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Résumé

Dans cette thèse, nous étudions le régime fortement couplé de l’extension supersymétrique maxi-

male de la théorie de Yang-Mills. Cette théorie est tenue pour intégrable, dans la limite planaire,

ce qui offre l’opportunité de calculer plusieurs observables pour des valeurs arbitraires de la con-

stante de couplage. Plus précisement, en admettant l’integrabilité de l’operateur de dilatation et

en utlisant les équations de l’ansatz de Bethe qui lui sont associées, nous dérivons les expressions

à couplage fort de certaines dimensions d’échelle de la théorie. Nous comparons nos résultats avec

les prédictions issues de la théorie des cordes duale et discutons la validité de la correspondance

AdS/CFT au niveau de nos observables.

Mots-clés: Théorie de Yang-Mills, Dimensions anormales, Intégrabilité, Châıne de spins, Cou-

plage fort, Correspondance AdS/CFT, Théorie des cordes.
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Je ne saurais remercier suffisamment Grisha pour toute l’aide qu’il m’a apportée et pour tout

ce qu’il m’a enseigné. Je n’aurais pas pu espérer un meilleur directeur de thèse, tant sur le plan
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Strongly Coupled Dynamics and Integrability in Maximally Supersymmetric Yang-Mills

Theory

Abstract

In this thesis, we analyse the strongly coupled regime of the maximally supersymmetric ex-

tension of the four-dimensional Yang-Mills theory. This theory is believed to be integrable in

the planar limit which offers the possibility of computing various quantities for arbitrary values

of the coupling constant. Namely, assuming the complete integrability of the dilatation operator

and making use of the associated set of all-loop asymptotic Bethe ansatz equations, we derive the

strong coupling expressions of various scaling dimensions in the planar gauge theory. Applying the

AdS/CFT correspondence, we compare our results with predictions coming from the dual string

theory description and test the gauge/string duality for the quantities under consideration.

Keywords: Yang-Mills theory, Anomalous dimensions, Integrability, Spin chain, Strong cou-

pling, AdS/CFT correspondence, String theory.

9



10



Contents

1 Introduction 13

2 Wilson Operators and Integrability 19

2.1 Wilson Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 One-Loop Dilatation Operator . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Cusp Anomalous Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 R-Matrix and Yang-Baxter Equation . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Algebraic Bethe Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Large Spin Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Bethe Ansatz Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Large Spin Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Large Spin Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Generalized Scaling Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 All-Loop Asymptotic Bethe Ansatz Equations . . . . . . . . . . . . . . . . . . . . . 46

3 BES Equation 53

3.1 BES Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Original Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Alternative Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Analyticity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Toy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Exact Bounds and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.5 Riemann-Hilbert Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.6 General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.7 Quantization Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.8 Cusp Anomalous Dimension in the Toy Model . . . . . . . . . . . . . . . . 68

3.3 Solving the Quantization Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11



12 CONTENTS

3.3.1 Quantization Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Strong Coupling Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Mass Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 General Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Strong Coupling Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Cusp Anomalous Dimension and Mass Gap . . . . . . . . . . . . . . . . . . 83

4 Scaling Function and O(6) Sigma Model 87

4.1 Scaling Function in String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Semiclassical String Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.2 String Scaling Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.3 Non-Linear O(6) Sigma Model . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Scaling Function in N = 4 SYM Theory . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.1 FRS Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 From Weak to Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2.3 Non-Linear O(6) Sigma Model . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Conclusion 131

A BES Equation 135

A.1 General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Relation to Whittaker Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3 Expression for the Mass Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.4 Wronskian-like Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B FRS Equation and O(6) Sigma Model 147

B.1 Scalar Factor of the O(n) Sigma Model S-Matrix . . . . . . . . . . . . . . . . . . . 147

B.2 Hole Energy Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.3 Small j Scaling Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.4 Magnon Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Chapter 1

Introduction

Understanding the dynamics of gauge theories at strong coupling is one of the outstanding prob-

lems in the theory of strong interactions – Quantum Chromodynamics (QCD). At present, there

exists a lot of evidences that Yang–Mills theories should admit a complimentary description via

yet to be identified string theories [1, 2, 3, 4, 5, 6, 7]. The latter operate in terms of collective

degrees of freedom - Faraday lines - which are more appropriate to tackle the strong-coupling

dynamics of four-dimensional gauge theories. The string dynamics should describe the excitations

of the gauge theory flux tube.

The most prominent and thoroughly studied to date example of the gauge/string duality is

the correspondence between the maximally supersymmetric N = 4 Yang-Mills (SYM) theory and

the type IIB string theory on AdS5 × S5 background [8, 9, 10, 11]. The four-dimensional N = 4

SYM theory has a vanishing beta function and no dimensionful parameter. It is a non-confining

gauge theory, with gauge group SU(Nc), and it defines a conformal field theory (CFT), for any

value of the Yang-Mills coupling g2
YM and of the number of color Nc. For this reason, the duality

above is also known as the AdS/CFT correspondence. The two (dimensionless) parameters of the

string theory, namely the string coupling gs and the (effective) string tension
√
λ, are related to

those of the gauge theory as

gs ∼ g2
Y M ,

√
λ ∼ g , (1.0.1)

where g2 ≡ g2
YMNc/16π

2 is the ‘t Hooft coupling constant. It follows that in the ’t Hooft planar

limit, Nc → ∞ with g2 ≡ g2
YMNc/16π

2, the string theory becomes free and only depends on the

string tension
√
λ, which can take arbitrary values. The two-dimensional Lagrangian describing

propagation of a single string in the curved background is uniquely fixed by the symmetries [12]

up to a multiplicative factor ∝
√
λ.

The gauge/string duality establishes the correspondence between scaling dimensions of com-

posite operators in the N = 4 SYM theory and the energies of the string excitations in the dual

string picture. In the (planar) gauge theory, the scaling dimensions are defined as eigenvalues of

the dilatation operator, that can be computed perturbatively at weak coupling g2 ≪ 1. In the

string theory, the calculation of the spectrum of energies is obtained after quantizing the string

σ-model – a problem that still awaits for its solution. In the regime of string states carrying large

quantum numbers, it can be tackled by semiclassical methods [13, 14, 15] as soon as
√
λ ∼ g ≫ 1,

which is a necessary condition to tame the quantum fluctuations of the string. To make definite

13



14 CHAPTER 1. INTRODUCTION

comparisons between the gauge and string theory computations, it is therefore desirable to develop

non-perturbative tools on both sides of the correspondence.

An exciting recent development is the emergence of integrability on both sides of the cor-

respondence. On the string side, integrable structures appear at the classical level [16, 17, 18]

while the quantum integrability of the full AdS5×S5 world-sheet theory remains an open question

(see [19] for a recent survey of quantum integrability of the light-cone string σ-model). On the

gauge theory side, this symmetry is not seen at the level of the classical Lagrangian and man-

ifests itself through remarkable integrability properties of the dilatation operator of the gauge

theory [20, 21, 22], in planar limit. The gauge/string duality hints that this integrability should

exist in the gauge/string theory for arbitrary values of the coupling constant.

The above mentioned integrable structures are not specific to N = 4 SYM theory and they

are also present in generic gauge theories [23, 24, 25] including QCD, though for a restricted class

of observables. Indeed, the integrability symmetry has been first discovered in studies of high-

energy asymptotics of scattering amplitudes in planar QCD [26, 27]. Later, similar integrable

structures have been observed in the spectrum of one-loop anomalous dimensions, in the sector

of the so-called maximal-helicity Wilson operators [28, 29, 22]. It was found that the one-loop

dilatation operator in this sector can be mapped, in the planar limit, into the Hamiltonian of

the Heisenberg spin chain, with the spin operators in the chain sites defined by the generators of

the ‘collinear’ SL(2,R) subgroup of the full conformal group [30]. The Heisenberg magnet is a

quantum integrable spin chain and its Hamiltonian can be diagonalized by means of the Bethe

ansatz. It follows that its energy spectrum, or equivalently the spectrum of one-loop anomalous

dimensions, can be obtained by solving a set of algebraic equations, the so-called Bethe ansatz

equations.

In planarN = 4 SYM theory, the integrability of the one-loop dilatation operator extends to all

operators and it can be mapped into an integrable Heisenberg super-spin-chain with spin operators

belonging to the superconformal algebra psu(2, 2|4) [21]. Its diagonalization leads to a set of nested

Bethe ansatz equations for the complete spectrum of one-loop anomalous dimensions [21]. A great

deal of activity has been devoted recently to the test of higher loop integrability in the N = 4

theory [31, 32, 33, 34, 35, 36, 37] and significant evidence has been gathered supporting its presence

in various closed subsectors specific to this particular theory (see [38] for a review). It culminated

in the proposal of all-loop (asymptotic) Bethe ansatz equations for the spectrum of anomalous

dimensions of (infinitely long) operators [39, 40, 41, 42, 43, 44]. In this thesis, we will make

use of these equations to compute the strong coupling expressions of distinguished observables in

the gauge theory and then make comparison with the predictions coming from the dual string

theory. We stress that these equations have been conjectured and not proved from first principles.

However, they are based on a ‘minimal’ set of assumptions underlying the general approach to

deal with models believed to be completely integrable. They are therefore well constrained and

cannot be deformed at will.

We will consider the sl(2) sector spanned by Wilson operators built from L copies of the same

complex scalar field and N light-cone components of the covariant derivative. The anomalous

dimensions in this sector are non-trivial functions of the ’t Hooft coupling constant g and of the

quantum numbers of the Wilson operators – the twist L and the Lorentz spin N . Significant

simplification occurs in the limit when the Lorentz spin grows exponentially with the twist [45],
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L ∼ logN with N → ∞. In this limit, the anomalous dimensions scale logarithmically with

N for arbitrary coupling and the minimal anomalous dimension δ∆min has the following scaling

behavior [45, 46, 47]

δ∆min =

[
2Γcusp(g) + ǫ(g, j)

]
logN + . . . , (1.0.2)

where j = L/ logN is an appropriate scaling variable and ellipses denote terms of order O(log0N).

Here, the coefficient in front of logN is split into the sum of two functions in such a way that

ǫ(g, j) carries the dependence on the twist and it vanishes for j = 0. The first term inside the

square brackets in (1.0.2) has a universal, twist independent form [48, 49]. It involves the function

of the coupling constant known as the cusp anomalous dimension. This anomalous dimension was

introduced in [50] as describing the scale dependence of Wilson loops with a light-like cusp on

the integration contour [51]. The cusp anomalous dimension plays a distinguished role in N = 4

theory and, in general, in four-dimensional Yang-Mills theories since, aside from the logarithmic

scaling of the anomalous dimension (1.0.2), it also controls infrared divergences of scattering

amplitudes [50, 52], Sudakov asymptotics of elastic form factors [53], gluon Regge trajectories [54]

etc.

According to (1.0.2), the asymptotic behavior of the minimal anomalous dimension is deter-

mined by two independent functions, Γcusp(g) and ǫ(g, j). At weak coupling, these functions are

given by series in powers of g2 and the first few terms of the expansion can be computed in per-

turbation theory [51, 49, 55, 56, 57, 58].1 The AdS/CFT correspondence permits to obtain the

strong coupling expressions of Γcusp(g) and ǫ(g, j) from the semiclassical expansion of the energy

of a folded spinning string [14, 15, 45, 59, 60, 46, 61].

The Bethe ansatz approach to computing these functions to one-loop order at weak coupling

was developed in [62, 45, 49]. With the help of the of all-loop (asymptotic) Bethe ansatz equa-

tions [41, 43, 44], it was extended to higher loops in [63, 44, 47] leading to integral equations for

Γcusp(g) and ǫ(g, j), the so-called Beisert-Eden-Staudacher (BES) and Freyhult-Rej-Staudacher

(FRS) equations, respectively. They are valid in the planar limit for arbitrary values of the

scaling parameter j and of the coupling constant g.

For the cusp anomalous dimension, the solution to the BES equation at weak coupling is in

agreement with the most advanced explicit four-loop perturbative calculation [51, 49, 55, 56, 57,

58] in the gauge theory. The BES equation can also be analyzed at strong coupling as done

in [64, 65, 66, 67, 68, 69, 70, 71]. It was found that the cusp anomalous dimension admits an

expansion in 1/g [69, 70]

Γcusp(g) =

∞∑

k=−1

ck/g
k , (1.0.3)

with coefficients being determined order by order by the BES equation. They start as

c−1 = 2 , c0 = −3 log 2

2π
, c1 = − K

8π2
, (1.0.4)

where K is the Catalan’s constant. On the string theory side of the AdS/CFT correspondence, the

relation (1.0.3) should follow from the semiclassical expansion of the energy of a folded spinning

1Strictly speaking, the scaling function ǫ(g, j) is not accessible by a direct gauge theory perturbative calculation,

in distinction to the cusp anomalous dimension. The scaling function is computed in the gauge theory with the

help of integrability, that is by applying the Bethe ansatz approach.
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string. In the right-hand side of (1.0.3), the leading contribution ∼ 2g should correspond to the

classical energy and ck should describe (k+1)-th loop correction (k > 0). Explicit two-loop stringy

calculation [14, 15, 60] yields a result which is in a perfect agreement with (1.0.3) and (1.0.4),

providing a remarkable verification of the AdS/CFT correspondence.

In this thesis, we will explain how the BES equation can be solved at strong coupling and

we will recover the expansion (1.0.3) with the coefficients (1.0.4). We will also consider non-

perturbative ∼ e−2πg corrections to (1.0.3), which are tied to the non-Borel summability of the

series (1.0.3).

Concerning the scaling function ǫ(g, j), entering (1.0.2), an interesting proposal was put for-

ward in [46] that it can be found exactly at strong coupling in terms of the non-linear O(6)

bosonic sigma model embedded into the AdS5 × S5 string σ-model. More precisely, using the

dual description of Wilson operators as folded strings spinning on AdS5 × S5 and taking into ac-

count the one-loop stringy corrections to these states [59], it was argued that the scaling function

ǫ(g, j) should be related to the energy density εO(6)(ρ) in the ground state of the O(6) model

corresponding to the charge density ρ ≡ j/2,

εO(6)(ρ) =
ǫ(g, j) + j

2
. (1.0.5)

This relation should hold at strong coupling and for j ∼ m, where m is the mass gap of the O(6)

model. To leading order, the mass gap is found in string theory as [46]

m = k g1/4 e−πg [1 +O(1/g)] , k = 23/4π1/4/Γ(5
4 ) . (1.0.6)

The O(6) sigma model is an exactly solvable theory [72] and the dependence of εO(6)(ρ) on the

mass scale m and the charge density ρ can be found exactly with the help of the (zero-temperature)

thermodynamic Bethe ansatz (TBA) equations. Together with (1.0.5) and (1.0.6), it allows to

determine the scaling function ǫ(g, j) at strong coupling in the regime j ∼ m ∼ e−πg.

In this thesis, we will establish the relation between scaling function and O(6) energy density,

Eq. (1.0.5), in both planar N = 4 SYM theory at strong coupling, by solving the FRS equation in

the relevant regime [73, 74, 75], and in string theory, by following the proposal of [46] and making

use of the results of [15, 45, 59, 61, 76]. We will construct the mass scale m, Eq. (1.0.6), on both

sides of the AdS/CFT correspondence and make comparison between the two expressions.

The thesis is organized as follows. In Chapter 2, we start with introducing the Wilson operators

of the sl(2) sector and developing the Bethe ansatz approach to the computation of their one-

loop anomalous dimensions. Then we focus on the large spin limit of the minimal anomalous

dimension and derive an integral equation determining the one-loop cusp anomalous dimension

and scaling function. In Chapter 3, we consider the BES equation for the all-loop cusp anomalous

dimension and analyze its solution at strong coupling, computing both perturbative and leading

non-perturbative contribution. In Chapter 4, we analyze the string scaling function obtained from

the semiclassical expansion of the energy of a folded spinning string. We show that it is possible

to interpret the string scaling function as the energy density of a charged excited state in the

O(6) model. From this matching, we extract the two-loop expression of the mass gap of the O(6)

model in terms of the coupling constant. Then we perform a similar analysis starting from the

FRS equation on the gauge theory side. At strong coupling and within a suitable regime for the
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scaling variable j, we prove that this equation for the scaling function can be cast into the TBA

equations for the O(6) model. In this way, we are able to compute the gauge theory prediction

for the mass gap for the O(6) model, that we compare with the string theory result. The Chapter

5 contains concluding remarks.
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Chapter 2

Wilson Operators and Integrability

In this chapter, we will study properties of Wilson operators belonging to the so-called sl(2)

sector. These are gauge-invariant, single-trace, local operators carrying a Lorentz spin N and a

twist L. We will be interested in computing the spectrum of their scaling dimensions, obtained

by diagonalizing the dilatation operator D in the sl(2) sector.

The dilatation operator of the gauge theory is written as a sum of a tree-level and anomalous

contribution, denoted D0 and δD respectively,

D = D0 + δD . (2.0.1)

It corresponds to the splitting of the scaling dimension into canonical and anomalous dimension,

∆ = ∆0 + δ∆ . (2.0.2)

The action of D0 on twist L and spin N Wilson operators is already diagonal, with eigenvalue

∆0 = N + L. The action of δD is more involved and its diagonalization is a non-trivial problem.

In the planar limit and to one-loop order in the weak coupling expansion, we will see that the

dilatation operator δD can be mapped into the Hamiltonian H of a sl(2) Heisenberg spin chain.

Namely, we will find that

δD = 2g2H +O(g4) , (2.0.3)

where g2 = g2
YMNc/16π

2 is the ’t Hooft coupling constant. The Heisenberg magnet is a completely

integrable system and its Hamiltonian H can be diagonalized by means of the algebraic Bethe

ansatz. As we shall see, it implies that the spectrum of one-loop anomalous dimensions can be

found by solving a set of algebraic equations, the so-called Bethe ansatz equations.

In the large spin limit N → ∞, we will solve the Bethe ansatz equations for the minimal

anomalous dimension δ∆min and verify the logarithmic scaling

δ∆min = 2Γcusp(g) logN + . . . , (2.0.4)

which holds for any value of L [49]. In this way, we will find the one-loop expression of the cusp

anomalous dimension Γcusp(g) = 4g2 + O(g4). We will also consider the regime of large twist

obtained in the generalized scaling limit L ∼ logN ≫ 1 and will explain how the result (2.0.4)

gets modified.

Finally, we will report on the all-loop asymptotic Bethe ansatz equations that are believed to

diagonalize the all-loop, asymptotic, planar dilatation operator in the sl(2) sector [40, 41, 44].
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2.1 Wilson Operators

2.1.1 Definition

In N = 4 SYM theory, the sl(2) sector is spanned with Wilson operators made out of L copies of

a given complex scalar field Z(0) - evaluated at the origin - and an arbitrary number N of light-

cone covariant derivatives D = nµDµ, with n2 = 0. They carry two global conserved charges, the

Lorentz spin N and the twist L (or R-charge).1

The generic expression for twist L and spin N Wilson operators reads

O{km}(0) ≡ tr
[
Dk1Z(0) . . . DkLZ(0)

]
, (2.1.1)

with {km} a set of L positive integers satisfying N = k1 + . . .+ kL. The trace in (2.1.1) is taken

over the (implicit) color indices carried by the operators DkiZ(0) viewed as Nc × Nc traceless

matrices, with Nc the number of color. It ensures that the composite operator O{ki}(0) is gauge

invariant. As a result, we note that the operator O{ki}(0) is defined up to a cyclic permutation

k1 → k2 → . . .→ kL → k1.

In order to analyse the properties of the Wilson operators with given twist L but arbitrary

Lorent spin N , it is convenient to introduce a non-local light-cone operator that serves as a

generating function for them. It is given by

O(nz1, . . . , nzL) ≡ tr
[
Z(nz1)[z1, z2] . . .Z(nzL)[zL, z1]

]
, (2.1.2)

where {zm} is a set of abscissae along the light-cone direction specified by n. The symbol [zm, zm+1]

in (2.1.2) stands for a Wilson line, connecting the space-time points nzm and nzm+1, that ensures

the gauge invariance of the non-local operator (2.1.2). We will not need its explicit expression

since we can get rid of it by assuming the light-cone gauge D = ∂, equivalent to [zm, zm+1] = 1.

The operator (2.1.2) then simplifies to

O(nz1, . . . , nzL) ≡ tr
[
Z(nz1) . . .Z(nzL)

]
. (2.1.3)

One easily verifies that the Taylor expansion of the non-local operator (2.1.3) generates all local

Wilson operators (2.1.1) with arbitrary number of derivatives D = ∂.

The Wilson operators (2.1.1), or the light-cone operator (2.1.3), suffer from the UV divergences

that plague the theory and are enhanced by the product of fundamental fields taken at the same

space-time point, or along a light-cone direction. It is then necessary to regularize the theory and

renormalize these operators in order to give them a proper meaning. In the following, we will

always assume that we are dealing with operators that have been already renormalized.

2.1.2 Symmetries

The Wilson operators fall into multiplets of the conformal group, which is an exact symmetry of

N = 4 SYM theory. Infinitesimal conformal transformations in 3+1 dimensions define the algebra

so(4, 2) whose 15 generators correspond to 4 translations Pµ, 6 Lorentz rotations Mµν = −Mνµ, 1

1Our terminology is borrowed from QCD where similar operators first appeared in the description of the deeply

inelastic scattering [77, 78].
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dilatation D and 4 special conformal transformations Kµ. Only few of them leaves the light-cone

direction n invariant and acts non-trivially on the light-cone operator (2.1.3). They produce the

algebra of the so-called collinear conformal subgroup [30], generated by

Sz = −1
2 (D + nµn̄νMµν) , S+ = −1

2 n̄
µKµ , S− = nµPµ , (2.1.4)

where n̄ is a light-like vector, n̄2 = 0, satisfying n̄µnµ = 1. Notice that the operator M ≡ nµn̄νMµν

in (2.1.4) measures the Lorentz spin.

One can easily verify that the operators (2.1.4) satisfy the sl(2) commutation relations

[Sz, S±] = ±S± , [S+, S−] = 2Sz . (2.1.5)

The first equality in (2.1.5) is an immediate consequence of the fact that nµPµ, respectively n̄µKµ,

has dimension and Lorentz spin both equal to 1, respectively −1. Namely,

[D,nµPµ] = [M,nµPµ] = nµPµ , [D, n̄µKµ] = [M, n̄µKµ] = −n̄µKµ .

The last identity in (2.1.5) is due to the following commutation relation of so(4, 2)

[Kµ, Pν ] = 2ηµνD − 2Mµν . (2.1.6)

Finally, we note that the sl(2) generators (2.1.4) commutes with the (internal) u(1) R-charge

giving the twist of the Wilson operators.

To make use of the sl(2) symmetry (2.1.4), we need to know how the operators Sz,± act on the

light-cone operator O(nz1, . . . , nzL), see Eq. (2.1.3). This is directly relevant to our problem of

finding the spectrum of anomalous dimensions since the anomalous part of the dilatation operator

δD = D −D0 is invariant under the sl(2) transformations2

[δD, Sz,±] = 0 . (2.1.7)

As for the dilatation operator, the operators Sz,± can be written as

Sz,± = Sz,±0 + δSz,± , (2.1.8)

with δSz,± = O(g2). Here, the tree-level operators Sz,± 0 = limg→0 Sz,± satisfy sl(2) commuta-

tion relations and act canonically on O(nz1, . . . , nzL). Plugging the decomposition (2.1.8) into

Eq. (2.1.7), we find that

[δD, Sz,± 0] = O(g4) , (2.1.9)

where we took into account that δD = O(g2). The identity, above, implies that the one-loop di-

latation operator is invariant under the tree-level sl(2) transformations generated by Sz,± 0. These

classical sl(2) transformations are enough for our purpose, since we will not consider (explicitely)

higher-loop contributions to δD. To simplify the notations, we will drop the subscript 0 in the

following, Sz,± 0 → Sz,±.

2This is because the operators Sz,± generate an exact symmetry of the N = 4 SYM theory. They are thus

physical observables with zero anomalous dimension, which is equivalent to (2.1.7).
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The (classical) spin operators Sz,± act on the fundamental field Z(nz) as [30]

Sz · Z(nz) = − (z∂z − s)Z(nz) , (2.1.10)

S+ · Z(nz) = −
(
z2∂z − 2sz

)
Z(nz) ,

S− · Z(nz) = ∂zZ(nz) ,

where s = −1/2. Expanding on both sides of (2.1.10) in powers of z, we obtain that

Sz · ∂kZ(0) = (s − k)∂kZ(0) , (2.1.11)

S+ · ∂kZ(0) = k(2s+ 1− k)∂k−1Z(0) ,

S− · ∂kZ(0) = ∂k+1Z(0) ,

where k = 0, . . . ,∞. The relations (2.1.11) show that the set of local operators {∂kZ(0)} map into

a basis of states {Sk
− |s〉} for the s = −1/2 highest weight, irreducible representation of the sl(2)

algebra. This sl(2) module, denoted Vs in the following, is non-compact. It has a unique highest

weigth state |s〉, with defining property S+ |s〉 = 0, and an infinite sequence of descendants Sk
− |s〉,

with k = 1, . . . ,∞.

When acting on the operator O(nz1, . . . , nzL), the sl(2) generators Sz,± decompose into the

sum

Sz,± =
L∑

m=1

S
(m)
z,± , (2.1.12)

where S
(m)
z,± are the local spin operators acting on Z(nzm) in O(nz1, . . . , nzL), see Eq. (2.1.3). After

Taylor expanding O(nz1, . . . , nzL), we obtain that the Wilson operators (2.1.1) can be mapped

into states in the (reducible) sl(2) module

V = Vs1 ⊗ . . .⊗ VsL
, (2.1.13)

with s1 = . . . = sL = s = −1/2. A generic state in V can be written as

S
(1)k1
− . . . S

(L)kL
− Ω , (2.1.14)

where Ω = |s1〉⊗ . . .⊗|sL〉 has the defining property to be annihilated by all local spin generators

S
(m)
+ , with m = 1, . . . , L. Note that it satisfies SzΩ = LsΩ and corresponds to the primary

operator3 tr
[
Z(0)L

]
. For the Wilson operator O{km}(0), see Eq. (2.1.1), we have the mapping

O{km}(0)←→
1

L

∑

π∈cycl.perm.

S
(1)kπ(1)

− . . . S
(L)kπ(L)

− Ω , (2.1.15)

where a sum over the L cyclic permutations of {km} is taken, in order to match the invariance of

O{km}(0) under these transformations. It follows that the relevant states in V have the property

to be eigenstates of the shift operator U with eigenvalue 1. The shift operator, acting on V , is

defined by

US
(m)
z,± = S

(m+1)
z,± U , UΩ = Ω . (2.1.16)

Note that the dilatation operator D can be defined as acting on V . Since it commute with the shift

operator U , the unwanted states in V , that is those that are not eigenstates of U with eigenvalue

1, can be projected out at the end of day.

3Primary operator ↔ highest weight state.
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2.1.3 One-Loop Dilatation Operator

As said previously, the Wilson operators (2.1.1), or the light-cone operator (2.1.3), have to be

renormalized to make sense. Once done, they have acquired a dependence on the renormalization

scale µ, introduced by the regularization and/or renormalization procedure. This dependence on

µ is controlled by the Callan-Symanzik (renormalization group) equation, that takes the simple

form

µ
∂

∂µ
O = −δD · O , (2.1.17)

in the N = 4 SYM theory. Here, O stands for a local, or light-cone, renormalized operator and

δD does not depend on µ. The Callan-Symanzik equation (2.1.17) gives a mean to define and

compute the action of δD on O, in the gauge theory.

The action of δD on a generic (renormalized) operator is not diagonal per se, that is δD · O
is not necessarily proportional to O. This is because the operator O does not renormalize multi-

plicatively, in general, but, instead, mixes with several operators. This mixing is not completely

arbitrary, however, and it should respect the symmetries of the theory preserved by the regu-

larization. In particular, operators with different Lorent spin and twist do not mix. The same

conclusion applies for operators with different canonical dimension, due to the absence of mass

scale in N = 4 SYM theory. Moreover, in the planar limit, the subspace of single-trace operators

is invariant under renormalization. One can deduce from these properties that the sl(2) sector is

closed under renormalization.

In the sl(2) sector, δD can be found, at weak coupling, in the form of an expansion in powers

of g2 starting as δD = 2g2H + O(g4), where H is a g independent operator. In the planar limit,

H only involves nearest-neighbor interactions and reads

H =

L∑

m=1

Hm m+1 , (2.1.18)

when applied to twist L operators. We assume periodic boundary conditions, m + L = m, in

agreement with the periodic nature of single-trace operators. Explicit expression for the density

operator Hmm+1 in (2.1.18) can be easily obtained in the light-cone formalism [24]. The operator

Hm m+1 then acts on the two adjacent fields Z(nzm)Z(nzm+1) inside the trace of the light-cone

operator (2.1.3) as [24]

Hmm+1 · Z(nzm)Z(nzm+1) =

∫ 1

0

dα

α

[
2Z(nzm)Z(nzm+1)− ᾱ−2s−1Z(ᾱnzm + αnzm+1)Z(nzm+1)

− ᾱ−2s−1Z(nzm)Z(ᾱnzm+1 + αnzm)

]
, (2.1.19)

with ᾱ = 1 − α and s = −1/2. We see that the effect of the operator Hm m+1 is to displace the

fields along the light-cone direction n.

After some algebra, one can verify that the operator H, given in (2.1.18) and (2.1.19), com-

mutes with the (classical) sl(2) transformations (2.1.12). This invariance can be made manifest

with the help of an alternative representation for H, which can be obtained as follows. Given

the sl(2) invariance of H, acting on V , see Eq. (2.1.13), and the expression (2.1.12), one easily
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deduces that the density operator Hmm+1, acting on Vsm ⊗ Vsm+1 inside V , commutes with the

spin generators

S
(m)
z,± + S

(m+1)
z,± . (2.1.20)

All operators in the module

Vsm ⊗ Vsm+1
∼= V ⊗2

s
∼=

∞∑

k=0

V2s−k , (2.1.21)

with s = −1/2, are uniquely specified by the eigenvalues of S
(m)
z + S

(m+1)
z and of the quadratic

Casimir C. The latter is given by4

C ≡ (S(m)
α + S(m+1)

α )2 ≡ Jm m+1(Jm m+1 + 1) , (2.1.22)

with the invariant spin operator Jm m+1 acting on V2s−k ⊂ Vsm ⊗ Vsm+1, see Eq.(2.1.21), as

Jm m+1V2s−k = (2s − k)V2s−k . (2.1.23)

Since the density operator Hm m+1 commutes with (2.1.20), it is a function of Jm m+1 only,

Hmm+1 = f(Jm m+1) . (2.1.24)

It remains to evaluate the function f , above. To this end, we make use of the expansion

Z(nzm)Z(nzm+1) =

∞∑

k=0

(zm − zm+1)
kO(k)(0) + descendants , (2.1.25)

where O(k)(0) is the primary operator of the spin (2s − k) irreducible module appearing in the

right-hand side of (2.1.21). Due to the sl(2) invariance of Hm m+1, the action of Hm m+1 on O(k)(0)

is diagonal, and the descendants in (2.1.25) are mapped into descendants. Then, plugging the

expansion (2.1.25) into (2.1.19), one immediately finds that

Hm m+1 · O(k)(0) ≡ f(2s− k)O(k)(0) = 2
[
ψ(k − 2s)− ψ(1)

]
O(k)(0) , (2.1.26)

where ψ is the logarithmic derivative of the Euler gamma-function, or psi-function. By the sl(2)

invariance, the result, above, lifts uniquely to

Hmm+1 = 2
[
ψ(−Jm m+1)− ψ(1)

]
, (2.1.27)

which is the desired representation. It was obtained in [33] in N = 4 SYM theory, but it also

applies in QCD [28, 29, 22]. In the latter case, however, the sl(2) spin s of the elementary module

Vs is equal to −3/2 instead of −1/2, because the sl(2) sector in QCD is defined by taking product

of (maximal helicity) gluon fields instead of scalar fields.

We conclude that the one-loop dilatation operator, in the sl(2) sector of twist L Wilson oper-

ators, can be written as

δD = 2g2H +O(g4) = 4g2
L∑

m=1

[
ψ(−Jm m+1)− ψ(1)

]
+O(g4) , (2.1.28)

with Jm m+1 the invariant spin operator on Vsm ⊗ Vsm+1 inside V = Vs1 ⊗ . . . ⊗ VsL
, (s1 = . . . =

sL = −1/2).

4An implicit summation over α = x, y, z is assumed in Eq. (2.1.22) with the sl(2) generators S
(m)
x,y defined as

S
(m)
x = (S

(m)
+ + S

(m)
− )/2 and S

(m)
y = (S

(m)
+ − S

(m)
− )/2i, and similarly for S

(m+1)
x,y .
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2.1.4 Cusp Anomalous Dimension

The spectrum of anomalous dimensions {δ∆} is obtained by solving the eigenvalue problem

δD · O(0) = δ∆O(0) , (2.1.29)

where O(0) stands for a local Wilson operator. The equation, above, can be solved at given

Lorentz spin N and twist L, i.e. assuming that

O(0) =
∑

k1+...+kL=N

Ψk1,...,kL
tr
[
∂k1Z(0) . . . ∂kLZ(0)

]
, (2.1.30)

where Ψk1,...,kL
plays the role of a wave function. Note also that, thanks to the sl(2) invariance of

δD, it is enough to consider primary operators, i.e. S+ · O(0) = 0.

In the particular case L = 2, there is only one primary operator at a given Lorentz spin N .5

Its one-loop anomalous dimension can be found from Eq. (2.1.28) as [22, 79]

δ∆ = 8g2(ψ(N + 1)− ψ(1)) +O(g4) . (2.1.31)

It leads to the asymptotic behavior

δ∆ = 8g2 logN +O(log0N) +O(g4) , (2.1.32)

at large Lorentz spin, N ≫ 1. According to [48, 49, 46], the logarithmic scaling of the twist-two

anomalous dimension is valid for arbitrary values of the coupling constant g and it is controlled

by the cusp anomalous dimension Γcusp(g). Namely,

δ∆ = 2Γcusp(g) logN +O(log0N) , (2.1.33)

at large N . From (2.1.32), we deduce that Γcusp(g) = 4g2 +O(g4), in agreement with [51, 50].

At higher twist, L > 3, one finds several primary operators with the same Lorentz spin N . The

graph of their anomalous dimensions, in function of N , forms a band delimited by the minimal

and maximal anomalous dimension trajectories. According to [49], both the minimal and maximal

anomalous dimension should scale logarithmically at large N such that

δ∆min ∼ 2Γcusp(g) logN 6 δ∆ 6 δ∆max ∼ LΓcusp(g) logN . (2.1.34)

We note, in particular, that the minimal anomalous dimension has the universal (twist-independent)

scaling behavior (N ≫ 1)

δ∆min = 2Γcusp(g) logN +O(log0N) . (2.1.35)

The verification of the scaling behavior (2.1.35), to one-loop order and for an arbitrary twist

L, is not in general as straightforward as in the twist-two case, Eqs. (2.1.31) and (2.1.32).6 The

reason is that solving the equation (2.1.29), with O(0) as in (2.1.30) and δD given by (2.1.28),

amounts to diagonalizing a matrix whose size grows with N and L. This problem becomes rapidly

intractable when N (and/or L) get large. In the following, we will explain how it can be solved

thanks to the integrability of the one-loop dilatation operator (2.1.28).

5The Lorentz spin N is here assumed to be even, since twist-two Wilson operators with odd Lorentz spin are

either sl(2) descendants or vanish due to the trace in (2.1.30).
6An exception is the twist-three case for which explicit expression for the minimal anomalous dimension is

known [21]. One has δ∆min = 8g2(ψ(N/2 + 1) − ψ(1)) +O(g4) ∼ 8g2 logN +O(g4).
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2.2 Integrability

In this section, we will identify the one-loop dilatation operator in the sl(2) sector with the Hamil-

tonian of the homogeneous XXX−1/2 Heisenberg spin chain. This model has been known since the

seminal paper of Bethe [80] to be completely integrable and it can be solved with the algebraic

Bethe ansatz [81, 82].7 It means that it is possible to construct a complete family of operators,

with the property to commute among themselves and with the Hamiltonian of the spin chain. The

spectral problem for the Hamiltonian is then reduced to the simultaneous diagonalization of the

family of conserved charges, and it is achieved by a set of algebraic equations, the so-called Bethe

ansatz equations. Their solutions determine the spectrum of spin-chain energies, or equivalently

of one-loop anomalous dimensions. The material for this section is taken from [81, 82].

Spin Chain Mapping

The vector space V , see Eq. (2.1.13), is naturally identified with the Hilbert space of a quantum

spin chain, with L sites and with spin variables at each site in the representation s = −1/2 of sl(2).

Due to the periodicity and shift invariance of the one-loop dilatation operator, or equivalently of

H, Eq. (2.1.28), the spin chain is closed and homogeneous.

The spin chain Hamiltonian H is bounded from below and it takes minimal value when eval-

uated on the state Ω, with defining property S
(m)
+ Ω = 0 for m = 1, . . . , L. This state is called

the ferromagnetic vacuum of the spin chain and it is unique. Above the vacuum Ω, we have ex-

cited states constructed by acting on Ω with the lowering operators S
(m)
− , with m = 1, . . . , L, see

Eq. (2.1.14). The fundamental excitation of the spin chain, obtained by acting on Ω with one of

the lowering operators, is called a magnon. Acting N times on Ω with several lowering operators,

we obtain the subspace of N -magnon states, corresponding to Wilson operators carrying Lorentz

spin N . We recall that only the states invariant under the shift operator U do correspond to

Wilson operators. Finding the one-loop spectrum of anomalous dimensions is therefore equivalent

to the eigenvalue problem

HΦ = EΦ , UΦ = Φ , (2.2.1)

where E is the spin-chain energy of the eigenstate Φ ∈ V . Moreover, thanks to the sl(2) invariance

of H, it is sufficient to consider the highest weight states in V , i.e. S+Φ = 0.

We will now prove that H, given in (2.1.28), coincides with the Hamiltonian of the Heisenberg

spin chain and used the remarkable integrability symmetry of this model to solve (2.2.1).

7The original Heisenberg spin chain is a model of magnet with spins variables in the (compact) representation

s = 1/2 of sl(2) ∼= su(2). Here we are interested in an algebraic generalization, preserving integrability, with

spins variables in the (non-compact) representation s = −1/2. The algebraic Bethe ansatz is a particularly well-

suited framework to address this issue. It originates from an attempt to quantize two-dimensional field theories

solvable by the classical inverse method, assuming a spacial discretization as a regulator of UV divergences, and it

receives inspiration from the Baxter’s analysis of solvable two-dimensional lattice models. It was mainly developed

by Faddeev, Sklyanin and their collaborators, and it is reviewed in [81, 82]. We also refer the reader to [83] for

historical remarks and to [84] for an introduction to several aspects of integrability.
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2.2.1 R-Matrix and Yang-Baxter Equation

R-Matrix

The integrability of the Heisenberg spin chain is tied to the existence of a R-matrix satisfying

the Yang-Baxter equation. The R-matrix is an operator acting on a tensor product of two sl(2)

modules and depending on the spectral parameter u (in C),

R12(u) : Vs1 ⊗ Vs2 → Vs1 ⊗ Vs2 , (2.2.2)

where the spin labels, s1 and s2, are a priori distinct and arbitrary. The R-matrix is invariant

under the sl(2) transformations on Vs1 ⊗ Vs2,

[
R12(u), S

(1)
α + S(2)

α

]
= 0 , (2.2.3)

with α = x, y, z, and, as said before, it solves the Yang-Baxter equation. This equation holds as

an identity on the space Vs1 ⊗ Vs2 ⊗ Vs3 and reads

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) , (2.2.4)

where R12 acts on Vs1 ⊗ Vs2 , R13 on Vs1 ⊗ Vs3, etc. Note that a R-matrix, solution to the Yang-

Baxter equation, is determined up to a multiplication with an arbitrary (scalar) function of u, a

translation of u and a set of discrete operations, like u→ −u for instance.

To begin with, we look for the R-matrix acting on Vs1 ⊗ Vs2 with s1 = s2 = s, which will be

specialized to s = −1/2 when needed. This solution was constructed in [85] and it reads

R12(u) = P12r12(u) , (2.2.5)

where P12 is the permutation operator on Vs1 ⊗ Vs2 and

r12(u) =
Γ(−2s+ iu)

Γ(−2s− iu)
Γ(−J12 − iu)
Γ(−J12 + iu)

, (2.2.6)

with Γ the Euler’s Gamma function. Here J12 is the invariant spin operator on Vs1⊗Vs2, introduced

before and related to the quadratic Casimir as C = J12(J12 + 1). We note that the R-matrix,

Eqs. (2.2.5) and (2.2.6), can be inverted R(u)−1 = R(−u) for generic values of u.

Fundamental Transfer Matrix

Starting with the R-matrix (2.2.5), we will now construct a family of commuting observables

acting on the spin-chain Hilbert space V = Vs1 ⊗ . . .⊗ VsL
, with s1 = . . . = sL = s. The first step

is to introduce the (fundamental) monodromy matrix on Vs0 ⊗ V , with s0 = s, as

T0(u) = R0L(u)R0L−1(u) . . . R01(u) . (2.2.7)

It is a sl(2) invariant operator on Vs0 ⊗ V ,

[
T0(u), S

(0)
α + Sα

]
= 0 , (2.2.8)
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where α = x, y, z, and S
(0)
α , respectively Sα, are the spin generators on Vs0, respectively V . As a

consequence of the Yang-Baxter equation for the R-matrix, the monodromy matrix T0(u) satisfies

the RTT relation on Vs0 ⊗ Vs0′
⊗ V , with s0′ = s0 = s,

R00′(u− v)T0(u)T0′(v) = T0′(v)T0(u)R00′(u− v) . (2.2.9)

Now we define a spin-chain observable t(u), the so-called (fundamental) transfer matrix, by

taking the trace over the space Vs0 of the monodromy matrix (2.2.7),

t(u) = tr0 [R0L(u)R0L−1(u) . . . R01(u)] . (2.2.10)

The transfer matrix is sl(2) and cyclically invariant,

[t(u), Sα] = [t(u), U ] = 0 , (2.2.11)

where U is the spin-chain shift operator. It is normalized as

t(u = 0) = U , (2.2.12)

and, thanks to its dependence on the spectral parameter u, it can be used to generate a family of

spin-chain Hamiltonians {Qr}. The latter are conventionally defined as

log t(u) = −i
∑

r>1

ur−1Qr . (2.2.13)

The first Hamiltonian coincides with the (quasi-)momentum operator Q1 = i logU and the second

one is, up to a constant, the Hamiltonian H of the Heisenberg spin chain. Indeed, making use of

Eqs. (2.2.10), (2.2.5) and (2.2.6), we find

Q2 = i∂u log t(u)u=0 = i

L∑

m=1

ṙm m+1(u = 0) = 2

L∑

m=1

[ψ(−Jm m+1)− ψ(−2s)] , (2.2.14)

and the comparison with Eq. (2.1.28) shows that

H = Q2 + 2L(ψ(−2s) − ψ(1)) . (2.2.15)

The higher Hamiltonians {Qr, r > 3} are not of a nearest-neighbor type and have local multi-spin

interactions.

The remarkable property of the transfer matrix is that it commutes with itself for different

values of the spectral parameter,

t(u)t(v) = t(v)t(u) . (2.2.16)

This is an immediate consequence of the RTT relation (2.2.9). Indeed, inverting one of the R

matrices in (2.2.9), taking the trace over the space Vs0 ⊗ Vs0′
and using the cyclicity of the trace,

we arrive at (2.2.16). From the commutation relation (2.2.16), we conclude that the family of

Hamiltonians {Qr} is Abelian. The higher Hamilonians {Qr, r > 3} are thus conserved charges,

since they commute with Q2, and they generate hidden symmetries of the Heisenberg spin chain.

It remains to explain how they can be diagonalized.
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Auxiliary Transfer Matrix

The fundamental transfer matrix is not the only generating function of conserved charges, neither

the simplest one to diagonalize. A better candidate can be found by introducing an auxiliary

vector space Va supporting the (two-dimensional) spin 1/2 representation of sl(2) ∼= su(2). It

allows us to define the auxiliary monodromy matrix Ta(u) acting on Va ⊗ V as

Ta(u) = RaL(u) . . . Ra1(u) , (2.2.17)

where Ram(u) is the R-matrix on Va ⊗ Vsm, also called the Lax operator. For later convenience,

we note that the auxiliary monodromy matrix can be viewed as a two-by-two matrix,

Ta(u) =

(
A(u) B(u)

C(u) D(u)

)
, (2.2.18)

with entries being operators on the spin-chain Hilbert space V . The matrix elements of Ta(u) can

be found with the help of the explicit expression for the Lax operator [81]

Ram(u) = u+ iσαS
(m)
α , (2.2.19)

where σα, α = x, y, z, are the Pauli matrices acting on Va. As a two-by-two matrix, the Lax

operator can be written as

Ram(u) =

(
u+ iS

(m)
z iS

(m)
−

iS
(m)
+ u− iS(m)

z

)
. (2.2.20)

Taking the trace, over the auxiliary space Va, of the monodromy matrix Ta(u), we define the

auxiliary transfer matrix as

taux(u) = tra

[
RaL(u) . . . Ra1(u)

]
= A(u) +D(u) , (2.2.21)

acting on V . Notice that taux(u) is a polynomial of u with degree L.

The monodromy operator (2.2.17) satisfies the RTT relation on Va⊗Va′ ⊗V , where Va′
∼= Va.

Namely,

Raa′(u− v)Ta(u)Ta′(v) = Ta′(v)Ta(u)Raa′(u− v) , (2.2.22)

whith Raa′ the R-matrix acting on Va ⊗ Va′ . This R-matrix is the simplest (non-trivial) solution

to the Yang-Baxter equation, and it is known as the Yang R-matrix. It reads [81]

Raa′(u) = u+ iPaa′ , (2.2.23)

where Paa′ is the permutation operator on Va ⊗ Va′ . Inverting one of the Yang R-matrix (for

u− v 6= ±i) in the RTT relation (2.2.22) and taking the trace over Va ⊗ Va′ , we deduce that

taux(u)taux(v) = taux(v)taux(u) . (2.2.24)

The auxiliary transfer matrix thus generates an Abelian family of spin-chain observables. More-

over, the auxiliary transfer matrix taux(u) is conserved, because it commutes with the fundamental
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transfer matrix t(v), which contains the Heisenberg Hamiltonian. This is the consequence of the

RTT relation on Va ⊗ Vs0 ⊗ V

Ra0(u− v)Ta(u)T0(v) = T0(v)Ta(u)Ra0(u− v) . (2.2.25)

We have just learnt that the two transfer matrices, taux(u) and t(v), commute with each other.

It implies that they can be diagonalized simultaneously. Then, a strategy to find the eigenvalues

of t(v) is to first work out the eigenstates of taux(u). It can be done by means of the algebraic

Bethe ansatz, as we will now see.

2.2.2 Algebraic Bethe Ansatz

Eigenstates

To understand how to find the eigenstates of the auxiliary transfer matrix

taux(u) = A(u) +D(u) , (2.2.26)

we may observe that we have already at hand a set of distinguished operators, namely the com-

ponents of the monodromy matrix (2.2.18). The latter have definite commutation relations with

the spin-chain sl(2) generators Sα, α = x, y, z, which follows from the sl(2) invariance of Ta(u) on

Va ⊗ V , [
Ta(u),

1
2σα + Sα

]
= 0 . (2.2.27)

Combining Eqs. (2.2.27) and (2.2.18), we find, for instance, that

[
Sz, A(u)

]
= 0 ,

[
Sz, B(u)

]
= −B(u) ,

[
Sz, C(u)

]
= C(u) ,

[
Sz,D(u)

]
= 0 . (2.2.28)

We first note that taux(u) = A(u) +D(u) commutes with Sz, which means that we can look for

eigenstates of taux(u) at a given value of Sz, say Ls−N . In other words, eigenstates of taux(u) can

be found with a given number N of magnons. More generally, one can easily show that taux(u)

is sl(2) invariant, which means that it is sufficient to consider highest weight states. Then, we

see that the operator B(u) decreases by one unit the value of Sz. It follows that B(u)Ω is a one-

magnon state, with Ω the spin-chain vacuum. Moreover, since B(u) depends on the (arbitrary)

spectral parameter u, we expect this state to be generic enough for our problem.8 Similarly, we

construct a N -magnon state as B(u1) . . . B(uN )Ω, and, as we shall see, all N -magnon eigenstates

of taux(u) can be found in this form, for particular values of u1, . . . , uN .

To decide if a state B(u1) . . . B(uN )Ω is eigenstate of taux(u), we will make use of the algebra

for the components A(u), . . . ,D(u). The latter follows from the RTT relation (2.2.22) for the

auxiliary monodromy matrix. This equation contains sixteen algebraic identities, three of them

which we single out for our procedure. They read

[
B(u), B(v)

]
= 0 , (2.2.29)

8Note that an arbitrary one-magnon state is not necessarily of the form B(u)Ω for some u, but it can be found

as a linear combination of such states. Therefore, what we are assuming here is that it is sufficient to consider states

as B(u)Ω to find all one-magnon eigenstates of taux(u).
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and

A(u)B(v) =
u− v − i
u− v B(v)A(u) +

i

u− vB(u)A(v) , (2.2.30)

D(u)B(v) =
u− v + i

u− v B(v)D(u) − i

u− vB(u)D(v) . (2.2.31)

Note that to prevent the right-hand side of Eqs. (2.2.30) and (2.2.31) from becoming singular, we

will always assume that the spectral parameters are all distinct from each other.

