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Vincent Pasquier Membre invité
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1



concepts algébriques d’une simplicité et d’une élégance rare, et certains des calculs les
plus abominables que j’ai pu rencontrer jusqu’ici (je remercie d’ailleurs aussi Leo August
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en prendre qu’à nous-mêmes). J’ai aussi eu l’occasion et la joie de rencontrer certains
des visiteurs du labo, comme Sylvain Prolhac (mon “grand frère de thèse”), Raphaël
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découvrir mon ventilateur ligoté à ma chaise avec du fil de fer, ou la boule de ma souris

2



(ainsi que celle de ma souris de rechange) me regardant du haut d’une armoire, ou toutes
les touches de mon clavier interverties, ou mon parapluie rempli de confettis, ou encore
bien d’autres taquineries de ce genre, qui n’ont cessé de m’émerveiller par leur variété et
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grand regret. Et puis, en vrac, Thiago, Éric, Rémi, Thomas Ep., Thomas Ey., Katya
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moi le paysage culinaire parisien tout au long de cette thèse. Romain (troisième mention,
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Lyon, et merci à tous mes amis d’enfance, de L.L.G., et d’ailleurs (qui ne m’en voudront
pas de ne pas tous les nommer : ils se reconnâıtront, dans le cas bien improbable où cette
thèse leur tomberait entre les mains), pour toutes les soirées passées ensemble et tous les
repas que nous avons partagés.
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Informal Introduction

Consider a statistical system. Let’s say, to keep things simple, a system composed of
a large number of particles: they could be atoms in a box, spins on a lattice, grains
of sand in a dune, cells in an organ, insects in a colony, people in a theatre, or pretty
much anything. Those particles have individual characteristics (masses, charges, sizes,
behavioural patterns, etc.). They might interact with one another according to some
rules, and with their environment (through its geometry, the presence of external forces,
reservoirs of particles, heat baths, etc.). All that can, in principle, be put in equations,
using a set of laws, and a gigantic number of degrees of freedom (the position and state of
each and every one of the particles), which contain all the information that there is about
the state of the system at any given time. Getting that information explicitly, by solving
that enormous system of equations, is of course extremely hard, and often completely
futile.

Now, if we look at that system from further away, we might describe it through a rea-
sonably small number of global quantities: pressure, temperature, density, magnetisation,
elasticity, and so on. We might also find, empirically, that those quantities obey certain
laws (for instance an equation of state for a gas). These macroscopic quantities and laws
are, naturally, a consequence of the microscopic behaviour of the system: each of them is
a massively averaged combination of all the individual parameters associated to all the
particles. A great deal of information is lost through this averaging, as almost all the
initial degrees of freedom are summed out and disappear. However, the result is not only
much simpler than the exact microscopic description of the system, but also perfectly
sufficient to describe whatever, in the system’s behaviour, is relevant to us. Moreover,
we sometimes discover that most of the details pertaining to the particles (such as their
shapes, masses, charges, etc.) have little or no influence on the global behaviour of the
system, and that it is in fact universal (with respect to those details), which is a good
thing to know, and would not have been known from a purely microscopic analysis.

The role of a statistical physicist, in that context, is twofold: firstly, one must, starting
from what one knows of the microscopic rules of the system, weed out all the superfluous
information, obtain its macroscopic behaviour, and draw any conclusion that one might
from the result. Secondly, one should, when possible, determine what microscopic ele-
ments are relevant to the macroscopic behaviour of the system, and why it is so. That
second task is somewhat trickier to define than the first, but much more important: the
knowledge one might draw from it would apply to a large class of systems rather than
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a single specific one. In short, solving one system is nice, but what we’re really after
is universality, because we don’t want to have to solve every system by itself, it’s much
easier to do them all at once. The best quality in a scientist, as we all know, is laziness.

Let us now get a bit more specific. There are two kinds of statistical systems: those
that are at equilibrium, and those that aren’t.

The former are systems which, if let to evolve freely, go to a state where everything is
at rest macroscopically (i.e. not considering the thermal fluctuations at the microscopic
level). This will be the case generally for systems that are isolated and devoid of active
elements, so that nothing can drive them out of staticity. The signature of this inactivity is
detailed balance, which is to say the absence of probability fluxes between the microscopic
configurations of the system. If that condition is met, then the system is governed by
the Gibbs-Boltzmann law, which gives the probability of observing any configuration,
explicitly, in terms of its energy. Of course, this doesn’t make equilibrium statistical
physics trivial: finding the probabilities of the microstates is usually only the first step,
and the rest can be just as hard as anything else, but at least that first step took care of
itself.

For all the other cases, nothing can be said a priori, and one would have to solve
the entire dynamics of the system to get at whichever quantities one might be interested
in. Among those systems that do not reach equilibrium, the simplest ones, and the
ones which will be at the core of this study, are those that reach a steady state (usually
abbreviated as NESS, standing for Non-Equilibrium Steady State), where all observables
are independent of time. The absence of detailed balance then manifests itself through
macroscopic currents (of particles, for instance), which are the result of the microscopic
currents that exist between the microstates of the system. Think for instance of a tube
connecting two infinite reservoirs of particles, with either a difference of potential between
the reservoirs, or a field in the tube driving the particles to one side rather than the other.
In both cases, once the system has reached its steady state, we can observe a current of
particles from one reservoir to the other through the tube. That current, being the
signature of non-equilibrium, is of particular interest to us. We’ll get back to that picture
in a moment.

In the quest for a substitute to the Gibbs-Boltzmann law, a lot of effort has been put
in the study of so-called ‘large deviation functions’, which are logarithms of probabilities
of observables in the limit of some large quantity (usually the size of the system or the
time that has passed). They can be seen as a more precise version of the Gaussian
approximation obtained from the central limit theorem, that holds information not only
on the probability of likely events, but of extremely rare ones too. Analysing those
functions, as well as the microscopic pathways associated to those rare events, is an
important challenge to statistical physicists. One could think, for example, of a chemical
reaction in a complex environment, and involving few reactants. What would interest us
there is not that, most of the time, nothing happens, but exactly how often something
does, and through which succession of events it does best (so that we can, for instance, try
to favour that optimal pathway, or inhibit it, depending on whether we want the reaction
to happen or not). Finding efficient algorithms to produce rare events in simulations, for
this type of problems or others, has been a popular topic in the past decade or so, and a
lot remains to be discovered and understood.
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There are many more ways one could go about studying non-equilibrium systems and
large deviations. One that has had a lot of success in the past is to choose a toy model that
is simple enough to be mathematically tractable, yet complex enough to be physically
relevant, then solve as much of it as possible, and pray for something interesting or useful
to emerge along the way. The model of choice for us here is the ‘asymmetric simple
exclusion process’ (or ASEP for short). In this model, particles jump stochastically from
site to site on a one-dimensional lattice of finite size. Reservoirs of particles at fixed
densities are connected to each end of the system, and particles may enter or leave the
system only at those ends. The model is asymmetric in that particles jump preferentially
to the right, which mimics the presence of a driving field in the bulk of the system.
Finally, they interact with one another through simple hard core repulsion, accounted
for by the exclusion constraint that no more than one particle may be on a given site at
a given time. Because of the biased jumps, and the possibly unequilibrated reservoirs,
particles flow from left to right. As we mentioned before, this current of particles is the
signature of non-equilibrium and we’d like to know everything we can about it.

The ASEP has many qualities which make it perfectly suited to that endeavour, the
first of which being that it is integrable, which means that one might be able, as indeed
we were, to obtain exact analytic results. It is also well motivated physically, as it was
first invented to study the motion of biological objects, and is still used, along with its
numerous variants, to model real systems. Moreover, it can be mapped onto or related
to a large number of other toy models from statistical physics or condensed matter, or
even some interesting mathematical objects. For all these reasons, it is one of the most
extensively studied models in non-equilibrium statistical physics. Despite that, the ASEP
still holds a few secrets, and I did my best during my three years as a doctoral student
to uncover one or two of them.

The outline of this thesis is as follows.

In chapter I, we define all the concepts we will need that have to do with large
deviations, first in general, then in the context of Markov processes in continuous time,
along with a few simple results. In particular, we define what is called the ‘s-ensemble’,
which is a statistical ensemble for Markov processes where the current is seen as a free
parameter.

In chapter II, we get acquainted with the asymmetric simple exclusion process. In
the first part of the chapter, we give the definition of the model, do a very brief overview
of existing variants and relations to other models, and then look at what we can learn
from simulations and mean-field calculations. In the second part, we present two known
results that we will need later on, namely the so-called ‘matrix Ansatz’ invented by
Derrida, Evans, Hakim and Pasquier to describe the steady state distribution and mean
current of the open ASEP, and the Bethe Ansatz solution found by Prolhac and Mallick
for the fluctuations of the current in the periodic ASEP. This will also allow us to rederive
those results using our own notations, to avoid confusion in the following calculations.

In chapter III, we present our own results, which were published in [1], [2] and [3]. We
first define our ‘perturbative matrix Ansatz’, as a generalisation of the original matrix
Ansatz, and show how it allows to access the cumulants of the current order by order. We
then present our main result, which is an exact expression for the complete generating
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function of the cumulants of the current, correct for any finite size of the system and any
values of its parameters. Finally, we show how it was possible to guess that expression
from calculating only the first few cumulants explicitly from our Ansatz. At that point,
our result is therefore, strictly speaking, a conjecture.

In chapter IV, we analyse our result in detail, by first taking the limit of large sizes
and extracting the asymptotic behaviour of our expression for the cumulants, obtaining
a different result for each phase in the ASEP’s diagram. We then look at what the
corresponding behaviours are for the large deviation function of the current in each phase.
After that, we look at the limits of an extremely large or low current imposed to the
system, and gather all the information we can on the steady state of the system under
those conditions. Finally, show how all this put together, along with results from a
simple hydrodynamic description of the system, allows to express a conjecture for the
phase diagram of the open ASEP in the s-ensemble.

In chapter V, we come back to our generalised matrix Ansatz, and generalise it yet
a bit further, by introducing two free parameters in it. We show how this new and
improved version relates to Baxter’s Q-operator and to the algebraic Bethe Ansatz. We
also show how it leads to the functional Bethe Ansatz for the open ASEP, without any
restriction on its parameters. We use this result to finally prove the expression obtained
in chapter III.

Before getting started, I should say a few things about this here manuscript.
I have tried, to the best of my abilities, to make the contents of this work as self-

contained as possible. I was aided in that by the fact that the object of my study, i.e.
the large deviations of the current in the steady state of the open ASEP, is reasonably
simple to define, and requires very few sophisticated concepts or mathematical tools, if
any. Most of those are presented in chapter I, so that readers with no deep knowledge of
non-equilibrium statistical physics might find there everything they need to understand
the rest. As for the part treating of integrability and Bethe Ansatz (i.e. chapter V
and a bit from chapter II), no previous knowledge is required of the reader. The actual
calculation may get somewhat involved from time to time, but I hope to have managed
to present them in such a way that they can be followed without too much of an effort.

The layout of this work is more or less logical, but not necessarily linear. Chapter I
contains general definitions and classic results, and can be skipped by a reader already
familiar with non-equilibrium statistical physics and large deviations. The first part of
chapter II only gives well known facts and results on the ASEP, and should be of interest
in particular to those who have never heard of it. It is, however, very brief, as I didn’t
intend to do an extensive review of the field, but I have tried, at least, to give a few
relevant references, so that the curious reader might know where to look. The second
part of chapter II should not be skipped, since most of what is in chapters III and V is
built upon it. Chapter III is in fact slightly obsolete, as a large part of it is a special
case of what is done in chapter V, but since it represents the work done in two and a
half years out of three, I thought I’d include it anyway. That being said, the reader can
perfectly go directly from chapter II to chapter V and then back to chapter IV. Finally,
chapter IV can be read at any point after chapter II, since it only relies on the final result
from chapter III (or V), which is reminded at the beginning, and not on any detail of the
calculations.

8



CHAPTER I

A Short Introduction

to Large Deviations

In this first introductory chapter, we present a few useful concepts and results related
to large deviations and Markov processes. We start by introducing the reader to large
deviations using the simplest of all examples, the loaded coin toss. We then give a gen-
eral definition of large deviation functions, and show how they are related to generating
functions of cumulants. In a second section, we focus on temporal large deviations for
Markov processes in continuous time (which we first define), by looking at probabilities of
time-additive quantities. By considering a special case corresponding to the entropy pro-
duction, we derive the Gallavotti-Cohen symmetry and define the so-called ‘s-ensemble’.

There are many more things to be said about large deviations than we do here, as we
consider only what will be specifically useful to us later on. For a thorough review of this
topic, one can refer to [4] and [5].

I.1 Large numbers and large deviations

Large deviations can be understood as a more precise version of the central limit theorem,
which is itself an extension of the law of large numbers. Let’s first look at that through
a simple example.

