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Abstract

In this thesis is given a review of the methods of integrability in the context of the
AdS/CFT correspondence. We investigate integrable structures on both sides of the
AdS/CFT duality using different methods.

On the string side of the duality we observe how the supersymmetry and automor-
phism of the symmetry group organize the model into integrable one. Then, using the
consequences of the finite gap method for the integrable system we perform a one–
loop quantization procedure which allows us to compute the one–loop spectrum of the
model. We illustrate this method by computing the spectrum of a short string.

On the gauge side we review the method of the functional Y –system equations for
computing the spectrum of the theory in the finite volume. Due to the existence of the
two–particle S–matrix it is possible to use the Zamolodchikov’s trick to setup a system
of functional equations, which can be later recast as a Hirota equation defined on some
domain. In the strong coupling limit these equations can be drastically simplified. This
gives us a chance to have an analytic solution of them, which can be compared to the
string side computation. These two results are in a perfect agreement.
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Chapter 1

Introduction.

This thesis is devoted to the study of integrability and its application to Malda-
cena’s AdS/CFT duality [1, 2, 3, 4]. This duality is one of many gauge/gravity corre-
spondences between theories of quantum gravity and particle physics. Let us review
this duality very briefly.

In string theory, contrary to the usual quantum field theory, particles are not point-
like, but rather small vibrating strings. They can form a closed loop or have they ends
attached to hypersurfaces, which are called D-branes [5]. They are classified by their
spatial dimensions, so, for example, D2 is just a plane. The condition that open strings
can end on D-branes (and nowhere else) means that there exists a particular spectrum
of such strings. By quantizing these open strings we obtain all the fields that propagate
between these D-branes.

This quantum propagation can be described by the usual path integral, and, in
princible, by the corresponding Feynman diagrams. Since our fundamental objects
have some size, these diagrams would not consist of usual lines and vertices, but rather
of Riemann surfaces with h handles and n holes. The sum over all possible topologies
will give us the propagator in the given conditions.

This general scheme leads to the very important duality when we consider the stack
of N D3 branes in type IIB superstring theory in 10 dimensional space. The excitations
of these branes are the open strings, and the closed strings are the excitations of the
10 dimensional empty space. The low energy effective action reads

S = Sbrane +SSUGRA +Sint, (1.0.1)
where Sbrane describes the massless string states by an N = 4 SYM lagrangian.
SSUGRA is the bulk action, or, in other words, the type IIB supergravity effective action.
Sint is the coupling of these two systems.

In the low energy limit when coupling of the two systems is small (α′ → 0) we obtain
a two decoupled systems: four dimensional U(N) SYM and ten dimensional type IIB
supergravity. The brane is therefore an heavy hyperplane and the geometry of the
deformed bulk is
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ds2 = ds2
4√

1+ l4

r4

+
√

1+ l4

r4

(
dr2+ r2dΩ2

S5

)
, l4 = 4πgsNα′2. (1.0.2)

One can see that near horizon (r = 0) geometry is equivalent to the AdS5×S5 space:

ds2 = l2
(

dU2

U2 +U2ds2
4

)
+ l2dΩ2

S5 , U = r/l2. (1.0.3)

All string excitations survive in this limit. That’s why it is rather natural to conjecture
that there is an equivalence of the N = 4 supersymmetric Yang-Mills theory and string
theory on the AdS5×S5.

The main parameters in these theories are the number of colours N, coupling con-
stant λ (or gs), string tension T which is related to the α′ and the radius of the S5

(or AdS5 since they are equal). The anomalous dimensions of the operators in gauge
theory ∆ are dual to the energies of the corresponding strings solutions E. The duality
itself relates classical free strings and the strong coupled SYM (or, highly quantum
strings with the perturbative regime in SYM). So we can hope that some new ingredi-
ents would shed some light on the origins of this duality.

Luckily, in the last decade, enormous progress was made in computing the spec-
trum of conformal dimensions of the N = 4 supersymmetric Yang–Mills theory in the
planar limit (when N →∞). This progress was made possible by the discovery of inte-
grability [6]. Usually the presence of integrability means that we can solve the system
exactly, and this is extremely important for the understading the nature of AdS/CFT
correspondence.

To understand this importance let us recall that the AdS/CFT correspondence be-
tween gauge and string theories is the duality of weak/strong coupling type. That
means that except for the quantities protected by the symmetry and some special lim-
iting regimes, comparison of gauge and string theory predictions requires essentially
nonperturbative calculations.

One of the main properties of the AdS/CFT correspondence was that integrability
was discovered on the both sides of the duality. On the side of the gauge theory inte-
grability traces back to the high–energy QCD [7, 8], where it plays main role in the
solution of the evolution equation. Then, almost 10 years later, it was discovered in the
N = 4 supersymmetric Yang–Mills theory: firstly at one loop [6] and then it was conjec-
tured to hold at all loops [9]. According to the integrability conjecture, the single trace
local operators correspond to the states of an integrable spin chain in which the di-
latation operator plays the role of a Hamiltonian. At one–loop level this is a spin chain
with the nearest neighbors’ interactions. It can be diagonalized for example by alge-
braic Bethe Ansatz (see, for example, [10] for a review). Here Bethe Ansatz played a bit
non–standard role. It was known that it works for integrable 1+1 dimensional theory,
but in our case it allows us to solve (i.e. find the spectrum) the four–dimensional theory.
Moreover, it was possible at arbitrary coupling constant. The conjectured asymptotic
Bethe ansatz equations [11, 12, 13] (also in the review cited above) interpolating be-
tween weak and strong coupling allowed to perform refined checks for operators with
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large charges. Thus the N = 4 SYM was the first four–dimensional theory solved by
the means of the integrability.

Since we managed to reduce (in some sense) our four–dimensional problem to the
two–dimensional one, it is not very suprpising that we would be able to apply an-
other integrable methods to solve the system completely. Namely, one can perform
the Zamolodchikov trick [14] to write down the Y-system equations. These equations
allows us to compute the spectrum of the theory in the finite volume (or, having in
mind the operator/spin chain correspondence, the anomalous dimension of operator of
any length). It occurs, however, that analytic solution is possible only in a few situa-
tions. One of such situation — computation of the anomalous dimension of the Konishi
operator [15] — we will describe in details.

On the string side of the theory the classical integrability was discovered in [16].
The equations of motion of the string sigma-model for AdS5 ×S5 background (which
is dual to N = 4 SYM theory), admit a Lax representation. This Lax representation
generates an infinite set of conserved charges [17]. Although there is no proof, but
there is a huge evidence that integrability is still in place even in quantum case.

Due to integrability, the equations of motion of the strings can be integrated by
the finite–gap technique [18]. This method gives rise to the multi–valued function
p(x) which is defined on a Riemann surfrace. This function has a physical meaning
as quasimomenta, completely analagous to the Bohr–Sommerfeld quasimomenta in
non–relativistic quanum mechanics. Suprisingly, it is possible to perform a one–loop
quantization procedure based on the Bohr–Sommerfeld technique. We did for a con-
crete solution — folded string.

Then we perform a short string expansion. The semiclassical approach typically
demands that the conserved charges scale as the coupling constant. For the case of
the spinning folded string the two charges, the Lorentz spin S and R-charge J, should
scale in such a way that the ratios S = S/

p
λ, J = J/

p
λ remain fixed. The expansion of

the energy is of the form

E ≡ γ+S+ J =
p
λE0(S ,J )+E1(S ,J )+ 1p

λ
E2(S ,J )+ . . . . (1.0.4)

Then, in order to approach the short operator regime we re-expand the result in the
limit when S, J ∼ 1 and thus S ∼ J ≪ 1. As it was pointed out in [19] the expansion
above reorganizes into a power series of the type

E =λ1/4a0 + 1
λ1/4 a2+ . . . , (1.0.5)

where only the classical energy E0 contributes to the first coefficient a0 and both E1
and E0 contribute to the coefficient a2. Thus with some caution one may assume that
the short strings with S, J ∼ 1, which are in principle deeply quantum states, still can
be reached using the quasi-classical methods. In this way, the complications with the
direct treatment of the Y-system can be escaped. In this thesis we compute the first two
coefficients in the expansion (1.0.4) using the algebraic curve quantization procedure
for an arbitrary S and J .

What is important is that in the result we do not get any logarithmic terms which
would signal order-of-limits problems. From the Asymptotic Bethe Ansatz (ABA) we
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know that the Konishi state in the sl(2) sector is given by S = J = 2 and n = 1. Sub-
stituting these values of the parameters we indeed obtain a result consistent with the
numerical predictions and the predictions from the perturbative string computations
[20].

Another example, which is treated in the section 3.5, is that of the long strings with
large Lorentz spin S and small twist J = ℓ4g logS. It is well understood that this case
can be obtained from the generic two-cut solution in the sl(2) sector [21, 22, 23, 24]

E(ℓ,S )=
(p

λ f0(ℓ)+ f1(ℓ)+ 1p
λ

f2(ℓ)
)
logS + . . . . (1.0.6)

The leading logarithmic scaling is a generic feature in gauge theories [25, 26, 27, 28]
and the coefficient of logS is the so-called generalized scaling function. The functions
f0(ℓ), f1(ℓ), f2(ℓ) were derived explicitly in [21, 22, 23, 24, 29, 30].

It happens that all the three coefficients have a well-defined limit at ℓ= 0 and that in
this limit they reproduce correctly the strong coupling expansion of the cusp anomalous
dimension. In particular the ℓ= 0 result obtained in this order of limits coincides with
the solution obtained [31, 32, 33, 34, 35, 36, 37] via the Beisert–Eden–Staudacher
equation [13, 38], which supposes J = 2 and S large and then g →∞. A recent review
of this subject appeared in [39].

In this thesis we also revisit the computation of the classical and one-loop energy
for the long string both from the point of view of the algebraic curve and the Y-system,
having in view the finite size corrections. We obtain results for all orders in 1/logS
and we neglect terms of the order logS/S and higher. At ℓ= 0 the result is particularly
simple

Eℓ=0 = S+ J+4g
(
log

2S
g

−1
)
− 3log2

π
log

2S
g

+ 6log2
π

+1− 5π
12log(2S/g)

+O (1/g) (1.0.7)

The subleading part in logS is the so-called virtual scaling function computed in [40,
41] while the 1/logS part agrees with the results in [42, 43, 44]. In [44] the last term
in (1.0.7) was given the simple interpretation of contribution of massless excitations
propagating on a string of length L = 2logS, with total result:

δE1 =− π

12logS
× (number of massless modes). (1.0.8)

The massive modes lead to correction of the type e−mL, where m ∼ ℓ and L = 2logS;
these contributions have to be summed up properly in order to reproduce the massless
limit.

In our computation, the four massive mode contributions come via the wrapping cor-
rections. From the Y-system point of view, this part is constituted by two contributions
(virtual particle contribution and back-reaction of the roots) which become separately
divergent when ℓ→ 0. The algebraic curve computation does not see any divergence,
and this may be compared to the particularly smooth behavior of the algebraic curve
prediction for the short strings.
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Finally, the contribution of the massless mode comes via the asymptotic Bethe
ansatz. This might seem surprising, since at finite coupling there are no 1/logS correc-
tions for the twist-two operator J = 2, just the (logS)0 term [45, 46]. This is obviously
due to the different order of limits which are considered and might be explained by the
fact that the bosonic modes of the O(6) sigma model [47, 48, 49] acquire a dynamically
generated mass at finite coupling.

As the result we will be able to check our predictions for the short string energy with
the anomalous dimension of the corresponding operator in the gauge theory, which will
be computed also using integrability.

In the chapter 4 we give a review of the Thermodynamical Bethe Ansatz (TBA)
exemplifying it on the O(4) σ–model. It is one of the simplest models for illustrating
the nested Bethe ansatz technique, but all the main properties are still true for more
complicated models, like PSU(2,2|4) σ–model which we will discuss in the chapter 5.
We will derive from the TBA the system of coupled equations (Y–system), which in
principle could be solved.

There is very powerful method for solving these equations in the general setup —
Backlund transformations [50, 51, 52]. We will illustrate this on the example of the
GL(N|M) group and then move to our case. It occurs that some group structure (the
existence of the Z4 automorphism) is crucial for the Y–system construction — the same
structure which was very important for the integrability in the string side of the dual-
ity.

In the last chapter we compare two sides of the duality and two quantities which
were obtained by the very different techniques. It occurs despite of the different origins
the two expressions from different side of duality can be more or less easily recasted
from one to another, giving, of course, the same result for the spectrum of the theory.

The main results of this thesis are published in the paper [53]. There are also
some unpublished results concerning string theory on arbitrary background which will
appear in the paper with K. Zarembo.

I would like to express my gratitude to my advisors — Ivan Kostov and Didina Ser-
ban, for many interesting discussions during all these 3 years from which I benefited
a lot. Every day I felt their kindness and deep support in all my studies.
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tors, Dmytro Volin and Nikolay Gromov for the great experience of working together.

This thesis could not be defended without jury, so my sincere thanks goes to Arkady
Tseytlin, Charlotte Kristjansen, Joe Minahan and Jean-Bernard Zuber for the very
quick reports in the shortage of time and very insightful comments and questions dur-
ing the defence.

Also I would like to thank all the stuff of the Institute for the hospitability and their
readiness to help.

Finally I am very thankful to my father and my wife for their love, support and
patience.
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Chapter 2

The algebraic curve setup

In this chapter we will present the scheme of the quasi-classical quantization based
on the algebraic curve formalism.

First we will review the action of the theory. Starting from the classical bosonic
action ([54]) we will explore integrability of the model [16]. We will show how one can
define the flat connection for the σ–model on the curved background. Then, using the
fact that this connection depends on the spectral parameter x ∈ C, we will argue that
this system is classically integrable, because it will be possible to construct the infinte
tower of the conserved charges.

Of course, this construction is quite general, but this can be applied to the concrete
classical solutions (see, for example, [55, 56] for reviews). We will consider the two-cut
folded string solution. Based on the quasi-classical quantization scheme [57] we will
quantize it and then proceed to the short string limit to compare it with the gauge
theory computation.

2.1 The Green–Schwarz action
Now we will give a short review of the Metsaev–Tseytlin construction. The type

IIB superstring theory in a curved space with a 5-form Ramond-Ramond background
is defined by the Green–Schwarz action [58] (the fermion part the of the action taken
from [59]):

L = 1
2

p
−hhabηM̂N̂EM̂

a EN̂
b + θ̄I

(p
−hhabδIJ −εabσIJ

3

)
/EaDJK

b θK , (2.1.1)

where θI are 10d Majorana spinors (θ̄ = θtC) satisfying

Γ11θI =
{
σIJ

3 θJ in type IIA
θI in type IIB.

(2.1.2)

The worldsheet projections of the local frame EM̂
M (ηM̂N̂EM̂

MEN̂
N =GMN), and their Dirac

contractions are defined as

EM̂
a = ∂aX MEM̂

M , /Ea = EM̂
a ΓM̂ . (2.1.3)
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The covariant derivative acts on the worldsheet fermions as

DJK
b = Dbδ

JK + 1
8

F JK /Eb, (2.1.4)

where Db is the ordinary covariant derivative projected onto the worldsheet:

Db = ∂b +
1
4
∂b X MΩM̂N̂

M ΓM̂N̂ , (2.1.5)

ΩM̂N̂
M is the spin connection and F JK contains the coupling to the RR fields:

F JK =
5∑

n=1

1
n!

FM̂1...M̂n
ΓM̂1...M̂nσJK

(n) , (2.1.6)

where FM̂1...M̂n
is the field strength of the (n−1)-form RR field, projected onto the local

frame, and

σ(1) =−iσ2, σ(2) =σ3, σ(3) =σ1, σ(4) =−1, σ(5) =− i
2
σ2. (2.1.7)

2.2 Bosonic string in the AdS5×S5

As we saw in the previous section, one can in principle write down the gauge–fixed
full lagrangian for bosons and fermions. However, it will be a bit complicated expres-
sion. It is suitable for studying, for example, worldsheet scattering of the excitations
[60, 61], but for our purposes we can boil this construction down to the classical level.

On the classical level all the fermion fields vanish, so we are left with the pure
bosonic action. In the conformal gauge the AdS5 and S5 parts of the theory are decou-
pled, and the only interaction between them is only due to the Virasoro conditions. We
consider the bosonic part of the full action below.

Firstly, let us define the background rigorously. The AdSd space is a hypersurface
described by the equation

X2
−1+ X2

0 − X2
1 − . . . X2

d = 1. (2.2.1)
Also there is a metric inherited from the Rd, that is, the action of the SO(d,2)

group and AdSd+1 is a homogeneous space of SO(d,2). Moreover, there is a little
group for this space — SO(d,1). That’s why AdSd+1 has the coset structure: AdSd+1 =
SO(d,2)/SO(d,1). Equivalently, AdS can be defined as a set of equivalence classes of
the right SO(d,1) action on SO(d,2).

One can define the string action on AdSd+1 starting with sigma–model on SO(d,2)
and then gauging the little group action SO(d,1) by a non-dynamical gauge field. It
is always possible to construct the gauge action using the little group formalism (see,
for example, [62]). The gauge transformations are right multiplications from SO(d,1):
g(x) → g(x)h(x). In this setup gauge fixing is equivalent to picking one representative
in each class (i.e. embedding of AdSd+2 in SO(d,2)). For example in AdS5, one can use
Poincare coordinates (note that they cover only the part of AdS5):
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g =


z
2

(
1+ 1+x2

z2

)
xν
z

z
2

(
1− 1−x2

z2

)
xµ
z ηµν+ 2

(z+1)2+x2
xµxν

z
zxµ

(z+1)2+x2

(
1− 1−x2

z2

)
z
2

(
1− 1−x2

z2

)
zxν

(z+1)2+x2

(
1− 1−x2

z2

)
1+ 1

2
z3

(z+1)2+x2

(
1− 1−x2

z2

)2

 , (2.2.2)

where µ,ν = 0, . . . ,d − 1. Finally the metric in the AdS5 × S5 can be written in the
conformally-flat form

ds2 = dz2 +dx2

z2 . (2.2.3)

However, for our purposes it is better to keep everything on the abstract level, without
the concrete realization of the embeddings.

