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Résumé

L’objet de cette thèse est l’étude de certaines propriétés de théories des champs à fort couplage
via la dualité avec la théorie des cordes, dans la limite de supergravité. L’analyse expérimentale
du plasma de quarks et de gluons produit au RHIC et au LHC tend en effet à indiquer que cet état
de la matière se comporte comme un fluide quasiment parfait. Les méthodes perturbatives de la
QCD sont impuissantes à décrire ses propriétés et la chromodynamique quantique sur réseau fait
face à des problèmes tant techniques que conceptuels pour calculer les observables dynamiques
d’un tel système. La correspondance AdS/CFT offre par conséquent un outil unique permettant
d’étudier en première approximation cette phase de la QCD. L’un des aspects de cette thèse
consiste en la description par une équation stochastique de Langevin d’un parton massif se
propageant dans le plasma d’une théorie de Yang–Mills maximalement supersymétrique. Bien
que cette théorie semble décrire de manière satisfaisante la phase déconfinée de la QCD, il est
toutefois désirable de chercher un dual en théorie des cordes rendant compte des aspects de
la QCD à basse énergie. L’autre axe directeur de cette thèse propose ainsi de rendre compte
de solutions de moindre supersymétrie, sans invariance conforme, et avec confinement. On
obtient le dual gravitationnel d’états metastables de telles théories. En particulier, on dérive
une contribution au potentiel inflationnaire dans le cadre d’un modèle cosmologique générique
de la théorie des cordes.

Abstract

In this thesis, we apply the gauge/string duality in its supergravity limit to infer some properties
of field theories at strong coupling. Experiments at RHIC and at the LHC indeed suggest that
the quark–gluon plasma behaves as one of the most perfect fluid ever achieved in any controlled
experimental setup. Perturbative approaches fail at accounting for its properties, whereas lattice
QCD methods face technical as well as conceptual difficulties in computing dynamical aspects
of this new state of matter. As a result, the AdS/CFT correspondence currently is the best
tool at our disposal for analytically modelling this phase of QCD. One of the contributions of
this thesis amounts to deriving a stochastic Langevin equation for a heavy quark moving across
a maximally supersymmetric Yang–Mills plasma at strong coupling. Even though this theory
seems to describe in a surprisingly satisfactory way the high–energy, deconfined phase of QCD,
it is also of much interest to try and search for a string theory dual making closer contact with
QCD at lower energies. As such, the other main focus of this thesis deals with supergravity
solutions of lesser supersymmetry, without conformal invariance and exhibiting confinement.
We build for the first time the gravity dual to metastable states of such theories. In particular,
we find the contribution from anti–branes to the inflation potential in some general scenario of
string cosmology.
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Chapter 1

Introduction

This introduction aims at presenting the different topics included in the bulk of this thesis in
a more qualitative and informal way than found in the later chapters, which mostly consist in
a collection of my published work. This is primarily an opportunity to motivate work done
over a two years and a half period on loosely–connected subjects, with as few equations and
technicalities as possible.

Gauge/gravity duality

Let us start with introducing heuristically gauge/gravity duality. Many outstanding reviews are
presently available [4, 172, 74, 194, 205] that mostly focus on traditional material. Excellent
textbooks [219, 220, 164, 26, 217, 154] provide background material on string theory and D–brane
physics. Here I will instead entirely focus on “guessing” a string dual to QCD–like theories. A
similar trail was blazed by Polchinski in his recent TASI lectures [221]. In what follows, I have
relied on a similar minimalist list of ingredients for holography and have added my own modest
insight along the way.

The suggestion that there exists a string theory dual to QCD has a long history. Actually,
string theory was developed in order to understand the properties of the strong interaction.
Soon after Veneziano [256] proposed a model — which is now understood as corresponding to the
tree–level scattering of four tachyon vertex operators — that could account for the Dolen–Horn–
Schmid duality relating the sum of s–channel exchanges with that of t–channel exchanges [77,
228]1, it was realized that the physical states underlying the dual resonance model can be
accounted for by what we know call String Theory (see the historical review [75] and references
therein). String Theory was however later superseded by Quantum Chromodynamics for the
purpose of explaining the strong interaction force.

Still, it kept on resurfacing given that QCD is not suited for understanding strongly–coupled
phenomena and confinement. For example, successful jet hadronization algorithms still in use
nowadays rely on the so–called phenomenological, string–like Lund model of QCD flux tubes [11].
In addition, long QCD strings appear to be accurately described by the Nambu–Goto action
when one compares predictions for the quark/anti–quark potential derived from string theory
to the one computed via lattice QCD. Most suggestive of all indications for an underlying string
dual is ’t Hooft calculation [250] that suggests Feynman diagrams in large N non–abelian gauge
theories form a kind of net reminiscent of the genus expansion of a string theory with string
coupling constant of order 1/N .

What sort of string dual should we expect ? First of all, we can take for granted that
four–dimensional QCD cannot admit a four–dimensional string theory dual. The reason is that
bosonic or fermionic string theory is consistent only in d = 26, respectively d = 10, space–time

1Amusingly, their phenomenological observation is dependent on the energy levels that had been probed at
the time and does not hold for currently available baryon scattering data.
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dimensions. Indeed, under a rescaling of the metric

gab → eφ gab (1.1)

the partition function changes as

δSeff(g) =
26− d
48π

∫ [
1
2

(∇φ)2 + µ2 φ2 +R(2) φ

]
, (1.2)

due to a Weyl anomaly [223]. The above formula involves the Liouville action. In d ≤ 1 one
could start with a matrix integral and integrating over φ will add a new dimension and yield
a string theory (the review [167] is a helpful entry to the literature on this subject). In higher
dimension, one doesn’t know how to quantize the Liouville action. Still, this suggests that we
should include one extra dimension.

That seems quite unusual and far–fetched for a hard–nosed physicist so is there any hint or
guiding principle we can find on the four–dimensional gauge theory side ? We are intendedly
sketchy in this section but one could bring back to memory the fact that in the BFKL analysis
of Regge scattering the pair wave–function obeys a five–dimensional equation [189, 182, 22, 48].
Four of the variables correspond to the center of mass coordinates of the pair, whereas the
fifth one corresponds to the separation of the gluons constituting the pair. That is a very rough
suggestion but at least it comes from the confines of where string theory was first devised, Regge
scattering.

We are not going to make much progress if we are to narrow our attention to something
as messy and complicated as real–world QCD. So let us add a few more attributes and invoke
supersymmetry. The motivation is that there are operators which are BPS protected in the
SUSY algebra. They will allow for some tests of our candidate string dual once we manage
to find one. Comparing known perturbative results to conjectured ones at strong coupling
predicted by our string theory dual is a sharp test that, with hindsight, is passed with success
by known gauge/gravity duals. Another closely–related reason for supersymmetry is that it
relates the Hamiltonian of our theory to the sum of the supercharges squared. Consequently, a
supersymmetric vacuum has to be a zero of the energy. This will prevent a phase transition of
the gauge theory when we go from weak to strong coupling.

Furthermore, for the same reason, the spectrum is bounded from below, which removes one
generic source of instabilities that field theories experience when they reach the strong coupling
regime. For instance, particle–antiparticle pairs are most likely to pop out spontaneously. Their
negative potential energy will exceed their kinetic and rest mass energy. This instability is well–
known for QED where it is encapsulated as the Landau pole. Similarly, the Thirring model does
not exist, even as an effective theory, beyond a critical value of the coupling [64].

Another desirable ingredient is conformal symmetry. This way, we will be able to say in one
single shot a lot about a wide range of scales. From the principle that the more symmetries a
theory possesses the simplest it is likely to be, we will make full use of those two ingredients and
consider maximally supersymmetry superconformal N = 4 Yang–Mills even before attempting
to find a full–fledged string theory dual to real–world QCD, which to date is still lacking anyways.

The most general metric describing a five–dimensional background where our candidate
dual string theory lives and that preserves scale invariance along with four–dimensional Lorentz
invariance takes the form

ds2 =
R2

z2

(
ηµν dx

µ dxν + dz2
)
. (1.3)

This describes a Poincaré patch of five–dimensional anti de Sitter spacetime with radius of
curvature R. This is the most symmetric space with constant negative curvature. Here we need
to ensure that R is much bigger than the Planck scale LP . Otherwise Einstein gravity and
supergravity would break down. Indeed, we would like to use tools we are familiar with and
press them into service to test the string dual, once we will have some more precise idea of what
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it turns out to be. Note that if we were to relax scaling symmetry, the space where the string
evolves would be a warped background of the form

ds2 = w(z)2
(
ηµν dx

µ dxν + dz2
)
. (1.4)

Let us pause for a moment and see if this idea of somehow expressing a four–dimensional
gauge theory in terms of a gravitational theory makes sense after all. Does not this suggestion
clashes against the Weinberg and Witten no–go theorem [257] ? Under some general assump-
tions, the “theorem” of Weinberg and Witten precludes any theory where gravity is emergent
and the graviton appears as a bound state of two spin–1 gauge boson. More precisely, it states
that if the theory has massless spin one or spin two particules, then these are gauge particles
and so the currents they couple to are not observable. On the face of it, we better have to find
a loop–hole in their argument or throw to the dustbin the previous suggestion of a supergravity
dual to a close cousin of QCD (various theories of supergravity arising as the low–energy limits
of corresponding string theories).

Fortunately, there is some hope for that proposal. After all, we are advocating that a five–
dimensional graviton is some bound state of four–dimensional gauge bosons, not five–dimensional
ones. Furthermore, this fits nicely with the holographic principle [251, 246, 46], which is believed
to be one of the few guiding principles and cornerstones on the road to quantum gravity. The
holographic principle simply amounts to considering a shell of matter. If its size exceeds the
Schwarzschild radius, then it will collapse to a black hole. So, in a sense black holes put a cut–off
on the amount of matter and entropy that can be confined to any volume of space. But the
entropy of a black hole is proportional to its area. What this then suggests is that the largest
possible entropy of a system is proportional to its area and that the fundamental degrees of
freedom of this system somehow live on its boundary. Gravity provides a bound on information.
See also [242] for an alternative explanation. Besides, a black hole is the archetype of a graviton
bound state. The holographic principle thus suggests a way out of the no–go theorem of Witten
and Weinberg [257] that at the same time goes well with the sort of string dual we have broadly
sketched2.

Taking stock of the aforementioned point, we can formulate one more obvious condition that
our string theory dual should obey. That is, we need strong coupling in the relevant gauge
theory. Otherwise a pair of gluons would just be that and would not stand a chance of being
bestowed a more suitable description as a graviton. We have already imposed that R/LP should
be much bigger than unity. Now, recall ’t Hooft’s suggestion that there is a natural string theory
dual to large–N gauge theories. This means a large number of gauge theory degrees of freedom.
Since we believe that they should live on the boundary of a black hole we have another reason
for making sure that R/LP � 1. That will ensure that there is enough room for a large black
hole to fit into five–dimensional AdS space. Actually, as we will see in a more quantitative sense
below, R/LP � 1 implies N � 1.

Returning to equation (1.3), we should spell out that the radial variable z runs from z = 0
to z =∞. The latter value of z denotes the location of an horizon that has to do with the the
fact the Poincaré wedge of AdS is geodesically incomplete. It will wash out if we consider the
full AdS space. z = 0 is the boundary of AdS and can be reached in finite time by geodesics
z = ±∆t. This boundary is where the dual field theory should somehow live and this is in
agreement with our discussion on the holographic principle.

This extra dimensions parameterized by z arising in the string theory dual living on AdS5

has the same meaning as in our starting point, the perfunctory interpretation involving gluon

2In other words, one does not see the massless spin two pole of a dynamical graviton emerging in SYM. The
reason is that the graviton is a massless particle in five–dimensional AdS, not in four dimensions. In AdS/CFT,
there is no local stress tensor in five dimensions. There is a local stress tensor but it has to do with the four–
dimensional gauge dual. See the work of Kiritsis and Nitti [163] who reach this conclusion but find possible
exceptions when space–time ends on a brane or a singularity far from the UV boundary.
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separation. Indeed, in the BFKL analysis we have pz ∼ 1/z. On the other hand, from the form
of the metric of a Poincaré patch of AdS5 (1.3) we see that the following relation between the
energy E of an excitation seen by an invariant observer and its Killing energy p0 holds:

p0 =
R

z
E . (1.5)

For lowest–level Kaluza–Klein excitations we expect E ∼ 1/R. Hence, we see that a bulk
excitation has higher energy when it moves closer to the boundary. This is the origin of z on the
gauge theory side: pz ∼ 1/z ∼ p0. There is some confusion arising from the dual interpretation
of the radial AdS coordinate. It stems from the fact that z is frequently interpreted as the size
of a state of the CFT. This is actually suited for bulk excitations corresponding to string scale
energies [247, 213]. For energies given by the KK excitations this is misleading.

This is all well but so far the proposed string dual looks somewhat like pie in the sky. Isn’t
there some possibility of making more quantitative contact with what we know in supergravity
or string theory ? If we are to succeed, we should look for solutions of string theory or its
low–energy limit that admit five–dimensional anti de Sitter vacua. There is one such solution of
ten–dimensional IIB string theory, the so–called black 3–brane [136] with N units of Ramond–
Ramond flux for the five–form self–dual field strength. In the extremal, zero–temperature limit,
its metric is given by

ds2 = H−1/2(r) ds2
1+3 +H1/2(r) δij dxi dxj , i, j = 4, ..., 9 (1.6)

H(r) = 1 +
R4

r4
, R4 = 4πgsN α′2 , r2 = δij x

i xj . (1.7)

Our initial guess for a string theory dual to 3+1–dimensional N = 4 SYM did suggest a fifth
extra dimension. It seems that we will have to bear with five more. If we focus on the regime
where r � R we notice that the metric (1.6) describes the warped product of a five–dimensional
AdS space with a five–sphere. Is there any particular reason one should expect such highly
symmetric spaces from the point of view of the gauge dual ? We have scaling symmetry there,
which combines with the Lorentz group to an enhanced SO(2, 4) conformal symmetry. This
is exactly the isometry group of AdS5. Furthermore, N = 4 SYM has an SU(4)R ∼= SO(6)R
global symmetry. It is a symmetry that does not commute with the supercharges, an instance
of a so–called R–symmetry. Under this group the six adjoint scalars and four adjoint Majorana–
Weyl fermions of the N = 4 SYM field content transform in the antisymmetric product of two
fundamentals and in the fundamental representation, respectively. Are we to expect the same
R–symmetry on the supergravity side ? In a sense yes, SO(6) obviously is the symmetry group
of the five–sphere we tried to make sense of on the string theory side. But we should remember
the “folks theorem” that no continuous symmetry group is allowed in supergravity theories and
all known trusted and consistent glimpses of quantum gravity [23, 25]. So, it is expected that
we will encounter supergravity vector fields associated to the SO(6). This group was a flavor
symmetry of the gauge theory. It has to be gauged in the supergravity.

While we are discussing symmetries, we could mention the well–known SL(2,R) of N = 4
SYM. Type IIB string theory has exactly the same weak–strong duality group. There is also a
SU(N) gauge symmetry on the boundary and a ten–dimensional bulk diffeomorphism and local
supersymmetry in the bulk. What are we to make of those ? Well, we should not expect to
have to match gauge symmetries from side to side. Those symmetries are redundancies and a
duality is only concerned with relating gauge–invariant observables.

Let us now see if the candidate supergravity dual (1.6) is consistent with the enunciated
requirements concerning strong coupling and a large number of fields. Ten–dimensional Newton’s
constant is given by

16πGN = (2π)7 g2
s α
′4 , (1.8)
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where gs denotes the string coupling and α′ is related to the inverse string tension or to the
string length α′ = l2s . We thus find that

R/ls � 1 , R/LP � 1 (1.9)

imposes
λ1/4 � 1 , N1/4 � 1 , (1.10)

with λ ≡ gsN . We know how to relate N , which is the number of units of RR five–form flux,
to a quantity on the gauge theory side, namely the rank of the gauge group or the number of
fields. On the gauge theory side, we have another parameter, namely the gauge theory coupling
constant gYM , to match to those available from the supergravity solution.

We can make progress if we notice that the black 3–brane solution sources the same RR flux
as D–branes [216], N of them more precisely. What is then the relation between the supergravity
black 3–brane solution and D–branes ? D–branes are defined by their boundary conditions and
they are solitonic objects on which strings can end. Consider a stack of N coincident D3–branes.
They are connected by strings whose endpoints live on their worldvolume. There are also closed
strings around.

If we focus on the light degrees of freedom in this picture, the open string modes reduce to a
massless four–dimensional N = 4 SYM multiplet, which decouples from a tower of massive string
excitations. On the closed string side, a quick look at Newton’s constant in ten dimensions (1.8)
tells us that the gravitational coupling is dimensionful or, put another way, that ten–dimensional
gravity is IR–free. So, the dimensionless quantity at energy E is GN E8. This implies that closed
string modes are non–interacting in the low–energy limit we are considering. Henceforth they
also decouple from the open string sector and in particular the SYM multiplet.

Incidentally, we can now relate gYM to string theory parameters. Indeed, the DBI action for
D3–branes can be expanded to a term proportional to

− 1
2 gs

∫
d4xF 2

µν , (1.11)

which simply comes from the tension for a single D3–brane being TD3 = 1
(2π)3 gs α′2

. With N

D3–branes we are thus led to
g2
YM = gsN . (1.12)

Let us resume trying to relate D3–branes to the black 3–brane solution we started with.
We have just seen that in the low–energy limit, the D3–brane system yields a four–dimensional
multiplet of super Yang–Mills theory decoupled from gravity and massive stringy modes. What
about the low–energy limit of the black 3–brane solution ?

The geometry of this solution consists in an asymptotically Minkowski space–time far away
from a throat. The modes that survive the low–energy limit are, on one hand, a graviton
multiplet in ten–dimensional Minkowski space and, on the other hand, a whole tower of string
excitations in the AdS5×S5 throat geometry. The reason we should consider the whole tower of
massive string modes pertains to the large gravitational well that separates the throat region from
the asymptotic Minkowski one. As an aside, this also implies that both regions are decoupled
from each other at low energies.

Comparing the two descriptions and their distinct low–energy limits, results in the celebrated
Maldacena conjecture [191] that N = 4 SYM in 3 + 1 dimensions is equivalent to IIB string
theory on AdS5 × S5. We have seen in the process of deriving this duality that the gravity,
black 3–brane description is valid at large N and large ‘t Hooft coupling λ. Besides, since each
extra world–sheet boundary on the brane gives a factor of gs and one of N from the genus and
Chan–Paton trace respectively, the D3–brane picture holds as long as gsN � 1, i.e. at weak
’t Hooft coupling of the gauge theory. The reason this gauge/gravity duality and its cousins
in other dimensions (or with some amount of supersymmetry broken, extra matter multiplets,
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etc.) have proven of such importance is that they relate two different limits that describe the
same underlying physical theory but in two opposite ranges of the coupling constant. This
brings the hope of learning about field theories at strong coupling, where perturbative Feynman
diagrams or resummation methods fails, just out of classical supergravity computations in a
negatively–curved higher dimensional anti de Sitter space !

This conjecture has now been developed into a widely–tested duality. We have mentioned
that the symmetries on both sides match. We have also alluded to supersymmetry–protected
states. Many have been compared and agreement has always been found. The high symmetry
of N = 4 supersymmetry allows for the computation of quantities such as the anomalous cusp
dimension (first considered on the string theory side by Gubser, Klebanov and Polyakov [106]) for
any value of the coupling gYM and amazingly there is no discrepancy at this stage [3, 36, 27, 83].
There are even some checks coming from lattice computations about the predictions of the
duality for gauge theories at strong coupling (see for instance [61] and further work by those
authors.).

There is by now a precise dictionary linking correlations functions on the CFT side to classical
calculations in the bulk3 or relating the mass of supergravity fields to operator dimensions of
dual CFT states. An illustration for bulk fermions and the subtleties that arise as compared to
the usual treatment for bosonic supergravity fields appears in Chapter 2. Many such verifications
and entries of dictionary are well–known and implicitly but profusely used to in the later chapters
of this thesis. As such, we will not review them here.

Linear response in AdS/QCD

Having now under our belt some intuition on gauge/gravity duality, as well as, more importantly,
a definite, quantitative instance of such a duality that gives us in a sense a novel perturbation
theory for N = 4 SYM that applies at strong ‘t Hooft coupling in a weakly–coupled emergent
spacetime, we are ready to return to our starting point, QCD and the problems standard ap-
proach for tackling it face beyond the perturbative regime of Feynman diagram expansions. It
is all the more natural to confront the AdS/CFT correspondence to QCD data. It has achieved
some success in this regard. The main focus of this section however amounts to extracting new
insights into processes at strong coupling, taking for granted the validity of the correspondence
that has still to fail any of the test cases it has been submitted thus far.

It is well–known that experiments at RHIC and at the LHC probe the properties of the
quark gluon plasma. This is a thermal state of matter where colored states are deconfined. Yet,
the coupling is still strong. The ’t Hooft coupling lambda is roughly of order 10. There are
various indications about that. First of all, the QGP is well described by an almost ideal fluid.
Its viscosity is probably the smallest ever reached. Understanding this new state of matter calls
for new tools and ideas, such as the AdS/CFT correspondence.

On the other hand, as we have seen in the previous section, near–extremal D3–branes provide
a gravitational representation of N = 4 super–Yang–Mills theory at finite temperature, large N
and large ’t Hooft coupling. To recap, at weak coupling, strings stretched between the branes
behave as nearly free gluons and their superpatners from a 3+1–dimensional supersymmetric
gauge theory, N = 4 super Yang–Mills. At strong coupling the curved AdS5 × S5 geometry
encodes the gauge dynamics of the theory. The metric describing the AdS–Schwarzschild black
hole is obtained as a small modification of the geometry described by (1.6) upon the introduction
of the usual blackening factors.

There are good reasons for being cautious about replacing QCD with N = 4 SYM. The
matter content and the dynamics are clearly different. Besides, one could mention, not the
least, the fact that N = 4 SYM is exactly conformal (an easy proof stems from going to the

3The classic review on all the subtleties concerning the counter–terms required for a proper variational principle,
and the final, ready–to–use recipe on extracting correlators from bulk content is [234]. This regularization and
renormalization method can be traced to [123, 124] and [71, 233].
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Coulomb branch in the brane picture. See [235] for more details on the Coulomb phase of the
d = 4, N = 4 theory and its dual.). Still, by now various pieces of evidence have accumulated
that seem to indicate that N = 4 SYM at large ’t Hooft coupling λ and at finite temperature
may capture the dynamics of the quark gluon plasma. At least in a range of temperatures high
enough that confinement and the chiral condensate have disappeared, yet low enough that the
’t Hooft coupling is still large.

A computation of the shear viscosity to entropy density ratio of black D3–branes repro-
duces the low shear viscosity that events with elliptic flow exhibit. This ground–breaking cal-
culation [178, 179] led to a multitude of other computations that support the view that the
gauge/string duality might indeed help us better understand heavy ion physics. After all, that
was the whole point of the convoluted chain of arguments from the previous sections that we
made in order to guess a string dual. They were grounded in QCD, Regge scattering and the
BFKL analysis did stand out. See [59] for an extensive and recent overview of the literature.

In particular, one of the distinctive features of RHIC and LHC data is jet–quenching, namely,
strong energy loss when a high–energy parton goes through the QGP. Within the AdS/CFT
approach a heavy, external quark is represented as a string hanging from the boundary of AdS.
Well, actually from a D7–brane whose asymptotic bulk radial position is related to the mass
of the heavy quark. If one considers a trajectory with constant velocity, one expects the string
to trail down behind the quark. This string corresponds on the boundary to the cloud of color
flux, gluons and their super–partners, evolving around the quark.

From the properties of a classical string solution in AdS one can then expect some under-
standing of the dynamics of charm and bottom quarks propagating through the QGP. The third
and fourth chapters of this thesis deal with how to derive from a bulk calculation a Langevin
description for the dynamics of a relativistic heavy quark moving through a strongly–coupled
plasma. The suitability of a Langevin description in this case was even challenged by Gubser
who made the observation that the corresponding expressions for the drag force and momentum
broadening do not appear to obey the Einstein relations. This relation is a hallmark of ther-
mal equilibrium and must be satisfied by a Langevin equation describing thermalization. The
motivation that underpinned my work on this topic is that since a Langevin description is more
universal it might be that the noise terms are of a non–thermal nature. Another motivation was
to gain a better understanding of the role of black holes which live on the world–sheet of strings
describing heavy quarks.

Overall, most of the studies in AdS/CFT have so far focused on the mean field dynamics
responsible for dissipation. On the other hand, the statistical properties of the plasma have
been less investigated. Yet, when thermal noise is neglected in AdS/CFT it leads to seemingly
incorrect results : for instance, it predicts zero drag on mesons. Usually, it is advocated that
this is fine though, since anyways the effect of thermal noise is suppressed by either large N or
large λ.

Our interest in this subject was initiated by the work on holographic brownian motion by de
Boer, Hubeny, Rangamani and Shigemori [70]. So, let us first sketch their results on the brownian
motion experienced by a quark that is on average at rest in a strongly–coupled plasma.

They were really interested in understanding why a heavy quark undergoes Brownian motion
from the bulk perspective and why its motion is described by a Langevin equation. Indeed, while
it is true that in some sense all the phenomenological data was already available — the rates of
energy loss and the momentum broadening coefficients have been obtained in previous work —
it is not clear what their origin is. By this it is meant how the random force acting on a quark
arises from the bulk. As one might suspect, they have shown that the answer is as expected:
the random force arises from Hawking radiation in the bulk.

They find interesting results for the following scales associated with Brownian motion. First
of all, the relaxation time, which is the crossover time between the ballistic and the diffusive
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regimes goes like
trelax ∼

m√
λT 2

. (1.13)

The collision time, which is the width of the random force correlator, goes like

tcoll ∼
1
T
. (1.14)

This scale can be thought of as being associated with the duration of a single scattering process.
The third scale is the mean free path time ; it is usually thought of as the characteristic time
elapsed between two collisions. In kinetic theory, there is typically a hierarchy where tcoll �
tmfp � trelax. But not anymore at strong coupling ! In point of fact, de Boer et al. find that

tmfp ∼
1√
λT

. (1.15)

This implies that a Brownian particle interacts with many plasma particle at the same time. In
a recent paper they also relate the mean free path time to four–point correlators [16].

In addition, from holography de Boer et al. derive a Langevin equation for a heavy quark
globally at rest in the thermal medium. The generic features of such a Langevin description
consist in a drag term ηD along with stochastic force contribution, in addition to a possible
forcing term. The Einstein relation emerges from requiring that a heavy quark propagating
according to the Langevin equations should eventually equilibrate to a thermal distribution with
temperature T . This is nothing more than an instance of the fluctuation–dissipation theorem.

z = 1/
√

γπT

z = ε

z = 1/πT

Û > 0

v

Û < 0

Figure 1.1: The trailing string solution and the location of its worldsheet horizon at zs =
1/
√
γ π T . Û denotes a Kruskal coordinate for the worldsheet.

The string configuration, for momentum pointing in the x1 direction is given by the so–
called “trailing string”, depicted on the Figure 1.1. The string bends and lags behing the quark
endpoint, which ends on a D7–brane whose bulk radial coordinate fixes the bare mass of the
heavy quark mq ∼ 1/zD7. The quark moves with constant average velocity v. For this to be
possible it must be subjected to some external force that will compensate for the energy loss
towards the plasma. The work over tension indeed leads to energy loss. When one integrates
the differential equation governing this solution, it turns out that in the first integral, both
numerators and denominators are positive for small radial coordinate z and negative for z near
the black hole horizon. The turning point signals a new scale

zs = 1/
√
γ π T . (1.16)

In my work [92, 93], I have investigated the momentum broadening of a relativistic quark.
This is related to fluctuations around the classical, steady trailing string solution. We therefore
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have to expand the Nambu–Goto action in static gauge to quadratic order in the fluctuations.
The equations of motion for the longitudinal and transverse fluctuations are such that they
have regular singular points. In particular, the special role played by zs (1.16) as the location
of a world–sheet horizon becomes manifest. For z = zs the value of the first derivative of a
fluctuation is determined from the equations of motion. This indicates that the fluctuations of
the string at z ≤ zs are causally disconnected from those below the location of the world–sheet
horizon.

!

!

z =(1+  )/         T + "1/2# !

z =(1!  )/         T ! "1/2t3t2

t1

t1

t3
t2

#

z =1/   T 

Figure 1.2: The stochastic ensemble of trailing strings.

On Figure 1.2. we see the picture of what we have substantiated with computations. The
random force that appears in the Langevin description for a heavy quark is associated to an
ensemble of strings which fluctuate around the average trailing string solution. Each of the
strings from this ensemble has the same z–dependence as the trailing string profile but with a
higher characteristic temperature

√
γT . Notice that this is given by the inverse of the position of

the world–sheet horizon (1.16). This stochastic ensemble of strings generates the random force
on the boundary.

Actually, this picture contains more information than we were concerned with at the outset
of our paper with Edmond Iancu and Al Mueller [92]. In fact, the parts of the string below
and above the world–sheet horizon are separated by an extra random variable [58]. In [92] we
just integrate out everything below the stretched membrane. However, Casalderrey–Solana and
collaborators later found that since the fluctuations below the world–sheet horizon are causally
connected to the boundary they are reflected by an extra random variable. The end result for
the 2–point function of stochastic force is unchanged from our original result [92].

To gain more quantitative ground one should note that the retarded and advanced solutions,
Ψadv and Ψret, can be found for this problem. The full–status analysis found in Chapter 3
of this thesis reveals that the fluctuations are log–divergent close to the world–sheet horizon.
Upon Fourier–transforming one can also see that Ψadv = e−iωtψadv is an outgoing wave : with
increasing time the phase remains constant while departing from the horizon. To come back to
the above–mentioned picture, integrating out the modes which grow close to the world–sheet
horizon will lead to stochasticity. To have an idea of how thick the stretched membrane can be,
one must consider the full Nambu–Goto action for fluctuations. There is a term that grows faster
than linealy close to the horizon. One must then impose that the strip thickness ε conforms to

ε

log2
(√
γ ε
) � 1√

γ λ
, (1.17)

where λ stands for ’t Hooft coupling in general accordance of our notations.
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Now, one might think that to find the Langevin equation and its coefficients one could just
use the usual well–known formula relating the stochasticity to the Bose–Einstein distribution and
the imaginary part of the retarded Green function. With the latter yielding the drag force ηD.
Actually one must be much more careful. The relation I have just hinted between stochasticity
and diffusion is named the KMS relation. It can be derived using the formalism of real–time
Green’s functions. In AdS/CFT this means that one must consider the trailing string solution
on the Kruskal diagram of the black hole (cf. Figure 2.1.), not just in the R–region of the original
coordinates.

t = −∞− iβ

t = −∞ t = +∞

t = +∞− iσ

Figure 1.3: A Schwinger–Keldysh contour for real–time Green’s functions.

I will explain that in a moment but let us first review the link between Kruskal diagrams
and Schwinger–Keldysh contours for real–time Green’s functions. As a short aside, it is worth
pointing to recent progress that circumvents previous involved calculations with analytic con-
tinuations or computations that assumed in some form thermal equilibrium. The recent work
of Caron–Huot et al. [53] indeed formulates the problem of finding the coefficients of a Langevin
description as a initial values problem. This is of most interest for seeing the approach to thermal
equilibrium in truly out–of–equilibrium settings.

Real–time thermal field theory requires a doubling of fields. I will explain why this is so
from the bulk perspective. But first one should recall the origin of the usual relations among the
four Green’s functions labelled by two indices indicating the position on the real–time contour
in this doubled field formalism. One of those relations can be derived by inserting complete sets
of states. The second and third rely on having a fully equilibrated system. Yet the heavy quark
is not equilibrated, at least not at the naive temperature of the plasma T . This relation will be
modified by changing the temperature here to be related to the equilibrium temperature that
would be measured by a thermometer on board of a black body moving with velocity v through
the plasma. For now, as advertised, we probably have to explain more the real–time formalism
of correlation functions.

t

!T

T
C1

a b c

C0

C3 C2

Consider a field configuration with initial condition φ±(xi) at t = ±T . If we are interested
in vacuum amplitudes we should multiply the path integral with fields constrained to satisfy
the previous conditions by the vacuum wavefunction and next integrate over φ+ and φ−. This
is equivalent to extending the fields in the path integral to live along a contour in complex
time plane. Indeed the infinite vertical segment at −T corresponds to a transition amplitude
limβ→∞〈φ−,−T | e−βH | Ψ〉 for some state Ψ.
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Put another way, a Euclidean path integral creates an initial or final state into the Lorentzian
path integral. Here, we focused on the vacuum as the initial state but more generally one can
similarly use a Euclidean path integral to generate other initial/final states for the Lorentzian
path integral. The beautiful prescription of Skenderis and van Rees [236, 237, 255] (from which
I have borrowed the pictures immediately above and below) is to fill in the QFT contours with
bulk solutions. As emphasized, this means either Euclidean or Riemannian geometries. There
are matching conditions that control the behavior of the supergravity fields at the corners, the
junction hypersurfaces.

a

b

c E LL

E EL L

ELE

These conditions can be shown to reduce to the prescription of Herzog and Son [130] under
more restrictive assumptions. This latter prescription is related to the old Unruh instruction
of extending solutions to the full Kruskal plane. Basically, the black hole horizon specifies the
connection between solutions in the right and in the left quadrant by requiring that positive
infalling modes should be positive energy ; negative energy modes should be outgoing. As
already stressed, this recipe leads to the correct thermal correlators. In summary, the thermal
distributions are generated via analytic continuation across the Kruskal plane. Chapter 2 of
this thesis contains work I have done on extending the prescription of Herzog and Son [130]
to correlators of fermionic operators. There are some delicate points involved compared to the
more tradition situation for bosonic fields. My motivation for this work revolved around the
current interest in applying AdS/CFT to long–standing issues in condensed matter physics.

To come back to the main issue, we are trying to find the correct correlators from which
we will derive a Langevin equation with drag and stochastic coefficients. It will turn out that
the correlators are thermal but not with the plasma temperature. For this purpose, the string
fluctuations are then decomposed in an outgoing/infalling basis. We have one condition in
each quadrant, the boundary value of the fluctuation. The other conditions are provided by the
analytic continuations, both at the world–sheet and the non world–sheet horizons. Interestingly,
the multiplicative factors associated with crossing the black hole horizon compensate each other.
Those associated with crossing the world–sheet horizons rather enhance each other. This yields
the end result ; the details can be found in the relevant chapter of this thesis.

From the Langevin equation we have derived for a fast–moving quark, the Einstein relation
for longitudinal fluctuations

κ` = 2E Tplasma ηD (1.18)

seems to be violated by the Lorentz contraction factor squared. This led us to advocate the
a “democratic” parton branching picture for energy loss and momentum broadening at strong
coupling. We claim that the effective temperature is a signature that the world–sheet horizon
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generates quantum mechanical fluctuations associated to medium–induced radiation ; that is,
instead of being associated with thermal stochasticity.

This supports previous results relating to medium–induced radiative energy loss and mo-
mentum broadening [117]4. Indeed, Mueller et al. [78] notice in particular that the expressions
for energy loss and broadening take on the same form the same at weak and at strong coupling
when one expresses these equations in terms of the saturation momentum. Yet the underlying
processes are quite different. Even though it is true that at both weak and strong coupling
energy loss is due to medium–induced gluon emission, there is a significant difference. At weak
coupling, the radiated gluon, which typically comes from a highly virtual gluon in the quark
wave–function, is set free via thermal rescattering (this is the dominant mechanism). On the
other hand, according to the democratic parton–branching, at strong coupling the mechanism
for medium–induced radiation is different: radiation is somehow caused by a plasma force scal-
ing like T 2 and only those quanta can be lost to the plasma, whose virtuality is lower than some
number Qs (the saturation momentum) of order of the coherence time tcoh for the emission of a
virtual parton times T 2 ; Qs ∼ tcoh T 2.

Duals to confining theories

One might worry that N = 4 SYM is not a very suitable approximation to QCD and that one
should instead try to find more appropriate instance of a gauge/gravity duality that would befit
QCD more. Still, one should emphasize that given the success of the primeval AdS/CFT duality
those concerns should be somewhat alleviated. On the other hand, a lot of progress has been
witnessed since Maldacena first formulated his conjecture and part of it has been driven by the
successful search for duals to field theories without the full set of bells and whistles of maximally
supersymmetric, conformal theories.

Actually, the finite–temperature extension of the AdS/CFT duality sketched in the previous
section is already pushing the correspondence beyond its realm. Putting it at finite temperature
breaks scale–invariance of the theory. Furthermore, it is easily seen that we lose supersymmetry
at non–vanishing temperature. Consider the extremal brane metric (1.6) and take the Euclidean
time to be periodic. We must then impose periodic boundary conditions on bosonic fields and
anti–periodic ones on fermions. Hence, there is no fermion zero–mode at all and supersymmetry
is broken. This is not quite the sort of metric we have been considering in the previous section
when we were frequently referring to a string trailing in a black hole background. Actually,
as shown by Hawking and Page [120], the high temperature phase of the theory that we are
presently dealing with is dominated by an AdS5 black hole.

One fact we know about non–supersymmetric, non–abelian theories is that they exhibit
confinement. The geometric origin of this is seen in the bulk as the space being bounded by
the black hole horizon. It was mentioned in the previous section that the chromo–electric flux
lines of the gauge theory are dual to strings dangling in AdS. One can compute the quark anti–
quark potential at strong coupling along this suggestion. Their separation is proportional to the
maximal value of the z radial coordinate the string reaches in the bulk. The first calculations
that did illustrate this idea were done for the vacuum of N = 4 SYM. They indicate an attractive
Coulomb potential for the pair [192, 226]. As an aside, this is also interesting to notice, in that
it clearly shows that this dual string description concerns non–confining theories, whereas the
initial motivation for a string dual mostly had to do with the string–like properties of confining

4The picture of Hatta, Iancu and Mueller [117] concerning parton–branching at strong coupling inferred from
the UV/IR duality of AdS/CFT (see the nice reviews [141, 142, 143]) might have to be modified at vanishing
temperature, although in view of accumulating other similar evidence for a democratic splitting of energy and
momentum at strong coupling [21], it is quite likely that it still holds at finite temperature. As first observed
in [14, 15] and by Hubeny and Hatta et al. in [139, 118, 140, 119], no off–shell virtual gluon is emitted at all in
the vacuum of the theory at zero temperature. Instead the radiation profile seems to be fixed by the fact that
radiation propagates at the speed of light and by the trajectory of the probe ; as such it must be as in classical
electrodynamics
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flux tubes in QCD. On the other hand, at finite temperature, we lose SUSY and, geometrically
due to the space closing at some finite bulk radius, confinement can be seen. This is as required
for agreement with the gauge theory side.

This is fine but first of all, we would like to see confinement without having to heat up the
theory. An idea would be to break some amount of supersymmetry out of turning some bosonic
or fermionic mass terms in the N = 4 theory. This however is plagued by the generic fact that
at strong ’t Hooft coupling λ, the intrinsic scale of the pure non–abelian theory, ΛSYM , is of the
same order as the supersymmetry scale M :

ΛSYM 'M . (1.19)

This relation is simply a reflection of asymptotic freedom at weak coupling. But this is annoying
in view of the fact that we would like the low–energy regime below the scale that corresponds
to the particular way one breaks some amount of supersymmetry of the initial N = 4 SYM to
decouple from the extra fields of this theory. Yet, (1.19) guarantees that the contribution of
those undesirable fields won’t be suppressed. Besides, such a course of action frequently results
in high curvature singularities on the supergravity side and one must switch to a description
involving explicit NS5 and D5 branes (or some combination thereof) with dissolved D3’s [218].

An alternative way of reducing the number of supersymmetries in AdS/CFT is to take a
stack of N D3–branes of the type we have formerly considered in our sketchy derivation of the
correspondence and put them instead on the tip of a six–dimensional Ricci–flat cone whose base
is a five–dimensional Einstein space X. As expected, the near–horizon limit will this time yield
an AdS5 ×X IIB background with N units of RR five–form flux.

The simplest examples of such a construction arise out of cones which are orbifolds of the
flat six–dimensional space transverse to the D3–branes [155], i.e. of the type

R6/Γ , (1.20)

where Γ is a subgroup of the isometry group of the six–sphere. Depending on the values of
the generators of the orbifold group, supersymmetry can either be completely broken, or some
amount of it can be preserved.

