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Abstract
This thesis is devoted to the study of non–supersymmetric flux compactifications in type IIA
string theory. After a brief review of type II theories, we introduce the mathematical framework
of Generalized Complex Geometry, which provides an encompassing geometric interpretation
and organizing principle for supersymmetric vacua. We introduce the class of solvmanifolds,
which have been extensively used as compactification manifolds, and discuss their mathematical
properties, with particular attention to the compactness criteria. We then present our first ex-
ample of non-supersymmetric compactification, a vacuum which has a de Sitter external space.
We solve the equations of motion and in the process we argue about the behavior of D–branes
in non–supersymmetric backgrounds; a short analysis of the four dimensional physics is also
provided. We speculate about the use of Generalized Geometry for non-supersymmetric vacua
too and about the right variables to describe the supposed underlying geometric structure. Mo-
tivated by AdS/CFT considerations we investigate a supersymmetry breaking vacuum which is
supposed to be the gravity dual to a metastable non–supersymmetric vacuum of a supersymmet-
ric gauge theory. Supersymmetry is here broken by the addition of anti–branes; it is notoriously
difficult to take into account their backreaction and we resort to use a perturbative technique.
We compute the most general first order deformations of a D2–brane background, discuss the
space of solutions of the deformed fields and argue about the nature of the unavoidable singu-
larities which we encounter in the process.

Résumé court
Cette thèse porte sur l’étude des compactifications non–supersymétriques avec flux en théorie
des cordes de type IIA. Après une introduction aux théories de type II, nous introduisons le
cadre mathématique de la Géométrie Complexe Généralisée, celle ci donne une interprétation
géométrique des vides supersymétriques et une principe permettant de les organiser. Nous intro-
duisons la classe des solvmanifolds, qui ont été largement utilisées comme variétés de compacti-
fication, et discutons leurs propriétés mathématiques, notament les critères de compacité. Nous
présentons ensuite notre premier exemple de compactification non–supersymétrique, un vide qui
a pour espace externe un espace de Sitter. Nous résolvons les équations du mouvement et dans le
même temp nous discutons le comportement de D–branes dans les fonds non–supersymétriques.
Une brève analyse de la physique à quatre dimensions est également fournie. Nous spéculons sur
l’utilisation de la Géométrie Généralisée pour les vides non–supersymétriques et sur leur struc-
ture géométrique. Motivé par des considérations issues de la dualité AdS/CFT nous analysons
un vide non–supersymétrique, censé être le correspondant gravitationnel d’un vide métastable
non supersymétrique d’une théorie de jauge supersymétrique. La supersymétrie est ici brisée par
l’ajout d’ anti–branes, dont il est notoirement difficile de prendre en compte la contre réaction.
Ainsi nous avons recours à l’utilisation d’une technique perturbative. Nous calculons les défor-
mations du premier ordre d’un fond D2–brane, discutons l’espace des solutions et argumentons
sur la nature des singularités inévitables que nous rencontrons dans le processus.
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Résumé détaillé

La théorie des cordes et sa limite de basse énergie (supergravité) ont été l’objet de recherches
intenses au cours des dernières décennies. Dans sa version supersymétrique la théorie est définie
à dix dimensions, il est donc nécessaire d’expliquer le fait que nous faisons l’expérience de
quatre dimensions, et de relier la physique d’une théorie à dix dimensions et celle à quatre
dimensions. La façon la plus étudiée et fructueuse pour y parvenir est connue sous le nom de
compactification. L’idée est que l’espace dix dimensionnel se décompose en quatre dimensions
étendues tandis que les six autres sont enveloppées dans un espace compact. La taille des di-
mensions compactes est généralement considérée comme très petite pour justifier le fait que
nous ne pouvons pas les détecter par nos expériences. Les propriétés de la théorie effective à
quatre dimensions sont obtenues à partir d’une solution dix dimensionnelle par intégration sur
les degrés de libertés internes, et dépendent donc de la géométrie de l’espace interne. Bien qu’il
soit un mécanisme intéressant pour construire des théories à quatre dimensions cette procédure
souffre d’un inconvénient immédiat: même si la théorie de départ est unique il y a un grand
degré d’indétermination une fois à quatre dimensions. Les exemples les plus simples des com-
pactifications sont basés sur des variétés différentielles plates, et plus particulièrement sur des
espaces de Calabi–Yau. Ils présentent un grand nombre de champs scalaires non massifs qui,
d’un point de vue à quatre dimensions, ont une valeur moyenne dans le vide indéterminée, ce
qui est certainement insatisfaisante pour la phénoménologie. La présence des flux à la fois du
secteur NS–NS et RR améliore cette situation, offrant un moyen de fixer cette valeur moyenne
dans le vide. Dans cette thèse, nous allons se concentrer sur l’analyse des vides avec flux, en
particulier dans la théorie de type IIA, avec quelques autres ingrédients supplémentaires: des
D–branes et orientifolds. Ce sont des objets non–perturbatifs qui, en plus d’être nécessaires
pour reproduire des extensions du modèle standard en théorie des cordes, sont aussi des sources
pour les flux RR.
La structure des vides supersymétriques des théories de type II a été un objet d’étude impor-
tant, depuis l’article fondateur [32]. Le travail a consisté en la détermination des propriétés
géométriques de la variété différentielle interne, et de nombreux progrès mathématiques ont été
inspirés par cette question. Cela a résulté en particulier en la Géométrie Complexe Généralisée:
il s’agit d’un cadre mathématique qui fournit une compréhension claire de la géométrie, ainsi
qu’un critère de classification avec des outils de calcul pour trouver des exemples concrets. Nous
allons adopter ce point de vue, mais l’intérêt est vers une situation différente.

C’est une évidence expérimentale que, à l’énergie à laquelle nous sommes capable de sonder,
la supersymétrie n’est pas réalisée. Donc, si elle est une symétrie de la théorie, elle est brisée à
des échelles d’ énergie supérieures, que nous espérons être de l’ordre du régime du LHC. En at-
tendant une éventuelle preuve expérimentale, la compréhension de certaines caractéristiques des
vides non–supersymétriques est un problème important et intéressant en lui–même. L’objectif
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de cette thèse est d’analyser, au travers de deux exemples concrets, certains aspects de cette
question.

Le premier exemple est une compactification sur variétés résolubles, qui sont une certaine
classe de variétés différentielles qui peuvent admettre une courbure négative. Cette propriété,
avec la présence d’un flux de RR de degré zéro, a été prouvé être un ingrédient nécessaire pour
une compactification sur un espace extérieur avec constante cosmologique positive: un espace
de Sitter. Cette configuration est intéressante pour deux raisons. Tout d’abord, cet espace est,
comme nous l’expliquerons dans le texte, intrinsèquement non–supersymétrique en raison de cer-
taines considérations d’ordre général dans les théories de supergravité. La deuxième raison est
phénoménologique: il existe désormais des preuves expérimentales qui soutiennent l’affirmation
que la constante cosmologique a une valeur positive. Avec notre analyse, nous ne proposons
pas de construire un modèle phénoménologique réaliste, tâche très compliquée et au–delà des
objectifs de cette thèse. Bien que se baser sur un exemple n’est pas une procédure générale,
cela permet toujours d’étudier certaines des propriétés qui devraient caractériser de tels vides.
En particulier, nos solutions s’appuient sur une déformation de la supersymétrie des sources
(D–branes et orientifolds), et celles–ci sont ensuite responsables de la rupture. Nous allons
également compléter l’analyse par quelques observations et spéculations sur un plan plus formel
et général.

Le deuxième exemple provient de considérations sur la correspondance AdS/CFT [143, 97,
187]. Cette dualité permet un aperçu du régime de couplage fort des théories de jauge super-
symétriques dans des dimensions diverses, et nous nous concentrons ici sur le dual gravitationnel
d’une théorie à 2 + 1 dimensions. Il y a eu récemment un intérêt croissant pour la brisure dy-
namique de la supersymétrie vers des états métastables dans la théorie quantique des champs.
Une question naturelle est de savoir si cela peut être réalisé dans le cadre de la correspondance
AdS/CFT par des déformations non–supersymétriques de solutions de supergravité. Un travail
important a été réalisé dans la théorie de type IIB, principalement dans le cas de Klebanov–
Strassler [124], d’abord avec l’approximation de sonde [119], puis par une étude linéaire de la
“backreaction” [16, 13, 14, 62]. Une analyse similaire a été faite en théorie M [123, 11]. Moins
d’attention, à notre connaissance, a été portée à des configurations de type IIA. Nous proposons
ici quelques progrès afin de combler cette lacune, et nous étudions l’espace des déformations
linéaires non–supersymétriques d’un vide de type IIA, qui décrit des D2–branes fractionnaires
régulières. La solution a deux supercharges, elle est donc le dual gravitationnel d’une théorie
jauge en 2+1 dimensions avec N = 1. Nous nous concentrons principalement sur le côté gravita-
tionnel de la dualité. Nous ferons une résolution pour l’espace des perturbations linéaires autour
du vide supersymétrique [47] utilisant la technique développée dans [24]. Nous montrons que
cette configuration présente aussi deux caractéristiques principales communes à d’autres analy-
ses [16, 13, 14, 62, 11]: la force sur une brane sonde dépend d’un seul mode de perturbation qui
est lié à la brisure de supersymétrie, et la région IR est affectée par quelques singularités. C’est
là une question ouverte de savoir si ces singularités sont admissibles ou non, et ce point n’est à
ce jour pas résolu; nous montrons que dans la configuration que nous avons choisi d’analyser,
elles sont plus sévères que dans les autres cas.

La thèse est ainsi structurée.
Le chapitre 2 contient un rappel des propriétés principales de la supergravité de type II: son
contenu en champs, son action, ses équations du mouvement et ses variations de supersymétrie.
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Nous fournissons notre définition du vide et expliquons le problème géométrique qu’elle pose
avec l’exemple de la compactification de Calabi–Yau, principalement pour fournir la logique que
nous voulons suivre. Nous introduisons également quelques notions géométriques comme celle
de la G–structure.

Le chapitre 3 est plus technique et de nature mathématique. Il fournit une courte in-
troduction à la Géométrie Complexe Généralisée. Nous introduisons la notion de fibré tangent
généralisé, de structure complexe généralisée et nous définissons un crochet qui permet de définir
une notion d’ intégrabilité. Nous introduisons les spineurs associés au fibré généralisé et les dé-
tails de leur relation avec les formes différentielles sur la variété interne. Ce sera un point clé
qui permettra d’obtenir un ensemble d’équations différentielles qui reformulent les conditions de
supersymétrie. Ces équations agissent sur un couple d’objets donnés par la somme de formes
différentielles de degrés différents (polyformes). Nous terminons le chapitre par une brève de-
scription des sources (D–branes et orientifolds) dans ce contexte.

Le chapitre 4 contient une description des solvmanifolds. Il s’agit d’une classe de variétés
différentielles à six dimensions qui ont été largement utilisées comme variétés internes pour des
compactifications supersymétriques [87]. Nous les considérons ici pour deux raisons: l’une est
que nous voulons réinterpréter certains résultats bien établis sur leurs propriétés mathématiques
de compacité et l’existence de formes différentielles globalement définies dans le cadre de la
transformation de twist développée dans [5], étendant l’analyse aux solvmanifolds qui ne sont
pas des nilmanifolds. Nous ne présentons pas de résultats originaux, mais il s’agit néanmoins
d’une neuve reformulation utile qui nous permet d’obtenir une solution supersymétrique sur
un solvmanifold noté Gp,−p,±1

5.17 × S1, qui sera considéré comme point de départ pour l’analyse
non–supersymétrique du chapitre 5.

Le chapitre 5 contient l’analyse d’une solution non–supersymétrique de type de Sitter. Nous
commençons avec quelques considérations sur les caractéristiques de telles solutions, avec une
attention particulière sur la description des sources. Nous allons ensuite fournir les détails
de la solution qui présente des flux F2 et H non nuls, avec également un flux non nul F0 et
une courbure négative de la variété interne, comme indiqué nécessaire par certaines analyses
générales. Nous fournissons les détails du calcul du tenseur énergie–impulsion pour les sources
qui brisent la supersymétrie et expliquons quel genre de déformations nous avons besoin pour
résoudre les équations d’Einstein et du dilaton. Nous terminons le chapitre par une analyse de
la (méta)–stabilité de notre solution d’un point de vue à quatre dimensions.

Le chapitre 6 est une tentative de développement plus formel de l’intuition que l’on peut
obtenir à partir de l’exemple précédemment analysé. La géométrie a été une idée clé dans
l’analyse des configurations supersymétriques: depuis le premier exemple de compactification
sur Calabi–Yau jusqu’à la reformulation en termes de Géométrie Complexe Généralisée, les
structures géométriques sont intimement liées à la dynamique du problème. Notre avis est que
les vides N = 0 (ou au moins un sous–ensemble d’entre eux) peuvent aussi être décrits par des
outils géométriques. Dans ce chapitre, nous recueillons certaines observations et les réorganisons
à un niveau plus formel. En particulier, nous essayons de trouver un ensemble de variables
bispinorielles adaptées à une généralisation aux cas non–supersymétriques du formalisme de
premier ordre, via la manipulation directe sur les équations de spineurs purs ou via la T–dualité.
Nous essayons également de discuter du problème des branes non–supersymétriques, dont le
comportement et la description est a priori différent du cas des configurations supersymétriques.
Le but de ce chapitre n’est pas de fournir des résultats établis, mais d’en déduire qu’une certaine
structure géométrique peut également être développée pour le problème plus difficile des vides
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non–supersymétriques.
Le chapitre 7 est consacré à l’analyse de l’espace des déformations supersymétriques et

non–supersymétriques du premier ordre, pour le vide de type IIA découvert dans [47]. La
variété à dix dimensions dans ce cas est divisée en trois dimensions qui composent un espace de
Minkowski, et une certaine variété non compacte à sept dimensions, asymptotiquement conique
et d’holonomie G2, qui est fait d’une fibre R3 sur S4. La Géométrie Complexe Généralisée
pourrait être utilisée dans certaines configurations similaires [98], mais nous choisissons d’utiliser
une approche différente basée sur la technique développée dans [24] qui est appropriée pour
notre analyse et nous allons commencer par l’examiner. Après avoir rappelé les propriétés
importantes du vide [47], nous présentons les solutions aux équations qui paramétrisent les
déformations linéaires. Nous discutons ensuite les principales caractéristiques de la physique IR
et commentons sur les singularités que nous allons rencontrer.

Dans le chapitre 8 on conclue avec des considérations finales.
Quelques détails techniques sont présentés dans les appendices. L’appendice A résume nos

conventions et quelques formules utiles. L’appendice B contient une note sur l’application de
la T–dualité aux solvmanifolds. L’appendice C contient les définitions et les théorèmes sur les
groupes de Lie qui sont beaucoup utilisés dans la thèse. L’appendice D contient la liste des
algèbres et des variétés résolubles qui sont considérées dans la thèse, en particulier elles sont
présentées dans la base adaptée pour l’analyse de la compacité.
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Chapter 1

Introduction

The belief in the existence of a unified description of all the known interactions has been one
of most fruitful heuristic principles in theoretical physics since ever and in particular in the last
century. Our current understanding of the physics at a fundamental level is based, it is by now
a many-times-told story, on two rather different theories: on one side there is Standard Model
with its microscopic description of electro-weak and strong interactions based on gauge theory
and fully compatible with quantum principles, on the other side sits Einstein General Relativity,
based on Riemannian geometry and not incorporating the quantum principles, which describes
gravitational interactions and whose aim is to describe the intimate dynamics of space-time and
the relation between its geometry and the distribution of matter. Both theories have been tested
to a high degree of accuracy and revealed incredibly fruitful as well as both are incomplete and
clearly only one piece of the puzzle. Standard Model is a rather ad hoc construction where many
parameters are not fixed from first principles, there is no explanation of why that particular set
of gauge groups and multiplets has been selected by Nature and of course it does not include
gravity. On the other hand General Relativity is a theory whose validity, already at the classical
level, breaks down because of the singularities met when, for example, attempts of describing
“extreme” objects such as black holes or attempts to extrapolate back in time the history of
the universe are made. Moreover renormalization, which can be performed with success for
the Standard Model, fails when we try to connect quantum field theory and General Relativ-
ity. Last but not least in this (partial) list of unanswered questions is the hierarchy problem,
some of the parameters are smaller than expected and we lack an explanation for the small ra-
tio MWeak/MPlanck between the electroweak scale (where electromagnetic and weak interaction
have a unified description, at around 246 GeV) and the Planck scale (a first guess on the regime
where quantum gravity effects are important, a much higher scale around 1019 Gev). This brief
account of questions left open by the Standard Model + General Relativity paradigm should be
enough to understand the motivations which pushed the community of theoretical physicists to
look for some other description that encompasses and unifies the two, with the aim of providing
the lacking answers (and maybe pose new questions).

The main outcome of the last forty years’ efforts is string theory. Even a far from com-
plete summary of it is hopeless in the restrict space of this Introduction, we will thus present
some of the peculiar features which are of most interest in this thesis and refer the reader to
more complete works on the subject [165, 91, 9]. String theory arises from a simple, but with
far reaching consequences, idea which is to replace point particles, that quantum field theory
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assumes as fundamental objects of the theory, with one-dimensional objects: strings1. It was
first developed in late Sixties as an attempt to describe strong interactions, but soon later it
was clear that it was better suited to describe gravity at a quantum level because the spectrum
presents a massless spin-two particle which can be identified with the graviton. Particles arise
as oscillating modes of the fundamental object and its one-dimensional nature is distinguishable
at energy scales comparable to its characteristic length `s, which is usually assumed to be of the
order of the Planck length (∼ 10−35 m). At lower energies they appear as point-like objects and
we can thus recover the quantum field theory limit. It turns out that, in order to have fermions
in the spectrum, the theory must be supersymmetric. This, together with anomaly cancellation,
restricts quite a lot the possible string models. In fact there are only five know consistent string
theories: Type I, Type IIA/IIB, Heterotic SO(32) and Heterotic E8 × E8. Moreover there is a
web of dualities which relate the different string theories to one another and this can be inter-
preted as a signal of an underlying common theory. In this thesis we will mainly concentrate on
Type II theories and more specifically on type IIA.

Supersymmetry is a symmetry between bosons and fermions which arrange themselves in
multiplets of equal mass. Symmetry has always been an over comprehensive fundamental con-
cept in physics and a necessary tool to handle the difficulties of the calculations and, as such,
supersymmetry has an important role already at the level of theories beyond the Standard
Model. It is common knowledge that, among many other advantages, it keeps under control
quantum corrections to the Higgs mass, it is a candidate solution to the dark matter problem,
and determines the very non trivial fact that the electroweak and strong coupling constants
meet at the “Grand Unification” scale, approximately 1016 Gev.

The attempt to merge supersymmetry with General Relativity by making it a local symmetry
bears the name of supergravity. Despite the first encouraging results it turned out that it is not
enough to cure all the divergencies, solving the problem of the quantization of gravity.2 How-
ever it is a remarkable fact that the massless spectrum of each string theory corresponds to the
spectrum of some supergravity and that conformal anomaly cancellation at one-loop3 imposes
equations among the fields which correspond to the equations of motion of some supergrav-
ity. We can thus conclude that the low energy effective theory of string theory is supergravity.
These considerations motivate the conclusion that string theory is, if not the definitive answer,
at least an important step towards the understanding of the fundamental physics of our universe.

One of the most striking predictions of string theory is that, again as a consequence of con-
formal anomaly cancellation, the space-time dimension has to be ten4. We thus have to face the
fact that we experience only four dimensions and we need to explain the relation between the

1One could ask why should one and not higher dimensional objects be the fundamental building blocks. A
priori this is not obvious but in the course of analysis it has become clear that this is the right compromise to
keep under control the divergencies of quantum field theory and gravity and the one arising by the increasing of
the internal degrees of freedom. The theory is defined in two dimensions where the (local) conformal symmetry
is richer than in higher dimensions.

2This is true for models with a minimal amount of supersymmetry which are the most suitable for phenomenol-
ogy. For maximal N = 8 supergravity the outcome could be different and the theory finite. It is a very active
field in these days, high loop orders have been computed showing rather striking cancellations.

3String theory is defined by the conformal two-dimensional world-sheet action which defines a sigma model with
target space our space-time. In a path integral based quantization the sum is over the different two-dimensional
world-sheet topologies.

4This is true for supersymmetric string theories, a similar result was first obtained for the simpler bosonic
string where the critical dimension is 26.
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physics of a ten dimensional theory and the one in four dimensions. The most studied and fruit-
ful way to achieve this is compactification. The idea is that the ten dimensional space has four
extended dimensions while the other six are wrapped on a compact space. The scale of the com-
pact dimensions is usually taken to be very small to justify the fact that we cannot probe them
directly5, nevertheless once we “integrate” the ten dimensional theory over the compact space
we are left with an effective four dimensional theory whose properties depend on the geometry of
the internal space. Despite being an attractive mechanism to build lower dimensional theories
it suffers from an immediate drawback, even if the starting theory is unique there is a large
degree of indeterminateness regarding the four dimensional outcome. The simplest examples
of compactifications based on Ricci-flat manifolds, most notably the case of Calabi-Yau spaces,
exhibit a large number of scalar fields, called moduli, which encode the information about the
internal geometry, but which, from a four dimensional point of view, have undetermined vacuum
expectation value which is certainly phenomenologically unsatisfactory. The presence of fluxes
both from the NS-NS and the R-R sector improve this situation providing a mean of fixing the
value of the moduli. In this thesis we will in fact concentrate on the analysis of background with
fluxes, especially in type IIA theory, together with some other additional ingredient namely
D-branes and O-planes. These are non-perturbative objects which beside being necessary in
constructing four-dimensional Standard-like models are also sources for the RR fluxes. We can
now give an outline of the thesis.

1.1 Outline of the thesis
The structure of supersymmetric vacua of type II theories has been subject of intensive analysis
during the last decades. Since the seminal work [32] the effort has been to determine the
geometrical properties of the internal manifold and many mathematical advancements have been
inspired by such a problem. The outcome of this is Generalized Complex Geometry, it is an
encompassing framework which provides a clear understanding of the geometry and a classifying
criterion together with a computational tool to find concrete examples. We will adopt this point
of view but the interest is towards a different situation.

It is an experimental evidence that, at the energies we are able to probe, supersymmetry is
not realized, thus, if it is a symmetry of the theory, it is broken an some higher energy scale
which hopefully will be in the range of the now running LHC experiment. Waiting for a possible
experimental evidence, it is an important and interesting problem by itself to understand some
of the features of non-supersymmetric vacua. The aim of this thesis is to analyze, by means of
two concrete examples, some aspects of the phenomenon.

The first example is a compactification on solvmanifolds, which are a certain class of man-
ifolds that could admit negative curvature. This property, together with the presence of a
zero-form flux field, has been proved to be a necessary ingredient for a compactification with
an external space with positive cosmological constant: a de Sitter space. This configuration is
interesting for two reasons. First of all it is, as we will explain in the text, intrinsically non-
supersymmetric because of some general considerations in supergravity theories. The second
reason is phenomenology, growing experimental evidence supports the claim that the cosmolog-
ical constant has a positive value. Our analysis is far from being phenomenological viable and

5For models with large extra dimensions an the possibility of detecting them at LHC see [139] and references
therein.
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being example based it is not a general procedure, but it still provides a way to investigate some
of the properties which should characterize such vacua. In particular our solutions rely on a
deformation of the supersymmetry of the sources, which are then responsible for the breaking.
We will complete the analysis with some observations and speculations at a more formal and
general level.

The second example stems from considerations based on the AdS/CFT correspondence
[143, 97, 187]. The duality provided deep insights of the strong coupling regime of supersymmet-
ric gauge theories in diverse dimensions and we concentrate here on the gravity dual of a 2 + 1
dimensional theory. There has recently been a growing interest on metastable dynamical super-
symmetry breaking in quantum field theory and a natural question is if this can be achieved in
the holographic set up by non-supersymmetric deformations of supergravity solutions. A great
effort has been done in type IIB context, mainly in case of the Klebanov-Strassler background
[124], first in probe approximation [119] and then by a study of the linearized backreaction
[16, 13, 14, 62]. A similar analysis has been done in M-theory [123, 11]. Less attention, to
our knowledge, has been devoted to type IIA configurations; we propose here to do some steps
with the aim of filling this gap and we study non-supersymmetric deformations of a type IIA
background which describes regular fractional D2–branes. The solution has two supercharges
and thus it is dual to an N = 1 gauge theory in 2+1 dimension. We will concentrate mainly on
the gravity side of the duality, limiting to few comments about the gauge dual which is not fully
understood. We will solve for the linearized space of perturbations around the supersymmetric
background of [47] using the technique first proposed in [24]. We will show that our configura-
tion exhibits two main features common to the other analysis [16, 13, 14, 62, 11], namely the
force on a probe brane depends on only one supersymmetry breaking perturbation mode and
the IR region is affected by some singularities. It is an open question whether this singularities
are admissible or not and no clear answer is available, we will show that in the configuration we
have chosen to analyze they are more severe than in the other cases.

The thesis is organized as follows:

Chapter 2 contains a review of the main properties of Type II supergravity, its field content
and action, equations of motion and supersymmetry variations. We provide our definition
of vacuum and set the geometric problem it poses together with the example of Calabi-Yau
compactification, mainly to provide the guide line we want to follow. We introduce some
geometric notions such as the one of G-structure.

Chapter 3 is more technical an mathematical in nature. It provides a short introduction to
Generalized Complex Geometry. We will introduce the concept of generalized tangent
bundle and generalized complex structure and introduce a bracket which allows for a
proper concept of integrability. We will introduce spinors associated to the generalized
bundle and detail their relation with differential forms on the manifold. This will be a key
point to derive a set of differential equations for a couple of object which are sum of forms
of different degree (polyforms) and that reformulate the supersymmetry conditions. We
end the Chapter with a brief description of calibrations and sources in this context.

Chapter 4 contains a quick review on solvmanifolds. These are a class of six dimensional man-
ifolds which have been extensively used as internal manifolds in supersymmetric compact-
ifications [87]. We consider them here for two reasons, one is that we want to reinterpret
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some well established mathematical result about their compactness properties and the ex-
istence of globally defined one-forms in the framework of twist construction as developed
in [5], extending their analysis to solvmanifolds which are not nilmanifolds. We do not
claim any truly original result, nevertheless it is a useful reformulation that allow us to
obtain a supersymmetric solution on a certain solvmanifold, denoted as Gp,−p,±1

5.17 × S1,
which we will take as a starting point for the non-supersymmetric analysis of Chapter 5.

Chapter 5 contains our analysis of a non-supersymmetric de Sitter solution. We will start
with some considerations about the features such solutions have to posses, with particular
emphasis on the description of the sources. We will then provide the details of the solution,
which exhibits a non zero F2 and H fluxes together with a non zero F0 flux and a negative
curvature of the internal manifold, as necessary according to some general analysis. We
provide the details of the computation of the energy-momentum tensor for the supersym-
metry breaking sources and explain which kind of deformations we need in order to solve
Einstein and dilaton equations. We end the Chapter by an analysis of the (meta)stability
of our solution from a four dimensional point of view.

Chapter 6 is an attempt of a more formal development of the intuition one can get from the
previously analyzed example. Geometry has been a guiding principle in the analysis of
supersymmetric configurations, from the first example of Calabi-Yau compactifications
till the reformulation in terms of Generalized Complex Geometry for arbitrary flux back-
grounds, geometrical structures are intimately related to the dynamics of the problem.
Our believe is that also N = 0 vacua (or at least some subset) can be described by ge-
ometrical tools. In this Chapter we collect some observations and reorganize them at a
more formal level. In particular we try to guess a set of bispinorial variables suitable for a
generalization of first order formalism to the non-supersymmetric case, via direct manip-
ulation on the pure spinors equations or via T-duality arguments. We also try to discuss
the problem of branes in non-supersymmetric background, whose behavior and descrip-
tion is a priori different from the case of supersymmetric configurations. We will argue
about a set of equations relating the brane dynamics with the non-supersymmetric bulk
dynamics. The aim of the Chapter is not to provide established results, but to infer that
a certain geometrical structure can be developed also for the more challenging problem of
non-supersymmetric vacua.

Chapter 7 is devoted to the analysis of the space of supersymmetric and non-supersymmetric
first order deformations of the type IIA background discovered in [47]. The ten dimensional
manifold in this case is split into a three dimensional warped Minkowski space and a certain
seven dimensional, non-compact, asymptotically conicalG2 manifold which is an R3 bundle
over S4. Generalized Complex Geometry could be used is some similar configurations
[98]6 but we choose to use a different approach based on the technique developed in [24]
which is suitable for our analysis and we will begin by reviewing it. After recalling the
salient properties of the background [47], we will proceed by presenting the solution to the
equations which parametrize the linearized deformations. We will then discuss the main
features of the IR physics and comment about the singularities we will encounter.

6The splitting in 3 + 7 dimensions does not make it evident because of the odd dimensionality of the internal
manifold. However in presence of a preferred direction (as a radial one) one can decompose 7 = 6 + 1 and apply
Generalized Complex Geometry. We thank A. Tomasiello for pointing this out.
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Chapter 8 contains our concluding remarks.

Appendix A collects our conventions and a set of useful formulae.

Appendix B is a short note about T-duality applied to solvmanifolds.

Appendix C contains some definitions and theorems about Lie groups which are extensively
used in the main text.

Appendix D collects lists of algebras and related solvmanifolds which have been considered in
this thesis, in particular we present them in a basis suitable to the compactness analysis
as explained in Chapter 4.

This thesis is based on the following publication and preprint:

1. D. Andriot, E. Goi, R. Minasian, M. Petrini, Supersymmetry breaking branes on solvman-
ifolds and de Sitter vacua in string theory, JHEP, 1105, 2011, 028, [arXiv:1003.3774].

2. G. Giecold, E. Goi, F. Orsi, Assessing a candidate IIA dual to metastable supersymmetry-
breaking, [arXiv:1108.1789].
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Chapter 2

Type II supergravity

This thesis is devoted to the study of compactifications of type II supergravity. We thus start
with a description of the main features of these theories and we provide an explanation of the
mathematical techniques we want to apply. The material presented here is now a standard topic
of many textbooks [165, 91] and review/lecture notes, [31, 83, 180, 127] among many others.
We will follow their logic in the exposition.

2.1 Action and equations of motion
Type II supergravity is the low energy effective theory which describes the dynamics of the
massless sector of type II superstring theory. As the string theory from which they derive, type
II supergravity comes in two manifestations, know as type IIA and type IIB, according to the
chirality of their supersymmetry parameters (type IIA is a non–chiral theory while type IIB is
chiral). They are the unique, maximally supersymmetric supergravity theories in ten dimen-
sions; they have N = 2 supersymmetry corresponding to 32 supercharges.1 We will use the
so called “democratic” formulation [18], which incorporates the Romans’ mass parameter [169]
of type IIA theory, because, as we will see, it is the most suitable for our approach based on
generalized complex geometry.

The fermionic sector of the theory includes two Majorana–Weyl gravitinos Ψa
M , a = 1, 2,

they are spin 3/2 fields of opposite chirality in type IIA and same chirality in type IIB. There
are also two dilatino fields λa, again Majorana–Weyl spinors of spin 1/2 and with opposite chi-
rality than the gravitinos. The supersymmetric parameters εa have the same chirality as the
corresponding gravitinos, there are two of them making the theory N = 2.

The bosonic superpartners include:

• NS–NS sector:

– a scalar field φ: the dilaton;
– a symmetric 2–tensor gMN : the metric;
– an antisymmetric 2–tensor BMN : gauge potential of the three–form field H.

1We refer to Appendix A.2 for our convention regarding spinors in different dimensions.
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• R–R sector:

– type IIA: gauge fields C(10)
p which are forms of odd degree p = 1, . . . , 9;

– type IIB: gauge fields C(10)
p which are forms of even degree p = 0, . . . , 8.

We denote with C(10) and F (10) the sum of all the RR potentials and field strengths respec-
tively. The field strengths are given by:

F (10) = dC(10) −H ∧ C(10) + eBF
(10)
0 (2.1)

where we have introduced the Romans’ mass parameter F (10)
0 , eB has to be intended through

its series expansion where the product is the wedge product. Not all the gauge potentials are
independent, thus, to have the right number of degrees of freedom, we impose a Hodge duality
condition on the corresponding field strength F (10)

p+1 :

F (10)
p = (−)b

p
2 c ∗10 F

(10)
10−p. (2.2)

The Bianchi identities for the form fields are:

dH = 0 (d−H∧)F (10) = δ. (2.3)

We consider the possibility of having RR sources introducing a δ–function which gives their
charge density. We will discuss in Section 3.6 with more detail the kind of sources we will allow
for; note that we choose to not include NS5–sources, thus for us the Bianchi identity for H will
be always as in (2.3).

The dynamics of these fields is determined by the action which we present here in string
frame:

S10 = 1
2k2

10

∫
M10

d10x
√
|g10|

[
e−2φ

(
R10 + 4|∇φ|2 − |H|

2

2

)
− 1

2
(
|F0|2 + |F2|2 + |F4|2

)]
. (2.4)

We have chosen to present the type IIA version because it is the one we will study mainly in
this thesis. Mutatis mutandis type IIB action is easily recovered and most of the results we will
state in the following are valid for it too. Note that we use conventions of [18, 36], a difference
in the definition of the Hodge dual gives us an extra sign depending on the parity of forms2. In
our notation we have 2k2

10 = (2π)7(α′)4, α′ = l2s and

Fk ∧ ∗̂Fk = d10x
√
|g10|

(−)(10−k)k

k! Fµ1...µkF
µ1...µk = d10x(−)(10−k)k|Fk|2. (2.5)

As customary |g10| denotes the determinant of the ten dimensional metric, ∗̂ denotes the ten
dimensional Hodge dual. There are other pieces which complete the action for the bosonic
sector: a topological Chern–Simons term and an effective action describing the dynamics of the

2See Appendix A.1 for conventions. In IIA, the sign is always positive on RR fields, but not on the odd
forms, H and dφ, hence the sign difference with respect to [36] for the corresponding terms in the action. The
sign difference is related to the fact we use the Mukai pairing to give the norm: for a real form αi, we have
〈∗λ(αi), αi〉 = |αi|2 × vol.
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source terms and their coupling with the other fields. The topological part will not be of interest
in our analysis3 before Chapter 7 and thus we will present it there, the action for the sources will
be discussed in Section 3.6 and Chapter 5. There is obviously also an action for the fermionic
fields. We do not report it here because we will not need it in the following, the reason will be
clear in a while when we will discuss the kind of vacua we are looking for.

We are now ready to present the equations of motion. Einstein and dilaton equation of
motion are:

RMN −
gMN

2 R10 = 2gMN (∇2φ− 2|∇φ|2)− 2∇M∇Nφ+ 1
4HMPQH

PQ
N + e2φ

2 F2 MPF
P

2 N

−gMN

2

(
−4|∇φ|2 + 1

2 |H|
2 + e2φ

2 (|F0|2 + |F2|2)
)

+ eφ
1
2TMN , (2.6)

8(∇2φ− |∇φ|2) + 2R10 − |H|2 = −eφ T0
p+ 1 . (2.7)

Here TMN and T0 are the source energy momentum tensor and its partial trace (see (5.28) and
(5.27)). The equation of motion for the H–field and the RR fields are:

d
(
e−2φ∗̂H

)
+ F0 ∧ ∗̂F2 + F2 ∧ ∗̂F4 + 1

2F4 ∧ F4 = source term (2.8)

(d +H∧) (∗̂F ) = 0 (2.9)

The theory is supersymmetric and thus we should complete this section by providing the
behavior of the fields under a supersymmetry variation. We present explicitly only the variation
of the fermionic fields, which will involve bosonic ones, we postpone again our motivations to
the next section. The supersymmetry variations are:

δΨ1
M =

(
∇M + 1

4 /HM

)
ε1 + eφ

16 /F ΓMΓε2

δΨ2
M =

(
∇M −

1
4 /HM

)
ε2 − eφ

16 /F
† ΓMΓε1

(2.10)

ΓMδΨ1
M − δλ1 =

(
/∇− /∂φ− 1

4 /H
)
ε1

ΓMδΨ2
M − δλ2 =

(
/∇− /∂φ+ 1

4 /H
)
ε2

A slash means contraction with a gamma matrix4.

2.2 Compactification ansatz
We are interested in solutions of the theory such that the ten dimensional space–time M10 is
fibered over a four dimensional base M4. We are looking for the most simple configuration:

3See Footnote 5 in Chapter 5.
4See Appendix A.1 for our conventions.
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a vacuum. In our definition it is a solution where there are no particles in four dimensions,
we thus require M4 to admit the maximum possible number of Killing vectors, namely to be
maximally symmetric. It is possible to prove [185] that there are only three four–dimensional
spaces with this characteristic: AdS4, Mink4 and dS4. To preserve the maximal symmetry of the
external space we have to require the fibration to be trivial, as a consequence the most general
ten dimensional metric turns our to be a warped product of a fully constrained (by the maximal
symmetry) four–dimensional part and an unconstrained six–dimensional part:

ds2
10 = e2Agµνdxµdxν + gmndymdyn. (2.11)

The internal metric gmn and the warping factor A are functions of the internal coordinates ym
only. Gamma matrices and spinors decompose accordingly, we detail more about this point in
Appendix A.2. Here we need only the following consideration. The metric we choose in ten
dimensions is always of signature (1, 9) and thus under the ansatz (2.11) the spinors reduce as
Spin(1, 9)→ Spin(1, 3)×Spin(6). This reduction does not contain an invariant under Spin(1, 3),
thus if we were to allow for an non zero expectation value of a spinorial field we would have had
a breaking of four dimensional maximal symmetry. This forces us to impose the vanishing of all
the expectation values of the fermionic fields in the vacuum.

The compactification ansatz imposes constraints also on the other bosonic fields of the theory.
First of all, they can have a coordinate dependence with respect to the internal ones only. The
H field can have only internal indexes: Hmnp. The RR fluxes decompose as follows:

F
(10)
(n) = F(n) + e4Avol4 ∧ F̃(n−4). (2.12)

Here F(n) and F̃(n−4) denote purely internal forms, vol4 denotes the unwarped four-dimensional
volume and the duality relation (2.2) reads:

F̃ = λ(∗F ) (2.13)

with ∗ the six dimensional Hodge duality operator. Accordingly also the gauge potentials get
decomposed as:

C
(10)
(n) = C(n) + dx0123 ∧ e4AC̃(n−4). (2.14)

2.3 Supersymmetry and geometry
In the previous Section we have introduced the definition of vacuum we will use in this thesis. In
addition we can require that the solution preserves some fraction of the original supersymmetry,
that is to say we must impose that the supersymmetry variations (2.10) are zero for at least some
of the supersymmetry generators (supercharges). We thus obtain a set of first order equations
among the fields of the theory. In principle there is also a set of equations coming from the
supersymmetry variation of the bosonic fields, however these will always involve a fermionic
field. We have said that, according to our definition of vacuum, we are forced to put to zero
all their expectation values and thus the supersymmetry variations for the bosonic fields are
automatically zero.
The are many reason to look for supersymmetric solutions, among them there is the fact that,
under certain mild assumptions, it is enough to solve the Killing spinor equations (2.10) and
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Bianchi identities (2.3) to have a solution that satisfies all the equations of motion. We will
discuss this in more detail in Section 3.5. A second reason is phenomenology, considerations
related to the hierarchy problem set the susy breaking scale at a much lower energy than the
compactification case. Of course non supersymmetric solutions are of extreme importance, both
for obvious phenomenological reasons and for the understanding of fundamental properties of
the theory and they will be the main interest of this thesis. Needless to say, in order to explore
less known configurations it is of extreme heuristic usefulness to start from well known ones and
try to deform them. It is also of clear evidence the importance to have a known limit where to
check our results. For these reasons we have chosen to discuss the supersymmetry case before
addressing non supersymmetric solutions in Chapter 5 and Chapter 7.

We are interested in supersymmetric solutions with N = 1 in four dimensions, that is to
say with four conserved supercharges. The most general decomposition of the supersymmetry
parameters εa, compatible with N = 1 and our definition of a vacuum, is (see [180] for a detailed
discussion about this point):

ε1 = ζ+ ⊗ η(1)
+ + ζ− ⊗ η(1)

−

ε2 = ζ+ ⊗ η(2)
∓ + ζ− ⊗ η(2)

± (2.15)

where the upper sign is for type IIA and the lower for type IIB. We can now use this decom-
position in the equations (2.10), again maximal symmetry of the external space imposes that
solutions of (2.10) have to be valid for an arbitrary ζ. We can now restrict to AdS4 or Mink4
spaces. There are two reasons, one is that dS4 is not compatible with supersymmetry (see Foot-
note 1 in Chapter 5 for a discussion). The other reason is related to the existence of Killing
spinors for maximally symmetric spaces [136], for Minkowski space we can find a basis such
that ∇µζ± = 0 and for anti de Sitter spaces such that ∇µζ− = 1

2µγµζ+, where µ is related to
a negative cosmological constant Λ = −|µ|2, while for de Sitter space there is no such a basis.
Taking into account these considerations one can see that equations (2.10) reduce to:

(
∇m −

1
4/Hm

)
η

(1)
+ ∓

eφ

8 /Fγmη
(2)
∓ = 0 ,(

∇m + 1
4/Hm

)
η

(2)
∓ −

eφ

8 /F †γmη
(1)
+ = 0 ,

µe−Aη
(1)
− + /∂Aη

(1)
+ −

1
4e

φ /Fη
(2)
∓ = 0 ,

µe−Aη
(2)
± + /∂Aη

(2)
∓ −

1
4e

φ /F †η
(1)
+ = 0 ,

2µe−Aη(1)
− + /∇η(1)

+ +
(
/∂(2A− φ) + 1

4/H
)
η

(1)
+ = 0 ,

2µe−Aη(2)
± + /∇η(2)

∓ +
(
/∂(2A− φ)− 1

4/H
)
η

(2)
∓ = 0 . (2.16)

These equations involve only quantities which are defined on the internal manifold, they
give a set of constraints that will determine the geometry of M6. The fact that supersymmetry
conditions translate to geometric conditions which determine the internal manifold is known
since decades, the result is valid also for the other string theories and since the celebrated work
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[32] there has been a huge effort to investigate its far reaching consequences. The most fruitful
geometrical technique has been the one based on G–structures. A not exhaustive list of refer-
ences for its application on type II context can be [72, 34, 74, 121, 122, 51, 70, 69, 50, 10] and
references therein.

Let us consider the definition of G–structure [43, 71, 116, 171].

Definition. A G–structure is a principal subbundle of the frame bundle with fiber G ⊂ Gl(d,R).

Stated in another way, when we transform objects from one patch to another, we allow for
transition functions which are elements of a subgroup G ⊂ Gl(d,R). The logic behind the use
of G–structures to describe physical situations is to interpret the field content of a theory as a
topological data for the structure and to relate the equations they obey to some integrability
condition. Once the correspondence is stated one can exploit representation theory to look for
solutions, a problem which is usually easier than to directly address the field equations.