Let us discuss the transformation properties of the current

Ja = g−1∂a g. (2.2.4)
The current algebra is Lie algebra so(d,2) and transforms like

Ja → h−1Jah+h−1∂ah, (2.2.5)
where h ∈ SO(d,1) and corresponds to the non–homogeneous part of the transforma-
tion. This suggests us to decompose the current into two parts:

Ja = Ja0 + Ja2, (2.2.6)
where Ja0 ∈ so(d,1) and Ja2 belongs to the orthogonal complement to so(d,2). In the
standard notation of embedding so(d,1)⊂ so(d,2) this complement is the first row (d+1)–
dimensional vector.

We denote this orthogonal element by f:

so(d,2)= so(d,1)⊕ f. (2.2.7)
Under the gauge transformations the non–homogeneous term is absorbed naturally

into Ja0, while the Ja2 component of the current transforms as the matter field: Ja2 →
h−1Ja2h. So we can use this current to construct a gauge–invariant string action:

S = g
∫

d2x
p
−hhabtr Ja2Jb2 (2.2.8)

This allows us to immediately construct the supersymmetric completion of the
sigma–model, which will be done below (see chapter 2.2.2) and prove (at least clasi-
cally) integrability (chapter 2.2.1). This parametrization is especially useful since it
does not employ the partricular embedding. All the equations can be thus written
entirely in terms of currents.

The variation of the action gives the conservation law:

2Da

(p
−hhab Jb2

)
= 0, (2.2.9)

where Da is a gauge derivative built out the gauge current Ja0:
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Da = ∂a + [Ja0, ·] . (2.2.10)
The flatness condition of J2 projected onto so(d,1) and orthogonal completion looks

like

DaJb2 −Db Ja2 = 0, (2.2.11)
Fab + [Ja2, Jb2] = 0. (2.2.12)

Here the Fab is naturally connection: Fab = ∂aJb0−∂b Ja0+ [Ja0, Jb0]. Also we can derive
the Virasoro constraints from the equation of motion for the metric:

habtr J±a2J±b2 = 0. (2.2.13)
Here ± superscript denotes the worldsheet light-cone projections:

J±a2 =
(
δb

a ±
1p−h

hacϵ
cb

)
Jb2. (2.2.14)

In the next section we will study the remarkable property of these equations,
namely, integrability.

2.2.1 Integrability
The geometric origin of integrability of sigma–model on AdSd+1 is an extra Z2 sym-

metry of the AdS metric. It is invariant under the reflection XA →−XA. The AdSd+1
hypersurface is a symmetric space.

In the coset construction the Z2 symmetry acts by changing the sign of the J2 com-
ponent of the current:

Ja0 → Ja0, Ja2 →−Ja2. (2.2.15)
The action (2.2.8) and the equations of motion (2.2.9), (2.2.11) are invariant under

this transformation. On the more formal level (which will be useful in the supersym-
metric case), the Z2 symmetry can be defined as an automorphism of the algebra so(d,2)
which preserves the coset decomposition. The automorphism acts trivially on so(d,1)
but changes the sign of all the orthogonal elements (which reflects in changing the sign
in the corresponding current).

The crucial point for integrability is that this transformation is consistent with the
commutation relations of so(d,2), so that the reflection of the orthogonal element f is a
symmetry of so(d,2). Let us write down the following relations:

[so(d,1),so(d,1)] ∈ so(d,1), [so(d,1), f] ∈ f, [f, f] ∈ so(d,1). (2.2.16)
Because of this, the flatness condition decomposes into the two equations (2.2.11),
which admits the Lax representation:

La = Ja0 + x2+1
x2−1

Ja2 − 2x
x2 −1

1p−h
habϵ

bc Jc2. (2.2.17)
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If the currents satisfy the equations of motion, the Lax connection is flat:

∂aLb −∂bLa + [La,Lb]= 0. (2.2.18)
The Virasoro constraints do not follow from the Lax representation, but are very

natural for integrability [63].
Using this Lax representation one can immediately construct the tower of conserved

charges. To do this, we write down the monodromy matrix

Ω(x)= P exp
∮
γ

L(x). (2.2.19)

Here γ is a path of equal time on the worldsheet. However, due to the flatness
condition we can deform our contour without changing the integral.

This monodromy is a group element of the SO(d,2) group and hence eigenvalues of
the monodromy matrix is gauge-invariant. Also they are time-independent, so they can
be used to define the desired tower of conserved charges. More precisely, we construct
the matrix T(x, z)

T(x, z)≡ tr(z1−Ω(x)), (2.2.20)
and expand it in x and z. The coefficients in this expansion are the conserved charges
of our model.

2.2.2 Switching on the supersymmetry
The self-consistent AdSd+1 backgrounds are supersymmetric, so we will need to

couple σ–model on AdS with fermions. In the case of AdS5 × S5 the coset looks as
follows [64]

PSU(2,2|4)
SO(4,1)×SO(5)

, (2.2.21)

and is the coset of the PSU(2,2|4), superconformal group of the dual N = 4 SYM theory.
Green–Schwarz action should contain usual metric coupling term gMN∂X M∂X M and a
fermionic Wess-Zumino term. The coset construction (2.2.21) provides a natural way
because of the Z4 automorphism – an extension of the Z2 symmetry discussed in the
previous section.

Full classification of all Z4 cosets was given by Zarembo [65]. They happen to be
integrable and contain AdS as part of their supergeometry. We review briefly the
construction of these cosets.

A coset G/H0 of the supergroup G posseses a Z4 supersymmetry if h0 is invariant
under linear automorphism M of order 4 that acts on g. An automorphism M is a
linear map from g to g that preserves the Lie bracket. The diagonalization of the Z4
charge

M (hn)= inhn, n = 0,1,2,3 (2.2.22)
defines a Z4 decomposition of g (grading):
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g= h0⊕h1 ⊕h2 ⊕h3. (2.2.23)
This decomposition is consistent with the commutation relations:

{hn,hm} ∈ hn+m( mod 4). (2.2.24)
Taking in the account the fact that M 2 = (−1)F (F is the number of fermions) we con-
clude that h0 ⊕h2 is the bosonic superalgebra of g.

The coset representative, g(x), is subject to gauge transformations g(x) → g(x)h(x),
where h(x) ∈ H0. The decomposition of the current Ja now contains 4 terms due to the
Z4 grading:

Ja = g−1∂a g = Ja0 + Ja1+ Ja2 + Ja3. (2.2.25)
So we can write the general form of the Green–Schwarz action in terms of currents.

Bosonic currents are coupled with metric, and fermionic currents couples with ϵab.

S = g
∫

d2xstr
(p

−hhab Ja2Jb2 +ϵab Ja1Ja3

)
. (2.2.26)

Now we can write down the equation of motion and flatness condition, analogously to
the Z2 case (see, for example, [66]):

2Da

(p
−hhab Jb2

)
−ϵab[Ja1, Jb1]+ϵab[Ja3, Jb3] = 0,(p

−hhab +ϵab
)
[Ja2, Jb1] = 0,(p

−hhab −ϵab
)
[Ja2, Jb3] = 0,

ϵab (2DaJb2+ [Ja1, Jb1]+ [Ja3, Jb3]) = 0, (2.2.27)
ϵab (DaJb1+ [Ja2, Jb3]) = 0,
ϵab (DaJb3+ [Ja2, Jb1]) = 0,

Fab + [Ja2, Jb2]+ [Ja1, Jb3]+ [Ja3, Jb1] = 0.

Here Da = ∂a + [Ja0, ·] and Fab = ∂aJb0 −∂b Ja0 + [Ja0, Jb0].
There exists a Lax representation which again can be expressed through the cur-

rents:

La = Ja0 + x2+1
x2−1

Ja2 − 2x
x2 −1

1p−h
habϵ

bc Jc2+
√

x+1
x−1

Ja1+
√

x−1
x+1

Ja3. (2.2.28)

The equations of motion follows from the flatness condition for La.
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2.2.3 Flat connection
Let us write down the Metsaev–Tseytlin action for the Green–Schwarz superstring

in AdS5×S5. It is given in terms of the algebra current J =−g−1dg, where g(σ,τ) is an
element of psu(2,2|4):

S =
p
λ

4π

∫
str

(
J(2) ∧∗J(2) − J(1) ∧ J(3)

)
+Λ∧str J(2). (2.2.29)

The last term is the Lagrange multiplier to ensure that J(2) is super-traceless.
Let us say a few words about psu(2,2|4). It is a particular real form of psl(4|4). The

Cartan basis of this Lie superalgebra is described in [67]. The Dynkin diagram looks
as follows

.

Figure 2.1: One of the possible Dynkin diagrams for the psu(2,2|4).

This action has a local symmetry g → gh, where h ∈ sp(2,2)× sp(4):

J(i) → h−1J(i)h, i = 1,2,3. (2.2.30)
For a purely bosonic representative g we can write

g =
(
Q 0
0 R

)
, (2.2.31)

where R ∈ SU(4) and Q ∈ SU(2,2). Let us note that RERT is a parametrisation of
S5 since is invariant under R → Rk with k ∈ SP(4). In the same manner QEQT

parametrises the AdS5 space. So we can define embedding coordinates u and v:

u jΓ
SO(6)
j =RERT , v jΓ

SO(4,2)
j =QEQT . (2.2.32)

This coordinates satisfy

u2
1 +u2

2 +u2
3 +u2

4 +u2
5 +u2

6 = 1, (2.2.33)
−v2

1 −v2
1 −v2

1 −v2
1 +v2

1 +v2
1 = 1. (2.2.34)

In terms of these coordinates the bosonic part of Metsaev–Tseytlin action can be ex-
pressed in the form of a σ–model:

S =
p
λ

4π

∫ 2π

0
dσ

∫
dτ

p
h

(
hµν∂µu ·∂νu+λu(u ·u−1)− (u ↔ v)

)
. (2.2.35)

Since the action is invariant under the SO(4,2) and SO(6) transformations, it will be
natural to choose Noether charges corresponding to the described 3+3 linear isometries
of the AdS5×S5: the time t and two angles φa from the AdS5 part and three angles ϕi
from the S5 part:
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S0 ≡ E =
p
λE, S1 =

p
λS1, S2 =

p
λS2, (2.2.36)

(2.2.37)

Now let us discuss the flatness condition. It reads

dJ− J∧ J = 0. (2.2.38)
It follows that we can construct the connection depending on the spectral parameter

x which is flat for any x:

L(x)= J(0)+ x2 +1
x2 −1

J(2) − 2x
x2−1

∗ J(2) +
√

x+1
x−1

J(1) +
√

x−1
x+1

J(3). (2.2.39)

This connection generates an infinite tower of conserved charges, and this guarantees
the classical integrability of the model. We can define the monodromy matrix

Ω(x)= P exp
∮
γ

L(x), (2.2.40)

where γ is any path wrapping the worldsheet cylinder once. The flatness condition
(2.2.38) implies that Ω(x) will be path-independent, so we can choose γ to be the τ–
constant. Thus the eigenvalues of Ω(x) are time independent too and the only depen-
dence is the dependence on a spectral parameter x, which can be arbitrary complex
value. Expanding Ω(x) in x we obtain the infinite series of integrals of motion, and
that proofs integrability.

Now let us move to the eigenvalues themselves. Since Ω(x) is unitary, we can denote
the eigenvalues by

(ei p̂1(x), ei p̂2(x), ei p̂3(x), ei p̂4(x)|ei p̃1(x), ei p̃2(x), ei p̃3(x), ei p̃4(x)). (2.2.41)
Here p̂i corresponds to the AdS5 part and p̃i — to the S5 part. The set of pi is called

quasimomenta.
These eigenvalues are the roots of the characteristic equation

sdet (y1−Ω(x))= 0. (2.2.42)
Of course it is not necessary for this equation to be a polynomial — in principle it can
have singularities and infinite genus. But there is an important class of configurations,
the so called “finite gap solutions”. They have finite genus and in this instance equation
(2.2.42) defines algebraic curve. It was shown in [18] that all the classical solutions of
this model can be equivalently characterized in terms of theis algebraic curves (or, the
same, in terms of quasimomenta).

Since the Z4 acts on the flat connection as (2.2.22), it is easy to see that it is equiv-
alent to the inversion of the spectral parameter:

M (L(x))= L(1/x). (2.2.43)
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Obviously, the same holds for the monodromy matrix, since the Z4 action on the Lie
algebra can be lifted to the group action with the exponent.

How it will reflect on the quasiomenta? Let’s consider the Z4 action on the Cartan
generators of our superalgebra:

M (Hl)≡ HmSlm. (2.2.44)
So one can see that for quasimomenta

pl(1/x)= Slm pm(x). (2.2.45)
Thus we conclude that the knowledge of the quasimomenta in the physical region |x| > 1
is sufficient to reconstruct them on the full complex plane.

From super-tracelessness of the connection it follows that the monodromy matrix
should be unimodular: sdetΩ(x)= 1. On the level of quasimomenta it means that

4∑
i=1

( p̂i(x)− p̃i(x))= 2πn, n ∈Z. (2.2.46)

This means, in turn, that p(x) can be defined on a 8–sheet Riemann surface. These
sheets are connected by several cuts, which emerge from the solution of algebraic equa-
tion (2.2.42). The branch points of these cuts are the points where two eigenvalues of
Ω(x) become equal.

2.3 Solutions and their quasimomenta
Now let us make the bridge between classical solutions and the set of quasimo-

menta. Although we will need an explicit classical solution, let us discuss first the
constraints on the behaviour near the special points like poles, infinity etc.

• Cuts. There is a Riemann surface, and all eight sheets of this surface are con-
nected with each other by cuts. Consider the cut C i j which connects sheets i and
j. On each sheet there is a definite single-valued quasimomentum (pi and p j).
These quasimomenta have discontinuities:

p+
i − p−

j = 2πni j, ni j ∈Z, x ∈ C i j. (2.3.1)

Here + and − denotes that we take values of p(x) above and below the cut corre-
spondingly.
Not all the combinations of i and j are accepted to get the physical excitations.
We can use for i the set {1̃, 2̃, 1̂, 2̂} and for j the set {3̃, 4̃, 3̂, 4̂}.
We can see that there are sixteen combinations which lead to the sixteen physical
polarizations (8 bosonic and 8 fermionic) of the superstring in AdS5 ×S5:

S5 : (1̃, 3̃), (1̃, 4̃), (2̃, 3̃), (2̃, 4̃); (2.3.2)
AdS5 : (1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂); (2.3.3)

Fermions : (1̃, 3̂), (1̃, 4̂), (2̃, 3̂), (2̃, 4̂), (1̂, 3̃), (1̂, 4̃), (2̂, 3̃), (2̂, 4̃). (2.3.4)
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• Inversion symmetry. As we have shown in the previous section, the Z4 auto-
morphism of the algebra psu(2,2|4) imposes the following relations (see Appendix
B for the derivation) for the quasimomenta (see also [68] for the first derivation
of them):

p̃1,2(x) = − p̃2,1(1/x)−2πm, (2.3.5)
p̃3,4(x) = − p̃4,3(1/x)+2πm, (2.3.6)

p̂1,2,3,4(x) = − p̂2,1,4,3(1/x). (2.3.7)

• Poles. One can see directly from the Lax connection that the monodromy matrix
and therefore quasimomenta have poles at x = ±1. But they are not completely
independent as one can expect from the naive point of view. First the inver-
sion symmetry leaves only 4 independent values of the poles (instead of 8). The
unimodularity condition (2.2.46) reduces 4 to 3, and now this is time to use the
Virasoro constraints.
In terms of the currents they can be formulated very simple. Procedure is the
same as in the case of Z2 (2.2.13), so we can just lift up everything to the case of
Z4:

str
(
J(2)

)2 = 0. (2.3.8)

So we are eventually left with only two independent poles. Generally they can be
written as

{ p̂1, p̂2, p̂3, p̂4; p̃1, p̃2, p̃3, p̃4}∼ {α±,α±,β±,β±;α±,α±,β±,β±}
x±1

. (2.3.9)

• Asymptotics for x → ∞. In the limit when x → ∞ Lax connection reduces to
the Noether current. That’s why asymptotics of the quasimomenta gives global
charges of the classical solution. We can define Q =Q/

p
λ, with this definition we

have, for example,
E = 1

4π
lim
x→∞x (p̂1(x)+ p̂2(x)) . (2.3.10)

In more general view we can have for all the charges:



p̂1
p̂2
p̂3
p̂4
p̃1
p̃2
p̃3
p̃4


∼ 2π

x



+E −S1 +S2
+E +S1 −S2
−E −S1 −S2
−E +S1 +S2
+J +J2−J3
+J −J2+J3
−J +J2+J3
−J −J2−J3


(2.3.11)
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• Filling fraction. There are action variables of the theory, which are associated
with each cut between i and j polarisation:

Si j =±
p
λ

8π2i

∮
Ci j

(
1− 1

x2 pi(x)
)

dx (2.3.12)

Here the contour Ci j encircles the corresponding square root cut. One can prove
that these variables are indeed the action variables of the theory [69, 70]. Finally
we can notice that under Zhukovsky map

u = x+ 1
x

(2.3.13)

the expression for the filling fraction simplifies as

Si j =±
p
λ

8π2i

∮
Ci j

pi(u)du. (2.3.14)

This shows that from the Bohr–Sommerfeld point of view this pair of variables
(p,u) is more suitable for quantization.
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Chapter 3

The two-cut solution and
quantization

In the previous chapter we saw that the algebraic curve can provide all the essen-
tial information about the classical and quasi-classical properties of the solution. Of
course, this technique can be applied to rather general configurations, but we will re-
strict ourselves to the case of two-cut solution. This means that on the complex plane
of the spectral parameter x we have two symmetric cuts.