The dual gauge theory is obtained by keeping only the fields that are invariant under the
orbifold action combined with a conjugation by a U(N k) matrix acting on the gauge indices.
Here k is the rank of the orbifold action. For an orbifold group that breaks all SUSY, it seems
that naively the gauge theory is still conformal. Inspection of the planar beta functions for
single–trace operators indeed reveals that they vanish [185, 41, 42]. Nevertheless, double–trace
operators built out of single–trace ones are induced. And they cannot be ignored in the large
N limit. The one–loop planar β–functions have been computed by Dymarsky, Klebanov and
Roiban [79, 80] from the Coleman–Weinberg formula for the one–loop potential of the 1PI
action. Their analysis leads to the conclusion that such non–supersymmetric abelian orbifold
constructions contain unstable couplings.

For all that, it is not excluded that the theory could flow to a real fixed point. In fact, the
analysis of Dymarsky et al. suggests a one–to–one mapping between tachyons in the twisted
sector of the IIB background and a lack of real zeros for the beta functions on the gauge theory
side, whenever the abelian orbifold has fixed points. For a freely acting orbifold, the background
contains no tachyon at sufficiently large λ, or, alternatively, large radius. Still, we are not out of
the wood. As shown by Horowitz et al. [138], a hole develops and consumes space via tunneling.
The same process occurs for orbifolds with fixed points [1], but via a tachyon rather than a
Kaluza–Klein “bubble of nothing”.

In view of this, we should better preserve some amount of supersymmetry. There are other
theories derived from branes on conical singularities on which we have good control, provided
as we said they preserve some residual supersymmetry. Of particular interest for the purpose of
this thesis, is the situation where the SU(N)k gauge group of the quiver theory associated to a
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Γ = Zk orbifold is replaced by SU(N1)× ...× SU(Nk). This can be achieved by wrapping some
D5–branes on cycles within the singularity. It has been shown that the N = 1 orbifold theory
flows to the regular Klebanov–Strassler theory corresponding to branes at the tip of a non–
compact Calabi–Yau whose base space is of topology S2 × S3. The M D5–branes wrapping the
S2 at the tip of the cone break conformal invariance. As a result, the dual gauge theory displays
a quasi–periodic renormalization group flow associated to a cascade of Seiberg dualities [229],
corresponding to a series of interchanges of the two gauge groups from SU(N + M) × SU(N)
to SU(N̂)× SU(N̂ +M), with N̂ ≡ N −M .

Chapter 5 work starts with an extensive review of the literature relevant to the above–
mentioned solution that is by now widely known as the Klebanov–Strassler (KS) theory [171].
In Chapter 5, I investigate a different mechanism of singularity resolution via a black hole horizon
for a close cousin of the KS theory. Excellent reviews entirely devoted to what has now become
a whole industry are [127, 129].

The Klebanov–Strassler theory is a fully regular supergravity solution5 ; the M units of RR
three–form flux created by the fractional D3–branes blow up the three–cycle of the transverse
geometry and resolve the singular conifold via a geometric transition to the so–called deformed
conifold

4∑
i=1

z2
i = ε2 , (1.21)

defined in a C4 embedding.
In addition, the warp factor can be seen to be non–vanishing at the tip of the throat. On

that account, we have achieved a confining theory at zero temperature, with confinement scale
proportional to ε2/3. Besides, recall that in the basic approach described at the beginning of
this section that gives confinement by heating N = 4 SYM, there was no asymptotic freedom
in the UV and therefore no dimensional transmutation. For the Klebanov–Strassler theory,
the geometric transition that gives a non–vanishing ε corresponds to a quantum deformation
of the moduli space of vacua of the dual gauge theory [230]. The theory flows in the IR to an
SU(2M)× SU(M) gauge theory and there are two kinds of baryonic operators built out of the
two pairs of chiral superfields, A1 and A2, B1 and B2 respectively, transforming generally in
the (N,N +M), respectively, (N,N + M) representation of the KS field theory with quartic
superpotential. Those baryonic operators are of the form

B = AM1 AM2 , B = BM
1 BM

2 . (1.22)

Classically, one would have B B = 0. The analysis of Seiberg [230] instructs us that quantum
mechanically a non–vanishing constant arises on the r.h.s. of the above identity and that it
corresponds to the scale whose origin is dimensional transmutation. We can see this on the
supergravity side [107]. Actually a family of supergravity solutions dual to the full baryonic
branch of the KS theory (which itself is at the point | A |=| B |) has been derived in [51].

Finding this moduli space of resolved warped deformed conifolds made use of the Papadopoulos–
Tseytlin ansatz [211]. My work [31] is concerned with proving that this is a consistent truncation
for IIB solutions on the conifold T (1,1). The analysis of [31] gives the most general such reduction
preserving the global SU(2)×SU(2) symmetry of T (1,1) and should prove helpful in determining
the spectrum of linear deformations around the baryonic branch of BPS supergravity solutions. I
have also carried work with Nick Halmagyi on a similar analysis for the four–fold cousin to T (1,1)

and the corresponding analogue to the Klebanov–Strassler solution, a background with warped
transverse Stenzel space. We find it surprising that there is the only regular BPS solution, while
we were expecting a whole family similar to the class of solutions dual to the baryonic branch
of KS.

5without the need of introducing extra explicit branes to cure naked singularities, as occurs in Polchinski–
Strassler or the enhancon mechanism
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To close this overview, it is worth pointing that all the versions of the AdS/CFT correspon-
dence all seem to fall more or less in the same universality class. For sure, one can take a more
phenomenological standpoint and derive interesting physics but it is not a fully satisfactory
situation, in view of the instabilities that arise even in a situation of which we yet have good
understanding, say orbifolds theories.

Indeed, in all the examples of holography that we really understand, first of all, the field
content is always limited to adjoint or bi–fundamental matter representations. This is encoded
in quiver diagrams and their geometric origin is that the dualities over which we have good com-
mand stem from considering D3–branes at certain singularities in the ten–dimensional critical
string theory. As we have seen, supersymmetry can be broken but in all the examples that we
really understand it is actually there in some disguise. Extra six–dimensional scalars are more
or less there. Of course, it is possible to really go to theories that have fewer degrees of freedom,
by considering deformations such that in the IR we get genuinely fewer degrees of freedom, for
instance by giving a mass. But as previously mentioned quite often one either runs into some
kind of a high curvature singularity on the supergravity side or the extra fields rear their heads.

A more quantitative way of formulating this issue of being in the same universality class as
N = 4 SYM hinges on considering the two anomaly structures given by some combination of
curvature invariants in four dimensions. The analysis of [123] and the product space structure
of spacetime apprise us of the fact that a = c at leading order for N = 4 super Yang–Mills.
And all theories under which there is some analytic control share this property. We thus face
some no–go theorem proclaiming that any theory that will ever be realized holographically from
product geometries will have this property. If that is to be the case this is a serious limitation in
getting hold of a dual to QCD. Of course, an assumption is that the supergravity description is
based on the Einstein–Hilbert action. Then if higher–curvature correction are negligible a = c
at large N . And we certainly do not want an answer that depends on some modulus tuning
higher–curvature contributions.

It might therefore be of interest to try and look for theories with genuinely fewer degrees
of freedom and fewer amount of supersymmetry. There is some reason to think they should
be associated with non–critical strings. N = 4 corresponds to ten–dimensional critical string
theory, as we have seen and there is a suggestion due to Polyakov that there should exist an
AdS5 solution to the non–critical type 0 string theory dual to a non–supersymmetric CFT [224].
It is a natural speculation to try and fill the slots in between, as has been attempted for example
in [181, 173]. However, the curvature of the AdS space solutions of those non–critical string
theories is of the order of the string scale. Those authors are well aware that higher–curvature
corrections cannot be neglected and might drastically change their solutions.

So, it seems that most of the ways of ridding supergravity duals from of supersymmetry
are prone to problems of their own. It would be of value to try and understand better higher–
order stringy corrections if that is achievable with the current status of the field, given that
there have been successful attempts at getting closer to real–world QCD modeling. The work
of Kiritsis and collaborators is worth pointing in this respect [113]. They have investigated
a similar problem to the one that constitutes Chapters 3 and 4 of this thesis, the Langevin
description of a heavy quark moving in some strongly–coupled plasma [112]. Their model is of
the phenomenological type, an Einstein–dilaton background. Yet, it apparently arises from a
non–critical string theory [165].

Having motivated the need for exploring supergravity solutions beyond the original AdS5×S5

and its maximally supersymmetric dual in order to learn more about QCD, having explained
why one must be careful in keeping some supersymmetry, let us now see how on can try and use
confining theories with N = 1 supersymmetry to investigate models of metastable supersymme-
try breaking and string cosmology.
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Assessing candidate supergravity duals to metastable vacua

Metastable supersymmetry breaking [85] owes much of the revival in interest it has enjoyed since
the work of Intriligator Seiberg and Shih [145] (ISS) to an ability to naturally circumvent some
of the problems afflicting other mechanisms for dynamic supersymmetry breaking (DSB) 6.

While the latter often require very complicated ingredients, the fact that many simpler–
looking theories exhibit metastable breaking of supersymmetry suggests it is generic. Further-
more, as a rule (bent to have some exceptions), models of metastable DSB only have an approx-
imate R–symmetry [147], whereas spontaneous breaking of supersymmetry is linked to an exact
R–symmetry [206]. Thus, models of metastable DSB are relieved of the problems associated
with a lack of Majorana gaugino masses (unbroken R–symmetry) or the occurrence of a light
R–axion (if R–symmetry is spontaneously broken).

Given such promises and more, some of which can be found in reviews of the field [146, 166], it
wasn’t long before their realizations as string theory configurations were enquired. Much insight
has been gained into non–perturbative effects in field theory from string theory with some
amount of supersymmetry and it seems natural to extend this approach to supersymmetry–
breaking situations.

Relevant constructions involve NS5–branes in IIA and D–branes suspended or inserted be-
tween them [259, 98]. One typically starts with a configuration of two NS5–branes with a stack
of Nc D4–branes on which a SU(Nc) gauge group lives. There are also Nf hypermultiplets rep-
resented by D6–branes, with values of the masses m1, ...,mNf corresponding to the respective
projection of D6–branes’ coordinates onto one of the NS5–branes. The meta–stable vacuum is
obtained by going to the magnetic description of this electric configuration. This is achieved by
switching one of NS5 past the other [84]. With masses turned on, Nc out of the Nf D4–branes
created through the Hanany–Witten effect [114] have to be tilted to connect to one NS5. This
breaks supersymmetry.

Such brane realizations are of interest as instances of non–supersymmetric models over which
some control is available [210, 99]. They provide an intuitive geometric understanding of various
characteristics of the ISS model, such as its global symmetries and pseudo–moduli. They can
also be regarded as toy models for the string landscape or reachable regions thereof [209, 183].
A loose motivation for the work on metastability in three–dimensional field theories contained
in the latter part of this thesis relates with this latter point. As recently discussed in [54],
there might be transitions between vacua of any dimension among the string landscape. Three–
dimensional QFT’s at strong coupling are also of relevance to gauge/gravity duality applied
to problems in condensed matter physics, which justify further analysis of gravity duals to
metastable vacua in 1 + 2–dimensions. A recent model of holographic cosmology [197, 198, 199]
is worth pointing, although the connection to our approach is not obvious, given that McFadden
and Skenderis use three–dimensional field theories to model the strongly–coupled phase of the
early universe, whereas our analysis of metastability via holography is in the opposite regime of
coupling.

Although the low–energy physics matches that of the SQCD metastable vacuum, the mag-
netic phase of such string theory realizations actually describes a vacuum that is not part of the
four–dimensional theory encompassing the original vacuum from the electric configuration [29].
This is ascribed in MQCD [258, 135, 47] to some brane bending effect for gs 6= 0 which induces
the asymptotics of the brane configurations in the two phases to differ by an infinite amount.
The tiny differences in the fields sourced in the infrared by the D4–branes in the supersym-
metric and non–supersymmetric situations then grow into a logarithmic divergence in the UV.
It is perhaps not so surprising that MQCD fails to reproduce non–supersymmetric aspects of
SQCD. There is indeed no guarantee that the success of MQCD in tallying with many features
of supersymmetric field theory, which can be traced back to holomorphy, will continue to hold

6A review of dynamical supersymmetry breaking and some of the realistic models evading its indirect criteria
can be found in [231]
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once supersymmetry is broken.
Whether this issue arises in the IIB supergravity duals to N = 1 four–dimensional gauge

theories, such as the Klebanov–Strassler background [171], has been investigated in [30]. In [73,
72], DeWolfe et al. work out the UV asymptotics of a perturbative supergravity solution 7

claimed to describe a prominent string theory model for metastable supersymmetry–breaking
vacua put forth by Kachru, Pearson and Verlinde [156]. The latter consists in adding p anti–D3
branes to the Klebanov–Strassler background [171]. They fall toward the tip of the throat, where
they are screened by flux and puff up via the Myers effect [204] to a NS5 brane wrapping a two–
cycle inside a three-sphere. The NS5 slowly unwraps the cycle. This holographically describes
the slow decay of a SUSY–breaking metastable vacuum. More examples and extensions of such
constructions with which we have some familiarity can be found in [12, 13].

Chapters 6 contains work aiming at extending the analysis of [30] for a supergravity descrip-
tion of metastable SUSY–breaking and considers the backreaction of supersymmetry–breaking
deformation of the supersymmetric warped M–theory background with transverse Stenzel space [244]
first introduced by Cvetič, Gibbons, Lü and Pope in [66]. A probe analysis of a supersymmetry–
breaking configuration obtained by introducing p anti–M2 branes at the tip of the throat has
recently been considered by Klebanov and Pufu [175]. We should note at this point that the
CGLP solution with transverse Stenzel geometry are to the solution warped M–theory solu-
tion with transverse Stiefel space [62] what the IIB Klebanov–Strassler solution [171] and the
deformed conifold [52] are to the Klebanov–Tseytlin solution [170] of fractional D3–branes on
the singular conifold. The Stenzel space is a higher–dimensional generalization of the deformed
conifold.

In particular, one important motivation was to investigate the occurrence of the finite–action
singularity encountered in [30] and to further discuss if it is to be deemed physical or not. If
physical, we have found the first backreacted supergravity solution dual to metastable susy–
breaking since the work of Maldacena and Nastase [193]. If unphysical, it does not necessarily
mean this solution should be discarded, though it would have significant consequences for the
KKLT [157] construction of deSitter vacua in string theory ; it might be resolved from the point
of view of string theory or of a localized supergravity solution.

The general course of action goes as follows. Borokhov and Gubser [45] have introduced
a general framework for first–order perturbations around a supersymmetric family of solutions
governed by a superpotential. This simplifies the problem of solving second–order equations for
the fields of supersymmetry–breaking supergravity solutions to solving a set of coupled first–
order ordinary differential equations. This amounts to dealing with a closed set of o.d.e’s for
the supersymmetry–breaking modes ξ̃i. The first–order deformations φ̃i of the BPS solution φ0

i

obey ξ̃i–dependent, first–order coupled differential equations.
One thus first has to lay down an Ansatz for a family of solutions to which the CGLP [66]

background belongs, reduce the Lagrangian to a one–dimensional sigma model and find the
corresponding superpotential.

Before going through involved computations, it is interesting and of much importance later
when imposing boundary conditions to compute the force experienced by a probe M2–brane in
the supersymmetry–breaking background. In accordance with [158], it falls off as 1/r7. It takes
on a form similar to the force on a probe D3–brane found in [30], for it only depends on a single
susy–breaking mode, ξ̃4 in the case under discussion.

Unlike the work concerning anti–D3 branes, here we realize that the full set of ξ̃i equations
can be solved analytically. Key to this is the observation that some combination of zeroth–order
fields appearing in the homogeneous equation for ξ̃4, which at first doesn’t look very promising,
actually bows and tidies to the derivative of the warp factor in the CGLP solution. The same
simplification occurs in the case of interest for D3–branes and turns out to make the numerics
plainer [35].

7The IR asymptotics appear in [201]
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Once we have the asymptotics of the φ̃i modes, we must impose physical boundary conditions
to select the particular solution we are looking for and see if it makes sense. This was the main
objective of this paper, namely building the metastable supersymmetry–breaking supergravity
solution corresponding to the backreaction of anti–M2 branes in the CGLP background. We
find that we unique candidate solution is marred by an infrared singularity.

This singularity stems from a quartic divergence at the origin in the energy density of the
four–form flux of eleven–dimensional supergravity. A similar issue arises for backreacted anti–D3
branes in the Klebanov–Strassler background, where it could not be decided if the finite–action
singularity should be kept as physically acceptable or not. My analysis of backreacted anti–M2
branes provides more evidence to settle its status.

Those results could have far–reaching implications for many models of inflation in string
theory where a small number of anti–branes are typically required to uplift an AdS minimum
to a metastable de Sitter ground state. As a first step, my collaborators and I have derived
the complete form of the contribution of supersymmetry–breaking anti–branes to the inflaton
potential in certain string theory models of inflation [33]. This appears in Chapter 7 of this
thesis.

21



Chapter 2

Fermionic Schwinger–Keldysh
Propagators from AdS/CFT

The Herzog and Son prescription [130] for computing real–time Green functions for finite tem-
perature gauge theories from their gravity dual is generalized to fermions. These notes explain
how such an extension involves properties of spinors in a curved, complexified space–time.

2.1 Introduction

The gauge–string duality relates some classes of field theories to dual string theories in specified
background space–times [74]. While string theory in a curved background does not generally
lends itself to tractable calculations and even to our understanding, its low–energy supergravity
limit is far more compliant. In the case of asymptotically AdS spaces, the dual field theories are
in the large ’t Hooft coupling limit. The AdS/CFT correspondence thus provides a framework
for understanding strongly–coupled gauge theories. Recent work has been devoted to computing
transport coefficients [55, 109, 56, 241, 92, 70] and gaining insight into dynamic and nonequilib-
rium settings [63, 93] from the correspondence. Most of them required a real–time formulation
of finite temperature field theory. The way real–time correlators can be derived in AdS/CFT is
hinted by the following analogy. There is a doubling of the degrees of freedom in the Schwinger–
Keldysh real–time prescription (reviewed in Section 2.2 of this chapter). On the other hand, the
Penrose diagrams of asymptotically AdS spacetimes with a black hole1 exhibit two boundaries
(cf. Figure 2.1. below), on which the dual gauge theory fields live. This conjecture was proved
by Herzog and Son [130]. They showed how the 2× 2 matrix of two–point correlation functions
for a scalar field and its doubler partner field is reproduced from the AdS dual supergravity
action. Their work also made it clear that the thermal nature of black hole physics gives rise
to the thermal nature of its dual field theory. In these notes, we would like to extend their
work and find out how black hole physics gives rise to real–time correlators of fermionic oper-
ators in a dual finite–temperature field theory. While deriving real–time propagators of vector
field operators from AdS/CFT is an obvious extension of the scalar field case expounded in
[130], the case of fermions proves less straightforward. The analysis presented below relies on a
treatment of spinor fields in curved space–times and on their transformation laws under global
symmetry transformations. We begin by reviewing in the next section the Schwinger–Keldysh
formalism for real–time finite temperature field theory. This section collects results usually dis-
persed among the literature, as this formalism is usually exposed for a scalar field. We present
the 2 × 2 matrix of two–point correlation functions for a fermionic operator and its link with
the retarded and advanced propagators. Section 2.3 reviews how the retarded Green function
for a fermionic operator at strong coupling can be computed from the dual supergravity spinor

1whose temperature is that of the dual gauge theory, according to the AdS/CFT correspondence
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classical action in AdS/CFT. Section 2.4 is devoted to a short review of spinors in curved and
complexified space–times. These are important for the analysis of Section 2.5 where we review
the relationship between positive– and negative–energy modes of a wave equation and analyt-
icity conditions in the complex Kruskal planes of the underlying background. These conditions
lead to the real–time propagators for fermionic operators from the dual boundary action in the
gauge–gravity duality.

RL
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V>0

V>0

V<0
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Figure 2.1: Kruskal diagram for the AdS–Schwarzschild black hole

Recently, there has been a sustained interest in fermions from theories with gravity duals. In
[10] the two–point function for a fermionic operator in a non–relativistic conformal field theory
is computed. The gravity dual corresponds to fermions propagating in a background with the
Schrödinger isometry. The authors of [65] argue that the gauge–gravity correspondence proves a
useful tool for exploring fermionic quantum phase transitions. The retarded fermion Green func-
tion is found from an analysis of the solutions to the Dirac equation and its quasi–normal modes
in an AdS Reissner–Nordström black hole. Real–time correlators for non–relativistic holography
have been considered recently in [187], where the construction of [236, 237] is involved. For an
explanation of how their construction generalizes the one due to [130] used here to the case
of distinct sources on the R and L boundaries of a Penrose diagram, see [255]. It would be
interesting to apply the approach contained in the present notes to more general geometries,
possibly duals to non–relativistic conformal field theories [240, 132, 195, 2]. This paper offers
to explain how Schwinger–Keldysh n–point functions can be computed from string theory, thus
emphasizing the latter as a relevant approach to tackle some models or phases of condensed
matter physics.

2.2 Review of Schwinger–Keldysh formalism for fermions

The Schwinger–Keldysh prescription allows for a study of real–time Green functions by intro-
ducing a contour C in the complex time plane [186, 184], as illustrated on Figure 2.2. Fields
live on this time contour. The forward and return contour of the path are labelled by indices i1
and i2 respectively. The idea is that the quantum dynamics does the doubling of the degrees of
freedom required for describing non–equilibrium states. The starting point I at time ti and the
ending point B at ti − iβ are identified and fermionic fields are such that ΥI = −ΥB. In the

23



remainder of this paper, the conventions for the propagators are those of [159].

-
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Figure 2.2: The Schwinger–Keldysh contour

The action splits into contributions from the four parts of the contour:

S =
∫
C
dtCL(tC),

=
∫ tf

ti

dtL(t)− i
∫ σ

0
dτL(tf − iτ)−

∫ tf

ti

dtL(t− iσ)− i
∫ β

σ
dτL(ti − iτ), (2.1)

where

L(t) =
∫
dd−1~xL

[
Υ(t,x), Ῡ(t,x)

]
. (2.2)

The generating functional is defined as

Z =
∫
DΥDῩ exp

(
iS + i

∫ tf

ti

ddxη̄1Υ1 + i

∫ tf

ti

ddxῩ1η1 − i
∫ tf

ti

ddxη̄2Υ2 − i
∫ tf

ti

ddxῩ2η2

)
,

(2.3)

where the sources η1,2 and the fields are such that{
η1(t,x) = η(t,x), Υ1(t,x) = Υ(t,x),
η2(t,x) = η(t− iσ,x), Υ2(t,x) = Υ(t− iσ,x).

(2.4)

The same relations hold for their conjugates. The contour–ordered Green functions are mapped
into a matrix whose components are indexed by the position on the contour:

iG(j, k) =
1
i2
δ2 lnZ [η1,2, η̄1,2]

δηjδη
†
k

= i

(
G11 G12

G21 G22

)
. (2.5)

The time in the components of this matrix of Green function is standard time and in the operator
formalism {

G11(t,x) = −i〈TΥ(t,x)Υ†(0)〉, G12(t,x) = +i〈Υ†(0)Υ(t,x)〉,
G21(t,x) = −i〈Υ(t,x)Υ†(0)〉, G22(t,x) = −i〈T̂Υ(t,x)Υ†(0)〉. (2.6)

Note the sign reversal inG12 as compared to the case where the fields are bosonic. T and T̂ denote
the time–ordering and anti–time–ordering operators. The fields are taken in the Heisenberg
picture. Those Schwinger–Keldysh correlators are related to the retarded and advanced Green
functions through {

GR(x− y) = −iθ(x0 − y0)〈
{

Υ(x),Υ†(y)
}
〉,

GA(x− y) = +iθ(y0 − x0)〈
{

Υ(x),Υ†(y)
}
〉. (2.7)
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The relation
GR(x− y) = G∗A(y − x) (2.8)

is valid, irrespective of the fields obeying a Bose–Einstein or Fermi–Dirac statistics. Using (2.6),
(2.7) and the completeness relation for a complete set of state results in

G11(k) = −ReGR(k) + i tanh( k
0

2T )ImGR(k),

G12(k) = − 2ieσk
0

1+eβk0 ImGR(k),

G21(k) = 2ie(β−σ)k0

1+eβk0 ImGR(k),

G22(k) = ReGR(k) + i tanh( k
0

2T )ImGR(k).

(2.9)

When σ = β
2 — a value which will naturally appear in the following — G12(k) = −G21(k).

σ = 0 yields G21(k) = G>(k) and G12(k) = G<(k). Since G21(k) − G12(k) |σ=0= 2iImGR(k),
the relationship

GR(k)−GA(k) = G>(k)−G<(k) (2.10)

holds as required whatever the quantum statistics of the fields under consideration. The main
purpose of these notes is to show how the above relations (2.9) are derived in AdS/CFT. Herzog
and Son [130] obtain analogous relations for a scalar field. As it turns out, extending their result
to correlators of fermionic operators is not entirely straightforward.

2.3 Review of fermionic retarded correlators in AdS/CFT

This part reviews fermions in AdS/CFT [122, 121]. The prescription for computing retarded
fermionic Green functions draws on the approach of Iqbal and Liu [149, 148], where conjugate
momenta for supergravity fields are defined with respect to a r–foliation. This is suggestive of
some sort of stochastic quantization interpretation of the AdS/CFT correspondence.
Consider a boundary fermionic operator O whose gravity dual is a spinor field Ψ. The bulk
background space–time metric

ds2 = grrdr
2 + gµνdx

µdxν (2.11)

is subjected to the asymptotically–AdS conditions

gtt, gii ∼ r2, grr ∼ 1/r2, r →∞. (2.12)

The d–dimensional boundary is a r → ∞. The AdS/CFT prescription for computing n–point
functions of a quantum field theory from a classical supergravity action goes as〈

exp
[∫

ddx
(
χ̄0O + Ōχ0

)]〉
QFT

= eiSSUGRA[χ0,χ̄0], (2.13)

where χ0 = limr→∞ r
d−∆Ψ and ∆ is the scaling dimension of O, related to the mass m of the

bulk spinor. Imposing such a Dirichlet boundary condition on spinors requires care, especially
given that this condition must relate a spinor in the bulk in d+ 1 dimensions to one in d space-
time dimensions on the boundary. Given that our focus is on Green functions, the quadratic
part of the action for ψ meets our purpose. It is given by

S = i

∫
M
dd+1x

√−g
(
Ψ̄ΓMDMΨ−mΨ̄Ψ

)
+ S∂M , (2.14)

with Ψ̄ = Ψ†Γt. The covariant derivative is specified by the spin connection ωabM :

DM = ∂M +
1
4
ωabMΓab, (2.15)
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where Γab = Γ[aΓb]. Upper–case letters stand for abstract space–time indices, while lower–case
ones denote tangent frame indices. The two are linked through a choice of vielbein eaM , defined
by GMN = eaMe

b
Nηab, with ηab a d+1–dimensional Minkowski metric of signature (−,+,+, ...,+)

such that {
Γa,Γb

}
= 2ηab. (2.16)

The inverse vielbein satisfy ηab = GMNe
M
a e

N
b . The spin connection components are given by

ωabc = eMa ωbcM and ωabc = 1
2 (Cbca + Cacb − Cabc), where [ea, eb] = ∇eaeb − ∇ebea = Ccabec.

Alternatively ωabM can be viewed as the components of 1–forms ωM in Cartan’s structure
equations [202]. Whenever a specific index appears as a label on a Gamma matrix, it refers to
that particular index in the tangent frame. For d even, a convenient choice for the bulk Gamma
matrices is

Γµ = γµ, Γr = γd+1, (2.17)

γµ being the boundary gamma matrices and γd+1 being proportional to their product. When d
is odd, it is appropriate to choose

Γµ =
(

0 γµ

γµ 0

)
, Γr =

(
1 0
0 −1

)
. (2.18)

They satisfy the Clifford algebra. So, for general d

Ψ = Ψ+ + Ψ−, Ψ± = Γ±Ψ, Γ± =
1
2

(1± Γr) , (2.19)

with Ψ± being opposite chirality Weyl spinors when d is even, and d–dimensional Dirac spinors
for d odd. Whatever the value of d the number of components of the fermionic operator O
is always half that of its dual Ψ. Quite generally [220], Appendix B, D–dimensional gamma
matrices are constructed by noticing that for D even, increasing D by 2 doubles the size of the
Dirac matrices. They can therefore be constructed iteratively, starting in D = 2 with

Γ0 =
(

0 1
−1 0

)
, Γ1 =

(
0 1
1 0

)
, (2.20)

to the following in D = 2k + 2

Γµ = γµ
⊗(

−1 0
0 1

)
, ΓD−2 = I

⊗(
0 1
1 0

)
, ΓD−1 = I

⊗(
0 −i
i 0

)
. (2.21)

Here, γµ, µ = 0, ..., D−3 are 2k×2k gamma matrices and I is the 2k×2k identity matrix. When
D is odd, simply add ΓD = Γ or −Γ to the set of D − 1 gamma matrices. Note that from our
conventions for the metric and anti–commutation relations the 0–component of gamma matrices
is anti–hermitian while other matrices are hermitian. In order to solve the equations of motion
near the boundary and find the scaling dimension ∆ of the fermionic operator O, one refers
to the usual Frobenius procedure of trying for solutions of the type r−ρ

∑∞
n=0 Ψn(t, xi)/rn. Ψn

are boundary spinors. Consider for instance the case of pure AdS, ds2 = r2(−dt2 + dx2) + dr2

r2 .
Setting eµ = rdxµ, er = dr

r , the non–vanishing spin coefficients

ωtr = −rdt, ωir = rdxi. (2.22)

The Dirac equation
[DD −m] Ψ = 0, (2.23)

with DD = ΓMDM , becomes

rΓr∂rΨ +
i

r
Γ . kΨ +

d

2
ΓrΨ−mΨ = 0, (2.24)
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where Γ . k = γµkµ. Then ρ must be set to ρ = d
2 ± m and Ψ0 is annihilated by 1

2 (1± Γr),
respectively. Incidentally, the scaling dimension is therefore found to be ∆ = d

2 +m. The leading
asymptotic behaviour of Ψ± is then

Ψ+(k, r) = χ0(k)rm−
d
2 + λ0(k)r−

d
2
−m−1,Ψ−(k, r) = ψ0(k)r−

d
2
−m + µ0(k)rm−

d
2
−1 (2.25)

Note that the dominant term (when m ≥ 0) has been denoted χ0 on purpose, as a reference to
the source for the dual operator O in (2.13):

lim
r→∞

rd−∆Ψ+ = χ0. (2.26)

Inserting this back into their equation of motion yields{
ψ0(k) = − iγ . k

k2 (1 + 2m)λ0(k);
µ0(k) = − iγ . k

1−2mχ0(k).
(2.27)

If one then demands that the solution be regular in the whole of AdS space, it turns out that χ0

and ψ0 are not independent. Note that this is not apparent from the analysis presented above
where χ0 and ψ0 are the boundary values of the fields Ψ+ and Ψ−. A general solution to the
Dirac equation near the boundary is a superposition of those fields. However the Dirac equation
can be solved exactly in a few cases, including pure AdS. In this latter case, suitable solutions
are given by

Ψ+ =


r−

d+1
2 Km+ 1

2

(√
k2−ω2

r

)
κ+, k2 > 0,

r−
d+1

2 H
(1)

m+ 1
2

(√
ω2−k2

r

)
κ+, ω >

√
k2,

r−
d+1

2 H2
m+ 1

2

(√
ω2−k2

r

)
κ+, ω < −

√
k2,

(2.28)

κ+ denoting a constant spinor. Regularity as r → 0 then imposes that

ψ0(k) = − iγ . k
k2

(k2 )2mΓ(1
2 −m)

Γ(1
2 +m)

χ0(k). (2.29)

More generally ψ0 and χ0 are related by a matrix S:

ψ0(k) = S(k)χ0(k). (2.30)

Regularity in the bulk and a given boundary condition χ0 for Ψ+ when m ≥ 0 then uniquely
determine a solution Ψ to the classical equations of motion. Similar relations apply for Ψ̄+ and
Ψ̄−. Note that relations such as (2.29) or (2.30) are on–shell relations. Other off–shell histories
contributing to the variational principle can be constructed as superpositions of independent Ψ+

and Ψ−. We now turn to a discussion of the variational principle. The boundary term in (2.14)
will be determined from stationarity of the action. That one cannot fix all the components of Ψ
and Ψ̄ but must rather set conditions on, say, χ0, χ̄0, and leave ψ0, ψ̄0 free to vary2, stems from
the Dirac equation being first order in derivatives. Varying with respect to Ψ, Ψ̄ the Euclidean
action

S = −
∫
M
dd+1x

√
gΨ̄
(

1
2

(
→
DD −

←
DD

)
−m

)
Ψ, (2.31)

one finds a surface term, i.e. δS = C∂M+ bulk term, where the bulk term involves radial
derivatives and is proportional to the equations of motions, while

C∂M =
1
2

∫
∂M

ddx
(
δψ̄0χ0 + χ̄0δψ0

)
(x),

=δ
{

1
2

∫
∂M

ddx
(
ψ̄0χ0 + χ̄0ψ0

)
(x)
}
, (2.32)

2On–shell they become functions of the boundary conditions χ0, χ̄0.
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given that δχ0 = 0 and δχ̄0 = 0, as explained above. Since C∂M does not vanish, that the action
must be stationary requires that one adds to it a boundary term S∂M such that C∂M = −δS∂M .
Actually, since they are fixed, one may add any function of χ0 and χ̄0 to the action without
breaking the stationarity condition. However conditions such as locality, absence of derivatives
and invariance under the asymptotically AdS symmetries seem to uniquely select a boundary
term [121]. Hence, after another Wick–rotation to go back to a Lorentzian signature,

S∂M = −i
∫
∂M

ddx
√
ggrrΨ̄+Ψ−. (2.33)

The factor of grr entering the square root comes from the vielbein. We now review the pre-
scription derived by Iqbal and Son [149, 148] for computing retarded propagators. It amounts
to taking Euclidean canonical momenta conjugate to Ψ± with respect to a r–foliation:

Π+ = −√ggrrΨ̄−, Π− = −√ggrrΨ̄+. (2.34)

Then (2.25) and (2.26) result in

〈O〉χ0 = − lim
r→∞

r∆−dΠ+,

= ψ̄0. (2.35)

From (2.30), i.e. ψ0 = Sχ0, and analytic continuation, one obtains retarded correlators in
Lorentzian signature:

GR(k) = iS(k)γt. (2.36)

The γt gamma matrix arises since GR ∼ 〈OO†〉, rather than 〈OŌ〉.

2.4 Spinors in complexified space–time

In order to generalize the work of Herzog and Son [130] to fermions, it is necessary to consider
spinors in curved space–time. Besides, a potential difficulty arises given that [130] relies crucially
on analycity of complexified Kruskal coordinates. [215], section 6.9, has a few pages devoted to
spinors in complex space–times. [214, 207] provide a complementary treatment of spinors and
twistors. A spin space ℵ of complex dimension two comes with each point of the underlying
space–time manifold. The members of such a space are negative–chirality, dotted, say, Weyl
spinors. Undotted spinors are members of the complex conjugate space ℵ̄. The manifold being
complexified, ℵ and ℵ̄ must be viewed as independent spaces, so that pairs of spinors ξα and
ξ̄α̇ which previously determined one another under complex conjugation, are replaced by a
pair of independent such spinors. A complexified space–time originates from a real underlying
space–time by allowing its coordinates to take on complex values and by extending the metric
coefficients analytically to the complex domain. Note that this is distinct from a complex space–
time where generally no subspace can be singled out as real. Defining a spinor basis or dyad
{ςα, ıα} for ℵ and

{
ς̄ α̇, ı̄α̇

}
for ℵ̄, each comes bestowed with its own indices–lowering εαβ spinor

or ε̄α̇β̇ spinor, such that ε(ς, ı) = γ and ε̄(ς̄ , ı̄) = γ̄. When γ = 1, the dyad is called a spin–frame.
Associated with any spin frame is a null tetrad

l = ςς̄, m = ς ı̄, n = ı̄ı, m̄ = ıς̄ , (2.37)

which spans the tensor product space ℵ⊗ ℵ̄. This illustrates the standard connection between
world–tensor indices a as a pair of spinor indices, one dotted and one undotted. From ε and ε̄,
a symmetric metric on T is built such that

g(l, n) = 1, g(m, m̄) = −1, (2.38)
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with all other scalar products vanishing, i.e.

gab = εαβεα̇β̇. (2.39)

ℵ⊗ ℵ̄ endowed with this scalar product has the structure of a tangent space to a complexified
manifold. In the Newman–Penrose formalism a basis for the tangent space is a null tetrad con-
sisting of two real vectors and one complex–conjugate pair of vectors. Consider the complexified
manifold obtained from a metric of type (2.11) describing a geometry with a horizon. Let U and
V label its Kruskal coordinates. In the context of an asymptotically AdS black hole geometry
they are introduced below around (2.45). Staying general for now, a basis for the tangent space
is given by four null vectors

∂

∂U
,

∂

∂V
,

∂

∂ζ
= eiφ cot

θ

2
,

∂

∂ζ̄
= e−iφ cot

θ

2
, (2.40)

with ∂
∂ζ parameterizing the anti–celestial sphere. It is related to ∂

∂ζ̄
by an antipodal map. Let us

map l, n, m and m̄ to ∂
∂U , ∂

∂V , ∂
∂ζ and ∂

∂ζ̄
, respectively. The spinors ς and ı are then associated

with the null vectors ∂
∂U and ∂

∂V , respectively.
The combinations

√
V ı and

√
−Uς or

√
−V ı and

√
Uς are parallely transported across the full

U and V complex planes. Indeed, parallel transport of U ∂
∂U along ∂

∂V stems from

∇ ∂
∂V

[
U
∂

∂U

]
=

∂

∂V
[U ]

∂

∂U
+ U∇ ∂

∂V

∂

∂U

= U

(
ΓUUV

∂

∂U
+ ΓVUV

∂

∂V

)
, (2.41)

where ΓUUV = 1
2g
UV (∂UgV V + ∂V gUV − ∂V gUV ) = 0 and ΓVUV = 0. As for the covariant deriva-

tive with respect to U ∂
∂U

∇U ∂
∂U

[
U
∂

∂U

]
=
(
∂

∂U
[U ] + U ΓUUU

)
U
∂

∂U
, (2.42)

it is directed along U ∂
∂U . This corresponds to the weaker definition of a curve C(s) with tangent

vector T being a geodesic if ∇TT = αT , α an arbitrary function on the curve. This definition
agrees with the notion of C(s) being among the straightest curves in a Riemannian manifold if
the change of T is parallel to T . The modification with respect to the more familiar criterion
∇TT = 0 for geodesics and parallel transport lies in the length of T being generally not conserved
under ∇TT = αT . However, in the case at hand, the two conditions are directly equivalent
since U ∂

∂U is null. In any case it is always possible to parametrize the curve so that the geodesic
condition takes on its customary form, provided d2s′

ds2
= αds

′

ds under s → s′. With such a
parameter change, U ∂

∂U is parallel transported along two families of curves spanning the whole
Kruskal plane and associated respectively with the vector field ∂

∂V and the one obtained from
U ∂
∂U . The same holds for V ∂

∂V . The attendant statement on the related spinor basis follows.
This choice of spinor basis will appear naturally in Section 2.5.

√
−U and the likes are pivotal

in generating Fermi–Dirac distribution functions. We should also note that even though the
AdS setting presented below involves spinors in a bulk geometry of dimension five, the present
discussion on spinors in a complexified four–dimensional space–time is of relevance due to the
decomposition (2.19) of a general bulk spinor evolving in d + 1 dimensions into d–dimensional
spinors. The latter are used in the following as in, e.g., [122, 121, 149], and while in five
dimensions an extra fifth basis vector should appear in (2.40), it is irrelevant for the present
purpose. Ψ± spinors will be expanded in the basis constructed out of Kruskal coordinates and
ı, ς.
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2.5 Real–time correlators from gravity

While the results about to be derived below should be applicable to a broader class of finite–
temperature field theories with a gravity dual, we focus on theories arising from non–extremal
D3 branes. Boundary values of supergravity fields in the resulting AdS5 background provide
the N →∞, g2

YMN →∞ limit of N = 4 SU(N) supersymmetric Yang–Mills correlators. In the
near–horizon limit the metric on a stack of non–extremal D3 branes reads3

ds2 = (πTRr)2 (−f(r)dt2 + dx2
)

+R2 dr2

r2f(r)
, (2.43)

where f(r) = 1 − 1
r4 . The boundary is a r → ∞ and the horizon at r = 1. Here, T is the

Hawking temperature of this AdS–Schwarzschild black hole and R is the radius of AdS. The
analysis of [130] relies on the behaviour of a scalar field in this background. Near the horizon,
r
πT = 1 + ε, solutions to the wave equation behave as eik

0r∗ and its conjugate, with k0 = ω and
r∗ being the tortoise coordinate:

dr∗

dr
=

1
πT

1
r2f(r)

, r∗ =
1

2πT

(
arctan(r) + log

√
r − 1
r + 1

)
. (2.44)

The Kruskal coordinates are defined as{
U = − e−2πT (t+r∗)

2πT ,

V = e2πT (t−r∗)

2πT .
(2.45)

The Penrose diagram of Figure 2.1. is constructed from these coordinates. The retarded and
advanced solutions comport themselves as{

e−iωtf(k, r) ∼ e− iω
2πT

ln(V ), in–falling,
e−iωtf∗(k, r) ∼ e iω

2πT
ln(−U), out–going.

