1+2

α1α2(α1 + α2)2
− 2

Gk+qGk+1

α2
1(α

2
1 − α2

2)

]

(E.5)

and further

Π5(q) = 2

∫

1,2

χ1χ2

[
Gk+qGk+1+2

α1α2(α1 + α2)2
+ 2

Gk+qGk+1

α2
1(α

2
1 − α2

2)

]

(E.6)

Π3(q) = 2

∫

1,2

χ1χ2

[

−Gk+qGk+1+2

α2
1α

2
2

+ 2
Gk+qGk+1

α2
1α

2
2

(
α2

1 + α2
2

α2
1 − α2

2

)]

(E.7)

Π2(q) = 4

∫

1,2

χ1χ2
Gk+qGk+1

α2
1α

2
2

(
α2

2

α2
1 − α2

2

)

(E.8)

Π1(q) = 4

∫

1,2

χ1χ2

α2
1α

2
2

[

Gk+qGk+1+2
α2

2

α2
1 − α2

2

−Gk+qGk+1
3α2

2 − α2
1

α2
1 − α2

2

]

(E.9)

Π4(q) =

∫

1,2

χ1χ2

α2
1α

2
2

[Gk+qGk+1+2 − 2Gk+qGk+1] (E.10)

and finally,

Π6(q) =

∫

1,2

χ1χ2

α2
1α

2
2

[

Gk+qGk+1+2
α2

1 + α2
2

(α1 + α2)2
− 2Gk+qGk+1

]

(E.11)

Collecting the prefactors for Gk+qGk+1+2 and Gk+qGk+1 from all of the eight contri-
butions we find that they cancel out.
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APPENDIX F

Mass-shell singularity

In this Appendix, we analyze in more detail the form of the self-energy near the
fermionic mass shell. The interest to the mass-shell behavior of the self-energy
was triggered by recent studies of the self-energy near a mass shell in a 2D Fermi
liquid [33] and for 2D Dirac fermions [56]. In both cases, the lowest-order self-energy
diverges at the mass-shell, which forces to re-sum the perturbative series.

At first glance, the same situation holds in our analysis at the QCP. Evaluating
the self-energy in a two-loop expansion around free fermions and using the fermionic
dispersion with the curvature, we obtain near the mass shell [57]

Σ(k, ω) ∼ 1

N2
(iω − εk)

[

N log
iω − εk
εk

]2

. (F.1)

This result implies that the quasiparticle residue Z ∝ dΣ/dεk logarithmically di-
verges on the mass shell of free fermions. Without the curvature of the dispersion,
the divergence would be stronger than logarithm.

The issue we now have to address is whether Z still diverges on the mass shell if
we expand around the Eliashberg solution, i.e., around fermions with

G0(k, ω) =
1

iΣ̃(ω)− εk
, (F.2)

where, we remind, Σ̃(ω) = ω + Σ(ω).

It turns out that this is not the case: the expansion around the Eliashberg
solution leads to a finite residue Z.
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At the two-loop order, we obtain, instead of (F.1):

Σ(k, ω) ∼ 1

N2

∫ 1

0

dz

∫ 1

1−z
dz′ (iΣ(ω)ψz,z′ − εk)

[

log
N(iΣ(ω)ψz,z′ − εk)

εk

]2

(F.3)

where
ψz,z′ = (1− z)2/3 + (1− z′)2/3 + (z + z′ − 1)2/3. (F.4)

For simplicity, we restricted ourselves to the quantum critical regime where Σ̃(ω) ≈
Σ(ω). If ψz,z′ were equal to a constant, as it is when the system is in the Fermi
liquid regime, and Σ(ω) = λω, Z would diverge at ω = ε/(1 + λ). However, since
Σ(Ω−ω) + Σ(ω) does not reduce to Σ(Ω), we have two additional integrations over
z and z′, and the logarithmic singularity is washed out. In particular, at εk = iΣ(ω),
i.e. at the “Matsubara mass shell”, we have

Zeff ∼
1

N2

[
π2

6
log2N − 4.08 logN + 2.88

]

, (F.5)

in which case Zeff is just a constant. Combining this with our earlier result that
the renormalization of εk is also finite, Eq. (2.65), we obtain for the full fermionic
Green’s function at the smallest ω and εk

G(k, ω) =
Zeff

iΣ̃(ω)− ε∗k
, (F.6)

where ε∗k differs from εk by a constant factor.
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CHAPTER 5

Introduction and motivations
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This first chapter is a general introduction to the Kondo model. After briefly
recalling the history and the physics behind the Kondo effect, we review some of the
experiments where the Kondo effect plays a major role. This experimental relevance
is used to motivate the present work.



Introduction and motivations

5.1 Kondo and Anderson models: a brief review

5.1.1 History of the Kondo effect

The Kondo effect was explained by Jun Kondo in 1964. It solved a 30 year old
experimental puzzle, known as the resistance minimum. Kondo’s theory however
was incomplete, and one had to wait the work of Wilson, ten years later, to fully
understand the low-temperature physics of the Kondo effect.

� Resistance minimum

For electrons in a perfect lattice, the conductivity at low temperature diverges
as there is no scattering, and consequently no current dissipation. At finite tem-
perature, the essential mechanism for current dissipation lies in the scattering off
phonons. At low enough temperature, the contributions from the phonons decay
rapidly, and the scattering by defects and impurities in the metal host become the
main source of dissipation. The low-temperature resistance saturates in this case
at a finite value which depends on the number of defects in the material: adding
more of them increases the residual resistance but does not affect the character of
the temperature dependence.

However, since the pioneering work of de Hass et al. [58], there have been many
observations of a low temperature increase in the resistance of metals, leading to
a minimum of resistance (see Fig. 5.1). The later observation that the minimum
depended on the concentration of impurities indicating it as being an impurity phe-
nomenon.

In 1964, Kondo considered the interaction between a single magnetic ion, em-
bedded inside a non-magnetic metal, and the conduction electrons of the latter [59].
He was motivated by a recent experimental work by Sarachik and collaborators [60]
who observed a correlation between the existence of a Curie-Weiss term in the im-
purity susceptibility (signaling the existence of local moments) and the occurrence
of the resistance minimum. Convinced that the magnetic character of the impurity
was responsible for the resistance minimum, rather than crystal field effects or the
impurity charge, he considered the following Hamiltonian1:

H =
∑

k

∑

α=±
εkc

†

kαckα + JK
∑

k,k′

∑

αβ

S ·
(

c
†

kα

σαβ

2
ck′β

)

(5.1)

where c
†

kα and ckα are creation and annihilation operators for the conduction elec-
trons, with momentum k and spin σ. While the first term is a generic kinetic term
for the band of electrons, the second term describes the interaction between the
impurity spin S and the local density of spin of the conduction electrons.

1This Hamiltonian, often called the “Kondo Hamiltonian”, was not introduced by Kondo but
by Zener [61]. Kondo is however the first one to have found the log term in the resistivity.
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Treating the coupling between the localized impurity spin and the sea of conduc-
tion electrons up to third order in perturbation theory, he found that the resistivity
associated to such magnetic impurities read:

ρ(T ) = ρhost(T ) + aρ0J
2
K + bρ2

0J
3
K log

(
D

T

)

(5.2)

where ρhost(T ) is the resistivity of the metal in absence of the impurities, ρ0 is
the density of states at the Fermi level, D is the bandwidth and a, b are constants
proportional to the impurity density.

It follows that for an antiferromagnetically coupled impurity spin, Kondo’s theory
correctly describes the observed minimum of resistivity: it can be attributed to the
log term which overshadows the phonon contribution to the resistivity at low enough
temperature (see Fig. 5.1).

Physically, the interacting term in (5.1) generates local inter-exchange of spins
between the magnetic impurity and the conduction band. This induces strong cor-
relations between the electrons and ultimately leads to an increase in the resistivity.
The Kondo effect is a true many-body problem: a first electron scattering off the
impurity flips its spin, so that a second electron interacting with the impurity now
sees an impurity whose spin changed because of the first electron: the electrons are
now correlated due to the impurity.

a) b)
Figure 5.1: a) Data from [60] showing the minimum of resistance for Fe impuri-
ties in Mo-Nb alloys; b) Resistivity fits from Kondo’s original paper [59] using the
expression he derived, Eq. 5.2.

� The Kondo problem

Although Kondo’s theory explains the resistance minimum, it also makes the un-
physical prediction that the resistance diverges at even lower temperatures. This
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divergence signals the breakdown of Kondo’s perturbative treatment. Resumming
the logarithmically divergent terms, a natural scale appears, below which any kind
of perturbative expansion is bound to fail. This temperature scale is known as the
Kondo temperature TK, and is given by:

TK ∼ De−1/(ρ0JK) (5.3)

as one can argue from (5.2), by comparing the two terms depending on the Kondo
coupling.

Anderson’s work on the so-called “poor man’s scaling” [62] inferred that a
ground-state with an infinite coupling develops, the impurity being bound to a
conduction electron in a singlet state. The behavior at low-temperature would then
be similar to that of a non-magnetic impurity, the impurity spin being compensated.

Wilson’s numerical renormalization group confirmed this hypothesis [63]. He
could obtain definitive results for the ground-state and low-temperature behavior of
the system. Wilson highlighted the existence of a dynamically generated tempera-
ture scale, corresponding to the Kondo temperature TK, where the systems enters
a cross-over towards a strong-coupling regime for the case of an antiferromagnetic
coupling JK. The system is then characterized by the formation of a Kondo singlet.

At high temperature, T � TK , the impurity spin and the electrons are only
weakly coupled: one can compute the properties of the system from a perturbative
expansion around the free impurity regime. At low temperature, T � TK, one
enters the strong coupling regime: the conduction electrons screen out the impurity
spin, forming with it a spin singlet state. Note that in this respect, the Kondo effect
is a simple example of asymptotic freedom: the theory is trivial at high energy (free
local moment), but much more complex at low energy (many-body object).

5.1.2 Anderson model

The Anderson model [64] is a generalization of the simple model used by Kondo,
which takes into account charge fluctuations. In this model, the magnetic impurity
is a localized electronic orbital, whose charge can now fluctuate. The associated
Hamiltonian writes:

H =
∑

k

∑

σ=±
εkc

†

kσckσ + V
∑

kσ

(

c
†

kσfσ + f
†

σckσ

)

+ εf
∑

σ

f
†

σfσ + Unf↑nf↓ (5.4)

where nfσ = f
†

σfσ.
This model takes into account the generic kinetic term for the band of conduction

electrons, an hybridization V between the localized orbital and the metallic host,
the energy εf of the orbital, and finally a Coulomb repulsion term on the site of the
impurity.

To get some insight into this model, let’s consider the case V = 0, the so-
called “atomic limit” (where the localized states are uncoupled from the conduction
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electrons). In this situation, there are three energy configurations for the states of
the localized f electrons:

• zero occupation, with a total energy E0 = 0

• single occupation by a spin σ, with an energy E1,σ = εf

• double occupation with a spin ↑ and a spin ↓, with energy E2 = 2εf + U

If the ground-state corresponds to single occupation, then the system has two-fold
degeneracy corresponding to spin 1

2
, and displays an associated magnetic moment.

The other two configurations are non-degenerate and therefore non-magnetic.
It follows that in the atomic limit, the condition for the formation of a local

moment is that the singly-occupied configuration lies lowest in energy. Turning
on the hybridization with the conduction band, we expect that for V � U the
ground-state of the ion is essentially the same as in the atomic limit. Therefore, the
Kondo model can be seen as a limiting case of the Anderson one, where the valence
fluctuations of the localized orbital can be neglected.

Schrieffer and Wolf [65] used a canonical transformation (which amounts to gen-
eralizing the second-order perturbation theory to encompass off-diagonal matrix
elements) to prove that if the singly occupied state is the ground-state in the atomic
limit, then the effective Hamiltonian for a small hybridization is obtained by taking
into account virtual excitations to the zero and double occupied states. This effec-
tive Hamiltonian reduces to the one used by Kondo, in the local moment regime
defined as U + εf > EF and εf < EF .

This can be readily seen from (5.4) by taking the limit of infinitely low energy
for the orbital and the Coulomb repulsion: εf = −U/2 → ∞. In this regime, only
the singly-occupied states survive, and they couple to the conduction electrons via
an antiferromagnetic coupling JK ∼ 4V 2/U which comes from virtual hopping onto
the high-energy states of valence 0 and 2.

Note finally that because of the possibility of valence fluctuations, the physics of
the Anderson model is richer than that of the Kondo model (which cannot treat, e.g.,
the mixed valent regime). Quite often, the theoretical formulation of experimental
setups makes use of the Anderson model, and later reduces to a Kondo model in the
local moment regime.

5.1.3 Experimental and theoretical relevance: the revival

Why would anyone still want to study a physical phenomenon that was explained
more than 30 years ago? Although the Kondo effect is a well-known and widely
studied phenomenon, it continues to capture the interest of both theorists and ex-
perimentalists [66].

Among the examples of the revival of the Kondo effect (some of which we detail
in the next sections), one of the most interesting ones comes from the experimental
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observation of the Kondo resonance. Due to the formation of the Kondo singlet
state, which involves conduction electrons close to the Fermi surface, the Kondo
effect results in the presence of an acute perturbation in the renormalized density
of states at the Fermi energy: the “Kondo resonance”.

Until very recently, physicists could only infer the role of the Kondo effect by
measuring bulk properties like the resistance or the magnetic susceptibility. With the
development of nanotechnology and one of its central tools – the Scanning Tunneling
Microscopy or STM – it is now possible to image a surface with atomic resolution,
and measure the Kondo resonance from the current versus voltage characteristics.

a) b)
Figure 5.2: a) Differential tunnel conductance of the tip at various distances r from
the impurity, taken from [67]. The anti-resonance close to zero bias is a hallmark
of the Kondo effect. b) Ellipse of atoms with an impurity at one of the foci. The
top part is a plot of the measured density of states on the surface, revealing a sharp
peak located at both foci, even where the impurity is not present.

This has been done experimentally by two groups [68, 69] who measured the
differential tunnel conductance at the site of the impurity (an atom of Co deposited
on gold surface, and Ce on silver). Manoharan and collaborators [67] took it the the
next level by building an ellipse of atoms around a cobalt impurity placed at one of
the focal points. The STM-measured energy spectrum revealed the existence of a
Kondo resonance at the site of the impurity but also at the second focus, despite the
absence of any magnetic impurity at that location. Since then, this phenomenon,
labeled as “quantum mirage”, has led to many other experimental and theoretical
studies [70].
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The development of nanotechnology has rekindled interest in the Kondo effect.
However, the study of these systems is limited by construction as one cannot modify
the properties of the magnetic impurity or its coupling to the bulk electrons. This is
precisely the next step physicists are aiming at, with the so-called “quantum dots”.

5.2 Quantum dots

The ambition of this section is not to give a detailed review of the quantum dot
physics2, but rather to introduce the main concepts, explain the relevance of the
Kondo effect in these systems and provide a motivation for our current work.

5.2.1 Charge quantization

Quantum dots are small semiconductor devices, man-made “droplets of charge”
ranging from 10 to 1000 nm in size, where the number of trapped electrons can
be tuned precisely by varying external parameters, from one to several thousand.
They are made of an isolated patch containing an electron gas, coupled via tunnel
barriers to one or two leads, and capacitively to a gate electrode, allowing to change
the electrostatic potential of the dot (see Fig. 5.3).

These devices are often referred to as “artificial atoms”, as the confinement of
electrons leads quantized energy levels as in an atom. The tremendous difference
being that quantum dots allow one to scan through the entire periodic table by
simply changing a voltage.

The electronic states in the dot can be probed by transport when a small tunnel
coupling is allowed between the dot and the surrounding reservoir of electrons: the
so-called source and drain leads. The key idea behind the study of quantum dots,
is to create devices where quantum effects, such as the quantization of charge, are
important. In order to do so, one has to fulfill two conditions:

• work at low temperature:
e2

C
� kBT (where C is the capacitance of the dot)

When tunneling occurs between the dot and the leads, the charge on the island
suddenly changes by the quantized amount e. The associated change in the
Coulomb energy is conveniently expressed in terms of the capacitance C of the
island so that the electrostatic potential increases by an amount Ec = e2/C,
known as the charging energy3. This charging energy plays a significant role
only at temperatures much below it, when states of different charge are well
separated in energy.

2See [71] for a complete review of the subject, or [72, 66] for a friendly introduction to this field.
3For that, we assumed that the Coulomb interaction between the electrons is independent on the

number N of electrons in the island. This is known as the “constant-interaction” model. Despite
its simplicity, this model is remarkably accurate and allows to describe the measurements. For a
detailed justification of the model, see the review of Aleiner et al. [73].
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• restrict to the weak conductance regime: G� e2

h
This means that the tunnel barriers must be sufficiently opaque such that the
electrons are located either in the dot or in the leads, and not delocalized over
the whole circuit.

The first criterion can be met by making the dot small (recall that the capacitance
of an object scales with its typical radius), and the second by weakly coupling the
dot to the leads.

a) b) c)

Figure 5.3: a) Schematic diagram of the lateral and vertical quantum dots (from
[71]); b) Top surface of the SET used in the experiments of Goldhaber-Gordon et
al. [74]; c) Vertical dot structure (from [75]).

5.2.2 Coulomb blockade

In the regime of quantized charge tunneling mentioned above, the energy of a dot
containing N + 1 electrons is greater than one containing N electrons: extra energy
is therefore needed to add an electron to the dot and no current will flow until this
energy is provided by increasing the voltage. This phenomenon is known as the
“Coulomb blockade”.

Indeed, a voltage Vg applied to the gate can change continuously the island’s
electrostatic energy: it lowers the energy of electrons in the droplet relative to the
Fermi level in the leads. If we sweep Vg, the build up of electrostatic energy is
compensated by tunneling of discrete charges onto the dot. Formally, the potential
energy of a dot with N electron and a gate voltage Vg is given, in first approximation,
by:

E =
Q2

2C
+QVg =

1

2
EcN

(

N − 2
CVg
e

)

(5.5)

Starting from a dot with N electrons and increasing Vg, one reaches a point where
the energy of the two configurations with and N and N+1 electrons are degenerate.
Because of this charge degeneracy, the allowed fluctuation in the number of electrons
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on the dot leads to a current flow and results in peaks of the conductance as a
function of the gate voltage: the so-called “Coulomb oscillations” (see Fig. 5.4).

a) b)

Figure 5.4: Conductance in the Coulomb blockade regime: a) for a lateral quantum
dot [76], showing sharp periodically spaced peaks; b) for a vertical quantum dot
[77], showing the appearance of multiplets corresponding to shell filling.

This mechanism allows one to control the current through the dot via a small
change in the gate voltage Vg. For this reason, this device is also called a “single-
electron transistor” (SET).

Refining a bit the model used to derive (5.5), one can take into account the
energy spectrum εp of the states trapped on the dot, and consider the case where
the energy spacing cannot be neglected compared to the charging energy. In this
case, the energy one has to pay to add an electron to the state p is given by the
charging energy. As soon as this state is filled, the energy cost increases in order
to account for the energy difference between the ates p and p + 1, in addition to
the charging energy. This leads to Coulomb oscillations organized in multiplets
separated by an energy Ec + εp+1 − εp, where the peaks inside a given multiplet
are separated by an energy Ec. This shell structure has been observed in vertical
quantum dots [77] and clearly justifies the name “artificial atoms” for these devices
(see Fig. 5.4).

5.2.3 Kondo physics in quantum dots

� Conventional Kondo effect

We have just seen that a voltage applied to the gate electrode controls the number N
of electrons on the dot. If an odd number of electrons is trapped within the island,
the total spin of the dot S is necessarily non-zero. This localized spin, embedded
between large reservoirs of electrons, is susceptible to undergo a Kondo effect. The
relevance of the Kondo physics for these systems was predicted theoretically by
Glazman and Raikh [78] and Ng and Lee [79]. The basic punch-line is that the
formation of a Kondo singlet between this localized spin and the electrons of the
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leads, is responsible for the development of a peak in the density of states of the
localized spin (the so-called “Kondo resonance”) pinned at the Fermi energy of the
leads. Since the transport properties are determined by electrons with energies close
to the Fermi level, the Kondo resonance is expected to have a dramatic influence
on, e.g., the conductance of the dot.

For small dots, the quantized energy difference between different electronic states
(for a given number of electrons N on the island) becomes important. When the
temperature becomes lower than this energy spacing, a system with an odd number
of electrons on the dot effectively behaves as a spin-1/2, coupled to a gas of free
fermions (the two leads), and can be described by an Anderson model with the
following Hamiltonian:

H =
∑

k,σ

∑

a=L,R

εkc
†

akσcakσ + Ecnd↑nd↓ + ε0
∑

σ

d
†

σdσ +
∑

k,σ

∑

a=L,R

Va

(

c
†

akσdσ + d
†

σcakσ

)

(5.6)
where we introduced the c

†

akσ fermionic fields to describe the electrons of the leads,
as well as the fermionic d

†

σ for the localized spin of the dot.

When the temperature is larger than the coupling Γ between the leads and the
dot, one recovers the Coulomb oscillations and the conductance shows periodically
spaced peaks (not very sharp if Γ is not small enough). As the temperature is
lowered, one eventually goes below the Kondo temperature. In this regime, the
development of the Kondo resonance strongly enhances the conductance of the dot
provided that the number of electrons on the dot is odd (as we have just argued in
the previous paragraph). This leads to an even-odd effect on the dot: if the number
of trapped electrons is even, the conductance drops towards zero, whereas if it is
odd, it increases dramatically and eventually reaches the unitary value of 2e2/h at
low temperature. The Kondo effect not only suppresses the Coulomb blockade, but
is also able to make the dot completely transparent (the conductance is maximal in
the zero temperature limit).

These consequences of the Kondo effect have been observed experimentally [74,
80].

� New directions

The quantum dots provide new opportunities to control the Kondo effect, and al-
though the results described thus far resemble what happens for an impurity in a
metal, these devices allow to study regimes inaccessible with magnetic impurities,
bringing the Kondo effect to a whole new level.

Although quantum dots have provided new opportunities to control the Kondo
effect, the results described thus far resemble what happens for an impurity in a
metal.

To name a few examples of these new directions for the Kondo effect, one has:
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Figure 5.5: a) Experimental observation of the effect of the Kondo resonance on
the conductance of a dot [80]; b) These lineshapes could be recovered theoretically
using a numerical renormalization group approach [81].

• the effect of a magnetic field (singlet-triplet transition and associated two-stage
screening) [82];

• the experimental realization of a two-impurity Kondo system using double
quantum dots [83, 84];

• the physics out-of-equilibrium (high voltage, three-terminal SET,. . . );

• the coupling of a quantum dot to magnetic leads;

• the proposed experimental setups to explore the two-channel Kondo effect [85]

A lot of these effects require a better theoretical understanding of the Anderson
and the Kondo models, in particular out of equilibrium, where very powerful tools
like the Bethe ansatz are not so easy to extend [86]. We believe that some of the
unanswered questions that these new directions raise can be, if not solved, at least
better formulated, thanks to simple approaches capturing the low-temperature be-
havior of the Kondo effect, generalized to encompass the physics out of equilibrium.
This is one of our main motivation for the present work.

5.3 Heavy fermions and the Kondo lattice

Another important application of the Kondo effect comes not from the single im-
purity physics, but from dense ordered lattices of impurities, and its relevance for a
whole family of compounds known as “heavy fermion systems”.
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5.3.1 Kondo lattice

In a system containing many dilute impurities, the conduction electrons form with
the network of localized spins, a set of Kondo singlets roughly independent from
each other. When the density of impurity increases, correlations appear between
them, due to the Kondo interaction with the conduction band.

� RKKY interaction

As early as 1940, Frölich and Nabarro [87] discussed the possibility of a ferromag-
netic interaction between nuclear spins mediated by the hyperfine coupling with
the surrounding cloud of electrons. Later on, Ruderman and Kittel [88] computed
from a second-order perturbation expansion the effective coupling between nuclear
spins. Kasuya [89] and Yosida [90] proposed an extension of this mechanism to
localized inner d-electron spins, coupled via an indirect exchange mediated by the
conduction electrons. This long-range spin-spin interaction is now known as the
Ruderman-Kittel-Kasuya-Yosida or “RKKY interaction”.