I.1.1 A simple example - tossing a loaded coin

Let us consider a loaded coin, which has a probability p to land on heads, and a probability
1− p to land on tails, with p between 0 and 1. We toss that coin a very large number of
times N , and we record the outcome of each coin toss (which we label i, going from 1 to
N), as Xi = 1 for heads and Xi = 0 for tails.

We assume the tosses to be independent of each other, so that the probability of any
sequence {Xi} is simply the product of the probabilities of each individual toss:

P({Xi}) =
N∏
i=1

pXi(1− p)(1−Xi). (I.1)

Now, let’s say that we’re not interested in the full sequence of outcomes, but only on
the total number of heads, or, equivalently, the rate of occurrence of heads, r = 1

N

∑
Xi,
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which is between 0 and 1. The probability of any r (which is here only defined if Nr is
an integer) is the sum of the probabilities of all sequences {Xi} which have the same r.
Luckily, the probability of each of those is the same, so we only need to count how many
there are, which is the number of ways to place Nr ones in a sequence of size N . This
gives us an entropic coefficient N !

[Nr]![N(1−r)]! . The probability of r, knowing N , is therefore:

PN(r) =
N !

[Nr]![N(1− r)]!p
Nr(1− p)N(1−r). (I.2)

What the central limit theorem tells us about this probability is that when N gets
large, PN(r) becomes peaked around the mean value of r (which is p), and that r is

distributed around that value as a Gaussian with variance p(1−p)
N

. That is to say:

PN(r) ∼ PGauss
N (r) = PN(p) e−N

(r−p)2
2p(1−p) (I.3)

where ∼ means that the difference of the two functions goes to 0 when N goes to infinity.
This gives us a good approximation for values very close to r = p (typically at a distance
of order N−1/2), which accounts for the most probable fluctuations of r, but what if we
need an estimate of the probability of a completely different r ? As we can see on fig.-I.1,
the relative accuracy of the Gaussian approximation decays with N for any r that isn’t
p, which makes it a rather poor approximation whenever rare events are important.

40

20

-40

-20

0.15 0.20 0.25

r

log(PN/P
Gauss
N )

Figure I.1: Relative accuracy of the Gaussian approximation for PN(r), in logarithmic
scale, for p = 0.2 and N = 5000 (blue), 10000 (green), 20000 (red).

This is where large deviations come in. We can get a much better approximation,
unsurprisingly, by looking at the asymptotic behaviour of PN(r) for every r, and not only
around r = p. We can calculate a function g(r), called the ‘large deviation function’ of
r, such that:

PN(r) ∼ e−Ng(r) (I.4)
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where the ∼ now means that the ratio of the two functions is of order 1 with respect to
N . The function g(r) can be calculated by extracting the term of order N in log

(
PN(r)

)
(using Stirling’s approximation), and a straightforward calculation yields:

g(r) = r log(r) + (1− r) log(1− r)− r log(p)− (1− r) log(1− p). (I.5)

Naturally, taking the quadratic part of g(r) around r = p gives the gaussian rate (r−p)2
2p(1−p) .

If we now plot the relative accuracy of this approximation (fig.-I.2), we see that it
quickly converges to a function f(r) of order 1 (which is here

√
2πr(1− r)). That function

comes from the term of order 1 in Stirling’s approximation, it’s the prefactor in eq.(I.4),
and it is not important to us (we’re always looking at logarithms of probabilities which
scale with N , so the constant term is irrelevant).

0.2

r

PNe
Ng(r)

0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

Figure I.2: Relative accuracy of the large deviations approximation for PN(r), in log-
arithmic scale, for p = 0.2 and N = 5 (blue), 10 (green), 100 (red), and the function
f(r) =

√
2πr(1− r) (dashed).

In some situations, however, that prefactor can become extremely important, in par-
ticular when it has poles, or any kind of singularities [6]. We won’t have to worry about
that in our case.

I.1.2 General definition of large deviations

Now for a more general definition of large deviation functions: consider a system defined
by a size N , and an observable a intensive in N , which has a probability distribution
PN(a) for each N . It is said that a obeys a large deviations principle of rate g(a) if the
limit

g(a) = lim
N→∞

[
− log(PN(a))

N

]
(I.6)
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is defined and finite for every a. Simply put, g(a) is the rate of exponential decay of
PN(a) with respect to N . Its minimum is the most probable value of a. We then write:

PN(a) ≈ e−Ng(a) (I.7)

where the ≈ signifies precisely what is written in eq.(I.6).
It may happen that the correct scaling of log(PN(a)) be Nα, with α 6= 1, instead of

N . In that case, the large deviations of a are said to be anomalous.
Note that N is not necessarily an actual size or a number of elements, but can very

well be a time span, or any variable that can be taken to infinity (although it is actually
almost always time or size).

Also note that a doesn’t have to be a scalar observable. It can be a function (in
which case g[a] is a large deviation functional), or any mathematical object for which a
probability can be defined in the system under consideration.

In the case where a is more complex than just one scalar variable, one can easily obtain
the large deviation function of a subset a1 of a from that of a, through the extremely
useful contraction principle. What we mean by ‘subset of a’ is a collection of variables
included in a, and independent of the other variables in a. The contraction principle tells
us that, if a = a1, a2, and if a obeys a large deviation principle with rate g, then the large
deviation function g1 of a1 is equal to g taken at the best possible value of a2 for that a1

(all other values of a2 give a sub-dominant contribution). This is easily shown using a
saddle-point approximation:

PN(a1) =

∫
PN(a1, a2)da2 =

∫
e−Ng(a1,a2)da2 ∼ e

−N min
a2

[g(a1,a2)]
(I.8)

so that

g1(a1) = min
a2

[g(a1, a2)]. (I.9)

I.1.3 Large deviation function and cumulants

Instead of considering the probability distribution of an observable, we may just as well
consider its moments, which are the expectation values of that observable to integer
powers. The collection of those moments bear the same information as the probability
distribution, so it is natural to wonder what the consequence of a large deviation principle
is on them.

Let us therefore consider the same quantities as in the previous section, and define
the moments of a:

m
(N)
k = 〈ak〉

N
=

∫
PN(a)akda (I.10)

(N being put in subscript under the mean value simply to signify dependence on N), as
well as the exponential generating function [7] of those moments:

m
N

(µ) =
∑

m
(N)
k

(Nµ)k

k!
=

∫
PN(a)eµNada = 〈eµNa〉

N
(I.11)
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where the argument of the exponential is taken as µNa for convenience in future calcu-
lations (one could of course include the factor N in µ).

Finally, let us define the cumulants E
(N)
k of a through their generating function:

E
N

(µ) =
∞∑
k=1

E
(N)
k

µk

k!
=

1

N
log(mN(µ)) (I.12)

so that:

m
N

(µ) = eNEN (µ) = 〈eµNa〉
N

=

∫
PN(a)eµNada. (I.13)

We see here that m
N

(µ) (and therefore E
N

(µ)) and PN(a) do indeed hold the same
information: they are merely Laplace transforms of one another.

We can now see what happens if we replace PN(a) by its limit under the large deviation
principle: PN(a) → f(a)e−Ng(a) (keeping the prefactor f(a) for now, just in case). We
get, in the large N limit:

eNEN (µ) → eNE(µ) =

∫
f(a)e−N(g(a)−µa)da. (I.14)

It is here that the regularity of f(a) becomes important. If f(a) has no poles, then the
integral in eq.(I.14) can be evaluated through a saddle point approximation by deforming
its integration path from the real domain of definition of a to one going through the
saddle point of g(a)− µa, which yields:

E(µ) = max
a

[µa− g(a)] (I.15)

or equivalently

E(µ) = µa? − g(a?) ,
d

da
g(a?) = µ (I.16)

where a? is the value of a at which the maximum in eq.(I.15) is attained. That is to say
that E and g are Legendre transforms of one another. In this case, f(a) merely gives a
prefactor f(a?) in front of eNE(µ). The inverse transformation formula is then:

g(a) = min
µ

[µa− E(µ)] (I.17)

or

g(a) = µ?a− E(µ?) ,
d

dµ
E(µ?) = a (I.18)

where µ? is the value of µ at which the maximum in eq.(I.18) is attained.
In the case where f(a) has poles between the initial integration path in eq.(I.14)

and the saddle point of g(a) − µa, contour integrals around those poles survive the
approximation and the value of a? might become that of one of those poles instead of the
position of the saddle point [6].
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I.2 Temporal large deviations for Markov processes

in continuous time

Let us now apply those considerations to a specific context: that of a Markov process [8],
for which we look at large deviations with respect to time. See also [9] for a more detailed
review of this topic, and [10] for many examples of models that fall under this category.

I.2.1 Definition and steady state

First things first, let us define what a Markov process is.
We start with discrete time, which is simpler. Consider a set of configurations {C},

and a probability vector |P (t)〉 defined for discrete times {t = k δt}k∈N, which contains
the probabilities P(C; t) of being in state C at time t. A Markov process (or Markov
chain) on {C} is a process for which the probability of being in a certain configuration
at a certain time depends only on the state of the system at the previous time, which is
to say that P(C; t) is a linear combination of all the P(C ′; t − δt) but doesn’t depend on
anything that has happened before that time: the system has no memory of its past. We
can therefore write:

P(C; t) =
∑
C′
W (C, C ′)P(C ′; t− δt). (I.19)

The weights W (C, C ′) are the probabilities for the system to find itself at C knowing
that it was previously at C ′, i.e. the probabilities to ‘transit’ from C ′ to C. They must of
course be positive, and sum to 1 (with respect to C), which is usually written:

W (C ′, C ′) = 1−
∑
C6=C′

W (C, C ′). (I.20)

These probabilities can in principle depend on time, but we will assume that they do not.
For an actual physical process, most of them will be 0, because the transitions usually
happen only between configurations that are close enough according to some criterion.
For a system with moving particles, for instance, a transition is usually the result of only
one particle moving by one step, so that all W (C, C ′) where C and C ′ are not one step of
a particle away from each other will be 0.

One can put these equations in vectorial form, by defining the discrete time Markov
matrix W containing the transition probabilities:

W =
∑
C,C′

W (C, C ′)|C〉〈C ′|. (I.21)

Equation (I.19) becomes

|Pt〉 = W |Pt−δt〉 (I.22)

and (I.20) becomes

〈1|W = 〈1| (I.23)

where 〈1| is the vector with all entries equal to 1.
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We can now define that same process in continuous time, by taking the limit δt→ 0.
The first thing to do is to rescale the transition probabilities with respect to time. It
makes physical sense to consider that those probabilities are proportional to the time
step, rather than constant: if the system has some small probability to make a transition
during a small time δt, it has twice the opportunities, and therefore twice the probability,
to make that same transition in twice the time. We write this as W (C, C ′) = δt w(C, C ′)
for C 6= C ′, and define the continuous time Markov matrix as:

M =
∑
C,C′

w(C, C ′)|C〉〈C ′| with w(C ′, C ′) = −
∑
C6=C′

w(C, C ′) (I.24)

(the 1 from the right side of eq.(I.20) has been taken out of the matrix).
Equation (I.22) can then be rewritten as

|Pt〉 − |Pt−δt〉 = δtM |Pt−δt〉 (I.25)

and (I.23) as

〈1|M = 0. (I.26)

Now the continuous time limit can be taken unambiguously in equation (I.25):

d

dt
|Pt〉 = M |Pt〉 (I.27)

and obtain what is called the ‘master equation’.
The solution of this equation is, formally:

|Pt〉 = etM |P0〉 (I.28)

where |P0〉 is the initial probability distribution.
We know, from the Perron-Frobenius theorem [11], that, unless this Markov process

is reducible (if it is, for instance, the sum of two independent Markov processes on two
different sets of configurations), the matrix M has exactly one eigenvalue equal to 0 (of
which the left eigenvector is 〈1|), and all the other eigenvalues have a strictly negative
real part. If we write the right eigenvector associated to the eigenvalue 0 as |P ?〉, and
decompose etM on the eigenbasis of M (the other eigenvalues being written as −λi with
Re(λi) > 0, and the corresponding eigenvectors as |ψi〉 and 〈ψi|), we get:

|Pt〉 =
(
|P ?〉〈1|+

∑
e−tλi |ψi〉〈ψi|

)
|P0〉 = |P ?〉+

∑
e−tλi |ψi〉〈ψi|P0〉 (I.29)

(we recall that, since |P0〉 is a probability distribution, it sums to 1, i.e.〈1|P0〉 = 1).
This last equation means that for a large enough time, the system will always converge

to its steady state |P ?〉, regardless of |P0〉:

lim
t→∞
|Pt〉 = |P ?〉 with M |P ?〉 = 0. (I.30)

For shorter times, one can observe a transient behaviour on top of that, given by
∑

e−tλi |ψi〉〈ψi|P0〉,
and which does depend on the initial condition. The relaxation rate to the steady state
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is then given by the slowliest decaying term in this sum, which is to say the λi with the
smallest real part (the real parts of the eigenvalues are responsible for the decay of the
transient regime, whereas the complex parts are responsible for oscillations).