A simple example is provided by a Riemannian metric g, on each patch we can choose
frames such that, in frame indexes, g is simply the identity. It defines a reduction to O(d,R)
which is clearly the group of transformations that leave invariant the metric. From this simple
example we can see a way to characterize G-structures, namely they are given in terms of
globally defined, non–degenerate G–invariant objects, which can be tensors, as we have just
seen, or spinors. The simplest application to type II supergravity gives the well know Calabi–
Yau geometry which we review here as an example of the approach we want to follow. Let us
consider a configuration where there are no fluxes and we set to zero dilaton and warp factor.
We look for supersymmetric solutions with η(1) = η(2) = η 5 and an external Minkowski space.
We need a metric and thus the structure group is reduced to O(6). Supersymmetry requires
spinors and thus the manifold has to be a spin manifold, in particular it has to be orientable,
reducing the structure group to the orientation preserving SO(d,R)6. Moreover the spinor η
entering the supersymmetry transformations has to be globally defined and nowhere vanishing
and thus we can further reduce the structure group to the stabilizer of η in SO(6) which is
SU(3). This last piece of information can be translated into the existence on M6 of globally
defined non–degenerate two form Jmn and three form Ωmnp together with some compatibility
condition7. They define an almost symplectic structure and an almost complex structure. Up
to now we have only topological information. The supersymmetry equations (2.16) reduce to
simply:

∇mη = 0 (2.17)

and provide a differential condition which translates into integrability conditions for J and Ω.
In fact one can prove that (2.17) is equivalent to

dJ = 0 dΩ = 0 (2.18)

We immediately recognize the condition for a symplectic structure to be integrable, namely
dJ = 0 and after a little bit of work one can see that if dΩ = 0 then the Nijenhuis tensor of the

5This case admits N = 2 non–minimal supersymmetry because in (2.15) we can choose two different ζ’s. In
the case of F 6= 0 we are forced to chose the same ζ’s because F mixes ε1 and ε2 in (2.10).

6The manifold has to be spin in order to lift SO(d,R) to its universal cover Spin(d,R) which admits spinor
representations. It is a very well known result in differential geometry that a spin structure exists if and only if
the second Stiefel–Whitney class of the tangent bundle vanishes [132].

7We refer to Appendix A.3 for their definition and properties.
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associated almost complex structure vanishes8, making it a complex structure. The condition
(2.17), which we recall is equivalent to (2.18), is well known, in fact it says that the holonomy
of M6 is contained in SU(3) because the spinor is invariant under parallel transport, which is a
way to define a Calabi–Yau manifold [90].

As a last example of the method we can see how supersymmetry implies the equations of
motion (see for example [91] vol. 2, ch. 15). In this simple case we are left with the Einstein
equation (2.6) which reduces to

Rmn −
1
2gmnR = 0. (2.19)

It is an immediate consequence of (2.17) that:

0 = [∇m,∇n]η+ = 1
4Rmnpqγ

pqη+, (2.20)

where Rmnpq is the Riemann tensor. Multiplying (2.20) by γn and using (A.8) we obtain:

Rmqγ
qη+ + 1

4Rmnpqγ
npqη+ = 0. (2.21)

The second term in the equation is zero by symmetry properties of the Riemann tensor, we are
thus left with Rmq = 0 which is clearly a solution of (2.19). We recover the well know property
of Ricci flatness which is a characteristic of Calabi–Yau manifolds.

We have discussed which kind of geometrical tools we need to find solutions of type II su-
pergravity, the procedure is well defined and in principle one could try to extend it to more
complicated configurations in which we consider non vanishing fluxes or SU(2) structures. For
example one can look for solutions with, e.g., NS–NS flux only (see [178] in the context of
heterotic strings) also known as type A solutions or to type B solutions in type IIB string the-
ory with NS–NS 3-form, RR 5–form and 3–form among which there is the class of conformally
Calabi–Yau solutions which is the simplest deformation from the Calabi–Yau configuration.
However the supersymmetry equations become rapidly intricate and we soon lose a nice geomet-
rical interpretation. It turns out that a more suitable language is given by generalized complex
geometry which we are going to review in the next chapter.

8Actually this is not an if and only if condition. The vanishing of the Nijenhuis tensor is equivalent to the
existence of a form W5 such that dΩ = W5 ∧ Ω. Clearly dΩ = 0 is a subcase of it. In this case the canonical
bundle KI admits a holomorphic section.
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Chapter 3

Generalized Complex Geometry

In the previous Chapter we have seen how geometry enters the description of supersymmet-
ric vacua in type II string theory and how supersymmetry conditions translate into geometric
conditions for the internal manifold which, in the simplest case of fluxless supersymmetric con-
figurations, has to be a Calabi–Yau.

In this chapter we review the fundamentals of generalized complex geometry and explain
why this is a suitable language to address the more complicated problem of compactification
with fluxes and sources. The Killing spinor equations (2.10), when fluxes are turned on, are
much more complicated to analyze, but, as we will see, generalized complex geometry will give
them a clear geometric meaning and will allow us to reformulate the problem into one involving
differential forms on the internal manifold which are more tractable mathematical objects than
spinors.

Generalized complex geometry has been developed on the mathematical side by Hitchin
[106] and collaborators [95, 96], its application to string theory has been almost concurrently,
see [85, 86] or the later [115] from a more abstract point of view. Here, without any pretension
of completeness or originality in the exposure, we recall the main facts about it and we refer the
reader to the previously cited original works or to one of the many available reviews or lecture
notes [108, 38, 180, 189, 127] and references therein for a more comprehensive development of
the subject.

3.1 Generalized tangent bundle
Let us consider a d–dimensional manifold M ; many of the following definitions and results are
valid for any even d but the reader should keep in mind that we will soon specialize to the case
d = 6 which is, as we have seen in Chapter 2, the case for compactification to four dimensions
of type II theories.

Generalized complex geometry describes structures on an extension of the tangent bundle
TM by the cotangent bundle T ∗M . The extension, called generalized tangent bundle, is defined
by the short exact sequence:

0 −→ T ∗M −→ E
π−→ TM −→ 0 . (3.1)

Locally its sections (generalized vectors) are written as X = X + ξ with X ∈ TM and ξ ∈ T ∗M .
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Passing from one patch Uα to another Uβ the elements of a section are glued as follows:

X(α) + ξ(α) = a(αβ)X(β) +
(
a−t(αβ)ξ(β) + ιa(αβ)Xβω(αβ)

)
(3.2)

where a(αβ) ∈ Gl(d,R) gives the usual patching of vector and one forms, ω(αβ) is a two–form
and ιvα denotes the contraction of a form α by the vector v1. We further require that ω(αβ) =
−dA(αβ) with A(αβ) ∈ Ω1(Uα ∩ Uβ) one–forms satisfying:

A(αβ) +A(βγ) +A(γα) = g−1
(αβγ)dg(αβγ) (3.3)

on threefold intersections Uα∩Uβ∩Uγ . The functions g(αβγ) = eiα are S1 valued functions which
satisfy a cocycle condition on fourfold intersections and define a gerbe [105, 107, 26, 79]. This
construction is reminiscent of the patching in U(1) bundles but now “the connective structure”
of a gerbe given by the one–forms A(αβ) have the role of “transition” functions. This is the
rigorous mathematical structure one needs in order to give the NS–NS two–form B a geometric
interpretation. It will play the role which was of the U(1) connection one–form and it has a
correspondingly quantized (on compact manifolds) globally defined three–form field strength
H = dB. One the overlaps the B–field is patched as B(α) = B(β) − dA(αβ). The transition
functions which define E have the form

t(αβ) = Aαβ ◦ eω(αβ) (3.4)

A(αβ) =
(
a(αβ) 0

0 a−t(αβ)

)
∈ Gl(d)+ ⊂ SO(d, d)+ . (3.5)

In the following we will consider a local patch and drop related subscripts in most of the
objects we define; one has to keep in mind that by carefully gluing we can extend the results all
over the manifold. A local trivialization of the bundle E will look like the direct sum TM⊕T ∗M
with elements X = X + ξ. It is endowed with a natural bilinear form of indefinite signature
(d, d) given by the pairing of vectors and one–forms:

〈X + ξ, Y + η〉 = 1
2 (ξ(Y ) + η(X)) , (3.6)

which is left invariant by the non–compact orthogonal group O(d, d)2. If we adopt a two–
component notation the metric given by the pairing (3.6) can be written as:

I = 1
2

(
0 1

1 0

)
. (3.7)

A generic element O ∈ O(d, d) will act on sections X = X + ξ as:

X =
(
X
ξ

)
→ OX =

(
a b
c d

)(
X
ξ

)
(3.8)

1See Appendix A for conventions.
2Note that usually we can make a natural choice for the orientation once we identify Λ2d(TM ⊕ T ∗M) ≡ R

which allows to reduce the O(d, d) group to its special subgroup SO(d, d), [95].
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where the d× d matrices a, b, c, d are forced by the orthogonal condition to satisfy atc+ cta = 0,
btd + dtb = 0 and atd + ctb = 1. The Lie algebra can be decomposed as o(d, d) = End(TM) ⊕
Λ2T ∗M ⊕ Λ2TM , consequently its elements3 are of the type:

G =
(
a β
B −at

)
(3.9)

where a ∈ End(TM), B : TM → T ∗M and β : T ∗M → TM are skew–symmetric, i.e. they can
be interpreted as a two–form and a two–vector respectively. By exponentiation we can obtain
the embedding of three subgroups of O(d, d) namely:

• Gl(d) subgroup

X→ X′ =
(
a 0
0 a−t

)(
X
ξ

)
(3.10)

whose action on X is as usual for vectors and one-forms;

• GB (Abelian) subgroup

X→ X′ =
(

1 0
B 1

)(
X
ξ

)
(3.11)

where B acts by shearing in the T ∗M direction, X′ = X + ıXB;

• Gβ (Abelian) subgrup

X→ X′ =
(

1 β
0 1

)(
X
ξ

)
(3.12)

where β acts by shearing in the TM direction, X′ = X + ıξβ.

3.2 Generalized (almost) complex structures
Let us consider the complexification4 of the generalized tangent bundle (TM ⊕T ∗M)⊗C, as we
would do in the case of the ordinary tangent bundle. We want to introduce a structure which is
the direct generalization of an (almost) complex structure.

Definition. A generalized almost complex structure is a map J : TM ⊕ T ∗M → TM ⊕ T ∗M
such that J 2 = −1 and satisfies an Hermiticity condition, J tIJ = I, with respect to the metric
I in (3.7).

In presence of J the structure group of TM ⊕T ∗M is further reduced to the stabilizer of J
in O(d, d) which is U(d/2, d/2)5.

3By abuse of notation we use the same symbol for the Lie algebra element or the corresponding group element.
4In what follows all the bundles we will meet are complex. We will denote with the same symbol both the real

bundle and its complexification.
5As usual we consider the real representation of Gl(d/2,C) into Gl(d,R) given by:

A = Re(A) + i Im(A)→
(

Re(A) Im(A)
− Im(A) Re(A)

)
.
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As for the (almost) complex case, we can always split the complexified generalized tan-
gent bundle into its “(1, 0)” and “(0, 1)” components. The +i eigenbundles of J are given by
generalized vectors satisfying the condition ΠX = X, where the projector Π is defined as:

Π = 1
2(1− iJ ) (3.13)

It is easy to see that such subbundle is isotropic (or null) with respect to the metric (3.7)
and has dimension d, which is the maximal one for isotropic subspaces in signature (d, d).

We state here some general facts about maximally isotropic subbundles, their proof can be
found in [95]. As an example of maximally isotropic subspace consider any subspace V ⊂ TM ,
it is easy to see that the subspace

V ⊕Ann(V ) ⊂ TM ⊕ T ∗M , (3.14)

where Ann(V ) is the annihilator space of V in T ∗M , is a maximally isotropic subspace. We can
also give the general form of maximally isotropic subspaces. Consider as before any subspace
V ⊂ TM and let ω ∈ Λ2V ∗, one can prove that every maximally isotropic subspace is of the
form:

L(V, ω) = {X + ξ ∈ V ⊕ T ∗M | ξ|V ∗ = ω(X)} . (3.15)

We define the type of a maximal isotropic subspace L(V, ω) as the codimension k of its
projection onto TM . We will see later how this is related to the correspondent concept for a
pure spinor. Among the subgroups of O(d, d) previously described the B–transformations do
not change the type on the other hand β–transformations do.

3.2.1 The Courant bracket

In the (almost) complex case there is a definition of integrability given in terms of Lie bracket.
An almost complex structure is said to be integrable if the holomorphic subbundle T (1,0)M is
closed under the Lie bracket, i.e.: [T (1,0)M,T (1,0)M ]Lie ⊂ T (1,0)M .

We want to extend this notion to the generalized case and thus we need a bracket on (smooth)
sections of TM ⊕ T ∗M which will replace the Lie bracket in the definition of an integrability
condition. There is no non–trivial bracket satisfying the Jacobi identity on TM ⊕ T ∗M , but
it is possible to define one that satisfies it when restricted to isotropic subbundles. It is the so
called Courant bracket, it has been first introduced in [45, 46] but was also present in the work
[58]6. We will introduce it as a derived bracket (see [131]). As a remark, we point out that the
mathematics of the Courant bracket can be understood in a more deep way when considered in
the more general framework of Lie algebroid theory [166, 141, 134]; in what follows we will not
need such a sophisticate mathematical insight and we will keep a more pedestrian approach. We
recall here Cartan formulae relating Lie derivative L, exterior derivative d, and interior product
ιx:

Lx = {ιx, d} L[x,y] = [Lx,Ly] [Lx,d] = 0 (3.16)

In particular we are interested in the definition of the Lie bracket as a derived bracket:

[{ιx, d}, ιy] = ι[x,y]Lie . (3.17)
6Actually the Courant bracket is none but the anti–symmetrization of the Dorfman bracket.
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The brackets on the left–hand side are commutators or anti–commutators of operators acting
on differential forms, while the bracket on the right–hand side is the Lie bracket. The Courant
bracket is defined by analogy:

1
2
(
[{X·, d},Y·]− [{Y·, d},X·]

)
≡ [X,Y]Courant. (3.18)

X and Y are sections of TM ⊕ T ∗M and considered as operators on a differential form ω they
act as: X · ω = ιXω + ξ ∧ ω.

The Courant bracket can be expressed as:

[X + ξ, Y + η]Courant = [X,Y ]Lie + LXη − LY ξ −
1
2d(ιXη − ιY ξ). (3.19)

It reduces to the Lie bracket on vector fields (which are a maximally isotropic subbundle of the
generalized tangent bundle) on the contrary it vanishes on one–forms (which also are a maximally
isotropic subbundle). Both the inner product (3.7) and the Courant bracket are invariant under
diffeomorphisms, as well as the Lie bracket is, but they have an additional symmetry with
respect to the latter. By simple application of definitions and Cartan formulae one can prove
that transformations described in (3.11) are automorphisms of the Courant bracket if and only
if dB = 0. Moreover it is possible to prove [95] that the semidirect product

Gl(d,R) o Ω2
closed(M) (3.20)

of diffeomorphisms and B–transformations is the group of orthogonal automorphisms of the
Courant bracket. These results are valid for a complex two–form, later we will restrict to real
forms when we will identify B with the NS–NS potential of string theory.

We have said that the Courant bracket does not satisfy the Jacobi identity on TM ⊕ T ∗M ;
an expression for the Jacobiator (which quantifies that failure) is given in [95] (see also [134]):

Jac(X,Y,Z) = [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y]
= d(Nij(X,Y,Z)).

Thus the Jacobi identity is satisfied up to an exact term given by the Nijenhuis operator:

Nij(X,Y,Z) = 1
3 (〈[X,Y],Z〉+ 〈[Y,Z],Z〉+ 〈[Z,X],Y〉) . (3.21)

From this expression it is clear that the Jacobiator is zero on isotropic subbundles.
It is possible to twist the Courant bracket by a closed 3–form H [174, 95]. Let us define the

new bracket:
[X + ξ, Y + η]H = [X + ξ, Y + η] + ιXιYH. (3.22)

One can compute again the Nijenhuis tensor and the Jacobiator:

NijH(X,Y,Z) = Nij(X,Y,Z) +H(X,Y, Z)

JacH(X,Y,Z) = d(Nij(X,Y,Z)) + ιXιY ιZdH .

If dH = 0 then the twisted bracket has the same properties as the untwisted one: the Jacobi
identity vanish up to exact terms and its Jacobiator is zero on isotropic subbundles. As before
B–transforms are a symmetry of the bracket only if dB = 0, in fact:

[eB(X), eB(Y)]H = eB[X,Y]H+dB. (3.23)
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We will not enter in more detail the relation of the twisted bracket and the gerbe construction
sketched at the beginning of this chapter, we readdress the interested reader to [95]. It is worth
noticing that the structure group of the “twisted” generalized tangent bundle E, as we have
introduced it at the beginning of Section 3.1, is actually the group of symmetries of the Courant
bracket and not the whole O(d, d) group which is the symmetry group of the metric (3.7). In
particular β transformations introduced in (3.12) are not in this subgroup. It has been suggested
that they are related to T–duality and non–geometric constructions [5, 88, 89, 110, 111, 64, 99].

After this detour on the Courant bracket and its properties it is easy to generalize the notion
of integrability:

Definition. A generalized almost complex structure J is said to be integrable if its +i eigen-
bundle LJ is closed under the Courant bracket

Π̄[Π(X + ξ),Π(Y + η)]Courant = 0, (3.24)

where the projector Π has been defined in (3.13).

As an example we provide the embedding of the usual complex and symplectic structures
in a generalized one. Generalized geometry thus encompasses both complex and symplectic ge-
ometries but contains more structures which can be thought as “interpolating” between the two.
Using the two–component notation we consider the following generalized complex structures:

JI =
(
I 0
0 −It

)
Jω =

(
0 −ω−1

ω 0

)
, (3.25)

where I is an almost complex structure on TM and ω is a non–degenerate two–form. It is
immediate to check that they square to minus the identity and it is also possible to show that
requiring the integrability condition (3.24) forces I to be a complex structure and ω to be closed
and thus a symplectic form.

Examples of manifolds admitting generalized complex structures but not complex or sym-
plectic ones have been first found on nilmanifolds (the next chapter will be dedicated to the class
of solvmanifolds which contains the one of nilmanifolds, we refer to it for more details) in the
work [37] by Cavalcanti and Gualtieri. In [95] there is also an example, based on a hyperkähler
manifold, of a generalized complex structure which depends on a real parameter and interpolates
between a complex and a symplectic structure.

3.3 Spinors and differential forms
In this section we introduce the spin bundle associated to the generalized tangent bundle, provide
its relation with the vector space of differential forms Λ•(T ∗M) on the manifoldM together with
some properties. We will see how pure spinors are related to generalized complex structures and
how the integrability condition described in the previous section has a translation in terms of a
differential condition on forms.

Let us consider a vector space V and a quadratic form Q on it. From this data we can
construct the associated Clifford algebra defined by the relation:

v · u = (v, u) 1 ∀v, u ∈ V, (3.26)
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where (, ) is the symmetric bilinear form associated to the quadratic form Q7 and 1 is the unit
element of the algebra. We call spinors the elements of the Clifford module, that is to say the
elements of the irreducible representation space of the Clifford algebra (see [42, 132]).

As we have seen the generalized tangent bundle is equipped with the symmetric bilinear
form (3.7) and thus we can considered the associated Clifford algebra Cliff(TM ⊕T ∗M). There
is a natural representation on the space Λ•(T ∗M) where the Clifford action is defined as:

X · φ = ιXφ+ ξ ∧ φ (3.27)

for X = X + ξ ∈ TM ⊕ T ∗M and φ ∈ Λ•(T ∗M). By easy manipulation of wedge product and
contraction on forms we can convince ourself that this is actually an algebra representation. This
is the standard spin representation and due to the signature (d, d) the spinor bundle S splits
into positive and negative helicity, which correspond to even respectively odd degree differential
forms:

S = S+ ⊕ S− = Λeven(T ∗M)⊕ Λodd(T ∗M). (3.28)

This splitting is preserved by the spin group Spin(d, d) sitting in the Clifford algebra8 and S±
are two Weyl irreducible representations. Actually we need to be more careful. The Lie algebras
spin(d, d) and so(d, d) are isomorphic and thus we can ask how the transformations (3.10), (3.11),
(3.12) act on the spin representation [106, 95, 115, 186]. It is rather straightforward to compute
the action of B and β transformations:

e−B · φ =
(

1−B ∧+1
2B ∧B ∧+ . . .

)
φ eβ · φ =

(
1 + ιβ + 1

2 ι
2
β + . . .

)
φ (3.30)

For a ∈ Gl+(d) a careful computation gives:

a · φ =
√

deta e−amn dxn∧ιmφ (3.31)

Thus as a Gl+(d)-module we are led to identify the following isomorphism:

S± ∼= Λeven/oddT ∗M ⊗
√

ΛdTM. (3.32)

Thus spinors are isomorphic to the tensor product of differential forms and the square root of
the d–vectors line bundle, this will be important later when we will explain the connection with
the NS–NS massless sector of type IIA/B superstrings.

We can state all of this in a more familiar language, the gamma matrices acting on spinors
(here polyforms, i.e. sum of forms of different degree) are given by vectors acting by contraction
and one–forms acting by wedge products. If we consider as a basis ιm and dxm∧ then the usual
commutation relations for the metric (3.7) are easily recovered:

{dxm∧,dxn∧} = 0 {dxm, ιn} = δmn {ιm, ιn} = 0. (3.33)
7For u, v ∈ V , given the quadratic form Q, the symmetric bilinear form (, ) is defined as (u, v) ≡ Q(u + v) −

Q(u)−Q(v).
8The spin group Spin(d, d) is given by the even degree elements of the Clifford algebra:

Spin(d, d) = {X1 · . . .X2l | 〈Xi,Xi〉 = ±1} . (3.29)
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There is a standard way to define a Spin(d, d)+–invariant inner product on Γ(S) (see [42])
which for the case of the generalized tangent bundle coincides with the Mukai pairing9 for
differential forms [156]:

〈φ, σ〉 = (φ ∧ λ(σ))d , (3.34)
where φ and σ are differential forms and λ is an operator which act reversing all the indexes
of a form λ(σp) = (−)Int[p/2]σp (p is the degree of the form). For d = 6 the Mukai pairing is
antisymmetric. We define the norm of a spinor Φ ∈ S as follows:

〈Φ, Φ̄〉 = −i||Φ||2vol (3.35)

thus once we choose a volume form vol on M we can define the norm of a spinor as the pro-
portionality constant in (3.35). Another definition we need is that of null or annihilator space
LΦ ⊂ TM ⊕ T ∗M of a spinor:

LΦ = {X = X + ξ ∈ TM ⊕ T ∗M | (X + ξ) · Φ = 0} . (3.36)

From the definition of the Clifford action it is straightforward to see that this is an isotropic
subspace and if it is of maximal dimension d then Φ is called pure spinor.

We are now ready to state the correspondence between generalized complex structures J
and pure spinors Φ. In Section 3.2 we said that the +i–eigenbundle of J is a maximally isotropic
subspace and we have just stated that, by definition, the null space of a pure spinor has the
same property. We can thus identify the two:

J ↔ Φ if LJ = LΦ. (3.37)

To be precise the correspondence is between J and a line bundle of pure spinors, because a
rescaling of Φ does not change its annihilator space. If the line bundle admits a global section
(it does not need to be the case in general) the structure group of TM ⊕T ∗M is further reduced
from U(d/2, d/2) to SU(d/2, d/2). In the following we will also require that the spinor has non–
vanishing norm10, this will allow us to have an explicit formula for J which is independent on
the rescaling:

J Λ
Σ = −4〈Re Φ,ΓΛ

Σ Re Φ〉
i〈Φ, Φ̄〉

(3.38)

where Λ, Σ are generalized tangent bundle indexes, ΓΛ
Σ is the antisymmetrized product of

gamma matrices and indexes are raised and lowered with the metric (3.7).
In the previous section we have defined the notion of integrability of a generalized complex

structure as a requirement on the +i–eigenbundle: it has to be closed under the Courant bracket.
Given the correspondence with pure spinors one can imagine that there is a correspondent
condition given in terms of some requirement on the spinors. We recall that the Courant bracket
contains a differential which is one of the most important operators in the theory of differential
forms, thus we can expect a condition involving it. If X,Y ∈ LJ and [X,Y]C ∈ LJ than the
structure is integrable. From the definition of the Courant bracket (3.18) and the identification
(3.37) we have:

0 = [X,Y]C · Φ = 1
4(XY− YX) · dΦ. (3.39)

9See Appendix A.4 for more details and a list of useful properties.
10An example of pure spinor with zero norm is the zeroth order differential form 1. Its wedge with itself has

clearly non top–form part however it is a pure spinor whose annihilator space is TM which has clearly maximal
dimension.
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If we require the spinor to be closed, dΦ = 0, then the condition is clearly satisfied, i.e. [X,Y]C ∈
LΦ = LJ and the generalized complex structure is integrable. The closure condition is actually
too restrictive and it can be relaxed to

dΦ = (ιX + ξ∧)Φ, (3.40)

the structure is integrable if and only if there are X and ξ such that this condition is satisfied.
Note that the condition is actually true for line bundles of pure spinors because it does not
depend on an overall rescaling (as it was the case for the null space of the pure spinor). In fact
if we change Φ as Φ′ = f Φ where f is an arbitrary no–where vanishing (smooth) function than
the integrability condition (3.40) is easily recovered if we take X′ = X + df .

Definition. A Generalized Calabi–Yau is a manifold that admits a closed pure spinor with
non–vanishing norm11.

In general a manifold admits more than one closed pure spinor, we recall thatB–transformations
with a closed B are a symmetry of the Courant bracket, thus it is not unexpected that we can
transform Φ to another closed pure spinor ΦB:

ΦB = eB ∧ Φ ↔ JB = BJB−1,

(
1 0
B 1

)
. (3.41)

It is possible to extend the formalism even to non–closed two–forms, we have seen how the
Courant bracket can be twisted by a three–form H and we can express (3.22) as a derived
bracket provided we find a suitable differential. It is easy to see that d − H∧, with H the
curvature of B, is the operator we look for provided dH = 0. It gives the right expression for
the twisted bracket and eBΦ is now d−H∧ closed. From the point of view of string theory the
requirement dH = 0 means considering situations without NS–fivebranes. The condition (3.40)
is straightforwardly generalized to:

(d−H∧)Φ = (ιX + ξ∧)Φ . (3.42)

It is possible to prove [95] that every complex pure spinor can be written as:

Φ = Ωk ∧ eiω+B (3.43)

with ω and B real two–forms and Ω complex k–form which is decomposable, i.e. Ω = θ1∧ . . .∧θk
and θj=1...k linearly independent complex one–forms. The maximally isotropic subspace it defines
is said to be of real index zero if:

〈Φ, Φ̄〉 = (−)k(k−1)/2 2d/2−k

(d/2− k)!Ωk ∧ Ω̄k ∧ ωd/2−k 6= 0 (3.44)

which corresponds to the non–zero norm condition we were imposing before. We say that the
spinor is of type k, this is of course related to the type of the maximally isotropic subspaces as
defined around (3.15).

11The norm requirement is to avoid a trivial definition otherwise every manifold would be generalized Calabi–
Yau, cfr. Footnote 10.
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3.4 SU(d/2)× SU(d/2) structures
In this section we introduce on the manifold M a second generalized complex structure and
explain how this allows us to recast in this language the content of the NS–NS massless sector
of type II string theories. Let us suppose it is possible to define two generalized almost complex
structures J1 and J2. They are said to be compatible if [J1,J2] = 0 and H ≡ −IJ1J2 is a
positive definite metric on TM ⊕ T ∗M . The operator G = I−1H is such that:

G2 = 1d+d IG = GtI , (3.45)

that is to say it is an hermitian projector. Its +1–eigenbundle C+ together with the orthogonal
complement C− will give a decomposition of TM ⊕ T ∗M such that G is given as:

G(·, ·) = I(·, ·)|C+ − I(·, ·)|C− . (3.46)

The two structures J1 and J2 commute thus we can simultaneously diagonalize them, split-
ting TM ⊕ T ∗M into four subbundles:

L++ = LJ1 ∩ LJ2 L+− = LJ1 ∩ L̄J2 (3.47)

and their complex conjugates. The subbundles C± are then given by C± = L+± ⊕ L−∓ and we
can observe that C± have both rank d while L±± have rank d/2. Such a choice of decomposition
(with the condition of positivity) is equivalent to the reduction of the structure group U(d/2, d/2)
to its maximal compact subgroup U(d/2) × U(d/2) which clearly preserves the splitting. Note
that in terms of the exact sequence

0 −→ T ∗M
i−→ E

π−→ TM −→ 0 , (3.48)

the choice of C+ bundle implies it is split. In fact identifying T ∗M with its image in E under
the natural inclusion i then T ∗M ∩ C+ = {0} because T ∗M is isotropic. Thus the projection π
restricted to C+ is injective and this defines a splitting of the exact sequence (3.48).

It is possible to prove [95] that the most general form of H is:

H =
(
g −Bg−1B Bg−1

−g−1B g−1

)
(3.49)

where g is symmetric and non–degenerate while B is skew–symmetric. This shows that given
two compatible generalized complex structure we can extract from them a Riemannian metric
and a B–field. It is also useful to notice that (3.49) has already been introduced in the T–duality
context [82].

In terms of pairs of line bundles of pure spinors the compatibility condition corresponds to
ask that the metric constructed from the associated generalized complex structures is positive
definite; the commutativity condition is equivalent to [179, 84]:

〈Φ1,X · Φ2〉 = 0 = 〈Φ1,X · Φ̄2〉 ∀X ∈ TM ⊕ T ∗M. (3.50)

As a last step we consider the case in which the two line bundles of pure spinors Φ1 and Φ2 admit
global sections, in that case the structure group can be further reduced to SU(d/2) × SU(d/2)
which will be the case of interest in the following discussion (with d = 6). We will also require
the normalization condition:

〈Φ1, Φ̄1〉 = 〈Φ2, Φ̄2〉 6= 0. (3.51)
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3.5 Generalized Complex Geometry and Type II theory
After the exposition of the mathematical background we can now explain its relation with type
IIA/B string theory. In Chapter 2 we have described the kind of problem we want to address
and we have seen that, motivated by the simplest case of fluxless compactifications and the
Calabi–Yau case, there is an underlying geometric description. In this section we will complete
the “geometrization” for the more general case of flux compactifications.

Let us start by the vector space isomorphism between Cliff(d, d) spinors (which are polyforms
in our language) and bispinors. In the literature this is known as Clifford (“/”) map. We remind
here that bispinors are elements of the tensor product of two Cliff(d) spinor bundles and that
can be written as:

/C =
∑
i,j

Cijη
(i) ⊗ η(j) or in components /Cαβ =

∑
i,j

Cijη
(i)
α η

(j)∗
β (3.52)

with ηi a basis for Cliff(d) spinors. The map is12:

C ≡
∑
k

1
k!C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ←→ /C ≡
∑
k

1
k!C

(k)
i1...ik

γi1...ikαβ , (3.53)

where γi1...ik are the completely antisymmetrized products of gamma matrices which furnish a
basis for the bispinor space.

To link generalized complex geometry and type II theory we start by constructing a pair
of compatible pure spinors from the spinors which enter the supersymmetry variations (2.10).
From now on we will restrict to d = 6. According to our definition of N = 1 compactification
the susy spinors decompose as in (2.15). In particular η1

+ and η2
+ are a pair of six–dimensional

chiral spinors which are globally defined and nowhere vanishing. From them we can construct
a pair of compatible Cliff(6, 6) pure spinors as:

Φ+ = η
(1)
+ ⊗ η

(2)†
+ , Φ− = η

(1)
+ ⊗ η

(2)†
− . (3.54)

To have an expression for Φ± it is useful to first expand them in the basis for the bispinors and
then use the Clifford map to get back a differential form, by Fierz identity13 we have:

η
(1)
+ ⊗ η

(2)†
± = 1

8

6∑
k=0

(
η

(2)†
± γmk...m1η

(1)
+

)
γm1...mk . (3.55)

The pair Φ± is pure by construction. Purity can be defined for spinors in arbitrary dimension
and signature, a spinor is said to be pure if it is annihilated by d/2 linear combinations of gamma
matrices. It is known that the d/2 annihilators of a Cliff(d) pure spinor are the holomorphic
gamma matrices and that for d ≤ 6 all the Cliff(d) spinors are pure (see for example [31]). If we
now restrict to six dimensions and we consider bispinors like in (3.54) they have six annihilators,
the three of η(1) acting from the left and the three of η(2) acting from the right, and we can
conclude that they are pure.

12We refer the reader to Appendix A.4 for more details about the Clifford map and its relation with the Mukai
pairing.

13As usual the scalar product between two bispinors seen as matrices is given by the trace of their product.
The coefficients of the expansion on the bispinor basis are given by 1

8k! tr(Φ±γ
mk...m1 ) = η

(2)†
± γmk...m1η(1)+ . The

factor 1
8k! assures that the basis given by the antisymmetrized gamma matrices is orthonormal.
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To conclude that Φ± are a compatible pair we need to check that the generalized complex
structures J± they define are commuting. The two pure spinors clearly share three annihilator,
the three gamma matrices acting from the left on η(1)

+ which give the subbundle L++ ⊂ TM ⊕
T ∗M . With the same reasoning we can see that Φ+ and Φ̄− share three annihilators (this time
the three from the right) and give the subbundle L+− ⊂ TM⊕T ∗M . This way we can construct
four subbundles L±± on which we define J± to be +i or −i as before.

If the pure spinors Φ± are globally defined we have a reduction of the structure group of the
generalized tangent bundle to SU(3)× SU(3). The most general relation between η(1)

+ and η(2)
−

is14:
η

(2)
+ = cη

(1)
+ + Viγ

iη
(1)
− , (3.56)

with c and Vi a complex constant and vector respectively. In terms of the structure group of
the manifold we can distinguish the following situations [86, 4]:

• Strict SU(3) structure: V i = 0 everywhere and the pure spinor Φ± are of type (0, 3).

• Static SU(2) structure: c = 0 everywhere and the pure spinor Φ± are of type (2, 1).

• Intermediate SU(2) structure: c and |V |2 are everywhere non–vanishing and the pure
spinor Φ± are of type (0, 1).

• Type changing dynamic SU(3)× SU(3) structure: generically c and |V |2 are non zero but
there are loci on the manifold where c = 0 or |V |2 = 0 so that there is a type change in
the pure spinors.

For static and intermediate SU(2) structure there are two everywhere linear independent spinors
and thus the structure group of the manifold is reduced to SU(2). In Chapter 5 we will consider
the first of these possibilities where the structure group of the manifold is reduced to SU(3) and
the two spinors are everywhere parallel.

We are now ready to present the reformulation of the supersymmetry Killing conditions
(2.16) in terms of differential equations on a pair of pure spinors. The result has been first
achieved in [86], see also Appendix A of [87] for more details. The equations are:

dH
(
e2A−φΦ1

)
= −2µeA−φ Re Φ2 (3.57)

dH
(
eA−φ Re Φ2

)
= c−

16 F (3.58)

dH
(
e3A−φ Im Φ2

)
= −3e2A−φ Im (µ̄Φ1) + c+

16 e
4A ∗ λ(F ) (3.59)

Φ1 = Φ± and Φ2 = Φ∓ for type IIA/IIB respectively, A is the warp factor, φ is the dilaton,
H is the NS–NS three–form potential, dH = (d−H∧) is a differential operator, µ is related to
the cosmological constant as Λ = −|µ|2, F denotes the sum of the RR–fluxes on the internal
manifold:

F = F0 + F2 + F4 + F6 for type IIA
F = F1 + F3 + F5 for type IIB.

14See Appendix A.2 for our conventions on spinors and gamma matrices.
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The two constants c+ and c− are expressed in terms of the norms |a|2 = |η(1)
+ |2 and |b|2 = |η(2)

+ |2
of the d = 6 spinors and the warp factor A as follows:

c+e
A = |a|2 + |b|2 c−e

A = |a|2 − |b|2. (3.60)

This relation allows also to fix a possible invariance of (3.54) which are clearly left unaltered if
η1 → fη1 and η2 → f−1η2 for any real nowhere vanishing function f . The norm of the pure
spinors are determined by:

||Φ1(2)||2 = 1
8 |η

(1)|2|η(2)|2 = 1
32
(
c2

+e
2A − c2

−e
−2A

)
. (3.61)

It is worth noticing that for the AdS case, where µ 6= 0, taking equations (3.57) and (3.58)
into account we can conclude that c− = 0.15 For Minkowski vacua (µ = 0) the argument is
slightly less direct. One has to distinguish between compact and non compact case. General
arguments [75, 56, 144, 87] tell us that supersymmetric compact Minkowski vacua require sources
with an overall negative charge, thus one needs at least one orientifold. Equation (3.58) tell us
that c−(d − H∧)F = 0 but this cannot be satisfied in presence of sources where the Bianchi
identity for F reads (d−H∧)F = δ unless c− = 0.
It is a common fact for supersymmetric theories that imposing invariance under supersymmetry
together with Bianchi identities guarantees that (some of) the equations of motion are satisfied.
This is the case also for type IIA/B supergravity. For compactifications on Minkowski one can
prove (the general proof has been achieved by steps, see [73, 140, 130]) that equations (3.57),
(3.58) and (3.59) together with Bianchi identities16 (2.3) imply that the Einstein equation, the
equation of motion for the RR fluxes (2.9), H–field and dilaton are satisfied also in presence
of calibrated (see next Section) magnetic sources17. In the reformulation we presented the
equations of motion for the RR fluxes can be derived straightforwardly, it is sufficient to act by
dH on equation (3.59) and make use of (A.38) and (A.39).

For compactification to AdS the result is similar but, in presence of sources, a modification
of the calibration form is needed [129].

3.5.1 Spinors on E and the dilaton field: a brief note

By extending the results of Section 3.1 about the patching on E it is possible to see [88, 186]
that the E–spinor bundle is defined by the following transition functions:

t̃(αβ) = Ã(αβ) ◦ eω(αβ) (3.62)

Here Ã is as in (3.5) but we consider Gl(d)+ as a subgroup of Spin(d, d)+ instead of SO(d, d)+
and the exponentiation of ω(αβ) is in Spin(d, d)+

Thus an E–spinor is defined by a collection of maps Φ(α) : U(α) → S(E)± together with
their transition functions. We have already remarked that taking into account the action of
Gl(d)+ on spinors we have the isomorphism (3.32). We can notice that it does not transform as
a differential form under diffeomorphisms and, even if S± and even/odd forms are isomorphic

15F is assumed to be different from zero.
16We recall that in our formulation we do not consider NS5–branes, thus the Bianchi identity for H is always

dH = 0.
17Electric sources would look like points in M4 and thus break the maximal symmetry which is one of our

requirements in the definition of vacuum.
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as a vector spaces, we cannot define the exterior derivative. Fortunately there is an easy way
out. We can choose a nowhere vanishing globally defined n–vector ν = e2φν0, that is to say a
set of smooths maps ν(α) = e2φ(α)ν0 : U(α) → ΛnRn∗ ∼= R, which we can assume to be strictly
positive definite. The coefficients e2φ(α) will transform as e2φ(α) = (det a(αβ))e2φ(β) because the
vector ν is globally defined. We can thus define an isomorphism:

Fφ : Γ (S(E)±) −→ Λeven/oddT ∗M

Fφ(α) : Φ(α) 7−→ e−B(α) ∧ e−φ(α)Φ(α) (3.63)

It can be shown that it transforms in the right way: Fφ(α) ◦ t̃(αβ) = a(αβ) · ◦F
φ
(β) where a(αβ)· is the

induced action of Gl(d)+ on forms (that is to say the exponential term (without the determinant)
in (3.31)). It can be shown that there exist a parity reversing map dν : Γ(S(E)±)→ Γ(S(E)∓)
that descends to the H–twisted differential

φ (dνΦ) = dHFφ (Φ) (3.64)

Choosing ν is the same as choosing the dilaton field and thus it determines the isomorphism
between the spinor bundle S(E)± and differential forms on M . Moreover this allows to extract
a scalar from the Mukai paring (3.34), in fact in presence of a Riemannian metric there is a
canonical choice for ν. We can choose ν = e2φνg where νg is the dual n–vector of the canonical
volume form. Thus we can define the Mukai pairing as:

〈τ, σ〉 = ν
(
[Fφ(τ), λ(Fφ(σ))]d

)
(3.65)

We have thus seen how the fields of the NS–NS sector of the theory, namely g, B and φ, are
incorporated in the geometry of the generalized tangent bundle.

3.6 Sources, calibrations and generalized complex geometry
In the search of supersymmetric vacua and their non–supersymmetric deformations we need to
take into account the possibility of having sources namely D–branes or O–planes. There are
various reasons to consider them, among others D–branes are charged objects under the gauge
RR–fields [164], thus their presence it is not unexpected in flux backgrounds moreover, under
some mild assumptions (like absence of higher derivative corrections), there are no–go theorems
[56, 144, 77] which state that in case of flux compactifications on Minkowski space we must
require the presence of negatively charged objects. They are not truly supergravity objects but
despite their stringy nature they have a description in terms of an effective action [133, 59]:

Ss = −Tp
∫

Σ
dp+1ξe−φ

√
|det(ι∗[g10] + F)|+ Tp

∫
Σ
ι∗[C] ∧ eF (3.66)

Here Tp = π
k2

10
(4π2α′)3−p is the brane tension. Σ is the world–volume of the source and it will

be a certain submanifold of M10, ι∗ denote the pullback on the world–volume of bulk tensors.
g10 denotes as usual the ten dimensional metric and C are the RR–gauge potentials. With
F = ι∗[B] + 2πα′F we indicate the gauge invariant combination of the field strength F of the
world–volume gauge field and the pullback of B. The action of an O–plane is easily recovered
from (3.66) substituting Tp with TOp = −2p−5Tp and setting F to zero.
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The first term in the action is known as Dirac–Born–Infeld action and it describes the in-
teraction of the source with the NS–NS sector of the theory. It will thus contribute to the
energy–momentum tensor in the Einstein equation and to the dilaton equation. The second
term is know as Wess–Zumino (or Chern–Simons) term, it described the coupling of the source
with the RR–gauge potentials and it will contribute to the equations of motion and Bianchi
identities for the RR–fields.

Here we want to present a description based on the concept of (generalized) calibration,
detail its connection with generalized complex geometry and κ–symmetry. This point of view
will be useful in the following when we will describe deviations from the supersymmetric case.
The concept of calibration has been introduced in [101] as a tool to describe minimal surfaces
in curved spaces.

Definition. Let (M, g) be a Riemaniann manifold, a p–form ϕ is said to be a calibration if:

• in every point q ∈ M and for every oriented tangent p–plane ξ it satisfies the algebraic
condition ϕ|ξ ≤ vol|ξ;

• it satisfies the differential condition dϕ = 0.