It was shown in [68] that soutions of this type are equivalent to the folded spinning
string founded in [71]. Since this solution has two charges S and J, its energy can be
compared to the anomalous dimension of the Konishi operator (which has the same
number of Dynkin labels) upon the setting S = J = 2.

In this chapter we will describe in details the two-cut solution in the terms of the
quasimomenta. Then we will apply all the machinery from the previuos chapter to
get the one-loop quasiclassical corrections to the energy of this solution in the case of
arbitrary S and J. The answer is posed of several integrals which could be derived
analytically in some particular cases. Namely, we will discuss the short operator limit,
when the ratio S/g is small. Taking then the limit when J is small we get the energy
of the solution, dual to the Konishi operator.

Other interesting limit which can be reached using this technique is the limit of the
long folded string when S is large and J scales as logS. This limit was discussed in [43]
using the standard string quantization procedure. However, we are able to reproduce
these results using the method of the algebraic curve and make a bridge to the dual
description of the solution (see section 5.3). The form of the answer could also provide
the nice physical interpreation which we give in the of the chapter.
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3.1 Classical solution
Let us now shift from the general description to the concrete example which we

will be use further. There is a specific type of solutions, the solutions with the two-cut
structure of the Riemann surface.

As explained in [18], a general K–cut solution must be of the form

p′(x)= g(x)

(x2 −1)2
√

f (x)
, (3.1.1)

where
f (x)=

2K∏
j=1

(x− x j), g(x)=
N∑

j=1
c jx j−1. (3.1.2)

Indeed we can notice that close to the branch point xk we have

p′(x)∼ ∂x
p

x− xk ∼
1p

x− xk
, (3.1.3)

and near the poles x =±1 we have

p′(x)∼ ∂x
1

x±1
∼ 1

(x±1)2 . (3.1.4)

To construct the quasimomenta p(x) we should integrate the meromorphic form
p′(x)dx.

For the concrete case of the symmetric two-cut solution we can write our ansatz in
the form

p′(x)=− π

f (x)

(
E

(
f (1)

(x−1)2 + f ′(1)
x−1

+ f (−1)
(x+1)2 + f ′(−1)

x+1

)
+2(J1− J2)

)
, (3.1.5)

where
f (x)=

√
(x−a)(x−b)(x+a)(x+b), 1< a < b. (3.1.6)

The ansatz is constructed like this: the first four terms ensure the behaviour near
the simple poles x =±1 and the last two terms are adjusted to give the correct behaviour
when x →∞.

Our symmetric two-cut solution describes the classical folded string in AdS5 ×S5

with twist J and Lorentz spin S. These conserved charges can be expressed in terms
of the position of the branch points a,b (the integer n (the mode number) is related to
the number of spikes):

S = 2ng
ab+1

ab

(
bE

(
1− a2

b2

)
−aK

(
1− a2

b2

))
, (3.1.7)

J = 4ng
b

K
(
1− a2

b2

)√
(a2−1)(b2 −1) . (3.1.8)

Then the classical energy can be computed as
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E = 2ng
ab−1

ab

(
bE

(
1− a2

b2

)
+aK

(
1− a2

b2

))
. (3.1.9)

Here E(x) and K(x) are the elliptic integrals.
Now we can proceed to the general expression for the quasimomenta. Since we have

the meromoprhic differential form p′(x)dx we can integrate it and get

p̂2 = πn− J
2g

( a
a2 −1

− x
x2−1

)√
(a2−1)(b2 − x2)
(b2 −1)(a2 − x2)

+ 2abSF1(x)
g(b−a)(ab+1)

+ J(a−b)F2(x)

2g
√

(a2 −1)(b2 −1)
,

p̃2 = Jx
2g(x2 −1)

. (3.1.10)

All the other quasi-momenta can be found from the standard symmetry relations
for the sl(2) sector

p2̂(x) = −p3̂(x)=−p1̂(1/x)= p4̂(1/x) , (3.1.11)
p2̃(x) = −p3̃(x)= p1̃(x)=−p4̃(x) . (3.1.12)

The functions F1(x) and F2(x) can be expressed in terms of the elliptic integrals:

F1(x) = iF

(
isinh−1

√
(b−a)(a− x)
(b+a)(a+ x)

| (a+b)2

(a−b)2

)
,

F2(x) = iE

(
isinh−1

√
(b−a)(a− x)
(b+a)(a+ x)

| (a+b)2

(a−b)2

)
.

3.2 Fluctuation frequencies
An important feature of the algebraic curve quantization is that one can work with

the off-shell fluctuation as it is described in detail in [72]. The off-shell fuctuation en-
ergies as functions of the spectral parameter x are much simpler than the usual fluctu-
ation energies, usually obtained in the world-sheet quantization procedure, which are
functions of mode numbers. The former should coincide with the later when evaluated
at the special points of the curve given by

pi(x
i j
k )− p j(x

i j
k )= 2πk . (3.2.1)

The fluctuations of the quasi-momenta with AdS–type excitations (2̃3̃) at z and S–
type (2̂3̂) at y are given by

δp̂2 = α(z)
x− z

+ δα−
x−1

+ δα+
x+1

, (3.2.2)

δp̃2 = 1
f (x)

(
− f (y)α(y)

x− y
+ δα− f (1)

x−1
+ δα+ f (−1)

x+1
− 4πxp

λ
+ A

)
, (3.2.3)
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where δα± and A are the constants.
In general one has to compute 8+8 different off-shell energies corresponding to the

number of the physical world-sheet degrees of freedom. However as it was shown in
[73] in the rank one sectors due to the inversion relations one can express all of them
in terms of just two of them Ω2̂3̂ and Ω2̃3̃:

Ω1̂4̂(x) = −Ω2̂3̂(1/x)−2 ,

Ω1̂3̂(x) = Ω2̂4̂(x)= 1
2
Ω1̂4̂(x)− 1

2
Ω1̂4̂(1/x)−1 ,

Ω1̂3̃(x) = Ω1̂4̃(x)=Ω4̂1̃(x)=Ω4̂2̃(x)= 1
2
Ω2̃3̃(x)+ 1

2
Ω2̂3̂(x), (3.2.4)

Ω2̂3̃(x) = Ω2̂4̃(x)=Ω3̂1̃(x)=Ω3̂2̃(x)= 1
2
Ω2̃3̃(x)− 1

2
Ω2̂3̂(1/x)−1,

Ω2̃3̃(x) = Ω2̃4̃(x)=Ω3̃1̃(x)=Ω3̃2̃(x)=Ω2̃3̃(x) .

Since we will consider only the sl(2) sector, the fluctuation energies in S5 should be
trivial and can be written down immediately:

Ω2̃3̃(x)=+ 2
ab−1

p
a2 −1

p
b2−1

x2 −1
. (3.2.5)

Calculation of Ω2̂3̂(x) is a little bit more involved. However the steps one should
follow are exactly the same as in [73] and we simply give the result here

Ω2̂3̂(x)=+ 2
ab−1

(
1− f (x)

x2−1

)
, (3.2.6)

where f (x)=p
x−a

p
a+ x

p
x−b

p
b+ x.

3.3 One–loop shift
In the previous sections we prepared all the necessary ingredients needed for the

one-loop corrections to the classical energy. As we mentioned in the previous section
the usual excitation energies, typically used in the worldsheet calculations, can be
obtained from the off-shell fluctuation energies Ωi j(x) by setting x to the value given be
the equation (3.2.1), and then sum over all polarizations (i j) and all mode numbers k.
Doing this explicitly is almost impossible for the given quasi-momenta. The standard
way to overcome this difficulty is to rewrite the sum as an integral (see, for example,
[57])

E = 1
2

∑
i j

(−1)Fi j

∮
dx
2πi

(
Ωi j(x)∂x logsin

pi − p j

2

)
. (3.3.1)

Here Fi j is the fermionic number: Fi j = 0 for bosonic polarizations and Fi j = 1 for
fermionic. The term ∂x logsin pi−p j

2 has the poles at the solutions of (3.2.1).
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The contour of integration encircles all the possible fluctuations xi j
k . This result is

already explicit enough, however it is instructive to deform the contour into the unit
circle (for each (i j)). During this contour deformation we can get two types of terms:

• Contribution from the integration on the unit circle for each polarization (i j).

• Additional contribution from the cuts of the classical solution. Only the term with
(i j)= (2̂3̂) gets such a contribution.

It is also convenient to use the variable z instead of x:

x = z+
√

z2 −1, (3.3.2)

which maps the unit circle |x| = 1 onto the interval z ∈ [−1,1]. Also we can split the
logarithm in two parts:

logsin
pi − p j

2
= i(pi − p j)

2
+ log

(
1− e−i(pi−p j)

)
, (3.3.3)

which holds up to some irrelevant constant. In this way we split the finite size ef-
fects from the asymptotic contribution. Indeed, for z ∈ [−1,1] e−i(pi−p j) is exponentially
suppressed for large J. Substituting this into (3.3.1), we get two terms, δE1 and δE2:

δE1 =
∑
i j

(−1)Fi j

1∫
−1

dz
2πi

(
Ωi j(z)∂z

i(pi − p j)
2

)
, (3.3.4)

δE2 =
∑
i j

(−1)Fi j

1∫
−1

dz
2πi

(
Ωi j(z)∂z log(1− e−i(pi−p j))

)
. (3.3.5)

One should take in account the contribution which we get by deforming the contour,
which encircles the cuts [−b,−a ] and [a,b ]. This contribution can be written as

δE3 =− 4
ab−1

∫ b

a

dx
2πi

f (x)
x2 −1

∂x logsin p2̂. (3.3.6)

where we use (3.1.11), (3.1.12).
The one-loop shift is then given by

E1−loop = δE1 +δE2 +δE3 . (3.3.7)

Using the symmetry relations (3.1.11), (3.1.12) (3.2.4), one can rewrite the sums δE1
and δE2 through the functions p2̂(x), p2̃(x), Ω2̂3̂(x), Ω2̃3̃(x) defined above.

Let us consider for example the set of polarizations which belongs to the S5. As we
already have seen, all the frequencies are equal to Ω2̃3̃(x). So our sum in δE2 simplifies
drastically and gives

δES5

2 = 4
1∫

0

dz
π

Im
[
Ω2̃3̃(z)∂z log

(
1− e−2ip2̃(z)

)]
. (3.3.8)
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One can easily show that all the contributions in δE1,2 can be very naturally
summed up in a pretty nice way:

δE1 = 2
1∫

0

dz
π

Im(p2̂− p2̃)∂zIm(Ω2̂3̂−Ω2̃3̃),

δE2 = 2
1∫

0

dz
π

Im
(
∂zΩ

2̃3̃ log
(1− e−ip2̃−i p̄2̂)(1− e−ip2̃+ip2̂)

(1− e−2ip2̃)2
− (3.3.9)

− ∂zΩ
2̂3̂ log

(1− e−2ip2̂)(1− e−ip2̂+i p̄2̂)
(1− e−ip2̂−ip2̃)2

)
.

Here for shorteness we denote p̄(z)= p(1/z).

3.4 The short operator limit
In this section we will exploit the explicit exact result for one-loop applicable for

arbitrary J,S ∼ g which was derived in the previous section. These formulae involve a
single integration and they can be evaluated numerically for various values of param-
eters.

The analytical evaluation of these integrals in general is not straightforward. In
some limits, however, the integrands could simplify considerably so that the integra-
tion can be performed analytically. In this section we will consider one of such limits,
namely we fix the ratio r = J/S and then expand the result for small S/g. We will then
motivate the relevance of this limit for the Konishi operator as well as for the similar
type of operators with very few fields.

This limit is not completely trivial, the reason being that the algebraic curve be-
comes singular in this case: both positive branch points a and b approach the pole at
x = 1 as it can be easily seen from (3.1.7) and (3.1.8).

In the limit of small S and J charges are given by

S = 2nπgs2 +O (s6), (3.4.1)
J = 2nπgrs2 +O (s7), (3.4.2)

E = 4nπgs+ 1
4
πgn

(
2r2 +3

)
s3− 1

128
s5 (

πgn
(
4r4 −20r2 +21

))+O (s6). (3.4.3)

Here r = J/S since we want to keep it ratio as arbitrary parameter.
One can see that, since 4πg =p

λ, we have

s =
p

2S/n
λ1/4 . (3.4.4)

In this limit one can simplify the expressions for a and b:
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a = 1+ r2s3

8
+ 1

128
(
r2 − r4) s5 + r4s6

128
+O (s7), (3.4.5)

b = 1+2s+2s2+ 1
8

(
r2 +7

)
s3+ 1

4
(
r2 −1

)
s4+ 1

256
(−2r4 +34r2 −85

)
s5+O (s6).(3.4.6)

And the energy of our “short string” is

E

n
p
λ
= s+ 1

16
(
2r2 +3

)
s3+ 1

512
(−4r4 +20r2 −21

)
s5+O (s6). (3.4.7)

So finally we got the classical energy of the generalized–folded string as a function of
S and J.

Now we can proceed to the one–loop computation. We consider in some detail only
the evaluation of δE1 and then give the result for the others integrals. In general, the
expression for δE1 can be written conveniently as it is shown in (3.3.9):

δE1 =−2
π

∫ 1

0
Im

(
Ω2̂3̂(z)−Ω2̃3̃(z)

)
Im

(
p′

2̂(z)− p′
2̃(z)

)
dz . (3.4.8)

First, assuming z−1∼ 0 we expand the integrand to get

−
∫ 1

0

2z2s
(z2−1)2 dz+ . . . . (3.4.9)

Apparently the integral is divergent close to z = 1. This divergence should be can-
celed when the integrand is treated more accurately for small z − 1. There are two
important scales when z approaches 1: when one zooms close to the branch point b
which scales as s2 then z = 1− s2ζ and when one further zooms so that we can distin-
guish the smallest branch point a from 1 i.e. z = 1− s6ξ. For each of these scales the
integral is divergent, however, when all the three regions are combined together the
divergences must cancel. What we get for δE1 is

δE1 ≃−s log
rs2

2
− s

2
. (3.4.10)

The contributions δE2 and δE3 can be computed similarly. The results for these
contributions are:

δE2 ≃ s log s+ c1s , (3.4.11)
δE3 ≃ s log

rs
2

+ s
4
− c1s , (3.4.12)

where the numerical constant c1 is c1 ≃ 0.0203628454. Notice that there are various
log divergences which all cancel when the terms are combined together and the final
result is very simple1

1 In order to get the ABA result with Hernandez-Lopez phase one should drop the δE2 contribution.
In this case one would get −s log s ≃

p
2S

4λ1/4 logλ divergence. Exactly this divergence was indeed observed
in [74] for the Konishi anomalous dimension (S = 2) computed in the ABA framework.
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∆1−loop = δE1 +δE2 +δE3 ≃− s
4
=−

p
2S

4λ1/4 . (3.4.13)

In fact this result was previously obtained in [75] numerically with only two digits
precision. This unpublished result was already used in [19] for the Konishi operator.
The main difference with [19] is that we do not assume that J = 0, instead from the
point of view of algebraic curve and its relation to the ABA it is rather obvious that
one should take J = 2 for Konishi operator instead. Here we follow the approach of [19]
with this small modification, which, however, changes the result considerably. Now we
simply combine the classical energy (3.4.7) and the one-loop result (3.4.13) to get

∆classical+∆1−loop =λ1/4p2S+ 1
λ1/4

2J2 +S(3S−2)

4
p

2S
. (3.4.14)

The contribution to the first term comes solely from the classical energy, whereas
both classical energy and the one-loop energy contribute to the second term. It is very
tempting to assume that this pattern will continue further and in order to find the
contribution to the next term one should also compute a two-loop correction. Strictly
speaking this result holds assuming no non-perturbative terms contribute and that at
each loop level the contribution can be represented as a regular series in s vanishing
at s = 0.

For the Konishi state the numerical prediction is already available [76]. To compare
one should substitute S = J = 2 as we discussed above. Equation (3.4.14) produces

∆classical +∆1−loop
∣∣∣
S=2,J=2,n=1

= 2λ1/4 + 2
λ1/4 (3.4.15)

in the perfect agreement with the Y-system numerical prediction of [76] (see also [77]),
string theory computation [20] and with computation in the pure spinor formalism
[78].

A natural question one can ask is whether this prediction is going to be correct for
short operators other than Konishi. To address this question we consider an operator
similar to Konishi, with J = 3, S = 2 and n = 1, which we denote as (3,2,1). From (3.4.14)
we see that our prediction produces

∆(3,2,1) = 2λ1/4 + 13
4λ1/4 . (3.4.16)

We compared this result with the numerical data from [79].
As one can see from Fig. 3.1, our analytical results perfectly match these numerical

points.