Instead of considering the evolution of a probability distribution on {C}, one could
look at a single realisation of the process, which is to say a trajectory C(t) in time (called
a ‘history’). The simplest way to do that is once again to start from the discrete time
version. Let us write r(C) = −w(C, C). If the system is at configuration C at time t, it
has a probability 1− δt r(C) to stay there, and a probability δt r(C) to escape to another
configuration. The probability for the system to still be at C at time t without having
jumped, knowing that it was there at time 0, is simply the probability not to jump at
any time step between 0 and t, so that the probability δPC(t) to actually jump at t (i.e.
the waiting time distribution) is given by:

δPC(t) = δt r(C)
(
1− δt r(C)

)t/δt
. (I.31)

In the continuous time limit, this waiting time distribution becomes a probability
density PC(t) which has an exponential distribution with rate r(C) (so that the Markov
chain becomes a Poisson process):

PC(t) = r(C)e−t r(C) (I.32)

The probability rate, after a jump, to go to one particular configuration C ′ is given by
w(C ′, C)/r(C) (i.e. the corresponding transition rate, rescaled as a probability). A history
is therefore a succession of discrete jumps, separated by exponentially distributed waiting
periods. Given an initial time t0, a final time tN , a set of jumping times {ti}i:1..N−1, and
a set of configurations {Ci}i:1..N , the probability density of the history where the system
is at Ci between times ti−1 and ti is given by:

P
(
{ti}; {Ci}

)
=PC1(t1 − t0)

w(C2, C1)

r(C1)
PC2(t2 − t1)

w(C3, C2)

r(C2)
. . .

PCN−1
(tN−1 − tN−2)

w(CN , CN−1)

r(CN−1)
e−(tN−tN−1)r(CN )

=e−(t1−t0)r(C1)w(C2, C1) e−(t2−t1)r(C2)w(C3, C2) . . .

e−(tN−1−tN−2)r(CN−1)w(CN , CN−1)e−(tN−tN−1)r(CN )

=
N−1∏
i=1

e−(ti−ti−1)r(Ci)w(Ci+1, Ci) e−(tN−tN−1)r(CN ) . (I.33)

Note that the last exponential is without a coefficient r(CN) because the last event to
be considered is not that of a jump at tN , but that of no jump before tN . Also note
that all the other coefficients r(Ci) compensate between the waiting probabilities and the
transition probabilities.

I.2.2 Additive observable

We can now define time-dependent observables on those histories and look at their large
deviations in the long time limit. Let us consider an observable At defined as a functional
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of a history C(t):
At = F[C(t)]. (I.34)

For the sake of simplicity, we are only interested in observables that are additive in
time, meaning that if a history C(t) is the concatenation of two shorter ones C1(t) and
C2(t), the functional F distributes over them:

F[C1(t)⊕ C2(t)] = F[C1(t)] + F[C2(t)]. (I.35)

This forces F to be local in time (independent of time correlations). We also assume F
to be time-invariant, i.e. independent on the value of the initial time t0 in C(t).

These constraints allow us to find the most general of such functionals explicitly.
Consider first a history without any transitions: C(t) = C1. In this case, time additivity
can be used to show that F [C(t)] is proportional to the duration of the process (t1 − t0).
The proportionality coefficient may depend on C1, and we will call it V (C1). Consider
now a history with one transition: the system is in C1 between times t0 and t1, and in C2

between t1 and t2. By cutting out, using additivity, the portion of history before t1 − ε
and that after t1 + ε, with ε going to 0, one is left with just the transition, which has a
contribution to F that depends only on C1 and C2. We will call it U(C2, C1).

Putting those pieces together, and considering that any history can be decomposed
into portions containing at most one transition, we can finally write:

F[C(t)] =

∫ tN

t0

V
(
C(t)

)
dt+

N∑
i=1

U(Ci, Ci−1) (I.36)

which is expressed schematically on fig.-I.3.

t
t0 t1 t2 t3 t4

2

3

4

7

(t1 − t0)V (2)

U(4, 2)

(t2 − t1)V (4)

(t3 − t2)V (3)

(t4 − t3)V (7)

U(3, 4)

U(7, 3)

Figure I.3: Functional F over a schematised history. Each straight portion contributes
a simple term to the whole function. Waiting periods (in blue) give a contribution that
is extensive in time, and depends only on one configuration. Transitions (in red) give a
term that depends on the two configurations involved.

The part containing V is the time integral of a purely spatial observable, and cannot
contain any information on currents, i.e. on the non-equilibrium nature of the process.
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The function U , however, can. Each U(Ci, Ci−1) can be seen as a counter for the transition
between Ci−1 and Ci: every time it is used in the evolution of the system, the value of
At increases by one quantum of U . Whether each value of U is taken as an independent
variable, or given a precise value, determines what information is monitored regarding
the way those transitions are used, but in many cases, one thing that makes a crucial
difference on the resulting behaviour of At is whether the system is at equilibrium or not
(and, reversely, the behaviour of this observable is a good indication of the system being
in or out of equilibrium [12]), as we will see in the next section.

But first, let us derive a simple and extremely useful result on the cumulants of this
observable. The generating function Et(ν) of the cumulants of at = 1

t
At (the intensive

version of At) can be expressed as:

etEt(ν) = 〈etνat〉 =

∫
eνF[C(t)]P[C(t)]D[C(t)] (I.37)

where D[C(t)] is the measure associated with histories (this can be simply defined in the
discrete time case, and then taken as a formal limit for small δt).

What produces the weights P[C(t)], as we have seen, is the object etM applied to our
initial condition. A simple way to produce weights equal to eνF[C(t)]P[C(t)] instead is to
consider a deformed Markov matrix Mν defined as:

Mν =
∑
C,C′

eνU(C,C′)w(C, C ′)|C〉〈C ′|+ ν
∑
C

V (C)|C〉〈C| (I.38)

(where we take U(C, C) = 0).
This comes from the observation that, by writing eνF[C(t)]P[C(t)] in the same form as

in equation (I.33), one can rearrange the terms to get:

eνF[C(t)]P[C(t)] =
N−1∏
i=1

e−(ti−ti−1)(r(Ci)−νV (Ci))w(Ci+1, Ci)eνU(Ci+1,Ci) e−(tN−tN−1)(r(CN )−νV (CN )).

(I.39)

By replacing M by Mν in (I.28), we get:

|Pν(t)〉 = etMν |P0〉 =
∑
CN

∫
eνF[C(t)]P[C(t)]D[C(t)] |CN〉 (I.40)

where, as intended, the probabilities of histories have received an extra eνF[C(t)] factor,
and we can finally sum over the final configuration CN and write:

etEt(ν) = 〈1|Pν(t)〉 = 〈1|etMν |P0〉. (I.41)

Moreover, as long as ν, V and U are real, the Perron-Frobenius theorem applies, so
that the largest eigenvalue Λν of Mν is non-degenerate. If we write the corresponding
eigenvectors as |Pν〉 and 〈P̃ν |, we get, for large times:

etMν ≈ etΛν |Pν〉〈P̃ν |. (I.42)
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By combining equations (I.41) and (I.42) for t large, we can identify E(ν) = E∞(ν) with
Λν , so that:

etE(ν) ≈ 〈1|etMν |P0〉 ∼ etΛν 〈1|Pν〉〈P̃ν |P0〉. (I.43)

The generating function of the cumulants of any additive observable is therefore equal
to the largest eigenvalue of the associated deformed Markov matrix Mν . This is a classic
result from the Donsker-Varadhan theory of temporal large deviations [13–17]. Notice
that this is a property of the deformed matrix, and not of the initial or final configurations:
regardless of those, the long time behaviour of the generating function of the cumulants
will be the same. One can easily make sense of this: if the duration of the process is
large enough, then the system only takes a small time at first to reach its steady state,
and gets out of it very near the end. The rest of the evolution can be considered to be
around the steady state, whatever the initial and final distributions are, and the part of
At which is extensive in time comes only from there. The initial and final distributions
only give a time-independent term 〈P̃f |Pν〉〈P̃ν |P0〉, which is akin to the function f(a) in
eq.(I.14).

The eigenvectors |Pν〉 and 〈P̃ν | are also useful in the context of large deviations. From
equation (I.40) for t large, by regrouping all the histories for which F[C(t)] = tf and the
final configuration is CN , we get:

etE(ν)|Pν〉 ≈ |Pν(t)〉 =
∑
CN

|CN〉
∫

eνtfP(f & CN)df. (I.44)

We can then write P(f & CN) as P(CN |f)P(f) (where P(A|B) is the probability of A,
knowing B), and invoke the large deviations principle P(f) ≈ e−tg(f):

etE(ν)|Pν〉 ≈
∑
CN

|CN〉
∫

P(CN |f)et(νf−g(f))df. (I.45)

Finally, just as in eq.(I.14), a saddle-point approximation on et(νf−g(f)) yields etE(ν) and
fixes the value of f to d

dν
E(ν). Injecting this in (I.45), we get:

|Pν〉 =
∑
CN

P
(
CN
∣∣∣f =

d

dν
E(ν)

)
|CN〉. (I.46)

This tells us that the vector |Pν〉 is in fact the probability vector of the final config-
uration, knowing that the value of f through the evolution of the system was d

dν
E(ν).

A similar calculation on the left eigenvector 〈P̃ν | shows it to be the probability vector of
what the initial configuration was, knowing that the value of f was d

dν
E(ν).

We could also look at the probability of a configuration C at any point during the
evolution of the system. To do that, we just need to apply an observable corresponding
to that information (which would be |C〉〈C|) at the correct time. In this case, we need
both an initial distribution |P0〉 and a final distribution 〈PN |, which will not matter in
the end. Let us note Cα the configuration at time αt, with α < 1. We get:

P
(
Cα=C

∣∣ν) = 〈PN |e(1−α)tMν |C〉〈C|eαtMν |P0〉 =

∫
eνtfP

(
f & Cα=C

)
df. (I.47)
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The rightmost part of this equation gives, as before (through a saddle-point approxima-
tion), the corresponding probability conditioned on f = d

dν
E(ν). The middle part can be

separated in two scalar products, which we recognise as the two probabilities we obtained
just before, relating to the initial or final configurations. All in all, we find that:

P
(
Cα=C

∣∣∣f =
d

dν
E(ν)

)
= P

(
CN =C

∣∣∣f1 =
d

dν
E(ν)

)
P
(
C0 =C

∣∣∣f2 =
d

dν
E(ν)

)
(I.48)

where f1 is the mean value of F before time αt and f2 is the men value of F after time αt.
This last result tells us that, for the histories contributing most to those probabilities,
the mean value of F is the same for the whole evolution time as it is for the evolution
only up to or from time αt. Note that this probability distribution does not depend on α,
so that it is stationary: the probability of a given configuration, knowing ν, is constant
in time. All this is valid at the large t limit for a finite, non-zero α (it is not valid, for
instance, if αt is finite).

We can go even further than that, and divide the evolution time of the system into
a large number of smaller steps. For each of those steps, we find (through the same
calculations) that the mean value of F is the same and equal to d

dν
E(ν). From this, we

conclude that f = d
dν
E(ν) is not only the mean value of F for the whole evolution of the

system, but also the instantaneous value of F at every time.
Note that all this strongly relies on F being time-additive. Indeed, without that

assumption, we could not write the weighted evolution of the system in the exponential
form (I.40), and isolating a configuration at a given time (as we did in eq.(I.47)) would
not result in two uncorrelated scalar products.

I.2.3 Entropy - Gallavotti-Cohen symmetry and s-ensemble

We now consider a very specific observable: the entropy production St, defined as the
logarithm of the ratio of the probability of a history C(t), and that of the same history
reversed in time CR(t):

St[C(t)] = log

(
P[C(t)]

P[CR(t)]

)
(I.49)

where CR(t) is obtained by reversing the order of all the events in C(t): all the times ti
become t0 + tN − ti, and the order of the configurations Ci is reversed. This is well defined
only if for any allowed transition, the opposite transition is allowed as well (it won’t be
the case, for instance, for the totally asymmetric simple exclusion process, or TASEP,
which we will introduce in the next chapter).