It is then possible to prove that a p–dimensional submanifold Σ such that at every of its
points the previous inequality is saturated is volume minimizing in its homology class. Well
known examples of calibrated submanifolds are the 2l dimensional complex submanifolds whose
calibration form is ϕ = 1

l!ω
l, where ω is the Kähler form or the special Lagrangian submanifolds

whose calibration form is ϕ = Re(eiθΩ), where Ω is the holomorphic (d/2, 0)–form. Before to
discuss the extension of these concepts to the generalized case we need to specify the concept of
generalized complex submanifold [95]. The guiding principle is invariance under the symmetries
of the theory. Let us consider a submanifold Σ ⊂ M together with its tangent space TΣ, seen
as a natural subbundle of TM , and we construct the subbundle

TΣ⊕Ann(TΣ) ⊂ (TM ⊕ T ∗M)|Σ. (3.67)

We could ask it to be stable under J ; this, at a first glance, is a good definition because it
reduces to the right ordinary submanifolds if we consider J as in (3.25) namely complex and
Lagrangian respectively. However this definition does not provide a subbundle which is invariant
under B–transformations, which are supposed to be a symmetry of the theory, in fact it will
change J leaving (3.67) unchanged. It turns out that to define a suitable notion of generalized
complex submanifold we need to supply Σ with some extra information, this is enclosed in a
two–form F defined over Σ such that dF = ι∗[H] where H is a closed three–form on M . This
is part of the data which enter the effective action (3.66), it is then clear the connection with
sources. The generalized tangent bundle of a generalized submanifold (Σ,F)

T(Σ,F) = {X + ξ ∈ TΣ⊕ T ∗M |Σ | ι∗(ξ) = ιXF} (3.68)

is real and maximally isotropic, moreover if it is stable under J the submanifold is said gener-
alized complex.
We want to use calibration forms to describe sources which extremize their energy rather then
their volume, we seek thus for a suitable generalization. In compactification with fluxes it first
appeared in [161, 162, 35] and then extended in [126, 149] to take into account non–trivial F .
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To proceed we introduce the concept of generalized real current j [128], formally it is a
functional defined over the space of smooth polyforms and it can be seen as a polyform j such
that it acts on φ as:

j(φ) =
∫
M
〈φ, j〉. (3.69)

To every pair (Σ,F) we can associate a real current j(Σ,F) such that:

j(Σ,F)(φ) =
∫
M
〈φ, j(Σ,F)〉 =

∫
Σ
ι∗(φ) ∧ eF . (3.70)

Using (A.29) one can prove that dHj(Σ,F) is a current whose action is given by:

dHj(Σ,F)(φ) =
∫
M
〈φ, dHj(Σ,F)〉 = (−)d

∫
∂Σ
ι∗(φ) ∧ eF|∂Σ ; (3.71)

if we then consider a cycle Σ, i.e. ∂Σ = 0, then dHj(Σ,F) = 0 and we call (Σ,F) a generalized
cycle. The current j(Σ,F) defines a generalized cocycle in H–twisted cohomology and it can
be thought as a real pure spinor whose annihilator space is the generalized tangent subbubdle
(3.68). Thus to every single source we can associate a localized pure spinor and the generalized
current looks like e−F ∧ δ(d−p)(Σ) where δ(d−p)(Σ) is the Poincaré dual of Σ. The generalization
to the smeared case is immediate.
From now on we consider cases which fit in our definition of a vacuum (see Section 2.2) and
sources which fill the external space–time and wrap an internal cycle which, by abuse of notation,
we denote Σ. We make the further assumptions that the sources are static and that there are
no electric world–volume gauge fields. The energy density (3.66) is thus proportional to:

E(Σ,F) = e4A−φ
√
|det(ι∗[g10] + F)| dξ1 . . . dξp−3 − e4A

(∑
k

ι∗[C̃k] ∧ eF
)

(p−3)

, (3.72)

where ξi are world–volume coordinates and C̃k are the dual potentials as in (2.14). We are now
ready to give the definition of a generalized calibration form ϕ.

Definition. A polyform ϕ is said to be a generalized calibration if:

• ι∗(ϕ) ∧ eF ≤ E(Σ,F),

• dHϕ = 0,

If a source (Σ,F) saturates the bound it is said to be generalized calibrated and it is possible
to show that it is energy minimizing in its generalized homology class.

We are now left with the problem of finding a calibration form ϕ for a space–time filling
source. In the case of supersymmetric vacua with sources this is dictated by supersymmetry
itself. The sources will be energy minimizing and thus stable. We will sketch the derivation here
and refer the reader to the previously cited original works for more details. A source preserves
the background supersymmetry generated by ε1 and ε2 if it satisfies the so called κ–symmetry
condition [40, 41, 2, 3, 19]

ΓDpε2 = ε1, (3.73)
where ΓDp is the world-volume chiral operator

ΓDp = 1√
|det(ι∗[g10] + F)|

∑
2l+s=p+1

εα1...α2lβ1...βs

l!s!2l Fα1α2 . . .Fα2l−1α2lΓβ1...βs . (3.74)
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If we consider the metric ansatz (2.11) and the consequent decomposition of the spinors εa and
operator ΓDp, a careful analysis shows that (3.73) reduce to:

iγDp(p−3)η
(2)
+ = η

(1)
∓ (∓ refers to type IIA/B) (3.75)

where γDp(p−3) is the internal part of ΓDp and p − 3 is the dimension (odd/even for type IIA/B)
of the internal cycle wrapped by the source. Expanding (3.75) in the spinorial basis defined by
η(1) gives for type IIA/B:(

Re (ι∗ [−iΦ∓]) ∧ eF
)

(p−3)
= |a|

2

8

√
det(ι∗[g] + F) dξ1 . . . dξp−3, (3.76)

where Φ∓ are the image of the bispinors (3.54) under the Clifford map. Note that γDp(p−3) is
unitary and thus from (3.75) we can easily infer that the norms of η(1) and η(2) must be equal,
which is in agreement with the discussion at the end of Section 3.5.

At this point we are on the right way to get the calibration form ϕ. Confronting (3.72) it is
easy to see that

ϕ = Re
(
−i 8
|a|2

e4A−φ Φ∓
)
−

∑
k odd/even

e4AC̃k (3.77)

is a form that saturates the bound in Definition 3.6 when we take into account supersymmetric
sources. To match all the requirements of a generalized calibration form we need to show that
it actually satisfies the inequality and that it is dH closed. The Schwarz inequality

|iγDp(p−3)η
(2)
+ + η

(1)
∓ | ≤ |iγ

Dp
(p−3)η

(2)
+ |+ |η

(1)
∓ | (3.78)

gives the following general inequalities (again ∓ refers to type IIA/B theory)

Re
(
iη

(1)†
∓ γDp(p−3)η

(2)
+

)
≤ |a|2. (3.79)

They are equivalent to(
Re (ι∗ [−iΦ∓]) ∧ eF

)
(p−3)

≤ |a|
2

8

√
det(ι∗[g] + F) dξ1 . . . dξp−3, (3.80)

which allows to conclude that (3.77) fulfills the algebraic requirement. The dH closure is a direct
consequence of (3.59). We can thus conclude that ϕ in (3.77) is a generalized calibration form.
Beside to furnish a clear description of sources in a well established mathematical framework this
approach provides an immediate technical advantage which will be important in our analysis of
Chapter 5. It is usually very difficult to take the variation of DBI action with respect to the
bulk fields gmn and Bmn but considering equations (3.70) and (3.76) we can rewrite the DBI
action as [130]

SDBI = −Tp
∫

Σ
ι∗[Υ] ∧ eF +O(cal2) = −Tp

∫
M
〈Υ, j(Σ,F)〉+O(cal2), (3.81)

where
Υ = 8

|a|2
e4A−φ Im(Φ∓) . (3.82)
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The corrections are thus quadratic in the calibration condition (3.75). We can now take the
variation using the right–hand side of (3.81) and we obtain:

δSDBI
δgmn

= −Tp2 〈gp(mdxp ⊗ ιn)Υ, j(Σ,F)〉 (3.83)

δSDBI
δφ

= Tp〈Υ, j(Σ,F)〉 . (3.84)

The current j(Σ,F) can be read out of the Bianchi identities for the RR–fluxes. Note that in
(3.83) there could be corrections coming from the O(cal2) piece but this would be linear in the
calibration condition and thus they vanish in the supersymmetric case.

A number of remarks are needed. We have presented here the case of space–time filling
branes and we have assumed our ansatz (2.11) for the metric but there are a number of general-
izations one can consider. In [149] the authors show that also sources which span two space–time
(domain walls) or one space–time (string like) dimensions are compatible with κ–symmetry, they
provide the corresponding generalized calibration forms which are related to Φ± and to Re(Φ∓)
respectively. Clearly these configurations break four dimensional Poincaré symmetry and we
will not consider them in the following. In [147] it was shown that the calibration conditions
are related to F–flatness and to D–flatness conditions of the four dimensional effective theory
on the D–brane. The study of calibrations in type II context for different splittings of the ten
dimensional space–time has been done in [138]. Many results we presented here have been de-
rived under the assumption of a Minkowski external space, in order to extend them to the AdS
case one needs to modify the concept of calibration because of the presence of a boundary, e.g.
in AdS the energy does not have to be positive definite to have absence of tachions due to the
Breitenlohner–Freedman bound, thus a modification of the calibration condition is expected, we
refer to [129] for the analysis about this point.

We conclude with few words about the constraints on the various fields in presence of an
orientifold. The orientifold action is a composition of a reflection, ΩWS , on the world–sheet and
a target–space involution, σ, acting on the internal manifold (sometimes there is an extra sign
depending on the fermion number of the left–movers). A complete analysis of its action requires
a distinction according to the dimensionality of the O–plane and we refer, for example, to [130]
for it, here we recall only the action of an O6 because we will need it in Chapter 5. Under the
action of an O6–plane we have:

σ∗(φ) = φ σ∗(gmn) = gmn

σ∗(H) = −H σ∗(F ) = λ(F )
σ∗(ε1) = ε2 σ∗(ε2) = ε1

σ∗(η(1)
± ) = η

(2)
∓ σ∗(η(2)

± ) = η
(1)
∓

σ∗(Φ+) = λ(Φ+) σ∗(Φ−) = λ(Φ̄−) (3.85)

The compatibility of the orientifold involution with SU(3)×SU(3) structures has been studied
first in [87] based on previous works [93, 94, 17] and completed in [130].
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Chapter 4

Solvmanifolds

As presented in Chapter 2 one usually looks for compact solutions in which the internal space is
six dimensional and compact. We have also described the general geometric requirements that
such a space has to satisfy. A complete classification of six dimensional manifolds is not available
and thus one starts his searching from a restricted class whose properties are (well) understood.
In this chapter we will describe in detail six dimensional nilmanifolds and solvmanifolds which
have been extensively used in type II compactifications, both to four dimensional Minkowski or
Anti de Sitter [120, 87, 4] and appear to be good candidates for possible de Sitter vacua as well.
Indeed their geometry is pretty well understood (for instance all nilmanifolds are generalized
Calabi–Yau [37]) and, in particular, they can have negative curvature and therefore support
internal fluxes (as well as D–branes and O–plane sources).

The results we present here are not original, in particular the ones regarding the compactness
criterion. Nevertheless we reformulate them in a slightly different way with respect to the
mathematical literature following more the spirit of twist construction [5]. In Section 4.3.1 we will
apply the results of [5] (there authors’ focus was on nilmanifolds) to construct a supersymmetric
solution on the solvmanifold Gp,−p,±1

5.17 ×S1 from a known solution on G0,0,±1
5.17 ×S1 [29, 87, 4]. It

will be our starting point for the analysis presented in Chapter 5.

4.1 Definition and classification
Nil– and solvmanifolds are compact homogeneous spaces constructed from nilpotent or solvable
Lie groups G via a quotient G/Γ, where Γ is a lattice in G, i.e. a discrete co–compact subgroup
[6, 159, 23]. We provide here an important remark. This definition of solvmanifold is not the
most general: one could consider cases where a d–dimensional solvmanifold is a compact quotient
of a higher dimensional group with respect to a closed continuous subgroup. A famous example
of this kind is the Klein bottle. With the general definition the number of six dimensional
solvmanifolds is very high and there are no complete classifications. In the rest of the manuscript
we will consider only solvmanifolds according to the more restricting definition, where a full
classification of solvable Lie algebras up to dimension six is available. The dimension of the
resulting manifold will be thus the same as that of the group G. We refer to Appendix C for
definitions and details about Lie groups.

As usual in Lie theory many properties of the groups and their classification (up to global
issues) are inferred from Lie algebras. According to Levi’s decomposition, any real finite di-

47



mensional Lie algebra is the semidirect sum of its largest solvable ideal called the radical, and
a semi–simple subalgebra. Therefore solvable and nilpotent algebras do not enter the usual
Cartan classification. Solvable algebras g are classified with respect to the dimension of their
nilradical n. One can show [152, 23] that dim n ≥ 1

2dim g. Since we are interested in six
dimensional manifolds we will consider dim n = 3, . . . , 6. If dim n = 6, n = g and the algebra
is nilpotent (they clearly are a subset of the solvable ones). There are 34 (isomorphism) classes
of six–dimensional nilpotent algebras (see for instance [87, 172] for a list), among which 24 are
indecomposable. Among the 10 decomposable algebras, there is of course the abelian one, R6.
There are 100 indecomposable solvable algebras with dim n = 5 (99 were found in [153], and
[181] added 1, see [30] for a complete and corrected list), and 40 indecomposable solvable alge-
bras with dim n = 4 [181]. Finally, those with dim n = 3 are decomposable into sums of two
solvable algebras. There are only 2 of them, see Corollary 1 of [154]. In total, there are 164
indecomposable six–dimensional solvable algebras. For a list of six–dimensional indecomposable
unimodular solvable algebras, see [23].

Most of the solvable groups are semidirect products (see Appendix C.2 for definitions and
details). For G a solvable group and N its nilradical, we consider the following definitions:

• If G = R nµ N , G is called almost nilpotent. All three– and four–dimensional solvable
groups are of this kind [23].

• If furthermore, the nilradical is abelian (i.e. N = Rk), G is called almost abelian.

Since N has codimension 1 in G, we can consider µ as a one–parameter group R→ Aut(N).
N is a normal subgroup of G and we can thus apply some of the results presented in Appendix
C.1. Let us label the R direction with a parameter t, which we can take as a coordinate, with
the corresponding algebra element being ∂t. According to (C.4), we then have

µ(t) = expN ◦Adet∂t (n) ◦ logN , Adet∂t (n) = eadt∂t (n) = et ad∂t (n) . (4.1)

Furthermore, for the almost abelian case, we can identify N and n, so the exp and log correspond
to the identity. Then, we obtain the simpler formula

µ(t) = Adet∂t (n) = et ad∂t (n) . (4.2)

We will mainly focus on solvable algebras with dim n = 5 (to which correspond almost
nilpotent solvable groups) because, as we will discuss further, the compactness question is simpler
to deal with.

4.2 The geometry of solvmanifolds

4.2.1 Fibration structure

Given a d–dimensional Lie algebra g expressed in some vector basis {E1, . . . , Ed} as

[Eb, Ec] = fa bcEa , (4.3)

where fa bc are the structure constants, we can define the dual space of one–forms g∗ with basis
{e1, . . . , ed}. They satisfy the Maurer–Cartan equation

dea = −1
2f

a
bce

b ∧ ec = −
∑
b<c

fa bc e
b ∧ ec , (4.4)
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where d is the exterior derivative. Since g∗ ≈ TeG
∗, the set {e1, . . . , ed} provide, by left

invariance, a basis for the cotangent space TxG∗ at every point x ∈ G and consequently its
elements are globally defined one–forms on the manifold. When we consider the quotient of G
by a lattice Γ, the one–forms will have non trivial identification through the lattice action1. The
less general definition of nil– and solvmanifolds we use in this thesis allows to prove that they
are always parallelizable (see [7] for an example of non parallelizable solvmanifold) and hence
orientable (as opposed to the Klein bottle example which is a non–orientable surface), even if
they are not necessarily Lie groups [159].

The Maurer–Cartan equations reflect the topological structure of the corresponding mani-
folds. For example, nilmanifolds all consist of iterated fibrations of circles over tori, where the
iterated structure is related to the descending or ascending series of the algebra (see [37, 23, 168]).
This can be easily seen on a very simple example, the nilmanifold obtained from the three–
dimensional Heisenberg algebra

[E2, E3] = E1 ⇔ de1 = −e2 ∧ e3 . (4.5)

The Maurer–Cartan equation is solved by the one–forms

e1 = dx1 − x2dx3 , e2 = dx2, e3 = dx3 . (4.6)

From the connection form, −x2dx3 , one can read the topology of the nilmanifold in question,
which is a non–trivial fibration of the circle in direction 1 on the two–torus in directions 2, 3:

S1
{1} ↪→ H/Γ1

↓
T 2
{23}

(4.7)

As we have said solvmanifolds are classified according to the dimension of the nilradical n
(the largest nilpotent ideal) of the corresponding algebra; at the level of the group2 we have
that, if dimN < 6, then G contains an abelian subgroup of dimension k [6, 30]. This means
we have G/N = Rk. If the group admits a lattice Γ (see section 4.2.2 for a detailed discussion
about compactness), one can show that ΓN = Γ ∩ N is a lattice in N , ΓN = NΓ is a closed
subgroup of G, and so G/(NΓ) = T k is a torus. The solvmanifold is a non–trivial fibration of a
nilmanifold over the torus T k

N/ΓN = (NΓ)/Γ ↪→ G/Γ
↓

T k = G/(NΓ)
(4.8)

This construction, called the Mostow bundle [151], is one of the main results in the theory of
solvmanifolds. As we shall see, the corresponding fibration can be more complicated than in

1 In general there is a natural inclusion (Λg∗, δ) → (Λ(G/Γ), d) between the Chevalley–Eilenberg complex
on G and the de Rham complex of differential forms on G/Γ. This inclusion induces an injection map between
cohomology groups H∗(g) → H∗dR(G/Γ) which turns out to be an isomorphism for completely solvable groups.
We recall that a Lie group G with Lie algebra g is said to be completely solvable if the linear map adX : g → g
has only real roots ∀X ∈ g. By root of a linear map we mean a root of its characteristic polynomial. Note that
all nilmanifolds are completely solvable and thus the injection is an isomorphism (Nomizu’s theorem [157]), the
extension to non–nilpotent completely solvable groups being the so called Hattori theorem [159]. For more details
and for a list of Betti numbers of solvmanifolds up to dimension six see [23].

2We denote by n the ideal in the algebra and with N the corresponding subgroup.
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the nilmanifold case. In general the Mostow bundle is not principal, nevertheless, under certain
hypotheses, it is possible to find sufficient conditions for it to be a principal bundle (Theorem
3.6 in [23]).

The iterated structure of fibrations for a nilmanifold is related to the descending serie of n:

nk=0...p with n0 = n , np = {0} .

Every nk is an ideal of g, so ∀k ≥ 1 , nk = [n, nk−1] ⊂ [g, nk−1] ⊂ nk−1. Let us now define
another serie:

For 1 ≤ k ≤ p, sk = {E ∈ nk−1 with E /∈ nk} . (4.9)

Let us prove some property of this serie. Assume that ∃X ∈ sp
⋂
sq , p > q with X 6= 0.

Then X ∈ np−1 ⊂ np−2 ⊂ · · · ⊂ nq ⊂ nq−1. So X ∈ nq−1 and X ∈ nq, so X /∈ sq, which
is a contradiction. So sp

⋂
sq = {0} for p 6= q. Furthermore, we always have sp = np−1. So

sp−1⋃ sp = sp−1⋃ np−1 = np−2⋃ np−1 = np−2. Assume that sk
⋃
sk+1⋃ . . .⋃ sp−1⋃ sp = nk−1.

Then sk−1⋃ sk ⋃ . . .⋃ sp−1⋃ sp = sk−1⋃ nk−1 = nk−2⋃ nk−1 = nk−2. So by recurrence, we get
that

⋃
k=1...p s

k = n. In other words, each element of n appears in one and only one element of
the serie s{k}.

In this thesis we will label the algebras according to their Maurer–Cartan equations. For
example, the previously introduced Heisenberg algebra, is denoted with the following concise
form: (−23, 0, 0), where each entry i gives the result of dei. Let us give an example based on
the five–dimensional solvable algebra (0, 31,−21, 23, 24). We have

g = {1, 2, 3, 4, 5} , n = {2, 3, 4, 5} , n1 = {4, 5} , n2 = {5} , n3 = {0}
s1 = {2, 3} , s2 = {4} , s3 = {5} .

The descending serie of n is known to be related to the fibration structure of the nilpotent group:
each element gives a further fibration. Now we understand that the serie s{k} gives us which
directions are fibered at each step. The correspondence between basis, fibers and series for a
general iteration is given in the following diagram (of course it should be understood in terms
of group elements instead of algebra elements as given here, see [168]):

Fp−1 = sp ↪→ Mp−1 = n
↓

Fp−2 = sp−1 ↪→ Mp−2 = Bp−1

↓
...
↓

F2 = s3 ↪→ M2 = B3

↓
F1 = s2 ↪→ M1 = B2

↓
B1 = s1

We see the unique decomposition of n into the serie s{k}. We have Bi =
⋃
k=1...i s

k and F i = si+1.
The case for a solvmanifold which is not a nilmanifold is more complicated and the structure
is given in two steps. According to (4.8) the Mostow bundle is given by a nilmanifold which is
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fibered over a torus. The structure of the nil–fiber can be described as before looking at the
nilradical of the solvable algebra, what is left is the information related to the fibration over
the torus. We will discuss later in more detail the case of almost nilpotent groups which is the
simplest one.

4.2.2 Compactness

Given an algebra (or the corresponding group) it is far from obvious that a lattice, and hence
the corresponding solvmanifold, exists. A theorem by Malcev [142] states that a connected and
simply–connected nilpotent Lie group G admits a lattice if and only if there exists a basis for the
Lie algebra g such that the structure constants are rational numbers. This condition is always
satisfied for all the 34 classes of nilpotent six dimensional algebras. The theory of non–nilpotent
solvmanifolds is less developed with respect to the nilmanifolds and their construction is much
more difficult, mainly due to the lack of an easy criterion for the existence of a lattice. Several
criteria have been proposed. The first is due to Auslander [6]; despite its generality the criterion
is difficult to use in concrete situations and we will not refer to it in this manuscript. Details
about it can be found in the original paper [6] and in [23]. Another criterion, which is closer to
the one we use in this thesis, is due to Saitô [170]. It is less general than Auslander’s because
it applies to solvable groups that are algebraic subgroups of Gl(n,R) for some n. The criterion
deals with the adjoint action of the group G over the nilradical n of its algebra g. For an illus-
tration, see [87].

It is possible to prove that a necessary condition for the existence of a lattice is unimodularity
of the algebra [150]. A Lie algebra g is unimodular if ∀X ∈ g, tr(adX) = 0, with the use of (C.2)
it is easy to see that it is equivalent to:∑

a

fa ba = 0,∀b . (4.10)

We will present a criterion for the compactness which is valid for almost abelian solvman-
ifolds, for which the Mostow bundle is particularly simple. Remember that for this class the
group action µ which gives the semidirect product of R and the codimension one nilradical N
is given by:

µ(t) = Adet∂t (n) = et ad∂t (n) . (4.11)

From a geometrical point of view, µ(t) encodes the fibration of the Mostow bundle. For almost
abelian solvable groups the criterion to determine whether the associated solvmanifolds exist is
rather simple: the group admits a lattice if and only if there exists a t0 6= 0 for which µ(t0)
can be conjugated to an integer matrix. As an example, we can consider two three–dimensional
almost abelian solvable algebras

ε2 : [E2, E3] = E1 ⇔ de1 = −e2 ∧ e3

[E1, E3] = −E2 ⇔ de2 = e1 ∧ e3 (4.12)

ε1,1 : [E1, E3] = E1 ⇔ de1 = −e1 ∧ e3

[E2, E3] = −E2 ⇔ de2 = e2 ∧ e3 . (4.13)
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For the algebra ε2 : (−23, 13, 0), the nilradical is given by n = {E1, E2} and ∂t = E3. In this
basis, the restriction of the adjoint representation to the nilradical is

ad∂t(n) =
(

0 −1
1 0

)
, (4.14)

which gives a µ matrix of the form

µ(t) = et ad∂t (n) =
(

cos(t) − sin(t)
sin(t) cos(t)

)
. (4.15)

It is easy to see that, for t0 = nπ2 , with n ∈ Z∗, µ(t0) is an integer matrix and hence the
corresponding manifold is compact.

For the algebra ε1,1 : (−13, 23, 0) the analysis is less straightforward. The nilradical is
n = {E1, E2} and again ∂t = E3. Then, in the (E1, E2) basis,

ad∂t(n) =
(
−1 0
0 1

)
, µ(t) = et ad∂t (n) =

(
e−t 0
0 et

)
, (4.16)

and it is clearly not possible to find a t0 6= 0 such that µ(t0) is an integer. To see whether
the group admits a lattice, we then have to go to another basis. In other words, µ(t0) will be
conjugated to an integer matrix. Let us consider the particular change of basis given by

P =
(

1 c
1 1

c

)
, P−1 = 1

c− 1
c

(
−1
c c

1 −1

)
, (4.17)

where c = e−t1 and t1 6= 0. Then:

µ̂(t) = P−1
(
e−t 0
0 et

)
P =

( sinh(t1−t)
s1

− sinh(t)
s1

sinh(t)
s1

cosh(t) + c1
sinh(t)
s1

)
, (4.18)

with s1 = sinh(t1) and c1 = cosh(t1). For t = t1, we get

µ̂(t = t1) =
(

0 −1
1 2c1

)
. (4.19)

The conjugated matrix µ̂(t) can have integers entries for some non–zero t = t1 when 2 cosh(t1)
is integer. In [23], 2 cosh(t1) = 3.

Another change of basis follows [100] and it leads to conjugate matrices which are similar to
the ones we obtain for the six dimensional solvmanifolds considered later for de Sitter purposes.
The basis in given by:

E1 →
√
q2
q1

E1 − E2√
2

, E2 →
E1 + E2√

2
, E3 →

√
q1q2E3 , (4.20)

with q1, q2 strictly positive constants, such that the algebra reads

[E1, E3] = q2E2 [E2, E3] = q1E1 . (4.21)

52



In this new basis

ad∂t(n) =
(

0 −q1
−q2 0

)
, µ(t) =

 cosh(√q1q2t) −
√

q1
q2

sinh(√q1q2t)
−
√

q2
q1

sinh(√q1q2t) cosh(√q1q2t)

 , (4.22)

so that µ(t) can be made integer by the choice of parameters

t0 6= 0 , cosh(√q1q2t0) = n1 ,
q1
q2

= n2
n3

, n2n3 = n2
1 − 1 , n1,2,3 ∈ Z∗ . (4.23)

Thus also the algebra ε1,1 can be used to construct compact solvmanifolds. Notice that the
values q1 = q2 = 1 are not allowed by the integer condition (4.23).

t2µ( )

t
1( )µ

t

Figure 4.1: Mostow bundle for the solvmanifolds ε2 and ε1,1. The base is the circle in the t
direction, and due to the nilradical being abelian the fiber is T 2. The fibration is encoded in
µ(t) which is either a rotation or a “hyperbolic rotation” twisting the T 2 moving along the base.

4.2.3 Twist construction of (almost abelian) solvmanifolds

The knowledge that different supersymmetric backgrounds are related by a web of dualities and
their connection to geometric transitions have been one of the most intriguing and fruitful de-
velopments of string theory [82]. In [5] a transformation called twist has been developed, which
was suitable to relate certain backgrounds on nilmanifolds which were previously not connected
by any simple direct duality. As we will see in the next section such a transformation has a clear
embedding in generalized complex geometry, in this section we are interested on the fact that
it allows for a topology change.

We have shown how to obtain explicitly, at least for almost abelian solvmanifolds, the op-
erator µ(t) giving the structure of the Mostow bundle and what condition it has to satisfy in
order for the manifold to be compact.

We focus here on six–dimensional almost abelian algebras and the corresponding compact
solvmanifolds, and, following [5], we discuss how to use the adjoint action µ(t) to construct the
globally defined one–forms of the solvmanifolds from those on T 6.
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Let us first discard global issues related to the compactness of the manifolds. Then, given
an almost abelian solvable group G, we want to relate one–forms on T ∗R6 to those of T ∗G = g∗

A

 dx1

...
dx6

 =

 e1

...
e6

 . (4.24)

Here A is a local matrix that should contain the bundle structure of G. The one–forms in (4.24)
must satisfy the corresponding3 Maurer–Cartan equation. The matrix A should reproduce the
different fibrations of the solvable group (the bundle structure is manifest in the Maurer–Cartan
equations). Given the general form of solvable groups (a nilradical subgroup N and an abelian
left over subgroup G/N = Rdim G−dim N ), we will consider A to be a product of two pieces:

A =
(
AN 0
0 I6−dim N

)(
AM 0

0 I6−dim N

)
, (4.25)

where we take AM and AN to be dimN × dimN matrices, and we put the abelian direc-
tions of Rdim G−dim N in the last entries. AM will provide the non–trivial fibration of N over
Rdim G−dim N , the Mostow bundle fibration of the solvmanifold for the compact case. In turn,
AN will provide fibrations inside N , the fibrations within the nilmanifold piece for the compact
case. If the solvable group is nilpotent, then we take AM to be the identity. To explicitly
construct the matrices AM and AN we will now restrict ourselves to G = N (nilpotent) or
G = Rnµ N (almost nilpotent).

4.2.4 Mostow bundle structure: AM
From the Mostow bundle, (4.8), it is natural to identify the direction x6 with the R subalge-
bra. We thus take a coordinate t parametrizing the R subalgebra with basis ∂t = ∂6 and the
corresponding one–form dx6 = dt. We define

AM = Ade−t∂t (n) = e−t ad∂t (n) , (4.26)

and
ei = (AM )ik dxk . (4.27)

Let us prove that this action will give forms which do verify the Maurer–Cartan equations.
Consider first the simpler case of an almost abelian group, i.e. with N = R5, which has
AN = IN . Then

dei = d(e−t ad∂t )i k ∧ dxk

= −dt ∧ (ad∂te−t ad∂t )i kdxk

= −dt ∧ (ad∂t)i j(e−t ad∂t )
j
kdx

k

= −dt ∧ (ad∂t)i jej

dei = −f i tj dt ∧ ej . (4.28)
3Whether the exterior derivative is defined on these new forms will not be treated (see Footnote 1): we will

just define it as the exterior derivative of R6 acting on the left–hand side of (4.24).
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The fact that we used the adjoint action allows to easily verify the Maurer–Cartan equations.

Expression (4.26) for the matrix AM holds also for the more general case of almost nilpotent
algebras. In this case the Maurer–Cartan equations have component in direction dt and also in
the directions of the nilradical. The t dependence is always determined by AM and hence it is
not modified by the presence of a non–trivial nilradical.

4.2.5 Nilmanifold fibration structure: AN
In section 4.2.1 we have presented how the structure of successive fibrations is related to the
properties of the algebra, with special attention for the nilradical part. We show here how to
construct the corresponding twist matrix. The matrix giving a single fibration was worked out
in [5], we recover this result here. In the general case of an iteration, we consider a product of
several operators, each of them giving one fibration of the iteration:

AN = Ap−1 . . . A1 , Ai = e−
1
2fi (for p = 1, n = R5 and AN = 1) ,

with fi ∈ End(n):

For i = 1 . . . p− 1 , fi : n → n

X 7→ Y = adBi(X) if X ∈ Bi and adBi(X) ∈ F i ,
Y = 0 otherwise . (4.29)

We choose to give a basis of n in the order given by s1, s2, . . . , sp, and in each sk we can choose
some order for the elements. Then in that basis, fi, as a matrix, is an off-diagonal block with
lines corresponding to F i = si+1 and columns to Bi =

⋃
k=1...i s

k. Then Ai is the same plus
the identity. Furthermore, the block depends on parameters aj of a generic element ajEj of Bi,
and we have adajEj∈Bi = ajadEj∈Bi . So for instance for the algebra (0, 31,−21, 23, 24) we have
previously taken as an example, we get:

A1 =


1 0 0 0
0 1 0 0

1
2a

3 −1
2a

2 1 0
0 0 0 1

 A2 =


1 0 0 0
0 1 0 0
0 0 1 0

1
2a

4 0 −1
2a

2 1

 . (4.30)

The parameters aj can be understood as a coordinate along Ej , so they are such that daj = ej ,
dual of Ej .

Let us prove that the operator Ar gives the fibration of directions of Fr over a base Br, and
the correct corresponding Maurer–Cartan equation. As explained, an element of Ar is given by:

(Ar)i k = δik−
1
2
∑
j∈Br

aj(adEj )i k Θ(i ∈ Fr)Θ(k ∈ Br) = δik−
1
2
∑

j,k∈Br
ajf i jk Θ(i ∈ Fr) . (4.31)

The forms on which we act with Ar at the step r of the iteration are labelled ek, and they
become after the operation ẽi:

ẽi = (Ar)i k ek . (4.32)
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The directions we fiber with Ar are initially not fibered, so ek∈Fr = dxk. All the other directions
are not modified by Ar, so in particular ẽi∈Br = ei∈B

r . Thus the Maurer–Cartan equations of
the forms not in Fr are not modified at this step. Their equation is then only modified at the
step when they are fibered, so we don’t have to consider it here. For the directions Fr, we get:

ẽi∈F
r = ei∈F

r − 1
2
∑

j,k∈Br
ajf i jk e

k

= dxi − 1
2
∑
j,k

ajf i jk e
k ,

where we dropped the restriction j, k ∈ Br because due to the iterated structure, for i ∈ Fr,
f i jk = 0 if k or j /∈ Br. This operation then gives the fibration structure, since we can read the
connection. We can verify that we have the correct Maurer–Cartan equation:

dẽi∈Fr = −1
2f

i
jk daj ∧ ek

= −1
2f

i
jk e

j ∧ ek

dẽi = −1
2f

i
jk ẽ

j ∧ ẽk .

4.2.6 Is this construction consistent?

We now come back to the consistency of this construction and the question of compactness. To
this end we need to investigate the monodromy properties of the matrix AM and the related one–
forms under a complete turn around the base circle (we restrict to the case of almost nilpotent
groups).

Let us consider the following identification: t ∼ t+ t0 where t0 is the periodicity of the base
circle. To obtain a consistent construction (having globally defined one–forms) we must preserve
the structure of the torus we are fibering over the t direction. This amounts to asking that an
arbitrary point of the torus is sent to an equivalent one after we come back to the point t from
which we started. The monodromies of the fiber are fixed, thus the only allowed shifts are given
by their integer multiples. The way points in the torus are transformed when we go around the
base circle is encoded in a matrix MF which has to be integer valued. The identification along
the t direction is given by

T6 :
{
t→ t+ t0
xi → (MF )i jxj

i, j = 1, . . . , 5 , (4.33)

while those along the remaining directions are trivial

Ti :


xi → xi + 1
xj → xj

t→ t
i, j = 1, . . . , 5 ; i 6= j . (4.34)

Let us now consider the one–forms (4.24) we have constructed via the twist AM . It is
straightforward to see that (4.24) are invariant under the trivial identifications, while under the
non–trivial T6, we have for i, j = 1, . . . , 5

ẽi = AM (t+ t0)i jdx̃j = [AM (t)AM (t0)MF ]i jdxj . (4.35)
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The one–forms are globally defined if they are invariant under this identification:

ẽi = ei = AM (t)i jdxj . (4.36)

Therefore, in the construction, we have to satisfy the following condition:

AM (t0)MF = 15 ⇔MF = A−1
M (t0) = AM (−t0) . (4.37)

Consistency requires the matrix AM to be such that AM (−t0) is integer valued for at least one
t0 6= 0. This will impose a quantization condition on the period of the base circle, which can
take only a discrete set of values (in general it will be a numerable set, as we will see in the
examples). Once we fix t0, the integer entries of AM (−t0) will provide the set of identifications.

It is worth stressing that being able to give the correct identifications of the one–forms of
the manifold is the same as having a lattice: the identifications (4.37) express the lattice action,
and give globally defined one–forms only if AM (−t0) = µ(t0) is integer valued for some t0. As
already discussed, this is the condition to have a lattice (as stated in [23]). Let us emphasize
that the one–forms (4.24), constructed via the twist, are globally defined only if we start from
a basis of the Lie algebra where AM (t) is integer valued for some value of t. We give a list of
algebras in such a basis in Appendix D.2.

Note that obtaining a set of globally defined one–forms is an expected result, since we are
transforming a six–torus into a solvmanifold, which we know to be parallelizable. Moreover, we
also know that, with a consistent twist, we are not leaving the geometrical framework.

As an example, we write the explicit form of the twist matrix for the two almost abelian six–
dimensional algebras we will need in the following chapters4. In the basis where the one–forms
are globally defined the two algebras are

g1,−1,−1
5.7 ⊕ R : (q125, q215, q245, q135, 0, 0) , (4.38)

gp,−p,±1
5.17 ⊕ R : (q1(p25 + 35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0) . (4.39)

In both cases the parameters q1 and q2 are strictly positive. This is not the most general form
of these algebras, which in general5 contain some free parameters p, q and r. Here we wrote the
values of the parameters for which we were able to find a lattice: p = −q = −r = 1 for the first
algebra and r = ±1 for the second.

In the rest of the thesis, by abuse of notation, we will denote the algebra and the correspond-
ing solvmanifold with the same name.

4We use the same notation as in the standard classification of solvable algebras [152, 181, 23]: the number 5
indicates the dimension of the (indecomposable) algebra, while the second simply gives its position in the list of
indecomposable algebras of dimension 5.

5The general form for gp,q,r5.7 is

1
2

(
−β(1 + r)15 + q1(1− r)25,−β(1 + r)25 + q2(1− r)15,−β(q+p)35 + q2(p− q)45,−β(q+p)45 + q1(p− q)35, 0

)
,

where we set β = √q1q2. Similarly, for gp,−p,r5.17 we have(
q1p25 + 1

2 [q1(r2 + 1)35 + β(r2 − 1)45], q2p15 + 1
2 [q2(r2 + 1)45 + β(r2 − 1)35], q2(−15 + p45), q1(−25 + p35), 0

)
.
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For (4.38), a type IIA solution with O6 planes was found in [29]. The algebra being a
direct product of a trivial direction and a five–dimensional indecomposable algebra, the adjoint
matrix ad∂x5 (n) is block–diagonal, with the non–trivial blocks given by −ad∂t(n) in (4.22) and
its transpose. Then the twist matrix is

A =
(
AM

I2

)
AM =


α −β
−γ α

α −γ
−β α

 , (4.40)

where, not to clutter notation, we defined

α = cosh(√q1q2x
5) ,

β =
√
q1
q2

sinh(√q1q2x
5) ,

γ =
√
q2
q1

sinh(√q1q2x
5) . (4.41)

The forms obtained by the twist (4.40) are globally defined [100]. Indeed they are invariant
under constant shifts of each xi for i = 1, 2, 3, 4 and 6, with the other variables fixed, and the
following non–trivial identification under shifts for x5

(x1, . . . , x6) = (αx1 + βx2, γx1 + αx2, αx3 + γx4, βx3 + αx4, x5 + l, x6) , (4.42)

where in α, β, γ we took x5 = l. For the above identifications to be discrete [100] α, β, and
γ must be all integers. This is equivalent to having the matrix µ(x5 = l) integer and, hence,
it is the same as the compactness criterion. The existence of a lattice for the solution in [29]
was also discussed in [87]. In that case the parameters α, β and γ were set to α = 2, β = 3, γ = 1.

For the second algebra, gp,−p,r5.17 ⊕R, we will consider separately the cases p = 0 and p 6= 0. For
p = 0 it reduces to (q135, q245,−q215,−q125, 0, 0) with r2 = 1. This algebra and the associated
manifold have been already considered in [87], where it was called s 2.5. For p 6= 0 the algebra
can be seen as the direct sum

gp,−p,r5.17 ⊕ R ≈ s 2.5 + p (g1,−1,−1
5.7 ⊕ R) . (4.43)

The twist matrix is given by

A =
(
A1A2

I2

)
. (4.44)

The two matrices A1 and A2 commute and give the two parts of the algebra

A1 =


ch −η sh
− 1
η sh ch

ch − 1
η sh

−η sh ch

 A2 =


c −ηs

c − 1
η s

1
η s c

ηs c

 , (4.45)

where now we define η =
√

q1
q2

and

ch = cosh(p√q1q2x
5) c = cos(√q1q2x

5)
sh = sinh(p√q1q2x

5) s = sin(√q1q2x
5) .
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In this case, imposing that the forms given by the twist (4.44) are globally defined under
discrete identifications fixes the parameters in the twist to (with x5 = l)

ch c = n1 , η sh c = n2 ,
1
η

sh c = n3

sh s = n4 , η ch s = n5 ,
1
η

ch s = n6 , ni ∈ Z . (4.46)

The equations above have no solutions if the integers ni are all non–zero. The only possibil-
ities are either n1 = n2 = n3 = 0 or n4 = n5 = n6 = 0 (plus the case where all are zero, which
is of no interest here). If one also imposes that the constraints must be solved both for p = 0
and p 6= 0, the first option, n1 = n2 = n3 = 0, has to be discarded and the only solution is

n4 = n5 = n6 = 0 , s = 0 , l = k π
√
q1q2

, c = (−1)k , ñ1 = (−1)kn1 > 0 , k ∈ Z

ch = ñ1 , sh2 = n2n3 , n3η
2 = n2 , n2n3 = ñ2

1 − 1 , p = cosh−1(ñ1)
k π

. (4.47)

p is quantized by two integers, but one can show that it can be as close as we want to any real
value (the ensemble is dense in R).

4.3 Twist transformations in generalized geometry
The twist defined in the previous section has a natural embedding in generalized geometry. We
briefly review here its main properties and we refer the reader to the original paper [5] for more
details. In Chapter 3 we have introduced the generalized tangent bundle E and discussed many
of its properties, in the following we will consider background such that B = 0 thus we can
identify E = TM ⊕ T ∗M . Recall that E is endowed with two metrics

I =
(

0 1

1 0

)
H =

(
g −Bg−1g Bg−1

−g−1B g−1

)
, (4.48)

where I is the natural metric on E (which is used to derive the Clifford algebra) while the gen-
eralized metric H encodes the information about the metric and the B–field of the background.

On E one can define generalized vielbeine E , such that

I = ET
(

0 1

1 0

)
E H = ET

(
1 0
0 1

)
E . (4.49)

Explicitly, the generalized vielbeine can be put in the form

EAM =
(

eam 0
−(êB)am ê m

a

)
, (4.50)

where eam are the vielbeine on M , ê = (eT )−1, and B is the B–field. Comparing the O(d, d)
action on E

E 7→ E ′ = EO =
(

eam 0
−(êB)am ê m

a

)(
Amn Bmn

Cmn D n
m

)
, (4.51)

59



with (4.24), it is natural to embed the twist transformation as

Otw =
(
A 0
0 (AT )−1

)
. (4.52)

We focus on manifolds of dimension six and construct O(6, 6) bispinors from the Killing
spinors on M , η1,2 as in (3.54):

Φ± = η1
+ ⊗ η

2 †
± . (4.53)

Here we will consider the SU(3) structure manifolds, which admit a single globally defined spinor
η+ of unitary norm. Hence

η1
+ = |a| eiαη+ , η2

+ = |b| eiβη+ ,

where |a| and |b| are, as before, the norms of η1,2. The corresponding pure spinors Ψ± on E (see
discussion in Section 3.5.1) are

Ψ+ = e−φe−B
√

8
||Φ+||

Φ+ ,

Ψ− = e−φe−B
√

8
||Φ−||

Φ− ,

with
√

8||Φ±|| = |a|2 = |b|2. The phases of the two pure spinor are θ+ = α−β and θ− = α+β6.
The O(d, d) action on pure spinors was first introduced in Section 3.3; it is given by its

spinorial representation
O ·Ψ = e−

1
4 ΘMN [ΓM ,ΓN ] ·Ψ , (4.54)

where ΓM are the Cliff(d, d) gamma matrices (Γm = dxm and Γm = ιm) and ΘMN are the
O(d, d) parameters

ΘMN =
(
amn βmn

bmn −a n
m

)
. (4.55)

Here amn, bmn and βmn parametrise the Gl(d) transformations, B–transforms and β–transform,
respectively. Then the twist action (4.26) on the spinor reads [5]

Otw ·Ψ = 1√
detA

e−t [ad∂t (n)]mnen∧ ιm ·Ψ , (4.56)

where em is a given basis of one–forms on M , and ιm the associated contraction.

4.3.1 Type IIA supersymmetric solutions from twist transformations

Type IIA supersymmetric compactifications to four–dimensional Minkowski where the internal
manifold is the solvmanifold g0,0,±1

5.17 × S1 were found in [29, 87, 4]. As shown in Section 4.2.6,
this manifold is related by twist to the more general manifold gp,−p,±1

5.17 × S1. It is then natural
to ask what is the effect of twisting the solutions in [87, 4].