3.5 The 1/logS corrections for the long folded string
In this section we derive the finite size corrections for the regime when S is large

and J = 4gℓ logS with ℓ finite. The corrections are obtained by computing the three
integrals (3.3.4)-(3.3.6) and in an alternative way by using the Y–system at one loop
derived in [80] (section 5.3). We obtain the corrections at arbitrary order in 1/logS,
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Table 3.1: Konishi-like operator with J = 3. The full dimension ∆ = γanom +S + J for
various values of g. Numerical data by [79]. The numerical absolute error is about
±3×10−4.

g ∆ g ∆

0 5 0.9 7.6632
0.1 5.0777 1.0 7.9794
0.2 5.2883 1.1 8.2848
0.3 5.5854 1.2 8.5801
0.4 5.9275 1.3 8.8661
0.5 6.2868 1.4 9.1436
0.6 6.6456 1.5 9.4129
0.7 7.0023 1.6 9.6752
0.8 7.3354 1.7 9.9308

and we neglect all the inverse powers of S, as well as the logS/S terms. As a byproduct,
we are rederiving the known results for the generalized scaling function up to one loop
[22, 23], as well as the virtual scaling function [40] to the same order. The computations
are done for arbitary ℓ, but of course the formulas greatly simplify for the GKP [3] limit
ℓ= 0. In this limit, the energy is given by

Eℓ=0 = S+ J+4g
(
log

2S
g

−1
)
− 3log2

π
log

2S
g

+ 6log2
π

+1− 5π
12log(2S/g)

+O (1/g) . (3.5.1)

The (logS)0 part is in agreement with [40, 41, 81, 43], while the 1/logS part agrees with
the results in [42, 43, 44]. The −5π/12logS term can be interpreted as coming from the
finite size corrections associated to 5 massless bosonic fields [44, 82], and the logS
plays the role of the effective length of the string. At ℓ ̸= 0, four of these bosonic modes
are massive, and their contribution is captured by the wrapping corrections. The fifth
mode is massless, and it contributes via the anomaly term in the asymptotic Bethe
ansatz equations. Although at weak coupling the asymptotic Bethe ansatz yields no
1/logS corrections for the twist-two operator J = 2, [46], at strong coupling the situation
is different. This can be attributed to the different order in which the limits S →∞ and
g →∞ are taken.

In the limit of the long string S →∞, the endpoints ±b of the cuts of the algebraic
curve go to infinity and the solution becomes effectively one-cut. The expression for
the charges (3.1.7)-(3.1.9) simplify and, up to negative powers in S, we have

S
2g

= b,
J

4g
=

√
a2 −1log

2S
ag

,
∆

2g
= S

2g
+a log

2S
ag

. (3.5.2)

In particular, we notice that the parameter ℓ ≡ J/4g logS is related to the position of
the endpoint a of the cut by

ℓ=
√

a2−1
(
1− log(ag/2)

logS

)
. (3.5.3)
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Figure 3.1: Numerical results from the Y-system for J = 3, S = 2, n = 1 compared with
our analytical strong coupling expansion (3.4.14). Here as everywhere λ= 16π2 g2.

There will be trivial 1/logS terms coming from this relation between ℓ and a. After
some manipulation, the elliptic functions reduce in the large spin limit to simpler func-
tions and the quasi-momenta (3.1.10) become

p2̂(x)= J

2g
p

a2 −1

x
p

a2 − x2

x2−1
−4arctan

√
a− x
a+ x

, (3.5.4)

p2̃(x)= J
2g

x
x2−1

.

The off-shell frequencies (3.2.5) and (3.2.6) are given in this limit by

Ω2̃3̃ = 2
a

p
a2−1

x2 −1
, Ω2̂3̂ = 2

a

p
a2 − x2

x2−1
. (3.5.5)

With these data in hand we are able to proceed to the computation of the three integrals
giving the complete one-loop contribution to the energy. The easiest part to compute
is δE2, which can be reduced to

δE2 = 4
p

a2 −1
aπ

∫ ∞

1
dt

log(1− e−Jt/2g)p
1−1/t2

≡
p

a2 −1
a

I (2ℓ logS) . (3.5.6)

The following two representations of I (α) are particularly useful:

I (α)=−
∞∑

n=1

4
nπ

K1(nα) (3.5.7)

= −2π
3α

+2+ α

2π

(
2γE −1+2log

( α

4π

))
+ 1
π

∞∑
k=1

(−1)kζ(2k+1)Γ(2k+1)
Γ(k+1)Γ(k+2)(4π)2k 2k+1.
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From the first representation (a similar representation was obtained in [82]) we deduce
that at large α, I (α)∼ e−α/

p
α, so for finite ℓ the associated finite-size corrections vanish

exponentially. The second representation in (3.5.7) is useful in the small ℓ regime,
where it gives

δE2 ≃ ℓI (2ℓ logS)p
1+ℓ2

=− 4π
12logS

+O (ℓ) . (3.5.8)

Note that (3.5.8) appears only for ℓ logS ≪ 1 which practially corresponds to J → 0 limit
prior to the large S limit.

In the O(6) language, [47],[48], this is the correction coming from four of five bosonic
modes which are massive at finite J (hence exponential suppression at large α) but
become perturbatively massless in the limit J → 0.

The other two contributions to the one-loop energy are

δE1 = −4
a

∫
U+

dy
2π

Im

√
a2− y2 −

p
a2 −1

y2 −1
∂y ImG0(y) ,

δE3 = −4
a

∫ ∞

a

dy
2π

√
y2−a2

y2 −1
p′ coth p , (3.5.9)

where we have denoted p ≡ ip2̂(y+ i0), G0(y) ≡ p2̂(y)− p2̃(y) and the contour U+ is the
upper half of the unit circle running clockwise. The last term can be split naturally
into two parts

δE3 = δE3,an +δE3,m . (3.5.10)
The anomaly-like term δE3,an contains the finite-size corrections associated to the fifth
bosonic mode, which remains massless for arbitrary ℓ

δE3,an ≡−4
a

∫ ∞

a

d y
2π

√
y2 −a2

y2 −1
p′(coth p−1)=− π

12(1+ℓ2) logS
+O (1/ log2 S) . (3.5.11)

This is exactly the contribution of the only at J ̸= 0 massless mode identified by Giombi,
Ricci, Roiban and Tseytlin [44]. A more refined evaluation of the anomaly part, up to
logS/S terms, can be straightforwardly done using

δE3,an =
∞∑

n=1
f (n)(0)

ζ(n+1)
2n +O (logS/S) with f (p)=− 2

aπ

√
y2(p)−a2

y2(p)−1
. (3.5.12)

The remaining two contributions δE1 and δE3,m reproduce the results already existing
in the literature [21, 22, 23, 24, 29] with

δE3,m =−4
a

∫ ∞

a

d y
2π

√
y2−a2

y2−1
p′ = a− (

a2 +1
)
arccotha

aπ
log

2S
ag

+ 4arccotha
aπ

(3.5.13)

and

δE1 =−4
a

∫
U+

dy
2π

Im

√
a2− y2 −

p
a2 −1

y2 −1
∂y ImG0(y)

=− (a2 +1)arccotha2+2a2 log(1−a−2)+1
aπ

log
2S
ag

+ 1
aπ

(
4aarccota−4

√
a2 −1arccot

√
a2 −1+2log(1−a−4)

)
(3.5.14)
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At ℓ= 0 we get as expected

δE1+δE3,m =−3log2
π

log
2S
g

+ 6log2
π

+1 . (3.5.15)
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Chapter 4

Thermodynamical Bethe Ansatz and
Y–system for the O(4) model

In this chapter we will formulate a quite general method for solving integrable sys-
tems at any finite size through the Y –system.

The study of such systems has a long story, starting from the seminal paper of
Matsubara [83]. In this paper he proposed the so-called Matsubara’s trick: instead of
considering our system at finite temperature T, one can recast it as quantum system
in the periodic imaginary time t. We will use this trick as a key component to solution
of our finite–size system.

Lüscher found the leading finite–size corrections to the mass gap in relativistic two–
dimensional quantum field theories [84, 85]. It occurs that these corrections depends
only on the (asymptotic) S–matrix of the theory. Recently this result was generalized
to the multi–particle states in integrable two–dimensional theories [86].

The first method for the systematical computation of the finite–size corrections was
proposed in [87] (see also [88] for comprehensive review). It was based on the light-
cone discrete regularization of the integrable theory. Once we discretize the theory,
it is possible to build euclidean transfer matrices and then study it using the Bethe
ansatz technique. The Bethe ansatz can be rewritten through the counting function
(which counts the quantum numbers of the configuration) and the resulting non-linear
integral equation (the so-called Destri–de Vega equation) can be used for studying the
vacuum energy. The treatment of the excited states was done in [89]. Also one should
notice that the same equation was obtained in the context of the condensed matter
theory [90].

However, there is no general recipe to obtain the discrete regulatization for a gen-
eral integrable QFT. That’s why we will use another scheme, proposed by Zamolod-
chikov [14]. Namely, he proposed to use double Wick rotation: using the Matsubara’s
trick we can first find the free energy in the infinite volume but finite temperature.
Secondly we swap the euclidean time and space interpreting the free energy as the
ground state of the system in finite volume L = 1/T. This scheme is known as Thermo-
dynamical Bethe Ansatz.

These TBA equations usually can be rewritten in the form of the Y –system func-
tional equations [91]. They can be, in their turn, rewritten as non-linear integral
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equation as in the Destri–de Vega scheme.
So we will develop this TBA scheme in the next sections. Firstly we will study one

of the simplest examples — O(4) σ–model. We will observe that the main ingredient
in the TBA is the factorizable two–particles S–matrix. Starting from this S–matrix,
we will write down the nested Bethe ansatz equations. Then, using the double Wick
rotation, we will reduce them to the TBA equations, putting the whole theory on the
torus with one circumference, R, very large and another one, L, arbitrary. Our goal
will be to compute the ground state energy for this finite radius (so the ground state
of the system in a finite volume).

More formally, we can compute euclidean path integral Z

Z = e−RE0(L). (4.0.1)

We can compute this quantity swapping the roles of L and R. Since R →∞ the spectrum
corresponding to the new Hamiltonian can be computed from the asymptotic Bethe
ansatz with the finite “temperature” 1/L. Thus we will have

E0(L)= f (L), (4.0.2)
where f (L) is a free energy per unit length of the O(4) σ–model at the temperature 1/L
in the almost infinite volume R →∞.

Then we will rewrite TBA equations as Y –system assuming that this Y –system
describes not only the ground state but the excited states too.

This scheme is valid for every σ–model, so using the O(4) σ–model as a warm-up we
will proceed to the Metsaev–Tseytlin σ–model.

4.1 O(4) model and Bethe Ansatz
Here we review nested Bethe ansatz and TBA equations for O(4) model, or, equiv-

alently, for SU(2) Principal Chiral Field (PCF). We will closely follow the paper [92].
The action of the O(4) model is given by the usual expression

S = g
∫

dt dx (∂αXa)2 ,
4∑

a=1
X2

a = 1. (4.1.1)

It is equivalent to the SU(2)⊗SU(2) PCF with the X i fields packed into a algebra
element

h = X4 + i
3∑

j=1
X jσ j. (4.1.2)

This theory in infinite volume is asymptotically free and the spectrum consists of a
single particle of mass m =Λexp(−2πg), where Λ is a cut-off ([93], [94],[95]).

Let us consider the scattering of two particles with momenta and energies

p j = msinh(πθ j), E j = mcosh(πθ j). (4.1.3)
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The exact S–matrix (proposed by Alexander and Alexey Zamolodchikov in [96]) is
Lorentz–invariant and thus depends only on the difference of rapidities θ = θ1 −θ2:

Ŝ12(θ)= S0(θ)
R̂(θ)
θ− i

⊗S0(θ)
R̂(θ)
θ− i

, S0(θ)= i
Γ

(1
2 − iθ

2

)
Γ

( iθ
2

)
Γ

(1
2 + iθ

2

)
Γ

(− iθ
2

) . (4.1.4)

Here R̂(θ) is the SU(2) R–matrix (see, for example, [10]). In the fundamental rep-
resentation it has standard form

R̂(θ)= θ+ iP̂. (4.1.5)
Here P̂ is the permutation operator that exchange the spins of scattered particles.

This S–matrix has several important features:

• analyticity

• unitarity

• crossing

For the reasons of crossing it was established dressing factor S0(θ), which obeys
crossing relation:

S0(θ+ i/2)S0(θ− i/2)= θ− i/2
θ+ i/2

. (4.1.6)

One can use this S–matrix to study the scattering of N particles in infinite volume.
Here we consider infinite volume as a periodic space of big circumference. In this
theory we have only one scale: the mass of particle, m. So all the distances should be
compared to this natural scale. In other words, infinite volume means L ≫ m−1. Let us
now set m = 1 and measure everything in m.

The periodicity condition for the wave function of N–particle state on a large circle
of the length R can be written as follows:

T̂ (θ j)eiR sinh(πθ j)Ψ=Ψ, (4.1.7)
where T is the transfer matrix which is trace along the auxiliary space (we mark it
as “0”) which we scatter against all physical particles (for a comprehensive review see
[10]):

T (θ)= tr0 (S01(θ−θ1) . . .S0N(θ−θN)) . (4.1.8)
This periodicity condition simply means that if we pick the particle j and carry it

along the circle, the phase of it’s wave function will consist of trivial term Rp j (for free
propagation) and some phase shifts due to the scattering with other particles. But this
full phase should be a multiple of 2π, so we obtain (4.1.7).

It is possible to this T (θ) to get a full set of equations on rapidities {θi}. This pro-
cedure will lead us to the set of Bethe ansatz equations, namely, to the nested Bethe
ansatz. Let us introduce some useful polynomials, associated with rapidities:
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ϕ(θ)=
N∏

j=1
(θ−θ j), S(θ)=

N∏
j=1

S0(θ−θ j), Qw(θ)=
Jw∏
j=1

(θ−w j). (4.1.9)

Let us mention that we should diagonalize simultaneously the two parts of the SU(2)⊗
SU(2) transfer matrix. We treat each part as independent problem of diagonalization
SU(2) transfer matrix, keeping in mind that they are related.

We introduce states with Ju spins down (and N−Ju spins up) for the left SU(2) and
Jv spins down (and N−Jv) for the right SU(2). For these states we have Ju Bethe roots
u j and Jv Bethe roots v j. In the end of the day we should obtain a set of equations on
{u j}, {v j}, {θ j}. One can show that, if Tw

1 (θ) is the transfer matrix for the roots of type w,
then

T (θ)Ψ= S2(θ)
ϕ2(θ− i)

Tw
1 (θ− i/2)Tv

1(θ− i/2)Ψ, (4.1.10)

and

Tw
1 = Qw(θ+ i)ϕ(θ− i/2)+Qw(θ− i)ϕ(θ+ i/2)

Qw(θ)
. (4.1.11)

Having these expressions in hand, we can write down explicitly the periodicity con-
dition (4.1.7):

e−imR sinh(πθ j) =−S2(θ j)
Qu(θ j + i/2)
Qu(θ− i/2)

Qv(θ j + i/2)
Qv(θ j − i/2)

. (4.1.12)

Also we have equations for auxiliary Bethe roots which comes from the condition of
the cancellation of the poles in Tw

1 :

− Qu(w j + i)
Qu(w j − i)

= ϕ(w j + i/2)
ϕ(w j − i/2)

. (4.1.13)

In principle, these equations can be solved and for the given state we obtain the
energy in the form

E =
N∑

j=1
cosh(πθ j). (4.1.14)

Let us consider how these equations could be simplified in the limit L →∞. It occurs
that the roots organise themselves into “strings” on the complex plane.

For example, when Reu j > 0, the r.h.s. of the auxiliary Bethe equations (4.1.13)
diverges:

ϕ(u j + i/2)
ϕ(u j − i/2)

→∞ (4.1.15)

so the l.h.s. should diverge as well. This means that we should have a pole in the
denominator, at a point u j −uk = i. In thermodynamic limit N →∞ it means that we
will have a strings on a complex plane, which can be parametrized as follows:
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un
j,a = jn

j +
i
2

(n+1)− ia, a = 1, . . .n. (4.1.16)

For example, the real Bethe root corresponds to the string of the length 1, i.e. n = 1.
Now we can use this special type of root distribution to simplify Bethe equations.

Let us multiply them for u j belonging to a same string (we will call this procedure as
fusion). We will have a set of Bethe equations for the centers of the strings (which are
real numbers):

e−iR p(θα) =
∏
β̸=α

S2
0(θα−θβ)

∏
j,n

θα−un
j + in

2

θα−un
j − in

2

, (4.1.17)

∏
β

un
j −θβ+ in

2

un
j −θβ− in

2

=
un

j −um
k − i n+m

2

un
j −um

k + i n+m
2

·
un

j −um
k − i |n−m|

2

un
j −um

k + i |n−m|
2

·
n+m

2∏
s= |n−m|

2

un
j −um

k + is

un
j −um

k − is
. (4.1.18)

In the thermodynamic limit the distribution of the roots on the complex plane is
almost continuous, so we can rewrite all the Bethe equations in terms of density of the
roots. Let us introduce the three type of densities since we have three type of roots.

Say, we can use the subindex 0 for the θ–density, the subindex n > 0 for the u–density
and subindex n < 0 for the v–density. Here n corresponds to the number of roots in the
string. Also we will have the unfilled solutions – holes – which can be obtained by
removing excitations from the Dirac sea. There are also three types of holes, which are
in one-to-one correspondence with particles. So it is very natural to introduce the hole
density ρ̄n.