Considering equation (I.33) for both histories, one can see that all the exponentials
appear in both terms, and therefore compensate. We are left with:

St[C(t)] = log

(
N∏
i=1

w(Ci, Ci−1)

w(Ci−1, Ci)

)
. (I.50)

We recognise a special case of time additive observable, where:

V (C) = 0 , U(C, C ′) = log
(
w(C ′, C)

)
− log

(
w(C, C ′)

)
(I.51)
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(we don’t need to fix U(C, C) to 0, as it is already verified).
The corresponding deformed Markov matrix is:

Mν =
∑
C,C′

w(C, C ′)1+νw(C ′, C)−ν |C〉〈C ′|. (I.52)

We notice that it has a peculiar symmetry: if we replace ν by −1− ν, the exponents in
Mν are swapped, which is the same as exchanging C and C ′. The new matrix is therefore
merely the transpose of the old one:

Mν = tM−1−ν . (I.53)

This has interesting consequences on its eigensystem: all the eigenvalues are symmetric
with respect to ν ↔ −1−ν, and the associated right and left eigenvectors are exchanged.
This is the famous ‘Gallavotti-Cohen symmetry’ [18–20].

In particular, the generating function of the cumulants of the intensive entropy pro-
duction s, and the conditional probabilities that we have defined earlier, verify:

E(ν) = E(−1− ν) , Pν(C) = P̃−1−ν(C). (I.54)

Now, the large deviation function g(s) of s = 1
t
St (the entropy production rate), as

we recall, verifies

g(s) = min
ν

[νs− E(ν)] = min
ν

[(−1− ν)(−s)− E(−1− ν)]− s = g(−s)− s (I.55)

so that

g(s)− g(−s) = −s (I.56)

or, in other words,

P(−s) = e−tsP(s). (I.57)

This last equation is called the ‘fluctuation theorem’. It was first observed by Evans,
Cohen and Morriss in [21], then proven by Evans and Searles in [22], and later led to
Gallavotti and Cohen’s formulation of their symmetry. The theorem means that a nega-
tive entropy production rate is much less probable than its positive counterpart, but not
impossible. This does not, as it might seem, contradict the second law of thermodynam-
ics, which is expressed only for the expectation value of s. It in fact validates it, since it
implies that the mean value of s must be positive.

Let us now go back to the principal eigenvectors |Pν〉 and 〈P̃ν | of Mν . As we said
earlier, the entries of those vectors correspond, respectively, to probabilities of the final
configuration, or of the initial configuration, conditioned on the observed value of s:

Pν(C) = P
(
Cf = C

∣∣∣ s=
d

dν
E(ν)

)
(I.58)

P̃ν(C) = P
(
Ci = C

∣∣∣ s=
d

dν
E(ν)

)
. (I.59)
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If we multiply the two, as we did in (I.48), we get the probability of observing a configu-
ration, anywhere in time (but far away from the initial and final times), conditioned on
s:

Pν(C)P̃ν(C) = P
(
C
∣∣∣ s=

d

dν
E(ν)

)
. (I.60)

Those quantities are very different from one another, and the most probable states ac-
cording to those three distributions are in general not the same. We will be mostly
interested in eq.(I.60), for reasons that will become apparent later, in section III.1.2.

The statistical ensemble defined by those probabilities, where ν is considered as a pa-
rameter (a kind of temperature, as it is conjugate to the entropy), is sometimes called the
‘s-ensemble’ [23]. It is rather natural to consider this ensemble: since entropy production
plays an important part in the system being out of equilibrium, being able to control its
value and look at how the system responds may provide us with useful information of
which we might be able to make sense. More on that in chapter IV.

Finally, let us examine the case of an equilibrium system. The detailed balance
condition, which defines equilibrium, tells us that the steady state distribution is such
that:

Peq(C)w(C ′, C) = Peq(C ′)w(C, C ′) (I.61)

for any two configurations C and C ′.
Putting this in (I.52), we get:

Mν =
∑
C,C′

w(C, C ′)
(
Peq(C)
Peq(C ′)

)ν

|C〉〈C ′| (I.62)

which is to say that Mν is actually similar to M through a diagonal matrix D, containing
the equilibrium probabilities, to the power ν:

Mν = Dν M D−ν (I.63)

with
D =

∑
C

Peq(C)|C〉〈C|, (I.64)

so that the eigenvalues Mν and M are the same. We then have:

E(ν) = 0 and P(s) = δ(s). (I.65)

There is therefore no entropy production whatsoever in the case of an equilibrium
system. This, as in eq.(I.43), is a property of the transition rates, and not of the initial
or final distributions. There can still be a conservative exchange of entropy between
the initial and final configurations of a history (if their equilibrium probabilities are not
equal), which is accounted for by the dominant eigenvectors Dν |Peq〉 and 〈1|D−ν of Mν .
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CHAPTER II

The Asymmetric Simple Exclusion Process :

phenomenology and a few exact results

This second chapter serves to introduce the reader to the asymmetric simple exclusion
process and to present a few known results which we will need later in order to construct
our own. We start by defining the model, as well as a few variants, and some of the
many other models and problems to which it is connected. We then take a first peek
at its behaviour through a couple of simulations, and learn what we can from a mean
field approach. The second part of this chapter consists of two important exact results
along with the methods used to obtain them. The first is the matrix Ansatz solution
for the steady state of the open ASEP, found by Derrida, Evans, Hakim and Pasquier
in [24], and which we have used as a starting point to build our own matrix Ansatz for
the distribution of the s-ensemble [2, 3] (see chapter III). We also present a calculation
of the mean current based on this solution, which was done by Sasamoto in [25], using
q-deformed algebraic relations that will appear in all our results. The second is the Bethe
Ansatz solution for the full generating function of the cumulants of the current in the
periodic ASEP, found by Prolhac and Mallick [26–29], and which we will need in chapter
V to give the Bethe Ansatz proof of the formulae that we guess in chapter III for the
open ASEP.

II.1 Phenomenology of the open ASEP

In order to first get a bit of intuition about the ASEP rather than diving headlong into
pages and pages of algebraic equations (which will be the next thing we do), let us first
take a simple phenomenological look at the system’s behaviour, and do a few easy mean
field calculations. Of course, we will first need to give its definition. We will also do a
very short review of the many uses and interests of the ASEP, and give a few references
to make up for its brevity.

II.1.1 Definition of the model and variants

Without further ado, let us define the object of all our attention: the open asymmetric
simple exclusion process.

Consider a one-dimensional lattice with L sites (or a row of L boxes), numbered from
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α β

γ δ

1

q

Figure II.1: Dynamical rules for the ASEP with open boundaries. The rate of forward
jumps has been normalised to 1. Backward jumps occur with rate q < 1. All other pa-
rameters are arbitrary. The jumps shown in green are allowed by the exclusion constraint.
Those shown in red and crossed out are forbidden.

1 to L. Each site can be empty, or carry one particle. Those particles jump stochastically
from site to site, with a rate p if the jump is to the right, from site i to site i + 1 (and
which will be set to p = 1 by choosing the rate of forward jumps as a time scale), and a
rate q < 1 if the jump is to the left, from site i to site i− 1. The jumping rate is larger
to the right than to the left in order to mimic the action of a field driving the particles
in the bulk of the system. Each end of the system is connected to a reservoir of particles,
so that they may enter the system at site 1 with rate α or at site L with rate δ, and
leave it from site 1 with rate γ or from site L with rate β. Those rates allow us to define
the effective densities of the two reservoirs. In all of these operations, the only constraint
that must be obeyed is that of exclusion, which is to say that there cannot be more than
one particle on a given site at a given time, so that a particle cannot jump to a site that
is already occupied. These rules are represented schematically on fig.-II.1.

Configurations of the system are written as strings of 0’s and 1’s, where 0 indicates
an empty site, and 1 an occupied site.

The Markov matrix governing that process is a sum of local jump operators, each
carrying the rates of jumps over one of the bonds in the system:

M = m0 +
L−1∑
i=1

Mi +mL (II.1)

with

m0 =

[
−α γ
α −γ

]
, Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 , mL =

[
−δ β
δ −β

]
. (II.2)

It is implied here that m0 acts as written on site 1 (and is represented in basis {0, 1}
for the occupancy of the first site), and as the identity on all the other sites. Likewise,
mL acts as written on site L, and Mi on sites i and i + 1 (and is represented in basis
{00, 01, 10, 11} for the occupancy of those two sites). Each of the non-diagonal entries
represents a transition between two configurations that are one particle jump away from
each other.

As we mentioned earlier, because of the asymmetry of the jumps, the particles flow
to the right, and that current is an important observable, deeply connected to the non-
equilibrium nature of the system. It is a special case of time-additive observable (as
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presented in section I.2.2) where V = 0 and U is taken as 1 for the transitions where
a particle jumps to the right, and −1 for those where one jumps to the left. We will
see in section III.1.2 that it is strongly related to the entropy production (they are in
fact equal, up to a constant), and we will be referring to probabilities conditioned on the
current as the s-ensemble as well. All the results presented in this thesis are related to
the characterisation of that current.

Variants of the ASEP

There are a few simpler cases that one can consider. The first is to force the particles to
jump only to the right, by taking q = γ = δ = 0. In this case, the model is called the
totally asymmetric simple exclusion process (or TASEP), and we will often use it in our
calculations, as its behaviour is identical to that of the ASEP for all intents and purposes,
but much easier to deal with.

The second is the opposite limit, where the jumps are as probable to the left as they
are to the right: q = 1. This one is called, unsurprisingly, the symmetric simple exclusion
process (or SSEP). It is an example of what is called ‘boundary-driven diffusive systems’
(as opposed to the ASEP, which is bulk-driven by the asymmetry, and is therefore not
diffusive). It behaves very differently from the ASEP, and we will almost never talk about
it, but we will give a few references in a moment.

Somewhere in between the SSEP and the ASEP is the weakly asymmetric simple
exclusion process (or WASEP), where the asymmetry 1 − q is taken to scale with the
size of the system as L−1. This is done in order to make the integral of the field in
the bulk, which is of order L(1− q), comparable with the difference of chemical potential
between the reservoirs, which is a constant with respect to L. The ASEP and the WASEP
correspond to two different ways to take the large L limit in the system: in the ASEP, no
rescaling is done to the driving field, so that the large size limit corresponds to a system
of increasing length, with the lattice spacing remaining constant, which is relevant to
model a system which is really discrete (think for instance of ribosomes on a long string
of mRNA, or any other example of discrete biological transport). In the WASEP, on
the contrary, the field is rescaled as L−1, so that the large size limit corresponds to a
system of fixed length, with a smaller and smaller lattice spacing, going to a continuous
system when L reaches infinity, perhaps describing something like waves of density in a
fluid in a tube. We will be using the WASEP at one point, in section IV.2.1, because,
amazingly, taking the weak asymmetry to infinity after having taken the continuous limit
gives correct results for the ASEP in some regimes.

One can also consider different geometries for the model. There is for instance the
ASEP with periodic boundary conditions, i.e. on a ring (fig.-II.2-b). In this case, there
are no reservoirs, and the number of particles in the system is conserved. This makes it
somewhat easier to deal with: the steady-state distribution is uniform, and the coordinate
version of the Bethe Ansatz can be used to solve it, as we will see in section II.2.2 (but,
as we will also see, this doesn’t mean that solving it is in any way trivial).

The ASEP can be considered on an infinite lattice instead (c.f. lower part of fig.-II.2-
d). In this case, there is in general no steady state (for generic initial conditions), and
the observable of choice is instead the large time behaviour of the transient regime, which

25



lasts forever.

Finally, one can put more than one type of particles in the system, and consider the
multispecies ASEP (fig.-II.2-c). The exchange rates must then be defined between any
two different species of particles. The simplest case to consider (and the most tractable
one) is that where the types of particles are numbered, from 0 (for holes) to K (for the
‘fastest’ particles), and where a particle of type k sees all lower types k′ < k as holes,
which is to say that the rates of exchange of two particles of types k1 < k2 are 1 for
k2k1 → k1k2 and q for k1k2 → k2k1 (those rates are represented on fig.-II.2-c, where
different species of particles bear different colours, and are numbered by their rank).

Brief overview of the ASEP’s family tree

We mentioned biological transport earlier for a good reason: the first definition of an
ASEP-like model was made in 1968 in [30, 31] precisely in order to study the dynamics
of ribosomes on mRNA (fig.-II.2-a). It is still used today in that context, usually after a
few modifications to make it slightly more realistic, such as making the particle reservoirs
finite [32] or even shared between several systems [33], changing the jumping rates from
site to site [34], changing the jumping cycle by adding an inactive state for particles [35],
allowing them to attach or detach in the middle of the chain [36], and so on. These are
only a few recent examples, but a thorough review can be found in [37].