6Actually what matters is the relative phase between the two spinors η1,2; we can express everything in terms
of only one phase that is, in general, fixed by the orientifold projection. We already know that supersymmetry
implies |a| = |b|, we can impose a = b̄ and define the phase eiθ = b/a.
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We will take as starting point Model 3 of [87]. This is an SU(3) structure solution with
smeared D6–branes and O6–planes in the directions (146) and (236). For SU(3) structure, the
two pure spinors are7

Φ+ = |a|2 e
iθ

8 e−iJ Φ− = −|a|2 i8 Ω . (4.57)

The phase in Φ+ is, in general, determined by the orientifold projection. For O6 planes θ is
actually free and we set it to zero. We take

Ω =
√
t1t2t3 χ

1 ∧ χ2 ∧ χ3 J = i

2
∑
k

tkχ
k ∧ χk , (4.58)

with complex structure8

χ1 = e1 + i λ
τ3
τ4

e2 ,

χ2 = τ3 e
3 + iτ4 e

4 ,

χ3 = e5 − iτ6 e
6 . (4.60)

For simplicity, we introduce λ = t2τ2
4

t1
. ei are globally defined one–forms, obtained as in (4.24)

em = (A2)mndxn , (4.61)

with A2 given by (4.45). With this choice the metric is diagonal

g = diag
(
t1, λ t2 τ

2
3 , t2 τ

2
3 , λt1, t3, t3τ

2
6

)
. (4.62)

Positivity of the volume imposes the following constraints on the complex structure and Kähler
moduli

τ6 > 0 , t1, t2, t3 > 0 . (4.63)

Due to the presence of intersecting sources, the warp factor A is set to zero and the dilaton
to a constant. By splitting the pure spinor equations (3.57) - (3.59) into forms of fixed degree,
it is easy to verify that supersymmetry implies

d(Im Ω) = 0 , (4.64)
dJ = 0 , (4.65)
d(Re Ω) = gs ∗ F2 , (4.66)
F6 = F4 = F0 = H = 0 . (4.67)

The only non–zero RR flux reads

gsF2 =
√
λ (q1t1 − q2t2τ

2
3 )√

t3
(e3 ∧ e4 − e1 ∧ e2) , (4.68)

7See Appendix A.3 for our conventions on SU(3) structures.
8Ω and J are normalised as

4
3J

3 = iΩ ∧ Ω = −8 vol(6) = −8
√
|g| e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 (4.59)

where vol(6) is the internal volume form.
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and it is straightforward to check that its Bianchi identity is satisfied. Let us also recall [87, 130]
the transformation the forms should satisfy under the O6–plane involution σ:

σ(J) = −J , σ(Ω) = Ω , σ(H) = −H , σ(F ) = λ(F ) . (4.69)

Given the directions of the sources here, these orientifold projection conditions are clearly veri-
fied by the solution.

Given the solution above, we want to use the twist action to produce solutions, still with
O6–planes and D6–branes, on gp,−p,±1

5.17 × S1. The manifolds gp,−p,±1
5.17 × S1 and g0,0,±1

5.17 × S1 are
related by the twist matrix A1 in (4.45), whose adjoint matrix is

ad∂5(n)|p =
(
a12

a34

)
a12 = aT34 =

(
0 pq1
pq2 0

)
. (4.70)

The sixth direction being a trivial circle, we identify t = x5. Then the twist action on pure
spinors,

Φ± 7→ Φ′± = OtwΦ± , (4.71)
can be rewritten as

Otw = e−px
5(q2e1∧ι2+q1e2∧ι1) e−px

5(q1e3∧ι4+q2e4∧ι3)

= O12O34 , (4.72)

with

O12 = 1 + [cosh(p√q1q2x
5)− 1](e1 ∧ ι1 + e2 ∧ ι2 + 2e1 ∧ e2 ∧ ι1 ∧ ι2)

− 1
√
q1q2

sinh(p√q1q2x
5)(q2e

1 ∧ ι2 + q1e
2 ∧ ι1) , (4.73)

O34 = 1 + [cosh(p√q1q2x
5)− 1](e3 ∧ ι3 + e4 ∧ ι4 + 2e3 ∧ e4 ∧ ι3 ∧ ι4)

− 1
√
q1q2

sinh(p√q1q2x
5)(q1e

3 ∧ ι4 + q2e
4 ∧ ι3) . (4.74)

Note that unimodularity of the algebra implies det(A) = 1. In comparison to the procedure
described in [5], here we do not introduce a phase in the twist operator, since we do not modify
the nature of the fluxes and sources.

It is straightforward to check that the transformed pure spinors have formally the same
expression as in (4.57) - (4.60) but with the one-forms ei now given by

em = (A1A2)mndxn . (4.75)

Also the metric, which is completely specified by the pure spinors, has the same form as for the
initial solution, but in the new ei basis

g = diag
(
t1, λt2τ

2
3 , t2τ

2
3 , λt1, t3, t3τ

2
6

)
. (4.76)

In order for the twist transformation to produce new solutions, the transformed pure spinors
should again satisfy the supersymmetry equations

dH′(Φ′+) = 0 ,
dH′(ReΦ′−) = 0 ,
dH′(ImΦ′−) = gs R

′ , (4.77)
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where R′ is the new RR field R = 1
8 ∗ λ(F ) . The conditions

H ′ = 0 dJ ′ = 0 (4.78)

are automatically satisfied, so that the first two equations in (4.77) reduce to9

0 = d(Im Ω′) = −p(λ− 1) τ3τ6
√
t1t2t3 (q2 e

1 ∧ e4 ∧ e5 + q1 e
2 ∧ e3 ∧ e5) ∧ e6 . (4.80)

From this we see that, in addition to p = 0 case, supersymmetric solutions exist for p 6= 0
provided λ = 1.

The last equation in (4.77) defines the transformed RR field

gsR
′ = gsOtw ·R+ dH′(Otw) · Im Φ− . (4.81)

Since the twist operator does not change the degree of forms, it follows from (4.81) that no new
RR fluxes have been generated

F0 = F4 = F6 = 0 , (4.82)

and (we have already set λ = 1)

gsF2 = q1t1 − q2t2τ
2
3√

t3
(e3 ∧ e4 − e1 ∧ e2) + p(q1t1 + q2t2τ

2
3 )√

t3
(e2 ∧ e4 + e1 ∧ e3) . (4.83)

The Bianchi identity for F2 is satisfied

gsdF2 = c1v
1 + c2v

2 , (4.84)

with v1 = t1
√
t3 e

1 ∧ e4 ∧ e5 and v2 = t2τ
2
3
√
t3 e

2 ∧ e3 ∧ e5 being the covolumes of the sources in
(236) and (146). Let us note that the orientifold projection conditions (4.69) are again satisfied
with such sources. The sign of the charges

c1 = 2q2
t3t1

[
t1q1(1− p2)− (1 + p2)t2q2τ

2
3

]
c2 = 2q1

t3t2τ2
3

[
τ2

3 t2q2(1− p2)− (1 + p2)t1q1
]

(4.85)

depends on the parameters, but the sum of the two charges is clearly negative. This guarantees
that the transformed background with p 6= 0 and λ = 1 is indeed a solution of the full set of
ten–dimensional equations of motion. In Chapter 5 we will use the non–supersymmetric version,
with λ 6= 1, as starting point for our search for de Sitter solution.

9 Note that a slightly more general solution given by χ1 = e1 + i
(
τ3
τ4
λ e2 − τ2

τ4
e3) , χ2 = τ2 e

2 + τ3 e
3 + iτ4 e

4

and the same χ3 leads to the same d(Im Ω′) and to

d(J ′) = −p(λ− 1) τ2

√
t1t2
λ

(q2 e1 ∧ e4 ∧ e5 + q1 e
2 ∧ e3 ∧ e5) . (4.79)

A supersymmetric solution, requiring d(ImΩ) = dJ = 0, needs λ = 1. For τ2 = 0 we can have non–supersymmetric
configurations with a closed J ′.

63



In the literature, de Sitter backgrounds are given in terms of SU(3) structure torsions,

dJ = 3
2 Im(W̄1Ω) +W4 ∧ J +W3

dΩ = W1J
2 +W2 ∧ J + W̄5 ∧ Ω , (4.86)

where W1 is a complex scalar, W2 is a complex primitive (1, 1) form, W3 is a real primitive
(2, 1) + (1, 2) form, W4 is a real vector and W5 is a complex (1, 0) form. For the more general
SU(3) structure solution (p 6= 0, λ 6= 1, τ2 6= 0) mentioned in Footnote 9, we obtain

W1 = p τ2 (A+B)(1− λ)
6(τ2

2 + λτ2
3 )
√
t1t2t3

W2 = 1
6(τ2

2 + λτ2
3 )
√
t1t2t3

[
− it1

(
pτ2 (A+B)(λ+ 2) + 3λτ3(A−B)

)
χ1 ∧ χ̄1 +

+3
√
λt1t2

(
τ2(B −A) + pτ3(λA+B)

)
χ1 ∧ χ̄2 − 3

√
λt1t2

(
τ2(B −A) + pτ3(A+ λB)

)
χ2 ∧ χ̄1 +

+it2
(
pτ2(A+B)(1 + 2λ) + 3λτ3(A−B)

)
χ2 ∧ χ̄2 − ipτ2t3(A+B)(λ− 1)χ3 ∧ χ̄3

]

W3 = ipτ2(λ− 1)
8(τ2

2 + λτ2
3 )

[
(A+B)χ1 ∧ χ2 ∧ χ̄3 − (A+B)χ3 ∧ χ̄1 ∧ χ̄2 +

−(A−B)(χ1 ∧ χ3 ∧ χ̄2 − χ1 ∧ χ̄2 ∧ χ̄3 + χ2 ∧ χ3 ∧ χ̄1 − χ2 ∧ χ̄1 ∧ χ̄3)
]

W4 = 0

W5 = ip
√
λτ3(A+B)(λ− 1)

4(τ2
2 + λτ2

3 )
√
t1t2

χ3 , (4.87)

with A = q1t1, B = q2t2(τ2
3 + τ2

2
λ ).

Localizing the sources and warping

The supersymmetric solution discussed in the previous section is global, the warp factor and the
dilaton being constant. It is an interesting question to see whether localised solutions also exist
(see e.g. [61] for a discussion about the importance of warping or [20] for general considerations
about smearing vs. localization). The strategy for finding localized solutions used in [87] was
first to look for a smeared solution at large volume and then localize it by scaling the vielbeine,
longitudinal and transverse with respect to the source, with eA and e−A, respectively. This
procedure works in a number of cases, provided only parallel sources are present. Unfortunately
this is not the case for the supersymmetric solution we took as a departure point for our con-
struction - the intersecting O6/D6 solution on s 2.5.

It is however possible to find a completely localised solution on s 2.5 with O6 planes. The
solution has a simpler form in a basis where the algebra is (25,−15, r45,−r35, 0, 0), r2 = 1. In
this basis the O6–plane is along the directions (345).
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The SU(3) structure is constructed as in (4.58) with

χ1 = e−Ae1 + ieA(τ3e
3 + τ4e

4) ,
χ2 = e−Ae2 + ieAr(−τ4e

3 + τ3e
4) ,

χ3 = eAe5 + ie−Arτ6e
6 ,

τ6 > 0 , t1 = t2, t3 > 0 , (4.88)

where the non–trivial warp factor, A, depends on x1, x2, x6. The metric is diagonal

g = diag
(
t1e
−2A, t1e

−2A, t1(τ2
3 + τ2

4 )e2A, t1(τ2
3 + τ2

4 )e2A, t3e
2A, t3τ

2
6 e
−2A

)
, (4.89)

and the only non–zero flux is the RR two–form

gsF2 = −r
[
τ6
√
t3∂1(e−4A) dx2∧e6−τ6

√
t3∂2(e−4A) dx1∧e6+ 1

τ6

√
t21
t3
∂6(e−4A) dx1∧dx2

]
. (4.90)

Setting the parameters t1 = t2 in the Kähler form (4.58) allows to have a single source term in
the F2 Bianchi identity

gsdF2 ∼ e−A∆(e−4A)e1 ∧ e2 ∧ e6 , (4.91)

where ∆ is the laplacian with unwarped metric.

As A → 0 this solution becomes fluxless (s 2.5 can indeed support such solutions), hence
it cannot be found following the strategy of localizing the large volume smeared solutions.
Unfortunately this solution does not satisfy the twist to p 6= 0, (4.39), since for p 6= 0 the action
of the involution of an O6–plane with a component along direction 5 is not compatible with the
algebra.

4.3.2 Twist, non–compactness and non–geometric backgrounds

We want to come back to the question of consistency of the twist transformation. As explained
already, the transformation is obstructed unless the matrix A is conjugated to an integer–valued
matrix. In many cases, the twist can result in a topology change similar to what is achieved by
T–duality. The latter also can be obstructed, and yet these obstructions do not stop us from
performing the duality transformation. So what about the obstructed twist?

To keep things simple, let us consider again an almost abelian algebra and the gluing under
t→ t+ t0. We should have in general

T6 :
{
t→ t+ t0
xi → ÃM (−t0)i jxj

i, j = 1, . . . , 5 , (4.92)

where ÃM (−t0) is necessarily an integer–valued matrix for t0 6= 0. In the case of compact solv-
manifolds this matrix is given by (4.25). For the algebras that do not admit an action of a lattice,
ÃM (−t0) has nothing to do with the algebra. Then the one forms ei = A(t)i jdxj (dx6 = dt)
are defined only locally and have discontinuities under t→ t+ t0. These kinds of discontinuity
are actually familiar from the situations when an obstructed T–duality is performed, and are
commonly referred to as non–geometric backgrounds. One way to see this is to work on the
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generalized tangent bundle and use local O(6) × O(6) transformations (for six–dimensional in-
ternal manifolds) to bring the generalized vielbeine to the canonical lower diagonal form (4.50).
In geometric backgrounds, this is a good transformation, while in the non–geometric case it
involves non–single valued functions [88].

As an example, let us consider the manifold g−p4.2 × T 2, where the algebra g−p4.2 is:

[E1, E4] = −pE1 , [E2, E4] = E2 , [E3, E4] = E2 + E3 , p 6= 0 . (4.93)

or in the shorter notation g−p4.2 × T 2 = (p14,−24− 34,−34, 0, 0, 0).
The corresponding group does not admit a lattice. For generic p this is very easy to see since

the group is not unimodular. For p = 2, the group is unimodular but there still is no lattice.
We have n = {E1, E2, E3} and ∂t = E4 (the algebra is almost abelian). Then, in the

(E1, E2, E3) basis,

ad∂t(n) =

 p 0 0
0 −1 0
0 −1 −1

 , µ(t) = et ad∂t (n) =

 ept 0 0
0 e−t 0
0 −te−t e−t

 . (4.94)

Following [23], we are going to prove that this matrix cannot be conjugated to an integer matrix10

except for t = 0. A way to verify if the matrix µ(t) can be conjugated to an integer one is to look
at the coefficients of its characteristic polynomial P (λ). This is independent of the basis in which
it is computed, and hence, for the criterion to be satisfied it should have integer coefficients.
Here we have:

P (λ) = (λ− e2t)(λ− e−t)2 = λ3 − λ2(2e−t + e2t) + λ(e−2t + 2et)− 1 . (4.95)

The coefficients are given by sums and products of roots. We can use Lemma (2.2) in [102]. Let

P (λ) = λ3 − kλ2 + lλ− 1 ∈ Z[λ] . (4.96)

Then P (λ) has a double root λ0 ∈ R if and only if λ0 = +1 or λ0 = −1 for which P (λ) =
λ3 − 3λ2 + 3λ− 1 or P (λ) = λ3 + λ2 − λ− 1 respectively.

In our case, we find the double root e−t. This means the only way to have this polynomial
with integer coefficients is to set t = 0 and therefore there is an obstruction to the existence of
a lattice.

If we now consider the algebra together with its dual, i.e. examine the existence of a lattice
on the generalized tangent bundle, we should study the 6× 6 matrix M(t) = diag(µ(t), µ(−t)T )
instead of the matrix µ(t). One has

M(t) =



ept 0 0 0 0 0
0 e−t 0 0 0 0
0 −te−t e−t 0 0 0
0 0 0 e−pt 0 0
0 0 0 0 et tet

0 0 0 0 0 et


. (4.97)

10A naïve reason one could think of would be that it is due to the off–diagonal piece, but as we are going to
show, this piece actually does not contribute.
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For t0 = ln(3+
√

5
2 ) and p ∈ N∗, M(t = t0) is conjugated to an integer matrix, P−1M(t0)P = N ,

where N is an integer matrix (Theorem 8.3.2 in [23]):

P =



1 0 0 18+8
√

5
7+3
√

5 0 0

0 1 0 0 0 2(2+
√

5)
3+
√

5

0 0 ln( 2
3+
√

5) 0 2(2+
√

5) ln( 3+
√

5
2 )

3+
√

5 0
1 0 0 2

3+
√

5 0 0

0 0 ln( 2
3+
√

5) 0 − (1+
√

5) ln( 3+
√

5
2 )

3+
√

5 0
0 −1 0 0 0 1+

√
5

3+
√

5


, (4.98)

N =



a11 0 0 a14 0 0
0 2 0 0 0 −1
0 2 2 0 1 −1
a41 0 0 a44 0 0
0 1 1 0 1 −1
0 −1 0 0 0 1


. (4.99)

The piece

N4 =
(
a11 a14
a41 a44

)
=
(

0 −1
1 3

)p
(4.100)

comes from the entries ept and the result can be obtained11 from (4.19). We see that on the
generalized tangent bundle the basic obstruction to the existence of a lattice is easily removed.
Moreover it is not hard to see that, due to putting together the algebra and its dual, even the
requirement of unimodularity can be dropped.

On the generalized tangent bundle we can therefore obtain a lattice. For non–geometry, one
may ask for more: the integer matrix N being in O(3, 3). This question can be decomposed
into N4 ∈ O(1, 1) and the 4 × 4 integer matrix in O(2, 2). Actually, the latter is true12. But
N4 /∈ O(1, 1). Moreover, one can prove that diag(ept, e−pt) can only be conjugated to an integer
O(1, 1) matrix for t = 0. Indeed, the eigenvalues of an integer O(1, 1) matrices are ±1, and
those are not changed by conjugation.

This is reminiscent of the twist construction of the IIB background n 3.14 discussed in [5].
The internal manifold is a circle fibration over a five manifold M5, which itself is a bundle with
a two–torus fiber, but the only obvious duality seen there is the O(2, 2) associated with the two–
torus. The solution on M5×S1 is obtained from IIB solution on T6 with a self–dual three–form
flux, but not n 3.14 itself [87].

By taking p = 0 in (4.97), we obtain a different topology. InM(t) the corresponding direction
becomes trivial, and we can forget about it. Up to an O(1, 1) action, the non–trivial part of
M(t) can still be thought of as corresponding to the algebra on T (ε1,1)⊕ T ∗(ε1,1). Indeed, ε1,1
has two local isometries, and T–duality (the O(1, 1) in question) with respect to any of them

11Another possible conjugation is given in (4.22). The other part of N , the 4 × 4 integer matrix, can also be
different, see the change of basis in Proposition 7.2.9 in [23].

12Note it is not true for the one given in Proposition 7.2.9 of [23].
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will yield a non–geometric background. This can be inferred by simply noticing that the result
of the duality in (any direction) is not unimodular; more detailed discussion of T–duality on ε1,1
can be found in Appendix B.
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Chapter 5

Supersymmetry breaking sources
and de Sitter vacua

In most of the vacua which have been found so far the external space is Minkowski or Anti
de Sitter. One reason is due to the fact that, once solutions of the supersymmetry conditions
(2.10) (which are first order) and of the Bianchi identities are found, one is guaranteed that the
equations of motion are satisfied (or a subset of them, see discussion at the end of Section 3.5).
Another reasons can be find in the interest for AdS vacua as gravity duals of gauge theories in
the framework of AdS/CFT duality.

The status for vacua with a de Sitter space as external manifold is rather different, less
attention has been devoted to them; they are not compatible with unbroken supersymmetry1

and thus all the technical advantages are lost and one has to face the full set of equations
which could be rather complicated to solve. Moreover it is seems that purely supergravity
backgrounds solutions with a positive cosmological constant Λ > 0 require non trivial fine
tuning of the geometric parameters and fluxes. Nevertheless in the last decade there has been
a renewed interest in de Sitter backgrounds, mainly because, beyond being an interesting (and
challenging) problem on their own [188, 66, 8], recent observations support the claim of a positive
cosmological constant, [167, 163]. In this chapter we will investigate the problem in the context
of type IIA theory, our analysis is carried with the aim of understanding some general properties
of the issue trough the study of a concrete example and we advance no pretension of being general
or to provide any phenomenological prediction. Since the famous [117], all known examples of
(meta)stable de Sitter vacua require some additional non–perturbative ingredients such as KK
monopoles and Wilson lines [176], non–geometric fluxes [54, 55], or α′ corrections and probe
branes [27, 160]. We would like to find a de Sitter solution directly in ten dimensions focusing
only on simple conservative compactifications (i.e “geometric” set–up) and investigate a way of
breaking supersymmetry by relaxing some conditions imposed on the sources. We would like
also to make some first steps towards determining a set of first order equations for configurations
where four–dimensional supersymmetry is broken.

1For N = 1 vacua in four dimensions the potential has the following general form:

V = eK
(
|DW |2 − 3|W |2

)
+D2 (5.1)

where W is the superpotential, K is the kähler potential and D are D–terms. Supersymmetry implies D = 0,
DW = 0 and thus it is compatible only with negative (or zero) cosmological constant.

69



5.1 Setting the stage
Several no–go theorems and ways of circumventing them have been proposed [144, 112, 103,
176, 100, 52, 39, 67, 53]. In particular, in presence of O6/D6 sources, a minimal requirement to
evade the no–go theorem [103] is to have a negatively curved internal manifold and a non–zero
F0 (Romans mass parameter) [144, 100, 39]. Therefore, we will focus on type IIA configurations
with non–zero NS three–form and RR zero and two–forms. Moreover, we assume that all the
sources (there may be intersecting ones) are space–time filling and are of the same dimension
p = 6.

Tracing the four–dimensional part of Einstein equation and using the dilaton equation of
motion, one can show that the four–dimensional curvature and the “source term” can be written
as

R4 = 2
3

[
−R6 −

g2
s

2 |F2|2 + 1
2(|H|2 − g2

s |F0|2)
]
, (5.2)

gs
T0
p+ 1 = 1

3
[
−2R6 + |H|2 + 2g2

s(|F0|2 + |F2|2)
]
, (5.3)

where, for simplicity, we have taken constant dilaton, eφ = gs, and no warping2.
Further simplifications are possible when one assumes that the sources preserve the super-

symmetry of the bulk; as we have seen in Section 3.6 this condition is usually expressed in terms
of an equation involving the bulk supersymmetry parameters and the world–volume chiral op-
erator entering the κ–symmetry transformations. Up to terms quadratic in the κ–symmetry
condition, one can always rewrite the brane world–volume action as the pullback of the non–
integrable pure spinor

(
i∗[Im Φ2] ∧ eF

)
= |a|

2

8

√
|i∗[g] + F|dΣx , (5.6)

where i denotes the embedding of the world–volume into the internal manifold M , g is the
internal metric and F is the gauge invariant combination of the field strength of the world–
volume gauge field and the pullback of B. For sources preserving the supersymmetry of the
bulk, one can then replace the DBI action by the left–hand side of (5.6). The equations of
motion derived from both actions are the same, since the corrections would be linear in the
κ–symmetry condition, and then vanishing in the supersymmetric case. In particular, one can
show that the world–volume equations of motion are then automatically implied by equation
(3.59). So the condition (5.6) together with equation (3.59) give (generalized) calibrated sources,
i.e. their energy density is minimized [126, 149, 128, 130].

2In general, with non–trivial dilaton and a ten dimensional metric of the form

ds2 = e2A(y)gµν(x)dxµdxν + gmn(y)dymdyn , (5.4)

equation (5.2) becomes

e−2AR4 = 2
3 [−R6 −

e2φ

2 |F2|2 + 1
2(|H|2 − e2φ|F0|2)]

−8∇2A+ 20|∂mA|2 −
8
3∇

2φ+ 8
3 |∂mφ|

2 − 32
3 g

mn∂mA∂nφ . (5.5)

All derivatives are taken with respect to coordinates on M .
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For such supersymmetric configurations, the four– and six–dimensional traces of the source
energy–momentum tensor and the source term in the dilaton equation are all proportional to
each other, and one arrives at

R4 = 2
3(g2

s |F0|2 − |H|2 − g2
s |F4|2) , (5.7)

R6 + 1
2g

2
s |F2|2 + 3

2(g2
s |F0|2 − |H|2)− 1

2g
2
s |F4|2 = 0 , (5.8)

together with eq. (5.3). The last equation is just a constraint on internal quantities, while the
two others fix R4 and the source term T0. From these two equations we recover the minimal
requirement of having F0 6= 0 and R6 < 0. In practice, however, this is not enough to find
a de Sitter vacuum. In particular, we can see that F0 alone can give a positive value to the
cosmological constant, and adding more fluxes, F4 and F6, does not help since they give negative
contributions.

Since we are interested in non–supersymmetric backgrounds, there is a priori no reason to
impose that the sources preserve the bulk supersymmetry. The condition (5.6) could therefore
be violated. To do so, we make the following proposal: we replace (5.6) by(

i∗[ImX−] ∧ eF
)

=
√
|i∗[g] + F|dΣx , (5.9)

where X− is an odd polyform given by a general expansion in the generalized Hodge diamond3

For supersymmetric configurations, X− reduces to 8Φ−, but in general, it is no longer a pure
spinor.

An advantage of replacing DBI by the pullback of a form from the bulk is that it is actually
easier to take the variation with respect to the various fields, in particular the bulk ones. More-
over the variation of the left–hand side of (5.9) with respect to the metric will lead to interesting
consequences for de Sitter solutions: new terms are generated in the energy momentum tensor
which help to lift the cosmological constant to positive values as we will see when we will inves-
tigate the problem from a 4d perspective. This is the main motivation for using this proposal
and we do not aim in this thesis to provide a full understanding. One possible interpretation
is that such sources could be thought as standard D–branes or O–planes but their embedding
into space–time (here into M) is modified. While for supersymmetric configurations the geom-
etry of the subspace wrapped by the source is encoded in Im Φ2, here it would be encoded in
the more general expansion ImX−, of which Im Φ2 is only one possible term. Therefore, the
breaking of bulk supersymmetry seems to come from allowing more general geometries for the
wrapped subspaces, and the new terms in the energy momentum tensor could come from the
non standard embedding, in particular a dependence of the embedding functions on the metric
moduli.

Since the bulk supersymmetry is broken, we could as well modify (3.58) and (3.59) thus, in
view of (5.9), we propose here the following generalization of the first order conditions:

dH(e2A−φ ReX−) = 0 , (5.10)
dH(e4A−φ ImX−) = c0e

4A ∗ λ(F ) , (5.11)

where c0 is a positive constant fixed by the parameters of the solution. Hence the introduction
of X− allows, as for the supersymmetric case, to trade the RR equations of motion for first order

3See Appendix A.5.
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equations (clearly the equations of motion for the RR fluxes follow by differentiating (5.11) in
the same way as for the susy case, see discussion at the end of Section 3.5), while, in addition,
it helps via (5.9) to solve the internal Einstein equation. This is a first step towards developing
a more systematic procedure to find non–supersymmetric backgrounds.

The idea of investigate which non–supersymmetric configurations can still be derived from
a first order set of equations is certainly not original of this work. Recently a procedure has
been proposed in [137] that generalizes to non-supersymmetric backgrounds the first order pure
spinor equations. The idea of [137] is to decompose the supersymmetry breaking terms in the
Spin(6,6) basis constructed from the pure spinors. For instance, for Minkowski compactifications,
the modified first order equations are

dH(e2A−φΦ1) = Υ ,

dH(eA−φ Re Φ2) = Re Ξ ,

dH(e3A−φ Im Φ2)− |a|
2

8 e3A ∗ λ(F ) = Im Ξ , (5.12)

where schematically

Υ = a0Φ2 + ã0Φ2 + a1
mγ

mΦ1 + a2
mΦ1γ

m + ã1
mγ

mΦ1 + ã2
mΦ1γ

m

+amnγmΦ2γ
n + ãmnγ

nΦ2γ
m , (5.13)

Ξ = b0 Φ1 + b̃0 Φ1 + b1mγ
mΦ2 + b2mΦ2γ

m + bmnγ
mΦ1γ

n + b̃mnγ
nΦ1γ

m . (5.14)

In the particular case of an SU(3) structure, this decomposition is equivalent to the expansion
of (3.57), (3.58) and (3.59) in the SU(3) torsion classes.

Equations (5.12) rely on the assumption that the four–dimensional space–time admits Killing
spinors and that the supersymmetry breaking is due to the internal spinors only. This applies
of course to Minkowski and Anti de Sitter backgrounds, but not for de Sitter solutions or cases
when supersymmetry is broken in four–dimensions.

As discussed, replacing the source action as in (5.6) for sources preserving bulk supersym-
metry is correct up to quadratic terms in the κ–symmetry condition, and corrections to the
equations of motion derived from it will vanish linearly if the condition holds. In our case the
structure of the corrections is not explicit, and we cannot conclude that the equations of mo-
tion derived from left–hand side of (5.9) are the same as those derived from DBI. We will thus
proceed as follows: we first find solutions using the equations derived from the left–hand side
of (5.9) and then we will check whether these are solutions to the equations derived from the
standard DBI action.

For the NS–NS fields, we will check explicitly that our solution is a solution to the equations
of motion derived from DBI, making use of a dependence of the embedding functions on the
metric moduli. What remains are the world–volume fields (note that F will be trivial for
us). Let us comment on their equations. As mentioned previously, for sources preserving bulk
supersymmetry, a world–volume equation of motion, obtained by varying (5.6) augmented by the
WZ terms, turns out to follow simply from a partial pullback of the bulk pure spinor equation.
Then the minimization of the world–volume energy is automatic [126, 149]. The equations
of motion derived from the left–hand side of (5.9) should also be compared with the partial
pullback of (5.11). We shall denote the transverse differentiation by ∂α and a flux with all but
one index pulled back to the world–volume by i∗[F ]α. Neglecting the world–volume gauge fields,
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we can write the resulting equation as

∂α
(
i∗[e4A−φ Im(e−BX−)]

)
− i∗[e4Ae−B ∗ λ(F )]α = 0 . (5.15)

Comparison with the components of (5.11) gives

(c0 − 1) i∗[e−B ∗ λ(F )]α = 0 . (5.16)

In the supersymmetric case, where we replace X− by Φ−, c0 = 1 and the equation is automati-
cally satisfied. Here we will consider solutions with a vanishing partial pullback i∗[e−B ∗λ(F )]α,
so the world–volume equations derived from the left–hand side of (5.9) will be satisfied, making
the energy of our sources extremized. We will also check that our solution satisfies the equations
of motion obtained by the variation of the standard DBI+WZ action.

The strategy to find a non–supersymmetric solution to our proposed action is the following.
We start with a particular solution to the pure spinor equations on a solvmanifold defined by the
algebra (q1(p25 + 35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0), which is the supersymmetric
compactification of IIA discussed in Section 4.3.1. There we found that the pure spinor equations
can be satisfied for p 6= 0 provided a certain combination of moduli, which we call λ, takes value
1. In other words, for generic p and λ = 1 we find supersymmetric solutions (corresponding to a
vanishing four–dimensional curvature). For generic λ, the pure spinor equations are not satisfied
and supersymmetry is broken. It is certainly of great practical importance to have a convenient
limit in which our construction can be tested. The solution involves intersecting O6 planes (and
possibly D6 branes - depending on the choice of parameters). Due to the general problems in
constructing localized intersecting branes, the sources are smeared, and hence the model would
suffer from general criticism [61, 21]. It does have some convenient features though, and it serves
as a good illustration to the method we would like to propose.

The proposed source action (5.9) allows to rewrite (5.7) for the four dimensional Ricci tensor
as

R4 = 2
3

(
gs
2 (T0 − T ) + g2

s |F0|2 − |H|2
)
, (5.17)

where the source term T0 is different from the trace of the energy momentum tensor T . As can
be seen from (5.3), T0 gives a positive contribution to R4 and in our case, it turns out that T0−T
is also positive. Thus, with our proposal (5.9) we are indeed able to find a ten–dimensional de
Sitter solution. Checking that it also satisfies the equations of motion derived from the standard
source action (with a dependence of the embedding functions on the metric moduli) will make
it a solution of type IIA supergravity.

In order to derive the ten–dimensional equations of motion, we shall need source terms, and
to this end let us consider the DBI action of only one Dp–brane in string frame

Ss = −Tp
∫

dp+1x e−φ
√
|i∗[g10] + F| , T 2

p = π

κ2 (4π2α′)3−p .

Here Tp is the tension of the brane; for an O–plane, one has to replace Tp by −2p−5Tp. The open
string excitations will not be important for our solution, and we shall discard the F contribution
from now on (note as well that the B–field will pull back to zero along the sources).

To derive the equations of motion, a priori, we should take a full variation of the DBI action
with respect to the bulk metric. For supersymmetry preserving (calibrated) sources, there exists
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a convenient way of dealing with this. As discussed before one can think of an expansion of
the DBI action around the supersymmetric configuration and, to leading order, replace the DBI
action by a pullback of the calibration form. As shown in [130], this allows to prove that, for
Minkowski compactifications, the equations of motion follow from the first order pure spinor
equations, and the flux Bianchi identities. A similar treatment of space–time filling sources is
also possible for non–supersymmetric Minkowski and AdS4 configurations [137]. It is worth
stressing that, even in these cases, the sources continue being (generalized) calibrated and are
not responsible for the supersymmetry breaking. However convenient, as we shall see, these
kinds of source are not going to be helpful in our search for a dS vacuum.

At this point we shall consider an important assumption: inspired by the supersymmetric
case just described, we make a proposal for sources breaking the bulk supersymmetry. The
latter can be applied in the case of an internal space with SU(3) structure, and the triviality
of the canonical bundle is going to be important. We shall assume that, in analogy with the
supersymmetric case, the DBI action can be replaced to leading order by the pullback of a
(poly)form X in the bulk, as discussed around (5.9). The bulk does have invariant forms and
hence pure spinors can be constructed, but X cannot be pure, otherwise the source would
preserve bulk supersymmetry. The form X is expandable in the Hodge diamond defined by the
pure spinors. This amounts to consider forms that are equivalent not to simply the invariant
spinor η+ (defining the SU(3) structure) but to a full spinorial basis, η+, η−, γ ı̄η+ and γiη−,
where i, ı̄ = 1, ...3 are the internal holomorphic and antiholomorphic indices4. To be concrete
we shall consider a generic odd form

X =
√
|g4| d4x ∧X− =

√
|g4| d4x ∧ (ReX− + i ImX−) ,

X− = ReX− + i ImX− = 8
||Φ−||

(
α0Φ− + α̃0Φ− + αmnγ

mΦ−γn + α̃mnγ
mΦ−γn

+αLmγmΦ+ + α̃Lmγ
mΦ+ + αRnΦ+γ

n + α̃RnΦ+γ
n
)
, (5.18)

where Φ± are given in (4.57) and the γ’s act on even and odd forms via contractions and wedges

γmΦ± = (gmnın + dxm) Φ± , and Φ±γm = ∓(gmnın − dxm) Φ± . (5.19)

The action for a single source term becomes

Ss = −Tp
∫

Σ
dp+1x e−φ

√
|i∗[g10]|

= −Tp
∫

Σ
e−φi∗[ImX]

= −Tp
∫
M10

e−φ〈jp, ImX〉

= Tp

∫
M10

d10x
√
|g10| e−φ∗̂〈jp, ImX〉 , (5.20)

4The covariant derivative on the invariant spinor contains the same information as the intrinsic torsions. For
the explicit dictionary for SU(3) structure see [65]. In the supersymmetric backgrounds the (H–twisted) derivative
on the spinor cancels against the RR contribution [85], and the entire content of that cancellation is captured by
first order equation on the pure spinors (3.57)-(3.59). For the non–supersymmetric backgrounds, the unbalance
between the NS and RR contributions results in the presence of terms that need to be expanded in the full basis
(see e.g. [137]).
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where i : Σ ↪→M10 is the embedding of the subspace Σ wrapped by the source in the bulk and
jp = δ(Σ ↪→M10) is the dimensionless Poincaré dual of Σ. The change of sign between the last
two lines is due to the Lorentzian signature which gives a minus when taking the Hodge star.
For the sum of all sources we then take the action

Ss = Tp

∫
M10

d10x
√
|g10| e−φ∗̂〈j, ImX〉 , j =

∑
Dp

jp −
∑
Op

2p−5jp . (5.21)

As stated before, our interpretation is that sources remain standard D–branes or O–planes, but
their embedding into M , in particular the form which describes the subspace wrapped by them,
is modified from Im Φ− to the more general ImX−. The difference with the supersymmetric
case is that we are not sure anymore that the equations of motion derived from both actions
are the same. Our procedure will consist in finding solutions to the equations derived from
the proposed source action, which are much easier to deal with. We will then argue that these
solutions are also solutions of the equations derived from the standard source action. Until this
is done in Section 5.2.3, we mean by solution a solution to the equations of motion derived with
our proposed source action.

In the following, we will consider solutions where the only non–trivial fluxes are H, F0 and
F2 on the internal manifold, and the RR magnetic sources are D6’s and O6’s. The sources will
be smeared, so we take δ → 1 and the warp factor e2A = 1. The relevant part of the action5, in
string frame, is then

S = 1
2κ2

10

∫
d10x

√
|g10| [e−2φ(R10 + 4|∇φ|2− 1

2 |H|
2)− 1

2(|F0|2 + |F2|2) + 2κ2Tp e
−φ∗̂〈j, ImX〉] ,

(5.22)
where 2κ2

10 = (2π)7(α′)4.

With the flux ansatz (2.12), the flux equations of motion and Bianchi identities reduce to
the six–dimensional equations

dH = 0 ,
dF0 = 0 ,
dF2 −H ∧ F0 = 2κ2Tp j ,

H ∧ F2 = 0 ,

d(e−2φ ∗H) = −F0 ∧ ∗F2 − e−φ 4κ2Tp j ∧ ImX1 ,

d(∗F2) = 0 ,
5By relevant we mean the parts of the bulk and source actions that give non–trivial contributions to the

Einstein and dilaton equations of motion and to the derivation of the four–dimensional effective potential of
Section 5.3. We do not write down the Chern–Simons terms of the bulk action and the Wess–Zumino part of
the source action. Indeed they do not have any metric nor dilaton dependence and, since we do not allow for
non–zero values of RR gauge potentials in the background, they will not contribute to the vacuum value of the
four–dimensional potential either. However, both terms contribute the flux e.o.m. and Bianchi identities (in
particular, see [118, 57, 36] for a discussion of the Chern–Simons terms in the presence of non–trivial background
fluxes).
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where ImX1 is the one–form part of ImX− in (5.18)6.

The ten–dimensional Einstein and dilaton equations in string frame now become

RMN −
gMN

2 R10 = 2gMN (∇2φ− 2|∇φ|2)− 2∇M∇Nφ+ 1
4HMPQH

PQ
N + e2φ

2 F2 MPF
P

2 N

−gMN

2

(
−4|∇φ|2 + 1

2 |H|
2 + e2φ

2 (|F0|2 + |F2|2)
)

+ eφ
1
2TMN , (5.23)

8(∇2φ− |∇φ|2) + 2R10 − |H|2 = −eφ T0
p+ 1 . (5.24)

Here TMN and T0 are the source energy momentum tensor and its partial trace, respectively7

TMN = 2κ2Tp ∗̂〈j, gP (Mdx
P ⊗ ιN) ImX − δm(MgN)nC

n
m 〉 , (5.26)

T0 = 2κ2Tp ∗̂〈j, dxN ⊗ ιN ImX〉 = (p+ 1) 2κ2Tp∗̂〈j, ImX〉 , (5.27)
T = gMNTMN = T0 − 2κ2Tp ∗̂〈j, C m

m 〉 . (5.28)

m,n are real internal indices, C n
m =

√
|g4| d4x ∧ c n

m and

c nm = 8
||Φ−||

Im
(
αLmγ

nΦ+ + α̃Lmγ
nΦ+ + αRmΦ+γ

n + α̃RmΦ+γ
n

+αpmγpΦ−γn + αmpγ
nΦ−γp + α̃pmγ

pΦ−γn + α̃mpγ
nΦ−γp

)
. (5.29)

For supersymmetric configurations, ImX− = 8 ImΦ−, c n
m = 0, T0 reduces to the full trace of

the source energy–momentum tensor, T = T0 and one recovers the formulae in [130].

We can now split (5.23) into its four and six–dimensional components. Since for maximally
symmetric spaces, Rµν = Λgµν = (R4/4)gµν , for constant dilaton, eφ = gs, the four–dimensional
Einstein equation has only one component and reduces to

R4 = −2R6 + |H|2 + g2
s(|F0|2 + |F2|2)− 2gsT̃0 = 4Λ . (5.30)

Not to clutter equations, in the rest of the thesis we set T̃0 = T0/(p+ 1).
This equation defines the cosmological constant, Λ. Using the dilaton equation (5.24), the

source contribution can be eliminated and we obtain

R4 = 2
3[−R6 −

g2
s

2 |F2|2 + 1
2(|H|2 − g2

s |F0|2)] , (5.31)

R10 = 1
3[R6 + |H|2 − g2

s(|F0|2 + |F2|2)] . (5.32)

6We refer to [130] for a discussion of the last term in the H equation of motion.
7 In our conventions

1√
|g10|

δSs
δφ

= −e
−φ

2κ2
T0

p+ 1 ,
1√
|g10|

δSs
δgMN

= −e
−φ

4κ2 TMN . (5.25)

To derive (5.26), we considered the fact that each γm matrix in the bispinors Φ± carries one vielbein. To derive C n
m

the metric dependence of the full Hodge decomposition (5.18) must be taken into account. For supersymmetric
cases, the operator gP (Mdx

P ⊗ ιN) in TMN is the projector on the cycle wrapped by the source [77].
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We are left with the internal Einstein equation,

Rmn−
1
4HmpqH

pq
n − g

2
s

2 F2 mpF
p

2 n −
gmn

6 [R6−
1
2 |H|

2− 5
2g

2
s(|F0|2 + |F2|2)] = gs

2 Tmn , (5.33)

and the dilaton equation

gsT̃0 = 1
3[−2R6 + |H|2 + 2g2

s(|F0|2 + |F2|2)] . (5.34)

Provided the flux equations of motion and Bianchi identities are satisfied, solving the Einstein
and dilaton equations becomes equivalent to finding the correct energy–momentum tensor for
the sources. We shall now consider an explicit example and see how the non–supersymmetric
modifications to the energy momentum tensor help in looking for de Sitter solutions. In the
process we shall establish some properties of the form ImX−.