When a magnetic moment is introduced into a metal, it polarizes the surrounding
carriers by means of the Kondo interaction and induces Freidel oscillations in the
spin density around the magnetic ion [91]. If another local moment is introduced,
it couples with the first one, giving rise to the following long-range interaction:

JRKKY (x− x′) = −J2
Kχ(x− x′) where χ(q) = 2

∑

k

f(εk)− f(εk+q)

εk+q − εk
(5.7)

At zero temperature, for a parabolic band, one has:

JRKKY (r) ∼ −J2
Kρ0

sin(2kFr)− 2kFr cos(2kFr)

2(2kFr)4
(5.8)

where ρ0 is the density of states at the Fermi level, and r is the distance from the
impurity (see Fig. 5.6). The oscillating part with a period 2kF is characteristic of
Freidel oscillations. As a consequence, the sign of the RKKY interaction depends
on the distance between the impurities, and the typical strength of the coupling is
ERKKY ∼ J2

Kρ0.

� Donicah’s picture

Comparing the typical energy scale associated to the Kondo (TK ∼ De−1/(ρ0JK))
and the RKKY (TRKKY ∼ ρ0J

2
K) interactions, one expects for the low temperature

regime:

• for large values of the Kondo coupling constant, TK � TRKKY . One then
expects the Kondo effect to be the dominant interaction, leading to the for-
mation of local singlets roughly independent of one another. This suggests the
formation of a Fermi liquid ground-state,
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• for small values of JK, TRKKY � TK . A magnetically ordered state is favored
in this case. This magnetic order prevents spin-flip processes to occur, and
the Kondo resonance to develop.

As one varies the Kondo coupling continuously, the system is expected to go
from a magnetically ordered to a Fermi liquid ground-state, with a quantum critical
point separating the two at zero temperature. These arguments and the associated
pictorial phase diagram that emerges from them (see Fig. 5.6), are known as the
Doniach picture [92].

However, it is important to keep in mind the crudeness of these arguments:
this description is only qualitative. First of all, the exponential form of the Kondo
temperature used in this discussion comes from the single-impurity physics, and may
very well change substantially once we treat the lattice model. Second, and more
importantly, both the expressions for TK and JRKKY relies on the assumption of a
somewhat large electronic bandwidth. It follows that for JK ∼ D, these expressions
should not be taken too seriously. It turns out that, as they stand, the Kondo
coupling for which both scales are of the same order of magnitude corresponds to
JK ∼ D.

a)

AFM

FL

b)

?
TK ∼ De

−1/(ρ0JK)

TRKKY ∼ ρ0J
2

K

JK

T

Figure 5.6: a) Illustration of the electron spin polarization (in blue) around a mag-
netic impurity (in red) giving rise to Freidel oscillations and inducing an RKKY
interaction between impurity spins; b) Doniach phase diagram, with an antiferro-
magnetically ordered phase (AFM) at low JK and a Fermi liquid phase (FL) at large
JK.

5.3.2 Heavy fermion: a prototypical Kondo lattice

There exists a whole family of compounds that can be thought of a dense lattice of
local moments embedded in a metallic host. They are known as “heavy fermions”.
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� Heavy fermions

In 1975, Andres, Graebner and Ott [93] pointed out that the low-temperature prop-
erties of CeAl3 are those of a metal, with strongly renormalized physical properties.
They had just discovered one of the first examples of heavy fermion metal.

Heavy fermion materials are rare-earth or actinide-based compounds, contain-
ing f -electron elements (U, Ce, Yb). They are distinguished at low temperatures
by an anomalously large specific heat coefficient, with correspondingly large Pauli
paramagnetic susceptibility (here “large” means 2 to 4 orders of magnitude larger
than, say, Cu). These properties can be described within the framework of Landau’s
Fermi liquid theory, by considering a large renormalized mass, as big as 104 bare
electronic mass, hence the name “heavy fermion” associated to these compounds
(see Fig. 5.7).

Microscopically, one of the most important properties of the 4-f and 5-f elements
is the small spatial extent of their radial probability. One can thus consider that
heavy fermion materials are made of localized f orbitals arranged in a periodic
lattice, interacting with delocalized conduction electrons.

For this reason, the heavy fermion compounds are thought to be described by
the periodic Anderson model, whose Hamiltonian writes:

H =
∑

k

∑

σ=±
εkc

†

kσckσ + V
∑

i,σ

(

c
†

iσfiσ + f
†

iσciσ

)

+ εf
∑

i,σ

f
†

iσfiσ + Unfi↑nfi↓ (5.9)

where the f electrons hybridize with the conduction electrons c.

In practice, due to the large local repulsion, and the weak hybridization of the
4−f and 5−f shells, most lanthanides and actinides-based compounds have stable
valence states and concomitant local magnetic moments, which allows the reduction
of the previous Hamiltonian, Eq. (5.9), to the one of the Kondo lattice model.

� QCP and Non-Fermi liquid

Heavy fermion materials offer a unique opportunity to study quantum criticality
under controlled conditions: by applying pressure, doping, or magnetic field, it is
possible to tune the ground-state of the system from a magnetically ordered state
to a Fermi liquid, through a quantum critical point.

A wide body of evidence suggests that the effective mass m∗ of the fermionic
quasiparticles in the paramagnetic Fermi liquid diverges as one approaches the QCP.
This divergence leads to a breakdown of Landau’s Fermi liquid theory, and the state
which forms above the QCP is referred to as a non-Fermi liquid4.

4This designation, already used in the text for MnSi, actually encompasses a broad range of
different behaviors. Quoting Altshuler: “The difference between a Fermi liquid and a non-Fermi
liquid is like the difference between a banana and a non-banana”.
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Compound Cv/T ρ(T )
YbRh2Si2 log T T
CeCoIn5 T

CeCu6−xAux log T T
CeCu6−xAgx log T T 1.1

CeNi2Ge2 log T T 1.4

CeCu2Si2 log T T 1.5

YbAgGe log T T
CePd2Si2 T−0.5 T 1.2

a) b)

Figure 5.7: a) Specific heat coefficient and Pauli susceptibility of a few heavy fermion
materials in the Fermi liquid regime; b) Selected list of heavy fermion compounds,
and their associated properties in the quantum critical regime.

Among the wide range of physical properties that departs from the Fermi liquid
behavior at criticality, one sees many common features5 (see Fig. 5.7):

• diverging specific heat coefficient at the QCP:

Cv
T
∼ c log

(
T0

T

)

or, more rarely ∼ T−1+λ (5.10)

with 0.5 ≤ λ ≤ 0.9. This suggests that the effective mass m∗ → ∞ at the
QCP.

• quasi-linear resistivity:

ρ(T ) ∼ ρ0 + AT 1+ε (5.11)

where 0 ≤ ε ≤ 0.6 at the QCP. This quasi-linear behavior is seen on a tem-
perature range going from half a decade up to three decades (for Ge-doped
YbRh2Si2 [95]).

• a non-Curie spin susceptibility:

χ−1(T ) = χ−1
0 + CT a (5.12)

where a < 1.

5For a review of the experimental data of the non-Fermi liquid behavior of f -electron metals,
see e.g. [94].
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In addition to this non-Fermi liquid behavior, scaling properties could be mea-
sured for a few compounds: in YbRh2Si2, the differential susceptibility exhibits H/T
scaling [96] and in CeCu6−xAux, neutron scattering measurements showed E/T scal-
ing in the dynamical spin susceptibility [97].

None of the theoretical approaches devised to date, could explain all of these
features (though some could recover partial results). The key ingredient that is
generally missing is the competition between the Kondo effect and the develop-
ment of magnetic correlations: most approaches have focused on one or the other
unsuccessfully.

The bosonic scheme we develop in the next chapters of this manuscript is an
attempt at bridging this gap. As we argue in Chapter 6 and 7, such a procedure
does recover the Fermi liquid behavior (at least the expected thermodynamics) and
allows one to study the effect of magnetic correlations. The extension to the lattice
- though not yet achieved - could lead to extremely useful insights in building a
mean-field theory susceptible to describe the quantum phase transition between
antiferromagnetism and the heavy electron fluid.
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Single impurity multichannel
Kondo model
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Single impurity multichannel Kondo model

In this chapter, we introduce and analyze the antiferromagnetic multichannel
Kondo model for a single impurity. After deriving the saddle-point equations and
recalling the results known for the overscreened and the underscreened regime, we
study in details the physical properties of the exactly screened scenario.

6.1 Background

6.1.1 Generalized Kondo model

As a starting point, we consider the generalized Kondo model as introduced by
Coqblin and Schrieffer [98]. This model is a generalization of the original one studied
by Kondo, where the SU(2) symmetry group has been extended to SU(N). The
Hamiltonian then writes:

H =
∑

k

N∑

σ=1

εkc
†
kσckσ +

JK
N

∑

k,k′

∑

α,β

Sαβc
†
kβck′α (6.1)

where the spin flavor now runs from 1 to N , and the antiferromagnetic Kondo
coupling has been rescaled to preserve the same scaling in N for the kinetic and the
interacting part of the Hamiltonian. The c†kσ and ckσ fields correspond respectively
to the creation and annihilation of a conduction electron with momentum k and
spin index σ.

The impurity spin Sαβ now satisfies the commutation rules of the su(N) algebra,
namely:

[Sαβ, Sγδ] = δβγSαδ − δαδSγβ (6.2)

� Representation

While any irreducible representation of SU(N) could be used to describe the impu-
rity spin, historically, two representations retained attention:

• Schwinger bosons [99]

This amounts to introducing N bosonic fields bα, whose total number is con-
strained to be related to the size S of the impurity spin via the relation:

∑

α

b†αbα = P = 2S (6.3)

The Sαβ operator is then defined as:

Sαβ = b†αbβ −
P

N
δαβ (6.4)
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6.1. Background

where one can easily check that the commutation rule is satisfied, and the
second term is introduced to make the operator traceless. Such a represen-
tation corresponds, in terms of Young tableaux, to a single line of P boxes
(see fig.6.1a). Note that in the case of a line representation, there is no upper
boundary for P .

• Abrikosov pseudo-fermions [100]

This is the fermionic counterpart of the previous one. One introduces here a
set of fermionic operators fα, verifying:

Sαβ = f †
αfβ −

Q

N
δαβ (6.5)

∑

α

f †
αfα = Q (6.6)

In terms of Young tableaux, this representation corresponds to a column of Q
boxes, where by construction 0 ≤ Q ≤ N (see fig.6.1b).

Q

P P

N

a) b) c)

Figure 6.1: a) and b) Two examples of representation of SU(N), c) Strong coupling
limit of the single channel model. The white boxes correspond to the bosonic line
representation and the gray ones to the conduction electrons.

One of our ultimate goals is to describe the competition between magnetism and
the Kondo effect. It turns out that a fermionic description is not well suited to
describe local moment magnetism [101, 102], so that we focus in the rest of this text
only on Schwinger boson representation of the impurity spins.

� Channel index

One can use Young tableaux to investigate the strong coupling solution of the gen-
eralized Kondo model: one combines the first box of the line representation with a
column of boxes representing the conduction electrons to form a spin singlet. One
then notices from fig. 6.1c, that unless P = 1, this model describes an underscreened
impurity, where only a fraction of the original spin is screened by the conduction
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Single impurity multichannel Kondo model

electrons, leaving a residual spin of size S = P−1
2

. In order to overcome this, Parcol-
let and Georges [103] introduced a multichannel version of the generalized Kondo
model. The idea is to multiply the number of electronic flavors by introducing a
channel index µ that runs from 1 to K. The Kondo interaction is left unchanged
as no channel anisotropy is introduced. The new Hamiltonian, which now has the
symmetry SU(N)× SU(K), is given by:

H =
∑

k

N∑

σ=1

K∑

µ=1

εkc
†
kσµckσµ +

JK
N

∑

k,k′

∑

α,β

∑

µ

b†αbβc
†
kβµck′αµ (6.7)

where we have replaced the impurity spin operator by the Schwinger boson represen-
tation, and dropped the constant term proportional to the total number of electrons
at the site of the impurity.

This Hamiltonian is the starting point for all the work presented in this chapter.

6.1.2 Strong coupling limit

The multichannel Kondo Hamiltonian allows us to tune separately the parameters
P and K, i.e. the size of the impurity spin and the total number of channels. This
gives access to three regimes with very different physics. In order to get a first flavor
of the physics associated to these regimes, we study the strong coupling behavior of
the model using arguments due to Nozières and Blandin [104].

� Nozières-Blandin analysis

In the strong coupling limit, the kinetic energy of the conduction electrons is negli-
gible, and finding the ground state then amounts to minimizing the Kondo energy.
In this limit, the impurity tends to trap as many electrons as possible (i.e. one per
channel) with spin opposite to the one sitting at the impurity site. This results in
a local effective spin of size S − K

2
= P−K

2
, hence three possibilities:

• K < P : Underscreened

The trapped electrons cannot quench completely the impurity spin, so that
the dressed impurity remains magnetic with a spin of reduced size. Virtual
hopping to the first layer of neighbors with strength t generates a new Kondo
effect between the residual spin and the conduction electrons with a weak
ferromagnetic coupling Jeff ∼ t2

JK
which vanishes in the infinite coupling limit,

suggesting that the JK →∞ fixed point is stable.

• K = P : Exactly screened

The ground state is non degenerate and the strong coupling fixed point is
attractive: the usual Fermi liquid picture applies.
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6.1. Background

• K > P : Overscreened

Like the underscreened case, this leads to a finite residual spin, weakly coupled
to the conduction electrons. However, the sign of this residual spin is opposite
to the starting impurity spin S, so that the effective Kondo coupling between
this residual spin and the conduction electrons is now antiferromagnetic: the
JK →∞ fixed point is now unstable.

The strong coupling arrangement of spins for the impurity and the trapped
electrons for the various cases is presented in fig. 6.2.

c)b)a)

Impurity
spin

electrons

residual
spin

Figure 6.2: Schematic view of the three screening regimes: a) Underscreened case,
b) Exactly screened case, c) Overscreened case. The large black arrow corresponds
to the impurity spin, the small red ones to the electrons and the green arrow to the
residual spin

� Using Young tableaux

As one extends the original symmetry to SU(N), the same kind of arguments hold
but the derivation is more involved. However, there is a much easier and more
convenient way of describing the physics of the strong coupling limit by using Young
tableaux.

The idea is that for any given line representation of the impurity spin, each box
can combine with a column of N − 1 boxes representing the conduction electrons
in order to form a spin singlet (the Pauli principle imposes that the total number
of boxes per column cannot be greater than the spin degeneracy N). For a single
channel, this is represented by fig.6.1c. As soon as one increases the number of
channels, it becomes possible to form a singlet between the second box of the line
representation and a column of conduction electrons taken in another channel.

For a given size of the impurity spin, i.e. a given length P of the line represen-
tation, one can identify three regimes depending on the total number of channels,
just like in the SU(2) case. One expects the following strong-coupling limits:
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• Underscreened: P > K

The conduction electron screens part of the impurity spin, leaving behind
a residual spin of size S = P−K

2
. The expected low-energy physics is then

the one of a local moment, decoupled from the conduction electron band at
zero temperature. As one departs slightly from this strong-coupling fixed
point, a weak ferromagnetic effective Kondo interaction is restored signaling
the stability of this fixed point.

• Exactly screened: P = K

The impurity spin is totally screened in this case and forms an antiferromag-
netic singlet. The impurity site is then locked and acts as a scattering center
for the conduction electrons. One expects the low-energy physics to be Fermi-
liquid like with a finite phase shift on the site of the impurity.

• Overscreened: P < K

The number of screening channels is too important. A residual spin of size
S = K−P

2
now remains. However, a small departure from this fixed point leads

to a residual antiferromagnetic Kondo interaction, so that the strong-coupling
fixed point is unstable and the system flows towards a stable infra-red fixed
point. One expects from other investigations that this fixed point is non-
Fermi-liquid like.

It follows that the generalization of the Kondo model to the SU(N) symmetry
gives qualitatively similar results to the SU(2) case, which motivates the study of
the generalized multichannel Kondo model in the large-N limit.

These three regimes are represented in fig.6.3, where the impurity spin is de-
scribed by white boxes and the conduction electrons by gray ones.

P

N

K

c)

N

P

K
a)

P

N

K
b)

Figure 6.3: a) Underscreened case, b) Exactly screened case, c) Overscreened case.
The impurity spin is described by a line of white boxes and the conduction electrons
by a column of gray ones.
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6.1. Background

6.1.3 Saddle-point equations

In order to derive the large-N equations, we consider the multichannel Hamiltonian
with a bosonic representation of the impurity spin, where we explicitly include the
constraint on the total number of Schwinger bosons via a Lagrange multiplier. The
action then reads:

S =

∫ β

0

dτ
∑

k,σ,µ

c†kσµ(τ) (∂τ + εk) ckσµ(τ) +

∫ β

0

dτ
∑

α

b†α(τ) (∂τ − λ(τ)) bα(τ)

+
JK
N

∑

α,β,µ

∫ β

0

dτ ψ†
βµ(τ)ψαµ(τ)b

†
α(τ)bβ(τ)

+p0N

∫ β

0

dτ λ(τ)− p0JK
N

∫ β

0

dτ
∑

α,µ

ψ†
αµ(τ)ψαµ(τ) (6.8)

where ψ†
αµ = 1√

N
∑

k c
†
kαµ creates an electron in the Wannier state at the impurity

site.
Taking the limit of infinite N , one has to rescale the parameters P and K with

N in order to describe a non-trivial case. We then define the following rescaled
parameters:

P = p0N K = γN (6.9)

It is important to notice that this rescaling inN preserves the distinction between
the three regimes: p0 > γ corresponds to the underscreened case, p0 = γ to the
exactly screened case and p0 < γ to the overscreened case.

The first step is to integrate out of the partition function all of the conduction
electrons, apart from the ones at the impurity site. We then decouple the interacting
term by introducing an auxiliary grassmanian field1 χµ(τ) for every channel index,
which leaves us with the following action:

S = −
∫ β

0

dτdτ ′
∑

σ,µ

ψ†
σµ(τ)G

−1
c0 (τ − τ ′)ψσµ(τ ′)−

1

JK

∫ β

0

dτ
∑

µ

χ†
µ(τ)χµ(τ)

+p0N

∫ β

0

dτ λ(τ) +

∫ β

0

dτ
∑

α

b†α(τ) (∂τ − λ(τ)) bα(τ)

+
1√
N

∑

α,µ

∫ β

0

dτ
(
ψ†
αµ(τ)bα(τ)χµ(τ) + χ†

µ(τ)b
†
α(τ)ψαµ(τ)

)
(6.10)

where we have dropped the p0JK

N
ψ†ψ term since it only contributes to the local

electronic Green’s function to the order 1/N .

1Note that the fields χµ contain no time derivative, so that instantaneously they behave as inert
neutral fields.
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The bare local conduction electron Green’s function Gc0 is given by:

Gc0(iωn) =
∑

k

1

iωn − εk
(6.11)

The actual choice of the conduction band does not matter much as long as we are
interested in a regime of temperature much smaller than the bandwidth: we only
probe the low-energy excitations, and only the density of states at the Fermi level
really matters.

There are two different ways of obtaining the saddle-point equations for the
Green’s functions. First, we choose to derive them following the work of [103].
Then, we derive them from a Luttinger-Ward[105, 106, 107] perspective, as this will
turn out to be useful in many aspects in the rest of the text.

� Derived from the action

The first step is to integrate the remaining conduction electrons out of the partition
function to end up with an effective action depending only on the Schwinger bosons
and the χ fermions:

S =

∫ β

0

dτ
∑

α

b†α(τ) (∂τ − λ(τ)) bα(τ)−
1

JK

∫ β

0

dτ
∑

µ

χ†
µ(τ)χµ(τ)

− 1

N

∫ β

0

dτdτ ′
∑

µ

χµ(τ
′)χ

†

µ(τ) Gc0(τ − τ ′)
∑

α

bα(τ
′)b

†

α(τ)

+p0N

∫ β

0

dτ λ(τ) (6.12)

It is useful at this stage to introduce the following precursors to the Green’s
functions:

Nχ(τ, τ
′) =

∑

µ

χµ(τ
′)χ

†

µ(τ) Nb(τ, τ
′) =

∑

α

bα(τ
′)b

†

α(τ) (6.13)

One now introduces two new fields labeled Q(τ, τ ′) and Q̄(τ, τ ′),conjugated re-
spectively to Nχ(τ, τ

′) and Nb(τ, τ
′). The idea is to generalize to a path-integral

formulation the following result:
∫

dXdY e−AXY+Xφ+Y ψ = Const.× eφA−1ψ (6.14)

The partition function can be rewritten as Z =

∫

DQDQ̄Dλ e−S(Q,Q̄,λ) with the

effective action expressed in terms of these new fields:

S(Q, Q̄, λ) = N

∫ β

0

dτdτ ′ Q̄(τ, τ ′)G−1
c0 (τ − τ ′)Q(τ, τ ′) + p0N

∫ β

0

dτ λ

−N logZb(Q, Q̄, λ)−K logZχ(Q, Q̄, λ) (6.15)
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where the partial partition functions are defined as:

Zb =

∫

Db†Db e−
R β
0 dτ b†(τ)(∂τ−λ(τ))b(τ)+

R

dτdτ ′Q(τ,τ ′)b(τ ′)b
†
(τ)

Zχ =

∫

Dχ†Dχ e−
R β
0
dτ χ†(τ)(∂τ−λ(τ))χ(τ)+

R

dτdτ ′Q̄(τ,τ ′)χ(τ ′)χ
†
(τ)

(6.16)

The important element here is that every term in S(Q, Q̄, λ) scales like N , so that
in the large-N limit one can apply the method of steepest descent. The saddle-point
is such as the derivatives of S(Q, Q̄, λ) with respect to its variables all vanish:

δS(Q, Q̄, λ)

δQ(τ, τ ′)
= 0 =⇒ Q̄(τ, τ ′) = −Gc0(τ − τ ′)Gb(τ

′ − τ)

δS(Q, Q̄, λ)

δQ̄(τ, τ ′)
= 0 =⇒ Q(τ, τ ′) = −γGc0(τ − τ ′)Gχ(τ

′ − τ)

δS(Q, Q̄, λ)

δλ(τ)
= 0 =⇒ p0 = −Gb(τ = 0−) (6.17)

where we use the conventional definition of the Green’s functions as:

{

Gb(τ) = −〈Tb(τ)b†(0)〉Z = −〈Tb(τ)b†(0)〉Zb

Gχ(τ) = −〈Tχ(τ)χ
†

(0)〉Z = −〈Tχ(τ)χ
†

(0)〉Zχ

(6.18)

A careful look at (6.18) and (6.16) suggests that Q(τ, τ ′) (resp. Q̄(τ, τ ′)) is
trivially related to the self-energy Σb(τ − τ ′) (resp. Σχ(τ − τ ′)):

Σb(τ) = γGc0(τ)Gχ(−τ) Σχ(τ) = −Gc0(τ)Gb(−τ) (6.19)

where the self-energies are defined as:

G−1
b (iνn) = iνn + λ− Σb(iνn) G−1

χ (iωn) = JK − Σχ(iωn) (6.20)

These saddle-point equations are valid for any shape of the conduction band, in
particular there is no need to impose particle-hole symmetry. The striking feature of
these saddle-point equations is that they are expressed in terms of the one-particle
Green’s functions only, so that once the solution is achieved, one gets access to all
the correlation functions of the model (Susceptibility, free energy, entropy, . . . ).

� Derived from a Luttinger-Ward picture

It is possible to derive the self-consistent equations for the self-energies starting from
the free energy of the model. In the Baym-Kadanoff[108, 109] formalism, the free
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energy can be recast as a functional of the various Green’s functions one has to
consider2:

F = NT
∑

n

log(−G−1
b (iνn))−KT

∑

n

log(−G−1
χ (iωn))

−NKT
∑

n

log(−G−1
c (iωn)) +NT

∑

n

Σb(iνn)Gb(iνn)

−KT
∑

n

Σχ(iωn)Gχ(iωn)−NKT
∑

n

Σc(iωn)Gc(iωn)

+Np0λ+ ΦLW [Gb, Gχ, Gc] (6.21)

The Luttinger-Ward functional ΦLW [Gb, Gχ, Gc] is given by the sum of all 2-
particle irreducible diagrams. Some of these diagrams are presented in fig. 6.4,
where we use straight lines for the conduction electron, wiggly lines for the Schwinger
boson and dashed lines for the χ−fermion full propagators. This sum ultimately
reduces to the first leading order diagram, once we take the large-N limit.