It has also been noticed that the ASEP is strongly related to the XXZ spin chain with
spin 1

2
[38] (the Markov matrix of the ASEP and the Hamiltonian of the spin chain are

related through a simple matrix similarity). This fact goes deeper than a simple mapping
between two systems: the XXZ spin chain is well known and well studied because it has
the mathematical property of being ‘integrable’, meaning that it can be solved using the
Bethe Ansatz [39], and that we can expect exact analytical results from it [40]. Thanks
to this, many results have been obtained for the ASEP by adapting the Bethe Ansatz to
its formalism [26–29, 41–45] (as section II.2.2 demonstrates), and even results that have
been found by other means (such as those presented in II.2.1, for instance, or any of our
own results) are in fact consequences of that property (as we shall see in chapter V, where
we will also express our results in the formalism of the open XXZ chain). The downside
of this, one could say, is that those methods are only transposable to other integrable
systems, but the undeniable upside is that we might have access to very precise results,
which could lead to discovering universal features of non-equilibrium systems.

Another model related to the ASEP is that of random surface growth [46] (fig.-II.2-d).
In that model, a wall, made of square blocks (with corners pointing up and down), grows
by a Tetris-like procedure where blocks can fall in valleys at rate 1, or lift off of peaks at
rate q. The relation to the ASEP is rather obvious if one replaces upward slopes (when
reading from left to right) by holes, and downward slopes by particles (adding a block
means replacing ‘down up’ by ‘up down’, i.e. 10 by 01, and removing one is the opposite
operation). In this context, the situation that is usually considered is that of the infinite
ASEP, with a simple initial condition, such as a given mean density to the right of site
0 and another one to the left (the simplest one being all 1s to the left and all 0s to the
right [47,48], as represented by the dashed line in fig.-II.2-d), although more general ones
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Figure II.2: The ASEP’s family album: a) Ribosomes on mRNA, b) Periodic ASEP, c)
Multispecies ASEP, d) Surface growth.
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can be considered [49]. One of the most interesting quantities, just as for finite size, is the
total current of particles that went over the bond at the centre of the system, which is
equal to the number of blocks that have been added above that site, i.e. to the height of
the surface (represented in green in fig.-II.2-d; each green block corresponds to one of the
particles that crossed to the right of the system). After a first breakthrough by Johansson
in [47], the fluctuations of that height were conjectured [50] and then proven [51] to be
related to the famous Tracy-Widom distributions governing the eigenvalues of random
matrices [52, 53]. Some even more complex quantities have been studied, such as the
general n-point correlations of the height [54]. Moreover, there is in a whole class of
systems, the KPZ universality class (named after Kardar, Parisi and Zhang, authors of
the seminal article that started it all [46]), that are governed by the same laws, such as
the directed random polymer [55, 56], or the delta-Bose gas [57]. Experimental evidence
of the relevance of that model has been obtained only very recently in a liquid crystal
undergoing a phase transition [58]. This subject has generated many more works than
could be summed up here, and the reader can find more information in reviews such
as [59–62].

The ASEP can be related to many more models and mathematical objects, such as
chains of quantum dots [63], alternating sign matrices [64, 65] (through its connection
to the XXZ chain), continued fractions [66], Brownian excursions [67–69], Askey-Wilson
polynomials [25, 70, 71], and a large family of combinatorial objects which all have a
connection to Catalan numbers [72].

Earlier results

All these interesting connections notwithstanding, the ASEP is a very popular model in
itself [73–75] (it has even been referred to as the Ising model of non-equilibrium systems
[76]), and has been the subject of a tremendous number of works.

The SSEP, for one, has established itself as an archetype of diffusive systems with
interactions, for which many universal results have been found, such as the cumulants of
the current in a periodic system [77] or an open one [78]. Those results all have to do
with the so-called ‘macroscopic fluctuation theory’ (or MFT) [79–82], developed to deal
with the fluctuations of diffusive systems through a hydrodynamic approach [83]. As for
results more specific to the SSEP or the WASEP, the large deviation functional of the
density profiles was expressed in [84], leading to the joint large deviations functional for
the current and the density [85] which we will be using in section IV.2.1. The cumulants
of the current for the open SSEP were found in [86], and were observed to depend on a
single variable and not on the two boundary densities independently. This lead to the
discovery of a surprising symmetry connecting the non-equilibrium SSEP (with different
reservoir densities) to a system at equilibrium [87–89]. The full cumulants of the current
for the periodic WASEP were found in [90]. In that case, as was found in [91] and further
analysed in [92], the system undergoes a phase transition in the s-ensemble where, for a
low enough current, the optimal density profiles become time-dependent (we will come
back to this in section IV.4.7. A similar transition can be found for the activity (the sum
of jumps, regardless of direction) in the SSEP [93]. See [75] for a review of some of these
results.
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The periodic ASEP, with its fixed number of particles and its trivial steady state
(all the configurations are equally probable, as long as they have the correct number of
particles), has mostly been studied for the fluctuations of the current. The full generating
function of those was found for the TASEP in 1998 [94, 95], and although the second
cumulant for the ASEP was found prior to that [96], the complete generating function
was only obtained more than 10 years later [26–29]. Some other results were obtained
for the periodic TASEP, such as the gap (i.e. the characteristic time of the transient
regime) [97,98], and, very recently, the whole distribution of the spectrum of the Markov
matrix [99]. The s-ensemble was also investigated, for the limit of very large currents, and
the probabilities of the configurations were found to be those of a Dyson-Gaudin gas (the
discrete analogue of a Coulomb gas) [100]. We will come back to that last observation in
section IV.3.3.

The open ASEP is richer than the periodic case, but much harder to deal with.
The structure of the steady state itself is quite intricate: it was first found in [101] for
the TASEP thanks to some surprising recurrence relations between the weights of the
configurations for successive sizes. It was then generalised to the ASEP by expressing
those relations in algebraic form [24], giving birth to the ‘matrix Ansatz’, which we will
present in section II.2.1. Depending on the values of the two reservoir densities, the system
can find itself in three different phases, which was discovered for the TASEP in [102] as an
interesting feature of non-equilibrium systems (since, for equilibrium systems with short
range interactions, transitions cannot be induced by boundaries). This phase diagram
was refined in [103] where sub-phases were found with different correlation lengths. Those
results were extended to the ASEP in [25,104] (part of which we present in section II.2.1).
The 2-point correlation function [105] and then the complete n-point function [67] were
calculated for the TASEP, for some values of the boundary densities, and the same was
later done for the ASEP in [71,106]. Most of these results rely on the matrix Ansatz, and
a review of those results and methods can be found in [107]. See also [74] for a review of
various results for the steady state of the open ASEP.

Other properties of the steady state were analysed, such as the static density, current
and activity distributions [108, 109], the large deviation function of the density profiles
[110], or the reverse bias regime (where the boundaries impose a current floving to the left)
[111,112]. A hydrodynamic description, named ‘domain wall theory’ (or DWT) [83,113–
116] where states of the system are approximated by regions of constant density separated
by discontinuities called shocks, was proposed to describe the large scale dynamics of the
system, even in the transient regime, but no full equivalent of the MFT has yet been
devised.

One of the main reasons why the open ASEP is more difficult to study than its circular
sibling is that the Bethe Ansatz cannot be used as easily in this case. The coordinate
version of the Ansatz (where the particles are treated as plane waves, as presented in
section II.2.2) relies on the number of particles being fixed, and breaks down in the open
case. Variants of the coordinate Bethe Ansatz were used successfully to build excited
eigenstates of the system for some special cases of the boundary parameters [41, 42, 45],
and, in conjunction with numerical analysis, to find the relaxation speed of the system
(i.e. the gap of the Markov matrix) [43,44,117], as well as the asymptotic large deviation
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function of the current inside of the Gaussian phases [118] (see section IV.2.1), but it was
not known whether it could be applied to the open ASEP in general. In chapter V, we
show how to construct the functional Bethe Ansatz, which allows, in principle, to access
the whole spectrum of the Markov matrix (deformed with respect to the current). Using
that, we can find the complete generating function of the cumulants of the current, of
which only the second was known, for the TASEP [119]. The eigenvectors, however, are
still out of reach as far as we know.

Many variants of the ASEP have also been studied. A matrix Ansatz, akin to the
one we mentioned before, was found for the steady state of the periodic multispecies
ASEP [120,121]. The case of a single defect particle was analysed, for itself [122–124] or
used as a way to mark the position of a shock [125, 126]. Different updates procedures
were considered and compared for the discrete time case [127, 128]. A system with two
interacting chains was studied in [129]. The ASEP was also considered with entry and
exit of particles in the bulk of the system [130], disordered [131] or smoothly varying [132]
jumping rates, a single slow bond [133,134], repulsive nearest-neighbour interactions [135],
or on a two-dimensional grid [136].

Finally, on the numerical front, the ASEP has been used to develop and test numerical
algorithms aimed at producing and analysing rare events, such as a variant of the ‘density
matrix renormalisation group’ (DMRG) algorithm [137,138], numerical implementations
of the MFT [139–141], and the so-called ‘cloning algorithm’ [142–145].

II.1.2 Simulation of the system and observations

Now that we have defined our system, and before doing any calculation, let us simply
watch it evolve through a few simulations.

To make things simpler, we consider the TASEP, so that we only have two parameters
α and β that we can vary (we will keep the size L of the system fixed). We may also
notice that the system is symmetric under the exchange of particles with holes, of α with
β and of left with right: the holes enter the system at the right boundary with rate β,
jump to the left with rate 1, and exit at the left boundary with rate α. This means that
we can consider only cases where α ≤ β, and deduce the rest through that symmetry.

On the next page are represented three examples that are characteristic of the various
behaviours that the system may show. In each case, the system size is taken to be
L = 200, and the initial condition is a step profile centred around the 100th site, with a
mean density α to the left and 1− β to the right (since the system goes, after a certain
time, to a steady state that does not depend on the initial condition, we are free to choose
that which suits best to what we want to observe). For each situation, we represent, on
the left, the time evolution of a single realisation of the system, with respect to the site
i and the time t (the grey scale gives the local mean density, averaged over a few time
steps); at the centre we give that same time evolution averaged over a large number of
realisations (the colour scale gives the local mean density); finally, at the right, we show
a plot of the final density profile, which is close to the density in the steady state of the
system. Note that the time scale for the temporal plots was chosen arbitrarily, but is the
same for all three examples.
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What we observe is this: in the first case, α is very low, and β is slightly higher,
which is to say that more holes enter the system from the right than particles from the
left. That can be seen on the first plot, where the bunch of particles at the right of the
system decreases in size every time a hole is added, and grows when a particle is added.
We clearly see that with time, it tends to shrink at a fairly constant rate, which is to
say that the system empties itself into the right reservoir. The steady state has a low
density almost everywhere, except very close to the right boundary, where the low exit
rate creates a blockage. We notice that the value of that density seems to be α. The
symmetric situation (with β lower than α) would have produced a profile with a high
density (close to 1− β) everywhere except near the left boundary.

In the second case, α is still very low, but now equal to β. The entry rate of holes is
equal to that of particles, so that the boundary between the low and high density zones
in the system now performs a random walk (to the left each time a particle is added,
and to the right each time one is removed), which is not biased any more, as is visible
on the leftmost plot. Depending on the actual value of α = β, that boundary is more or
less localised: if that value is very small, the jumps in the bulk happen so much faster
than the addition or removal of particles that we get a very clear domain wall between a
region with a density close to 0 and one close to 1. After a long time, that domain wall
will have randomly walked everywhere in the system, meaning that the steady state is a
superposition of step profiles with the same probability for the jump to be at every site,
so that the averaged mean density is actually linear with respect to the position (as seen
on the plot at the right). On the middle plot, the parabolic behaviour of the iso-density
lines (which is due to the diffusion of the domain wall) is clearly visible.

In the third case, the situation is entirely opposite: α and β are both very high
(and are equal, but this time it makes no difference). We see that the initial downward
step profile rapidly fans out and converges to a profile where the density is close to 1

2

everywhere, but with large fluctuations everywhere, and rather wide boundary zones
where it becomes higher (at the left) or lower (at the right). Little can be said on this
case from the simulation alone, other than the fact that a density of 1

2
seems optimal for

the system to carry a large current: were it lower, there would be fewer particles, so less
current as well, but a higher density would cause the particles to jam more and move
more slowly.

For other values of α or β, we would obtain one of those three behaviours: the first
one if α is small, and smaller than β (and the symmetric case if β is smaller than α);
the second one if α is small, and equal to β; and the third one if α and β are both large
enough.

We are grateful to J. Tailleur for providing us with the numerical data for this section.

II.1.3 Mean-field calculations

Let us now clarify these observations through a few simple mean field calculations. These
were first carried out in [102] and [101], and will provide us with the phase diagram of
the system.