(2.46)

When we considered solutions to the wave equation, we were working in the R–quadrant, U < 0,
V > 0. However, as explained in [130] if one extends the mode functions to the complex U and V
planes, one finds that positive–frequency solutions to the wave equation are analytic in the lower
U and V complex planes. A solution is composed of only negative–frequency modes provided it
is analytic in the upper U and V planes. With regard to the modes of (2.46) one then requires
that the solution be analytic in the lower V plane and the upper U plane. Since in the r − t
coordinates one can solve the wave equation independently in the R and L regions of the Penrose
diagram one obtains the following set of mode functions in each quadrants:

uR,i(k) =
{
e−iωtf(k, r), in R
0, in L

uL,i(k) =
{

0, in R
e−iωtf(k, r), in L

uR,o(k) =
{
e−iωtf∗(k, r), in R
0, in L

uL,o(k) =
{

0, in R
e−iωtf∗(k, r), in L

(2.47)

Only two linear combinations can be built which meet the above criterium on holomorphicity.
These are {

uo = uR,o + αouL,o,
ui = uR,i + αiuL,i.

(2.48)

From the behaviour close to the horizon of the solutions and the analyticity requirement, the
in–going and out–going cross–connecting functions αi and αo are constrained to be{

αo = e
πω
2 ,

αi = e−
πω
2 .

(2.49)

3Setting R = 1 for convenience.
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In order to carry a similar analysis to the case of fermions, one must first check that solutions
to the Dirac equation in an AdS–Schwarzschild background (2.43) behave as e−iωr∗ and its
conjugate. In such a background4 the spin coefficients are

ωtr = −r
(

1 +
1
r4

)
dt, ωir = r

√
fdxi. (2.50)

The Dirac equation then reads
[
− iω√

f
γt + i~γ . ~k

]
A(m)Ψ+(k, r) =

[
−ω2

f + k2
]

Ψ−(k, r),[
− iω√

f
γt + i~γ . ~k

]
A(−m)Ψ−(k, r) = −

[
−ω2

f + k2
]

Ψ+(k, r),
(2.51)

where A(m) = r

[
r
√
f(r)∂r + d−1

2

√
f(r) +

(1+
(πT )4

r4
)

2
√
f(r)

−m
]

. Focusing on the terms relevant for

the near–horizon behaviour, solutions of the type r
4
√
f(r)

e±iωr
∗

satisfy these equations. Note

that it is crucial that the Γ0 matrix be anti–hermitian. This leading near–horizon behaviour
of solutions to the Dirac equation in a curved background is reminiscent of the forms of the
solutions found in [252] in the course of this study of second–quantization for neutrino fields in a
Kerr background. From the previous discussion on parallely–transported spinors in the complex
U and V planes, one is led to consider the following set of mode functions in each quadrant:

ψR,i =
{
e−iωt

√
V f(k, r)ı, in R

0, in L
ψL,i =

{
0, in R
e−iωt

√
−V f(k, r)ı, in L

ψR,o =
{
e−iωt

√
−Uf∗(k, r)ς, in R

0, in L
ψL,o =

{
0, in R
e−iωt

√
Uf∗(k, r)ς, in L

(2.52)

The mergers f(k, r)
{√−U√

V

}
behave as r

4
√
f(r)

eπTteiωr
∗
, as required for solutions to the Dirac

equation, except for the extra e±πTt term, which could be inserted in the definitions of the modes
in (2.55) below. As for the scalar case reviewed above, the conditions that positive–frequency
solutions are analytic in the lower U and V complex planes and negative–energy modes are
analytic in their upper counterparts leads to the following linear combinations{

ψo = ψR,o + βoψL,o,
ψi = ψR,i + βiψL,i.

(2.53)

The behaviour of the solutions close to the horizon fixes{
βo = ie

πω
2 ,

βi = −ie−πω2 . (2.54)

The out–going and in–going solutions in (2.53) form a basis for a spinor field defined over the
full Kruskal plane of the AdS–Schwarzschild geometry

Ψ−(r) =
∑
k

[a(ω,k)ψo(k, r) + b(ω,k)ψi(k, r)] . (2.55)

In accordance with our discussion on the variational principle for spinor fields in AdS/CFT
we do not expand the Ψ+ field. Its leading–order part in an expansion near the boundary is
fixed. One must fix the “position” and leave the “momentum” free to vary in a set of canonically

4Setting R = 1, πT = 1 for convenience.
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conjugate pairs given by χ̄0 and ψ0. The coefficients a(ω,k), b(ω,k) are determined by requiring
that (2.55) approaches ΨR

−(k) and ΨL
−(k) on their respective boundaries:


[
a(ω,k)

√
−Uς + b(ω,k)

√
V ı
]
r∂M

= ΨR
−(k),

−
[
a(ω,k)eπω

√
U(−)ς − b(ω,k)

√
−V (−)ı

]
r∂M

= −ie−πω2 ΨL
−(k),

(2.56)

The function f(k, r) is normalized such that f(k, r∂M ) = 1 at the boundary. The overall minus
sign on the r.h.s. of the second equation results from the effect on spinor fields of time reversal
from going to the R–quadrant to the L one5:

T−1Ψ+,α(x)T = −Ψ+,α(T x), T−1Ψα̇
−T = +Ψ−,α̇(T x). (2.57)

Also, recall that raising or lowering a spinor index comes with a minus sign. The meaning
of (2.56) is as a set of two equations for two unknown spinors, a(ω,k)

√
−Uς and b(ω,k)

√
V ı.

The second equation in (2.56) involves the same unknown spinors but in the L quadrant, which
introduces extra

√
−1. Taking care of those additional factors of i which occur in going from{ √

U√
−V

}
to
{√−U√

V

}
, (2.56) leads to

 a(ω,k)
√
−U |r∂M ς = 1

eπω+1

[
ΨR
−(k) + e

πω
2 ΨL
−(k)

]
,

b(ω,k)
√
V |r∂M ı = 1

eπω+1

[
eπωΨR

−(k)− eπω2 ΨL
−(k)

]
.

(2.58)

Here, n(ω) = 1
eβω+1

is the Fermi–Dirac distribution. One may think that using (2.58) to replace
, say, ς in the identification of l with ∂

∂U would lead to a constraint on the boundary data, which
cannot be. Rather, the constraints are on the modes a(ω,k) and b(ω,k). The same happens
for the scalar case first dealt with in [130], as is most apparent in equations (3.48) and (3.49) of
[56] where the modes in an expansion of the scalar field in an in–going and out–going basis are
related to the boundary values of the field in the right and left quadrants of a Kruskal diagram.
A computation of real–time Green functions from the standard AdS/CFT prescription is now
in order. The classical boundary action in r − t coordinates is

S∂M = −i
∫
∂M

ddk

(2π)d
√−ggrrΨ̄+(−k, r)Ψ−(k, r)

= −i
∫

ddk

(2π)d
√−ggrrΨ̄+(−k, r)Ψ−(k, r) |rR −i

∫
ddk

(2π)4

√−ggrrΨ̄+(−k, r)Ψ−(k, r) |rL
(2.59)

For a scalar field the second integral would have come with the opposite sign. Here, however one
must recall that spinor fields behave non–trivially when they cross the L quadrant where time
ordering is reversed. While Ψ̄Ψ is invariant under time–reversal, what we are really considering
instead is an expression where Ψ̄+ is fixed whereas Ψ− is free to vary. The unusual sign is
associated with the latter’s transformation under time reversal, (2.57). Using (2.55) and (2.58)

5Our conventions for the Clifford algebra differ from those of [243]. This affects in particular the Γ5 matrix.
Hence the overall sign flip in (2.57) as compared to the more familiar equation (40.32) from [243].
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the boundary action becomes

S∂M =− i
∫

d4k

(2π)4

√−ggrrn(ω)uR,o(k)
[
Ψ̄R

+(−k)ΨR
−(k) + e

βπ
2 Ψ̄R

+(−k)ΨL
−(k)

]
− i
∫

d4k

(2π)4

√−ggrrn(ω)uR,i(k)
[
e
βω
2 Ψ̄R

+(−k)ΨR
−(k)− eβωΨ̄R

+(−k)ΨL
−(k)

]
+ i

∫
d4k

(2π)4

√−ggrrn(ω)uL,o(k)e
βω
2

[
Ψ̄L

+(−k)ΨR
−(k) + e

βω
2 Ψ̄L

+(−k)ΨL
−(k)

]
− i
∫

d4k

(2π)4

√−ggrrn(ω)uL,i(k)e−
βω
2

[
eβωΨ̄L

+(−k)ΨR
−(k)− eβω2 Ψ̄L

+(−k)ΨL
−(k)

]
. (2.60)

Equations (2.36) and (2.8), which for fermionic operators readsGA,ab(k) = G∗R,ba = −iS∗(k)γtba =
iS∗(k)γtab – from Γ0 being anti–hermitian, cf., e.g., (2.21) – and the near–boundary expansions
of ΨR,L

± yield
GRR(k) = −i

[
n(ω)eβω(−i)GR(k) + n(ω)(−i)GA(k)

]
= −ReGR(k) + i tanh( ω

2T )ImGR(k),
GLL(k) = −i

[
−n(ω)(−i)GR(k)− n(ω)eβω(−i)GA(k)

]
= ReGR(k) + i tanh( ω

2T )ImGR(k),

GRL(k) = −in(ω)e
βω
2 [(−i)GR(k)− (−i)GA(k)] = − 2ie

βω
2

1+eβω
ImGR(k),

GLR(k) = −in(ω)e
βω
2 [−(−i)GR(k) + (−i)GA(k)] = 2ie

βσ
2

1+eβω
ImGR(k).

(2.61)
These are the Schwinger–Keldysh propagators (2.9) with σ = β

2 for a fermionic operator dual to
the supergravity field Ψ. One can redefine ΨL(k) to obtain real–time propagators with arbitrary
0 < σ < β. Let us illustrate how (2.61) is obtained and focus on GRR(k).
The relevant terms from the boundary action are
−in(ω)

√−ggrr
[
uR,i(k)eβωΨ̄R

+(−k)ΨR
−(k) + uR,o(k)Ψ̄R

+(−k)ΨR
−(k)

]
.

The first one comes with an in–going mode. One then uses the near–boundary expansion
for ΨR

± and the relation (2.30), i.e. ψ0(k) = S(k)χ0(k), to translate this term into an ex-
pression proportional to the retarded propagator. On the other hand, the second term in
brackets involves an out–going mode. It must be associated with an advanced Green func-
tion [238]. One then writes

√−ggrrΨ̄R
+(−k)ΨR

−(k) =
√−ggrrΨ̄R

−(k)ΨR
+(−k) which is equal to

S∗(k)χ̄R0 (k)χR0 (−k) = S∗(k)χ̄R0 (−k)χR0 (k). This finally leads to the stated result. We have thus
checked that Schwinger–Keldysh correlators for fermionic operators and the standard relations
among them and the retarded, advanced and symmetric propagators hold in AdS/CFT by tak-
ing functional derivatives of boundary part of the dual supergravity action. This prescription
can be generalized to higher–point functions of a fermionic operator, provided the non–quadratic
parts of the action for its dual supergravity spinor field are known.
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Chapter 3

Stochastic Trailing String and
Langevin Dynamics from AdS/CFT

In this chapter, using the gauge/string duality, we derive a set of Langevin equations describing
the dynamics of a relativistic heavy quark moving with constant average speed through the
strongly–coupled N = 4 SYM plasma at finite temperature. We show that the stochasticity
arises at the string world–sheet horizon, and thus is causally disconnected from the black hole
horizon in the space–time metric. This hints at the non–thermal nature of the fluctuations,
as further supported by the fact that the noise term and the drag force in the Langevin equa-
tions do not obey the Einstein relation. We propose a physical picture for the dynamics of the
heavy quark in which dissipation and fluctuations are interpreted as medium–induced radiation
and the associated quantum–mechanical fluctuations. This picture provides the right paramet-
ric estimates for the drag force and the (longitudinal and transverse) momentum broadening
coefficients.

3.1 Introduction

Motivated by possible strong–coupling aspects in the dynamics of ultrarelativistic heavy ion col-
lisions, there have been many recent applications of the AdS/CFT correspondence to the study of
the response of a strongly coupled plasma — typically, that of the N =4 supersymmetric Yang–
Mills (SYM) theory at finite temperature — to an external perturbation, so like a “hard probe”
— say, a heavy quark, or an electromagnetic current (see the review papers [239, 141, 110] for
details and more references). Most of these studies focused on the mean field dynamics respon-
sible for dissipation (viscosity, energy loss, structure functions), as encoded in retarded response
functions — typically, the 2–point Green’s function of the N =4 SYM operator perturbing the
plasma. By comparison, the statistical properties of the plasma (in or near thermal equilibrium)
have been less investigated. Within the AdS/CFT framework, such investigations would require
field quantization in a curved space–time — the AdS5 × S5 Schwarzschild geometry dual to
the strongly–coupled N =4 SYM plasma —, which in general is a very difficult problem. Still,
there has been some interesting progress in that sense, which refers to a comparatively simpler
problem: that of the quantization of the small fluctuations of the Nambu–Goto string dual to a
heavy quark immersed into the plasma.

Several noticeable steps may be associated with this progress: In Ref. [130], a prescription
was formulated for computing the Schwinger–Keldysh Green’s functions at finite temperature
within the AdS/CFT correspondence. With this prescription, the quantum thermal distributions
are generated via analytic continuation across the horizon singularities in the Kruskal diagram
for the AdS5 Schwarzschild space–time. Using this prescription, one has computed the diffusion
coefficient of a non–relativistic heavy quark [55], and the momentum broadening for a relativistic
heavy quark which propagates through the plasma at constant (average) speed [56, 109]. Very
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recently, in Refs. [70, 241], a set of Langevin equations has been constructed which describes
the Brownian motion of a non–relativistic heavy quark and of the attached Nambu–Goto string.
Within these constructions, the origin of the ‘noise’ (the random force in the Langevin equa-
tions) in the supergravity calculations lies at the black hole horizon, as expected for thermal
fluctuations.

The Langevin equations in Refs. [70, 241] encompass previous results for the drag force [131,
108] and the diffusion coefficient [55] of a non–relativistic heavy quark. But to our knowledge, no
attempt has been made so far at deriving corresponding equations for a relativistic heavy quark,
whose dual description is a trailing string [131, 108]. In fact, the suitability of the Langevin
description for the stochastic trailing string was even challenged by the observation that the
respective expressions for the drag force and the momentum broadening do not to obey the
Einstein relation [109]. The latter is a hallmark of thermal equilibrium and must be satisfied by
any Langevin equation describing thermalization. However, Langevin dynamics is more general
than thermalization, and as a matter of facts it does apply to the stochastic trailing string, as
we will demonstrate in this chapter.

Specifically, our objective in what follows is twofold: (i) to show how the Langevin description
of the stochastic trailing string unambiguously emerges from the underlying AdS/CFT formal-
ism, and (ii) to clarify the physical interpretation of the associated noise term, in particular, its
non–thermal nature.

Our main conclusion is that the stochastic dynamics of the relativistic quark is fundamentally
different from the Brownian motion of a non–relativistic quark subjected to a thermal noise.
Within the supergravity calculation, this difference manifests itself via the emergence of an event
horizon on the string world–sheet [56, 109], which lies in between the Minkowski boundary and
the black hole horizon, and which governs the stochastic dynamics of the fast moving quark.
With our choice for the radial coordinate z in AdS5, the Minkowski boundary lies at z = 0,
the black hole horizon at zH = 1/T , and the world–sheet horizon at zs = zH/

√
γ, where

γ = 1/
√

1− v2 is the Lorentz factor of the heavy quark. (We assume that the quark is pulled
by an external force in such a way that its average velocity remains constant.) The presence
of the world–sheet horizon means that the dynamics of the upper part of the string at z < zs
(including the heavy quark at z ' 0) is causally disconnected from that of its lower part at
zs < z < zH , and thus cannot be influenced by thermal fluctuations originating at the black
hole horizon.

This conclusion is supported by the previous calculations of the momentum broadening for
the heavy quark [56, 109], which show that the relevant correlations are generated (via analytic
continuation in the Kruskal plane) at the world–sheet horizon, and not at the black hole one.
Formally, these correlations look as being thermal (they involve the Bose–Einstein distribution),
but with an effective temperature Teff = T/

√
γ, which is the Hawking temperature associated

to the world–sheet horizon. Thus, no surprisingly, our explicit construction of the Langevin
equations will reveal that the corresponding noise terms arise from this world–sheet horizon.

The Langevin equations for the relativistic heavy quark will be constructed in two different
ways: (1) by integrating out the quantum fluctuations of the upper part of the string, from the
world–sheet horizon up to the boundary, and (2) by integrating out the string fluctuations only
within an infinitesimal strip in z, from the world–sheet horizon at z = zs up to the ‘stretched’
horizon at z = zs(1− ε) with ε� 1; this generates a ‘bulk’ noise term at the stretched horizon,
whose effects then propagate upwards the string, via the corresponding classical solutions. Both
procedures provide exactly the same set of Langevin equations, which encompass the previ-
ous results for the drag force [131, 108] and for the (longitudinal and transverse) momentum
broadening [56, 109]. In these manipulations, the lower part of the string at z > zs and, in
particular, the black hole horizon, do not play any role, as expected from the previous argument
on causality.

If the relevant fluctuations are not of thermal nature, then why do they look as being thermal
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? What is their actual physical origin ? And what is the role played by the thermal bath ? To
try and answer such questions, we will rely on a physical picture for the interactions between an
energetic parton and the strongly–coupled plasma which was proposed in Refs. [116, 117, 78, 141],
and that we shall here more specifically develop for the problem at hand. In this picture, both
the energy loss (‘drag force’) and the momentum broadening (‘noise term’) are due to medium–
induced radiation. This is reminiscent of the mechanism of energy loss of a heavy, or light,
quark at weak coupling [17, 19, 177, 57], with the main difference being in the cause of the
medium–induced radiation. At weak coupling, multiple scattering off the plasma constituents
frees gluonic fluctuations in the quark wavefunction, while at strong coupling the plasma exerts a
force, proportional to T 2, acting to free quanta from the heavy quark as radiation. In the gravity
description, this appears as a force pulling energy in the trailing string towards the horizon. At
either weak or strong coupling, quanta are freed when their virtuality is smaller than a critical
value, the saturation momentum Qs; at strong coupling and for a fast moving quark, this scales
like Qs ∼ √γT . Within this picture, the world–sheet horizon at zs ∼ 1/Qs corresponds to
the causal separation between the highly virtual quanta (Q � Qs), which cannot decay into
the plasma and thus are a part of the heavy quark wavefunction, and the low virtuality ones,
with Q . Qs, which have already been freed, thus causing energy loss. The recoil of the heavy
quark due to the random emission of quanta with Q . Qs is then responsible for its momentum
broadening.

From his perspective, the noise terms in the Langevin equations for the fast moving quark
reflect quantum fluctuations in the emission process. Of course, the presence of the surrounding
plasma is essential for this emission to be possible in the first place (a heavy quark moving
at constant speed through the vacuum could not radiate), but the plasma acts merely as a
background field, which acts towards reducing the virtuality of the emitted quanta and thus
allows them to decay. The genuine thermal fluctuations on the plasma are unimportant when
γ � 1, although when γ ' 1 they are certainly the main source of stochasticity, as shown in
[70, 241]. Besides, we see no role for Hawking radiation of supergravity quanta at any value of
γ.

This picture is further corroborated by the study of a different physical problem, where the
thermal effects are obviously absent, yet the mathematical treatment within AdS/CFT is very
similar to that for the problem at hand: this is the problem of a heavy quark propagating
with constant acceleration a through the vacuum of the strongly–coupled N = 4 SYM theory
[78, 261, 212]. The accelerated particle can radiate, and this radiation manifests itself through
the emergence of a world–sheet horizon, leading to dissipation and momentum broadening. The
fluctuations generated at this horizon are once again thermally distributed, with an effective
temperature T eff = a/2π. In that context, it is natural to interpret the induced horizon as the
AdS dual of the Unruh effect [253] : the accelerated observer perceives the Minkowski vacuum
as a thermal state with temperature a/2π. For an inertial observer, this is interpreted as follows
[254]: the accelerated particle can radiate and the correlations induced by the backreaction to
this radiation are such that the excited states of the emitted particle are populated according
to a thermal distribution. Most likely, a similar interpretation holds also for the thermal–
like correlations generated at the world–sheet horizon in the problem at hand — that of a
relativistic quark propagating at constant speed through a thermal bath. It would be interesting
to identify similar features in other problems which exhibit accelerated motion, or medium–
induced radiation, or both, so like the rotating string problem considered in Ref. [86].

This chapter of the thesis is organized as follows: In Sect. 2 we construct the Langevin
equations describing the stochastic dynamics of the string endpoint on the boundary ofAdS5, i.e.,
of the relativistic heavy quark. Our key observation is that, in the Kruskal–Keldysh quantization
of the small fluctuations of the trailing string, the stochasticity is generated exclusively at the
world–sheet horizon. This conclusion is further substantiated by the analysis in Sect. 3 where we
follow the progression of the fluctuations along the string, from the world–sheet horizon up to the
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string endpoint on the boundary. We thus demonstrate that the noise correlations are faithfully
transmitted from the stretched horizon to the heavy quark, via the fluctuations of the string.
Finally, Sect. 4 contains our physical discussion. First, in Sect. 4.1, we argue that the Langevin
equations do not describe thermalization, although they do generate thermal–like momentum
distributions, but at a fictitious temperature which is not the same as the temperature of the
plasma, and is moreover different for longitudinal and transverse fluctuations. Then, in Sect.
4.2, we develop our physical picture for medium–induced radiation and parton branching, which
emphasizes the quantum–mechanical nature of the stochasticity.

3.2 Boundary picture of the stochastic motion

In this section we will construct a set of Langevin equations for the stochastic dynamics of a
relativistic heavy quark which propagates with uniform average velocity through a strongly–
coupled N =4 SYM plasma at temperature T . To that aim, we will follow the general strategy
in Ref. [241], that we will extend to a fast moving quark and the associated trailing string. In
this procedure, we will also rely on previous results in the literature [56, 109] concerning the
classical solutions for the fluctuations of the trailing string and their quantization via analytic
continuation in the Kruskal plane.

3.2.1 The trailing string and its small fluctuations

The AdS dual of the heavy quark is a string hanging down in the radial direction of AdS5, with
an endpoint (representing the heavy quark) attached to a D7–brane whose radial coordinate
fixes the bare mass of the quark. The string dynamics is encoded in the Nambu–Goto action,

S = − 1
2π`2s

∫
d2σ

√
−dethαβ , hαβ = gµν∂αx

µ∂βx
ν , (3.1)

where σα, α = 1, 2, are coordinates on the string world–sheet, hαβ is the induced world–sheet
metric, and gµν is the metric of the AdS5–Schwarzschild space–time, chosen as

ds2 =
R2

z2
Hz

2

(
−f(z)dt2 + dx2 +

dz2

f(z)

)
, (3.2)

where f(z) = 1 − z4 and T = 1/πzH is the Hawking temperature. (As compared to the
Introduction, we have switched to a dimensionless radial coordinate.)

The quark is moving along the longitudinal axis x3 with constant (average) velocity v in
the plasma rest frame. For this to be possible, the quark must be subjected to some external
force, which compensates for the energy loss towards the plasma. The profile of the string
corresponding to this steady (average) motion is known as the ‘trailing string’. This is obtained
by solving the equations of motion derived from (3.1) with appropriate boundary conditions,
and reads [131, 108]

x3
0 = vt+

vzH
2
(

arctan z − arctanhz
)
. (3.3)

In what follows we shall be interested in small fluctuations around this steady solution, which
can be either longitudinal or transverse: x3 = x3

0 + δx`(t, z) and x⊥ = δx⊥(t, z). To quadratic
order in the fluctuations, the Nambu–Goto action is then expanded as (in the static gauge
σα = (t, z))

S = −
√
λTz2

s

2

∫
dtdz

1
z2

+
∫

dtdzPα∂αδx` −
1
2

∫
dtdz

[
Tαβ` ∂αδx` ∂βδx` + Tαβ⊥ ∂αδx

i
⊥∂βδx

i
⊥

]
,

(3.4)
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where zs ≡ 4
√

1− v2 = 1/
√
γ and1 [109]

Pα =
πv
√
λT 2

2z2
s

(
zH

z2(1−z4)

1

)
, (3.5)

Tαβ⊥ = z4
sT

αβ
` = −π

√
λT 2

2z2
s

(
zH
z2

1−(zzs)4

(1−z4)2
v2

1−z4

v2

1−z4
z4−z4

s
zHz2

)
. (3.6)

The quantities Tαβ`,⊥ have the meaning of local stress tensors on the string. At high energy, the

components Tαβ` of the longitudinal stress tensor are parametrically larger, by a factor γ2 � 1,
than the corresponding components Tαβ⊥ of the transverse stress tensor. This difference reflects
the strong energy–dependence of the gravitational interactions.

Using ∂αPα = 0, one sees that the term linear in the fluctuations in (4.4) does not affect the
equations of motion, which therefore read

∂α(Tαβ∂βψ) = 0, ψ = δx`, δx⊥, (3.7)

in compact notations which treat on the same footing the longitudinal and transverse fluctua-
tions. Upon expanding in Fourier modes,

ψ(t, z) =
∫ ∞
−∞

dω
2π

ψ(ω, z) e−iωt, (3.8)

this yields {
a(z)∂2

z − 2b(ω, z)∂z + c(ω, z)
}
ψ(ω, z) = 0, (3.9)

where

a(z) = z(1− z4)2(z4
s − z4),

b(ω, z) = (1− z4)
[
1− z8 − v2(1− z2 + iωzHz

3)
]
,

c(ω, z) = ωzHz
[
ωzH(1− z4) + v2z4(ωzH + 4iz)

]
. (3.10)

The zeroes of a(z) determine the regular singular points of this equation. In particular, the
special role played by the point zs as a world–sheet horizon becomes manifest at this level: for
z = zs the value of ∂zψ(ω, zs) is determined from the equation of motion. This means that
fluctuations of the string at z < zs are causally disconnected from those below the location of
the world–sheet horizon.

3.2.2 Keldysh Green function in AdS/CFT

In what follows we construct solutions to Eqs. (3.9)–(3.10) for the string fluctuations which are
well defined everywhere in the Kruskal diagram for the AdS5 Schwarzschild space–time (see
Fig. 3.1). These solutions are uniquely determined by their boundary conditions at the two
Minkowski boundaries — in the right (R) and, respectively, left (L) quadrants of the Kruskal
diagram —, together with the appropriate conditions of analyticity in the Kruskal variables U
and V (as explained in [130]). The latter amount to quantization prescriptions which impose
infalling conditions on the positive–frequency modes and outgoing conditions on the negative–
frequency ones. These prescriptions ultimately generate the quantum Green’s functions at finite–
temperature and in real time, which are time–ordered along the Keldysh contour [130]. Specif-
ically, the time variables on the R and, respectively, L boundary in Fig. 3.1 correspond to the
chronological and, respectively, antichronological branches of the Keldysh time contour.

1In (3.6), we have corrected an overall sign error in Eq. (22) of Ref. [109].
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Figure 3.1: Kruskal diagram for AdS5 Schwarzschild metric. The Kruskal coordinates U and
V are defined by UV = z−1

z+1 e−2 arctan(z), V/U = −e4πTt. Hence, the black horizon at z = 1
corresponds to UV = 0, whereas V = 0 (U = 0) corresponds to Re t → −∞ (Re t → ∞).
The position of the induced world–sheet horizon is shown with dashed lines in both R and L
quadrants.

As usual in the framework of AdS/CFT, we are interested in the classical action expressed
as a functional of the fields on the boundary. We denote by ψR(tR, z) and ψL(tR, z) the classical
solutions in the R and L quadrant, respectively. Making use of the equations of motion and
integrating by parts, the classical action reduces to its value on the boundary of the Kruskal
diagram, i.e., the R and L Minkowski boundaries:

Sbndry =
∫

dtR
[
−P zψR+

1
2
ψRT

zβ∂βψR

]
zR=zm

−
∫

dtL
[
−P zψL+

1
2
ψLT

zβ∂βψL

]
zL=zm

, (3.11)

where it is understood that the terms involving Pz exist only in the longitudinal sector. zm � 1
is the radial location of the D7–brane on which the string ends.

In (3.11), the world–sheet index β can take a priori both values t and z, but the contribution
corresponding to β = t is in fact zero, since the respective integrand is an odd function of t. This
is worth noticing since in Ref. [109] it was found that the dominant contribution to the imaginary
part of the retarded propagator at high energy (γ � 1) comes from the piece proportional to
T zt. We will later see how that contribution arises in the present calculation, where only the
piece proportional to T zz survives in (3.11).

Switching to the frequency representation, we introduce a basis of retarded and advanced
solutions, ψret(ω, z) and ψadv(ω, z), which are normalized such that ψret(ω, 0) = ψadv(ω, 0) = 1.
They obey ψret(ω, z) = ψ∗ret(−ω, z), and similarly for ψadv. These solutions are truly boundary–
to–bulk propagators in Fourier space. They have been constructed in Ref. [109] (see also [56])
from which we quote the relevant results.

Note first that, unlike what happens for a static (or non–relativistic) quark [241], the retarded
and advanced solutions are not simply related to each other by complex conjugation: one rather
has

ψadv(ω, z) = [g(z)]iω/2 [g(z/zs)]−iωzH/2zs ψ∗ret(ω, z) , (3.12)
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with g(z) = 1+z
1−z e−2 arctan z. Near the boundary (z � 1), these solutions behave as follows

ψret(ω, z) =
(

1 +
z2
Hω

2

2z4
s

z2 +O(z4)
)

+ Cret(ω)
(
z3 +O(z5)

)
(3.13)

ψadv(ω, z) =
(

1 +
z2
Hω

2

2z4
s

z2 +O(z4)
)

+ Cadv(ω)
(
z3 +O(z5)

)
, (3.14)

where the expansion involving even (odd) powers of z is that of the non–normalizable (normal-
izable) mode. The coefficients of the normalizable mode are related by

Cadv(ω) = C∗ret(ω)− iX(ω), (3.15)

with
X(ω) =

2ωzH
3

v2γ2 , ImCret(ω) = i
ωzH

3
. (3.16)

The real part of coefficient Cret(ω) has been numerically evaluated in Ref. [109]. Here, we
only need to know that, at small frequency ω � zsT , its real part is comparatively smaller:
ReCret(ω) ∼ O(ω2z2

H/z
2
s ). Note that, at high energy (γ � 1), X dominates over ImCret in

(3.15).
Consider also the approach towards the world–sheet horizon (z = zs) from the above (z < zs):

there, ψret remains regular, whereas ψadv has a branching point:

ψadv(ω, z) ∝ (zs − z)
iωzH
2zs [1 +O(zs − z)] . (3.17)

This shows that Ψadv(ω, t, z) ≡ e−iωtψadv(ω, z) is an outgoing wave: with increasing time,
the phase remains constant while departing from the horizon. One can similarly argue that
Ψret(ω, t, z) = e−iωtψret(ω, z) is an infalling solution [109].

We now expand the general solution in the right and left quadrants of the Kruskal diagram
in this retarded/advanced basis :

ψR(ω, z) = A(ω)ψret(ω, z) +B(ω)ψadv(ω, z),
ψL(ω, z) = C(ω)ψret(ω, z) +D(ω)ψadv(ω, z). (3.18)

We need four conditions to determine the four unknown coefficients A, B, C, and D. Two of
them are provided by the boundary values at the R and L Minkowski boundaries, that we denote
as ψ0

R(ω) and ψ0
L(ω), respectively. The other two are determined by analyticity conditions in

the Kruskal plane, which allows one to connect the solution in the L quadrant to that in the R
quadrant. With reference to Fig. 3.1, one sees that this requires crossing two types of horizons:
the world–sheet horizons in both R and L quadrants, and the black hole horizons at U = 0 and
V = 0. The detailed matching at these horizons, following the prescription of Ref. [130], has
been performed in Appendix B of Ref. [109], with the following results: the multiplicative factors
associated with crossing the black hole horizons precisely compensate each other, unlike those
associated with crossing the world–sheet horizons, which rather enhance each other. Hence, the
net result comes from the world–sheet horizons alone2, and reads(

C
D

)
=
(

1 0
0 e

ω
zsT

)(
A
B

)
(3.19)

The two independent coefficients can now be determined from the boundary values ψ0
R(ω) and

ψ0
L(ω). This eventually yields

A(ω) = (1 + n)(ω)ψ0
R(ω)− n(ω)ψ0

L(ω), (3.20)
2This point is even more explicit in the analysis in Ref. [56], where a different set of coordinates was used, in

which the world–sheet metric is diagonal. With those coordinates, the only horizons to be crossed when going
from the R to the L boundary in the respective Kruskal diagram are the world–sheet horizons.
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B(ω) = n(ω)
[
ψ0
L(ω)− ψ0

R(ω)
]
. (3.21)

Here n(ω) = 1/(eω/zsT − 1) is the Bose–Einstein thermal distribution with the effective temper-
ature Teff = zsT = T/

√
γ. As it should be clear from the previous manipulations, this effective

thermal distribution has been generated via the matching conditions at the R and L world–sheet
horizons, cf. (3.19).

The equations simplify if one introduces ‘average’ (or ‘classical’) and ‘fluctuating’ variables,
according to ψr ≡ (ψR + ψL)/2 and ψa ≡ ψR − ψL, and similarly for the boundary values. One
then finds

ψr(ω, z) = ψ0
r (ω)ψret(ω, z) +

1 + 2n(ω)
2

ψ0
a(ω)(ψret(ω, z)− ψadv(ω, z)),

ψa(ω, z) = ψ0
a(ω)ψadv(ω, z), (3.22)

and the boundary action takes a particularly simple form:

Sbndry =
1
2

∫
dω
2π

T zz(z)
[
ψr(−ω, z)∂zψa(ω, z) + (r ↔ a)

]
z=zm

. (3.23)

(We have here omitted the term linear in the fluctuations, since this does not matter for the
calculation of the 2–point Green’s functions. This term will be reinserted in the next subsection.)
By combining the above equations, we finally deduce

iSbndry = −i
∫

dω
2π

ψ0
a(−ω)G0

R(ω)ψ0
r (ω)− 1

2

∫
dω
2π

ψ0
a(−ω)Gsym(ω)ψ0

a(ω), (3.24)

with the retarded and symmetric Green’s functions defined as

G0
⊥, R(ω) = z4

sG
0
`, R(ω) = −1

2
T zz⊥ (z) ∂z

[
ψret(ω, z)ψadv(−ω, z)

]
z=zm

, (3.25)

and, respectively,
Gsym(ω) = −(1 + 2n(ω)) ImG0

R(ω). (3.26)

Note that (3.26) is formally the same as the fluctuation–dissipation theorem (or ‘KMS condition’)
characteristic of thermal equilibrium, but with an effective temperature Teff = zsT . By also using
Eqs. (3.13)–(3.14) together with the expression of T zz⊥ given in (3.6), one finally deduces

G0
⊥, R(ω) = z4

sG
0
`, R = GR(ω)− γMQω

2 , (3.27)

where

GR(ω) ≡ −Y
(
Cret(ω) + C∗adv(ω)

)
,

Y ≡ 3
√
λ

4πγz3
H

,

MQ ≡
√
λT

2zm
=

√
λ rm

2πR2
. (3.28)

MQ is the (bare) rest mass of the heavy quark and is independent of temperature, as manifest
in his last rewriting. (rm denotes the position of the D7–brane in the usual radial coordinate
r, which is related to z as z/πT = R2/r.) At finite temperature, this mass receives thermal
corrections, as encoded in the contribution of O(ω2) to ReCret(ω); such corrections are however
negligible at high energy, since their contribution to GR(ω) is not enhanced by a factor of γ
(unlike MQ).

Note that the previous formulae fully specify the imaginary part of the retarded propagator,
and hence also Gsym(ω). Namely, by using (cf. Eqs. (3.15)–(3.16))

ImCret(ω) + ImC∗adv(ω) =
2ωzH

3
(1 + v2γ2) =

2ωzH
3

γ2, (3.29)
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one immediately finds

ImGR(ω) = −ωγη , with η ≡ π
√
λ

2
T 2 . (3.30)

Remarkably, this exact result involves just a term linear in ω. On the other hand, we expect
ReGR(ω) to receive contributions to all orders in ω starting at O(ω2).

The above expression for G0
R, (3.27), coincides with that originally derived in Ref. [109],

although the definition used there for the retarded propagator was different, namely

G0
R(ω) ≡ −Ψ∗retT

zβ∂βΨret|z=zm . (3.31)

(Recall that Ψret(ω, t, z) = e−iωtψret(ω, z).) With this definition, the dominant contribution to
the imaginary part at high energy — the term proportional to X(ω) — arises from the time
derivative of the retarded solution. Although it does not naturally emerge when constructing
the boundary action in the Kruskal plane, this formula (3.31) has another virtue, which will be
useful later on: with this definition, the imaginary part of the retarded propagator,

ImG0
R(ω) =

1
2i
T zβ

(
Ψ∗ret∂βΨret −Ψret∂βΨ∗ret

)
, (3.32)

can be evaluated at any z, since the r.h.s. of (3.32) is independent of z. Indeed, as noticed in
Ref. [109], the world–sheet current

Jα =
1
2i
Tαβ

(
Ψ∗sol∂βΨsol −Ψsol∂βΨ∗sol

)
, (3.33)

(Ψsol(t, z) is an arbitrary solution to the classical EOM (4.6)) is conserved by the equations of
motion, ∂αJα = 0. When Ψsol(t, z) = Ψret(ω, t, z), this conservation law reduces to ∂zJz = 0.
As we shall shortly see, ImG0

R(ω) is a measure of the energy loss of the heavy quark towards the
plasma. Thus the fact this quantity is independent of z is a statement about the conservation
of the energy flux down the string in the present, steady, situation.

3.2.3 A Langevin equation for the heavy quark

Following the general strategy of AdS/CFT, the boundary action (3.24) can be used to generate
the correlation functions of the N = 4 SYM operator which couples to the boundary value of
the field — in this case, the Schwinger–Keldysh 2–point functions of the force operator acting
on the heavy quark [130, 56, 109, 241]. Alternatively, in what follows, this action will be used
to derive stochastic equations for the string endpoint, in the spirit of the Feynman–Vernon
‘influence functional’ [87] (see also Ref. [241]).

To that aim we start with the following path integral which encodes the (quantum and
thermal) dynamics of the string fluctuations in the Gaussian approximation of interest:

Z =
∫ [

Dψ0
RDψR

] [
Dψ0

LDψL
]
eiSR−iSL . (3.34)

This involves two types of functional integrations: (i) those with measure [DψRDψL], which
run over all the string configurations ψR,L(t, z) (in the corresponding quadrants of the Kruskal
diagram) with given boundary values ψ0

R,L(t), and (ii) those with measure [Dψ0
RDψ

0
L], which

run over all the possible paths ψ0
R,L(t) for these endpoint values.