We can obtain the equations for the densities. Let us take the logarithmic derivative
of both sides. The next step is to change the sum over roots to the integral over real
axis with density. We end up with an integral equation on ρn and ρ̄n with the kernel,
which depends only on scalar factor S0(θ):

ρn + ρ̄n = R
2

cosh(πθ)δn0−
∑

Kn,m ∗ρm. (4.1.19)

Here ∗ is the standard convolution

f ∗ g =
∞∫

−∞
dθ′ f (θ−θ′)g(θ′), (4.1.20)

and Kn,m is the kernel for scattering of two Bethe strings with lengths n and m.
As for kernel it is very hard to get an explicit expression since we have effectively

scattering between strings of different lengths. But we can separate this scattering into
three parts: scattering of pure physical excitations, scattering of physical excitations
and Bethe strings and scattering of Bethe strings only.

The simplest is the scattering of physical excitations:

K0,0(θ)≡ 1
2πi

d
dθ

logS2
0(θ). (4.1.21)
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A little bit complicated is the scattering “physical–strings”:

K0,n(θ)≡ 1
2πi

d
dθ

log
θ− i|n|/2
θ+ i|n|/2 = 1

π

2|n|
4θ2 +|n|2 ≡ Kn. (4.1.22)

And for interaction “strings–string” the best we can have is such a implicit sum:

Kn,m(θ)=
n+m

2∑
i= |n−m|

2

2K2i(θ)−Kn+m(θ)+K|n−m|(θ)δn ̸=m. (4.1.23)

Following the general recipe, we can proceed to the Fourier transform of these ker-
nels to simplify the solution of the density equation. One can check that

K̂0 = exp(−|ω|/2)
coshω/2

, K̂n(ω)= exp(−|n|ω/2). (4.1.24)

Having this in mind we can explicitly calculate the Fourier image for Kn,m:

K̂n,m = coth
( |ω|

2

)
(exp(−|ω|/2|m−n|)−exp(−|ω|/2(m+n)))−δn,m. (4.1.25)

Also let us mention the useful formula which we will use for obtaining the set of the
local equations. One can check that(

K̂nm +δnm
)−1 = δnm − ŝ

(
δn,m+1 +δn,m−1

)
, n,m > 0, (4.1.26)

where the operator ŝ has the following form:

ŝ(ω)= 1
2coshω/2

. (4.1.27)

For example, we can check that K0 = 2s∗K1.
Now let us construct the free energy. As described, for example, in [97], one should

construct the functional

f (L)=
∫

dθ
(
ρ0Lcoshπθ−

n=∞∑
n=−∞

ρn log
(
1+ ρ̄n

ρn

)
+ ρ̄n log

(
1+ ρn

ρ̄n

))
, (4.1.28)

and minimize it keeping satisfied the relation (4.1.19). The term “functional” reflects
the fact that the integral depends on the concrete distribution of ρn and ρ̄n. Here the
quantity 1/L plays the role of the temperature, as we described in the beginning of this
section.

Taking the variation of the equation (4.1.19), we have

δ f = δρ̄n +δρn +
∞∑
−∞

Knm ∗δρm. (4.1.29)

Minimum condition for f (L) yields δ f = 0, so after little algebra we get a set of TBA-
like equations

ϵn = Lcosh(πθ)δn,0 +
∞∑
−∞

Kmn ∗ log(1+exp(−ϵm)) ,
ρn

ρ̄n
= exp(−ϵn). (4.1.30)

37



In the literature these equations often called as Yang–Yang equations [98]. One can
prove that solutions of these equations always exist.

Substituing this equation for the ratio ρn ρ̄n into the equation (4.1.28), we get finally
the expression for the free energy E0(L):

E0(L)=−L
∫

dθ
2

cosh(πθ) log(1+exp(−ϵ0(θ))) . (4.1.31)

This is the desired finite size ground energy of the SU(2) PCF model.
Let us convert these equations into a local set of integral equations. To do this we

define Ym = exp(ϵm), Y0 = exp(−ϵ0).
Now we consider the equation (4.1.30) for n ̸= 0. Under this condition we can apply

the operator (4.1.26) to the equation (4.1.30), and immediately get

logYn +Lcosh(πθ)δn,0 =
∞∑

m=−∞
Inms∗ log(1+Ym). (4.1.32)

Now we should verify this equation for the case n = 0. Let us examine some relations
between kernels entering in the equation (4.1.30) for n =−1,0,1. For example,

K0,0 =−K0 =−2s∗K1, K0,±1 = K1, K±m,0 =−Km, m > 0. (4.1.33)
Also we have the relation

K±m,±1 = Km+1+Km−1δm−1. (4.1.34)
Now we apply the operator s to the (4.1.30) with n = 1. One can use the fact that

s∗ (Km+1 +Km−1)= Km. (4.1.35)
Applying this, we get

s∗K1∗ log(1+exp(−ϵ0))=
∞∑

m=1
Km ∗ log(1+exp(−ϵm))− s∗ log(1+exp(ϵ1)) . (4.1.36)

The last term is separated because the last term (m = 1) is separated in the equation
(4.1.34). Similarly, for n =−1 we have

s∗K1 ∗ log(1+exp(−ϵ0))=
−1∑

m=−∞
K|m|∗ log(1+exp(−ϵm))− s∗ log(1+exp(ϵ−1)) . (4.1.37)

And for the n = 0

ϵ0 = Lcoshπθ−K0∗ log(1+exp(−ϵ0))+
∑

|m|̸=0
K|m|∗ log(1+exp(−ϵm)) . (4.1.38)

Now let us sum up all these three equations. Firstly, we observe that the infinite
sums completely cancel out. Secondly, using the identity K0 = 2s∗K1, we see that all
the convolutions with log(1+exp−ϵ0) cancel out too. So the whole sum is completely
equal to the (4.1.32). Thus we prove the equation (4.1.32) for all n.
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We can rewrite it in even simpler form if we use some properties of the analytic
functions. Let us consider the function g(θ) which is analytic inside the strip Im(θ) <
1/2. We have ∫ +∞

−∞
dθ

g(θ+ i/2)+ g(θ− i/2)
2cosh(π(θ− x))

= 1
2i

∮
dθ

g(θ)
sinh(π(θ− x))

= g(x). (4.1.39)

This identity can be rewritten in terms of operator s:

s∗ (g(θ+ i/2)+ g(θ− i/2))= g(θ). (4.1.40)
So using this formula we can rewrite everything as a set of functional equations (so
called Y–system) at a finite temperature 1/L:

Y+
n Y−

n = (1+Yn−1(θ)) (1+Yn+1(θ)) . (4.1.41)
For the convenience we denoted here

f ± = f (θ± i/2), f ±± = f (θ± i). (4.1.42)
We can notice that any information about size of the system has disappeared com-

pletely from the equations (4.1.41). One should pose himself the question — how could
we use solve the system of the equations without any reference to the size of the sys-
tem?

The answer is lying in the boundary conditions. Obviously, the system of equations
(4.1.41) has more than one solution, but only one of them leads to the physical ground
state energy. The only way to fix this ambiguity is to impose boundary conditions, i.e.
the asymptotics of Yn at large θ. More precisely, one can retrieve the Bethe equations
(4.1.17) from Y–system with the condition

Yn ∼ e−Lcoshπθδn,0 . (4.1.43)
What about the excited states? We know from many examples 2D [99, 100, 101]

that there are other solutions there which describe the excited states. The excited
state is characterized by N–particle excitation of the vacuum, so the final formula for
the energy of the N–particle excited state is modified:

E(L)=−1
2

∫
dθ cosh(πθ) log(1+Y0)+

N∑
i=1

mcosh(πθi), (4.1.44)

where the points θi are the singularities of the first term:

Y0(θi ± i/2)=−1, i = 1,2, . . . , N. (4.1.45)
It is worth to mention that last term in (4.1.44) is generated by analytic continuation

in L of the first term (integral of Y0) and picking up its logarithmic poles.
Moreover, as we will check, these condition on the logarithmic poles render the

Bethe equations for θ, i.e. for physical rapidities.
Now we can proceed to solution of these Y – system equations.
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4.2 Hirota equation for the O(4) model
4.2.1 General properties of the Hirota equation

The Y –system discussed in the previous section can be rewritten in the form of the
Hirota equation [102]. To do this, let us denote

Yn(θ)= Tn+1(θ)Tn−1(θ)

g
(
θ+ in

2

)
ḡ

(
θ− in

2

) , (4.2.1)

where g(θ) is just an arbitrary function (“gauge”). Under this substituion, our Y –
system transforms to

T+
n T−

n −Tn−1Tn+1 = g(θ+ in/2)g(θ− in/2). (4.2.2)
We will omit the argument if it is not confusing.

This equation has a number of remarkable properties. Firstly, let us mention
that it is integrable with the Lax representation. Consider a vector of two functions
{Q(x),Q̄(x)}. One can write the system of two equations — compatibility condition of
them will give the initial Hirota equation:

Tn+1Q
(
θ+ in

2

)
−T−

n Q
(
θ+ i(n+2)

2

)
= g

(
θ+ in

2

)
Q̄

(
θ− i(n+2)

2

)
, (4.2.3)

Tn−1Q̄
(
θ− i(n+2)

2

)
−T−

n Q̄
(
θ− in

2

)
= − ḡ

(
θ− in

2

)
Q

(
θ+ in

2

)
. (4.2.4)

Setting n = 0 we observe that equations (4.2.3) take the form of the usual Baxter
equations for the spin chains,

T1(θ)Q(θ) = g(θ)Q̄(θ− i)+T−
0 Q(θ+ i), (4.2.5)

T−1(θ)Q̄(θ− i) = − ḡ(θ)Q(θ)+T−
0 Q̄(θ). (4.2.6)

This Lax representation guarantees the integrability of the Hirota equation. We
also can use equations (4.2.3) for expressing T1,T−1:

T1 = T−
0

Q(θ+ i)
Q(θ)

+ g(θ)
Q̄(θ− i)

Q(θ)
, (4.2.7)

T−1 = T+
0

Q(θ)
Q(θ+ i)

− g(θ)
Q̄(θ)

Q(θ+ i)
. (4.2.8)

Moreover, these Lax relations are linear in Tn and because of that they can be used
to obtain a very general and explicit solution in terms of T0, g(θ),Q(θ):
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Tn =
Q

(
θ+ i(n+1)

2

)
Q

(
θ− i(n+1)

2

)T0

(
θ− in

2

)
+ (4.2.9)

+ Q
(
θ+ i(n+1)

2

)
Q̄

(
θ− i(n+1)

2

) n∑
j=1

g
(
x− i(n+1)

2 + i j
)

Q
(
θ− i(n−1)

2 + i j
)
Q

(
θ− i(n+1)

2 + i j
) .(4.2.10)

With the equation (4.2.1) it leads to the solution of initial Y –system.
Second interesting property of the Hirota equation is the symmetry. Namely, there

is a symmetry which corresponds to the exchange between u and v wings of the sym-
metry group SU(2)⊗ SU(2). This symmetry is guaranteed by exchanging Yk ⇔ Y−k,
or, on the level of T–function, Tk ⇔ T−k with the simultaneous exchanging g ⇔ − ḡ,
Q ⇔ Q̄(θ− i), Q̄ ⇔Q(θ+ i).

Moreover, one can observe the analogue of the gauge symmetry in the Hirota equa-
tion. Namely, it’s remain invariant under such transformation:

Tn(θ) → h
(
θ+ in

2

)
h̄

(
θ− in

2

)
Tn(θ), (4.2.11)

g(θ) → h−h+g(θ), (4.2.12)
ḡ(θ) → h̄−h̄+ ḡ(θ), (4.2.13)
Q(θ) → h−Q(θ). (4.2.14)

The condition that h̄ is complex conjugated to h should be assumed to preserve reality
of the Tn(θ).

Following [51] we can write the general solution of the Hirota equation in the de-
terminant form:

Tn(θ)= f
(
θ+ in

2

)∣∣∣∣∣∣Q
(
θ+ i(n+1)

2

)
R

(
θ+ i(n+1)

2

)
Q̄

(
θ− i(n+1)

2

)
R̄

(
θ− i(n+1)

2

)∣∣∣∣∣∣ . (4.2.15)

Here f (θ) is an arbitrary periodic function, f (θ+ i) = f (θ). Q and R are two linearly
independent solutions of the Lax equations (4.2.3) related by the Wronskian relation

g(θ)= f
(
θ+ in

2

)∣∣∣∣ R(θ) Q(θ)
R(θ+ i) Q(θ+ i)

∣∣∣∣ . (4.2.16)

The last remark which can be done in the context of the general properties of the Y –
system is that it can be generalized to the two–dimensional lattice. Since it will be
useful in the context of the AdS/CFT correspondence, we describe this generalisation
here.

The Y –function on the two–dimensionall lattice depends on the two discrete coor-
dinates: Ya,s. The Y –system for this lattice can be written as

Y+
a,sY

−
a,s =

(1+Ya,s+1)(1+Ya,s−1)
(1+1/Ya+1,s)(1+1/Ya−1,s)

. (4.2.17)
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These equations also should be accompanied by the boundary conditions. Again, it
can be reformulated as the Hirota equation via the transform

Ya,s =
Ta,s+1Ta,s−1

Ta+1,sTa−1,s
. (4.2.18)

The Hirota equation in this case take the form

T+
a,sT−

a,s = Ta,s+1Ta,s−1 +Ta+1,sTa−1,s. (4.2.19)
In the case of two–dimensional Hirota equation the gauge transformation is richer.
Namely, one can define the T–function up to the

Ta,s → g1

(
θ+ i(a+ s)

2

)
g2

(
θ+ i(a− s)

2

)
g3

(
θ− i(a+ s)

2

)
g4

(
θ− i(a− s)

2

)
Ta,s. (4.2.20)

One can notice that this Hirota equation is equivalent to the equation obeyed by the
transform matrices of spin chain with auxiliary spaces corresponding to the rectangu-
lar Young tableaux of size (a, s). For the more details on this subject see the seminal
paper [103].

Finally, we see that on the boundary of the domain (i.e. when a or s is equal to
zero) our two–dimensional Y –system reduces to the discrete version of the d’Alembert
equation with the solution

T0,s(θ)= g1

(
θ+ is

2

)
g2

(
θ− is

2

)
. (4.2.21)

4.2.2 Large volume solution
In the previous chapter we obtained a general solution of the Hirota equation for

O(n) model (or of the Y – system equations). As we noticed, they should be accompa-
nied by the boundary conditions in order to get well-defined solution with the physical
meaning. We will demonstrate how our equations work if taken with the boundary
conditions for the large volume L.

The main problem is that one should take in account not only the physical excita-
tions of the U(1) sector, but also the excitations from the left and right wings of the
SU(2)⊗SU(2). The classification of all the solutions of the Y – system is very com-
plicated and thus the main problem will be to identify the large L solutions in our
Y – system.

From the definition we have that

Y0(θ)= T1(θ)T−1(θ)
g(θ) ḡ(θ)

∼ e−Lcosh(πθ), L →∞. (4.2.22)

Looking at this equation we see that our Y – system is completely decoupled: its wings
are independent and we can treat them separately. Moreover, since we have a discrete
symmetry between the wings (see the paragraph after the equation (4.2.9)) we can
easily get the solution for the right wing from the solution for the left.
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From this and from the equation (4.2.22) we conclude that

Tu
−1(θ)→ 0, Tv

1(θ)→ 0. (4.2.23)
Now we can make the simple assumtion about the functions Tn(θ) and Q(θ). First,

let’s assume that Tn(θ) is polynomial in θ. Second, we make the same assumption for
the Q(θ). For the naturality of these assumptions one can refer to the (4.1.9).

Now from the equations (4.2.7) and from the assumptions above one can conclude
that

Tu+
0 = gu(θ), (4.2.24)

Tu
1 (θ) = Tu+

0 Qu(θ− i)+Tu−
0 Qu(θ+ i)

Qu(θ)
(4.2.25)

And it is completely equivalent to the Baxter equations for the “magnon” rapidities
(4.1.11). So the polynomiality condition for Tu

1 will give us precisely the Bethe equations
for these rapidities. Notice that in this limit we have Tu

0 (θ) =ϕ(θ) (for the definition of
ϕ(θ) see (4.1.9)).

What about the physical rapidities? They can be obtained from setting n = 0. Under
this substitution we have from the definition (4.2.1)

Y0(θ j ± i/2)=−1, (4.2.26)
where θ j is the zero of the T0(θ). At n = 0 it follows from the Y – system that

Y+
0 Y−

0 = Tu+
1 Tv+

−1Tu−
1 Tv−

−1(
ϕ(θ+ i)ϕ(θ− i)

)2 . (4.2.27)

From the initial crossing relation (4.1.6) one can immediately have

S(θ+ i)S(θ)= ϕ(θ)
ϕ(θ+ i)

, (4.2.28)

so we can rewrite (4.2.27) as

Y+
0 Y−

0 =
(

Tu
1 Tv

−1(S+)2

(ϕ−)2

)+ (
Tu

1 Tv
−1(S+)2

(ϕ−)2

)−
. (4.2.29)

From which equation it is obvious to see that

Y0 ∼ Tu
1 T−1

(S+)2

(ϕ−)2 . (4.2.30)

It is true up to a zero mode factor. This factor should guarantee the proper asymp-
totics and cancels in the equation (4.2.29). So we can write the simplest form of this
factor as

Y0 = e−Lcosh(πθ)Tu
1 T−1

(S+)2

(ϕ−)2 . (4.2.31)

43



Now it is time to evaluate this Y0 function at the point θ j. At first sight Y0 is ex-
ponentially small since it contains the exponent of the large volume L. But on the
boundary of the physical strip it is almost 1 (we can notice also that the exponent is
purely imaginary). So we get

−1∼ eiLsinh(πθ j)
Qu(θ j + i/2)Qv(θ j + i/2)
Qu(θ j − i/2)Qv(θ j − i/2)

∏
k

S2
0(θk −θ j). (4.2.32)

This equation is compeletely identical to the Bethe equation for the physical rapidity
(4.1.12), as we expected in the beginning of this chapter.