As we recall, the master equation reads:

d

dt
|Pt〉 = M |Pt〉 (II.3)
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where M is the Markov matrix of the open ASEP:

M = m0 +
L−1∑
i=1

Mi +mL (II.4)

with

m0 =

[
−α γ
α −γ

]
, Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 , mL =

[
−δ β
δ −β

]
. (II.5)

We shall write the configurations of the system as C = {ni}i:1..L, where ni ∈ {0, 1} is the
occupancy of site i. If we trace equation (II.3) over all nj’s except for one at site i which
is taken to be 1 (which means projecting it onto 〈1|δni,1), we get an equation for the time
evolution of the mean density at that site:

d

dt
〈ni〉 = 〈1|δni,1M |Pt〉. (II.6)

For any site i, only matrices Mi−1 and Mi from (II.5) contribute to that equation
(all the others are not affected by δni,1 and disappear under the action of 〈1|, since their
columns sum to 0). We get, for each site:

d

dt
〈n1〉 = α〈(1− n1)〉 − γ〈n1〉

− 〈n1(1− n2)〉+ q〈n2(1− n1)〉, (II.7)

d

dt
〈ni〉 = 〈ni−1(1− ni)〉 − q〈(1− ni−1)ni〉

− 〈ni(1− ni+1)〉+ q〈ni+1(1− ni)〉, (II.8)

d

dt
〈nL〉 = 〈nL−1(1− nL)〉 − q〈(1− nL−1)nL〉

− β〈nL〉+ δ〈(1− nL)〉 (II.9)

which we can rewrite as
d

dt
〈ni〉 = Ji−1 − Ji (II.10)

with

J0 = α〈(1− n1)〉 − γ〈n1〉, (II.11)

Ji = 〈ni−1(1− ni)〉 − q〈(1− ni−1)ni〉, (II.12)

JL = β〈nL〉 − δ〈(1− nL)〉. (II.13)

We recognise each Ji as the mean current flowing from site i to site i + 1. Equation
(II.10) is simply the continuity equation for the mean density at site i: its variation is
equal to the current coming from the left minus the current leaving to the right. The
steady state is then obtained by taking the time derivative equal to 0 in (II.10), meaning
that all the Ji’s have to be equal, which is to say that the current must be conserved
throughout the system.
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At this point, we have made no approximation yet. However, since the currents depend
on the local 2-point correlations 〈ni−1ni〉, (II.10) is not a closed system of equations on the
〈ni〉s. To solve it from there, we would have to write equations on the 2-point correlations,
which would involve the 3-point correlations, and so on. This is where we need to make
the mean field approximation: 〈ni−1ni〉 ∼ 〈ni−1〉〈ni〉. By writing ρi = 〈ni〉 for simplicity,
we get:

J = α(1− ρ1)− γρ1 (II.14)

= ρi−1(1− ρi)− qρi(1− ρi−1) (II.15)

= βρL − δ(1− ρL). (II.16)

The second of these equations gives a recursion relation between ρi and ρi−1, which can
then be used L − 1 times to express ρL as a function of ρ1. Then, the first and last
equations can be used to get a single equation on J , which fixes its value as a function of
all the parameters of the system (L, q and the four boundary rates). These calculations
can be found in [101] for the TASEP. We are only interested in the large size limit, so we
will use a method similar to that of [102].

Before going further, let us make one remark: from what we saw on the simulations
in the previous section, we expect that, at least for some values of the parameters, the
density be constant in a large portion of the system, possibly all the way up to one
of the boundaries. If this is the case, at the left boundary, for instance, and we write
that density ρa, then from eq.(II.15) inside of that constant density domain, we get
J = (1− q)ρa(1− ρa), and eq.(II.14) becomes:

α(1− ρa)− γρa = (1− q)ρa(1− ρa). (II.17)

Writing ρa = 1
1+a

, for convenience in future calculations, we find:

a =
1

2α

[
(1− q − α + γ) +

√
(1− q − α + γ)2 + 4αγ

]
. (II.18)

Doing the same at the left boundary, we get a density ρb = b
1+b

with:

b =
1

2β

[
(1− q − β + δ) +

√
(1− q − β + δ)2 + 4βδ

]
. (II.19)

Those two densities ρa and ρb both depend only on the parameters of their respective
boundary, and can be considered as the effective densities of the reservoirs to which the
system is connected.

Let us now take L to infinity. We want to take a continuous limit for ρ, which will be
easier to deal with, and useful for later. Let us therefore write:

ρi = ρ(xi) with xi =
i− 1/2

L
. (II.20)

We then expand eq.(II.15) around x = i−1
L

(which is halfway between xi−1 and xi), using
ρi−1 ∼ ρ(x)− 1

2L
∇ρ(x) and ρi ∼ ρ(x) + 1

2L
∇ρ(x), up to order L−1, obtaining:

J = (1− q)ρ(1− ρ)− 1 + q

2L
∇ρ (II.21)
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We will assume that the correct boundary conditions to take on ρ are ρ(0) = ρa and
ρ(1) = ρb.

Looking at equation (II.21), we see that the sign of ∇ρ depends on the difference
between J and (1 − q)ρ(1 − ρ). We can first argue that J cannot be larger than 1−q

4
,

which is the maximal value taken by (1 − q)ρ(1 − ρ) (or, for that matter, smaller than
0), otherwise |∇ρ| would be larger than some constant of order L, and ρ would diverge.
This means that there is a density ρc ≤ 1/2 such that J = (1 − q)ρc(1 − ρc). We then
have (fig.-II.3):

∇ρ < 0 for ρ < ρc, (II.22)

∇ρ > 0 for ρc < ρ < (1− ρc), (II.23)

∇ρ < 0 for (1− ρc) < ρ, (II.24)

which is to say that ρ gets away from ρc and closer to (1− ρc).

0
ρ

(1− q)ρ(1− ρ)

1

(1−q)
4

ρc (1− ρc)

J

∇ρ < 0 ∇ρ < 0∇ρ > 0

Figure II.3: Variations of ρ depending on its position with respect to ρc and (1−ρc). For
x increasing, (1− ρc) is an attractive fixed point, and ρc is repulsive.

Considering these relations, and the boundary conditions ρa and ρb, we can now easily
determine J .

First of all, if ρa >
1
2

and ρb <
1
2
, and since ρ cannot decrease inside of the region

[ρc, 1 − ρc], we must have have ρc = 1
2

(which reduces that region to a single point).

We therefore have J = 1−q
4

throughout this phase, which is called the ‘maximal current
phase’ (MC), due to the fact that J takes its highest possible value. In that phase, the
density profile is constant and equal to ρc = 1

2
except near the boundaries.

For the other cases, we note that ∇ρ is of order L for a finite distance between ρ and
either ρc or 1− ρc, which means that the variations of ρ, when it isn’t constant at one of
these two values, are extremely steep. It is therefore equal to either one of these values
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for the most part. Let’s say it is equal to ρc at some point. From that point, going to
lower values of x, the profile can never leave ρc, so that we must have ρa = ρc. As for ρb,
it cannot be higher than 1− ρc. Conversely, if ρ = 1− ρc at some point, then the profile
cannot leave 1 − ρc for larger x’s, and we must have ρb = 1 − ρc, with ρa no lower than
ρc. All those possible profiles are summarised on fig.-II.4.

ρc

1− ρc

ρa

ρb
ρa

ρb

0
0

0

11

L

Figure II.4: Possible density profiles for a given ρc. All the profiles with ρa in the red
region converge to ρb = 1 − ρc. All the profiles with ρb in the orange region come from
ρa = ρc.

This allows us to identify two more phases. When ρa < 1 − ρb and ρa <
1
2
, we have

J = (1− q)ρa(1− ρa) and ρ = ρa except near the right boundary; this is called the ‘low
density phase’ (LD). When 1−ρb < ρa and 1−ρb < 1

2
, we have J = (1− q)ρb(1−ρb) and

ρ = ρb except near the left boundary; this is called the ‘high density phase’ (HD), and
is identical to the LD phase through a left↔right and particle↔hole symmetry. There
is also the special case where ρa = 1 − ρb and ρa <

1
2
, in which the profile goes from ρc

to 1 − ρc very fast around some x which can be anywhere in the system (and the mean
density, being the sum of all these possible profiles, is linear between ρc and 1−ρc). That
type of rapid transition between two constant regions being called a shock, this region is
called the ‘shock line’ (SL).

We can finally draw the phase diagram of the system (fig.-II.5). The transitions
between the MC phase and the HD and LD phases are continuous in both the current
and the density profiles. The transition over the SL, however, is discontinuous in the
profiles (the mean density goes from ρc to 1− ρc), but still continuous in the current.

The only thing that remains to be seen is how the profiles decay near the boundaries.
To do that, let’s write ρ = 1

2
+ u and ρc = 1

2
+ uc. Equation (II.21) becomes:

∇u = 2L
1− q
1 + q

(
u2
c − u2

)
. (II.25)

If uc = 0 (i.e. if we’re in the MC phase), we get 1
u

= 2L1−q
1+q

x + K (where K is
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Figure II.5: Phase diagram of the open ASEP. The values of the mean current in each
phase are given in blue, and the mean density profiles are represented in the insets.

an integration constant), so that u ∼ 1
L(x−x0)

, and the decay is algebraic around both
boundaries.

If uc 6= 0, we get 1
2uc

log
(
uc+u
uc−u

)
= 2L1−q

1+q
x+K, so that u ∼ ±uc+Aex/x0 , and the decay

is exponential around one of the boundaries, or around the shock, with a characteristic
length x0 ∼ 1

L
(which gives the width of the boundary layers or of the shock).

II.2 A few exact results for the ASEP

In this section, we present two important exact results for the ASEP, which we will need
later in presenting our own. To be consistent with the following chapters, we will do
so using notations that might differ from those of the articles in which they originally
appeared.

II.2.1 Matrix Ansatz for the open ASEP - steady state and
mean current

The first of these important results is the matrix Ansatz solution for the steady state
of the open ASEP, devised by Derrida, Evans, Hakim and Pasquier in [24], using the
recursion relations found by Derrida, Domany and Mukamel in [101] for the TASEP.

Let us first recall the Markov matrix of the open ASEP:

M = m0 +
L−1∑
i=1

Mi +mL (II.26)
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with

m0 =

[
−α γ
α −γ

]
, Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 , mL =

[
−δ β
δ −β

]
. (II.27)

The steady state |P ?〉 is the vector that verifies M |P ?〉 = 0.
It was noticed in [101] that for the open TASEP, the unnormalised weights of config-

urations for systems of successive sizes obey a certain recursion relation. The simplest
case to consider is α = β = 1. In that case, if one considers the weights p?L(C) of the
steady state for a system of size L, normalised so that the smallest weight, for a given
size, be 1, then those weights obey:

p?L(A10B) = p?L−1(A1B) + p?L−1(A0B) (II.28)

where A and B are any strings of 0s and 1s of total size L − 2. The configurations to
which that relation cannot be applied, which are of the form (0k1L−k), all have a weight
of 1. Using those two observations, one can get the probability of any configuration in
less than 2L−1 operations.

In order to make that result more efficient, it was recast in algebraic form in [24], where
it was realised that if two matrices D and E could be found, such that DE = D + E,
then a product of L of those matrices would verify the same recursion relations as the
p?L’s, where E would play the role of 0 and D that of 1:

ADEB = ADB + AEB (II.29)

where A and B are any products of Ds and Es. We can now turn those matrix products
into scalars by projecting them between two well-chosen vectors 〈〈W || and ||V 〉〉 (where
we use the double bracket notation for vectors from the space on which D and E act,
which we shall call the ‘auxiliary space’), such that 〈〈W ||EkDL−k||V 〉〉 = 1 for any k and
L.

Following this, the un-normalised probabilities, for a system with six sites, of con-
figurations 101101, 110001 and 011010, are given by, respectively, 〈〈W ||DEDDED||V 〉〉,
〈〈W ||DDEEED||V 〉〉 and 〈〈W ||EDDEDE||V 〉〉.

In general, the probability of any configuration C = {ni}i:1..L takes the form:

P ?(C) =
1

ZL
〈〈W ||

L∏
i=1

(niD + (1− ni)E) ||V 〉〉 (II.30)

with the normalisation factor equal to

ZL = 〈〈W ||(D + E)L||V 〉〉 (II.31)

so that
∑
C
P ?(C) = 1.

The algebraic relations between matrices D and E can be generalised to the ASEP,
and the relations that the boundary vectors have to verify can be obtained as well. They
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are:

DE − q ED = (1− q) (D + E) ,

〈〈W ||(αE − γD) = (1− q)〈〈W ||,
(βD − δE)||V 〉〉 = (1− q)||V 〉〉.

(II.32)

(II.33)

(II.34)

We will now give a simple proof of this Ansatz.

Proof of the matrix Ansatz

Let us consider the two-dimensional vectors X and X̂ as:

X =

[
E
D

]
, X̂ = (1− q)

[
1
−1

]
(II.35)

where the indices of those vectors correspond to occupancies of 0 and 1 (they are vectors
in the physical space, the entries of which are matrices in the auxiliary space). Note that
if one chooses a different normalisation for D and E, such as dividing them by (1 − q)
for instance (which is relevant when taking the q → 1 limit), equations (II.32) to (II.34),
as well as the expression of X̂, must be modified accordingly, as in [107].