Let us first analyse the situation for the vacuum state of the spin chain, Ω. When acting on

Ω, the monodromy matrix takes a triangular form

Ta(u)Ω =

(
(u+ is)LΩ B(u)Ω

0 (u− is)LΩ

)
. (2.2.32)

This is an immediate consequence of the definition of Ta(u) as a product of Lax operators,

Eqs. (2.2.17) and (2.2.20), and of the defining property of Ω to be annihilated by S
(m)
+ , with

m = 1, . . . , L. The vacuum state Ω is therefore an eigenstate of the transfer matrix with eigen-

value

taux(u)Ω =
(
A(u) +D(u)

)
Ω =

[
(u+ is)L + (u− is)L

]
Ω . (2.2.33)

As we said above, we look for higher excited eigenstates as

Φ({ui}) = B(u1) . . . B(uN )Ω . (2.2.34)

Thanks to Eq. (2.2.29), the state Φ({ui}) does not depend on the order in which the product of

B(u1), ..., B(uN ) is taken. Therefore, we can assume, without loss of generality, that u1 > . . . >

uN . We exclude the case of coinciding spectral parameters for the reason given before, see remark

after Eq. (2.2.31) and Eqs. (2.2.39), (2.2.40) below. The state Φ({ui}) is an eigenstate of the

operator Sz with eigenvalue

SzΦ({ui}) = (Ls−N)Φ({ui}) . (2.2.35)

However, it is not necessarily a highest weight state because S+Φ({ui}) does not vanish for generic

values of the spectral parameters {ui}.
To see if Φ({ui}) is an eigenstate of the auxiliary transfer matrix (2.2.26), we apply Eqs. (2.2.30)

and (2.2.31) and we obtain the actions of A(u) and D(u) on Φ({ui}) as

A(u)Φ({ui}) = α(u, {ui})Φ({ui}) +
N∑

k=1

βk(u, {ui})B(u1) . . . B̂(uk) . . . B(uN )B(u)Ω , (2.2.36)

D(u)Φ({ui}) = δ(u, {ui})Φ({ui}) +
N∑

k=1

γk(u, {ui})B(u1) . . . B̂(uk) . . . B(uN )B(u)Ω , (2.2.37)

where the hat on B(uk) means the omission of the corresponding operator. The spectral coeffi-

cients α, δ, βk , γk are given by

α(u, {ui}) = (u+ is)L
N∏

j=1

u− uj − i
u− uj

, δ(u, {ui}) = (u− is)L
N∏

j=1

u− uj + i

u− uj
, (2.2.38)
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and

βk(u, {ui}) =
i

u− uk
(uk + is)L

N∏

j 6=k

uk − uj − i
uk − uj

, (2.2.39)

γk(u, {ui}) = − i

u− uk
(uk − is)L

N∏

j 6=k

uk − uj + i

uk − uj
. (2.2.40)

Combining Eqs. (2.2.36) and (2.2.37) and assuming that two products of creation operators are

linearly independent for distinct sets of spectral parameters, we find that Φ({ui}) is an eigenstate

of taux(u) = A(u) +D(u) if the set of equations (k = 1, . . . , N)

βk(u, {ui}) + γk(u, {ui}) = 0 , (2.2.41)

is satisfied. Using Eqs. (2.2.39) and (2.2.40), we obtain the system of algebraic equations known

as Bethe ansatz equations,

(
uk − is
uk + is

)L

=
N∏

j 6=k

uk − uj − i
uk − uj + i

. (2.2.42)

Spectral parameters {uk} satisfying (2.2.42) are called Bethe roots and the corresponding

eigenstates Φ({ui}) are Bethe states. The eigenvalue of taux(u) corresponding to the Bethe state

Φ({ui}) can be read directly from Eqs. (2.2.36), (2.2.37) and (2.2.38),

taux(u)Φ({ui}) = taux(u, {ui})Φ({ui}) (2.2.43)

=

[
(u+ is)L

N∏

j=1

u− uj − i
u− uj

+ (u− is)L
N∏

j=1

u− uj + i

u− uj

]
Φ({ui}) .

We verify that the poles of the expression in square brackets, above, cancel when the Bethe

ansatz equations (2.2.42) are fulfilled, in agreement with the polynomiality of the auxiliary transfer

matrix. Moreover, a Bethe state Φ({ui}) is a highest weight, i.e.

S+Φ({ui}) = 0 . (2.2.44)

Later, by examining the solutions to the Bethe ansatz equations (2.2.42), we will argue that their

number correctly matches the degeneracy of highest weight states made out of N magnons.

We succeeded in finding the eigenstates of the auxiliary transfer matrix. We found that an

eigenstate is characterized by a set of Bethe roots satisfying the Bethe ansatz equations (2.2.42).

The Bethe roots play the role of quantum numbers and should encode all information about

the eigenstate. In particular, they determine completely the eigenvalue of the auxiliary transfer

matrix, Eq. (2.2.43). We will now see that this is also the case for the fundamental transfer matrix.
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Energy Spectrum

The evaluation of the fundamental transfer matrix t(u) on a Bethe state Φ({ui}) requires some

algebra, that is explained in [82].9 The outcome is that

t(u)Φ({ui}) = t(u, {ui})Φ({ui}) =

[ N∏

k=1

u− uk − is
u− uk + is

+O
(
uL
) ]

Φ({ui}) . (2.2.45)

From this result and making of use ot the expansion (2.2.13), we obtain the eigenvalue of the

higher conserved charges,

QrΦ({ui}) = qrΦ({ui}) , (2.2.46)

with

qr =
i

r − 1

N∑

k=1

[
(uk − is)1−r − (uk + is)1−r

]
, (2.2.47)

for r 6 L. In particular, we find that the Heisenberg Hamiltonian H = Q2 + constant, see

Eq. (2.2.15), has the eigenvalue

(H − Evac)Φ({ui}) = E Φ({ui}) , (2.2.48)

with

E =
N∑

k=1

Ek = −
N∑

k=1

2s

u2
k + s2

, (2.2.49)

and the vacuum energy is

Evac = 2L(ψ(−2s) − ψ(1)) . (2.2.50)

Notice that, for s = −1/2, the energy E is positive definite and that the vacuum energy vanishes,

Evac = 0.

We conclude, recalling the identity between the one-loop (planar) dilatation operator and the

Hamiltonian of the XXX−1/2 Heisenberg spin chain, δD = 2g2H + O(g4), that the spectrum of

anomalous dimensions, of Wilson operators carrying twist L and Lorentz spin N , is given by

δ∆ = 2g2
N∑

k=1

1

u2
k + 1

4

+O
(
g4
)
, (2.2.51)

where the Bethe roots {ui} are solutions to the Bethe ansatz equations, Eqs. (2.2.42) with s =

−1/2. We require, furthermore, the condition UΦ({ui}) = Φ({ui}) to be fulfilled, as was already

explained. Using U = t(0) and Eq. (2.2.45) with s = −1/2, it turns into

N∏

k=1

uk − i
2

uk + i
2

= 1 . (2.2.52)

9Strictly speaking, it is explained in [82] how to construct the eigenvalue of the fundamental, or spin s, transfer

matrix from the auxiliary, or spin 1/2, one, for s > 0, that is for an arbitrary-finite dimensional representation.

Here we assume that the result obtained in this way can be continued to s = −1/2.
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Interlude: Factorized Scattering

Looking back at Eq. (2.2.49), we note that, remarkably enough, the energy E for a N -magnon

Bethe state, with roots {uk}, is simply given by the sum of the individual energies {Ek}. The

same is true for the higher conserved charges (2.2.47), and, in particular, for the total momentum

p = q1,

p =

N∑

k=1

pk = i

N∑

k=1

log

(
uk + is

uk − is

)
. (2.2.53)

Then, to each root uk we can associate a momentum pk, as above, or reciprocally with uk =

−s cot (pk/2). In terms of the momentum pk, the energy of an individual magnon Ek, with

rapidity (i.e. Bethe root) uk, reads

Ek = −2

s
sin2

(pk

2

)
. (2.2.54)

The energy of the Bethe state Φ({uk}) is thus identical to the one of a system of free particles

with momenta {pk} and dispersion relation (2.2.54). However, the Heisenberg spin chain is not a

free theory, and its energy spectrum is not the one of a theory of free magnons propagating over a

periodic lattice of L sites. This is reflected in the fact that the momenta {pk} do not satisfy free

quantization conditions on a closed spin chain of length L. The latter would read

eipkL ≡
(
uk − is
uk + is

)L

= 1 . (2.2.55)

Instead, the momenta {pk} are solutions to the Bethe ansatz equations (2.2.42), that can be

written as

eipkL
N∏

j 6=k

S(pk, pj) = 1 , (2.2.56)

where

S(pk, pj) =
cot
(pk

2

)
− cot

(pj

2

)
− i

s

cot
(pk

2

)
− cot

(pj

2

)
+ i

s

=
uk − uj + i

uk − uj − i
. (2.2.57)

We note that if S(pk, pj) in (2.2.56) were equal to one, the magnons would be free. There-

fore, the phase S(pk, pj), Eq. (2.2.57), accounts for the interaction between the magnons. Indeed,

S(pk, pj) is the S-matrix for the scattering of a magnon, with momentum pk, off a magnon,

with momentum pj, both of them propagating over a spin chain of infinite length.10 The equa-

tions (2.2.56) then reflect the remarkable property that the N -body scattering decomposes into a

product of two-by-two scatterings. This can be understood as follows. The Bethe ansatz equa-

tions (2.2.56) can be thought of as the conditions of periodicity for the N -body wave function on

a closed spin chain of length L. Heuristically, when one of the N magnons, with momentum pk,

is brought once around the spin chain, the wave function for the system is multiplied by a phase,

due to the propagation and to the scattering off the others magnons, with momenta {pj , j 6= k}.
Since the scattering factorizes, this phase is precisely the left-hand side of (2.2.56), and, for a

periodic wave function, it should be 1, or equivalently Eqs. (2.2.56).

10Note that the scattering of two magnons over a 1D lattice is, for kinematical reasons, necessarily diffractionless:

{pin
k , p

in
j } = {pout

k , pout
j } = {pk, pj} and the two-by-two S-matrix is just a phase.
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The factorized scattering property is intimately tied to the existence of higher conserved

charges, see discussion in [86] for instance, and it is an alternative way of thinking of integra-

bility. The original derivation by Bethe [80] of his equations (for the compact s = 1/2 XXX

Heisenberg spin chain) was based on a ansatz for the N -body wave function implementing pre-

cisely the factorized scattering hypothesis. This approach is known as the coordinate Bethe ansatz.

It has been used in [40] to diagonalize the Heisenberg Hamiltonian for s = −1/2 and shown to

reproduce the equations (2.2.42) obtained from the algebraic Bethe ansatz. As stressed in [40],

the coordinate Bethe ansatz is particularly well-suited to diagonalize the higher-loop dilatation

operator and, then, compute the higher-loop deformation of the equations (2.2.42) in the gauge

theory.11 The outcome is a set of all-loop (asymptotic) Bethe ansatz equations [41] that are of the

type (2.2.56) but with S(pk, pj) now being the all-loop 2-body S-matrix proposed in [42, 43, 44].

These equations are complemented with the dispersion relation that generalizes (2.2.54) to all

loops [39, 42]. They will be given and discussed at the end of this chapter.

2.3 Large Spin Limit

In this section, we will analyze the large spin limit N → ∞ of the Bethe ansatz equations of the

XXX−1/2 Heisenberg spin chain. We whall see that the latter set of discrete equations simplifies

in this limit, and can be conveniently replaced by an integral equation.12 Solving this equation,

for the ground-state distribution of Bethe roots at large N , we will recover the logarithmic scaling

for the minimal anomalous dimension, with the correct one-loop expression of the cusp anomalous

dimension. The generalized scaling limit L ∼ logN ≫ 1 [45, 47] will be also considered. More

material about the large spin limit of the s = −1/2 Bethe ansatz equations can be found in [62,

88, 45, 63, 47].

2.3.1 Bethe Ansatz Equations

We start with few remarks about the solutions to the Bethe ansatz equations, in view of under-

standing how to characterize the ground-state distribution of Bethe roots, associated with the

minimal anomalous dimension.

Counting of the Solutions

The Bethe ansatz equations read

(
uk + i

2

uk − i
2

)L

=

N∏

j 6=k

uk − uj − i
uk − uj + i

, (2.3.1)

11The algebraic Bethe ansatz cannot be applied in that case, because it is still unknown how to deform the

R-matrix at higher loops.
12In essence, our analysis of the large spin limit is similar to the treatment of the thermodynamic limit of the

Bethe ansatz equations for a gas of bosons with δ-function interaction [87]. Nevertheless, it is important to stress

that the large spin limit is not the thermodynamic limit of the s = −1/2 Bethe ansatz equations, which would

correspond to N,L→ ∞ with N/L kept fixed (see [95] for this limit and [45] for a discussion of the different regimes

of high-twist high-spin minimal anomalous dimension).
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where the Bethe roots uk, k = 1, . . . , N, are all distincts by construction. We assume, furthermore,

that all the roots are real and finite,13 and that they have been decreasingly ordered, +∞ > u1 >

u2 > . . . > uN > −∞, to avoid any overcounting. We would like to uncover the main features of the

solutions to Eq. (2.3.1), in order to understand how to characterize the ground-state distribution

of Bethe roots. We start by rewriting the Bethe ansatz equations, Eqs. (2.3.1), as follows

(
1− 2iuk

1 + 2iuk

)L

= (−1)L+N−1
N∏

j=1

1 + iuk − iuj

1− iuk + iuj
. (2.3.2)

Note that the product in Eq. (2.3.2) is taken over all the roots, including the root uk, in distinction

with Eq. (2.3.1). We now take the logarithm on both sides of the equation (2.3.2), choosing the

principal branch, and obtain

2πnk = iL log

[
1− 2iuk

1 + 2iuk

]
− i

N∑

j=1

log

[
1 + iuk − iuj

1− iuk + iuj

]
. (2.3.3)

Here, the mode numbers nk belong to Z or to (2Z + 1)/2, for L + N odd or even, respectively.

It is convenient to introduce an ‘off-shell’ observable H(u), called the counting function, that is

defined, for u an arbitrary real number, by

H(u) ≡ iL log

[
1− 2iu

1 + 2iu

]
− i

N∑

j=1

log

[
1 + iu− iuj

1− iu+ iuj

]
. (2.3.4)

Then, the equation (2.3.3) becomes equivalent to

2πnk = H(uk) . (2.3.5)

Note that H(u) depends on the distribution of Bethe roots, through the second term on the right-

hand side of Eq (2.3.4), and it is a real function of u, under our general assumptions. The counting

function H(u) has nice properties, worth to emphasize. For instance, we find its asymptotic values

at infinity as

H(±∞) = ±π(L+N) , (2.3.6)

where we took care of our choice of determination for the logarithm. Moreover, H(u) is an

increasing function on the real u−axis, since its derivative is positive there,

H ′(u) =
4L

1 + 4u2
+

N∑

j=1

2

1 + (u− uj)2
. (2.3.7)

Observing Eq. (2.3.5) and taking into account the ordering of roots, we conclude that integers nk

are also ordered and bounded,

H(∞) > 2πn1 > . . . > 2πnN > H(−∞) . (2.3.8)

13Sending to infinity some of the Bethe roots amounts to consider sl(2)-descendants. The reality of the solutions

to the s = −1/2 Bethe ansatz equations is discussed in [62, 88]. It contrasts with the existence of complex solutions

in the (compact) s = 1/2 case (see [81] for instance). Physically, the difference between the two situations is that

the interaction between s = −1/2 magnons is repulsive, while it permits formation of bound states in the s = 1/2

case, associated to complex rapidities.
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This implies that the mode numbers nk should belong to the following set

nk ∈ S =

{
L+N − 1

2
,
L+N − 3

2
, . . . ,

3− L−N
2

,
1− L−N

2

}
, (2.3.9)

independently of the parity of L+N . There is a further restriction that the two outermost values

of the set (2.3.9) are forbidden. Indeed, considering the largest root u1, corresponding to the

largest number n1, we get from Eq. (2.3.4) the inequality

H(u1) < iL log

[
1− 2iu1

1 + 2iu1

]
+ (N − 1)π < (L+N − 1)π , (2.3.10)

or equivalently, using Eq. (2.3.5),

n1 <
L+N − 1

2
. (2.3.11)

Similarly for the smallest root uN , corresponding to the smallest number nN , we find that

nN >
1− L−N

2
. (2.3.12)

Therefore, we conclude that the mode numbers nk should belong to

nk ∈ Ŝ =

{
L+N − 3

2
,
L+N − 5

2
, . . . ,

5− L−N
2

,
3− L−N

2

}
, (2.3.13)

leaving N + L − 2 possible values for nk. Given a particular distribution of N (distinct) mode

numbers nk in Ŝ, we will assume that there exists a unique distribution of roots {uk} satisfy-

ing (2.3.5). This implies that the number of (real) solutions to the Bethe ansatz equations (2.3.1)

is given by the binomial coefficient CN
N+L−2. This counting agrees with the number of primary

operators with Lorentz spin N , i.e. with sl(2) spin (Ls−N), in V ,

V ∼= V ⊗L
s
∼=

∞∑

N=0

V ⊕dN
Ls−N , dN = CN

N+L−2 . (2.3.14)

In particular, we verify that for twist-two operators (L = 2) there is only one anomalous dimension

for a given Lorentz spin N . To obtain the exact counting of primary operators in the gauge theory,

one still has to remove from the spin-chain Hilbert space V all the states which are not cyclically

invariant. This is enforced by the condition (2.2.52) that can be written as

1

L

N∑

k=1

nk ∈ Z or (2Z + 1)/2 , (2.3.15)

for N even or odd, respectively.

Ground-State Distribution

We will now discuss how to characterize the ground-state distribution of Bethe roots, following [88,

45, 44, 47]. Let us first introduce some terminology, that we will use in this section. We argued

before that to any solution of the Bethe ansatz equations there is corresponding distribution of
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N mode numbers nk in Ŝ. Equivalently, we could replace it by a distribution of (L − 2) holes

{n̂l, l = 1, . . . , L − 2} ⊂ Ŝ, which is the complementary of {nk} in Ŝ.14 with the help of the

counting function H(u), Eq. (2.3.4), we may associate a rapidity ûl to each of these holes as

2πn̂l = H(ûl) , (2.3.16)

mimicking this way the relation between the mode number nk and the Bethe root uk. The hole

rapidities have a nice interpretation. Indeed, due to their definition given above, they are solution

to the equation (
ûl + i

2

ûl − i
2

)L

= −
N∏

k=1

ûl − uk − i
ûl − uk + i

, (2.3.17)

or equivalently

taux(ûl, {uk}) =
(
ûl + i

2

)L N∏

k=1

ûl − uk + i

ûl − uk
+
(
ûl − i

2

)L N∏

k=1

ûl − uk − i
ûl − uk

= 0 , (2.3.18)

where taux(u, {uk}) is the eigenvalue of the auxiliary transfer matrix taux(u), evaluated on the

Bethe states Φ({uk}), see Eq. (2.2.43). Therefore, the hole rapidities are roots of taux(u, {uk}).
We recall that by construction taux(u, {uk}) is a polynomial of u of degree L. Among the L roots

of this polynomial, we identified (L−2) roots as corresponding to hole rapidities. The two missing

roots correspond to the two outermost elements of the set S, that we have excluded from our

consideration because they could not be associated to Bethe roots. These remarks allows us to

make a contact with an off-shell formulation of the Bethe ansatz equations, known as the Baxter

equation. It reads

(u+ is)LQ(u− i) + (u+ is)LQ(u+ i) = taux(u, {uj})Q(u) , (2.3.19)

where Q(u) =
∏N

j=1(u−uj) is the Baxter polynomial and s = −1/2 for scalar operators. It is clear

that the Baxter equation implies the Bethe ansatz equations, since for u = uk the right-hand side

of (2.3.19) vanishes and we recover (2.3.1). Moreover, dividing on both sides of (2.3.19) by Q(u),

we immediately verify that the Baxter equation correctly reproduces the expression (2.2.43) for

the eigenvalue of the auxiliary transfer matrix. One of the advantages of the Baxter formulation of

the Bethe ansatz equations is that it is sometimes simpler to characterize Q(u) than the complete

set of Bethe roots, especially when the number of roots is large. In the particular twist-two

case, it is even possible to solve exactly the Baxter equation for any value of N [27]. As shown

in [62, 88, 45, 89], the Baxter equation can be used also to unravel several aspects of the spectrum

of anomalous dimensions, including the large spin limit of the minimal anomalous dimension at

arbitrary twist. Nevertheless, we will not pursue this direction, and will follow instead the analysis

of [44, 47] for convenience with the higher-loop treatment analysed in the following chapter.15

So let us come back to the problem of the determination of the ground-state distribution

of Bethe roots. We expect the ground state to be non-degenerate. We thus assume an even

14Note that for L = 2 there are no holes in bS and all positions in bS are occupied.
15Let us mention however that an all-loop asymptotic Baxter equation for planar N = 4 SYM theory has been

proposed in [90] and that it has been used both to study the all-loop large spin limit of minimal anomalous

dimension [91] and to solve exactly the L = 2 case in a perturbative expansion in the coupling constant [92, 93].



2.3. LARGE SPIN LIMIT 39

distribution of roots uk [88, 45], or equivalently of mode numbers nk, and to respect the cyclicity

condition (2.3.15) we choose an even Lorentz spin N . To minimize the (one-loop) anomalous

dimension given by

δ∆ = 2g2
N∑

k=1

4

1 + 4u2
k

+O
(
g4
)
, (2.3.20)

we will try to take the roots {uk} as large as possible. So let us understand the constraints put on

the shape of the distribution by the Bethe equations. We recall that two consecutive roots have

to be placed such that the counting function H(u) varies between them by a multiple of 2π. Now

we look at the equation (2.3.4) and we see that H(u) is expressed as a sum of two terms. The

first term is centered around the origin u ∼ 0 and looks like an external potential for the roots.

The second term, on the other hand, only depends on the relative distances between the roots.

Moreover, it is not difficult to see that the first term attracts and bounds the roots close to the

origin u ∼ 0, while the second term generates instead a repulsive interaction between them. It

follows that the typical distance between two consecutive roots is smaller when they are close to

the origin u ∼ 0 than to the edges of the distribution. The only freedom that we have to increase

the typical distance between roots around the origin, and thus decrease their density there, is to

allow for hole rapidities to sit between them. The best we can do is then to put (L − 2) hole

rapidities in-between the smallest positive root uN/2 and the largest negative one uN/2+1. That

configuration with all the hole rapidities centered around the origin and surrounded by the Bethe

roots should correspond to the minimal anomalous dimension [45].16

2.3.2 Large Spin Integral Equation

As we have seen, the ground-state distribution of roots is symmetric, supported on the interval

D = D− ∪D+, with D+ = −D− = [a, c] = [uN/2, u1], and characterized by the condition that the

(L − 2) hole rapidities lie on [−a, a]. For generic values of the twist L and the Lorentz spin N ,

it is not possible to find the explicit distribution of roots satisfying these conditions and solving

the Bethe ansatz equations. Nevertheless, some simplifications occur when N and/or L get large.

Here we are interested in the limit N →∞ with L kept fixed, for which we have a large number

of roots but a given number of hole rapidities. In that limit, we expect the distribution of roots

to be dense17 and we will thus attempt to substitute to the discrete Bethe ansatz equations a

continuum integral equation.

Let us start introducing a new function ρ(u) defined in terms of the counting function H(u),

Eq. (2.3.4), as

H(u) = 2π

∫ u

0
dv ρ(v) . (2.3.21)

Given the properties of H(u) (computed for the ground state), the function ρ(u) is smooth,

positive and symmetric ρ(u) = ρ(−u). Note also that ρ(u) is defined for an arbitrary real value

of u. The reason to introduce ρ(u) is that, once integrated, it permits to interpolate the counting

of roots (magnons and/or holes) inside some interval. It simply follows from the relation between

16Note that, for kinematical reasons, we still have two hole rapidities that are bigger in magnitude than any Bethe

roots. As said before, they correspond to the two outermost values of S.
17At least away from u ∼ ±c.
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H(uk) and/or H(ûl) and the mode numbers nk and/or n̂l. Thus we refer to ρ(u) as a density

distribution. We recall that the counting function H(u) depends on the Bethe roots {uk} and

reads explicitely as

H(u) = iL log

[
1− 2iu

1 + 2iu

]
− i

N∑

k=1

log

[
1 + iu− iuk

1− iu+ iuk

]
. (2.3.22)

To derive an integral equation for ρ(u), we would like to replace the sum over {uk} in the expression

above by an integral over the domain D, where the roots condense. To achieve this goal, one could

for instance make use of the Euler-Maclaurin summation formula. In this way, one would obtain

H(u) = iL log

[
1− 2iu

1 + 2iu

]
− i
∫

D
dv ρ(v) log

[
1 + iu− iv
1− iu+ iv

]
+ ... , (2.3.23)

where dots stand for boundary terms, which depend on u, c and a. However, not all of these

corrections are negligible, in particular those associated with the lower-edge parameter a. To

circumvent this difficulty, we will complete the sum in (2.3.23) by extending it to the (L− 2) hole

rapidities {ûl}, which lie inside the interval [−a, a] for the ground state. Doing so and applying

the Euler-Maclaurin formula, we obtain

H(u) = iL log

[
1− 2iu

1 + 2iu

]
+i

L−2∑

l=1

log

[
1 + iu− iûl

1− iu+ iûl

]
−i
∫ c

−c
dv ρ(v) log

[
1 + iu− iv
1− iu+ iv

]
+. . . . (2.3.24)

Here the dots stand for corrections that are suppressed as 1/(ρ(c)c2), when c → ∞ with u < c.

The quantity ρ(c) = H ′(c) = H ′(u1) is bounded from below ρ(c) > 2, see Eq. (2.3.7), and as

shown in [88, 45] the parameter c is large when N ≫ 1. Therefore, we can safely neglect the

boundary terms in the large spin limit as far as we assume u < c. As we shall see, the logarithmic

scaling originates from the accumulation of roots around u ∼ 0 [88, 45], and the contribution from

u ∼ c to the anomalous dimension is well suppressed, so we will no longer take care of the dots

in (2.3.24). Now, differentiating on both sides of (2.3.21) and using (2.3.24), we can deduce an

integral equation for the function ρ(u) that reads

2πρ(u) =
4L

1 + 4u2
−

L−2∑

l=1

2

(u− ûl)2 + 1
+ 2

∫ c

−c
dv

ρ(v)

(u− v)2 + 1
. (2.3.25)

A similar equation has been obtained in [47], and for L = 2, when there is simply no sum over

hole rapidities in the right-hand side of (2.3.25), it coincides with the equation of [63]. The

equation (2.3.25) determines ρ(u) with an implicit dependence on the twist L, the parameter c

and the set of hole rapidities {ûl}. The latter are fixed, by definition, by the relation H(ûl) = 2πn̂l,

that can be written as ∫ ûl

0
dv ρ(v) = n̂l . (2.3.26)

Once the solution to (2.3.25) is known, the relation above can be thought of as a set of effective

Bethe ansatz equations that determine the hole rapidities. The edge-parameter c can be eliminated

in favor of the Lorentz spin N by the normalization condition H(c)−H(−c) = 2π(N +L− 3), or

equivalently ∫ c

−c
dv ρ(v) = N + L− 3 . (2.3.27)
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Finally, by using the same strategy as before to convert the sum over the Bethe roots into an

integral, the formula for the anomalous dimension reads

δ∆ = 2g2

∫ c

−c
dv

ρ(v)

u2 + 1
4

− 2g2
L−2∑

l=1

1

û2
l + 1

4

+ . . . , (2.3.28)

where the dots include terms suppressed by 1/c2 or higher-loop O(g4) corrections.

Without solving the equation (2.3.25), we note that if the hole rapidities were not taken into

account, or if they were all larger than the Bethe roots, we would find that the twist-L solution

is given simply by rescaling the twist-two solution such that18

2 ρ(u;L) = Lρ(u;L = 2) . (2.3.29)

Then, since the anomalous dimension of twist-two operators scales at large Lorentz spin as

δ∆L=2 = 2Γcusp(g) logN , we would have that δ∆L = LΓcusp(g) logN , which is the behavior of

the maximal anomalous dimension but not the desired result. Therefore, while the consideration

of the hole rapidities may look like a (subleading) discretization effect in the large N limit, their

role appears in fact to be essential for the correct description of the minimal anomalous dimension.

As we shall see, their introduction ensures that the logarithmic scaling δ∆min = 2Γcusp(g) logN

is independent of the twist L, as it should be [49].

2.3.3 Large Spin Solution

Let us discuss now the large c solution to (2.3.25). To simplify our problem, we decompose it by

writing the density distribution ρ(u) as the sum

ρ(u) =
L

2
ρ0(u) + ρ(u, {ûl}) . (2.3.30)

Here the first term ρ0(u) satisfies the twist-two equation [63]

2πρ0(u) =
8

1 + 4u2
+ 2

∫ c

−c
dv

ρ0(v)

(u− v)2 + 1
, (2.3.31)

while the second term accounts for the dependence on the holes rapidities and is solution to

2πρ(u, {ûl}) = −
L−2∑

l=1

2

(u− ûl)2 + 1
+ 2

∫ c

−c
dv

ρ(v, {ûl})
(u− v)2 + 1

. (2.3.32)

Note that due to the minus sign in front of the inhomogeneous term in the right-hand side

of (2.3.32), the function ρ(u, {ûl}) is negative. Instead, the function ρ0(u) and the total density

ρ(u) are positive. Keeping u fixed and assuming c → ∞, the integrals over v in (2.3.31) and

(2.3.32) can be extended to the full real axis and the equations (2.3.31) and (2.3.32) are solved

by the Fourier transform. In this way, we construct the solutions ρ0(u) and ρ(u, {ûl}) up to

corrections of order O(1/c) for |u| ≪ c. They read

ρ0(u) =
2

π

∫ ∞

0
dt e−t/2

(
cos (ut)

1− e−t
− 1

t

)
+ C0 , (2.3.33)

18The normalization condition (2.3.27) would be different however. But the right-hand side of (2.3.27) would still

scale as N at large N , which is sufficient for the validity of our discussion.



42 CHAPTER 2. WILSON OPERATORS AND INTEGRABILITY

ρ(u, {ul}) = − 1

π

L−2∑

l=1

∫ ∞

0
dt e−t

(
cos ((u− ûl)t)

1− e−t
− 1

t

)
−

L−2∑

l=1

C(ûl) , (2.3.34)

in agreement with the findings of [47]. Here, the constants C0 and C(ûl) depend a priori on c and

are left undetermined. They reflect the vanishing at t = 0 of the (multiplicative) kernel (1− e−t)

in Fourier space, leading to a δ-function ambiguity ∼ Cδ(t). The integrals over t in (2.3.33) and

(2.3.34) can be done exactly and the solutions ρ0(u) and ρ(u, {ul}) may be expressed in terms of

the Euler psi-function. Namely, we get

ρ0(u) = − 1

π

(
ψ
(

1
2 + iu

)
+ ψ

(
1
2 − iu

)
+ 2 log 2

)
+ C0 , (2.3.35)

ρ(u, {ul}) =
1

2π

L−2∑

l=1

(
ψ(1 + i(u− ûl)) + ψ(1 − i(u− ûl))

)
−

L−2∑

l=1

C(ûl) . (2.3.36)

Looking at the expressions (2.3.35) and (2.3.36), we may be a little bit surprised not to find any

sign of the expected logarithmic scaling nor of its property to be independent of the twist L.19 In

fact, this information is hidden in the coefficients C0 and C(ûl), which turn out to scale as log c,

when c ≫ 1, and therefore dominate the contributions coming from the psi-functions in (2.3.35)

and (2.3.36). A simple way to understand why the coefficients C0 and C(ûl) cannot be of order

O(c0) is to look at the solutions (2.3.35) and (2.3.36) for 1 ≪ |u|(≪ c). In that case, we may

apply the asymptotic behaviors of (2.3.35) and (2.3.36), given respectively by

ρ0(u) = − log u2 + 2 log 2

π
+C0 +O(1/u2) , (2.3.37)

ρ(u, {ul}) =
(L− 2) log u2

2π
−

L−2∑

l=1

C(ûl) +O(1/u2) , (2.3.38)

to reveal that the coefficients C0 and C(ûl) should grow at large c in order to restore the positivity

of ρ0(u), and, respectively, the negativity of ρ(u, {ul}). To verify it and uncover the logarithmic

scaling of the minimal anomalous dimension, we will look at the solutions to (2.3.31) and (2.3.32)

in the complementary regime c → ∞ with ū = u/c fixed, and match their expressions at ū ∼ 0

against (2.3.37) and (2.3.38). In this regime, the equations (2.3.31) and (2.3.32) turn into singular

integral equations of the Riemann-Hilbert type that can be solved explicitely [88, 45, 63, 47].

Their solutions read [88]

ρ0(ū) =
1

π
log

(
1 +
√

1− ū2

1−
√

1− ū2

)
, (2.3.39)

ρ(ū, {ul}) = −L− 2

2π
log

(
1 +
√

1− ū2

1−
√

1− ū2

)
. (2.3.40)

We see from the expression above that we completely lost the information about the distribution

of hole rapidities, except for their overall number. This is due to the fact that the rescaled hole

rapidities {ûl/c} vanish at large c. Moreover, we verify that the total density (2.3.30) is indepen-

dent of L and coincides with the twist-two solution (2.3.39), ρ(ū) = ρ0(ū). The solutions (2.3.39)

19We recall that L multiplies ρ0(u) in the expression for the total density ρ(u), see Eq.(2.3.30).
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and (2.3.40) are reliable at large c for |ū| > 1/c. Indeed, for |ū| ∼ 1/c the fine structure of the

hole rapidities emerges, and accounts in particular for the fact that the densities ρ(ū, {ul}) is

not picked around ū = 0, as suggested by (2.3.40), but instead around ū = ûl/c, in agreement

with (2.3.36). Moreover, the singularity of (2.3.39) and (2.3.40) at ū = 0 is resolved by a ∼ log c

behavior. We can now determine the arbitrary constants C0 and C(ûl) of (2.3.35) and (2.3.36).

Namely, matching the asymptotic behaviors of (2.3.39) and (2.3.40) for ū≪ 1, given respectively

by

ρ0(ū) = − log u2

π
+

2 log (2c)

π
+O(ū2) , (2.3.41)

ρ(ū, {ul}) =
(L− 2) log u2

2π
− (L− 2) log (2c)

π
+O(ū2) , (2.3.42)

with our previous findings, Eqs. (2.3.37) and (2.3.38), we get

C0 =
2 log (2c) + 2 log 2

π
, C(ûl) =

log (2c)

π
, (2.3.43)

This two values complete our construction of the large c solution.

We are now ready to compute the minimal anomalous dimension given by (2.3.28). We first

eliminate c in favor of N with the help of the normalization condition (2.3.27). We note that the

integral in (2.3.27) receives a dominant contribution from intermediate values of ū when c is large.

It means that it can be computed with the expressions (2.3.39) and (2.3.40) for ρ(ū). It leads to

2c = N + . . . , (2.3.44)

where dots stand for terms suppressed as compared to N ≫ 1. The situation is different for the

anomalous dimension (2.3.28). It receives dominant contribution from u fixed at large c, and it

can thus be computed with the expressions (2.3.33) and (2.3.34) for ρ(u), supplemented with the

values of the constants given in (2.3.43). We find this way that

δ∆min = 2g2

∫ ∞

−∞
du

ρ(u)

u2 + 1
4

− 2g2
L−2∑

l=1

1

û2
l + 1

4

+ . . .

= 8g2 logN − 8g2ψ(1) + 2g2
L−2∑

l=1

[
ψ
(

1
2 + iûl

)
+ ψ

(
1
2 − iûl

)
− 2ψ(1)

]
+ . . . , (2.3.45)

in agreement with the results of [45, 47]. Here the dots stand for 1/N -suppressed corrections

or higher-loop contributions. We conclude from (2.3.45) that the minimal anomalous dimension

scales logarithmically at large Lorentz spin N ≫ 1. Moreover, we verify that it supports the

twist-independent form

δ∆min = 2Γcusp(g) logN + . . . , (2.3.46)

with the one-loop expression for the cusp anomalous dimension given by Γcusp(g) = 4g2+. . . . This

results agrees with the known one-loop computation of the cusp anomalous dimension [51, 49],

obtained by a direct evaluation of the vev of a cusped Wilson loop in gauge theory.

All along our analysis, we have assumed that the hole rapidities were small. We can now

check that it is effectively the case by looking at the equations for them. We recall that they read
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(l = 1, . . . , L− 2) ∫ ûl

0
dv ρ(v) = n̂l , (2.3.47)

where the mode numbers {n̂l} fill the set {(L− 3)/2, (L− 5)/2, . . . ,−(L− 3)/2}. Since we found

that the density distribution scales as ρ(u) ∼ 2(logN)/π at large N , it immediately follows from

the relation above that the hole rapidities are small ûl ∼ 1/ logN . Similarly, the minimal magnon

rapidity a is small since it satisfies

L− 1

2
=

∫ a

0
dv ρ(v) ≃ a ρ(0) ∼ 2a

π
logN . (2.3.48)

Thus the gap in the distribution of Bethe roots closes in the large N limit. We note however that

a possibility to keep this gap open is to assume that the twist L is large and grows logarithmically

with N . This limit is interesting to probe the vicinity of the logaritmic scaling and we will now

consider it in more details.

2.3.4 Generalized Scaling Limit

The generalized scaling limit is obtained by keeping fixed the scaling variable j = L/ logN in the

limit N,L→∞ [45, 47]. Then, we find from (2.3.48) that a gap forms as a ∼ πj/4 when j starts

to grow. Moreover, since the typical distance between the hole rapidities is of order 1/ logN ,

their distribution over the interval [−a, a] is dense. We can therefore repeat our analysis above to

obtain an integral equation for the (renormalized) hole density distribution ρh(u) ≡ ρ(u)/ logN

with u ∈ [−a, a]. Namely, taking into account our previous findings for the density ρ(u), see

Eqs (2.3.30), (2.3.35), (2.3.36) and (2.3.43), and applying the Euler-Maclaurin formula to the

sums over hole rapidities, we find that the relation

2π

logN
ρ(u) = 4− j

[
ψ
(

1
2 + iu

)
+ ψ

(
1
2 − iu

)]
+

∫ a

−a
dv ρh(v)

[
ψ(1 + i(u− v)) + ψ(1− i(u− v))

]
,

(2.3.49)

holds true at large N and fixed j, for any value of u. For u ∈ [−a, a] we have ρh(u) ≡ ρ(u)/ logN

leading to the hole equation

2πρh(u) = 4− j
[
ψ
(

1
2 + iu

)
+ ψ

(
1
2 − iu

)]
+

∫ a

−a
dv ρh(v)

[
ψ(1 + i(u− v)) + ψ(1− i(u− v))

]
.

(2.3.50)

This equation agrees with that of [47] up to an inessential rescaling of the hole density ρh(u). After

solving the equation (2.3.50) for ρh(u), one can eliminate the parameter a in favor of j = L/ logN

with the help of the normalization condition
∫ a

−a
dv ρh(v) = j . (2.3.51)

We find moreover that the minimal anomalous dimension still scales logarithmically with N but

receives corrections depending on j. They can be introduced as [45, 47]

δ∆min =

[
2Γcusp(g) + ǫ(g, j)

]
logN + . . . , (2.3.52)
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where we absorbed the contribution of the holes into the scaling function ǫ(g, j). Here the dots

stand for corrections of order O(log0N) at fixed j. The one-loop expression for the scaling function

ǫ(g, j) follows from (2.3.45) and reads

ǫ(g, j) = 2g2

∫ a

−a
dv ρh(v)

[
ψ
(

1
2 + iv

)
+ ψ

(
1
2 − iv

)
− 2ψ(1)

]
+O(g4) , (2.3.53)

in agreement with [47].

To find a more explicit formula for ǫ(g, j) one needs to solve the hole equation (2.3.50). At

small j, or equivalently at small a, the solution can be found as a series obtained by iterating the

inhomogeneous term on the right-hand side of the hole equation [47]. The resulting expansion for

the scaling function runs in integer powers of j [45, 47]

ǫ(g, j) = ǫ1(g) j + ǫ2(g) j
2 + ǫ3(g) j

3 + . . . , (2.3.54)

with the one-loop results

ǫ1(g) = 8g2 log 2 +O(g4) , ǫ2(g) = 0 +O(g4) , ǫ3(g) = − 7

12
π2g2ζ3 +O(g4) , (2.3.55)

where ζz = ζ(z) is the Riemann zeta-function. At large j, the analysis of the hole equation is

more difficult. It was performed in [94] up to next-to-next-to-leading order. The one-loop result

reads explicitely as

ǫ(g, j) = 8g2

[
− 1 +

1

j
+O(1/j2)

]
+O(g4) . (2.3.56)

The first term in the the square brackets above exactly compensates the contribution of the cusp

anomalous dimension in (2.3.52), and we find that the one-loop anomalous dimension scales as [95]

δ∆min =
8g2 log2N

L
+ . . . , (2.3.57)

when 1≪ logN ≪ L. We stress however that even if L is quite large when j is large, it is always

assumed to be much smaller than N for the consistency of our approach. If L were comparable

with N ≫ 1, we would have to revise the construction of the magnon density distribution ρ(ū)

for rescaled rapidities ū = u/c ∼ u/N ∼ O(1). This is so because (rescaled) hole rapidities ûl/c

would not be sent to zero if L ∼ N ≫ 1 and, therefore, the density ρ(ū) would no longer be given

by the same twist-independent expression ρ(ū;L) = ρ(ū, L = 2). The cancellation in (2.3.57) of

the cusp anomalous dimension against the leading scaling function at large j is a manifestation of

this lost of universality. In conclusion, the result (2.3.57) holds for 1≪ logN ≪ L≪ N only [45].

The previous remark points toward the existence of another regime when L ∼ N ≫ 1. It can

be investigated by taking the scaling limit N,L → ∞ with α ≡ L/N kept fixed and arbitrary.

This regime has been analysed in [95] to one loop order in the gauge theory and to leading order

at strong coupling in the dual string theory. When α≪ 1, it was found that

δ∆min =
8g2 log2 (1/α)

L
∼ 8g2 log2N

L
, (2.3.58)

in agreement with (2.3.57). This is satisfying since the limits α → 0 and j → ∞ overlap. When

α≫ 1, the anomalous dimension is small and exhibits the BMN scaling

δ∆min =
8π2g2

αL
=

8π2g2N

L2
. (2.3.59)
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At intermediate α, the one-loop anomalous dimension can be found as δ∆min = g2F (α)/L, up

to subleading corrections suppressed by higher powers of 1/L. Here F (α) is independent of the

coupling constant and expressed parametrically in terms of some elliptic functions. Remarkably

enough, the AdS/CFT correspondence can be verified immediately in the α-regime. As shown

in [95], one gets Fgauge(α) = Fstring(α) for arbitrary α, with Fstring(α) extracted from the energy

of a semiclassical spinning string E − N − L = g2F (α)/L carrying both a large spin N and

momentum L [14, 15]. This direct matching of the gauge (g2 ≪ 1) and string (g ≫ 1) theory

results in the α-regime, without the recourse of interpolating between weak and strong coupling,

is an illustration of the BMN correspondence [13].20 The direct matching does not apply however

when the anomalous dimension scales logarithmically with N [14, 15].21 In that case, to verify

the AdS/CFT correspondence, one has to compute radiative corrections to the cusp anomalous

dimension and scaling function, resum the weak coupling expansion and take the strong coupling

limit in order to compare with the string theory. As we shall see, this program became recently

feasible thanks to conjectured all-loop Bethe ansatz equations for the sl(2) sector of the gauge

theory [40, 41, 44].

2.3.5 Concluding Remarks

We see from all these results that the structure of the large-spin minimal anomalous dimension

is quite involved and depends crucially on whether L is small or large as compared to logN

and/or N [45]. When L ∼ logN ≫ 1, the minimal anomalous dimension has a logarithmic

growth ∼ logN , controlled by the cusp anomalous dimension and the scaling function. Our

analysis demonstrated how both observables can be obtained from the solution to the Bethe

ansatz equations. The analysis of [95] completes the picture for L ∼ N ≫ 1 and it is found that

the anomalous dimension no longer scales logarithmically with N but instead is suppressed as

1/L.

In the following section, we will report on the deformation of the one-loop Bethe ansatz

equations that incorporates the higher-loop corrections of the gauge theory. Given their explicit

expressions [41, 44], one can generalize the large N analysis, above, in order to compute the

cusp anomalous dimension and scaling function to all loops. It leads to integral equations for the

all-loop density distributions of Bethe roots and hole rapidities, constructed in [63, 44, 47]. In

the next chapters, we will solve these equations at strong coupling and make comparison with

string theory. We will always consider the vicinity of the logarithmic regime corresponding to

j = L/ logN fixed and ‘small’.22 We will see that even under this restriction the analysis remains

subtle at strong coupling.

2.4 All-Loop Asymptotic Bethe Ansatz Equations

In this section, we present the all-loop asymptotic Bethe ansatz, in the sl(2) sector, conjectured

in [40, 41, 44].

20Strictly speaking, the result of [95] ??? [96] is a generalization of the BMN scaling hypothesis that originally

assumes that N is kept fixed when L is taken to be large.
21Except if j → ∞.
22We will precise later what we mean by small when the coupling gets large.
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These equations are most naturally written in terms of a deformed spectral parameter x(u)

defined as [39]

2x(u) = u+
√
u2 − (2g)2 . (2.4.1)

Here u is the usual spin-chain spectral parameter and x(u) has a cut along the real interval

u2 < (2g)2. We note that x(u) ≃ u if |u| ≫ 2g and more particularly if g ∼ 0. Moreover, we see

that the weak coupling expansion of the deformed spectral parameter x(u), assuming u fixed and

away from the cut, runs in integer powers of g2.

Equations

In the sl(2) sector, the all-loop asymptotic Bethe ansatz equations [40, 41, 44] read

(
x+

k

x−k

)L

=
N∏

j 6=k

x−k − x+
j

x+
k − x−j

1− g2/x+
k x

−
j

1− g2/x−k x
+
j

exp 2iθ(uk, uj) , (2.4.2)

for a N magnons Bethe state, k = 1, . . . , N . Here, we have introduced the notations x±k ≡
x±(uk) ≡ x(uk ± i/2), and θ(uk, uj) stands for the so-called dressing phase. We will see later that

the dressing phase vanishes up to three-loop in N = 4 SYM theory [44], while it is a leading-order

effect at strong coupling in order to correctly reproduce the spectrum of semiclassical states in

type IIB superstring theory [98, 40].

Putting the dressing phase to zero, θ(uk, uj) = 0, it is immediate to verify that the equa-

tions (2.4.2) reproduce the Bethe ansatz equations of the Heisenberg spin chain, in the one-loop

approximation g = 0 and x± = u± i/2. Moreover, the equations (2.4.2) were shown to diagonalize

the mixing matrix up to two-loop, by explicit gauge theory computations [63, 37] and algebraic

construction [35]. They were furthermore proved to be consistent with the known three-loop

spectroscopy of anomalous dimensions (see for instance [40]).

Lastly, the equations (2.4.2) are supplemented with the cyclicity condition

N∏

k=1

x+
k

x−k
= 1 . (2.4.3)

Note that for a state with an even distribution of Bethe roots {uk} (and an even Lorentz-spin N),

they are automatically satisfied, due to the property x+(−u) = −x−(u).

Dressing Phase

The dressing phase θ(uk, uj) admits a bilinear expansion over the infinite tower of conserved

charges [98, 40, 99], that can be parameterized as

θ(uk, uj) =
∑

r>2

∑

s>r+1

gr+s−2 cr,s(g)
(
qr(uk)qs(uj)− qs(uk)qr(uj)

)
. (2.4.4)

Here, the all-loop expressions for the charges are given by [39] (r > 2)

qr(u) =
i

r − 1

(
x+(u)1−r − x−(u)1−r

)
, (2.4.5)
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and the coupling-dependent expansion coefficients cr,s(g) all vanish, except for the infinite sequence

s = r + 1 + 2n with n ∈ N.

At strong coupling, the dressing-phase coefficients are given, up to next-to-leading order, by

cr,s(g) = g δr+1,s −
2(r − 1)(s − 1)

π(s− r)(s+ r − 2)
+ . . . , (2.4.6)

where dots stand for two- and higher-loop quantum string contributions, suppressed by powers of

1/g. The first term in the right-hand side of (2.4.6) was obtained in [98, 40] by discretizing the

finite-gap equations of the classical string theory [18, 97].23 One-loop quantum-string correction to

the ‘classical’ dressing-phase, the second term in the right-hand side of (2.4.6), was first discussed

and partially computed in [100] by confronting the prediction of the Bethe ansatz equations with

an explicit string theory computation for the one-loop energy shift of a spinning string. The

complete one-loop expression was constructed in [101] in a similar way. It passed checks [102, 109]

and was also explicitely constructed by a direct one-loop quantization of the finite-gap equations

in [103]. An all-order 1/g expansion for the coefficients cr,s(g), which turns out to be asymptotic,

was proposed in [43], by exploiting the crossing symmetry equation, argued in [104] to constrain

the functional dependence of the dressing phase.

An exact representation for the dressing-phase coefficients, which ‘resums’ the asymptotic

series (2.4.6), was proposed in [44]. It reads explicitely as

cr,s(g) = 2(−1)n(r − 1)(s − 1)

∫ ∞

0

dt

t

Jr−1(2gt)Js−1(2gt)

et−1
, (2.4.7)

still with r > 2, s = r+1+2n and n ∈ N. Here, Jk(t) is the k-th Bessel function of the first kind.

The latter is a holomorphic function of t, with small t behavior given by Jk(t) ∝ tk. It follows

immediately that the coefficient cr,s(g) scales at weak coupling as

cr,s(g) ∼ gr+s−2 . (2.4.8)

Moreover, due to the fact that the Bessel functions have a definite parity, the weak coupling

expansion of the coefficients cr,s(g) runs in g2, as expected from the gauge theory point of view.

Combining the weak coupling scaling (2.4.8), the overall factor gr+s−2 in Eq. (2.4.4) and the

fact that the charges are of order O(g0), we conclude that the dressing phase starts at four-loop.

Namely, we find

θ(uk, uj) = 4ζ3g
6
(
q2(uk)q3(uj)− q3(uk)q2(uj)

)
+ . . . , (2.4.9)

which is suppressed by g6 as compared to the O(g0) contribution of the one-loop Bethe ansatz

equations - and so corresponds effectively to a four-loop correction in the gauge theory perturbative

expansion. The result c2,3(g) = 4ζ3g
3 + . . . was verified against a direct four-loop gauge theory

calculation in [105]. An alternative (integral) representation for the dressing phase was found

in [106] and used in [107, 108] to prove that it is the minimal solution to the crossing symmetry

equation [104].