5.2 Solvable de Sitter
Our starting point is the solution described in Section 4.3.1, based on the algebra

(q1(p25 + 35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0) . (5.35)

Among the different O6 projections compatible with the algebra for p = 0, only those along
146 or 236 are still compatible with the full algebra with p 6= 0. In Section 4.3.1 we showed that,
acting with a twist transformation on the supersymmetric solution with p = 0 and the right O6
planes, one finds a family of backgrounds characterised by the SU(3) structure

Ω =
√
t1t2t3(e1 + iλ

τ3
τ4
e2) ∧ (τ3 e

3 + iτ4 e
4) ∧ (e5 − iτ6 e

6) , (5.36)

J = t1λ
τ3
τ4
e1 ∧ e2 + t2τ3τ4e

3 ∧ e4 − t3τ6e
5 ∧ e6 , (5.37)

which satisfy the supersymmetry equations (3.57) - (3.59) only when the parameter λ = t2τ2
4

t1
is

equal to one. One motivation to consider what happens when supersymmetry is violated comes
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from the form of the Ricci scalar for this class of backgrounds8

R6 = − 1
t1t2t3τ2

3

[
(A−B)2 + p2

(
(λ− 1)2

2λ (A2 +B2) + (A+B)2
)]

, (5.41)

where we introduced the following quantities

A = q1t1 B = q2t2τ
2
3 . (5.42)

Indeed, R6 gets more negative when the SUSY breaking parameters p and |λ − 1| leave their
SUSY value 0. Therefore, the value R4 as given in (5.31) is lifted by SUSY breaking and this is
a priori promising for a de Sitter vacuum.

The rest of this section is devoted to the search of de Sitter solutions on the class of back-
grounds discussed above. We will take the same SU(3) structure as in (5.36) and metric

g = diag
(
t1, λt2τ

2
3 , t2τ

2
3 , λt1, t3, t3τ

2
6

)
(5.43)

in the basis of em given in (4.75). Dilaton and warp factor are still constant: eφ = gs and
e2A = 1. For the fluxes, beside the RR two–form, we will allow for non–trivial RR zero–form
and NS three–form

H = h (t1
√
t3λ e

1 ∧ e4 ∧ e5 + t2τ
2
3
√
t3λ e

2 ∧ e3 ∧ e5) , (5.44)

gsF2 = γ

√
λ

t3

[
(A−B)(e3 ∧ e4 − e1 ∧ e2) + p

λ
(A+B)(λ2 e2 ∧ e4 + e1 ∧ e3)

]
, (5.45)

gsF0 = h

γ
. (5.46)

We have introduced here another parameter γ > 0 which is given by the ratio of NS and
RR zero–form fluxes. We consider again D6 or O6 sources along (236) and (146), and one
can check that the chosen SU(3) structure forms and fluxes satisfy the orientifold projection

8 The Ricci tensor of a group manifold is easily computed in frame indices (where the metric is the unit one)
in terms of the group structure constants

Rad = 1
2

(1
2f

bc
a fdbc − fc dbf b

ca − fb acfc db
)
. (5.38)

In our case, with the appropriate rescaling of the one–forms ea and of the structure constants, we find that the
only non–zero components of the Ricci tensor are

R11 = −R22 = 1
2t1t2t3τ2

3

[
A2 −B2 + p2

λ
(A2 − λ2B2)

]
,

R33 = −R44 = 1
2t1t2t3τ2

3

[
B2 −A2 + p2

λ
(B2 − λ2A2)

]
,

R55 = − 1
t1t2t3τ2

3

[
(A−B)2 + p2

(
1 + λ2

2λ (A2 +B2) + 2AB
)]

, (5.39)

R14 = R23 = 1
2t1t2t3τ2

3

p√
λ

(λ− 1)(A2 −B2) . (5.40)

Notice that the curvature only receives contributions from R55.
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conditions (4.69). Note that the NS flux has component along the covolumes9 of the sources,
v1 = t1

√
t3λ e

1 ∧ e4 ∧ e5 and v2 = t2τ
2
3
√
t3λ e

2 ∧ e3 ∧ e5.
The SUSY solutions are recovered setting

λ = 1 or p = 0, γ = 1 , F0 = h = 0 . (5.48)

5.2.1 The solution

We will first consider the four–dimensional Einstein equation (5.31). Using the ansatz for the
fluxes we obtain

g2
s |F2|2 = 2γ2

t1t2t3τ2
3

[
(A−B)2 + p2(A+B)2

(
(λ− 1)2

2λ + 1
)]

,

|H|2 = 2h2 . (5.49)

Notice that
g2
s |F2|2 = 2γ2

[
−R6 + p2 (λ− 1)2

λ

q1q2
t3

]
. (5.50)

This allows to write the four dimensional Ricci scalar as

R4 = 2
3

[
(1− 2γ2)(−R6 −

1
2g

2
s |F0|2) + γ2

(
−R6 −

q1q2
t3

p2 (λ− 1)2

λ

)]
. (5.51)

Since the second bracket is positive (see (5.41)), we see that de Sitter solutions are possible, for
instance, for γ2 ≤ 1

2 and small F0. Note also that R4 clearly vanishes in the supersymmetric
solution where λ = 1, γ = 1 and F0 = 0.

To solve the dilaton and internal Einstein equations it is more convenient to go to frame
indices and take a unit metric. As already discussed in Footnote 8, this choice makes the
computation of the Ricci tensor very simple. To simplify notations we introduce the constant

C = −1
6

(
R6 −

1
2 |H|

2 − 5
2g

2
s(|F0|2 + |F2|2)

)
. (5.52)

Then the dilaton equation becomes

gsT̃0 = 4C − h2

γ2 −
2γ2

t1t2t3τ2
3

[
(A−B)2 + p2(A+B)2

(
(λ− 1)2

2λ + 1
)]

. (5.53)

9In order not to clutter the notations we did not divide vi by
√

2 (and recalibrate the cycles accordingly) with
an unfortunate consequence that H comes out as even–quantized, and γ is rational up to multiplication by

√
2.

This is due to our choice of normalization of the RR kinetic terms which differ by a factor of 2 with respect to
[176]. For a k–flux α through a k–cycle Σ (with embedding i into the bulk manifold M), we have

1
(2π
√
α′)k−1

1
volM

∫
Σ
i∗α = 1

(2π
√
α′)k−1

1
volM

∫
M

〈δ(Σ ↪→M), α〉 = n , (5.47)

where n is an integer.
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For the internal Einstein equations, only some components are non–trivial

gsT14 = 1
t1t2t3τ2

3

p√
λ

(A2 −B2)(λ− 1)(1− γ2) ,

gsT23 = 1
t1t2t3τ2

3

p√
λ

(A2 −B2)(λ− 1)(1− γ2) ,

gsT11 = 1
t1t2t3τ2

3

[
A2 −B2 + p2

λ
(A2 −B2λ2)− γ2((A−B)2 + p2

λ
(A+B)2)

]
− h2 + 2C ,

gsT22 = 1
t1t2t3τ2

3

[
B2 −A2 + p2

λ
(B2λ2 −A2)− γ2((A−B)2 + p2λ(A+B)2)

]
− h2 + 2C ,

gsT33 = 1
t1t2t3τ2

3

[
B2 −A2 + p2

λ
(B2 −A2λ2)− γ2((A−B)2 + p2

λ
(A+B)2)

]
− h2 + 2C ,

gsT44 = 1
t1t2t3τ2

3

[
A2 −B2 + p2

λ
(A2λ2 −B2)− γ2

(
(A−B)2 + p2λ(A+B)2

)]
− h2 + 2C ,

gsT55 = − 2
t1t2t3τ2

3

[
(A−B)2 + p2

(
(λ2 + 1)

2λ (A2 +B2) + 2AB
)]
− 2h2 + 2C ,

gsT66 = 2C . (5.54)

The remaining components set to zero the corresponding source term Tab = 0.

To solve these equations we need the explicit expressions for the source energy–momentum
tensor, (5.26). In six–dimensional frame indices we have

Tab = 2κ2Tp∗̂〈j, δc(aec ⊗ ιb) ImX − δc(aδb)dC
d
c 〉

= 2κ2Tp∗̂
(√
|g4| d4x ∧ 〈j, δc(aec ⊗ ιb) ImX− − δc(aδb)dc

d
c〉
)

= 2κ2Tp
1√
|g6|

[
j ∧

(
δc(ae

c ⊗ ιb) ImX3 − δc(aδb)dc
d
c |3

)]
1...6

= 1√
|g6|

[
(dF2 −HF0) ∧

(
δc(ae

c ⊗ ιb) ImX3 − δc(aδb)dc
d
c |3

)]
1...6

. (5.55)

Since, in our case, the source j is a three–form,

2κ2Tp j = dF2 −HF0 , (5.56)

only the three–form parts ImX3 and cdc |3 of ImX− and cdc contribute to the equations.
In the same way, we obtain

gsT̃0 = gs 2κ2Tp ∗̂〈j, ImX〉 = 1√
|g6|

[gs (dF2 −HF0) ∧ ImX3]1...6 . (5.57)

Combining (5.18) and the explicit expression for SU(3) pure spinors, it is easy to see that
ImX− decomposes into a one–form, a three–form and a five–form piece

ImX− = ImX1 + ImX3 + ImX5 , (5.58)
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where10

ImX1 = (ai Lk + ai Rk )dxk − (ar Lk − ar Rk )gkjιjJ + (gkmgjlιmιl)[−arkj Re Ω + aikj Im Ω] ,
ImX3 = −(ar Lk + ar Rk )dxk ∧ J − (ai Lk − ai Rk ) gkjιjJ ∧ J

−[ar0 − arkj (gkj − (gkldxj + gjldxk)ιl)] Re Ω
+[ai0 − aikj(gkj − (gkldxj + gjldxk)ιl)] Im Ω ,

ImX5 = −1
2[(ai Lk + ai Rk ))dxk − (ar Lk − ar Rk ))gkjιjJ ] ∧ J2

−dxk ∧ dxj ∧ [−arkj Re Ω + aikj Im Ω] . (5.59)

The superscripts r and i indicate real and imaginary parts:

ar0 = Re(α0 − α̃0) , arjk = Re(αjk − α̃jk) ,
ai0 = Im(α0 + α̃0) , aijk = Im(αjk + α̃jk) . (5.60)

and

ar Lk = Re(αLk − α̃Lk ) , ar Rk = Re(αRk − α̃Rk ) ,
ai Lk = Im(αLk + α̃Lk ) , ai Rk = Im(αRk + α̃Rk ) . (5.61)

As already discussed, only the three–form parts of ImX− and cdc contribute to the equations.
Then, for simplicity, we choose to set to zero ImX1 and ImX5. This amounts to setting

ar Lk = ai Lk = ar Rk = ai Rk = 0 , (5.62)

and choosing arjk and aijk symmetric. Then, in frame indices, ImX3 becomes

ImX3 = [ai0 − Tr(aibc) + aibc(δbdec + δcdeb)ιd] Im Ω
−[ar0 − Tr(arbc) + arbc(δbdec + δcdeb)ιd] Re Ω . (5.63)

Similarly, we find that the three–form part of cba is given by

cba|3 = 2aiac[−δbc + (δcdeb + δbdec)ιd] Im Ω
−2arac[−δbc + (δcdeb + δbdec)ιd] Re Ω . (5.64)

The coefficients in ImX3 are free parameters which should be fixed by solving the dilaton
and internal Einstein equations.

The equations Tmn = 0 are satisfied by choosing11

ai0 = 0 a = 1, . . . , 6 ,
aibc = 0 b, c = 1, . . . , 6 ,
arbc = 0 (bc) /∈ {(bb), (14), (23)} . (5.65)

10We have not imposed (5.20) yet, and shall return to it later.
11The parameters ai12, ai13, ai24, ai34, ai56 are not fixed by any equation. For simplicity, we decide to put them

to zero.
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The Einstein and dilaton equations, (5.54) and (5.53) fix the other parameters

ar0 = −gs
T̃0 + T55 + T66 − x0

2(c1 + c2) ,

ar14 = gs
T14

2(c2 − c1) ,

ar23 = gs
T23

2(c1 − c2) ,

ar11 = gs
1

2(c2 − c1)

[
T11 −

c2T̃0
c1 + c2

+ x0c1c2
(c2

1 − c2
2)

]
,

ar22 = gs
1

2(c1 − c2)

[
T22 −

c1T̃0
c1 + c2

+ x0c1c2
(c2

2 − c2
1)

]
,

ar33 = gs
1

2(c1 − c2)

[
T33 −

c1T̃0
c1 + c2

+ x0c1c2
(c2

2 − c2
1)

]
,

ar44 = gs
1

2(c2 − c1)

[
T44 −

c2T̃0
c1 + c2

+ x0c1c2
(c2

1 − c2
2)

]
,

ar55 = −gs
T55

2(c1 + c2) ,

ar66 = gs
T66 − T̃0

2(c1 + c2) , (5.66)

where x0 = 2T̃0− (T11 + T22 + T33 + T44) and Tab are given by (5.54). The coefficients c1 and c2
appear in the source term of the Bianchi identity for F2

gs(dF2 −HF0) = c1 v
1 + c2 v

2 , (5.67)

where v1 and v2 are covolumes of sources in the directions (146) and (236) and

c1 = −h
2

γ
+ q1q2
At3

γ

[
2(A−B)− p2λ

2 + 1
λ

(A+B)
]
,

c2 = −h
2

γ
+ q1q2
Bt3

γ

[
2(B −A)− p2λ

2 + 1
λ

(A+B)
]
. (5.68)

In agreement with our quantization conventions (see Footnote 9), we impose that (c1 + c2) is an
integer. We emphasize once more, that the overall tension of the intersecting sources is always
negative (and so is c1 + c2), but depending on the parameters of the solution the individual
sources may be either O6 planes or D6 branes.

So far, we have solved the external and internal Einstein equations, the dilaton equation of
motion, and checked that the Bianchi identity for F2 is satisfied. As far as the bulk fields are
concerned, we should also solve the equations of motion and the remaining Bianchi identities
for the fluxes. These are actually automatically satisfied by our ansatz for the fluxes, provided
j ∧ ImX1 = 0. As a matter of fact, our choice of the parameters a in (5.65) already sets ImX1
to zero, so we are done with the bulk fields.
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As a last step in the construction of a de Sitter solution (we recall we mean here a solution
to the equations derived from our proposed action for the sources), we need to check the source
fields equations of motion. One should vary our source action with respect to the world–volume
coordinates and the gauge fields. The latter is trivially satisfied, since we do not consider any
gauge field here, and the pullback of the B–field giving (5.44) vanishes. For the world–volume
coordinates, from our action −Tp

∫
Σ e−φi∗[ImX] and WZ, one can derive an equation of motion

of the form
∂[i1(e−φ ImX3)i2i3]α ∼ (∗F2)[i1i2i3]α , (5.69)

where ik label world–volume directions, and α is orthogonal. One can check that pulling back
any three indices of the four–form ∗F2 to the world–volume gives zero, as discussed after (5.16).
The left–hand side also vanishes (see (5.71)), and so we conclude that the world–volume equa-
tions of motion are satisfied.

This concludes our resolution of all equations of motion derived from the action (5.22)
which contains our proposal for sources breaking bulk supersymmetry. Provided one chooses
the free parameters as discussed below (5.51), one can obtain a de Sitter solution. In the next
Section, we come back to the question of generalizing first order differential equations to the
non–supersymmetric case. This will fix for us the free parameters to values which indeed give
a de Sitter solution. In Section 5.2.3 we will argue that the solution we found here is also a
solution to the equations derived with the standard source action.

5.2.2 More on the polyform X

In this section, we will try to provide further justification for our choice of polyform X−.
In supersymmetric compactifications, the imaginary part of the non–closed pure spinor, Φ−

in type IIA, on one side, defines the calibration for the sources and, on the other, gives the bulk
RR fields in the supersymmetry equations (3.59). We will show that, for our de Sitter solution,
the polyform X− satisfies the same equations Φ− satisfies in the supersymmetric case

(d−H) ReX− = 0 ,
(d−H) ImX− = c0 gs ∗ λ(F ) , (5.70)

where the constant c0 can a priori be different from 1.

Keeping only the parameters a that are non-zero in the de Sitter solution (5.66), it is easy
to compute

d(ImX−) = [(ar0 + ar66 − ar55)[p(q1 + q2)(e1 ∧ e3 + e2 ∧ e4)
−(q1 − q2)(e1 ∧ e2 − e3 ∧ e4)] ∧ e5 ∧ e6

−(ar11 + ar44 − ar22 − ar33)[p(q1 − q2)(e1 ∧ e3 + e2 ∧ e4)
−(q1 + q2)(e1 ∧ e2 − e3 ∧ e4)] ∧ e5 ∧ e6 , (5.71)

and
H ∧ ImX− = −2h (ar0 + ar66 − ar55) e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 . (5.72)

In order to have d(ImX−) proportional to gs ∗ F2, one must impose the relation

ar11 + ar44 − ar22 − ar33 = 0 . (5.73)
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Then, one has

d(ImX−) = −c0 gs ∗ F2 ,

H ∧ ImX− = −2γ2 c0 gs ∗ F0 , (5.74)

with
c0 = ar0 + ar66 − ar55

γ
= −gs

T̃0
γ(c1 + c2) . (5.75)

To obtain the second equality, we used the explicit expression (5.66), (5.54) for the parameters
a, while c1 and c2 are defined in (5.68). Also, using (5.66), it is easy to show that the constraint
(5.73) reduces to

x0 = 2T̃0 − (T11 + T22 + T33 + T44) = 0 ⇔ (2γ2 − 1) h2 = 0 . (5.76)

Therefore, for12

γ2 = 1
2 (5.77)

we can write a differential equation for ImX−

(d−H) ImX− = c0 gs ∗ λ(F ) , (5.78)

which is the analogue of the supersymmetry equations13 for Im Φ−. In addition, fixing the value
γ2 = 1/2 gives a de Sitter solution, according to the condition (5.51).

The value of the constant c0 is also fixed by the solution. Indeed, in order forX− to reproduce
the correct Born–Infeld action (5.20) on–shell, we get from our solution that a combination of
coefficients of X− has to be one: ar0 + ar66 − ar55 = 1. Out of (5.75), we deduce that we have
to impose c0 γ = 1. This relation is automatically satisfied for supersymmetric backgrounds,
where c0 = γ = 1 and the pullback of Re Ω agrees with the DBI action on the solution. In our
non–supersymmetric solution, the condition c0 γ = 1 fixes the value of the constant, c0 =

√
2.

More generally, requiring the two actions being equal on–shell can be formulated as −gsT̃0 =
c1 + c2, where the right–hand side is given by the sum of the source charges. Indeed, as we can
see in (5.57), if ImX gives the sum of the source volume forms on–shell, and j or dHF gives the
sum of the charges times the covolumes (Bianchi identity), then T̃0 should be given by the sum
of the charges; this sum is negative, hence the minus sign. We can verify that this condition is
equivalent for our solution to the condition c0 γ = 1, given the second equality in (5.75). Finally,
let us note that such a relation would fix one of the three parameters h, γ, λ in terms of the
others and the moduli. In particular, for λ = 1, one gets

h2 = (A−B)2 + p2(A+B)2

t1t2t3τ2
3

(γ − 1)(1− 2γ)γ2

γ2 − 3γ + 1 . (5.79)

12Clearly also h = 0 (no NS flux) is a solution to this constraint. It would be interesting to explore the
possibility of having de Sitter or non–supersymmetric Minkowski solution with h = 0. Notice that, in this case,
the condition of having F0 6= 0 [100], necessary to avoid de Sitter no–go theorems [103], is not required.

13Notice that from the equation for ImX− we recover the condition T0 > 0 (5.34). Indeed, as in [87], starting
from (5.57) we have

T0

p+ 1

∫
M

vol(6) = −
∫
M

〈dHF, ImX−〉 = −
∫
M

〈F,dH ImX−〉 = c0 gs

∫
M

〈∗λ(F ), F 〉 > 0 .
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Note one clearly recovers the supersymmetric case with γ = 1. For our de Sitter solution, one
should impose instead γ = 1√

2 , and then h 6= 0.

We can now show that dH - closure can be imposed on ReX−. Indeed, the three–form part
of ReX− can be written as

ReX3 = −[br0 − Tr(brkj) + brkj(gkldxj + gjldxk)ιl] Re Ω
+[bi0 − Tr(bikj) + bikj(gkldxj + gjldxk)ιl] Im Ω
+[(bi Rk − bi Lk ) dxk + gkl(brRk − brLk ) ιlJ ] ∧ J , (5.80)

where, as for ImX3, we have defined

br0 = Im(α̃0 − α0) brkj = Im(α̃kj − αkj) ,
bi0 = Re(α̃0 + α0) bikj = Re(α̃kj + αkj) ,
br Lk = Re(α̃Lk + αLk ) br Rk = Re(αRk + α̃Rk ) ,
bi Lk = Im(α̃Lk − αLk ) bi Rk = Im(αRk − α̃Rk ) . (5.81)

Consistently with (5.65), we can choose

br0 = 0 ,
br Lk = br Lk = bi Lk = bi Rk = 0 ∀ k = 1, . . . 6
brjk = 0 ∀ j, k = 1, . . . 6
bijk = 0 for (kj) /∈ {(kk), (14), (23), (41), (32)} . (5.82)

Furthermore, choosing

bi14
t1

= − bi23
t2τ2

3
,

bi11
t1

+ bi33
t2τ2

3
− bi22
t2τ2

3λ
− bi44
t1λ

= 0 , (5.83)

we obtain

dH(ReX3) =
√
t1t2t3 τ3τ6 p(1−λ)

(
bi0 + bi66

t3τ2
6
− bi55

t3

)
(q2 e

1 ∧ e4 + q1 e
2 ∧ e3)∧ e5 ∧ e6 , (5.84)

which is zero either in the SUSY solution, or by further setting

bi0 = − bi66
t3τ2

6
+ bi55

t3
. (5.85)

While these equations are derived in the vanishing warp factor and constant dilaton limit,
their extension to the general case is natural14

dH(e2A−φ ReX−) = 0 ,
dH(e4A−φ ImX−) = c0e

4A ∗ λ(F ) . (5.86)
14Just like Φ−, X− is globally defined, and both B–field and the dilaton are needed in order to define an iso-

morphism between such forms and the positive and negative helicity spin bundles S±(E), see discussion in Section
3.5.1. The dilaton assures the correct transformation under Gl(6), making the (non–pure) spinor e−φe−B X− the
natural variable for the first order equations (5.86).
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In general the odd form X− should receive contribution from both pure spinors, but in our
solution we have chosen to “decouple” the even pure spinor completely. Note that any two
objects in the trio of the even and odd compatible pure spinors and the metric determine
the third. Here we have worked with the almost complex structure and the metric. In the
supersymmetric backgrounds it is clearly more convenient to solve the first order equations for
the pure spinors rather than the Einstein equation for the metric. Hence it is natural to ask if
and when it might be possible to find an even–form counterpart to (5.86), X+ , so that X− and
X+ (together with flux Bianchi identities) imply the solution to the Einstein equations. However
it is not yet clear to us what the correct generalization of the notion of compatibility is, and
what algebraic properties X+ should satisfy. Hoping for a symmetry with the supersymmetric
solutions (and the possibility of having a solution to some variational problem) one may construct
X+ satisfying

dH(e3A−φX+) = 0 . (5.87)

Assuming X+ has an expansion similar to that of X−, which does not receive contributions from
Ω, this amounts to finding a closed two–form on gp,−p,±1

5.17 ×S1. It is indeed not hard to construct
such a form for our solution, since the symplectic form itself is closed, provided τ2 = 0 (even if
λ 6= 1, see (4.78)). Even if we do not take τ2 = 0, finding a conformally closed X+ of this form
is always possible, since the manifold is symplectic. We will return on this issues in the next
Chapter.

5.2.3 A solution for the standard source action?

In this Chapter we made a proposal of an action for sources breaking bulk supersymmetry.
As discussed in Section 5.1, we cannot conclude (as one would do in the supersymmetric case)
whether the equations of motion derived from the action (5.22) are the same as those derived
from the standard source action DBI + WZ. Our proposal is to be considered as an assumption
with interesting consequences, we are not able to prove such an equivalence. What can be done
is to verify that the solution found in our example is indeed a solution to the equations of motion
derived from the standard source action. Let us discuss now in practice what should be checked,
starting with the world–volume equations of motion.

There are two equations to consider, coming from the variation of DBI + WZ action with
respect to the world–volume coordinates and the gauge fields (for a general form of these equa-
tions see [177]). The latter is easier, and we shall consider it first. In our solution the dilaton is
constant and the world–volume gauge fields vanish. Moreover we recall that the pullback of the
B–field computed from (5.44) also vanishes. Then the equation reads

∂i

(
e−φ

√
|i∗[g]| (i∗[g])[ij]

)
∼ εjkl (i∗[∗F4])kl , (5.88)

where i, j, k, l are indices along the brane world–volume. Since our solution has no RR four–
form flux, both sides vanish trivially. The variation of the world–volume action with respect to
the world–volume coordinates (again, in presence of constant dilaton and vanishing pullback of
B) connects the trace of the second fundamental form Sαij to the RR fluxes (α spans normal
directions). It reads

e−φ(i∗[g])ijSαij ∼ εjkl(∗F2)αjkl . (5.89)
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One can check15 that pulling back any three indices of the four–form ∗F2 to the world–volume
gives zero. For our intersecting configuration, we need to worry only about α = 5, and may
use the relation of the second fundamental form with the (components of) the spin connection
ωαi = Sαijej . We can check that while the second fundamental form does not vanish (the embed-
ding is not geodesic), it has no diagonal element. However the metric (5.43) in the basis (4.75)
is diagonal, and (i∗[g])ijSαij vanishes. Thus the world–volume equations of motion are satisfied.

Let us now consider the bulk field equations of motion. As mentioned at the end of Section
5.2.1, the ansatz chosen for the fluxes guarantees that their equations of motion and Bianchi
identities are satisfied. Let us also emphasize the following details: first we do not have any
B–field along the sources and therefore a correction term due to the source in its equation of
motion could be discarded; second the proposed generalization of the first order equations (5.86),
satisfied by our solution, guarantees that the RR equations of motion are satisfied. Therefore,
for the bulk fields, only the internal Einstein equation and the dilaton equation of motion remain
to be checked.

The dependence of the dilaton equation on the source action is simply through T̃0 (see for
instance (5.34)), which is proportional to the source action on–shell. Therefore, as long as the
standard source action and our proposed action match on–shell, the dilaton equations of motion
are the same. As discussed in the previous section, this equality amounts in general to the
condition −gsT̃0 = c1 + c2, which for our solution is equivalent to c0γ = 1. This fixes one of the
three parameters h, γ, λ in terms of the others and the moduli (see for instance (5.79)). Provided
this condition is enforced, the dilaton equation of motion derived from DBI is therefore satisfied
by our solution.

We are now left with the internal Einstein equation. An explicit check can be done for the
family given by:

λ = 1 F0 6= 0 , h 6= 0 , given by (5.79) , (5.90)

with particular interest in the non–supersymmetric value γ = 1√
2 giving our de Sitter solution.

Solving the Einstein equation amounts to match the values of the energy–momentum tensor Tab
given by (5.54). In the supersymmetric case, one can derive from the standard source action
that the non–zero components of Tab of one source are the diagonal ones along the source direc-
tions, and are all equal. We recover this situation in the family we consider by simply taking
γ = 1. For our non–supersymmetric solution, the supersymmetry breaking will manifest itself
as T55 6= 0 and T66 6= T11 + T22. Then, in order to match the results, one needs to consider
a non–trivial dependence of the embedding functions on the metric moduli. The computation
is rather involved and not particularly enlightening, thus we will not present it here. However,
let us note that this non standard embedding corresponds to our interpretation of the proposed
action, as discussed in the Introduction. We can also obtain a perturbative solution (the per-
turbation parameter is ε = λ − 1) where the deviation from the SUSY solution is more severe
due to T14 and T23 not being zero as opposed to their supersymmetric value.

Let us end this section by adding few words about the stability of our solution. Solving
all the equations of motion of course means extremizing the energy density of the bulk plus
brane system, but we cannot be sure that the solution is a minimum for arbitrary values of

15This check is analoguous to that of the corresponding equation of motion derived from our proposed source
action, as discussed at the end of Section 5.2.1.
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the parameters. The problem is currently under study. For the time being we can try to give
some heuristic justification of the fact we believe our non–supersymmetric solution is stable.
For λ = 1 and γ = 1 the manifold admits the supersymmetric solution described in Section
4.3.1. By keeping λ = 1 and setting γ = 1/

√
2 we obtain a non–supersymmetric solution with

the same internal geometry as in the SUSY case, meaning the metric is not changed and the
directions wrapped are the same. The pullback of ImX− does coincide with the pullback of the
(generalized) calibrating form Re Ω. In a sense the brane is still wrapping a minimal volume
cycle (even if this is done with a different embedding), and we can imagine the parameters,
other than γ, can be chosen in such a way to have small contributions to the potential from the
supersymmetry breaking term, and the energy density of combined bulk and brane system at
the minimum.

5.3 Four–dimensional analysis
In this section we do a partial study of the stability of our solution by analyzing the four
dimensional effective potential with respect to two moduli.

The search for de Sitter vacua, or for no–go theorems against their existence, has generally
been performed from a four–dimensional point of view [112, 103, 176, 100, 52, 39, 67, 54, 55],
analysing the behaviour of the four–dimensional effective potential with respect to its moduli
dependence. In this section, we want to make contact with this approach and show that our
solution has the good behaviour one expects to find for de Sitter vacua, as far as the volume
and the dilaton are concerned. We use in this section the ten–dimensional action (5.22) which
contains our proposal for sources breaking bulk supersymmetry. We will show that this proposal
gives rise to interesting new terms in the potential.

5.3.1 Moduli and 4d Einstein frame

Let us consider the ten–dimensional action (5.22). By Kaluza–Klein reduction on the internal
manifold, we obtain a four–dimensional effective action for the moduli. In particular, in addition
to the kinetic terms, the four–dimensional action will contain a potential for the moduli fields.
Their number and the way they enter the potential will depend on the peculiar features of the
single model.

A de Sitter solution of the four–dimensional effective action will correspond to a positive
valued minimum of the potential. Determining the minima of the potential is in general rather
difficult, since, a priori one should extremize along all the directions in the moduli space. This
complicated problem is generally solved only by numerical analysis, because of the large number
of variables. However, some information can be extracted by restricting the analysis to a subset
of the moduli fields.

For whatever choice of the manifold on which the compactification is performed, we are
always able to isolate two universal moduli: the internal volume and the four–dimensional
dilaton. Their appearance in the effective potential at tree–level is also universal. We will then
only focus on these two moduli. We define the internal volume as∫

M
d6x

√
|g6| =

L6

2 = L6
0

2 ρ3 , (5.91)
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where the factor of 1
2 is due to the orientifold and the vacuum value is ρ = 1. Defining the

ten–dimensional dilaton fluctuation as e−φ̃ = gse
−φ, the four–dimensional dilaton is given by

σ = ρ
3
2 e−φ̃ . (5.92)

Then reducing the action (5.22), we obtain the four–dimensional effective action for gravity,
4d dilaton and volume modulus in the string frame

S = 1
2κ2

∫
d4x

√
|g4|

[
L6

2 e−2φ(R4 + 4|∇φ|2)− 2κ2U

]
, (5.93)

with U(ρ, σ) the four–dimensional potential. To derive the explicit form of the potential, we
need to determine how the internal Ricci scalar, fluxes and source terms scale with the volume.
For R6 and the fluxes this is easily computed

R6 → ρ−1R6 , |H|2 → ρ−3 |H|2 , |Fk|2 → ρ−k |Fk|2 . (5.94)

The source term requires some more attention. As shown in (5.57),

2κ2Tp ∗̂〈j, ImX〉 = [(dF2 −HF0) ∧ ImX3]1...6√
|g6|

. (5.95)

The terms in ImX3 in (5.59) appearing with a0, ajk and a
(L,R)
k scale differently with the volume.

Let us denote them by X0, XΩ and XJ , respectively

ImX3 = X0 +XΩ +XJ . (5.96)

Their ρ dependence is determined by the scaling of the forms J and Ω

J → ρJ , Ω→ ρ
3
2 Ω , (5.97)

and by the metric factors in the gamma matrices of (5.59)

X0 → ρ
3
2X0 , XΩ → ρ

1
2XΩ , XJ → ρXJ . (5.98)

Then, the source term scales as

[(dF2 −HF0) ∧ ImX3]1...6√
|g6|

→ ρ−
3
2
(
b0 + b1 ρ

−1 + b2 ρ
− 1

2
)
, (5.99)

where

b0 = [(dF2 −HF0) ∧X0]1...6√
|g6|

,

b1 = [(dF2 −HF0) ∧XΩ]1...6√
|g6|

,

b2 = [(dF2 −HF0) ∧XJ ]1...6√
|g6|

, (5.100)
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are vacuum values. Then the four–dimensional potential for ρ and σ becomes

U = 1
2κ2

∫
M

d6x
√
|g6|[e−2φ(−R6 + 1

2 |H|
2) + 1

2(|F0|2 + |F2|2)− 2κ2Tp e
−φ ∗̂〈j, ImX〉]

= L6
0

4g2
sκ

2 σ2 [(−R6
ρ

+ |H|
2

2ρ3 )− gs
σ

(b0 + b1
ρ

+ b2√
ρ

) + g2
s ρ

3

2σ2 (|F0|2 + |F2|2

ρ2 )] . (5.101)

Note that the terms in b1 and b2 are purely non–supersymmetric contributions of the source.
They are due to the new metric dependence of the source action with respect to the supersym-
metric case.

In order to correctly identify the cosmological constant, but also to perform the study of the
moduli dependence, we need to go to the four–dimensional Einstein frame

gµν E = σ2 gµν . (5.102)

The four–dimensional Einstein–Hilbert term transforms as16

1
2κ2

∫
d4x

√
|g4|

L6

2 e−2φR4 = L6
0

2g2
s 2κ2

∫
d4x

√
|g4| σ2R4

= M2
4

∫
d4x

√
|g4E |R4E ,

where we denote Einstein frame quantities by E, and we introduced M2
4 = L6

0
2g2
s 2κ2 , the squared

four–dimensional Planck mass. Similarly, the four–dimensional potential in the Einstein frame
becomes

UE = σ−4 U = 4κ4M4
4
e4φ

(L6

2 )2
U , (5.104)

and we can write the Einstein frame action as

S = M2
4

∫
d4x

√
|g4E |

(
R4E + kin− 1

M2
4
UE

)
. (5.105)

The cosmological constant, (5.30), is then related to the vacuum value of the potential

Λ = 1
2M2

4
UE |0 . (5.106)

Extremization and stability

In order to find a solution, one should determine the minima of the potential. For our choice of
moduli, ρ and σ, one has

∂UE
∂σ

= −M
2
4

σ5 [2g2
s (|F0|2ρ3 + |F2|2ρ) + 2σ2 (−R6

ρ
+ |H|

2

2ρ3 )− 3σ gs(b0 + b1
ρ

+ b2√
ρ

)] ,

(5.107)
∂UE
∂ρ

= M2
4

σ2 [(R6
ρ2 −

3|H|2

2ρ4 ) + gs
σ

( b1
ρ2 + b2

2
√
ρ3 ) + g2

s

2σ2 (3|F0|2ρ2 + |F2|2)] . (5.108)

16Under a conformal rescaling of the four dimensional metric we have

gµν → e2λgµν ⇒
√
|g4| → e4λ

√
|g4| , R4 → e−2λR4 . (5.103)

90



In our conventions, the extremization conditions are

∂UE
∂σ
|σ=ρ=1 = 0 ,

∂UE
∂ρ
|σ=ρ=1 = 0 , (5.109)

where σ = ρ = 1 are the values of the moduli on the vacuum. Actually, the conditions (5.109)
are equivalent to the ten–dimensional dilaton e.o.m. and the trace of internal Einstein equation.
Combining the dilaton equation (5.34) and the trace of the internal Einstein equation, (5.33),
we can write the six–dimensional Ricci scalar as

R6 = 3
2 |H|

2 − g2
s

2 (3|F0|2 + |F2|2)− gs
2 (T0 − T ) , (5.110)

where

T0 − T = 2κ2Tp∗̂〈j, Cmm 〉 = [(dF2 −HF0) ∧ (XJ + 2XΩ)]1...6√
|g6|

= 2b1 + b2 . (5.111)

In the last line we used (5.100). With this expression for T0 − T , it is immediate to verify that
(5.110) is indeed equal to the ∂ρUE in (5.109). Similarly, one can see that using (5.108), (5.99),
(5.57) and (5.109), the dilaton equation (5.34) reduces to ∂σUE in (5.109).

From the equivalence of the ten–dimensional equations and (5.109) we see that the ten–
dimensional solution discussed in the previous sections does indeed satisfy the extremization
conditions (5.109). The next step is to see whether such extremum correspond to a minimum
of the potential and whether, furthermore, it is stable.

Let us consider (5.108) and discuss the ρ dependence of the potential. It is convenient to
define the function

P (ρ2) = ∂UE
∂ρ

σ2ρ4

M2
4
. (5.112)

It is easy to check that P (ρ2) is negative for ρ = 0 and positive for ρ → ∞. Hence there must
be a real positive root and this is a minimum of UE . A priori, P (ρ2) could have other zeros.
Let us focus only on the situation in which b2 = 0, which, in particular, is the case for our
ten–dimensional solution. In that case, P (ρ2) has two other roots which are either complex
conjugate17, or real and negative, according to the value of the parameters. Indeed, studying
∂ρ2P , one can show that P (ρ2) can be 0 only once. Therefore, at least for b2 = 0, there is only
one extremum of UE in ρ and it is a minimum. So satisfying the extremization in ρ is enough
for the stability.

Let us now analyze the σ dependence of (5.104). It is easy to see that the potential admits
an extremum for

σ± = 1
4a

(
3b±

√
8b2

(9
8 −

4ac
b2

)) 4ac
b2

<
9
8 , (5.113)

17Since the polynomial is real, they come in conjugate pairs.

91



where for simplicity we introduced

a = −R6ρ
−1 + 1

2 |H|
2ρ−3 ,

b = gs(b0 + b1ρ
−1 + b2ρ

− 1
2 ) ,

c = g2
s

2 ρ
3(|F0|2 + |F2|2ρ−2) . (5.114)

In our case, asking for σ = 1 and using the extremization in σ in (5.109), which can be written
as 2a− 3b+ 4c = 0, we find that the minimum in σ− corresponds to

a− 2c < 0 . (5.115)

This condition is satisfied by our solution choosing γ2 = 1
2 , as we can see from (5.50). Therefore,

our solution is at the minimum in σ, and it is then stable both in the volume and the dilaton
moduli.

It is easy to see that the four–dimensional potential takes a positive value at the minimum,
and, hence, the minimum corresponds to a de Sitter vacuum. In [176], it has been shown that
the potential has a strictly positive minimum in σ for

1 < 4ac
b2

<
9
8 , (5.116)

where the lower bound comes from asking the potential to be never vanishing (strictly positive).
This condition is satisfied by our solution.

In addition, we can actually compute the value of the potential at σ = ρ = 1. Starting from
(5.104) and using the two equations of (5.109), we obtain

UE
M2

4
= 1

3

(
gs
2 (T0 − T ) + g2

s |F0|2 − |H|2
)
. (5.117)

Using (5.31) and (5.110), one can show that the four–dimensional Ricci scalar is proportional
to (5.117), R4 = 2UE/M2

4 . For γ2 = 1/2, R4 is positive (see the discussion below (5.51)), and
hence so is the value of the potential at the minimum.

Note also that, for γ2 = 1/2, the last two terms in (5.117) cancel each other and the entire
contribution to the cosmological constant comes from sources, (T0 − T ). For supersymmetry
breaking branes, this contribution is never vanishing but, for generic situations, we do not know
what its sign is. It would be nice to have a model independent argument to determine whether,
for this mechanism of supersymmetry breaking, the resulting four–dimensional space is always
de Sitter.

As a further check of the existence of a de Sitter minimum for our solution, we can plot the
four–dimensional potential UE as a function of σ and ρ for some values of the parameters

t1 = t2 = t3 = τ3 = τ6 = 1 ,

q1 = 1 , q2 = 3 , p = cosh−1(2)
π

,

λ = 5 , γ = 1√
2
, h = 4 . (5.118)
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Figure 5.1: Dependence of the potential on dilaton and volume moduli.
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Chapter 6

Formal developments

The analysis of non–supersymmetric vacua is complicated by the fact that we are lacking a
systematic and comprehensive characterization and we are forced to to face the full problem
of second order differential equations of motion. It would be of extreme usefulness to find a
modification of the first order conditions which can account for at least some class of non–
supersymmetric vacua. The generalized complex geometry formalism, as we have seen, is a
good organizing principle to describe N = 1 vacua and it is a natural starting point for a
description of non–supersymmetric ones. The authors of [137] have parameterize a quite generic
supersymmetry breaking

δψ(i)
µ = 1

2e
Aγµζ ⊗ Vi + c.c. ,

δψ(i)
m = ζ ⊗ U (i)

m + c.c. ,

ΓMδψ(i)
M − δλ

(i) = ζ ⊗ Si + c.c. ,

where i = 1, 2 and the internal spinors parametrizing the breaking are

Vi = riη
∗
i + simγ

mηi ,

Si = tiη
∗
i + uimγ

mηi ,

U im = pimηi + qimnγ
nη∗i .

The previous equations can be reformulated as a modification of the pure spinor equations
(3.57)-(3.59) which, as we have introduced in the previous Chapter, now have additional pieces1

e−2A+φ(d−H∧)(e2A−φΦ−) = dA ∧ Φ̄− + i

8e
A+φ ∗ λ(F ) + Υ , (6.1)

e−2A+φ(d−H∧)(e2A−φΦ+) = Ξ , (6.2)
1We consider here the case of Minkowski external space; the AdS case is easily obtained by adding the terms

proportional to the cosmological constant. As elsewhere in the thesis we present the type IIA analysis but it can
be straightforwardly extended to the type IIB case.

95



where

Υ = 1
2
[
(r̄1 + t̄2)Φ+ − (t1 + r2)Φ̄+ − s̄1

mγ
mΦ̄− − s2

mΦ̄−γm + (u1
m + p̄2

m)γmΦ−

+ (ū2
m + p1

m)Φ−γm − q1
mnγ

nΦ̄+γ
m + q̄2

mnγ
mΦ+γ

n
]
,

Ξ = 1
2
[
t2Φ− + t1Φ̄− + (u1

m + p2
m)γmΦ+ − (u2

m + p1
m)Φ+γ

m − q1
mnγ

nΦ̄−γm − q2
mnγ

mΦ−γn
]
.

However, without any constraint this rewriting provides little information. In [137] an anal-
ysis of integrability conditions is carried out, in analogy with the supersymmetric case, they
reformulate a certain linear combination of the second order bosonic equations of motion as
spinorial equations involving a product of two first order differential operators. They prove
that, under certain restrictions, provided the Bianchi identities are imposed and a set of first
order equations involving Vi, U im, Si and the background fields is satisfied then the second order
equations of motion for the bosonic fields are satisfied. Solutions of the spinorial equations in
the variables Vi, U im, Si select the breaking that lead to solutions of the equations of motion.
However, there is no clear geometric interpretation or nice rewriting in terms of bispinors and
their analysis is rather involved even in simple sub–cases. Moreover, their analysis is valid for
Υ = 0 which is equivalent to the assumptions that the background admits certain generalized
calibrations which can be used to describe stable sources. Despite the careful analysis of [137] a
full understanding of N = 0 vacua in the language of generalized complex geometry is far from
being available.

In this short Chapter we collect some observations which could be of some usefulness for a
description of supersymmetry breaking backgrounds at a more formal level than the example
based configuration we have described before. The nature of the Chapter is speculative and no
concrete results are established, nevertheless a glimpse of an underlying structure can still be
inferred which suggests that generalized geometry could be a suitable language also for N = 0
vacua.