ΦLW [Gb, Gχ, Gc] =

Figure 6.4: Some of the skeleton diagrams contributing to the Luttinger-Ward func-
tional.

Using the stationarity of the free energy functional with respect to the Green’s
functions Gb, Gχ and Gc, one can see that at the saddle-point, the self-energies
associated to these fields can be expressed as a derivative of the Luttinger-Ward
functional, leading to:

Σb(τ) =
−1

N

δΦLW

δGb(β − τ)
=

O(K/N)

Σχ(τ) =
−1

K

δΦLW

δGχ(β − τ)
=

O(1)

Σc(τ) =
−1

NK

δΦLW

δGc(β − τ)
=

O(1/N)

(6.22)

2The actual derivation of this expression for a single impurity Kondo model is given in Appendix
A.
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Each of these terms contains a factor O(1/N) from the vertices, but the first two
self-energies contain summations over the internal channel or spin indices, elevating
Σb and Σχ to terms of order O(1). However, in the leading order large N approxi-
mation, Σc ∼ O(1/N), so that a consistent large N approximation is produced by
leaving the conduction electron lines un-dressed.

This provides an alternative diagrammatic derivation of the Parcollet-Georges
approach.

� Causality

It is interesting, now that we have derived the self-consistent equations for the
Green’s functions, to check that they respect the causality rules, i.e. that the imag-
inary part of the retarded self-energies and Green’s functions have the right sign as
a function of frequency.

In order to do so, we start expressing the imaginary part of the retarded self-
energy and Green’s function for the Schwinger boson:

G′′
b (ν + iδ) =

Σ′′
b

|ω + λ− Σb(ω + iδ)|2
(6.23)

Σ′′
b (ν + iδ) = πγJ2

K

∫

dΩρc(Ω + ν)ρχ(Ω) [f(Ω + ν)− f(Ω)] (6.24)

where f(ω) is the temperature dependent Fermi function.
From this, it follows that Gb respects the causality rules provided that Σb does.

It is then obvious that [f(Ω + ν)− f(Ω)] has the sign of ν for any given value of Ω,
so that, assuming both fermionic fields respect causality, one has:

Σ′′
b (ν + iδ) ∝ −Sgn(ν) (6.25)

which is one would expect if Gb were causal.
The same kind of reasoning extends to the χ−fermion: the causality of Gχ is

ensured by the causality of Σχ, since it is preserved by the Dyson’s equation. Its
imaginary part is given by:

Σ′′
χ(ω + iδ) = −πJ2

K

∫

dΩρc(Ω + ω)ρb(Ω) [f(Ω + ω) + f(Ω)] (6.26)

It is easy to rewrite [f(Ω + ω) + f(Ω)] as a positive function of both frequencies
divided by tanh

(
βΩ
2

)
which obviously has the sign of Ω for any given value of ω. If

both Gc and Gb respects causality, one has Σ′′
χ(ω + iδ) < 0 over the whole range of

frequency, so that Gχ is also causal.
As a conclusion, the causality is built into the self-consistent equations, so

that recursively, these rules are respected provided that the starting point at high-
temperature is itself causal.
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� Set of equations

Here is a reminder of the whole set of equations we will refer to, in the rest of this
text:

Dyson’s equations: G−1
b (iνn) = iνn + λ− Σb(iνn) (6.27a)

G−1
χ (iωn) = JK − Σχ(iωn) (6.27b)

Schwinger boson: Σb(τ) = −γJ2
KGc(τ)Gχ(β − τ) (6.27c)

χ−fermion: Σχ(τ) = −J2
KGc(τ)Gb(β − τ) (6.27d)

Conduction electron3: ρc(ω) = ρ0Θ
(
D2 − ω2

)
(6.27e)

Constraint: −Gb(τ = 0−) =

∫

dωρb(ω)n(ω) = p0 (6.27f)

where all the spectral functions are defined as ρ(ω) = −1
π

ImG(ω + iδ), and n(ω) is
the Bose function.

To conclude, the Kondo problem reduces to this set of coupled integral equations
in the large-N limit. Once these equations are solved, their solution gives access to
all physical quantities, from the thermodynamics to the correlation functions.

6.2 Known results

The saddle-point equations (6.27c) and (6.27d) have been studied in great details
for both the overscreened and the underscreened cases [103, 110]. It is actually
rather hard to solve them exactly: even though these self-consistent equations are
nothing but convolutions, the Dyson’s equations make the self-consistency much
more difficult to handle analytically than one would expect. It is quite interesting
that the same set of integral equations gives very different results as one tunes the
impurity spin from p0 > γ to p0 < γ. This feature is still not well understood from
the analytical point of view.

Nevertheless, one can explore some of the properties of these two regimes thanks
to two methods:

1. A partial analytic solution at low-temperature. This allows to explore the
low-energy behavior, in particular for the overscreened case where conformal
field theory helps in the derivation of the scaling function in temperature, the
behavior of the entropy and the specific heat.

2. A full numerical solution. This allows to explore the whole range in tempera-
ture and in particular the cross-over between the high and the low temperature
regimes.

3We choose a flat band of conduction electron for simplicity but the saddle-point equations are
independent on the actual form of the band. Moreover, as argued before, the actual shape of the
density of states does not matter at low temperature.
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In the next paragraphs, we recall some of the established results concerning the
high-temperature and the low-temperature limit for all three regimes of screening.

6.2.1 High temperature regime

At high temperature, the system behaves as a free spin of size s = p0/2: both self-
energies are negligible compared to the free part of the Green’s functions. This is
independent on the number of channels since the Kondo interaction is too small to
affect the impurity spin at high temperature.

It follows that the bosonic spectral function is given by a single δ−peak:

ρb(ω) = δ (ω + λ) (6.28)

where the chemical potential λ is set by the constraint (6.27f). It follows that
n(−λ) = p0, so that one can rewrite the chemical potential as:

λHigh T = −T log

(
1 + p0

p0

)

(6.29)

Replacing the expression for the bosonic Green’s function into the free energy
(6.21), and neglecting all self-energies with respect to the bare propagators, one has
for the impurity free energy:

FHigh T
imp = F − Fbulk = NT

∑

n

log (−iνn − λ) +Np0λ(T ) (6.30)

= NT [p0 log p0 − (p0 + 1) log(p0 + 1)] (6.31)

where we have subtracted the contribution from the conduction electron band to
the free energy, labeled Fbulk.

From this, one can easily deduce that the high-temperature limit of the impurity
entropy per spin flavor is:

sHigh T
imp = − 1

N

∂Fimp

∂T
= (p0 + 1) log(p0 + 1)− p0 log p0 (6.32)

Finally, one can compute the local susceptibility: this quantity is defined as
the susceptibility of the system when only the impurity is coupled to the external
magnetic field (see Appendix B for more details about the difference between local
and impurity susceptibility). The local susceptibility then writes:

χloc =
1

N2

∫ β

0

dτ
∑

αβ

〈Sαβ(τ)Sβα(0)〉 =

∫ β

0

dτGb(τ)Gb(β − τ)

χHigh T
loc =

p0(p0 + 1)

T
(6.33)

which, as expected, gives a Curie law with a Curie constant κ depending on the size
of the spin: κ = p0(p0 + 1).

As the temperature is lowered, all these quantities cross-over to their low-T
counterpart which now strongly depends on the screening regime considered.
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6.2.2 Overscreened case: p0 < γ

This section is devoted to the results of the overscreened regime. All the analytical
results presented in this section have been derived in [103] and [110]. However, all
the numerical data have been recomputed for illustrative purposes and as a test for
our new set of programs.

� Spectral functions

It is possible to extract the low-energy behavior of the Green’s functions in the zero
temperature limit. This derivation rests on a numerical observation, namely that as
the temperature is reduced towards zero, both Green’s functions seem to diverge at
zero energy. This can be recast as:

λ− Σb(0 + iδ) −→
T→0

0 (6.34)

JK − Σχ(0 + iδ) −→
T→0

0 (6.35)

as one can see from the numerical data presented in fig. 6.5.
Using this as a hint, and a power-law ansatz for the Green’s functions, one can

perform a low-energy analysis identical in spirit to the one in [111]. The idea is
to plug the ansatz into the self-energy equations and to identify the results self-
consistently with the starting functions. This analysis leads to the following power-
laws for the Green’s functions:

Gb(ω + iδ) ∼ A+θ(ω) + A−θ(−ω)

|ω| γ
1+γ

(6.36)

Gχ(ω + iδ) ∼ B+θ(ω) +B−θ(−ω)

|ω| 1
1+γ

(6.37)

where A± and B± are constants.
Both Green’s functions are singular at zero frequency, with a power-law diver-

gence whose exponent does not depend on the size of the spin. This exponent is
the same on both side of the singularity, but the prefactor is different: there is a
spectral asymmetry that can be parametrized through the argument θ± of A± (the
self-consistency ensures that B± can be expressed in terms of |A±| and θ±).

Thanks to a procedure similar in many aspects to the proof of the Luttinger
theorem for Fermi liquids [105, 106], one can relate the size of the spin to the low-
energy parameters θ±, which ultimately leads to:







sin θ+ = sin

(
π(γ − p0)

1 + γ

)

sin θ− = − sin

(
πp0

1 + γ

) (6.38)
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Finally, it is important to notice that the singularity at zero frequency is actually
regularized at finite temperature. From this observation, Parcollet et al. [110] could
infer a finite temperature ansatz for the Green’s functions that satisfies the saddle-
point equations. In the low-energy, low temperature limit, one can see ω/T scaling
in the spectral functions, so that at the leading order in temperature:

ρb(ω) ∝ T− γ
1+γ φb

(ω

T

)

ρχ(ω) ∝ T− 1
1+γ φχ

(ω

T

)

(6.39)

where the φb,χ scaling functions have a complicated expression in terms of Γ func-
tions. This feature can be seen numerically from inspecting the zero-energy inverse
Green’s function as a function of temperature, which turn out to behave as the
expected power-laws (see Fig. 6.5).

0.001 0.01 0.1

0.01

0.1

0.001 0.01 0.1

0.01

0.1

0.001 0.01 0.1 1

0.1

1

0.001 0.01 0.1 1

0.1

1

T

|J
K
−

Σ
χ
(0

)|

0 0.05 0.1 0.15 0.20

0.05

0.1

|λ
−

Σ
b
(0

)|

T

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

Figure 6.5: Inverse Green’s functions at zero energy as a function of temperature on
a double-log plot. The dots correspond to numerical data, and the straight lines to
power-law fits, with an exponent of 0.341 and 0.628 for |λ−Σb(0)| and |J −Σχ(0)|.
The corresponding exponents predicted by the analytic treatment are 1/3 and 2/3,
respectively. The insets show the same data on a linear scale to stress out the
vanishing of both quantities at low temperature.

� Entropy and specific heat

From the scaling function in temperature, it is possible to compute the free energy at
low temperature, at the saddle point, and from there to extract the residual entropy
of the impurity. This turns out to be much more difficult than it seems, since because
of the ω/T scaling of the spectral function, a small temperature Sommerfeld-like
expansion is not possible here.

In the overscreened regime, the residual entropy per spin flavor of the impurity
is given by:

sRes
imp =

1 + γ

2π
Im
[

Li2

(

e2i
πp0
1+γ

)

+ Li2

(

e2i
π

1+γ

)

− Li2

(

e2i
π(1+p0)

1+γ

)]

(6.40)

where Li2(x) is the dilogarithm function.
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Figure 6.6: Entropy as a function of temperature in the overscreened case (p0 =
0.3, γ = 0.4). The red dotted line correponds to the residual entropy computed with
the expression given in the text, Eq. (6.40).

To access the specific heat coefficient, the expression of the spectral functions
to the leading-order in temperature is not sufficient, and one has to push the low-
temperature expansion to higher order. This allows to take the second derivative
of the impurity free energy, which leads to the following result for the specific heat
coefficient:

γ > 1 :
Cv
T
∼

(
1

T

) γ−1
γ+1

γ = 1 :
Cv
T
∼ log

(
1

T

)

γ < 1 :
Cv
T
∼ const.

(6.41)

The asymmetry between the γ < 1 and the γ > 1 regimes is an artifact of the
Kondo model. In the Anderson model, the symmetry is restored and one finds a

diverging specific heat coefficient for γ < 1, namely Cv/T ∼ (1/T )
1−γ
γ+1 .

� Susceptibility

It is possible from a conformal field theory point of view to derive the temperature
dependence of the local spin susceptibility at low temperature. The latter turns out
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to behave as a function of temperature just like the specific heat coefficient, i.e.:

γ > 1 : χloc ∼
(

1

T

) γ−1
γ+1

γ = 1 : χloc ∼ log

(
1

T

)

γ < 1 : χloc ∼ const.

(6.42)

For γ ≥ 1, this can be easily re-derived from the expression of the local suscepti-
bility in terms of the bosonic Green’s functions, and the scaling form in temperature
of Gb

4. For γ < 1, however, the prefactor of the divergent term vanishes so that only
a constant term remains in the low temperature limit. Again, this is a peculiarity
of the Kondo model and the divergence with the expected power in T is recovered
in the Anderson model.

6.2.3 Underscreened case: p0 > γ

This section is devoted to the results of the underscreened regime. Again, all the
analytical results presented in this section have been derived in [103] and [112], and
the numerical data have been recomputed for illustrative purposes and as a test for
our new set of programs.

� Spectral functions

We know from the strong coupling analysis that the underscreened regime leads
to a partially screened impurity spin, so that we expect the physics to look like a
residual spin of size p0−γ, weakly ferromagnetically coupled to a bath of conduction
electrons.

It follows that the expected bosonic spectral function looks like the one of a local
moment, with sub-leading terms:

ρb(ω) = δ(ω + µT ) + Φb(ω) (6.43)

where µ = − log
(
p0−γ+1
p0−γ

)

as one expects for the chemical potential associated to a

spin of size p0 − γ.
Of course, in order to maintain the constraint as well as the normalization of

this spectral function, one would expect that:
∫

dωΦb(ω) = 0

∫

dωΦb(ω)n(ω) = γ (6.44)

4The integral brings a power of T and the two powers of Gb a term in T
2γ

1+γ .
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Figure 6.7: Bosonic spectral function at T ∼ 10−3TK . The fit is a Lorentzian whose
width decreases with temperature, consistent with a δ-peak in the zero temperature
limit. In the inset, we show the same spectral function on the scale D.

The self-consistency imposes that upon substituting (6.43) into the self-energy
equation for the χ−fermion, one has:

Σχ(ω) = Φχ(ω) + ρ0J
2
K(p0 − γ)

[

log

∣
∣
∣
∣

D + ω − µT
D − ω + µT

∣
∣
∣
∣
− iπΘ(D2 − (ω − µT )2)

]

+ρ0J
2
K log

(
D

2πT

)

− ρ0J
2
K

[

Ψ

(
1

2
− iω − µT

2πT

)

+ i
π

2

]

(6.45)

where Φχ(ω) is a sub-leading term arising from Φb(ω), and Ψ(x) is the di-gamma
function.

Noticing that this diverges as logT as T → 0, and plugging it back into the

bosonic self-energy, one has: Σb(ω)− Σb(0) ∼ −γ ω

log T
+ . . ., so that our ansatz is

consistent.
This finally leaves us with the following inverse Green’s functions at zero energy:

λ− Σb(0) ∼ µT + . . . (6.46)

JK − Σχ(0) ∼ ρ0J
2
K log T + . . . (6.47)

The divergence of the inverse χ−fermion propagator at zero energy prevents a
low-energy analysis like the one carried out for the overscreened case. This loga-
rithmic divergence can be interpreted physically as arising from the effective fer-
romagnetic coupling between the residual spin and the electronic bath. Since we
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introduced the χ fermion to decouple the Kondo interaction, the associated Green’s
function describes the effective Kondo coupling J ∗

K between the residual spin and
the conducting bath: as T → 0, this coupling becomes negative and vanishes like
1/ logT , consistent with a marginally irrelevant ferromagnetic coupling.
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Figure 6.8: Inverse Green’s functions at zero energy as a function of temperature.
The dots correspond to numerical data, and the straight lines to fits: linear in the
case of λ− Σb(0) and logarithmic for J − Σχ(0).

The validity of our ansatz is verified from the numerical solution (see Figs. 6.8
and 6.7) where one sees the logT dependence of J ∗

K, as well as the linear behavior of
the renormalized bosonic chemical potential both in the high and low temperature
regime with a change of slope related to the change in the size of the effective
impurity spin.

� Entropy and Susceptibility

The low-temperature physics is dominated by the local moment physics, since the
effective coupling between the residual spin and the conduction band vanishes as
T → 0. As a consequence, both the entropy and the local susceptibility at zero
temperature look like the ones of an isolated spin.

One then expects that the underscreened case at low temperature gives the same
behavior as the ones we obtained for the high-temperature regime only for a spin of
size p0 − γ instead of p0. It follows that the residual entropy of the underscreened
Kondo model is given by:

simp = (p0 − γ + 1) log(p0 − γ + 1)− (p0 − γ) log(p0 − γ) (6.48)

and the local susceptibility at low-temperature is Curie-like, with a Curie constant
κ = (p0 − γ)(p0 − γ + 1):

χLow T
loc ∼ (p0 − γ)(p0 − γ + 1)

T
(6.49)
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Figure 6.9: a) Entropy as a function of temperature on a logarithmic scale. The
residual entropy at the lowest temperature achieved is very close to the theoretical
value (red dotted line). b) The inverse local susceptibility is linear in both the high
and low-temperature regime, with a net change in slope.

which we could verify numerically, as one can see from Fig. 6.9.
As one takes the γ → p0 limit, the residual entropy vanishes, as one would expect

from the exactly screened case.

6.3 Exactly screened case: p0 = γ

In this section we study the perfectly screened case which was thought to be a trivial
non-interacting Fermi-liquid as an artifact of the large-N limit. We prove, helped
by a numerical solution of the saddle-point equations, that this is not the case:
even though the transport properties are indeed trivial in the large-N limit, one can
recover the thermodynamics of a truly interacting Fermi liquid. The main results
of this section have been published in the Publication 4, the rest is presented here
for the first time.

6.3.1 General belief and counter-arguments

Previous works [103] on this large-N limit of the multichannel Kondo model fo-
cused on both the overscreened and the underscreened regimes, leaving the perfectly
screened case aside. The general belief was that although the Kondo screening oc-
curs at the leading order in N for the impurity, it only happens at a sub-leading
order for the conduction electrons, so that the impurity doesn’t seem to affect any
properties of the Fermi liquid, even at the impurity site and one ends up describing
a trivial non-interacting Fermi liquid.

This argument was backed up by the results of the Friedel sum rule [113] which
predicts that the conduction electron phase shift on the impurity is given by δc = π

N
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6.3. Exactly screened case: p0 = γ

so that both the phase shift and the T−matrix vanish in the large-N limit.
Although this argument is correct, the conclusions concerning the trivial Fermi

liquid are not. Indeed, a vanishing phase shift only implies that the transport
properties of the Fermi liquid cannot be recovered in the large-N limit. What was
originally missed is that although the conduction electron self-energy is of order
O(1/N), it does participate to the thermodynamics because its effect is multiplied
by the N spin components and the K scattering channels producing an O(N) overall
contribution.

This statement is not that obvious if one looks at the impurity free energy. The
latter is defined as the difference between the total free energy and the bulk one
(i.e. the one of the free conduction band). Starting from eq. 6.21 and removing the
bulk free energy Fbulk = −NKT ∑n log

(
G−1
c0 (iωn)

)
, one can expand the conduction

electron Green’s function in 1/N , so that the remaining terms look like:

Fimp = NT
∑

n

log(−G−1
b (iνn))−KT

∑

n

log(−G−1
χ (iωn))

+NT
∑

n

Σb(iνn)Gb(iνn)−KT
∑

n

Σχ(iωn)Gχ(iωn)

+Np0λ+ ΦLW [Gb, Gχ, Gc] (6.50)

This does not contain any explicit dependence on the conduction electron self-energy.
However, it is possible from this expression to derive a closed form expression for
the impurity entropy. This derivation is presented in Appendix A in the case of a
single impurity and we only recall the result here:

Simp

N
= −

∫
dω

π

[
∂n(ω)

∂T

(
Im log

(
−G−1

b (ω)
)

+G′
b(ω)Σ′′

b (ω)
)

+γ
∂f(ω)

∂T

(

Im log
(
−G−1

χ (ω)
)

+G′
χ(ω)Σ′′

χ(ω)−G′′
c0(ω)Σ̃′

c(ω)
)]

(6.51)

where the notation G′(ω) and G′′(ω) stands for the real and imaginary parts of the
retarded Green’s function G(ω + iδ), and Σ̃(ω) = NΣ(ω) = O(1).

It is obvious from (6.51) that the conduction electron self-energy plays a role in
the thermodynamics even though it does not enter the self-consistent saddle-point
equations. This motivated a careful analysis of the exactly screened regime despite
the arguments related to the vanishing phase shift.

6.3.2 Spectral functions

� Existence of a gap

The first interesting feature of the numerical solution of the saddle-point equations
is the existence of a gap in both the bosonic and fermionic spectral functions at low
temperature (see Fig. 6.10).
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Even though we have no way of proving analytically that a gapped solution is
favored in the case of a perfectly screened impurity, it is possible to show that a
gapped solution is compatible with the saddle-point equations.

The imaginary parts of the self-energies, written in terms of real frequencies and
taken at zero temperature, are given by:







Σ′′
b (ω + iδ) = −πγJ2

K

∫ −ω

0

dΩ ρc(ω + Ω)ρχ(Ω)

Σ′′
χ(ω + iδ) = πJ2

K

∫ −ω

0

dΩ ρc(ω + Ω)ρb(Ω)

(6.52)

Assume that the bosonic spectral functions is gapped over the range of frequency
[−g−, g+], then the χ−fermion self-energy and – upon a substitution in the Dyson’s
equation – the spectral function are both gapped, over a range of frequency that
is now [−g+, g−]. Conversely, a gap in ρχ leads because of the self-consistency to
a “mirrored” gap in ρb. This analysis is independent on the actual shape of the
conduction band. Note finally that we couldn’t extract a self-consistent equation
for the gap starting from these equations.

The gap in the bosonic spectral function leads to a degenerate choice of the
Lagrange parameter λ in the case of the exactly screened spin: when this effective
chemical potential lies within the gap, the ground-state Schwinger boson occupancy5

locks into the value nb = p0 = γ. Numerically, this manifests itself by a plateau in
the bosonic occupancy as a function of λ, at low temperature (see Fig. 6.10). Such a
picture suggests that starting from a solution of the saddle point equations, a small
change δλ in the bosonic chemical potential leads to another solution, apparently
given by the same set of Green’s functions only shifted rigidly in frequency by an
amount δλ.

Just like the stability of the gap, this last feature is also built into the equations.
Assume that Σχ(ω, λ+ δλ) = Σχ(ω − δλ, λ), then thanks to the Dyson’s equation,
this property is also verified by Gχ. It follows that, at zero temperature:

Σb(ω, λ+ δλ) = ρ0γJ
2
K

(∫ −ω

−D
dΩG′

χ(Ω− δλ, λ) + i

∫ 0

−ω
dΩG′′

χ(Ω− δλ, λ)

)

= Σb(ω + δλ, λ)− ρ0γJ
2
K

∫ 0

−δλ
dΩG′′

χ(Ω, λ)

= Σb(ω + δλ, λ) (6.53)

where we used that in the large bandwidth limit D + δλ ' D, and the extra term
vanishes because of the gap in the χ−fermion spectral function. The rest of the
proof is identical: from the rigid shift of Σb it is easy to prove that Gb follows the

5The bosonic occupancy is defined as nb = −Gb(τ = 0−), which is set by the constraint to be
equal to p0.
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Figure 6.10: a) Bosonic spectral function as a function of frequency for decreasing
temperature. As the gap opens at low energy, both peaks sharpen on the edges of
the gapped region. b) Computed bosonic occupancy for γ = 0.3 when the chemical
potential λ is varied (p0 not being fixed). The plateau corresponds to an exactly
screened case (ES).

same property, which transmits to Σchi via the saddle-point equation in the exact
same way as we just proved, so that ultimately, on has at zero temperature:

Gb(ω, λ+ δλ) = Gb(ω + δλ, λ)
Gχ(ω, λ+ δλ) = Gχ(ω − δλ, λ)

(6.54)

It is legitimate to wonder whether the presence of a gap in the spectral functions
is an artifact of the large-N limit or if it has a deeper physical meaning in which
case it would extend down to N = 2. We do not, at this stage, have any evidence to
support either scenarios. However, we can argue that if a gap in the bosonic spectral
function exists in the SU(2) case, it could be revealed from inspecting the energy
spectrum of the bosonic states, e.g. by ways of the Density Matrix Renormalization
Group.