23The overall factor gr+s−2, that appears in front of the expansion coefficients cr,s(g) in Eq. (2.4.4), may look

suspicious at first sight, since it seems to indicate that the strong coupling of θ(uk, uj) simply does not exist, if

cr,s(g) ∼ g ,∀(r, s). However, string semiclassical states are described by a distribution of large Bethe roots {uk},
scaling as uk ∼ g, g → ∞. It is therefore convenient to first rescale the rapidities as uk ∝ g ûk before to take the

strong coupling limit. After this rescaling has been done, the charge qr(u) acquires an overall factor g1−r, which

combines with g1−s coming from qs−1(u) to cancel the factor gr+s−2 in front of cr,s(g).



2.4. ALL-LOOP ASYMPTOTIC BETHE ANSATZ EQUATIONS 49

All-loop Scaling Dimension

The contribution to the all-loop anomalous dimension of an individual magnon, carrying a rapidity

u, is directly related to the conserved charge q2(u), as in the one-loop approximation, and reads

explicitely as

δ∆(u) = 2g2q2(u) = 2ig2

(
1

x+(u)
− 1

x−(u)

)
. (2.4.10)

For a state formed of N magnons, with a set of rapidities {uk}, the anomalous dimension is

simply given by the sums of the individual contributions, that is

δ∆ = 2g2
N∑

k=1

q2(uk) . (2.4.11)

The spectrum of all-loop anomalous dimensions, for twist L and spin N Wilson operators, is then

obtained by plugging into the relation (2.4.11) the Bethe roots {uk} that are solutions to the

all-loop asymptotic Bethe ansatz equations (2.4.2).

Introducing the momentum p defined as

p = lim
r→1

qr(u) = −i log
(
x+(u)

x−(u)

)
, (2.4.12)

the scaling dimension of a conformal operator, carrying a Lorentz spin N , admits the representa-

tion

∆ = L+N + δ∆ = L+

N∑

k=1

√
1 + 16g2 sin2

(pk

2

)
. (2.4.13)

Here, the twist L measures the all-loop scaling dimension of the ferromagnetic vacuum, built out

of L scalar fields Z(0) and no light-cone derivatives acting on. Indeed, this state belongs to a

short multiplet of the superconformal algebra psu(2, 2|4) and its scaling dimension is protected

from radiative corrections to all-loop (see [38] for instance). From the relation (2.4.13), we read

the all-loop magnon dispersion relation as [39]

E =

√
1 + 16g2 sin2

(p
2

)
. (2.4.14)

Here, the periodicity in p reflects the discrete nature of the spin chain. Its all-loop dependence

was derived in [42] from the residual symmetry algebra of the N = 4 SYM theory, in the limit of

infinite spin-chain length (L→∞).

At strong coupling, we may discriminate between three different regimes. Rescaling the mo-

mentum p → p/2g and expanding in powers of 1/g, we find the relativistic (massive) dispersion

relation

E =
√

1 + p2 . (2.4.15)

It corresponds to the regime of perturbative excitations of the AdS5 × S5 superstring σ-model,

quantized in the light-cone gauge [13, 19]. On the other hand, had we kept p fixed and taken the

strong coupling limit of (2.4.14), we would enter a regime of solitonic excitations with dispersion

relation

E = 4g
∣∣∣sin2

(p
2

)∣∣∣ . (2.4.16)
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Semiclassical string solution satisfying the dispersion relation above have been constructed in [109]

(see also [19] for the light-cone gauge construction), and called giant magnon. It is a rather peculiar

property of type IIB superstring theory on AdS5×S5 that the fundamental (asymptotic) particles

interpolate between (perturbative) plane-wave solutions and (non-linear) solitonic solutions of the

equations of motion.24 The third regime, the so-called near-flat space regime, lies in between

the two previous ones and it is characterized by p ∼ 1/g1/2 and E ∼ g1/2. It was introduced

in [110] and further discussed in [67]. Note finally that, as for the gauge theory, the all-loop

dispersion relation (2.4.14) can be understood from the residual symmetry algebra of the light-

cone superstring theory [109, 111, 19].

Asymptoticity and Wrapping Effect

The all-loop asymptotic Bethe ansatz equations (2.4.2) can be written equivalently as

(
uk + i

2

uk − i
2

)L(
1 + g2/(x−k )2

1 + g2/(x+
k )2

)L

(2.4.17)

=
N∏

j 6=k

uk − uj − i
uk − uj + i

(
1− g2/x+

k x
−
j

1− g2/x−k x
+
j

)2

exp 2iθ(uj , uk) .

It simply follows from substituting into Eq. (2.4.2) the relations

x+
k

x−k
=
uk + i

2

uk − i
2

(
1 + g2/(x−k )2

1 + g2/(x+
k )2

)
,

x−k − x+
j

x+
k − x−j

=
uk − uj − i
uk − uj + i

(
1− g2/x+

k x
−
j

1− g2/x−k x
+
j

)
, (2.4.18)

that are easily derived from the identity

x(u) +
g2

x(u)
= u . (2.4.19)

Taking into account that the dressing phase vanishes up to three-loop at weak coupling, one

easily verify that the equations (2.4.17) reduce to the Bethe ansatz equations of the XXX−1/2

Heisenberg spin chain (2.3.1) when g → 0 (one-loop approximation). Beyond one-loop order,

the set of all-loop asymptotic Bethe ansatz equations (2.4.17) can be solved at weak coupling by

assuming that the Bethe roots {uk} admit and expansion in powers of g2,

uk = uk(g) = u(0)

k + g2u(1)

k + . . . , (2.4.20)

where {u(0)

k } is solution to the XXX−1/2 Bethe ansatz equations (2.3.1). In principle, starting

from a particular solution {u(0)

k }, one can solve iteratively the equations (2.4.17) for {u(n)

k } with

n arbitrarily large. Plugging the obtained expansion (2.4.20) for {uk} in the formula (2.4.10) and

expanding at weak coupling, one obtains the perturbative expansion of the anomalous dimension

up to order O(g2(n+1)).

24This situation turns out to be possible due to the noncompatibility of the light-cone gauge fixing, that removes

unphysical excitations from the spectrum of the theory, with the relativistic invariance (see [19] and references

therein).
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More generally, one could expect to resum the expansion (2.4.20) and/or directly solve Eqs.

(2.4.17) for the exact distribution of roots {uk(g)} at arbitrary coupling g. However, even if it is

possible, it would not mean that the corresponding prediction for the all-loop scaling dimension of a

given twist L operator is exact. The reason is that the all-loop Bethe ansatz equations (2.4.17) are

only asymptotic. Namely, they diagonalize to all-loop the dilatation operator, in the sl(2) sector

of Wilson operators carrying an infinitely large twist L only. It turns out, indeed, that the all-

loop Bethe ansatz equations (2.4.17) do not incorporate correctly contributions to the dilatation

operator that wrap around the (single-trace) operator [39, 112, 41]. In spin-chain language,

it means that as soon as the range of the interaction between magnons becomes comparable

with the spin-chain length L, the predictions based on (2.4.17) can no longer be trusted. In

perturbative gauge theory, and in the planar limit, the range of the interaction increases as the

loop order. Therefore, for a twist L operator, the expansion (2.4.20) obtained from solving the

equations (2.4.17) is reliable up to order O(g2(L−2)) only. It follows that the anomalous dimension

of a twist L operator is correctly determined by the all-loop Bethe ansatz equations (2.4.17) up

to order O(g2(L−1)).25

Fortunately, we are interested in the large N limit of the all-loop equations (2.4.17), from which

we would like to extract the cusp anomalous dimension by computing the minimal anomalous

dimension. As said before, in this regime, the minimal anomalous dimension scales logarithmically

with N and is independent on the twist L. This universality of the large spin limit allows us to

consider, as a starting point, a Wilson operator carrying an arbitrarily large twist. It follows

that the cusp anomalous dimension can be computed to any desired order in the weak coupling

expansion, and, eventually, to any value of g after resummation. We note also that a similar

conclusion applies for the scaling function obtained in the generalized scaling limit N,L ∼ ∞ with

j = L/ logN kept fixed. In that case, one explicitely assumes L to be large such that the validity

of the all-loop Bethe ansatz prediction is guaranteed.

We conclude that the all-loop Bethe ansatz equations predict the cusp anomalous dimension

and scaling function for an arbitrary value of the coupling constant. As in the one-loop case

considered previously, these two observables can be obtained by solving the integral equations for

the density distributions of magnon and hole rapidities. These equations were derived from (2.4.17)

in [63, 44, 47]. In the following two chapters, we will analyze them at both weak and strong

coupling.

25For a very short operator (L = 2, 3), it is possible, thanks to the superconformal symmetry, to find a represen-

tative of the operator, in the same supermultiplet, which is longer enough for the all-loop Bethe ansatz equations

to be valid up to three loops at least. Since operators in same supermultiplet have same anomalous dimension, the

all-loop Bethe ansatz equations are valid to at least three-loop order for any operator [41].
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Chapter 3

BES Equation

In this chapter, we will analyse the all-loop integral equation that controls the logarithmic scaling

of high-spin anomalous dimensions. This equation was proposed by Beisert, Eden and Staudacher

in [44, 63], and derived from the all-loop asymptotic Bethe ansatz equations, discussed before.

Solving the BES equation determines the cusp anomalous dimension for an arbitrary value of the

coupling constant. At weak coupling, the BES equation was solved perturbatively as an expansion

in g2 [44], and the cusp anomalous dimension was found as

Γcusp(g) = 4g2 − 4π2

3
g4 +

44π4

45
g6 −

(
292π6

315
+ 32ζ2

3

)
g8 + . . . . (3.0.1)

It agrees with explicit one-loop [51], two-loop [49, 55], three-loop [56, 57] and four-loop [58]

N = 4 SYM computations. A numerical solution to the BES equation was proposed in [64]. It

demonstrated that the cusp anomalous dimension is a smooth function of the coupling constant,

interpolating between Γcusp(g) ∼ 4g2 at weak coupling and Γcusp(g) ∼ 2g at strong coupling.

The latter behavior perfectly matches the expected string-theory result, obtained either from

the classical energy of a rotating string carrying a large angular momentum [14], or from the

area scaling of a cusped extremal suface [113, 114]. The analysis of [64] allowed furthermore an

estimate of the strong coupling expansion of the cusp anomalous dimension, in agreement with

higher-loop string theory prediction [15, 115, 60, 116]. Analytically, the strong-coupling solution

was first found to leading order [65, 66, 67, 68], and then in the form of a perturbative expansion

in 1/g [69, 70]. The outcome of this analysis is that the strong coupling expansion of the cusp

anomalous dimension reads

Γcusp(g) = 2g − 3 log 2

2π
− K

8π2g2
− . . . , (3.0.2)

with K the Catalan’s constant. The expansion above perfectly agrees with the classical [14, 113,

114], one-loop [15, 115] and two-loop [60, 116] string-theory computations. Altogether, the ex-

pansions (3.0.1), (3.0.2) and their numerical interpolation provide a quite remarkable verification

of the AdS/CFT correspondence. Let us mention also, as an additionnal check of the consis-

tency of the Bethe ansatz approach, that both the weak-coupling and strong-coupling results,

Eqs. (3.0.1) and (3.0.2), have been obtained from analysis based on the (quantum string) Bethe

ansatz equations [137, 138] and/or the all-loop Baxter equation [91, 90].

53
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Our goal in this chapter is to derive the expansion (3.0.2) directly from the BES equation. Our

analysis will go along the lines of [71], based in turn on [69, 70]. In addition, we would like also

to address the question of the summability of the series (3.0.2). Indeed, it was found in [69], that

the coefficients of the expansion (3.0.2) have the same sign and grow factorially at higher orders.

As a result, the 1/g expansion of Γcusp(g) is merely asymptotic (has zero-radius of convergence)

and is not Borel summable. The Borel summation is a procedure that allows one to improve the

convergency of certain series, and to construct a function effectively asymptotic to this series.

When a series is not Borel summable, it means that the procedure is ambiguous. This ambiguity

is usually associated with exponentially small contribution for g → ∞. This suggests that the

cusp anomalous dimension receives non-perturbative corrections at strong coupling

Γcusp(g) =

∞∑

k=−1

ck/g
k − σ

4
√

2
m2

cusp + o(m2
cusp) . (3.0.3)

The dependence of the non-perturbative scale m2
cusp on the coupling constant mcusp ∝ g1/4 e−πg

follows, through a standard analysis [117, 118, 119], from the large order behavior of the expansion

coefficients, ck ∼ Γ(k + 1
2) for k → ∞ [69]. The value of the coefficient σ in (3.0.3) depends

on the regularization of the Borel singularities in the perturbative 1/g expansion,1 while the

numerical prefactor was introduced for the later convenience. The relation (3.0.3) sheds light on

the properties of Γcusp(g) in the transition region g ∼ 1. Going from g ≫ 1 to g ∼ 1, we find that

m2
cusp increases and, as a consequence, non-perturbative O(m2

cusp) corrections to Γcusp(g) become

comparable with perturbative O(1/g) corrections.

The discussion of the non-perturbative corrections to the cusp anomalous dimension is not

purely academic. In the next chapter, we will show indeed that the non-perturbative scale mcusp

admits a string-theory interpretation. It will acquire the meaning of the mass gap m of the non-

linear O(6) sigma model – embedded into the AdS5 × S5 world-sheet σ-model [46, 69]. However,

from the Bethe ansatz point of view, to understand the matching mcusp = m, we will need to

consider a generalization of the BES equation, proposed by Freyhult, Rej and Staudacher [47].

The latter equation incorporates the subleading corrections to the logarithmic scaling, that are

enhanced by powers of the twist L and resummed into the scaling function ǫ(g, j). We recall that

the scaling function enters the formula for the minimal anomalous dimension as

δ∆min − 2Γcusp(g) logN = ǫ(g, j) logN + . . . , (3.0.4)

where the dots stand for contributions of order ∼ log0N , suppressed in the limit N,L → ∞,

keeping fixed the scaling variable j = L/ logN . Computing the scaling function ǫ(g, j) at strong

coupling, we will uncover a non-perturbative regime controlled by the O(6) sigma model [46, 73].

It will then be quite easy to read the expression for the mass gap m off the behavior of the scaling

function (j ≪ m)

ǫ(g, j) + j ∼ mj + . . . , (3.0.5)

and to conclude that mcusp = m to any order in 1/g at strong coupling. At the end of this chapter,

we will give a heuristic argument explaining the agreement between the two non-perturbative scales

mcusp and m, apparently unrelated.

1That is, it depends on the prescription used to sum the perturbative series.
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The present chapter is organized as follows. First we formulate the BES equation, recast

it in a more suitable form and briefly sketch the analysis of [69] (see also [70]) to outline the

construction of the strong-coupling solution. Next following [71], we start the general analysis

that allows us to incorporate the non-perturbative corrections. It consists of finding a convenient

representation for the solution and to identify the source of non-perturbative contributions. We

will construct, in parallel, the perturbative and (first) non-perturbative parts of the solution, and

extract their corresponding contributions to the cusp anomalous dimension. We will argue that the

non-perturbative corrections play a crucial role in the transition from the strong to weak coupling

regime. To describe the transition, we will present a simplified model for the cusp anomalous

dimension. This model correctly captures the properties of Γcusp(g) at strong coupling and, most

importantly, it allows us to obtain a closed expression for the cusp anomalous dimension which

turns out to be remarkably close to the exact value of Γcusp(g), throughout the entire range of

the coupling constant. We will furthermore introduce, by hand, into our analysis the expression

for the mass scale m. With its help we will derive one of the main results of this chapter, namely

the identity mcusp = m between the scale of the leading non-perturbative correction to the cusp

anomalous dimension and the mass gap of the O(6) model.

3.1 BES Equation

3.1.1 Original Formulation

The distribution of Bethe roots describing the minimal (or ground-state) trajectory of the spec-

trum of anomalous dimensions can be found in the large-spin (continuum) limit as a solution to

a linear integral equation. This equation was derived in [44] directly from the all-loop asymptotic

Bethe ansatz and is known as Beisert-Eden-Staudacher (BES) equation.2 The BES equation is

written in terms of a density distribution of fluctuations σ(u) [63]. This latter is related to the

density distribution of Bethe roots ρ(u) as

ρ(u) = ρ0(u)− 8 log (2c) σ(u) , (3.1.1)

supported on the interval u2 6 c2, with c large in the high-spin limit. Here, the first term in

the right-hand side is the one-loop twist-two distribution, discussed before, while the second term

describes higher-loop O(g2) contributions, enhanced by an overall logarithmic factor. When u is

kept fixed and c is large, we found in the previous section that ρ0(u) = 2 log (2c)/π, while when

u ≫ 1 it goes like ρ0(u) = − log u2/π + 2 log (2c)/π and matches the twist-independent density

distribution ρ0(ū) at small rescaled rapidities ū = u/c ≪ 1. We stress that this matching is

left unchanged at higher-loop because σ(u) ∼ 1/u2 for u ≫ 1 [63, 44]. It means that the large-

rapidity regime ū = u/c = O(1) is unaffected, to leading order when c ≫ 1, by the higher-loop

contributions and so remains described there by ρ0(ū). It follows that quantities controlled by the

regime ū = O(1) keep the same one-loop dependence at large c. In particular, the normalization

condition ∫ c

−c
du ρ(u) = N + . . . , (3.1.2)

2An alternative approach can be found in [91] whose starting point is the the all-loop asymptotic Baxter equa-

tion [90].



56 CHAPTER 3. BES EQUATION

still relates c and N by the one-loop relation 2c = N+ . . . , where dots stand for subleading higher-

loop dependent corrections that scale as logN . However, the anomalous dimension receives dom-

inant contribution from u kept fixed, when c is large. Therefore, the cusp anomalous dimension,

which controls the large spin limit of the minimal anomalous dimension δ∆(g) = 2Γcusp(g) logN ,

will receive as expected radiative corrections coming from σ(u). We recall also that all distribu-

tions in Eq. (3.1.1) are even functions of u, as required for the minimal anomalous dimension.

The BES equation, that determines the distribution of fluctuations σ(u) to all-loop, reads

σ̂(t) =
t

et−1

[
K(2gt, 0) − 4

∫ ∞

0
dt′K(2gt, 2gt′)σ̂(t′)

]
, (3.1.3)

where σ̂(t) is related to the Fourier transform of σ(u),

σ̂(t) = e−t/2

∫ ∞

−∞
du eiut σ(u) , (3.1.4)

for t > 0. The kernel K(t, t′), in Eq. (3.1.3), can be written in terms of Bessel functions Jn(t) as

K(t, t′) = g2K+(t, t′) + g2K−(t, t′) + 8g4

∫ ∞

0

dt′′ t′′

et′′ −1
K−(t, 2gt′′)K+(2gt′′, t′) , (3.1.5)

with the parity even/odd kernels K±(−t, t′) = K±(t,−t′) = ±K±(t, t′) given by

K+(t, t′) =
tJ1(t)J0(t

′)− t′J0(t)J1(t
′)

t2 − t′2 =
2

tt′

∑

n≥1

(2n − 1)J2n−1(t)J2n−1(t
′) , (3.1.6)

K−(t, t′) =
t′J1(t)J0(t

′)− tJ0(t)J1(t
′)

t2 − t′2 =
2

tt′

∑

n≥1

(2n)J2n(t)J2n(t′) .

Finally, the solution to the BES equation determines the all-loop cusp anomalous dimension thanks

to the relation

Γcusp(g) = 8σ̂(0) . (3.1.7)

In its original form, Eq. (3.1.3), the BES equation can be easily solved at weak coupling as

an expansion in g2. To this end, it is sufficient to observe that the integral term in Eq. (3.1.3)

is subleading compared to the inhomogeneous term, permitting the solution to be constructed by

iteration. That procedure provides a convergent expansion of the solution σ̂(t) around g = 0,

uniformely in the variable t. The first few terms of the weak coupling expansion of the cusp

anomalous dimension can be easily obtained and read

Γcusp(g) = 4g2 − 4π2

3
g4 +

44π4

45
g6 −

(
292π6

315
+ 32ζ2

3

)
g8 + . . . . (3.1.8)

The series above is convergent with a numerical estimation of the radius of convergence found to

be g2
c = 1/16 [44].
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3.1.2 Alternative Formulation

The strong coupling analysis of the equation (3.1.3) is more difficult, and it is convenient to first

look for some simplifications. A possibility is to introduce two even/odd functions γ±(−t) =

±γ±(t) defined by

σ̂(t) =
g

2

γ+(2gt) + γ−(2gt)

et−1
. (3.1.9)

From the analytical property of the kernel and of the inhomogeneous term in (3.1.3), we conclude

that both γ+(t) and γ−(t) extend to holomorphic functions in the full complex plane. Then,

following [64, 65, 66], we may expand γ±(t) into Bessel-function Neumann series

γ+(t) = 2
∑

n≥1 (2n)γ2n(g)J2n(t) , (3.1.10)

γ−(t) = 2
∑

n≥1 (2n− 1)γ2n−1(g)J2n−1(t) .

Here the dependence on the coupling constant is absorbed into the coefficients γn(g). The ex-

pansions in (3.1.10) are convergent for any complex value of t, thanks to holomorphicity of γ±(t).

Concerning the cusp anomalous dimension, it follows from Eqs. (3.1.7), (3.1.9), (3.1.10) and the

asymptotics at small t of the Bessel functions, Jn(t) ∝ tn, that it can be found as3

Γcusp(g) = 8g2γ1(g) = 8g2 lim
t→0

γ−(t)/t . (3.1.12)

The coefficients γn(g) are completely fixed by the BES equation. Indeed, after a bit of algebra,

one can show that the equation (3.1.3) is equivalent to the infinite set of equations

0 = γ2n(g)−
∫ ∞

0

dt

t

γ−(t)− γ+(t)

et/2g −1
J2n(t) , (3.1.13)

δn,1

2
= γ2n−1(g) +

∫ ∞

0

dt

t

γ−(t) + γ+(t)

et/2g −1
J2n−1(t) ,

with n ≥ 1. Replacing, above, the functions γ±(t) by their Neumann series (3.1.10) provides a

closed system of equations, determining uniquely the coefficients γn(g). The system of equa-

tions (3.1.13) can be solved easily at weak coupling and it perfectly reproduces the expan-

sion (3.1.8) of the cusp anomalous dimension. We will see that it can be solved also in the

strong coupling limit, and even beyond after a last simplification. In the form of Eq. (3.1.13), the

BES equation was solved numerically in [64], over a large range of values for g, after truncating

the sums over the Bessel functions in (3.1.10). It was found, in this way, that the cusp anomalous

dimension is a smooth function of the coupling constant, scaling at strong coupling as4

Γcusp(g) = 2g + . . . , (3.1.14)

3More generally, it is interesting to note that the spin-chain higher conserved charges q2n(g) (evaluated for the

large N ground state) are directly related to the coefficients γ2n−1(g) as

q2n(g) = 8(2ig)2−2nγ2n−1(g) logN . (3.1.11)

Equation (3.1.12) is the particular case δ∆(g) ≡ 2g2q2(g) = 2Γcusp(g) logN = 16g2γ1(g) logN . However, since

odd higher conserved charges q2n+1(g) all vanish for the ground state, there seems to be no simple spin-chain

interpretation for the coefficients γ2n(g) in (3.1.10).
4Subleading corrections were also estimated in [64] and found to agree with string theory results.
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in agreement with the string theory semiclassical result [14]. Analytically, the leading-order strong-

coupling solution was constructed in [66], starting from the limit g → ∞ of Eq. (3.1.13) given

by

0 = 4g

∫ ∞

0

dt

t2

[
γ−(t)− γ+(t)

]
J2n(t) , (3.1.15)

δn,1 = 4g

∫ ∞

0

dt

t2

[
γ−(t) + γ+(t)

]
J2n−1(t) .

The strong-coupling solution of [66] can be written in closed form as

γ+(t) + iγ−(t) =
it

2
√

2πg

∫ 1

−1
du

(
1 + u

1− u

)1/4

e−iut + . . . . (3.1.16)

Here, it is assumed that t is kept fixed when g →∞. The solution (3.1.16) agrees with the solution

of [67, 68], obtained by other means, and it predicts correctly the strong coupling value of the

cusp anomalous dimension

Γcusp(g) = 2g + . . . . (3.1.17)

There is however a subtlety, which becomes more and more problematic when the question of

the subleading corrections is addressed. Namely, the solution (3.1.16) is not uniquely specified

by the system of equation (3.1.15). There are indeed zero-mode solutions that can be added

to Eq. (3.1.16) with arbitrary coefficients. One may nevertheless rely on a comparison with the

numerics to rule out the contribution of the zero-mode solutions, in the strict strong coupling limit,

supporting the validity of both Eqs. (3.1.16) and (3.1.17). At higher loops the expansion of the

kernel in Eq. (3.1.13) becomes more and more singular and the question of the zero-mode ambiguity

is enhanced. Indeed, it turns out [69, 70] that the number of ‘zero-mode’ contributions5 increases

with the powers of 1/g. The strong coupling solution will therefore takes the form of an expansion

over an infinite number of functions with unknown coefficients. Once the basis of functions has

been correctly identified, the arbitrary coefficients was shown in [69, 70] to be fixed, order by order

in 1/g, by resumming the solution in the double scaling limit t, g →∞, t/g fixed, and by imposing

that it satisfies correct analyticity conditions. This strategy was developed in [69], with some help

from numerics to guess the correct procedure, and was proved and improved analytically in [70]

(see also [71] for incorporation of non-perturbative contributions). These analysis determine the

strong coupling expansion of the cusp anomalous dimension, iteratively order by order in 1/g. Up

to two-loop, it reads

Γcusp(g) = 2g − 3 log 2

2π
− K

8π2g
− ... , (3.1.18)

and it agrees with the string theory result [14, 15, 60].

To realize the program outlined above and to circumvent the difficulty of the direct strong

coupling expansion of the BES equation, it was proposed in [69] to first recast the system of

5Strictly speaking, the zero modes of [69] are not exactly solutions to the homogeneous equation, because they

are too singular at large t to be integrable when the kernel is expanded in powers of 1/g. However, they provide a

correct basis of expansion for the solution, with coefficients to be fixed in a next step.
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equations (3.1.15) in the form

∫ ∞

0

dt

t

[
γ+(t)

1− e−t/2g
− γ−(t)

et/2g −1

]
J2n(t) = 0 , (3.1.19)

∫ ∞

0

dt

t

[
γ−(t)

1− e−t/2g
+

γ+(t)

et/2g −1

]
J2n−1(t) =

1

2
δn,1 ,

with n ≥ 1. To prove that this system is equivalent to (3.1.15), it is sufficient to make use of the

orthogonality property of the Bessel functions as (n > 1)

∫ ∞

0

dt

t
J2n−1(t)J2m−1(t) =

δn,m

2(2n − 1)
,

∫ ∞

0

dt

t
J2n(t)J2m(t) =

δn,m

2(2n)
. (3.1.20)

Then, assuming that the sums over the Bessel functions can be interchanged with the integration,

we may write

γ2n−1(g) =

∫ ∞

0

dt

t
γ−(t)J2n−1(t) , γ2n(g) =

∫ ∞

0

dt

t
γ+(t)J2n(t) , (3.1.21)

converting Eq. (3.1.13) into Eq. (3.1.19). The possibility to interchange summation and integration

relies on the large-order behavior of the coefficients γn(g) and the corresponding large-t behavior

of the partial sums over the Bessel functions. The BES equation in the form (3.1.13) predicts that

the coefficients γn(g) are suppressed at large n, permitting the use of Eq. (3.1.21). Note, however,

that the condition of holomorphicity for γ±(t) is not sufficient to prove Eq. (3.1.21) and, therefore,

the system of equations (3.1.19) has more solutions than the BES equation. But, a holomorphic

solution to Eq. (3.1.19) respecting Eq. (3.1.21) should be equivalent to the BES one.

The system of equations (3.1.19) has a remarkable property that considerably simplifies its

analysis. Introducing two even/odd functions Γ±(t) by

Γ±(t) = γ±(t)∓ coth

(
t

4g

)
γ∓(t) , (3.1.22)

or conversely

2γ±(t) =

(
1− 1

cosh (t/2g)

)
Γ±(t)± tanh

(
t

2g

)
Γ∓(t) , (3.1.23)

the system of equations (3.1.19) takes the g-independent form (n > 1)

∫ ∞

0

dt

t

[
Γ−(t) + (−1)nΓ+(t)

]
Jn(t) = δn,1 . (3.1.24)

This system has a large family of solutions. This freedom allows us to split the problem into

two steps. First, find a general solution with a ‘minimal’ dependence on the coupling constant 6

and parameterized by an infinite number of arbitrary coefficients (zero-modes ambiguity). Next,

impose to the general solution the analyticity conditions that single out the BES solution. These

conditions can be cast into a set of equations for the unknown coefficients, to which we refer

6Here by ‘minimal’ we mean that the general solution takes into account some of the analyticity properties of

the BES solution, as the fact that Γ±(t) has poles at some fixed positions depending on g. That permits to restrict

a bit the generality of the solution and avoid to deal with unneccessary degrees of freedom.



60 CHAPTER 3. BES EQUATION

as quantization conditions. In the next sections, we will develop this program, starting from the

system of equations above. We will solve the quantization conditions in a double expansion in both

the perturbative coupling 1/g and a non-perturbative scale Λ2 ∝ g1/2 exp (−2πg), whose existence

is tied to the non-Borel summability of the perturbative expansion. Our analysis strictly follows

the work [71].

3.2 General Solution

3.2.1 Integral Equation

We define, for later convenience, the function γ(t) as

γ(t) = γ+(t) + iγ−(t) , (3.2.1)

where γ±(t) are the real functions of t, with definite parity γ±(±t) = ±γ±(t), introduced be-

fore. For arbitrary coupling, the functions γ±(t) satisfy the (infinite) system of integral equa-

tions (3.1.19). These relations are equivalent to the BES equation provided that γ±(t) verify

certain analyticity conditions, that we will discuss further below. The equations (3.1.19) can be

significantly simplified with the help of the transformation7 γ(t)→ Γ(t)

Γ(t) =

(
1 + i coth

t

4g

)
γ(t) ≡ Γ+(t) + iΓ−(t) . (3.2.2)

We find from (3.1.12) and (3.2.2) the following representation for the cusp anomalous dimension

Γcusp(g) = −2gΓ(0) . (3.2.3)

It follows from (3.2.1) and (3.1.19) that Γ±(t) are real functions with a definite parity, Γ±(−t) =

±Γ±(t), satisfying the system of integral equations (3.1.24) or equivalently

∫ ∞

0
dt cos(ut)

[
Γ−(t)− Γ+(t)

]
= 2 , (3.2.4)

∫ ∞

0
dt sin(ut)

[
Γ−(t) + Γ+(t)

]
= 0 ,

with u being an arbitrary real parameter such that −1 ≤ u ≤ 1. Since Γ±(t) take real values, we

can rewrite these relations in a more compact form
∫ ∞

0
dt

[
eiut Γ−(t)− e−iut Γ+(t)

]
= 2 . (3.2.5)

To recover (3.1.24), we replace in (3.2.4) trigonometric functions by their Bessel series expansions

cos(ut) = 2
∑

n≥1

(2n − 1)
cos((2n − 1)ϕ)

cosϕ

J2n−1(t)

t
,

sin(ut) = 2
∑

n≥1

(2n)
sin(2nϕ)

cosϕ

J2n(t)

t
, (3.2.6)

7With a slight abuse of notations, we use here the same notation as for Euler gamma-function.
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with u = sinϕ, and finally compare coefficients in front of cos((2n − 1)ϕ)/cosϕ and sin(2nϕ)/cosϕ

in both sides of (3.2.4). It is important to stress that, doing this calculation, we interchanged the

sum over n with the integral over t. This is only justified for ϕ real and, therefore, the relation

(3.2.4) only holds for −1 ≤ u ≤ 1.

Comparing (3.2.5) and (3.1.19) we observe that the transformation γ± → Γ± eliminates the

dependence of the integral kernel in the left-hand side of (3.2.5) on the coupling constant. One

may then wonder where does the dependence of the functions Γ±(t) on the coupling constant come

from? We will show in the next subsection that it is dictated by additional conditions imposed

on analytical properties of solutions to the equation (3.2.5).

3.2.2 Analyticity Conditions

The integral equations (3.2.5) and (3.1.19) determine Γ±(t) and γ±(t), or equivalently the functions

Γ(t) and γ(t), up to a contribution of zero modes. The latter satisfy the same integral equations

(3.2.5) and (3.1.19) but without inhomogeneous term in the right-hand side. To fix the zero

modes, we have to impose additional conditions on solutions to (3.2.5) and (3.1.19). The first

requirement is that γ(it) is an entire function of t. After rewriting the relation (3.2.2) as

Γ(it) = γ(it)
sin( t

4g + π
4 )

sin( t
4g ) sin(π

4 )
= γ(it)

√
2

∞∏

k=−∞

t− 4πg
(
k − 1

4

)

t− 4πgk
, (3.2.7)

we conclude that Γ(it) has an infinite number of zeros, Γ(itzeros) = 0, and poles, Γ(it) ∼ 1/(t −
tpoles), on real t−axis located at

tzeros = 4πg
(
ℓ− 1

4

)
, tpoles = 4πgℓ′ , (3.2.8)

where ℓ, ℓ′ ∈ Z and ℓ′ 6= 0 so that Γ(it) is regular at the origin (see Eq. (3.1.12)). Notice that

Γ(it) has an additional (infinite) set of zeros coming from the function γ(it) but, in distinction

with (3.2.8), their position is not fixed.

As said before, the analyticity property of γ(it) is not sufficient to specify uniquely the solution.

Indeed, to achieve the determination of γ(it), one has to make sure that the coefficients γn(g),

appearing in the Neumann series (3.1.10), do satisfy the integral representation (3.1.21). That

condition, which stems from the commutation between summation over the Bessel functions and

integration over t, will be implemented by imposing that the Fourier transform of γ(it) has support

on the interval [−1, 1]. Taking into account the consequence of the latter property for the function

Γ(it), we will construct in the following the solution to the integral equation (3.2.4) which satisfies

the relations (3.2.8).

3.2.3 Toy Model

To understand the relationship between analytical properties of Γ(it) and properties of the cusp

anomalous dimension, it is instructive to slightly simplify the problem and consider a ‘toy’ model

in which the function Γ(it) is replaced with Γ(toy)(it).

We require that Γ(toy)(it) satisfies the same integral equation (3.2.4) and define, following

(3.2.3), the cusp anomalous dimension in the toy model as

Γ(toy)
cusp (g) = −2gΓ(toy)(0) . (3.2.9)
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The only difference compared to Γ(it) is that Γ(toy)(it) has different analytical properties dictated

by the relation

Γ(toy)(it) = γ(toy)(it)
t+ πg

t
, (3.2.10)

while γ(toy)(it) has the same analytical properties as the function γ(it).8 This relation can be

considered as a simplified version of (3.2.7). Indeed, it can be obtained from (3.2.7) if we retained

in the product only one term with k = 0. As compared with (3.2.8), the function Γ(toy)(it) does

not have poles and it vanishes for t = −πg.
The main advantage of the toy model is that the expression for Γ

(toy)
cusp (g) can be found in a

closed form for arbitrary value of the coupling constant (see Eq. (3.2.47) below). We will then

compare it with the exact expression for Γcusp(g) and identify the difference between the two

functions.

3.2.4 Exact Bounds and Uniqueness

Before we turn to finding the solution to (3.2.4), or equivalently to (3.1.19), let us demonstrate

that this integral equation leads to non-trivial constraints for the cusp anomalous dimension valid

for arbitrary coupling g.

Let us multiply both sides of the two relations in (3.1.19) by 2(2n−1)γ2n−1(g) and 2(2n)γ2n(g),

respectively, and perform summation over n ≥ 1. Then, we convert the sums into the functions

γ±(t) using (3.1.10) and add the second relation to the first one to obtain

γ1(g) =

∫ ∞

0

dt

t

(γ+(t))2 + (γ−(t))2

1− e−t/(2g)
. (3.2.11)

Since γ±(t) are real functions of t and the denominator is positively definite for 0 ≤ t < ∞, this

relation leads to the following inequality

γ1(g) ≥
∫ ∞

0

dt

t
(γ−(t))2 ≥ 2γ2

1(g) ≥ 0 . (3.2.12)

Here we replaced the function γ−(t) by its Bessel series (3.1.10) and made use of the orthogonality

condition for the Bessel functions with odd indices (3.1.20). We deduce from (3.2.12) that

0 ≤ γ1(g) ≤
1

2
(3.2.13)

and, then, apply (3.1.12) to translate this inequality into the following relation for the cusp

anomalous dimension

0 ≤ Γcusp(g) ≤ 4g2 . (3.2.14)

This relation should hold in planar N = 4 SYM theory for arbitrary coupling g. Notice that the

lower bound on the cusp anomalous dimension, Γcusp(g) ≥ 0, holds in any gauge theory [49]. It is

the upper bound Γcusp(g) ≤ 4g2 that is a distinguished feature of N = 4 theory.

8Notice that the function γ(toy)(t) does not satisfy the integral equation (3.1.19) anymore. Substitution of

(3.2.10) into (3.2.5) yields an integral equation for γ(toy)(t) which can be obtained from (3.1.19) by replacing

1/
“

1 − e−t/(2g)
”

→ πg
2t

+ 1
2

and 1/
“

et/(2g) −1
”

→ πg
2t

− 1
2

in the kernel in the left-hand side of (3.1.19).
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Let us verify the validity of (3.2.14). At weak coupling Γcusp(g) admits a perturbative expan-

sion in powers of g2

Γcusp(g) = 4g2

[
1− 1

3
π2g2 +

11

45
π4g4 − 2

(
73

630
π6 + 4ζ2

3

)
g6 + . . .

]
, (3.2.15)

while at strong coupling it has the form

Γcusp(g) = 2g

[
1− 3 log 2

4π
g−1 − K

16π2
g−2 −

(
3K log 2

64π3
+

27ζ3
2048π3

)
g−3 + . . .

]
, (3.2.16)

with K being the Catalan’s constant. It is easy to see that the relations (3.2.15) and (3.2.16)

are in an agreement with (3.2.14). For arbitrary g, we can verify the relation (3.2.14) by using

the results for the cusp anomalous dimension obtained from the numerical solution of the BES

equation [64, 69, 120]. The comparison is shown in Figure 3.1. We observe that the upper bound

condition Γcusp(g)/(2g) ≤ 2g is indeed satisfied for arbitrary g > 0.

0
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Figure 3.1: Dependence of the cusp anomalous dimension Γcusp(g)/(2g) on the coupling constant. Dashed

line denotes the upper bound 2g.

A similar argument proves the uniqueness of the solution to (3.1.19). As was already men-

tioned, solutions to (3.1.19) are defined modulo contribution of zero modes, γ(t) → γ(t) +

δγ(zero)(t), with δγ(zero)(t) being solution to the homogeneous equations. Going through the same

steps that led us to (3.2.11), we obtain

0 =

∫ ∞

0

dt

t

(δγ
(zero)
+ (t))2 + (δγ

(zero)
− (t))2

1− e−t/(2g)
, (3.2.17)

where zero on the left-hand side is due to absence of the inhomogeneous term. Since the integrand
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is a positively definite function, we immediately deduce that δγ(zero)(t) = 0 and, therefore, the

solution for γ(t) is unique.9

3.2.5 Riemann-Hilbert Problem

Let us now construct the exact solution to the integral equations (3.2.5) and (3.1.19). To this

end, it is convenient to Fourier transform the functions (3.2.1) and (3.2.2)

Γ̃(k) =

∫ ∞

−∞

dt

2π
eikt Γ(t) , γ̃(k) =

∫ ∞

−∞

dt

2π
eikt γ(t) . (3.2.18)

According to (3.2.1) and (3.1.10), the function γ(t) is given by the Neumann series over Bessel

functions. Then, we perform the Fourier transform on both sides of (3.1.10) and use the well-

known fact that the Fourier transform of the Bessel function Jn(t) vanishes for k2 > 1 to deduce

that the same is true for γ(t) leading to10

γ̃(k) = 0 , for k2 > 1. (3.2.19)

This implies that the Fourier integral for γ(t) only involves modes with −1 ≤ k ≤ 1 and, therefore,

the function γ(t) behaves at large (complex) t as

γ(t) ∼ e|t| , for |t| → ∞. (3.2.20)

Let us now examine the function Γ̃(k). We find from (3.2.18) and (3.2.7) that Γ̃(k) admits the

following representation

Γ̃(k) =

∫ ∞

−∞

dt

2π
eikt

sinh( t
4g + iπ4 )

sinh( t
4g ) sin(π

4 )
γ(t) . (3.2.21)

Here the integrand has poles along the imaginary axis at t = 4πign (with n = ±1,±2, . . .).11

It is suggestive to evaluate the integral (3.2.21) by deforming the integration contour to infinity

and by picking up residues at the poles. However, taking into account the relation (3.2.20), we

find that the contribution to (3.2.21) at infinity can be neglected for k2 > 1 only. In this case,

closing the integration contour into the upper (or lower) half-plane for k > 1 (or k < −1) we find

Γ̃(k)
k2>1
= θ(k − 1)

∑

n≥1

c+(n, g) e−4πng(k−1) + θ(−k − 1)
∑

n≥1

c−(n, g) e−4πng(−k−1) . (3.2.22)

Here the notation was introduced for k−independent expansion coefficients

c±(n, g) = ∓4gγ(±4πign) e−4πng , (3.2.23)

9Note that this proof of uniqueness relies on the assumption that γ(t) ∼ P

n γnJn(t) is holomorphic, and that

summation over the Bessel functions and integration over t can be interchanged when deducing (3.2.11) and (3.2.17)

from (3.1.19). Indeed, it is possible to show that non-vanishing homogeneous solutions to (3.1.19) exist, if one at

least of the latter conditions is relaxed.
10Here, we tacitly assume that the sum over the Bessel functions can be commuted with the integration over t.

This assumption is justified by our previous remark about the large-order behavior, n ∼ ∞, of the coefficients γn.
11We recall that γ(t) = O(t) and, therefore, the integrand is regular at t = 0.



3.2. GENERAL SOLUTION 65

where the factor e−4πng is inserted to compensate exponential growth of γ(±4πign) ∼ e4πng at

large n (see Eq. (3.2.20)). For k2 ≤ 1, we are not allowed to neglect the contribution to (3.2.21) at

infinity and the relation (3.2.22) does not hold anymore. As we will see in a moment, for k2 ≤ 1

the function Γ̃(k) can be found from (3.2.5).

Comparing the relations (3.2.19) and (3.2.22), we conclude that, in distinction with γ̃(k), the

function Γ̃(k) does not vanish for k2 > 1. Moreover, each term in the right-hand side of (3.2.22)

is exponentially small at strong coupling and the function scales at large k as Γ̃(k) ∼ e−4πg(|k|−1).

This implies that nonzero values of Γ̃(k) for k2 > 1 are of non-perturbative origin. Indeed, in the

perturbative approach of [69], the function Γ(t) is given by a Bessel-function series analogous to

(3.1.10) and, similarly to (3.2.19), the function Γ̃(k) vanishes for k2 > 1 to any order in the 1/g

expansion.12

We note that the sum in the right-hand side of (3.2.22) runs over poles of the function Γ(it)

specified in (3.2.8). We recall that in the toy model (3.2.10), Γ(toy)(it) and γ(toy)(it) are en-

tire functions of t. At large t they have the same asymptotic behavior as the Bessel functions,

Γ(toy)(it) ∼ γ(toy)(it) ∼ e±it. Performing their Fourier transformation (3.2.18), we find

γ̃(toy)(k) = Γ̃(toy)(k) = 0 , for k2 > 1 , (3.2.24)

in a close analogy with (3.2.19). Comparison with (3.2.22) shows that the coefficients (3.2.23)

vanish in the toy model for arbitrary n and g

c
(toy)
+ (n, g) = c

(toy)
− (n, g) = 0 . (3.2.25)

The relation (3.2.22) defines the function Γ̃(k) for k2 > 1 but it involves the coefficients c±(n, g)

that need to be determined. In addition, we have to construct the same function for k2 ≤ 1. To

achieve both goals, let us return to the integral equations (3.2.4) and replace Γ±(t) by Fourier

integrals (see Eqs. (3.2.18) and (3.2.2))

Γ+(t) =

∫ ∞

−∞
dk cos(kt) Γ̃(k) , (3.2.26)

Γ−(t) = −
∫ ∞

−∞
dk sin(kt) Γ̃(k) .

In this way, we obtain from (3.2.4) the following remarkably simple integral equation for Γ̃(k)

−
∫ ∞

−∞

dk Γ̃(k)

k − u + πΓ̃(u) = −2 , (−1 ≤ u ≤ 1) , (3.2.27)

where the integral is defined using the principal value prescription. This relation is equivalent to

the functional equation obtained in [70] (see Eq. (55) there).

Let us split the integral in (3.2.27) into k2 ≤ 1 and k2 > 1 and rewrite (3.2.27) in the form of

a singular integral equation for the function Γ̃(k) on the interval −1 ≤ k ≤ 1

Γ̃(u) +
1

π
−
∫ 1

−1

dk Γ̃(k)

k − u = φ(u) , (−1 ≤ u ≤ 1) , (3.2.28)

12There is a subtlety however. The function Γ(t) has poles in the complex t-plane. It implies that its expansion

over the Bessel functions holds around the origin, but is divergent for large enough value of t. Therefore, strictly

speaking, it is not allowed to commute the sum over the Bessel functions with the integration over t. Nevertheless,

within the accuracy of the strong coupling expansion, these formal manipulations may be given some meaning.
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where the inhomogeneous term is given by

φ(u) = − 1

π

(
2 +

∫ −1

−∞

dk Γ̃(k)

k − u +

∫ ∞

1

dk Γ̃(k)

k − u

)
. (3.2.29)

Since the integration in (3.2.29) goes over k2 > 1, the function Γ̃(k) can be replaced in the

right-hand side of (3.2.29) by its expression (3.2.22) in terms of the coefficients c±(n, g).

The integral equation (3.2.28) can be solved by standard methods [121]. A general solution

for Γ̃(k) reads (for −1 ≤ k ≤ 1)

Γ̃(k) =
1

2
φ(k)− 1

2π

(
1 + k

1− k

)1/4

−
∫ 1

−1

duφ(u)

u− k

(
1− u
1 + u

)1/4

−
√

2

π

(
1 + k

1− k

)1/4 c

1 + k
, (3.2.30)

where the last term describes the zero mode contribution with c being an arbitrary function of

the coupling. We replace φ(u) by its expression (3.2.29), interchange the order of integration and

find after some algebra

Γ̃(k)
k261
= −

√
2

π

(
1 + k

1− k

)1/4
[
1 +

c

1 + k
+

1

2

∫ ∞

−∞

dp Γ̃(p)

p− k

(
p− 1

p+ 1

)1/4

θ(p2 − 1)

]
. (3.2.31)

Notice that the integral in the right-hand side of (3.2.31) goes along the real axis except the

interval [−1, 1] and, therefore, Γ̃(p) can be replaced by its expression (3.2.22).

Being combined together, the relations (3.2.22) and (3.2.31) define the function Γ̃(k) for −∞ <

k < ∞ in terms of (an infinite) set of yet unknown coefficients c±(n, g) and c(g). To fix these

coefficients we will first perform the Fourier transform of Γ̃(k) to obtain the function Γ(t) and,

then, require that Γ(t) should have correct analytical properties (3.2.8).

3.2.6 General Solution

We are now ready to write down a general expression for the function Γ(t). According to (3.2.18),

it is related to Γ̃(k) through the inverse Fourier transformation

Γ(t) =

∫ 1

−1
dk e−ikt Γ̃(k) +

∫ −1

−∞
dk e−ikt Γ̃(k) +

∫ ∞

1
dk e−ikt Γ̃(k) , (3.2.32)

where we split the integral into three terms since Γ̃(k) has a different form for k < −1, −1 ≤ k ≤ 1

and k > 1. Then, we use the obtained expressions for Γ̃(k), Eqs. (3.2.22) and (3.2.31), to find

after some algebra the following relation (see Appendix A.1 for details)

Γ(it) = f0(t)V0(t) + f1(t)V1(t) . (3.2.33)

Here the notation was introduced for

f0(t) = −1 +
∑

n≥1

t

[
c+(n, g)

U+
1 (4πng)

4πng − t + c−(n, g)
U−

1 (4πng)

4πng + t

]
, (3.2.34)

f1(t) = −c(g) +
∑

n≥1

4πng

[
c+(n, g)

U+
0 (4πng)

4πng − t + c−(n, g)
U−

0 (4πng)

4πng + t

]
.
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Also, Vr and U±
r (with r = 0, 1) stand for the integrals

Vr(x) =

√
2

π

∫ 1

−1
dk (1 + k)1/4−r(1− k)−1/4 ekx , (3.2.35)

U±
r (x) =

1

2

∫ ∞

1
dk (k ± 1)−1/4(k ∓ 1)1/4−r e−(k−1)x ,

which can be expressed in terms of Whittaker functions of 1st and 2nd kind [122] (see Appendix

A.2).

The sum over the coefficients c±(n, g) and c(g) in (3.2.34) is a sum over homogeneous solutions

to the integral equation (3.2.5). The unknowns c±(n, g) and c(g) have therefore the meaning of

zero-mode coefficients. They are needed in order for the function Γ(it) to respect the correct

analyticity property of the BES solution. Putting all of them to zero, Eqs. (3.2.33) and (3.2.34)

reduce to

Γ(it) = −V0(t) , (3.2.36)

which is a particular solution to the integral equation (3.2.5). Mapping Γ into γ with

Γ(it) = γ(it)
sin( t

4g + π
4 )

sin( t
4g ) sin(π

4 )
, (3.2.37)

and expanding at g =∞ with t fixed, we get

γ(it) = − t

4g
V0(t) , (3.2.38)

reproducing the leading-order solution of the BES equation, found in [64, 67, 68]. From the strong

coupling point of view, the zero-mode coefficients c±(n, g) and c(g) take into account higher-loop

corrections. But, we emphasize that the solution (3.2.33) is exact for arbitrary coupling g > 0,

with only undetermined ingredients being the expansion coefficients c±(n, g) and c(g).