6.1 Supersymmetry breaking T–duality
Since its inception, T–duality has been of paramount importance in the study of string back-
grounds. At the level of supergravity theory there is a corresponding local transformation on
the fields, governed by Buscher rules [28], which maps solutions to solutions. The action of
T–duality on generalized structures is simply an O(d, d) gauge transformation on the bundle E
and a detailed discussion can be found in [88] where they also establish the necessary condition
for the transformation to map SU(3) × SU(3) supersymmetric backgrounds to SU(3) × SU(3)
supersymmetric backgrounds. In particular, it turns out that the Lie derivative of the two pure
spinors defining the structure along the T–dual direction has to vanish. In this Section we want
to relax this condition and argue about its consequences, we find a set of first order equations
that should describe T–dual non supersymmetric backgrounds obtained from supersymmetric
ones.

We start by a short review of T–duality in the generalized complex geometry, referring the
reader to [88] for the details. Buscher rules are valid for backgrounds that admit a Killing
direction v satisfying
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Lvg = 0 LvH = 0 LvF = 0 .

The condition on H allows to find a gauge transformation on B̂ = B + dξ̂ such that LvB̂ = 0
and it is on this gauge equivalent background that the Buscher rules are applied. Thus one
requires

LvB = dξ , ξ = −ιvdξ̂ + df ,

namely the T–duality action is specified by the pair (v, ξ) which can be arranged in a generalized
vector V = v+ ξ. The freedom given by the shift of ξ by df with f an arbitrary function allows
to normalize the generalized vector V such that

I(V,V) = 1 (6.3)

where I is the metric in (3.7). The vector V takes the general form

V = ∂

∂t
+
(
dt− ι∂/∂tdξ̂

)
, (6.4)

where we have introduced the coordinate t such that v = ∂/∂t and set f = t. One can then
define an O(d, d) element

TV = 1− 2VVtI . (6.5)

The T–dual transform of generalized metric H (cfr. (3.49)) is given by H̃ = T tVHTV and the
pure spinors transform by Clifford action

Φ̃ = TVΦ = ι∂/∂tΦ + ξ ∧ Φ ,

where ξ = dt− ι∂/∂tξ̂.
Let us start from a supersymmetric type IIB background and without loss of generality we

can choose B such that LvB = 0 and thus V0 = v + dt = ∂/∂t + dt; the background will satisfy
the pure spinor equations2:

d
(
e2AΨ+

)
= dA ∧ e2AΨ̄+ + i

8e
3A ∗E (G)

d
(
e2AΨ−

)
= 0

Let us begin by applying T–duality to the previous equations, we obtain

d
(
e2AΨ̃+

)
= dA ∧ e2A ¯̃Ψ+ + i

8e
3A∗̃E(G̃) + Lv

(
e2AΨ+

)
− (ιvdA)e2AΨ̄+ , (6.6)

d
(
e2AΨ̃−

)
= Lv

(
e2AΨ−

)
. (6.7)

The tilded objects are the result of T–duality, in particular:

Ψ̃± = TV0 (Ψ±) ∗̃E = TV0 ∗E TV0 G̃ = −TV0(G)
2In this Section we prefer to use the variables Ψ± = e−B−φΦ± which have the correct transformation properties

on E, the RR fluxes are G = e−BF , with Bianchi identity dG = 0 in absence of sources and the Hodge operator
on E is related to the usual Hodge dual by ∗E = e−B ∗ λeB .
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The new background will satisfy pure spinor equations in the transformed variables and it will
be supersymmetric if LvΨ± = 0 and LvdA = ιvdA = 0. If we do not require this condition
we can see that the equations are modified by supersymmetry breaking terms which could in
principle be rewritten in terms of an expansion in the generalized Hodge diamond constructed
from Ψ̃± in order to recover a form similar to (6.1) and (6.2). Let us consider the following
identities

dt ∧Ψ± = dt ∧ ιvΨ̃± ιvΨ± = Ψ̃± − dt ∧ ιvΨ̃±

We are going to recast the equations (6.6) and (6.7) in a form which is reminiscent of the
pure spinor equations but identifying a different set of variables; in the following we will make
use only of the supersymmetry equations for the background we started from. Equation (6.7)
is easily reformulated as

d
(
dt ∧ ιv

(
e2AΨ̃+

))
= 0 .

Note that if Ψ̃ is pure dt ∧ ιvΨ̃ is not. Equation (6.6) requires more work but the result can be
expressed as

d
[
e2Adt ∧ ιv(Ψ̃+)

]
= e2AdA ∧ (dt ∧ ιv( ¯̃Ψ−)) + i

8e
3Adt ∧ ιv[∗̃E(G̃)]

= e2AdA ∧ (dt ∧ ιv( ¯̃Ψ−)) + i

8e
3Aιv[∗E(G)] + i

8e
3A∗̃E(G̃) . (6.8)

In the first equality everything is expressed in terms of transformed quantities while the second
form it is easier to observe that the equations of motion for the RR fluxes follow if ιvdA = 0. It
is straightforward to see that

d
[
e4A∗̃E(G̃)

]
= −Lv

[
e4A ∗E (G)

]
= 0 .

We can now define the following variables

X+ ≡ dt ∧ ιvΨ̃− ,
Y− ≡ dt ∧ ιvΨ̃+ ,

and reformulate the equations in a more familiar looking way

d
(
eA ReY−

)
= 0 ,

d
(
e3A Im Y−

)
= −1

8e
4Adt ∧ ιv

[
∗̃E(G̃)

]
= −1

8e
4Adt ∧ [∗E(G)] ,

d
(
e2AX+

)
= 0 . (6.9)

Note that despite X+ and Y− are compatible they are no longer pure.
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6.2 A formal system
Let us consider a type IIA configuration where we take into consideration the supersymmetry
breaking terms as in [137]

d
(
e2AΨ−

)
= dA ∧ e2AΨ̄− + i

8e
3A ∗E (G) + e2AΥ , (6.10)

d
(
e2AΨ+

)
= e2AΞ . (6.11)

Equation (6.11) tells us that we can locally write

e2AΞ = d
(
e2AΨ+ + e2AU+

)
, (6.12)

for some conformally closed polyform U+.
By taking the external differential of equation (6.10) we can obtain a consistency condition

for Υ:
d(e2AΥ)− dA ∧ e2AῩ = − i8e

−Ad
[
e4A ∗E (G)

]
(6.13)

Note that if we demand that RR eom is satisfied, the rhs is zero. Once more, we can solve
for the real part of (6.10) by using the closure of the right–hand side and taking

eA Re Υ = d
(
eA Re Ψ− + eAβ−

)
(6.14)

for some real β, which must satisfy d(eAβ−) = 0. We would like of course to relate full Υ and
Ψ−, and should look at the imaginary part of equation (6.10). Provided that RR equations of
motion are satisfied (i.e. right-hand side of (6.13) vanishes), we may take

e3A Im Υ = d
(
e3A Im Ψ− + e3Aγ−

)
(6.15)

for some real γ− such that d(e3Aγ−) = −1
8

[
e4A ∗E (G)

]
. Recall that the ten–dimensional fluxes

are written in term of the potentials as: F(n) = dC(n−1) −H ∧C(n−3); under the 4 + 6 splitting
we get:

F(n) = F̂(n) + Vol4 ∧ F̃(n−4) , (6.16)

together with the duality relation F̃(2n−4) = λ(∗6F̂(10−2n)) (here n = 2, 3, 4, 5 for type IIA).
According to the split, also the potentials are rewritten as:

C(n−1) = Ĉ(n−1) + dx0dx1dx2dx3 ∧ e4AC̃(n−4) . (6.17)

We thus have:
F̃ = eB−4Ad(e−B+4AC̃) (6.18)

where as usual F̃ =
∑
k F̃(k). The fluxes that appear in the pure spinor equations3 are the dual

ones and we can write them in terms of the dual potentials:

d(e2AΨ−) = dA ∧ e2AΨ̄− + i

8e
−Ad(e4A−BC̃) + e2AΥ (6.19)

Let us consider the imaginary part of the previous equation:
3This is the case if |a|2 = |b|2 which is equivalent to c− = 0 in (6.1). See also discussion in Section 3.5.
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d(e3A Im Ψ−) + 1
8d(e4A−BC̃) = e3A Im Υ . (6.20)

Thus we can write:
e3A Im Υ = d(e3A(Im Ψ− + γ− + σ−)) , (6.21)

where

γ− = 1
8e

A−BC̃ , d(e3Aσ−) = 0. (6.22)

We can now define V− = β− + iγ− and solve for Υ

eAΥ = d
(
eA(Φ− + V−)

)
+ 2id(eA) ∧ Im(Φ− + Y−) , (6.23)

and collect equations for U+ and V− into familiar looking system:

d(e2AU+) = 0 ,
d(eA ReV−) = 0 ,

d(e3A ImV−) = −1
8e

4A ∗E (G) . (6.24)

The formal rewritings we have tried to sketch in this and the previous section suggests that
generalized complex geometry could still be a suitable language to describe N = 0 vacua. It
is clear to the reader that we are still quite far from a definitive answer which is beyond the
scope of this speculative Chapter, in particular the analysis should be completed by a more
deep understanding of the properties of the new variables we have introduced. Moreover it is
not clear which constraints could be inferred by the equations of motion for the bosonic fields
(in the previous analysis we have used only the RR equations of motion).

6.3 Branes in non–supersymmetric backgrounds
In this section we want to further discuss the κ–symmetry condition for sources which has been
briefly mentioned in Section 3.6 and speculate about a way to describe branes in supersymmetry
breaking backgrounds. The action (3.66) contains only bosonic degrees of freedom and in order
to obtain a supersymmetric formulation in a general background one need to use superspace
formalism. Elegant and complete formulations have been developed in [40, 19, 2], but couplings
between physical fields are not explicit and the fermionic world–volume sector is somehow hid-
den. Fortunately the authors of [145, 146, 148] have derived an explicit and compact expression
for the source action up to terms quadratic in the fermions. We will consider this formulation,
in which the interplay of κ–symmetry and supersymmetry is more clear, as a starting point
for our considerations about supersymmetry breaking. Let us thus consider the fermionic ac-
tion (here and in the following we will consider type IIA theory, similar arguments with minor
modifications can be developed for type IIB)

S
(F )
Dp = Tp

2

∫
dp+1ξe−φ

√
−det(ι∗[g] + F) θ̄(1− ΓDp)

[
(M̃−1)αβΓβDα −∆

]
θ . (6.25)

Some detail is needed:
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• θ = θ1 +θ2 denotes a 32–component Majorana spinor such that Γ(10)θ1 = θ1 and Γ(10)θ2 =
−θ2 which eventually can be arranged in a doublet;

• ΓDp denotes the chiral world–volume operator which we have already encountered in equa-
tion (3.74);

• the operator Dα (here α denotes the pullback on the world–volume) and ∆ are the oper-
ators entering the supersymmetry variations of the gravitino, δεΨm = Dα(ε1 + ε2), and of
the dilatino, δελ = ∆(ε1 + ε2), fields which we have introduced in Section 2.1;

• the matrix M̃ is defined as follows M̃αβ = gαβ + Γ(10)Fαβ, where as before, greek letters
denote indexes on the world–volume.

The fermionic action together with the bosonic counterpart (3.66) has world–volume diffeo-
morphism symmetry as well as an additional local fermionic symmetry called κ–symmetry. This
last symmetry is necessary to match the number of bosonic and fermionic degrees of freedom.
In fact for an arbitrary p–brane the bosonic degrees of freedom are 10− p− 1 due to the scalars
XM which define the embedding (after taking into account world–volume diffeomorphism in-
variance) and p − 1 are from the massless gauge vector living on the world–volume, in total 8
degrees of freedom. The Majorana spinor θ has 32 real components that have to be reduced
to 8. Half of them are cut due to κ–symmetry and another half of the remaining is cut due
to Dirac–like equation, the kinetic terms for θ are linear in time derivative, leaving us with the
correct number of 8 fermionic degrees of freedom. We are interested in bosonic backgrounds
where, as we have discussed in Section 2.2, we put to zero all the vacuum expectation values of
the fermionic fields. The action (6.25) is quadratic in the fermionic field θ and thus it will not
give contributions to the equations of motion for the bosonic background fields. We will not
provide the details of the κ–symmetry transformation for all the fields and we refer the reader
to [41, 40, 19, 2, 3, 145, 146, 148]. For the sake of our exposition it is enough to recall that the
supersymmetry and κ–symmetry transformations for θ have the following form

δεθ = ε

δκθ = (1 + ΓDp)κ .

In the analysis of the supersymmetry of the action one has to take into account a supersym-
metry variation which respects some covariant gauge choice. In fact the operator ΓDp is such
that ΓDp(F)−1 = (−)b

p+3
2 cΓDp(−F) and κ–symmetry transformations can actually be written in

terms of an irreducible 16–components spinor κ. In general we need to compensate the generic
supersymmetry transformation with a κ–symmetry transformation and we thus have4

δεθ = (1 + ΓDp)κ+ ε . (6.26)

Supersymmetry is clearly preserved if
4Here we limit to supersymmetry transformation at the lowest leading order for fermions, namely such that

they do not involve fermions fields for the transformation of the fermions and linear in the fermions for the
transformation of the bosons. The complete analysis would require higher order terms, nevertheless it is enough
for our purposes which considers only variation linear in fermions. If we consider the action truncated to quadratic
order in both fermions and bosons around a classical configuration these are exact supersymmetries.
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δεθ = 0 . (6.27)

We discussed in Section 3.6 how this condition can be reformulated in terms of the existence
of certain calibration forms and their relation with the bulk supersymmetry. Here we would
like to address the possibility of describing branes in non supersymmetric backgrounds. If
the background is no longer supersymmetric there is a priori no reason the brane should still
satisfy an equation like (6.27) and we expect that it does not wrap one of the cycles calibrated
by supersymmetry. Since the possibility of using first order equations is not evident once we
leave supersymmetry, we have to face the problem at the level of the equations of motion.
The question of the existence of stable branes is a legitimate one also in non supersymmetric
backgrounds. We could proceed as follows. As in the previous chapters we want to stay in the
class of solutions characterized by an SU(3) × SU(3) structure for which generalized complex
geometry is a natural language, we thus choose a certain pair of spinors ε1 and ε2 which will
characterize the structure but such that they are not Killing spinors, in particular the gravitino
and dilatino supersymmetry variation will no longer be zero but acquire additional pieces whose
translation in bispinor language is given by equations (6.1) and (6.2). Let us parametrize the
deviation from the supersymmetry in (6.27) by a certain spinor χ:

δεθ = (1 + ΓDp)κ+ ε = χ . (6.28)

If we apply the orthogonal projector (1 − ΓDp) we get (1 − ΓDp)ε = (1 − ΓDp)χ which, if we
impose a covariant gauge like Γ(10)θ = θ boils down to

ΓDpε̃2 = ε̃1 , (6.29)

where ε̃1(2) = ε1(2) − χ1(2).
This condition looks formally the same as the one that leads to calibrated branes for super-

symmetric configurations, but the spinor ε̃ is not the Killing spinor of the background and thus,
despite the source seems to preserve some supercharges, these are not “compatible” with the
ones that would be associated to the supersymmetric background we are deforming.

Let us abandon the general case by considering our usual 4+6 split and supposing that the
deviation of the spinor ε̃ from the Killing one is due to the internal part

ε̃1+ = ζ+ ⊗ η̃1
+ + c.c. η̃1

+ = b1η
1
+ + c1

mγ
mη1
−

ε̃2− = ζ+ ⊗ η̃2
− + c.c. η̃2

+ = b2η
1
+ + c2

mγ
mη1
− ,

where b1(2) and c
1(2)
m are functions on the internal manifold. By similar reasoning involving

the chiral world–volume operator (3.74) we can translate the algebraic condition (6.29) into a
relation between the DBI Lagrangian and the pullback of a certain form from the bulk5:

i

8 ||η̃
1
+||2

√
|det(ι∗[g] + F)|dξ1 . . . dξp−3 =

(
ι∗[X−] ∧ eF

)
(p−3)

. (6.30)

The form X− is defined as

X− ≡ η̃1
+ ⊗ η̃2

− = b1b2Φ− − b1c2
mΦ+γ

m + b2c
1
mγ

mΦ̄+ + c1
mc

2
nγ

mΦ̄−γn , (6.31)
5Note that the unitarity properties of the world–volume chiral operator imply that ||η̃1

+||2 = ||η̃2
+||2.
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and we can observe that it can be expressed in terms of the pure spinors related to the underlying
SU(3)× SU(3) structure.

The energy of the brane is given by the Lagrangian (3.72) and using equation (6.30) we can
build a differential form in the bulk

ωX ≡
8

||η̃1
+||2

e4A−φ ImX− − e4A∑
k

C̃(k) , (6.32)

such that
ι∗[ωX ] ∧ eF ≤ E(Σ,F) , (6.33)

for any brane characterized by Σ and F . The inequality is guaranteed by a Schwarz inequality
as in (3.78) and the branes which saturate the bound are the ones which satisfy (6.30). Let us
consider a deformation to a different brane configuration (Σ′,F ′) within the same generalized
cohomology class, that is to say we can take a chain C and a field strength F̂ on it such that
∂ C = Σ−Σ′ and the restriction of F̂ to Σ and Σ′ gives F and F ′ respectively. Then by Stokes’
theorem[126, 149, 130, 128]:

E(Σ,F) =
∫
E(Σ,F) =

∫
Σ
ι∗[ωX ] ∧ eF =

=
∫
C
ι∗ [dH(ωX)] ∧ eF̂ +

∫
Σ′
ι∗[ωX ] ∧ eF ′

To conclude that this is a minimal energy condition (i.e. the brane is stable and satisfies its
equations of motion) we have to impose the dH closure of ωX similarly to the supersymmetric
case. If this is true

E(Σ,F) =
∫
C
ι∗ [dH(ωX)] ∧ eF̂ +

∫
Σ′
ι∗[ωX ] ∧ eF ′ =

=
∫

Σ′
ι∗[ωX ] ∧ eF ′ ≤

∫
E(Σ′,F ′) = E(Σ′,F ′) .

The closure condition provides a relation between the deviation from the supersymmetric
case in (6.28) and the supersymmetry breaking of the bulk configuration which is encoded in Υ
and Ξ. A complete analysis is beyond the scope of the Chapter and we will present a simple
situation for illustrative purposes. Let us make the following choice

b1 , b2 , c
1
m ∈ R c2

m = 0 ,

and let us suppose we have normalized η̃+ such that ||η̃+||2 = eA. The form ωX reduces to

ωX = 8e3A−φ
(
b1b2 Im Φ− − b2 c1

mγ
m Im Φ+

)
− e4A∑

k

C̃(k) .

Acting on it with dH , after some algebra and with the information provided by equations (6.1)
and (6.2) we obtain the following expression

dH(ωX) = (b1b2 − 1)e4A ∗ λ(F ) + 8b1b2e3A−φ Im Υ + 8d(b1b2) ∧ e3A−φ Im Φ−
− 8d(b2 c1

(1)) ∧ e
3A−φ Im Φ+ + 8b2 ιc1

[
e3A−φ Im Ξ + e3A−φdA ∧ Im Φ+

]
− 8b2 Lc1

(
e3A−φ Im Φ+

)
− 8db2 ∧ ιc1

(
e3A−φ Im Φ+

)
+ 8b2 (ιc1H) ∧ e3A−φ Im Φ+

+ 8b2 c1
(1) ∧

[
e3A−φ Im Ξ + e3A−φdA ∧ Im Φ+

]
, (6.34)
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where we denote by c1 and c1
(1) the vector cm1 ∂m = gmnc1

n∂m and the one–form c1
mdxm respec-

tively. If we ask ωX to be dH closed we obtain an equation which relates the parameters bi
and cim, which describe how the brane arranges in a non–supersymmetric background, and the
parameters describing the deviation of the bulk from the supersymmetric configuration which
enter through Υ and Ξ. The underlying idea is that in a non–supersymmetric background stable
sources should not in general be described by the same calibration form as for the supersymmet-
ric case and that they wrap cycles such that the combined bulk+brane action is extremized. The
deviation from the supersymmetric configuration is parametrized by X−, Υ and Ξ which, if not
constrained, do not correspond to vacua (meaning the equations of motion are not solved). The
constraints should come from the equations of motion of both the bulk and the brane; equations
like (6.34), which correspond to minimization of the brane action, should take into account the
brane equations of motion whose content is here reformulated in bispinor language suitable for
the generalized complex geometry formalism. Another set of constraints should come from the
analysis of the equations of motion of the bulk fields, unfortunately, as we have remarked before,
there is no reformulation in terms of bispinors and the spinorial equations obtained in [137] are
valid only in some restricted situation. Note that we expect the parameters defining X− to enter
such equations, in fact one can prove that6, provided the algebraic condition (6.29) is satisfied
the contribution of the source to the Einstein and dilaton equation can be expressed as

δSDBI
δφ

∝ 〈ImX−, j(Σ,F)〉 ,

δSDBI
δgmn

∝ 〈gq(mdxq ⊗ ιn) ImX−, j(Σ,F)〉 ,

where j(Σ,F) is the generalized current discussed in Section 3.6.
We do not know if there is a unique solution to (6.34) and the stability of the brane should

not be intended as absolute, in the sense that it is more likely that the configurations one could
find via this approach correspond to metastable non–supersymmetric states. For a reasonably
limited interval of energy we could apply local arguments; the possible decay process towards
other minima and its dynamics is far beyond the scope of the present analysis. If this was the
case it would not be too surprising, in fact many non–supersymmetric solutions are metastable
(though long–lived) as, for example, the configuration we will present in the next Chapter or
the ones found in [119, 123].

6The reasoning is similar to the supersymmetric case and we refer to [130] for details or the the discussion in
Section 3.6.
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Chapter 7

The backreaction of Anti–D2 branes
on a cone over CP3

Metastable supersymmetry–breaking is an attractive mechanism from a phenomenological point
of view [114]. Furthermore, theories for which a metastable supersymmetry breaking state can
be realized — such as N = 1, SU(Nc) SQCD in the free magnetic phase with massive flavours —
are relatively simple and generic enough, unlike the comparatively baroque ingredients involved
in other approaches to dynamical SUSY–breaking (see for instance [175, 113] for a review).

Attempts have been made to embed the proposal of Intriligator, Seiberg and Shih into string
theory (see for instance [158, 68]), via brane engineering of the electric and magnetic phases [63].
Nevertheless, in view of the obstruction that seems to arise upon turning on the string coupling
gs 6= 0 [15] or the alternative view [81] that involves string tachyons corrections to argue that
the brane configuration still describes the ISS state, it is of interest to try and find an alternative
stringy embedding and search for would–be supergravity duals to metastable supersymmetry–
breaking states.

The dual supergravity solution should be a locally stable non–supersymmetric solution which
is usually obtained by a deformation of a supersymmetric one. The most renowned examples
are the construction by Kachru, Pearson and Verlinde [119] for D3–branes on the conifold and
by Klebanov and Pufu for M2–branes on Stenzel space [123]. The starting supersymmetric
background has already less than maximal supersymmetry because it is obtained by putting
branes at conical singularities in the transverse space, the remaining supersymmetries are then
broken by adding a certain amount of anti–branes which are attracted towards the bottom of
the throat. There (part of) the anti–branes can annihilate (via polarization due to the Myers
effect) with the positive brane–charge dissolved in flux, a process which is argued to correspond
to the decay of the metastable vacuum in the dual field theory description.

The drawback of the previous analysis is due to the fact that they are carried out in probe
approximation. Despite this can signal the presence of the metastable vacuum, it is not enough to
establish it. The backreacted solution can differ significantly from the probe one, in particular
if the backreacted anti–branes source non–normalizable modes, which are not visible in the
probe approximation, than the metastable configuration is not dual to a non–supersymmetric
background of a supersymmetric theory but rather to a non–supersymmetric background of a
non–supersymmetric theory.

Backreacting a solution is a far from trivial task and, with the current status of technology,
it can be performed only under certain simplifying conditions. Fortunately, the previous back-
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grounds are such that a method developed by Borokhov and Gubser in [24] can be applied and
one can solve for the backreaction in a series expansion around the supersymmetric vacuum.
Recently, an intense analysis has been dedicated to the case of Klebanov–Strassler background
[16, 13, 14, 62] and to the case of M2–branes on a warped Stenzel space [11]. Both analysis,
despite their different setups and quite different calculations, have pointed out two interesting
features. Among the modes describing the perturbations which preserve the symmetries of the
original background (14 in the type IIB case and 10 in the M–theory case), only one mode enters
the expression for the force that a probe–brane should feel in the perturbed background and,
since anti–branes attract probe branes, this mode must be present in order to have a meaningful
backreaction. The other feature is the presence of certain singularities in the infrared region
which are unavoidable if the mode related to the force is present. In the Klebanov–Strassler case
the singularity has finite action1 while in the M–theory analysis it turns out to be more severe
because also the action is not well behaved in the IR. It is of a certain usefulness to analyze
different configurations to infer whether the presence of singularities is a feature of a specific
background or has a different origin, maybe related to the perturbative nature of the approach
or to the problem of backreaction itself. In this Chapter we enlarge the number of examples by
investigating the deformation of the type IIA D2–brane background found in [47], which will be
reviewed in the Section 7.2. The analysis is not as complete as in the case of Klebanov–Strassler
background and it will focus on the IR region of the perturbed solution, nevertheless it is enough
to elucidate its features and we will see that such singularities are present also in this setup and
they are even more severe than in the other cases, being not sub–leading compared to the kind
of singularities that are allowed as a physically sensible ones, that is those stemming from the
effect of anti–D2 branes.

Whereas for the backreaction of anti–D3’s on the Klebanov–Strassler solution one could have
expected, with hindsight, a singularity to arise in analogy with the IIA brane engineering of four–
dimensional gauge theories, a similar argument does not hold for string theory constructions of
2+1–dimensional gauge theories.

Indeed, the profile of the NS5–branes featured in those brane engineering constructions is
generally not rigid but is instead sourced by the stack of Dp branes in–between (see [80] for
pointers to the literature and much more on the physics of those brane constructions). For
four–dimensional field theories living on D4–branes between two NS5’s, the profile determined
upon solving a Laplace equation is logarithmically running. This corresponds to the log–running
of the gauge coupling for asymptotically free theories.

On the other hand, for three–dimensional field theories living on D3–branes between two
NS5’s, the profile decays as 1/r away from the location of the D3’s on the NS5. Such a mode
does not have the potential ability to enhance small IR fluctuations into log–running ones,
an ability to which one might roughly ascribe the singularities encountered in the holographic
approach to realizing metastable states in string theory, if those singularities are deemed as truly
pathological.

So, proceeding in analogy with brane engineering constructions, for 2+1–dimensional IR
perturbations should be expected not to affect the UV asymptotics of the background. As we
shall see as an outcome of our linearized deformation analysis, this is not quite the case for the
candidate supergravity dual to a 2+1–dimensional metastable state. The IR singularities we
find are affecting the UV behavior, in the sense that they cannot be completely tamed without

1The finite action does not automatically guarantee that the singularity is acceptable, as the negative mass
Schwarzschild counterexample shows [109].
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switching off at the same time the force felt by a probe D2–brane in the UV.
Besides, having their legs in the wrong directions, those IR divergences cannot be identified

as the remnant signature of an NS5 instanton through which the metastable state is been argued
to decay in the probe approximation [119, 123].

Such singularities cannot be identified either with those characterizing fractional branes on
Ricci–flat transverse geometries before the resolution or deformation of those manifolds (solu-
tions of the Klebanov–Tseytlin [125] type, whose singularities get resolved in the Klebanov–
Strassler solution).

The situation is quite puzzling and it might well be that those singularities are an artifact of
having to smear anti–branes in order to make the problem tractable. On the other hand, in view
of some recent results [20, 21], one might argue that a localization procedure is bound to make
things worse, rather than alleviating them. We also comment on another possibility: basically,
the issue of those singularities in the smearing approximation should be settled by considering
2nd–order expansions for the deformation modes of a BPS background, a task which has not
been attempted so far.

The alternative viewpoint is that those Coulomb–like singularities are of physical significance
and could be used to discriminate among solutions of the string theory landscape.

Indeed, consider the following analogy. In QCD, there are free quarks in the linearized
approximation. Their “backreaction” results in a Coulomb–like singularity. We know that this
is an indication that quarks are not good approximations at all to finite–energy states from the
spectrum of QCD, which instead consists of confined, colorless states.

It is beyond the scope of the present work to offer more credence to vindicate or dispel
this possibility but it is very tempting to imagine that the IR singularities we keep on finding
upon backreacting the effect of antibranes on some BPS background are similarly a hint that
some of the constructions which have been proposed has duals to metastable SUSY–breaking
might instead belong to some “swampland” [182] once the backreaction of the SUSY–breaking
ingredients is duly taken into account.

7.1 The Borokhov–Gubser method
In this Section we review the method proposed by Borokhov and Gubser in [24] to find perturba-
tive solutions of the equations of motion. A fundamental assumption of the method is that the
symmetries of the problem are powerful enough to impose that all the fields depend on a single
radial coordinate. The idea behind the technique is to trade the n second order equations for n
fields φa for 2n first order equations for the fields φa and their “canonical conjugate variables”
ξa.

Let us consider the bosonic part of the type IIA supergravity action in Einstein frame2

SIIA = 1
2k2

∫
d10x

√
|g10|R10 −

1
4k2

∫ [
dΦ ∧ ∗̂ dΦ + gse

−ΦH3 ∧ ∗̂H3

+ g1/2
s e3Φ/2 F2 ∧ ∗̂F2 + g3/2

s eΦ/2 F̃4 ∧ ∗̂ F̃4 + g2
s B ∧ F4 F4

]
, (7.1)

2In this Chapter we use the action in the Einstein frame, it can be obtained from the action in (2.4) by a Weyl
transformation of the metric: gSMN → g

−1/2
s gEMNe

Φ/2. Note that here we will consider also the Chern–Simons
term B ∧ F4 ∧ F4.
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where

F̃4 = F4 − C1 ∧H3 , F4 = dC3 , H3 = dB , F2 = dC1 . (7.2)

If the dependence of the fields is on the radial coordinate r only we can thus reduce (7.1) to
a one–dimensional sigma model

SIIA ∝
∫

drL , (7.3)

where
L = −1

2G(φ)ab
dφa

dr
dφb

dr − V (φ) = T − V . (7.4)

We also assume that there exist a superpotential W such that we can write L as

L = −1
2

(dφa

dr −
1
2G

ac∂W

∂φc

)(dφb

dr −
1
2G

bd∂W

∂φd

)
− 1

2
dW
dr (7.5)

and V (φ) as
V (φ) = 1

8G
ab∂W

∂φa
∂W

∂φb
. (7.6)

The equations of motion derived from L can be written as

− d
dr

(
δL
δφ′a

)
+ δL
δφa

= 1
2
(
∂a∂bW − (∂aGbc)Gcd∂dW

)(
φ′b − 1

2G
be∂eW

)
− 1

2 (∂aGbc)
(
φ′b − 1

2G
bd∂dW

)(
φ′c − 1

2G
ce∂eW

)
+ d

dr

(
Gab

(
φ′b − 1

2G
bc∂cW

))
= 0 , (7.7)

where a prime means derivative with respect to r. The gradient flow equations are

dφa

dr = 1
2G

ab∂W

∂φb
, (7.8)

and the “zero–energy” condition coming from the Grr Einstein equation is:

−1
2Gab

dφa

dr
dφb

dr + V (φ) = 0 . (7.9)

It is immediate to see that solutions of (7.8) are also solutions of the equations of motion (7.7)
and satisfy the constraint (7.9) so that one can recover standard results. The idea of [24] is
to use the superpotential to find perturbations to a solution of (7.8) that satisfy the equations
of motion but not necessarily (7.8) itself. Let us consider an expansion of the fields φa around
their supersymmetric value φa0

φa = φa0 + φa1(α) +O(α2) (7.10)

for some set of small parameters α. Let us introduce the following notation

ξa = Gab(φ0)
(

dφb1
dr −N

b
d(φ0)φd1

)
where N b

a(φ0) = 1
2
∂

∂φa

(
Gbc

∂W

∂φc

)
. (7.11)
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If we now plug the expansion (7.10) in the equations of motion (7.7) and we keep terms up to
the linear order we obtain

dξa
dr + ξbN

b
a(φ0) = 0 , (7.12)

dφa1
dr −N

a
b(φ0)φb1 = Gab(φ0)ξb , (7.13)

while the constraint (7.9) can be written as

ξa
dφa0
dr = 0 . (7.14)

The functions ξa are deformations of the gradient flow equations (7.8), that is to say if all the ξa
vanish then the deformation is supersymmetric. The obvious advantage of this method is that
one can solve separately for the first order subsystem (7.12) and then solve for (7.13) which are
again first order.

7.2 The CGLP background
We review here the supersymmetric type IIA background found by M. Cvetič, G.W. Gibbons, H.
Lü and C. N. Pope in [47]. It describes regular deformed D2–branes with fractional D2–branes
realized as wrapped D4–branes. The solution is related to the one for a stack of D2–branes
placed in flat ten dimensional space, but one can choose the Chern–Simons term

d
(
eΦ/2∗̂F4

)
= −g1/2

s F4 ∧H3 , (7.15)

to be non zero and thus to contribute to the equation of motion for F4. This solution can be
seen as a deformation of the standard D2–brane solution where additional flux is turned on.
To get an everywhere regular solution, it is necessary to replace the transverse flat–space of
the original solution with a complete Ricci–flat space which admits square integrable harmonic
three–form; one can then choose H3 in (7.15) to be proportional to such harmonic form and,
if it has a non–vanishing integral at infinity, this is interpreted as the magnetic charge of the
additional fractional D4–branes. The additional flux enters the equation for the warp factor

�H = −1
6 |H3|2 , (7.16)

where the Laplacian as well as the magnitude | . . . |2 are taken with respect to the seven dimen-
sional transverse metric, giving a smooth solution. The resolution of the singularities enhances
the breaking of the original supersymmetries giving rise to a solution that preserves 1/16 of
the maximal supersymmetry, namely two supercharges, and it will thus be dual to an N = 1
three–dimensional supersymmetric gauge theory.

The Ricci–flat metric is [49]:

ds2
10 = e−5z(r)ηµνdx

µdxν + `2e3z(r)ds2
7. (7.17)

It is a warped product of a 2+1 dimensional Minkowski space and a complete, Ricci–flat, of G2
holonomy and asymptotically conical seven dimensional space. These kind of seven dimensional
spaces have been obtained in [25, 76] and correspond to R3 bundles over a quaternionic Kähler
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Einstein base. We are interested in the case where the base is S4; the manifold will be of
co-homogeneity one, with level surfaces that are a S2 bundle over S4, namely CP3. The seven
dimensional metric in our notation (closely related to [104] but not the same) is:

ds2
7 = h(r)2dr2 + e2u(r) (Dµa)2 + e2v(r)dΩ2

4. (7.18)

Here µa are coordinates on R3 subject to µaµa = 1, a = 1, 2, 3, which clearly parametrize S2;
its fibration over S4 is given by

Dµa = dµa + εabcA
bµc (7.19)

while dΩ2
4 is the metric on the unit 4–sphere. The quantities Aa are self–dual SU(2) instanton

potentials on S4 , whose field strengths

Ja = dAa + 1
2εabcA

b ∧Ac (7.20)

satisfy the algebra of the unit quaternions

JaαγJ
b
γβ = −δabδαβ + εabcJ

c
αβ . (7.21)

The functions h, u and v are:

h(r) =
(

1− 1
r4

)−1/2
e2u(r) = 1

4r
2
(

1− 1
r4

)
e2v(r) = 1

2r
2 . (7.22)

The radial coordinate r runs from one to infinity. We can notice that at the tip of the cone
r = 1 the R3 directions vanish and the metric approaches

ds2
7 →

`2

2 dΩ2
4, (7.23)

while for r →∞ the metric is
ds2

7 = `2
[
dr2 + r2ds2

CP3

]
. (7.24)

The metric on the asymptotic CP3 is not the usual Fubini–Study but a squashed version of it3.

As we said before the solution presents an F4 and an H3 flux. The F4 has the following
structure

gsF4 = K(r)d3x ∧ dr +mG4

G4 = 2(g1(r) + c2)J2 ∧ J2 + 2(g1(r) + c3)U2 ∧ J2 + g′1(r)εabcµadr ∧Dµb ∧ Jc . (7.25)

The first term is related to the electric flux of the ordinary D2–branes in the Minkowski direc-
tions, while G4 is related to the magnetic flux of the fractional D2–branes. These are D4–branes
which wrap a vanishing 2–cycle in the internal space. The standard D2–brane solution clearly
corresponds to m = 0. A non zero m requires a NS–NS three–form flux

H3 = mG3, (7.26)
3It is an element of a family of Einstein metrics on CP3, ds2

CP3 = λ2(Dµa)2 + dΩ2
4 where λ = 1 corresponds to

the usual Fubini–Study metric and λ = 1/2 to the squashed one [76]. The squashed metric is Hermitian but not
Kähler, it is in fact nearly Kähler [1].
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where G3 is an harmonic three–form in the internal space and it is related to G4 by Hodge
duality: G4 = ∗7G3. The trace of the Einstein equation relates the magnitude of G3 with the
Laplacian of the warp factor H

�H = −1
6m

2|G3|2 = −1
6m

2|G4|2 . (7.27)

The three–form H3 can be obtained from the following potential

`B = m [g2(r)U2 + g3(r)J2] . (7.28)

The Bianchi identities are satisfied provided the following definitions and identities are taken
into account

U2 ≡
1
2εabcµ

aDµb ∧Dµc , J2 ≡ µaJa U3 ≡ Dµa ∧ Ja

dU2 = U3 dJ2 = U3 dU3 = 0 . (7.29)

The supersymmetric value of the CGLP background functions is

g1
0(r) =

∫ r

1
f1(y)dy , f1(r) = eu0(r)+2v0(r)u1 , u1(r) = 1

4r4(r4 − 1) −
(3r4 − 1)P(r)
4r5(r4 − 1)3/2

g2
0(r) =

∫ r

1
f2(y)dy , f2(r) = h0(r)e2u0(r)u2 , u2(r) = 1

r4 + P(r)
r5(r4 − 1)1/2

g3
0(r) =

∫ r

1
f3(y)dy , f3(r) = h0(r)e2v0(r)u3 , u3(r) = − 1

2(r4 − 1) + P(r)
r(r4 − 1)3/2 , (7.30)

where we denote by P(r) the following function

P(r) =
∫ r

1

dy√
y4 − 1

= K(−1)− F (arcsin(1/r)| − 1) . (7.31)

By F (φ|k) we denote the incomplete elliptic integral of the first kind and K(k) = F (π/2|k).
From now on we will denote F (arcsin(1/r)| − 1) simply by F(r). As for the constants c2 and
c3 in the ansatz (7.25), the background only specifies their difference

c2 − c3 = 3
32 . (7.32)

As for the standard D2–brane solution the dilaton is nonzero and it is related to the function
H as eΦ = gsH

1/4, whose value in the supersymmetric background is

H0 ≡ e8z0 = m2

`2

∫ ∞
r

y5 [u3(y)− u2(y)]u1(y)dy . (7.33)

7.2.1 Few words about the dual field theory

The dual field theory of this supergravity background is not well understood, the authors of [47]
argue that the gauge group should be of unitary type with charge changed with respect to the
D2–brane case by the additional flux from the wrapped D4–branes. However the transverse space
is not R7 but a cone over CP3, the more careful analysis of [135] suggest that the dual theory is
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an N = 1 three–dimensional field theory whose classical moduli space of vacua matches such a
transverse space. For no fractional branes the gauge group is argued to be [135] U(N)× U(N)
with field content an N = 1 vector multiplet and four N = 2 chiral superfields, one pair
transforming in the (N, N̄) representation and the other pair in the conjugate. In analogy
with the Klebanov–Witten case, adding M fractional branes should change the gauge group to
U(N)×U(N +M) [78].

7.3 Reduction and Superpotential
We can now reduce the action (7.1) to a one dimensional sigma model. Inserting the ansatz for
the fields and metric we presented in the previous Section one can obtain

SIIA = `5 Vol (M1,2) Vol (M6)
2κ2

∫
drL (7.34)

where L = T − V and M1,2, M6 denote the 2+1 dimensional Minkowski space and the level
surfaces of the seven–dimensional G2 holonomy manifold, respectively. The reduction was first
performed in [104], the result is

T = e2u+4v

h

[
− 30 z′ 2 + 2u′ 2 + 12 v′ 2 + 16u′ v′ − 2 g−1/2

s

m2

`6
e−9z+Φ/2−2u−4v g′ 21

− gs
2
m2

`6
e−6z−Φ

(
g′ 22 e−4u + 2 g′ 23 e−4v

)
− 1

2Φ′ 2
]
. (7.35)

The potential will contain terms proportional to K(r) which appears in F4. Its equation of
motion

d
(
eΦ/2∗̂F4

)
= −g1/2

s F3 ∧H3 (7.36)

turns out to be integrable so that from

∗̂
(
eΦ/2K(r)d3x ∧ dr

)
= −g1/2

s mG4 ∧B|M6 (7.37)

one can obtain an expression for the non–dynamical K

K(r) = 4m2

`6
g1/2
s he−

Φ
2−15z−2u−4v [g2(g1 + c2) + g3(g1 + c3)] . (7.38)

Upon evaluation of the Lagrangian at the minimum value (7.38) for K, the potential becomes

V = − 2h e−2u−4v
[
e2u+8v − e6u+4v + 6 e4u+6v

]
+ 2 gs h

m2

`6
e−6z−Φ [g2 + g3]2

+ 4 g−1/2
s

m2

`6
e−9z+Φ/2+2u h

[
2 (g1 + c2)2 e−4v + (g1 + c3)2 e−4u

]
+ 8 g1/2

s

m4

`12 e
−15z−Φ/2−2u−4v h [g1 (g2 + g3) + g2 c2 + g3 c3]2 . (7.39)

In the notation of (7.5) we choose to denote the functions φa, a = 1, . . . , 7 in the following
order

φa = (u, v, z,Φ, g1, g2, g3) , (7.40)
and one can find the following superpotential [104]

W = −8
[
eu+4v + e3u+2v

]
+ 8 m

2

`6
g1/4
s e−

15
2 z−

Φ
4 [g1 (g2 + g3) + g2 c2 + g3 c3] . (7.41)
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7.4 ξ functions. Equations and solutions
As explained in Section 7.1 the advantage of the Borokhov–Gubser method is that one can solve
separately the systems of first order equations. First one need to solve the system (7.12) for the
ξ functions. We do a change of basis in order to have the most “decoupled” system possible

ξ̃a = (ξ1, ξ1 − ξ2, ξ3 + 2 ξ4, ξ4, ξ5, ξ6,−ξ6 + ξ7) . (7.42)
In this basis the system of equations is

ξ̃′3 = −4m
2g

1/4
s

l6
h0e
−2u0−4v0− 15z0

2 −
φ0
4
[
c2g

0
2 + c3g

0
3 + g0

1(g0
2 + g0

3)
]
ξ̃3 (7.43)

ξ̃′7 = −m
2g

1/4
s

2l6 h0e
−2u0−4v0− 15z0

2 −
φ0
4 (c2 − c3)ξ̃3 (7.44)

ξ̃′5 = − 1
2g3/4
s l6

h0e
−2u0−4v0− 15z0

2 −
φ0
4
[
4l6e4v0+6z0+φ0(ξ̃6 + ξ̃7) + 8l6e4u0+6z0+φ0

ξ̃6

− gsm2(g0
2 + g0

3)ξ̃3
]

(7.45)

ξ̃′6 = g
1/4
s

2l6 h0e
−2u0−4v0− 3

4 (10z0+φ0)
[
− 2g1/2

s l6e2u0+4v0+9z0
ξ̃5 + e

φ0
2 m2(c2 + g0

1)ξ̃3
]

ξ̃′4 = h0

8g3/4
s

e−
3
4 (10z0+φ0)

[
− 24e2u0−4v0+6z0+ 3

2φ
0(c2 + g0

1)ξ̃6 − 12e−2u0+6z0+ 3
2φ

0(c3 + g0
1)(ξ̃6 + ξ̃7)

+ 6e9z0
g3/2
s (g0

2 + g0
3)ξ̃5 −

m2gs
l6

e−2u0−4v0+φ0
2 (c2g

0
2 + c3g

0
3 + g0

1(g0
2 + g0

3))ξ̃3
]

(7.46)

ξ̃′1 = 1
g

3/4
s l6

h0e
−2u0−4v0− 15

2 z
0−φ

0
4
[
g3/4
s l6eu

0+4v0+ 15
2 z

0+φ0
4 ξ̃1 + g3/4

s l6e
1
4 (12u0+8v0+30z0+φ0)ξ̃2

− 8l6e4u0+6z0+φ0(c2 + g0
1)ξ̃6 + 4l6e4v0+6z0+φ0(c3 + g0

1)(ξ̃6 + ξ̃7)

− gsm2(c2g
0
2 + c3g

0
3 + g0

1(g0
2 + g0

3))ξ̃3
]

(7.47)

ξ̃′2 = 1
g

3/4
s l6

h0e
−2u0−4v0− 15

2 z
0−φ

0
4
[
g3/4
s l6eu

0+4v0+ 15
2 z

0+φ0
4 ξ̃1 + 3g3/4

s l6e
1
4 (12u0+8v0+30z0+φ0)ξ̃2

− 24l6e4u0+6z0+φ0(c2 + g0
1)ξ̃6 + 4l6e4v0+6z0+φ0(c3 + g0

1)(ξ̃6 + ξ̃7)

+ gsm
2(c2g

0
2 + c3g

0
3 + g0

1(g0
2 + g0

3))ξ̃3
]
. (7.48)

We are able to fully integrate4 the equations and we present their solution in the order in
which they have to be solved.