This allows us to rewrite eq.(II.30) as:

|P ?〉 =
1

ZL
〈〈W ||

L∏
i=1

X(i)||V 〉〉 (II.36)

where the superscript (i) serves to mark the site to which each X corresponds, and the
product between the Xs is seen as a tensor product in the physical space, and as a
matrix product in the auxiliary space. In all that follows, we will write products from the
perspective of the auxiliary space: DE, for instance, is a matrix product in the auxiliary
space, although it is a tensor product in configuration space, since it corresponds to two
sites. Applying M to |P ?〉, on the other hand, is matrix product in configuration space,
but a tensor product in the auxiliary space, and so, whenever both products appear in a
calculation, we will note the product in configuration space using �, as in eq.(II.37).

Let us now see how each of the individual Mi’s act on this object. Let us start with
the bulk matrices. Since the action of Mi involves only sites i and i+ 1, we only have to
consider a small part X(i)X(i+1) of the whole product:

Mi �X(i)X(i+1) =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 �


EE
ED
DE
DD

 =


0

DE − q ED
q ED −DE

0

 = (1− q)


0

D + E
−D − E

0


= X̂(i)X(i+1) −X(i)X̂(i+1) (II.37)

where we used eq.(II.32) to get the third equality. Writing this in terms of X and X̂
makes it easy to take the sum of this equation over i (excluding the boundary matrices):
each X̂(i) with i from 2 to L − 1 appears twice, once from the action of Mi−1 and once
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from that of Mi, but with opposite signs, so that they cancel out. The only terms that
remain are one with X̂(1), and one with −X̂(L), so that:

L−1∑
i=1

Mi|P ?〉 =
1

ZL
〈〈W ||X̂(1)

L∏
i=2

X(i)||V 〉〉 − 1

ZL
〈〈W ||

L−1∏
i=1

X(i)X̂(L)||V 〉〉. (II.38)

We now only need to show that each of those two terms are taken care of by one of
the boundary matrices. First the left boundary:

m0 � 〈〈W ||X(1) =

[
−α γ
α −γ

]
�
[
〈〈W ||E
〈〈W ||D

]
=

[
〈〈W ||(γD − αE)
〈〈W ||(αE − γD)

]
= (1− q)

[
−〈〈W ||
〈〈W ||

]
= −〈〈W ||X̂(1) (II.39)

where we used eq.(II.33) to get the third equality. This cancels the first term in (II.38).
Now the right boundary:

mL �X(L)||V 〉〉 =

[
−δ β
δ −β

]
�
[
E||V 〉〉
D||V 〉〉

]
=

[
(βD − δE)||V 〉〉
(δE − βD)||V 〉〉

]
= (1− q)

[
||V 〉〉
−||V 〉〉

]
= X̂(L)||V 〉〉 (II.40)

where we used eq.(II.34). This cancels the second term in (II.38), and concludes the proof
that M |P ?〉 = 0.

Average current

We can put this Ansatz to good use right away by calculating the average current in
the steady state of the ASEP. This calculation was done by Sasamoto in [25], while the
simpler equivalent for the TASEP can be found in [24].

The average current flowing between sites i and i + 1 is the expectation value of the
observable δni,1δni+1,0 − q δni,0δni+1,1, which is equal to 1 if ni = 1 and ni+1 = 0 (i.e. if a
forward jump is possible), and to −q if ni = 0 and ni+1 = 1 (i.e. if a backward jump is
possible).

We then have:

〈Ji〉 = 〈1|δni,1δni+1,0 − q δni,0δni+1,1|P ?〉 (II.41)

=
1

ZL
〈〈W ||(D + E)i(DE − q ED)(D + E)L−i−2||V 〉〉 (II.42)

=
1

ZL
〈〈W ||(D + E)i(1− q)(D + E)(D + E)L−i−2||V 〉〉, (II.43)

J = (1− q) 1

ZL
〈〈W ||(D + E)L−1||V 〉〉 (II.44)

where we get from line 2 to line 3 using eq.(II.32). We recognise ZL−1 in this last equation,
so that we have:

J = (1− q)ZL−1

ZL
(II.45)
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and we are left having only to calculate ZL.

In order to do this, we need an explicit representation for D, E, and the boundary
vectors. The simplest way to get one is to define two more matrices d and e by:

d =
∞∑
n=1

(1− qn)||n− 1〉〉〈〈n|| =


0 (1− q) 0 0 · · ·
0 0 (1− q2) 0
0 0 0 (1− q3)
0 0 0 0
...

. . .

 (II.46)

and

e =
∞∑
n=0

||n+ 1〉〉〈〈n|| =


0 0 0 0 · · ·
1 0 0 0
0 1 0 0
0 0 1 0
...

. . .

 (II.47)

where the vectors 〈〈n|| and 〈〈n|| form an orthonormal basis of the auxiliary space, which
is of infinite dimension.

Those two matrices satisfy:

de− q ed = (1− q) (II.48)

which is the algebra of a q-deformed harmonic oscillator [146], of which d is the annihi-
lation operator, and e the creation operator.

If we now take D = 1 + d and E = 1 + e, they do verify eq.(II.32). There are
several other representations that we could have chosen, but this is the simplest one
where D and E don’t depend on the boundary parameters. As for why they need to be
infinite-dimensional, one may refer to [24].

Using this and equs.(II.33) and (II.34), we can find the correct boundary vectors. Let
us define:

〈〈W || =
∞∑
n=0

Wn〈〈n||, (II.49)

||V 〉〉 =
∞∑
n=0

Vn||n〉〉, (II.50)

and write (II.33) and (II.34) in terms of the Wn’s and Vn’s:

αWn+1 + (α− γ − 1 + q)Wn − γ(1− qn)Wn−1 = 0, (II.51)

β(1− qn+1)Vn+1 + (β − δ − 1 + q)Vn − δVn−1 = 0. (II.52)

At this point, there are a number of mathematical objects that we need to define, and
that will serve us on many occasions in the future.
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First of all, we need to replace the boundary parameters α, β, γ and δ by four other
parameters that will be better suited to what we need to do. Let us therefore write:

a =
1

2α

[
(1− q − α + γ) +

√
(1− q − α + γ)2 + 4αγ

]
, (II.53)

ã =
1

2α

[
(1− q − α + γ)−

√
(1− q − α + γ)2 + 4αγ

]
, (II.54)

b =
1

2β

[
(1− q − β + δ) +

√
(1− q − β + δ)2 + 4βδ

]
, (II.55)

b̃ =
1

2β

[
(1− q − β + δ)−

√
(1− q − β + δ)2 + 4βδ

]
, (II.56)

and reversely:

α =
(1− q)

(1 + a)(1 + ã)
, (II.57)

γ = − aã(1− q)
(1 + a)(1 + ã)

, (II.58)

δ = − bb̃(1− q)
(1 + b)(1 + b̃)

, (II.59)

β =
(1− q)

(1 + b)(1 + b̃)
. (II.60)

The quantities a and b are the same as were defined earlier in (II.18) and (II.19) in relation
to the boundary conditions of the system in the large L limit. This is, of course, not a
coincidence.

We can now rewrite (II.51) and (II.52) as:

Wn+1 − (a+ ã)Wn + aã(1− qn)Wn−1 = 0,

(1− qn+1)Vn+1 − (b+ b̃)Vn + bb̃Vn−1 = 0.

(II.61)

(II.62)

Now, let us introduce a few q-deformed functions [147]. The parameter q involved is
the same as the rate of backward jumps in the ASEP. Since we will never use any other
parameter to define these functions, we will omit it in our notations.

This is the q-Pochhammer symbol of order n:

(x)n =
n−1∏
k=0

(1− qkx) (II.63)

which can also be defined for n =∞, if q < 1 (which it was defined to be):

(x)∞ =
∞∏
k=0

(1− qkx). (II.64)

If we have a product of several infinite q-Pochhammer symbols, we may write them in
the same symbol using commas, as (x)∞(y)∞ = (x, y)∞, or (x)∞(y)∞(z)∞ = (x, y, z)∞,
etc.
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This last function verifies:

(x)∞ = (1− x)(qx)∞ (II.65)

which might come in handy. For instance, consider this simple equation:

(1− z)
∞∑
n=0

zn

(q)n
=
∞∑
n=0

qnzn

(q)n
. (II.66)

This tells us that the series expansion of the inverse of (z)∞ is:

1

(z)∞
=
∞∑
n=0

zn

(q)n
. (II.67)

This is called the q-exponential, from the fact that the limit q → 1 gives a regular
exponential (after rescaling z to z(1− q)).

We can also expand the product of two q-exponentials:

1

(xz, yz)∞
=
∑
n

Hn(x, y)
zn

(q)n
(II.68)

where one can find Hn to be equal to

Hn(x, y) =
n∑
k=0

(q)n
(q)k(q)n−k

xkyn−k. (II.69)

Hn is called the q-Hermite polynomial of order n (because the limit q → 1 gives the
regular Hermite polynomial of order n). It is usually defined using only one variable,
which corresponds to the fact that we have Hn(x, y) = ynHn(x/y, 1) = xnHn(1, y/x) =
(xy)n/2Hn(

√
x/y,

√
y/x), but we will keep writing it with two variables for convenience.

By multiplying eq.(II.68) by (1−xz)(1−yz), we find a recursion relation on the Hn’s:

Hn+1(x, y)− (x+ y)Hn(x, y) + xy(1− qn)Hn−1(x, y) = 0. (II.70)

Another useful identity on the q-Hermite polynomials is the q-Mehler formula [148]:

∞∑
n=0

Hn(x, y)Hn(z, t)
λn

(q)n
=

(xyztλ2)∞
(xzλ, xtλ, yzλ, ytλ)∞

. (II.71)

Let it be noted that this formula is in principle only valid when all the arguments of the
q-Pochhammer symbols on the right are smaller than 1 in module (note that this doesn’t
constrain the arguments of the functions Hn directly, but only their products with λ).

We can now finally get back to the calculation of ZL.
Comparing (II.70) to (II.61) and (II.62), we find that:

Wn = Hn(a, ã) , Vn =
Hn(b, b̃)

(q)n
. (II.72)
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Now, considering that ZL = 〈〈W ||(2 + d + e)L||V 〉〉, a good way to proceed would be
to find the eigenvectors of d+ e, and expand ||V 〉〉 on that basis. Let us define:

||z〉〉 =
∞∑
n=0

Hn(z, 1
z
)

(q)n
||n〉〉 , 〈〈z|| =

∞∑
n=0

Hn(z,
1

z
)〈〈n||. (II.73)

Applying d+ e on those and using eq.(II.70) yields:

(d+ e)||z〉〉 = (z + 1/z)||z〉〉 , 〈〈z||(d+ e) = 〈〈z||(z + 1/z). (II.74)

Luckily, there is a reasonably simple closure identity involving that basis, which is
given by [147]:

1 =
(q)∞

2

∮
c1

dz

i2πz
(z2, z−2)∞||z〉〉〈〈z|| (II.75)

where c1 is the complex unit circle.
Injecting this relation right next to ||V 〉〉 in ZL, and using (II.74), gives:

ZL =
(q)∞

2

∮
c1

dz

i2πz
(z2, z−2)∞(2 + z + z−1)L〈〈W ||z〉〉〈〈z||V 〉〉. (II.76)

Finally, using the q-Mehler formula (II.71) on 〈〈W ||z〉〉 and 〈〈z||V 〉〉 gives:

〈〈W ||z〉〉 =
(aã)∞

(az, a/z, ãz, ã/z)∞
, 〈〈z||V 〉〉 =

(bb̃)∞

(bz, b/z, b̃z, b̃/z)∞
. (II.77)

This is rigorous only for |a| < 1, |ã| < 1, |b| < 1 and |b̃| < 1. These conditions are always
verified for ã and b̃, but not for a and b. However, we can extend this result to all values
of a and b by analytic continuation.

Combining all those relations, and getting rid of a constant term (q, aã, bb̃)∞, we can
write the definitive form of ZL:

ZL =
1

2

∮
S

dz

2iπ

F (z)

z
(II.78)

with

F (z) =
(1 + z)L(1 + z−1)L(z2, z−2)∞

(az, a/z, ãz, ã/z, bz, b/z, b̃z, b̃/z)∞
. (II.79)

For a < 1 and b < 1, the domain of integration is the unit circle, which is to say that
we take the residues at all the poles of F that are in S = {0; aqk, ãqk, bqk, b̃qk}k∈N, and not
at the other ones (which are their inverses). Since ZL is analytic in all the parameters,
the poles of F at which we have to take a residue are always the same, even if one of
them leaves the unit circle. For that reason, the integral in (II.78) must be done around
S, and not on the unit circle.
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The case of the TASEP is much simpler, as always. If q = γ = δ = 0, F reduces to:

F (z) =
(1 + z)L(1 + z−1)L(1− z2)(1− z−2)

(1− az)(1− a
z
)(1− bz)(1− b

z
)

(II.80)

with S = {0, a, b} and a = 1−α
α

, b = 1−β
β

.