In the special case of the toy model (3.2.25), due to the absence of poles most of the coefficients

vanishes, c
(toy)
± (n, g) = 0. The relation (3.2.34) takes a simpler form given by

f
(toy)
0 (t) = −1 , f

(toy)
1 (t) = −c(toy)(g) . (3.2.39)

Substituting these expressions into (3.2.33), we obtain a general solution to the integral equation

(3.2.5) in the toy model

Γ(toy)(it) = −V0(t)− c(toy)(g)V1(t) . (3.2.40)

It involves an arbitrary g−dependent constant c(toy)(g) which will be determined later.

3.2.7 Quantization Conditions

The relation (3.2.33) defines a general solution to the integral equation (3.2.5). It still depends

on the coefficients c±(n, g) and c(g) that need to be determined. We recall that Γ(it) should have

poles and zeros specified in (3.2.8).
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Let us first examine poles in the right-hand side of (3.2.33). It follows from (3.2.35) that

V0(t) and V1(t) are entire functions of t and, therefore, poles can only come from the functions

f0(t) and f1(t). Indeed, the sums entering (3.2.34) produce an infinite sequence of poles located

at t = ±4πn (with n ≥ 1) and, as a result, the solution (3.2.33) has the correct pole structure

(3.2.8). Let us now require that Γ(it) should vanish for t = tzero specified in (3.2.8). This leads to

an infinite set of relations

Γ
(
4πig

(
ℓ− 1

4

))
= 0 , ℓ ∈ Z . (3.2.41)

Replacing Γ(it) by its expression (3.2.33), we rewrite these relations in equivalent form

f0 (tℓ)V0 (tℓ) + f1(tℓ)V1(tℓ) = 0 , tℓ = 4πg
(
ℓ− 1

4

)
. (3.2.42)

The relations (3.2.41) and (3.2.42) provide the quantization conditions for the coefficients c(g)

and c±(n, g) that we will analyse in Sect. 3.3.

Let us substitute (3.2.33) into the expression (3.2.3) for the cusp anomalous dimension. The

result involves the functions Vk(t) and fk(t) (with k = 0, 1) evaluated at t = 0. It is easy to see

from (3.2.35) that V0(0) = 1 and V1(0) = 2. In addition, we obtain from (3.2.34) that f0(0) = −1

for arbitrary coupling leading to

Γcusp(g) = 2g
(
1− 2f1(0)

)
. (3.2.43)

Replacing f1(0) by its expression (3.2.34) we find the following relation for the cusp anomalous

dimension in terms of the coefficients c and c±

Γcusp(g) = 2g



1 + 2c(g) − 2

∑

n≥1

[
c−(n, g)U−

0 (4πng) + c+(n, g)U+
0 (4πng)

]
 . (3.2.44)

The relations (3.2.43) and (3.2.44) are exact and hold for arbitrary coupling g > 0. This implies

that, at weak coupling, they should reproduce the known expansion of Γcusp(g) in positive integer

powers of g2 [58]. Similarly, at strong coupling, it should reproduce the known 1/g expansion

[69, 70] and describe non-perturbative, exponentially suppressed corrections to Γcusp(g).

3.2.8 Cusp Anomalous Dimension in the Toy Model

As before, the situation simplifies for the toy model (3.2.40). In this case, we have only one

quantization condition Γ(toy)(−iπg) = 0 which follows from (3.2.10). Together with (3.2.40) it

allows us to fix the coefficient c(toy)(g) as

c(toy)(g) = −V0(−πg)
V1(−πg)

. (3.2.45)

Then, we substitute the relations (3.2.45) and (3.2.25) into (3.2.44) and obtain

Γ(toy)
cusp (g) = 2g

(
1 + 2c(toy)(g)

)
= 2g

[
1− 2

V0(−πg)
V1(−πg)

]
. (3.2.46)
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Replacing V0(−πg) and V1(−πg) by their expressions in terms of Whittaker function of the first

kind (see Eq. (A.2.3)), we find the following relation

Γ(toy)
cusp (g) = 2g

[
1− (2πg)−1/2M1/4,1/2(2πg)

M−1/4, 0(2πg)

]
, (3.2.47)

which defines the cusp anomalous dimension in the toy model for arbitrary coupling g > 0.

Using (3.2.47) it is straightforward to compute Γ
(toy)
cusp (g) for arbitrary positive g. By construc-

tion, Γ
(toy)
cusp (g) should be different from Γcusp(g). Nevertheless, evaluating (3.2.47) for 0 ≤ g ≤ 3,

we found that the numerical values of Γ
(toy)
cusp (g) are very close to the exact values of the cusp

anomalous dimension shown by the solid line in Figure 3.1. Also, as we will show in a moment,

the two functions have similar properties at strong coupling. To compare these functions, it is

instructive to examine the asymptotic behavior of Γ
(toy)
cusp (g) at weak and at strong coupling.

Weak Coupling

At weak coupling, we find from (3.2.47)

Γ(toy)
cusp (g) =

3

2
π g2 − 1

2
π2g3 − 1

64
π3g4 +

5

64
π4g5 − 11

512
π5g6 − 3

512
π6g7 +O(g8) . (3.2.48)

Comparison with (3.2.15) shows that this expansion is quite different from the weak coupling

expansion of the cusp anomalous dimension. In distinction with Γcusp(g), the expansion in (3.2.48)

runs both in even and odd powers of the coupling. In addition, the coefficient in front of gn in the

right-hand side of (3.2.48) has transcendentality (n− 1) while for Γcusp(g) it equals (n− 2) (with

n taking even values only). Despite of this and similarly to the weak coupling expansion of the

cusp anomalous dimension [44], the series (3.2.48) has a finite radius of convergence |g0| = 0.796.

It is determined by the position of the zero of the Whittaker function closest to the origin,

M−1/4,0(2πg0) = 0 for g0 = −0.297 ± i 0.739.

Strong coupling

At strong coupling, we can replace the Whittaker functions in (3.2.47) by their asymptotic expan-

sion for g ≫ 1. It is convenient however to apply (3.2.46) and replace the functions V0(−πg) and

V1(−πg) by their expressions given in Appendix B.2.13 In particular, we have

V0(−πg) = e1/(2α) α
5/4

Γ(3
4 )

[
F
(

1
4 ,

5
4 |α+ i0

)
+ σΛ2F

(
−1

4 ,
3
4 | − α

)]
, α = 1/(2πg) , (3.2.49)

where the parameter Λ2 is defined as

Λ2 = α−1/2 e−1/α Γ(3
4)

Γ(5
4)
, σ = e−3iπ/4 . (3.2.50)

13See Eqs. (A.2.17) and (A.2.19) there.
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Here, the functions F (a, b| − α) are related to the functions U±
0 (πg) (introduced before) as14

F
(

1
4 ,

5
4 | − α

)
= α−5/4U+

0 (1/(2α)) /Γ(5
4 ) , (3.2.51)

F
(
−1

4 ,
3
4 | − α

)
= α−3/4U−

0 (1/(2α)) /Γ(3
4 ) .

The function F (a, b| − α) defined in this way is an analytical function of α with a cut along the

negative semi-axis and an essential singularity at the origin. We stress that the relation (3.2.49),

here defined for α > 0, holds true in the whole upper-half plane, Imα > 0. A similar formula

applies for V1(−πg) (see Appendix B.2). We refer to the first term in square brackets, on the

right-hand side of (3.2.49), as the perturbative contribution, and to the second one as the non-

perturbative correction. Indeed, the latter is exponentially suppressed as compared to the former,

when α is small and positive.15

Let us first analyse each term in Eq. (3.2.49) separately. It will help us to motivate the rationale

for the decomposition of the V -function into F (or U)-functions. So, for positive α = 1/(2πg), the

function F
(
−1

4 ,
3
4 | − α

)
entering (3.2.49) is defined away from the cut and its large g expansion is

given by a Borel summable asymptotic series (for a = −1
4 and b = 3

4)

F (a, b| − α) =
∑

k≥0

(−α)k

k!

Γ(a+ k)Γ(b+ k)

Γ(a)Γ(b)
= 1− αab+O(α2) , (3.2.52)

with the expansion coefficients growing factorially to higher orders in α. This series can be

immediately resummed by means of the Borel resummation method. Namely, replacing Γ(a+ k)

by its integral representation and performing the sum over k we find for Reα > 0

F (a, b| − α) =
α−a

Γ(a)

∫ ∞

0
ds sa−1(1 + s)−b e−s/α , (3.2.53)

in agreement with (3.2.51) and with the integral representation for U±
0 (πg), Eq. (3.2.35). The

relation (3.2.52) holds in fact for arbitrary complex α and the functions F (a, b|α ± i0), defined for

α > 0 above and below the cut, respectively, are given by the same asymptotic expansion (3.2.52)

with α replaced by −α. An important difference is that now the series (3.2.52) is not Borel

summable anymore. Namely, if one attempted to resum this series using the Borel summation

method, one would immediately find a branch point singularity along the integration contour at

s = 1

F (a, b|α± i0) =
α−a

Γ(a)

∫ ∞

0
ds sa−1(1− s∓ i0)−b e−s/α . (3.2.54)

The ambiguity related to the choice of the prescription to integrate over the singularity is known

as Borel ambiguity. In particular, deforming the s−integration contour above or below the cut,

one obtains two different functions F (a, b|α± i0). They define analytical continuation of the same

function F (a, b| − α) from Reα > 0 to the upper and lower edge of the cut running along the

negative semi-axis. Its discontinuity across the cut, F (a, b|α + i0)−F (a, b|α− i0), is exponentially

14They can be expressed in terms of the confluent hypergeometric function of the second kind [122]. See also

Appendix B.2, Eqs. (A.2.14) and (A.2.9).
15If α is small but negative, their roles are exchanged of course. Hence, as we shall see, the V -function has

different asymptotic behaviors depending on the sign of its argument.



3.2. GENERAL SOLUTION 71

suppressed at small α > 0 and is proportional to the non-perturbative scale Λ2 (see Eq. (A.2.20)

in Appendix B.2). In the following, we will implicitely assume the analytic continuation of our

formulae in the upper-half plane, Imα > 0, corresponding to the choice of F (a, b|α + i0). Had we

decided to work in the lower-half plane, Imα 6 0, associated to the choice F (a, b|α− i0), we would

have to adjust (3.2.49) accordingly. It would simply amount to the replacement of σ in Eq. (3.2.50)

by its complex conjugate. Of course, both choices are equivalent since the function V0(−πg), that

we are representing as a sum of a perturbative part, F (a, b|α ± i0), with a non-perturbative part,

σΛ2F (a, b| − α), is an entire function of α = 1/(2πg) (except at α = 0).

We can now elucidate the reason for decomposing the entire V0−function in (3.2.49) into the

sum of two F−functions. In spite of the fact that analytical properties of the former function are

simpler compared to the latter functions, its asymptotic behavior at large g is more complicated.

Indeed, the F−functions admit asymptotic expansions valid in the whole complex g−plane and

they can be unambiguously defined through the Borel resummation once their analytical properties

are specified. In distinction with this, the entire function V0(−πg) admits different asymptotic

behaviors at large g, depending16 on Re g > 0 or Re g < 0. This situation is called the Stokes

phenomenon, and the two domains, Re g > 0 and Re g < 0, are separated by the Stokes line, Re g =

0. The transition from the domain Re g > 0 to the other, going across the Stokes line, is driven

by the non-perturbative contribution. The latter correction also impacts on the transition from

large to small g, where it ceases to be suppressed as compared to the perturbative contribution.

Therefore, resumming the perturbative series by the function F (a, b|α+ i0), we need to keep track

of the non-perturbative contribution ∼ σΛ2F (a, b| − α) in order to correctly describe the function

V0(−πg).17 A similar conclusion applies for V1(−πg).
We are now in position to discuss the strong coupling expansion of the cusp anomalous dimen-

sion in the toy model, including into our consideration both perturbative and non-perturbative

contributions. Substituting (3.2.49) and similar relation for V1(−πg) (see Eq. (A.2.19)) into

(3.2.46) we find (for α+ ≡ α+ i0 and α = 1/(2πg))

Γ(toy)
cusp (g)/(2g) = 1− αF

(
1
4 ,

5
4 |α+

)
+ σΛ2F

(
−1

4 ,
3
4 | − α

)

F
(

1
4 ,

1
4 |α+

)
+ σΛ2 α

4F
(

3
4 ,

3
4 | − α

) . (3.2.55)

Because the parameter Λ2 is exponentially suppressed at strong coupling, Eq. (3.2.50), and, at

the same time, the F−functions are all of the same order, it makes sense to expand the right-hand

side of (3.2.55) in powers of Λ2 and, then, study separately each coefficient function. In this way,

we identify the leading, Λ2-independent term as perturbative contribution to Γ
(toy)
cusp (g) and the

O(Λ2) term as the leading non-perturbative correction. More precisely, expanding the right-hand

side of (3.2.55) in powers of Λ2 we obtain

Γ(toy)
cusp (g)/(2g) = C0(α)− ασΛ2C2(α) +

1

4
α2σ2Λ4C4(α) +O(Λ6) . (3.2.56)

16The marginal cases (Re g = 0) corresponding to Im g > 0 or Im g < 0 may also require different asymptotic

expansions.
17We stress that the function F (a, b|α+ i0) does not show any transition at small α = 1/(2πg), when α evolves

from Reα > 0 to Reα < 0 in the upper-half plane, while V0(−πg) does, due to the Stokes phenomenon. In this tran-

sition, the non-perturbative contribution σΛ2F (a, b| − α), with Λ2 ∼ exp (−1/α), is more and more important, and

finally becomes dominant when Reα < 0. Roughly speaking, the fact that the perturbative and non-perturbative

contributions exchange their role, when Reα changes its sign, requires two F -functions to completely describe the

V -function.
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Here the expansion runs in even powers of Λ and the coefficient functions Ck(α) are given by

algebraic combinations of F−functions

C0 = 1− αF
(

1
4 ,

5
4 |α+

)

F
(

1
4 ,

1
4 |α+

) , C2 =
1

[
F
(

1
4 ,

1
4 |α+

)]2 , C4 =
F
(

3
4 ,

3
4 | − α

)
[
F
(

1
4 ,

1
4 |α+

)]3 , (3.2.57)

where we applied (A.2.11) and (A.2.14) to simplify the last two relations. Since the coefficient

functions Ck(α) are expressed in terms of the functions F (a, b|α+) and F (a, b| − α), with a cut

along the positive and negative semi-axis respectively, they are analytical functions of α in the

upper-half plane, with an essential singularity at the origin. Notice that the functions Ck(α) take

complex values for α > 0, despite the fact that their asymptotic expansions at α ∼ 0 have real

expansion coefficients, see Eqs. (3.2.58) below. Their imaginary parts, indeed, are exponentially

small for α ∼ 0, of order Λ2, and such that their sum in (3.2.56) vanishes.

Let us now examine the strong coupling expansion of the coefficient functions (3.2.57). Re-

placing F−functions in (3.2.57) by their asymptotic series representation (3.2.52) we get

C0 = 1− α− 1

4
α2 − 3

8
α3 − 61

64
α4 − 433

128
α5 +O

(
α6
)
, (3.2.58)

C2 = 1− 1

8
α− 11

128
α2 − 151

1024
α3 − 13085

32768
α4 +O

(
α5
)
,

C4 = 1− 3

4
α− 27

32
α2 − 317

128
α3 +O

(
α4
)
.

Not surprisingly, these expressions inherit the properties of the F−functions – the series (3.2.58)

are asymptotic and non-Borel summable. If one simply substituted the relations (3.2.58) into

the right-hand side of (3.2.56), one would then worry about the meaning of the non-perturbative

O(Λ2) corrections, given the fact that the perturbative O(Λ0) contribution C0(α) is not unam-

biguously determined by its asymptotic strong coupling expansion. However, we stress that the

functions C0(α), C2(α), . . ., are all expressible in terms of F -functions, as in Eq. (3.2.57). As

was already mentioned, the F−functions do not suffer from the Stokes phenomenon and, as a

consequence, their asymptotic expansions, supplemented with additional analyticity conditions,

permit to reconstruct them through the Borel transformation, Eqs. (3.2.53) and (3.2.54). We may

expect, therefore, that the same should be true for the C−functions. Indeed, it follows from a

general theorem discussed in [117, 119], that the functions C0(α), C2(α), C4(α), . . . are uniquely

determined by their series representations (3.2.58) as soon as the latter are understood as asymp-

totic expansions valid in the upper-half plane Imα ≥ 0.18 This implies that the exact expressions

18More precisely, according to [117, 119], the asymptotic series for C0(α), . . . , assumed to be valid on the domain

S =
˘

α small enough with Im(α) > 0
¯

and exhibiting a factorial growth, will fix the functions C0(α), . . . , if the

bound
˛

˛C0(α) −
N

X

n>0

C
(n)
0 αn

˛

˛ 6 D
(N+1)
0 |α|N+1 ,

applies on S with D
(N+1)
0 ∼ C

(N+1)
0 , for any N . In our case, this bound means that the best possible estimate of

C0(α), obtained by partially resumming the asymptotic series, is of order exp (−1/|α|). It prevents the addition of

terms, as exp (−1/
√
−iα) for instance, that would not change the asymptotic series on S and would spoil uniqueness.

From a physical point of view, it means that the typical divergence of the asymptotic series is a good indicator of the
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for the functions (3.2.57) can be unambiguously constructed starting from their asymptotic se-

ries (3.2.58), by means of the Borel resummation for instance. It would be interesting to verify it

explicitely.

Since the expression (3.2.55) is exact for arbitrary coupling g we may address the question:

how does the transition from the strong to the weak coupling regime occur? We recall that, in

the toy model, Γ
(toy)
cusp (g)/(2g) is given for g ≪ 1 and g ≫ 1 by the relations (3.2.48) and (3.2.56),

respectively. Let us choose some sufficiently small value of the coupling constant, say g = 1/4,

and compute Γ
(toy)
cusp (g)/(2g) using three different representations. Firstly, we substitute g = 0.25

into (3.2.55) and find the exact value as 0.4424(3). Then, we use the weak coupling expansion

(3.2.48) and obtain a close value 0.4420(2). Finally, we use the strong coupling expansion (3.2.56)

and evaluate the first few terms in the right-hand side of (3.2.56) for g = 0.25 to get

Eq. (3.2.56) = (0.2902 − 0.1434 i) + (0.1517 + 0.1345 i)

+ (0.0008 + 0.0086 i) − (0.0002 − 0.0003 i) + . . . = 0.4425 + . . . (3.2.59)

Here the four expressions inside the round brackets correspond to contributions proportional to

Λ0, Λ2, Λ4 and Λ6, respectively, with Λ2(g = 0.25) = 0.3522 being the non-perturbative scale

(3.2.50).

We observe that each term in (3.2.59) takes complex values. This is due to our prescription

to sum the asymptotic series (3.2.58). The total sum however does not suffer from this ambigu-

ity. Indeed, we verify in Eq.(3.2.59) that the imaginary part vanishes and that the real part is

remarkably close to the exact value. In addition, the leading O(Λ2) non-perturbative correction

(the second term) is comparable with the perturbative correction (the first term). Moreover, the

former term starts to dominate over the latter one as we go to smaller values of the coupling con-

stant. Thus, the transition from the strong to weak coupling regime is driven by non-perturbative

corrections parameterized by the scale Λ2. The numerical analysis indicates that the expansion

of Γ
(toy)
cusp (g) in powers of Λ2 is convergent for Re g > 0.

From the Toy Model to the Exact Solution

The relation (3.2.56) is remarkably similar to the expected strong coupling expansion of the cusp

anomalous dimension (3.0.3) with the function C0(α) providing perturbative contribution and

Λ2 defining the leading non-perturbative contribution. Let us compare C0(α) with the known

perturbative expansion (3.2.16) of Γcusp(g). In terms of the coupling α = 1/(2πg), the first few

terms of this expansion look as

Γcusp(g)/(2g) = 1− 3 log 2

2
α− K

4
α2 −

(
3K log 2

8
+

27ζ3
256

)
α3 + . . . , (3.2.60)

where ellipses denote both higher order corrections in α and non-perturbative corrections in Λ2.

Comparing (3.2.60) and the first term, C0(α), in the right-hand side of (3.2.56), we observe that

both expressions approach the same value 1 as α→ 0.

size of the non-perturbative corrections. We believe, in the case of the toy-model, that this bounds can be proved

exactly by a more detailed analysis. For the BES case, we have verified that it is consistent with the numerical

solution.
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As was already mentioned, the expansion coefficients of the two series have different transcen-

dentality – they are rational for the toy model, Eq. (3.2.58), and have maximal transcendentality19

for the cusp anomalous dimension, Eq. (3.2.60). Notice that the two series would coincide if one

formally replaced the transcendental numbers in (3.2.60) by appropriate rational constants. In

particular, replacing

3 log 2

2
→ 1 ,

K

2
→ 1

2
,

9ζ3
32
→ 1

3
, . . . , (3.2.61)

one obtains from (3.2.60) the first few terms of perturbative expansion (3.2.58) of the function C0

in the toy model. This rule can be generalized to all loops as follows. Introducing an auxiliary

parameter τ , we define the generating function for the transcendental numbers in (3.2.61) and

rewrite (3.2.61) as

exp

[
3 log 2

2
τ − K

2
τ2 +

9ζ3
32

τ3 + . . .

]
→ exp

[
τ − τ2

2
+
τ3

3
+ . . .

]
. (3.2.62)

Going to higher loops, we have to add higher order terms in τ to both exponents. In the right-

hand side, these terms are resummed into exp(log(1+ τ)) = 1+ τ , while in the left-hand side they

produce a ratio of Euler gamma-functions leading to

Γ(1
4)Γ(1 + τ

4 )Γ(3
4 − τ

4 )

Γ(3
4)Γ(1− τ

4 )Γ(1
4 + τ

4 )
→ (1 + τ) . (3.2.63)

Taking logarithms in both sides of this relation and subsequently expanding them in powers of τ ,

we obtain the subtitution rules which generalize (3.2.61) to the complete family of transcendental

numbers entering into the strong coupling expansion (3.2.60). The relation (3.2.63) can be thought

of as an empirical rule, which allows us to map the strong coupling expansion of the cusp anomalous

dimension (3.2.60) into that in the toy model, Eq. (3.2.58). To some extent, it takes into account

the difference between the toy model and the BES case, encoded into the position of poles and

zeros. It originates from the structure of the strong coupling solution that we will discuss later.

It would be interesting to understand if this substitution rule has some counterpart on the string

theory side, at a Feynman-graph level for instance.

In spite of the fact that the numbers entering both sides of (3.2.61) have different transcenden-

tality, we may compare their numerical values. Given that 3 log 2/2 = 1.0397(2), K/2 = 0.4579(8)

and 9ζ3/32 = 0.3380(7) we observe that the relation (3.2.61) defines a meaningful approximation

to the transcendental numbers. Moreover, examining the coefficients in front of τn in both sides

of (3.2.62) at large n, we find that the accuracy of the approximation increases as n → ∞. This

19To any of the numbers (log 2)j , ζ(2k + 1) or β(2l), we associate a degree of transcendentality j, 2k + 1 or 2l,

respectively. Here, ζ(z) and β(z) denote the Riemann and Dirichlet zeta-functions, respectively. It was observed

in [69], up to some high order, that the contribution ∼ αn to the cusp anomalous dimension only involves products

of these special numbers with a sum of their degrees of transcendentality equal to n (maximal transcendentality).

Note that β(2) ∼ K. This situation is reminiscent of what happens at weak coupling, for which a maximal

transcendentality principle has been argued in [123, 56] to restrict the form of radiative corrections to anomalous

dimensions of Wilson operators. In this context, the transcendentality is maximal in N = 4 SYM as compared

to QCD where less-transcendental contributions appear. Moreover, the maximal transcendentality contribution

computed in QCD, in MS-like schemes, was proposed to be identical to the full N = 4 SYM result [123, 56].
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is in agreement with the observation made before that the cusp anomalous dimension in the toy

model is close numerically to the exact (BES) prediction. In addition, the same property suggests

that the coefficients in the strong coupling expansion of Γ
(toy)
cusp (g) and Γcusp(g) should have the

same large order behavior. It was found in [69] that the expansion coefficients in the right-hand

side of (3.2.60) grow factorially at higher orders

Γcusp(g) ∼
∑

k

Γ

(
k +

1

2

)
αk . (3.2.64)

It is straightforward to verify using (3.2.57) and (3.2.52) that the expansion coefficients of C0(α)

in the toy model have the same behavior. This suggests that the non-perturbative corrections to

Γcusp(g) are also parameterized by the scale Λ2 ∝ g1/2 exp (−2πg). Indeed, we will show this in

the next section by explicit calculation.

In this section, we identified the origin of non-perturbative corrections in the toy-model. They

arise due to the Stokes phenomenon for the functions V0,1(−πg), that requires the introduction

at strong coupling of the non-perturbative scale Λ2 ∝ g1/2 exp (−2πg). We will see in the next

section that a similar conclusion applies for the cusp anomalous dimension, as predicted by the

BES equation.

3.3 Solving the Quantization Conditions

Let us now solve the quantization conditions for the cusp anomalous dimension. We recall that

they read

f0 (tℓ)V0 (tℓ) + f1(tℓ)V1(tℓ) = 0 , tℓ = 4πg
(
ℓ− 1

4

)
, (3.3.1)

with ℓ ∈ Z and where

f0(t) = −1 +
∑

n≥1

t

[
c+(n, g)

U+
1 (4πng)

4πng − t + c−(n, g)
U−

1 (4πng)

4πng + t

]
, (3.3.2)

f1(t) = −c(g) +
∑

n≥1

4πng

[
c+(n, g)

U+
0 (4πng)

4πng − t + c−(n, g)
U−

0 (4πng)

4πng + t

]
.

The quantization conditions (3.3.1) form an infinite set of equations for the unknown coefficients

c±(n, g) and c(g). Once solved, we can compute the cusp anomalous dimension for arbitrary

coupling with the help of

Γcusp(g) = 2g
(
1− 2f1(0)

)
. (3.3.3)

Examining (3.3.2) we observe that the dependence on the coupling resides both in the expansion

coefficients and in the functions U±
0,1(4πng). The latter functions are related to the F -functions of

the previous section, see Eq. (3.2.51), and as such they do not suffer from the Stokes phenomenon.

Therefore, non-perturbative corrections to the cusp anomalous dimension (3.3.3) could only come

from the coefficients c±(n, g) and c(g). The quantization conditions (3.3.1) indicate moreover that

the non-perturbative contributions to the expansion coefficients originate from the functions V0(t)

and V1(t), evaluated at t = (4ℓ − 1)πg. Since these functions depend, at strong coupling, on the
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hidden non-perturbative scale Λ2 ∝ g1/2 exp (−2πg), we will look for a solution to the quantization

conditions as a series in powers of Λ2. We will construct both the leading O(Λ0) and subleading

O(Λ2) parts of the solution, in the form of an expansion in powers of 1/g. We expect, as we

argued to be the case for the toy model, that each of these parts are uniquely determined by their

asymptotic series in 1/g, assumed to be valid in the lower-half plane Im g 6 0. We believe that the

latter assumption is reasonable, recalling that the toy model provides a meaningful approximation

to the BES solution, at least as long as the cusp anomalous dimension is concerned.

3.3.1 Quantization Conditions

Let us replace f0(t) and f1(t) in (3.3.1) by their explicit expressions (3.3.2) and rewrite the

quantization conditions (3.3.1) as

V0(4πgxℓ) + c(g)V1(4πgxℓ) =
∑

n≥1

[
c+(n, g)A+(n, xℓ) + c−(n, g)A−(n, xℓ)

]
, (3.3.4)

where xℓ = ℓ− 1
4 (with ℓ = 0,±1,±2, . . .) and the notation was introduced for

A±(n, xℓ) =
nV1(4πgxℓ)U

±
0 (4πng) + xℓV0(4πgxℓ)U

±
1 (4πng)

n∓ xℓ
. (3.3.5)

The relation (3.3.4) provides an infinite system of linear equations for c±(g, n) and c(g). The

coefficients in this system depend on V0,1(4πgxℓ) and U±
0,1(4πng) which are known functions.

Let us show that the quantization conditions (3.3.4) lead to c(g) = 0 for arbitrary coupling.

To this end, we examine (3.3.4) for |xℓ| ≫ 1. In this limit, for g = fixed we are allowed to replace

the functions V0(4πgxℓ) and V1(4πgxℓ) in both sides of (3.3.4) by their asymptotic behaviors at

infinity. Making use of (A.2.12) and (A.2.14), we find for |xℓ| ≫ 1

r(xℓ) ≡
V1(4πgxℓ)

V0(4πgxℓ)
=




−16πgxℓ + . . . , (xℓ < 0)

1
2 + . . . , (xℓ > 0)

(3.3.6)

where ellipses denote terms suppressed by powers of 1/(gxℓ) and e−8πg|xℓ|. We divide both sides of

(3.3.4) by V1(4πgxℓ) and observe that for xℓ → −∞ the first term in the left-hand side of (3.3.4)

is subleading and can be safely neglected. In the similar manner, one has A±(n, xℓ)/V1(4πgxℓ) =

O(1/xℓ) for fixed n in the right-hand side of (3.3.4). Therefore, going to the limit xℓ → −∞ in

both sides of (3.3.4) we get

c(g) = 0 (3.3.7)

for arbitrary g.

Arriving at (3.3.7), we tacitly assumed that the sum over n in (3.3.4) remains finite in the

limit xℓ → −∞. Taking into account the large n behaviors

U+
0 (4πng) ∼ n−5/4 , U−

0 (4πng) ∼ U−
1 (4πng) ∼ n−3/4 , U+

1 (4πng) ∼ n−1/4 , (3.3.8)

we obtain that this condition translates into (n≫ 1)

c+(n, g) = o(n1/4) , c−(n, g) = o(n−1/4) . (3.3.9)
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These conditions also ensure that the sum in the expression for the cusp anomalous dimension

Γcusp(g) = 2g



1 + 2c(g) − 2

∑

n≥1

[
c−(n, g)U−

0 (4πng) + c+(n, g)U+
0 (4πng)

]
 , (3.3.10)

is convergent.

3.3.2 Strong Coupling Solution

Let us divide both sides of (3.3.4) by V0(4πgxℓ) and use (3.3.7) to get (for xℓ = ℓ− 1
4 and ℓ ∈ Z)

1 =
∑

n≥1

c+(n, g)

[
nU+

0 (4πng)r(xℓ) + U+
1 (4πng)xℓ

n− xℓ

]
(3.3.11)

+
∑

n≥1

c−(n, g)

[
nU−

0 (4πng)r(xℓ) + U−
1 (4πng)xℓ

n+ xℓ

]
,

where the function r(xℓ) was defined in (3.3.6).

Let us now examine the large g asymptotics of the functions multiplying c±(n, g) in the right-

hand side of (3.3.11). The functions U±
0 (4πng) and U±

1 (4πng) admit an asymptotic expansion

in 1/g given by (A.2.14). For the function r(xℓ) the situation is different. As follows from its

definition, Eqs. (3.3.6) and (A.2.12), large g expansion of r(xℓ) runs in two parameters: pertur-

bative 1/g and non-perturbative exponentially small parameter Λ2 ∝ g1/2 e−2πg which we already

encountered in the toy model, Eq. (3.2.50). Moreover, we deduce from (3.3.6) and (A.2.12) that

the leading non-perturbative correction to r(xℓ) scales as

δr(xℓ) = O
(
Λ|8ℓ−2|

)
, (xℓ = ℓ− 1

4 , ℓ ∈ Z) , (3.3.12)

so that the power of Λ grows with ℓ. We observe that O(Λ2) corrections are only present in

r(xℓ) for ℓ = 0. Therefore, as far as the leading O(Λ2) correction to the solutions of (3.3.11) are

concerned, we are allowed to neglect non-perturbative (Λ2−dependent) corrections to r(xℓ) in the

right-hand side of (3.3.11) for ℓ 6= 0 and retain them for ℓ = 0 only.

Since the coefficient functions in the linear equations (3.3.11) admit a double series expansion

in powers of 1/g and Λ2, we expect that the same should be true for their solutions c±(n, g). Let

us determine the first few terms of this expansion using the following ansatz:

c±(n, g) = (8πgn)±1/4

{[
a±(n) +

b±(n)

4πg
+ . . .

]
+ σΛ2

[
α±(n) +

β±(n)

4πg
+ . . .

]
+O(Λ4)

}
,

(3.3.13)

where ellipses denote terms suppressed by powers of 1/g and with Λ2 the non-perturbative pa-

rameter defined in (3.2.50).

Here the functions a±(n), b±(n), . . . are assumed to be g−independent. We recall that the func-

tions c±(n, g) have to verify the relation (3.3.9). This implies that the functions a±(n), b±(n), . . .

should vanish as n→∞. To determine them we substitute (3.3.13) into (3.3.11) and compare the

coefficients in front of powers of 1/g and Λ2 in both sides of (3.3.11).
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Perturbative Corrections

Let us start with ‘perturbative’, Λ2−independent part of (3.3.13) and compute the functions a±(n)

and b±(n).

To determine a±(n), we substitute (3.3.13) into (3.3.11), replace the functions U±
0,1(4πgn)

and r(xℓ) by their large g asymptotic expansion, Eqs. (A.2.14) and (3.3.6), respectively, neglect

corrections in Λ2 and compare the leading O(g0) terms in both sides of (3.3.11). In this way, we

obtain from (3.3.11) the following relations for a±(n) (with xℓ = ℓ− 1
4)

2xℓ Γ(5
4 )
∑

n≥1

a+(n)

n− xℓ
= 1 , (ℓ ≥ 1) (3.3.14)

−2xℓ Γ(3
4 )
∑

n≥1

a−(n)

n+ xℓ
= 1 , (ℓ ≤ 0)

One can verify that the solutions to this system satisfying a±(n)→ 0 for n→∞ have the form

a+(n) =
2Γ(n+ 1

4)

Γ(n+ 1)Γ2(1
4 )
, (3.3.15)

a−(n) =
Γ(n+ 3

4)

2Γ(n + 1)Γ2(3
4)
.

In the similar manner, we compare the subleading O(1/g) terms in both sides of (3.3.11) and find

that the functions b±(n) satisfy the following relations (with xℓ = ℓ− 1
4)

2xℓ Γ(5
4 )
∑

n≥1

b+(n)

n− xℓ
= − 3

32xℓ
− 3π

64
− 15

32
log 2 , (ℓ ≥ 1) (3.3.16)

−2xℓ Γ(3
4 )
∑

n≥1

b−(n)

n+ xℓ
= − 5

32xℓ
− 5π

64
+

9

32
log 2 , (ℓ ≤ 0)

where in the right-hand side we made use of (3.3.15). Solutions to these relations are

b+(n) = −a+(n)

(
3 log 2

4
+

3

32n

)
, (3.3.17)

b−(n) = a−(n)

(
3 log 2

4
+

5

32n

)
.

It is straightforward to extend analysis to subleading perturbative corrections to c±(n, g).20

Let us substitute (3.3.13) into expression (3.3.10) for the cusp anomalous dimension. Taking

into account the identities (A.2.14) we find the ‘perturbative’ contribution to Γcusp(g) as

Γcusp(g) = 2g −
∑

n≥1

(2πn)−1

[
Γ(5

4)

(
a+(n) +

b+(n)

4πg
+ . . .

)(
1− 5

128πng
+ . . .

)
(3.3.18)

+Γ(3
4)

(
a−(n) +

b−(n)

4πg
+ . . .

)(
1 +

3

128πng
+ . . .

)]
+O(Λ2) .

20For instance, the k-th corrections can be found in the form a±(n)P
(k)
± (1/n), where P

(k)
± (1/n) is a polynomial

of degree k in the variable 1/n.
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Replacing a±(n) and b±(n) by their expressions (3.3.15) and (3.3.17), we find after some algebra

Γcusp(g) = 2g

[
1− 3 log 2

4πg
− K

16π2g2
+O(1/g3)

]
+O(Λ2) , (3.3.19)

where K is the Catalan’s constant.

Non-Perturbative Corrections

Let us now compute the leading O(Λ2) non-perturbative correction to the coefficients c±(n, g).

According to (3.3.13), it is described by the functions α±(n) and β±(n). To determine them from

(3.3.11), we have to retain in r(xℓ) corrections proportional to Λ2. As was already explained, they

only appear for ℓ = 0. Combining together the relations (3.3.6), (A.2.12) and (A.2.14) we find

after some algebra

δr(xℓ) = −δℓ,0σΛ2

[
4πg − 5

4
+O(g−1)

]
+O(Λ4) . (3.3.20)

Let us substitute this relation into (3.3.11) and equate to zero the coefficient in front of Λ2 in the

right-hand side of (3.3.11). This coefficient is given by a series in 1/g and, examining the first two

terms, we obtain the defining relations for the functions α±(n) and β±(n).

In this way, we find that the leading functions α±(n) satisfy the relations (with xℓ = ℓ− 1
4 )

2xℓ Γ(5
4 )
∑

n≥1

α+(n)

n− xℓ
= 0 , (ℓ ≥ 1)

−2xℓ Γ(3
4 )
∑

n≥1

α−(n)

n+ xℓ
=

π

2
√

2
δℓ,0 , (ℓ ≤ 0) (3.3.21)

where in the right-hand side we applied (3.3.15). Solution to (3.3.21) satisfying α±(n) → 0 as

n→∞ reads

α+(n) = 0 ,

α−(n) = a−(n − 1) . (3.3.22)

with a−(n) defined in (3.3.15). For subleading functions β±(n) we have similar relations

2xℓ Γ(5
4 )
∑

n≥1

β+(n)

n− xℓ
= −1

2
, (ℓ ≥ 1)

−2xℓ Γ(3
4 )
∑

n≥1

β−(n)

n+ xℓ
= −1

8
+

3π

16
√

2
(1− 2 log 2)δℓ,0 , (ℓ ≤ 0) (3.3.23)

In a close analogy with (3.3.17), the solutions to these relations can be written in terms of the

leading-order functions a±(n) defined in (3.3.15)

β+(n) = −1

2
a+(n) ,

β−(n) = a−(n− 1)

(
1

4
− 3 log 2

4
+

1

32n

)
. (3.3.24)
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We are now ready to compute non-perturbative correction to the cusp anomalous dimension

(3.3.10). Substituting (3.3.13) into (3.3.10) we obtain

δΓcusp(g) = −σΛ2
∑

n≥1

(2πn)−1

[
Γ(5

4)

(
α+(n) +

β+(n)

4πg
+ . . .

)(
1− 5

128πgn
+ . . .

)
(3.3.25)

+Γ(3
4)

(
α−(n) +

β−(n)

4πg
+ . . .

)(
1 +

3

128πgn
+ . . .

)]
+O(Λ4) .

We replace α±(n) and β±(n) by their explicit expressions (3.3.22) and (3.3.24), evaluate the sums

and find

δΓcusp(g) = −σΛ2

π

[
1 +

3− 6 log 2

16πg
+O(1/g2)

]
+O(Λ4) , (3.3.26)

with Λ2 defined in (3.2.50).

We summarize our findings by the formula

Γcusp(g) =

[
2g − 3 log 2

2π
− K

8π2g
+O(1/g2)

]
− σ

4
√

2
m2

cusp +O(m4
cusp) , (3.3.27)

where we introduced a non-perturbative parameter mcusp whose strong coupling expansion starts

as

mcusp =

√
2

Γ
(

5
4

)(2πg)1/4 e−πg

[
1 +

3− 6 log 2

32πg
+O(1/g2)

]
. (3.3.28)

3.4 Mass Scale

In this section, we will analyse a new non-perturbative scale m given in terms of the BES solution

Γ(t) ≡ Γ+(t) + iΓ−(t) as

m ≡ 8
√

2

π2
e−πg −8g

π
e−πg Re

[∫ ∞

0

dt

t+ iπg
eit−iπ/4Γ(t)

]
. (3.4.1)

The original motivation to introduce this quantity is that it controls the small j scaling function

ǫ(g, j) at strong coupling, as we shall see in the next chapter. In this context, we will prove that

m has a nice interpretation since it can be given the meaning of the mass gap of the non-linear

O(6) sigma model. In this section, we will show that the mass scale m is also relevant to our

discussion of the leading non-perturbative contribution to the cusp anomalous dimension. The

principal result that we will obtain is the identity mcusp = m, valid to any order in 1/g.

3.4.1 General Expression

The expression for the mass gap m can be written as

m =
8
√

2

π2
e−πg −8g

π
e−πg Re

[∫ −i∞

0

dt

t+ 1
4

e−4πgt−iπ/4 Γ(4πgit)

]
, (3.4.2)

where integration goes along the imaginary axis. Replacing Γ(4πgit) in (3.4.2) by its expression

Γ(4πgit) = f0(4πgt)V0(4πgt) + f1(4πgt)V1(4πgt) , (3.4.3)
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and evaluating the t−integral, we find after some algebra (see Appendix A.3 for details) [76]

m = −16g
√

2

π
e−πg

[
f0(−πg)U−

0 (πg) + f1(−πg)U−
1 (πg)

]
. (3.4.4)

This relation can be further simplified with the help of the quantization conditions (3.3.1). For

ℓ = 0, we obtain from (3.3.1) that f0(−πg)V0(−πg) + f1(−πg)V1(−πg) = 0. Together with the

Wronskian relation for the Whittaker functions (A.2.10) this leads to the following relation for

the mass gap

m =
16
√

2

π2

f1(−πg)
V0(−πg)

. (3.4.5)

It is instructive to compare this relation with the similar relation (3.3.3) for the cusp anomalous

dimension. We observe that both quantities involve the same function f1(4πgt) but evaluated

for different values of its argument, that is t = −1/4 for the mass gap and t = 0 for the cusp

anomalous dimension. As a consequence, there are no reasons to expect that the two functions

m = m(g) and Γcusp(g) could be related to each other in a simple way. Nevertheless, we will

demonstrate that m2 determines the leading non-perturbative correction to Γcusp(g) at strong

coupling.

3.4.2 Strong Coupling Expression

We will first determine the strong coupling expression of the functions f0(4πgt) and f1(4πgt). We

recall that they depend on the coefficients c±(n, g) and the functions U±
0,1(4πng) as follows,

f0(4πgt) =
∑

n≥1

t

[
c+(n, g)

U+
1 (4πng)

n− t + c−(n, g)
U−

1 (4πng)

n+ t

]
− 1 , (3.4.6)

f1(4πgt) =
∑

n≥1

n

[
c+(n, g)

U+
0 (4πng)

n− t + c−(n, g)
U−

0 (4πng)

n+ t

]
.

The coefficients c±(n, g) admit an expansion in integer powers of Λ2 ∝ g1/2 exp (−2πg), while the

U -functions do not21. As a consequence, the functions f0(4πgt) and f1(4πgt) have the form

fk(4πgt) = f (PT)

k (4πgt) + δfk(4πgt) , (k = 0, 1) . (3.4.7)

Here f (PT)

k is the perturbative O(Λ0) contribution, given at strong coupling by a (non-Borel

summable) asymptotic series in 1/g. The remainder δfk takes into account non-perturbative

corrections running in integer powers of Λ2. In the following, we will only be interested in the

first non-perturbative contribution, δfk = O(Λ2), but subleading terms can be incorporated in a

similar way.

To compute the functions f (PT)

k at strong coupling, we replace the coefficients c±(n, g) in (3.4.6)

by their O(Λ0) contributions, see Eq. (3.3.13), and take into account the obtained results for the

21The U -functions are directly related to the F -functions, which we know do not suffer from the Stokes phe-

nomenon. The latter property implies that the U -functions should be completely determined by their asymptotic

series. Therefore, they do not depend on the non-perturbative scale Λ2.
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functions a±, b±, . . . , Eqs. (3.3.15), (3.3.17). In addition, we replace in (3.4.6) the U -functions by

their strong coupling expansion, Eqs. (A.2.14). We proceed similarly for δfk, using the explicit

expressions for the functions α±, β±, . . . , Eqs. (3.3.22), (3.3.24). Doing so, we find that f0(4πgt)

and f1(4πgt) can be expressed in terms of two sums involving the functions a±(n) defined in

(3.3.15)

2Γ(5
4 )
∑

n≥1

a+(n)

t− n =
1

t

[
Γ(3

4)Γ(1− t)
Γ(3

4 − t)
− 1

]
,

2Γ(3
4 )
∑

n≥1

a−(n)

t+ n
=

1

t

[
Γ(1

4)Γ(1 + t)

Γ(1
4 + t)

− 1

]
. (3.4.8)

Going through calculation of (3.4.6), we find after some algebra that the perturbative corrections

to f0(4πgt) and f1(4πgt) are given by linear combinations of the ratios of Euler gamma-functions

f (PT)

0 (4πgt) = −Γ(3
4)Γ(1− t)
Γ(3

4 − t)

+
1

4πg

[(
3 log 2

4
+

1

8t

)
Γ(3

4 )Γ(1− t)
Γ(3

4 − t)
− Γ(1

4)Γ(1 + t)

8tΓ(1
4 + t)

]
+O(g−2) ,

f (PT)

1 (4πgt) =
1

4πg

[
Γ(1

4)Γ(1 + t)

4tΓ(1
4 + t)

− Γ(3
4 )Γ(1− t)

4tΓ(3
4 − t)

]
(3.4.9)

− 1

(4πg)2

[
Γ(1

4)Γ(1 + t)

4tΓ(1
4 + t)

(
1

4t
− 3 log 2

4

)
− Γ(3

4 )Γ(1− t)
4tΓ(3

4 − t)

(
1

4t
+

3 log 2

4

)]
+O(g−3) .

In a similar manner, we compute the non-perturbative corrections to (3.4.7)

δf0(4πgt) = σΛ2

{
1

4πg

[
Γ(3

4)Γ(1− t)
2Γ(3

4 − t)
− Γ(5

4)Γ(1 + t)

2Γ(5
4 + t)

]
+O(g−2)

}
+ . . . ,

δf1(4πgt) = σΛ2

{
1

4πg

Γ(5
4)Γ(1 + t)

Γ(5
4 + t)

(3.4.10)

+
1

(4πg)2

[
Γ(3

4)Γ(1− t)
8tΓ(3

4 − t)
− Γ(5

4)Γ(1 + t)

Γ(5
4 + t)

(
1

8t
+

3

4
log 2− 1

4

)]
+O(g−3)

}
+ . . . ,

where ellipses denote O(Λ4) terms. Notice that the strong coupling expansion of both f (PT)

0,1 (4πgt)

and δf0,1(4πgt) is taken at a fixed value of t.

To verify the obtained expressions, we apply (3.3.3) to calculate the cusp anomalous dimension

Γcusp(g) = 2g − 4gf (PT)

1 (0)− 4g δf1(0) . (3.4.11)

Replacing f (PT)

1 (0) and δf1(0) by their expressions, Eqs. (3.4.9) and (3.4.10), we obtain

Γcusp(g) = 2g

[
1− 3 log 2

4πg
− K

(4πg)2
+ . . .

]
− σΛ2

π

[
1 +

3− 6 log 2

16πg
+ . . .

]
+O(Λ4) , (3.4.12)
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in agreement with our previous findings (3.3.19) and (3.3.26), respectively.

To obtain the strong coupling expression for the mass scale (3.4.5), we first recall that V0(−πg)
depends on the non-perturbative scale Λ2. Therefore, we decompose it in two F -functions, see

Eq. (A.2.17), and then replace each term by its asymptotic series, Eq. (A.2.14). Taking into

account (3.4.9) and (3.4.10) we get22

m =

√
2

Γ(5
4 )

(2πg)1/4 e−πg

[
1 +

3− 6 log 2

32πg
+O

(
1/g2

)]
. (3.4.13)

The comparison with the parametermcusp, given in Eq. (3.3.28), shows that the identitym = mcusp

is satisified, at least up to O(1/g). We will show in the next subsection that it holds at strong

coupling to all orders in 1/g.

3.4.3 Cusp Anomalous Dimension and Mass Gap

We demonstrated that the strong coupling expansion of the cusp anomalous dimension has the

form

Γcusp(g) =

[
2g − 3 log 2

2π
− K

8π2g
+O(1/g2)

]
− σ

4
√

2
m2

cusp +O(m4
cusp) , (3.4.14)

with the leading non-perturbative correction given to the first few orders in the 1/g expansion by

the mass scale m, that is mcusp = m. Let us show that this relation is exact to all orders in the

strong coupling expansion.

According to (3.4.11), the non-perturbative corrections to the cusp anomalous dimension are

given by

δΓcusp = −4g δf1(0) , (3.4.15)

with δf1(0) denoting O(Λ2) correction to the function f1(t = 0), Eq. (3.4.7). The latter function

verifies the quantization conditions (3.3.1). As was already explained, the O(Λ2) corrections

to solutions of (3.3.1) originate from subleading, exponentially suppressed terms in the strong

coupling expansion of the functions V0(−πg) and V1(−πg), that we shall denote as δV0(−πg) and

δV1(−πg), respectively. Using the identities (A.2.17) and (A.2.19), we find

δV0(−πg) = σ
2
√

2

π
e−πg U−

0 (πg) , (3.4.16)

δV1(−πg) = σ
2
√

2

π
e−πg U−

1 (πg) ,

where σ = exp (−3iπ/4). Then, we split the functions f0(t) and f1(t) entering the quantization

conditions (3.3.1) into perturbative and non-perturbative parts according to (3.4.7) and compare

exponentially small terms in both sides of (3.3.1) to get

δf0(tℓ)V0(tℓ) + δf1(tℓ)V1(tℓ) = −ξδℓ,0 , (3.4.17)

22Note that the mass scale m also receives subleading non-perturbative corrections.
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where tℓ = 4πg
(
ℓ− 1

4

)
and the notation was introduced for23

ξ = f0(−πg)δV0(−πg) + f1(−πg)δV1(−πg) . (3.4.18)

Taking into account the relations (3.4.16) and comparing the resulting expression for ξ with (3.4.4)

we find that

ξ = − σ

8g
m . (3.4.19)

Now, to compute non-perturbative O(Λ2) correction to the cusp anomalous dimension, we have

to solve the system of relations (3.4.17), determine the function δf1(t) and, then, apply (3.4.15).