4.2.3 Vacuum solution at finite volume
From the previous section we see that the simplest vacuum solution for large L

corresponds to the Qu(θ) = 1, ϕ(θ) = 1. The general expression for the T – function
(4.2.9) gives us that in the leading order Ts−1 = s. Of course, it is true only in the
leading order. It is obvious that Tu

−1 should not be strictly zero, so we need to compute
Tu
−1 in the next order.

To do this, we rembember that there is a gauge transform which relates left and
right wings:

Tu
−1 = Tv

−1|h(θ− i/2)|2. (4.2.33)
As we saw in the previous section this gauge can be related to the zero mode of the

Y – function and thus we can write that

Tu
−1 ∼ e−Lcosh(πθ). (4.2.34)

Now we can omit the v wing since it is obvious how to relate everything from one
wing to another. We can improve now our equation for Ts with the following ansatz:

Ts−1(θ) = s+G(θ− is/2)−G(θ+ is/2), (4.2.35)
g(θ) = 1+G(θ+ i0)−G(θ+ i), (4.2.36)
ḡ(θ) = 1+G(θ− i)−G(θ− i0), (4.2.37)

where G(θ) is the resolvent

G(θ)= 1
2πi

∫ ∞

−∞
dθ′

θ−θ′
T−1(θ′). (4.2.38)

For example, we have T0(θ) = g(θ− i/2) as we already see in the previous chapters.
This function, as we discussed, is analytic in the physical strip |Imθ| < 1/2 so the func-
tions g(θ), ḡ(θ) can be treated as the analytic continuation of T0 beyond the cuts (up to
the shift).

As we can see, the solution of the (4.2.35) is determined by only one function T−1(θ).
But let us remember that this function is not completely independent — it is con-
strained with the condition (4.2.1) for n = 0. Moreover, we can write again the Hirota
equation for the n = 0 and get
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(1+Y1)(1+Y−1)=
(

T1(θ+ i/2)T1(θ− i/2)
g(θ+ i/2)g(θ− i/2)

)2
. (4.2.39)

From these two equations we immediately get

T−1(θ)= T1(θ)
g(θ) ḡ(θ)

[g(θ+ i/2) ḡ(θ− i/2)]∗2s e−Lcosh(πθ). (4.2.40)

We recall that s is an inverse shift operator, and can be alternatively written as

s = 1
D+D−1 . (4.2.41)

So finally we got a closed equation for T−1(θ) (or for Y0). It can be solved numerically
basically for all L giving the ground energy with the help of the equation (4.1.31). One
can find the results of this iterative procedure in [92].

4.2.4 Physical excitations in U(1) sector
Now we can consider the U(1) sector of the theory, which is characterized by N

physical particles without magnon excitations. Since we have no magnon rapidities
u j, v j we can set all the Q’s to 1. But now we will have the roots of physical excitations
θ j, j = 1, . . . , N so the roots of T0 on the real axis.

From the Hirota equation we have (for the infinite volume)

Ts−1 = f (θ+ is/2)− f (θ− is/2), (4.2.42)
where f (θ) is a polynomial satisfying

f +− f − =ϕ(θ). (4.2.43)
An improved solution of the Hirota equation can be obtained through the same trick

as in previous chapter, namely,

T0(θ) = ϕ(θ)+ Ḡ(θ− i/2)+G(θ+ i/2), (4.2.44)
g(θ) = ϕ(θ+ i/2)+ Ḡ(θ+ i0)+G(θ+ i), (4.2.45)
ḡ(θ) = ϕ(θ− i/2)+ Ḡ(θ− i)+G(θ− i0). (4.2.46)

Here the resolvent G(θ) is again defined via the T−1(θ):

G(θ)= ϕ(θ− i/2)
2πi

∫ ∞

−∞
dθ′

θ−θ′
T−1(θ′)

ϕ(θ′− i/2)
. (4.2.47)

Recalling that Q = 1 and using the determinant formula (4.2.15) for the general
solution of Hirota equation, we get for Ts

Ts(θ) = R
(
θ+ i(s+1)

2

)
−R

(
θ− i(s+1)

2

)
, (4.2.48)

R(θ) = P(θ)+ s∗ (
G(θ+ i/2)+ Ḡ(θ− i/2)

)
. (4.2.49)
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Chapter 5

The Y–system for AdS/CFT σ–model

5.1 Hirota equation for the GL(K |M) symmetry
As we saw in the previous chapter the solution of the O(4) spin chain (or O(4) σ–

model) with the help of nested Bethe ansatz worked like this. We continuosly deduce
the rank of the symmetry group applying Bethe procedure several times. For example,
in our O(4) case we divide our system in three sectors (left and right wing and the
central node) and wrote for each sector it’s own Bethe equation. That’s how one can go
in general from GL(N) to GL(N−1) unless one reach the trivial case N = 0. During these
steps one introduces T and Q functions which obey the Baxter relations. The zeroes of
the T-functions gives us the Bethe equations. This quantum technique has a classical
interpretation in terms of the Backlund transform [104, 50], and Baxter relations play
the role of auxiliary problem for the Hirota equation. The rank of the group becomes
an additional parameter. Moreover, dependance on this parameter is desribed again
by Hirota equation. The solutions are polynomials of the spectral parameter, and their
zeroes obeys Bethe equations.

One can say that we have the Backlund flow which comes from the highest rank to
the trivial rank undressing the Bethe equations to the simplest ones.

Here we will review this procedure (following [52]) for the supersymmetric case
GL(K |M). In this case we will have two discrete flows of the Backlund transform, which
correspond to the bosonic and fermionic ranks K and M. Consistency condition for
these flows leads us to the bi-linear equation on the eigenvalues of the Baxter operators.

For the sake of simplicity we restrict ourselves to the case K = M = 2 (it corresponds
to the concrete situation of the AdS5/CFT4 duality).

It occurs that there is a domain where the functions TK ,M
a,s (u) ̸= 0. Namely, it is a “fat

hook”, i.e. 0≤ a ≤ K or 0≤ s ≤ M and a, s ≥ 0 [50].
On this lattice we can define the Y –system (4.2.17) and the Hirota equation (4.2.19).

As in the one–dimensional case, on the boundary it becomes the discrete d’Alembert
equation, with the solution

TK ,M
0,s (u)= g−(u− is/2)g+(u+ is/2). (5.1.1)

Since we have the gauge freedom (see (4.2.20)) we can fix the boundary condition
with
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Figure 5.1: Fat hook on the (a, s) lattice for GL(K |M).

TK ,M
0,s (u)=QK ,M(u− is/2), TK ,M

a,0 (u)=QK ,M(u+ ia/2). (5.1.2)
Here QK ,M(u) is a polynomial.

The Backlund transform can be formulated in the operator formalism. Namely, let
us consider the difference operator of infinite order

W(u)= ∑
s≥0

T1,s(u+ i(s−1)/2)
Q(u)

D2s, (5.1.3)

where D ≡ ei∂u/2. It is a non–commutative generating functional for the T–functions
T1,s(u). Generally, one can introduce this object at any level

Wk,m(u)= ∑
s≥0

Tk,m
1,s (u+ i(s−1)/2)

Qk,m(u)
D2s. (5.1.4)

Also one can show formally that

W−1
k,m(u)=

∑
a≥0

D2a
Tk,m

a,1 (u− i(a+1)/2

Qk,m(u− i)
. (5.1.5)

Now we define such the functions

Xk,m(u) = Qk,m(u+ i)Qk−1,m(u− i)
Qk,m(u)Qk−1,m(u)

, (5.1.6)

Yk,m(u) = Qk,m−1(u+ i)Qk,m(u− i)
Qk,m−1(u)Qk,m(u)

. (5.1.7)

Using the Lax representation for the Hirota equation at a = 0 one can prove two recur-
rence relations for the operators Wk,m(u):
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Figure 5.2: Two possible paths for the Backlund transformation.

Wk−1,m(u) = (
1− Xk,m(u)D2)Wk,m(u), (5.1.8)

Wk,m+1(u) = (
1−Yk,m+1(u)D2)Wk,m(u). (5.1.9)

So now we can go from the point (k,m) to the point (k−1,m−1) on two different ways. Or,
reformulating, Wk,m(u) could be obtained from W0,0(u)= 1 applying recurrent relations
(5.1.8). Moving firstly in m–direction from (0,0) to (0, M) and secondly in k–direction
from (0, M) to (K , M) we get

Wk,m(u)= ∏
K≥k≥1

(
1− Xk,MD2)−1 · ∏

M≥m≥1

(
1−Y0,mD2) . (5.1.10)

Now we can start from (0,0) firstly in k–direction and then in m–direction, and we get

Wk,m(u)= ∏
M≥m≥1

(
1−YK ,mD2) · ∏

K≥k≥1

(
1−Yk,0D2)−1

. (5.1.11)

These two operations should be equivalent and we should demand

Wk−1,m−1 = (
1− Xk,m−1D2)(1−Yk,mD2)−1 Wk,m = (5.1.12)

= (
1−Yk−1,mD2)−1

(1− Xk,mD2)Wk,m. (5.1.13)

So we have the discrete version of the zero-curvature condition on (k,m) lattice which
can be written in the form(

1−Yk−1,mD2)(1− Xk,m−1D2)= (1− Xk,mD2)(1−Yk,mD2). (5.1.14)
We have the series in D2 in r.h.s. and l.h.s., so it will generate a series of the Baxter

relations. For example, the simples one looks like

TK ,M
1,1 (u)

QK ,M(u)
=

K∑
k=1

Xk,M(u)−
M∑

m=1
Y0,M(u), (5.1.15)
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where Xk,M and Y0,M should be expressed through Q as in (5.1.6). It works in the same
manner for all Ta,s: they are expressed through different sums of X and Y , which could
be expressed only in terms of Q’s. Finally we will have a series of TQ–relations. The
zeroes of Q’s should obey the Bethe equations.

.

Figure 5.3: On of the possible Dynkin diagrams for the su(2|2) group.

Let us exemplify this technology on the simplest case, namely su(2|2). Here K = M =
2 and we should start with W2,2 to reach W0,0. The consistency condition (5.1.14) gives

W2,2(u)= (
1−Y2,2D2)(1− X2,1D2)−1 (

1− X1,1D2)−1 (
1−Y0,1D2)W0,0(u). (5.1.16)

It means that T1,1 can be written in the form

T2,2
1,1 = Q2,2(X1,1+ X2,1 −Y2,2 −Y0,1) (5.1.17)

Q2,2 =
(

Q++
1,1Q−−

0,1

Q1,1Q1,0
+

Q++
2,1Q−−

1,1

Q2,1Q1,1
−

Q++
2,1Q−−

2,2

Q2,1Q2,2
−

Q++
0,0Q−−

0,1

Q0,0Q0,1

)
. (5.1.18)

Generally, T1,1 could have poles at zeroes of the polynomials Qk,m. The Bethe ansatz
equations follow immediately from the condition of the regularity of T2,2

1,1 at these ze-
roes, as in case of usual SU(n) spin chains. Each equation which one can get from this
condition corresponds to the “undressing” path from the point (2,2) to the poing (0,0).
For example, going from (2,2) to the (0,2) (or, more generally, from (K , M) to (0, M))
we get precisely the same Bethe equations like in [105] (historically the nested Bethe
ansatz equations were obtained in [98]) for the bosonic case: each Backlund movement
will be corresponding to the embedding of the type GL(K)⊃GL(K −1).

5.2 The PSU(2,2|4) Y–system
To apply the Y –system machinery to the AdS/CFT problem one should consider

a non-compact symmetry group PSU(2,2|4) since it is a symmetry of the Metsaev–
Tseytlin σ–model. So we should build a Hirota equation with such a symmetry. The
main difference from the SU(2|2) case is that PSU(2,2|4) is non-compact and that’s why
we will have the different boundary conditions.

In order to work with the version of Hirota equation for the non-compact group
we will start from the theoretical–group interpretation of the Hirota equation in the
classical version. Then we will proceed to the quantum version of the Hirota equation
based on the intuition from the algebraic curve and ABA for the PSU(2,2|4).
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5.2.1 Classical Hirota equation and characters of PSU(2,2|4)

Let us recall that the main object which guaranteed integrability of the Metsaev–
Tseytlin σ–model was the monodromy matrix Ω(x) (see (2.2.40). It is the group element
of the SU(2,2|4). In the fundamental representation it has 4+4 eigenvalues:

Ω(x)= diag(x1, x2, x3, x4|y1, y2, y3, y4). (5.2.1)
Here xi corresponds to the S5 part of the σ–model, yi — to the AdS5 part. Supertrace
of the monodromy matrix can be defined in any unitary highest weight irrep λ:

Tλ = strλΩ(x)V . (5.2.2)
The highest weight irreps of u(2,2|4) can be parametrized by the Young tableaux.

There is a special type of irreps (rectangular irreps) [a, s] for which λi = s+2, i = 1, . . . ,a.
One can check that they obey such a relation

[a, s]⊗ [a, s]= [a+1, s]⊗ [a−1, s]⊕ [a, s+1]⊗ [a, s−1]. (5.2.3)
Taking the trace along both sides of this equality, we obtain

Ta,sTa,s = Ta+1,sTa−1,s +Ta,s+1Ta,s−1, (5.2.4)
which is nothing but Hirota equation for the characters ([106, 107]). Moreover, it occurs
that all the representations can be generated from T1,s by the simple consequence of
the Hirota equation, which is called Jacobi–Trudi formula:

Ta,s = det
1≤ j, j≤a

T1,s+i− j. (5.2.5)

It is possible also to write down the generating function of the T1,s:

w(z)= sdet (1− zΩ(x))−1 = (1− y1z)(1− y2z)(1− y3z)(1− y4z)
(1− x1z)(1− x2z)(1− x3z)(1− x4z)

. (5.2.6)

With this function one can write for the T1,s

T1,s = 1
2πi

∮
dz

zs+1 w(z). (5.2.7)

We should note that the characters of compact su(4|4) and non-compact su(2,2|4) both
obey equations (5.2.4), (5.2.7), but the boundary conditions for the Hirota equations
and the contour are different. If the contour encircles the origin but not the poles of
the denominator, then the corresponding Ta,s will be non-zero only inside the fat hook
(see the figure 5.1) and it corresponds to the compact unitary representations of the
U(4|4).

If the contour encircles the poles of the denominator x−1
3 , x−1

4 , then the corresponding
characters will be non-zero outside of the T–hook (see [108, 109] for further explana-
tions).
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Figure 5.4: T–hook for the PSU(2,2|4). It can be obtained by gluing of the two SU(2|2)
wings along the the black nodes. We can define a Backlund flow directly on this picture
– from the points (2,2) and (−2,2) to the point (0,0).

5.2.2 Symmetries of the characters
The characters defined in the previous section has some symmetries. First of all,

there is a discrete symmetry between two wings of the T–hook:

Ta,s(x1, . . . , x4|y1, . . . y4)= Ta,−s

(
1
x1

, . . . ,
1
x4

∣∣∣∣ 1
y1

, . . . ,
1
y4

)
. (5.2.8)

Also there is a permutational symmetry (which occurs instead of usual Weyl symmetry
for the compact groups):

x1, x2 ↔ x2, x1; x3, x4 ↔ x4, x3; {y1, . . . , y4}↔Perm{y1, . . . , y4}. (5.2.9)
Second, there is a symmetry inherited from the Z4 symmetry of the coset. As we saw
in the section 2.3, the Z4 automorphism of the coset implies

x1,2,3,4(1/x)= 1
x2,1,3,4(x)

, y1,2,3,4(1/x)= 1
y2,1,4,3(x)

. (5.2.10)

From the unitarity of the monodromy matrix Ω(x) we can also conclude that

xi(x)= 1
xi(x̄)

, yi(x)= 1
yi(x̄)

. (5.2.11)

On the unit circle |x| = 1 and we have x̄ = 1/x, so we get

x1,2,3,4(x)= x2,1,4,3(x), y1,2,3,4(x)= y2,1,4,3(x). (5.2.12)
Now we can collect all the information about symmetries of the characters. From

(5.2.8) and (5.2.12) we obtain that on the unit circle |x| = 1

Ta,s = Ta,s. (5.2.13)

The Y –functions, which can be expressed through Ta,s via (4.2.18) are also real, Ya,s =
Ya,s.
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5.2.3 Towards the quantum Hirota equation
Although there is no rigorous proof of quantum integrability of the Metsaev–

Tseytlin superstring σ–model, there is a wide evidence that it is true. This evidence
is based on the classical integrability of the model (which was discussed in the section
2.2.3), numerous perturbative computations and comparsions with the corresponding
CFT theory. Moreover, the Metsaev–Tseytlin σ–model is not well defined as a quan-
tum theory, but these computations and the AdS/CFT hypothesis itself can shed some
light on the rigorous definition of the superstring theory.

In the section 4.1 we have reviewed the problem of the energy spectrum for the
massive O(4) σ–model in a finite volume (i.e. on the cylinder of the some finite radius).
The Hirota equation which we got is rather universal: the only thing which differs from
model to model is the boundary conditions and, surely, concrete type of interaction,
which is encoded in the S–matrix. The general form, however, stays the same for all the
gl(N|M) algebras (see [92, 110] for the table of integrable models and their Y –systems).
As we saw in the previous section, the Y –system has a deep mathematical sense in
a classical limit – namely, the solutions of the Y –system are the characters of the
corresponding symmetry group, which is an additional argument to the universality
of the Y –system.