Performing the Gaussian path integral over the bulk configurations amounts to evaluating
the action in the exponent of (3.34) with the classical solutions computed in the previous sec-
tion. This leaves us with the boundary action in (3.24), which determines the dynamics of the
string endpoints — i.e., of the heavy quark —, and which is itself Gaussian. To perform the
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corresponding path integral it is convenient to ‘break’ the quadratic term for the fluctuating
fields ψ0

a, by introducing an auxiliary stochastic field ξ(t). Then the partition function becomes

Z =
∫ [

Dψ0
r

] [
Dψ0

a

]
[Dξ] e−

R
dtdt′ 1

2 [ξ(t)G−1
sym(t,t′)ξ(t′)]×

× exp
{
−i
∫

dtdt′ ψ0
a(t)

[
G0
R(t, t′)ψ0

r (t
′) + δ(t− t′)

(
P z − ξ(t′)

)]}
, (3.35)

where we recall that the term involving P z appears only in the longitudinal sector. The integral
over ψa acts as a constraint which enforces a Langevin equation for the ‘average’ field ψr. This
equation reads ∫

dt′G0
R(t, t′)ψ0

r (t
′) + P z − ξ(t) = 0, 〈ξ(t)ξ(t′)〉 = Gsym(t, t′) , (3.36)

and is generally non–local in time. At this point it is convenient to focus on the large time
behaviour, as controlled by the small–frequency expansion of the Green’s functions GR and
Gsym, and also distinguish between longitudinal and transverse fluctuations. As discussed in
Sect. 2.2, for ω � zsT , the retarded propagator reduces to its imaginary part, (3.30) (in
addition to the bare mass term). In the same limit, one can use 1 + 2n(ω) ' 2zsT/ω to simplify
the expression of Gsym(ω), which then becomes independent of ω :

G⊥, sym(ω) ' π
√
λ γ1/2T 3 ≡ κ⊥ ,

G`, sym(ω) ' π
√
λ γ5/2T 3 ≡ κ` . (3.37)

This in turn implies that, when probed over large time separations t− t′ � 1/zsT , the retarded
propagator can be replaced by a local time derivative (‘friction force’), while the noise–noise
correlator looks local in time (‘white noise’). The we can write

γMQ
d2δx⊥

dt2
= −γη dδx⊥

dt
+ ξ⊥(t), 〈ξ⊥(t)ξ⊥(t′)〉 = κ⊥δ(t− t′) , (3.38)

for the transverse modes and, respectively (note that P z = γηv),

γ3MQ
d2δx`
dt2

= −γ3η
dδx`
dt
− γηv + ξ`(t), 〈ξ`(t)ξ`(t′)〉 = κ` δ(t− t′) , (3.39)

for the longitudinal one. The physical interpretation of these equations becomes more transpar-
ent if they are first rewritten in terms of the respective momenta p⊥ = γMQv⊥ and p` = γMQv` ,
with v⊥ = dδx⊥/dt and v` = v + dδx`/dt.

At this point, we come across a rather subtle point: in all the equations written so far,
the Lorentz factor γ is evaluated with the average velocity v of the heavy quark — the one
which enters the trailing string solution (3.3). However, the event–by–event fluctuations of the
velocity turn out to be significantly large (especially in the longitudinal sector; see below), and
then it becomes appropriate to define the event–by–event (or ‘fluctuating’) momenta p⊥ and
p` by using the respective, event–by–event, Lorentz factor, as evaluated with the instantaneous
velocity. For more clarity, let us temporarily denote by v0 and γ0 the average velocity and the
associated Lorentz factor, γ0 ≡ 1/

√
1− v2

0, and reserve the notations v and γ for the respective
fluctuating quantities:

v2 = v2
` + v2

⊥ =
(
v0 +

dδx`
dt

)2

+
(

dδx⊥
dt

)2

, γ =
1√

1− v2
. (3.40)

When taking the time derivatives of p⊥ and p`, as associated with variations in v⊥ and, respec-
tively, v`, one must also take into account the corresponding change in the γ–factor. Consider
the longitudinal sector first:

1
MQ

dp`
dt

=
(
γ + v`

∂γ

∂v`

)
dv`
dt

=
(
γ + v2

`γ
3
) d2δx`

dt2
' γ3

0

d2δx`
dt2

, (3.41)
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where the last, approximate, equality follows since the fluctuations are assumed to be small,
hence v` ' v0 and γ ' γ0. The final result above is recognized as the expression in the l.h.s. of
(3.39). To the same accuracy, we can write (with δv` = dδx`/dt)

γv` '
(
γ0 +

∂γ

∂v`
δv`

)
(v0 + δv`) ' γ0v0 + (γ0 + γ3

0v
2
0)δv` = γ0v0 + γ3

0δv` , (3.42)

in which we recognize the terms multiplying η in the r.h.s. of (3.39).
Consider similarly the transverse sector. The analog of (3.41) reads

1
MQ

dp⊥
dt

=
(
γ + v⊥

∂γ

∂v⊥

)
dv⊥
dt

= γ
(
1 + v2

⊥γ
2
) d2δx⊥

dt2
' γ0

d2δx⊥
dt2

, (3.43)

where we made the additional assumption that v2
⊥ � 1 − v2

0. (This can be always ensured by
taking the quark mass MQ to be sufficiently large.) Similarly, in the r.h.s. of (3.38), one can
replace γ0v⊥ ' p⊥/MQ.

To summarize, to the accuracy of interest, we have derived the following Langevin equations
for the dynamics of the heavy quark

dpi⊥
dt

= −ηDpi⊥ + ξi⊥(t), 〈ξi⊥(t)ξj⊥(t′)〉 = κ⊥δ
ijδ(t− t′) , (3.44)

dp`
dt

= −ηDp` + ξ`(t), 〈ξ`(t)ξ`(t′)〉 = κ` δ(t− t′) , (3.45)

where the upper index i = 1, 2 in (3.44) distinguishes between the two possible transverse
directions, κ⊥ and κ` are given in (3.37), and

ηD ≡
η

MQ
=

π
√
λ

2MQ
T 2 . (3.46)

The general structure of these equations — with a friction term (or ‘drag force’) describing
dissipation and a noise term describing momentum broadening — is as expected, and so are the
above expressions for ηD, κ⊥ and κ`, which agree with previous calculations in the literature
[55, 56, 109]. It is however important to keep in mind that Eqs. (3.44)–(3.46) have been derived
here only for the situation where the fluctuations in the velocity of the heavy quark remain small
as compared to its average velocity v0. To ensure that this is indeed the case, (3.45) for the
longitudinal motion must be supplemented with an external force which is tuned to reproduce
the average motion. (Without such a term, (3.45) would describe the rapid deceleration of the
heavy quark due to its interactions in the plasma. Such a deceleration may entail additional
phenomena, like bremsstrahlung, which are not encoded in the above equations; see the discus-
sion in Refs. [78, 261, 86].) Namely, we shall add to the r.h.s. of (3.45) a term Fext = ηγ0v0

which for large times equilibrates the average friction force and thus enforces a constant average
velocity v0. Further consequences of these equations will be discussed in Sect. 4.

3.3 Bulk picture of the stochastic motion

In the previous section we have obtained a set of Langevin equations for the heavy quark by
integrating out the fluctuations of the upper part of the string, from the world–sheet horizon
up to the boundary. The noise terms in these equations have been generated via boundary
conditions at the world–sheet horizon, cf. (3.19). This suggests that, within the context of
the supergravity calculation, quantum fluctuations are somehow encoded in the world–sheet
horizon. To make this more explicit, we shall follow Refs. [241, 70] and construct a set of
equations describing the stochastic dynamics of the upper part of the string, in which the noise
term is acting on a point on the string which is infinitesimally close to the world–sheet horizon.
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More precisely, we introduce a ‘stretched’ horizon at zh ≡ zs − ε and integrate out the
fluctuations of the part of string lying between zs and zh. The procedure is quite similar to
the one described in the previous section except that one has to fix the boundary values for
the fluctuations also on the stretched horizon, rather than just on the Minkowski boundary.
Denoting the respective values by ψh, where as before ψ stands generically for either δx` or δx⊥,
this procedure yields an effective action Sheff for ψh with the same formal structure as exhibited
in Eq. (3.24), that is,

iSheff = −i
∫

dω
2π
ψha(−ω)GhR(ω)ψhr (ω)− 1

2

∫
dω
2π
ψha(−ω)Ghsym(ω)ψha(ω). (3.47)

(We temporarily omit the term linear in the fluctuations; this will be restored in the final
equations.) The horizon Green’s functions GhR and Ghsym will be shortly constructed. The
calculations being quite involved, it is convenient to start with a brief summary of our main
results:

The r–fields ψr(ω, z) describing the string fluctuations within the bulk (zm ≤ z ≤ zh) obey
the equations of motion (4.6) with Neumann boundary conditions at z = zm — meaning that the
string endpoint on the boundary is freely moving (except for the imposed longitudinal motion
with velocity v0) — and with Dirichlet boundary conditions at z = zh: ψr(ω, zh) = ψhr (ω).
This boundary field ψhr (ω) is however a stochastic variable, whose dynamics is described by the
effective action (3.47). Via the classical solutions, this stochasticity is transmitted to the upper
endpoint of the string, i.e., to the heavy quark. As a result, the latter obeys the same Langevin
equations as previously derived in Sect. 2.

We start with the partition function encoding the quantum dynamics of the upper part of
the string (zm ≤ z ≤ zh) in the Gaussian approximation:

Z =
∫ [

Dψ0
RDψRDψ

h
R

] [
Dψ0

LDψLDψ
h
L

]
eiSR−iSL+iSheff . (3.48)

The different measures Dψ0, Dψ and Dψh correspond, respectively, to the path integral over
the string endpoint on the Minkowski boundary, over the bulk part of the string, and over the
point of the string on the stretched horizon (separately for the left and right quadrants of the
Kruskal plane). Also, SR and SL are defined as in (4.4), but with the integral over z restricted
to zm < z < zh. In what follows we shall construct the various pieces of the action which enter
the exponent in (3.48).

(I) The effective action at the stretched horizon, Sheff. As anticipated, this is obtained by
integrating out the string fluctuations within the infinitesimal strip zh < z < zs. To that
aim, we need the classical solutions ψR(ω, z) and ψL(ω, z) in the Kruskal plane which take the
boundary values ψhR(ω) and ψhL(ω) at z = zh and are related by the condition (3.19). Clearly,
the respective solutions read (in the (r, a) basis, for convenience)

ψr(ω, z) = ψhr (ω)ψhret(ω, z) +
1 + 2n(ω)

2
ψha(ω)(ψhret(ω, z)− ψhadv(ω, z)),

ψa(ω, z) = ψha(ω)ψhadv(ω, z), (3.49)

where ψhret and ψhadv are rescaled versions of the retarded and advanced solutions introduced in
Sect. 2.2 which are normalized to 1 at z = zh; e.g., ψhret(ω, z) = ψret(ω, z)/ψret(ω, zh). For z
close to zs (and hence to zh as well), these functions can be expanded as

ψhret(ω, z) = 1 +O(zs − z) ,

ψhadv(ω, z) =
(
zs − z
zs − zh

) iωzH
2zs

[1 +O(zs − z)] . (3.50)

Substituting these classical solutions into the action produces the boundary action shown in
(3.47), with GhR defined by the horizon version of (3.25). Given the near–horizon behaviour of
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the solutions (3.50) and of the local tension T zz(z) (which vanishes at z = zs, cf. (3.6)), it is
clear that only ∂zψ

h
adv contributes to GhR in the limit ε → 0. This yields the following, purely

imaginary, result:

Gh⊥,R(ω) = z4
sG

h
`,R(ω) = −1

2
T zz⊥ (zh)∂zψhadv(−ω, z)

∣∣
z=zh

= −iωγη . (3.51)

This coincides, as it should, with the imaginary part of the respective boundary propagator3,
(3.30) (cf. the discussion at the end of Sect. 2.2). Then the symmetric Green’s function Ghsym,
which is related to ImGhR via the KMS relation (3.26), is exactly the same as the corresponding
function on the boundary.

If the string point on the stretched horizon was a free endpoint endowed with the action
(3.47), it would obey Langevin equations similar to those derived in Sect. 2.3. However, this is
an internal point on the string, and as such it is also subjected to a tension force from the upper
side of the string at z < zh. This force is encoded in the bulk action SR − SL, to which we now
turn.

(II) The bulk piece of the action SR − SL. This is defined as

SR − SL = −1
2

∫ zh

zm

dz
∫

dt Tαβ(z)
[
∂αψR∂βψR − ∂αψL∂βψL

]
=

1
2

∫ zh

zm

dz
∫

dt
[
ψR∂α

(
Tαβ∂βψR

)
− ψL∂α

(
Tαβ∂βψL

)]
− 1

2

∫
dt T zz(z)

(
ψR∂zψR − ψL∂zψL

)∣∣∣∣z=zh
z=zm

(3.52)

or, after going to Fourier space and to the (r, a)–basis,

SR − SL =
∫

dω
2π

∫
dz ψa(−ω, z)∂α

[
Tαβ(z)∂βψr(ω, z)

]
− 1

2

∫
dω
2π

T zz(z)
(
ψa(−ω, z)∂zψr(ω, z) + (r ↔ a)

)∣∣∣∣z=zh
z=zm

. (3.53)

We were so explicit here about the integration by parts, because this operation turns out to
be quite subtle. First, notice that the contributions proportional to T zt have cancelled in the
boundary terms, for the same reason as discussed below (3.11), i.e., because they are odd
functions of t (or ω). To ensure this property, it has been important to perform the previous
operations in the order indicated above, that is, to first integrate by parts, as in (3.52), and
only then change to the (r, a)–basis, as in (3.53). (Reversing this order would have affected the
symmetry properties of the integrand, and then the terms ∝ T zt would not cancel anymore.)

Second, there are some subtleties about the boundary value of SR − SL at the stretched
horizon, that we rewrite here for more clarity:

(SR − SL)hbndry = −1
2

∫
dω
2π

T zz(zh)
(
ψa(−ω, z)∂zψr(ω, z) + (r ↔ a)

)∣∣∣∣
z=zh

(3.54)

If we were to evaluate this action with the classical solutions (3.49), the result would precisely
cancel the effective action (3.47) in the exponent of (3.48). Indeed, up to a sign, (3.54) has
exactly the structure that has been used to build the effective action by inserting the classical
solutions (compare to (3.23)). However, in the present context, (3.54) must be rather seen as
the boundary value of the bulk action when approaching the stretched horizon from the above
(i.e., from z < zh), and as such it provides boundary conditions for the dynamics of the upper

3Incidentally, this calculation of ImGhR, which is exact, together with the conservation law ∂zJ
z = 0, cf. (3.33),

can be used to check, or even derive, the expressions for ImCret(ω) and ImCadv(ω) given in Eqs. (3.15)–(3.16).
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side of the string (see below). This being said, it is nevertheless possible, and also convenient, to
use the appropriate piece of (3.54) in order to cancel the dissipative piece ∝ GhR in the effective
action (3.47). This is simply the statement that the totality of the energy which crosses the
stretched horizon coming from the above flows further down along the string.

Specifically, the relevant piece of (3.54) is that proportional to ∂zψa, which after using (3.49)
can be evaluated as

− 1
2
T zz(zh)∂zψhadv(−ω, z)

∣∣
z=zh

= GhR(ω) (3.55)

where we have recognized the expression (3.51) for GhR. One thus obtains:

(SR − SL)hbndry = −
∫

dω
2π

ψha(−ω)
[

1
2
T zz(z)∂zψr(ω, z)−GhR(ω)ψhr (ω)

]
z=zh

. (3.56)

As anticipated, the last term in (3.56) compensates the piece involving GhR in (3.47), and then
the total action reads

iSR − iSL + iSheff =i
∫

dω
2π

ψ0
a(−ω)

[
1
2
T zz(z)

(
∂zψr(ω, z) + ψ0

r (ω)∂zψadv(−ω, z)
)
− P z

]
z=zm

+ i

∫ zh

zm

dz
∫

dω
2π

ψa(−ω, z)∂α
[
Tαβ(z)∂βψr(ω, z)

]
− i
∫

dω
2π

ψha(−ω)
[

1
2
T zz(z)∂zψr(ω, z)− ξh(ω)

]
z=zh

(3.57)

where the differences between longitudinal and transverse fluctuations are kept implicit (in
particular, it is understood that the term proportional to P z appears only in the longitudinal
sector). Two additional manipulations have been necessary to write the action in its above form:
(i) In the first line of (3.57) we have used ψa(ω, z) = ψ0

a(ω)ψadv(ω, z), cf. (3.22). (ii) The
piece involving Ghsym(ω) in (3.47) have been reexpressed as a Gaussian path integral over the
noise variables ξh, which therefore obey〈

ξh(ω)ξh(ω′)
〉

= 2πδ(ω + ω′) (1 + 2n)ωγη , with n(ω) =
1

eω/zsT − 1
. (3.58)

Once again, (3.58) involves the effective temperature Teff = zsT .
By integrating over the fluctuating fields ψ0

a(−ω), ψa(−ω, z), and ψha(−ω), we are finally left
with the following set of equations of motion and boundary conditions:

(1) A modified Neumann boundary condition for the string endpoint string at the boundary
(we temporarily reintroduce the polarization label p with p = ` or ⊥) :

1
2
T zzp (z)

[
∂zψ

p
r (ω, z) + ψ0,p

r (ω)∂zψadv(−ω, z)
]
z=zm

= ηγv δp` . (3.59)

(2) The standard equations of motion for the fluctuations ψr(ω, z) of the string in the bulk
at zm < z < zh (cf. (4.6)).

(3) A stochastic equation for the point of the string on the stretched horizon :

1
2
T zz(z)∂zψr(ω, z)

∣∣
z=zh

= ξh(ω). (3.60)

We now analyze the consequences of these equations and, in particular, emphasize the dif-
ferences w.r.t. the corresponding analysis in Ref. [241].

(3.60) is a Langevin equation of a special type: the noise term is precisely compensating
the pulling force T zz(zh)∂zψr due to the string tension. By taking the expectation value of
this equation and recalling that T zzp (zh) ∼ ε vanishes in the limit ε → 0, we conclude that
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∂z〈ψpr (ω, z)〉 is regular near the world–sheet horizon; this implies that the average value of the
classical solution is proportional to ψret :

〈ψr(ω, z)〉 = 〈ψ0
r (ω)〉ψret(ω, z) . (3.61)

The normalization is fixed by the expectation value of ψ0
r (ω) — the boundary value of ψr(ω, z)

at z = zm � 1.
We will now construct the solution ψr(ω, z) to the EOM (3.7) by specifying its boundary

values, ψ0
r (ω) and ψhr (ω), at the points z = zm and z = zh, respectively. After simple algebra,

the respective solution can be written as

ψr(ω, z) = ψ0
r (ω)ψret(ω, z) +

[
ψhr (ω)− ψ0

r (ω)ψret(ω, zh)
] ψret(ω, z)− ψadv(ω, z)
ψret(ω, zh)− ψadv(ω, zh)

.

The reason why this particular writing is natural is as follows: when taking the expectation
value according to (3.61), we find 〈ψhr (ω)〉 = 〈ψ0

r (ω)〉ψret(ω, zh), which shows that the coefficient
ψhr (ω) − ψ0

r (ω)ψret(ω, zh) in front of the second term in (3.62) is a random variable with zero
expectation value. Clearly, this term plays the role of a noise. The statistics of this noise is
determined by the horizon Langevin equation (3.60), and in turn it implies a boundary Langevin
equation for ψ0

r (ω), via the condition (3.59). Let’s see how all that works in detail. We will first
rewrite (3.62) as

ψr(ω, z) = ψ0
r (ω)ψret(ω, z) + i ξ0(ω)

ψret(ω, z)− ψadv(ω, z)
ImGR(ω)

, (3.62)

thus fixing the normalization of the noise term ξ0(ω). After inserting (3.62) in the Neumann
boundary condition (3.59) (say, in the transverse sector), one finds4

G0
R(ω)ψ0

r (ω) = ξ0(ω) , (3.63)

which is the standard form of a Langevin equation (compare to (3.36)).
It remains to check that the statistics of ξ0, as inferred from (3.60), is indeed the same as

previously derived in Sect. 3.2.3. To that aim, we insert the form (3.62) of the solution into
(3.60); as already explained, the regular piece of the solution ∝ ψret(ω, z) does not contribute
in the limit ε→ 0, so we are left with

− i

2
ξ0(ω)

ImGR(ω)
T zz(z)∂zψadv(ω, z)

∣∣
z=zh

= ξh(ω). (3.64)

Using T zz(z)∂zψadv(ω, z)|z=zh = −2iωγηψadv(ω, zh), cf. (3.55), together with ImGR(ω) =
−ωγη, this finally becomes

ψadv(ω, zh) ξ0(ω) = ξh(ω) . (3.65)

This relation is in fact natural, as we argue now: from the transformation connecting ξ to ψa,
or directly by comparing (3.62) with the standard expression (3.22) for ψr, one can see that the
strength of the noise term scales like ξ(ω) ∼ ψa(ω)Gsym(ω). On the other hand, (3.22) implies
ψha(ω) = ψadv(ω, zh)ψ0

a(ω). Hence one can write

ξh(ω) ∼ ψha(ω)Ghsym(ω) ' ψadv(ω, zh)ψ0
a(ω)Gsym(ω) ∼ ψadv(ω, zh) ξ0(ω) . (3.66)

4The following identities, which can be checked from (3.25), are useful in this respect:

G0
⊥, R(ω) = −1

2
T zz⊥ (zm)

ˆ
∂zψret(ω, z) + ∂zψadv(−ω, z)

˜
z=zm

.

ImGR(ω) =
i

2
T zz⊥ (zm) ∂z

ˆ
ψret(ω, z)− ψadv(ω, z)

˜
z=zm

.
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Remarkably, the relative factor between ξ0 and ξh in (3.65) does not spoil the normalization
of the noise–noise correlator, because |ψadv(ω, zh)| = 1, as we now demonstrate. To that aim
we rely on the observation at the end of Sect. 3.2.2 that the r.h.s. of (3.32) is independent of
z. Clearly, this remains true after replacing ψret → ψadv in (3.32). (Indeed, the current (3.33)
is conserved for an arbitrary solution Ψsol(t, z).) Writing ψadv(ω, z) = C(ω)ψhadv(ω, z), so that
ψadv(ω, zh) = C(ω), and evaluating the r.h.s. of (3.32) separately at z = zm and z = zh, one
deduces that |C(ω)| = 1, as anticipated. Thus, the 2–point function 〈ξ0(ω)ξ0(ω′)〉 is indeed the
same as in Sect. 3.2.3. Note also that our previous argument is independent of the precise value
of ε (the distance between the world–sheet and the stretched horizons), so long as ε is small
enough for the near–horizon expansions to make sense. This strongly suggests that the strength
of the noise remains constant along the string, from the stretched horizon up to the boundary.

3.4 Discussion and physical picture

In this section, we will first discuss some consequences of the previously derived Langevin equa-
tions, which support the idea that the noise terms in these equations are of non–thermal nature,
and then propose a physical picture in which these fluctuations are interpreted as quantum
mechanical fluctuations associated with medium–induced radiation.

3.4.1 Momentum distributions from the Langevin equations

An important property of the Langevin equations (3.44)–(3.45) that we would like to emphasize
is that, except in the non–relativistic limit γ ' 1, these equations do not describe the ther-
malization of the heavy quark. There are several arguments to support this conclusion. For
instance, in thermal equilibrium the momentum distributions should be isotropic, but this is
clearly not the case for the large–time distributions generated by Eqs. (3.44)–(3.45), because
of the mismatch between κ` and κ⊥ when γ > 1. Besides, in order to generate the canonical
distribution for a relativistic particle, P ∝ exp{−

√
p2 +M2

Q/T}, the noise correlations must
not only be isotropic, but also obey the relativistic version of the Einstein relation, which reads
κ = 2ETηD [69]. Using Eqs. (3.37) and (3.46), it is easily seen that this condition is not satisfied
for either transverse, or longitudinal, fluctuations (except if γ = 1, once again).

The Einstein relation is a particular form of the fluctuation–dissipation theorem, so its failure
might look surprising given that the Green’s functions at the basis of our Langevin equations
obey the KMS condition (3.26). Recall, however, that this peculiar KMS condition involves an
effective temperature Teff = T/γ1/2; and indeed, in the transverse sector at least, the Einstein
relation appears to be formally satisfied, but with T → Teff. But this does not hold in the
longitudinal sector, where κ` involves an additional factor γ2. Hence, the present equations
cannot lead to thermal distributions.

It is then interesting to compute the actual momentum distributions generated by these
Langevin equations at large times. Consider first the transverse sector, and introduce the prob-
ability distribution P (p⊥, t) for the transverse momentum p⊥ = (p1, p2) at time t:

P (p⊥, t) ≡
∫

[Dξi] δ
(
p⊥ − p⊥[ξi](t)

)
e−

1
2κ⊥

R
dt ξi(t)ξi(t) . (3.67)

Here, p⊥[ξi](t) is the solution to (3.44) corresponding to a given realization of the noise5, and
reads (with i = 1, 2; we assume pi(0) = 0 so that 〈p⊥(t)〉 = 0 at any time)

pi(t) =
∫ t

0
dt′ e−ηD(t−t′) ξi(t′) . (3.68)

5In general, this solution will depend on our prescription for discretizing the time axis; this is so since the
noise–noise correlator depends itself on the momentum (‘multiplicative noise’). But to the accuracy of interest,
we can treat γ in (3.37) as the fixed quantity γ0, and then one can safely use continuous notations.
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This implies 〈p2
1〉 = 〈p2

2〉 ≡ 〈p2
⊥〉 with

〈p2
⊥(t)〉 =

κ⊥
2ηD

(
1− e−2ηDt

)
' κ⊥

2ηD
, (3.69)

where the last, approximate equality holds for large times ηDt � 1. Returning to (3.67), this
gives

P (p⊥, t) =
1

2π〈p2
⊥(t)〉 exp

{
− p2

1 + p2
2

2〈p2
⊥(t)〉

}
. (3.70)

A similar expression holds in the longitudinal sector, but only after subtracting away the global
motion with velocity v0, which one can do by writing δp` ≡ p` − p0 with p0 = MQγ0v0.

For large times t � 1/ηD, the transverse and longitudinal momentum distributions for the
heavy quark approach the following, stationary, forms

P (p⊥, t) ' 1
2πγ1/2TMQ

exp
{
− p2

1 + p2
2

2γ1/2TMQ

}
,

P (δp` , t) ' 1√
2πγ5/2TMQ

exp
{
− δp2

`

2γ5/2TMQ

}
, (3.71)

which formally look like thermal, Maxwell–Boltzmann, distributions for non–relativistic parti-
cles, but with different temperatures in the transverse and longitudinal sector — T⊥ = γ1/2T
and T` = γ5/2T —, none of them equal to the plasma temperature T .

3.4.2 Physical picture: Medium–induced radiation

In this section, we propose a physical picture for the dynamics of the heavy quark, as encoded
in the Langevin equations (3.44)–(3.46). The general picture is that of medium–induced parton
branching, as previously developed in Refs. [116, 117, 78, 141], that we shall here adapt to the
problem at hand. As we will see, this qualitative and admittedly crude picture provides the right
parametric estimates for both the drag force and the (transverse and longitudinal) momentum
broadening. Besides, it supports the non–thermal nature of the noise terms in the Langevin
equations.

Due to its interactions with the strongly–coupled plasma, a heavy quark can radiate massless
N = 4 SYM quanta (gluons, adjoint scalars and fermions) which then escape in the medium,
thus entailing energy loss towards the plasma and momentum broadening (due to the recoil of
the heavy quark associated with successive parton emissions). This dynamics is illustrated in
Fig. 3.2. The main ingredients underlying our physical picture are as follows:

(i) The emission of a virtual parton with energy ω and (space–like) virtuality Q2 = k2−ω2 >
0 requires a formation time tcoh ∼ ω/Q2. (k is the parton 3–momentum, and we assume high–
energy kinematics: |k| ' ω � Q.) This follows from the uncertainty principle: in a comoving
frame where the parton has zero momentum, its formation time is of order 1/Q; this becomes
ω/Q2 after boosting by the parton Lorentz factor γp = ω/Q. Note also that, when the parent
heavy quark is highly energetic (γ � 1), the momentum k of the emitted parton is predominantly
longitudinal: |k| ' k` ' ω, whereas k⊥ ∼ Q� k`.

(ii) During the formation time tcoh ∼ ω/Q2, the heavy quark does not radiate just a single
parton, but rather a large number of quanta, of O(

√
λ), whose emissions are uncorrelated with

each other. This is merely an assumption, which as we shall see provides the right λ–dependence
for the final results.

(iii) Only those quanta can be lost towards the plasma, whose virtualities are small enough
— smaller than the saturation momentum Qs ∼ tcohT

2 corresponding to the parton formation
time. This follows from the analysis in Ref. [116] which shows that an energetic parton propa-
gating through the strongly coupled plasma feels the latter as a constant force ∼ T 2 which acts
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towards reducing its transverse momentum (or virtuality). Then, a space–like parton, which
would be stable in the vacuum, can decay inside the plasma provided the lifetime tcoh of its
virtual fluctuations is large enough for the mechanical work ∼ tcohT

2 done by the plasma to
compensate the energy deficit ∼ Q of the parton. This condition amounts to Q . Qs, with the
upper limit given by

Qs ∼ tcohT
2 ∼ (ωT 2)1/3 ∼ √γp T , (3.72)

where we have also used tcoh ∼ ω/Q2 and γp = ω/Q.
(iv) The rapidities of the radiated quanta are bounded by the rapidity of the heavy quark:

γp . γ. This is again motivated by the uncertainty principle and at least at weak coupling it is
confirmed by the explicit construction of the heavy quark wavefunction [76].

We shall now use this picture to compute the rate for energy loss and momentum broadening
of the heavy quark. The latter radiates energy ∆E ∼

√
λω over a time interval ∆t ∼ ω/Q2,

where ω and Q are constrained by Q . Qs(ω, T ). The dominant contribution to the rate
|∆E/∆t| comes from those quanta carrying the maximal possible energy ω ' γQ and also
the maximal corresponding virtuality Q ' Qs(γ, T ) ∼ √γ T (to minimize the emission time).
Therefore,

− dE
dt
'
√
λω

(ω/Q2
s)
'
√
λQ2

s ∼
√
λ γ T 2 , (3.73)

in qualitative agreement with the estimate for the drag force Fdrag = ηγv ∼ γ
√
λT 2 in (3.45).

(Recall that we consider the relativistic case v ' 1.)
Consider similarly momentum broadening: being uncorrelated with each other, the

√
λ

quanta emitted during a time interval tcoh have transverse momenta which are randomly ori-
ented, so their emission cannot change the average transverse momentum of the heavy quark.
However, the changes in the squared momentum add incoherently with each other, thus yielding
(once again, the dominant contribution comes from quanta with Q ∼ Qs(γ, T ) and ω ' γQ)

d〈p2
⊥〉

dt
∼
√
λQ2

s

(ω/Q2
s)
∼
√
λ
Q4
s

γQs
∼
√
λ
√
γ T 3 , (3.74)

which is parametrically the same as the estimate for κ⊥ in the first equation (3.37). The random
emissions also introduce fluctuations in the energy (or longitudinal momentum) of the heavy
quark, in addition to the average energy loss. The dispersion associated with such fluctuations
is estimated similarly to (3.74) (below, δp` ≡ p` − 〈p`〉)

d〈δp2
` 〉

dt
∼
√
λω2

(ω/Q2
s)
∼
√
λ
√
γ γ2 T 3 , (3.75)

in qualitative agreement with the previous result, (3.37), for κ`. Note that, with this interpre-
tation, the relative factor γ2 in between κ` and κ⊥ is simply the consequence of the relation
ω ' γQ between the energy and the virtuality (or transverse momentum) of an emitted parton.

This physical picture also clarifies the role of the world–sheet horizon in the dual gravity
calculation: via the UV/IR correspondence, the radial position zs = 1/

√
γ of this horizon (in

units of zH = 1/πT ) is mapped onto the saturation momentum Qs ∼ √γ T in the boundary,
gauge, theory. Hence the emergence of the noise terms from the near–horizon dynamics of
the string reflects quantum–mechanical fluctuations in the emission of quanta with virtualities
Q ∼ Qs, which as we have just seen control momentum broadening.

It is furthermore interesting to compare the above physical picture to the corresponding one
at weak coupling [17, 19, 177, 57]. Note first that the mechanism for momentum broadening
is different in the two cases: at weak coupling, this is dominated by thermal rescattering,
i.e., by successive collisions with the plasma constituents which are thermally distributed (see
Fig. 3.3). In that case, the rate d〈p2

⊥〉/dt ≡ q̂ defines a genuine transport coefficient — the
“jet–quenching parameter” —, i.e. a local quantity which depends only upon the local density

51



of thermal constituents (quarks and gluons) together with the gluon distribution produced via
their high–energy evolution. By contrast, at strong coupling, the dominant mechanism at work
is medium–induced radiation, which is intrinsically non–local (it requires the formation time
tcoh) and hence cannot be expressed in terms of a local transport coefficient. Medium–induced
radiation is of course possible at weak coupling too (see Fig. 3.4), but the respective contribution
is suppressed by a factor g2Nc as compared to the thermal rescattering. We see that, formally,
it is the replacement g2Nc →

√
λ (i.e., the coherent emission of a large number of quanta)

which makes the medium–induced radiation become the dominant mechanism for momentum
broadening at strong coupling.

Figure 3.2: Energy loss and momentum broadening via medium–induced parton emission at
strong coupling. It is understood that the radiated partons feel a plasma force which allows
them to be liberated from the parent heavy quark (see text for details).

On the other hand, energy loss is predominantly due to medium–induced radiation at both
weak and strong coupling, but important differences occur between the detailed mechanisms in
the two cases (compare Figs. 3.2 and 3.4): At weak coupling, the radiated gluon, which typically
comes from a highly virtual gluon in the quark wavefunction, is freed (radiated) via thermal
rescattering. At strong coupling, radiation is caused by the plasma force ∼ T 2. After being
emitted, the parton undergoes successive medium–induced branchings, thus producing a system
of partons with lower and lower energies and transverse momenta, down to values of O(T ), when
the partons cannot be distinguished anymore from the thermal bath.

Figure 3.3: Momentum broadening via thermal rescattering at weak coupling.
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Figure 3.4: Energy loss via medium–induced gluon emission at weak coupling

It is finally interesting to notice that, in spite of such physical dissymmetry, the formula for
energy loss at weak coupling can be written in a form which ressembles (3.73), namely

− dE
dt
' g2NcQ

2
s (weak coupling) , (3.76)

where however Qs is now the saturation momentum to lowest order in perturbative QCD and
is related to the respective jet–quenching parameter via Q2

s ' q̂tcoh. Energy loss involves a
coherent phenomenon at both weak and strong coupling.
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Chapter 4

Heavy Quark in an Expanding
Plasma in AdS/CFT

Using the Janik–Peschanski dual to a Bjorken flow, a Langevin equation is derived for a heavy
quark in an expanding N = 4 supersymmetric Yang–Mills plasma. Such a plasma is char-
acterized by a proper–time dependence of the temperature and corresponds to a system out
of equilibrium. The analysis first focuses on a quark at rest in the plasma comoving frame.
The case of a quark moving across a longitudinally expanding plasma is then considered. The
two–point functions for the random noise acting on such heavy quark probes are computed.

4.1 Introduction

Many problems in physics require going beyond standard Feynman diagrams and S–matrices
calculations. In non–equilibrium settings, interactions generally take place in a short time in-
terval and cannot be switched adiabatically as is done e.g. in the LSZ reduction formula for
scattering experiments. An asymptotic state might also be out of grasp due to an inherent
instability of the system. The initial state is known though, so that 〈in | in〉 matrix elements
still provide valuable data. This is at the core of the Schwinger–Keldysh method where the
amplitudes are calculated along a path extended in the complex time plane [161, 184]. While
in non–equilibrium statistical physics the response of a system to a disturbance can often be
reduced to real–time Green functions for thermal equilibrium systems, the method of Keldysh
Green functions was historically first developed to directly tackle systems out of equilibrium.
Equilibrium and non–equilibrium statistical physics are actually formally equivalent when one
introduces a contour–ordering to replace the usual time–ordering. See section 2.1.3 of [184]
and references therein for a more detailed discussion. Non–equilibrium statistical physics is
concerned with correlators of the type 〈O(t)〉 = Tr [ρO(t)] for t > ti, where ρ denotes the dis-
tribution for an equilibrium hamiltonian but O(t) is an operator in a Heisenberg representation
with respect to an hamiltonian with an interactions part. Here, ti refers to an initial time. The
standard procedure for obtaining a non–equilibrium state is to consider a state which until ti
was in equilibrium with a reservoir and was thus prepared in some initial conditions. At t > ti
the state is disconnected from the reservoir and interactions are switched on. In fact, unless for
fleeting properties of a system out of equilibrium, the dependence on the initial state is rapidly
lost due to interactions and the distribution ρ is arbitrary in this case.
In [130] a prescription for computing Keldysh Green functions in the AdS/CFT correspondence
was found and later implemented in [109] for computing transverse and longitudinal momentum
broadening for a heavy quark, from variations of the underlying Wilson line. Recent works
[70, 92, 241] explore the Langevin description for a heavy quark from the gauge–string duality.
The present chapter of this thesis aims at generalizing this to an expanding plasma. This is
a non–equilibrium situation. In particular the medium is characterized by a local temperature
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whose proper–time dependence obeys a scaling law first devised by Bjorken [43]. Actually, the
recipe of [130] for computing real–time correlators in AdS/CFT was later justified in a series of
papers by Skenderis and van Rees [236, 237, 255]. See [255] for a review and further explanations
on how their results reduce to the ingoing boundary condition for bulk fields of [130] when the
sources are set equal on both boundaries of the Penrose diagrams used in such calculations. Be-
sides, their work is amenable to all sorts of initial states and ensembles by switching additional
sources in the Euclidean segments of the devised construction.
The authors of [63] studied horizon formation and thermalization in a non–Abelian plasma re-
sulting from turning on background fields, described by gravitational waves. It would be very
interesting to derive transport coefficients such as momentum broadening coefficients for a hard
probe from the numerical analysis presented in [63] but how this might be achieved is obscured
by a lack of hindsight for an evolution out of equilibrium at strong coupling in AdS/CFT. The
approach presented in the present work relies on the leading–order expansion at large times to
the Janik–Peschanski dual [152, 153] to a Bjorken flow and it allows for explicit results.
The next section first reviews the work of Kim, Sin and Zahed [162] and explains how to derive,
for a quark at rest in the expanding plasma comoving frame, a Langevin equation. The corre-
lators of the random forces thereof are computed. Section 4.3. is concerned with a fast quark
moving transversally in a strongly coupled N = 4 supersymmetric Yang–Mills plasma experi-
encing Bjorken flow. The gravity dual corresponds to a string trailing in the Janik–Peschanski
background. The dispersions relations, energy loss parameter and momentum broadening co-
efficients are derived. They exhibit the expected scaling behaviour for the temperature, with
no other dependence on the initial thermalization temperature. The method used to compute
those quantities in a non–equilibrium, expanding plasma relies on a coordinate change and a
particular Fourier–like mode–expansion to map the problem to a situation where the background
has a fixed, global temperature.

4.2 Transverse and rapidity fluctuations in an expanding plasma
and the Langevin description

In [152, 153] the gravity dual to a Bjorken flow [43] was derived in a τ−2/3 expansion to the
bulk metric in Fefferman-Graham coordinates. The proper–time of an expanding plasma τ is
related, along with the rapidity y, to the physical laboratory time tlab and direction of expansion
x3 as tlab = cosh(y)τ , x3 = sinh(y)τ . Those parameters are convenient for describing the
hydrodynamic regime which takes over after a scenario where typically at proper time τ = 0 two
gold nuclei collide at high enough energy that their subsequent evolution leads to a quark–gluon
plasma. At proper time τ0 the resulting plasma is thermalized and its properties are described
by Bjorken’s hydrodynamic model [43]. The plasma expands along the collision axis. Most
useful to the remainder of this work is the scaling law

T 3τα = const, (4.1)

where α = 3v2
S . From conformal invariance the sound velocity vS is set to 1/

√
3 and then α = 1.