We will show in this subsection that the result reads

δf1(0) = −
√

2

4
ξm = σ

√
2

32g
m2 , (3.4.20)

Together with (3.4.15) this leads to the desired expression m = mcusp for the leading non-

perturbative correction to the cusp anomalous dimension (3.4.14). Note that we will prove that

the relation (3.4.20) is an exact consequence of (3.4.17) and (3.4.19), valid at arbitrary coupling

g > 0. However, given the fact that the equations (3.4.17) and (3.4.19) only describe the functions

δf0,1 up to subleading O(m4
cusp) non-perturbative corrections, the result m = mcusp will be valid

only to all orders in the 1/g expansion. Nevertheless, given this perturbative agreement, it is

always possible to define the parameter mcusp such that m = mcusp exactly.

To begin with, let us introduce the function

δΓ(it) = δf0(t)V0(t) + δf1(t)V1(t) . (3.4.21)

Here δf0(t) and δf1(t) are given by

δf0(t) =
∑

n≥1

t

[
δc+(n, g)

U+
1 (4πng)

4πng − t + δc−(n, g)
U−

1 (4πng)

4πng + t

]
, (3.4.22)

δf1(t) =
∑

n≥1

4πng

[
δc+(n, g)

U+
0 (4πng)

4πng − t + δc−(n, g)
U−

0 (4πng)

4πng + t

]
,

where the coefficients δc±(n, g) = O(Λ2) are the leading non-perturbative contributions to c±(n, g).

We find for t = 0 that δf0(0) = 0 for arbitrary coupling, leading to

δΓ(0) = 2δf1(0) (3.4.23)

We recall that, for arbitrary δc±(n, g), the function (3.4.21) satisfies the homogeneous integral

equation (3.2.5), i.e.

∫ ∞

0
dt

[
eitu δΓ−(t)− e−itu δΓ+(t)

]
= 0 , (−1 ≤ u ≤ 1) , (3.4.24)

23Note that we replaced f (PT)

0,1 (−πg) on the right-hand side of (3.4.18) by the total functions f0,1(−πg), and,

similarly, we replaced V (PT)

0,1 (tℓ) on the left-hand side of (3.4.17) by their complete expressions V0,1(tℓ) = V (PT)

0,1 (tℓ)+

δV0,1(tℓ). The discrepancy between the two set of functions induces a subleading O(Λ4) effect, that we will not

consider.
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where δΓ(t) = δΓ+(t) + iδΓ−(t) and δΓ±(−t) = ±δΓ±(t). In other words, the function δΓ(t) is a

sum of zero-mode solutions, each of them parameterized by the coefficient δc+(n, g) or δc−(n, g).

As before, in order to construct the solution to (3.4.24), we have to specify additional conditions

for δΓ(it). The function δΓ(it) shares with Γ(it) an infinite set of simple poles located at the same

position

δΓ(it) ∼ 1

t− 4πgℓ
, (ℓ ∈ Z

∗) . (3.4.25)

In addition, we deduce from (3.4.17) that it also satisfies the relation (with xℓ = ℓ− 1
4 )

δΓ(4πigxℓ) = −ξδℓ,0 , (ℓ ∈ Z) , (3.4.26)

and, therefore, has an infinite number of zeros. An important difference with Γ(it) is that δΓ(it)

does not vanish at t = −πg and its value is fixed by the parameter ξ defined in (3.4.19).

Having in mind the similarities between the functions Γ(it) and δΓ(it) we define a new function

δγ(it) =
sin(t/4g) sin(π/4)

sin (t/4g + π/4)
δΓ(it) . (3.4.27)

As before, the poles and zeros of δΓ(it) are compensated by the ratio of sinus functions. However,

in distinction with γ(it) and in virtue of δΓ(−iπg) = −ξ, the function δγ(it) has a single pole at

t = −πg with the residue equal to 2gξ. For t→ 0 we find from (3.4.27) that δγ(it) vanishes as

δγ(it) =
t

4g
δΓ(0) +O(t2) =

t

2g
δf1(0) +O(t2) , (3.4.28)

where in the second relation we applied (3.4.23). It is convenient to split the function δγ(t) into

the sum of two terms of a definite parity, δγ(t) = δγ+(t)+iδγ−(t) with δγ±(−t) = ±δγ±(t). Then,

combining together (3.4.24) and (3.4.27) we obtain that the functions δγ±(t) satisfy the infinite

system of homogeneous equations (for n > 1)
∫ ∞

0

dt

t

[
δγ−(t)

1− e−t/2g
+

δγ+(t)

et/2g −1

]
J2n−1(t) = 0 ,

∫ ∞

0

dt

t

[
δγ+(t)

1− e−t/2g
− δγ−(t)

et/2g −1

]
J2n(t) = 0 . (3.4.29)

By construction, the solution to this system δγ(t) should vanish at t = 0 and have a simple pole

at t = −iπg. We recognize in (3.4.29), up to an inhomogeneous term in the right-hand side, the

system determining the solution to the BES equation γ(t). As we show in Appendix A.4, this fact

permits to derive a Wronskian-like relation between the functions δγ(t) and γ(t). This relation

turn out to be powerful enough to determine the small t asymptotics of the function δγ(t) in terms

of γ(t), or equivalently Γ(t). In this way we obtain

δγ(it) = −ξt
[

2

π2g
e−πg −

√
2

π
e−πg Re

∫ ∞

0

dt′

t′ + iπg
ei(t′−π/4) Γ(t′)

]
+O(t2) . (3.4.30)

Comparing the expression inside the square brackets with the definition of the mass scale m,

Eq. (3.4.1), we find that

δγ(it) = −ξmt
√

2

8g
+O(t2) . (3.4.31)
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Matching this relation into (3.4.28), we obtain the desired expression for δf1(0), Eq. (3.4.20).

Then, we substitute it into (3.4.15) and compute the leading non-perturbative correction to the

cusp anomalous dimension leading to

mcusp = m. (3.4.32)

Thus, we demonstrated in this section that the leading non-perturbative, exponentially small

correction to the cusp anomalous dimensions at strong coupling are determined to all orders in

1/g by the mass scale m.



Chapter 4

Scaling Function and O(6) Sigma

Model

In this chapter, we will explore further the scaling behavior of the minimal anomalous dimension

in the limit when both the spin of the Wilson operators N and their twist L are large. Namely,

we will allow L to grow logarithmically with N and determine the large N expansion in the limit

N, L → ∞ for fixed scaling variable j = L/ logN . In this double scaling limit, the minimal

anomalous still scales logarithmically with N but the coefficient in front of logN receives besides

the cusp anomalous dimension an additional contribution which depends explicitely on j [45].

The minimal anomalous dimension thus takes the following form for N,L→∞ with j = L/ logN

fixed [45, 59, 46, 47]

δ∆min = f(g, j) logN + . . . , (4.0.1)

where dots stand for O(log0N) corrections. For j = 0, the scaling function f(g, j) reduces to the

cusp anomalous dimension

f(g, j = 0) = 2Γcusp(g) , (4.0.2)

and the non-trivial dependence on j is encoded in the function ǫ(g, j) defined as

ǫ(g, j) = f(g, j)− f(g, 0) . (4.0.3)

This function can be computed in planar N = 4 SYM theory thanks to integrability [45, 47]. In

a previous chapter, we illustrated the power of integrability on the example of one-loop Bethe

ansatz equations in the sl(2) sector. Applying the all-loop Bethe ansatz equations [41, 43, 44],

it is possible to derive an integral equation [47] whose solution determines the scaling function

ǫ(g, j) exactly for any value of j and g. At strong coupling, this function can be investigated with

the help of AdS/CFT correspondence [45, 15, 59, 61] by computing the semiclassical energy of

a string rotating in AdS3 with a large spin N and boosted along a big circle of S5 with a large

momentum L [14, 15].

For general values of g and j, the scaling function ǫ(g, j) has a quite complicated form. To get

an insight into the properties of this function, it is instructive to examine its asymptotic behavior

in different parts of the parameter space. We will study in detail the regime of small j and strong

coupling g ≫ 1. In this regime, the scaling function can be computed exactly from string theory

87
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and, according to the proposal put forward in [46], it should be related to the energy density

in the ground state of non-linear O(6) sigma model with the particle density ρ ≡ j/2 ∼ m and

m ∼ e−πg being the mass gap of the O(6) sigma model. In this chapter, we will verify this proposal

on both sides of the AdS/CFT correspondence [46, 61, 74, 73, 75, 138, 76] and, then, compare

the two predictions for the mass gap, coming from gauge [74, 73, 76] and string [46, 76] theory

considerations, respectively.

4.1 Scaling Function in String Theory

In this section we study the scaling function ǫ(g, j) at strong coupling from string theory. We

first analyse it with the help of the semiclassical string expansion and then by means of the O(6)

sigma model. By comparing the two approaches, we will extract the expression of the mass gap

m = m(g) up to two loops at strong coupling.

4.1.1 Semiclassical String Expansion

We start with few remarks about the string theory dual to planar N = 4 SYM theory and the

spinning string solution dual to spin N , twist L Wilson operator. We refer the reader to the

literature mentioned below for comprehensive discussions.

General Remarks

The AdS/CFT correspondence predicts that the spectrum of scaling dimensions of single-trace

operators in planar N = 4 SYM theory coincides with the energy spectrum of closed strings

propagating on AdS5 × S5. To find the spectrum of string excitations, one needs to solve the

string sigma model on AdS5 × S5 background. The latter is given by a two-dimensional field

theory which is uniquely fixed by its symmetries [12] and only depends on the string tension√
λ/2π = 2g with g2 being the ’t Hooft coupling constant in gauge theory. The inverse string

tension ∼ 1/
√
λ plays the role of a coupling constant in the σ-model and it controls the size of

the quantum fluctuations of the string. Then when the tension is large
√
λ ≫ 1, the σ-model is

weakly coupled while the dual gauge theory is strongly coupled g ≫ 1.

To compute the energy spectrum of the string, one has to quantize the σ-model on AdS5× S5

background. This is a very complicated problem that still awaits it solution. It turned out that

for higher excited states in the energy spectrum of the string, the problem can be circumvented by

applying semiclassical methods [14, 15]. In this approach, the starting point is an identification

of the solitonic-like solution to the classical string equations of motion with the relevant global

conserved charges fixed by quantum numbers of Wilson operators in dual gauge theory. Expanding

and quantizing the σ-model around this background solution, one builds up the string spectrum

above the corresponding excited state, which here plays the role of a ground state for the two-

dimensional theory. Note that one usually starts with a classical solution with minimal energy for

given global conserved charges to ensure the stability of the vacuum. In general, if the background

solution is not too involved, one may perform a perturbative quantization of the theory at
√
λ≫ 1.

It allows in particular to find the ground-state energy in the form of an expansion in inverse powers

of
√
λ ∝ g ≫ 1. The leading order contribution to this semiclassical or strong coupling expansion
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is simply given by the classical energy of the soliton, while the subleading terms are induced by

the quantum fluctuations. In this way one can work out the energy of a string dual to a Wilson

operator carrying a large Lorentz spin N and/or a large twist L [14, 15].

Before considering it, let us finally say few words about the AdS5 × S5 background [11].

The metric of AdS5 × S5 decomposes into the direct sum of the metrics of two subspaces. By

construction, the curvature radius of AdS5 and S5 are equal to each other and we normalize their

value to be 1. The Euclidean metric of S5 takes the well-known form while the Minkowskian

metric of AdS5 in global coordinates reads

ds2 = cosh2 r dt2 − dr2 − sinh2 r dΩ2
3 . (4.1.1)

Here t ∈ (−∞,∞) and r ∈ (0,∞) are respectively the time and radial coordinates, while dΩ2
3 is

the metric on the unit sphere S3. The boundary of AdS5 is located at r =∞ and it is conformally

equivalent to R×S3 with metric ds2 = dt2− dΩ2
3. The dual gauge theory “lives” on the boundary

of AdS5 and the AdS/CFT correspondence establishes the correspondence between the Wilson

operators in this theory and quantum states of the strings propagating in AdS5 × S5. In the

following, we will be dealing with strings rotating in AdS3 ⊂ AdS5. In that case the sphere S3 in

(4.1.1) is reduced to a big circle S1 with angular coordinate ϕ ∈ (0, 2π) and the metric takes the

form

ds2 = cosh2 r dt2 − dr2 − sinh2 r dϕ2 . (4.1.2)

The boundary r = ∞ of AdS3 space is then conformally equivalent to a cylinder R × S1 with

metric ds2 = dt2 − dϕ2. The Lorentz spin N of a Wilson operator in the dual gauge theory is

translated into angular momentum of the string, that is the charge conjugated to shift in ϕ. In

the similar manner, the twist L of the Wilson operator in consideration is conjugated to a rotation

in S5.

Spinning String

The string state that is dual to a Wilson operator carrying a Lorentz spin N and a twist L has

two angular momenta N and L corresponding to rotations on AdS3 ⊂ AdS5 and on S1 ⊂ S5,

respectively [11]. Applying the AdS/CFT dictionary [8] its energy E is equal to the scaling

dimension ∆ of the dual Wilson operator

E = ∆ = N + L+ δ∆ , (4.1.3)

where δ∆ = O(g2) is the anomalous dimension in N = 4 SYM theory. Since we are interested

in conformal operators with minimal anomalous dimension, we will focus on a string state with

minimal energy for given N and L. In flat space-time, a string state with minimal energy for a

given spin N lies on leading Regge trajectory. In the limit of a large number of excitations N ≫ 1

the state becomes semiclassical and it can be described by a stretched (folded) classical string

rotating around its center-of-mass [5, 14]. As proposed in [14], the same physical picture should

also apply in AdS and the corresponding classical configuration is a folded string spinning in the

curved AdS3 background with the angular momentum N . In addition, for large values of twist L,

the string gets boosted along a big circle of S5 with the angular momentum L [15].
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Figure 4.1: Transition from the short folded rotating string to the infinitely long string limit [14,

15]: (a) short string S ≪ 1 with length ∼ 4 (S/2π)1/2, (b) long string S ≫ 1 with length ∼ 2 log S
and (c) infinitely long string S = ∞ stretched up to the boundary of AdS5. Here the interior

of the disk represents a section of AdS5 at a given time t and the circle its boundary S3. The

frequency ω interpolates between (a) ω ∼ (2π/S)1/2 at S ∼ 0 and (c) ω = 1 at S = ∞. The

momentum J is assumed all the way much smaller than the spin S.

To obtain the strong coupling expansion of the string energy E at large N and L, one has to

quantize semiclassically the σ-model around the classical string solution mentioned above [14, 15].

The coupling constant does not play any role in the classical string dynamics except to set the

scale of the Noether charges. It is then convenient to introduce1

E ≡ E/g , S ≡ N/g , J ≡ L/g . (4.1.4)

A classical solution is parameterized by S and J , that are kept fixed in the semiclassical string

expansion g ≫ 1. The energy E is then found as a series in inverse powers of the coupling

constant [14, 15, 59, 61]

E = g E0(S,J ) + E1(S,J ) +O(1/g) , (4.1.5)

with E0, E1, . . . being functions of S and J , but independent of the coupling constant. Here,

the leading contribution E0 is the classical string energy while E1 is the one-loop correction to

the energy induced by the quadratic fluctuations around the classical solution. The semiclassical

expansion (4.1.5) being defined for large g and fixed (S,J ), it yields predictions for anomalous

dimension at strong coupling of Wilson operators carrying large spin N and twist L.

Due to the curvature of the AdS3 background, the leading classical contribution ∼ E0(S,J )

to the energy of the string (4.1.5) is given by a complicated function of S and J that interpolates

between different regimes [14, 15].2 For instance, for small angular momentum S ≪ 1 the string

is short. If, in addition, the rotation of the center-of-mass is slow, J ≪ 1, the energy E0(S,J )

is small. We expect that in this limit the string does not feel the curvature of the background.

Indeed, according to [14, 15] the energy for S,J ≪ 1 reads

E0(S,J ) =
√
J 2 + 8πS + . . . , (4.1.6)

1Note that the notations here are similar to those of [15, 61] but differ by an overall factor 4π due to the relation√
λ = 4πg.
2An exact parametric representation valid for any (S ,J ) can be found in [15]. Here, we will not directly make

use of it since we will focus on the large spin regime S ≫ 1 for which the explicit expressions are known [14, 15, 45].
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and, making use of (4.1.4) and (4.1.5), one finds that it corresponds to the familiar relativistic

dispersion relation of a classical string in a flat space-time

E ≃ Eflat-space =
√
L2 + 8πgN . (4.1.7)

Here L is the momentum of the center-of-mass of the string while M2 = 8πgN = 2N/α′ is the

squared mass of the folded rotating string with angular momentum N and Regge slope α′ =

1/4πg.3

The physics is however quite different in the limit S ≫ 1, assuming for a while that J is kept

fixed. In that case it is no longer possible to neglect curvature effects since the string is appreciably

stretched out and its energy becomes large, see Figure 4.1. Indeed, according to [14, 15] the string

length scales as ∼ 2 log S ≫ 1 and the energy E0(S,J ) behaves as

E0(S,J ) = S + 4 log S + . . . . (4.1.8)

Substituting this relation into (4.1.5), we find for N ≫ g ≫ 1

E = N + 4g logN + . . . . (4.1.9)

We immediately verify that this expression for the energy E of a long rotating string (4.1.9) is

in perfect agreement with the all-loop gauge theory prediction for scaling dimension of Wilson

operators [49]

∆min = N + 2Γcusp(g) logN + . . . , (4.1.10)

with the cusp anomalous dimension Γcusp(g) being a function of the coupling constant independent

of the twist L. The AdS/CFT correspondence implies that E = ∆min, thus leading to the strong

coupling expression of the cusp anomalous dimension [14]

Γcusp(g) = 2g +O(1) . (4.1.11)

In order to put this matching on firm grounds, it is important to verify that the radiative correc-

tions to the classical energy of a long rotating string (4.1.9) do not scale stronger than the first

power of log S ≃ logN . As proposed in [14] and argued in [15, 46] this is indeed the case and the

energy of a long rotating string scales to all orders in the strong coupling expansion as

E = N + 2F(g) logN + . . . . (4.1.12)

Here F(g) = 2g + O(1) is a function of the coupling constant only. It has been computed

explicitely to two loops in [14, 15, 60]. Complete agreement with the gauge theory requires that

F(g) = Γcusp(g). By definition, the cusp anomalous dimension governs the scale dependence of

the vev of a cusped lightlike Wilson loop in N = 4 SYM theory. At strong coupling, in the

dual stringy picture, the Wilson loop is determined by the area of the minimal surface ending at

the boundary of AdS5 on the contour drawn by the Wilson loop [124, 125]. This offers a way

3One-loop quantum correction E1(S ,J ) to the energy of a short spinning string has been computed in [126] for

J = 0.
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to compute the cusp anomalous dimension at strong coupling. To two loop order this was done

in [113, 114, 115, 116] leading to

Γcusp(g) = F(g) = 2g − 3 log 2

2π
− K

8π2g
+O(1/g2) , (4.1.13)

with K the Catalan’s constant. More generally the relation F(g) = Γcusp(g) was shown in [115]

to be exact to all orders in the strong coupling expansion.

4.1.2 String Scaling Function

As was already mentioned, the energy of a long rotating string (4.1.12) gets corrected when its

angular momentum J corresponding to rotation of the center-of-mass of the string along S1 ⊂ S5

becomes large simultaneously with S. Based on gauge theory considerations, we expect that the

appropriate scaling variable in the limit when both the Lorent spin N and the twist L take large

values is given by j = L/ logN . For N, L → ∞ and j fixed, the minimal scaling dimension has

the asymptotic behavior [45, 46, 47]

∆min = N + L+ f(g, j) logN + . . . . (4.1.14)

where the function f(g, j) split into the sum of two terms

f(g, j) = 2Γcusp(g) + ǫ(g, j) . (4.1.15)

By construction, the scaling function ǫ(g, j) vanishes at j = 0, and for small j it admits an

expansion in integer powers of j = L/ logN [45, 47].

At strong coupling, the scaling function f(g, j) should match the prediction of the string

theory. It is convenient to rewrite the relation (4.1.14) as

E = N + 2F(g, j) logN + . . . , (4.1.16)

with

F(g, j) =
f(g, j) + j

2
= Γcusp(g) +

ǫ(g, j) + j

2
. (4.1.17)

We expect that in the semiclassical stringy approach the scaling function F(g, j) is given by an

expansion in 1/g with coefficients being functions of the variables S = N/g and J = L/g. Namely,

introducing a new variable ℓ ≡ J /4 log S and using the relation j ≡ L/ logN ≃ L/ log S = 4gℓ, we

expect that the scaling function F(g, j) = F(g, 4gℓ) can be found semiclassically as [45, 15, 59, 61]

F(g, j) = F(g, 4gℓ) = gF0(ℓ) + F1(ℓ) + . . . , (4.1.18)

where the strong coupling expansion is performed for a fixed value of the scaling variable ℓ. For

ℓ = j = 0 this expansion takes the form

F(g, 0) = Γcusp(g) = gF0(0) + F1(0) + . . . , (4.1.19)

In order to understand better the origin of this generalized scaling in the string theory, we will first

comment a bit about some remarkable features of the long rotating string S ≫ 1 [14, 15, 115, 46].

After this few remarks, we will find quite easily the classical string scaling function F0(ℓ) and then

discuss what happens at the quantum level.
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Classical String Scaling Function

To begin with, let us examine the properties of a long rotating string with S ≫ 1 first assuming

that J = 0. Then, in order to isolate the ‘anomalous’ ∼ logN ≃ log S contribution to its energy,

let us define the energy in the rotating frame of the string. This frame rotates with a frequency ω

in the global coordinates of AdS3 and the charge conjugate to shift in time is given by E − ωN .

The frequency ω is function of the spin N and it can be found as

ω =
dE

dN
. (4.1.20)

This is so because the string has minimal energy E for given spin N . In other words, F (ω) =

E−ωN defines the free energy of the theory at chemical potential ω, the latter being determined

by the minimization condition δF = δE − ωδN = 0, or equivalently (4.1.20). Plugging the long

string classical energy E = N + 4g logN + . . . into (4.1.20) we obtain that ω = 1 + 4g/N + . . . =

1 + 4/S + . . . [14]. Thus the energy in the rotating frame is given by E − N , up to subleading

o(log S) corrections at large S.

Now, let us work out the induced metric on the worldsheet of the classical string. It can be

easily obtained from (4.1.2) by using that ϕ = ωt and one finds

ds2 = (cosh2 r − ω2 sinh2 r) dt2 − dr2 . (4.1.21)

Here the radial coordinate r is assumed to take negative values −r0 ≤ r ≤ r0 which correspond to

the string stretched along the segment (−r0, r0) with r0 the distance between the turning points

of the string and the origin r = 0. Note that since the string is folded its length R is given by

R = 4r0. Then, taking into account the redshift factor in (4.1.21), we find that the energy E−ωN
is given by [14]

E − ωN = 8g

∫ r0

0
dr
√

cosh2 r − ω2 sinh2 r , (4.1.22)

where the string tension 2g has been multiplied by 4 to account for the four equivalent segments

of the folded string. We can now observe a remarkable simplification of (4.1.22) when ω = 1.

Namely, the energy at rest is uniformely distributed along the string and thus is proportional to

the length R

E −N = 2gR . (4.1.23)

As was already explained, for S ≫ 1 the length of the string is given by R = 2 log S. Indeed, it

follows from the expression of the induced metric (4.1.21) that the extension of the string along

the radial coordinate r0 and the frequency ω are related to each other as [14]

ω = coth r0 . (4.1.24)

This is so because the string fold points propagate at the speed of light. Using this relation we

verify that r0 →∞ corresponds to ω → 1 and that ω = 1+4/S+. . . implies R = 4r0 = 2 log S+. . . .

Substituting this relation into (4.1.23), we find that the cusp anomalous dimension is equal at

strong coupling to the string tension 2g, or equivalently to the energy density along the string.
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Let us understand what happens when the string is boosted with a momentum L along a big

circle of S5. The string that was at rest now effectuates a rigid rotation on a cylinder (r, ψ) in a

flat space-time

ds2 = dt2 − dr2 − dψ2 , (4.1.25)

where ψ is the angular variable on the big circle of S5. Here we used (4.1.21) evaluated at ω = 1

for the relevant contribution coming from AdS3. It immediately follows that the energy density

(E −N)/R is given by the relativistic law

E −N
R

=

√(
M

R

)2

+

(
L

R

)2

, (4.1.26)

where M/R and L/R are respectively the density of mass and of momentum along the string. We

found previously that M/R = 2g and R = 2 log S at large S. Then factoring out the dependence

on the coupling constant and introducing the semiclassical variable ℓ = L/M = L/4g logS =

J /4 log S, we get

E −N = 2gF0(ℓ) log S , (4.1.27)

with

F0(ℓ) = 2
√

1 + ℓ2 . (4.1.28)

This is the correct classical string scaling function [45, 15], which has been successfully reproduced

with help of the Bethe ansatz technology in [137, 138, 139].

We thus verified, at the classical level, that the string energy admits a generalized logarithmic

scaling at large S, for any fixed value of ℓ = J /4 log S. Expanding (4.1.27) at small ℓ we obtain [15,

45]

E −N = 4g logS
(

1 +
J 2

32 log2 S +O(J 4/ log4 S)

)
. (4.1.29)

This relation illustrates how the string scaling function resums corrections at large S enhanced

by a large momentum J . Arriving at (4.1.29) we tacitly assumed that ℓ = J /4 log S is small. In

the opposite large ℓ limit, or equivalently J ≫ log S, the classical energy (4.1.27) looks as [15]

E = N + 4g

(
ℓ+

1

2ℓ
+O(1/ℓ3)

)
log S = N + L+ 8g

log2 S
J +O(log4 S/J 3) . (4.1.30)

Notice that this relation is valid at large S only for S ≫ J ≫ log S whereas for J ≫ S the

properties of E are different. A similar phenomenon also happens in the gauge theory [45] and has

been discussed in Chapter 2. In string theory, one can easily understand the change of asymptotic

behavior by noting that for S ∼ J ≫ 1 the string is not long anymore. Indeed, the string length

R depends on the momentum J , because it is fixed at the classical level by the lightlike condition

imposed at the fold points [15]. The solution to this condition depends on whether the string is

boosted along S1 or not. At large S and finite ℓ we have R = 2 log S up to subleading o(log S)

corrections. However, for ℓ≫ 1 we find instead that R = 2 log (S/J ) = 2 log (N/L) [15] indicating

that the string shortens when J becomes of order S. Eventually, the string shrinks into a point

when J ≫ S [14, 15] and one recovers the BMN scaling

E = N + L+ 8gπ2 S
J 2

+ . . . . (4.1.31)
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The study of this regime was done in [95] to leading order on both sides of the AdS/CFT corre-

spondence.

Quantum String Scaling Function

The previous discussion of the classical string scaling function can be extended to the quantum

level. Namely, by expanding the string σ-model around the classical solution for a long rotating

string with J = 0 and assuming a static gauge in which the radial and time coordinate do not

fluctuate, one obtains a two-dimensional QFT for the transverse (and fermionic) fluctuations of

the (super)string [15, 46]. The latter excitations can be viewed as propagating above the classical

string background and carrying energy measured with the 2d Hamiltonian H = (global-time)

energy − spin = scaling dimension − Lorentz spin.4 Given that the energy of a long rotating

string scales linearly with its length R = 2 log S to all loops, we expect the cusp anomalous

dimension to be equal to the effective (quantum) tension of the string. In other words, the cusp

anomalous dimension is equal to the vacuum energy density of the σ-model expanded around the

classical string solution [15, 46].

Similar to the cusp anomalous dimension, the scaling function also admits a direct generaliza-

tion at the quantum level. Namely, F(g, j) = (E−N)/R = (E−N)/2 log S is the energy density

of an excited string state with minimal energy for a given charge density ρ = L/R = j/2 [46].

Here we prefer to think of ρ as a charge density instead of a momentum density, because from

the 2d σ-model point of view the target-space momentum L is an internal charge. It is indeed

the Noether charge corresponding to rotation of the center of mass of the (super)string along

a big circle on S5. At zero density ρ = j = 0, we find the vacuum state (string at rest w.r.t.

S1 ⊂ S5) with energy density F(g, j = 0) = Γcusp(g). At finite density ρ 6= 0 we have a steady

state, made out of transverse fluctuations at (zero-temperature) thermodynamic equilibrium, with

energy density

ε(g, j) ≡ F(g, j) −F(g, j = 0) = F(g, j) − Γcusp(g) =
ǫ(g, j) + j

2
. (4.1.32)

Here we used the equation (4.1.17) to relate ε(g, j) to the gauge scaling function ǫ(g, j). Given the

interpretation above, the string theory should provide a definite prediction for the scaling function

at strong coupling and arbitrary j.

Let us start with the semiclassical string scaling function. As was already said, it is found, at

large g, as [45, 15, 59, 61]

F(g, j) = F(g, 4gℓ) = gF0(ℓ) + F1(ℓ) + g−1F2(ℓ) + . . . , (4.1.33)

where F0(ℓ),F1(ℓ), . . . are the classical, one-loop, . . . contribution, respectively. We stress that

the expansion (4.1.33) assumes ℓ ≡ j/4g ≡ ρ/2g to be fixed. Let us understand why. The starting

point of the expansion (4.1.33) is the classical boosted string solution, that is characterized by

the frequency ν of the rotation along S1, namely ψ = νt. The frequency ν parameterizes the

background solution and it has to be kept fixed when the perturbative quantization is done

4Here we assume the frequency ω = 1 corresponding to S ∼ ∞.
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around it. To relate the frequency ν to the conserved charges one can make use of the relation

ν =
dE

dL
, (4.1.34)

that is similar to the one used for the frequency ω, which was conjugate to the spin N . Then,

classically and to leading order at large S, we get [15]

ν =
ℓ√

1 + ℓ2
. (4.1.35)

Therefore, keeping the frequency ν fixed becomes equivalent to working at finite ℓ.5 We note,

moreover, that from the point of view of the string σ-model defined around the string at rest,

that is ν = 0, a state with finite ℓ is a highly-excited state with a large charge density ρ ≡ 2gℓ,

since g ≫ 1. It is thus not completely surprising to find that this regime of large density can

be captured semiclassically by shifting the vacuum to the relevant soliton solution, which in the

present case describes a macrosopic rotation at frequency ν.

The classical contribution, F0(ℓ), to the semiclassical string scaling function (4.1.33) was easy

to compute, because the relevant metric was flat. Quantum mechanically the transverse fluctu-

ations of the string feel the curvature of the space-time around the classical string and induce

more involved corrections [15, 59, 61]. Remarkably enough the one-loop correction F1(ℓ) can be

computed explicitely [59] and its expression has been reproduced by methods based on the Bethe

ansatz equations [137, 138, 139]. Here we will not need this expression but will later give its

leading behavior at small ℓ. The two-loop contribution F2(ℓ) has been obtained in [61] at small

ℓ. The small ℓ or more exactly the small j ≡ 4gℓ regime of the string scaling function F(g, j) is

precisely the one we would like to investigate and to compare with the gauge theory. So let us

examine the small ℓ expansion of the semiclassical string scaling function in more detail.

The prediction for the gauge scaling function at strong coupling goes as follows. To leading

order, we have

ε(g, j) = g (F0(ℓ)−F0(0)) = 2g
(√

1 + ℓ2 − 1
)
, (4.1.36)

which after expanding at small ℓ ≡ j/4g and using Eq. (4.1.32) leads to

ǫ(g, j) = −j +
j2

8g
− j4

512g3
+ . . . . (4.1.37)

Comparing Eq. (4.1.37) with the gauge theory small j expansion [45, 47]

ǫ(g, j) = ǫ1(g) j + ǫ2(g) j
2 + ǫ3(g) j

3 + . . . , (4.1.38)

with one-loop expressions

ǫ1(g) = −8 log 2 g2 + . . . , ǫ2(g) = 0 + . . . , ǫ3(g) =
7

12
π2ζ3 g

2 + . . . , (4.1.39)

one would naively expect that ǫ1(g) interpolates between ǫ1(g) = −8 log 2 g2 at weak coupling and

ǫ1(g) = −1 at strong coupling, and so on for ǫ2(g), . . . . That sounds indeed reasonable since both

5Things remain the same at higher loops but the relation between ν and ℓ gets corrected by contributions

suppressed by powers of 1/g [59, 61].
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the gauge and string scaling functions appear to be analytic around j = ℓ = 0. However, this is

not what happens, except for the coefficient ǫ1(g). For instance, as we shall see later, the all-loop

asymptotic Bethe ansatz equations predicts that ǫ2(g) is exactly zero [47], at any value of the

coupling constant. It is thus not possible to match the would-be strong coupling string prediction

ǫ2(g) = 1/8g + . . . (g ≫ 1). Moreover, the expansion of the scaling function in integer powers of

ℓ does not hold anymore at higher-loop on the string theory side [59, 61]. Indeed, the first two

terms of the small ℓ expansion of the two-loop string scaling function reads explicitely [59, 61]

ε(g, j) = gℓ2
[
1 +

1

πg

(
3

4
− log ℓ

)
+

1

4π2g2

(
q02
2
− 3 log ℓ+ 4 log2 ℓ

)]
+O(ℓ4) , (4.1.40)

where q02 is a two-loop constant equal to [61]

q02 = −2K− 3

2
log 2 +

7

4
, (4.1.41)

where K is the Catalan’s constant. Clearly, the result (4.1.40) with its logarithmic dependence on

ℓ ≡ j/4g prevents any direct interpolation with the gauge theory expansion (4.1.38).

Similar logarithmic enhancements apply for corrections to (4.1.40) suppressed by higher pow-

ers of ℓ [59]. The situation becomes worse at higher loops since higher polynomials of log ℓ, whose

degrees are given by the loop order, are generated [61]. That singular behavior of the expan-

sion (4.1.40) with its accumulation of powers of log ℓ seems to invalidate the semiclassical analysis

for j ∼ 0. A rough estimate of the ‘convergency radius’ of the (extrapolated) term in square

brackets in (4.1.40) points toward a transition at log ℓ ∼ (−πg), and thus to the existence of a

non-perturbative small j regime: j ∼ e−πg [46]. It would mean that a ‘resummation’ of the double

expansion in powers of 1/g and log ℓ is needed to correctly probe the scaling function around j = 0

at strong coupling, and possibly restore the agreement with the gauge theory expansion (4.1.38).

However, without further information about the structure of the semiclassical expansion (4.1.40),

this program looks quite impossible to tackle on analytical grounds.6 Fortunately, the way out was

proposed in [46] in which the conjecture was put forward that the small ℓ string scaling function

is exactly governed by a 2d non-linear O(6) sigma model. This model appears as a low-energy

effective theory for the string σ-model. Let us see how it solves the interpolation of the two

expansions (4.1.38) and (4.1.40).

According to [46], the O(ℓ2) contributions in the small ℓ expansion of the string scaling func-

tion (4.1.40) are controlled exactly by the O(6) sigma model. More precisely, when ℓ ≡ j/4g ≡
ρ/2g ≪ 1, we have the relation

ε(g, j) ≡ ǫ(g, j) + j

2
= εO(6)(ρ) + . . . , (4.1.42)

where the dots stand for O(ℓ4) corrections. Here, εO(6)(ρ) is the (thermodynamic) density of

energy, measured above the vacuum, for an excited state of the O(6) model with minimal energy

for a given charge density ρ ≡ j/2.7 The O(6) sigma model has a non-trivial dynamics that

6A discussion of the resummation of the logarithms based on a world-sheet superstring approach can be found

in [61].
7The charge is measured with respect to one of the Cartan generators of so(6), the other ones annihilating the

state. We may choose the generator of the rotation in the plane (1, 2) for definiteness.
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splits into two different regimes, which affect the expression of εO(6)(ρ). Perturbatively, the O(6)

model describes the interaction of an O(5) multiplet of massless Goldstone bosons. It has a

running coupling constant and it is asymptotically free at short distances [127, 128]. In the

infrared, however, the O(6) model develops a mass gap m ∼ exp (−g/β0), with one-loop beta-

function coefficient β0 = 1/π, and describes the interaction of an O(6) multiplet of massive

(asymptotic) particles with mass m. The corresponding regimes for the energy density εO(6)(ρ)

are then summarized as follows.

• In the non-perturbative regime ρ ≪ m, the O(6) energy density admits an expansion in

integer powers of ρ [130]

εO(6)(ρ) = m2

[
ρ

m
+
π2

6

( ρ
m

)3
+O

(
ρ4/m4

)]
. (4.1.43)

This regime is directly connected to the small j ≡ 2ρ expansion of the gauge theory (4.1.38).

We note, in particular, the absence of term proportional to ρ2 ∼ j2 in (4.1.43). Comparison

of (4.1.43) and (4.1.38) suggests that ǫ1(g) interpolates bewteen ǫ1(g) = −8 log 2 g2 + . . .

at weak coupling (g ≪ 1) and ǫ1(g) = −1 + m + . . . at strong coupling (g ≫ 1), and so

on for ǫ3(g), . . . . We will see later that this is effectively the transition predicted by the

all-loop Bethe ansatz equation for the scaling function in the gauge theory [47, 74, 73, 75].

Note that the dots in the relation ǫ1(g) = −1 +m+ . . . stand for subleading contributions

at strong coupling. The latter arise from resummation of terms ∼ ℓ4 logk ℓ, ℓ6 logk ℓ, . . .

in (4.1.40) to all orders in 1/g. From the effective theory point of view, they correspond

to irrelevant perturbations of the O(6) model associated to dimension 4, 6, . . . operators.

Thus it seems reasonable to believe that their contributions at a given order in the small j

expansion of the scaling function will be suppressed by higher powers of the mass m ∼ e−πg,

e.g. ǫ1(g) = −1 +m+ O(e−3πg) . These sort of contributions are predicted [73, 75] by the

all-loop Bethe ansatz equation for the scaling function [47].

• In the perturbative regime ρ≫ m, the O(6) energy density reads [130]

εO(6)(ρ) = ρ2

[
π

4 log(ρ/m)
+O

(
log log(ρ/m)

log2(ρ/m)

)]
. (4.1.44)

This regime is connected to the small ℓ ≡ ρ/2g expansion of the semiclassical string re-

sult (4.1.40). The expression (4.1.44) resums through renormalization group (an infinite

number of) perturbative corrections in 1/g with coefficients proportional to ℓ2 ∼ ρ2 and

enhanced by powers of log ℓ [46, 61]. Using the leading-order (one-loop) strong coupling

expression for the mass gap m ∝ exp (−g/β0) = e−πg and expanding (4.1.44) at strong cou-

pling, one immediately recovers the classical string result ε(g, j) = gℓ2 + . . . [46]. To match

higher-loop corrections to (4.1.40) into (4.1.44), one needs to know the strong coupling ex-

pansion of the mass gap m. This expansion depends on the embedding of the O(6) model

into the superstring σ-model, and it is not fixed by the O(6) model solely. Comparing the

O(6) result (4.1.44) with the string result (4.1.40) order by order in 1/g, one may find the

strong coupling expression of the mass gap m = m(g) [46, 76]. We will explain it in more

details in the following subsection, but it is important to stress that the O(6) model predicts
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that the string expansion (4.1.40) has a renormalization-group structure [46, 61]. It implies

for instance that the mapping of (4.1.40) into (4.1.44), with the help of the one-loop mass

gap m ∝ exp (−g/β0), definitely determines the numerical coefficient ∼ (−β0)
k multiplying

the leading logarithm logk ℓ of (4.1.40) at k-loop order [46].

• In the intermediate regime ρ/m = fixed, the function εO(6)(ρ) does not admit a simple

representation. However, thanks to the complete integrability of the O(6) sigma model [72,

127, 128], the energy density can be found for an arbitrary charge density as the solution

to the (zero-temperature) thermodynamic Bethe ansatz (TBA) equations [130]. We shall

discuss it later, since it is in this form that the O(6) model is embbeded [73] into the gauge-

theory all-loop Bethe ansatz equation for the scaling function [47] (at strong coupling).

Thus the proposal of [46] solves the apparent disagreement between the small j expansion in the

gauge theory at strong coupling (4.1.38) and the small ℓ expansion in the string theory (4.1.40) by

establishing a non-perturbative transition between these two regimes. That transition is governed

by the O(6) sigma model and takes place at j ∼ m ∼ e−πg where m is the O(6) mass gap.

In the next subsection, we will verify explicitely that the O(ℓ2) contribution to the small

ℓ string scaling function (4.1.40) can be interpreted as the semiclassical expansion of the O(6)

energy density, which holds in the perturbative regime j ≫ m. Namely, we will check that the

polynomials of log ℓ in (4.1.40) have a renormalization-group structure that originates from the

running of the effective coupling constant of the O(6) model. From this mapping, we will extract

the two-loop expression of the O(6) mass gap m = m(g). Finally, we will sketch the construction

of the O(6) TBA equations [72, 130], in view of a later embedding into the gauge theory.

4.1.3 Non-Linear O(6) Sigma Model

According to [46], the effective dynamics of the gapless excitations of the string σ-model, expanded

around the long rotating string at rest w.r.t. S1 ⊂ S5, is described by the bosonic non-linear O(6)

sigma model. Let us give an argument supporting this proposal by looking at the spectrum of

quadratic fluctuations. To one-loop order, the spectrum of masses of these fluctuations has been

computed in [59]. It can be easily deduced from the following representation for the one-loop

contribution to the cusp anomalous dimension [59, 46]

−3 log 2

2π
=

1

2

∫ ∞

−∞

dp

2π

[
5|p|+

√
p2 + 4 + 2

√
p2 + 2− 8

√
p2 + 1

]
. (4.1.45)

Indeed, we recall that the cusp anomalous dimension has the meaning of the vacuum energy

density for the 2d worldsheet theory: Γcusp(g) = Evac/R = Evac/2 log S = 2g − 3 log 2/2π + . . . .

As a consequence, O(g0) correction to the cusp anomalous dimension is given by the sum of the

individual energies Ek of each of the string modes. Namely,

Evac = Eclassical + 1/2
∑

k

Ek +O(1/g) , (4.1.46)

where Eclassical = 4g logS and
∑

k → 2 log S ×
∫
p with p ∼ 2πk/2 log S in the long string limit

S ≫ 1.
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Clearly, the one-loop vacuum energy density (4.1.45) decomposes into the sum of bosonic and

fermionic contributions with the latter entering with minus sign. The correct balance between the

number of these modes and the values of the corresponding masses ensures the UV finiteness of the

result. We see that the excitations have relativistic dispersion law and all of them except five are

massive. The five gapless modes correspond to small fluctuations of the string in S5 ⊂ AdS5× S5.

They are massless by the Nambu-Goldstone mechanism. Indeed, the 2d Hamiltonian has an exact

O(6) symmetry, reflecting the invariance with respect to rotations in S5. But, at the perturbative

level g ≫ 1, the symmetry is spontaneously broken down to O(5) by the semiclassical vacuum

or equivalently by the choice of the position of the string in S5. In this way, one has an O(5)

multiplet of Goldstone bosons. As we will discuss later, the embedding of the string into S5 is

governed at low-energy by a non-linear O(6) sigma model. We conclude therefore that the O(6)

model can be considered as a low-energy effective theory with a UV cutoff of order O(1) [46]. We

stress that this is possible at strong coupling g ≫ 1 only. Indeed, the strong infrared dynamics of

the O(6) model generates a mass gap m ∼ e−πg, that has to be kept much smaller than the mass

of the string massive modes for consistency. We require thus that m ∼ e−πg ≪ 1.

Looking back at (4.1.45), we note that the cusp anomalous dimension does not receive at

strong coupling a dominant contribution from the O(6) model. This is because the vacuum

energy density of the O(6) model is a UV divergent quantity with no external scale to probe the

low-energy physics. The situation is different for the scaling function ε(g, j) that depends on the

the charge density ρ ≡ j/2. Then, as long as the mean energy per charge (particle) ε(g, j)/j stays

smaller than the UV scale ∼ 1, we expect the O(6) model to provide the dominant contribution

to the energy density (= scaling function) [46]

ε(g, j) = εO(6)(ρ) + . . . , (4.1.47)

where the dots stand for contributions induced by irrelevant interactions. Due to the renormal-

izability of the O(6) sigma model, the dependence of the energy density εO(6)(ρ) on the physics

at the UV scale ∼ 1 can be absorbed into an effective coupling constant or more conveniently

into the mass gap m. The latter observable is the natural low-energy parameter of the O(6)

model. Therefore, εO(6)(ρ) can be found as a function of ρ and m. Moreover, it assumes the

form εO(6)(ρ) = ρ2fO(6) (ρ/m), as dictated by dimensional analysis. The function fO(6) (ρ/m) is

scheme independent and it can be computed unambiguoulsy in the O(6) model. The information

about the regularization or UV completion of the O(6) model by the string σ-model is encoded

in the dependence of the mass gap m on the UV coupling constant: m = m(g). In summary, the

equation (4.1.47) reads

ε(g, j) ≡ ǫ(g, j) + j

2
= ρ2fO(6) (ρ/m(g)) + . . . . (4.1.48)

The function fO(6) interpolates between two different regimes that have been already presented. In

the low-density regime ρ≪ m, one has a dilute gas of massive particles with energy density [130]

εO(6)(ρ) = mρ+O(ρ3) , (4.1.49)

while in the regime ρ ≫ m, the perturbative expansion of the O(6) model is reliable and the
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energy density reads [130]

εO(6)(ρ) =
πρ2

4 log (ρ/m)
+O

(
log log (ρ/m)

log2 (ρ/m)

)
. (4.1.50)

The rough estimate of the validity of the O(6) description, given by εO(6)(ρ)/ρ ≪ 1, provides

m ≪ 1 in the non-perturbative regime and ρ ≪ g, or equivalently ℓ ∼ j/g ∼ ρ/g ≪ 1, in the

perturbative regime (making use of m ∼ e−πg).

Perturbative Regime

In order to check the interpretation of the O(6) model as a low-energy effective theory, we will

verify up to two-loop in the semiclassical expansion g ≫ 1, ℓ ≡ ρ/2g fixed, that the string scal-

ing function agrees when ℓ ≪ 1 with the perturbative expansion of the O(6) energy density. In

parallel, we will make more precise the condition of validity of the O(6) model. Finally, we will

compute the mass gap expression m = m(g) up to two-loop at strong coupling g ≫ 1.

Classical limit

To begin with, let us first consider the O(6) model at the classical level. The two-dimensional

O(6) sigma model is a theory for a scalar field taking values on the unit five-sphere S5 ⊂ R
6.

More explicitely, introducing the field multiplet X = X(r, t) = (X1, . . . ,X6) ∈ R
6 satisfying the

condition X ·X =
∑

i X
iXi = 1, its action is given by

S = g

∫
drdt ∂X · ∂X . (4.1.51)

Here g is the coupling constant of the O(6) model matching the string tension at the classical

level. Note that it is not the conventional coupling of the O(6) model that reads ē2 = 1/2g. At

the quantum level, it follows that the O(6) model is weakly coupled when g ≫ 1 corresponding to

ē2 ≪ 1. Despite its simple action (4.1.51), the O(6) model is a non-linear theory. It can be easily

seen by solving the constraint X ·X = 1 in a given system of local coordinates on the sphere S5,

revealing that the O(6) model is an interacting theory. For instance, in terms of the unconstrained

(stereographic) fields Y = Y (r, t) = (Y 1, . . . , Y 5) ∈ R
5 with Y i = Xi/(1+X6), the action (4.1.51)

assumes the more involved expression

S = 4g

∫
drdt

∂Y · ∂Y
(1 + Y 2)2

. (4.1.52)

This form of the action is suitable to analyse the O(6) model perturbatively, that is for g ≫ 1,

around the Goldstone vacuum Y = 0 ←→ X6 = 1, after rescaling the fields as Y → Y/
√
g

and expanding in 1/g. It makes explicit that the symmetry is broken down to O(5), due to the

non-linear realization of the O(6) symmetry by the Y fields, and that the quantum fluctuations

form an O(5) vector multiplet of interacting massless Goldstone bosons, at the perturbative level.8

8The O(6) symmetry prevents the fields to pick up a mass, but, as said before, the perturbative expansion breaks

down at low-energy and the theory develops a mass gap non-perturbatively m ∼ e−πg.
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The masslessness of the fields reflects the fact the O(6) model is a conformal field theory at the

classical level. At the quantum level however the coupling starts to run and a dynamical scale is

generated, as we will discuss later.

After this brief presentation of the O(6) model, let us come back to our initial classical problem.

We are interested in the configuration describing the rigid rotation of the string along a big circle

in the plane (1, 2). It corresponds to a solitonic solution of the equations of motion that is more

conveniently analysed in terms of the field multiplet X. It is not difficult to find the corresponding

solution as

X1 = cos (νt) , X2 = sin (νt) , X3,...,6 = 0 , (4.1.53)

up to a shift of the time coordinate t. To verify that (4.1.53) solves the equations of motion, it

is important to take into account the constraint X ·X = 1. That can be done by working in the

Y coordinates, or more directly by relaxing the condition X ·X = 1 with the help of a Lagrange

multiplier λ. Then the Lagrangian density of the O(6) model reads

L = ∂X · ∂X − λ(X ·X − 1) , (4.1.54)

and the equations of motion are given by

�X + λX = 0 , X ·X = 1 . (4.1.55)

They are obviously satisfied by the fields (4.1.53) for λ = ν2. We see that the frequency ν is

left arbitrary and defines the relevant energy scale of the problem. Since the O(6) model has

no dimensionful parameter, we expect the energy density εO(6) and the charge density ρ to scale

respectively as εO(6) ∝ ν2 and ρ ∝ ν. It is no difficult to verify it explicitely. The energy density

reads

εO(6) = g
(
Ẋ · Ẋ +X ′ ·X ′

)
= g ν2 , (4.1.56)

where dot and prime stand for derivative with respect to time and spacial coordinates, respectively.