� Renormalized chemical potential

As a consequence of the gapped bosonic spectral function, in the case of the exactly
screened impurity, the renormalized chemical potential λ∗ = λ−Σb(0) does not van-
ish as a function of temperature unlike the overscreened and underscreened regimes.
The bosonic Green’s function taken at zero energy is given by Gb(0) = 1/λ∗ and can
be expressed as:

Gb(0) = G′
b(0) = −P

∫

dΩ
ρb(Ω)

Ω
(6.55)

which is protected by the low-energy gap, and is thus made finite.
Another feature that comes from the numerical investigation is the development

of a δ−peak in the bosonic spectral function at the boundary of the gapped region
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at positive frequency. Unlike the underscreened case, the position of this peak does
not evolve as the temperature is lowered, and one can make the following ansatz for
the bosonic spectral function:

ρb(ω) = Aδ(ω − η) + Φb(ω) (6.56)

where A and η are positive constants, and Φb is assumed to be a sub-leading term.
Of course, this ansatz is not enough to capture most of the properties of the

perfectly screened impurity but it is sufficient here to self-consistently extract the
low-energy behavior of the Green’s functions. Substituting this ansatz into the
equation for the fermionic self-energy, one has:

Σχ(ω) = Φχ(ω) + Aρ0J
2
K

[

log

(
D

2πT

)

− Ψ

(
1

2
+
ω + η

2iπT

)

− iπ
2

]

∼
T→0

Φχ(ω)− Aρ0J
2
K log

( |ω + η|
D

)

(6.57)

This leads to the following contribution once plugged back into the bosonic self-
energy:

Σb(ω)− Σb(η) ∼ B
|ω − η|

log |ω − η| (6.58)

so that our ansatz is consistent.
As a conclusion, the inverse Green’s functions at zero energy read:

λ− Σb(0) −→
T→0

Const. (6.59)

JK − Σχ(0) −→
T→0

Const. (6.60)

where both these constants are finite, which prevents any kind of low-energy analysis
like the one carried out for the overscreened impurity. This is verified numerically
(see fig. 6.11) where the saturation is observed over more than a decade in temper-
ature.

6.3.3 Entropy and specific heat

The gap in both the bosonic and fermionic spectral functions removes the effect of
both fields at low temperature. Indeed, as the temperature is lowered, one can only
probe the low-energy spectrum of each field: the low-temperature physics is then
completely dominated by the conduction electrons so that the emergence of the gap
ultimately reveals a Fermi liquid.

The consequences of a gapped solution on the low-energy physics can readily
be obtained from the impurity entropy defined in (6.51). In the low-temperature
regime, it is useful to replace the derivative of the fermionic and bosonic distributions
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Figure 6.11: Inverse Green’s functions at zero energy as a function of temperature.
The dots correspond to numerical data. The logarithmic scale in temperature is
used to underline the saturation at low T .

with respect to temperature by their derivative with respect to frequency. Using that
∂n(ω)
∂T

= −ω
T

∂n(ω)
∂ω

and ∂f(ω)
∂T

= −ω
T

∂f(ω)
∂ω

, one can rewrite the impurity entropy as:

SLowT
imp

N
=

1

T

∫

dω

[
∂n

∂ω
sb(ω) +

∂f

∂ω
sf (ω)

]

=
−1

T

∫

dω

[
dsb
dω

n(ω) +
dsf
dω

f(ω)

]

(6.61)

where we define
{
sb = ω

π

(
Im log

(
−G−1

b

)
+G′

bΣ
′′
b

)

sf = γω
π

(

Im log
(
−G−1

χ

)
+G′

χΣ
′′
χ −G′′

c0Σ̃
′
c

)

One can then perform a Sommerfeld expansion at low temperature, which gives:

SLowT
imp

N
= −π

2

6
T

(

2
d2sb
dω2

∣
∣
∣
∣
ω=0

+
d2sf
dω2

∣
∣
∣
∣
ω=0

)

(6.62)

It turns out that because of the causality properties of the bosonic Green’s
functions, one has G′′

b (0) = 0 and Σ′′
b (0) = 0, which then imposes, after some minor

rearrangement, that d2sb

dω2

∣
∣
∣
ω=0

= 0.

Taking the second derivative of sf and rearranging the remaining terms, noticing

that
dG′′

c0

dω

∣
∣
∣
ω=0

= 0, one has:

d2sf
dω2

∣
∣
∣
∣
ω=0

=
2γ

π

(

dG′
χ

dω

∣
∣
∣
∣
ω=0

Σ′′
χ(0)−G′′

χ(0)
dΣ′

χ

dω

∣
∣
∣
∣
ω=0

+ πρ0
dΣ̃′

c

dω

∣
∣
∣
∣
∣
ω=0

)

(6.63)
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Recalling that the fermionic spectral function is gapped, this leads to the final
expression of the low-temperature impurity entropy:

SLowT
imp

N
= −π

2

3
γρ0T

dΣ̃′
c

dω

∣
∣
∣
∣
∣
ω=0

(6.64)

which is linear in T as one would expect from a Fermi liquid.
Note in particular that the specific heat coefficient, defined as Cv

T
=

dSimp

dT
, not

only saturates at a constant value at low temperature, but also this constant depends
on the renormalized number of channels γ.

The exponential decay of the Fermi and Bose function derivatives imposes that
at a given temperature T , only the frequency range ω ∈ [−T, T ] contributes to
the entropy. As a consequence, as one reaches a temperature of the order of the
gap in the spectral functions, the contributions to the entropy coming from both
the Schwinger bosons and the χ−fermions identically vanish. It follows from this
derivation that the typical energy scale over which the Fermi liquid develops (some
kind of effective Fermi temperature T ∗) is given by the size ∆g of the gap.

Numerically, one sees a cross-over from the high-temperature regime where the
entropy is dominated by the local moment physics and is thus given by a constant, to
the low-temperature regime where it becomes Fermi-liquid like and vanishes linearly
with temperature (see Fig. 6.12).

6.3.4 Susceptibility and Wilson ratio

Using the numerical solution of the saddle-point equations, we could compute the
local magnetic susceptibility, which shows a crossover from a high-temperature Curie
law to a saturation at low-temperature characteristic of a screening process (see Fig.
6.12). This saturation defines the scale of the Kondo temperature in this regime since
one has:

χloc ∼
T→0

p0(p0 + 1)

TK
(6.65)

This saturation is consistent with the Fermi liquid picture at low temperature.
However, the dynamic susceptibility, defined as 〈S(t)S(0)〉, vanishes exponentially
because of the gap in the bosonic spectral function. We expect the 1/t2 variation,
characteristic of a Fermi-liquid, to be only present at the order 1/N .

From the specific heat and the impurity susceptibility, we could compute the
Wilson ratio, defined as:

W = lim
T→0

π2

3

χ

Cv/T
(6.66)

where the numerical prefactor is chosen so that W = 1 for a non-interacting Fermi
liquid.
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Figure 6.12: a) Specific heat coefficient for γ = 0.1 as a function of temperature
on a log scale. Inset: the low temperature entropy shows a linear behavior. b)
Temperature variation of the local spin susceptibility for γ = 0.1. The saturation of
both quantitites is consistent with a Fermi liquid behavior.

Numerically, the Wilson ratio seems to grow linearly with the number of channels
γ, which is confirmed by an analytical computation, similar in spirit to the one of
Nozières and Blandin [104]. This amounts to expressing the phase shift of the local
Fermi liquid at the impurity site and inspecting its response to variations of the
fields coupled to the spin and channel magnetization, which ultimately leads to a
relation between the spin, charge, and channel susceptibilities on one hand, and the
specific heat coefficient on the other hand. The complete derivation is presented in
Appendix C.

As a result of this analysis, we expect the Wilson ratio to be given by W = 1+γ,
which is the behavior we recover in our numerical solution (see Fig. 6.13). This form
is consistent with the Bethe ansatz results [114], taken in the limit of large values
of N .

Such a Wilson ratio suggests, as we already argued from the entropy, that the
exactly screened solution of the saddle-point equations describe an interacting local
Fermi liquid in the large-N limit.

6.3.5 Scales

We argued, when dealing with the impurity entropy, that the typical energy scale
over which the Fermi liquid develops is given by the size of the gap. From various
other approaches we expect the crossover scale between the high-temperature local
moment physics, and the low-temperature Fermi liquid behavior to be given by the
Kondo temperature6.

6As one can see, e.g. from the local susceptibility which diverges in 1/T until it reaches the
Kondo temperature where it just saturates at a constant going like 1/TK .
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From this reasoning, one expects that the gap roughly goes like the Kondo tem-
perature. However, we could not find any analytic derivation that would confirm
this result. One has to stress out that the ansatz we have made concerning the
bosonic Green’s functions is not sufficient here to fully explore the relation between
the gap and the Kondo temperature, as one would need an explicit form for the
subleading function Φb(ω).

Numerically, there is quite a striking correspondence between the size of the gap
and the Kondo temperature, as can be seen on fig. 6.13.
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Figure 6.13: a) Wilson ratio computed for various values of γ (black circles) and
compared with the behavior extracted from our Nozières-Blandin analysis (red line),
b) Numerical values of the low-T gap and the Kondo temperature for a given Kondo
coupling JK and various γ.

6.4 Conclusion

In this chapter, we rederived the saddle-point equations associated to the large-N
limit of the multichannel Kondo model using an extension of the Luttinger-Ward
formalism. After recalling the main results of the overscreened and underscreened
regimes, we studied in details the perfectly screened case. We proved that contrary
to the common knowledge, this regime does not correspond to a trivial Fermi liquid.
Instead, we showed that despite vanishing transport properties due to an artifact
of the large-N limit, one can recover the thermodynamics of an interacting Fermi
liquid.

The application of this method to the description of, e.g. quantum dot physics,
is made difficult by the vanishing T -matrix in the limit of N →∞. An attempt to
cure this issue is presented in Chapter 8.

However, an interesting application of this approach lies in the extension to
many impurities. The first step towards this route is presented in Chapter 7, with
the study of a two-impurity system.
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Two-impurity multichannel Kondo
model
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Two-impurity multichannel Kondo model

Having demonstrated that the large-N bosonic approach captures the thermo-
dynamic properties of the Fermi liquid behavior for the perfectly screened impurity,
we show in this section that it can also handle magnetic correlations within the
two-impurity Kondo model. In this chapter, we explore the phase diagram of the
two-impurity Kondo-Heisenberg model and discuss the similarities with the so-called
“Varma-Jones” [115] fixed point in N = 2. The main results of this chapter have
been published in the Publication 4, the rest is presented here for the first time.

7.1 Large-N equations

7.1.1 The model

We now consider two identical impurities coupled to the same sea of conduction
electrons, and include for generality a Heisenberg-like interaction between the two
localized spins, generated by other exchange processes not involving the conduction
electrons. The Kondo interaction is the same as we described in the previous chapter.

Motivated by an extension to the lattice, and its relevance for the heavy fermion
problem, we choose to limit ourselves to the case of an antiferromagnetic Heisenberg
coupling between the two impurity spins. Moreover, we choose to follow the argu-
ments of Read and Sachdev [116] and describe this Heisenberg interaction in terms
of the boson pair operator B12 =

∑

m,σ σb1,m,σb2,m,−σ, where we recast the N spin

indices under the form α = (m, σ) (m running from 1 to N
2
, and σ = ±).

Following this choice, the Hamiltonian describing the system is now invariant
under spin transformation in the symmetry group SP (N), subgroup of SU(N) and
writes:

H = Hband +H
(1)
K +H

(2)
K +HH

Hband =
∑

k

∑

m,σ

K∑

µ=1

εkc
†

kmσµckmσµ

H
(i)
K =

JK
N

∑

m,m′

∑

σ,σ′

∑

µ

b
†

i,m,σbi,m′,σ′ψ
†

im′σ′µψimσµ

HH =
JH
N

(
∑

m,σ

σb
†

1,m,σb
†

2,m,−σ

)(
∑

m′,σ′

σ′b1,m′ ,σ′b2,m′ ,−σ′

)

(7.1)

where ψimσµ creates an electron in the Wannier state with spin α = N + σm+ 1−σ
2

at the site i.
The number of bosons for each site is enforced by the constraint:

HConstraint = −
∑

i=(1,2)

λi

(
∑

m,σ

b
†

i,m,σbi,m,σ − p0N

)

(7.2)
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and we focus in the rest of this chapter on perfectly screened impurities, so that we
restrict ourselves to the case where p0 = γ.

One would expect to see different screening regimes for this model, but we limit
ourselves to the exactly screened case, fixing the number of channels to match the
size of the impurity spins. There is now a new parameter one can tune, namely the
Heisenberg coupling, which now competes with the Kondo interaction giving access
to two different regimes, pictured in fig. 7.1:

• For a weak Heisenberg coupling, the two impurity spins prefer to form a singlet
with the surrounding conduction electrons. We expect to see two perfectly
screened impurities only weakly coupled to each other. The low-energy physics
is then expected to be Fermi-liquid like.

• Whereas for a strong Heisenberg coupling, a spin singlet between the two
impurity spins is favored. The impurities are locked in a singlet state and
act as a scattering center for the conduction electrons, so that the low-energy
physics is again Fermi-liquid like, but qualitatively different than the regime
of weak Heisenberg coupling.

The most interesting region of the phase diagram turns out to be the crossover
region between these two regimes.

b)a)

Figure 7.1: Schematic diagram illustrating the two limiting regimes: a) corresponds
to the case of a dominant Kondo interaction and b) to a strong Heisenberg coupling.
The large black arrows stand for the impurities, the red ones for the electrons.

7.1.2 Saddle-point equations

In order to study the phase diagram of the two-impurity Kondo-Heisenberg model in
the large-N limit, we derive a set of saddle-point equations which we then study by
means of numerical as well as analytical investigation when possible. The derivation
of the saddle-point equations is quite similar to the one already presented for the
single impurity case.
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� Derivation

As a first step, we decouple the Kondo interaction term for both impurities by
introducing two sets of Grassmanian fields χ1,µ and χ2,µ, where µ is the channel
index, running from 1 to K. After integrating the conduction electrons out of the
partition function, the action reads:

S =

∫ β

0

dτ
∑

i,m,σ

b†i,m,σ(τ) (∂τ − λi(τ)) bi,m,σ(τ)−
1

JK

∫ β

0

dτ
∑

i,µ

χ†
i,µ(τ)χi,µ(τ)

− 1

N

∑

i,j

∫ β

0

dτdτ ′
∑

µ

χj,µ(τ
′)χ

†

i,µ(τ) Gc0(i− j; τ − τ ′)
∑

m,σ

bj,m,σ(τ
′)b

†

i,m,σ(τ)

+
∑

i

∫ β

0

dτ

(

∆
†

i,̄i(τ)
∑

m,σ

σbi,m,σ(τ)bī,m,−σ(τ) + h.c.

)

+
N

JH

∑

i

∫ β

0

dτ ∆
†

i,̄i(τ)∆i,̄i(τ) + p0N
∑

i

∫ β

0

dτ λi(τ) (7.3)

where we have decoupled the Heisenberg interaction by introducing a “bond” oper-
ator ∆i,̄i, and ī is defined as:

ī =

{
2 if i = 1
1 if i = 2

(7.4)

Using the symmetry under the exchange 1↔ 2, one can argue that the Lagrange
multipliers λ1 and λ2 are equal: if a solution is obtained with different values of
λ1 and λ2, then the symmetry leads to another solution where these values are
exchanged, suggesting that they are most likely equal. The same kind of reasoning
suggests that the bond operators are also trivially related to one another via ∆12 =
−∆21. This allows us to define λ and ∆ as:

{
λi = λ
∆i,̄i = Sgn(̄i− i)∆ (7.5)

It is useful at this stage to introduce a spinor notation for the Schwinger bosons
b̂
†

i,m = (b
†

i,m,+, bi,m,−) in order to rewrite the action under the following matrix form:

S =
∑

i,j

∫ β

0

dτ
∑

m

b̂
†

i,m(τ)

[
(∂τ − λ(τ)) δij 2Sgn(̄i− i)∆(τ)δjī

−2Sgn(̄i− i)∆†
(τ)δjī (−∂τ − λ(τ)) δij

]

b̂j,m(τ)

− 1

N

∫ β

0

dτdτ ′
∑

i,j

Nχ(i, j, τ, τ
′)Gc0(i− j; τ − τ ′)Nb(i, j, τ, τ

′)

− 1

JK

∫ β

0

dτ
∑

i,µ

χ†
i,µ(τ)χi,µ(τ) + 2

N

JH

∫ β

0

dτ ∆
†

(τ)∆(τ)

+2p0N

∫ β

0

dτ λ(τ) (7.6)
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where the matrix is given in the σ-space, and Nb and Nχ are the precursors of the
Schwinger boson and χ−fermion Green’s function defined as:

Nb(i, j, τ, τ
′) =

∑

m,σ

bj,m,σ(τ
′)b

†

i,m,σ(τ) Nχ(i, j, τ, τ
′) =

∑

µ

χjµ(τ
′)χ

†

iµ(τ)

(7.7)
The method is then similar to the one used for the single impurity problem: one

introduces the new fields Q(i, j, τ, τ ′) and Q̄(i, j, τ, τ ′) conjugated to Nχ(i, j, τ, τ
′)

and Nb(i, j, τ, τ
′). This leads to an effective action S(Q, Q̄, λ,∆) expressed in terms

of these new fields, where every term scales like N so that one can apply the method
of steepest descent. The saddle-point equations now write:

Q̄(i, j, τ, τ ′) = −Gc0(i− j; τ − τ ′)
(

G
(++)
b (j − i; τ ′ − τ) +G

(−−)
b (j − i; τ ′ − τ)

)

Q(i, j, τ, τ ′) = −γGc0(i− j; τ − τ ′)Gχ(j − i; τ ′ − τ)
p0 = −1

2

(

G
(++)
b (i = j; τ = 0−) +G

(−−)
b (i = j; τ = 0+)

)

∆

JH
=

1

2

∑

i=1,2G
(−+)
b (i− ī; τ = 0−)

(7.8)
where the Green’s functions are now defined as:

Gb(i− j; τ) =

[

G
(++)
b (i− j; τ) G

(+−)
b (i− j; τ)

G
(−+)
b (i− j; τ) G

(−−)
b (i− j; τ)

]

=

[
−〈Tbi,+(τ)b

†

j,+(0)〉 −〈Tbi,+(τ)bj,−(0)〉
−〈Tb†i,−(τ)b

†

j,+(0)〉 −〈Tb†i,−(τ)bj,−(0)〉

]

(7.9)

Gχ(i− j; τ) = −〈Tχi(τ)χ
†

j(0)〉 (7.10)

� RKKY interaction

It is possible to relate the fields Q and Q̄ to the self-energies of the Schwinger
boson and the χ−fermion. From the saddle-point equations, one can see that the
Kondo interaction is responsible for local terms arising from i = j, but also for
a cross-term that couples the two impurities to one another. This cross-term will
give rise to a bosonic self-energy in the SU(N) channel, i.e. that renormalizes the
−〈Tbi,±(τ)b

†

j,±(0)〉 term (with i 6= j).
This is known as the RKKY interaction [88, 89, 90]. This effective interaction

between the impurities is mediated by the conduction band and can be tuned by
adjusting the distance between the two impurities. However, we assume here that
this distance is always big enough to neglect the RKKY interaction compared to
the Heisenberg coupling between the impurities1.

1This assumption is motivated by the fact that the RKKY interaction is known to drop very
rapidly with the distance between impurities.
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Qualitatively, the RKKY and the Heisenberg interactions, although arising from
a completely different physics, play the same role as they lead to the establishment of
short-range antiferromagnetic correlations between the impurities. Moreover, they
are both tunable thanks to an external parameter: the distance R between impurities
for the RKKY interaction, and the coupling JH for the Heisenberg one. Our choice
of favoring an Heisenberg-like rather than an RKKY interaction is motivated by
real materials (where the overlap between orbitals of neighboring atoms is generally
taken into account via an Heisenberg coupling), and by the fact that the Heisenberg
coupling is conceptually easier to tackle as no retardation effects are present in the
large-N limit (whereas one expects the cross-site bosonic self-energy to develop an
imaginary part due to the RKKY interaction).

� Set of equations

From this, it follows that the only non-local terms in our Green’s functions are
present in the “free” bosonic propagator, and come from the Heisenberg coupling
between the impurities.

Since the χ−fermion only sees the Kondo interaction, its propagator – along with
both self-energies – is local within our approximation. It then becomes possible to
reduce the full set of equations to only local propagators, where the non-locality of
the Heisenberg interaction manifests itself through a dependence on ∆ of the local
bosonic Green’s function.

The problem then reduces to the following set of equations:

Gb(iνn) =
−iνn + λ− Σb(−iνn)

(iνn + λ− Σb(iνn)) (−iνn + λ− Σb(−iνn))− 4∆2
(7.11)

Σb(τ) = −γJ2
KGc(τ)Gχ(β − τ) (7.12)

Gχ(iωn) =
1

JK − Σχ(iωn)
(7.13)

Σχ(τ) = −J2
KGc(τ)Gb(β − τ) (7.14)

with the following constraint on λ and ∆:






p0 =

∫

dω n(ω)ρb(ω)

∆

JH
= 2∆

∫
dω

π
n(ω)Im

(
1

(ω + λ− Σb(ω)) (−ω + λ− Σb(−ω))∗ − 4∆2

)

(7.15)
where we chose not to simplify the factors of ∆ to account for the case where it
vanishes.

Note that, just like the single impurity case, these constraints are not invertible
and cannot be written as a simple equality directly involving λ or ∆: one needs the
knowledge of the bosonic propagator over the whole range of frequency in order to
meet these constraints.
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7.1.3 General remarks

Before trying to solve eqns (7.11)-(7.14), let us analyze some of their properties.

� Causality

The equations ruling the evolution of the χ−fermion propagator as a function of
frequency are the same as the ones derived in the case of a single impurity, so
that the causality of the χ−fermion self-energy and Green’s function can be proved
following the exact same reasoning.

The same argument holds for the bosonic self-energy. The proof of causality
for the bosonic propagator requires some extra work on (7.11), from which one can
extract the following imaginary part:

G′′
b (ω) = Im

(
(−ω + λ− Σb(−ω))∗

(ω + λ− Σb(ω)) (−ω + λ− Σb(−ω))∗ − 4∆2

)

=
|ω + λ− Σb(−ω)|2 Σ′′

b (ω)−∆2Σ′′
b (−ω)

|(ω + λ− Σb(ω)) (−ω + λ− Σb(−ω))∗ − 4∆2|2
∝ −A(ω)Sgn(ω) +B(ω)Sgn(−ω) (7.16)

where A(ω) and B(ω) are positive for any given frequency, and we assumed that
Σb(ω) is causal, so that ultimately G′′

b (ω) ∝ −Sgn(ω), as expected for a causal
bosonic propagator.

� ∆→ 0 limit

Taking the limit of vanishing ∆ in eqns (7.11)-(7.14) leads to the same equations as
the one derived in the case of a single impurity.

The constraint on ∆ (the second equation in (7.15)), corresponding to the saddle-
point in this variable, can also be rewritten as:

∆ = −JH〈B12〉 = −JH〈
∑

m,σ

σb1,m,σb2,m,−σ〉 (7.17)

In the limit of ∆ → 0, this equation imposes that 〈B12〉 = 0, preventing the
formation of pairs of bosons. In this limit, the system behaves as two perfectly
screened impurities which are decoupled from each other, on average. Since the
impurities are identical, the physical properties averaged over them look like the
ones of a single impurity with the same spin.