In this chapter, especially in Section 4.3. thereof, it is assumed that the plasma expands for a
sufficiently long period of time that the quark probes a large enough distance L of the quark–
gluon plasma. No other possible phase will be considered.
The leading order result in the JP expansion reads

ds2 =
R2

z2
Hz

2

[
−(1− w4)2

(1 + w4)
dτ2 + (1 + w4)

[
τ2dy2 + dx2

⊥
]

+ z2
Hdz

2

]
, (4.2)

with w = z
(τ/τ0)1/3 ε

1/4, ε = (πT0)4/4 and where T0 = 1
πzH

is the Hawking temperature.
The picture that emerges is that of a black hole whose horizon is moving away from the boundary.
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The coordinate change, t
t0

= 3
2( ττ0 )2/3, u(t, z) = 2w2

1+w4 – after discarding the non–diagonal
components which ensue, as they are subleading in the τ expansion – yields [162]

ds2 =
R2

z2
Hu

(
−fdt2 +

4t2

9
dy2 +

3t0
2t
dx2
⊥ + z2

H

du2

4uf

)
, (4.3)

where f(u) = 1− u2.
The above form of the metric proves convenient as it converts a time–dependent problem into
a setting where the usual recipe for extracting dual gauge theory correlators from fields in a
AdS–Schwarzschild black hole background applies.
The time–dependent transverse and rapidity components of the metric are accounted for by
Fourier–Hankel transformations. The study of transverse string fluctuations was carried out in
[162] where the corresponding momentum broadening coefficient and diffusion coefficients were
found for a heavy quark probe at rest in the plasma co–moving frame.
The remainder of this section generalizes this to the rapidity fluctuations as well. Moreover, the
Kubo–Martin–Schwinger formula relating the retarded and symmetric correlators is derived.
The construction of Schwinger–Keldysh propagators in AdS/CFT first devised in [130] and
later justified in [236, 237, 255] thus holds. This then ensures for the existence of a Langevin
description – which was merely postulated in [162].
The Nambu–Goto action

SNG = − 1
2πα′

∫
d2σ
√−g, gαβ = Gµν∂αX

µ∂βX
ν , (4.4)

can be expanded to quadratic order in the transverse and rapidity fluctuations δX1,2 = ξ1,2(t, u)
and δy(t, u) in the background specified by the target–space metric components Gµν of (4.3).
This provides

SNG =−
√
λT0

4

∫
dt du

1
u3/2

+

√
λT0

8

∫
dt du

(
3t0
2t

) ∑
i=1,2

[
(∂tξi)2

u3/2f(u)
− (2πT0)2 f(u)

u1/2
(∂uξi)2

]

+

√
λT0

8

∫
dt du

(
4t2

9

)[
(∂tδy)2

u3/2f(u)
− (2πT0)2 f(u)

u1/2
(∂uδy)2

]
. (4.5)

Here λ = R2/α′ >> 1, so that string loop corrections are negligible at this order and compu-
tations at the two–derivatives supergravity level are reliable. The action (4.5) is the same as
in a static black hole background apart from overall time–dependent factors. The equations of
motion are [

∂2
t −

1
t
∂t + 2π2T 2

0 f(u)(1 + 3u2)∂u − (2πT0)2uf(u)2∂2
u

]
ξi = 0, i = 1, 2 (4.6)

along with [
∂2
t +

2
t
∂t + 2π2T 2

0 f(u)(1 + 3u2)∂u − (2πT0)2uf(u)2∂2
u

]
δy = 0. (4.7)

Expanding in a basis defined by Hankel functions ξi(t, u) =
∫∞
−∞

dω
2π

√
iπω
2 tH

(2)
1 (ωt)Ψω(u)ξ̃0

i
(ω);

δy(t, u) =
∫∞
∞

√
iπω
2 (−i√

t
)H(2)

1/2(ωt)Φω(u) ˜δy0(ω),
(4.8)

yields [
∂2
u −

3u2 + 1
2uf(u)

∂u +
w2

4uf(u)2

](
Ψω

Φω

)
(u) = 0, w =

ω

πT0
, (4.9)
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where Ψω and Φω are normalized to unity at u = 0. Inserting (4.8) into (4.5), using the equations
of motion and integrating by parts gives

Sbndry =
3π2
√
λT 3

0 t0
4

∑
i=1,2

∫
dt

f(u)√
ut
ξi∂uξ

i(t, u) |u=1
u=0

+
2π2
√
λT 3

0

9

∫
dt t2

f(u)√
u
δy∂uδy(t, u) |u=1

u=0, (4.10)

One then appeals to the approximate completeness relation

− 1
4

∫ ∞
−∞

dt tH(2)
ν (ωt)H(2)

ν (−ω′t) ' 1
ω
δ(ω − ω′), (4.11)

which stems from the exact relation
∫∞

0 dt tJν(ωt)Jν(ω′t) = 1
ω δ(ω − ω′) for Bessel functions.

One can argue that (4.11) is a fair approximation given that the dominant contributions in the
integrals come from the late time region and that the Janik–Peschanski metric is defined as a
large τ inverse expansion.
As a result, the following expressions for the retarded Green functions hold GR,⊥(ω) =

[
−3π2

√
λT 3

0 t0
2

] [
f(u)√
u

Ψ−ω(u)∂uΨω(u)
]
u=0

;

GR,δy(ω) =
[

4π2
√
λT 3

0
9

] [
f(u)√
u

Φ−ω(u)∂uΦω(u)
]
u=0

.
(4.12)

In the following, it is checked explicitly that the symmetrized Wightman functions Gsym(ω) are
related to the corresponding retarded correlators by a Kubo–Martin–Schwinger (KMS) relation
[186, 184]

Gsym(ω) = − coth(
ω

2T0
)Im GR(ω). (4.13)

It involves the temperature T0, which is the initial, thermalization temperature in the original
Bjorken frame. The following illustrates how the proper–time dependent temperature appears
in the 2–point functions for this frame, from the Green functions computed in the {t−u} system.
For this purpose let us follow the usual prescription as it appears in [55, 56, 92, 109, 130, 241]
and expand a general solution in the right and left quadrants of the black hole background (4.3),
whose Kruskal diagram is the same as for a AdS–Schwarzschild black hole :{

ΥR, ω(u) = A(ω)ΨH
ω, in(u) +B(ω)ΨH

ω, out(u);
ΥL, ω(u) = C(ω)ΨH

ω, in(u) +D(ω)ΨH
ω, out(u),

(4.14)

Υω(u) denoting collectively Ψω(u) or Φω(u) from (4.9).
ΨH
ω, in(u) and ΨH

ω, out(u) form a basis of two independent wave–functions whose expansion near
the horizon at u = 1 is, up to O(ω2) terms{

ΨH
ω, in = (1− u2)−i

w
4

[
1 + iw

8 (π − 4 tan−1(
√
u)− 6 log(2) + 2 log(1 + u)(1 +

√
u)2)

]
;

ΨH
ω, out = ΨH∗

ω, in.

(4.15)
The Kruskal coordinates are cast in the form U = − 1

2πT0
e−2πT0(t−r∗), V = 1

2πT0
e2πT0(t+r∗).

r∗ = 1
4πT0

[
1 + log( 1

u − 1)
]

denotes the tortoise coordinate.
From 

(−U)
iw

2πT0 ' (1− u)iw/4e−iωt( 1
2πT0

)iw/2e−iw/4
[
1 + (1− u) iw2

]
;

(V )−
iw

2πT0 ' (1− u)−iw/4e−iωt( 1
2πT0

)−iw/2e−iw/4
[
1− (1− u) iw2

]
;

H
(2)
ν (ωt) '

√
2
πωte

−i(ωt−πν/2−π/4), | ωt |→ ∞,
(4.16)
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near the horizon, one obtains the following behaviour for the modes satisfying the equations of
motion : 

√
iπω
2 tH

(2)
1 (ωt)ΨH

ω, in(u ' 1) '
√

log(−VU )e−
iw
2

log(V ) ;√
iπω
2 tH

(2)
1 (ωt)ΨH

ω, out(u ' 1) '
√

log(−VU )e−
iw
2

log(−U),
(4.17)

and 
√

iπω
2 (−i√

t
)H(2)

1 (ωt)ΨH
ω, in(u ' 1) ' 1

log(−V
U

)
e−

iw
2

log(V ) ;√
iπω
2 (−i√

t
)H(2)

1 (ωt)ΨH
ω, out(u ' 1) ' 1

log(−V
U

)
e−

iw
2

log(−U),
(4.18)

The conditions at the horizon used in [130] amount to the analyticity of the infalling modes in
the lower V complex plane (which guarantees that such modes carry positive energy). Similarly,
they guarantee that the outgoing solutions are of negative energy, hence analytic in the upper
U plane. A full justification of this recipe and a generalization to a broader framework for
computing real–time correlators in the gauge/gravity correspondence appears in [236, 237, 255].
One can generalize and extend the transformation from the right quadrant (U < 0, V > 0) to
the left quadrant (U > 0, V < 0) to V →| V | e−iθ, −U →| U | e−i(2π−θ) [241], where θ was
naturally set to π in [130]. In the case at hands, θ = 0 mod [π] is most convenient. θ = 0 leads
to a treatment in terms of retarded and advanced wave–functions Υa = ΥR−ΥL, Υr = ΥR+ΥL

2 .
The current problem is thus amenable to the same discussion as in [92, 241]. Following the
analysis expounded in those references,(

C
D

)
(ω) =

(
1 0
0 eω/T0

)(
A
B

)
(ω), (4.19)

and from here on the recipe for obtaining a Langevin equation applies :

iSbndry,⊥ =− i
∫
dω

2π
xha,⊥(−ω)

[
GhR,⊥(ω)

]
xhr,⊥(ω,⊥)

− 1
2

∫
dω

2π
xha,⊥(−ω) [Gsym,⊥(ω)]xha,⊥(ω), (4.20)

and similarly for the rapidity sector with – e.g. for transverse fluctuations –

GhR,⊥(ω) = −3π
√
λT 2

0 t0
4

iω,

= −iωη⊥, (4.21)

and

Ghsym,⊥(ω) =
3π2
√
λT 3

0 it0
2

(1 + 2n(ω))
2

[
f(u)√
u
∂u(ΨH

ω, in −ΨH
ω, out)

]
u=1

,

= −(1 + 2n(ω))Im GR,⊥(ω). (4.22)

n(ω) denotes the thermal distribution at temperature T0. In the original Bjorken variable,
this is the temperature at the thermalization time τ0. In the Bjorken frame, the temperature
subsequently decreases according to the scaling law (4.1). Yet, the above analysis was performed
at a single temperature T0. How should one possibly expect to gain knowledge of 2–point
functions in an expanding plasma ? The change of coordinates that we made allows for an
analysis where the plasma local temperature is kept at T0. The time dependence is indeed
transferred only to the transverse and velocity coordinates components of the metric, while the
time and radial components take on the same form as for an AdS–Schwarzschild black hole with
temperature T0. In the following, we show how the physical temperature T (τ) at proper–time
τ makes its way in the coefficients of the Langevin description.
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The bulk picture of Brownian motion [92, 241] leads to a stochastic equation with random noise
ξ for the horizon endpoint of the string :{

T⊥(uh)∂uxr,⊥(ω, u) + ξh⊥(ω) = −iωη⊥xhr,⊥(ω),
〈ξh⊥(−ω)ξh⊥(ω)〉 = η⊥ω[1 + 2n(ω)].

(4.23)

T⊥(u) = 3π2
√
λT 3

0 t0
2

1−u2
√
u

is the local tension in the string. In the long time limit where the
relevant scales are large with respect to the heavy quark relaxation time, this term is negligible
as the string appears straight and the bulk has no effect on the stretched horizon. Therefore the
equation of motion for the horizon endpoint is

dxh⊥
dt
' ξh

η⊥
(4.24)

and similarly for the boundary endpoint. Going from (4.23) to (4.24) requires the completeness
relation. Also, terms of order O(1/

√
t) were discarded in d(η⊥

√
txh⊥)/dt.

Besides, using the inverse of (4.11),

〈ξh⊥(t1)ξh⊥(t2)〉 = −1
4

∫ ∞
−∞

dωωH
(2)
1 (ωt1)H(2)

1 (−ωt2)〈ξh⊥(ω)ξh⊥(−ω)〉

' 3π
√
λT 3

0 t0
2

1
(t1 + t2)/2

δ(t1 − t2),

= K⊥(t1, t2). (4.25)

Use has been made of t1,2 >> 1, as appropriate from the JP asymptotic condition. Besides,
√
t1t2 =

√
T − s2

4 , where T = t1+t2
2 , s = t1 − t2, and the conditions T >> 1, s << 1 were then

invoked.
In a Langevin description which gives the dynamics of the heavy quark propagating in the
expanding plasma

dpi
dt = FLi + F Ti ,
〈FLi (t1)FLj (t2)〉 = p̂ip̂jKL(t1, t2),
〈F Ti (t1)F Tj (t2)〉 = (δij − p̂ip̂j)KT (t1, t2).

(4.26)

Switching to the proper–time coordinate, each force component comes with an additional factor
of
√

3t0/2t : FL,Ti (τ1,2) =
√

3t0
2t1,2

FL,Ti (t(τ1,2)).
Taking care of the Dirac distribution transformation law under coordinate change, this yields,
e.g. for the transverse force,

〈F Ti (τ1)F Tj (τ2)〉 = (
3t0
2t1

)2π
√
λT 3

0 (
τ1

τ0
)1/3δ(τ1 − τ2)(δij − p̂ip̂j)

= π
√
λT 3(τ1)δ(τ1 − τ2)(δij − p̂ip̂j). (4.27)

In the Bjorken frame the force correlator thus exhibits a simple scaling law on the temperature
with no explicit dependence on the initial temperature T0. The initial condition on the tem-
perature is then partially washed out. As a landmark of adiabatic evolution, though, it is still
hidden in the scaling law for the local temperature.

4.3 Trailing string in the BF background

We now turn to the case of a heavy quark probe moving transversally at some average velocity
through an expanding strongly–coupled N = 4 SYM plasma. Suppose that after the hydrody-
namic regime has settled, a heavy quark is created among the debris of the collision and starts
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propagating through the thermalized state of matter with vanishing longitudinal momentum,
which means it lies at rapidity y = 0. Hence, the proper time parameter τ in the comoving frame
measures the physical time elapsed since the probe departed. The quark will hit subsequent lay-
ers of matter at different cooling temperatures and densities. In particular, the temperature is
described by the scaling law (4.1).
In the context of weakly–coupled quantum chromodynamics, the authors of [18] studied the
energy loss and momentum broadening for such a probe created either inside or coming from
outside of such an expanding plasma. Their analysis relied on perturbation theory. From
q̂(τ) = ρ(τ)

∫
d2~q⊥~q

2
⊥

dσ
d2~q⊥

, with ρ(τ) the position–dependent density of the medium, which en-
tails q̂(τ) = q̂(τ0)( τ0τ )α, they found an increase in the rate of energy loss compared to their
results in a static medium [18] :

− dE

dx⊥
=

2
2− α

(
− dE

dx⊥

)
|static

, (4.28)

in case the quark is produced inside the medium. It should also be noted that theirs is a finite–
extent plasma, unlike the one described by the JP dual that is investigated below.
As pointed out in [19], an expanding medium amounts to an effective transport coefficient
q̂eff (L) which would be equivalent to a jet–quenching coefficient in a static plasma :

q̂eff (L) =
2
L2

∫ L

τ0

dτ (τ − τ0) q̂(τ)

' 2
2− αq̂(L), (4.29)

as the limit τ0 → 0 is taken in much of these studies. The coefficient q̂(L) is evaluated at the
temperature T (L) probed by the quark after it has travelled a distance L through the cooling
medium.
We would like to learn what happens at strong coupling, despite the difference in the mechanism
for energy loss from the one that prevails at weak coupling, in a static plasma, as emphasized,
e.g., in [78]. The discussion focuses on the rate of energy loss and, in the final part, on the
momentum broadening coefficients.
The starting point is the gravitational dual to the Bjorken flow, the JP metric [152, 153]. One
would like to check if a similar enhancement exists and, besides if independence of the transport
and momentum broadening coefficients on the thermalization temperature T0, which was indeed
qualified as ‘remarkable’ by [18], is observed.
It would seem appropriate to start with the Ansatz X1(τ, z) = vτ + ζ(z) (∗) for the trajectory
of the string and its quark boundary endpoint, so as to gather information on the drag force
and momentum broadening coefficients experienced by a heavy quark moving a velocity v in the
plasma proper frame at strong coupling. For convenience, we defined z as

√
u. It should not

be mistaken with the z–variable from the starting JP metric. In the following, the background
is provided by the tamed form of the metric (4.3). The initial JP metric is far less pliable to
tractable computations.
However consider instead a different Ansatz

X1(t, z) = vt+ ζ(z), (4.30)

and momentarily defer a discussion on the difficulties one would have run into, had one chosen
to work with the proper–time parameter directly. The Ansatz (4.30) yields

√−g =
R2

z2
Hz

2

√
−g̃,

√
−g̃ =

√
z2
H(1− 3t0

2t
v2

f(z)
) +

3t0
2t
f(z)(∂zζ)2, (4.31)
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and the equation of motion
3t0
2t

f

z2
∂zζ = C

√
−g̃. (4.32)

Inserting this implicit expression for the derivative of ζ and solving for
√−g gives

(
√
−g̃)2 = z2

H

1− 3t0
2t v

2 − z4

1−
[
1 + C2/3t0

2t

]
z4
. (4.33)

In order to ensure that (−g) stays positive everywhere on a string that extends from the horizon
to the boundary, both numerator and denominator must change sign at the same point (note
that t starts at t0). Hence

C = ±
3t0
2t v√

1− 3t0
2t v

2
, (4.34)

and ∂zζ = ±vzH z2

f , which is integrated to

X1(t, z) = X1
0 (t, z) = x1

0 + vt∓ vzH
2

[
tan−1(z) + log

√
1− z
1 + z

]
. (4.35)

In the subsequent discussion the + sign in (4.35) is always assumed. Starting with (∗) would

result in X1(τ, z) = x1
0 + vτ ∓ vzH

2 ( ττ0 )1/3
[
tan−1(z) + log

√
1−z
1+z

]
. An extra proper time depen-

dence is forced on ζ(z) from the value taken by C in the process. This is in contradiction with
(∗). Note that having to work with (4.35) instead of a linear motion in the plasma proper frame
raises no problem if one accepts to momentarily set aside a picture of the quark in Bjorken
variables ; actually the following discussion establishes how a trajectory for a quark moving
with constant velocity with respect to the proper–time variable appears.

4.3.1 Dispersion relations and drag force

This section investigates the way the dispersion relations and the drag acting on the quark are
modified by the changing properties of the plasma. A similar analysis was performed for a string
trawling an AdS–Schwarzschild black hole in [131].
It is shown that the dispersions relations take on their usual expressions only after a change of
reference frame to the starting Bjorken variables is performed. This then leads to the identifi-
cation of a term responsible for energy loss.
The general expressions for the canonical momentum densities to an open string in a background
specified by Gµν are

π0
µ = − 1

2πα′
Gµν

(Ẋ.X
′
)(Xν)

′ − (X
′
)2(Ẋν)√−g , (4.36)

π1
µ = − 1

2πα′
Gµν

(Ẋ.X
′
)(Ẋν)− (Ẋ)2(Xν)

′

√−g . (4.37)

For a string trailing in a JP background massaged to the metric (4.3) this reduces to
π0
t = −

√
λT0
2

1q
1− 3t0

2t
v2

h
1−(1− 3t0

2t
v2)z4

i
z2f(z)

,

π0
x1 =

√
λT0
2

3t0
2t
vq

1− 3t0
2t
v2

1
z2f(z)

,
(4.38)


π1
t = π

√
λT 2

0
2

3t0
2t
v2q

1− 3t0
2t
v2

= π
√
λT (τ)2

2
v2q

1− 3t0
2t
v2
,

π1
x1 = π

√
λT (τ)2

2
vq

1− 3t0
2t
v2
.

(4.39)
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Integrating along the string, the resulting total energy and momentum, E = −
∫
dσπ0

t , p =∫
dσπ0

x1 , read

E =

√
λT0

2
1√

1− 3t0
2t v

2

[
z−1
m − z−1

h +
3t0
2t
v2Λ(zh)

]
, (4.40)

p =

√
λT0

2

3t0
2t v√

1− 3t0
2t v

2

[
z−1
m − z−1

h + Λ(zh)
]
, (4.41)

where

Λ(zh) =
1
4

[
2 tan−1(zm)− 2 tan−1(zh) + log

(1− zm)(1 + zh)
(1 + zm)(1− zh)

]
. (4.42)

This compares with eq.(3.21) in [131].
The total energy and momentum diverge due to their contributions close to the horizon, i.e. as
the cut–off zh → 1.
The total energy exhibits a contribution γ(t)Estraight = 1/

√
1− 3t0

2t v
2Estraight identified with

the boosted static energy to a frame moving at velocity v, where Estraight = R2

2πα′zH
(z−1
m − z−1

h ).
Hence the dispersion relation{

E = γ(t)
√
λT0
2

[
z−1
m − z−1

h

]
+ 1

v
dE
dt ∆x1(zh),

p = γ(t)
√
λT (τ)

2

√
3t0
2t v

[
z−1
m − z−1

h

]
+ 1

v
dp
dt∆x

1(zh).
(4.43)

∆x1(zh) is defined as

Λ(zh) =
1
zH
| ∆x1(zh)

v
|, (4.44)

with dE/dt = π1
t , dp/dt = −π1

x.
The square root appearing in the expression for p could potentially spoil the interpretation of
these formulas as providing the energy and momentum for a quark moving at velocity v through
the plasma. Note however that going to the co–moving frame, (4.43) reads{

Ẽ ' γ(ṽ)
√
λT (τ)

2

[
z−1
m − z−1

h

]
+ 1

ṽ
dẼ
dτ ∆x1(zh),

p̃ = γ(ṽ)
√
λT (τ)

2 ṽ
[
z−1
m − z−1

h

]
+ 1

ṽ
dp̃
dτ∆x1(zh),

(4.45)

where ṽ = ∂X1

∂τ =
√

3t0
2t v is the speed of a particle moving with constant velocity in the plasma

co–moving frame, with the same trajectory as the heavy quark probe described according to
(4.35). Terms of order O(τ−4/3) have been discarded. This is legitimate given the JP asymptotic
condition and the background metric coefficients being actually leading order contributions to
an expansion in τ−2/3.
It is now straightforward to derive the drag coefficient :

dp̃

dτ
= −ηp̃, η =

π
√
λT 2(τ)
2M

, (4.46)

which displays the same form as in [131], with the proper–time dependence of the temperature
in an expanding plasma now taken into account.
This marks a difference in the energy loss mechanism in QCD from the one in a N = 4 SYM
plasma at strong coupling. In perturbative QCD the energy loss is dominated by induced
radiation of gluons. The transverse momentum of those gluons is high enough that the coupling
αs at this scale is weak, allowing for a perturbative calculation for a parton energy loss :

∆E =
1
4
αsCRq̂

L−2

2
. (4.47)
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L− stands for the path length of the parton in the plasma. q̂ keeps track of the nonperturbative
soft interactions between emitted gluons and the medium and between the emitting parton and
the plasma.
While in QCD the average loss of energy (4.47) from a fast parton has at most a logarithmic
dependence on the latter’s momentum and is proportional to the square of its path–length,
(4.46) is linear in p.
As illustrated in previous works [78, 109, 92, 117], the mechanisms for momentum broadening
appear to differ at weak and strong coupling, if N = 4 provides any hint on QCD in the
latter regime. We now explore how the momentum broadening coefficients are modified in an
expanding plasma at strong coupling.

4.3.2 Fluctuating trailing string and momentum diffusion

This section is concerned with deriving the momentum broadening coefficients from fluctuations
of the trailing string (4.35). This was done in [55, 56, 92, 109] for the case of a static medium. For
a review of jet quenching and momentum broadening in perturbative QCD and in AdS/CFT,
the review [57] is particularly recommended.
Writing

X1(t, z) = X1
0 (t, z) + δξ1(t, z) X2(t, z) = δξ2(t, z) Y (t, z) = δy(t, z), (4.48)

with fluctuating terms in the transverse and velocity directions, and inserting in the Nambu–
Goto action after some algebra ultimately leads to the following expansion at quadratic order
of the action:

SNG = − R2/zH
2πα′

∫
dt dz

√
1− 3t0

2t v
2

z2
+
∫
dt dzPα∂αξ

1

− 1
2

∫
dt dzTαβδy ∂αδy∂βδy −

1
2

∫
dt dz

∑
i=1,2

Tαβ
ξi
∂αδξ

i∂βδξ
i, (4.49)

where

Pα = −R
2/z2

H

2πα′

3t0
2t v√

1− 3t0
2t v

2

(
zH/(z2(1− z4))

1

)
, (4.50)

Tαβδy = −R
2/z2

H

2πα′
4t2/9√

1− 3t0
2t v

2

 zH
z2

h
1−(1− 3t0

2t
v2)z4

i
(1−z4)2

3t0
2t

v2

1−z4

3t0
2t

v2

1−z4

h
z4−(1− 3t0

2t
v2)

i
zHz2

 , (4.51)

and

Tαβ
ξ2 =

[
1− 3t0

2t
v2

]
Tαβ
ξ1

= −R
2/z2

H

2πα′
3t0/2t√
1− 3t0

2t v
2

 zH
z2

h
1−(1− 3t0

2t
v2)z4

i
(1−z4)2

3t0
2t

v2

1−z4

3t0
2t

v2

1−z4

h
z4−(1− 3t0

2t
v2)

i
zHz2

 . (4.52)

Making use of reparametrization–invariance on the world-sheet, these results translate into the
following expressions :

SNG = −
√
λ

2

∫
dτ dz

√
1− ṽ2T (τ)

z2
+
∫
dτ dzP̃α∂αξ

1

− 1
2

∫
dτ dzT̃αβδy ∂αδy∂βδy −

1
2

∫
dτ dz

∑
i=1,2

T̃αβ
ξi
∂αδξ

i∂βδξ
i, (4.53)
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with α, β running over z, τ and

P̃α = −π
√
λT 2(τ)

2
ṽ√

1− ṽ2

(
1

πT (τ)(z2(1−z4))

1

)
, (4.54)

T̃αβδy = −R
2/z2

H

2πα′
(τ0τ

2)
2
3√

1− ṽ2

 1
πT (τ)z2

[1−(1−ṽ2)z4]
(1−z4)2

ṽ2

1−z4

ṽ2

1−z4

πT (τ)
h
z4−(1− 3t0

2t
v2)

i
z2

 , (4.55)

and

T̃αβ
ξ2 =

[
1− ṽ2

]
T̃αβ
ξ1

= −π
√
λT 2(τ)

2
1√

1− ṽ2

 1
πT (τ)z2

[1−(1−ṽ2)z4]
(1−z4)2

ṽ2

1−z4

ṽ2

1−z4

πT (τ)[z4−(1−ṽ2)]
z2

 . (4.56)

Recall that τ is related to t through t
t0

= 3
2( ττ0 )

2
3 . In the above, the temperature appears only

through its local, proper–time dependent expression. Let us now show that the momentum
broadening coefficients are then formally the same as in [56, 109].
Indeed, if one uses the second set T̃αβ of tensor densities, proper time derivatives of the tempera-
ture are discarded in the equations of motion, ∂αTαβ∂βφ = 0, given that they imply sub–leading
O(τ−4/3) contributions. Therefore, independent solutions to the equations of motion look the
same as in [109]1, with T0 → T (τ).
In z, τ coordinates the location zS of world–sheet horizon2 is zS = 4

√
1− ṽ2.

We are interested in the form of the Kruskal diagram in the z, τ coordinates with the JP asymp-
totic condition on the latter variable.
Keeping only the z, τ components, this reads ds2 = (RπT (τ))2/z2

[
−fdτ2 + dz2/π2T (τ)2f

]
, i.e.

ds2 ' (RπT (τ))2/z2
[
−fdτ2 + [d(z/πT (τ))

]2
/f ].

At this order of the JP expansion the Kruskal coordinates are found as follows.
The null condition leads to (πT (τ))2(dτ)2 = (dz)2

f(z)2 , hence

τ
2
3 = ±z∗ + C. (4.57)

where C labels a constant c–number and

z∗ =
1

3πT0τ
1/3
0

[arctan(z) +
1
2

log(
1 + z

1− z )]. (4.58)

Introducing ν+ = τ2/3 − z∗ and ν− = τ2/3 + z∗, the metric is written as

ds2 = −(
3
2
πRT0τ

1/3
0 )2 f(z)

z2
dν−dν+. (4.59)

z and τ are given through the implicit equations{
τ = (ν−+ν+

2 )
3
2 ,

arctan(z) + 1
2 log(1+z

1−z ) = 3
2πT0τ

1/3
0 (ν− − ν+).

(4.60)

1See also [92] where they are labelled ψret(ω, z) and ψadv(ω, z).
2A world–sheet horizon is generally determined from the zeroes of the polynomial factor appearing in front of

the second AdS–radial derivative in the equations of motion. They determine the regular singular points of this
equation. When z = zS the value of ∂zφ at z = zS is determined from the equation of motion. This means that
fluctuations of the string at z < zS are causally disconnected from those away from the location of the world-sheet
horizon.
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It is then natural to introduce the variables U and V , the Kruskal coordinate for this setting :

U = −e−3πT0τ
1/3
0 ν− , V = e3πT0τ

1/3
0 ν+ . (4.61)

z and τ are then defined implicitly in those coordinates as{ −UV = 1−z
1+z e

−2 arctan(z),

−V
U = e6πT (τ)τ = e4πT0t.

(4.62)

The Kruskal diagram is split into four quadrants by the curves U = 0 and V = 0. UV = 0 still
yields z = 1 and τ is given by log(−V

U ) = 6πT (τ)τ , so that V = 0, resp. U = 0, still corresponds
to τ = −∞ or t = −∞, resp. +∞. This conclusion is supported by [88], Fig. 1, where they
show that the BF geometry is a regular black hole spacetime. The apparent and event horizons
were found at various orders in the JP metric and they tend to a common slowly varying line
in the z–τ plane when τ >> 1.
The trailing string solution (4.35) is cast in the form

X1
0 (t, z) = x1

0 +
v

2πT0
log(V ) +

v

πT0
arctan(z), (4.63)

which explicitly shows that the trailing string is regular at the horizon between the upper and
the right quadrants. A state of the system is prepared at Re t = −∞, which corresponds to
the singularity at V = 0, is propagated along Im t = 0, and back along Im t = −σ, for some
constant σ in the Schwinger–Keldysh path.
This suggests that all the analysis exposed in [92, 109] is directly applicable to the current
problem, with the proviso that the world–sheet horizon in the t− z coordinates is now time–

dependent, zS = 4

√
1− 3t0

2t v
2. Indeed the equations of motion obtained from (4.50), (4.51) and

(4.52) are the same as those found in the above references, given that the additional time factors
should be neglected at the order of the JP expansion one is dealing with. The additional time–
dependence of the location to the world–sheet horizon is accounted for by noticing that it turns
out to be subleading compared to the decorrelation time.
All in all, after going back to the Bjorken frame as was done at the end of Section 4.2., this
yields

q̂ξ2(τ) = π
√
λT 3(τ)

√
γ(ṽ)
ṽ

, q̂ξ1(τ) = π
√
λT 3(τ)

γ(ṽ)5/2

ṽ
, γ(ṽ) =

1√
1− ṽ2

. (4.64)

This corresponds to a stochastic force in a Langevin equation satisfying

dp̃i
dτ

= Fi 〈Fi(τ1)Fj(τ2)〉 = δijKi(τ1, τ2), i, j = 1, 2 (4.65)

From q̂ = 〈p2〉/l — l, the path length travelled by the quark in the plasma proper frame, being
large enough that the memory short range correlations is not taken into account but large enough
that the quark has not departed significantly from its initial trajectory — this gives

q̂i =
1
ṽ

∫
dτKi(τ, 0), (4.66)

as defined in, e.g. [109].
Note however that (4.64) bears no relation to jet–quenching. The longitudinal and transverse
parts do not match at finite momentum. The momentum broadening coefficients have been
written in this varnished form to suggest a similarity to the local jet–quenching parameter
appearing in perturbative QCD calculations with a high energy quark moving in an expanding
plasma.
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Chapter 5

Finite–Temperature Fractional
D2–Branes and the Deconfinement
Transition in 2+1 Dimensions

The supergravity dual to N regular and M fractional D2–branes on a cone over CP3 has a naked
singularity in the infrared. One can resolve this singularity and obtain a regular fractional D2–
brane solution dual to a confining 2+1 dimensional N = 1 supersymmetric field theory. The
confining vacuum of this theory is described by the solution of Cvetic, Gibbons, Lu and Pope [67].
In this chapter, we explore the alternative possibility for resolving the singularity – the creation
of a regular horizon. The black–hole solution we derive corresponds to the deconfined phase of
this dual gauge theory in three dimensions. This solution is derived in perturbation theory in
the number of fractional branes. We argue that there is a first–order deconfinement transition.
Connections to Chern–Simons matter theories, the ABJM proposal and fractional M2–branes
are presented.

5.1 Introduction

Since its inception, the AdS/CFT correspondence [191, 103, 260] and its various extensions have
provided valuable information on gauge theories at strong coupling. In the present work we
investigate the deconfinement transition of a 2 + 1 dimensional gauge theory by constructing a
black hole solution in supergravity.

In order to reach closer connection with QCD or condensed–matter gauge theories there
exist different techniques to break some amount of the supersymmetry or conformal invariance
involved in the gauge/gravity dualities [150, 160]. Putting for instance a stack of branes at
a singularity in the transverse space results in a dual field theory with lower supersymmetry.
More generally, singular points in the compactifying space lead to interesting behaviour in the
scaling limit. The geometrical identification of symmetries of the corresponding gauge theory
and its amount of supersymmetry appears in [203]. The Klebanov–Witten construction is a
particularly interesting example arising from placing N D3–branes at a conical singularity [168].
The base of the cone is the Einstein manifold T 1,1 = SU(2)×SU(2)

U(1) with topology S2 × S3. The

cone over T 1,1, known as the conifold [52], is defined as the locus
∑4

i=1 z
2
i = 0 in C4. It is a

Calabi–Yau manifold with Kähler potential K =
(∑4

i=1 |zi|2
)2/3

and as such indeed preserves
1/4 supersymmetry. The dual four–dimensional field theory is then N = 1 supersymmetric.
The matter field content consists of chiral superfields A1, A2 and B1, B2 in the (N, N̄) and
(N̄,N) representations, respectively. Each pair forms a doublet under SU(2). The theory has a
superpotential W = λ

2 ε
ijεklTrAiBkAjBl which preserves the SU(2)× SU(2)× U(1) isometry of

the Einstein metric on T 1,1.
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As a rule, for certain cones it is possible to consider fractional branes which are stuck at the
apex and wrap some cycle of the base manifold. For example, going back to the conifold and
adding M fractional D3–branes to it changes the gauge group to SU(N+M)×SU(N) [104, 169,
170]. Matching the two gauge couplings to the moduli of IIB string theory on this background
leads to a non–vanishing NSVZ beta function [208, 232] for 4π

g2
1
− 4π

g2
2

. The M fractional D3–

branes indeed are sources of the magnetic RR 3–form flux through the S3 of T 1,1 and the RR
3-form field strength’s Poincare dual is proportional to the NSNS 3–form field strength. The
effective number of D3–branes varies logarithmically with the AdS radius r. The gauge theory
intepretation is in terms of a cascade of Seiberg dualities [144, 5, 81], i.e. SU(N+M)×SU(N)→
SU(N)× SU(N −M).

The Klebanov–Tseytlin solution [170] is well–behaved at large r but exhibits a naked singu-
larity in the infrared. It was shown in [171] that in order to remove this singularity the conifold
could be replaced by its deformation

∑4
i=1 z

2
i = ε2. This corresponds to blowing–up the S3 of

T 1,1. The resulting theory is confining and the deformation is the geometrical realization of
chiral symmetry breaking. The U(1)R symmetry is broken to Z2M by instanton effects. For
large M however, Z2M ∼ U(1) and this corresponds to acting as zi → zie

iθ on the C4 em-
bedding coordinates. The deformation breaks this action down to Z2 while preserving N = 1
supersymmetry.

Another mechanism for removing the singularity of the Klebanov–Tseytlin solution was de-
veloped in [49, 50, 105]. The idea is that a non–extremal generalization of the KT solution is
expected to develop a regular Schwarzschild horizon which will remove the naked singularity.
Unlike the Klebanov–Strassler solution, the KT solution preserves the U(1) symmetry of the
Einstein metric of T 1,1. A non–extremal solution breaks supersymmetry but chiral symmetry is
restored in this instance. Reference [105] finds a regular black hole solution via a perturbative
expansion in the number of fractional D3–branes. This work is suggestive of a critical tem-
perature Tc where the number of ordinary and fractional branes vanishes at the horizon. This
corresponds to an expected reduction in the effective number of degrees of freedom of the dual
gauge theory at the phase transition.

It is our purpose to understand this mechanism for a three–dimensional gauge theory. In [67],
Cvetic, Gibbons, Lu and Pope (CGLP) derive a regular fractional D2–brane solution. The met-
ric appearing in the CGLP solution involves an asymptotically conical G2 manifold. It is an R3

bundle over S4. This solution has two supercharges and is then dual to an N = 1 supersymmet-
ric gauge theory in three dimensions. At large distance (small u in our subsequent notation), the
geometry becomes a cone over the squashed Einstein metric of the three–dimensional complex
projective space CP3. The resolved solution of [67] is on par with the Klebanov–Strassler de-
formed conifold solution in that both are regular solutions. The CGLP solution cures the naked
IR singularity caused by flux wrapping a shrinking cycle in [125]. The CGLP solution describes
the confining phase of a three–dimensional gauge theory. Since the space ends, the warp factor
is finite and so is the tension of a string hanging in this background [128]. This is a hallmark
of confinement. The spectrum of minimally–coupled scalars is discrete which is another hint of
confinement.

In this chapter, following analogous work [49] for fractional D3–branes and fractional D1–
branes [126], we show how the singularity appearing in the Herzog–Klebanov solution [125] is
shielded by a regular horizon. We start with non–extremal ordinary and fractional D2–branes
probing a cone over CP3 and from there on build a solution with a horizon. On the gauge
theory side, this solution describes the deconfined phase of the underlying three–dimensional
field theory. We argue that below some critical temperature, the regular black–hole solution
that we derive should be replaced, for thermodynamic reasons, by the CGLP solution. The
latter corresponds to the confining vacuum of the dual field theory.

It is not totally clear what are the gauge group and the field content of the gauge theory
whose dual supergravity solution we consider in the present work. According to [67], the dual
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asymptotic field theory should be the same as for regular D2–branes, with gauge group of the
special unitary type but with a charge determined by the additional fluxes coming from fractional
branes. However, the space transverse to the branes is not R7 but a cone over CP3. It is then
more appropriate to look for an N = 1 field theory in three dimensions with this space as its
classical moduli space of vacua. This analysis is carried in [190] for no fractional branes and
suggests that the gauge group is SU(N) × SU(N). The field content consits in an N = 1
vector multiplet and four N = 2 chiral (eight N = 1 scalar) superfields, one pair in the (N, N̄)
representation, another in the conjugate. We have more to say on this in the concluding section.
In any case, the gauge group is a product of special unitary groups. If field theory results are of
any hint, let us see what one might expect for the gauge dual of the supergravity transition.

All gauge theories with a low–temperature confining phase are thought to possess a non–
confining high–temperature phase. This is supported by various pieces of evidence such as lattice
studies [222, 245] or perturbative methods [101]. In [248] the nature of the phase transition for
lattice gauge theories with various gauge groups and in various dimensions are presented. Those
results rely on dynamical arguments and renormalization group methods to connect the critical
behaviour of gauge theories with lower–dimensional spin systems1. Of particular interest to
us is the case of three–dimensional gauge theories with gauge group SU(N) where the critical
behaviour should be equivalent to that of a two–dimensional ZN spin system. For N = 2, 3 or 4
the general arguments of [248] could not rule between a first or second–order phase transition.
Of more relevance to our purpose, for N ≥ 4 2 the transition was predicted to be either first–
order or, if continuous for sufficiently strong coupling, of the Kosterlitz–Thouless type. For the
latter kind of transition, thermodynamic quantities display essential singularities at the critical
temperature. Relatively recent work on the deconfining phase transition for SU(N) theories
in 2+1 dimensions with N = 4, 5, 6 however suggests that the transition is first order for
N ≥ 5 [188].

Whereas there is some debate concerning the nature of the phase transition from lattice QCD
calculations, our supergravity solution shows that the transition between the supersymmetric
CGLP solution and the black hole solution we obtain consists in a first–order deconfinement
transition for a three–dimensional gauge theory at strong coupling. There is no evidence of a
Kosterlitz–Thouless transition. As explained in the Conclusion, it would be interesting within
this supergravity solution to study the free energy and numerically determine the critical tem-
perature at which it vanishes.

The remainder of this chapter is organized as follows. In the next section we propose an
Ansatz for the metric and p–form field strengths for ordinary and fractional D2–branes at finite
temperature. We then derive in Section 5.3., from the IIA equations of motion and the Bianchi
identities, a system of mixed, non–linear, second–order differential equations for the functions
in our Ansatz. We remark on a significant difference from an analysis for D3 or D1-branes,
which pertains to the squashing function on the fiber to the transverse space. In Section 5.4.,
we present three simple solutions to these equations. Two of them will be used in Sections
5.5. and 5.6. as UV and IR boundary conditions for the interpolating non–extremal fractional
D2–brane solution we construct from perturbation theory in the number of fractional D2–branes.
This perturbative solution is the main result of this part of the thesis. We conclude with several
suggestions for extension. We mention especially a potential connection to fractional M2–branes
and the ABJM proposal.

1See [249] for a review and further references.
2This constitutes the case of interest for comparison with theories with a supergravity dual, where N >> 1 in

order to ignore α′ stringy corrections.
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5.2 Non–extremal generalization of the fractional D2–brane Ansatz

To construct the non–extremal fractional D2–branes we start by explaining the general Ansatz
we begin with. It is similar to those described in [49, 50, 105] and [126] for obtaining non–
extremal generalizations of fractional D3–branes and D–strings. They involve adding extra
warping functions to the metric which preserve the underlying symmetry of the space transverse
to the worldvolume of the branes.