The Noether charge density associated to rotation, say in the plane (1, 2), is given by

ρ = 2g
(
X1Ẋ2 −X2Ẋ1

)
= 2g ν . (4.1.57)

Resolving the parametric representation, we obtain the classical energy density as

εO(6)(ρ) =
ρ2

4g
. (4.1.58)

Since ρ ≡ 2gℓ, we verify immediately the agreement with the O(ℓ2) contribution to the classical

string result [45]

ε(g, j) = εO(6)(ρ) + . . . = gℓ2 + . . . , (4.1.59)

where ellipses denote subleading corrections, suppressed by powers of ℓ2, which are not captured

by the O(6) model. From the point of view of the O(6) model, they correspond to contributions of

operators with dimensions > 4 and thus stand for irrelevant interactions. At the quantum level,

we expect such contributions to appear after integrating out the massive modes of the string, but

their origin at the classical level is different. The reason is that further non-linear interactions for

the fields X = (X1, . . . ,X6) are generated by the string dynamics at the classical level already.
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To understand it, let us consider in more details the Nambu-Goto action for the classical string.

The latter is given by the area of the string and reads explicitely as

SNG = −2g

∫
drdt

√
(1− Ẋ · Ẋ)(1 +X ′ ·X ′) + (Ẋ ·X ′)2 . (4.1.60)

Here the fieldsX = (X1, . . . ,X6) stand for the embedding coordinates of the string in S5 satisfying

X ·X = 1. Two of the embedding coordinates of the string in AdS5, namely r and t, have been

identified with the world-sheet coordinates. Their contributions produce ‘1’ under square root

in (4.1.60), because, as seen before, the relevant metric is flat in the long string limit. The

remaining embedding coordinates of the string in AdS5 take constant values over the world-sheet

and thus do not participate to the dynamics at the classical level. A similar conclusion applies

for the fermionic excitations of the string. The Nambu-Goto action (4.1.60) obviously predicts

non-linear corrections to the action of the O(6) sigma model (4.1.51). Indeed, its Lagrangian

density admits the expansion

LNG = −2g + g ∂X · ∂X + . . . . (4.1.61)

Here the constant term gives the classical value of the vacuum energy density Γcusp(g) = −LNG(X =

0) = 2g, the marginal operator g ∂X·∂X matches the Lagrangian density of the O(6) model (4.1.51)

and the dots stand for operators with dimensions > 4. Thus we verify explicitely at the classical

that the O(6) model is the low-energy effective theory for the fluctuations of the string in S5.

To be more explicit about the validity of this approximation, let us work out the classical string

scaling function from the Nambu-Goto action (4.1.60). The relevant classical solution is still given

by (4.1.53) but the charge density ρ and the energy density ε are both corrected. Namely,

ρ =
2g ν√
1− ν2

= 2g ν + . . . , (4.1.62)

and

ε = 2g

(
1√

1− ν2
− 1

)
= g ν2 + . . . . (4.1.63)

Eliminating ν we recover the classical string result of [45]

ε(g, j) = 2g

(√
1 + ℓ2 − 1

)
= gℓ2 + . . . . (4.1.64)

It is clear that in order to trust the O(6) model prediction for the string scaling function, ε(g, j) =

εO(6)(ρ) + . . . , we must require the frequency ν to be much smaller than 1 [46]. It translates into

the condition ρ/2g ≡ ℓ≪ 1.

Another characterization of the decoupling condition, which also applies at the quantum level,

can be found with the help of the chemical potential h ≡ dε/dρ. It defines an intensive quantity

which measures the typical individual energy of the relevant fluctuations. In the O(6) model,

h = dεO(6)/dρ is a function of the density ρ and of the mass gap m, or equivalenlty of the cou-

pling g, since m = m(g) ∼ e−πg. One finds h = ℓ ≡ ρ/2g at the classical level, while, quantum

mechanically, h = m at very small density ρ ≪ m [130]. More generally h > m whatever ρ is

(ρ > 0), since one cannot excite fluctuations with energy lower than m. The decoupling condition
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requires h to be much smaller than the UV cut-off, h≪ 1. In the following, we will make use of h

as a renormalization scale for the perturbative expansion of the O(6) energy density. In that case,

h = ℓ(1 +O(1/g)) and it is kept fixed when g →∞. Note that this procedure corresponds to the

semiclassical expansion of the string scaling function: ℓ kept fixed with g ≫ 1, with in addition ℓ

assumed to be smaller than the UV cut-off.

Semiclassical Expansion

We will now consider the radiative corrections to the classical result (4.1.58). They are given by a

perturbative expansion in 1/g (g ≫ 1) which suffers from UV divergences. Since the O(6) model

is embedded into the UV finite string σ-model, these divergences are automatically regularized.

It follows that the 1/g expansion of the O(6) energy density is already finite but renormalized in a

way that depends on the details of the embedding. So what we will do is to check that the two-loop

string theory result [59, 61] is compatible with a renormalized O(6) perturbative expansion [46, 61].

Namely, we will verify that the logarithmic terms ∼ logk ℓ ∼ logk h that appear in the two-loop

string scaling function do fulfill the constraints imposed by the Gell-Mann–Low (renormalization

group) equation of the O(6) model. After that, we will explain how to work out the two-loop

expression for the mass gap m(g) and with its help we will bring the O(6) contribution to the

string scaling function into a scheme independent form [46, 76].

As already mentioned, at the semiclassical level, the O(6) model only captures the contribu-

tions∼ ℓ2 ∼ ρ2 in the small ℓ expansion of the string scaling function. Indeed, by dimensional anal-

ysis, the semiclassical O(6) energy density still scales as ρ2 at higher loops. However, in response

to the breakdown of the conformal invariance of the O(6) model at the quantum level, radiative

corrections acquire a dependence on the renormalization scale h = dεO(6)/dρ = ℓ(1+O(1/g)) ≪ 1.

It arises as an enhancement of the coefficients in the 1/g expansion of εO(6)(ρ) by integer powers

of log h. Since the energy density is a physical quantity, these logarithms can be eliminated by

expanding εO(6)(ρ) not in terms of the bare coupling g but instead in terms of an effective coupling

constant g(h). Therefore, the energy density reads

εO(6)(ρ) =
ρ2

4g(h)

(
1 + c1/g(h) + c2/g

2(h) + . . .
)
, (4.1.65)

where c1, c2, . . . are numerical coefficients. Since all the coefficients c1, c2, . . . can be absorbed into

a redefinition of the coupling g(h), we can put all of them equal to zero without loss of generality,

leading to

εO(6)(ρ) =
ρ2

4g(h)
. (4.1.66)

The effective coupling constant g(h) satisfies the Gell-Mann–Low (renormalization group)

equation (for h≪ 1)

h
dg(h)

dh
= β(g(h)) = β0 +

β1

g(h)
+

β2

g2(h)
+ . . . , (4.1.67)

and it admits the expansion (for h/h0 ∼ 1)

g(h) = g0 + β0 log (h/h0) +
β1

g0
log (h/h0) +O(1/g2

0) , (4.1.68)
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with the initial condition g0 = g(h0) ≫ 1. Here β0 = 1/π and β1 = 1/4π2 are respectively

the one-loop and two-loop beta-function coefficients of the O(6) model. Higher-loop corrections

β2, . . . to the beta-function are not universal and depend on the renormalization scheme. Here

we fixed the scheme by imposing the relation (4.1.66) between ε(ρ) and g(h) and by identifying

the renormalization scale h with the chemical potential.9 These two conditions determine the

coefficients β2, . . . unambiguously. In other words, the coefficients β2, . . . are accessible by direct

perturbative calculations in the O(6) model, independently of the embedding into the string σ-

model. For example, from the two-loop O(6) result of [76] one can derive that β2 = −3/16π3.

The details of the embedding into the string σ-model are absorbed into g0 and its unknown

relation with the bare coupling g. Classically g0 = g while perturbatively (g ≫ 1) we assume

that g0 = g + a0 + a1/g + . . . for some given value of h0 ≪ 1 and some UV sensitive numerical

coefficients a0, a1, . . . . Then it follows from (4.1.68) that

g(h) = g + (β0 log h+ δ0) +
1

g
(β1 log h+ δ1) +O(1/g2) , (4.1.69)

with the numerical coefficients δ0, δ1, . . . in a one-to-one correspondence with a0, a1, . . . . For

instance, a0 = (β0 log h0 + δ0), a1 = (β1 log h0 + δ1) and the remaining relations can be found

iteratively by solving the Gell-Mann–Low equation (4.1.67).

We are now in position to check if the two-loop string theory result [59, 61] is compatible with

a renormalized O(6) perturbative expansion. Plugging the expression (4.1.69) for the effective

coupling g(h) into the formula (4.1.66) for the O(6) energy density εO(6)(ρ), we get the double

expansion of εO(6)(ρ)/ρ
2 in powers of 1/g and log h. Then, eliminating h in favor of ρ with the help

of h = dεO(6)/dρ = ρ/2g + . . . ,10 we expand the energy density in 1/g and log ℓ, with ℓ ≡ ρ/2g,

which is more suitable to compare with the string semiclassical expansion. Doing so, we get

εO(6)(ρ) = gℓ2
[
1 +

1

g

(
c01 + c11 log ℓ

)
+

1

g2

(
c02 + c12 log ℓ+ c22 log2 ℓ

)
+ . . .

]
, (4.1.71)

with the numerical constants

c11 = −β0 , c01 = −δ0 , (4.1.72)

c22 = β2
0 , c12 = β2

0 + 2β0δ0 − β1 , c02 = β0δ0 + β2
0/2 + δ20 − δ1 . (4.1.73)

We see that the expansion (4.1.71) has the correct logarithmic structure to match the corre-

sponding string semiclassical expansion. We recall that the two-loop small ℓ string scaling func-

tion [59, 61] assumes the form

ε(g, j) = gℓ2
[
1 +

1

g

(
3

4π
− 1

π
log ℓ

)
+

1

g2

(
q02
8π2
− 3

4π2
log ℓ+

1

π2
log2 ℓ

)]
+O(ℓ4) . (4.1.74)

9Namely h = dεO(6)/dρ with the derivative taken at fixed renormalized coupling g(h0) = g0 when the energy

density εO(6)(ρ) is expanded in 1/g0.
10To the relevant order for the computation of the two-loop energy density, one finds

h = ℓ

„

1 − 1

g

„

β0 log ℓ+

„

δ0 +
β0

2

««

+ . . .

«

, (4.1.70)

where ℓ ≡ ρ/2g.
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Given the one-loop beta-function β0 = 1/π, we immediately check the agreement between (4.1.71)

and (4.1.74) at the level of the leading logarithms ∼ ckk (log ℓ)k/gk, namely c11 = −1/π and

c22 = 1/π2 [46, 61]. More generally, all the leading logarithms originate from the one-loop running

of the effective coupling constant (4.1.69), leading to the higher-loop predictions for the string

scaling function: ckk = (−β0)
k = (−1/π)k [46]. The one-loop constant c01 = −δ0 in (4.1.71)

is left undetermined by the O(6) model, since it has the meaning of an embedding parameter.

Its value has to be fixed by a direct matching with the string result (4.1.74), namely c01 =

−δ0 = 3/4π. It follows that the subleading-logarithm coefficient c12 = β2
0 + 2β0δ0 − β1 is fixed,

with the help of the two-loop beta-function coefficient β1 = 1/4π2. We find c12 = −3/4π2 in

agreement wih the string result (4.1.74) [46, 61]. One can show moreover that all the subleading

logarithms ∼ c(k−1)k (log ℓ)k−1/gk in (4.1.71) are definitely determined by δ0 and β0,1, which are

further predictions for a higher-loop string computation [46]. Finally, we can express the unknown

embedding parameter δ1, appearing in c02, in terms of the two-loop string constant q02 as

δ1 =
5

16π2
− q02

8π2
. (4.1.75)

Its explicit expression follows from the two-loop string result of [61] (K is the Catalan’s constant)

q02 = −2K − 3

2
log 2 +

7

4
. (4.1.76)

We have thus verified up to two-loop that the small ℓ semiclassical string scaling function can be

cast into the form of the O(6) energy density in the perturbative regime: g ≫ 1 with h ∼ ℓ ≡ ρ/2g
kept fixed and assumed much smaller than the UV cut-off ∼ 1. The two-loop matching above

illustrates the constraints imposed on the string scaling function by the renormalization-group

structure of the O(6) energy density. At an arbitrary order n in the loop expansion, we have the

unknown constant c0n or equivalently δn−1 that has to be determined by a direct matching with

an explicit string theory calculation. Once done, a perturbative computation of the (n + 1)-th

beta-function coefficient βn in the O(6) model permits the determination of all the subleading

logarithms ∼ c(k−n)k(log ℓ)
k−n/gk. They are indeed consequences of the running of the coupling

constant g(h) whose dependence on log h is governed by the Gell-Mann–Low equation.

O(6) Mass Gap

Given the interpretation of the O(6) model as a low-energy effective theory, it should be possible

to cast the O(6) contribution to the string scaling function into a form that is explicitely scheme

independent. As said before, that can be done by absorbing the bare coupling g into the natural

low-energy parameter of the O(6) model, namely its mass gap m = m(g). To find that relation at

strong coupling g ≫ 1, let us go back to the Gell-Mann–Low equation (4.1.67). We observe that

it does not depend explicitely on h and thus can be immediately integrated as

h0 = h exp

[
−
∫ g(h)

g(h0)

dg

β(g)

]
. (4.1.77)

For g(h0), g(h) ≫ 1, the integral in square brackets can be performed perturbatively after expand-
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ing the beta function at large coupling, β(g) = β0 + β1/g + . . . , giving

∫ g(h)

g(h0)

dg

β(g)
=

1

β0
(g(h) − g(h0))−

β1

β2
0

(log g(h) − log g(h0)) + . . . , (4.1.78)

where the dots stand for corrections suppressed by powers of 1/g(h) or 1/g(h0). The expression

on the right-hand side of (4.1.78) can be written as

∫ g(h)

g(h0)

dg

β(g)
=

∫ g(h) dg

β(g)
−
∫ g(h0) dg

β(g)
, (4.1.79)

where the lower bound of the integral
∫ g(h)

dg/β(g) is implicitely determined by imposing the

following asymptotic behavior at g(h)≫ 1

∫ g(h) dg

β(g)
=
g(h)

β0
− β1

β2
0

log g(h) +O(1/g(h)) , (4.1.80)

Note that the condition (4.1.80) can be thought alternatively as fixing the freedom of an arbitrary

constant of integration. Combining (4.1.77) and (4.1.79), we can define a mass scale ΛO(6) as

ΛO(6) ≡ h exp

[
−
∫ g(h) dg

β(g)

]
= h0 exp

[
−
∫ g(h0) dg

β(g)

]
, (4.1.81)

with the property to be invariant along a renormalization-group trajectory.11 The scale ΛO(6)

defined in this way originates from the running of the effective coupling constant g(h) and is

referred to as the dynamical scale. Its value is fixed by the intial condition g0 = g(h0) and it can

be found perturbatively as (g0 ≫ 1)

ΛO(6) = h0 g
β1/β2

0
0 exp (−g0/β0)

(
1 +

1

g0

(
β2

1

β3
0

− β2

β2
0

)
+O(1/g2

0)

)
. (4.1.82)

From the point of view of the string theory, it is more natural to express the mass scale ΛO(6)

in terms of the coupling constant g. That can be easily done with the help of the relation

g0 = g + (β0 log h0 + δ0) + (β1 log h0 + δ1)/g + . . . (g ≫ 1) giving

ΛO(6) = gβ1/β2
0 exp (−(g + δ0)/β0)

(
1 +

1

g

(
β2

1

β3
0

− β2

β2
0

+
β1δ0
β2

0

− δ1
β0

)
+O(1/g2)

)
. (4.1.83)

We note the disappearance of the renormalization scale h0 in the relation (4.1.83). This reflects

the fact that g can be thought as an effective coupling constant defined at the UV scale ∼ 1.

Finally, plugging the numerical values of β0,1,2 and δ0,1 into (4.1.83) provides

ΛO(6) = g1/4 e−πg+3/4

(
1 +

1

πg

(
q02
8
− 1

4

)
+O(1/g2)

)
. (4.1.84)

11Note that the mass scale ΛO(6) is defined in such a way that

Z g(h)

g(Λ)

dg

β(g)
=

Z g(h) dg

β(g)
=
g(h)

β0
− β1

β2
0

log g(h) +O(1/g(h)) ,

when g(h) ≫ 1.
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The advantage of introducing the dynamical scale ΛO(6) is that it absorbs the dependence of

the effective coupling constant g(h) on both the bare coupling g and the embedding parameters

δ0, δ1, . . . , see Eq. (4.1.83). Indeed, the effective coupling constant g(h) can be found by means

of (4.1.81) as a function of the dimensionless ratio h/ΛO(6). Then, since the equation (4.1.81) only

involves the beta function that can be computed directly in the O(6) model, the function f in the

expression g(h) = f(h/ΛO(6)) no longer depends on the details of the UV (string) regularization.

Moreover, the scale ΛO(6) has a direct physical meaning in the O(6) model as it should stand

for the mass gap m, which is the only mass scale in this theory. More exactly, ΛO(6) and m should

be proportional to each other

m = cΛO(6) , (4.1.85)

where the numerical factor c is needed to restore the scheme independence of the mass gap m.

A strategy to determine c is to calculate the O(6) energy density εO(6)(ρ) in two different ways:

from the thermodynamic Bethe ansatz, that is scheme independent and expressed in terms of

m, and from a direct perturbative calculation, that involves the dynamical scale ΛO(6) in a given

scheme [130]. The comparison of the two results fixes c. This was done for instance in [130] for

the MS scheme and it was found that

cMS =

(
8

e

)1/4 1

Γ(5/4)
. (4.1.86)

This result has been checked by using Monte Carlo results and also by comparing finite-volume

mass-gap values computed in perturbation theory [134] to those obtained from a (non-linear)

TBA integral equation [135]. It is not difficult to convert it to the current scheme by relating the

effective coupling g(h), defined in (4.1.66), to the effective coupling of the MS scheme. This can

be done with the help of formulae in [76] and one finds after some algebra

c = π1/4

(
2

e

)3/4 1

Γ(5/4)
. (4.1.87)

Combining the expression for ΛO(6), Eq. (4.1.84), its relation to the mass gap (4.1.85) and the

value of the constant c, we arrive at the desired expression of the mass gap in terms of g. Namely

m = k g1/4 e−πg

[
1 +

m1

πg
+O(1/g2)

]
, (4.1.88)

with the prefactor k and the two-loop constant m1 given respectively by

k = 23/4π1/4/Γ(5
4 ) , m1 =

q02
8
− 1

4
= −K

4
− 3 log 2

16
− 1

32
, (4.1.89)

in agreement with the findings of [46, 76].

Finally, to complete the picture, let us cast the O(6) contribution to the semiclassical string

scaling function into a scheme independent form. To do that, we need to solve the relation (4.1.81)

for g(h) = f(h/ΛO(6)), replace the dynamical scale ΛO(6) by the mass gap m = cΛO(6), plug the

obtained expression into

εO(6)(ρ) =
ρ2

4g(h)
, (4.1.90)
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and finally solve the dependence of h on the density ρ with the help of h = dεO(6)/dρ. To begin

with, we recall that in the perturbative regime the coupling is large g ≫ 1 and the renormalization

scale h is fixed. Since ΛO(6) ∼ e−πg at strong coupling g ≫ 1, it follows that h ≫ ΛO(6),

or equivalently h ≫ m, in agreement with the asymptotic freedom. Thus we can rely on the

perturbative expansion of the beta function to solve the relation (4.1.81). Its solution reads

g(h) = α(h) +
β1

β0
log α(h) +

β2
1

β2
0

log α(h)

α(h)
+

(
β2

1

β2
0

− β2

β0

)
1

α(h)
+O

(
log2 α(h)

α(h)2

)
, (4.1.91)

with the one-loop running coupling α(h) ≡ β0 log (h/ΛO(6)) ≫ 1. Then, after some algebra, one

finds the chemical potential h as

h =
πρ

2 log (ρ/m)

[
1 +

3

4

log (κ log (ρ/m))− 1
6

log (ρ/m)
+ . . .

]
, (4.1.92)

where log κ = 1
2− 5

3 log 2− 4
3 log Γ

(
3
4

)
. From the equation above, we verify that the condition h≫

m requires the density ρ to be large as compared to the mass scale m, namely ρ≫ 2m log (ρ/m)/π.

Finally, one obtains easily the (renormalization-group improved) two-loop expression for the O(6)

energy density in the perturbative regime ρ≫ m as [130, 76]

εO(6)(ρ) =
πρ2

4 log(ρ/m)

[
1 +

3

4

log (κ log(ρ/m)) + 1
2

log(ρ/m)
+

9

16

log2(κ log(ρ/m)) + 7
36

log2(ρ/m)
+ . . .

]
. (4.1.93)

Replacing the mass scale in the scheme independent formula (4.1.93) by its expression (4.1.88), (4.1.89)

and re-expanding the right-hand side of (4.1.93) in powers of 1/g at fixed ℓ ≡ ρ/2g, one can re-

produce the two-loop string semiclassical expression (4.1.74).

Equations (4.1.93), (4.1.88) and (4.1.89) achieve our discussion of the string scaling function

in the O(6) perturbative regime m≪ h≪ 1. In the following, we will address the problem of the

determination of the O(6) energy density in the non-perturbative regime h ∼ m, corresponding

to a low density ρ≪ m.

Non-Perturbative Regime

The previous perturbative analysis of the energy density in the O(6) model assumed that the

density was much greater than the mass scale ρ ≫ m, and it breaks down when ρ becomes

comparable with m. The low-density regime ρ ≪ m is of a special interest since it allows us to

understand the transition from the gauge to the string theory. Indeed, the low-density regime of

the O(6) energy density is nothing else than the small j regime of the scaling function at strong

coupling [46]. According to the the all-loop Bethe ansatz equations of the gauge theory [45, 47],

in this regime the scaling function admits an expansion in integer powers of j with expansion

coefficients being some functions of the coupling constant

ǫ(g, j) = ǫ1(g) j + ǫ3(g) j
3 +O(j4) . (4.1.94)

The AdS/CFT correspondence suggests that this relation should coincide with the expansion of

the O(6) energy density in powers of ρ ≡ j/2 at low-density ρ ≪ m.12 To verify it, we will now

12More precisely, we expect an expansion in integer powers of ρ/m since the O(6) energy density is a function of

this dimensionless ratio, up to the overall factor of ρ2 or, equivalently, of m2.
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develop a convenient approach of this non-perturbative regime of the O(6) model. We will be

able to find an exact determination of the O(6) energy density, which is valid for any value of the

density, thanks to the integrability of the quantum O(6) sigma model [72, 127, 128].

In the following, we will outline the construction of a linear integral equation that controls

exactly, in the thermodynamic limit, the ground-state energy density εO(6)(ρ) associated with

an arbitrary charge density ρ. The procedure does not depend essentially on the restriction to

O(n = 6), so we will consider the more generic case n > 3. The three main steps are the

construction of the exact (infinite volume) S-matrix for the non-linear O(n) sigma model, the ap-

proximative diagonalization of the (finite volume) Hamiltonian by means of an asymptotic Bethe

ansatz, and, finally, the derivation of an integral equation in the thermodynamic limit. The first

step was achieved in [72] by exploiting one of the most remarkable property of an integrable sys-

tem, namely the factorization of the scattering. The material for the second and last steps can be

found in [87, 130].

Exact S-Matrix

As already mentioned, the exact spectrum of the two-dimensional non-linear O(n) sigma model

includes a vector multiplet of massive particles with mass m. Hence, a particle carries both

an isospin index i = 1, . . . , n, and a rapidity θ, related to energy and momentum through

p0 ± p1 = m exp (±θ). We will denote an incoming/outgoing state of M asymptotic particles

(θ1, i), . . . , (θM , j), by

ψi...j
in/out(θ1, . . . , θM ) . (4.1.95)

Without loss of generality, it would be sufficient to consider the case of decreasingly ordered

rapidities, θ1 > θ2 > . . . > θM , that provides a complete basis of asymptotic states. Restricting

ourselves to the two-body problem, we could also argue that the 2 → 2 scattering amplitude

depends on one Mandelstam variable only, say s = (p1 + p2)
2 = 2m2(1+ cosh θ12), whose physical

range, s > 4m2, is completely exhausted by restricting to θ12 = θ1 − θ2 > 0. Nevertheless, when

dealing with the construction of the exact S-matrix, it is more than convenient to consider the

analytic continuation of the scattering amplitude for complex values of the kinematical invariant

s or equivalently θ12. For the relevant case of two-dimensional integrable relativistic quantum

field theories, these analytical properties are examined in detail in [86]. In the following, we will

implicitely assume analytic continuation to complex rapidities. Then consequences of crossing-

symmetry, unitarity and integrability will be valid in the full complex plane of θ12 = θ1 − θ2. We

recall that, in addition to the conservation of all individual momenta and the absence of particle

production, the property of complete integrability, implemented in the theory through an infinite

set of conservation laws, is believed to impose the factorization of the multiparticle scattering. A

general discussion of the relation between the absence of particle production, the factorizability of

the scattering and the existence of local, higher-spin and Abelian conserved charges, can be found

in [86]. An explicit construction of nonabelian and non-local conserved charges for the quantum

non-linear O(n) sigma model was done in [129], and used there to check the aforementioned

remarkable feature of the scattering amplitudes.

Let us now construct the exact S-matrix along the lines of [72]. The 2→ 2 S-matrix is defined
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by

ψkl
in(θ1, θ2) = Skl

ij (θ12)ψ
ij
out(θ1, θ2) , (4.1.96)

where a sum over isotopic indices, i, j = 1, . . . , n, is assumed. By Lorentz invariance, the two-

body S-matrix, Eq. (4.1.96), only depends on the difference of rapidities θ12 = θ1 − θ2, and, due

to O(n)-symmetry, it admits the following tensor decomposition

Skl
ij (θ) = σ1(θ)δijδ

kl + σ2(θ)δ
k
i δ

l
j + σ3(θ)δ

l
iδ

k
j . (4.1.97)

The crossing transformation interchanges particles (i, k) and permutes the two Mandelstam vari-

ables s = 2m2(1 + cosh θ) and t = 2m2(1 − cosh θ), which is equivalent to the substitution

θ → iπ − θ. Therefore, by crossing symmetry, the s-channel and t-channel amplitudes, σa(θ) and

σb(iπ − θ) respectively, are related to one another by

σ2(θ) = σ2(iπ − θ) , σ3(θ) = σ1(iπ − θ) . (4.1.98)

Furthermore, the absence of particle production implies the unitarity of the 2 → 2 S-matrix at

any value of θ, that is

Smn
ij (θ)Slk

nm(−θ) = δk
i δ

l
j . (4.1.99)

Expanding Eq.(4.1.99), with help of the decomposition (4.1.97) for the two-body S-matrix, pro-

vides a set of quadratic relations between the amplitudes σa(θ) and σb(−θ), whose explicit ex-

pressions can be found in [72].

Altogether, Eqs. (4.1.98) and (4.1.99) are not strong enough to fix the exact S-matrix for

the non-linear O(n) sigma model. Fortunately, an additionnal set of constraints arises from the

assumption of factorized scattering. It states that a general M -body scattering can be decom-

posed as a product of M(M − 1)/2 consecutive two-body scatterings. This procedure explicitely

introduces an ordering of the 2→ 2 scattering events. The latter sequence has no counterpart in

the definition of the S-matrix that already takes care of all possible intermediate processes with

same initial and final boundary conditions. Imposing that the factorized M -body scattering does

not depend on the sequence of events provides the so-called factorization equations for the two-

body S-matrix. All these constraints are reducible to the consistency equation for the factorized

three-body S-matrix S123(θ12, θ23) that reads

S123(θ12, θ23) = S23(θ23)S13(θ13)S12(θ12) = S12(θ12)S13(θ13)S23(θ23) . (4.1.100)

Here, the first equality implements the assumption of factorized scattering and the last one its

consistency condition. Incidentally, we recover the same algebraic relation that was already at

work for the integrable Heisenberg spin chain, that is the Yang-Baxter equation. The equation

above holds as a matrix identity on the space of three-particle states ψijk
out(θ12, θ23), and it could

have been equivalently written as

Smn
bc (θ23)S

lc
ak(θ12 + θ23)S

ab
ij (θ12) = Slm

ab (θ12)S
an
ic (θ12 + θ23)S

bc
jk(θ23) , (4.1.101)

where (i, j, k) and (l,m, n) are free integers while an implicit summation is assumed for (a, b, c).
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For the O(n)-symmetric two-body S-matrix (4.1.97), the factorization equation (4.1.100),

or (4.1.101), provides a set of cubic relations between σa(θ), σb(θ + θ′) and σc(θ
′). The solu-

tion to this equation, compatible with crossing-symmetry and unitarity, was constructed in [72].

It expresses σ1(θ) and σ3(θ) in terms of σ2(θ) and reads

σ1(θ) = − ∆

x+ 1/2
σ2(θ) , σ3(θ) =

∆

x
σ2(θ) , (4.1.102)

where x = iθ/2π and ∆ = 1/(n − 2). The component σ2(θ) cannot be fixed in this way since

it may be considered as an overall (scalar) factor, always left undetermined by the Yang-Baxter

equation. It does not behave, however, as a global factor for the crossing-symmetry and unitarity

equations, which combined with the solution (4.1.102) translate into [72]

σ2(iπ − θ) = σ2(θ), σ2(θ)σ2(−θ) =
x2

x2 −∆2
. (4.1.103)

A ‘minimal’ solution to Eq. (4.1.103) was proposed in [72] to describe the scattering of the O(n)

sigma model.13 It reads

σ2(θ) = − x

∆ + x

Γ(1 + x)Γ(1
2 − x)Γ(∆ + 1

2 + x)Γ(∆ − x)
Γ(1− x)Γ(1

2 + x)Γ(∆ + 1
2 − x)Γ(∆ + x)

, (4.1.104)

and it completes the construction of the exact S-matrix. In Appendix B.1., we propose an iter-

ative procedure to derive the solution (4.1.104) from the unitarity and crossing-symmetry equa-

tions (4.1.103).

The procedure above illustrates perfectly the general attitude to adopt with a factorizable

scattering. The outline consists of three steps. First, identify the exact spectrum of asymptotic

states and the global symmetry algebra. Then, resolve the isotopic structure of the two-body

S-matrix, up to a scalar factor, with help of the Yang-Baxter (factorization) equation. Finally,

fix the overall factor thanks to crossing-symmetry and unitarity equations. This procedure has

been applied successfully to various integrable relativistic 2D QFT, like the sine-Gordon or the

Gross-Neveu models [72], for instance. It works as well to fix the exact S-matrix of the AdS/CFT

correspondence [42, 104, 43, 107, 108]. In the latter case, however, the lack of Lorentz invariance

has required some guessworks and adjustments [104].

Before to end this subsection, let us consider the scattering of particles all charged only with

respect to one of the Cartan generators of the so(n) algebra, say the generator of the rotation

in the plane (1, 2). The conservation of the angular momentum, combined with the absence of

particle-antiparticle creation, prevent the mixing of such a polarized beam of particles with other

states and lead to a diagonal scattering. The projection of the exact S-matrix, Eqs. (4.1.97),

(4.1.102) and (4.1.105), onto this Abelian subspace is given by [130]

S(θ) = σ2(θ) + σ3(θ) = −Γ(1 + x)Γ(1
2 − x)Γ(∆ + 1

2 + x)Γ(∆ − x)
Γ(1− x)Γ(1

2 + x)Γ(∆ + 1
2 − x)Γ(∆ + x)

, (4.1.105)

13Physical solution to unitarity and crossing-symmetry equations should fulfill general analyticity conditions [86].

In particular, the scattering amplitude σ2(θ) should define a meromorphic function of the complex rapidity θ. The

minimal solution of [72] satisfies all these general requirements and assumes, as a further input, the absence of

bound-state singularities in the physical strip, 0 6 Im(θ) 6 π. The absence of bound-states in the O(n) sigma

model is confirmed both by semiclassical and large-n analysis [132, 131], and it can be thought of as a consequence

of the repulsive interaction between particles of the vector multiplet.
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with x = iθ/2π and ∆ = 1/(n − 2).

Asymptotic Bethe Ansatz Equations

We will now proceed to an approximative quantization of the energy spectrum for a system of

total charge L, confined on a circle of radius R. The infinite-volume property of conservation

of the number of asymptotic particles, in any scattering event, suggests a quantum-mechanical

approach to the spectral problem. Henceforth, we will follow this way and discuss later its range

of validity.

Let us specify first the asymptotic (R≫ 1) Hilbert space. We note that we can always add to a

system an arbitrary number of pairs of particle and antiparticle, without changing the total charge

L. However, for the minimal-energy state, we can certainly restrict the consideration to states

build out of only L asymptotic particles, each one carrying one unit of charge. Asymptotically

(R≫ 1) this Hilbert space is stable, thanks to integrability, and, as we found in the last subsection,

the scattering is diagonal there. Any of these states can be described by an asymptotic wave-

function ψ, that depends, in coordinate representation, on the positions x1 ≪ . . .≪ xL ≪ x1 +R

of the L asymptotic particles, assumed to be well separated from each other. For simplicity, let us

proceed with the particular case of a two-body wave-function for a system of two particles with

rapidity θ1 and θ2, respectively. Then we have that the asymptotic wave-function is simply given

by the superposition of an incident wave with a scattered one. It reads explicitely as

ψ(x1, x2) = eip1x1+ip2x2 +S(θ1 − θ2) eip2x1+ip1x2 , (4.1.106)

where p1,2 = m sinh θ1,2. In the infinite volume limit, all values of p1 and p2 are possible. But on

an cylinder of length R, we require the wave-function to be periodic

ψ(x1, x2) = ψ(x2, x1 +R) , (4.1.107)

wich translates into the equations

eip1R = S(θ2 − θ1) , eip2R = S(θ1 − θ2) . (4.1.108)

Note that these equations have to be solved for p1 6= p2 since otherwise the asymptotic wave-

function vanishes due to S(0) = −1, see Eq. (4.1.105). The generalization to the case of L

asymptotic particles is straightforward and, thanks to the factorizability of the scattering, one

finds that the periodicity conditions turns into a set of Bethe ansatz equations

eipkR =

L∏

j 6=k

S(θj − θk) . (4.1.109)

Solutions satisfying the exclusion principle p1 6= . . . 6= pL lead to the asymptotic spectrum of L

particles states with energy given by the sum of the individual asymptotic energies.

The Bethe ansatz equations (4.1.109) are only asymptotic and correctly describe the spectrum

of the theory when defined on a cylinder with a sufficiently “large” radius R. Here we mean

large as compared to the Compton wave-length of a particle of mass m. On physical grounds,
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if not sufficient, the latter condition is at least necessary. Indeed, over a distance smaller than

the Compton wave-length, it looks suspicious to ascribe a wave-function to our system since the

(asymptotic) particles completely loose their individuality and are impossible to enumerate. Then,

off-shell processes can no longer be neglected and a full-fledged field-theory treatment is required.

In conclusion, we enforce the condition mR ≫ 1 to trust the validity of the Eqs. (4.1.109). This

condition is obtained in the thermodynamic limit that we will consider, but we note that in terms

of the string theory variables it translates into a condition for the spin at strong coupling to be

surprisingly large, log S ≫ exp (πg). It seems to indicate that the Bethe equations are reliable

only if the infinite volume limit is understood, which may not be completely wrong given the

quasi-masslessness of the particles at strong coupling.

Thermodynamic Limit

The next step is to take the thermodynamic limit of the asymptotic Bethe ansatz equations (4.1.109),

for the (ground) state with minimal energy for a fixed number L of particles. It consists of taking

R → ∞, simultaneously with L → ∞, while keeping fixed the density ρ = L/R. Similarly to

the large spin limit of the minimal anomalous dimension, we will find that it is possible to solve

the algebraic problem by means of a linear integral equation. The analysis below is standard

and follows the one of the non-relativistic gas of bosons interacting via a repulsive δ−function

potential [87]. We will therefore only sketch the different steps and let the reader adapts the lines

of [87] to the present case, for a more rigorous treatment.

We start by rewriting Eq. (4.1.109) as

eimR sinh θk = (−1)L−1
L∏

j=1

[
− S(θj − θk)

]
, (4.1.110)

in order for the term in the product to be normalized to one at zero-momentum exchange. Then,

on both sides of Eq. (4.1.110), we take the logarithm, choosing for convenience the principal

branch, and get

2πnk = mR sinh θk + i

L∑

j=1

log

[
− S(θj − θk)

]
. (4.1.111)

Here, the mode numbers nk belong to Z or (2Z + 1)/2, for L odd or even, respectively. They

enumerate the possible states with L particles, including the ground state, and they are allowed

to take arbitrary large values, corresponding to highly excited states. We look for real solutions

to Eq. (4.1.111), assuming that the true ground state belongs to this set. We note that for θ real,

each term of the sum in Eq. (4.1.111) is purely imaginary and it is consistent to consider real

solutions to Eq. (4.1.111). Moreover, it seems reasonable to believe that complex solutions are

ruled out by the absence of bound states in the infinite-volume limit. We don’t know, however, a

general proof supporting the argument.

Before we take the thermodynamic scaling of the Bethe ansatz equations (4.1.111), it is in-

structive to consider the non-relativistic limit, first. It helps to understand how to correctly

characterize the ground-state distribution of rapidities. In the non-relativistic limit, all the ra-

pidities are small, θk ∼ 1/R, and we can safely neglect the scattering term in (4.1.111), as long as
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the number of particles L is small enough. Doing this way, we end up with the equations

θk =
2π

mR
nk , (4.1.112)

which are the free-particle quantization conditions for the momenta pk = m sinh (θk) ≃ mθk. We

recall that by construction the rapidities are ordered decreasingly and do not coincide, θ1 > . . . >

θL. Consequently, all the mode numbers nk in Eq. (4.1.112) are strictly different, in agreement

with the exclusion principle. The ground-state is then given by the Fermi sea of a system of L

non-interacting particles, described by the (symmetric-)distribution

nk ∈ S =

{
L− 1

2
,
L− 3

2
, . . . ,−L− 3

2
,−L− 1

2

}
. (4.1.113)

Given the set S and observing that the distribution of rapidities (4.1.112) is dense at large volume

mR≫ 1, it is straightforward to compute the density of energy ε in the thermodynamic limit. It

turns into a function of the density ρ and reads

εO(6)(ρ) =
m

R

L∑

k=1

cosh θk =
m

R

L∑

k=1

(
1 +

θ2
k

2
+ ...

)
= mρ+

π2

6m
ρ3 + ... , (4.1.114)

where dots stand both for corrections to the thermodynamic limit, suppressed by powers of 1/R,

and for relativistic contributions, suppressed by higher powers of the density. To compute properly

the latter contributions, one needs to take into account scattering effects. Indeed, one can easily

verify, by evaluating the scattering term in (4.1.111) with the help of Eqs. (4.1.112) and (4.1.113),

that the size of the interaction grows with the density. Therefore, in the termodynamic limit, the

non-relativistic approximation coincides with the low-density regime ρ = L/R≪ m.

We now determine the exact ground-state energy density εO(6)(ρ) at arbitrary value of ρ. We

assume that the distribution of mode numbers nk parameterizing the ground state is still given

by (4.1.113). In the thermodynamic limit, the distribution is dense in rapidity space and the sum

in the right-hand side of (4.1.111) can be approximated by an integral. As for the large spin limit

of the sl(2) Bethe ansatz equations, the continuum limit is facilitated by introducing a smooth

function χ(θ) which interpolates the distibution of rapidities. It is defined as

∫ θ

0
dθ′ χ(θ′) = m sinh θ +

i

R

L∑

j=1

log

[
− S(θj − θ)

]
, (4.1.115)

and it is positive and symmetric (for the ground-state) χ(θ) = χ(−θ). Due to the Bethe ansatz

equations (4.1.111), it satisfies ∫ θk

0
dθ′ χ(θ′) =

2π

R
nk , (4.1.116)

where the mode numbers nk fill the set S, Eq. (4.1.113). In particular, denoting B = θ1 the Fermi

rapidity (maximal rapidity), we have the normalization condition (ρ = L/R)

∫ B

−B
dθ χ(θ) = 2π

L− 1

R
= 2πρ+O (1/R) . (4.1.117)
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Applying the Euler-Maclaurin summation formula to the right-hand side of (4.1.115), we obtain

∫ θ

0
dθ′ χ(θ′) = m sinh θ +

i

2π

∫ B

−B
dθ′ χ(θ′) log

[
− S(θ′ − θ)

]
+ . . . , (4.1.118)

where ellipses stand for contributions suppressed by 1/R. Differentiating both sides of the equa-

tion above with respect to θ, we obtain an integral equation determining the rapidity density

distribution χ(θ) in the thermodynamic limit R,L→∞ with ρ = L/R fixed. It reads [130]

χ(θ) = m cosh θ +

∫ B

−B
dθ′K(θ − θ′)χ(θ′) , (4.1.119)

with the (real and symmetric) kernel expressed in terms of the logarithmic derivative of the S-

matrix (4.1.105) as K(θ) = (log S(θ))′/(2πi), i.e.

K(θ) =
1

4π2

[
ψ

(
1 +

iθ

2π

)
+ ψ

(
1− iθ

2π

)
− ψ

(
1

2
+
iθ

2π

)
− ψ

(
1

2
− iθ

2π

)
(4.1.120)

+ ψ

(
∆ +

1

2
+
iθ

2π

)
+ ψ

(
∆ +

1

2
− iθ

2π

)
− ψ

(
∆ +

iθ

2π

)
− ψ

(
∆− iθ

2π

)]
,

where ψ is the Euler psi-function and ∆ = 1/(n− 2). Finally, one finds that the density of energy

is given in the thermodynamic limit as

εO(6) =
m

2π

∫ B

−B
dθ χ(θ) cosh θ , (4.1.121)

up to subleading corrections suppressed by 1/R.

The solution to the equation (4.1.119) fully determines the density of energy εO(6) as a function

of the density ρ, after eliminating B with the help of (4.1.117) and (4.1.121). In the low-density

regime ρ ≪ m, corresponding to B ≪ 1, the equation (4.1.119) can be solved by iteration of the

inhomogeneous term as

χ(θ) = m
∑

n>0

(Kn ∗ cosh) (θ) = m cosh θ +m

∫ B

−B
dθ′K(θ − θ′) cosh θ′ + . . . . (4.1.122)

It follows that both εO(6) and ρ can be found to admit an expansion in integer powers of B.

Reciprocally, B admits an expansion in integer powers of the dimensionless ratio ρ/m, and so does

εO(6)(ρ) up to an overall factor ofm2. For instance, at leading order one gets B = πρ/m+O(ρ2/m2)

and

εO(6)(ρ) = m2

[( ρ
m

)
+
π2

6

( ρ
m

)3
+O(ρ4/m4)

]
, (4.1.123)

in agreement with (4.1.114). Subleading corrections can be obtained iteratively. They have been

considered in [75] for the O(6) model, in relation with the small j expansion of the scaling function

of N = 4 SYM theory at strong coupling.

The analysis of the large-density regime ρ ≫ m, which is relevant for the matching with the

semiclassical expansion of the string scaling function, turns out to be more difficult. It corre-

sponds to the regime B ≫ 1 of the equation (4.1.119), whose study was performed at leading
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order in [130]. A systematic analysis including arbitrary subleading corrections has been recently

developed in [136]. Restricting to the case of the O(n = 6) model, it was found in [130, 136] that

the solution for B ≫ 1 to the TBA equation (4.1.119) yields

ρ = m

[√
2Γ(5/4)

π

√
B eB−1/4 + . . .

]
, εO(6) = m2

[
Γ(5/4)2

2π
e2B−1/2 + . . .

]
. (4.1.124)

Solving the parametric dependence, the energy density reads for ρ≫ m as

εO(6)(ρ) =
πρ2

4 log (ρ/m)
+ . . . , (4.1.125)

in agreement with the leading (renormalization-group improved) perturbative result [130]. Sub-

leading corrections [130, 136] were found to match the O(6) perturbative result [130, 76] up to

two loops.

Equipped with the TBA equations for the O(6) model, Eqs. (4.1.119), (4.1.121), (4.1.117), we

are now in position to examine the all-loop integral equation for the scaling function of the gauge

theory [47]. This is the subject of the next section.

4.2 Scaling Function in N = 4 SYM Theory

In the gauge theory, the derivation of the scaling function ǫ(g, j) relies on the integrability of the

(planar) dilatation operator in the sl(2) sector [45, 47]. We exemplified it at the one-loop level

in Chapter 2 starting from the Bethe ansatz equations of the XXX−1/2 Heisenberg spin chain.

The Bethe ansatz solution is conveniently characterized in this limit by two sets of parameters,

the Bethe roots and the roots of the (auxiliary) transfer matrix, which describe magnon and hole

excitations, respectively. In the generalized scaling limit, both sets of parameters form a dense

distribution on the real axis with the holes confined to the interval [−a, a] and the magnons to the

union of two intervals [−∞,−a] ∪ [a,∞]. The scaling function ǫ(g, j) is uniquely determined by

the corresponding distributions of holes and magnons arising as solutions to an integral equation.

In this section, we will analyse this equation proposed in [47] by Freyhult, Rej and Staudacher,

and known as FRS equation.

We will start reformulating the FRS equation as a system of coupled equations for the hole

and magnon density distributions [73]. We will see that the magnon equation takes essentially

the same form as the BES equation up to an inhomogeneous term. This term acts as a source

and accounts for the influence of a given static distribution of hole rapidities on the distribution

of Bethe roots. The analogy with the BES equation will be very helpful to analyse the small j

regime of the scaling function ǫ(g, j) on which we will focus. After a quick look at the solution

at weak coupling, we will solve the magnon equation at strong coupling and derive an effective

equation for the hole dynamics. We will find that the effective hole equation exactly coincides

with the thermodynamic Bethe ansatz equation for the O(6) sigma model, as expected from the

string theory analysis of [46]. The holes are then naturally identified with the massive interacting

particles of the O(6) model. This mapping implies, in particular, that the FRS equation predicts

the dependence on the coupling constant of the mass gap m of the O(6) model. We will see that

m is determined uniquely by the BES solution. Moreover, it perfectly matches the scale mcusp
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that controls the leading non-perturbative correction to the cusp anomalous dimension. We found

in Chapter 3, see Eq. (3.3.28), that to leading-order at strong coupling mcusp is given by

m = mcusp = k g1/4 e−πg (1 +O(1/g)) , k = 23/4π1/4/Γ(5
4 ) . (4.2.1)

We immediately verify the agreement with the string theory prediction [46], see Eqs. (4.1.88)

and (4.1.89). However, the comparison of the subleading, 1/g suppressed contribution in Eq. (3.3.28)

and Eq. (4.1.88), shows that the gauge and string expressions for the O(6) mass gap m disagree

at the two-loop level. We will come back to this mismatch at the end of this chapter.

4.2.1 FRS Equation

The FRS equation, as given in [47], is an integral equation for the (Fourier-like transform) of the

density distribution of fluctuations σ̂(t). It is very similar to the BES equation [44] and reads

σ̂(t) =
t

et−1

(
K̂(t, 0) − 4

∫ ∞

0
dt′ K̂(t, t′) σ̂(t′)

)
. (4.2.2)

Here K̂(t, t′) is a complicated kernel depending on both the coupling constant g and the parameter

a. In the particular limit a→ 0, i.e. j → 0, the kernel reduces to the kernel of the BES equation

and therefore we have that σ̂(t; j = 0) = σ̂BES(t). The explicit expression for the kernel K̂(t, t′)

can be found in [47].

Given the solution to the FRS equation σ̂(t), one can compute the all-loop density distribution

ρ(u) in the generalized scaling limit. The precise relation between the two is

ρ(u) = ρ0(u)− 8σ(u) logN , (4.2.3)

where the density distribution of fluctuations σ(u) is given by

σ(u) =
1

π

∫ ∞

0
dt cos (ut) et/2 σ̂(t) . (4.2.4)

The function σ(u) encodes both higher-loop and j-dependent contributions to the density distri-

bution ρ(u), while ρ0(u) = 2 logN/π is the twist-two one-loop density distribution in the limit

N → ∞ at fixed rapidity u. On the interval u2 > a2 the function ρ(u) describes the density

distribution of Bethe roots, while on the interval u2 < a2 it can be used to compute the density

distribution of holes rapidities

ρh(u) ≡ ρ(u)/ logN =
2

π
− 8σ(u) , (4.2.5)

normalized such that ∫ a

−a
du ρh(u) = j . (4.2.6)

For later convenience, we introduce the Fourier transform of the hole distribution as

γh(t) =
1

8

∫ a

−a
du cos (ut)ρh(u) . (4.2.7)
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It is an even entire function of t satisfying γh(0) = j/8. Using the relations (4.2.4), (4.2.5)

and (4.2.7), we find that it can expressed in terms of the function σ̂(t) as

γh(t) = Kh(t, 0) − 4

∫ ∞

0
dt′Kh(t, t

′) et′/2 σ̂(t′) , (4.2.8)

where the hole kernel Kh(t, t′) is given by

Kh(t, t′) =
1

4π

[
sin(a(t− t′))

t− t′ +
sin(a(t+ t′))

t+ t′

]
. (4.2.9)

In particular, we obtain from γh(0) = j/8 that the identity

j =
4a

π
− 16

π

∫ ∞

0

dt

t
sin(at) et/2 σ̂(t) (4.2.10)

holds true. This relation can be used, given the solution σ̂(t) = σ̂(t; a) to the FRS equation [47],

to eliminate the parameter a in favor of the scaling variable j.

Last but not least, it can be shown that the FRS solution σ̂(t) predicts the all-loop scaling

function f(g, j) by means of [47]

f(g, j) ≡ 2Γcusp(g) + ǫ(g, j) = j + 16σ̂(0) . (4.2.11)

Magnon and Hole Equations

As said before, given the solution σ̂(t) to the FRS equation, one can compute the all-loop density

distributions of both hole and magnon rapidities [47]. However, at strong coupling, the FRS

equation (4.2.2) is difficult to solve directly in terms of the function σ̂(t). Hence, similarly to

our previous treatment of the BES equation, we will introduce more suitable functions γ±(t) and

rewrite the FRS equation as a system of integral equations for them. They arise from the splitting

of σ̂(t) into the sum

σ̂(t) =
1

et−1

[
g

2

(
γ+(2gt) + γ−(2gt)

)
+ e−t/2 γh(t)−

j

8
J0(2gt)

]
. (4.2.12)

where J0 is an (even) Bessel function. In the limit j → 0, i.e. a→ 0, we have γh(t) → 0 and the

relation (4.2.12) reduces to

σ̂(t; j = 0) = σ̂BES(t) =
g

2

γ
(j=0)
+ (2gt) + γ

(j=0)
− (2gt)

et−1
. (4.2.13)

It coincides with the formula (3.1.9) used in Chapter 3 to simplify the analysis of the BES equation.