� ∆→∞ limit

In the limit of large ∆, the Heisenberg interaction dominates and as a first ap-
proximation, one can neglect the Kondo interaction: this amounts to neglecting the
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self-energy inside the bosonic propagator. The bosonic spectral function then reads:

ρb(ω) =
λ+ λ∗

2λ∗
δ (ω + λ∗) +

λ∗ − λ
2λ∗

δ (ω − λ∗) (7.18)

where λ∗ = −
√
λ2 −∆2. This spectral function is made out of two δ−functions,

peaked at symmetric positions in frequency, so that one can identify a symmetric
gap ∆gap = −2λ∗. By construction, λ∗ > λ, but they are both negative so that the
bosonic propagator is still causal.

The constraints impose that, in the zero temperature limit:







p0 =

∫ 0

−∞
dω ρb(ω) =

λ− λ∗
2λ∗

1

JH
= 2

∫ 0

−∞
dω Im

(
Gb(ω)

λ− ω − iδ

) =⇒







λ = −JH(1 + 2p0)

∆2 = 4p0(1 + p0)J
2
H

(7.19)

It follows that in the large ∆ limit, which corresponds to the large JH limit, the
gap in the bosonic spectral function increases with JH . The typical temperature
over which a Fermi liquid develops becomes larger (increasing linearly with JH) but
since the Kondo interaction becomes weaker, this Fermi liquid looks more and more
like a trivial one, with a vanishing specific heat coefficient as JH → ∞. This is
consistent with the picture of two impurities locked in a spin singlet: they only
weakly renormalize the surrounding Fermi liquid which then looks as if it is non-
interacting.

7.2 Phase diagram and quantum critical point

In this section, we solve numerically the set of self-consistent equations for various
values of the temperature and the Heisenberg coupling. We can isolate three regions
of the (TK/JH , T/JH) phase diagram: a Kondo dominated Fermi liquid, a Heisen-
berg dominated Fermi liquid and an intermediate region in between. This crossover
region between the two Fermi liquids is governed by a quantum critical point, whose
existence is underlined by the behavior of the phase shift and the entropy.

7.2.1 Tools for exploring the phase diagram

� Free energy and entropy

One can generalize the expression of the free energy functional to encompass the
case of a two-impurity Kondo-Heisenberg model. The derivation is quite similar to
the one presented in Appendix A, and the reader is referred to the Publication 3 for
a detailed calculation in the more general case of a Kondo lattice, so that we only
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mention here the final result for the model Hamiltonian as defined in (7.1). The
averaged impurity free energy is given by:

Fimp = NT
∑

n

[
1

2
log
(
(−iνn + λ− Σb(−iνn))G−1

b (iνn)
)

+ Σb(iνn)Gb(iνn)

]

−KT
∑

n

[
log(−G−1

χ (iωn)) + Σχ(iωn)Gχ(iωn)
]
+ ΦLW [Gb, Gχ, Gc]

+Np0λ (7.20)

Proceeding similarly to Appendix A, one can carry out the temperature deriva-
tive of the impurity free energy, which leads to the following expression for the
averaged impurity entropy:

Simp

N
= −

∫
dω

π

[
∂n(ω)

∂T

(
1

2
Im log

(

(G̃b(−ω))∗G−1
b (ω)

)

+G′
b(ω)Σ′′

b (ω)

)

+γ
∂f(ω)

∂T

(

Im log
(
−G−1

χ (ω)
)

+G′
χ(ω)Σ′′

χ(ω)−G′′
c0(ω)Σ̃′

c(ω)
)]

(7.21)

where G̃b
−1

(ω) = ω + iδ + λ− Σb(ω) and Σ̃c = NΣc.

� Sum rules and phase shift

It is possible, using our expression of the impurity free energy to derive sum rules
associated to the conserved quantities of the system. A detailed proof for a generic
Hamiltonian is provided in the Publication 3 and we only sketch here the main
aspects of the method and the final result in the case of our two-impurity model.

Each conserved quantity Q which commutes with the Hamiltonian leads to a
gauge invariance of the underlying quantum fields, such that the action and all
physical properties are invariant under the transformation:

ckµα → eiqcθ(τ)ckµα, χµ → eiqχθ(τ)χµ, bm,σ → eiqbθ(τ)bm,σ (7.22)

where qζ is the gauge charge associated to each field.
Provided this gauge invariance is unbroken, one can show that this leads to a

Ward identity at zero temperature, which then allows to write some kind of gener-
alized Friedel sum rule for the conserved quantity:

Q =
1

π
Im
[
qbN log(−G−1

b (0))− qχK log(−G−1
χ (0))− qcNK log(−G−1

c (0))
]

(7.23)

where all Green’s functions are retarded ones.
Applying (7.23) to the conservation of the total electric charge in the case of

our two-impurity model, one can write the change in the total charge related to the
impurities as:

∆Qe = NK
δc
π
−Kδχ

π
= 0 =⇒ δc =

δχ
N

(7.24)
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where we used that in the large bandwidth limit this change in the total charge is
ruled by the Anderson-Clogston compensation theorem [117] and goes like O(TK/D),
so that it can be neglected. The respective phase shifts2 are defined as:







δc = −Im log (1−Gc0(0)Σc(0)) =
N→∞

πρ0
Σ̃′
c(0)

N
δχ = Im log (JK − Σχ(0))

(7.25)

The result of (7.24) ensures that, even though the conduction electron phase
shift vanishes in the large-N limit, it is possible to keep track of its evolution at
the order O(1/N), thanks to the χ−fermion phase shift, which stays finite in the
large-N limit.

� Phase diagram

Solving the set of self-consistent equations, and using the above-defined entropy as

a guide, we could map out the

(
TK
JH

,
T

JH

)

phase diagram as presented in fig. 7.2.

We now proceed to the detailed study of the three regions we could identify in the
phase diagram.

7.2.2 Renormalized Fermi liquid region (I)

We saw that in the limit of vanishing ∆, the physics at low temperature is Fermi-
liquid like and the physical properties averaged over the two impurities are the ones
of a single impurity with identical spin. In the large-N limit, the expected cross-
over between the ∆ = 0 and the ∆ 6= 0 region (where pair condensation of bosons
appears) looks like a sharp phase transition and one can identify a line of departure
from the unpaired regime (represented as a dotted line in fig. 7.2). We believe this is
a consequence of our mean-field treatment of the Heisenberg interaction, and expect
the cross-over to be recovered once fluctuations are included.

We refer to this Fermi liquid region of the phase diagram, as “Kondo dominated”,
since the value of the Heisenberg coupling is still small enough for the Kondo physics
to dominate and the system basically behaves as two impurities screened by the
conduction electrons only weakly coupled to each other.

� Entropy

As bosonic pairs condense, the linear temperature dependence of the entropy is
preserved at low temperatures, indicating that the Fermi-liquid behavior survives.
As the Heisenberg coupling JH is increased, one can observe two effects:

2Note that this definition of the conduction electron phase shift coincides with the argument of

the T -matrix T (ω) = Gc(ω)Σc(ω)
Gc0(ω) , up to an additional π.
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Figure 7.2: Phase diagram of the two-impurity Kondo-Heisenberg model. The circles
mark the position of a local maximum in the specific heat. The color coded plot
corresponds to the averaged impurity entropy Simp(T, JH).

• The typical temperature scale below which the Fermi liquid behavior develops
drops rapidly as one departs from the ∆ = 0 solution. This scale is estimated
from the local maximum of the specific heat linear coefficient (i.e. the inflexion
point of the entropy curve).

• The specific heat linear coefficient saturates at a low-temperature value that
increases with the Heisenberg coupling.

This suggests that the range in temperature of the Fermi liquid collapses in
parallel with an enhancement of the Fermi liquid renormalized parameters.

� Spectral functions

As we argued before, the exactly screened single impurity solution leads to a Fermi
liquid with a well-developed gap in the spectral functions confining the Schwinger
bosons and the χ−fermions below a temperature of the order of the gap. This
picture seems to stay valid in the case of the two-impurity system: the spectral
functions look like the ones of a perfectly screened single impurity, with a gap at
low-energy, and a saturation of both inverse propagators at zero energy.

However, as the Heisenberg coupling is increased, the confining gap shrinks,
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which is consistent with the drop of the Fermi liquid scale observed from the entropy
data.

In this region, the zero-temperature phase shift of the χ−fermion is equal to π.
This result can be understood by relating δχ to the sign of the renormalized Kondo
coupling constant. Bearing in mind that δχ = Im log (JK − Σχ(0)) = −Im log J∗

K,
one sees that δχ = π corresponds to a residual ferromagnetic coupling J ∗

K < 0. This
can be understood from a strong coupling point of view, where adding a Schwinger
boson to the Fermi liquid ground state increases the impurity spin S → S + 1

2
and

leads to a tiny residual underscreened spin and thus to an effective ferromagnetic
coupling.

7.2.3 Magnetically correlated region (II)

In the opposite limit of a large Heisenberg coupling, one expects the two impurities
to screen each other, at which stage the Kondo effect barely plays any role (hence
the denomination “Heisenberg dominated” for the corresponding region of the phase
diagram). In the phase diagram, fig. 7.2, this limit corresponds to the lower part
of the T/JH axis. We saw from a brief analysis of the saddle-point equations that
for JH → ∞, a symmetric gap develops in the bosonic spectral function, and the
Fermi liquid ground state is given by the original non-interacting conduction band.
This behavior is confirmed by our numerical simulation where one sees a symmetric
gap, of the order of JH and a vanishing specific heat coefficient indicating that the
impurities do not affect the surrounding conduction bath.

As one slightly departs from this solution (i.e. upon reducing the Heisenberg
coupling), a gap survives in the bosonic spectral function and is still symmetric.
Further away, one observes the same kind of features as in the Kondo dominated
region, namely a drop in the typical temperature scale T ∗ below which a Fermi
liquid solution develop ( associated to a collapse of the confining gap) as well as an
increase in the specific heat coefficient (see fig. 7.3).

The low-temperature phase shift of the χ−fermion extracted from the data seems
to vanish, which again can be understood from the point of view of a residual Kondo
coupling: δχ = 0 suggests an antiferromagnetic J∗

K > 0. In this region, the local
moments mutually screen each other so that adding a Schwinger boson at any site
leads to a tiny residual spin that can undergo a Kondo effect with the conduction
electrons, hence the antiferromagnetic residual coupling.

7.2.4 Quantum critical region (III)

Our numerical results indicate that both Fermi liquid regions I and II collapse at
the same point in the phase diagram, suggesting the presence of a quantum critical
point for a value JCH of the Heisenberg coupling.
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Figure 7.3: Magnetically correlated region (II): a) Symmetric gap in the bosonic
spectral function for JH = 0.7D (red curve) and D (black curve), b) Specific heat
coefficient for JH = D (black circles), JH = 0.7D (red squares) and JH = 0.5D
(green diamonds). The arrows mark the position of the Fermi temperature T ∗.

� Signatures of a quantum critical point

The existence of a quantum critical point is confirmed by the following observations:

B Closing gap

As one gets closer to JCH at low temperature, coming from either region of the
phase diagram, the gap in the spectral functions shrinks. It turns out that the
collapse of the gap towards zero occurs at the same point as a function of the
Heisenberg coupling.

B Jump in the phase shift

Upon increasing the Heisenberg coupling, the phase shift of the χ−fermion
goes from π in the Kondo dominated region, to 0 in the Heisenberg dominated
one. Moreover, because of the confining gap, this phase shift can only be 0 or
π. It follows that the phase shift jumps at the point where the gap closes.

B Residual entropy

Coming from either side of the quantum critical point, and as approaching JCH ,
the impurity entropy seems to develop a knee at a finite value before dropping
suddenly towards zero once the temperature is of the order of the gap. As
the point where the gap closes, i.e. right on top of the critical point, the
entropy reaches a finite value and saturates, even at the lowest temperatures,
suggesting a finite residual entropy.
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Figure 7.4: χ-fermion phase shift δχ/π has a function of the Heisenberg coupling at
T = 0.02TK. The intermediate values in the quantum critical regime are attributed
to the finiteness of the temperature.

� Low-energy analysis

The numerical solution suggests that, as one approaches the quantum critical point,
not only the gap in the spectral functions closes, but also the real part of the inverse
Green’s functions taken at zero energy vanishes. This allows us to carry out a low-
energy analysis at zero temperature, in the spirit of what has been done in the case
of the overscreened single impurity.

The technical details of the derivation are provided in Appendix D, and we only
mention the results here. Starting from a power-law ansatz for the propagators, one
has from the self-consistency conditions:

Gb(ω) ∼ AeiθSign(ω)

|ω|
2γ

1+2γ

(7.26)

Gχ(ω) ∼ − 1

Aρ0J2
K(1 + 2γ)

e−iθSign(ω)Sign(ω)

|ω| 1
1+2γ

(7.27)

where A and θ are parameters fixed by the constraints.
This power-law behavior of the propagators at low-energy is very reminiscent of

what has been obtained in the case of the overscreened single impurity. However,
the exponents we obtain are the ones that one would expect from a single impurity
model with a spin of size 2S

N
= γ and a number of channels K

N
= 2γ.

Close to the critical point, the exactly screened two-impurity model behaves as
an overscreened single impurity with an effective doubling of the screening channels.
This last result is quite strong since a lot of properties have been derived concerning
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the overscreened single impurity solution and extends to the critical region of our
two-impurity model, like e.g. ω/T -scaling, the existence of a residual entropy, . . .

7.3 Discussion

In this section, we highlight the main results of previous studies of two spin-1/2
impurities coupled to a bath of conduction electrons via the Kondo interaction and
compare them to our results for the two-impurity multichannel Kondo-Heisenberg
model. We do recover similar results for the low-temperature behavior (generalized
to a multichannel model) but not for the stability of the critical point.

7.3.1 Jones-Varma critical point

The problem of two spin-1/2 magnetic impurities embedded in a metallic host was
first studied by Jones and Varma [115, 118, 119] in the late eighties. They found
that for a small antiferromagnetic effective coupling between the impurities, the
low-temperature behavior is that of a correlated Kondo effect, i.e. the fixed-point
Hamiltonian is that for two independent Kondo impurities but the spin-spin cross
correlator 〈S1S2〉 is non-zero. For a strong coupling between the impurities, no
Kondo effect occurs, and the asymptotic phase shift is zero.

In between these two regimes, they found the existence of an unstable non-
Fermi liquid fixed point: the so-called “Jones-Varma critical point”. This fixed
point was then studied in glory details by means of numerical renormalization group
[115, 118, 119], conformal field theory [120, 121], and Abelian bosonization [122, 123].

This critical point displays physical properties reminiscent of a two-channel single
impurity Kondo problem which we analyze in detail in the next paragraph. However,
it turns out that this fixed point is unstable with respect to particle-hole asymmetry.
Indeed, it was proved by Affleck et al. [121] that the critical point only exists if the
Hamiltonian is invariant under a general particle-hole transformation of the form:

{
εk′ = −εk
(k + k′) ·R = 2nπ, n ∈ N

(7.28)

where k′ is a function of k.

7.3.2 Low-temperature physics close to the QCP

We now review some of the results concerning the Jones-Varma critical point (which
we also identify as the N = 2 case in what follows) and compare them to the results
we obtained for our quantum critical point. Since we studied a slightly different
model (generalization to SU(N) and large number of screening channels), and study
it in the large-N limit, only a qualitative comparison is relevant here.
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� Two-channel like physics

Our low-energy analysis of the Green’s functions at criticality suggests that at the
quantum critical point, the system looks like a single impurity coupled to twice as
much channels of conduction electron. The antiferromagnetic coupling generates a
second set of screening channels

The Jones-Varma critical point was studied using Abelian bosonization, where
it could be mapped onto a two-channel single impurity model [122]. The author
also argued that the physics responsible for the non-Fermi liquid behavior of this
fixed point was the same as the one of an overscreened single impurity coupled to
two channels of conduction electrons, so that an effective doubling of the original
number of channels is also observed in this model.

� Entropy

In the case of the Jones-Varma critical point, it was found that the impurity entropy
saturates at a finite value of log 2/2 as T → 0 (i.e. half the high temperature value).

In our model, we also find a residual entropy at the QCP at low temperature.
According to our low-energy analysis at the QCP, we can argue that this residual
entropy is given by the formula derived for the overscreened single impurity, with
an effective number of channels γeff = 2p0:

lim
T→0

simp =
1 + 2p0

2π
Im

[

Li2

(

e
2i

πp0
1+2p0

)

+ Li2

(

e
2i π

1+2p0

)

− Li2

(

e
2i

π(1+p0)
1+2p0

)]

(7.29)

� Specific heat coefficient

As one would expect from a two-channel single impurity, the specific heat at the
Jones-Varma fixed point diverges as a function of temperature like log T .

Using the results of the overscreened single impurity, combined with our low-
energy analysis of the two-impurity quantum critical point, we can deduce that the
specific heat diverges at low temperatures for values of the impurity spin such that
p0 ≥ 1/2. In particular, a logarithmic divergence is recovered for p0 = γ = 1/2,
which would correspond to the Jones-Varma case, if one were to naively take the
N → 2 limit of our result. Moreover, there are two local maxima in the specific heat
coefficient as a function of temperature close to the quantum critical point (hence
the two sets of dots in the region III of the phase diagram). This double bump
feature suggests a two stage quenching process related to the generation of a second
set of channels. The same behavior is observed as one approaches the Jones-Varma
critical point from the temperature axis (see Fig. 7.5).
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Figure 7.5: Specific heat as a function of temperature, close to the QCP. The double-
log scale is used to show the presence of two local maxima in the specific heat.

� Phase shift

For N = 2, it is convenient to rewrite the total phase shift as the sum of an “even”
and “odd” component, δe and δo. This denomination is related to the construction
of even and odd parity fields, obtained after an exact reduction of the original
Hamiltonian to a one-dimensional one. It can be proved [121] that the particle-hole
symmetry defined in (7.28) ensures that both δe and δo can only take values 0 and
π/2: δe = δo = π/2 in the Kondo-screening phase, and δe = δo = 0 when the
impurities form a singlet. The particle-hole symmetry enforces that the transition
between the two regimes can only occur through one or more critical points, hence
justifying the existence of the Jones-Varma critical point in this case.

This is precisely the behavior we observed for the χ−fermion phase shift in our
model: at zero temperature, it jumps from π in the renormalized Fermi liquid region,
to 0 in the magnetically correlated region. The conduction electron phase shift is
then given by the extension of the sum rule to our two-impurity Hamiltonian. It
follows that the impurity averaged phase shift for the conduction electrons jumps
from δc = π/N to 0 as one increases the inter-impurity coupling.

� Uniform susceptibility

We do not notice any remarkable feature in the uniform susceptibility in the low
temperature limit: it is non-monotonic as a function of the Heisenberg coupling and
grows on both side of the critical region, to finally reach a finite value at the QCP.

This behavior is comparable to the N = 2 case where the uniform susceptibility
saturates at low temperature for any value of the coupling between impurities.
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7.3.3 Stability of the critical point

This is where our results differ most drastically from the ones of the N = 2 case.

We saw that for N = 2, the particle-hole symmetry as defined in (7.28) plays
an important role as if it is not respected, the Jones-Varma fixed point no longer
exists. This can be argued from the analysis of the phase shifts. In the particle-hole
symmetric case, both δe and δo can only take values 0 and π/2, and one goes from a
region where δe = δo = π/2 to a region where δe = δo = 0 through the Jones-Varma
critical point.

When the particle-hole symmetry is broken (or if it does not respect (7.28)), it
becomes possible to cross smoothly from unitary scattering in both even and odd
channels (δe = π/2, δo = π/2) to no scattering at all (δe = 0, δo = 0).

In the large-N limit, the numerical solution always displays a quantum critical
point for a given value of the Heisenberg coupling, independently of the particle-hole
symmetry of the conduction band. This survival of the Jones-Varma critical point
at large N in the absence of particle-hole symmetry is a consequence of the gap in
the spectral functions. In the Kondo screening regime, the two-impurity sum rule
imposes that:

δe + δo =
2π

N
(7.30)

whereas, in the magnetically correlated region of the phase diagram, the total phase
shift is 0 since the impurities form a singlet and the surrounding conduction electrons
are nearly free.

One could imagine crossing smoothly from one regime to the other but this is
prevented by the gap in the spectral functions. If a gap exists, the associated phase
shift for the χ−fermion is forced to be either 0 or π, and one has to go from one to
the other through one or more critical points. As we argued when dealing with the
perfectly screened single impurity, the gap is expected to arise independently on the
shape of the conduction band, and in particular it is not sensitive to particle-hole
asymmetry. On the other hand, our analysis of the limiting case ∆ → ∞ suggests
the existence of a gap even for a vanishing Kondo effect, i.e. for any conduction
band. As a conclusion, we are quite confident that a gapped solution arises in both
the Kondo and the Heisenberg dominated regions, leading to a necessary jump in
the conduction electron phase shift and to the existence of a critical point separating
these two regimes.

7.4 Conclusion

In this chapter, we studied a system of two impurity coupled via an exchange in-
teraction, as well as a Kondo coupling to the bath of conduction electrons. We
proved that our method can capture the manetic correlations appearing in such a
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system. The comparison of our results to the previous approaches applied to the
same system reveals a good qualitative agreement.

A few points deserve some complimentary study.

B Spin-spin cross-correlator and staggered susceptibility

In the Jones-Varma study the cross-correlator between impurities and the
staggered susceptibility show a remarkable behavior as one approaches the
critical point. The staggered susceptibility seems to diverge logarithmically
with temperature as one approaches the critical point from above, while the
spin-spin crosse correlator stays finite over the whole phase diagram (including
the Kondo dominated region) and saturates at a constant value at the critical
point.

The observation of such features has not been carried out in our model and
deserves to be addressed.

B Pure Kondo

Another question one might ask concerns the RKKY coupling. We considered
here a Kondo-Heisenberg model, but one could argue that a pure Kondo two-
impurity model could also be studied.

Indeed, it can be readily seen from scaling arguments that the RKKY coupling
has the same scaling as the Heisenberg term, and does not vanish in the large-
N limit:

JRKKY ∝
(

1√
N

)4

︸ ︷︷ ︸

4vertices

× K
︸︷︷︸
P

µ

∝ N (7.31)

For an antiferromagnetic coupling, this would require to use adjoint represen-
tations for the spins. Our first analysis of this model led to the derivation of
saddle-point equations that look the same as the one derived in this chapter
under the condition that the conduction electron band respect particle-hole
symmetry.

Considering the dramatic importance of particle-hole symmetry in the original
Jones-Varma fixed point, it is legitimate to wonder whether it affects the
existence of the QCP in this case. Moreover, for the RKKY coupling, it could
also appear that the retardation effects slightly change the low-energy analysis
carried out for the Kondo-Heisenberg model. we are currently investigating
these issues.
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Conserving approximation for the single impurity model

In this chapter, we go back to the case of a perfectly screened single impurity, and
investigate a new approach based on a conserving approximation, that cures some of
the failures of the original large-N method. We show that this method reproduces
the important results of the infinite N limit, and leads to a finite phase shift as well
as a finite T -matrix for the Fermi liquid ground-state at low temperature. The main
results of this chapter have been published in the Publication 5, the rest is presented
here for the first time.

8.1 Model and set of equations

We showed in section 6 that the exactly screened multichannel Kondo model, taken
in the large-N limit, leads to a solution that displays the low-temperature thermo-
dynamics of an interacting Fermi-liquid. Nevertheless, the transport properties are
the ones of a trivial Fermi liquid, with a vanishing T -matrix and phase shift at the
impurity site.

Our main goal in this section is to try to construct a method leading to a Fermi
liquid ground-state with both non-trivial thermodynamics and transport properties.
Our motivation lies in the extension of such a method to describe the physics of
quantum dots out of equilibrium.

8.1.1 Infinite U Anderson model

As pointed out in [112], it is possible to generalize the large-N limit for the Kondo
model to the infinite U Anderson model. The latter is a slightly different model,
known to display a greater variety of behavior than the Kondo model, as it allows,
among others, charge fluctuations on the impurity site.