The metric of space transverse to the worldvolume of the D2–branes is the squashed CP3

Einstein metric. There is a reason why we start with CP3 instead of one of the simpler manifolds
with requisite Betti numbers, such as S2 × S4. It has to do with the fact that the cone over
a manifold of CP3 topology admits a smooth resolution. This is the resolution which was
used to build the regular supersymmetric fractional D2–brane solution [67]. So, if one is to
find a transition from the confined phase whose supergravity dual is the CGLP solution to
the deconfined phase of the underlying dual field theory, the UV limits of both supergravity
solutions must have the same transverse manifold. For this reason the dependence of the p–
forms appearing on the cycles of the geometry is almost the same in our Ansatz as in the
singular Herzog–Klebanov solution [125]. There is a significant difference, though : the 3–form
field strength considered in [125] is proportional to dρ∧ω2. Yet, turning on squashing functions
from the transverse space metric of our Ansatz below prevents the possibility of an harmonic
three–cycle of this type. Instead, H3 picks an additional contribution, which however does not
resolve the singularity. We discuss this issue further in Section 5.4.2.

The general Ansatz for a 10–d Einstein–frame metric consistent with the underlying sym-
metries of the squashed three–dimensional complex projective space involves four functions x,
y, z and w of a radial coordinate u:

ds2
10E = e

5
2
z
(
e−4xdX2

0 + e2xdXidXi

)
+ e−

3
2
zds2

7 (5.1)

where
ds2

7 = e12ydu2 + e2y (dM6)2 , (5.2)

(dM6)2 = λ2e−4w
(
Dµi

)2 + e2wdΩ2
4 (5.3)

with dΩ2
4 the metric on the unit 4–sphere. The usual and the squashed Einstein metrics on CP3

correspond to λ2 = 1 and λ2 = 1/2, respectively. From here on we work with the second case.
The coordinates µi on R3 are subject to µiµi = 1, i = 1, 2, 3. Their covariant derivatives are
Dµi ≡ dµi + εijkA

jµk, where Aj refer to su(2) Yang–Mills instanton potentials : Aj = AjaT a =
iU∂jU , where T a stand for su(2) generators. The special unitary 2×2 matrix U can be expressed
in terms of Pauli matrices as U = a4+iajσj . The field strength components J i = dAi+ 1

2εijkA
jAk

satisfy the algebra of the unit quaternions: J iαγJ
j
γβ = −δijδαβ + εijkJ

k
αβ. X0 is the Euclidean

time and Xi are the longitudinal D2–brane directions. It should be emphasized that although
we switched to Euclidean time in (5.2) and for the external components of Einstein’s equations
below, intermediate calculations are carried in real–time.

The metric can be brought into a more familiar form:

ds2
10E = H(ρ)−5/8

[
A(ρ)dX2

0 + dXidXi

]
+H(ρ)3/8

[
dρ2

B(ρ)
+ ρ2 (dM6)2

]
, (5.4)

with the redefinitions

H(ρ) ≡ e−4z− 16
5
x, ρ ≡ ey+ 3

5
x, A(ρ) ≡ e−6x, B(ρ)−1dρ2 ≡ e12y+ 6

5
xdu2. (5.5)

When w = 0 and e5y = ρ5 = 1
5u , the transverse seven–dimensional space is the cone over the

squashed CP3. Small u corresponds to large distances (we indeed assume that A,B and H
all approach unity as ρ → ∞). The function w(ρ) squeezes the S2 fiber relative to the base
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4–sphere. It does not affect the symmetries of the CP3 transverse to fractional branes3. The
extremal D2–brane solution and the more general fractional D2–brane solution on the cone over
CP3 have x = 0, w = 0. Adding a non–trivial x(u) corresponds to going away from extremality.
Our aim is to understand how this changes the extremal D2–brane solution.

It should be noted at this point that the A and B turn out to be equal at leading order in
the solution we derive in Section 5.6. This matches the accustomed expectation for a black–hole
solution. However, B receives corrections in perturbation theory whereas A is not affected. The
solution we find is then different from the usual black D–branes in that A 6= B. It still has a
regular horizon with a corresponding Hawking temperature and qualifies as a black hole.

As previously explained, the Ansatz for the p–form fields is such that in the UV it is of the
same form as for extremal fractional D2–branes [125]:

F̃4 = K(u)e
15
2
z−Φ

2 du ∧ d3x+ P Ω4, (5.6)

H3 = gsP Ω3. (5.7)

Like the other fields, the dilaton is a function of the radial variable u alone. Here, Ω3 = ?7Ω4 a
harmonic three-form, the Hodge dual being defined with respect to the metric on the cone (5.2),
and

Ω3 = f(u)ω1 + g(u)ω2 + h(u)ω3 (5.8)

is a combination of three–forms which are invariant under the SO(5) isometry group of the base
manifold and the SO(3) isometry group of the S2 fibers [91, 67]. Explicitly,

ω1 = Dµi ∧ J i, ω2 = du ∧ J, ω3 = du ∧X2, (5.9)

where J ≡ µiJ i and X2 ≡ 1
2εijkµ

iDµj ∧Dµk. They satisfy

dω1 = 0, dω2 = −du ∧ ω1, dω3 = −du ∧ ω1, (5.10)

along with

?7ω1 = e6yεijkµ
idu ∧Dµj ∧ Jk, ?7ω2 =

1
2
e−4y−4wX2 ∧ J, ?7ω3 = e−4y+8wJ ∧ J.

(5.11)

To guarantee that the NSNS three–form field strength is harmonic one must have

f ′ = g + h, e6yf =
1
4
(
e−4w−4yg

)′
, e6yf =

1
2
(
e−4y+8wh

)′
. (5.12)

These are equations for a single independent function f , once expressions for y and w are
obtained:

f =
1
4
e−6y

(
e−4w−4y

(
1 + 1/2 e−12w

)−1
f ′
)′
,

g =
(
1 + 1/2 e−12w

)−1
f ′,

h =
1
2
e−12wg. (5.13)

Note that H3 = dB2, with

B2 = gsP
[(∫ u

0
h(ρ)dρ

)
X2 +

(∫ u

0
g(ρ)dρ

)
J
]
, (5.14)

3While the metric on CP3 is usually presented as deriving from a S7 Hopf fibration, it can alternatively be
written as a twistor space.
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up to an exact form.
The M fractional D2–branes (D4–branes wrapping a 2–cycle of the space transverse to the

ordinary D2–branes) thus correspond to M units of magnetic flux through the four–cycle of the
six–manifold with P ∼ g3/4

s M . This scaling is derived after (5.42) in the next section. Ordinary
D2–branes are charged electrically under F̃4 and the function K(u) in (5.6) corresponds to the
number of ordinary and fractional D2–branes at the scale associated to u. The equation of
motion for F̃4

d ? e
Φ
2 F̃4 = −g1/2

s F4 ∧H3 (5.15)

implies

K(u) = Q− 8g3/2
s P 2f(u)

∫ u

0
e6yf(ρ)dρ. (5.16)

For the purpose of the calculations leading to (5.16), the constraint µiµi = 1 allows to take
µi = (0, 0, 1) and we consider a consistent choice for the quaternionic Kähler forms [67] :

J1
12 = J1

34 = J2
13 = J2

42 = J3
14 = J3

23 = −1, i = 1, 2, 3. (5.17)

At this point, we should note that it is generally not consistent to ask for identically vanishing
f and non–trivial g and h. However, as long as w ≡ 0, which will happen at zeroth–order in
the perturbative approach of Section 5.6., (5.12) gives g = −h = g0e

4y, with non–necessarily
vanishing g0. As a result, the equation of motion for F̃4 yields

K(u) = Q− 6g3/2
s P 2g0

∫ u

0
g(ρ)dρ, (5.18)

instead of (5.16).
In what follows we use the Ansatz (5.1)–(5.3), (5.6) and (5.7) to reduce the remaining

equations of motion of IIA supergravity to a system of non–linear, coupled ordinary differential
equations describing the radial evolution of x, y, z, w,K and Φ.

5.3 Derivation of the equations of motion

Six independent scalars appear in the Ansatz (5.1), (5.6), (5.7) and we will then need a system
of as many ordinary differential equations. Einstein’s equation provide five independent equa-
tions. The one involving Ruu stands apart as it provides a zero energy constraint on integration
constants. The equation of motion for the dilaton and the one derived from H3 = dB2 being
(co–)closed provide two nontrivial equations. Like (5.15), they are derived from the bosonic part
of the IIA superstring theory action [227] in the Einstein frame:

SIIA = SNS + SR + SCS ,

SNS =
1

2κ2
10

∫
d10x
√
−G
(
R− 1

2
∂MΦ∂MΦ− 1

2
e−Φ |H3|2

)
,

SR = − 1
4κ2

10

∫
d10x
√
−G
(
e

3Φ
2

∣∣∣F̃2

∣∣∣2 + e
Φ
2

∣∣∣F̃4

∣∣∣2 ),
SCS = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 (5.19)

where F2 = dA1, H3 = dB2, F̃4 = dA3 −A1 ∧H3 and 2κ2
10 ≡ (2π)7α′4g2

s . Let us specify that∫
ddx
√
−G |Fp|2 ≡

∫
ddx
√
−G 1

p!
GM1N1 ...GMpNpFM1...MpFN1...NP . (5.20)

Whenever P 6= 0, the H3 equation of motion reduces to the first–order differential equation(
e3z−Φ

)′
= −e 15

2
z−Φ

2 K, (5.21)
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while the dilaton equation of motion

∇2Φ = − gs
12
e−Φ(H3)MNP (H3)MNP +

g
3/2
s

96
e

Φ
2 (F̃4)MNPQ(F̃4)MNPQ (5.22)

yields

Φ′′ = P 2
(
− g3

se
3z−Φ +

g
3/2
s

2
e

9
2
z+ Φ

2

)(
e−4y−4wg2 + 2e−4y+8wh2 + 4e6yf2

)
− g

3/2
s

4
e

15
2
z−Φ

2 K2.

(5.23)

Einstein’s equations are RMN = TMN where RMN is the Ricci curvature and the energy–
momentum tensor for the relevant field content of IIA supergravity is

TMN =
1
2
∂MΦ∂NΦ +

gs
4
e−Φ

(
H PQ
M HNPQ −

1
12
GMNH

PQRHPQR

)
+
g

3/2
s

12
e

Φ
2

(
F̃ PQR
M F̃NPQR −

3
32
GMN F̃

PQRSF̃PQRS

)
. (5.24)

In order to write down these equations in a convenient form, we will work in an orthonormal
frame basis:

ê0 = e
5
4
z−2xdX0, êxi = e

5
4
z+xdXi, êu = e−

3
4
z+6ydu,

êµ
i

=
1√
2
e−

3
4
z+y−2wDµi, êα = e−

3
4
z+y+wgα, i = 1, 2, 3, α = 1, ..., 4. (5.25)

At this stage, it might not yet be obvious that Einstein’s equations are diagonal in this basis.
Actually, they will turn out to be so, once we use the Gauss–Codazzi equation (5.30) that we
discuss below, to impose the hypersurface condition µiµi = 1. The equations corresponding
to Rµiµi are identical and similarly for the equations corresponding to Rαα. The strategy will
consist in dealing with the other four Einstein’s equations separately from Ruu at first. Together
with the two field strength equations we will derive thence a second order, nonlinear system of
ordinary differential equations in the six warping functions. Finally, we will find out that the
Ruu relation provides a zero energy constraint, as in [49, 50, 105, 126].

Let us first compute Ricci’s tensors in the above orthonormal basis. We list the non–vanishing
components of the curvature two–form R̂MN = dω̂MN + ω̂MP ∧ ω̂PN found by applying Cartan’s
structure equations dêM = −ω̂MN ∧ êN , ω̂MN = −ω̂NM . The Riemann tensor is obtained from
R̂MN = 1

2R̂MNPQê
P ∧ êQ.

R̂0u =
(

2x′′ − 5
4
z′′ + 2

(
5
4
z′ − 2x′

)
(x′ + 3y′ − z′)

)
e

3
2
z−12y ê0 ∧ êu,

R̂0xi =
(

2x′ − 5
4
z′
)(

x′ +
5
4
z′
)
e

3
2
z−12y ê0 ∧ êxi ,

R̂0µi =
(

2x′ − 5
4
z′
)(

y′ − 3
4
z′ − 2w′

)
e

3
2
z−12y ê0 ∧ êµi ,

R̂0α =
(

2x′ − 5
4
z′
)(

y′ + w′ − 3
4
z′
)
e

3
2
z−12y ê0 ∧ êα, (5.26)
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R̂xiu = −
(
x′′ +

5
4
z′′ +

(
5
4
z′ + x′

)
(2z′ + x′ − 6y′)

)
e

3
2
z−12y êxi ∧ êu,

R̂xixj = −
(

5
4
z′ + x′

)2

e
3
2
z−12y êxi ∧ êxj ,

R̂xiµj =
(

5
4
z′ + x′

)(
3
4
z′ + 2w′ − y′

)
e

3
2
z−12y êxi ∧ êµj ,

R̂xiα = −
(

5
4
z′ + x′

)(
y′ + w′ − 3

4
z′
)
e

3
2
z−12y êxi ∧ êα, (5.27)

R̂µiu =
(

3
4
z′′ + 2w′′ − y′′ −

(
3
4
z′ + 2w′ − y′

)(
5y′ + 2w′

))
e

3
2
z−12y êµ

i ∧ êu

− 3√
2
w′e−5y−2wεijkJ

jµk,

R̂µiµj = −1
2

(
3
4
z′ + 2w′ − y′

)2

e
3
2
z−12y êµ

i ∧ êµj +
(

1
4
e−6w − 1

)
εijkJ

k,

R̂µiα =− 3
2
√

2
w′e

3
2
z−7y−4wεijkJ

j
αβµ

kêu ∧ êβ +
1
2
e

3
2
z−2y−2w

(
1
4
e−6w − 1

)
εijkJ

k
αβ ê

µj ∧ êβ

+
(

1
8
e

3
2
z−2y−8w +

1√
2

(
3
4
z′ + 2w′ − y′

)(
y′ + w′ − 3

4
z′
)
e

3
2
z−12y

)
êµ

i ∧ êα,

(5.28)

R̂αu =
(

3
4
z′′ − y′′ − w′′ +

(
y′ + w′ − 3

4
z′
)(

5y′ − w′
))

e
3
2
z−12y êα ∧ êu

− 3
2
√

2
w′e

3
2
z−7y−4wεijkJ

j
αβµ

kêµ
i ∧ êβ,

R̂αβ =Rαβ −
1
8
e

3
2
z−2y−8w

(
δij − µiµj

) (
J iαβJ

j
ρσ + J iαρJ

j
βσ

)
êρ ∧ êσ

−
(
y′ + w′ − 3

4
z′
)2

e
3
2
z−12y êα ∧ êβ +

1
2

(
1
4
e−6w − 1

)
e

3
2
z−2y−2wεijkJ

k
αβ ê

µi ∧ êµj

+
3√
2
w′e

3
2
z−7y−4wεijkJ

j
αβµ

kêu ∧ êµi ,

(5.29)

where Rαβ = 3e
3
2
z−2y−2wδαβ is the curvature two–form on the base manifold S4. Some of

the components listed above were already derived in [91]. To calculate the curvature with the
hypersurface condition imposed we use the Gauss–Codazzi equation [202]

R̂MNPQ
u2=1

= R̂STUV h
MShNThPUhQV + χMPχNQ − χMQχNP , (5.30)

where hMN is the orthonormal frame metric on the projected space:

hMN = δMN − µMµN , (5.31)
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with µM =
(
µ0, µxi , µu, µµ

i
, µα

)
=
(
0, 0, 0, µi, 0

)
the orthonormal frame components of the unit

vector orthogonal to the hypersurface. χMN = hMPhNQ∇̂PµQ denote the components of the
second fundamental form of the hypersurface. The second fundamental form corresponds to the
projection of the gradient to the normal of the hypersurface onto this hypersurface. The only
non–vanishing components of hMN and χMN are

h00 = 1, hxixj = δij , huu = 1, hµiµj = δij − µiµj , hαβ = δαβ, χµiµj =
√

2e
3
4
z+2w−yhµiµj .

(5.32)

From the field strengths, it is straightforward to check that T00 = Tx1x1
4. However R00 =

e
3
2
z−12y

(
2x′′ − 5

4z
′′) and Rx1,2x1,2 = −e 3

2
z−12y

(
x′′ + 5

4z
′′). The first two non–redundant Ein-

stein’s equations then allow us to solve for x(u) exactly:

x′′ = 0, x = au, a > 0. (5.33)

The same behaviour was found for the function x(u) in the case of non–extremal fractional
D3–branes and D–strings [49, 50, 105, 126]. The factor a was identified with the degree of non–
extremality. Having solved for x(u), we can use either of R00 or Rxixi to derive an equation for
z(u):

20z′′ = P 2
(

4g3
se

3z−Φ + 6g3/2
s e

9
2
z+ Φ

2

)(
e−4y−4wg2 + 2e−4y+8wh2 + 4e6yf2

)
+5g3/2

s e
15
2
z−Φ

2 K2. (5.34)

Note that in the extremal case x = 0, z = −Φ and h−5/8 = e5/2z = h−1/2e−Φ/2. This means that
the Einstein frame metric in the extremal case can be obtained from the string frame metric
through the standard procedure of multiplying by e−Φ/2.

In order to find the differential equations for y(u) and w(u), we must consider linear combi-
nations of the Einstein’s equations involving

R̂µiµj =
(
e

3
2
z−12y

(3
4
z′′ + 2w′′ − y′′

)
+ 2e

3
2
z−2y+4w

(
1 +

1
4
e−12w

))
hµiµj ,

R̂αβ =
(
e

3
2
z−12y

(3
4
z′′ − y′′ − w′′

)
+ e

3
2
z−2y−2w

(
3− 1

2
e−6w

))
δαβ. (5.35)

Those are easily computed from the curvature two–forms (5.26)–(5.29) and the Gauss–Codazzi
condition (5.30). We set Φn ≡ Φ+z and zn ≡ 15z−Φ. Computing the field strength contribution
to Einstein’s equations then results in a system of second order differential equations, where we
also list below those found previously in (5.13), (5.23) and (5.34):

15y′′ = P 2
(
g3
se

1/4(zn−3Φn) − g3/2
s e1/4(zn+3Φn)

)(
e−4y−4wg2 + 2e−4y+8wh2 − 6e6yf2

)
+ 5e10y

(
2e4w + 6e−2w − 1

2
e−8w

)
, (5.36)

6w′′ = P 2
(
− g3

se
1/4(zn−3Φn) + g3/2

s e1/4(zn+3Φn)
)(
e−4y−4wg2 − 4e−4y+8wh2

)
− 2e10y

(
2e4w − 3e−2w + e−8w

)
, (5.37)

5Φ′′n = P 2
(
− 4g3

se
1/4(zn−3Φn) + 4g3/2

s e1/4(zn+3Φn)
)(
e−4y−4wg2 + 2e−4y+8wh2 + 4e6yf2

)
,

(5.38)

4We recall that, once every contribution is computed, we revert to a Euclidean frame.
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1
4
z′′n = P 2

(
g3
se

1/4(zn−3Φn) + g3/2
s e1/4(zn+3Φn)

)(
e−4y−4wg2 + 2e−4y+8wh2 + 4e6yf2

)
+ g3/2

s ezn/2K2, (5.39)(
e−4w−4y

(
1 + 1/2 e−12w

)−1
f ′
)′

= 4e6yf, (5.40)

We have left out thus far the u components of Einstein’s equation. For our metric Ansatz

R̂uu = e
3
2
z−12y

(3
4
z′′ − 6y′′ − 12w′2 − 6x′2 + 30y′2 − 15

2
z′2
)

(5.41)

which, using (5.36), (5.39), (5.38) and (5.33), provides the zero energy constraint

30(y′)2 − 1
32

(z′n)2 − 15
32

(Φ′n)2 − 12(w′)2 + P 2
(
− g3

se
1/4(zn−3Φn) + g3/2

s e1/4(zn+3Φn)
)

+
1
2
g3/2
s K2e

1
2
zn − 2e10y

(
2e4w + 6e−2w − 1

2
e−8w

)
= 6a2. (5.42)

Later it will be important to keep track of the dimensions of the parameters involved in this set
of equations. Looking at the form of the metric (5.1) it is natural that ey and u−1/5 should have
dimension of length, while x, z and w stay dimensionless. Since we have set the 10–d gravitational
constant κ2

10/8π to unity (i.e. all scales are measured in units of the 10–d Planck scale LP ∼(
gsα
′2)1/4), from (5.42) we conclude that K and Q have dimension (length)5. Using (5.6)

and (5.38), P scales as (length)2 and f as (length)−1. The dependence on the Planck length
can be restored by rescaling Q→ L5

PQ, P → L2
PP and so on. Denoting the number of ordinary

and fractional D2–branes by N and M , this means that Q ∼ g5/4
s α′5/2N , P ∼ g3/4

s α′3/2M .

5.4 Three simple solutions

Aside from the extremal D2–brane solution, there exist three other simple solutions to the set of
equations (5.36)–(5.40), (5.42). First of all, there is the extremal fractional D2–brane solution
which was mentioned in Section 5.2. It is the analog of the Klebanov–Tseytlin solution for
fractional D3–branes. The second one is the non–extremal ordinary D2–brane solution.
Later on, in Section 5.6., we will derive a non–extremal fractional D2–brane solution from
perturbation theory in the number P of fractional D2–branes. The solution we find interpolates
between the extremal fractional D2–brane solution in the UV and the ordinary black D2–brane
Horowitz–Strominger–like solution [136] in the IR.
The third solution is the analog of the singular, non–extremal D3–brane solution found by
Buchel [49]. This solution is non–extremal but has a naked singularity in the IR.

5.4.1 Singular non–extremal fractional D2–brane

A natural attempt at finding a non–extremal solution is to first switch off the stretching function
w(u). One will find that the solution is singular. So, this motivates the necessity of keeping a
non–trivial squashing function for regular solutions. It will also happen that this solution ap-
proaches the extremal fractional D2–brane solution of the next subsection as the non–extremality
parameter a→ 0.

Upon examination of the system of differential equations (5.36)–(5.40), (5.42), we notice as
soon as we impose that Φ′n = p, a constant, (5.38) requires that Φn = 0, up to a constant
related to the string coupling gs. The condition Φ′n = p is a natural one to impose. The
Herzog–Klebanov singular solution of Section 5.4.2. is indeed such that eΦ = gsH(ρ)1/4, i.e.
eΦn = gse

− 4
5
au with a = 0, from (5.5) and (5.33). It is worth noticing that in a similar analysis

for fractional D3–branes or D1–branes [50, 105, 126], w = 0 automatically implies Φ′′n = 0.
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Alternatively, the analogues of the IR asymptotic conditions which derive from the solution of
subsection 5.4.3. below for fractional D2–branes, lead to a source term for Φn which in turn
prevents a non–trivial squashing function w. For fractional D2–branes, the two conditions are
disconnected.

We thus enforce w = 0 and Φn = 0. From (5.40), zn must then satisfy the first order equation(
e−

zn
4

)′
=
(
Q− 8g3/2

s P 2f(u)
∫ u

0
e6yf(ρ)dρ

)
. (5.43)

Equation (5.36) gives y′′ = 5
2e

10y. From the zero–energy constraint (5.42)

y′ = −
√
b2 +

1
2
e10y, 5b2 ≡ a2 (5.44)

one of the integration constants of this second–order differential equation for y is already deter-

mined. Equation (5.44) integrates to e5y =
√

2/5 a

sinh(
√

5au)
, with a > 0 without loss of generality. As

a consequence, (5.40) gives a massaged equation for f(u):(
sinh

(√
5au

)4/5
f ′
)′

=
12
5

a2

sinh
(√

5au
)6/5 f, (5.45)

which in turn, once inserted into (5.43), gives an expression for zn.
Consider now the Ricci scalar for the metric Ansatz (5.1)–(5.3) specialized to the solution

above:

R = e
11
32
zn−12y

[
− 3

32
g3/2
s e

zn
4 K2 +

3
4
g9/4
s P 2

(
e−4yg2 + 2e−4yh2 + 4e6yf2

)]
(5.46)

As for the Buchel solution in the case of D3–branes or the singular non–extremal fractional
D–string solution [126], this solution turns out to have a naked singularity in the far infrared,
i.e. at large u. This is apparent once we write an asymptotic expansion for f(u) and zn(u) in
the infrared region:

f = f0

(
1 +

4
5
e−2
√

5au

)
+O

(
e−2
√

5au
)
, (5.47)

from which a development for zn is found by integrating (5.43):

e−
zn
4 = C +Qu− 8 24/5a1/5f2

0 g
3/2
s P 2

3 51/10
u− 4 24/5 52/5f2

0 g
3/2
s P 2

9a4/5
e
− 6au√

5 +O
(
e
− 6au√

5

)
,

(5.48)

where f0 and C are constants.
The constant and linear terms in (5.47) and (5.48) dominate in the far infrared: f ∼ f0 and

e−
zn
4 ∼ u. Furthermore, e−y ∼ ebu. Consequently, the e−y terms will dominate the Ricci scalar

which will blow up at large u, even if we consider the limit where no fractional D2–branes are
present P → 0. The P → 0 limit of this singular non–extremal solution does not correspond
to the black D2–brane solution. In Subsection 5.4.3. we demonstrate how the ordinary non–
extremal D2–brane solution is encompassed within our Ansatz.

We define, as is standard, the horizon (if present at all) via G00 ≡ e
5
32
zn+ 5

32
pu−4au = 0.

From the asymptotics of our solutions and the constraint imposed by the zero–energy condition,
a horizon can possibly develop only as u → ∞. This non–BPS solution does not develop an
horizon shielding the naked singularity. We are thus led to conclude that keeping constant Φ′n(u)
cannot prevent a naked singularity. It is remarkable that in the case at hand it is still consistent
to keep w = 0 with a non–trivial Φn. On the other hand, in the analysis pertaining to D3–
branes, a source for Φn implies that a distorting function has to be switched on if non–singular
solutions are to be found.
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5.4.2 The extremal Herzog–Klebanov fractional D2–brane solution

We come by the extremal fractional D2–brane solution by taking the limit a→ 0 of the singular
non–extremal D2–brane solution described in the previous subsection. Explicitly, this yields

Φn → 0, e5y →
√

2
5u

, f → f0 u
4/5,

e−
zn
4 → C +Qu− 28/554/5

9
g3/2
s f2

0P
2u12/5. (5.49)

For this solution to be well–behaved in the UV limit u→ 0, we have set to zero the coefficient in
f(u) of a mode growing as u−3/5. The metric (5.1) becomes asymptotically flat at large distances.
However, as explained in the following subsection, we will rather take C = 0 which amounts to
focusing on the low–energy dynamics of the gauge theory dual to this supergravity background.
This solution also develops a naked infrared singularity at ucr given by u7/5

cr = 9
28/5 54/5

Q

g
3/2
s f2

0P
2
.

We denote L̃ the value u−1/5
cr at which the singularity occurs for this extremal fractional D2–

brane Herzog–Klebanov solution [125]. The singularity arises from the flux associated with
fractional D2–branes, which is supported on a shrinking 4–cycle. Allowing for a non–trivial Φn

and further taking a non–vanishing squashing function w, which corresponds to resolving the
base of the cone to a non–trivial bundle, should lead to a regular supergravity solution. Actually,
as discussed at the beginning of Section 5.2., this singular solution differs from Herzog–Klebanov
solution [125] due to the contribution f(u)Dµi ∧J i to H3. The other contribution is of the type
du ∧ ω2, where ω2 is proportional to the fundamental form of CP3 when f0 → 0. In order to
recover an asymptotic solution of the HK type, we set f0 = 0 in (5.49) and take into account
the remark expressed below (5.17). Equation (5.49) is replaced by

Φn → 0, e5y →
√

2
5u

, f → 0, g = −h→ g0

(√
2

5

)4/5

u−4/5,

e−
zn
4 → C +Qu− 22/556/5g3/2

s g2
0P

2u6/5. (5.50)

We take C = 0. The solution is endowed with a naked IR singularity at

u1/5
cr =

Q

22/556/5g
3/2
s g2

0P
2
. (5.51)

From there on, we define L̃ ≡ u−1/5
cr .

5.4.3 The non–extremal ordinary black D2–brane

In this case we impose that there are no fractional D2–branes: f = 0, g = 0 and P = 0. From
knowledge of this solution in [136], we also set w = 0. The system of differential equations
(5.36)–(5.40), (5.42) simplifies to

y′′ =
5
2
e10y, z′′n = 4g3/2

s Q2e
zn
2 , x′′ = 0, Φ′′n = 0. (5.52)

This integrates to

x′ = a, Φ′n = p, y′2 = b2 +
1
2
e10y, z′2n = c2 + 16g3/2

s Q2e
zn
2 . (5.53)

The zero–energy constraint (5.42) further restrains the integration constants to satisfy 6a2 −
30b2 + c2

32 + 15
32p

2 = 0. Integrating one last time, we obtain

e5y =
√

2b
sinh(5bu)

, e
zn
4 =

c

4g3/4
s Q sinh

(
c
4(u+ k)

) . (5.54)

77



This can be written in the variables (5.5) of the more familiar D2–brane form of the metric (5.4)
as

ρ5 = e5y+3x = 23/2b
e−(5b−3a)u

1− e−10bu
, (5.55)

A(u) = e−6x = e−6au (5.56)

and
H(u) = e−

zn
4
−Φn

4
− 16

5
x = 4g3/4

s

Q

c
sinh

( c
4

(u+ k)
)
e−

16
5
au− p

4
u. (5.57)

The decoupling limit in use for the AdS/CFT correspondence and its various extensions in 2+1
dimensions [150] leads to k = 0 so that H vanishes as u → 0. This decoupling limit removes
the asymptotic Minkowski region of curved geometry created by a stack of branes. This way we
focus only on the throat–like, near–horizon region, i.e. on the low–energy dynamics of the gauge
theory on this stack of branes in the dual picture.

We take 5b = 1
4c = 3a, p = −4

5a, which satisfy the zero–energy constraint. We thus recover
the usual non–extremal D2–brane solution as (5.55)–(5.57) take the form

H(ρ) =
21/2g

3/4
s Q

5ρ5
, A(ρ) = B(ρ) = 1− 6

√
2a

5ρ5
. (5.58)

The non–extremal ordinary D2–brane solution is then given by w = 0 together with

Φn = −4
5
au, e6x = e6au, e−5y =

5 sinh(3au)
3
√

2a
, e−

zn
4 = g3/4

s

Q

3a
sinh(3au).

(5.59)

5.5 Asymptotics of the regular non–extremal fractional D2–
branes

Given that no analytic solution to the system (5.36)–(5.40), (5.42) of second–order differential
equations with the required properties (i)–(ii) outlined below could be found, one has to content
with a solution in perturbation theory or from numerical integration. As a first step, we present
below numerical solutions to the differential equations found at first–order in P 2.

Regardless of the method used to tackle the system (5.36)–(5.40), (5.42), a solution must
satisfy two natural conditions in the IR u→∞ and the UV u→ 0 regions:

(i) it must be a one–parameter (the non–extremality parameter x′ = a or, see below, the
Hawking temperature) generalization of the extremal fractional D2–brane solution (5.50). We
must thus ensure that it approaches the latter solution in the UV and impose the following
boundary conditions at u→ 0:

x,w,Φn, f → 0, K(u)→ 327/551/5g3/2
s g2

0P
2

(
5
6
L̃−1 − u1/5

)
,

e5y →
√

2
5u

, e−
zn
4 → 22/556/5g3/2

s g2
0P

2 u
(
L̃−1 − u1/5

)
. (5.60)

It should be emphasized that L̃ scales as P 2 so that the leading term in the u1/5 expansion is
also of leading order in P 2.

(ii) For P → 0 it must reduce to the black D2–brane solution. The latter has a regu-
lar Schwarzschild horizon, which if preserved as fractional D2–branes are added leads to the
following infrared constraints as u→∞:

x = au, w → w?, Φn → −
4
5
au+ Φ?

n, K → K?,

y → −3
5
au+ y?, zn → −12au+ z?n. (5.61)
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These asymptotics ensure the existence of a regular Schwarzschild horizon for u � 1. The
constants y? and z? encode the information on the Hawking temperature and entropy of this
horizon. Indeed, the metric for u → ∞ in the U–X0 plane, where U ≡ e−3au is the natural
near–horizon variable, takes the form

ds2 = U2e
5
32
z?n+ 5

32
Φ?ndX2

0 +
1

9a2
e−

3
32
z?n− 3

32
Φ?n+12y?dU2. (5.62)

The Hawking temperature TH is fixed from the periodicity of the Euclidean time X0 that
guarantees there is no conical singularity in the U–X0 plane:

TH =
3a
2π
e
z?n
8

+
Φ?n
8
−6y? . (5.63)

In the canonical ensemble where temperature and volume are independent quantities the Hawk-
ing temperature (5.63) of the event horizon is identified with the temperature of the dual gauge
theory in its deconfined phase. There are generally different possibilities for the physics of the
large u asymptotics. The first one (a) is that the u→∞ solution develops a regular horizon as
will be the case from (5.61). (b) It is also possible that H(ρ) in (5.4) vanishes at some finite u
before u =∞. This corresponds to a naked singularity. (c) Still another possibility is that H(ρ)
vanishes at u =∞. The singularity and the horizon coincide in this case. The next section deals
with the first option where our Ansatz should be appropriate at sufficiently high temperature.

The effective D2–brane charge K(u)e−
Φ
2 corresponds in the gauge theory dual to an effective

number of unconfined colour degrees of freedom. As we integrate towards large u K(u)e−
Φ
2

decreases. On the gauge theory side this matches the expected behaviour that as we run the
scale of theory towards the infrared the number of colours degree of freedom should decrease.
There is an significant difference from the D3–brane case [49, 50, 105] due to the dependence of

the D2–brane flux on the dilaton. Note however that e−
Φ
2 ∼ e

3
8au

(sinh(3a(u+k)))1/8 is decreasing for all
u ≥ 0. Thus the flux will still decrease, with the proviso that fractional D2–branes add a small
enough perturbation on the variation of the dilaton. The string coupling should be written in
terms of gauge theory variables as eΦ ∼ g5/2

YMN
1/4/Λ5/4 [150]. We denote Λ the energy scale on

the gauge theory side. N ∼ Ke−
Φ
2 is the number of ordinary D2–branes at the radial variable

corresponding to this scale. Then e
9
8

Φ ∼ g
5/2
YMK

1/4/Λ5/4. K should decrease in the IR as we
add fractional D2–branes. Therefore with perturbative corrections included eΦ still decreases as
u→∞.

We expect that for low–enough temperatures the effective number of D2–branes will reach
zero at some finite u. Above the critical temperature we expect though that the flux will
stabilize at some finite value K?e−

Φ?

2 for large u. This number should vanish in the limit that
the temperature reaches its critical value. It would be interesting to study the free energy. It
should vanish at the critical temperature, marking the transition where the CGLP confining
solution is thermodynamically favoured. This would also make it clear that the transition is
first–order, instead of the other possibility in 2+1 dimensions, namely Kosterlitz–Thouless.

5.6 Perturbation theory in P

To construct the regular non–extremal fractional D2–brane solution, we shall start with the
non–extremal ordinary D2–brane solution (5.59). We recall that it corresponds to no fractional
branes, P = 0. In the singularity–shielding analysis of [105, 126] for D3–branes and D1–branes
respectively, Q is replaced by K? from a set of conditions similar to (5.61) in order to match
onto the asymptotics for the infrared, near–horizon boundary conditions. Presently, we keep Q
fixed as the constant f0 is introduced from the UV asymptotic condition. We will then attempt
to find the deformation of this starting solution order by order in P 2. Actually the relevant
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expansion parameter happens to be λ = g2
0P

2Q−1a−2/5, with g0 = O(1) appearing in the large
distance asymptotic condition (5.60). This ratio is dimensionless and for perturbation theory to
apply, the effective D2–brane charge must thus be large enough. It will also become clear that
the solution we will build in perturbation theory will correspond to the dual gauge theory at a
temperature above the expected critical temperature. As in [105, 126], it turns out that a nice
feature of perturbation theory around the extremal (a = 0) D2–brane background is that already
the first–order correction in P 2 yields the exact extremal fractional D2–brane solution (5.50).
This is strong evidence that an interpolating non–extremal solution that we only managed to
approach in perturbation theory indeed exists.

It is convenient [105, 126] to rescale the fields by relevant powers of P 2:

f(u) = PF (u), g(u) = g0

(√
2

5

)4/5

u−4/5 + PG(u),

Φn(u) = −4
5
au+ P 2φ(u), w(u) = P 2ω(u),

y(u)→ y(u) + P 2ξ(u), zn(u)→ zn(u) + P 2η(u), (5.64)

where y(u) and zn(u) on the right-hand side are the corresponding functions appearing in the
non–extremal ordinary D2–brane solution (5.59), which we transcribe here as well:

e−5y =
5 sinh(3au)

3
√

2a
, e−

zn
4 = g3/4

s

Q

3a
sinh(3au). (5.65)

The first–order correction to g(u) and h(u) is found from F (u) and (5.13). We must impose
further conditions on the correction functions F , φ, ω, ξ and η so as to match onto the extremal
fractional D2–brane asymptotics (5.60) near u = 0:

φ(0) = ω(0) = ξ(0) = 0, η → 4L̃u1/5. (5.66)

Furthermore, F (u) must tend to zero in the UV. In order to avoid excessive cluttering, from
now on we set gs = 1 by absorbing it into P . The system of mixed, non–linear second–order
differential equations (5.36)–(5.40) along with the constraint (5.42) becomes

15ξ′′ − 3g2
0e

zn
4

+4y
(
e

3
5
au − e− 3

5
au
)
− 375e10yξ +O(P 2) = 0, (5.67)

ω′′ + 2e10yω +O(P 2) = 0, (5.68)

5φ′′ + 4e
zn
4

(
e

3
5
au − e− 3

5
au
)(

6e6yF 2 − 2
3
e−4yF ′2

)
+O(P 2) = 0, (5.69)

η′′ − 2e
zn
2 Q2η − 4e

zn
4

(
e

3
5
au + e−

3
5
au
)(

4e6yF 2 +
2
3
e−4yF ′2

)
+ 64e

zn
2 QF

∫ u

0
e6yF (ρ)dρ+O(P 2) = 0,

(5.70)(
e−4yF ′

)′ − 6e6yF +O(P 2) = 0 (5.71)

and

60y′ξ′ − 1
16
z′nη
′ +

3
4
aφ′ +

1
4
e
zn
2 Q2η − 2e

zn
4

(
e

3
5
au − e− 3

5
au
)

− 8e
zn
2 QF

∫ u

0
e6yF (ρ)dρ− 150e10yξ +O(P 2) = 0.

(5.72)
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5.6.1 Leading–order solution for K

In terms of v ≡ 1− e−6au, the differential equation for the first–order solution to the condition
that H3 be harmonic (5.71) is

F ′′ +
4/5 − 7/5 v
v(1− v)

F ′ − 12
25

1
v2(1− v)2

F = 0. (5.73)

The general solution is of the form

F (u) = 2F1

[
−3

5 ,−1
5 ,−2

5 , v
]

v3/5
C1 + v4/5

2F1

[
4
5
,
6
5
,
12
5
, v

]
C2, (5.74)

where 2F1 [a, b; c; z] denotes Gauss’ hypergeometric function. The integration constant C1 and
C2 must be such that F (u) increases as degrees of freedom are integrated out down the infrared.
This condition yields C1 = 0. The behaviour of F (v) appears on Figure 5.1.
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Figure 5.1: Plot of the first–order solution for F (u), with C2 = 1. Even though the conditions
needed to derive this solutions are imposed in the IR, it behaves in the UV as the corresponding
solution for extremal fractional D2–branes found in Section 5.4.2.

Figure 5.2. displays the generic shape of the effective number of ordinary and fractional
D2–branes

K(v) = Q
(

1−4
5

1
32/556/5

f2
0P

2

a2/5Q
v4/5

2F1 [4/5, 6/5, 12/5, v]∫ v

0

ρ4/5(
sinh

(
−1

2 log(1− v)
))6/5 2F1 [4/5, 6/5, 12/5, ρ] dρ

)
+O(P 2).