The Metsaev–Tseytlin σ–model is in the same class of integrable theories. It is
massive σ–model with the gl(n|m) type of the symmetry (up to the non–compactness
of the PSU(2,2|4)). The only serious difference is that this σ–model is not explicitly
relativistic theory, in contrast to the O(4) σ–model. However, it is not a really big
problem to incorporate the property into the Y –system machinery.

We already have some intuition about the boundary conditions on the (a, s) lattice
— the full quantum Hirota equation should have the same boundary conditions as the
classical one.

The next step is to identify the spectral parameter u which is a bit more involved
than in O(4) σ–model. Luckily, we have a well-developed general recipe [69, 70, 111]
which proposes us to take the pair (p,u) where p is a quasimomenta and u is a corre-
sponding spectral parameter entering the Bohr–Sommerfeld integral (see section 2.3
for the rigorous expression).

We will assume that this spectral parameter u is the same as in the full quantum
AdS/CFT Y –system. Then the initial parameter x is a double–valued function of the
new parameter u. This implies some additional analyticity features of the Ya,s. Namely,
we expect that Ya,s will have cuts parallel to the real axis with the branchpoints at
±2g+ in/2. To fix the cut structure we distinguish two kinematics: the physical and the
mirror. In the mirror kinematics the role of time and space is swapped.

xph(u)= 1
2

(
u
g
+

√
u
g
−2

√
u
g
+2

)
, xmir(u)= 1

2

(
u
g
+ i

√
4− u2

g2

)
. (5.2.14)

These functions have branch cuts at (−2g,2g) and (−∞,−2g)∪ (2g,∞) respectively.
There is one thing left in our discussion. When one tries to truncate the Y –system

from the full (a, s) lattice to the T–hook one has to set Y –functions to zero on the vertical
boundaries and to ∞ at the horizontal boundaries. What can we say about the Y –
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functions in the corner, Y2,±2? They contains an uncertainty 0/0, so we should use
some additional information to resolve this uncertainty.

In order to fix the functions Y2,±2 we can use a fact from the TBA [112]: in the mirror
kinematics Y2,±2(u) and Y1,±1(u) are related on two sides of the cut (−∞,2g)∪ (2g,∞) by

Y2,±2(u+ i0)= 1
Y1,±1(u− i0)

. (5.2.15)

Once we have a solution of the Y –system, the corresponding energy of a string state
(i.e. anomalous dimension of a SYM operator) can be obtained from the expression very
similar to (4.1.44):

E =
K∑
j
ϵ

ph
1 (u4, j)+

∞∑
a=1

∞∫
−∞

du
2πi

∂ϵmir
a

∂u
log

(
1+Ya,0(u)

)
. (5.2.16)

Here ϵ
ph,mir
a is defined via xph,mir(u) with such a formula:

ϵa(u)= a+ 2ig
x(u+ ia)

− 2ig
x(u− ia)

. (5.2.17)

The physical roots (corresponds to the middle node) are subject to exact finite size Bethe
equations

Y ph
1,0 (u4, j)=−1. (5.2.18)

The last important condition on Y –function is that at large L the Y –function of the
middle node should be exponentially supressed on the real axis in the mirror sheet

Ya,0(u)∼ e−ipmir
a (u)L, pa(u)=−i log

(
x(u+ ia)
x(u− ia)

)L
. (5.2.19)

5.2.4 Full quantum Hirota equation for the AdS/CFT σ–model
It is known [113] that all-loop result for the gauge theory could be obtained from

the general PSU(2,2|4) Y –system by redefining the polynomials Q in such a way that

Q2,2(u)= R−(+), Q−−
2,2(u)= R−(−), Q0,0 = B+(−)(u), Q++

0,0(u)= B+(+)(u), (5.2.20)

where

R(±)
n (u)=

Kn∏
j

x(u)− x∓(un, j)(
x∓(un, j)

)1/2 , B(±)
n (u)=

Kn∏
j
= 1/x(u)− x∓(un, j)(

x∓(un, j)
)1/2 . (5.2.21)

With this definition we have Q±
n (u)= (−g)Kn R±

n B±
n(u) and for the T–function

T1,1 = R−(+)

(
Q++

2 Q−
1

Q2Q+
1

+ Q+
3 Q−−

2

Q−
3 Q2

− Q+
3 R−(−)

Q−
3 R−(+) −

B+(+)Q+
1

B+(−)Q+
1

)
. (5.2.22)
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From the symmetry relations in the section 5.2.2 it follows that

T1,1(1/x)= B+(−)Q+
1 Q−

3

R−(+)Q−
1 Q+

3
T1,1(x). (5.2.23)

As in the section 4.2.2 now we can glue the two wings of our T–hook via the condition
similar to the (4.2.39):

Ya,0(x)=
(

x(u− ia/2)
x(u+ ia/2)

)L f (u− ia/2)
f (u+ ia/2)

T l
a,−1Tr

a,1. (5.2.24)

In this equation the first two factors are zero modes, i.e. the solutions of the equation

f +a f −a
fa+1 fa−1

= 1. (5.2.25)

The dependence on L is fixed by the asymptotical condition (5.2.19) at large u. The
function f (u) can be determined from the condition (5.2.18).

Thus we obtained the Y –system for our quantum σ–model problem. In the next
section we will solve this Y –system for the Konishi operator in a strong coupling limit
and compare the results with what we got from the algebraic curve computation.

5.3 The 1/logS corrections from the Y –system
In the strong coupling limit g → ∞ Y –system drastically simplifies. In this limit

the CFT side of the AdS/CFT hypothesis should be equivalent to the quasi-classical
strings, so all the spectrum computations from the Y –system can be compared to the
algebraic curve computation which was done in the section 3.4. So it will be possible
to identify the origin of different corrections from the point of view of the Y –system,
and this exercise may shed some light on the relation between the sides of the duality.

One can notice [80] that in this scaling limit

R(+)B(−)

R(−)B(+) =
M∏
j=1

x(z)− x−j
x(z)− x+j

1/x(z)− x+j
1/x(z)− x−j

≈ 1
f (z) f̄ (z)

, (5.3.1)

where

f (z)= exp(−iG(x(z)) , f̄ (z)= exp(+iG(1/x(z)) , ∆= exp

(
− J

2g
p

1− z2

)
(5.3.2)

and G(x) is the resolvent

G(x)= 1
g

S∑
j=1

1
x− x j

x2
j

x2
j −1

. (5.3.3)

From the general solution it is possible to obtain the expression for the functions Ya,0
and Ya,1 in terms of two yet unknown functions. Gluing them together (i.e. matching
wings) and using general Y–system equations we can deduce that
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Y1,1Y2,2 = 1
f (z) f̄ (z)

∞∏
m=1

(
1+Ya,m

)
. (5.3.4)

Now one can recall that due to the Hirota equation

1+Ya,s =
T2

a,s

Ta+1,sTa−1,s
, (5.3.5)

so we can rewrite equation (5.3.4) without infinite product:

Y1,1Y2,2 =
T1,0

T0,0
∆. (5.3.6)

Applying now all this information to the energy equation (5.2.16) and having in mind
that in strong coupling

ϵ
ph
1 (z)= x2+1

x2−1
+O

(
1
g2

)
, ϵmir

a (z)=− iazp
1− z2

, (5.3.7)

we get
The expression of the energy at one loop, including the finite-size correction, is

E =
S∑

j=1

x2
j +1

x2
j −1

+
∫ 1

−1

dz
2π

zp
1− z2

∂zM0 =
S∑

j=1

x2
j +1

x2
j −1

−
∫ 1

−1

dz
2π

1
(1− z2)3/2 M0, (5.3.8)

where
M0 = log

( f∆−1)4( f̄∆−1)4

(∆−1)4( f f̄∆−1)2( f 2∆−1)( f̄ 2∆−1)
, (5.3.9)

The integration is done in the mirror regime, with x(z) = z+ i
p

1− z2. The second
term in (5.3.8) is given by the contribution of the virtual particles circulating along
the circumference of the system and which scatter with the magnons with rapidity
x j. We are therefore going to call this term the virtual particle contribution. In finite
volume, the positions of the Bethe roots x j are slightly shifted from their infinite volume
positions due to their interaction with the virtual particles; we are going to call this
effect backreaction. In the one-loop limit, the backreaction can be taken into account
[80] by adding an extra potential term to the Bethe ansatz equations, which become

2πn = p(x+ i0)+ p(x− i0)+α(x)p′(x)cot p(x)+V (x) (5.3.10)

− 2i
M∑

k=1

∫ 1

−1
dz (r(x, z)M+− r(1/x, z)M−+u(x, z)M0)

with
p(x)= J

2g
x

x2 −1
+G(x) and α(x)= 1

g
x2

x2−1
. (5.3.11)

The effective potential in the second line of (5.3.10) is given in term of the kernels

r(x, z)= x
x2−1

∂z

2πg
1

x− x(z)
, u(x, z)= x

x2 −1
∂z

2πg
1

x2(z)−1
, (5.3.12)
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and the functions

M+ = log
( f∆−1)2

( f 2∆−1)( f f̄∆−1)
, M− = log

( f̄∆−1)2

( f̄ 2∆−1)( f f̄∆−1)
. (5.3.13)

By inspection, the imaginary part of the resolvent G(x) in the mirror regime is always
negative with Im G(x)∼− logS, so that we have

M0 ≃−4log(1−∆)−∆( f 2+ f̄ 2 +2 f f̄ −4 f −4 f̄ )=−4log(1−∆)−4∆R(R−2) , (5.3.14)

where R = exp(Im G(x))cos(Re G(x)). The last term in M0 is suppressed by a negative
power of S. The only region where R can be close to 1 is x ≃ 1, but in this region it is ∆

which is exponentially suppressed. We conclude that the correction to the energy due
to the virtual particles is

δEv = 4
∫ 1

−1

dz
2π

1
(1− z2)3/2 log(1−∆)=I (2ℓ logS) . (5.3.15)

with I (α) defined in (3.5.6) and (3.5.7). It is interesting to note that the virtual particle
correction is singular when ℓ→ 0, and that this divergence will be compensated by the
backreaction of the roots. It is likely that such a phenomenon happens whenever the
endpoint a of the cut approaches the singularity x = 1. In particular (logarithmic)
singularities appear for separate E i terms in the small S ,J limit, see section 3.4. A
similar effect is observed when f2(ℓ) is expanded at small ℓ [24]. This partially reflects
the complicated analytical structure of the Y-system.

Let us now compute the backreaction term, i.e. the second line in the BES equation
(5.3.10). The contribution from M± is vanishing again as a negative power of S. The
term containing M0 is simply

8i
x

x2 −1

∫ 1

−1

dz
2πg

∂z

(
1

x(z)2−1

)
log(1−∆)= I (α)

g
x

x2 −1
. (5.3.16)

Let us remind that at the leading order the asymptotic Bethe ansatz equations are
written as

2πn =G0(x+ i0)+G0(x− i0)+2V0(x) (5.3.17)

with

2V0(x)= J
g

x
x2−1

= 4ℓ logS
x

x2−1
(5.3.18)

and G0(x) a function analytic everywhere except of the cuts on the intervals (−∞,−a) ∪
(a,∞). We conclude that the only effect of the backreaction at one loop is to renormal-
ize the coefficient of the potential term and therefore to renormalize ℓ by a one-loop
quantity

ℓ→ ℓ̃= ℓ+ I (α)
4g logS

≃ ℓ− π

12ℓg log2 S
. (5.3.19)
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To fix uniquely the solution of the leading order equation (5.3.17) we have to supply the
asymptotics at infinity for G0(x). This is a little bit tricky if we have sent the endpoints
of the two cuts (−b,−a) and (a,b) to infinity first. A straighforward procedure is to solve
the equation (5.3.17) for finite b (see [22]), imposing that G0(x)∼ 1/x at x →∞ and then
take the limit of infinite b. The result of this procedure would give G0(x)= p2̂(x)− p2̃(x)
with p2̂(x), p2̃(x) from (3.1.10). An alternative is to work directly with b →∞ and impose
the same asymptotics for G0(x) as in the weak-coupling, one loop limit [114]

G0(x)∼ 2i log(S/gx) for x →∞− i0 . (5.3.20)

The solution to the equation (5.3.17) supplemented with this condition at infinity reads

G0(x) =
√

a2 − x2
∮
C

dy
2πi

V0(y)

(x− y)
√

a2 − y2
−4arctan

√
a− x
a+ x

(5.3.21)

= J
2g

x
x2−1

(p
a2 − x2

p
a2−1

−1

)
−4arctan

√
a− x
a+ x

, (5.3.22)

where in the first line the contour of integration C encircles the cuts (−∞,−a) ∪ (a,∞)
and can be closed at infinity counterclockwise. The value of a is fixed by the asymptotics
at infinity (5.3.20) and it yields the same condition as (3.5.3)√

a2−1= J
4g log(2S/ag)

= ℓ+O (1/ logS) . (5.3.23)

The anomalous dimension at leading order is given by

E0 = −
∮
C

dx
2πi

2
x2−1

G0(x)
α(x)

= Jp
a2−1

(
a−

√
a2−1

)
− 4g

a

= 4g logS
(√

1+ℓ2−ℓ
)
+O ((logS)0) (5.3.24)

with the integration contour running counterclockwise around x = 0. Now we can es-
timate the one-loop correction from the backreaction due to the shift ℓ→ ℓ+δℓ from
equation (5.3.19),

δEb = 4g logS δ
(√

1+ℓ2 −ℓ
)
=−I (2ℓ logS)+ ℓI (2ℓ logS)p

1+ℓ2
. (5.3.25)

The one-loop wrapping corrections are then given by:

δEw = δEv +δEb =
ℓI (2ℓ logS)p

1+ℓ2
=− 4π

12logS
+O ((ℓ logS) log(ℓ logS)) (5.3.26)

and they coincide with the contribution of the four massive modes δE2 (3.5.8).
The wrapping corrections give the 1/logS corrections corresponding to only four of

the five bosonic modes. To find the fifth one we are going to solve the one-loop equation
for the resolvent

0=G1(x+ i0)+G1(x− i0)+2V1(x) (5.3.27)
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with
2V1(x)

g
= V (x)+α(x) p′

0 cot p0 , p0(x)=G0(x)+V0(x) . (5.3.28)

Here α(x) p′
0 cot p0 is the so-called anomaly term and V (x) is the Hernandez-Lopez phase

with integral representation [115]

V (x)=
∫

U+

dy
2π

(
α(x)
x− y

− α(1/x)
1/x− y

)
∂y(G0(y)−G0(1/y)) , (5.3.29)

where the integral is taken clockwise on the upper half of the unit circle U+. The
solution to the one-loop equation can be again written in an integral form [22, 23]

G1(x)=
∮
C

dy
2πi

V1(y)
(x− y)

√
a2− y2

p
a2− x2

. (5.3.30)

The one-loop correction to the energy is given, similarly to the leading order, by

E1,ABA =−
∮
C

dx
2πi

2G1(x)
x2 = 2

a

∮
C

dy
2πi

√
a2 − y2

y2 V1(y) . (5.3.31)

Substituting the value of the potential V1(x) we retrieve the contributions (3.5.9) from
the algebraic curve computation

E1,ABA = −4
a

∫ ∞

a

dy
2π

√
y2 −a2

y2 −1
p′ coth p−

− 4
a

∫
U+

dy
2π

Im

√
a2− y2 −

p
a2−1

y2 −1
∂y ImG0(y)=

= δE1 +δE3 . (5.3.32)

This result confirms that the asymptotic Bethe ansatz contribution is captured by δE1+
δE3 and that the wrapping corrections are reproduced by δE2.
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Chapter 6

Conclusions and future directions

In this thesis we studied the different aspects of integrability on the both sides of
AdS/CFT correspondence.

It is now clear that the technique of integrability, which originally was used to
solve the two dimensional models, can play an important role in the complete solv-
ing the spectral problem in higher dimensional gauge theory. Presumably, there are
some important features of the string and gauge theories which automatically imply
the (classical) integrability. There is a classification of all integrable AdS/CFT back-
grounds [65] which shows that AdS5/CFT4 is not a unique integrable duality. Indeed,
one can explore the integrable structure in AdS4/CFT3 correspondence (see [116] for
the review), in AdS3/CFT2 [66] and in AdS2/CFT1 [117]. The geometry of the back-
ground are very different (nevertheless they all have the form AdSd ×M ), but behind
them we see the Z4 automorphism and hence the classical integrable structures analo-
gously to the construction proposed in [16], as we discussed it in the chapter 2.2. There
is a plenty of things to be done here: first of all, for some of these dualities their CFT
dual is not known. There is a hope that integrability can shed some light on this sub-
ject [118], but we are still far from the final answer. Second, once the dual will be
constructed it has to be solved, apparently, again with the help of integrability. We
can even construct the Bethe ansatz for some of these duals (see [119] for such a con-
struction in AdS3/CFT2 case), but immediately there are some new questions to solve.
It is known that AdS3/CFT2 duality contains some massless modes — and it is a chal-
lenge to incorporate them into the duality, since the Bethe ansatz for them could be
singular.

But for the AdS5/CFT4 duality we do not have such a questions. Moreover, one
can say that in principle the spectral problem is solved. For the moment we have all
the equations desribing the spectral problem at any coupling constant (Y–system). We
have shown how to solve them analytically in one particular case, but numerically they
can be solved with the given precision for the large class of operators.