The model we consider here is a generalized multichannel Anderson model given
by the Hamiltonian:

H = HK +Hint

HK =
∑

k

N∑

σ=1

K∑

µ=1

εkc
†

kσµckσµ + ε0
∑

σ

b
†

σbσ

Hint =
V√
N

∑

k

∑

σ,µ

(

c
†

kσµF
†

µbσ + b
†

σFµckσµ

)

(8.1)

where we extended the spin symmetry group to SU(N). Here c
†

kσµ creates a con-
duction electron with momentum k, channel index µ and spin index σ. The bilinear
product b

†

σFµ between a Schwinger boson b
†

σ and a slave fermion1 Fµ creates a local-

1Note that for obscure notational reasons, this fermionic field behaves as the particle-hole
symmetric of the χ-fermion used in the context of the Kondo model in previous chapters.
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ized electron, which hybridizes with the conduction electron according to Hint. The
energy ε0 of the singly occupied impurity is taken to be negative.

The constraint preventing the double-occupancy of the impurity site in theN = 2
case is replaced here by a constraint on the total number of Schwinger bosons and
slave fermions: ∑

σ

b
†

σbσ +
∑

µ

F
†

µFµ = p0 (8.2)

and we enforce that p0 = γ since we restrict ourselves to the case of perfect screening.
Following the method of Parcollet and Georges for the Kondo model [103], it is

possible to derive a set of saddle-point equations for the infinite U Anderson model
in the limit N →∞, starting from the action and applying the method of steepest
descent, after a few transformations (see Section 6.1.3). This set of saddle-point
equations reads:

Σb(τ) = −γV 2Gc(τ)GF (τ) (8.3a)

ΣF (τ) = −V 2Gc(β − τ)Gb(τ) (8.3b)

G−1
b (iνn) = iνn + λ0 − ε0 − Σb(iνn) (8.3c)

G−1
F (iωn) = iωn + λ0 − ΣF (iνn) (8.3d)

p0 = −Gb(τ = 0−) + γGF (τ = 0−) (8.3e)

where we use the conventional definition of the imaginary time Green’s function,
Gφ(τ) = −〈Tφ(τ)φ

†
(0)〉.

A few differences appear compared to the equations governing the Kondo case:
the bare propagator of the slave fermion now has a frequency dependence, and the
slave fermion F participates in the constraint.

It is possible to recover the Kondo model in the limit:

{
V → ∞
ε0 → −∞ with JK =

V 2

−ε0
fixed (8.4)

In this case, the kinetic bosonic term of the Hamiltonian saturates the constraint

which becomes independent on the slave fermion F . Defining Gχ(τ) = GF (β− τ) ε20
V 2

and the corresponding self-energy, one recovers in the limit stated in Eq. (8.4) the
saddle-point equations (6.27) of the multichannel Kondo model, with a chemical
potential λ = λ0 − ε0.

8.1.2 Conserving approximation

We showed in section 6 that the saddle-point equations can be derived using the
Luttinger-Ward functional. The latter is given by the sum of two-particle irre-
ducible diagrams and reduces to a single two-loop diagram in the large-N limit,
the other contributions being small in powers of N . Taking the derivative of the
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Conserving approximation for the single impurity model

Luttinger-Ward functional ΦLW [Gb, GF , Gc] with respect to Gb and GF , one obtains
the equations for the self-energy of the Scwhinger boson and the salve fermion. The
fermionic self-energy can also be derived from the same procedure: it turns out to be
unimportant for the low-energy spectral functions as it scales like 1/N , but it plays
a significant role in the thermodynamics since it enters in the entropy formula as an
overall O(N) contribution. Note however that, in this case, the conduction electron
self-energy Σc is computed at a given temperature using the Green’s functions Gb

and GF obtained from solving the saddle-point equations which are themselves in-
dependent on Σc. In other words, the conduction electron self-energy does not enter
the self-consistency loop that only relates Gb and GF , through the corresponding
self-energies.

In this paragraph, we proceed in a slightly different manner, even though the
starting point is the same. In the case of the infinite U Anderson model, the
Luttinger-Ward functional (Fig. 8.1) looks just the same as in the Kondo model,
the only difference coming from a factor V/

√
N instead of JK/

√
N at the vertex.

ΦLW [Gb, Gχ, Gc] = + ... + ... + ...+ + +Y[G] =

O(1/N)O(1)O(N)

Figure 8.1: Luttinger-Ward functional grouped in powers of 1/N . Schwinger bosons
are represented by solid lines, slave fermions by dashed lines and conduction electrons
by double lines.

Instead of taking the limit of infinite N , we consider the conserving approxima-
tion which amounts to neglecting all the diagrams in the Luttinger-Ward functional,
but the leading order O(N) term. We emphasize that contrary to the large-N limit
where the reduction of the Luttinger-Ward functional was exact, here this is an
approximation, as for finite N , we do neglect the higher-order terms.

One may wonder at this stage to what extent this differs from the large-N
limit, since we ultimately consider the contribution of the same, unique diagram.
The essential difference is that in the case of the conserving approximation stated
above, the conduction electron self-energy no longer vanishes, and enters the full
self-consistency which now encloses the following set of equations, obtained from
taking the derivative of ΦLW with respect to the Green’s functions:

Σb(τ) = −γV 2GF (τ)Gc(τ) (8.5a)

ΣF (τ) = −V 2Gb(τ)Gc(β − τ) (8.5b)

Σc(τ) = −γ̃V 2Gb(τ)GF (β − τ) (8.5c)

where Gb, GF and Gc are the fully dressed imaginary-time Green’s functions, and
we introduced the new parameter γ̃ = 1

N
.
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The Dyson’s equations for all three propagators now read:

G−1
b (iνn) = iνn + λ0 − ε0 − Σb(iνn) (8.6a)

G−1
F (iωn) = iωn + λ0 − ΣF (iνn) (8.6b)

G−1
c (iωn) = G−1

c0 (iωn)− Σc(iωn) (8.6c)

and we choose the bare conduction electron propagator, so that the associated den-
sity of states is a flat band, ρc0(ω) = − 1

π
ImGc0(ω + iδ) = ρ0Θ(D2 − ω2).

As always, one has to enforce the constraint on the total number of bosons and
slave fermions by adjusting the chemical potential λ0:

p0 = −Gb(τ = 0−) + γGF (τ = 0−) (8.7)

with p0 = γ in our case, since we focus on the perfectly screened case only.

8.2 Thermodynamics and transport properties

We now solve self-consistently the set of equations (8.5)-(8.6), and study some of
the properties of the low-temperature solution. We focus on the thermodynamics,
to check whether the new self-consistency preserves the Fermi-liquid like features,
and on the transport properties, to see whether this new method leads to interesting
non-trivial results.

8.2.1 Existence of a gap

The first important element to stress out is that the full self-consistency does not
affect the existence of the gap. The low-temperature Green’s functions of both
the boson and the slave fermion are gapped at low-energy. Note that the gap
also appears in the conduction electron self-energy, but not in the associated full
propagator since the bare conduction electron Green’s function contains a finite
imaginary part:

ImGc(ω + iδ) =
ImGc0(ω) + |Gc0(ω)|2ImΣc(ω)

|1−Gc0(ω)Σc(ω)|2 (8.8)

This allows to extend the consequences of the gap studied in section 6 to the
case of the infinite U Anderson model:

• Rigid shift

Starting from a given solution of the set of equations (8.5), and applying a
small change of the chemical potential, one obtains a new solution of the
equations where the Green’s functions have been shifted in frequency by the
change in λ0. This can be proved analytically from the self-energy equations
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Conserving approximation for the single impurity model

in a similar way to the Kondo model. Note however that only Gb and GF ,
and their associated self-energies can be rigidly shifted, Σc, although gapped,
is not sensitive to a shift in the chemical potential λ0:

Σc(ω, λ0 + δλ0) = − γ̃V
2

π

∫ 0

−∞
dΩ [G′′

b (Ω, λ0 + δλ0) GF (Ω− ω, λ0 + δλ0)
∗

−G′′
F (Ω, λ0 + δλ0)Gb(Ω + ω, λ0 + δλ0)]

= − γ̃V
2

π

∫ 0

−∞
dΩ [G′′

b (Ω + δλ0, λ0) GF (Ω− ω + δλ0, λ0)
∗

−G′′
F (Ω + δλ0, λ0)Gb(Ω + ω + δλ0, λ0)]

= Σc(ω, λ0) +

∫ δλ0

0

dΩ [G′′
b (Ω, λ0) GF (Ω− ω, λ0)

∗

−G′′
F (Ω, λ0)Gb(Ω + ω, λ0)] (8.9)

where the last integral vanishes due to the gap in both G′′
b (ω) and G′′

F (ω).

• Low-temperature behavior

Although the entropy formula changes a little compared to the large-N ap-
proach (see next paragraph), one can still argue that the gap in both the
bosonic and the fermionic self-energy leads to a low-temperature entropy dom-
inated by the contribution from the conduction electrons. We analyze in the
next paragraphs whether this contribution is still Fermi-liquid like.

Finally, the numerical solution of the set of equations suggests that the gap
depends in a non-trivial way on the value of N .

8.2.2 Thermodynamics and identities

� Entropy

Following Luttinger and Ward [105, 106, 107], we build the free energy of the sys-
tem from the various Green’s functions and the Luttinger-Ward functional. After
subtracting the free energy of the conduction electron gas in the absence of the
impurity, we define the impurity free energy as:

Fimp = F − Fbulk = N

∫
dω

π
n(ω)Im

(
log(−G−1

b (ω)) +Gb(ω)Σb(ω)
)

+K

∫
dω

π
f(ω)Im

(
log(−G−1

F (ω)) +GF (ω)ΣF (ω)
)

+NK

∫
dω

π
f(ω)Im

(

log

(
G−1
c (ω)

G−1
c0 (ω)

)

+Gc(ω)Σc(ω)

)

+p0Nλ + ΦLW [Gb, Gχ, Gc0] (8.10)
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8.2. Thermodynamics and transport properties

Applying the same procedure as the one explained in Appendix A for the case
of the large-N Kondo model, we can extract from (8.10) a closed-form expression
for the impurity entropy which reads:

Simp = −N
∫

dω

π

[
∂n(ω)

∂T

(
Im log

(
−G−1

b (ω)
)

+G′
b(ω)Σ′′

b (ω)
)

+K
∂f(ω)

∂T

(
Im log

(
−G−1

χ (ω)
)

+G′
χ(ω)Σ′′

χ(ω)
)

+NK
∂f(ω)

∂T

(

Im log

(
G−1
c (ω)

G−1
c0 (ω)

)

+G′
c(ω)Σ′′

c(ω)

)]

(8.11)

Numerically, the impurity entropy shows a linear behavior at low temperatures
suggesting that a Fermi-liquid state develops below a given temperature T ∗, of
the order of the gap in the spectral functions. It is possible from the entropy
formula (8.11) to extract an analytic expression of the specific heat coefficient at
low temperature. Taking the derivative with respect to temperature, this leads after
a few rearrangements:

lim
T→0

Cv
T

= −π
2

3
NKρc(0)

dΣ′
c

dω

∣
∣
∣
∣
ω=0

(8.12)

The conserving approximation applied to the infinite U Anderson model leads to
very similar results to the large-N approach: the low-temperature impurity entropy
is Fermi-liquid like in both cases and the saturation of the low temperature specific
heat coefficient is given by the same expression provided that one replaces the bare
conduction electron spectral function by the full one.

� Friedel sum rule

The expression (8.10) of the impurity free energy allows us to derive sum rules for
the conserved quantities. In particular, it is possible to write a sum rule associated
with the conservation of the total electric charge. Following the method mentioned
in section 7.2.1 and detailed in Publication 3, we can write the change in the total
charge Qe due to the presence of the impurity, as a function of the various Green’s
functions:

∆Qe = − 1

π

[
NKIm log (1−Gc0(0)Σc(0))−KIm log

(
−G−1

F (0)
)]

(8.13)

The change in the total charge can also be written explicitly as ∆Qe = nc−nF −
n0
c , where nc and n0

c corresponds to the number of conduction electron with and
without the impurity, and nF is the number of clave fermions. Note that nF comes
with a minus sign because the slave fermions have an opposite charge compared to
the conduction electrons (hence the name “holons” often used to designate them).
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Conserving approximation for the single impurity model

In a similar spirit, one can write another sum rule, for the total number QbF

of Schwinger bosons and slave fermions, since this quantity is conserved due to the
explicit constraint. Following the same method, we have:

QbF =
∑

α

〈b†αbα〉+
∑

µ

〈F †

µFµ〉

=
1

π

[
NIm log

(
−G−1

b (0)
)
−KIm log

(
−G−1

F (0)
)]

(8.14)

This can be simplified further using that the renormalized chemical potential
λ∗ = G−1

b (0) is real (because of the gap) and negative so that the first term actually
vanishes at low temperature. Since we focus on the exactly screened case, we impose
that Qbf = K, so that ultimately, the second sum rule, Eq. (8.14), reduces to
Im log

(
−G−1

F (0)
)

= −π.
Substituting it into (8.13), and recalling that the conduction electron phase shift

is given by δc = −Im log (1−Gc0(0)Σc(0)), we have the following Friedel sum rule:

δc =
π

N

K − nF
K

+
π∆nc
NK

=
π

N

K − nF
K

+O

(
TK
ND

)

(8.15)

where ∆nc = nc − n0
c = −NK

π

∫ 0

−∞
dω Im (Gc(ω)−Gc0(ω)). According to the

Clogston-Anderson compensation theorem [117], the change in the electronic charge
due to a Kondo or Anderson impurity vanishes in the large bandwidth limit like the
ratio of the Kondo temperature to the bandwidth, allowing us to replace ∆nc =
O(N TK

D
).

We determined the conduction electron phase shift from the numerical solution
of the full self-consistent equations, and compared it to the phase shift obtained
from plugging the large-N solution into the O(1/N) expression into Σc. The results
are presented in Fig. 8.2, and show that our conserving approximation preserves
the sum rule (8.15) for each value of N .

� Yamada-Yosida-Yoshimori identity

Along with the Friedel sum rule, our conserving approximation preserves some im-
portant interrelationships of the Fermi liquid among which the so-called “Yamada-
Yosida-Yoshimori” identity, which relates the specific heat coefficient to the spin,
charge and channel susceptibilities.

This identity can be derived from Nozières local Fermi liquid theory [124] which
relates the quasiparticle spectrum in the Fermi-liquid ground-state to the conduction
electron phase shift, and its response to an applied field, or a change in chemical
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Figure 8.2: a) Phase shifts extracted from the calculated T -matrices, for K = 1
and nF ' 0.04. The solid line stands for (K − nF )/NK and the dashed line shows
the phase shift obtained without imposing the self-consistency on the conduction
electron. b) Entropy and impurity spin susceptibility as a function of temperature,
obtained for K = 1 and N = 4. In the inset: the low-temperature entropy shows a
linear behavior.

potential. In the context of our generalized multichannel Kondo or Anderson model,
this derivation is presented in Appendix C, and the main result reads:

NK(N +K)
δCv

C
(0)
v

= K(N2 − 1)
δχs

χ
(0)
s

+N(K2 − 1)
δχf

χ
(0)
f

+ (N +K)
δχc

χ
(0)
c

(8.16)

where δCv and δχ are, respectively, the change in the specific heat and the suscepti-
bility due to the impurity, and χ

(0)
s,f,c denote the spin, flavor, and charge susceptibility

in the absence of the impurity.
Note that in the special case of the Kondo model, the interaction does not affect

the charge or the channel index so that both χf and χc are zero, and the previous
result (8.16) reduces to the Wilson ratio:

W =
δχs/χ

(0)
s

δCv/C
(0)
v

=
N(N +K)

N2 − 1
(8.17)

where we recover the Bethe ansatz result [114].

� Susceptibility

Computing numerically the solution to the full set of self-consistent equations in
the presence of an external magnetic field coupled to both the conduction electrons
and the Schwinger bosons, we extract the impurity susceptibility as a function of
temperature. The general shape is similar to the one of the local susceptibility
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studied in the large-N limit of the perfectly screened impurity: the 1/T behavior
at high temperature crosses over after reaching a maximum, and saturates at a
finite value as T → 0. This saturation at low temperature is another hint that
the conserving approximation does describe some of the physical properties of the
Fermi-liquid ground-state.

The major difference compared to the large-N limit is that now, despite the gap
in the spectral functions, the frequency-dependent susceptibility is not gapped. This
is because the dynamic spin susceptibility no longer writes as a simple convolution of
two bosonic propagators like in the large-N limit, and is now made of a whole series of
diagrams. This same gap in the spectral functions allows one to extend the derivation
carried out by Shiba on the finite U Anderson model [125]: the presence of a finite
scale in the excitation spectrum allows one to replace the Matsubara summations
by integrals at low temperatures, so that one can generalize Shiba’s results to the
infinite U Anderson model. In our multichannel version of the Anderson model, the
Shiba relationship writes:

χ′′
s(ω)

ω

∣
∣
∣
∣
ω=0

=
πN

2K

(χs
N

)2

(8.18)

where χs is the impurity spin susceptibility, and the ′′ notation stands for the imag-
inary part.

This relationship guarantees that the imaginary part of the frequency-dependent
spin susceptibility is linear at low frequencies, ensuring that the spin response func-
tion decays as 1/t2 in time, as expected from a Fermi liquid.

8.2.3 Transport properties

We now turn to a discussion of the electron scattering off the impurity.

� T -matrix

The electron scattering is determined by the conduction electron T -matrix, defined
as:

T (ω + iδ) =
Gc(ω + iδ)Σc(ω + iδ)

Gc0(ω + iδ)
(8.19)

As the temperature is lowered, a sharp peak develops in the imaginary part of
the T -matrix, close to the Fermi energy. Unlike the peaks appearing in the spectral
functions, this feature does not diverge at low temperature, and finally saturates a
decade below the Kondo temperature. Note however that the associated structure in
the conduction electron self-energy does diverge as T → 0, and the saturation in the
T -matrix arises from a compensation between the numerator and the denominator,
both dominated by Σc at low temperature.
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Due to the low-energy gap in the conduction electron self-energy, the T -matrix
at the Fermi energy is given by:

T ′′
c (0) =

−πρ0Sigma
′
c(0)2

|1 + iπρ0Σ′
c(0)|2 =

− tan2 δc
πρ0

|1− i tan δc|2

= −sin2 δc
πρ0

(8.20)

where we considered the large bandwidth limit, and thus neglected the real part of
the bare conduction electron Green’s function.

It follows from (8.20) that the fully developed resonance is pinned at the Fermi
energy, to the Langreth sum-rule value [126] of −(sin2 δc)/(πρ0). This could be
verified numerically, as one can see in Fig. 8.3.
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Figure 8.3: a) T -matrix as a function of frequency for decreasing temperature: a
resonance develops close to the Fermi energy. Inset: Magnification of the resonance,
the dot marks the value sin2 δc. b) Impurity contribution to the resistivity for two
different values of the hybridization.

� Resistivity

Various important physical properties, such as the impurity resistivity in the dilute
limit, can be related to the conduction electron T -matrix.

The impurity contribution Ri to the resistivity of the system is connected to the
thermal average of the T -matrix:

Ri = niRU

[∫

dω

(

−∂f
∂ω

)
1

πρ0|T ′′(ω)|

]−1

(8.21)

where RU is the unitary resistivity, and ni is the density of impurities in the dilute
limit.
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We plot the resistivity for a given set of parameters in Fig. 8.3. This impurity
resistivity increases as one lowers the temperature and saturates at a constant value
given by:

lim
T→0

Ri

RU
= niπρ0|T ′′(0)| = ni sin

2 δc (8.22)

8.3 The N → 2 limit

Our conserving approximation does not only recover the thermodynamic aspects of
the Fermi liquid already studied in the large-N limit, but also correctly describes
the transport properties of the system via a finite T -matrix.

It is natural to try to extend this scheme down to the physical case of N → 2,
and study whether, in the Kondo limit, this recovers the expected properties of the
local Fermi liquid, in particular the π/2 conduction electron phase shift and the
quadratic frequency dependence of the conduction electron self-energy.

8.3.1 Spectral functions

� Low-energy gap

The first important feature to notice as one reduces N , is that the gap in the spectral
functions shrinks and ultimately seems to close in the limit N → 2.

This leads to two opposite expectations. The closing of the gap looks promising
for the recovery of the expected conduction self-energy of the local Fermi liquid, as no
gap in Σc is known to appear in this case. A collapsing gap is a necessary condition
to get the quadratic dependence of the imaginary part Σ′′

c , characteristic of a Fermi
liquid. On the other side, a vanishing gap suggests that both the Schwinger bosons
and the slave fermions contribute to the thermodynamics, which is problematic
unless they recombine to generate a Fermi-liquid like behavior.

The absence of a gap also prevents the extension of most of the results concerning
the conserving approximation, as they were derived assuming the presence of a scale
in the excitation spectrum.

� Conduction electron self-energy

We saw for a given value of N that the low-temperature T -matrix saturates, and
that this saturation was associated to a compensation between numerator and de-
nominator of the diverging conduction electron self-energy.

The collapse of the gap does not affect the divergence, and one does not recover
the quadratic term in frequency, expected for the local Fermi liquid.

This divergence manifests itself at the boundary of the gap, and leads to a dip in
the full conduction electron spectral function which ultimately touches zero at low
temperature. As one lowers N towards 2, the gap closes and the dip in the spectral
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Figure 8.4: a) Closing of the gap in the bosonic spectral function as one reduces
N : 1/N = 0.3 in black, 1/N = 0.4 in red and 1/N = 0.45 in green. b) Conduction
electron spectral function: for bare fermions (black), for 1/N = 0.3 (red), 0.4 (green),
and 0.45 (blue). The dip gets deeper and closer to the Fermi energy as N → 2. Inset:
tip of the dip for the three previous values of N .

function ρc gets closer to the Fermi energy. This suggests that at low temperature,
the solution of the self-consistent equations in the limit of N → 2 might be better
described by a Kondo pseudogap model, where the conduction electron spectral
function is depleted close to the Fermi energy.

8.3.2 Low-energy analysis

It is known from other studies on the Kondo pseudogap [127, 128, 129] that the
actual behavior of the system at low temperature strongly depends on the power-
law decay of the spectral function close to the Fermi energy. In our case, this decay
relates to the divergence of the conduction electron self-energy at low temperature,
and could be obtained from a low-energy analysis of the set of self-consistent coupled
equations (similar to the one carried out for the overscreened single impurity and
the quantum critical regime of the two-impurity model) which becomes possible for
N → 2 because of the closing gap.

This low-energy analysis is a bit more difficult than the one carried out in the
case of the two-impurity system, and now involves all three Green’s functions.

Note however that such a low-energy analysis only works well below the Kondo
temperature, which itself might vanish in the limit N → 2, as it has been observed
in the Kondo pseudogap problem.

We are currently investigating the evolution of the Kondo temperature as a
function of N . If this reveals that TK remains finite as N → 2 (eventually for a
given range of the other parameters), such a low-energy analysis would be clearly
called on.
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8.4 What is still missing?

Although the conserving approximation cures some of the drawbacks of the large-
N limit, we just argued that it still has some failures. In particular, the low-
temperature transport properties are recovered, but not at the level of the conduc-
tion electron Green’s function. In this section, we briefly explore the possible ways
of fixing these remaining issues.

8.4.1 Uncontrolled ways of fixing the method

It seems that the main missing ingredient of both the large-N and the conserving
approaches is the absence of vertex corrections. However, a full account of these
vertex corrections would not be tractable in any simple way.

A first treatment that might lead to interesting results amounts to neglecting all
vertex corrections but the simplest one, for which the external frequencies are taken
to be zero (see Fig. 8.5). This would lead to a temperature-dependent renormaliza-
tion of the Kondo coupling JK.

Although completely uncontrolled, such an approach could lead to some insight
concerning the role of the vertex corrections.

8.4.2 Box representation and matrix models

An idea developed in [130], and earlier in [112], amounts to including on top of the
spin index running from 1 to N and the channel index running from 1 to K, a color
index running from 1 to Q (where both K and Q scale with N). In terms of Young
tableaux, this corresponds to a box representation of the impurity spin, represented
in the perfectly screened case by a rectangle of size K ×Q (see Fig. 8.5).

This suggests an analogous treatment to the ones carried out so far. Note however
that in this case, the conduction electron no longer plays a special role, since there
are O(N2) flavors of all three fields. As a consequence, all three self-energies are of
the same order in N , in particular Σc does not vanish in the large-N limit.