(5.75)

We see that, as advertised, the appropriate expansion parameter is λ = g2
0P

2Q−1a−2/5. All
boundary conditions on F (u) are imposed at u→∞ but its u→ 0 limit has a surprise in store.
Expanding (5.74) for small u

F = f0u
4/5 +O(u8/5), (5.76)

identifying C2 with f0, matches, up to 1/length corrections, the exact extremal fractional D2–
brane solution (5.49). This is strong hint that an exact interpolating solution does exist. We
did not manage to find such an analytic solution and have to resort to pertubation theory.
Equation (5.75) suggests that this approach is reliable as long as g2

0P
2Q−1a−2/5 << 1. As
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Figure 5.2: The leading–order solution for K(u) computed from perturbation theory in P 2. Here
we put K? = 1 and λ = 0.01. As expected, the effective number of degrees of freedom decreases
as we integrate them out flowing to the IR, v → 1.

already mentioned, this implies the Hawking temperature is high. Taking the IR limit of (5.75)
results in

K? = Q− 28
15

(2/5)1/5

32/5

Γ[2/5]Γ[12/5]
Γ[6/5]Γ[8/5]

(
2− 3F2 [{3/5, 4/5, 1} , {9/5, 11/5} , 1]

1 +
√

5

)
f2

0P
2

a2/5
.

(5.77)

Expressed in terms of a and K?, (5.63) gives

TH ∼ a3/10K
−1/2
? . (5.78)

The critical temperature Tc corresponds to situation where K? vanishes. This means a2/5 ∼ L̃7

at the critical regime. From (5.77) it is apparent that our pertubative analysis is valid for
T >> Tc.

5.6.2 Solutions for other fields

To determine the corrections to the other fields, the Lagrange method of variation of parameters
seems particularly suited at first to solve the linear second–order differential equations (5.67)–
(5.70). The final product of this recipe guarantees that a differential equation of the type

d2ψ

dx2
+ a(x)

dψ

dx
+ b(x)ψ = c(x) (5.79)

admits a general solution

Ψ(x) = −Ψ1(x)
∫
dx′

cΨ2

W
(x′) + Ψ2(x)

∫
dx′

cΨ1

W
(x′) + c1Ψ1(x) + c2Ψ2(x) (5.80)

in terms of two linearly independent solutions Ψ1 and Ψ2 for the corresponding homogeneous
equation (i.e. (5.79) with c(x) = 0). c1,2 are arbitrary constants. W ≡ Ψ1

dΨ2
dx − Ψ2

dΨ1
dx is the

Wronskian. In terms of v ≡ 1 − e−6au, equations (5.67) to (5.70) can be reshuffled into the
general form

d2ψ

dv2
− 1

1− v
dψ

dv
− a

v2(1− v)
ψ = c(v), (5.81)
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where a and c(v) denote an arbitrary constant and a function. A solution to the homogeneous
part of this equation is ψ(v) = vν 2F1[ν, ν; 2ν; v] with a = ν(ν − 1). The a = 2 case is somewhat
aside in that the two linearly independent solutions reduce to 1

v − 1
2 and −2 + v−2

v ln(1− v).
We met considerable hindrance to deriving analytical solutions to (5.67)–(5.70) when trying

to integrate hypergeometric functions. From (5.74) and (5.59), we then choose instead to nu-
merically solve the equation of motion (5.69) for the order–P 2 corrections to the fields in our
Ansatz. As far as the dilaton is concerned, we impose the large u boundary condition that
φ′ → 0. The small u asymptotics for its part requires that φ → 0 near u = 0. Integration
constants for ξ are fixed from the boundary conditions that ξ = 0 near u = 0 and ξ′(v) vanishes
as u → ∞. The solution for η is determined from the boundary conditions that η′(u) is zero
in the small distance region and η scales as u7/5 for u→ 0. The behaviour of those fields for a
common set of values of a is displayed on Figure 5.3., 5.4. and 5.5.
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Figure 5.3: A sample of the first–order solution for φ(u), with a = 0.7, a = 1.0 and a = 1.3.
We code of colours we use to distinguish those is to associate the lowest value of a to the blue
curve. The highest value of a corresponds to the red curve. We have set Q = 100, f0 = 1.
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Figure 5.4: ξ(u) versus the radial coordinate u of the metric Ansatz. Three sample curves are
drawn with a = 0.7, a = 1.0 and a = 1.3 following the conventions explained on Figure 5.3.

Since the P 2 corrections to the entropy and the Hawking temperature do not depend on
ω(u) we will just deliver its asymptotics here. For small u (5.68) yields

ω = pu1/5 + qu4/5. (5.82)
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Figure 5.5: Aspect of the first–order solutions for η(u) with a = 0.7, a = 1.0 and a = 1.3. The
Cauchy conditions for the second–order differential equation governing this first–order solution
are such that it matches with the extremal Herzog–Klebanov solution in the UV and decreases
smoothly to a constant value of zn ≡ 15z − Φ near the horizon, in the IR.

The constant p and q are to be found numerically from the conditions ω(0) = 0 (5.66) and ω
stays finite when u→∞. At large u (5.68) gives

ω = ω? − 4
25
ω?e−6au +O(e−12au). (5.83)

The corrections to the Hawking temperature and the regular horizon entropy are extracted
from the particular form that the metric (5.1) takes when specialized to the perturbative solu-
tions we have just derived. From

ds2
10E =
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)5/8
e
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32
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32
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) (
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e−4P 2ω
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)]
,

(5.84)

the dependence on the near–horizon asymptotic developments of the entropy density over the
temperature squared equals

S

V T 2
= αe

3P 2

(
6ξ?− η

?+φ?

8

)
, (5.85)

where α ≡ 4π2
(

2
25

)9/5
(6a2)1/40Q3/2. From (5.77) and (5.78) and using numerical values of the

fields at the horizon, the entropy density over the temperature squared (5.85) tends to a limiting
value when the dual deconfined gauge theory is heated up. From the thermodynamic relation
dE = TdS, the energy of the field theory at strong coupling is about 2/3 its the free field value,
E ∼ 2

3TS. This is to be compared with the celebrated 25% discrepancy for N = 4 SYM in four
dimensions [102]. There is an additional contribution from fractional branes to the ratio S

V T 2 of
the Horowitz–Strominger black D2–brane solution [136].

Further numerical work is required, in particular to settle the fate in the IR of the squashing
function w(u) or at least its first–order correction in P 2. Starting with the UV u → 0 condi-
tions (5.60), the numerical procedure would consist in integrating either the full set of equations
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or those derived in perturbation theory for the functions in the Ansatz. On should then vary
the temperature (5.63) and find the solutions satisfying (5.61) at a regular horizon shielding the
singularity without coinciding with it.

5.7 Conclusion

We have built to order P 2 in the number of fractional branes a regular non–extremal fractional
D2–brane perturbative solution. This solution is the supergravity dual of the high–temperature,
deconfined phase of the three–dimensional theory whose confined phase supergravity dual was
constructed by Cvetic, Gibbons, Lu and Pope [67]. There are several reasons why one might be
interested in this solution and the corresponding field theory.

The high–temperature limit of QCD in four dimensions may be dominated by the physics
of the static theory in three space dimensions, i.e. Euclidean QCD3. Within the context of
attempting to find an appropriate supergravity dual to QCD, it might then be of interest to
start in one lower dimension and see what this can tell about the high–temperature phase.

Three–dimensional field theories are also of interest for gaining better understanding of
the properties of strongly–coupled systems of electrons in condensed matter physics. Refer-
ences [115], [133] and [200] review what supergravity theories have to teach about condensed
matter systems belonging to the same universality class of the gauge duals. On this regard, we
would like to mention [134] which works out the solution for a baryonic black 3–brane, allowing
for a new contribution to the R–R field strengths from which the baryonic U(1)B gauge field
under which their black hole solution is charged stems from upon truncation to five dimensions.

In [6] a numerical approach was performed for constructing a black hole solution from frac-
tional D3–branes dual to cascading gauge theories. The free energy becomes positive below some
critical temperature. This vindicates the suggestion that the supergravity solution is associated
to one of the phases separated by a transition which is indeed first–order, as it should from
field theory arguments. It would be interesting to carry a similar analysis for the case of the
2+1 dimensional cascading gauge theory dual to fractional D2–branes. This would rule out the
possibility of a Kosterlitz–Thouless transition, which the arguments of [248] alone cannot prefer
over a first–order transition.

It would be interesting to understand the spectrum of the field theory dual to the resolved
fractional D2–brane solution of [67] of which we have described the supergravity solution cor-
responding to the high–temperature, deconfined phase. How this might be guessed from the
geometry of the transverse space is described in [68]. The focus is on the gauge theory dual
to the resolved D2–branes and wrapped NS5–branes solution found in [67]. The base of the
cone is S3 × S3. Embedding the transverse space with topology R4 × S3 into R8, one writes
the constraint associated to this locus in terms of quaternionic coordinates. Identification of
these variables with the matter field of the dual field theory5 provides the representations under
which they transform. The most recent attempt to understand the UV regime of the gauge
theory we are aware of appears in [190]. This work starts with M2–branes in particular Spin(7)
holonomy backgrounds, A8 and B8, and considers the flow to D2–branes on manifolds of G2

holonomy. A further study of M–theory on the B8 manifold appears in [111]. Reference [190]
find that the UV field theory for N D2–branes on the background M, where M is a cone over
CP3, is N = 1 supersymmetric with U(N) × U(N) gauge group. The field content fits into an
N = 1 vector multiplet and four N = 2 chiral superfields, one pair in the (N, N̄) representation,
another in the conjugate. Based on how the gauge groups change from adding fractional branes
to the Klebanov–Witten theory, adding M fractional D2–branes might change the gauge group
to U(N)× U(N +M). It would be interesting to verify this in more detail.

Recently, there has been much interest in N = 6 superconformal Chern–Simons matter
theories [7]. See [174] for an excellent review with additional references. When the level k of this

5The same procedure is used for the conifold [168].
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U(N)−k × U(N)k theory describing N coincident M2–branes is such that k << N << k5, the
M–theory circle becomes small and it becomes suitable to describe the gravitational dual using
a weakly–curved IIA string theory on a AdS4 × CP3 geometry orientifolded under the initial
M–theory Zk projection. A generalization of the ABJM theory to account for the possibility of
fractional M2–branes was proposed in [8]. The possibility of duality cascades was further studied
in [9]. Further evidence should be provided from dual string theory constructions and this is
reported in [9] as work in progress. It might be interesting to build a non–extremal solution
from the IIA description of the ’t Hooft limit of the ABJM theory. A difference from our work
lies in the occurrence of a non–vanishing 2–form field strength in this IIA background.

More generally, there is a connection between the D2–branes theories we have considered
and N = 1 Chern–Simons theories. Indeed, starting from M2–branes on Spin(7) cones, one can
obtain Chern–Simons theories by an orientifolding procedure [89]6. From [190] there is then
a flow from C–S theories to D2–branes probing a G2 holonomy manifold. It might also be of
interest to study the thermodynamics of those more general flows, with or without fractional
branes, which might provide information on the deconfined phase of C-S matter theories. This
might hint at how N2 degrees of freedom on D2–branes relate to N3/2 on N coincident M2–
branes.

6The link between Chern–Simons terms and fluxes in M–theory on a Spin(7) manifold is discussed in [111].
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Chapter 6

The Backreaction of Anti–M2
Branes on a Warped Stenzel Space

We find the superpotential governing the supersymmetric warped M–theory solution with a
transverse Stenzel space found by Cvetič, Gibbons, Lü and Pope [66], and use this superpotential
to extract and solve the twelve coupled equations underlying the first–order backreacted solution
of a stack of anti–M2 branes in this space. These anti–M2 branes were analyzed recently in a
probe approximation by Klebanov and Pufu, who conjectured that they should be dual to a
metastable vacuum of a supersymmetric 2+1 dimensional theory. We find that the would–be
supergravity dual to such a metastable vacuum must have an infrared singularity and discuss
whether this singularity is acceptable or not. Given that a similar singularity appears when
placing anti–D3 branes in the Klebanov–Strassler solution, our work strengthens the possibility
that anti–branes in warped throats do not give rise to metastable vacua.

6.1 Introduction and discussion

The recent revival of interest in metastable supersymmetry breaking in quantum field theory
is largely due to the work of Intriligator, Seiberg and Shih [145] (ISS). This work presents a
mechanism to naturally circumvent some of the problems afflicting other models for dynamic
supersymmetry breaking (DSB) [231, 206, 147, 146]. A natural question that was posed immedi-
ately after [145] is whether metastable vacua also exist in string realizations of supersymmetric
field theories.

For type IIA brane–engineering models of supersymmetric field theories, the answer to this
question is negative [29]. Indeed, these models are constructed using D4 branes ending on
codimension–two defects inside NS5 branes [210, 90, 29], which source NS5 worldvolume fields
that grow logarithmically at infinity. In supersymmetric vacua this logarithmic growth encodes
the running of the gauge theory coupling constant with the energy [258, 135, 47, 98], but these
logarithmic modes are different in the candidate metastable brane configuration and in the
supersymmetric one. This implies that the candidate metastable brane configuration and the
supersymmetric one differ by an infinite amount, and hence cannot decay into each other. Hence,
the type IIA brane construction does not describe a metastable vacuum of a supersymmetric
theory, but instead a nonsupersymmetric vacuum of a nonsupersymmetric theory.

Another arena where one might try to find string theory realizations of metastable vacua
are IIB holographic duals of certain supersymmetric gauge theories. The best–known exam-
ple in this class was proposed by Kachru, Pearson and Verlinde [156, 72], who argued that
a background with anti–D3 branes at the bottom of the Klebanov–Strassler warped deformed
conifold [171] is dual to a metastable vacuum of the dual supersymmetric gauge theory. Since
the Klebanov–Strassler solution has positive D3 brane charge dissolved in flux, the anti–D3
branes can annihilate against this charge (this annihilation happens via the polarization of the
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anti–D3 branes into an NS5 brane [204, 218]), and this bulk process is argued to correspond to
the decay of the metastable vacuum to the supersymmetric one in the dual field theory.

Another proposal for a metastable vacuum obtained by putting anti–branes at the bottom of
a smooth warped throat with positive brane charge dissolved in flux has recently been made by
Klebanov and Pufu [175], who argued that probe anti–M2 branes at the tip of a supersymmetric
warped M–theory background with transverse Stenzel space [244], give rise to a long–lived
metastable vacuum. The supersymmetric solution, first found by Cvetič, Gibbons, Lü and Pope
(CGLP) in [66] has M2 charge dissolved in fluxes and a large S4 in the infrared. The anti–branes
can annihilate against the charge dissolved in fluxes by polarizing into M5 branes [28] wrapping
three–spheres inside the S4.

The probe brane analyses described above, while indicative that a metastable vacuum might
exist, are however not enough to establish this. One possible issue which can cause the backre-
acted solution to differ significantly from the probe analysis is the presence of non-normalizable
modes. If the anti-branes indeed source such modes then the candidate metastable config-
uration is not dual to a non–supersymmetric vacuum of a supersymmetric theory, but to a
non–supersymmetric vacuum of a non–supersymmetric theory, and the supersymmetry break-
ing is not dynamical but explicit. The existence of non–normalizable modes is not visible in the
probe approximation (much like the existence of type IIA log–growing modes was not visible in
gs = 0 brane constructions [210, 90]), but only upon calculating the backreaction of the probe
branes – a not too easy task.

In [30] was found the possible first–order backreacted solution sourced by a stack of anti–D3
branes smeared on the large S3 at the bottom of the Klebanov–Strassler (KS) solution, and found
two very interesting features: first, of the 14 physical modes describing SU(2) × SU(2) × Z2–
invariant perturbations of the warped deformed conifold, only one mode enters in the expression
of the force that a probe D3 brane feels in this background. Hence, since anti–D3 branes attract
probe branes, if the perturbed solution is to have any chance to describe backreacted anti–D3
branes, this mode must be present1. The second feature of this solution is that if the force mode
is present, the infrared2 must contain a certain singularity, which has finite action3. Note that
having a finite action does not automatically make a singularity acceptable – negative–mass
Schwarzschild is an obvious counterexample [137]. As discussed in [30], if this singularity is
unphysical, then the solution sourced by the anti–D3 branes cannot be thought of as a small
perturbation of the KS solution, and therefore does not describe a metastable vacuum of the
dual theory. If this singularity is physical, the first–order solution does describe anti–D3 branes
at the bottom of the KS solution, and work is in progress to determine what are the features of
this solution, and whether the perturbative anti–D3 brane solution describes or not metastable
vacua of the dual theory.

The purpose of this part of the thesis is to calculate the first–order backreaction of the other
proposed metastable configuration with anti–branes in a background with charge dissolved in
fluxes: the anti–M2 branes in the Stenzel–CGLP solution [66]. In order to do this we smear
the anti–M2 branes on the large S4 at the bottom of the Stenzel–CGLP solution, and solve for
all possible deformations of this background that preserve its SO(5) symmetry. We consider an
Ansatz for these deformations ; the space of deformations is parameterized by 6 functions of
one variable satisfying second–order differential equations. However, when perturbing around
a supersymmetric solution, Borokhov and Gubser [45] have observed that these second–order
equations factorize into first–order ones, that are much easier to solve. Nevertheless, in order
to apply the Borokhov–Gubser method, one needs to find the superpotential underlying the

1The asymptotic behavior of the force matches the one argued for in [158], and the existence of this mode was
first intuited in [73] which set out to study the UV asymptotics of the perturbations corresponding to anti–D3
branes in the KT background[170].

2An IR analysis of some of the non–supersymmetric isometry–preserving perturbations of the Klebanov–
Strassler background can also be found in [201].

3This was first observed by I. Klebanov.
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supersymmetric solution, which for the warped fluxed Stenzel–CGLP solution was not known
until now. The first result of this chapter, presented in Section 6.2., is to find this superpotential4,
and derive two sets of first–order equations governing the space of deformations.

We then show in Section 6.3. that the force felt by a probe M2 brane in the most general
perturbed background depends on only one of the “conjugate–momentum” functions that appear
when solving the first–order system, and hence on only one of the 10 constants parameterizing
the deformations around the supersymmetric solution. We then solve in Section 6.4. the two sets
of first–order differential equations. Amazingly enough, the solutions for the first set of equations
(for the conjugate–momentum functions) can be found explicitly in terms of incomplete elliptic
integrals (a huge improvement on the situation in [30]). We also find the homogeneous solutions
to the other equations and give implicitly the full solution to the system in terms of integrals.
We also provide the explicit UV and IR expansions of the full space of deformations, and find
which deformations correspond to normalizable modes and which deformations correspond to
non–normalizable modes.

In Section 6.5. we then use the machinery we developed to recover the perturbative expansion
of the known solution sourced by BPS M2 branes smeared on the S4 at the tip of the Stenzel–
CGLP solution [66], and analyze the infrared of the possible solution sourced by anti–M2 branes.
After removing some obviously unphysical divergences and demanding that in the first–order
backreacted solution a probe M2 brane feels a nonzero force, we find that the only backreacted
solution that can correspond to anti–M2 branes must have an infrared singularity, coming from
a four–form field strength with two or three legs on the three–sphere that is shrinking to zero
size at the tip of the Stenzel space.

Hence, the first–order backreacted solution for the anti–M2 branes has the same two key fea-
tures as the anti–D3 branes in KS: the force felt by a probe M2 brane in this background depends
only on one of the 10 physical perturbation modes around this solution, and the solution where
the force–carrying mode is turned on must have an infrared singularity coming from a divergent
energy in the M–theory four–form field strength. Nevertheless, unlike in the “anti–D3 in KS”
solution, the action of this infrared singularity also diverges. Again, if this singularity is phys-
ical, our first–order backreacted solution describes anti–M2 branes in the CGLP background,
and, to our knowledge, would be the first backreacted supergravity solution dual to metastable
susy–breaking in 2+1 dimensions since the work of Maldacena and Năstase [193]. This may be
of interest both in the programme of using the AdS/CFT correspondence to describe strongly-
interacting condensed–matter systems, and also in view of the relevance of three–dimensional
QFT’s at strong coupling to a recent holographic model of four–dimensional cosmology [197].
On the other hand, if the singularity is not physical then the backreaction of the anti–M2 branes
cannot be taken into account perturbatively; this indicates that the only solution with proper
anti–M2 brane boundary conditions in the infrared is the solution for anti–M2 branes in a CGLP
background with anti–M2 brane charge dissolved in flux, and hence the anti–M2 branes flip the
sign of the M2 brane charge dissolved in flux.

Given the similarity of the results of the “anti–D3 in KS” and of the “anti–M2 in CGLP”
analyses and the drastically–different calculations leading to them, it is rather natural to expect
that the underlying physics of the two setups is the same: either both singularities are physical,
which indicates that anti–branes in backgrounds with charge dissolved in fluxes give rise to
metastable vacua, or they are both unphysical, which supports the idea that anti–branes in
such backgrounds cannot be treated as a perturbation of the original solution, and may flip the
sign of the charge dissolved in flux. Furthermore, our analysis suggests that one cannot use the
finiteness of the action as a criterion for accepting a singularity. This would allow the anti–D3
singularity and exclude the anti–M2 one, which would be rather peculiar, given the striking
resemblance of the two systems.

There are a few possible explanations for the singularities we encounter in the anti–M2

4This is the equivalent of the Papadopoulos–Tseytlin superpotential for the KS solution [211, 60, 31].
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and anti–D3 solutions. One is that these singularities are accompanied by stronger, physical
singularities, coming from the smeared anti–M2 or anti–D3 sources, and one can hope that
whatever mechanism renders the stronger singularities physical may cure the subleading ones
as well. Another explanation is that the subleading singularities are a result of smearing the
antibranes. This is a difficult argument to support with calculational evidence, as the unsmeared
solution is a formidable problem even for BPS branes in Stenzel spaces [176, 225]. Furthermore,
a naive comparison of the anti–M2 and anti–D3 solutions indicates that the stronger the physical
singularity associated with the brane sources is, the stronger the subleading singularity will be.
Hence, it is likely that unsmearing will make things worse, not better, as is illustrated for special
cases in [44]. Note also that one cannot link the divergent four–form field strength with the M5
branes into which the anti–M2 branes at the tip of the Stenzel–CGLP solution polarize – they
have incompatible orientations.

It is also interesting to remember that when one attempts to build string realisations of
four-dimensional metastable vacua, either via brane constructions [29] or via AdS-CFT [30], the
non–normalizable modes one encounters are log–growing modes, which one could in hindsight
have expected from the generic running of coupling constants of four–dimensional gauge theories
with the energy.

For anti–M2 branes there is no such link. There exist both AdS/CFT duals of metastable
vacua of 2+1 dimensional gauge theories [193], as well as brane–engineering constructions of such
metastable vacua (using D3 branes ending on codimension–three defects inside NS5 branes) [99].
The nonexistence of an anti–M2 metastable vacuum could only be seen in supergravity, and
comes from the way the fields of the anti–M2 brane interact with the magnetic fields that give rise
to the charge dissolved in fluxes. This may indicate there is a problem with trying to construct
metastable vacua in string theory by putting antibranes in backgrounds with charge dissolved
in fluxes. In an upcoming paper [97] we will also argue that anti–D2 branes in backgrounds
with D2 brane charge dissolved in fluxes [67] that I have investigated in [95], which appears on
Chapter 5 of this thesis, have similar problems.

6.2 Perturbations around a supersymmetric solution

We are interested in the backreaction of a set of anti–M2 branes spread on a four–sphere at the
bottom of the warped Stenzel geometry [244] with nontrivial fluxes. Smearing the anti–M2’s is
necessary in order for the perturbed solution to have the same SO(5) global symmetry as the
supersymmetric solution of Cvetič, Gibbons, Lü and Pope (CGLP) [66]. The perturbed metric
and flux coefficients are then functions of only one radial variable, and generically satisfy n
second–order differential equations.

However, when perturbing around a supersymmetric solution governed by a superpotential,
Borokhov and Gubser [45] have observed that these n second–order equations factorize into n
first–order equations for certain momenta and n first–order equations for the metric and flux
coefficients, and that furthermore the n equations for the momenta do not contain the metric
and flux coefficients, and hence can be solved independently. This technique has been used
in several related works [30, 45, 180] and we consider this to be the technique of choice for
deformation problems that depend on just one coordinate.

6.2.1 The first–order Borokhov–Gubser formalism

While the following summary can be found by now in several sources, we include it here for
completeness. When the equations of motion governing the fields φa of a certain supersymmetric
solution come from the reduction to a one–dimensional Lagrangian

L = −1
2
Gab

dφa

dτ

dφb

dτ
− V (φ) (6.1)
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whose potential V (φ) comes from a superpotential,

V (φ) =
1
8
Gab

∂W

∂φa
∂W

∂φb
, . (6.2)

The Lagrangian is written as

L = −1
2
Gab

(
dφa

dτ
− 1

2
Gac

∂W

∂φc

)(
dφa

dτ
− 1

2
Gac

∂W

∂φc

)
− dW

dτ
, (6.3)

and the supersymmetric solutions satisfy

dφa

dτ
− 1

2
Gab

∂W

∂φb
= 0 . (6.4)

We now want to find a perturbation in the fields φa around their supersymmetric background
value φa0

φa = φa0 + φa1(X) +O(X2) , (6.5)

where X represents the set of perturbation parameters in which φa1 is linear. The deviation from
the gradient flow equations for the perturbation φa1 is measured by the conjugate momenta ξa

ξa ≡ Gab(φ0)
(
dφb1
dτ
−M b

d(φ0)φd1

)
, (6.6)

M b
d ≡

1
2
∂

∂φd

(
Gbc

∂W

∂φc

)
. (6.7)

The ξa are linear in the expansion parameters X, hence they are of the same order as the φa1.
When all the ξa vanish the deformation is supersymmetric.

The main point of this construction is that the second–order equations of motion governing
the perturbations reduce to a set of first–order linear equations for (ξa, φa):

dξa
dτ

+ ξbM
b
a(φ0) = 0 , (6.8)

dφa1
dτ
−Ma

b(φ0)φb1 = Gabξb . (6.9)

Note that equation (6.9) is just a rephrasing of the definition of the ξa in (6.6), while (6.8)
implies the equations of motion. Since one considers these perturbations in a metric Ansatz
in which the reparametrization invariance of the radial variable is fixed, in addition to these
equations one must enforce the zero–energy condition

ξa
dφa0
dr

= 0 . (6.10)

6.2.2 The perturbation Ansatz

Using the analysis of the CGLP solution in [175], one can easily see that the Ansatz for the
SO(5)–invariant eleven–dimensional supergravity solution we are looking for is

ds2 = e−2z(r)dxµdx
µ + ez(r)

[
e2 γ(r) dr2 + e2α(r)σ2

i + e2β(r)σ̃2
i + e2 γ(r)ν2

]
G4 = dK(τ) ∧ dx0 ∧ dx1 ∧ dx2 +mF4 , (6.11)

where F4 = dA3 and

A3 = f(r) σ̃1 ∧ σ̃2 ∧ σ̃3 + h(r) εijk σi ∧ σj ∧ σ̃k (6.12)
⇒ F4 = f ′ dr ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + h′ εijk dr ∧ σi ∧ σj ∧ σ̃k

+
1
2

(4h− f) εijk ν ∧ σi ∧ σ̃j ∧ σ̃k − 6h ν ∧ σ1 ∧ σ2 ∧ σ3 . (6.13)
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Our notation for the one–forms on the Stenzel space is by now standard [175], in the sense that
with the definitions

σi = L1i , σ̃i = L2i , ν = L12 , (6.14)

they satisfy

dσi = ν ∧ σ̃i + Lij ∧ σj , (6.15)
dσ̃i = −ν ∧ σi + Lij ∧ σ̃j , (6.16)
dν = −σi ∧ σ̃i , (6.17)

dLij = Lik ∧ Lkj − σi ∧ σj − σ̃i ∧ σ̃j . (6.18)

Integrating one particular component of the equation of motion for the flux

d ∗G4 =
1
2
G4 ∧G4 (6.19)

gives

K ′ = 6m2
[
h (f − 2h)− 1

54

]
e−3(α+β)−6z , (6.20)

where we have chosen the integration constant such that the BPS solution [66] is regular, i.e. there
are no explicit source M2 branes.

Performing a standard dimensional reduction on this Ansatz down to one dimension, we
obtain the following Lagrangian

L = (Tgr + Tmat)− (Vgr + Vmat) (6.21)

with the gravitational and matter sectors given by

Tgr = 3 e3 (α+β)

[
α′ 2 + β′ 2 − 3

4
z′ 2 + 3α′β′ + α′γ′ + β′γ′

]
, (6.22)

Vgr =
3
4
eα+β

[
e4α + e4β + e4γ − 2 e2α+2β − 6 e2α+2γ

]
(6.23)

and

Tmat = −m
2

4
e3α+β−3 z

(
f ′ 2 e−4β + 12h′ 2 e−4α

)
, (6.24)

Vmat = 3m2 eα+3β−3 z

[
3h2 e−4α +

1
4

(4h− f)2 e−4β

]
+9m4 e−3 (α+β+2 z)

[
h (f − 2h)− 1

54

]2

. (6.25)

The superpotential is given by

W = −3 e2α+2β (e2α + e2β + e2γ)− 6m2 e−3z

[
h (f − 2h)− 1

54

]
. (6.26)

It is worth noting that equation (6.2) only defines the superpotential up one independent minus
sign which can then be absorbed in (6.8) and (6.9) by changing the sign of the radial variable
and the ξa. However, with the wisdom of hindsight, we choose a radial variable such that fields
decay at infinity and not minus infinity, thus simultaneously fixing the sign of the superpotential.

92



6.2.3 The supersymmetric background

Here we summarize the expressions that the fields in our Ansatz take when specialized to the
zeroth–order CGLP solution [66] around which we endeavor to study supersymmetric and non–
supersymmetric perturbations.

We should note that the CGLP solution with transverse Stenzel geometry is to the warped M–
theory solution with transverse Stiefel space [62] what the IIB Klebanov–Strassler solution [171]
and the deformed conifold [52] are to the Klebanov–Tseytlin solution [170] and the singular
conifold. The Stenzel space is a higher–dimensional generalization of the deformed conifold. A
useful summary of many details of the supergravity solution can be found in [196] and proposals
for the dual field theory can be found in [196, 151]

The supersymmetric solution around which we will perturb was found in [66]. It can be
summarized in our Ansatz by

e2α0 =
1
3

(2 + cosh(2 r))1/4 cosh(r) , (6.27)

e2β0 =
1
3

(2 + cosh(2 r))1/4 sinh(r) tanh(r) , (6.28)

e2 γ0 = (2 + cosh(2 r))−3/4 cosh3(r) , (6.29)

f0 =
1

33/2

(
1− 3 cosh2(r)

)
cosh3(r)

, (6.30)

h0 = − 1
33/2 2

1
cosh(r)

, (6.31)

e3z0(y) = 25/2 3m2

∫ ∞
y

du

(u4 − 1)5/2
, (6.32)

where
y4 ≡ 2 + cosh(2 r) . (6.33)

With this change of coordinate we can write

e3 z0 =
√

2m2 y
(
7− 5 y4

)
(y4 − 1)3/2

+ 5
√

2m2F

(
arcsin

(
1
y

)
| −1

)
, (6.34)

where the incomplete elliptic integral of the first kind is

F (φ | q) =
∫ φ

0

(
1− q sin(θ)2

)−1/2
dθ (6.35)

and we have fixed the integration constant (denoted c0 in [66]) by requiring e3z0 → 0 as r →∞.

6.2.4 Explicit equations

We now write out explicitly the two sets of equations (6.8) and (6.9). In both cases a particular
field redefinition simplifies things substantially.

ξa equations

The ξa equations (6.8) simplify in the basis

ξ̃a = (ξ1 + ξ2 + ξ3, ξ1 − ξ2 + 3 ξ3, ξ1 + ξ2 − 3 ξ3, ξ4, ξ5, ξ6) . (6.36)
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In the order which we solve them, the equations are

ξ̃′4 = 6m2 e−3(α0+β0+z0)

(
(f0 − 2h0)h0 −

1
54

)
ξ̃4 , (6.37)

ξ̃′1 = 12m2 e−3(α0+β0+z0)

(
(f0 − 2h0)h0 −

1
54

)
ξ̃4 , (6.38)

ξ̃′5 =
1
2
eα0−β0 ξ̃6 − 2m2 h0 e

−3(α0+β0+z0) ξ̃4 , (6.39)

ξ̃′6 = 6 e−3(α0−β0) ξ̃5 − 2 eα0−β0 ξ̃6 − 2m2 e−3(α0+β0+z0) (f0 − 4h0) ξ̃4 , (6.40)

ξ̃′3 =
2
9
e−3(α0+β0+z0)

[
18 e2(α0+β0+γ0)+3z0 ξ̃3 +m2 (54h0 (f0 − 2h0)− 1) ξ̃4

]
,

(6.41)

ξ̃′2 =
1
2
e−3α0−β0

[
2 e2(α0+β0)ξ̃2 − 6 e2(α0+γ0)ξ̃3 − 72h0 e

4β0 ξ̃5

+e4α0

(
−3 ξ̃1 + 2 ξ̃2 + 3 ξ̃3 + 2 (f0 − 4h0) ξ̃6

) ]
, (6.42)

where we remind the reader that a prime denotes a derivative with respect to r not y (6.33).

φa equations

The φa equations benefit from a field redefinition as well,

φa = (α, β, γ, z, f, h) , (6.43)
φ̃a = (φ1 − φ2, φ1 + φ2 − 2φ3, φ3, φ4, φ5, φ6) (6.44)

and we find

φ̃′1 =
1
12
e−3(α0+β0)

[
−3 ξ̃1 + 4 ξ̃2 + 3

(
ξ̃3 − 4 e2(α0+β0)

(
e2α0 + e2β0

)
φ̃1

)]
, (6.45)

φ̃′2 =
1
12
e−3(α0+β0)

[
−3 ξ̃1 + 7 ξ̃3 + 12 e2(α0+β0)

(
3
(
e2β0 − e2α0

)
φ̃1 − 4 e2γ0 φ̃2

)]
,

(6.46)

φ̃′3 =
1
12
e−3(α0+β0)

[
ξ̃1 − 3

(
ξ̃3 + 6 e2(α0+β0)

((
e2β0 − e2α0

)
φ̃1 − e2γ0 φ̃2

))]
,

(6.47)

φ̃′5 =
2
m2

e−3(α0−β0)
[
e3z0 ξ̃5 + 3m2 (3h0 φ̃1 − φ̃6)

]
, (6.48)

φ̃′6 =
1

6m2
eα0−β0

[
e3z0 ξ̃6 − 3m2 (f0 φ̃1 − 4h0 φ̃1 + φ̃5 − 4 φ̃6)

]
, (6.49)

φ̃′4 =
1
9
e−3(α0+β0+z0)

[
2 e3z0 ξ̃4 +m2

(
[1− 54h0 (f0 − 2h0)] φ̃4 + 18 f0 φ̃6

+φ̃2 + 2 φ̃3 + 18h0

[
φ̃5 − 4 φ̃6 − 3 (f0 − 2h0) (φ̃2 + 2 φ̃3)

] )]
. (6.50)

6.3 The force on a probe M2

Before solving the above equations, we compute the force on a probe M2–brane in the perturbed
solution space. As was found in the analogous IIB scenario [30], the force turns out to benefit
from remarkable cancellations and is ultimately quite simple.

The membrane action for a probe M2 brane (which by abusing notation we refer to as the
DBI action) is

V DBI =
√− g00 g11 g22 ,

= e−3z (6.51)
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and, in the first–order approximation, its derivative with respect to r is

FDBI = −dV
DBI

0

dr
+ 3 e−3z0

(
φ̃′4 − 3 z′0 φ̃4

)
. (6.52)

We next consider the derivative of the WZ action with respect to r, which gives the force exerted
on the M2–brane by the G(4) field :

FWZ = −dV
WZ

dr
,

= G
(4)
012r ,

= −6m2

[
h (f − 2h)− 1

54

]
e−3(α+β)−6z . (6.53)

The zeroth–order and first–order WZ forces thus are

FWZ
0 = −6m2

[
h0 (f0 − 2h0)− 1

54

]
e−3(α0+β0)−6z0 (6.54)

and

FWZ
1 = − 6m2

[
h0 (φ̃5 − 2 φ̃6) + φ̃6 (f0 − 2h0)

− 3 (φ̃2 + 2 φ̃3 + 2 φ̃4)
(
h0 (f0 − 2h0)− 1

54

)]
e−3(α0+β0)−6z0 . (6.55)

Combining these two contributions to the force we see that the zeroth–order contributions
cancel as expected. Then using the explicit φa equations from Section 6.2.4 we find the beautiful
result

F = FDBI1 + FWZ
1

=
2
3
e−3 (α0+β0+z0)(r) ξ̃4(r) .

At this point it is worthwhile to preemptively trumpet the result (6.61) from Section 6.4 where
the exact solution for the mode ξ̃4 is found:

F =
2
3
e−3 (α0+β0)(r) Z0X4

=
18Z0X4

(2 + cosh 2r)3/4 sinh3 r
, (6.56)

where Z0 is some numerical factor which we found convenient not to absorb into the X4 inte-
gration constant,

Z0 ≡ e−3z0(0) . (6.57)

So, the UV expansion of the force felt by a probe M2 brane in the first–order perturbed
solution is always

Fr ∼ X4 e
−9r/2 +O(e−17r/2) . (6.58)

In terms of ρ, the “standard” radial coordinate5, this force comes from a potential proportional
to ρ−6, which agrees with a straightforward extension of the brane–antibrane force analysis
of [158] to this system. This will be further discussed in a forthcoming publication [34].

5Related to r via cosh(2 r) ∼ ρ8/3.
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6.4 The space of solutions

In this section we find the generic solution to the system (6.37)–(6.50). This solution space
has twelve integration constants of which ten are physical. We have managed to solve the ξ̃a
equations exactly whereas for the φa equations we have resorted to solving them in the IR and
UV limits.

6.4.1 Analytic solutions for the ξ̃’s

The first equation (6.37) is solved by

ξ̃4 = X4 exp
(

6m2

∫ r

0
dr′ e−3(α0+β0+z0)

[
(f0 − 2h0)h0 −

1
54

])
, (6.59)

which appears to be a double integral. However, using a standard notation for the warp factor
H0 = e3z0 , since we have

dH0

dr
= −233m2 e2γ0

sinh3 2r
tanh4 r , (6.60)

we actually find

ξ̃4 = X4 exp
(∫ r

0
dr′

1
H0

dH0

dr′

)
,

= X4 e
3(z0(r)−z0(0)) . (6.61)

It immediately follows that

ξ̃1 = X1 + 2X4 e
3(z0(r)−z0(0)) . (6.62)

We find convenient not to include e−3z0(0) into the integration constant X4, and will use the
notation

Z0 ≡ e−3z0(0) . (6.63)

We were also able to find exact analytic expressions for ξ̃3 and ξ̃5,6, in term of y4 ≡ 2 +
cosh(2 r) :

ξ̃3 = y4
(
y4 − 3

)2
X3 −

m2 Z0X4

18
√

2

y
(
y4 − 3

)
(y4 − 1)3/2

[
− 96 + 599 y4 − 550 y8 + 119 y12

− y3
√
y4 − 1

(
3− 4 y4 + y8

) (
163F

(
arcsin

(
1
y

)
| −1

)
+ 22

[
Π
(
−
√

3;−arcsin
(

1
y

)
| −1

)
+ Π

(√
3;−arcsin

(
1
y

)
| −1

)])]
,

(6.64)

where F (φ | q) is given in (6.35) and Π(n;φ | m) is an incomplete elliptic integral of the third
kind

Π(n;φ|m) =
∫ φ

0

dθ(
1− n sin (θ)2

) √
1−m sin (θ)2

. (6.65)
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The expressions for ξ̃5,6 are as follows :

ξ̃5 =
1

4
√

2 (y4 − 3)
√
y4 − 1

[
√

6Z0X4m
2 y
(
13− 11 y4

) √
y4 − 1

+ 4
[(
y4 − 1

)2
X5 +

(
y4 − 3

) (
1 + y4

)
X6

]
+
√

6Z0m
2X4

[ (
19 + 7y4

(
y4 − 2

))
F

(
arcsin

(
1
y

)
| −1

)
− 2

(
y4 − 3

) (
1 + y4

) (
Π
(
−
√

3;−arcsin
(

1
y

)
| −1

)
+ Π

(√
3;−arcsin

(
1
y

)
| −1

))]]
,

(6.66)

ξ̃6 =
√

2

(y4 − 3) (y4 − 1)3/2

[ (
y4 − 7

) (
y4 − 1

)2 [
X5 +

√
3
2
Z0m

2X4

( 7 y − 5 y5

(y4 − 1)3/2

+ 5F
(

arcsin
(

1
y

)
| −1

))]
+

1
4
(
y4 − 3

)2 [−√6Z0m
2X4 y

√
y4 − 1

+ 4
(
y4 − 3

)
X6 −

√
6Z0m

2X4

(
y4 − 3

) (
3F

(
arcsin

(
1
y

)
| −1

)

+ 2
(

Π
(
−
√

3;−arcsin
(

1
y

)
| −1

)
+ Π

(√
3;−arcsin

(
1
y

)
| −1

)))]]
.