If instead, we keep j fixed but assume g → 0, the equation (4.2.12) becomes

σ̂(t; g = 0) =
1

et−1

[
e−t/2 γh(t; g = 0)− j

8

]
. (4.2.14)

Using Eqs. (4.2.3), (4.2.4) and (4.2.7), it translates into

2π

logN
ρ(u; g = 0) =4− j

[
ψ
(

1
2 + iu

)
+ ψ

(
1
2 − iu

) ]
(4.2.15)

+

∫ a

−a
dv ρh(v; g = 0)

[
ψ (1 + i(u− v)) + ψ (1− i(u− v))

]
,
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which coincides with the one-loop formula (2.3.49) derived in Chapter 2. Thus we verified that

the relation (4.2.12) is consistent with our previous analysis.

The even/odd functions γ±(−t) = ±γ±(t) have exactly the same analytic properties as in

Chapter 3. Namely, they are entire functions of t, satisfying γ−(t) = O(t) and γ+(t) = O(t2) at

small t, and their Fourier transforms have support on the interval [−1, 1]. The function γ−(t) can

be used to compute the scaling function f(g, j) with the help of

f(g, j) = 16g2 lim
t→0

γ−(2gt)

2gt
, (4.2.16)

where we applied Eqs. (4.2.11) and (4.2.12) and used that γh(0) = j/8.14

The functions γ±(t) are subject to an (infinite) system of equations, to which we shall refer as

magnon equation. It was derived in [73] from the FRS equation (4.2.2) and reads (n > 1)

∫ ∞

0

dt

t

[
γ−(2gt)

1− e−t
+
γ+(2gt)

et−1

]
J2n−1(2gt) =

1

2
δn,1 + h2n−1(g, j) , (4.2.17)

∫ ∞

0

dt

t

[
γ+(2gt)

1− e−t
− γ−(2gt)

et−1

]
J2n(2gt) = h2n(g, j) .

Here the notation was introduced for the coefficients hn(g, j) that depend on the hole distribution

γh(t) as

hn(g, j) = −2

g

∫ ∞

0

dt

t

Jn(2gt)

et−1

[
et/2 γh(t)−

j

8
J0(2gt)

]
. (4.2.18)

We note that the system of equations (4.2.17) depends on j only through the inhomogeneous

terms hn(g, j). Moreover, when j → 0, we have that γh(t; j = 0) = hn(g, j = 0) = 0 and the

system (4.2.17) becomes identical to the BES one. We denote its solution, analysed in Chapter 3,

as

γ
(j=0)
± (t) ≡ γ(0)

± (t) . (4.2.19)

For non-vanishing value of j and for given ‘static’ hole distribution γh(t), we can solve the magnon

equation (4.2.17) for γ±(2gt). Doing so, the function γh(t), which acts as a source for the sys-

tem (4.2.17), can be considered as being arbitrary. But it should satisfy γh(0) = j/8 in order for

the integral in h1(g, j) to be well-defined.15 If, furthermore, the functions γ±(t) are required to

have the correct analytic properties, one can show that the solution to the magnon equation is

uniquely determined.16

When the solution to the magnon equation is known, one can compute the distribution of

fluctuations σ̂(t) via Eq. (4.2.12) and, then, the density distribution ρ(u) with the help of (4.2.3)

and (4.2.4). Eventually, one needs to impose the identity ρh(u) = ρ(u)/ logN when u2 < a2

in order to determine the hole distribution. It is equivalent to requiring for the relation (4.2.8)

between γh(t) and σ̂(t) to be satisfied. In other words, after assuming γh(t) to be fixed and

extracting γ±(t) from the magnon equation, the relation (4.2.8) becomes an equation to be solved

14Note that, similarly to what happens in the BES limit j → 0, the function γ−(t) generates, after expansion over

the Bessel functions, the infinite set of (even) higher conserved charges. The function γ+(t) produces an infinite

sequence of charges, whose spin-chain interpretation remains obscure.
15Moreover, we will always assume that the Fourier transform of γh(t) is supported on the interval [−a, a].
16The proof goes along the same lines as the ones given in Chapter 3 in the BES j → 0 limit.
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for the function γh(t). We shall refer, therefore, to the relation (4.2.8) as the hole equation. We

note, finally, that these two steps in the construction of the complete solution are identical to

those followed at one-loop order in Chapter 2. The only difference is that it turns out to be more

difficult to completely eliminate the magnons from consideration, namely to find the two functions

γ±(t) for a given γh(t), and then obtain a closed ‘effective’ equation for the holes. Nevertheless,

we will find a regime of interest in which that can be done explicitely.

Hole Energy Formula

As in one-loop case, discussed in Chapter 2, it is possible to find a representation of the scaling

function in terms of the hole function γh(t). It can be found by using the fact that the FRS and

BES solutions satisfy a Wronskian-like relation, derived in Appendix B.2. It leads to the following

expression for the scaling function

ǫ(g, j) = 32g

∫ ∞

0

dt

t

γ
(0)
+ (2gt) − γ(0)

− (2gt)

et−1

[
et/2 γh(t)−

j

8

]
− 4gj

∫ ∞

0

dt

t
γ

(0)
+ (2gt) . (4.2.20)

This identity generalizes to all-loop the one-loop hole energy formula found in Chapter 2, see

Eq. (2.3.53). To verify it, we substitute in (4.2.20) the weak coupling expression of the BES

solution given by

γ
(0)
− (t) = J1(t) +O(g2) , γ

(0)
+ (t) = O(g3) , (4.2.21)

and expand the resulting integral to leading order at weak coupling. We find that

ǫ(g, j) = −32g2

∫ ∞

0

dt

et−1

[
et/2 γh(t)−

j

8

]
+O(g4) . (4.2.22)

Then, introducing the hole density distribution as in (4.2.7) and performing the integral (4.2.22),

we obtain

ǫ(g, j) = 2g2

∫ a

−a
dv ρh(v)

[
ψ
(

1
2 + iv

)
+ ψ

(
1
2 − iv

)
− 2ψ(1)

]
+O(g4) , (4.2.23)

which agrees with the one-loop formula (2.3.53). It is straightforward to compute higher-loop

corrections to (4.2.23) by solving iteratively the BES equation at weak coupling. We shall see,

moreover, that a useful representation for the scaling function at small j can be obtained from

the relation (4.2.20) at both weak and strong coupling.

4.2.2 From Weak to Strong Coupling

To find the scaling function ǫ(g, j), we have to solve a complicated system of coupled integral

equations for the functions γ±(t) and γh(t). In this subsection we shall evaluate the scaling function

ǫ(g, j) at small j. As we will see in a moment, the first few terms of the small j expansion of ǫ(g, j)

can be expressed directly in terms of the BES solution without solving the integral equations for

the functions γ±(t). Thanks to this simplification, we will be able to uncover a transition from

the perturbative weak-coupling regime, with a running in powers of g2, to a non-perturbative

strong-coupling regime, controlled by the scale m ∝ g1/4 e−πg. The latter parameter will be given

the meaning of the mass gap of the O(6) sigma model in the next subsection.
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Small j Expansion

To begin with let us consider the integral equation (4.2.8) for the function γh(t). It involves the

kernel Kh(t, t
′) defined in (4.2.9). According to its definition, Kh(t, t′) depends on the parameter

a which depends on its turn on j. For a small value of j, we have a ∼ j and we may expand the

kernel Kh(t, t
′) in powers of a. We obtain from (4.2.9)

Kh(t, t′) =
1

2π

[
a− a3

6

(
t2 + t′2

)
+O

(
a5
)]

=
sin(at′)

2πt′

[
1− 1

6
(at)2

]
+O

(
a5
)
. (4.2.24)

Substituting this relation into the right-hand side of the hole equation (4.2.8) and using (4.2.10),

we find that

γh(t) =
j

8

[
1− 1

6
(at)2 +O(a4)

]
. (4.2.25)

Here, a is related to j as

a =
jπ

2κ
+O(j2) , (4.2.26)

where the g−dependence resides in the normalization factor

κ = 2− 2g

∫ ∞

0
dt
γ

(0)
+ (2gt) + γ

(0)
− (2gt)

sinh(t/2)
. (4.2.27)

To derive the last identity we used (4.2.10), (4.2.25), (4.2.12) and γ±(2gt) = γ
(0)
± (2gt) +O(j).

According to the representation (4.2.20), the j−dependence of the scaling function ǫ(g, j) is

controlled by the function γh(t). Replacing γh(t) in (4.2.20) by its small j expansion (4.2.25), we

get

ǫ(g, j) = ǫ1(g) j + ǫ3(g) j
3 +O(j4) , (4.2.28)

where the coefficient in front of j2 equals zero for any g [47] and the coefficient functions ǫ1(g)

and ǫ3(g) are given by

ǫ1(g) = −4g

∫ ∞

0

dt

t

[
γ

(0)
+ (2gt)

e−t/2 +1
+
γ

(0)
− (2gt)

et/2 +1

]
, (4.2.29)

ǫ3(g) = − π2g

12κ2

∫ ∞

0
dt t

γ
(0)
+ (2gt) − γ(0)

− (2gt)

sinh(t/2)
.

These relations hold for arbitrary coupling g and thus can be investigated at weak and/or strong

coupling given the BES solution γ
(0)
± (2gt) .

Weak Coupling

At weak coupling, the iterative solution to the BES equation [44, 90] leads to

γ
(0)
− (t) =

(
1− π2g2

3

)
J1(t) +O

(
g4
)
, γ

(0)
+ (t) = 4ζ3 g

3J2(t) +O
(
g5
)
. (4.2.30)
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Plugging these expressions into (4.2.29) and expanding ǫ1(g) and ǫ3(g) at small g2 we get the

expected perturbative expansion in g2 of the gauge theory

ǫ1(g) = −8 log 2 g2 +

(
8

3
log 2π2 + 16ζ3

)
g4 +O(g6) , (4.2.31)

ǫ3(g) =
7

12
ζ3π

2g2 +

(
35

36
ζ3π

4 − 31

2
ζ5π

2

)
g4 +O(g6) .

The leading contribution ∼ g2 agrees with our previous findings in Chapter 2 while subleading

correction was obtained in [47].

Strong Coupling

At strong coupling, the evaluation of ǫ1(g) leads to (see details in Appendix B.3)

ǫ1(g) = −1 +m+O
(
e−3gπ

)
, (4.2.32)

where the parameter m = m(g) is defined as

m =
8
√

2

π2
e−πg −8g

π
e−πg Re

[∫ ∞

0

dt ei(t−π/4)

t+ iπg

(
Γ

(0)
+ (t) + iΓ

(0)
− (t)

)]
. (4.2.33)

According to (4.2.32), the function ǫ1(g) does not receive perturbative corrections in 1/g and the

leading non-trivial correction is given by m which is exponentially small in g. We immediately

recognize that the parameter m exactly coincides with the non-perturbative scale mcusp introduced

in Chapter 3. There, it was shown that the scale m = mcusp controls the leading non-perturbative

correction to the cusp anomalous dimension. To leading-order at strong coupling, we found that,

see Eq. (3.3.28),

m = mcusp =

√
2

Γ(5
4 )

(2πg)1/4 e−πg . (4.2.34)

The expression (4.2.34) is consistent with the numerical solution to the FRS equation constructed

in [74]. Moreover, it is in perfect agreement with the expression for the O(6) mass gap that we

found by matching the string theory prediction for the scaling function against its O(6) interpreta-

tion [46], see Eqs. (4.1.88) and (4.1.89). To uncover if m has the same meaning in the gauge-theory

Bethe ansatz approach, let us consider the subleading O(j3) contribution ǫ3(g) at strong coupling.

The evaluation of the integrals entering the expressions for ǫ3(g) and κ, Eqs. (4.2.29) and (4.2.27)

respectively, can be found in [73]. It is shown that the leading contributions to ǫ3(g) and κ as

g →∞ are proportional to the scale m and read

ǫ3(g) =
π4

96κ2
m+O

(
e−3πg

)
, κ =

π

2
m+O

(
e−3πg

)
, (4.2.35)

so that the relation (4.2.26) takes the form a = j/m+ . . . . Then combining together the relations

(4.2.28), (4.2.32) and (4.2.35), we obtain the small j expansion of the scaling function at strong

coupling as

ǫ(g, j) + j = m2

[
j

m
+
π2

24

(
j

m

)3

+ . . .

]
, (4.2.36)
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with m given by (4.2.34). Introducing notation for a density of particles ρ ≡ j/2 and a density of

energy ε(ρ) = (ǫ(g, j) + j)/2, the result (4.2.36) can be written as

ε(ρ) = mρ+
π2

6m
ρ3 + . . . . (4.2.37)

We already encountered this expression and found that it has the meaning of the energy density of

a dilute, nonrelativistic Fermi gas of massive particles of mass m [130]. This suggests, as expected

from the string theory side consideration, that the non-perturbative parameter m has indeed the

meaning of a mass scale. To understand whether it is the mass gap of the O(6) sigma model,

we have to include subleading corrections suppressed by higher powers of j. We expect that

the expansion of the scaling function will run in the parameter j/m and that it will match the

low-density expansion of the O(6) model. Indeed, we will show in the next section that the hole

equation, in the (non-perturbative) regime j ∼ m, perfectly coincides with the O(6) model TBA

equation with m being the mass gap.

4.2.3 Non-Linear O(6) Sigma Model

For j ∼ m ∼ g1/4 e−πg, the small j expansion employed in the previous section is not applicable.

In this section, we will show that for g →∞ and j/m = fixed, the scaling function ǫ(g, j) coincides

with the energy density of the ground state of the two-dimensional O(6) sigma model.

O(6) TBA Equation

We start by recalling the exact solution for the ground state energy in the two-dimensional O(6)

sigma model [130], constructed before. It can be summarized as follows. The energy density

εO(6)(ρ) in the ground state and the particle density ρ are given by

εO(6)(ρ) =
m

2π

∫ B

−B
dθ χ(θ) cosh θ , ρ =

1

2π

∫ B

−B
dθ χ(θ) , (4.2.38)

where the density distribution χ(θ) has support on the interval [−B,B] and satisfies the TBA

integral equation

χ(θ) =

∫ B

−B
dθ′K(θ − θ′)χ(θ′) +m cosh θ . (4.2.39)

Here, m is the mass of the O(6)-multiplet of asymptotic states, B is the Fermi rapidity and the

kernel K(θ) = (log S(θ))′/(2πi) is related to the logarithmic derivative of the exact S−matrix of

the O(6) model [72]

K(θ) =
1

4π2

[
ψ

(
1 +

iθ

2π

)
+ ψ

(
1− iθ

2π

)
− ψ

(
1

2
− iθ

2π

)
− ψ

(
1

2
+
iθ

2π

)
+

2π

cosh θ

]
, (4.2.40)

where ψ(x) = (log Γ(x))′ is the Euler psi-function. Later in this subsection we will encounter its

Fourier transform

K(θ) =
2

π2

∫ ∞

0
dt cos (2θt/π)

et +1

e2t +1
. (4.2.41)
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We will see that the mapping with the scaling variable j and the scaling function ǫ(g, j) is

given by

ε(ρ) ≡ ǫ(g, j) + j

2
= εO(6)(ρ) + . . . , ρ =

j

2
. (4.2.42)

Here the dots in the first relation stand for corrections that are subleading at large g when j ∼ m.

Moreover, we will demonstrate that the hole equation can be written in the form of (4.2.39) upon

the identification of holes with O(6) particles,

χ(θ) =
8

π

∫ ∞

−∞
dt cos (2θt/π) γh(t) , (4.2.43)

or conversely

γh(t) =
1

8π

∫ B

−B
dθ cos (2θt/π)χ(θ) , (4.2.44)

with B = aπ/2. Note that we have introduced the hole density distribution in a different way

than in (4.2.7). The two distributions are related by χ(θ) = 2ρh(2θ/π).

Rapidity Distribution

Let us first demonstrate that the Fourier transform of the function γh(t) fulfills the same integral

equation (4.2.39) as the rapidity density distribution for the O(6) model.

By construction, the Fourier transform of γh(t) satisfies the hole equation (4.2.8). In rapidity

space, it can be written as

χ (θ) ≡ 2ρh(u) =
4

π
+ I(θ)− 16

π

∫ ∞

0
dt

cos (ut)

et−1

(
γh(t)− j

8
et/2 J0(2gt)

)
, (4.2.45)

where θ = uπ/2 belongs to the interval [−B,B], with B = aπ/2, and the notation was introduced

for

I(θ) = −4g

π

∫ ∞

0
dt

cos(ut)

sinh(t/2)

(
γ+(2gt) + γ−(2gt)

)
. (4.2.46)

The derivation of Eq. (4.2.45) makes use of the relations (4.2.5), (4.2.4) and (4.2.12).

In order to find a closed equation for the density χ(θ), we need to evaluate the integral I(θ).

To this end, we make use of the magnon solution γ±(t) constructed in Appendix B.4. There it is

shown that the solution can be decomposed as

γ±(2gt) = γ
(0)
± (2gt) + δγp

±(2gt) + δγnp
± (2gt) . (4.2.47)

Here the first term in the right-hand side is the BES solution. It is independent on j and on the

function γh(t). The second term is a particular solution of the j-dependent part of the magnon

equation (4.2.17). It is given explicitely by

δγp
+(2gt) = −2

g

(
cosh (t/2)

cosh t
γh(t)−

j

8
J0(2gt)

)
, δγp

−(2gt) = −2

g

sinh (t/2)

cosh t
γh(t) . (4.2.48)

To leading order at small j, γh(t) = j/8 + . . ., the particular solution, above, agrees with the

findings of [74]. Finally, the last term in the right-hand side of (4.2.47) is a homogeneous solution
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to the magnon equation, or, equivalently, a homogeneous solution to the BES equation. It is

introduced in order to restore the correct analytic properties of γ±(2gt), see Appendix B.4.

The properties of the homogeneous solution δγnp
± (t) are discussed in Appendix B.4. There,

it is shown that the construction of this solution goes along the same lines as the one to the

BES equation provided that the condition B < πg is fulfilled. So, before to continue, let us be

more precise about the limit we are considering. We found previously that the Fermi rapidity is

expressed as a ≡ 2B/π = j/m + . . . at low density j ≪ m and at strong coupling. Of course,

j/m may not be small, in which case we expect a more complicated relation between B and j.

Nevetheless, the previous equality suggests that keeping j/m fixed is equivalent for B to be fixed,

as it is the case for the O(6) TBA equation. We will assume therefore that the strong coupling

limit is taken at a given, but arbitrary, value of B. It follows, in particular, that the condition

B < πg is necessarily satisfied. We can therefore apply the results obtained in Appendix B.4 and

observe that the homogeneous solution is exponentially suppressed in g. We may verify it at the

level of the scaling function. Namely, plugging γ−(2gt), as given in (4.2.47), into Eq. (4.2.19), we

find that

f(g, j) = 16g2 lim
t→0

γ−(2gt)

2gt
= 2Γcusp(g)− j + 16g2 lim

t→0

δγnp
− (2gt)

2gt
, (4.2.49)

or equivalently

ǫ(g, j) = −j + 16g2 lim
t→0

δγnp
− (2gt)

2gt
. (4.2.50)

Here the term (−j) in the right-hand side of (4.2.50) is the contribution to the scaling func-

tion originating from the particular solution (4.2.48). Comparing Eq. (4.2.50) with our previous

result (4.2.36), we conclude that

16g2 lim
t→0

δγnp
− (2gt)

2gt
= mj + . . . . (4.2.51)

Now, since m ∼ e−πg, we check that δγnp
− (t ∼ 0) is exponentially suppressed as compared to the

two first terms in the right-hand side of the last equality in (4.2.49).

We are now in position to compute the integral I(θ), Eq. (4.2.46), entering the right-hand side

of the hole equation (4.2.45). Plugging the decomposition (4.2.47) into (4.2.46) and making use

of (4.2.48), we get that (θ = uπ/2)

I(θ) = I(0)(θ) + δInp(θ) +
16

π

∫ ∞

0
dt

cos(ut)

et−1

(
2 e2t

e2t +1
γh(t)− j

8
et/2 J0(2gt)

)
, (4.2.52)

where I(0)(θ) and δInp(θ) are obtained from the integral (4.2.46) by the substitutions γ±(t) →
γ

(0)
± (t) and γ±(t) → δγnp

± (t), respectively. Now, evaluating the right-hand side of the hole equa-

tion (4.2.45) with the help of (4.2.52), we find

χ (θ) =
16

π

∫ ∞

0
dt cos(ut)

et +1

e2t +1
γh(t) +

4

π
+ I(0)(θ) + δInp(θ) , (4.2.53)

or equivalently, after using (4.2.44), (4.2.41) and θ = uπ/2,

χ (θ) =

∫ B

−B
dθ′K(θ − θ′)χ(θ′) +

4

π
+ I(0)(θ) + δInp(θ) . (4.2.54)
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Here K(θ) is the kernel of the O(6) model given in Eq. (4.2.40). We have thus already obtained

half of the O(6) TBA equation simply from the contribution to I(θ) associated with the particular

solution δγp
±(t). It remains to check that the inhomogeneous term 4/π + I(0)(θ) + δInp(θ) of the

hole equation (4.2.54) takes the correct form.

The integral I(0)(θ) was computed in [73] at strong coupling and at fixed value of θ, assuming

that B < πg. It reads explicitely as

I(0)(θ) = − 4

π
+m cosh θ + m̂ cosh (3θ) + . . . , (4.2.55)

where m̂ = O(e−3πg). The integral δInp(θ) can be found from a similar analysis and it reads

δInp(θ) = δm cosh θ

∫ B

−B
dθ′ χ(θ′) cosh θ′ + . . . , (4.2.56)

where δm = πm2/4g = O(e−2πg) to leading order at strong coupling. We see that the integral

δInp(θ) and the contribution m̂ cosh (3θ) in (4.2.55) generate subleading corrections, that are

exponentially suppressed in g, for a fixed value of θ, as compared to m cosh θ in (4.2.55). We can

therefore neglect the former in a first approximation. Then, substituting (4.2.55) into (4.2.54)

yields

χ(θ) =

∫ B

−B
dθ′K(θ − θ′)χ(θ′) +m cosh θ , (4.2.57)

which is precisely the O(6) TBA equation (4.2.39).

Finally, it follows from (4.2.38) and (4.2.44) that the density of particles in the O(6) model is

related to the scaling parameter j as

ρ =
1

2π

∫ B

−B
dθ χ(θ) = 4γh(0) =

j

2
, (4.2.58)

this without any approximation.

We can verify that if j/m is kept fixed at strong coupling, then χ(θ)/m and B are also fixed,

as a consequence of the O(6) equations (4.2.57) and (4.2.58). Then the correction m̂ cosh (3θ)

in (4.2.55) and the contribution δInp(θ) are both of order O(e−3πg), and are therefore suppressed

at strong coupling. Note, however, that if B takes a large value, these contributions get typically

enhanced by a factor e3B , while the solution χ(θ) to the O(6) equation scales as m eB [130,

136]. This suggests that the parameter controlling the validity of the O(6) approximation is

z2 = e2(B−πg). The O(6) equations, Eqs. (4.2.57) and (4.2.58), predict that B ∼ log ρ/m in the

perturbative regime ρ ≫ m corresponding to a large value of B, see Eq. (4.1.124). It leads to

z2 ∼ ρ2, suggesting that the corrections suppressed by powers of z2 are presumably associated to

the irrelevant deformation of the O(6) sigma model, due to operators of dimensions 4, 6, . . . in the

string σ-model.

Energy of the Ground State

It remains to show that the scaling function ǫ(g, j) is related to the energy of the ground state of

the O(6) model (4.2.38) through relation (4.2.42).
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As follows from (4.2.20), the scaling function admits the representation

ǫ(g, j) = 16g

∫ ∞

0

dt

t

γ
(0)
+ (2gt) − γ(0)

− (2gt)

sinh(t/2)
(γh(t)− γh(0)) + jǫ1(g) , (4.2.59)

where we separated terms linear in j into the function ǫ1(g) given by (4.2.29). The relation (4.2.59)

can be written as

ǫ(g, j) =
2g

π

∫ B

−B
dθ χ(θ)E(θ) + j ǫ1(g) , (4.2.60)

where the explicit expression for E(θ) can be found in [73]. Given the solution γ
(0)
± (t) to the BES

equation, the function E(θ) can be evaluated at large g, and for θ 6 B fixed, as

E(θ) =
m

2g
(cosh θ − 1) + . . . , (4.2.61)

where dots stand for subleading corrections of order O(e−3πg) at a given value of θ. Plugging this

expression into (4.2.60) and making use of (4.2.32), we get the scaling function as

ǫ(g, j) =
m

π

∫ B

−B
dθ χ(θ) (cosh θ − 1) + j(−1 +m) =

m

π

∫ B

−B
dθ χ(θ) cosh θ − j , (4.2.62)

in a perfect agreement with (4.2.42) and (4.2.38).

Thus, we demonstrated that the scaling function ǫ(g, j) is related to the energy density in the

ground state of the two-dimensional O(6) sigma model (4.2.42) and that it can be found from the

exact solution to the O(6) equations, Eqs. (4.2.38) and (4.2.39).

4.2.4 Concluding Remarks

On the gauge theory side, we found that the expression for the O(6) mass gap m(g) ≡ m
∣∣
gauge-theory

was identical to the scale mcusp governing the leading non-perturbative correction to the cusp

anomalous dimension

Γcusp(g) = Γpert
cusp(g)− σ

4
√

2
m2

cusp +O(m4
cusp) . (4.2.63)

Here, Γpert
cusp(g) is the perturbative contribution, given at large g by a non-Borel summable series

in 1/g, and

mcusp = m(g) = k g1/4 e−πg

[
1 +

m
(g)
1

πg
+O(1/g2)

]
, (4.2.64)

with k and m1 given as, see Eq. (3.3.28),

k = 23/4π1/4/Γ
(

5
4

)
, m

(g)
1 =

3

32
− 3 log 2

16
. (4.2.65)

The coefficient σ in Eq. (4.2.63) depends on the prescription used to separate the perturbative

and non-perturbative contribution.

The result m(g) = mcusp agrees with the proposal in [46] that, in string theory, the leading non-

perturbative correction to the cusp anomalous dimension coincides with the one to the vacuum
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energy density of the two-dimensional bosonic O(6) model, embedded into the AdS5 × S5 string

σ-model. The O(6) model only describes the effective dynamics of massless modes of the string

and the mass of the massive excitations µ ∼ 1 defines an ultraviolet cut-off for this model. The

vacuum energy density in the O(6) model, and more generally in the O(n) model, is an ultraviolet

divergent quantity, and it admits the following form

εvac = µ2εpert(g(µ)) + κm2
O(n) +O(m4

O(n)/µ
2) . (4.2.66)

Here, µ2 is the UV cut-off, εpert(g(µ)) stands for the perturbative contribution (with expansion

in 1/g(µ) at large g(µ)), κ is a coefficient and the mass gap mO(n) is

mO(n) = c µ e−g(µ)/β0 g(µ)β1/β2
0 [1 +O(1/g(µ))] , (4.2.67)

where β0 and β1 are the beta-function coefficients for the O(n) model and the normalization

factor c ensures the independence of mO(n) on the renormalization scheme. The two terms in the

right-hand side of (4.2.66) describe perturbative and non-perturbative corrections to εvac. For

n → ∞, each of them is well-defined separately and can be computed exactly [140, 141]. For n

finite, including n = 6, the 1/g(µ) expansion of εpert(g(µ)) is non-Borel summable, in a generic

renormalization scheme, and, thus, it does not define uniquely εpert(g(µ)). In a close analogy with

(4.2.63), the coefficient κ in front of m2
O(n), in the right-hand side of (4.2.66), depends on the

prescription used to separate the perturbative and non-perturbative contribution to εvac.

For n = 6, we have β0 = 1/π and β1 = 1/4π2, and the relations (4.2.67) and (4.2.66) should

be compared with (4.2.64) and (4.2.63), respectively, assuming g(µ) = g + . . . for µ ∼ 1. It is

therefore rewarding to verify from the gauge theory Bethe ansatz approach that the scale mcusp

and the O(6) mass gap m(g) do coincide.

On the string theory side, we found that the two-loop small ℓ ≡ j/4g semiclassical string

scaling function [45, 15, 59, 61], given by

ε(g, j) = 2ℓ2

[
g +

1

π

(
3

4
− log ℓ

)
+

1

4π2g

(
q
(s)
02

2
− 3 log ℓ+ 4(log ℓ)2

)
+O

(
1/g2

)
]

+O(ℓ4) ,

(4.2.68)

can be cast into the form of the O(6) energy density in the perturbative regime. From this, we

extracted the expression for the O(6) mass gap m(s) ≡ m
∣∣
string-theory

as

m(s) = k g1/4 e−πg

[
1 +

m
(s)
1

πg
+O(1/g2)

]
, (4.2.69)

with k and m
(s)
1 introduced for, see Eqs. (4.1.88) and (4.1.89),

k = 23/4π1/4/Γ
(

5
4

)
, m

(s)
1 =

q
(s)
02

8
− 1

4
. (4.2.70)

The explicit value for the constant q
(s)
02 was obtained in [61] by a direct two-loop world-sheet

computation and reads

q
(s)
02 = −2K − 3 log 2

2
+

7

4
. (4.2.71)



130 CHAPTER 4. SCALING FUNCTION AND O(6) SIGMA MODEL

Plugging this value of q
(s)
02 into the expression for m

(s)
1 , we get

m
(s)
1 = −K

4
− 3 log 2

16
− 1

32
. (4.2.72)

Comparing m(g) and m(s), Eqs. (4.2.64) and (4.2.69), we find a remarkable agreement between

gauge and string predictions [46, 74, 73] for the leading contribution ∼ k g1/4 e−πg. However,

the matching does not extend to the subleading corrections associated with m
(g)
1 and m

(s)
1 , see

Eq. (4.2.65) and (4.2.72), m
(g)
1 6= m

(s)
1 . We observe, indeed, that the two results agree with each

other in the term ∼ log 2 but disagree in the rest [76].

Note that, instead of comparing the predictions for the mass gap, we could equivalently com-

pare predictions for the scaling function in the small ℓ semiclassical regime directly. It requires

assuming first that j ∼ m and taking then j ≫ m to fall in the perturbative regime of the O(6)

model. As was previously explained, the O(6) energy density in this limit can be cast into the

form of a expansion in 1/g with coefficients all being proportional to ℓ2 ≡ j/4g up to polynomials

in log ℓ. More precisely, the O(6) prediction for the gauge theory scaling function assumes the

form (4.2.68) with the two-loop constant

q
(g)
02 = 8m

(g)
1 + 2 = −3 log 2

2
+

11

4
, (4.2.73)

instead of q
(s)
02 in Eq. (4.2.68). Of course, the value for q

(g)
02 , above, disagrees with q

(s)
02 , see

Eq. (4.2.71), for the obvious reason that m
(g)
1 6= m

(s)
1 . But, remarkably, the expression (4.2.73) re-

produces the result of [138] derived from the Bethe ansatz equations, within approach alternative

to the FRS equation (at strong coupling).

Finally, one could be interested in computing the scaling function in the semiclassical regime,

that is as an expansion in 1/g with ℓ ≡ j/4g kept fixed and arbitrary, directly from the FRS

equation. This analysis was performed in [139] and agreement with the classical and one-loop

string scaling function of [45, 59] was obtained. But, at the two-loop level, a singular contribution

at small ℓ was found. It is not clear how this contribution can be interpreted from the O(6)

model point of view. Nevertheless, it seems to indicate that the ‘irrelevant’ corrections to the

O(6) TBA equations, predicted by the FRS equation, could play a more prominent role in the

perturbative regime j ≫ m than naively expected. Finally, we note that the regular piece of the

two-loop scaling function of [139] matches the result of [138], and, in particular, it agrees with the

prediction based on the (gauge theory) O(6) model approach, as far as the O(ℓ2) contribution is

concerned.

All these remarks indicate that the two-loop matching of gauge and string theory is subtle. In

particular, the reason for the discrepancy between m
(g)
1 and m

(s)
1 remains unclear.
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Conclusion

In this thesis, we used the (conjectured) all-loop integrability of the dilatation operator of the

planar N = 4 Super-Yang-Mills theory [41] to unravel the strong coupling regime of distinguished

observables, the cusp anomalous dimension and the scaling function. These functions are accessible

by considering the scaling dimensions of Wilson operators carrying large quantum numbers, both

Lorentz spin and twist [62, 45, 63, 44, 47]. For them we can rely on the all-loop asymptotic Bethe

ansatz equations [41, 43, 44] to tackle the strong coupling analysis in the gauge theory.

Thanks to integrability, the cusp anomalous dimension and the scaling function can be found as

solution to integral equations, the Beisert-Eden-Staudacher [44, 63] and Freyhult-Rej-Staudacher [47]

equation, respectively. At weak coupling, the solution to the BES equation yields the cusp anoma-

lous dimension as an expansion in powers of g2 [63, 44] matching explicit four-loop perturbative

calculation in the gauge theory [51, 49, 55, 56, 57, 58]. Solving the BES equation at strong

coupling, we found the first few terms of the strong coupling expansion of the cusp anomalous

dimension, extending the findings of [65, 66, 67, 68] and confirming the numerical estimate of [64].

Up to two-loop, they read [69, 70]

Γcusp(g) = 2g − 3 log 2

2π
− K

8π2g
+ . . . , (5.0.1)

where K is the Catalan’s constant. This result was independently derived from analysis based

on the (quantum string) Bethe ansatz [137, 138] or on the asymptotic Baxter equation [91].

Moreover, it is in a remarkable agreement with the string theory prediction obtained either from

the semiclassical quantization of the energy of a folded spinning string [14, 15, 60] or from the area

scaling of a cusped minimal suface [113, 114, 115, 116]. We see that the cusp anomalous dimension,

obtained by solving the BES equation, interpolates, with high accuracy, between explicit gauge and

string theory results. This is a rather non-trivial dynamical test of the AdS/CFT correspondence.

Note that the cusp anomalous dimension, and the scaling function, are not the only observables

that can be determined with the help of the all-loop Bethe ansatz equations and compared with

string theory predictions. For instance, the so-called virtual scaling function, which is related

to subleading O(log0N) corrections to the logarithmic scaling of the finite twist, large spin N ,

minimal anomalous dimension, has been analyzed in [142, 143] and compared successfully with

the string theory result of [144].

Concerning the scaling function ǫ(g, j), we verified the proposal of [46] that it can be found

131
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exactly, at strong coupling g ≫ 1 and for j ∼ m, as solution to the TBA equations for the O(6)

sigma model. Thanks to this result, we extracted from the FRS equation the strong coupling

expression for the mass gap m of the O(6) model and we made comparison with the prediction

from the string theory [46, 61, 76]. The two results match remarkably well up to one-loop order

at strong coupling, but a discrepancy is found at the two-loop level [61, 138, 76, 139]. We stress

that this disagreement does not invalidate the relation between the scaling function and the O(6)

model, either on the gauge or string theory side, since it only affects the dependence on the coupling

constant of the mass gap m. It is important however to understand its origin and its consequence

for the AdS/CFT correspondence. In order to clarify this point, it would be interesting to consider

in more detail the subleading corrections to the O(6) TBA equations, that are predicted by the

FRS equation.

In thesis, we have also analyzed the nature of the strong coupling expansion for the cusp

anomalous dimension and uncovered its asymptotic nature. The series tuns out to be divergent

and non-Borel summable, the latter property indicating that the cusp anomalous dimension should

receive non-perturbative corrections at strong coupling. We explained how to compute the leading

non-perturbative contribution to the cusp anomalous dimension from the BES equation. We found

that it is controlled to all orders at strong coupling by the scale m2, with m the mass gap of the

O(6) model.

It would be interesting to understand if the divergence of the strong coupling expansion is

a generic phenomenon. A first element of response is that the dressing phase, appearing in

the all-loop asymptotic Bethe ansatz equations, has expansion coefficients that admit divergent

expansion at strong coupling [43, 44]. It suggests that anomalous dimensions of operators carrying

large charges (long operators) will have, generically, divergent series description at strong coupling.

But, what about anomalous dimension of short operators with finite quantum numbers?

For short operators, the all loop asymptotic Bethe ansatz equations are not reliable because of

the wrapping effects [39, 112, 41]. A famous example is the anomalous dimension of the Konishi

operator, which can be represented as tr[[Z(0),Y(0)][Z(0),Y(0)]], where Z(0) and Y(0) are two

complex scalar fields. The all-loop asymptotic Bethe ansatz equations predict the anomalous

dimension of the Konishi operator up to three-loop at weak coupling [31, 21], and the result is

in agreement with the explicit perturbative gauge theory computation [145](see also references

therein). At four loops, wrapping effects occur and the all-loop Bethe ansatz equations cannot

be trusted [146]. Recently, it has been demonstrated how these finite-size corrections can be

computed [147, 148] and, impressively, the obtained four-loop anomalous dimension for the Konishi

operator was found to match perfectly the explicit four-loop perturbative calculation [149] in the

gauge theory. The equations proposed in [148, 150] (see also references therein) were argued to

capture all type of finite-size corrections and thus should describe the exact spectrum of anomalous

dimensions of the planar gauge theory. With their help, one should be able to find the strong

coupling expansion of the anomalous dimension of the Konishi operator and make comparison

with the string theory result of [151]. It has been done recently by numerical means in [152](to be

compared with the result of [153] obtained with the all-loop asymptotic Bethe ansatz equations).

This numerical estimate seems to be consistent with the string theory computation of [151] up to

next-to-leading order.

It would be very interesting to see whether the methods developed to deal with the strong
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coupling regime of the BES and FRS equations [70, 73, 71, 108] can be applied to solving the

equations of [148] for the anomalous dimension of the Konishi operator at strong coupling. It

would perhaps shed light on the nature of the strong coupling expansion in string theory.
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Appendix A

BES Equation

A.1 General Solution

In this appendix, we give further details on the construction of the general solution Γ(t) = Γ+(t)+

iΓ−(t) to the BES equation. By construction, the function Γ(t) is given by the Fourier integral

Γ(t) =

∫ ∞

−∞
dk e−ikt Γ̃(k) , (A.1.1)

with the function Γ̃(k) having different form for k2 ≤ 1 and k2 > 1:

• For −∞ < k < −1:

Γ̃(k)=
∑

n≥1

c−(n, g) e−4πng(−k−1) , (A.1.2)

• For 1 < k <∞:

Γ̃(k)=
∑

n≥1

c+(n, g) e−4πng(k−1) , (A.1.3)

• For −1 ≤ k ≤ 1:

Γ̃(k) = −
√

2

π

(
1 + k

1− k

)1/4
[
1 +

c(g)

1 + k
+

1

2

(∫ −1

−∞
+

∫ ∞

1

)
dp Γ̃(p)

p− k

(
p− 1

p+ 1

)1/4
]
, (A.1.4)

where Γ̃(p) inside the integral is replaced by (A.1.2) and (A.1.3).

We recall that the expression of Γ̃(k) for k2 > 1 is dictated by the analyticity properties, while for

k2 < 1 it follows from solving the BES equation. Integration over k2 > 1 in the integral (A.1.1)

can be done immediately, while the integral over −1 ≤ k ≤ 1 can be expressed in terms of special

functions. Namely, we find

Γ(t) =
∑

n≥1

c+(n, g)

[
e−it

4πng + it
− V+(−it, 4πng)

]

+
∑

n≥1

c−(n, g)

[
eit

4πng − it + V−(it, 4πng)

]
− V0(−it)− c(g)V1(−it) , (A.1.5)
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where the notation was introduced for the functions (with n = 0, 1)

V±(x, y) =
1√
2π

∫ 1

−1
dk e±xk

∫ ∞

1

dp e−y(p−1)

p− k

(
1 + k

1− k
p− 1

p+ 1

)±1/4

,

Vn(x) =

√
2

π

∫ 1

−1

dk exk

(k + 1)n

(
1 + k

1− k

)1/4

,

U±
n (y) =

1

2

∫ ∞

1

dp e−y(p−1)

(p ∓ 1)n

(
p+ 1

p− 1

)∓1/4

. (A.1.6)

The reason why we also introduced U±
n (y) is that the functions V±(x, y) can be further simplified

with the help of master identities (we shall return to them in a moment)

(x+ y)V−(x, y) = xV0(x)U
−
1 (y) + yV1(x)U

−
0 (y)− e−x ,

(x− y)V+(x, y) = xV0(x)U
+
1 (y) + yV1(x)U

+
0 (y)− ex . (A.1.7)

Combining together (A.1.7) and (A.1.5) we arrive at the following expression for the function

Γ(it)

Γ(it) = −V0(t)− c(g)V1(t)

+
∑

n≥1

c+(n, g)

[
4πngV1(t)U

+
0 (4πng) + tV0(t)U

+
1 (4πng)

4πng − t

]

+
∑

n≥1

c−(n, g)

[
4πngV1(t)U

−
0 (4πng) + tV0(t)U

−
1 (4πng)

4πng + t

]
, (A.1.8)

which is the result stated in Chapter 3. As follows from their integral representation (A.1.6), V0(t)

and V1(t) are holomorphic functions of t. As a result, Γ(it) is a meromorphic function of t with

(an infinite) set of poles located at t = ±4πng with n positive integer.

Finally, let us prove the master identities (A.1.7). We start with the second relation in (A.1.7)

and make use of (A.1.6) to rewrite the expression in the left-hand side of (A.1.7) as

(x− y)V+(x, y) e−y = (x− y)
∫ ∞

0
ds V0(x+ s)U+

0 (y + s) e−y−s . (A.1.9)

Let us introduce two auxiliary functions

z1(x) = V1(x) , z1(x) + z′1(x) = V0(x) ,

z2(x) = e−x U+
1 (x) , z2(x) + z′2(x) = − e−x U+

0 (x) , (A.1.10)

with Vn(x) and U+
n (x) given by (A.1.6) and where z′1,2(x) stand for the derivatives of z1,2(x).

They satisfy the second-order differential equation

d

dx

(
xz′i(x)

)
=
(
x− 1

2

)
zi(x) . (A.1.11)
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Applying this relation it is straightforward to verify the following identity

−(x− y)
[
z1(x+ s) + z′1(x+ s)

][
z2(y + s) + z′2(y + s)

]

=
d

ds

{
(y + s)[z2(y + s) + z′2(y + s)]z1(x+ s)

}

− d

ds

{
(x+ s)[z1(x+ s) + z′1(x+ s)]z2(y + s)

}
. (A.1.12)

It is easy to see that the expression in the left-hand side coincides with the integrand in (A.1.9).

Therefore, integrating both sides of (A.1.12) over 0 ≤ s <∞, we obtain

(x− y)V+(x, y) = − e−s
[
(x+ s)V0(x+ s)U+

1 (y + s) + (y + s)V1(x+ s)U+
0 (y + s)

] ∣∣s=∞

s=0

= −ex + xV0(x)U
+
1 (y) + yV1(x)U

+
0 (y) , (A.1.13)

where in the second relation we took into account the asymptotic behavior of the functions (A.1.6)

(see Eqs. (A.2.12) and (A.2.14)), Vn(s) ∼ es s−3/4 and U+
n (s) ∼ sn−5/4 as s→∞.

The derivation of the first relation in (A.1.7) goes along the same lines.

A.2 Relation to Whittaker Functions

In this appendix we summarize properties of special functions encountered in the analysis of the

BES solution.

Integral Representations

Let us first consider the functions Vn(x) (with n = 0, 1) introduced as

Vn(x) =

√
2

π

∫ 1

−1

dk exk

(k + 1)n

(
1 + k

1− k

)1/4

. (A.2.1)

As follows from their integral representation, V0(x) and V1(x) are entire function on a complex

x−plane. Changing the integration variable in (A.2.1) as k = 1− 2t and k = 2t− 1 we obtain two

equivalent representations

Vn(x) =
1

π
23/2−n ex

∫ 1

0
dt t−1/4(1− t)1/4−n e−2tx ,

=
1

π
23/2−n e−x

∫ 1

0
dt t1/4−n(1− t)−1/4 e2tx , (A.2.2)

which give rise to the following expressions for Vn(x) (with n = 0, 1) in terms of Whittaker

functions of the first kind

Vn(x) = 2−n Γ(5
4 − n)

Γ(5
4)Γ(2 − n)

(2x)n/2−1Mn/2−1/4,1/2−n/2(2x) ,

= 2−n Γ(5
4 − n)

Γ(5
4)Γ(2 − n)

(−2x)n/2−1M1/4−n/2,1/2−n/2(−2x) . (A.2.3)
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In distinction with Vn(x), the Whittaker function Mn/2−1/4,1/2−n/2(2x) is an analytical function

of x on the complex plane with the cut along negative semi-axis. The same is true for the factor

(2x)n/2−1 so that the product of two functions in the right-hand side of (A.2.3) is a single-valued

analytical function in the whole complex plane. The two representations (A.2.3) are equivalent in

virtue of the relation

Mn/2−1/4,1/2−n/2(2x) = e±iπ(1−n/2)M1/4−n/2,1/2−n/2(−2x) (for Imx ≷ 0) , (A.2.4)

where the upper and lower signs in the exponent correspond to Imx > 0 and Imx < 0, respectively.

Let us know consider the functions U±
0 (x) and U±

1 (x) defined for real positive x by

U±
n (x) =

1

2

∫ ∞

1

dp e−x(p−1)

(p∓ 1)n

(
p+ 1

p− 1

)∓1/4

. (A.2.5)

The four different integrals in (A.2.5) can be found as special cases of the following generic integral

Ukl(x) =
1

2

∫ ∞

1
dp e−x(p−1)(p+ 1)k+l−1/2(p− 1)k−l−1/2 , (A.2.6)

defined for x > 0. Changing the integration variable as p = t/x+ 1 we obtain

Ukl(x) = 2k+l−3/2xk−l−1/2

∫ ∞

0
dt e−t tk−l−1/2

(
1 +

t

2x

)k+l−1/2

. (A.2.7)

The integral entering this relation can be expressed in terms of Whittaker functions of second

kind or equivalently confluent hypergeometric function of the second kind

Ukl(x) = 2l−3/2Γ(1
2 − k + l)x−l−1/2 exWkl(2x) , (A.2.8)

= 1
2Γ(1

2 − k + l)U
(

1
2 − k + l, 1 + 2l; 2x

)
.

This relation can be used to analytically continue Ukl(x) from x > 0 to the whole complex

x−plane with the cut along negative semi-axis. Matching (A.2.6) into (A.2.5) we obtain the

following relations for the functions U±
0 (x) and U±

1 (x)

U+
0 (x) = 1

2Γ(5
4)x−1 exW−1/4,1/2(2x) , U+

1 (x) = 1
2Γ(1

4 )(2x)−1/2 exW1/4,0(2x) ,

U−
0 (x) = 1

2Γ(3
4)x−1 exW1/4,1/2(2x) , U−

1 (x) = 1
2Γ(3

4 )(2x)−1/2 exW−1/4,0(2x) . (A.2.9)

The functions V1(±x), U±
1 (x) and V0(±x), U±

0 (x) satisfy the same Whittaker differential equation

and, as a consequence, they satisfy Wronskian relations

V1(−x)U−
0 (x)− V0(−x)U−

1 (x) = V1(x)U
+
0 (x) + V0(x)U

+
1 (x) =

ex

x
. (A.2.10)

The same relations also follow from (A.1.7) for x = ±y. In addition,

U+
0 (x)U−

1 (−x) + U+
1 (x)U−

0 (−x) =
π

2
√

2x
e±

3iπ
4 , (for Imx ≷ 0) . (A.2.11)
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Combining together (A.2.10) and (A.2.11) we obtain the following relations between the functions

V0(x) =
2
√

2

π
e∓

3iπ
4
[
ex U−

0 (−x) + e−x U+
0 (x)

]
,

V1(x) =
2
√

2

π
e∓

3iπ
4
[
ex U−

1 (−x)− e−x U+
1 (x)

]
, (A.2.12)

where the upper and lower signs correspond to Imx > 0 and Imx < 0, respectively.

At first sight, the relations (A.2.12) look surprising since V0(x) and V1(x) are entire functions

in the complex x−plane, while U±
0 (x) and U±

1 (x) are single-valued functions in the same plane

but with the cut along the negative semi-axis. Indeed, one can use the relations (A.2.10) and

(A.2.11) to compute the discontinuity of the these functions across the cut as

∆U±
0 (−x) = ±π

4
e−x V0(∓x) θ(x) ,

∆U±
1 (−x) = −π

4
e−x V1(∓x) θ(x) , (A.2.13)

where ∆U(−x) ≡ limǫ→0[U(−x + iǫ) − U(−x − iǫ)]/(2i) and θ(x) is a step function. Then, one

verifies with the help of these identities that the linear combinations of U−functions in the right-

hand side of (A.2.12) have zero discontinuity across the cut and, therefore, they are well-defined

in the whole complex plane.

Asymptotic Expansions

For our purposes, we need asymptotic expansion of functions Vn(x) and U±
n (x) at large real x.

Let us start with the latter functions and consider a generic integral (A.2.8).

To find asymptotic expansion of the function Ukl(x) at large x, it suffices to replace the last

factor in the integrand (A.2.7) in powers of t/(2x) and integrate term by term. In this way, we

find that

U+
0 (x) = (2x)−5/4Γ(5

4 )F
(

1
4 ,

5
4 | − 1

2x

)
= (2x)−5/4Γ(5

4)

[
1− 5

32x
+ . . .

]
,

U−
0 (x) = (2x)−3/4Γ(3

4 )F
(
−1

4 ,
3
4 | − 1

2x

)
= (2x)−3/4Γ(3

4)

[
1 +

3

32x
+ . . .

]
,

U+
1 (x) = (2x)−1/4 1

2Γ(1
4)F

(
1
4 ,

1
4 | − 1

2x

)
= (2x)−1/4 1

2Γ(1
4 )

[
1− 1

32x
+ . . .