Nevertheless, there is a major drawback to this extension. Generalizing the
Luttinger-Ward approach derived earlier to this multichannel-multicolor model, one
readily sees that the sum of skeleton diagrams does not reduce to a single contribu-
tion, even in the large-N limit. There is a profusion of diagrams of order O(N 2),
given by the sum of all two-particle irreducible planar diagrams. An attempt to
derive the saddle-point equations starting from the action, leads to the introduction
of three K × K matrices: Q, Q̄ and λ, analogous to the ones defined in Chapter
6. It follows that in the large-N limit, this model is also very hard to solve from a
path-integral perspective.

Unfortunately, there is no simple way of resuming this series of diagrams apart
from introducing two-particle irreducible self-energies, in which case the set of
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8.5. Conclusion

saddle-point equations is hardly tractable in practice.

Cutting the sum to its first two-loop diagram leads precisely to the approach we
studied in this chapter, up to a modification of the prefactors to take into account
the existence of a new flavor.

P=K

Q

a) b)

Figure 8.5: a) Simple vertex correction entering the renormalization of the Kondo
coupling, b) Young tableaux for the box representation of the impurity spin in the
exactly screened case.

8.5 Conclusion

In this chapter, we developed a new conserving approach to the exactly screened
infinite U Anderson model. Unlike the large-N limit studied in Chapter 6, this
method captures not only the thermodynamic aspects of the local Fermi liquid at
low-temperature, but also the transport properties and some important interrela-
tionships typical of the Fermi liquid ground-state.

However, we also proved that although this method cures the main failures of the
large-N limit, it does not correctly describe the behavior of the conduction electron
self-energy, especially in the limit of N → 2.

One of the possible approaches to solve this issue involves an additional color
index, but turns out to be much more difficult to carry out. This raises the question
of the description of the Kondo physics with this type of formalism. Maybe the
Kondo problem is too complex to be described by a large-N limit and a simple
set of saddle-point equations, one can then only access some of the physics of the
fully quenched Fermi liquid. This might also be an artifact of the current methods,
in which case, a more clever approach, involving a different representation of the
impurity spin, or the extension to another symmetry group (e.g. Sp(N)), remains
to be found.

An interesting development of our conserving approximation lies in the study of
non-equilibrium quantum dots. An extension of our approach can be made using a
Keldysh generalization [131] of the self-consistency equations. Many features of our
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Conserving approximation for the single impurity model

method (conserving properties, recovery of the interacting Fermi liquid, incorpora-
tion of the spin relaxation effects, . . . ) suggest that it will be a robust scheme to
examine how spin and conduction electron dephasing effects evolve with voltage in
quantum dots.
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Kondo lattice models: preliminary
results
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In this chapter, we consider a generalization of the Kondo and Kondo-Heisenberg
model studied in Chapter 6 and 7 to a lattice. After deriving the large-N equations
for these models, we explore some possible treatments leading if not to a full solution,
at least to some insight concerning the properties displayed by such a system. Most
of this work is very preliminary, and as such, has not been published at the moment.



Kondo lattice models: preliminary results

9.1 Kondo lattice model

The Kondo Hamiltonian studied in Chapter 6 in the case of a single impurity can
easily be extended to a large number N of impurities. In this situation, we con-
sider a regularly spaced lattice of “impurities”1 in three dimensions, invariant under
translation.

9.1.1 Model and saddle-point equations

� The model

The Hamiltonian of the Kondo lattice is a natural generalization of the single im-
purity one, which amounts to considering that the Kondo interaction occurs not
only at the site of the isolated impurity, but at every site of a regular cubic lattice2,
leading to:

H = Hband +HKondo where

Hband =
∑

k

N∑

α=1

K∑

µ=1

εkc
†

kαµckαµ

HKondo =
JK
N

∑

i

∑

α,β

∑

µ

Siαβψ
†

iβµψiαµ (9.1)

where ψi is the real-space counterpart of the conduction electron field ck, and we
use a bosonic representation of the lattice spins, with the associated constraint:

Siαβ = b
†

iαbiβ −
P

N
δαβ (9.2)

∑

α

b
†

iαbiα = P (9.3)

The electronic dispersion for the cubic lattice is described by a simple constant
hopping term between nearest neighbour of the metallic host lattice:

Hband = t
∑

〈i,j〉

N∑

α=1

K∑

µ=1

c
†

iαµcjαµ =⇒ εk = 2t (cos(kxa) + cos(kya) + cos(kza))

(9.4)
where a is the impurity lattice spacing.

1The term “impurities” is a bit misleading here as it suggests some kind of randomness, while
we are interested in a regular lattice. We still refer to it though, since this model is a natural
extension of the single-impurity one.

2The structure of the lattice does not matter much at this stage, we restrict ourselves to the
cubic case for simplicity.
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9.1. Kondo lattice model

Moreover, we focus only on the exactly screened regime, for which the size P of
the impurity line representation equals the number K of channels.

We saw that the typical energy scale over which the Kondo singlet develops is
not given by the Kondo coupling but rather by the Kondo temperature TK. We
also argued that the Kondo interaction leads, when many impurities are present,
to an effective interaction between the localized spins, mediated by the conduction
electron: the so-called RKKY interaction [88, 89, 90]. We presented in Chapter
5 Doniach’s picture of the Kondo lattice [92], which predicts from comparing the
typical energy scale of the Kondo and RKKY interactions that the system can go
from magnetically ordered state (when TRKKY � TK) to a Fermi liquid ground-state
(when TK � TRKKY ) upon increasing the Kondo coupling JK. At zero temperature,
this requires the existence of a quantum critical point between the two phases.

� Large-N equations

Proceeding exactly as we did in Chapter 6 (say from a path-integral formalism),
it is possible to derive the saddle-point equations for this model in the large-N
limit. This requires the introduction of new fields which are now dependent on the
position in real space, namely Qij(τ, τ

′) and Q̄ij(τ, τ
′). These fields are determined

from applying the method of steepest descent, and can be related to the bosonic
and fermionic self-energies.

In practice, the generalization of the method to a large number of impurities
is not more difficult than the original single impurity derivation, and leads to the
following set of equations:

Dyson’s equations: G−1
b (k, iνn) = iνn + λ− Σb(k, iνn) (9.5a)

G−1
χ (k, iωn) = JK − Σχ(k, iωn) (9.5b)

Schwinger boson: Σb(r, τ) = γJ2
KGc(r, τ)Gχ(−r,−τ) (9.5c)

χ−fermion: Σχ(r, τ) = −J2
KGc(r, τ)Gb(−r,−τ) (9.5d)

Conduction electron: Gc0(k, iωn) =
∑

k

1

iωn − εk
(9.5e)

Constraint: −Gb(r, τ = 0−) = p0δ(r) (9.5f)

Because of the momentum dependence, this set of equations is much more dif-
ficult to solve both analytically and numerically: one now has to deal with a con-
volution over a four-dimensional space. The full-fledge lattice is a hard problem to
tackle and one has to think of approximate ways of treating the interesting physics
related to this model.

This set of self-consistent equations is only suitable for the description of the
Fermi-liquid region of the phase diagram. Indeed, the development of magnetic
ordering leads, in this kind of bosonic representation, to a condensation of the
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Schwinger bosons and an hybridization of the χ-fermions with the conduction elec-
tron fields. In the magnetic state, one has to take into account the bosonic con-
densation explicitly, and treat the hybridization through the definition of a single
fermionic field, whose associated Green’s function contains anomalous propagators.

9.1.2 Luttinger sum rule

The Luttinger theorem is among the very few results one can extract from the
large-N equations without any further approximation. This can be derived from a
Luttinger-Ward perspective in a very similar way to the two-impurity Friedel sum-
rule studied in Chapter 7. The full derivation of the Luttinger sum rule for the
Kondo lattice model is presented in Publication 3, and we now only highlight the
main steps.

The conservation of the total charge leads to a Ward identity, provided that the
Schwinger boson is uncondensed, i.e. that we are in the non-magnetic region of
the phase diagram. In the paramagnet, this Ward identity allows to write the total
electric charge as:

Qe = − 1

π

∑

k

Im
[
NK log(−G−1

c (k, 0 + iδ)) +K log(G−1
χ (k, 0 + iδ))

]
(9.6)

which now involves a trace over momentum.
The first term in this expression is the electron Fermi surface volume:

−
∑

k

1

π
Im log [εk + Σc(k, 0 + iδ)− µ− iδ] =

∑

k

Θ(µ− Ek) =
vFS

(2π)3
, (9.7)

where µ is the chemical potential and the region where Ek−µ = εk−µ+ReΣc(k, Ek)
is negative defines the interior of the Fermi surface.

The second term can be interpreted in a similar way - the momentum trace over
the logarithm of G−1

χ

∑

k

1

π
Im log [JK − Σχ(k, 0 + iδ)] =

∑

k

θ[−J∗
K(k)] =

vχ
(2π)3

(9.8)

can be seen as the volume of the region in momentum space where the effective
interaction J∗

K(k) = J2
KGχ(k, 0 + iδ)−1 is negative, or ferromagnetic.

Following our earlier discussion, the ferromagnetic sign of the residual interaction
is a consequence of the fact that additional spins added to the paramagnetic state
completely decouple from the Fermi sea. In the simplest scenario, J ∗

K(k) < 0 for
all k, in which case vχ

(2π)3
= 1, and the sum rule leads to the following result for the

Fermi surface volume:
N

vFS
(2π)3

= ne + 1 (9.9)
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9.2. Kondo-Heisenberg lattice model

where ne is the electron density per unit cell, per conduction electron channel:
ne = Qe/K.

It follows that the total Fermi surface volume expands by one unit per unit cell,
due to the Kondo interaction with the lattice of localized spins. To preserve the
overall charge density, the electron Fermi surface volume is forced to enlarge to
“screen” the finite background density of charged χ-fermions.

In the magnetically ordered state, the boson field condenses, causing the con-
duction and χ fields to hybridize to produce a single species. In this case, the sum
rule becomes:

Qe = − 1

π

∑

k

Im log
[
−G−1

f (k, 0 + iδ)
]

(9.10)

where Gf is the admixed propagator for the combined conduction and χ fields.

The right-hand side cannot be separated into χ and conduction parts, and as
such, defines an admixed set of Fermi surfaces, with an average Fermi surface volume
which counts the total charge per unit cell:

ne = N
〈vAFM〉
(2π)3

. (9.11)

If the transition from the paramagnet to the magnetic state occurs via a single
quantum critical point, then our results indicate that the transition in the Fermi
surface volume at the second order quantum critical point is abrupt: the total Fermi
surface volume jumps as one crosses the QCP.

9.2 Kondo-Heisenberg lattice model

The other important model we defined in previous chapters is the Kondo-Heisenberg
model, where one considers, on top of the Kondo interaction between the localized
spins and the bath of conduction electrons, a direct exchange between the impurities,
described by an Heisenberg interaction. In this section, we extend the two-impurity
model studied in Chapter 7 to the case of a lattice.

9.2.1 Model and saddle-point equations

� The model

Like the model studied in Chapter 7, we choose to restrict ourselves to the an-
tiferromagnetic Heisenberg coupling, and describe this interaction in terms of the
short-range bosonic pair operator.

The Hamiltonian of the Kondo-Heisenberg lattice, with a bosonic representation

205



Kondo lattice models: preliminary results

of the localized spins, is given by:

H = Hband +HKondo +HHeisenberg where

Hband =
∑

k

N∑

α=1

K∑

µ=1

εkc
†

kαµckαµ

HKondo =
JK
N

∑

i

∑

α,β

∑

µ

b
†

iαbiβψ
†

iβµψiαµ

HHeisenberg =
JH
N

∑

〈i,j〉

(
∑

mσ

σb
†

i,m,σb
†

j,m,−σ

)(
∑

m′σ′

σ′bi,m′,σ′bj,m′,−σ′

)

(9.12)

where 〈i.j〉 denotes the sum over nearest neighbors, and we recast the N spin indices
under the form

(
m = 1 . . . N

2
, σ = ±

)
.

Like the Kondo lattice model presented in the previous section, this model is
expected to display (at least) two ground-states in the exactly screened regime: a
magnetic state governed by the Heisenberg interaction and for which the Schwinger
bosons condense, and a Fermi liquid state where the Kondo interaction dominates
and leads to nearly independent fully quenched impurities.

� Large-N equations

After decoupling both the Kondo and the Heisenberg interaction terms, introduc-
ing in the process two sets of fields (χi,µ and ∆i,j) and integrating the conduction
electrons out of the partition function, we end up with an effective action that looks
like Eq. (7.3) obtained for the two-impurity system, namely:

S =

∫ β

0

dτ
∑

i,m,σ

b†i,m,σ(τ) (∂τ − λi(τ)) bi,m,σ(τ)−
1

JK

∫ β

0

dτ
∑

i,µ

χ†
i,µ(τ)χi,µ(τ)

− 1

N

∑

i,j

∫ β

0

dτdτ ′
∑

µ

χj,µ(τ
′)χ

†

i,µ(τ) Gc0(i− j; τ − τ ′)
∑

m,σ

bj,m,σ(τ
′)b

†

i,m,σ(τ)

+
∑

〈i,j〉

∫ β

0

dτ

(

∆
†

i,j(τ)
∑

m,σ

σbi,m,σ(τ)bj,m,−σ(τ) + h.c.

)

+
N

JH

∑

〈i,j〉

∫ β

0

dτ ∆
†

i,j(τ)∆i,j(τ) + p0N
∑

i

∫ β

0

dτ λi(τ) (9.13)

Since ∆i,j represents a pair of bosons with opposite “spins” (σ is different for
the two bosons involved in the pair), it is symmetric under the exchange σ → −σ,
so that it has to be antisymmetric in space: ∆i,j = −∆j,i. We now assume a
static local solution for the chemical potential λi = λ and the bosonic pair field
∆i,j = Sgn(i− j)∆.
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9.2. Kondo-Heisenberg lattice model

We proceed exactly as we did for the two-impurity model studied in Chapter
7: after introducing two new fields Q(i, j, τ, τ ′) and Q̄(i, j, τ, τ ′), we can build an
effective action S(Q, Q̄, λ,∆) where every term scales like N . Relating the bosonic
and fermionic self-energies to the fields Q and Q̄, the saddle-point equations read:

Σb(r, τ) =

[
γJ2

KGχ(−r,−τ)Gc0(r, τ) 0
0 γJ2

KGχ(r, τ)Gc0(−r,−τ)

]

(9.14a)

Σχ(r, τ) = −J
2
K

2
Gc0(r, τ)

(

G
(++)
b (−r,−τ) +G

(−−)
b (r, τ)

)

(9.14b)

p0 = −1

2

∑

k

[

G
(++)
b (k, τ = 0−) +G

(−−)
b (k, τ = 0+)

]

(9.14c)

|∆|2
JH

=
1

12

∑

k

G−+
b (k, τ = 0−)∆k (9.14d)

where the matrix form is expressed in the space of σ = ± (the χ-fermion propagator
being diagonal in this basis), and we considered a cubic structure of spacing a for
the lattice of localized spins.

The Dyson’s equations have the following expression:

G−1
b (k, iνn) =

[
iνn + λ −∆k

−∆∗
k −iνn + λ

]

− Σb(k, iνn) (9.15a)

G−1
χ (k, iωn) = JK − Σχ(k, iωn) (9.15b)

where ∆k = −4i∆ [sin(kxa) + sin(kya) + sin(kza)]

9.2.2 Uncontrolled local approximation

As the main additional difficulty of this new set of equations lies in the momen-
tum dependence of the propagators, a first simple approximation one can make
amounts to neglecting this very momentum dependence in the self-energies. Such
an approximation is based on the assumption that the relevant physics leading to
the self-energies is local, i.e. that there is very little interplay between the Kondo
and Heisenberg mechanisms. This is an uncontrolled approximation as no small
parameter allows us to neglect the non-local terms. However it might be sufficient
to capture the competition between the Kondo screening and the development of
magnetism.

Within this local approximation, our set of equations (9.14) and (9.15) dramat-
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ically simplifies:

Σb(τ) = −γJ2
KGc0(τ)Gχ(β − τ) (9.16a)

Σχ(τ) = −J2
KGc0(τ)Gb(β − τ) (9.16b)

Gb(iνn) =
∑

k

1

iνn + λ− Σb(iνn)− |∆k|2
−iνn+λ−Σb(−iνn)

(9.16c)

Gχ(iωn) =
1

JK − Σχ(iωn)
(9.16d)

p0 = −Gb(τ = 0−) (9.16e)

|∆|2
JH

=
1

12

∑

k

T
∑

n

eiνn0+

× |∆k|2
(iνn + λ− Σb(iνn)) (−iνn + λ− Σb(−iνn))− |∆k|2

(9.16f)

The sum over momentum is evaluated by introducing ηk such as ∆k = 4i∆ηk.
We then define a “density function” for ηk:

ρ(η) =
∑

k

δ(η − ηk)

=
1

2π

∫ +∞

−∞
dx eiηx [J0(x)]

3 (9.17)

which allows to replace summations over momentum by integrals over η with the
function ρ(η), which turns out to be the Fourier transform of the Bessel function of
the first kind, elevated to the power 3.
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Figure 9.1: a) Plot of the function ρ(η) obtained by numerical integration, b) Ap-
proximate form of the same function, used to compute analytically the summa-
tion over momentum. The edges are the same in both cases and go like

√
ε for

η = ±(3− ε).

208



9.2. Kondo-Heisenberg lattice model

We solved numerically the set of equations (9.16) as a function of temperature,
for various values of the Heisenberg coupling. To do so, we replaced the function
ρ(η) by a slightly modified one (see Fig. 9.1) which allows to perform analytically
the momentum summations.

We could map out the phase diagram presented in Fig. 9.2. Along with the
line separating the ∆ = 0 region, from the region where pairs start condensing, we
could also isolate a region of the phase diagram where a magnetic order develops.
This transition line is determined by obtaining a solution of the set of self-consistent
equations for increasingly larger values of ∆. At fixed temperature, we obtain a crit-
ical ∆c above which the solution for the bosonic spectral function seems to develop
some finite weight at zero energy, violating the causality rules. As these rules are
built into the equations, this violation signals that the set of equations is no longer
valid, which suggests that the Schwinger bosons undergo a condensation.

At low enough fixed temperature, we find a paramagnetic solution in a small
region of the phase diagram below the transition line. This result suggests that
there exists a region where both a magnetic and a non-magnetic states are present.
As a consequence, we expect the transition towards the magnetic state to be of the
first order at low temperature.
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Figure 9.2: Phase diagram of the 3-dimensional lattice with the local approximation.
The dashed line separating the region where pair correlations develop is unchanged
compared to the two-impurity model studied earlier. The red line corresponds to
a transition towards the magnetic region where Schwinger bosons condense. The
splitting of this line at low temperature signals the presence of a first order transition
into the magnetic state.
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9.3 Conclusion

Very few results can be derived concerning these models without making new as-
sumptions. The challenge at this stage is to find clever approximations that would
capture the important physics of the problem, while partially allowing a numerical
or an analytical treatment of the Kondo lattice model.

9.3.1 Looking for a gap

We saw in our study of the one and two impurity systems that the gap, and more
importantly the closing of the gap, plays a significant role in the physics of the
system. In the case of the Kondo lattice, we expect the gap to display a momentum
dependence. The study of the gap in momentum space could be very insightful as
for the relevant physics close to the quantum critical point. However, the study of
the gap involves solving the full set of saddle-point equations.

A first step towards this route is to analyze the necessary conditions for a gap to
be stabilized by the large-N equations. This might already be sufficient to reduce
the relevant region of momentum space.

9.3.2 Kondo hedgehog

Another possible way of getting around the many difficulties related to the lattice
is to consider a slightly different model. It can be argued that the competition
between the Kondo effect and the magnetic ordering can be successfully mimicked by
considering a cruder version of the Kondo lattice model, where we treat the electrons
only to the extent that they provide spins which tend to be aligned antiparallel to
the localized moments.

This was the reasoning behind Doniach’s Kondo necklace model [92]. The large-
N treatment developped here could be extended to a two or three dimensional
version of Doniach’s idea: a Kondo hedgehog model.

9.3.3 Dynamical mean-field theory

As a final example of the possible extensions of our approach to encompass the
physics of the lattice, we mention the Dynamical Mean-Field Theory3 (DMFT).

The use of our approach as an impurity solver or as a two-impurity solver might
lead to interesting results when plugged back into a DMFT scheme. Such a treat-
ment of the Kondo lattice model could provide enough of the non-local character
of the system and lead to a better understanding of the important elements of the
quantum critical regime.

3A detailed introduction to this technique goes way beyond the scope of this section. For a
detailed review on DFMT, the reader is referred to [132]
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In this appendix, we derive the free energy functional and the entropy for a single
impurity using a Luttinger-Ward picture. The same kind of derivation extends to
the Kondo lattice model and is presented in details in the Publication 3.

A.1 Free energy

The idea of the demonstration is to define a functional of the Green’s functions and
to prove that this definition matches the one of the free energy.

The full propagators of the theory are given by the following Dyson’s equations:

G−1
b (iνn) = iνn + λ− Σb(iνn) (A.1)

G−1
χ (iωn) = JK − Σχ(iωn) (A.2)

G−1
c (iωn) = G−1

c0 (iωn)− Σc(iωn) (A.3)

Following Luttinger and Ward, we will regard Gb,c,χ as a variational function,
and Σb,c,χ as a derived quantity.



Generalized Luttinger-Ward scheme: free energy and entropy

We now consider the effect of tuning up the strength of the Kondo interaction
from zero to JK , by replacing JK → αJK where α ∈ [0, 1], keeping the chemical
potential of the conduction electrons and bosons fixed. Now the partition function
is given by

Z = Tr[e−βH] =

∫

D[c, b, χ]e−
R β
0

Ldτ (A.4)

where D[c, b, χ] is the measure of the path integral. If we vary α inside this expres-
sion, we obtain

dZ

dα
=

∫

D[c, b, χ]
∑

jν

∫ β

0

dτ
(

−JKχ†
jνχjν

)

e−
R β
0

Ldτ

= βZ × (−JK)
∑

jν

〈χ†

jνχjν〉 (A.5)

so that if F = −T lnZ is the free energy, then

dF

dα
= JK

∑

jν

〈χ†
jνχjν〉 = KJKT

∑

n

Gχ(iωn), (A.6)

We next consider the expression

F̃ = NT
∑

n

log(−G−1
b (iνn))−KT

∑

n

log(−G−1
χ (iωn))

−NKT
∑

n

log(−G−1
c (iωn)) +NT

∑

n

Σb(iνn)Gb(iνn)

−KT
∑

n

Σχ(iωn)Gχ(iωn)−NKT
∑

n

Σc(iωn)Gc(iωn)

+Np0λ+ ΦLW [Gb, Gχ, Gc] (A.7)

where ΦLW [Gb, Gχ, Gc] is given by the sum of all closed, two-particle irreducible
skeleton Feynman graphs for the Free energy.

As mentioned earlier, the Luttinger Ward functional ΦLW [Gb, Gχ, Gc] has the
property that its variation with respect to Gb,c,χ generates the self energies,

δΦLW [Gb, Gχ, Gc] = −N
∫

dτΣb(τ)δGb(β − τ)−K
∫

dτΣχ(τ)δGχ(β − τ)

−NK
∫

dτΣc(τ)δGc(β − τ) (A.8)

The variation of the log term in F̃ with respect to Gb,c,χ is given by

δ

(

T
∑

n

log(−G−1(iωn))

)

= −T
∑

n

G−1(iωn)δG(iωn) (A.9)
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A.1. Free energy

By using the relation Σ[G] = G−1
0 −G−1, the variation in the remaining terms in F̃

are given by

δ

(

T
∑

n

Σ(iωn)G(iωn)

)

= T
∑

n

G−1
0 (iωn)δG(iωn) (A.10)

Combining these variations with the one of the Luttinger-Ward functional, one
sees that F̃ identically vanishes

δF̃

δGb
=

δF̃

δGc
=

δF̃

δGχ
= 0. (A.11)

Now the Hubbard Stratonovich transformation that we have carried out on the
original Hamiltonian to decouple the Kondo interaction assures that the only place
that the coupling constant αJK enters, is in [G0

χ]
−1 = αJK. This means that in the

r.h.s of Eq. (A.7) α enters explicitly only through Σχ = αJK −G−1
χ . Then,

dF̃

dα
=

δF̃

δGb,c,χ
︸ ︷︷ ︸

=0

∂Gb,c,χ

∂α
+
∂F̃

∂α

= TJK
∑

n

Gχ(iωn) (A.12)

But by comparison with (A.6), we see that dF̃
dα

= dF
dα

and since, F (α = 0) = F̃ (α = 0)
in the non-interacting case, the two quantities must be equal for all α, i.e

F = NT
∑

n

log(−G−1
b (iνn))−KT

∑

n

log(−G−1
χ (iωn))

−NKT
∑

n

log(−G−1
c (iωn)) +NT

∑

n

Σb(iνn)Gb(iνn)

−KT
∑

n

Σχ(iωn)Gχ(iωn)−NKT
∑

n

Σc(iωn)Gc(iωn)

+Np0λ+ ΦLW [Gb, Gχ, Gc] (A.13)

There are various points to make about this derivation:

• The derivation is very general. Its correctness only depends on the stationarity
of F̃ [G] with respect to variations in G and the equivalence between dF/dα
and dF̃/dα.