7.4.1 ξ̃3

After some manipulation the equation for ξ̃3 can be expressed as

ξ̃′3 = H ′0
H0

ξ̃3 (7.49)

4It is important to have a solution expressed in terms of the least possible number of nested integrals. Usually
[16, 13, 14] it is not possible to find a fully integrated solution and one solves in series expansion, if the number
of nested integrals is high it could be computationally heavy. In the counting of nested integrals we do not take
into account that which enter the definition of the elliptic functions.
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whose solution solution is:
ξ̃3(r) = X3H0(r)e−8z0(1) . (7.50)

We define the constant B1, which we will use in the the following, as

B1 = m2

l6
X3e

−8z0(1) . (7.51)

We can explicitly do the integration which defines the function H0. We give some details
of the procedure we followed because it is paradigmatic of the way we used to obtain explicit
solutions of the ξ̃ equations. Recall that:

H0 = m2

`6

∫ ∞
r

y5 [u3(y)− u1(y)]u1(y)dy (7.52)

The integrand has the following structure:

y5 [u3(y)− u1(y)]u1(y) = α2(y)F(y)2 + α1(y)F(y) + α0(y) (7.53)

Where αi are some functions which do not contain F . We use simple integration by parts∫
α2F2 + α1F + α0 = A2F2 +

∫ (
α1 − 2F ′A2

)
+
∫
α0

= A2F2 +A3F +
∫

(α0 −F ′A3)

= A2F2 +A3F +A4 , (7.54)

where the notation is the following

F ′ = d
dyF (arcsin(1/y)| − 1) = − 1√

y4 − 1
,

α3 = α1 − 2F ′A2 ,

α4 = α0 −F ′A3 ,

Ai =
∫
αi . (7.55)

Once we have a primitive we have just to evaluate it at the two extrema of integration and
get:

H0(r) = m2

2l6F(r)2
( 3

32 −
1

8r4(r4 − 1)2

)
− m2

2l6F(r)
(

3r8 + 3r4 − 4
16r3(r4 − 1)3/2 + K(−1)

16

(
3− 4

r4(r4 − 1)2

))

+ m2

2l6

(
3r4 − 4

32r2(r4 − 1) + 3r8 + 3r4 − 4
16r3(r4 − 1)3/2K(−1)− K(−1)2

8r4(r4 − 1)2

)
(7.56)
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7.4.2 ξ̃7

The equations for ξ̃7 is:

ξ̃′7 = − 3
64
m2

l6
h0e−2u0−4v0

H−1
0 ξ̃3 = −3

4
m2

l6
X3e

−8z0(1) 1
(r4 − 1)3/2 (7.57)

which has the following solution5:

ξ̃7(r) = X7 + 3
8B1

[
r√

r4 − 1
−F(r)

]
(7.58)

7.4.3 ξ̃5 and ξ̃6

The functions ξ̃5 and ξ̃6 are coupled and the system of equations is:

ξ̃′5 = −2h0(2e2u0−4v0 + e−2u0) ξ̃6 − 2h0e−2u0
ξ̃7 −

32
3 f1 ξ̃

′
7 (7.59)

ξ̃′6 = −h0 ξ̃5 −
8
3

1
h0 e

−2u+4vf2 ξ̃
′
7 (7.60)

We can solve for the homogeneous system and we arrange, as usual, the two basis vectors of
the space of the homogeneous solutions in the fundamental matrix

Ξ̃56 =

 (3r4−1)
r4(r4−1)

r(6r8−6r4−1)
r3
√
r4−1 − 3r4−1

r4(r4−1)F(r)
1

r
√
r4−1 1− 3r4

2 −
1

r
√
r4−1F(r)

 . (7.61)

We define the two–component vector gξ56 = (g5, g6) of the non–homogeneous terms

g5(r) = −2h0e−2u0
ξ̃7 −

32
3 (g0

2 + g0
3) ξ̃′7 = −32

3 e
u0+2v0

u1ξ̃
′
7 − 2h0e−2u0

ξ̃7 ,

g6(r) = 2B1f2
r4

(r4 − 1)2 .

The solution will be

ξ̃56(r) = Ξ̃56(r)X56 + Ξ̃(r)
∫ r

Ξ̃56(y)−1gξ56(y) dy

where X56 = (X5, X6) are the integration constants. We obtain
5Here we do a redefinition of the integration constant which appear by direct integration of equation (7.57)

in order to reabsorb an imaginary constant which appears after manipulations with the elliptic function F . We
always consider real solutions.
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ξ̃5 = F(r)2
(
B1(1− 3r4)
7r4(r4 − 1)

)

+ F(r)
(
B1K(−1)(3r4 − 1)

8r4(r4 − 1) − (3r4 − 1)(3X6 − 2X7)
3r4(r4 − 1) − 3B1(5r8 − 5r4 − 2)

28r3
√
r4 − 1

)

+ B1(15r8 − 21r4 + 10)
28r2(r4 − 1) − 3B1K(−1)

8r3
√
r4 − 1

+ (3r4 − 1)
r4(r4 − 1)X5 + 6r

√
r4 − 1X6 −

3X6 − 2X7

3r3
√
r4 − 1

ξ̃6 = F(r)2
(
− B1

7r
√
r4 − 1

)
+ F(r)

(
B1(15r8 + 3r4 − 4)

112(r4 − 1) + B1K(−1)
8r
√
r4 − 1

− 3X6 − 2X7

3r
√
r4 − 1

)

− 3B1r(5r4 + 4)
112
√
r4 − 1

− B1K(−1)
8(r4 − 1) + X5

r
√
r4 − 1

+
(

1− 3r4

2

)
X6 −

2
3X7 (7.62)

7.4.4 ξ̃4

ξ̃4 has no homogeneous part but its non–homogeneous part depends on ξ̃5 and ξ̃6, the equation
is the following:

ξ̃′4 = 3
4h

0f1 ξ̃5 −
3
4(f2 + f3) ξ̃6 −

3
4 f3ξ̃7 −

B1
32 h

0eu0(2u3 − 3)u1 . (7.63)

Having solved for ξ̃5 and ξ̃6 we can find a fully integrated solution which is:

ξ̃4 = F(r)3
(

3B1(3r4 − 1)
448r5(r4 − 1)3/2

)
+

+ F(r)2
(
B1(111r12 − 222r8 + 99r4 − 16)

3584r4(r4 − 1)2 + (3r4 − 1)
3584r5(r4 − 1)3/2 (168X6 − 112X7 − 45B1K(−1))

)

+ F(r)
(
− B1(15r8 − 12r4 + 10)

896r3(r4 − 1)3/2 − B1K(−1)(201r12 − 402r8 + 45r4 + 44)
7168r4(r4 − 1)2 +

+ 3r4 − 1
512r5(r4 − 1)3/2 (−24X5 +K(−1) (3B1K(−1)− 24X6 + 16X7)) + 9r8 − 9r4 + 4

128r4(r4 − 1)(3X6 − 2X7)
)

− B1(51r4 − 32)
3584r2(r4 − 1) + B1K(−1)(201r8 − 231r4 + 134)

7168r3(r4 − 1)3/2 − B1K(−1)2(9r4 − 5)
512r4(r4 − 1)2 + 3K(−1)(3r4 − 1)

65r5(r4 − 1)3/2 X5

+ 3r4 − 2
128r3

√
r4 − 1

(3X6 − 2X7)− 3X5 +K(−1)(3X6 − 2X7)
64r4(r4 − 1) +X4 . (7.64)

7.4.5 ξ̃1 and ξ̃2

The functions ξ̃1 and ξ̃2 are coupled and the system of equations is:
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ξ̃′1 = h0e−u
0
ξ̃1 + h0eu

0−2v0
ξ̃2 − 2(f2 − f3)ξ̃6 + 2f3ξ̃7 −

B1
8 r(2u3 − 3)u1 (7.65)

ξ̃′2 = h0e−u
0
ξ̃1 + 3h0eu

0−2v0
ξ̃2 − 2(3f2 − f3) ξ̃6 + 2f3 ξ̃7 + B1

8 r(2u3 − 3)u1 (7.66)

The fundamental matrix Ξ̃12 is

Ξ̃12 =
(
r4 − 1

√
r4−1
r

(
1− r

√
r4 − 1(E(r)−F(r)

)
2r4 −2r4 (E(r)−F(r))

)
. (7.67)

where E(r) denotes the incomplete elliptic integral of the second kind E(r) = E(arcsin(1/r)|−
1) and E(k) = E(π/2|k). The solutions are quite cumbersome nevertheless we present them
here for completeness:

ξ̃1 = F(r)3
(
−B1

r4 + 1
112r5(r4 − 1)3/2

)

+ F(r)2
(
B1

189r12 − 258r8 + r4 + 48
1792r4(r4 − 1) + (45B1K(−1)− 168X6 + 112X7) r4 + 1

2688r5(r4 − 1)3/2

)

+ F(r)
(
−B1

69r12 − 114r8 + 61r4 − 24
896r3(r4 − 1)3/2 −B1K(−1)315r12 − 390r8 − 53r4 + 120

3584r4(r4 − 1)

+X2(r4 − 1)−X6
63r12 − 78r8 + 31r4 − 8

64r4(r4 − 1) −X7
9r12 − 18r8 − 7r4 + 8

96r4(r4 − 1)

+ (24X5 +K(−1)(24X6 − 16X7 − 3B1K(−1))) r4 + 1
384r5(r4 − 1)3/2

)

−B1
51r8 − 75r4 + 16
1792r2(r4 − 1) +B1K(−1)315r12 − 516r8 + 229r4 − 60

3584r3(r4 − 1)3/2 +X1(r4 − 1)

−B1K(−1)2 63r12 − 126r8 + 63r4 − 4
512r4(r4 − 1) +X2

√
r4 − 1
r

−X2(r4 − 1)E(r) +X5
2r4 − 1

16r4(r4 − 1)

−X5K(−1) r4 + 1
16r5(r4 − 1)3/2 −X6

33r8 − 35r4 + 4
64r3
√
r4 − 1

+X6K(−1)63r12 − 78r8 + 23r4 − 4
64r4(r4 − 1)

+X7
9r8 − 11r4 + 4
96r3
√
r4 − 1

+X7K(−1)9r12 − 18r8 + r4 + 4
96r4(r4 − 1) (7.68)
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ξ̃2 = F(r)3
(
B1

r4 − 3
112r5(r4 − 1)3/2

)

+ F(r)2
(
B1

189r16 − 438r12 + 241r8 + 52r4 − 16
896r4(r4 − 1)2 − (45B1K(−1)− 168X6 + 112X7)(r4 − 3)

2688r5(r4 − 1)3/2

)

+ F(r)
(
−B1

69r12 − 132r8 + 25r4 + 20
448r3(r4 − 1)3/2 −B1K(−1)315r16 − 750r12 + 427r8 + 76r4 + 44

1792r4(r4 − 1)2

+X2 2r4 −X6
63r12 − 87r8 + 40r4 − 12

32r4(r4 − 1) −X7
9r12 − 9r8 − 16r4 + 12

48r4(r4 − 1)

+ (K(−1)(3B1K(−1)− 24X6 + 16X7)− 24X5) r4 − 3
384r5(r4 − 1)3/2

)

−B1
51r8 − 30r4 − 32

896r2(r4 − 1) +B1K(−1)315r12 − 561r8 + 40r4 + 134
1792r3(r4 − 1)3/2 +X1 2r4 −X2 2r4E(r)

−B1K(−1)2 63r16 − 126r12 + 63r8 + 2r4 − 10
256r4(r4 − 1)2 +X5

4r4 − 3
16r4(r4 − 1) +X5K(−1) r4 − 3

16r5(r4 − 1)3/2

−X6
33r8 − 38r4 + 6

32r3
√
r4 − 1

+X6K(−1)63r12 − 87r8 + 32r4 − 6
32r4(r4 − 1)

+X7
9r8 − 14r4 + 6
48r3
√
r4 − 1

+X7K(−1)9r12 − 9r8 − 8r4 + 6
48r4(r4 − 1) (7.69)

7.5 φ functions. Equations and comments
As previously done when handling the ξ variables, we prefer to change the original φ into the
new set φ̃, defined as6:

φ̃a = (φ1, φ1 − 2φ2, 8φ1 + 6φ3 − 3φ4, 8φ1 + 16φ2 + 30φ3 + φ4, φ5, φ6 + φ7, φ6 − φ7) .

In this basis the equations are
6The inverse transformation is:

φa =
(
φ̃1,

1
2
(
φ̃1 − φ̃2

)
,− 7

12 φ̃1 + 1
4 φ̃2 + 1

96 φ̃3 + 1
32 φ̃4,

3
2 φ̃1 + 1

2 φ̃2 −
5
16 φ̃3 + 1

16 φ̃4, φ̃5,
1
2
(
φ̃6 + φ̃7

)
,

1
2
(
φ̃6 − φ̃7

))
.
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φ̃′1 = 1
20 h

0 e−2u0−4v0 [
ξ̃1 + 2 ξ̃2 − 20 eu0+4v0

φ̃1 − 20 e3u0+2v0
φ̃2
]
,

φ̃′2 = 1
20 h

0 e−2u0−4v0 [4 ξ̃1 + 3 ξ̃2 − 20 eu0+4v0
φ̃1 − 60 e3u0+2v0

φ̃2
]
,

φ̃′3 = 1
10 h

0 e−2u0−4v0 [4 ξ̃1 + 8 ξ̃2 + ξ̃3 − 32 ξ̃4 − 80 eu0+4v0
φ̃1 − 80 e3u0+2v0

φ̃2
]
,

φ̃′5 = g
1/2
s

4m2 h
0 e3z0/2−3Φ0/4

[
`6 e15z0/2+Φ0/4 ξ̃5 + g1/4

s m2
(
4 φ̃6 −

(
g0

2 + g0
3

) [
8 φ̃1 − φ̃3

]) ]
,

φ̃′6 = 1
2 gsm2 h

0 e−2u0−4v0−3z0/2+3Φ0/4
[
`6 e15z0/2+Φ0/4

(
2 e4u0

ξ̃6 + e4v0
ξ̃7
)

+ 2 g1/4
s m2 e4u0 [4 φ̃5 +

(
c2 + g0

1

) (
8 φ̃1 + 8 φ̃2 − φ̃3

)]
+ g1/4

s m2 e4v0 (4 φ̃5 −
(
c3 + g0

1

)
φ̃3
) ]

,

φ̃′7 = 1
2 gsm2 h

0 e−2u0−4v0−3z0/2+3Φ0/4
[
`6 e15z0/2+Φ0/4

(
2 e4u0

ξ̃6 − e4v0
ξ̃7
)

+ 2 g1/4
s m2 e4u0 [4 φ̃5 +

(
c2 + g0

1

) (
8 φ̃1 + 8 φ̃2 − φ̃3

)]
− g1/4

s m2 e4v0 (4 φ̃5 −
(
c3 + g0

1

)
φ̃3
) ]

,

φ̃′4 = − 1
10 `6 h

0 e−2u0−4v0−15z0/2−Φ0/4
[
`6 e15z0/2+Φ0/4

(
8 ξ̃1 − 4 ξ̃2 − 5 ξ̃3

)
+ 80 `6 eu0+4v0+15z0/2+Φ0/4 φ̃1 − 80 `6 e3u0+2v0+15z0/2+Φ0/4 φ̃2

+ 40 g1/4
s m2

(
4
(
g0

2 + g0
3

)
φ̃5 + 2

(
2 g0

1 + c2 + c3
)
φ̃6 + 2 (c2 − c3) φ̃7

−
(
g0

2

(
c2 + g0

1

)
+ g0

3

(
c3 + g0

1

))
φ̃4
)]
.

(7.70)

The φ system does not admit a fully integrated solution we are thus forced to proceed by
series expansion which will be the subject of later Sections. Here we present the equations, we
comment on the number of nested integrals and show that we can find solutions up to three
nested integrals. We do not write them explicitly because the expressions are very complicated
and not particularly enlightening, they can be computed using the expressions for the ξ̃ functions
given in Section 7.4 and the solutions for the homogeneous part we will present in this Section.
Again the presentation follows the order in which the equations have to be solved.

7.5.1 φ̃1 and φ̃2

The functions φ̃1 and φ̃2 are coupled and the system is

φ̃′1 = −h0e−u
0
φ̃1 − h0eu

0−2v0
φ̃2 + 1

20h
0e−2u0−4v0(ξ̃1 + 2ξ̃2) ,

φ̃′2 = −h0e−u
0
φ̃1 − 3h0eu

0−2v0
φ̃2 + 1

20h
0e−2u0−4v0(4ξ̃1 + 3ξ̃2) .
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The fundamental matrix is

Υ̃12 =

 r4+1
r3
√
r4−1

1
r4 + r4+1

r3
√
r4−1 (E(r)−F(r))

3−r4

r3
√
r4−1

3
r4 + 3−r4

r3
√
r4−1 (E(r)−F(r))

 . (7.71)

A formal solution is thus(
φ̃1(r)
φ̃2(r)

)
= Υ̃12(r)Y12 + Υ̃12(r)

∫ y

Υ̃−1
12 (y)gφ12(y)dy . (7.72)

Some of the integrals can be explicitly done but there are some terms for which we are unable
to find a primitive. We thus have a solution up to one implicit integral.

7.5.2 φ̃3

We can use the following relation coming from the equation for φ̃1:

−h0e−u
0
φ̃1 − h0eu

0−2v0
φ̃2 = φ̃′1 −

h0

20e
−2u0−4v0

, (7.73)

to simplify the equation for φ̃3, which will take the following form:

φ̃′3 = 8φ̃′1 + h0

10e
−2u0−4v0 (

ξ̃3 − 32ξ̃4
)
. (7.74)

It has the following solution:

φ̃3(r) = 8φ̃1(r) + 8
3

∫ r ξ̃3
(y4 − 1)3/2 dy −

256
5

∫ r ξ̃4
(y4 − 1)3/2 dy + Y3 , (7.75)

which is again implicitly defined in terms of a single integral.

7.5.3 φ̃5 and φ̃6

φ̃5 and φ̃6 are coupled and the system is

φ̃′5 = h0φ̃6 + `6

4m2h
0H0 ξ̃5 −

h0

4 f1
(
8φ̃1 − φ̃3

)
φ̃′6 = 2h0e2u0 (2e−4v0 + e−4u0)

φ̃5 + `6

m2h
0H0e

2u0−4v0
ξ̃6 + `6

2m2 e
−2u0

h0H0 ξ̃7

+ f2
4
(
8φ̃1 + 8φ̃2 − φ̃3

)
− f3

4 φ̃3

The fundamental matrix is

Υ̃56 =

 1
r
√
r4−1

1
21
(
−2 + 3r4)+ 2

21r
√
r4−1F(r)

1−3r4

r4(r4−1)
2(6r8−6r4−1)

21r3
√
r4−1 + 2(1−3r4)

21r4(r4−1)F(r)

 .

A formal solution will look the same as in (7.72). Recall that in gφ56 there are pieces defined
in terms of one implicit integral coming from φ̃1, φ̃2 and φ̃3, thus the expression we get are
defined in terms of two nested integrals.
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7.5.4 φ̃7

The equation for φ̃7 can be put in the form

φ̃′7 = φ̃′6 −
`6

m2h
0H0e

−2u0
ξ̃7 + 1

2f3φ̃3 − 4h0e−2u0
φ̃5 .

A solution is given by

φ̃7 = φ̃6 −
`6

m2

∫
h0H0e

−2u0
ξ̃7 + 1

2

∫
f3 φ̃3 − 4

∫
h0e−2u0

φ̃5 .

Among the summands which appear under integral sign, the first contains no further integral
while the second integrand is itself defined implicitly, thus it gives two nested integrals in our
counting. The last summand is defined by three nested integrals (one explicit here and two
coming from φ̃5). A simple integration by parts can reduce the number by one giving an
expression for φ7 which contains at most two nested integrals. We obtain

φ̃7(r) = φ̃6(r)− `6

m2h
0H0e

−2u0
ξ̃7(r) + 1

2f3φ̃3(r)

+ 4
∫ r

(
− 2y√

y4 − 1
− 2F(y)

)
φ̃′5(y)dy + 8

(
r√

r4 − 1
+ F(r)

)
φ̃5(r) .

7.5.5 φ̃4

We can use the φ̃1, φ̃2 system to simplify the equation for φ4 which one obtains from (7.13); it
can be recast in the following form

φ̃′4 = −H−1
0 H ′0 φ̃4 + 16φ̃′1 − 8φ̃′2 + 1

2h
0e−2u0−4v0

ξ̃3 −
16m2

`6
h0H−1

0 e−2u0−4v0
f1φ̃5

− 4m2

`6
e−4u0

H−1
0 f2φ̃6 + 3

4
m2

`6
e−2u0−4v0

h0H−1
0

(
φ̃6 − φ̃7

)
. (7.76)

The homogeneous equation admits the solution φ̃4,h = H−1
0 and clearly a general solution is

given by
φ4(r) = H−1

0 (r)Y4 +H−1
0 (r)

∫ r

H0(y)gφ̃4 (y)dy . (7.77)

7.6 The force on a probe D2–brane
We compute the force on a D2–brane probing the backreaction of the CGLP background. At
order zero in perturbation, the contribution from DBI cancels the contribution from WZ and
there is no net force as expected for a probe D2–brane in this supersymmetric background. At
a first glance, the expression for the force in the perturbed solution is rather complicated but
we will show that, using the first order equations of motion, most of the terms cancel and the
final expression is quite simple. The action of a D–brane we wrote in Section 3.6 was in string
frame, we expressed it here in Einstein frame
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SDp = −Tp
∫
dξp+1e−Φ/4g−3/4

s

√
|det(ι∗[g] + F)|+ Tp

∫
ι∗[C] ∧ eF (7.78)

We define the force as follows

F = FDBI + FWZ ≡ −dV
DBI

dr
− dV WZ

dr
. (7.79)

We choose a static gauge for a brane aligned along M1,2 and we do not turn on the gauge field
on the brane. Thus, given that the B–field in (7.28) pulls–back to zero, there is no F and the
DBI Lagrangian reduces to

LDBI = −V DBI = −Tpe−Φ/4g−3/4
s

√
−g00g11g22 = −Tpe−Φ/4−15z/2g−3/4

s . (7.80)

The only non–zero RR potential is C3, the part which will not pullback to zero is given by

C3 = 1
gs
K(r)dx0 ∧ dx1 ∧ dx2 dK(r)

dr
= −K(r) , (7.81)

where K(r) is give in equation (7.38). The Wess–Zumino term thus reduces to

LWZ = −V WZ = TP
1
3!ε

i1i2i3(C3)i1i2i3 = −Tp
1
gs
K(r) . (7.82)

We can now compute the force on a probe D2–brane (from now on we put Tp = 1). At zeroth
order we have

FDBI0 = g−1/2
s H ′0e

−Φ0/2−15z0 = −4m2

`6
g−1/2
s e−Φ0/2−15z0−2u0−4v0

h0
[
c2g

0
2 + c3g

0
3 + g0

1(g0
2 + g0

3)
]

FWZ
0 = 1

gs
K(r) = 4m2

`6
g−1/2
s e−Φ0/2−15z0−2u0−4v0

h0
[
c2g

0
2 + c3g

0
3 + g0

1(g0
2 + g0

3)
]

and, as we have anticipated, the two contributions cancel.
At first order we obtain

FDBI1 = −FDBI0

(1
4φ4 −

15
2 φ3

)
+ g−3/4

s

(1
4φ
′
4 + 15

2 φ
′
3

)
e−

Φ0
4 −

15
2 z

0

FWZ
1 = −FWZ

0

(1
2φ4 + 15

2 φ3 − 2φ1 − 4φ2

)
+ g−3/4

s

(1
4φ
′
4 + 15

2 φ
′
3

)
e−

Φ0
4 −

15
2 z

0

+ 4m2

`6
g−1/2
s h0e−

Φ0
2 −15z0−2u0−4v0 [

c2φ6 + c3φ7 + φ5(g0
2 + g0

3) + g0
1(φ6 + φ7)

]
.

From these expressions and the fact that FDBI0 = −FWZ
0 , using the equations of motion for

φ3 and φ4 which can be easily read of the ones for φ̃i, one can notice that most of the terms at
first order cancel so that the force on a probe D2–brane reduces to

F (r) = FDBI1 + FWZ
1

= 1
8g3/4
s

h0e−2u0−4v0− 15
2 z

0− 1
4 Φ0

ξ̃3

= 2
gs

X3 e
−8z0(1)

(r4 − 1)3/2 (7.83)
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As an aside, the derivative of the Green’s function for the CGLP background (7.85) matches
the behavior of the force (7.83) (see [12] for comments on this point). Indeed, allowing only for
a dependence on the radial variable, the solution to

�G = 0 (7.84)

evaluated on the CGLP background is

G(r) = c1 + c2

(
r√

r4 − 1
− F (arcsin(1/r)| − 1)

)
. (7.85)

7.7 IR expansion
We present here the IR expansion of the φ fields which are easily obtainable from the inverse
transformation of Footnote 6. We write explicitly only the divergent and constant terms since
terms which are regular in the IR (we recall here that it corresponds to the limit r → 1 in our
conventions) do not provide any constraint on the space of solutions. We also impose the zero
energy condition (7.14) which gives XIR

2 = 0 as a constraint.

φ1 = 1√
r − 1

[
Y IR

1 +
(
E(−1)−K(−1)

)
Y IR

2 + log(r − 1)
4480

(
− 3B1

(
34 + 65K(−1)2

)

+ 1792X1 + 336X5 − 112K(−1)
(
3X6 − 2X7

))]
+O

(
(r − 1)1/2

)
(7.86)

φ2 = 1
13440

√
r − 1

[
− 3B1

(
41 + 100K(−1)2

)
+ 2688X1 + 924X5

− 308K(−1)
(
3X6 − 2X7

)]
− Y IR

2 +O
(
(r − 1)1/2

)
(7.87)

φ3 = 1
15482880 (K(−1)2 − 4)

√
r − 1

[
480 log(r − 1)

(
K(−1)2 − 4

) (
3B1

(
K(−1)2 + 17

)
− 56(K(−1)(2X7 − 3X6) + 3X5)

)
− 42K(−1)2(21067B1 − 49152X4 + 17384X5)

+ 87369B1K(−1)4 − 374856B1 − 32K(−1)
(
189168X6 − 120117X7

+ 32(5210Y IR
2 − 33(7Y IR

3 + 80Y IR
6 ))

)
+ 40K(−1)3(36624X6 − 22535X7)

+ 1344
(
4160X1 − 19200X4 + 311X5 + 160(7Y IR

1 + 7Y IR
2 E(−1) + 132Y IR

5 − 144Y IR
7 )

)]

+ 1
256 (3B1K(−1)− 8X7) log(r − 1)

− 2Y IR
4

3 (K(−1)2 − 4) + 1
96
(
48Y IR

2 + Y IR
3

)
+O

(
(r − 1)1/2

)
(7.88)
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φ4 = 1
7741440 (K(−1)2 − 4)

√
r − 1

[
480 log(r − 1)

(
K(−1)2 − 4

) (
3B1

(
K(−1)2 + 17

)
− 56(K(−1)(2X7 − 3X6) + 3X5)

)
+ 6K(−1)2(9203B1 − 56(92160X4 + 6781X5))

− 30135B1K(−1)4 − 2254920B1 + 32
(
K(−1)(488208X6 − 331467X7

+ 32(−5210Y IR
2 + 231Y IR

3 + 2640Y IR
6 )) + 42

(
4160X1 + 79104X4 + 4919X5

+ 160(7Y IR
1 + 7Y IR

2 E(−1) + 132Y IR
5 − 144Y IR

7 )
))

+ 8K(−1)3(338909X7 − 494256X6)
]

+ 1
128 (3B1K(−1)− 8X7) log(r − 1)− 4Y IR

4
3 (K(−1)2 − 4) + Y IR

2 − 5Y IR
3

16

+O
(
(r − 1)1/2

)
(7.89)

φ5 = 1
5160960

1√
r − 1

[
60 log(r − 1)

(
K(−1)2 − 4

) (
3B1

(
K(−1)2 + 17

)
− 56

(
K(−1)(2X7 − 3X6) + 3X5

))
+ 6K(−1)2(1795B1 − 3976X5) + 2235B1K(−1)4

− 42024B1 − 32K(−1)(6384X6 − 3711X7 + 4160Y IR
2 − 672Y IR

3 − 7680Y IR
6 )

+ 152K(−1)3(336X6 − 179X7) + 1344
(
64X1 − 768X4 − 23X5 − 160(Y IR

1 + Y IR
2 E(−1)

− 12Y IR
5 )

)]
− 3(K(−1)2 − 4)

2048 (3B1K(−1)− 8X7) +O
(
(r − 1)1/2

)
(7.90)

φ6 = 1
20643840

[
6K(−1)2(36599B1 + 30856X5)− 5115B1K(−1)4 + 140376B1

− 1344
(
1262X1 − 2304X4 + 185X5 + 160(5Y IR

1 + 12Y IR
5 − 48Y IR

7 + 5Y IR
2 E(−1))

)
+ 32K(−1)(28560X6 − 18495X7 + 44480Y IR

2 − 672Y IR
3 − 7680Y IR

6 )

+ 8K(−1)3(16841X7 − 26544X6)
]

+O
(
(r − 1)

)
(7.91)
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φ7 = 1
5160960(r − 1)

[
6K(−1)2(5656X5 − 295B1)− 8K(−1)3(7644X6 − 4241X7)

− 2415B1K(−1)4 + 32K(−1)
(
7644X6 − 4551X7 + 32(130Y IR

2 − 21Y IR
3 − 240Y IR
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)
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64X1 − 768X4 + 7X5 − 160(Y IR
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K(−1)2 − 4
86016

[
3B1(17 +K(−1)2)− 56

(
3X5 −K(−1)(3X6 − 2X7)

)]

+ log(r − 1)
860160

[
B1(3468 + 4485K(−1)2 − 15K(−1)4)− 56

(
768X1 + 204X5

− 68K(−1)(3X6 − 2X7)− 15K(−1)2X5 + 5K(−1)3(3X6 − 2X7)
)]

+ 1
20643840

[
32K(−1)

(
28650X6 − 18495X7 + 32(1390Y IR

2 − 21Y IR
3 − 240Y IR

6 )
)

+ 6K(−1)2(36599B1 + 30856X5)− 8K(−1)3(26544X6 − 16841X7)− 5115K(−1)4B1

+ 140376B1 − 1344
(
1216X1 − 2304X4 + 181X5

+ 160(5Y IR
1 + 12Y IR

5 + 48Y7 + 5Y IR
2 E(−1))

)]
+O

(
(r − 1)1/2

)
(7.92)

7.8 Analysis of the space of solutions
We want to study some configuration whose backreaction is described within the space of solu-
tions we have found in the previous Section. In particular we are interested in the modes which
arise in the backreaction of anti–D2-branes placed at the tip of the cone (r = 1) and which are
smeared on the finite size S4. We need to impose the correct infrared boundary conditions. As
for the smearing this tells us that we need to impose boundary conditions such that the warp
factor and the dilaton acquire a singularity of the type 1/

√
r − 1 because it has to be a solution

of a wave equation in a three-dimensional transverse space7.

7.8.1 Boundary conditions for BPS D2–branes

In this section, as a matter of exposing our method before we focus on the candidate backreac-
tion by anti–D2 branes, we first derive the boundary conditions which correspond to the modes
sourced by a stack of branes placed at the tip of the cone.

Let us then consider a set of N ordinary extremal D2 branes smeared on the S4 at the
7This at a first glance is in contrast with the usual behavior 1/(r−1). This is due to to our choice of coordinate

system in which the radial component of the transverse metric is h2dr2. In fact for r → 1 we could choose a new
radial variable τ ≡

√
r − 1 such that dτ ∼ dr/

√
r − 1 and have the usual behavior dτ2.
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bottom of the throat. For the CGLP background, we can explicitly evaluate the Maxwell charge

QMax
CGLP (r) = 1

(2π
√
α′)5

∫
M6

eΦ/2 ∗ F4 = 4m2g
−1/2
s

`(2π
√
α′)5

vol(M6)[g1(g2 + g3) + c2g2 + c3g3] . (7.93)

This quantity exhibits the following zeroth–order IR behavior:

QIRCGLP = 0 , (7.94)

as can be seen from

g0
1(g0

2 + g0
3) + c2g

0
2 + c3g

0
3 '

7
128(r − 1)3/2 − 77

512(r − 1)5/2 +O
(
(r − 1)7/2

)
, (7.95)

using equation (7.32).

Within the Ansatz we have been considering, a BPS solution describing the addition of N
ordinary BPS D2–branes smeared on the S4 in the IR can be found by shifting g2 and g3 such
that the combination g2 + g3 — which is multiplied by g1 in (7.93) — does not change:

g0
2 → g0

2 + 32N
3 , g0

3 → g0
3 −

32N
3 . (7.96)

This way, the charge is shifted as

QMax
CGLP → QMax

CGLP + ∆QMax
D2 , (7.97)

with

∆QMax
D2 = 4Nm2

(2π
√
α′)5

g
−1/2
s

`
vol(M6) . (7.98)

Note that the flux through S4,

qS4 = 1
(2π
√
α′)3

∫
S4
F4 = 4mg−1

s

(2π
√
α′)3

(g1 + c2)vol(S4) , (7.99)

stays unchanged under the shifts (7.96), while the warp factor shifts as

H0(r)→ −4m2

`6

∫ r

h e−2u0−4v0 [
g0

1(g0
2 + g0

3) + c2g
0
2 + c3g

0
3 +N

]
dy (7.100)

and now is endowed with a singularity of the kind

H(r) ∼ ∆QD2√
r − 1

. (7.101)

This is the expected behavior of the harmonic function for Dp branes smeared on an Sr within
an otherwise ten–dimensional flat space, which indeed behaves as 1

τ7−p−r , where p = 2 and r = 4
for the CGLP background.

Let us now see in more detail how this BPS solution can be reproduced by the first–order
perturbation apparatus. First of all, we set to zero all the modes related to supersymmetry–
breaking, namely we impose that all the constants Xa and B1 ∼ X3 (7.51), which enter upon
integrating of ξ̃ equations, should vanish.
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Furthermore, the zeroth–order combinations e2u0 and e2v0 reach constant or zero value in
the IR ; since we expect that the geometry of the transverse space is not affected by the addition
of BPS D2–branes we impose the perturbations associated to u and v to vanish as well. This
fixes

Y IR
1 = Y IR

2 = 0. (7.102)

In addition, non–singularity of φ5 and φ7 (we recall that they enter the fluxes of our Ansatz)
is ensured by

Y IR
5 = − 1

840K(−1)(7Y IR
3 + 80Y IR

6 ). (7.103)

The mode φ6 is regular, and in view of the first–order contribution to (7.93)

(
g0

1 + c2
)
φ6 +

(
g0

1 + c3
)
φ7 +

(
g0

2 + g0
3

)
φ5 ' −

√
r − 1
8 φ5 +

( 3
32 −

r − 1
16

)
φ6 −

r − 1
16 φ7 ,

(7.104)
one should impose that φ6(r → 1) be proportional to the number N of BPS D2–branes spread
over S4 at the tip.

To recap, the above choices of integration constants (7.102)–(7.103) yield the expected be-
havior for BPS D2–branes added in the supersymmetric CGLP background:

φ1 = 0 , φ2 = 0 , φ5 = O (r − 1) , (7.105)

φ3 = − 2Y IR
7

4−K(−1)2
1√
r − 1

+O
(
(r − 1)1/2

)
, φ4 = − 4Y IR

7
4−K(−1)2

1√
r − 1

+O
(
(r − 1)1/2

)
,

φ6 = 1
2Y

IR
7 +O

(
(r − 1)1/2

)
, φ7 = −1

2Y
IR

7 +O
(
(r − 1)1/2

)
.

We recall that φ1,2 denote perturbations of the stretching functions, φ3,4 label perturbations
of the warp factor and dilaton, whilst φ5,6,7 are the modes corresponding to the linearized
perturbations of the NSNS and RR fluxes of this IIA background.

The integration constant Y IR
7 is the only remaining one and is related to the number N of

added BPS D2–branes: indeed, the equations for φ6 and φ7 reproduce the shift (7.96). The
warp factor, along with the dilaton, acquires the expected singularity and

H = e8z0 (1 + 8φ3) , eΦ = eΦ0 (1 + φ4) = e2z0 (1 + 2φ3) , (7.106)

in accordance with eΦ ∼ H1/4.

7.8.2 Assessing the anti-D2 brane solution

The final step and main aim of our analysis is to determine how, within the space of generic
linearized deformations of the IIA CGLP background, one can account for the backreaction due
to the addition of anti–D2 branes smeared on the S4 at the tip of the warped throat.
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As the prime physical requirement we should impose that the force felt by a D2–brane probing
the backreaction due to this stack of anti–D2 branes be non-vanishing. So, we are forbidden
from turning off the corresponding mode which appears in the expression (7.83) of the force,
and enters the various expressions for the modes φa by means of the shorthand combination

B1 = m2

`6
X3e

−8z0(1) . (7.107)

As our next set of IR boundary conditions, let us recall that the modes φ3 and φ4 associated to
the perturbation of the warp factor and the dilaton must exhibit no worse than a 1/

√
r − 1 ∼ 1/τ

behavior (cf. Footnote 7). Such a behavior is in accordance with the Coulomb–like divergence
associated to anti–D2 branes smeared over the S4 at the tip of the warped throat.

Inspecting the IR expansions of the deformation modes φa, every piece that is more singular
than the aforementioned 1/

√
r − 1 behavior will be culled by tuning appropriate combinations

of the X’s and the Y ’s integration constants parametrizing the space of generic linearized per-
turbations of the CGLP background.

Another, equivalent but slightly less liberal, criterion that we are about to consider focuses
on allowing or discarding various pieces from the φa’s IR expansions depending on their con-
tribution to the energy. More precisely, we consider the kinetic energy (7.35) and the potential
energy (7.39) obtained by reducing our IIA supergravity Ansatz to a one–dimensional sigma
model.

For instance, the energy associated to the first–order perturbation of the dilaton and warp
factor is obtained by expanding to second–order the corresponding terms from (7.35):

e2 (u0+φ1)+4 (v0+φ2)
h

[
− 30

(
z0 ′ + φ′3

)2
− 1

2
(
Φ0 ′ + φ′4

)2 ]
 

e2u0+4 v0

h

[
− 30φ′ 23 −

1
2 φ
′ 2
4 − 2 (φ1 + 2φ2)

(
Φ0 ′ φ′4 + 60 z0 ′ φ′3

) ]
(7.108)

The energy associated to the deformation of the warp factor and dilaton exhibits the following
singular behavior

(r − 1)3/2
(
dφ3,4
dr

)2
∼ 1

(r − 1)3/2 , (7.109)

where as a matter of course we neglect less diverging terms. This behavior sets the threshold
for what we consider an allowable singularity in the energy.

Note that, as it turns out, for all practical purposes we can neglect contributions of the type
φaφb and φ′a φb for a 6= b: they only contribute to sub–leading divergences. In addition, there
is no contribution to the energy that is first–order in the SUSY–breaking parameters, since we
are expanding around a saddle point.

Another remark is in order. We have considered linearized deformation for the fields entering
our supergravity Ansatz, namely we have expanded as

φa = φ0
a + φ1

a(X,Y ) , (7.110)
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with Xi and Yi being implicitly the small supersymmetry–breaking expansion parameters. On
the other hand, we are considering quadratic contributions of the φ1

a’s to the energy.
The reason why we do not stop at first–order contributions to the energy from those defor-

mation modes is that we have expanded around a saddle point. Had we gone as far as computing
2nd order expansions of the deformation modes, namely

φa = φ0
a + φ1

a(X,Y ) + φ2
a(X,Y, Z,W ) , (7.111)

which is an achievable if strenuous task, it might well happen that the singularities we are about
to expose might cancel against truly second order contributions to the energy. By this we mean
contributions of the type φ2

aφ
0
b , in addition to those of the form

(
φ1
a

)2
φ0
b that we presently

consider.

Everything is now in place to show that the candidate IIA supergravity dual to metastable
supersymmetry–breaking that would be obtained out of backreacting D2’s spread over the S4

in the far IR of the CGLP background comes with an irretrievable IR singularity. Indeed, we
are going to show that it is not possible to simultaneously satisfy the two previously mentioned
physical requirements.

In point of fact, there is a singularity associated to the NSNS and RR fluxes that is worse than
the ones we allow, namely those that are physical and should be kept based on their identification
with the effect of adding anti–D2 branes to uplift the AdS minimum of the potential. There is
only one way of getting rid of that “unphysical” singularity: it entails setting to zero the single
mode entering the force felt by a brane probing the non–supersymmetric backreaction by D2’s.
So, our two sensible IR boundary conditions are incompatible.

Ensuring that there is a force exerted on a probe D2–brane by the anti–D2’s at the tip
results in a 1

(r−1)3 ∼ 1
τ6 singular contribution to the energy, stemming from the NSNS or the RR

field strength. Such a singularity is worse than the ones it is sensible to a priori allow, namely
1

(r−1)3/2 singularities or milder ones, associated to the smeared D2’s.