But the main problem of the Y–system is the complexity of analytic properties of the
Y–functions. That’s why analytical solution of these equations in general situation is
still nearly impossible. There are some attempts to avoid this difficulties reformulating
the Y–system in a Destri–de Vega form, i.e. finite system of nonlinear integral equa-
tions (FiNLIE) [79]. In a recent paper [120] the power of FiNLIE was demonstrated
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by the analytical computation of the six–loop anomalous dimension of the Konishi op-
erator (see also derivation of the same dimension from the Lüscher corrections [121]).
Since this computation is based on the recursive procedure, one can expect that the
next terms could be obtained in the same manner. But the main ingredient — direct
derivation of the Y–system (or FiNLIE) from the σ–model or the gauge theory is still
missing.

However, in general, the spectral problem is more or less solved, at least on the tech-
nical level. We still do not know exactly the spectrum of which operator we are looking
for, because we do not know the full hamiltonian of the theory, but the computation
itself is here. To completely solve the gauge theory one should also compute the three–
point function. Since the N = 4 SYM is conformal it is sufficient to compute two–point
function (i.e. solve the spectral problem) and three–point function. The recent progress
in this field was made again with the help of integrability [122, 123, 124, 125, 126, 127].

If we compute some three-point functions in the gauge theory, there should be dual
quantity in the string theory. Namely, one can try to compute the correlation function
of the three vertex operators of particular massive string states in AdS5 ×S5 theory
(see [128, 129, 130] for the first computations of these quantities). Most of the work
here should be done in the near future, but there is no doubts that integrability will
continue to play the key role in the investigation of the AdS/CFT correspondence.
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Appendix A

Strings on arbitrary background

Here we review the procedure of the gauge-fixing in the Green–Schwarz action for
arbitrary curved background.

To fix the gauge we will use the following strategy [131, 60, 61]: first we transform
into the reference frame moving in the φ direction with the speed v. The velocity v
will serve as a regularization parameter, which we will set to one at the end of the
calculation. At v < 1, the resulting gauge is equivalent to the interpolating a-gauge
introduced in [132]. The gauge-fixed Lagrangian is substantially more complicated
in this family of gauges, compared to the light-cone gauge, obtained in the limit v → 1.
Then we T-dualize in the φ direction, integrate the worldsheet metric, and fix the static
gauge φ̃ = σ, t = τ in the resulting Nambu-Goto action. Expanding the Nambu action
to the quartic order in the fields, we get the desired light-cone Lagrangian.

Let us discuss the general procedure of T–duality for the σ–model on any back-
ground. Let us consider the simplest example of T–duality. The action of σ–model
looks like

S =
∫

dτdσ
p
−h

(
hαβ∂αϕ

i∂βϕ
j g i j −ϵαβ∂αϕ

i∂βϕ
jbi j +2∂αϕi(hαβuβi −ϵαβvβi)

)
. (A.0.1)

T–duality occurs when one starts to transform field ϕi with some shift depending
on (τ,σ):

ϕi →ϕi +δϕ(τ,σ). (A.0.2)
For the sake of simplicity we will consider the case when only ϕ1 changes. The rest

of the fields remain the same.
To make the action S gauge–invariant, we should introduce the covariant deriva-

tive:
Dαϕ

1 = ∂αϕ
1+ Aα. (A.0.3)

Also one should add the term ϕ̃1ϵαβFαβ to be sure that the gauge field Aα has the
correct dynamics. So we can rewrite action in the form
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S =
∫

dτdσ
p
−h

(
hαβDαϕ

1Dβϕ
1 g11 +2Dαϕ

1Dβϕ
j g1 j +Dαϕ

iDβϕ
j g i j−

−ϵαβDαϕ
iDβϕ

jbi j −2ϵαβDαϕ
1Dβϕ

jb1 j + (A.0.4)
2Dαϕ

1(hαβuβ1−ϵαβvβ1)+2∂αϕa(hαβuβα−ϵαβvβα)+ ϕ̃1ϵαβFαβ

)
.

This action is gauge invariant, and we can fix the gauge just setting ϕ1 = 0. So our
covariant derivative becomes a multiplication by Aα. Now we can act in two ways.

1. Integrate out ϕ̃1. From the equations of motion for ϕ̃1 we obtain Fαβ = 0. So we
can conclude that Aα = ∂αθ. It is obvious that θ =ϕ1.

2. Integrate out Aα. From the equations of motion for Aα we obtain

Aα = 1
g11

(
−∂αϕαg1a +hαβϵ

βγ∂γϕ
jb1 j −uα1+hαβϵ

βρvρ1−hαβϵ
βγ∂γϕ̃

1
)
. (A.0.5)

Comparing this expression with Aα = ∂αϕ
1 we obtain following relation between

original and dual variables:

ϵαβ∂βϕ̃
1 =−hαβg11∂βϕ

1−hαβ∂βϕ
j g1 j +ϵαβ∂βϕ

jb1 j −hαρuρ1 +ϵαρvρ1. (A.0.6)

Plugging this into the original action (A.0.1), we obtain the action in terms of dual
variable ϕ̃1 and dual metric:

S =
∫

dτdσ
p
−h

(
hαβ∂αϕ̃

i∂βϕ̃
j g̃ i j −ϵαβ∂αϕ̃

i∂βϕ̃
j b̃i j +2∂αϕi(hαβũβi −ϵαβṽβi)

)
. (A.0.7)

We can write down explicitly expressions for the dual metric (generalization of the
Buscher’s rules [133, 134]):

g̃11 = 1
g11

, g̃ i j = g i j −
g1i g1 j −b1ib1 j

g11
, g̃1i = b1i

g11
;

b̃1i = g1i

g11
, b̃i j = bi j −

g1ib1 j −b1i g1 j

g11
, b̃i1 =− g1i

g11
(A.0.8)

ũα1 = vα1

g11
, ṽα1 = uα1

g11
, ũαi = uαi − g1iuα1−b1ivα1

g11
, ṽαi = vαi − g1ivα1−b1iuα1

g11
.

Now we can proceed to the light–cone gauge. We want to express this action through
the variable x+:

x+ = (1−a)t+ϕa = (1−a)x0 +ax3. (A.0.9)
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After a little algebra one can get for the effective metric

g++ = 1
(1−a)2 g00,

g33 = g33 + a2

(1−a)2 g00 − 2a
1−a

g30,

g i j = g i j,

g3+ = − a
(1−a)2 g00 + 1

1−a
g30, (A.0.10)

g+i = 1
1−a

g0i,

g3i = g3i − a
1−a

g0i.

One can obtain the same transformation rules for bi j,uβi,vβi.
Now we are perfoming T–duality in ϕ (x3) direction. According to the results of the

previous section, we obtain for the dual metric

g̃++ = g33 g00 − g2
03 +

(
b30 − a

1−a b00
)2

(1−a)2 g33 +a2 g00 −2a(1−a)g03
,

g̃33 = (1−a)2

(1−a)2 g33 +a2 g00 −2a(1−a)g30
,

g̃ i j = g i j −
(1−a)2 g3i g3 j −a(1−a)(g3i g0 j + g3 j g0 j)+a2 g0i g0 j + (g ↔ b)

(1−a)2 g33 +a2 g00 −2a(1−a)g30
, (A.0.11)

g̃3i = (1−a)2b3i −a(1−a)b0i

(1−a)2 g33 +a2 g00 −2a(1−a)g30
,

g̃3+ = (1−a)b30 −ab00

(1−a)2 g33 +a2 g00 −2a(1−a)g30
,

g̃+i = (1−a)(g0i g33 − g03 g3i)+a(g00 g3i − g0i g03)+ (1−a)−1(ab00 − (1−a)b30)(ab0i − (1−a)b3i)
(1−a)2 g33 +a2 g00 −2a(1−a)g30

.

For the anti-symmetric part of the action (and the part which is linear in field
derivatives) we can also obtain the similar expressions.

Now we can integrate out the world–sheet metric:

hαβ = g̃MN∂α x̃M∂β x̃N . (A.0.12)

So the T–dual Nambu-Goto action looks loke this:

S = g
∫

dτdσ
(√

−det g̃MN∂α x̃M∂β x̃N +ϵαβb̃MN∂α x̃M∂β x̃N
)
. (A.0.13)

We can finally fix the gauge with the conditions

x̃+ = τ

1−a
, ϕ̃=σ. (A.0.14)

Now let us compute the Nambu–Goto action. For that one needs to calculate the
determinant and take a square root.
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h ≡ det
αβ

hαβ = g̃MN ∂0 X̃ M∂0 X̃ N · g̃MN ∂1 X̃ M∂1 X̃ N −
(
g̃MN ∂0 X̃ M∂1 X̃ N

)2
. (A.0.15)

In our gauge (A.0.14) this determinant looks like

h =
(

1
(1−a)2 g̃+++ 1

1−a
g̃+i ∂0 X̃ i + g̃ i j ∂0X i∂0X j

)
·
(
g̃33 + g̃3i ∂1X i + g̃ i j ∂1X i∂1X j

)
−

−
(

1
1−a

g̃+i∂1 X̃ i + 1
1−a

g̃+3+ g̃ i3∂0 X̃ i + g̃ i j ∂0X i∂1X j
)2

. (A.0.16)

To obtain the BMN limit [135] one should expand this action in powers of X̃ . To do
this let us emphasize that g̃ i j are the functions of the vielbein EA

M, so we can control
the order of each term in expansion.

We assume that the metric has two isometries, a timelike and a spacelike, that
can be used to fix the light-cone gauge. The coordinates along the isometry directions
will be denoted by t ≡ X0 and φ≡ X9. We assume that the metric depends only on the
transverse coordinates X i, i = 1, . . . ,8, and has the following form:

ds2 =−G ttdt2 +Gφφ

(
dφ+ A idX i

)2 +G i jdX idX j, (A.0.17)
In the light-cone gauge, the string sigma-model becomes a complicated, very non-

linear quantum field theory of the transverse string coordinates. However, if the string
tension is small, this field theory is weakly-coupled and one can develop systematic
perturbation theory in α′ by expanding the metric near the light-cone geodesic t = τ=φ.
This is known as the Penrose expansion. Our goal will be to expand the Green-Schwarz
action to the quartic in the transverse fields, and then fix the light-cone gauge. To this
end, we assume the following scaling of the metric components:

G tt = 1+O
(
X2) , Gφφ = 1+O

(
X2) ,

A i =O
(
X2) , G i j = δi j +O

(
X2) . (A.0.18)

We will systematically drop terms of order higher than O (X4). This way we will con-
struct the action that contains all cubic terms and quartic terms of the form X4 and
X2θ2. We will not study the O (θ4) terms, since the Lagrangian (2.1.1) is already trun-
cated at the quadratic order in fermions. In principle the quartic fermion terms are
also known for any supergravity background [136], and one can include those terms
too, more or less reading off the four-fermion terms from [136], since at this order in
the expansion they will not be affected by the gauge-fixing.

We can readily expand of the local frame and the spin connection around the light-
cone geodesic:

E0̂
0 =

√
G tt +O

(
X4) , E9̂

9 =
√

Gφφ+O
(
X4) ,

E9̂
i = A i +O

(
X4) , E î

j =
1
2

(
δ î j +G î j

)
+O

(
X4)= δ î j +O

(
X2) ,

E i
9̂ =−A i +O

(
X4) , E i

ĵ
= 1

2

(
δi ĵ +G i ĵ

)
+O

(
X4)= δi ĵ +O

(
X2) ,

E0
0̂ =

1√
G tt

+O
(
X4) , E9

9̂ =
1√
Gφφ

+O
(
X4) . (A.0.19)
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The spin connection is needed only to the linear order in X i:

Ω0̂ î
0 = 1

2
∂ îG tt +O

(
X3) , Ω9̂ î

9 = 1
2
∂ îGφφ+O

(
X3) ,

Ω
î ĵ
9 =−1

2
F î ĵ +O

(
X3) , Ω9̂ î

j = 1
2

F î j +O
(
X3) ,

Ω
î ĵ
k = 1

2
∂ ĵG îk −

1
2
∂ îG ĵk +O

(
X3) , (A.0.20)

where we have introduced the notation:

Fi j = ∂i A j −∂ j A i. (A.0.21)

Substituting these expression into (2.1.1) , and redefining

/Ea = ∂aX iΓi

Da = ∂a − 1
4
∂aX i (Fi jΓ9 j +∂ jGkiΓ jk

)
, (A.0.22)

we find for the fermion part of the Lagrangian:

Lf = θ̄I
(p

−hhabδIJ −εabσIJ
3

)
/EaDJK

b θK

+θ̄I
[√

G tt

(p
−hhabδIJ +εabσIJ

3

)
Γ0D

JK
a

+1
8

(p
−hhabδIJ −εabσIJ

3

)
/Ea

(
F JKΓ0+2∂iG ttΓ0iδ

JK
)]

θK∂bt

+θ̄I
{√

Gφφ

(p
−hhabδIJ +εabσIJ

3

)
Γ9D

JK
a

+1
8

(p
−hhabδIJ −εabσIJ

3

)
/Ea

[
F JKΓ9

+(
2∂iG ttΓ9i −Fi jΓi j

)
δJK

]}
θK∂bφ

+1
8
θ̄I

(
G ttΓ0F

IJΓ0 +2∂iG ttΓiδ
IJ

)
θJp−hhab∂at∂bt

+1
8
θ̄I

[
GφφΓ9F

IJΓ9 −
(
2∂iGφφΓi +Fi jΓ9i j

)
δIJ

]
θJp−hhab∂aφ∂bφ

+1
8
θ̄I

{(p
−hhabδIJ −εabσIJ

3

)[√
G ttGφφΓ0F

JKΓ9

+ (
2∂iGφφΓ09i −Fi jΓ0i j

)
δJK

]
+

(p
−hhabδIJ +εabσIJ

3

)(√
G ttGφφΓ9F

JKΓ0

−2∂iG ttΓ09iδ
JK

)}
θK∂at∂bφ. (A.0.23)

We can also write the bosonic part order by order:
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LX2 = g i j

2
∂µX i∂µX j +bi j

(
X i

′
Ẋ j − Ẋ i X j

′)
+ gϕϕ

2
− gtt

2
+ gϕt

2
,

LX3 = gϕi∂0X i −bti∂1X i,

LX4 = 1
4

(1− gtt)2− 1
4

(
1− gϕϕ

)2 + 1
4

g2
ϕt +

+ 1
4

(
1− gϕϕgtt

)
g i j

(
Ẋ i Ẋ j + X i

′
X j

′)
−bϕt g i j Ẋ i X j

′
. (A.0.24)

For the part with fermion derivatives (ũβM, ṽβM) we can split the terms into three
groups: ũβ0, ũβ3 and the rest (transverse) terms. It occurs that after expansion in
X there are no terms proportional to ∂αϕ̃ — one should keep in mind that we are
interested in the lagrangian only up to the quartic order. The rest terms are very
simple and have the “naive” form:

L(θ,∂θ) = 2∂αX+
(
hαβuβ+−ϵαβvβ+

)
+2∂αX i

(
hαβuβi −ϵαβvβi

)
. (A.0.25)

Here uβ+,vβ+,uβi,vβi can be easily expressed in terms of fermions (θ̄,∂βθ) and viel-
bein EA

M. One can see that these terms are of quadratic order in fermions and after
gauge fixing become the standard kinetic terms in the Dirac form. Roughly speaking
they can be obtained from the original action (2.1.1) just setting ϕ= t = τ.
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Appendix B

Z4 automorphism and psu(2,2|4)
superalgebra.

In the section 2.2.3 we observe that there is a special matrix Slm which defines
the inversion symmetry for the quasimomenta. In this section we will compute Slm
explicitly.

Since psu(2,2|4) is a real form of psl(4|4) we will start with sl(4|4). It is an algebra
of complex (4|4)× (4|4) matrices with zero supertrace:

str M =∑
i

(−1)|i|Mii = 0, (B.0.1)

where |i| is the parity. Obviously, we can place bosonic and fermionic parts in this
matrix in the several ways. In the standard choise the diagonal 4×4 blocks are bosonic,
the off–diagonal are fermionic so that

su(4)⊕ su(4)= so(6)⊕ so(6)⊕u(1). (B.0.2)
Here the u(1) term is central and can be factorized out, and we will left with the psl(4|4).

The standard choice for the basis of Cartan generators is

(Hl)i j = (−1)|i|δi j(δi,l −δi,l+1), l = 1, . . . ,7, (B.0.3)
and the Cartan matrix is

Alm = strHlHm =
[
(−1)|l|+ (−1)|l|

]
δlm − (−1)|l|δl,m+1− (−1)|l+1|δl,m−1. (B.0.4)

The Cartan matrix depends on the parity of the rows and columns, which we can choose
in many ways. Let us fix it like this (“B” and “F” stands for the bosonic or fermionic
parity):
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H1 H2 H3 H4 H5 H6 H7
1 B
1 -1 F

1 -1 F
-1 1 B

-1 1 B
1 -1 F

1 -1 F
-1 B

With this choice of Hi the Cartan matrix is

A =



1
1 −2 1

1 −1
−1 2 −1

−1 1
1 −2 1

1


. (B.0.5)

Following [137] we find the Z4 automorphism M acts on the supermatrix like this:

M ◦
(
A Θ

Ψ B

)
=

(
JAtJ −JΨtJ
JΘtJ JBtJ

)
, J =

(
0 −12×2

12×2 0

)
. (B.0.6)

From the last three equations we can compute the matrix Slm defined in (2.2.44):

S =



1 −1
1 −1

1 −1
−1
−1 1
−1 1
−1 1


. (B.0.7)

We can use these expressions for the building the set of the quasimomenta with
respect to the inversion symmetry.
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