• The above Free energy functional can be used as a basis for developing con-
serving approximations that generalize the Kadanoff Baym approach to a con-
strained system[108].
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A.2 Entropy

We know from the derivation of the self-energy equations from the Luttinger-Ward

functional that Σc ∼ O

(
1

N

)

. It then becomes possible to expand the electronic

Dyson’s equation in powers of 1/N , which in turn leads to the following simplification
in the free energy functional:

−NKT
∑

n

log(−G−1
c (iωn)) = −NKT

∑

n

log(−G−1
c0 (iωn))

+NKT
∑

n

Σc(iωn)Gc0(iωn)

−NKT
∑

n

Σc(iωn)Gc(iωn) = −NKT
∑

n

Σc(iωn)Gc0(iωn)

Combining these two terms, we are left with a term of order N 2 that corresponds
to the free energy of the free electronic gas. Subtracting this bulk free energy from
the one we are considering, we are left with the impurity contribution to the free
energy, which one can write in terms of retarded Green’s functions as:

Fimp

N
=

∫
dω

π
n(ω)Im

(
log(−G−1

b (ω)) +Gb(ω)Σb(ω)
)

+γ

∫
dω

π
f(ω)Im

(
log(−G−1

χ (ω)) +Gχ(ω)Σχ(ω)
)

+p0λ+
1

N
ΦLW [Gb, Gχ, Gc0] (A.14)

Using the stationarity of the free energy with respect to the Green’s functions
and the chemical potential, one can directly read from (A.14) the expression for the
impurity contribution to the entropy:

Simp

N
= −

∫
dω

π

∂n(ω)

∂T
Im
(
log(−G−1

b (ω)) +Gb(ω)Σb(ω)
)

−γ
∫

dω

π

∂f(ω)

∂T
Im
(
log(−G−1

χ (ω)) +Gχ(ω)Σχ(ω)
)

− 1

N

∂ΦLW

∂T
(A.15)

One now has to work a little on the expression of the Luttinger-Ward functional
in order to extract a closed form expression for its temperature derivative. First of
all, we saw in chapter 6 that only the leading order diagram of ΦLW survives once
we take the large-N limit, so that the Luttinger-Ward functional writes:

ΦLW [Gb, Gχ, Gc] = KJ2

∫

dτGc(τ)Gb(β − τ)Gχ(β − τ) (A.16)

222



A.2. Entropy

As a starting point, it is useful to convert the imaginary time original expression
of the Luttinger-Ward functional into real frequency. In order to do so, we make
the following substitution:

Gbosonic(τ) =

∫

dω e−ωτn(−ω)ρbosonic(ω)

Gfermionic(τ) = −
∫

dω e−ωτf(−ω)ρfermionic(ω) (A.17)

where 0 ≤ τ ≤ β.

It follows, after performing the remaining integral over imaginary time:

ΦLW [Gb, Gχ, Gc]

N
= −γJ2

P

∫

dωcdωχdωb
ρb(ωb)ρc(ωc)ρχ(ωχ)

ωχ + ωb − ωc
× (f(ωc)n(−ωb)f(−ωχ) + f(−ωc)n(ωb)f(ωχ))

= −γJ2
P

∫

dωcdωχdωb
ρb(ωb)ρc(ωc)ρχ(ωχ)

ωχ + ωb − ωc
× (f(ωχ)n(ωb)− f(ωc)n(ωb)− f(ωc)(1− f(ωχ)))(A.18)

Taking the derivative with respect to temperature, and using the argument of
stationarity of the total free energy with respect to the Green’s functions, one can
write:

1

N

∂ΦLW

∂T
= γJ2

P

∫

dωcdωχdωb
ρb(ωb)ρc(ωc)ρχ(ωχ)

ωχ + ωb − ωc
×
[(

f(ωχ)
∂n(ωb)

∂T
− f(ωc)

∂n(ωb)

∂T

)

+

(

n(ωb)
∂f(ωχ)

∂T
+ f(ωc)

∂f(ωχ)

∂T

)

+

(

−n(ωb)
∂f(ωc)

∂T
− (1− f(ωχ))

∂f(ωc)

∂T

)]

(A.19)

One can recognize in this last expression a combination of Fermi and Bose func-
tions reminiscent of the saddle-point equations for the self-energies. It turns out
that using these saddle-point equations, eq. (A.19) reduces to:

1

N

∂ΦLW

∂T
= −

∫
dω

π

∂n(ω)

∂T
G′′
b (ω)Σ′

b(ω)− γ
∫

dω

π

∂f(ω)

∂T
G′′
χ(ω)Σ′

χ(ω)

−γ
∫

dω

π

∂f(ω)

∂T
G′′
c0(ω)Σ̃′

c(ω) (A.20)

where Σ̃c = NΣc ∼ O(1).
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Plugging back the expression for ∂ΦLW

∂T
into the impurity entropy, one sees that

it cancels some of terms from the first part of the expression. The final entropy
formula in the large-N limit then reads:

Simp

N
= −

∫
dω

π

[
∂n(ω)

∂T

(
Im log

(
−G−1

b (ω)
)

+G′
b(ω)Σ′′

b (ω)
)

+γ
∂f(ω)

∂T

(

Im log
(
−G−1

χ (ω)
)

+G′
χ(ω)Σ′′

χ(ω)−G′′
c0(ω)Σ̃′

c(ω)
)]

(A.21)

224



APPENDIX B

Local vs. impurity susceptibility

Contents

B.1 Local susceptibility . . . . . . . . . . . . . . . . . . . . . . 225

B.2 Impurity susceptibility . . . . . . . . . . . . . . . . . . . . 226

B.2.1 χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.2.2 χ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.2.3 χ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.2.4 χimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.3 Zero-temperature limit . . . . . . . . . . . . . . . . . . . . 228

In this appendix, we compare the local to the impurity susceptibility. It is
often much easier to compute the local susceptibility rather than the impurity sus-
ceptibility. However, most of the known analytical results (in particular for the
exactly screened impurity) relates to the impurity susceptibility. We prove in this
appendix that they are indeed related and can be considered roughly equal at zero-
temperature, in the large bandwidth limit.

B.1 Local susceptibility

By definition, the local susceptibility is the response of the system to an applied
external magnetic field that couples to the impurity spin only, hence the name
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“local”. In the case of a Schwinger boson representation of the impurity spin, this
local susceptibility can be expressed as:

χloc =
1

N2

∫ β

0

dτ
∑

αβ

〈Sαβ(τ)Sβα(0)〉

=

∫ β

0

dτGb(τ)Gb(β − τ)

=

∫
dω

π
n(ω)Im

[
Gb(ω + iδ)2

]
(B.1)

In terms of Feynman diagrams, one can represent the local susceptibility as a
particle-hole bubble of bosonic lines, as is illustrated on fig. B.1.

Figure B.1: Local spin susceptibility

B.2 Impurity susceptibility

The impurity susceptibility is defined as the response of the whole system to an
external magnetic field, after one subtracts the contribution of the bulk conduction
electrons. In this case, the magnetic field is coupled to both the impurity spin and
the spin of the conduction electrons:

χimp = χTotal − χbulk (B.2)

In general, this impurity susceptibility is given by an infinite sum of Feynman
diagrams. However, in the large-N limit, this sum becomes finite, and one only
has to take account a few diagrams on top of the local susceptibility, as represented
in fig. B.2. It is important to notice that all four1 diagrams contributing to the
impurity susceptibility have the same scaling in N , because every time a pair of
vertices is included (factor of (1/

√
N)2 = 1/N) there is also an internal sum over

the channel index (bringing a factor of γN).

1One shouldn’t forget that χloc is the first diagram contributing to the impurity susceptibility

226



B.2. Impurity susceptibility

B.2.1 χ2

The contribution from this diagram writes2:

χ2 = −2γJ2
KT

2
∑

n,m

(
∑

k

1

(iωn − εk)2

)

Gχ(iωn − iνm)Gb(iνm)2

= 2T
∑

m

Vb(iνm)Gb(iνm)2

= 2

∫
dω

π
n(ω)Im

[
Vb(ω + iδ)Gb(ω + iδ)2

]
(B.3)

where we defined the “renormalized vertex” Vb as:

Vb(iνm) = −γJ2
KT
∑

n

Gc2(iωn)Gχ(iωn − iνm)

= −γJ2
K

∫

dω1dω2ρc2(ω1)ρχ(ω2)
f(ω1)− f(ω2)

ω1 − ω2 − iνm
(B.4)

and Gc2(iωn) =
∑

k

1

(iωn − εk)2
= −∂Gc

∂ω
.

Note that Vb has no dimension.

B.2.2 χ3

Now that we have defined Vb, the contribution from χ3 can trivially be rewritten as:

χ3 = T
∑

m

Vb(iνm)2Gb(iνm)2

=

∫
dω

π
n(ω)Im

[
Vb(ω + iδ)2Gb(ω + iδ)2

]
(B.5)

2We have dropped here the overall factor of N 2, since we want the impurity susceptibility to
be of order O(1).

χ2 χ3 χ4

Figure B.2: Extra diagrams to add to the local susceptibility to compute the impu-
rity susceptibility
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B.2.3 χ4

From the diagrammatic representation of χ4, one recognizes the fermionic self-energy
Σc defined in chapter 6. χ4 then writes:

χ4 = −2γNT
∑

n

Gc3(iωn)Σc(iωn)

= −2γN

∫
dω

π
f(ω)Im [Gc3(ω + iδ)Σc(ω + iδ)] (B.6)

where Gc3(iωn) =
∑

k

1

(iωn − εk)3
= 1

2
∂2Gc

∂ω2 .

Keep in mind that the conduction electron self-energy is of order O(1/N) so that
the overall external factor ofN makes this contribution to the impurity susceptibility
of order O(1).

B.2.4 χimp

Putting everything together, one notices that the first three diagrams can be grouped
into a simple form, leading to the final result:

χimp =

∫
dω

π
n(ω)

[
Gb(ω + iδ)2 (1 + Vb(ω + iδ))2]

+2γN

∫
dω

π
f(ω)Im [Gc3(ω + iδ)Σc(ω + iδ)] (B.7)

B.3 Zero-temperature limit

In the case of a flat band of conduction electron, one can readily compute Gc2 and
Gc3:

Gc0 = −iπρ0Θ(D2 − ω2)

Gc2 = iπρ0 (δ(ω +D)− δ(ω −D))

Gc3 =
−iπ
2
ρ0 (δ′(ω +D)− δ′(ω −D)) (B.8)

where we considered the large bandwidth limit, for which one can dropped the real
part of Gc0 since it is O(ω/D) smaller than the imaginary part.

From these expressions, one can compute the “renormalized vertex” Vb in the
zero-temperature limit:

Vb(ω + iδ) = γρ0J
2
K

[
G′
χ(−D)−G′

χ(D)
]

(B.9)
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B.3. Zero-temperature limit

In the large bandwidth limit, the zero-temperature self-energy of the χ−fermion
reads:

Σχ(D) = −iπρ0J
2
Kp0

Σχ(−D) = −iπρ0J
2
K(1 + p0) (B.10)

Combining all these results, we can rewrite the zero-temperature impurity sus-
ceptibility as:

χimp =

(

1 +
π2γ(1 + 2p0)(ρoJ)3

[1 + (πρ0Jp0)2] [1 + (πρ0J(1 + p0))2]

)2

χloc+γNρ0
dΣ′

c

dω

∣
∣
∣
∣
ω=−D

(B.11)

As a conclusion, one can see from this last expression that at zero temperature,
in the large bandwidth limit, it is possible to identify the local and the impurity
susceptibility:

D � TK =⇒ χloc ∼
T→0

χimp (B.12)
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Fermi liquid identities
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In this appendix, we derive some of the important interrelationships between
physical variables of the Fermi liquid, namely the Yamada-Yosida-Yoshimori rela-
tionship between spin, charge, flavor susceptibilities and specific heat [133, 134, 135].

Historically, this relationship was obtained from the analysis of a full perturba-
tion theory. We present here a derivation similar in spirit to the one of Nozières and
Blandin [104].

C.1 Scattering phase shift

The two basic electron-electron vertices have the following structure:

Γ1 = c
†

αµc
†

βµ′cβµ′cαµ (C.1)

Γ2 = c
†

βµc
†

δµ′cγµ′cαµσαβ · σγδ (C.2)
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where Γ1 and Γ2 are recast in terms of Feynman diagrams in fig. C.1, and σαβ is a
generator of SU(N) verifying:

σαβ · σγδ = 2δαδδβγ −
2

N
δαβδγδ (C.3)

The most general combination invariant under both spin and channel rotation is
then: ∑

αβµµ′

[

A c
†

αµc
†

βµ′cβµ′cαµ +B c
†

βµc
†

αµ′cβµ′cαµ

]

(C.4)

where we kept only the dominant terms in the large-N limit.
Considering a small departure from the Fermi liquid fixed point, these interaction

terms are expected to be small, and can be treated within first order perturbation
theory leading to the following effective Hamiltonian:

Heff = 2
∑

αβµµ′

[A (1− δαβδµµ′) +B (δαβ − δµµ′)] 〈nβµ′〉nαµ (C.5)

where nαµ = c
†

αµcαµ is the number operator, and 〈nαµ〉 its expectation value.
One can then determine the scattering phase shift of an incoming conduction

electron with quantum numbers α and µ as a function of the energy ε and the elec-
tron distribution δ〈nαµ〉 measured from the ground-state. Using the above effective
Hamiltonian, it is possible to reduce the general expression of the phase shift as:

δαµ = δ0 + εδ′ +
∑

βµ′

φαβψµµ′δ〈nαµ〉

= δ0 + εδ′ + φ1

∑

βµ′

(δµµ′ − δαβ) δ〈nβµ′〉+ φ2

∑

βµ′

(1− δαβδµµ′) δ〈nβµ′〉(C.6)

Following [124], the response of this phase shift to various field variations can be
related to the specific heat and the susceptibilities.

C.2 Specific heat

Upon increasing the temperature, the electron energy changes like:

ε̃αµ = ε− δαµ(ε̃)

πρ0
(C.7)

where the phase shift is only given by the first two terms, the change of population
δ〈n〉 due to an increase in temperature being zero.

This leads to the following change in the electronic density of states:

δρ = ρ0

[
dε

dε̃
− 1

]

=
δ′

π
(C.8)
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α,µ

α,µ

β,µ

β,µ

’

’

σγ δ

γ,µ

δ,µ

’

’

σαβ

a) b)

α,µ

β,µ

Figure C.1: Diagrammatic representation of the two basic electron-electron vertices:
a) is the vertex already existing in the absence of the impurity (denoted as Γ1), and
b) is the vertex related to the scattering off the impurity (defined as Γ2).

and hence a correction to the specific heat:

δCv
Cv

=
δρ

ρ0
=

δ′

πρ0
(C.9)

C.3 Susceptibilities

C.3.1 Charge susceptibility

Upon a small change in the chemical potential of the conduction electron Λ, one
probes the change of the charge susceptibility, which can be expressed in terms of
the scattering phase shift as:

δχc
χc

=
1

πρ0

∆δαµ
∆Λ

(C.10)

=
1

πρ0
[δ′ + ρ0φ1(N −K) + ρ0φ2(NK − 1)] (C.11)

where we have used that ε ∼ ∆Λ and δ〈n〉 ∼ ρ0∆Λ.

C.3.2 Spin susceptibility

In order to extract the spin susceptibility, one has to apply an external magnetic
field that couples to the system: the change in the spin susceptibility is then related
to the response of the phase shift to this magnetic field in the same fashion as (C.10).

A variation of this magnetic field leads to a change in the electron population
〈nαµ〉 ∼ ρ0 Sgn(α− (N + 1)/2), leading to the following result:

δχs
χs

=
1

πρ0
[δ′ − ρ0φ1K − ρ0φ2] (C.12)
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C.3.3 Channel susceptibility

Consider now an equivalent of the magnetic field that couples to the channel flavor.
The same analysis as before leads to the channel susceptibility:

δχf
χf

=
1

πρ0

[δ′ + ρ0φ1N − ρ0φ2] (C.13)

where we used that the change of electron population due to a variation of the
channel field is 〈nαµ〉 ∼ ρ0 Sgn(µ− (K + 1)/2).

C.4 Results

Combining (C.9), (C.11), (C.12) and (C.13), one can get rid of the variables δ ′, φ1

and φ2 and obtain an expression relating the specific heat and the various suscepti-
bilities:

NK(N +K)
δCv
Cv

= K(N2 − 1)
δχs
χs

+N(K2 − 1)
δχf
χf

+ (N +K)
δχc
χc

(C.14)

This relationship extends the Yamada-Yosida-Yoshimori relationship to the gener-
alized SU(N)× SU(K) Kondo model.

In the case of a Kondo impurity, since the interaction conserves the number of
conduction electron and does not affect the channel index, one expects that δχc = 0
and δχf = 0, so that (C.14) directly gives the Wilson ratio:

W =
δχs/χs
δCv/Cv

=
N(N +K)

N2 − 1
(C.15)

which recovers the result obtained from Bethe ansatz [114].
Finally, in the large-N limit, this expression of the Wilson ratio reduces to:

W = 1 + γ (C.16)
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In this appendix, we derive the low-energy behavior of the Schwinger boson’s
and χ−fermion’s propagators, at the quantum critical point, in the case of a two-
impurity Kondo-Heisenberg model.

D.1 Ansatz

As one approaches the quantum critical point from either side, the numerical solution
suggests that both inverse propagators vanish at zero energy. Such a behavior
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suggests that the Green’s functions diverge like power-laws at zero frequency. Our
starting point is then given by the following ansatz for the propagators:

Gb(ω) ∼ A+Θ(ω) + A−Θ(−ω)

|ω|α (D.1)

Gχ(ω) ∼ B+Θ(ω) +B−Θ(−ω)

|ω|β (D.2)

where A± and B± are complex numbers and we separate the positive from the
negative energy sectors in case of a spectral asymmetry.

Since we are interested in what happens at the quantum critical point, we
consider the zero-temperature limit of the saddle-point equations defining the self-
energies:







Σb(ω) = −γJ2ρ0

(∫ −D

−ω
dΩ G′

χ(Ω) + i

∫ −ω

0

dΩ G′′
χ(Ω)

)

Σχ(ω) = J2ρ0

(∫ −D

−ω
dΩ G′

b(Ω) + i

∫ −ω

0

dΩ G′′
b (Ω)

) (D.3)

where ρ0 = 1
2D

.

Inserting the ansatz into this set of equations and using Dyson’s equations, we
are able to extract a new set of self-consistent equations for the parameters of our
ansatz, which can then be solved analytically.

D.2 Derivation

D.2.1 Bosonic parameters

Plugging (D.2) into (D.3a), one has:







Σb(ω > 0) =
γJ2ρ0D

1−β

1− β ReB− −
γJ2ρ0B

∗
−

1− β ω1−β

Σb(ω < 0) =
γJ2ρ0D

1−β

1− β ReB− +
γJ2ρ0B

∗
+

1− β |ω|1−β
(D.4)

In the two-impurity model, the Dyson’s equation for the bosonic propagator
reads:

G−1
b = ω + λ− Σb(ω)− |∆|2

−ω + λ− Σb(−ω)∗
(D.5)

Replacing Σb in this last expression by eq. (D.4), and expanding in the denomi-
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nator for small frequency, one is left with:

G−1
b =

(

λ− γJ2ρ0D1−βReB−

1−β

)2

− |∆|2

λ− γJ2ρ0D1−βReB−

1−β
− γJ2ρ0|ω|1−β

1− β
(
B∗

+Θ(−ω)−B∗
−Θ(ω)

)

− |∆|2
(

λ− γJ2ρ0D1−βReB−

1−β

)2

γJ2ρ0|ω|1−β
1− β (B+Θ(ω)− B−Θ(−ω)) (D.6)

Imposing self-consistency with our original ansatz, one can identify:







(

λ− γJ2ρ0D
1−βReB−

1− β

)2

= |∆|2

1

A+

= γJ2ρ0

B∗
− − B+

1− β
1

A−
= γJ2ρ0

B− − B∗
+

1− β
α = 1− β

(D.7)

D.2.2 Fermionic parameters

One can now do the same procedure for the χ fermions, first inserting (D.1) into
(D.3b):







Σχ(ω > 0) = −J
2ρ0D

1−α

1− α ReA− +
J2ρ0A

∗
−

1− α ω1−α

Σχ(ω < 0) = −J
2ρ0D

1−α

1− α ReA− −
J2ρ0A

∗
+

1− α |ω|
1−α

(D.8)

Replacing this last expression of Σχ into G−1
χ = J − Σχ, one has:

G−1
χ (ω) = J +

ρ0J
2D1−αReA−
1− α − ρ0J

2|ω|1−α
1− α

(
A∗

−Θ(ω)− A∗
+Θ(−ω)

)
(D.9)

Again, the self-consistency with the original ansatz imposes:







J +
ρ0J

2D1−αReA−
1− α = 0

1

B+

= −J
2ρ0A

∗
−

1− α
1

B−
=
J2ρ0A

∗
+

1− α
β = 1− α

(D.10)
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D.2.3 Analysis of the self-consistent equations

From a first look at the set of equations (D.7) and (D.10), one can already see that
A+ = A∗

− and B+ = −B∗
−, so that we only focus on A+ and B+ in what follows.

Our set of equations then reduces to:







J +
ρ0J

2D1−αReA+

1− α = 0
(

λ+
γJ2ρ0D

1−βReB+

1− β

)2

= |∆|2

1

A+
= −2γJ2ρ0B+

1− β
1

B+
= −J

2ρ0A+

1− α
α + β = 1

(D.11)

From the last three equations, one can extract that:

α =
2γ

1 + 2γ
(D.12)

β =
1

1 + 2γ
(D.13)

It is useful at this stage to rewrite A+ = Aeiθ and B+ = Beiφ. Since the product
A+B+ is a real negative number, one has θ + φ = π (2π) and ABρ0J

2(1 + 2γ) = 1.
Everything can then be re-expressed as a function of A and θ as:

Gb(ω) ∼ AeiθSign(ω)

|ω|
2γ

1+2γ

(D.14)

Gχ(ω) ∼ − 1

Aρ0J2(1 + 2γ)

e−iθSign(ω)Sign(ω)

|ω| 1
1+2γ

(D.15)

D.3 General remarks

D.3.1 Causality

As a first check, one has to make sure that the final expressions we just obtained
satisfy the causality of the retarded Green’s functions. Looking at the imaginary part
of the bosonic propagator, one can immediately see that ImGb(ω) ∼ Sign(ω) sin θ,
which has the right properties provided that sin θ is negative.

The same inspection on Gχ leads to ImGχ(ω) ∼ sin θ, so that again the causality
rules are respected provided that sin θ is negative.
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D.3.2 Spectral asymmetry

It is interesting to notice that in this case there is no spectral asymmetry like the one
observed for the overscreened single impurity. Indeed, in the case of the two-impurity
critical region, the prefactor is either equal or opposite depending whether one is
considering the real or the imaginary part of the Green’s functions. This feature
seems to be a consequence of the particular Dyson’s equation for the bosonic field
which mixes in this case the positive and negative frequency regions (both Σb(ω)
and Σb(−ω) enter the Dyson’s equation giving Gb(ω))
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