Let us see how this comes about with full details. First of all, note that the potentially
most divergent deformation modes is φ7: its IR series expansion (7.92) displays 1

r−1 and log(r−1)
r−1

pieces. That mode, φ7, contributes only to the deformation of the NSNS 3–form field strength

` δH3 = m
[
(φ6 + φ7) U3 + φ′6 dr ∧ U2 + φ′7 dr ∧ J2

]
. (7.112)

In view of (7.35) and (7.39), the leading contribution to the energy from the deformation of the
NSNS 3–form is

−m
2

2 `6
e2u0+4 v0−8 z0

h

[
φ′ 26 e−4u0 + 2φ′ 27 e−4 v0]− 2 m

2

`6
h e−8 z0 [φ6 + φ7]2 . (7.113)

There is another potential contribution from (7.39) which involves φ6 and φ7. It is easily seen
that it is sub–leading. Now, what is the IR singular behavior of (7.113) ? We focus on the most
singular piece of φ7 ∼ 1

r−1 and its derivative. It entails the following singular behavior

−m
2

`6
e−8 z0(r)

[
e2u0(r)

h(r)

(
d

dr

1
(r − 1)

)2
+ 2h(r)

( 1
(r − 1)

)2
]
∼ 1

(r − 1)5/2 . (7.114)
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According to our physical criterion pertaining to the energy, we should then discard the most
IR–divergent piece of φ7, see (7.92). This is achieved by imposing

X5 = 1
168

[
3
(
17 +K(−1)2

)
B1 + 56K(−1) (3X6 − 2X7)

]
, (7.115)

X1 = 1
86016

[
6048B1 + 1032192X4 + 215040Y IR

1 − 2580480Y IR
5 + 215040E(−1)Y IR

2

+ 235200K(−1)X6 − 139360K(−1)X7 + 133120K(−1)Y IR
2

− 21504K(−1)Y IR
3 − 245760K(−1)Y IR

6 + 8364K(−1)2B1

− 27216K(−1)3X6 + 11304K(−1)3X7 − 1809K(−1)4B1
]
, (7.116)

where (7.115) has been applied to obtain (7.116) out of the combination of X’s and Y ’s from
the 1

(r−1) part of φ7’s IR expansion.
We now turn our attention to getting rid of the singularities stemming from the RR flux and

φ5. First of all, note that the condition (7.115) washes out, at no extra cost, the leading log(r−1)√
r−1

part of φ5’s IR asymptotics.
Still, one should enforce that the 1√

r−1 part of φ5’s IR expansion be wiped out by appropri-
ately tuning some of the X’s and Y ’s. Indeed, if kept unchecked, that divergent piece would
yield a singularity in the energy arising from the RR flux:

− 2m
2

`6
e−8 z0−9φ3+φ4/2

h

(
g0 ′

1 + φ′5

)2

− 4 m
2

`6
e−8 z0−9φ3+φ4/2+2u0+2φ1 h

[
2
(
g0

1 + c2 + φ5
)2

e−4 v0−4φ2 +
(
g0

1 + c3 + φ5
)2

e−4u0−4φ1

]
 

1
(r − 1)5/2 , (7.117)

which is beyond the energy threshold (7.109) and should be culled. To get rid of that singular
piece from φ5, one must exact

− 32K(−1)
(
6384X6 − 3711X7 + 4160Y IR

2 − 672Y IR
3 − 7680Y IR

6

)
6K(−1)2 (1795B1 − 3976X5) + 152K(−1)3 (336X6 − 179X7)
+ 2235K(−1)4B1 − 42024B1 + 1344

[
64X1 − 768X4 − 23X5

− 160 (Y IR
1 + E(−1)Y IR

2 − 12Y IR
5 )

]
= 0 . (7.118)

We have finally reached the punchline of our analysis: taking into account the conditions (7.115)–
(7.116) that did arise from ensuring that no “unphysical” singularity pops out of the NSNS flux,
it turns out that (7.118) yields

11340
(
4−K(−1)2

)
B1 = 0 , (7.119)

in blatant opposition to the physical requirement that a D2–brane probing the non–supersym-
metric deformation of the CGLP background experiences a non–vanishing force!
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We have therefore come to the conclusion that a careful analysis of the backreaction of anti–
D2 branes on the CGLP background inevitably results in an IR singularity. By focusing on
two particular flux elements for which the energy contribution can be easily calculated, we have
shown that it is not possible to avoid a singular behavior provided we want to keep the B1 mode
entering the expression for the force (7.83) to be non–vanishing.

One has to face that at least one of the perturbed NSNS or RR fluxes contributes to a
divergent energy density and to a divergent action as well (given that the factor √g10 '

√
r − 1

appearing in the ten–dimensional action (7.1) is not enough to make the action finite in the IR),
much as is the case in [11]. The key difference from [11] lies in the fact that in our case the
singular behavior is not at all sub–leading.

The above type IIA analysis completes the program of investigating the would–be backre-
acted supergravity duals to metastable supersymmetry–breaking vacua, which was originally
started in a type IIB setting [16], and next considered in [11] in an 11–dimensional context. It
would be of much interest to consider other backgrounds and/or, as explained at the beginning
of this Section, to go to higher–order in the perturbations around those BPS solutions. It might
be that an absence of the nasty singularities we have kept on encountering so far could be used
in order to discriminate among solutions of the landscape string theory vacua.
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Chapter 8

Conclusions

The interplay between supersymmetry and geometry has been a guiding principle in string theory
since its early days. As always, the presence of symmetries in a physical problem simplifies it
and allows to find solutions to the equations describing such a system. The major advantage,
among others, of supersymmetry in the context of superstring compactifications is that it allows
to trade the second order differential equations of motion by some first order ones, whose content
is the invariance of the solution under supersymmetry variations, and that, under some mild
assumptions, are almost all1 one needs to care about in order to have a solution. By itself this
is already an important and deep feature of the theory, but it would be certainly less powerful
if it was lacking the elegant relation with geometry.

In Chapter 2 we have introduced the main features of type II theories, their action and
equations of motion together with a compactification ansatz and the relevant supersymmetry
transformations. We also have briefly discussed the simplest case of fluxless Minkowski com-
pactifications where we have seen the intimate relation between geometry and supersymmetry
at work. We have reviewed how to reformulate the conditions imposed by supersymmetry as
a geometric condition on the internal manifold; supersymmetry selects a specific class of man-
ifolds, namely Calabi–Yau’s [32]. It is well known that Calabi–Yau compactifications are not
phenomenologically viable models because of the moduli problem. To look for a wider class
of solutions is a natural step and we thus turn on some of the other fields of the theory (e.g.
fluxes) and seek for solutions; the obvious drawback is that difficulty increases. For type II
strings, which have been the object of interests (in particular type IIA) in this thesis, there is a
geometric interpretation for a very general class of N = 1 vacua2, based on the tools provided
by Generalized Complex Geometry, which has been initiated in [85, 86].

In Chapter 3 we have reviewed the mathematical aspects of Generalized Complex Geometry
[106, 95] and their use in type II string compactifications. Also in presence of fluxes it is possible
to fully characterize the class of manifolds selected by supersymmetry. The main point is the
reformulation of the supersymmetry conditions (2.16) as equations (3.57) - (3.59), involving a
pair of differential forms on the internal manifold, the pure spinors Φ1 and Φ2, which define the
geometry and give the RR flux content. The class of manifolds selected by supersymmetry is
now constituted by the so called generalized Calabi–Yau manifolds. D–branes and O–planes are

1As discussed in the text one should solve, in addition, for the Bianchi identities.
2It includes supersymmetric compactifications to Minkowski and AdS spaces with or without sources and with

the most general flux content compatible with the ansatz discussed in Chapter 2. It does not take into account
NS5–branes in a natural way.
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important dynamical objects in string theory, both for phenomenological reasons and internal
consistency. Generalized Complex Geometry provides a suitable extension of the calibration
forms [126, 130, 149] which allows for a comprehensive description as reviewed in Section 3.6.

As we have seen it is hard to overestimate the importance of supersymmetry, nevertheless
there is no evidence of it in the known particle spectrum and thus we live in a state where
such a symmetry is broken. Phenomenology is of course a strong motivation to look for non–
supersymmetric configurations but in this thesis we have served a less ambitious purpose; we
have investigated the structure of non–supersymmetric vacua in type IIA string theory with the
aim of understanding some features through the study of two examples without any pretension
of constructing phenomenological reliable models. Our perspective has been, for the most of the
time, focused on the ten dimensional physics, avoiding the much more challenging problem of
a complete Kaluza–Klein reduction to understand the four dimensional physics of our models
and we have limited ourselves to some considerations in Section 5.3. Our approach stems from
the belief that the geometrical approach can be extended to a description of N = 0 vacua and
that Generalized Complex Geometry can still be a suitable language and organizing principle,
maybe with suitable adjustments.

In Chapter 4 we have introduced solvmanifolds, a class of manifolds which admit a Gener-
alized Calabi–Yau structure and which has been extensively used in flux compactification. We
have reviewed their geometrical properties with a special attention to their compactness. We
have reformulated some criterion to determine if they are compact or not, which was already
present in the mathematical literature, via a more familiar (to physicists) language based on
twist transformation [5]. Their fibration structure is then interpreted as successive steps of twist
transformations from a torus and the compactness criterion related to its monodromy proper-
ties. We have concluded the Chapter by applying the twist transformation to a known solution
to construct a new supersymmetric one on a solvmanifold labelled as g5.17. This has been the
starting point for the analysis of the following Chapter.

In Chapter 5 we have developed the details of our first example of non–supersymmetric con-
figuration. Compactifications where the external space is a de Sitter space have received a grow-
ing attention in the last years, mostly because of recent cosmological observations which indicate
that we live in a universe with a small positive cosmological constant. However, the understand-
ing of such configurations is less developed because they are intrinsically non–supersymmetric.
Starting from a Minkowski supersymmetric vacuum we have deformed it in order to obtain
a de Sitter solution. Staying in the framework of Generalized Complex Geometry, we have
seen how the supersymmetry breaking arises in the pure spinor equations and we have been
forced to address the question of the behavior of the sources in such a background. Being non–
supersymmetric, there was no a priori reason for the sources to arrange the same way as they do
in supersymmetric backgrounds, namely wrapping calibrated supersymmetric cycles. We have
thus taken a different approach and described the behavior of the sources via a general polyform
X− whose undetermined coefficients have been fixed by solving the equations of motion. We are
aware of the limited validity due to the example based approach of our analysis but we can infer
some general properties which we believed are shared by non–supersymmetric backgrounds (in
general, not restricting to de Sitter compactifications).

In Chapter 6 we have collected a series of observations about the geometry and structure of
non–supersymmetric backgrounds and reorganized them at a more general level than the single
examples. The speculative nature of the Chapter makes it the right place where to discuss
possible lines of development. A quite general parametrization of the supersymmetry breaking
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and its reformulation in bispinor language has been already developed in [137], but we believe
that without any constrain this is of little help. Constrains should of course come from equations
of motion and a partial analysis is done in [137], nevertheless a full understanding is not yet
available, in particular we lack a bispinorial reformulation which would be the natural way to
incorporate the issue in the Generalized Complex Geometry framework. We believe that to
identify a suitable set of variables for an extension of the first order formalism also to a (sub)set
of non–supersymmetric configurations is an important step to have a better control on their
geometry. Another approach is based on T–duality, which also has a nice reformulation in
terms of Generalized Complex Geometry. Being a duality of type II theories it sends solutions
to solutions and it preserves supersymmetry under certain conditions [88]. We think that T–
duality can be used to generate non–supersymmetric solutions from supersymmetric ones or to
connect two non–supersymmetric ones; we have seen how the pure spinor equations get modified
by supersymmetry breaking terms and argued about a set of bispinorial variables suitable for
such cases. It would be important to find an example were to test some of our observations. As
we have already said it was clear from the de Sitter example that the usual description of the
sources has to be modified when supersymmetry is broken and that the question of stability of
the sources lacks a full understanding for a general breaking. We have tried to suggest some
possible development is Section 6.3 but a complete analysis is beyond the scope of this thesis.

Our second example of supersymmetry breaking solution has been presented in Chapter 7.
We have been motivated by the interest in non–supersymmetric supergravity backgrounds as
duals of non–supersymmetric metastable states in supersymmetric gauge theories via AdS/CFT
duality. There the approach has been different, we have used the perturbative technique devel-
oped by Borokhov and Gubser in [24] and we devoted less attention to the geometrical properties
of the solution. We have done a partial study of the space of first order deformations of a super-
symmetric background found in [47]. Our motivations were mainly derived by the recent interest
in these kind of deformations and techniques which have been applied to the renowned type IIB
Klebanov–Strassler background [16, 13, 14, 62] and to an M–theory background [48, 11]. Some
common features, like the fact that the force on a probe brane is related to a single perturbation
mode and the presence of unwanted IR singularities, were pointed out in the previous analysis.
To our knowledge there was no application to a type IIA configuration of such a technique and
we have deemed important to fill the gap in order to have a wider range of examples. Our
analysis pointed out the same features as the previous ones with a stronger indication that the
perturbative approach could be problematic in some situations. As discussed in Section 7.8.2
the singularities we have found are more severe than in the other cases and its nature and ad-
missibility is still source of debate and object of work. As they could be a drawback of first
order perturbation theory it would be of certain interest to look at higher order corrections,
unfortunately the system of equations one has to solve becomes rapidly complicated and since
the only computationally available tool relies on a brute force approach we decided to not de-
velop it here. The UV regime would deserve a separate discussion but due to the fact that we
have been able to obtain a solution only in an (r− 1) power expansion a numeric analysis as in
[13] is required to connect the two.Another possibility is that the IR singularities are intrinsic
of perturbation theory and the addition anti–D branes cannot be considered as a perturbation
of the supersymmetric background, a scenario which deserve a more careful investigation.
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Appendix A

Conventions and useful formulae

A.1 Forms
We define a p–form Ap as:

Ap = 1
p!Aµ1...µpdxµ1 . . . dxµp . (A.1)

We define the contraction of a p–form A = Aµ1...µpdxµ1 ∧ . . . dxµp and a vector v = vµ∂µ by
the following formula:

ιvA = vµAµ1...µpδ
[µ1
µ dxµ2 ∧ . . . ∧ dxµp] . (A.2)

For the coefficients of the wedge product of a forms Ap of degree p and a form Bq of degree q
we adopt the following convention

1
(p+ q)! (Ap ∧Bq)µ1...µp+q = 1

p!q! A[µ1...µpBµp+1...µq ] , (A.3)

where the complete anti–symmetrization of the indexes of a tensor is taken with total weight
one

A[µ1...µp] = 1
p!
(
Aµ1µ2...µp −Aµ2µ1...µp + . . .+ (−)p(p−1)/2Aµpµp−1...µ2µ1

)
. (A.4)

Our choice for the Hodge dual operator in d dimensions is

∗(dxµ1 . . . dxµp) =
√
|g|

(d− p)! (−)(d−p)pεµ1...µpµp+1...µd gµp+1νp+1 . . . gµdνddx
νp+1 . . . dxνd , (A.5)

and on a p–form we have
∗ ∗Ap = (−)(d−p)p+tAp (A.6)

where t = +1 for Euclidean signature and t = −1 for Lorentzian signature. We conclude this
section with an useful formula involving the Levi–Civita symbol:

εµ1...µqµq+1...µdε
µ1...µqνq+1...νd = (−)tq!(d− q)! δ[νq+1...νd]

[µq+1...µd]. (A.7)
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A.2 Gamma matrices and spinors
We report here some well known gamma matrix algebra formulae which can be useful to derive
many expressions we have presented in this thesis. A more complete list can be found in [33],
[155] or in standard supergravity textbooks.

{γm, γn} = 2gmn [γm, γn] = 2γmn

{γmn, γp} = 2γmnp [γmn, γp] = −4δp[mγn]

{γmnp, γq} = 6δq[mγnp] [γmnp, γq] = 2γmnpq

From these expressions we can easily obtain:

γnγpq = 2gn[pγq] + 2γnpq (A.8)

which we used in Section 2.3 to derive the Ricci flatness condition for a Calabi–Yau manifold.
According to the metric ansazt (2.11) the ten dimensional gamma matrices ΓM decompose

as follows:

Γµ = eAγµ ⊗ 1 Γm = γ5 ⊗ γm (A.9)

We define the chiral gamma matrices as:

γ5 = iγ0123 γ = −iγ456789 Γ = Γ0...9 (A.10)

In four dimensions we can choose a basis such that the gamma matrices are real and hermi-
tian, except γ0 which is anti–hermitian. In six dimensions we can choose the gamma matrices
γm to be purely imaginary and antisymmetric. In this way it is clear that they are hermitian.

Given this choice for the gamma matrices than the ten dimensional Cliff(1, 9) Majorana
spinors are real. Moreover we can impose a Weyl condition which is compatible with the Majo-
rana one given the fact that the chiral projectors

P±Γ = 1
2(1± Γ) (A.11)

are real.
Under the 4 + 6 splitting the space of ten dimensional spinors decompose into the tensor

product Σ4 ⊗ Σ6, thus a generic ten dimensional spinor ε is given by

ε =
∑
iJ

αiJ ζ
I ⊗ ηj , (A.12)

where {ζI}I=1...4 and {ηj}j=1...8 are a basis for the four and six dimensional spinors respectively.
Majorana condition in ten dimensions ε = ε∗ is assured imposing:

(ζ+)∗ = ζ− (η+)∗ = η− . (A.13)
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A.3 SU(3)–structure
We collect here our conventions for SU(3) structures. In this section we assume the six dimen-
sional globally defined nowhere vanishing spinors η± have been normalized as η†±η± = |η±| = 1.
From η± we can define an almost symplectic two–form Jmn and a (3, 0) decomposable form
Ωmnp as follows:

Jmn = ∓iη†±γmnη± Ωmnp = −iη†−γmnpη+. (A.14)

They satisfy the compatibility condition J ∧ Ω = 0 which means that J is a (1, 1) form with
respect to the almost complex structure Ipq = gpmJmq . Given a basis of eigenstates {η±, γmη∓},
we can decompose the chiral projectors as

P±γ = 1± γ
2 = η±η

†
± + 1

2γ
mη∓η

†
∓γm (A.15)

and derive the following relations

γmη+ = −iJmnγnη+ , (A.16)

γmnη+ = iJmnη+ + i

2Ωmnpγ
pη− , (A.17)

γmnpη+ = iΩmnpη− + 3iJ[mnγp]η+ . (A.18)

With these normalization we also have

∗1 = vol6 = iΩ ∧ Ω̄ = 4
3J

3 . (A.19)

The symplectic and complex structure defined by J and Ω are not necessarily integrable, the
failure is measured by their non closure which is expressed in terms of the SU(3) decomposition
of torsion classes [92, 43, 116]:

dJ = −3
2 Im(W̄1Ω) +W4 ∧ J +W3 (A.20)

dΩ = W1J
3 +W2 ∧ J + W̄5 ∧ Ω (A.21)

Here we have that W1 is a complex scalar, W2 a complex primitive (1, 1) form, W3 a real
primitive (1, 2) + (2, 1) form, W4 a real one–form and W5 a complex (1, 0) form.

A.4 Mukai pairing and Clifford map
We recall the definition of the Mukai pairing given in Section 3.3. Given two polyforms φ, σ ∈
Λ•T ∗M we define the Mukai pairing as

〈φ, σ〉 = (φ ∧ λ(σ))d , (A.22)

where (φ)d means the projection of the polyform φ on the top–form component and the
operator λ acts on a p–form by a complete reversal of its indexes:

λ(σp) = (−)b
p
2 cσp = (−)

1
2p(p−1)σp . (A.23)
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The Mukai pairing is symmetric for d ≡ 0 or 1 (mod 4) and skew–symmetric otherwise. In
particular for d = 6 it is antisymmetric. We list here some properties:

λ(eBσ) = e−Bλ(σ) , (A.24)
〈e−Bφ, e−Bσ〉 = 〈φ, σ〉 , (A.25)

〈φ, ∗σ〉 = 〈σ, ∗φ〉 , (A.26)
〈φ±, λ(σ±)〉 = ±〈φ±, λ(φ±)〉 , (A.27)
〈φ,X · σ〉 = (−)d+1〈X · φ, σ〉 , (A.28)∫

M
〈dHφ, σ〉 = (−)d

∫
M
〈φ,dHσ〉 . (A.29)

We recall the definition of the Clifford map given in Section 3.5:

C ≡
∑
k

1
k!C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ←→ /C ≡
∑
k

1
k!C

(k)
i1...ik

γi1...ikαβ . (A.30)

For example the slashed fields that appear in the supersymmetric variations in (2.10) are:

/HM = 1
2HMNPΓNP /H = 1

6HMNPΓMNP /Fk = 1
k!FM1...Mk

ΓM1...Mk . (A.31)

Following [87, 180] one can prove that the Clifford algebra Cliff(d, d) is isomorphic to two
copies of the ordinary Clifford algebra Cliff(d). By gamma matrix algebra we have:

γmγm1...mk = γmm1...mk + kgm[m1γm2...mk] ,

γm1...mkγm = (−)k
(
γmm1...mk − kgm[m1γm2...mk]

)
. (A.32)

The gamma matrix action on bispinors corresponds to the following action on forms of degree
k:

γm�φk = ((((
(((

(((dxm ∧+gmnιn)φk �φkγ
m = (−)k ((((

(((
(((dxm ∧ −gmnιn)φk . (A.33)

An easy computation gives the action of Cliff(d, d) gamma matrices ΓΣ = {dxm∧, ιm} in terms
of the two copies of Cliff(d) acting on the left and on the right:

   
  dxm ∧ φ± = 1

2[γm,�φ±]± ���ιmφ± = 1
2[γm,�φ±]∓ . (A.34)

The Mukai pairing (here we restrict to d = 6) under the Clifford map goes to:

〈φk, σ6−k〉 = i

8tr
(
γ�φ

t
k /σ6−k

)
vol6 . (A.35)

Other useful relations are:

��
��∗ λ(φ) = −iγ�φ , ��∗ φ = −iγ�φ t , �φ

† = ��
�

λ(φ̄) . (A.36)

We can express the normalization condition on the pure spinors Φ± as:

〈Φ−, Φ̄−〉 = 〈Φ+, Φ̄+〉 = − i8tr(/Φ±/Φ†±) vol = − i8 ||η
(1)
+ ||2||η

(2)
± ||2 vol . (A.37)

Some other useful property involving the operator λ are:

[d, λ]φ2k = 0 {d, λ}φ2k+1 = 0 , (A.38)
[∗6, λ]φ2k+1 = 0 {∗6, λ}φ2k = 0 . (A.39)
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A.5 The Generalized Hodge diamond
The space of complex Spin(6, 6) spinors decomposes into irreducible representations of the sub-
group SU(3)×SU(3) ∈ Spin(6, 6) defined by the compatible pair Φ±. Via Clifford map it furnish
a basis for the space of complex polyforms Λ•T ∗M ⊗ C; it is given by [87]:

Φ+

Φ+γ
i2 γ ı̄1Φ+

Φ−γ ı̄2 γ ı̄1Φ+γ
i2 γi1Φ̄−

Φ− γ ı̄1Φ−γ ̄2 γi1Φ̄−γj2 Φ̄−
γ ı̄1Φ− γi1Φ̄+γ

̄2 Φ̄−γi2
γi1Φ̄+ Φ+γ

ı̄2

Φ̄+ .

(A.40)
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Appendix B

T–dualising solvmanifolds

T–duality has been extensively used in flux compactifications in order to obtain solutions on
nilmanifolds. Being iterations of torus bundles, these are obtainable from torus solutions with an
appropriate B–field (the contraction ofH with the isometry vectors should be a closed horizontal
two–form that can be thought as a curvature of the dual torus bundle.). Correspondingly, the
structure constants fa bc have also a T–duality friendly form. For any upper index there is
a well–defined isometry vector ∂a with respect to which one can perform an (un–obstructed)
T–duality.

In this section we would like to study some aspects of T–duality for solvmanifolds. In this
case, the situation is more complicated. For instance, it can happen that the structure constants
have the same index in the upper and lower position fa ac and are not fully antisymmetric. Put
differently, most of our knowledge about the global aspects of T–duality comes form the study
of its action on (iterations of) principal U(1) bundles. Since the Mostow bundles are not in
general principal, the topology of the T–dual backgrounds is largely unexplored. We shall not
attempt to do this here, but rather illustrate some of novel features by considering T–duality
on the simplest cases of almost abelian manifolds.

Requiring that T–duality preserves supersymmetry imposes that the Lie derivatives with
respect to any isometry vector v vanish, LvΨ± = 0 [88]. For the simple case of almost abelian
solvmanifolds, it is not hard to check that all vectors vi = ∂i, where, in the basis chosen in
this paper, i = 1, ..., 4, 6, satisfy this condition. However, these vectors are defined only lo-
cally1, since they transform non–trivially under t ∼ t + t0. Hence, in general, the result of
T–duality will be non–geometric. We shall see that there are subtleties even for the case when
the supersymmetry–preserving isometries ∂i are well defined.

We shall consider the action of T–duality on two solvmanifolds, g0,0,±1
5.17 × S1 (s 2.5) and

g1,−1,−1
5.7 × S1. For s 2.5, following [87], we write the algebra as (25,−15, r45,−r35, 0, 0), r2 = 1.

The twist matrix A(t) is made of periodic functions of t = x5,

A =

 Rr=1
Rr

I2

 , Rr =
(

cosx5 −r sin x5

r sin x5 cosx5

)
, (B.1)

1As discussed, on the compact solvmanifolds there exists a set of globally defined one forms {e} = {AMdx}
and the dual basis {E} = {(A−1

M )T ∂} is made of globally defined vectors. However, the Lie derivative of the pure
spinors with respect to these does not vanish.
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and T–duality is un–obstructed. The various supersymmetric solutions found in [87, 4] are all
related by two T–dualities

IIB IIA

t:30 t :12 t :30 t :12

(13 + 24)
T12

oo // (14 + 23) oo //

T6

(136 + 246)
T12

oo // (146 + 236)

(14 + 23) oo // (13 + 24) oo // (146 + 236) oo // (136 + 246)

In the table we labelled each solution by the dominant O–plane charge. The sources are
labelled by their longitudinal directions, e.g. (13 + 24) stands for a solution with two sources
(one O5 and one D5) along directions e1∧e3 and e2∧e4. T–dualities (the subscripts indicate the
directions in which they are performed) exchange the columns in the table; lines are exchanged
by relabellings (symmetries of the algebra).

The T–dualities are type2 changing, meaning a pair of type 0 and 3 (t:30) pure spinors is
exchanged with a pair of type 1 and 2 (t:12) and vice versa.

It is natural to see what will it be the effect of a single T–duality. To be precise we take as
starting point Model 3 of [87]. We shall concentrate on the NS sector and discuss the topology
changes under T–duality. The NS flux is zero and the metric, in the dxi basis is

ds2 = t21
t2

(τ1
2 )2G(dx1 +Adx2)2 + t1

G
(dx2)2 + t1(τ1

2 )2G(dx3 + rAdx4)2

+ t2
G

(dx4)2 + t3(dx5)2 + t3(dx6)2 (B.3)

with
G = cos2(x5) + t2

t1(τ1
2 )2 sin2(x5) A = t2 − t1(τ1

2 )2

2Gt1(τ1
2 )2 sin(2x5) . (B.4)

A single T–duality along x1 yields the manifold T 3 × ε2 (ε2 : (−23, 13, 0)) with O7–D5 (or
D7–O5) and an H–flux given by

H = −dA ∧ dx1 ∧ dx2 . (B.5)

Note that the H-flux (B.5) allows for topologically different choices of B–field. Being not
completely solvable (see Footnote 1), s 2.5 can yield manifolds of different topology (differ-
ent Betti numbers). Correspondingly, the results of T–duality should vary as well, and the
application of the local Buscher rules might be ambiguous. The choice of B-field in (B.5),
B = −Adx1 ∧ dx2, corresponding to the application of the local rules to (B.3), is globally de-
fined due to A(x5 + l) = A(x5). There is a less trivial choice with B = −x1 ∂5Adx2∧dx5 which
however does not arise from the application of local T–duality rules to (B.3) since the metric
does not have off–diagonal elements between x2 and x5.

2A pure spinor Ψ can always be written as

Ψ = eB+ijΩk , (B.2)

where Ωk is a holomorphic k–form, B and j are real two–forms. The degree of Ωk is the type of the pure spinor.
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A further T–duality along x2 gives back s 2.5 with O6–D6 sources, but the supersymmetry
now is captured by a different pair of pure spinors.

For the manifold g1,−1,−1
5.7 ⊕ R, the twist matrix is

A(x5) =

R(x5)
R(−x5)

I2

 R(x5) =
(

ch −ηsh
− 1
η sh ch

)
, (B.6)

where we set
ch = cosh(√q1q2x

5) , sh = sinh(√q1q2x
5) , η =

√
q1
q2

. (B.7)

Then it is straightforward to check that the isometry vectors vi = ∂i are local. Any T–duality
along these is thus obstructed, and hence the O6–D6 solution of [29, 87] does not have geometric
T–duals. For this case we shall adopt the method applied to nilmanifolds in [88], and work out
the action of T–duality on the generalized vielbeine.

The generalized vielbeine on g1,−1,−1
5.7 ⊕ R can be obtained using twist transformation (see

(4.52)) from the generalized vielbeine of the torus (on which we take for simplicity the identity
metric)

E =
(

I6 06
06 I6

)(
A 06
06 A−T

)
. (B.8)

To work out their T–duals, we act by

ET = OT × E ×OT , (B.9)

where OT is the O(d, d) matrix for T–duality. The OT on the right is the regular action of
T–duality, while the OT on the left assures that the map has no kernel (see [88]). The T–duality
is done in the x1 direction, so the OT is

OT =



T1 T2
I2 02

I2 02
T2 T1

02 I2
02 I2


, T1 =

(
0

1

)
, T2 =

(
1

0

)
, (B.10)

and then

ET =



C1 B1
R(−x5) 02

I2 02
B2 C2

02 R(x5)T
02 I2


, (B.11)

with
C1 = C2 = ch I2 , B1 = −1

η
sh ε , B2 = ηsh ε , ε =

(
0 −1
1 0

)
. (B.12)
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The generalized vielbeine ET can be brought to the canonical lower diagonal form (4.50) by
a local O(d)×O(d) transformation. When such a transformation cannot be made single–valued,
we talk about non–geometric backgrounds (where the action of a non–trivial β cannot be gauged
away). The result of the O(d)×O(d) transformation is

E ′ =



O1 O2
I2 02

I2 02
O2 O1

02 I2
02 I2


×ET =



O1C1 +O2B2 O1B1 +O2C2
R2 02

I2 02
O2C1 +O1B2 O2B1 +O1C2

02 R−T2
02 I2


,

(B.13)
where the non–trivial O(d)×O(d) components are

O1/2 = 1
2(O+ ±O−) O± ∈ O(2) . (B.14)

By solving O1B1 +O2C2 = 0, we can obtain O2 and express O± in terms of O1:

O± = O1(I2 ± u ε) , u = sh
ηch ,

OT±O± = I2 ⇔ OT1 O1 = 1
1 + u2 I2 . (B.15)

A simple solution is given by

O1 = 1√
1 + u2

I2 ⇒ O2 = u√
1 + u2

ε . (B.16)

Thus we can indeed bring ET to a lower–diagonal form, but with an O(d)×O(d) transformation
that is not globally defined. It is not hard to see that replacing the x1 direction by others does
not change much. Hence any T–dual to g1,−1,−1

5.7 × S1 is non–geometric.

A similar analysis for s 2.5 shows that one can easily solve the constraint O1B1 +O2C2 = 0
with O1 and O2 being globally defined (this is easy since the functions entering are all periodic).
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Appendix C

Lie groups

Let consider a connected and simply–connected real Lie group G of identity element e [184, 183].
We denote by H, N and Γ subgroups of G and the associated Lie (sub)algebras of G, H, N
by g, h, n respectively. Connected and simply–connected (sub)groups are in one–to–one cor-
respondence with the corresponding (sub)algebras. Many properties of the (sub)algebras will
have their counterpart in the (sub)groups and vice versa.

The ascending series (Gk)k∈N, the descending series (Gk)k∈N and the derived series (DkG)k∈N
of subgroups of G are defined as

G0 = {e} , G0 = D0G = G ,

Gk = {g ∈ G|[g,G] ⊂ Gk−1} , Gk = [G,Gk−1] , DkG = [Dk−1G,Dk−1G] ,

where the commutator of two group elements g and h is [g, h] = ghg−1h−1. We define in the
same way the ascending, descending and derived series of g or its subalgebras, by using the Lie
bracket instead of the commutator, and 0 instead of e.

G is nilpotent respectively solvable if there exist k0 ∈ N such that Gk0 = {e} respectively
Dk0G = {e}. We define the same notions for the algebra g replacing 0 with e. Lie (sub)algebras
corresponding to nilpotent/solvable groups are nilpotent and solvable, respectively. The con-
verse is also true. All nilpotent Lie algebras/groups are solvable (the converse is not true).

An ideal i of g is a subspace of g stable under the Lie bracket: [g, i] ⊂ i. Obviously i is also
a subalgebra. The subalgebras given in the previously defined series are all ideals.

The nilradical n of the algebra g is the biggest nilpotent ideal of g. The nilradical is unique
[6, 44] as will be the corresponding subgroup N of G, also named nilradical.

To ideals of g will correspond normal subgroups of G. We recall that a subgroup N is said
normal if ∀g ∈ G, gNg−1 ⊂ N , i.e. it is invariant under conjugation (inner automorphisms).
This property is necessary in order to be able to define a group structure on the quotient G/N .
Note that the nilradical N of a solvable Lie group G as well as the subgroups DkG of the derived
serie are normal subgroups.

C.1 The adjoint action
Let V be a vector space over a field K and let g be a Lie algebra over the same field. A
representation of g is a map π : g→ End(V ) such that:
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1. π is linear;

2. π ([X,Y ]) = π(X)π(Y )− π(Y )π(X).

There is a natural representation of a Lie algebra over itself called the adjoint representation:

ad : g→ End(|g|)
X 7→ ad(X) = adX ,

where |g| means the underlying vector space of the Lie algebra g, End(|g|) the space of all linear
maps on it1, and

for X ∈ g , adX : g→ g

Y 7→ adX(Y ) = [X,Y ] .

We can obtain a matrix form of the adjoint representation from the structure constants in a
certain basis of the Lie algebra. Let {Ea}a=1,...,d be a basis of a Lie algebra g, and the structure
constants in that basis given by

[Eb, Ec] = fa bcEa . (C.1)

Then the matrices (a is the row index and c is the column index)

(Mb)ac = fa bc (C.2)

provide a representation of the Lie algebra g.

Let G be a Lie group and let V be a (real) vector space. A representation of G in V is a
map π : G→ Aut(V ) such that:

1. π(e) = Id ;

2. π(g1g2) = π(g1)π(g2) , ∀ g1, g2 ∈ G .

There is a natural representation of the group over its algebra called the adjoint representation:

Ad : G→ Aut(g)
g 7→ Ad(g) = Adg ,

where Adg = expAut(|g|)(adXg) for Xg ∈ g , expG(Xg) = g. Actually one can show the following
relations between the representations:

G
Ad // Aut(g)

g

expG

OO

ad // End(|g|)

expAut(|g|)

OO

The map ad then turns out to be the derivation2 of Ad. At the level of the single elements,
they act according to the following diagram:

1These maps do not necessarily respect the Lie bracket, or in other words, are not necessarily algebra mor-
phisms. In particular, for X ∈ g, adX is a derivation and thus it cannot be an algebra morphism.

2It is the derivative with respect to the parameters of the group element g, taken at the identity.
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g
Ad // Ad(g) = Adg

Xg

OO

ad // ad(Xg) = adXg

OO

One can show as well that the derivation of the inner automorphism Ig for g ∈ G (the
conjugation) is actually the adjoint action Adg:

d(Ig) = Adg . (C.3)

Furthermore, for ϕ : G→ G an automorphism, the following diagram is commutative:

G
ϕ // G

g

expG

OO

dϕ // g

expG

OO

A Lie group is said to be exponential (the case for us) if the exponential map is a diffeomor-
phism. Denoting its inverse as logG, then we deduce

Ig = expG ◦Adg ◦ logG . (C.4)

C.2 Semidirect products
Most of the solvable groups we are interested in are semidirect products, we recall here some
definitions.

Let us consider two groups H and N and a (smooth) action µ : H ×N → N by (Lie) auto-
morphisms. The semidirect product of H and N is the group noted H nµ N , whose underlying
set is H ×N and the product is defined as

(hi=1,2, ni=1,2) ∈ H ×N , (h1, n1) · (h2, n2) = (h1 · h2, n1 · µh1(n2)) . (C.5)

The semidirect product of Lie algebras can be defined in a similar way. Let d(h) be the derivation
algebra of an algebra h (for instance ad ∈ d(g)). Let σ : g→ d(h) , X 7→ σX be a representation
of the Lie algebra g in |h|. Then we can define the semidirect product g nσ h of the two Lie
algebras with respect to σ in the following way:

• the vector space is |g| × |h|

• the Lie bracket is [(X1, Y1), (X2, Y2)] = ([X1, X2]g, [Y1, Y2]h + σX1(Y2)− σX2(Y1)).

This provides a Lie algebra structure to the vector space |g| × |h|. Note that the fact σ is
a derivation is important to verify the Jacobi identity for the new bracket. The map σ is
related to the map µ in the following way: σ = deHµ1 where µ1 : H → Aut(n) is given by
µ1(h) = deNµ(h, . . .) = Ad

HnµN
h .

If we denote g′ = g× {0} and h′ = {0} × h then h′ is an ideal of the new algebra and g′ is a
subalgebra of it. Furthermore

g′ + h′ = gnσ h , g
′ ∩ h′ = 0 . (C.6)
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There is a unique decomposition of an element of |g| × |h| as a sum of an element of |g| and one
of |h|, thus we can think of it as the couple in |g| × |h| or as an element of a direct sum of vector
spaces.

Let us consider a Lie group G and two subgroups H and N with N normal. If every element
of G can be uniquely written as a product of an element in H and one in N , then one can
show that G ≈ H nµ N with µ being the conjugation3. This point of view will be important
for us. As discussed previously, the conjugation can be given in terms of the restriction of the
adjoint action of H over n as in (C.4), so we are able to determine µ in terms of AdH(N). For
exponential groups, as we consider here, the corresponding Lie algebra of G = H nµ N is then
clearly g = hnadh(n) n (we just write ad in the following for simplicity).

Let us now consider a group G with a normal subgroup N of codimension 1. The Lie algebra
g has two components, R and n. We want to show that g is isomorphic to R nad n, and then,
as discussed, we get that G ≈ Rnµ N with µ the conjugation. At level of the algebra, in terms
of vector spaces, the isomorphism is obviously true. What needs to be verified is that the Lie
brackets coincide. The Lie bracket of two elements of R or of n clearly coincide with those of the
corresponding two elements of Rnad n. Let us now take X ∈ R, Y ∈ n. We have for Rnad n:

[(X, 0), (0, Y )] = (0, 0 + adX(Y )− ad0(0)) = (0, [X,Y ]) , (C.7)

which clearly coincides with the bracket [X,Y ] for g. We can conclude that g is isomorphic to
Rnad n and thus the group is isomorphic to Rnµ N .

3In particular it is the case for a group G = H nν N with ν being not the conjugation.
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Appendix D

Solvable algebras and solvmanifolds

D.1 Algebras admitting a lattice
We present here a list of indecomposable solvable, non–nilpotent unimodular algebras that
admit a lattice (at least for certain values of the parameters p, q, r, for instance those chosen
in table D.2.). For dimension up to four the algebras are almost nilpotent or almost abelian.
For dimension 5 and 6, only almost abelian algebras have been considered. For the other six–
dimensional indecomposable algebras, we do not know if a lattice exists.

Name Algebra
g−1

3.4 [X1, X3] = X1, [X2, X3] = −X2 alm. ab.
g0

3.5 [X1, X3] = −X2, [X2, X3] = X1 alm. ab.
gp,−p−1

4.5 [X1, X4] = X1, [X2, X4] = pX2, [X3, X4] = −(p+ 1)X3, −1
2 ≤ p < 0 alm. ab.

g−2p,p
4.6 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, [X3, X4] = X2 + pX3, p > 0 alm. ab.
g−1

4.8 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 alm. nil.
g0

4.9 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 alm. nil.

Table D.1: Indecomposable non-nilpotent solvable unimodular algebras up to dimension 4, that
admit a lattice
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Name Algebra
gp,q,r5.7 [X1, X5] = X1, [X2, X5] = pX2, [X3, X5] = qX3, [X4, X5] = rX4,

−1 ≤ r ≤ q ≤ p ≤ 1 , pqr 6= 0 , p+ q + r + 1 = 0
g−1

5.8 [X2, X5] = X1, [X3, X5] = X3, [X4, X5] = −X4
g−1−2q,q,r

5.13 [X1, X5] = X1, [X2, X5] = −(1 + 2q)X2, [X3, X5] = qX3 − rX4, [X4, X5] = rX3 + qX4,
−1 ≤ q ≤ 0 , q 6= −1

2 , r 6= 0
g0

5.14 [X2, X5] = X1, [X3, X5] = −X4, [X4, X5] = X3
g−1

5.15 [X1, X5] = X1, [X2, X5] = X1 +X2, [X3, X5] = −X3, [X4, X5] = X3 −X4
gp,−p,r5.17 [X1, X5] = pX1 −X2, [X2, X5] = X1 + pX2, [X3, X5] = −pX3 − rX4, [X4, X5] = rX3 − pX4,

r 6= 0
g0

5.18 [X1, X5] = −X2, [X2, X5] = X1, [X3, X5] = X1 −X4, [X4, X5] = X2 +X3

Table D.2: Indecomposable solvable unimodular almost abelian algebras of dimension 5, that
admit a lattice

Name Algebra
g0,−1

6.3 [X2, X6] = X1, [X3, X6] = X2, [X4, X6] = X4, [X5, X6] = −X5
g0,0

6.10 [X2, X6] = X1, [X3, X6] = X2, [X4, X6] = −X5, [X5, X6] = X4

Table D.3: Indecomposable solvable unimodular almost abelian algebras of dimension 6, for
which we know a lattice exists

D.2 Six–dimensional solvmanifolds in terms of globally defined
one–forms

In the following table we present the solvmanifolds that we considered in this paper. They
have the form G/Γ = H1/Γ1 × H2/Γ2, i.e. they are products of (at most) two solvmanifolds.
Each of these two solvmanifolds are constructed from the algebras given in the previous Tables
(see Appendix D.1) and the three–dimensional nilpotent algebra g3.1 : (−23, 0, 0). In particular,
these are indecomposable solvable algebras for which the group admits a lattice. The difference
with respect to Section D.1 is that the algebras are given here in terms of a basis of globally
defined forms (see discussion in Section 4.2.3). They are related by isomorphisms to the algebras
given in the Tables of D.1. The fact the forms are globally defined is important for studying the
compatibility of orientifold planes with the manifold and for finding solutions. For gp,−p−1

4.5 ⊕R2

and g−2p,p
4.6 ⊕ R2, we were not able to find such a basis, even if a priori we expect it to exist.

The column Name indicates the label of the algebra and the corresponding solvmanifold. The
column Algebra gives the corresponding six–dimensional algebra in terms of exterior derivative
acting on the dual basis of globally defined one–forms (see Section ??). The next two columns
give the O5 and O6 planes that are compatible with the manifold. The column Sp indicates by
a X when the manifold is symplectic, according to [23, 30]. Notice that the same results can be
obtained as conditions for the twisted pure spinors to solve the supersymmetry equations. In
particular, for the even SU(3) pure spinor Φ+ = 1

8e
−iJ the condition

d(Otw)Φ+ = 0 (D.1)
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is equivalent to the requirement that the manifold is symplectic.

There is an additional subtlety for not completely solvable manifolds, when one looks for
solutions on them. This is due to the lack of isomorphism between the cohomology groups H∗(g)
and H∗dR(G/Γ) for not completely solvable manifolds (see Footnote 1). In other words, the Betti
numbers for the Lie algebra cohomology give only the lower bound for the corresponding numbers
for de Rham cohomology. When looking for e.g. symplectic manifolds, we have considered only
the forms in H2(g), and hence might have missed some candidate two–forms in H2

dR(G/Γ).
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