]
,

U−
1 (x) = (2x)−3/4 1

2Γ(3
4)F

(
3
4 ,

3
4 | − 1

2x

)
= (2x)−3/4 1

2Γ(3
4 )

[
1− 9

32x
+ . . .

]
, (A.2.14)

Here we introduced the function F (a, b| − 1
2x) defined as

F
(
a, b| − 1

2x

)
=

(2x)a

Γ(a)

∫ ∞

0
ds sa−1(1 + s)−b e−2xs , (A.2.15)

with the property that F (a, b| − 1
2x) = 1 +O(1/x) at large x.

Notice that the expansion coefficients in (A.2.14) grow factorially to higher orders but the

series are Borel summable for x > 0. For x < 0 one has to distinguish the functions U±
n (x + iǫ)
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and U±
n (x − iǫ) (with ǫ → 0) which define analytical continuation of the function U±

n (x) to the

upper and lower edges of the cut, respectively. In contrast with this, the functions Vn(x) are

well-defined on the whole real axis. Still, to make use of the relations (A.2.12) we have to specify

the U−functions on the cut. As an example, let us consider V0(−πg) in the limit g → ∞ and

apply (A.2.12)

V0(−πg) =
2
√

2

π
e−

3iπ
4 eπg

[
U+

0 (−πg + iǫ) + e−2πg U−
0 (πg)

]
, (A.2.16)

where ǫ→ 0 and we have chosen to define the U−functions on the upper edge of the cut. Written

in this form, both terms inside the square brackets are well-defined separately. Replacing U±
0

functions in (A.2.16) by their expressions (A.2.14) in terms of F -functions we find

V0(−πg) =
(2πg)−5/4 eπg

Γ(3
4)

[
F
(

1
4 ,

5
4 | 1

2πg + iǫ
)

+ σΛ2F
(
−1

4 ,
3
4 | − 1

2πg

)]
, (A.2.17)

with Λ2 given by

Λ2 =
Γ(3

4)

Γ(5
4)

e−2πg(2πg)1/2 , σ = e−
3iπ
4 . (A.2.18)

Since the second term in the right-hand side of (A.2.17) is exponentially suppressed at large g

we may treat it as a non-perturbative correction. Repeating the same analysis for V1(−πg), we

obtain from (A.2.12) and (A.2.14)

V1(−πg) =
(2πg)−5/4 eπg

2Γ(3
4 )

[
8πgF

(
1
4 ,

1
4 | 1

2πg + iǫ
)

+ σΛ2F
(

3
4 ,

3
4 | − 1

2πg

)]
, (A.2.19)

We would like to stress that the ‘+iǫ’ prescription in the first term in (A.2.17) and the phase factor

σ = e−
3iπ
4 in (A.2.18) follow unambiguously from (A.2.16). Had we defined the U−functions on

the lower edge of the cut, we would get the expression for V0(−πg) with ‘−iǫ’ prescription and

the phase factor e
3iπ
4 . The two expressions are however equivalent since discontinuity of the first

term in (A.2.17) compensates the change of the phase factor in front of the second term

F
(

1
4 ,

5
4 | 1

2πg + iǫ
)
− F

(
1
4 ,

5
4 | 1

2πg − iǫ
)

= i
√

2Λ2F
(
−1

4 ,
3
4 | − 1

2πg

)
. (A.2.20)

If one neglected ‘+iǫ’ prescription in (A.2.16) and formally expanded the first term in (A.2.17)

in powers of 1/g, this would lead to non-Borel summable series. This series suffers from Borel

ambiguity which are exponentially small for large g and produce the contribution of the same

order as the second term in the right-hand side of (A.2.17). The relation (A.2.17) suggests how

to give a meaning to this series. Namely, one should first resum the series for negative g where it

is Borel summable and, then, analytically continue it to the upper edge of the cut at positive g.

A.3 Expression for the Mass Scale

In this appendix we derive the expression for the mass scale given by

m = −16
√

2

π
g e−πg

[
f0(−πg)U−

0 (πg) + f1(−πg)U−
1 (πg)

]
. (A.3.1)
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We recall that the functions f0,1(4πgt) read

f0(4πgt) =
∑

n≥1

t

[
c+(n, g)

U+
1 (4πng)

n− t + c−(n, g)
U−

1 (4πng)

n+ t

]
− 1 , (A.3.2)

f1(4πgt) =
∑

n≥1

n

[
c+(n, g)

U+
0 (4πng)

n− t + c−(n, g)
U−

0 (4πng)

n+ t

]
,

and parameterize the BES solution Γ(4πit) as

Γ(4πgit) = f0(4πgt)V0(4πgt) + f1(4πgt)V1(4πgt) . (A.3.3)

To obtain the representation (A.3.1), we replace Γ(4πgit) in the definition of m,

m ≡ 8
√

2

π2
e−πg −8g

π
e−πg Re

[∫ −i∞

0
dt e−4πgt−iπ/4 Γ(4πgit)

t+ 1
4

]
, (A.3.4)

by its expression (A.3.3) and perform integration over t in the right-hand side of (A.3.4). It is

convenient to decompose Γ(4πgit)/(t+ 1
4) into a sum of simple poles as

Γ(4πgit)

t+ 1
4

=
∑

k=0,1

fk(−πg)
Vk(4πgt)

t+ 1
4

+
∑

k=0,1

fk(4πgt) − fk(−πg)
t+ 1

4

Vk(4πgt) , (A.3.5)

where the second term is regular at t = −1/4. Substituting this relation into (A.3.4) and replacing

fk(4πgt) by their expressions (A.3.2), we encounter the following integral

Rk(4πgs) ≡ Re

[∫ −i∞

0
dt e−4πgt−iπ/4Vk(4πgt)

t− s

]
= Re

[∫ −i∞

0
dt e−t−iπ/4 Vk(t)

t− 4πgs

]
. (A.3.6)

Then, the integral in (A.3.4) can be expressed in terms of R−function as

Re

[ ∫ −i∞

0
dt e−4πgt−iπ/4 Γ(4πgit)

t+ 1
4

]
= f0(−πg)R0(−πg) + f1(−πg)R1(−πg)

−
∑

n≥1

nc+(n, g)

n+ 1
4

[
U+

1 (4πng)R0(4πgn) + U+
0 (4πng)R1(4πgn)

]

+
∑

n≥1

nc−(n, g)

n− 1
4

[
U−

1 (4πng)R0(−4πgn) − U−
0 (4πng)R1(−4πgn)

]
, (A.3.7)

where the last two lines correspond to the second sum in the right-hand side of (A.3.5) and we

took into account that the coefficients c±(n, g) are real.

Let us evaluate the integral (A.3.6) and choose for simplicity R0(s). We have to distinguish

two cases: s > 0 and s < 0. For s > 0 we have

R0(s) =− Re

[
e−iπ/4

∫ 1

−∞
dv e−(1−v)s

∫ −i∞

0
dt e−vt V0(t)

]

=

√
2

π
Re

[
e−iπ/4

∫ 1

−∞
dv e−(1−v)s

∫ 1

−1
du

(1 + u)1/4(1− u)−1/4

u− v − iǫ

]
, (A.3.8)
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where in the second relation we replaced V0(t) by its integral representation (A.2.1). Integration

over u can be carried out with the help of identity

1√
2π

∫ 1

−1
du

(1 + u)1/4−k(1− u)−1/4

u− v − iǫ = δk,0 − (v + 1)−k ×





(
v+1
v−1

)1/4
, v2 > 1

e−iπ/4
(

1+v
1−v

)1/4
, v2 < 1

(A.3.9)

In this way, we obtain from (A.3.8)

R0(s)
s>0
=
√

2

[
1

s
−
∫ −1

−∞
dv e−(1−v)s

(
v + 1

v − 1

)1/4
]

=
√

2

[
1

s
− 2 e−2s U+

0 (s)

]
, (A.3.10)

with the function U+
0 (s) defined in the previous appendix. In the similar manner, for s < 0 we

get

R0(s)
s<0
=
√

2

[
1

s
+ 2U−

0 (−s)
]
, (A.3.11)

together with

R1(s) = 2
√

2
[
θ(−s)U−

1 (−s) + θ(s) e−2s U+
1 (s)

]
. (A.3.12)

Then, we substitute the relations (A.3.10), (A.3.11) and (A.3.12) into (A.3.7) and find

Re

[ ∫ −i∞

0
dt e−4πgt−iπ/4 Γ(4πgit)

t+ 1
4

]

= 2
√

2f0(−πg)
[
U−

0 (πg)− 1

2πg

]
+ 2
√

2f1(−πg)U−
1 (πg) +

√
2

πg
[f0(−πg) + 1] , (A.3.13)

where the last term in the right-hand side corresponds to the last two lines in (A.3.7). Substitution

of (A.3.13) into (A.3.4) yields the expression for the mass scale (A.3.1).

A.4 Wronskian-like Relation

In this appendix, we consider the homogeneous solution to the BES equation δΓ(t) that satisfies

the quantization conditions

δΓ(itm) = −ξδm,0 , (A.4.1)

where tm = 4πg
(
m− 1

4

)
with m ∈ Z. More precisely, we will establish that the idendity

δΓ(0) = −ξm√
2
, (A.4.2)

holds true at any value of the coupling constant g > 0, where m is the mass scale defined in terms

of the BES solution Γ(t) as

m =
8
√

2

π2
e−πg −8g

π
e−πg Re

∫ ∞

0

dt

t+ iπg
ei(t−π/4) Γ(t) . (A.4.3)
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The derivation of the identity (A.4.2) follows from the use of a Wronskian-like relation between

the two functions δΓ(t) and Γ(t). This relation is most easily obtained by working with the

γ−functions introduced as

δγ(it) =
sin (t/4g) sin (π/4)

sin(t/4g + π/4)
δΓ(it) , (A.4.4)

and similarly for the pair (γ(t),Γ(it)). The equation (A.4.2) then translates into the small t

behavior

δγ(it) = − ξm

4
√

2g
t+O(t2) . (A.4.5)

We recall that the homogeneous solution δΓ(t) satisfying the quantization conditions (A.4.1) is

relevant to the study of the first non-perturbative correction ∼ exp (−2πg) to the BES solution at

strong coupling (see Section 3.4.3). In this context, the relation (A.4.2), or equivalently (A.4.5),

permits to demonstrate that the leading non-perturbative correction to the cusp anomalous di-

mension is controlled by the mass scale m. The solution δΓ(t) plays a similar role at the level of

the FRS equation and another application of the formula (A.4.2) can be found in Appendix B.4.

By construction, δγ(t) is a homogeneous solution to the BES equation. It means that it

satisfies the system of equations (n > 1)
∫ ∞

0

dt

t

[
δγ−(t)

1− e−t/2g
+

δγ+(t)

et/2g −1

]
J2n−1(t) = 0 ,

∫ ∞

0

dt

t

[
δγ+(t)

1− e−t/2g
− δγ−(t)

et/2g −1

]
J2n(t) = 0 , (A.4.6)

where δγ(t) ≡ δγ+(t) + iδγ−(t) with δγ±(−t) = ±δγ±(t). The solution we are interested in has

special analytic properties discussed in Section 3.4.3. In particular, δγ(t) should vanish at t = 0

and have a simple pole at t = −iπg with residue 2igξ. To fulfill these requirements, we split δγ(it)

into the sum of two functions

δγ(it) = ρ(it)− 2ξ

π

t

t+ πg
, (A.4.7)

where ρ(it) is an entire function of t. Moreover, the function ρ(it) so-defined should have a Fourier

transform supported on the interval [−1, 1]. We remark that these analytic conditions on ρ(it) are

identical to those imposed on the BES solution γ(it). In order to find a deeper relation between the

two functions, it is advantageous to rewrite the system of equations (A.4.6) for the unknown ρ(it).

Proceeding to the parity decomposition of ρ(t) as ρ(t) = ρ+(t) + iρ−(t), we obtain from (A.4.7)

that

δγ+(t) = ρ+(t)− 2ξ

π

t2

t2 + (πg)2
,

δγ−(t) = ρ−(t) +
2gξt

t2 + π2g2
. (A.4.8)

Then, substituting these relations into (A.4.6), we derive a system of inhomogeneous integral

equations for the functions ρ±(t) given by (n > 1)
∫ ∞

0

dt

t

[
ρ−(t)

1− e−t/2g
+

ρ+(t)

et/2g −1

]
J2n−1(t) = h2n−1(g) ,

∫ ∞

0

dt

t

[
ρ+(t)

1− e−t/2g
− ρ−(t)

et/2g −1

]
J2n(t) = h2n(g) , (A.4.9)
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with the inhomogeneous terms

h2n−1(g) =
2ξ

π

∫ ∞

0

dt J2n−1(t)

t2 + (πg)2

[
t

et/2g −1
− πg

1− e−t/2g

]
,

h2n(g) =
2ξ

π

∫ ∞

0

dt J2n(t)

t2 + (πg)2

[
πg

et/2g −1
+

t

1− e−t/2g

]
. (A.4.10)

These relations differ from the BES ones for γ(t) = γ+(t)+iγ−(t) by the form of the inhomogeneous

terms, and they can be obtained one from another through the substitution

ρ±(t)→ γ±(t) , h2n−1(g)→ 1
2δn,1 , h2n(g)→ 0 . (A.4.11)

As we did for γ(t) in Chapter 3, we may look for a solution to (A.4.9) in the form of Bessel series

ρ−(t) = 2
∑

n>1

(2n− 1)J2n−1(t)ρ2n−1(g) , (A.4.12)

ρ+(t) = 2
∑

n>1

(2n) J2n(t)ρ2n(g) ,

which lead at small t to

δγ(it) = iρ−(it)− 2ξ

π2g
t+O(t2) = −t

(
ρ1(g) +

2ξ

π2g

)
+O(t2) . (A.4.13)

The similarities between γ(t) and ρ(t) permit to derive a Wronskian-like relation between

them, whose immediate consequence is the desired result (A.4.5). To see this, let us multiply both

sides of the first relation in (A.4.9) by (2n − 1)γ2n−1(g) and sum both sides over n ≥ 1 in order

to form the function γ−(t). In parallel, we multiply the second relation in (A.4.9) by (2n)γ2n(g),

sum over n > 1 and form γ+(t). Then, we subtract the second relation from the first one and

obtain

∫ ∞

0

dt

t

[
γ−(t)ρ−(t)− γ+(t)ρ+(t)

1− e−t/2g
+
γ−(t)ρ+(t) + γ+(t)ρ−(t)

et/2g −1

]

= 2
∑

n≥1

[
(2n − 1)γ2n−1(g)h2n−1(g) − (2n)γ2n(g)h2n(g)

]
. (A.4.14)

We notice that the expression in the left-hand side of this relation is invariant under the exchange

γ±(t)↔ ρ±(t). Therefore, the right-hand side should be also invariant under (A.4.11) leading to

ρ1(g) = 2
∑

n≥1

[
(2n − 1)γ2n−1(g)h2n−1(g) − (2n)γ2n(g)h2n(g)

]
. (A.4.15)

After replacing h2n−1(g) and h2n(g) by their expressions (A.4.10) and summing over the Bessel

functions, we obtain that ρ1(g) is given by an integral involving the functions γ±(t). It takes much

simpler form when expressed in terms of the functions Γ±(t) (with Γ(t) = Γ+(t) + iΓ−(t)) as

ρ1(g) = − ξ
π

∫ ∞

0
dt

[
πg

t2 + π2g2
(Γ−(t)− Γ+(t)) +

t

t2 + π2g2
(Γ−(t) + Γ+(t))

]
. (A.4.16)
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Making use of the identities

πg

t2 + π2g2
=

∫ ∞

0
du e−πgu cos (ut) , (A.4.17)

t

t2 + π2g2
=

∫ ∞

0
du e−πgu sin (ut) ,

we rewrite ρ1(g) as

ρ1(g) = − ξ
π

∫ ∞

0
du e−πgu

[ ∫ ∞

0
dt cos(ut) (Γ−(t)− Γ+(t))

+

∫ ∞

0
dt sin(ut) (Γ−(t) + Γ+(t))

]
. (A.4.18)

Now, let us split the u−integral into 0 ≤ u ≤ 1 and u > 1. We observe that for u2 ≤ 1

the t−integrals in this relation can be done exactly thanks to the BES equation solved by the

functions Γ±(t), see Eq. (3.2.4). Then, performing the integration over u ≥ 1, we find after some

algebra

ρ1(g) = − 2ξ

π2g

(
1− e−πg

)
−
√

2ξ

π
e−πg Re

[ ∫ ∞

0

dt

t+ iπg
ei(t−π/4) Γ(t)

]
. (A.4.19)

Substituting this relation into (A.4.13) and using the expression (A.4.3) for the mass scale, we

finally arrive at (A.4.5).



146 APPENDIX A. BES EQUATION



Appendix B

FRS Equation and O(6) Sigma Model

B.1 Scalar Factor of the O(n) Sigma Model S-Matrix

In this appendix we solve iteratively the unitarity and crossing-symmetry equations for the scalar

factor σ(θ) ≡ σ2(θ) of the O(n) sigma model S-matrix. The strategy we use follows the steps

recommended in [133] (see also references therein) to find particular and homogeneous solutions

to this sort of functional equations.

Iterative Solution

The unitarity and crossing-symmetry equations for the scalar factor σ(θ) are respectively given

by

σ(x)σ(−x) =
x2

x2 −∆2
, (B.1.1)

and

σ(−1/2 − x) = σ(x) , (B.1.2)

where x = iθ/2π and ∆ = 1/(n − 2). Here we look for a solution of both equations represented

by a meromorphic function in the complex θ-plane (or equivalently in the complex x-plane) with

singularities lying along the imaginary θ axis (or real x axis) only. As explained in [86], these

conditions are general analytic properties (in the rapidity θ-plane) for two-body amplitudes in

a relativistic integrable two-dimensional QFT. The condition of meromorphicity is however not

sufficient to single out one of the solutions of the equations (B.1.1) and (B.1.2). Indeed the

equations (B.1.1) and (B.1.2) are not specific to the non-linear O(n) sigma model. They rely

on relativistic invariance, factorizability of the scattering, gobal O(n) symmetry and hold for a

(non-degenerate) vector multiplet of massive asymptotic particles. But all these features can be

satisfied by other two-dimensional QFTs, as the Gross-Neveu model for instance [72]. According

to [72], the solution that describes the scattering in the non-linear O(n) sigma model is minimal.

It means that it has a minimal set of singularities along the real x axis and moreover none in the

physical strip Re(x) ∈ (−1/2, 0), reflecting the absence of bound states in the spectrum of the

O(n) sigma model [72, 132, 131].1 In the following we will look for this solution. We will first

1For a bound state of mass M , we expect to find two poles respectively at s = M2 6 4m2 (s-channel) and at

s = (4m2 −M2) > 0 (t-channel) in the physical sheet of the two-body scattering amplitude, which is here continued

147
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construct iteratively a particular solution, observing all the way the absence of singularities in

the physical strip and introducing least possible singularities in general. We will verify that the

procedure converges to the minimal solution of [72]. Later we will discuss its uniqueness after

constructing a general homogeneous (meromorphic) solution.

We start with an obviously minimal meromorphic solution of the unitarity condition (B.1.1)

given by

σ0(x) =
x

∆− x , (B.1.3)

with no pole in the physical strip. That solution does not satisfy the crossing-symmetry equa-

tion (B.1.2) or equivalently it is not symmetric with respect to x = −1/4. To symmetrize it, we

introduce a pole at x = −(1/2 + ∆) and a zero at x = −1/2 by defining

σ1(x) = σ0(x)σ0(−1/2− x) . (B.1.4)

Unfortunately the new solution no longer respects unitarity. To restore it, we need to add a pole

at x = 1/2 and a zero at x = (1/2 + ∆) leading to

σ2(x) =
σ1(x)

σ0(−1/2 + x)
= σ0(x)

σ0(−1/2 − x)
σ0(−1/2 + x)

. (B.1.5)

Doing so we broke the crossing symmetry of σ1(x) and to restore it we introduce a pole at x = −1

and a zero at x = −(1 + ∆) as

σ3(x) =
σ2(x)

σ0(−1− x) =
σ1(x)

σ0(−1/2 + x)σ0(−1− x) . (B.1.6)

Now to cure the lack of unitarity of σ3(x) we add a pole at x = (1 + ∆) and a zero at x = 1 by

means of

σ4(x) = σ3(x)σ0(−1 + x) = σ0(x)
σ0(−1/2 − x)σ0(−1 + x)

σ0(−1/2 + x)σ0(−1− x) . (B.1.7)

It is not difficult to figure out what will happen next. One pole and one zero are generated at

each step, farther and farther from the physical strip, and after 4k steps one finds

σ4k(x) = σ0(x)

k∏

j=1

σ0(1/2 − j − x)σ0(−j + x)

σ0(1/2 − j + x)σ0(−j − x)
, (B.1.8)

that is

σ4k(x) =
x

∆− x
k∏

j=1

j − x
j + x

j − 1/2 + x

j − 1/2 − x
j + ∆ + x

j + ∆− x
j − 1/2 + ∆− x
j − 1/2 + ∆ + x

. (B.1.9)

into a meromorphic function of the Mandelstam variable s = 2m2(1 + cosh θ) with two cuts along s > 4m2 and

s 6 0 [86]. Thus bound states would manifest as poles in the physical strip Im(θ) ∈ (0, iπ) (i.e. Re(x) ∈ (−1/2, 0))

which is the image of the physical sheet. Finally, to motivate the choice of a minimal solution, we may observe

with [129] that the O(n) sigma model is the O(n) symmetric bosonic QFT with least possible number of degrees

of freedom per site. It suggests to look for the simplest possible solution which, being meromorphic (in x-plane),

should have minimal set of singularities.
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Of course σ4k(x) is not solution of both equations (B.1.1) and (B.1.2) but σ∞(x) will do the job

if the limit k →∞ exists. And indeed, the fixed-point limit k →∞ can be taken with help of the

identity
∞∏

j=1

n+ a+ x

n+ a− x =
Γ(1 + a− x)
Γ(1 + a+ x)

, (B.1.10)

and one can easily verify that

σ∞(x) =
x

∆− x
Γ(1 + x)Γ(1/2 − x)Γ(1 + ∆− x)Γ(1/2 + ∆ + x)

Γ(1− x)Γ(1/2 + x)Γ(1 + ∆ + x)Γ(1/2 + ∆− x) , (B.1.11)

is solution to (B.1.1) and (B.1.2). It may be equivalently written as

σ∞(x) =
x

∆ + x

Γ(1 + x)Γ(1/2 − x)Γ(∆− x)Γ(1/2 + ∆ + x)

Γ(1− x)Γ(1/2 + x)Γ(∆ + x)Γ(1/2 + ∆− x) , (B.1.12)

which is up to a sign the minimal solution of [72]. The multiplication by a factor −1 is a Z2

symmetry of the equations (B.1.1) and (B.1.2), and thus it has to be fixed by normalizing correctly

the minimal solution. Here we impose the boundary condition σ(i∞) = 1 at large rapidity θ ∼ ∞
because of the asymptotic freedom of the bosonic O(n) sigma model. Since σ∞(i∞) = −1, the

correct minimal solution is [72]

σ(x) = − x

∆ + x

Γ(1 + x)Γ(1/2 − x)Γ(∆ − x)Γ(1/2 + ∆ + x)

Γ(1− x)Γ(1/2 + x)Γ(∆ + x)Γ(1/2 + ∆− x) . (B.1.13)

uniqueness and CDD Factor

We will discuss now the uniqueness of the previous solution. We remark that, necessarily, two

solutions of the equations (B.1.1) and (B.1.2) differ multiplicatively by a function f(x) satisfying

the homogeneous equations

f(x)f(−x) = 1 , (B.1.14)

and

f(−1/2− x) = f(x) . (B.1.15)

Thus to decide about the uniqueness of the minimal solution we have to consider a general homo-

geneous solution f(x).

Let us start with holomorphic homogeneous solutions. The general solution reads f(x) =

± exp g(x) where g(x) is holomorphic and can be Fourier decomposed as

g(x) =
∑

n>1

an sin
[
2π(2n + 1)x

]
, (B.1.16)

with an ∈ C. We note that g(x), and so f(x), is periodic, and thus bounded, along any axis parallel

to the real x axis. Since f(x) is holomorphic it cannot be bounded all over the complex plane. It

implies that |f(x)| can be found unbounded when x becomes large with a large imaginary part.

At the same time, we would like to keep fixed the asymptotic behavior of the minimal solution

σ(x) ∼ 1 when Im(x) ∼ ∞. It follows immediately that f(x) has to be constant, which, according

to (B.1.14), requires f(x) = ±1. Hence, holomorphic solutions are reduced to the Z2 ambiguity
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that has been already fixed. We are thus led to consider the case of a meromorphic homogeneous

solution, with singularities lying along the real x-axis. As follows from the equations (B.1.14)

and (B.1.15), the presence of one pole at say x = −α will automatically call for a zero at x = α,

that both will be repeated infinitely along the real x-axis. Running through the same iterative

procedure as before, starting with a solution of the equation (B.1.14) given by

f0(x;α) =
α− x
α+ x

, (B.1.17)

we find in the fixed-point limit that

f∞(x;α) =
∞∏

j=−∞

j − 1/2 + α+ x

j − 1/2 + n− x
j + n− x
j + n+ x

=
cos (π(α+ x)) sin (π(α− x))
cos (π(α− x)) sin (π(α+ x))

. (B.1.18)

Then the general (meromorphic) solution to the unitary and crossing-symmetry equations reads

σ̃(x) = σ(x)
∏

k

f∞(x;αk) , (B.1.19)

where σ(x) is the minimal solution (B.1.13) while the product is called CDD factor [72]. Now, to

verify that σ(x) is the unic minimal solution, we have to say if it is possible or not to kill or shift

poles of σ(x) with help of a CDD factor, without adding singularities in the physical strip. It is

sufficient for that to consider the particular case of one factor f∞(x;α) and to restrict attention

to α ∈ (−1/4, 1/4). For α ∈ (0, 1/4), the factor f∞(x;α) introduces two poles in the physical strip

and thus does not produce a minimal solution. For α ∈ (−1/4, 0), the situation is better since

f∞(x;α) introduces two zeros and no pole in the physical strip. Nevertheless, by comparing the

positions of the zeros of f∞(x;α) with those of the poles of σ(x), one can easily see that it is not

possible to reduce or displace the set of singularities of the minimal solution, and their number

necessarily increases.

We conclude that the minimal solution σ(x), describing scattering amplitude in the non-linear

O(n) sigma model, is unic and given explicitely by (B.1.13).

B.2 Hole Energy Formula

This appendix contains a derivation of the (all-loop) hole energy formula

ǫ(g, j) = 32g

∫ ∞

0

dt

t

γ
(0)
+ (2gt) − γ(0)

− (2gt)

et−1

[
et/2 γh(t; j) −

j

8

]
− 4gj

∫ ∞

0

dt

t
γ

(0)
+ (2gt) , (B.2.1)

where γ
(0)
± (t) ≡ γ±(t; j = 0) stands for the BES solution. The proof of (B.2.1) relies on the use of

the Wronskian-like relation, applied previously in Appendix A.4 in another context. We repeat

here the argument.

The scaling function ǫ(g, j) is given by

ǫ(g, j) = f(g, j) − f(g, 0) = 16g2

[
γ1(g, j) − γ1(g, 0)

]
, (B.2.2)
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where γ1(g, j) enters into the Bessel series expansion of the function γ−(t; j),

γ−(t; j) = 2
∑

n>1

(2n− 1)γ2n−1(g, j)J2n−1(t) , γ+(t; j) = 2
∑

n>1

(2n − 1)γ2n(g, j)J2n(t) . (B.2.3)

The functions γ±(t; j) are solution to the integral equations (4.2.17) and satisfies a Wronskian-

like relation. To derive this relation we choose some reference j′, multiply both sides of the two

relations in (4.2.17) by the coefficients (2n − 1)γ2n−1(g, j
′) and (2n)γ2n(g, j′), respectively, and

sum over n ≥ 1. Then, we convert the sums into the functions γ±(t; j′) using the definition (B.2.3)

and subtract the second relation from the first one to obtain (after rescaling t→ t/2g)

∫ ∞

0

dt

t

[
γ−(t; j)γ−(t; j′)− γ+(t; j)γ+(t; j′)

1− e−t/2g
+
γ−(t; j)γ+(t; j′) + γ+(t; j)γ−(t; j′)

et/2g −1

]
(B.2.4)

= γ1(g, j
′) + 2

∑

n≥1

[
(2n− 1)h2n−1(g, j)γ2n−1(g, j

′)− (2n)h2n(g, j)γ2n(g, j′)
]
.

The expression on the left-hand side is invariant under exchange j ↔ j′ and the same should be

true on the right-hand side. Then, we replace hn(g, j) by their definition (4.2.18) and get

γ1(g, j) − γ1(g, j
′) =

2

g

∫ ∞

0

dt

t

γ+(2gt; j′)− γ−(2gt; j′)

et−1

[
et/2 γh(t; j) − j

8
J0(2gt)

]
−
(
j ↔ j′

)
,

(B.2.5)

where we indicated explicitly the dependence of the γ−functions on the scaling parameters. We

note that for j′ = 0 the relation (B.2.5) can be used to evaluate the scaling function (B.2.2). We

take into account that γh(t; j′ = 0) = hn(g, j′ = 0) = 0 and γ±(t; j′ = 0) ≡ γ(0)
± (t) to obtain

ǫ(g, j) = 32g

∫ ∞

0

dt

t

γ
(0)
+ (2gt) − γ(0)

− (2gt)

et−1

[(
et/2 γh(t; j) −

j

8

)
+
j

8

(
1− J0(2gt)

)]
. (B.2.6)

Here the integral involving the Bessel function can be further simplified by making use of the

identity 1− J0(z) = 2
∑

n≥1 J2n(z) leading to

8gj
∑

n≥1

∫ ∞

0

dt

t

γ
(0)
+ (2gt) − γ(0)

− (2gt)

et−1
J2n(2gt) (B.2.7)

= −4gj

∫ ∞

0

dt

t
γ

(0)
+ (2gt)

(
1− J0(2gt)

)
= −4gj

∫ ∞

0

dt

t
γ

(0)
+ (2gt) ,

where in the first relation we applied the integral equations (4.2.17) for j = 0 and in the sec-

ond relation used Bessel series representation (B.2.3) together with the orthogonality condition

(3.1.20). Combining relations (B.2.6) and (B.2.7) we arrive at (B.2.1).

B.3 Small j Scaling Function

In this appendix we present some details of the strong coupling expansion of the (small j) scaling

function ǫ(g, j) = ǫ1(g)j + ǫ3(g)j
3 + . . . . We only calculate ǫ1(g) and we prove its relation to the

mass scale m

ǫ1(g) = −1 +m+O
(
e−3gπ

)
. (B.3.1)
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The analysis of ǫ3(g) is essentially the same and can be found in [73].

We recall that m is given in terms of the BES solution Γ(0)(t) = Γ
(0)
+ (t) + iΓ

(0)
− (t) as

m ≡ 8
√

2

π2
e−πg −8g

π
e−πg Re

[∫ ∞

0

dt

t+ iπg
eit−iπ/4 Γ(0)(t)

]
, (B.3.2)

and that the functions Γ
(0)
± (t) are solutions to

∫ ∞

0
dt sin(ut)

[
Γ

(0)
− (t) + Γ

(0)
+ (t)

]
= 0 , (B.3.3)

∫ ∞

0
dt cos(ut)

[
Γ

(0)
− (t)− Γ

(0)
+ (t)

]
= 2 ,

for u2 < 1.

The starting point is the representation (4.2.29) for ǫ1(g), or equivalently

ǫ1(g) = −2g

∫ ∞

0

dt

t

[(
1− cosh (t/4g)

cosh (t/2g)

)(
Γ

(0)
− (t) + Γ

(0)
+ (t)

)
+

sinh (t/4g)

cosh (t/2g)

(
Γ

(0)
− (t)− Γ

(0)
+ (t)

)]
.

(B.3.4)

Observing the similarity between the integrals in (B.3.4) and those in (B.3.3), it is suggestive to

replace ratios of hyperbolic functions by their Fourier integrals. That can be done with the help

of the identities

cosh(t/4g)

cosh(t/2g)
=
√

2g

∫ ∞

−∞
du cos(ut)

cosh(gπu)

cosh(2gπu)
, (B.3.5)

sinh(t/4g)

cosh(t/2g)
=
√

2g

∫ ∞

−∞
du sin(ut)

sinh(gπu)

cosh(2gπu)
,

valid for arbitrary real t and g > 0. Applying (B.3.5), we find from (B.3.4)

ǫ1(g) = −2
√

2g2

{∫ ∞

−∞
du

cosh (gπu)

cosh (2gπu)

∫ ∞

0

dt

t

(
1− cos (ut)

)[
Γ

(0)
− (t) + Γ

(0)
+ (t)

]
(B.3.6)

+

∫ ∞

−∞
du

sinh (gπu)

cosh (2gπu)

∫ ∞

0

dt

t
sin (ut)

[
Γ

(0)
− (t)− Γ

(0)
+ (t)

]}
.

Now, let us split the u−integrals into sum of two terms corresponding to u2 ≤ 1 and u2 > 1. In

the first one, we replace (1− cos(ut))/t =
∫ u
0 dv sin(vt) and sin(ut)/t =

∫ u
0 dv cos(vt) and, then,

evaluate the t−integral with the help of the equation (B.3.3). The resulting expression for ǫ1(g)

is given by

ǫ1(g) = −4
√

2g2

{∫ 1

−1
du u

sinh (gπu)

cosh (2gπu)
(B.3.7)

+

∫ ∞

1
du

cosh (gπu)

cosh (2gπu)

∫ ∞

0

dt

t

(
1− cos (ut)

)[
Γ

(0)
− (t) + Γ

(0)
+ (t)

]

+

∫ ∞

1
du

sinh (gπu)

cosh (2gπu)

∫ ∞

0

dt

t
sin (ut)

[
Γ

(0)
− (t)− Γ

(0)
+ (t)

]}
.
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To find the large g expansion of the first term on the right-hand side of (B.3.7) we just do the

opposite, that is rewrite the integral over −1 ≤ u ≤ 1 as a difference of two integrals over

−∞ < u <∞ and u2 > 1

∫ 1

−1
duu

sinh (gπu)

cosh (2gπu)
=

∫ ∞

−∞
duu

sinh (gπu)

cosh (2gπu)
− 2

∫ ∞

1
duu

sinh (gπu)

cosh (2gπu)

=
1

4g2
√

2
− 2

1 + πg

(πg)2
e−gπ +O(e−3gπ) . (B.3.8)

In the remaining two terms in (B.3.7), we replace hyperbolic functions by their leading large g

asymptotics, integrate over u by parts, take into account the equation (B.3.3) to evaluate the

boundary term and arrive at

ǫ1(g) = −1 + δ +O
(
e−3gπ

)
, (B.3.9)

with δ ∼ e−πg given by

δ ≡ 8
√

2g

π

{
e−πg

πg
−1

2

∫ ∞

1
du e−πgu

∫ ∞

0
dt (B.3.10)

×
[

cos(ut)
(
Γ

(0)
− (t)− Γ

(0)
+ (t)

)
+ sin(ut)

(
Γ

(0)
− (t) + Γ

(0)
+ (t)

)]}
.

Integration over u leads to the expression in the right-hand side of equation (B.3.2) and thus to

δ = m, as promised.

B.4 Magnon Solution

In this appendix we discuss the solution to the magnon equation at strong coupling.

The solution to the magnon equation can be decomposed as

γ±(t) = γ
(0)
± (t) + δγ±(t) , (B.4.1)

where γ
(0)
± (t) ≡ γ±(t; j = 0) is the solution to the BES equation corresponding to the j → 0 limit

of the FRS equation, while δγ±(t) ≡ γ±(t; j)− γ±(t; j = 0) captures all corrections depending on

j. In particular, the function δγ−(t) completely determines the scaling function ǫ(g, j) as

ǫ(g, j) = 16g2 lim
t→0

δγ−(t)/t . (B.4.2)

By construction, the functions δγ+/−(t) are even/odd entire functions of t with Fourier transforms

supported on the interval [−1, 1] and they satisfy the system of equations (n > 1)

∫ ∞

0

dt

t

[
δγ−(t)

1− e−t/2g
+

δγ+(t)

et/2g −1

]
J2n−1(t) = −2

g

∫ ∞

0

dt

t

J2n−1(t)

et/2g −1

[
et/4g γh(t/2g) −

j

8
J0(t)

]
,

∫ ∞

0

dt

t

[
δγ+(t)

1− e−t/2g
− δγ−(t)

et/2g −1

]
J2n(t) = −2

g

∫ ∞

0

dt

t

J2n(t)

et/2g −1

[
et/4g γh(t/2g) − j

8
J0(t)

]
.

(B.4.3)
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We recall that the function γh(t), in the right-hand side of (B.4.3), is the Fourier transform of the

density χ(θ),

γh(t) =
1

8π

∫ B

−B
dθ χ(θ) cos (2θt/π) , (B.4.4)

for the distribution of hole rapidities u = 2θ/π supported on the interval [−a, a], with B =

aπ/2.2 We see that the hole distribution acts as a source (inhomogeneous term) in the system

of equations (B.4.3). In the following, we will determine the solution δγ±(t) to (B.4.3) assuming

that the coupling is large g ≫ 1 and that the Fermi rapidity B fulfills B < πg (i.e. a < 2g).

To begin with, we observe that a particular solution δγp
±(t) to the equations (B.4.3) is given

by

δγp
+(t) = −2

g

(
cosh (t/4g)

cosh (t/2g)
γh(t/2g) − j

8
J0(t)

)
, δγp

−(t) = −2

g

sinh (t/4g)

cosh (t/2g)
γh(t/2g) . (B.4.5)

Indeed, one easily verifies after a bit of algebra and the use of the identity (n > 1)

∫ ∞

0

dt

t
J0(t)J2n(t) = 0 , (B.4.6)

that δγp
±(t) is an exact solution to (B.4.3). However, the functions δγp

±(t) does not have the right

analytic properties because it has poles along the imaginary axis. It follows that the function

δγp
−(t) does not reproduce the correct scaling function ǫ(g, j). We immediately verify it since for

any value of j we find

ǫ(g, j)p = 16g2 lim
t→0

δγp
−(t)/t = −8γh(0) = −j . (B.4.7)

Here we used the fact that the hole distribution is normalized as γh(0) = j/8 (∀g). The result

ǫ(g, j) = ǫ(g, j)p = −j is certainly not consistent at weak coupling since ǫ(g, j) = O(g2), and,

indeed, the particular solution (B.4.5) is too singular to describe the perturbative scaling function

of the gauge theory. The situation is better at strong coupling g ≫ 1. Namely, we note that

the result ǫ(g, j) = ǫ(g, j)p = −j is exact up to non-perturbative corrections, (ǫ(g, j) + j) ∼ mj,

at small j (j ≪ m ∼ e−πg). It suggests that the particular solution (B.4.5) is a good starting

point to investigate the scaling function at strong coupling. As we shall see, the correction to

the particular solution (B.4.5) are exponentially suppressed at strong coupling g ≫ 1 as long as

B < πg, or equivalently a < 2g.

Let us rewrite the particular solution as

δγp(it) ≡ δγp
+(it) + iδγp

−(it) = −
√

2

g

γh(it/2g)

sin (t/4g + π/4)
+

j

4g
J0(it) . (B.4.8)

The term involving the Bessel function, in the right-hand side of the last equality above, has

correct analytic properties, being holomorphic with a Fourier transform supported on the interval

2Here the use of the variable θ and of the Fermi rapidity B is motivated by the correspondence with the O(6)

sigma model where χ(θ) is the differential rapidity distribution for a gas of massive particles carrying individual

momentum p = m sinh θ and energy E = m cosh θ.
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[−1, 1]. The term depending on γh(it/2g), however, has singularities that should be compensated.

To this end, we decompose the exact solution δγ(it) ≡ δγ+(it) + iδγ−(it) as

δγ(it) = δγp(it) + δγnp(it) , (B.4.9)

where δγnp(it) ≡ δγnp
+ (it) + iδγnp

− (it) is, by construction, a homogeneous solution to the magnon

equations (B.4.3), or equivalently a homogeneous solution to the BES equation. We note that

δΓnp(it) should have poles located at t = tm = 4πg
(
m− 1

4

)
, with m ∈ Z, for the function δγ(it)

to be holomorphic. Namely, we require that

δΓnp(it) =
4
√

2

t− tm
(−1)mγh(itm/2g) +O

(
(t− tm)0

)
, (B.4.10)

for t ∼ tm. Introducing the function δΓnp(it) as

δΓnp(it) =
sin(t/4g + π/4)

sin (t/4g) sin (π/4)
δγnp(it) , (B.4.11)

the equation (B.4.10) translates into

δΓnp(itm) = −2
√

2

g
(−1)mγh(itm/2g) = −

√
2

4πg
(−1)m

∫ B

−B
dθ χ(θ) cosh ((4m− 1)θ) , (B.4.12)

where in the last equality we introduced the Fourier transform of γh(t) as in Eq. (B.4.4). In the

terminology of the Chapter 3, the set of equations (B.4.12) are the quantization conditions for the

function δΓnp(it). Before to make use of them, we need first to find a convenient parameterization

of the solution δΓnp(it). To get it, we will follow the steps of the construction of the general

solution to the BES equation (see Chapter 3 and Appendix A.1).

We note that the function δΓnp(it) has an infinite number of poles located at t = ±4πng

with n ∈ N
∗. From the residues at these poles, we extract an infinite set of coefficients (n ∈ N

∗)

introduced as

cnp
± (n, g) = ∓4g δγnp(±4iπng) e−4πng . (B.4.13)

As for the construction of the BES solution, we would like to make use of these coefficients to pa-

rameterize the solution and then determine them with help of the quantization conditions (B.4.12).

To this end, let us introduce the Fourier transform of δΓnp(t) as

δΓ̃np(k) =
1

2π

∫ ∞

−∞
dt eikt δΓnp(t) . (B.4.14)

The function δΓnp(t) is a homogeneous solution to the BES equation, meaning that

∫ ∞

0
dt

[
eikt δΓnp

− (t)− e−ikt δΓnp
+ (t)

]
= 0 , (−1 ≤ k ≤ 1) , (B.4.15)

where δΓnp(t) = δΓnp
+ (t) + iδΓnp

− (t) and δΓnp
± (−t) = ±δΓnp

± (t). In principle, if δΓ̃np(k) is known

on the interval k2 > 1, then δΓ̃np(k) can be found for k2 < 1 by solving the equation (B.4.15). It

should be sufficient, therefore, to look for a parameterization of the function δΓ̃np(k) in terms of

the coefficients cnp
± (n, g) for k2 > 1.
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Taking into account the expression (B.4.11) for δΓnp(t) and the relation (B.4.9), we find that

the Fourier integral (B.4.14) can be written as

δΓ̃np(k) =
1

2π

∫ ∞

−∞
dt eikt sin(it/4g − π/4)

sin (it/4g) sin (π/4)
δγnp(t) (B.4.16)

=
1

2π

∫ ∞

−∞
dt eikt sin(it/4g − π/4)

sin (it/4g) sin (π/4)

(
δγ(t) − δγp(t)

)
,

The form of the integrands above suggests to perform integration by the method of residues. To

this end, we recall that the function δγ(t) has Fourier transform supported on [−1, 1], while the

function δγp(t) depends on γh(t/2g) which has Fourier transform supported on [−a/2g, a/2g]. We

expect, therefore, that the functions δγ(t) and δγp(t) will scale as e|t| and ea|t|/2g, respectively, for

t ∼ i∞. Thus, in order to damp the asymptotic behavior of the integrand in (B.4.16) and then

compute the integral by the method of residues, we impose that the Fourier variable k satisfies

both |k| > 1 and |k| > a/2g. Assuming a < 2g, we find in this way and for k2 > 1 that

δΓ̃np(k) = θ(−k − 1)
∑

n≥1

cnp
− (n, g) e−4πng(−k−1) +θ(k − 1)

∑

n≥1

cnp
+ (n, g) e−4πng(k−1) , (B.4.17)

where we used the definition (B.4.13) to introduce the coefficients cnp
± (n, g). We have thus found

the desired parametrization for the solution δΓ̃np(k) on the interval k2 > 1. We note finally that

the result (B.4.17) would not be valid for 1 < k2 < a2/(2g)2 if a > 2g. It implies that a separate

study of the solution on the interval 1 < k2 < a2/(2g)2 is needed to completely characterize it

outside the interval k2 < 1. We will not attempt to do it here, since we are primarily interested

in the regime a < 2g which is connected to the small j regime of the scaling function. In the

following, we will thus always assume that a < 2g and rely on the relation (B.4.17) to continue

the analysis.

The parameterization of δΓnp(k) on the interval k2 > 1, Eq. (B.4.17), being identical to the

one of the BES solution, we can apply our previous findings (see Chapter 3 and Appendix A.1)

and immediatley conclude that the function δΓnp(it) is given by

δΓnp(it) = δfnp
0 (t)V0(t) + δfnp

1 (t)V1(t) , (B.4.18)

where the functions δfnp
0 (t) and δfnp

1 (t) read

δfnp
0 (t) =

∑

n≥1

t

[
δcnp

+ (n, g)
U+

1 (4πng)

4πng − t + δcnp
− (n, g)

U−
1 (4πng)

4πng + t

]
, (B.4.19)

δfnp
1 (t) =

∑

n≥1

4πng

[
δcnp

+ (n, g)
U+

0 (4πng)

4πng − t + δcnp
− (n, g)

U−
0 (4πng)

4πng + t

]
.

The special functions V0,1(t), U
±
0,1(t) are given in Appendix A.1. We recall that for any g > 0

and whatever are the coefficients δcnp
± (n, g), the function (B.4.18) supplemented with (B.4.19) is a

homogeneous solution to the equation (B.4.15) satisfying (B.4.17) for k2 > 1. Now, to find explicit

expressions for δfnp
0,1(t), one has to solve the quantization conditions (B.4.12) for the coefficients

δcnp
± (n, g), i.e. solve the system of equations

δfnp
0 (tm)V0(tm) + δfnp

1 (tm)V1(tm) = −
√

2

4πg
(−1)m

∫ B

−B
dθ χ(θ) cosh ((4m− 1)θ) , (B.4.20)
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with tm = 4πg
(
m− 1

4

)
and m ∈ Z. Once done, one can read the scaling function (B.4.2) as

ǫ(g, j) + j = −8gδfnp
1 (0) . (B.4.21)

Let us examine the quantization conditions (B.4.20). It is not possible in general to find an

explicit solution to them but we expect some simplification to occur at strong coupling. In that

case, we know that the functions V0,1 (tm) scale as

V0,1 (tm) = V0,1

(
4πg

(
m− 1

4

))
∼ e

4πg
˛

˛

˛
m−

1
4

˛

˛

˛

, (B.4.22)

when g ≫ 1. Dividing both sides of (B.4.20) by this asymptotic behavior, we obtain that the

source terms, i.e. the right-hand side of the system of equations (B.4.20), get suppressed exponen-

tially at large g. The leading source term is the one evaluated at tm=0 = −πg and consequently

the functions δfnp
0,1(t) are of order O(e−πg) at strong coupling. Let us verify it explicitely by com-

puting the contribution to the scaling function generated by the homogeneous solution (B.4.18).

Restricting our analysis to the first non-perturbative O(e−πg) correction permits to consider the

simpler set of quantization conditions given by

δfnp
0 (tm)V0(tm) + δfnp

1 (tm)V1(tm) = −ξδm,0 , (B.4.23)

where

ξ =

√
2

4πg

∫ B

−B
dθ χ(θ) cosh θ . (B.4.24)

Now, we observe that we have already encountered the system of equations (B.4.23) in Chapter 3.

They appeared in the computation of the first non-pertubative correction to the BES solution, but

with a different value of the constant ξ (see Eqs. (3.4.17), (3.4.18) and (3.4.19) in Section 3.4.3).

Explicit expressions for δfnp
0,1(t) at strong coupling can therefore be found in Chapter 3 by adapting

the value of ξ to the current situation. In particular, one can immediately obtain the contribution

to the scaling function associated with the solution to (B.4.23). Indeed, we found that the relation

(see Eq. (3.4.20) and Appendix B.4)

δfnp
1 (0) = − ξm

2
√

2
, (B.4.25)

holds true (∀g > 0) for a homogeneous solution, parameterized as in (B.4.18) and (B.4.19), and sat-

isfying the quantization conditions (B.4.23). Then, plugging this result into the equation (B.4.21)

and using (B.4.24), we get the scaling function as

ǫ(g, j) + j =
m

π

∫ B

−B
dθ χ(θ) cosh θ . (B.4.26)

This result agrees with the one obtained from the hole energy formula. Since m ∼ e−πg, we

check that the function δγnp(it) generates a non-perturbative contribution to the magnon solu-

tion (B.4.9) when the coupling is large.

We stress finally that the term on the right-hand side of (B.4.26) is just the first non-

perturbative contribution to the scaling function, which is obtained by replacing the quantization
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conditions (B.4.20) by (B.4.23). A more general non-perturbative expansion can be developed by

considering the family of solutions satisfying the quantization conditions

δfnp
0 (tm)V0(tm) + δfnp

1 (tm)V1(tm) = −ξnδm,n , (B.4.27)

with

ξn =

√
2

4πg
(−1)n

∫ B

−B
dθ χ(θ) cosh ((4n − 1)θ) . (B.4.28)

Here tm = 4πg
(
m− 1

4

)
with m ∈ Z, while n ∈ N. Proceeding in this way and using the asymptotic

behavior (B.4.22) for the V−functions, one finds that the (n + 1)th non-perturbative correction

induces a contribution to the scaling function that behaves at strong coupling as

δǫ(n)(g, j) ∼ e−|4n−1|πg

∫ B

−B
dθ χ(θ) cosh ((4n − 1)θ) . (B.4.29)

It indicates that the parameter controlling this non-perturbative expansion is given by z =

exp (B − πg), which can be kept small as long as B < πg. For B > πg (a > 2g), our analysis

breakdowns and, as remarked before, another parametrization/or a resummation of the solution

has to be worked out.
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