(6.67)

Lastly, ξ̃2 is given by the zero–energy condition (6.10) but its explicit form does not appear to be
too enlightening. The IR and UV series expansions of the above solutions for ξ̃i are as follows:

IR behavior of ξ̃

The IR behavior of the ξ̃a’s is the following :

ξ̃IR1 = X1 + 2X4

[
1− 31/4

2
m2 e−3z0(0) r2

]
+O(r4) ,

ξ̃IR2 =
[

3
2
X1 −

4
3
√

3
X5 +

7
3
X4

]
+
[3

2
X1 +

8
3
√

3
X5

+
1
3
X4

(
13− 10 31/4 e−3z0(0)m2

) ]
r2 +O(r4) ,

ξ̃IR3 = 31/4 e−3z0(0)m2X4 r
2 +O(r4) , (6.68)

ξ̃IR4 = X4

[
1− 31/4

2
m2 e−3z0(0) r2

]
+O(r4) ,
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ξ̃IR5 =
1
r2

[
X5 +X4

(√
3

2
− 33/4

2
e−3z0(0)m2

)]

+

[
1
6

(7X5 + 12X6) +X4

[
17

20
√

3
− 97

12
33/4 e−3z0(0)m2

−
√

6 e−3z0(0)m2 Π
(
−
√

3;−arcsin
(

1
31/4

)
| −1

)]
− 33/4 e−3z0(0)m2X4 log(r)

]

+

[
53
120

X5 +
1
48
X4

(
53
5

√
3 +

47
5

33/4 e−3z0(0)m2

)]
r2 +O(r4) ,

ξ̃IR6 = − 2
r2

[
2X5 +

√
3X4

]
+
[

4
3
X5 +X4

(
2√
3

+ 33/4 e−3z0(0)m2

)]
+
[

37
30
X5 +X4

(
37

20
√

3
− 2 33/4 e−3z0(0)m2

)]
r2 +O(r4) .
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UV behavior of ξ̃

The UV behavior of the ξ̃a’s is as follows :

ξ̃UV1 = X1 +
32
3

23/4m2X4 e
−3z0(0) e−

9
2
r +O(e−13r/2) ,

ξ̃UV2 = − 3
32
X3 e

6r +
3
16
X3 e

4r +
[

3
8
X1 +

3
32
X3 +

2
3
√

3
(X5 +X6)

]
e2r

+
[

3
4
X1 −

3
8
X3 −

8
3
√

3
(X5 +X6)

]
+
[

3
8
X1 +

3
32
X3 +

2
3
√

3
(X5 +X6)

]
e−2r

+
[

3
16
X3 +

64
3
√

3
X6

]
e−4r +

32
7

23/4 e−3z0(0)m2X4 e
−9r/2

−
[

3
32
X3 +

256
3
√

3
X6

]
e−6r +O(e−13r/2) ,

ξ̃UV3 =
1
8
X3 e

6r − 9
8
X3 e

2r + 2X3 −
9
8
X3 e

−2r

+
32
7

23/4 e−3z0(0)m2X4 e
−9r/2 +

1
8
X3 e

−6r +O(e−13r/2) ,

ξ̃UV4 =
16
3

23/4m2X4 e
−3z0(0) e−

9
2
r +O(e−13r/2) , (6.69)

ξ̃UV5 =
1
2

(X5 +X6) er +
5
2

(X5 +X6) e−r + 2 (3X5 −X6) e−3r

+ 2 (5X5 +X6) e−5r − 96
13

23/4
√

3 e−3z0(0)m2X4 e
−11r/2 +O(e−13r/2) ,

ξ̃UV6 = (X5 +X6) er − 7 (X5 +X6) e−r − 24 (X5 −X6) e−3r

− 8 (5X5 + 7X6) e−5r − 192
13

23/4
√

3m2X4 e
−3z0(0) e−11r/2 +O(e−13r/2) .

6.4.2 Solving the φi equations

The space of solutions

We now solve the system of equations for φi (6.45)–(6.49) using the Lagrange method of variation
of parameters.

Equation (6.45) is solved by

φ̃1 =
λ̃1(r)

sinh(2 r)
, (6.70)

with
λ̃1 =

9
2

∫
cosh(r)

sinh(r)2 (2 + cosh(2 r))3/4

[
−3 ξ̃1 + 4 ξ̃2 + 3 ξ̃3

]
+ Y IR

1 . (6.71)

ξ̃2 and ξ̃3 are given in Section 6.4.1. above and sinh(2 r)−1 is the homogeneous solution to the
φ̃1 equation.

The same Lagrange method is used for φ̃2, which is given by

φ̃2 =
λ̃2(r)

sinh(r)4 (2 + cosh(2 r))
, (6.72)
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where

λ̃2 =
9
4

∫
sinh(r) (2 + cosh(2 r))1/4

[
−3 ξ̃1 + 7 ξ̃3 −

4
3

sinh(r)2

cosh(r)
(2 + cosh(2 r))3/4 φ̃1

]
+ Y IR

2 . (6.73)

From this, we obtain an integral expression for φ̃3 :

φ̃3 =
9
4

∫ [
ξ̃1 − 3 ξ̃3 + 2

3
sinh(r)2

cosh(r) (2 + cosh(2 r))3/4 φ̃1 + 2 sinh(r)2 cosh(r)3

(2+cosh(2 r))1/4 φ̃2

]
sinh(r)3 (2 + cosh(2 r))3/4

+ Y IR
3 .

The fluxes
(
φ̃5, φ̃6

)
= (f, h) are given by(

φ̃5

φ̃6

)
=
(

cosh(r)3 tanh(r)6 cosh(r)3
[
2− 3 tanh(r)2

]
1
2

[
sech(r)− cosh(r)3

]
1
2 cosh(r)3

) (
λ̃5

λ̃6

)
, (6.74)

where the derivatives of λ̃5 and λ̃6 are given by(
λ̃′5
λ̃′6

)
=
(

1
4 cosh(r) coth(r)2 1

2 [cosh(r)− 2coth(r) csch(r)]
1
8 [3 + cosh(2 r)] sech(r) 1

2 sinh(r) tanh(r)3

) (
b5
b6

)
, (6.75)

and b5, b6 are the right–hand side of (6.48) and (6.49) respectively. The 2× 2 matrix appearing
in (6.75) is the inverse of the matrix of homogeneous solutions written in (6.74). We will call Y5

and Y6 the constants arising from integrating (6.75), even though the two functions φ̃5 and φ̃6

depend on both of them.
Finally, relying on the same method, the equation for φ̃4 is solved to

φ̃4 = e−3z0(r) λ̃4 , λ̃4 =
∫

e3z0(r) b4(r) + Y IR
4 , (6.76)

where b4(r) is the right–hand side of (6.50) (setting φ̃4 to zero).

IR behavior

We now give the IR expansions of the φi’s. We only write the divergent and constant terms
since terms which are regular in the IR do not provide any constraint on our solution space. Z0

is defined in (6.57). The Xi integration constants are those appearing in the exact solutions for
the ξ̃i’s (6.61)–(6.67) :

φ̃1 = − 1
r2

[
27X1 + 30X4 − 16

√
3X5

4 33/4

]
+

1
2 r

Y IR
1

+

[
189X1 +

(
498− 198 31/4 Z0m

2
)
X4 + 80

√
3X5

12 33/4

]
+O(r) ,

(6.77)

φ̃2 =
Y IR

2

3 r4
+

1
r2

[
9
4

31/4X1 +
3
2

31/4X4 − 2
√

3 31/4X5 −
4
9
Y IR

2

]
− 1

2 r
Y IR

1

−
[
6 31/4X1 +

23
2

31/4X4 − 6
√

3Z0m
2X4 −

1
31/4

X5 −
41
135

Y IR
2

]
+O(r) ,

(6.78)
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φ̃3 = − Y IR
2

8 r4
− 1
r2

[
9 31/4X1 − 12 33/4X5 − 4Y IR

2

24

]

+

[
Y IR

3 +
31/4

8

(
−18 31/4 Z0m

2X4 + 21X1 + 48X4 + 4
√

3X5

)
log(r)

]
+O(r) ,

(6.79)

φ̃4 = − 1
r2

[
18X4 − 4

√
3X5 + Z0m

2
(
Y IR

2 − 24
√

3Y IR
6

)
8 33/4

]

−
[

1
4

(
Z0m

2

(
3
√

3
2

X4 −X5

)
− 4Z0 Y

IR
4

)

+
1
48
Z2

0 m
4
(√

3Y IR
2 − 72Y IR

6

)
+
[

3
2

31/4X4 −
X5

31/4

+
1
36
Z0m

2
(

81
√

3X1 + 78
√

3X4 − 168X5 + 11 31/4 Y IR
2 − 72 33/4 Y IR

6

)]
log(r)

]
+O(r) ,

(6.80)

φ̃5 = 2Y IR
6 +

[
9
8

33/4X1 +
3
4

33/4X4 − 2 31/4X5 +
1

2Z0m2

(
X5 +

√
3

2
X4

)]
r2 +O(r3),

(6.81)

φ̃6 =
1
r2

X5 +
√

3
2 X4

6Z0m2

+

[
33/4

16
X1 −

1
18

X5 +
√

3
2 X4

Z0m2
− 7

72
33/4X4 −

5
18

31/4X5 +
1
2
Y IR

6

]
+O(r) . (6.82)

Note that in the φ̃5 expansion we have also displayed the term of order r2 – this term will
be relevant for the singularity analysis in Section 6.6.

UV behavior

We provide the UV asymptotics for all six φ̃i’s, incorporating terms which decay not faster than
e−13r/2. However, as appears in Table 1 below, a few modes have leading behavior in the UV
which is even more convergent than this.

φ̃1 =
18

21/4
X3 e

−r/2 + 2Y UV
1 e−2r − 4 23/4

[
27
2
X1 − 27X3 + 8

√
3 (X5 +X6)

]
e−5r/2

−
[

1089
10 21/4

X3 −
128
5

23/4
√

3 (X5 +X6)
]
e−9r/2 + 2Y UV

1 e−6r

+O(e−13r/2) , (6.83)

101



φ̃2 =
21

5 21/4
X3 e

3r/2 − 17523
140 21/4

e−5r/2X3 − 12Y UV
1 e−4r

+ 4 23/4

[
99X1 −

1719
10

X3 + 64
√

3 (X5 +X6)
]
e−9r/2 + 32Y UV

2 e−6r

+O(e−13r/2) , (6.84)

φ̃3 = − 27
10 21/4

X3 e
3r/2 + Y UV

3 +
9693

280 21/4
X3 e

−5r/2 +
15
4
Y UV

1 e−4r

− 23/4

[
130X1 −

1113
5

X3 +
256√

3
(X5 +X6)

]
e−9r/2 − 12Y UV

2 e−6r

+O(e−13r/2) ,
(6.85)

φ̃4 =
3

16 23/4

Y UV
4

m2
e9r/2 +

27
26 23/4

Y UV
4

m2
e5r/2 +

9
5 21/4

X3 e
3r/2 +

350271
183872 23/4

Y UV
4

m2
er/2

− 2
[
Y UV

3 +
√

3
(
Y UV

5 − Y UV
6

)]
+

216
325

23/4X3 e
−r/2 +

484605
298792 23/4

Y UV
4

m2
e−3r/2

+
144
13

√
3Y UV

6 e−2r +
3985953003

14077700 21/4
X3 e

−5r/2 +
7978373883

21130570240 23/4

Y UV
4

m2
e−7r/2

+

[
273
34

Y UV
1 +

78912
√

3
2873

Y UV
6

]
e−4r

− 23/4

[
4

229
5
X1 −

1707341851
2691325

X3 + 4
256
3
√

3
(X5 +X6)

]
e−9r/2

+
473729599251

995778122560 23/4

Y UV
4

m2
e−11r/2 +O(e−6r) ,

(6.86)

φ̃5 =
1
8
(
Y UV

5 − Y UV
6

)
e3r − 9

8
(
Y UV

5 − Y UV
6

)
er +

1
8
(
39Y UV

5 + 9Y UV
6

)
e−r

+ 19
4 23/4

√
3
X3 e

−3r/2 +
[

14
3
√

3
Y UV

1 − 1
8
(
111Y UV

5 + Y UV
6

)]
e−3r

− 4 23/4

[
2

279
65

√
3X1 +

147
65

√
3X3 + 2

308
39

(X5 +X6)
]
e−7r/2

+ 10
[
− 2√

3
Y UV

1 + 3Y UV
5

]
e−5r

+
56

1105
23/4

[
3071

√
3X1 −

166409
√

3
56

X3 +
18716

3
(X5 +X6)

]
e−11r/2

+O(e−13r/2) ,
(6.87)
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φ̃6 = − 1
16
(
Y UV

5 − Y UV
6

)
e3r − 3

16
(
Y UV

5 − Y UV
6

)
er +

1
16
(
13Y UV

5 + 3Y UV
6

)
e−r

+
10√

3
23/4X3 e

−3r/2 +
[

1
3
√

3
Y UV

1 − 1
16
(
17Y UV

5 − Y UV
6

)]
e−3r

− 4 23/4

[
33
65

√
3X1 +

9
√

3
130

X3 +
116
117

(X5 +X6)

]
e−7r/2

−
[

2
3
√

3
Y UV

1 − Y UV
5

]
e−5r

+
4

1105
√

3
23/4

[
3713X1 −

30221
8

X3 + 2932
√

3 (X5 +X6)
]
e−11r/2

+O(e−13r/2) .
(6.88)

To understand the holographic physics of the φ̃i modes, we tabulate the leading UV behavior
coming from each mode. To each local operator Oi of quantum dimension ∆ in the field theory,
the holographic dictionary associates two modes in the dual AdS space, one normalizable and one
non–normalizable [24, 20]. These two supergravity modes are dual respectively to the vacuum
expectation value (VEV) 〈0 | Oi | 0〉 and the deformation of the action δS ∼

∫
ddxOi:

normalizable modes ∼ ρ−∆
AdS ↔ field theory VEV’s

non–normalizable modes ∼ ρ∆−3
AdS ↔ field theory deformations of the action .

Here we refer to the standard AdS radial coordinate ρAdS , to be distinguished from the radial
coordinate on the cone, ρ. In the UV, we have ρ ∼ e3r/4 and ρAdS ∼ ρ2/m1/3 with the factor of
m1/3 taken with respect to the conventions of [175].

In Table 1 we have summarized which integration constants correspond to normalizable and
non–normalizable modes. As stated in a previous section, the Xi are integration constants for
the ξi modes and break supersymmetry, while the Yi are integration constants for the modes φi.
It is very interesting to note that in all cases a normalizable/non–normalizable pair consists of
one BPS mode and one non–BPS mode.

As already mentioned, the mode ξ̃4, whose integration constant is X4 and which is the only
mode accountable for the force felt by a probe M2–brane in the first–order perturbation to the
CGLP background [66], is the most convergent mode in the UV, though this cannot be seen
from the expansions we have provided but is apparent at higher order in the asymptotics that
we have computed.

dim ∆ non–norm/norm int. constant
6 ρ3

AdS/ρ
−6
AdS Y UV

4 /X4

5 ρ2
AdS/ρ

−5
AdS Y UV

5 − Y UV
6 /X5 −X6

4 ρAdS/ρ
−4
AdS X3/Y

UV
2

3 ρ0
AdS/ρ

−3
AdS Y3/X2

7/3 ρ
−2/3
AdS /ρ

−7/3
AdS Y UV

5 + Y UV
6 /X5 +X6

5/3 ρ
−4/3
AdS /ρ

−5/3
AdS Y UV

1 /X1

Table 6.1: The UV behavior of the twelve SO(5)–invariant modes in the
deformation space of the CGLP solution. As discussed below, only ten
of these modes are physical, and the mode of dim. 3 is a gauge artifact.
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Taking into account a rescaling which culls Y3 and the zero energy condition which eliminates
X2, we are left with a total of ten integration constants or five modes. The absence of a physical
mode behaving as ρ0

AdS is related to the quantization of the level of the Chern–Simons matter
theory. This is unlike in four–dimensional gauge theories, where we expect a dimension–four
operator corresponding to the dilaton. Note also that in Table 1 we see explicitly the dimension
∆ = 7/3 operator discussed in [175]. We have been somewhat glib in writing X5−X6 or Y5 +Y6.
The numerical factors in the combination of those integration constants are actually different,
but can be rescaled to the shorthand notation we use.

6.5 Boundary conditions for M2 branes

Within the space of solutions that we have derived in Section 6.4. we now proceed to find the
modes which arise from the backreaction of a set of anti–M2 branes smeared on the finite–sized
S4 at the tip of the Stenzel-CGLP solution (r = 0). For describing them it is necessary to
carefully impose the correct infrared boundary conditions.

The gravity solution for a stack of localized M2–branes in flat space has a warp factor
H(ρ) = 1 + Q/ρ6 and as ρ → 0 the full solution is smooth due to the infinite throat. However
when these branes are smeared in n–dimensions, the warp factor scales as ρ−6+n as ρ→ 0 since
it is now the solution to a wave equation in dimension d = 8 − n. This is the IR boundary
condition that we will impose on the solution.

We must furthermore bring to bear appropriate boundary conditions on the various fluxes.
This is rather simple for M2 branes in flat space, where the energy from G(4) is the same as that
from the curvature. In the presence of other types of flux, the IR boundary conditions are more
intricate. When the background is on–shell, contributions to the stress tensor from all types of
flux taken together cancel the energy from the curvature: this is the basic nature of Einstein’s
equation but this is too wobbly a criterion to signal the presence of M2 branes. Instead, the
right set of boundary conditions for M2 branes should enforce that the dominant contribution
to the stress–energy tensor comes from the G(4) flux.

6.5.1 BPS M2 branes

The M2 brane charge varies with the radial coordinate r of a section of the Stenzel space [244]:

QM2(r) =
1

(2π `p)6

∫
M7

?G4 ,

= −6m2 Vol (V5,2)
(2π `p)

6

(
h0(r) (f0(r)− 2h0(r))− 1

54

)
, (6.89)

with `p the Planck length in eleven dimensions,M7 a constant r section of the transverse Stenzel
space of volume Vol (V5,2) = 27π4

128 [40]. The number of units of G4 flux through the S4 is

q(r) =
1

(2π `p )3

∫
S4

G4 ,

= − 16π2m

(2π `p)
3 h0(r) . (6.90)

In the smooth solution their IR values (r → 0) are

Q IR
M2 = 0 , qIR =

1
(2π `p)

3

8π2m

33/2
, (6.91)

reflecting the fact that all M2 charge is dissolved in fluxes. One can obtain a BPS solution in
which smeared M2 branes are added at the tip of the Stenzel space [244] simply by shifting ?G4
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in such a way that f − 4h does not change6. Under shifts of f → f + 2N and h→ h+ N
2 , the

IR M2 brane charge changes to

QM2 → QM2 + ∆QM2 , (6.92)

where we define

∆QM2 = −6m2 Vol (V5,2)
(2π `p)

6

(
1
2
N2 − 2

33/2
N

)
, (6.93)

whereas the variation in the units of flux through the S4 amounts to 8π2 mN
(2π `p)3 . This introduces

in the IR a −∆QM2/r
2 singularity in the warp factor

H0(r) = 162m2

∫ r h0 (f0 − 2h0)− 1
54

sinh(r′)3 (2 + cosh(2 r′))3/4
dr′ . (6.94)

This singularity is to be expected as we have smeared BPS M2 branes (whose harmonic func-
tion diverges as 1/r6 near the sources) on the S4 of the transverse space. It is interesting
to see how this BPS solution arises in the first–order expansion around the BPS CGLP back-
ground [66] in the context of our perturbation apparatus. Given that the ξi modes are associated
to supersymmetry–breaking, all the Xi must be set to zero :

Xi = 0 . (6.95)

Since all the ξ̃i are zero,
Y IR

1 = Y UV
1 . (6.96)

In the IR and the UV, ez0+2α0 , ez0+2β0 and ez0+2γ0 do not blow up but reach constant or
vanishing values instead. So we impose

Y IR
1 = 0 , Y IR

2 = 0 , Y UV
4 = 0 . (6.97)

As a result of (6.97) and (6.96), the mode φ̃1 is identically zero. This yields Y IR
2 = Y UV

2 ,
Y IR

3 = Y UV
3 .

Since BPS M2 branes do not change the geometry of the Stenzel space but only the warp
factor (much like BPS D3 branes also only change the warp factor and not the transverse
geometry [100]) we expect the first–order perturbation to ez+2β to vanish both in the UV and
in the IR, and thus

2Y3 + e−3z0(0) Y IR
4 +

3
2
m4 e−6z0(0) Y IR

6 = 0 , Y UV
5 = Y UV

6 . (6.98)

The constant Y IR
4 is in turn determined by Y UV

4 . Furthermore, the fields φ̃5, φ̃6 now obey the
corresponding homogeneous equations and the solution is found by replacing λ̃5,6 by Y5,6.

The mode φ̃4 corresponds to the first–order perturbation of the warp factor. We allow an
1/r2 IR divergence, which means that Y IR

6 doesn’t necessarily need to vanish. We will see in
a moment that this mode is related to the number ∆QM2 of added M2 branes. But first, we
note that this does not give rise to a singularity that would be associated with φ̃5 − 4 φ̃6, the
perturbation to the term in F4 (6.13) with legs on ν∧σi∧ σ̃j∧ σ̃k. Indeed, the conditions we have
imposed render this term harmless and independent of Y IR

6 : φ̃5−4 φ̃6 = 2Y6−2Y6+O(r) = O(r).
Given that Y IR

4 first shows up in the O(r0) part of the IR expansion of φ̃4 there is no
restriction on it. Moreover, Y5 does not arise in any of the divergent or constant pieces in the
φ̃i IR expansions, but requiring no exponentially divergent terms in the UV imposes Y5 = Y6,
in agreement with (6.98).

6This combination multiplies a four-form field strength with one leg along ν, one along σi and two legs along
two of the σ̃j directions which shrink in the IR (e2β0 ∼ r2)
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As a result, the perturbation corresponding to adding ∆QM2 M2 branes at the tip is obtained
by just setting Y5 = Y6 ∼ −∆QM2. This perturbation causes the warp factor to diverge in the
infrared as −∆QM2/r

2 while all the other φi change by sub–leading terms apart from φ5 and
φ6 which shift by some N related to ∆QM2 through (6.93).

The UV expansion of the new warp factor is

H = e3z0
(

1 + 3 φ̃4

)
,

=
16
3

23/4m2 e−9r/2 (1− 6Y3) +O(e−13r/2) ,

=
16
3

23/4m2 e−9r/2

(
1 + 3 e−3z0(0) Y IR

4 +
9
2
m4 e−6z0(0) Y6

)
+O(e−13r/2) , (6.99)

where in the last line we used (6.98), and one can see that Y6 multiplies a 1/ρ6 term, as expected
from the exact solution.

6.6 Constructing the anti–M2 brane solution

In order to construct a first–order backreacted solution sourced by anti–M2 branes at the tip
of the CGLP solution, the first necessary condition is that the force a probe M2 brane feels be
nonzero, which implies:

X4 6= 0 . (6.100)

Furthermore, since the infrared is that of a smooth solution perturbed with smeared anti–M2
branes, we require that no other field except those sourced by these anti–M2 branes have a
divergent energy density in the infrared.

Requiring no 1
r2 or stronger divergences in φ̃1, φ̃2, φ̃3 and φ̃6 immediately implies:

X5 = −
√

3
2
X4 ,

Y IR
2 = 0 , (6.101)
X1 = −2X4 ,

Barring any 1
r divergence in φ̃1,2 results in

Y IR
1 = 0 . (6.102)

The divergence in φ̃4 is now

φ̃4 = 31/4

√
3Z0m

2 Y IR
6 −X4

r2
+O(r0) (6.103)

and this is the proper divergence for the warp factor of anti–M2 branes spread on the S4 in the
infrared. The energy density that one can associate with this physical divergence is

ρ(E) ∼ dφ̃4

dr
∼ 1
r6

(6.104)

Another more subtle divergence in the infrared comes from the M–theory four–form field
strength, which is

G4 = dK(τ) ∧ dx0 ∧ dx1 ∧ dx2 +mF4 , (6.105)

where (6.13)

F4 = ḟ dτ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + ḣ εijk dτ ∧ σi ∧ σj ∧ σ̃k
+

1
2

(4h− f) εijk ν ∧ σi ∧ σ̃j ∧ σ̃k − 6h ν ∧ σ1 ∧ σ2 ∧ σ3 . (6.106)
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The unperturbed metric in the IR is regular and is given by

ds2 = Z
2/3
0 ds2

4 +
1

33/4
Z
−1/3
0

[
dr2 + ν2 + σ2

i + r2 σ̃2
i

]
, (6.107)

with the constant Z0 given in (6.57). The vanishing metric components gσ̃σ̃ lead to a divergent
energy density from the four–form field strength components:

Fνσσ̃σ̃ Fνσσ̃σ̃ g
νν gσσ gσ̃σ̃ gσ̃σ̃ =

9
√

3Z4/3
0 X2

4

r4
+O(r−2) (6.108)

Frσ̃σ̃σ̃ Frσ̃σ̃σ̃ g
rr gσ̃σ̃ gσ̃σ̃ gσ̃σ̃ =

81
√

3Z3/4
0 X2

4

r4
+O(r−2). (6.109)

Unlike the analogous computations in IIB [30], when integrating these energy densities the
factor of

√
−G ∼ r−3 is not strong enough to render the action finite. Hence, this singularity

has both a divergent energy density, and a divergent action.
As discussed in the Introduction, if this singularity is physical then the perturbative solution

we find corresponds to the first–order backreaction of a set of anti–M2 branes in the Stenzel-
CGLP background. If this singularity is not physical, then our analysis indicates that anti–M2
branes cannot be treated as a perturbation of this background, and hints towards the fact that
antibranes in backgrounds with positive brane charge dissolved in fluxes do not give rise to
metastable vacua.
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Chapter 7

On The Inflaton Potential From
Antibranes in Warped Throats

We compute the force between a stack of smeared antibranes at the bottom of a warped throat
and a stack of smeared branes at some distance up the throat, both for anti–D3 branes and for
anti–M2 branes. We perform this calculation in two ways: first, by treating the antibranes as
probes in the background sourced by the branes and second, by treating the branes as probes
in the candidate background sourced by the antibranes. These two very different calculations
yield exactly the same expression for the force, for all values of the brane–antibrane separation.
This indicates that the force between a brane and an antibrane is not screened in backgrounds
where there is positive charge dissolved in flux, and gives a way to precisely compute the inflaton
potential in certain string cosmology scenarios.

7.1 Introduction and motivation

Anti–D3-branes in warped deformed conifold throats are widely used in string theory model
building and string cosmology, both to get de Sitter solutions [157], and to construct string
theoretic models of inflation using D3 branes moving in such throats [158].

In a previous work [30], the construction of the first–order backreacted supergravity solution
for a stack of anti–D3 branes in the Klebanov–Strassler (KS) background [171] was attempted.
Such antibranes were conjectured in [156] to give rise to holographic duals to metastable vacua
of a strongly–coupled gauge theory, and the supergravity analysis implies that the would–be
anti–D3 brane solution must have a certain infrared singularity. A similar result was obtained
by investigating anti–M2 branes in a warped Stenzel background [32]. If these singularities have
a physical origin, then the solutions found in [30, 32] describe the first–order backreaction of
antibranes in these backgrounds. If these singularities are pathological, the analyses of [30, 32]
imply that antibranes in backgrounds with positive brane charge dissolved in fluxes cannot be
treated in perturbation theory.

In the present work we will work under the assumption that the singularities found in [30, 32]
are physical, and that antibranes can be treated as perturbations of their respective backgrounds
with charge dissolved in fluxes1.

In certain string inflation models, the inflaton is the position of a BPS D3 brane in a warped
background with anti–D3 branes at its bottom, and the brane–antibrane force gives the deriva-
tive of the inflaton potential. There exist two methods to compute this potential. The first,
introduced in [158] and widely used in string cosmology constructions, treats the anti–D3 branes
as probes in the (easy to find) backreacted solution sourced by BPS D3 branes up the throat.

1Note that this does not automatically imply that antibranes give rise to metastable vacua – for this one would
have to show also that the antibrane solution does not contain other non–normalizable modes.
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This method involves calculating the change in the potential of the anti–D3 branes as the po-
sition of the D3 branes is altered. This yields the force felt by these D3 branes in the warped
deformed conifold with anti–D3 branes.

The second method to derive the inflaton potential consists in constructing the first–order
backreacted solution sourced by anti–D3 branes placed at the bottom of a warped deformed
conifold [30] and to compute the force felt by a probe D3 brane in this background. Despite the
rather complicated nature of the first–order deformation space, the force on a probe D3 turns
out to depend only on one of the fourteen integration constants that parametrize the space
of SU(2) × SU(2) × Z2–invariant deformations [30]. Furthermore, the leading large–distance
behavior of the inflaton potential agrees with the one computed in [158].

One natural question to ask is whether the two calculations for the inflaton potential agree
also beyond leading–order. At first glance, one expects that they should indeed agree, as this
ought to be merely a consequence of Newton’s third law: the force exerted by the brane on the
antibrane is the same as the force exerted by the antibrane on the brane [158].

However, the answer does not appear to be so simple. If in the vacuum the calculations of
the force using the bare action of one brane in the background of the other should indeed agree,
there is no reason this should happen in a background where the charge/anticharge symmetry
is broken by the D3 charge dissolved in flux. Indeed, because of harmonic superposition, the
fields of the D3 brane are not screened [100]. Yet, there is no reason why the anti–D3 would not
be screened by the D3 charge dissolved in flux. Hence, one would expect to have a screening
cloud around the anti–D3 branes, which would affect the potential felt by a bare D3 brane. Note
that this is a generic phenomenon in media where positive and negative charges are screened
differently: because of the different profiles of the screening clouds, the force computed using
the action of a bare negative charge in the background of the screened positive charge needs not
agree with the force computed using the action of a bare positive charge around the screened
negative charge. In the language of plasma physics, the Debye screening lengths of the positive
and of the negative charges need not be equal.

The purpose of this letter is to show that the forces computed in the two approaches outlined
above agree not only in leading behavior, but in full functional form, modulo a to–be–determined
overall normalization constant. This indicates that this force is not screened by the brane charge
dissolved in flux2. There are two obvious explanations for this: either anti-D3 branes are not
screened by the positive D3 brane charge dissolved in flux, or they are screened, but the screening
cloud does not interact with D3 branes. This latter possibility would imply that antibranes
change the profile of the cloud of charge dissolved in fluxes, but do not alter its properties, in
particular the fact that the local D3 charge density remains equal to the mass density; such a
cloud would not interact with probe D3 branes and would not screen the force.

We find no brane–antibrane force screening, both for anti D3–branes at the bottom of the
Klebanov–Strassler solution, and for anti–M2 brane at the bottom of a warped Stenzel space
with M2 brane charge dissolved in flux [244, 66], and hence we believe this is likely a generic
phenomenon in flux compactifications.3

Hence, in an optimistic scenario (if the IR singularities found in [30] and [32] are physical,
and we can trust perturbation theory), modulo this subtle issue about the overall constant,
our calculation yields the exact functional form of the inflaton potential in a brane/antibrane
realization of inflation in string theory. It also demonstrates that the force between branes and
antibranes is not screened, and therefore the probe antibrane calculation à la KKLMMT [158]
of this inflaton potential in other string inflationary models gives the exact functional form of

2Our analysis does not formally exclude screening by a delta–function–shaped screening cloud, which would
keep the same functional expression of the force while changing the overall normalization constant. However, it
is hard to believe this is anything but a formal possibility. We leave the actual computation of this constant to a
forthcoming publication [34].

3In an upcoming paper [97] we will also show this for anti–D2 branes in backgrounds with D2 brane charge
dissolved in fluxes [67].
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the potential, not only its leading behavior. This should allow in turn to accurately compute
the power spectrum in those models and to compare them with observation.

This work is organized as follows. In Section 7.2. we review the calculation of the brane/antibrane
force, treating the smeared antibranes as probes, both for anti–D3 branes in KS and for anti–
M2 branes in a warped Stenzel background [244, 66]. In Section 7.3. we use the first–order
backreacted solutions of [30] and [32] to compute this force using the action of probe D3 and
M2 branes, respectively. As advertised, the two calculations agree.
Note: as this work was being prepared for submission we learnt that Anatoly Dymarsky has
independently found some of the analytic results presented here.

7.2 Computing the force using the action of probe antibranes

To establish whether antibranes are screened by charge dissolved in flux in the warped deformed
conifold or the Stenzel space, we first smear them at the tip of those two geometries. This way
we preserve the symmetries of the solution without antibranes, and render the calculation of the
backreaction of the antibranes an achievable task. The force between the smeared antibranes
and the BPS branes at some distance r = r0 up the throat will then be the same, by symmetry,
as the force between the smeared antibranes and a uniform shell of BPS branes at the same
distance.

We demonstrate how to compute the force generated between a stack of antibranes at the
bottom of a warped throat and a stack of branes some distance up the throat. This is computed
in two ways: either by backreacting the branes while leaving the antibranes as probes ; or from
backreacting the antibranes and leaving the branes as probes.

7.2.1 Backreacted D3 branes in the warped deformed conifold

To obtain a fully backreacted solution with BPS D3 branes in the warped deformed conifold one
simply needs to add to the warp factor a harmonic function (given by the Green’s function on
this Calabi-Yau manifold) sourced by these branes [100]. While in general this is a non–trivial
task [176, 225], here we are considering smeared branes and as such the Green’s function is
radially symmetric and the problem is tractable.

The two radially symmetric solutions to the Laplace equation on the deformed conifold are

H1(τ) = c1 , (7.1)

H2(τ) = c2

∫ ∞
τ

dτ ′(
sinh 2 τ ′ − 2 τ ′

)2/3 . (7.2)

With a shell of D3 branes at τ = τ0, the full warp factor is

H(τ) = H0(τ) + δH(τ) . (7.3)

Here H0(τ) is the zeroth–order warp factor for the warped deformed conifold:

H0 = e−4A0−4p0+2x0

= h0 − 32P 2

∫ τ

0

t coth t− 1
sinh2 t

(1
2 sinh(2 t)− t)1/3 dt , (7.4)

where P is the RR three–form flux through the S3 of the deformed conifold, and h0 is a constant4.
On top of the warp factor for the zeroth–order solution, there is the following contribution from
the N D3 branes at τ = τ0 :

δH(τ) =

{
H1(τ) , τ < τ0 ,
H2(τ) , τ > τ0 .

(7.5)

4Explicitly, we have h0 = 32P 2
R∞

0
τ coth τ−1

sinh2 τ
( 1

2
sinh(2 τ)− τ)1/3 dτ = 18.2373P 2.
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The two integration constants (c1, c2) are related by matching at the source the solutions in the
two domains above:

c1 = H2(τ0) . (7.6)

To fix the other integration constant in terms of the number of D3 branes, we rely on the
standard quantization formula for the five–form field strength:

1
(4π2 α′)2

∫
F5 = N , (7.7)

and integrate on the T 1,1 surfaces right outside and right inside the shell using

gsF5 = ∗10dH
−1 ∧ dx0 ∧ . . . ∧ dx3 . (7.8)

The difference of the two integrals gives the D3 brane charge of the shell and its relation to the
coefficient in δH:

c2 = 4π
(21/3 α′

ε4/3

)2
gsN , (7.9)

where we use the conventions of [129].
We now compute the potential of probe anti–D3 branes placed at the tip of the cone. Since

for a BPS D3 brane the DBI and WZ potentials cancel, for anti–D3 branes these potentials are
equal in magnitude and sign:

VD3 = VDBI + VWZ = 2VWZ . (7.10)

Expanding the potential to first–order in the number of D3 branes we find

VD3 = 2H−1 ,

= 2H−1
0 (1− δH

H0
) +O((N/P )2). (7.11)

The force exerted by the anti–D3 branes on the D3 branes can then be obtained from the
variation of this potential as the source D3 branes are moved [158]

FD3 = −∂VD3

∂τ0

∣∣∣
τ=0

= − 1
H2

0 |τ=0

c2

(sinh 2 τ0 − 2 τ0)2/3
. (7.12)

The dependence of this force on N appears through the constant c2 (7.9).

7.2.2 M–Theory on a warped Stenzel space

The generalization of the probe brane computation of Kachru, Pearson and Verlinde [156] to
a warped Stenzel space M–theory background [244, 66] has recently been performed in [175].
Motivated by this analysis, three of the authors have used the technology of [30] to study the
backreaction of anti–M2 branes in this space [32]. The probe brane analysis of the previous sec-
tion can also be performed, and we find that although the Green’s function itself is a complicated
combination of incomplete elliptic integrals:

H1(y) =d1 ,

H2(y) =
2
45
d2

[9
√
y4 − 1
y5

+ 3E (arcsin(1/y) | −1)− 3F (arcsin(1/y) | −1)

+ 5
√

3
(

Π
(√

3;− arcsin(1/y) | −1
)
−Π

(
−
√

3;− arcsin(1/y) | −1
)) ]

, (7.13)
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with di integration constants and k a constant that ensures that H2 vanishes at large y, the
derivative of this Green’s function is very simple5:

H ′2(r) =
3
√

2 d2 csch3r

(2 + cosh 2 r)3/4
. (7.14)

From flux quantization
1

(2π `p)6

∫
V5,2

∗11G4 = N , (7.15)

with
G4 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ,

we find that the M2 brane charge of the shell, N , is related to the constant in the new warp
factor via

d2 = (2π)2 `6p
√

2N . (7.16)

In addition, there is the matching condition

d1 = H2(y0) . (7.17)

If we now consider the change in the potential of probe antibranes with the position of the
source M2 branes in this background, we obtain the force:

FM2 = − 1
H2

0 |r=0

3
√

2 d2 csch3r0

(2 + cosh 2 r0)3/4
. (7.18)

7.3 Computing the force on probe branes

7.3.1 Warped deformed conifold

We now use the results from [30] and refer to this work for much of the notation. In that paper
three of the authors found that the force felt by a probe D3 brane in the first–order deformed
KS background has the remarkably–simple form

FD3 =
2
3
e−2x0 ξ̃1 , (7.19)

where ξ̃1 is one of the sixteen modes parameterizing the deformation space6 [45] and is given
by

ξ̃1 = X̃1 exp
(∫ τ

0
dτ ′e−2x0

[
2P f0 − F0 (f0 − k0)

])
. (7.20)

Here X1 is an integration constant and

ex0 =
1
4
H

1/2
0 (1

2 sinh(2 τ)− τ)1/3 ,

f0 = −P (τ coth τ − 1)(cosh τ − 1)
sinh τ

, (7.21)

k0 = −P (τ coth τ − 1)(cosh τ + 1)
sinh τ

,

F0 = P
(sinh τ − τ)

sinh τ
,

with H0 given in (7.4).
5The standard coordinate we use is y4 = 2 + cosh 2 r.
6This deformation space has been considered previously in various respects [180, 38, 39, 37, 82].
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We make great use of the simple yet elusive observation that this integral can in fact be
performed exactly

ξ̃1 = X̃1 exp
(∫ τ

0
dτ ′

H ′0
H0

)
= X1H0(τ) . (7.22)

The force now takes the form

FD3 =
2
3
e−2x0 X1H0(τ)

=
32
3

22/3X1

(sinh 2 τ − 2 τ)2/3
. (7.23)

Remarkably enough, this has exactly the same functional form as the force computed in
(7.12) using the probe antibrane potential. As mentioned in the Introduction, the fact that the
two calculations of the force agree implies that this force is not screened by the positive D3
brane charge dissolved in flux.

As has been explained in [30] the value of X1 can be determined in terms of the UV and IR
boundary conditions, but this requires relating the UV and IR values of all sixteen integration
constants involved in the full solution, which can only be done numerically. Once this numerical
work is completed, we will be able to compare the coefficient of the force computed in this section
with the calculation of section 7.2.1. Whether these two numbers agree or not will help elucidate
the physics of anti–D3 branes in the Klebanov–Strassler background. We plan to report on these
results soon [34].

7.3.2 M–Theory on a warped Stenzel space

The same steps for M–theory on a Stenzel space have recently been performed in [32] and we
merely quote the results and refer to this work for the notation. When considering the candidate
backreacted solution corresponding to anti–M2 branes, the force felt by a probe M2 brane is

F = −2
3
e−3 (α0+β0)(r) e−3z0(0)X4

= −18 e−3z0(0)X4 csch3r

(2 + cosh 2r)3/4
. (7.24)

This has again the same functional form as (7.18), up to the determination of the integration
constant X4 in terms of the charges of the system. This demonstrates that, much like in the
anti–D3 brane story, the force between anti–M2 branes and M2 branes is not screened by the
charge dissolved in flux.
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