We can use this expression of ZL, either for the ASEP or for the TASEP, to find the
phase diagram of the current J = (1− q)ZL−1

ZL
in a more rigorous fashion.

If a < 1 and b < 1, the contour integral in (II.78) can be done on the unit circle.
Because of the term (1 + z)L(1 + z−1)L, F (z) has a saddle point at z = 1 for L large. ZL
therefore behaves as 4L, and we get J = 1−q

4
. We recognise the maximal current (MC)

phase.

If a > 1 and a > b, the contour integral is dominated by the largest pole on the
real axis, which is a (see section IV.1.1 for more details on that). ZL then behaves as
(1 + a)L(1 + a−1)L, and we get J = (1− q) a

(1+a)2
. Remembering that we have ρa = 1

1+a
,

we finally get J = (1− q)ρa(1− ρa). This is the low density (LD) phase.

If b > 1 and b > a, we find the same with b instead of a, i.e. with 1 − ρb instead of
ρa, and we get the high density (HD) phase.

Moreover, the conditions a > 1 or b > 1 correspond to ρa <
1
2

and 1 − ρb < 1
2
, and

a = b corresponds to ρa = 1− ρb, so that the boundaries of the three phases we find are
indeed the same as in the previous section.

Let us finally note that, using the matrix Ansatz, we can also calculate the 2-point
correlations of the density [67,105,106], and find them to be vanishing entirely for L→∞
(algebraically in the MC phase, and exponentially everywhere else), which validates the
mean field approach of the previous section. However, the behaviour of the profiles near
the boundaries in the MC phase is not correct in the mean field approximation (it should
behave as 1/

√
L(x− x0) rather than 1/L(x− x0)).

II.2.2 Coordinate Bethe Ansatz for the periodic ASEP

Here, we present the method used by Prolhac and Mallick in [26–29] to obtain the com-
plete generating function of the cumulants of the current in the periodic ASEP, using the
coordinate (and then the functional) Bethe Ansatz.

Instead of being connected to reservoirs through boundary matrices, the periodic
ASEP has one extra bulk matrix that connects site L to site 1. Because of that, the
number of particles N is now conserved.

We will here be interested in the total current going over all of the bonds of the system.
From what we saw in section I.2.2, the deformed Markov matrix for that observable is:

Mµ =
L∑
i=1

Mi(µ) (II.81)
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with

Mi(µ) =


0 0 0 0
0 −q eµ 0
0 qe−µ −1 0
0 0 0 0

 (II.82)

(this is the case where V = 0 and U = 1 for forward jumps and −1 for backward jumps),
and the cumulant generating fuction E(µ) is its largest eigenvalue.

Coordinate Bethe Ansatz

The reasoning leading to the coordinate Bethe Ansatz goes, schematically, like this: in the
case of non-interacting particles (i.e. without the exclusion constraint), the eigenstates
of the Markov matrix would be plane waves, with some quantised fugacities (due to the
periodicity of the chain). In our case, the particles are interacting, but only if they
are next to one-another, so that they still behave like plane waves if they don’t touch.
When they do collide, they might exchange their fugacities, but not modify their values
entirely (as this would also modify the corresponding eigenvalue of the Markov matrix),
so the natural Ansatz to make is a superposition of plane waves, with some coefficients
depending on which particle has which fugacity. Those coefficients, and the fugacities,
are unknown quantities to be determined. Thanks to the integrability of the chain, this
actually works.

According to the coordinate Bethe Ansatz [149, 150], the eigenvectors of Mµ can be
written as:

|ψ〉 =
∑
{xi}

[∑
σ∈SN

Aσ
∏

zxiσ(i)

]
|{xi}〉 (II.83)

where, unlike the notation we have used until now, configurations are designated by the
ordered positions xi of all the particles. The coefficient of a given configuration {xi}
is, in this Ansatz, a sum of plane waves

∏
zxiσ(i) with fugacities zj. Each element in that

sum corresponds to one distribution of the fugacities among the particles (designated by a
permutation σ of the indices of the z’s, belonging to SN , the group of permutations of size
N), and bears a coefficient Aσ that doesn’t depend on the positions {xi}. Using Mµ on
this expression, while assuming that it is indeed one of its eigenvectors (Mµ|ψ〉 = E|ψ〉),
gives us a system of coupled equations involving the zi’s, the Aσ’s, and E, that we then
have to solve.

Let us first look at a configuration {xi} where all the particles are far away from each
other (let’s assume that there are few enough particles for that to be possible). The
configurations leading to that one after applying Mµ to |ψ〉 are those where one of the
particles is at xi − 1 or xi + 1, and is about to jump. Each forward jump corresponds
to a term eµ

zj
in E, and each backward jump to a term qe−µzj. We must also take into

account the escape rate −1 − q for each particle. All in all, we find that the eigenvalue
E is given by:

E =
N∑
j=1

(eµ

zj
+ qe−µzj − 1− q

)
. (II.84)
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Let us now consider a configuration where two particles are next to each another, at
positions xi and xi+1, and the others are far away. In the previous case, no two particles
were close enough to exchange their fugacities, and the action of Mµ was independent
of the Aσ’s. In this case, it will involve couples of σ’s that differ by one transposition
τi,j (corresponding to the exchange of two fugacities zi and zj). When we apply Mµ

to the configurations leading to the one we chose, all the jumps made by the isolated
particles have the same contribution to E as previously, and we don’t have to worry about
them. The only part of the weight of our configuration in |ψ〉 that we have to consider is
Aσz

xi
σ(i)z

xi+1
σ(i+1) +Aσ◦τi,i+1

zxiσ(i+1)z
xi+1
σ(i) , for a given σ (the rest of the fugacities can be factored

out), where τi,i+1 is the transposition of i with i+ 1, and ◦ is the composition operation.
The only difference with the previous situation is that two of the four configurations that
leads to this one through a jump are forbidden, because they would have the two particles
standing on the same site. Since E is the same anyway, it must be that the contribution
they would have had to E is 0.

That contribution is qe−µAσz
xi+1
σ(i) z

xi+1
σ(i+1) + eµAσ◦τi,i+1

zxiσ(i+1)z
xi
σ(i) from the particle with

fugacity zσ(i), and eµAσz
xi
σ(i)z

xi
σ(i+1) + qe−µAσ◦τi,i+1

zxi+1
σ(i+1)z

xi+1
σ(i) from the one with fugacity

zσ(i+1), without forgetting the escape rate (−1− q)
(
Aσz

xi
σ(i)z

xi+1
σ(i+1) +Aσ◦τi,i+1

zxiσ(i+1)z
xi+1
σ(i)

)
.

Their sum must be 0, which gives:

Aσ◦τi,i+1

Aσ
= −eµ − (1 + q)zσ(i+1) + qe−µzσ(i)zσ(i+1)

eµ − (1 + q)zσ(i) + qe−µzσ(i)zσ(i+1)

. (II.85)

A nice property of integrability [40, 151] is that the three-body scattering matrix
factorises in terms of the two-body scattering matrix, which is to say that the same
calculation with three particles gives merely the composition of two of those relations, so
that we don’t have to consider any more complicated situations.

Let us now look at the consequence of periodicity. Since there is no preferred site from
which to start numbering the particles, we could have written {x2, ..., xL, x1 +L} instead
of {x1, x2, ..., xL} for any configuration. This must make no difference on |ψ〉. It does,
however, change σ into σ ◦ t+ (where t+ is the circular permutation which raises each
number by 1 and sends N to 1), and zx1σ(1) into zx1+L

σ(1) . These two changes must therefore
compensate, so that:

Aσ◦t+

Aσ
= z−Lσ(1). (II.86)

Before going further, we should make a simple change of variables on the zi’s, which
will make all future calculations much easier. Let us define, for each zi, a new quantity
yi such that:

y = − 1− e−µz

1− qe−µz , z = eµ
1 + y

1 + qy
. (II.87)

Equation (II.85) becomes:

Aσ◦τi,i+1

Aσ
=
yσ(i+1) − qyσ(i)

qyσ(i+1) − yσ(i)

(II.88)
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and the eigenvalue E is given by:

E = (1− q)
N∑
i=1

(
1

1 + yi
− 1

1 + qyi

)
. (II.89)

Now, since what we want is E, and not |ψ〉, we had better find a way to get rid of
the Aσ’s in eq.(II.88). In order to do that, we need to reconstruct permutation t+ as a
product of N − 1 transposition: t+ = τ1,2 ◦ τ2,3 ◦ · · · ◦ τN−2,N−1 ◦ τN−1,N . Considering

that
Aσ◦τ1,2
Aσ

Aσ◦τ1,2◦τ2,3
Aσ◦τ1,2

=
Aσ◦τ1,2◦τ2,3

Aσ
, and adding one ratio at a time, one can get

Aσ◦t+
Aσ

as a

product of N −1 equations of the form (II.85), where, in each of them, σ(1) is exchanged
with one of the other indices. Since we have the choice of σ(1) from the start, what we
finally get is a system of N coupled equations, one for each zi:

eLµ
(

1 + yi
1 + qyi

)L
= −

N∏
j=1

yi − qyj
qyi − yj

. (II.90)

These are called the Bethe equations. The left side of the equation comes from eq.(II.86)
written in terms of yi, and the right side comes from the product of all the ratios from
(II.85), and one more for i = j to complete the product (which accounts for the minus
sign).

Functional Bethe Ansatz

It is now time to switch to the functional Bethe Ansatz (which is not, in fact, another
form of the Bethe Ansatz, but merely another way to write the Bethe equations).

Consider a polynomial Q, defined as:

Q(x) = Q0

N∏
i=1

(1− x yi) (II.91)

where Q0 is a constant. The roots of Q are the inverses of the yi’s from before.
Let us also define h(y) as:

h(y) =
(1 + y)L

yN
. (II.92)

In terms of those two functions, the Bethe equations (II.90) become:

eLµ
h(yi)

h(qyi)
= − Q(q/yi)

Q(1/qyi)
(II.93)

for all yi’s. Rearranging this equation, we find that there must be a polynomial T (y)
with roots at all the yi’s, such that:

T (y)Q(1/y) = h(y)Q(1/qy) + e−Lµh(qy)Q(q/y) (II.94)

(T (y) is in fact a polynomial in y and y−1, but we could always multiply the whole
equation by a large enough power of y).
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We can also express E in terms of Q in two different ways, as:

E = (1− q) d
dy

log

(
Q(q/y)

Q(1/y)

)∣∣∣∣
y=−1

= (1− 1/q)
d

dy
log

(
Q(1/qy)

Q(1/y)

)∣∣∣∣
y=−1/q

(II.95)

and then, using eq.(II.94), in terms of T :

E = (1− q) d
dy

log

(
T (y)

h(qy)

)∣∣∣∣
y=−1

= (1− 1/q)
d

dy
log

(
T (y)

h(y)

)∣∣∣∣
y=−1/q

(II.96)

or

E = −N − (L−N)q + (1− q) d
dy

log
(
T (y)

)∣∣
y=−1

(II.97)

= −(L−N)−Nq + (1− 1/q)
d

dy
log
(
T (y)

)∣∣
y=−1/q

. (II.98)

(the fact that there are two versions of each of those equations comes from the particle↔hole
symmetry of the system).

Through a procedure detailed in [27] and [152], we can find a polynomial P (y), defined
as:

P (y) =
L−N∏
i=1

(1− y/qỹi) (II.99)

which is solution of the same polynomial equation as Q, but with 1/y being replaced by
qy:

T (y)P (qy) = h(qy)P (y) + e−Lµh(y)P (q2y). (II.100)

This polynomial P is in fact the one we would have gotten instead of Q if we had chosen
to track the holes instead of the particles in the coordinate Bethe Ansatz. It is also, due
to the particle↔hole symmetry, the polynomial for the particles for a system with L−N
particles instead of N .

We can combine equations (II.94) and (II.100) to get rid of T , and obtain:

P (y)Q(1/y) = h(y) + e−LµP (qy)Q(q/y). (II.101)

Considering the lowest or the highest power of y in this equation, we get two expres-
sions for Q0, in terms of the yi’s or of the ỹi’s (but we will only use the first one):

Q0 =

N∏
i=1

(−1/yi)

(1− e−LµqN)
=

L−N∏
i=1

(−qỹi)

(1− e−LµqL−N)
. (II.102)

Let us now define a function W (y) as:

W (y) = − log

(
P (y)Q(1/y)

e−LµP (qy)Q(q/y)

)
(II.103)
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and a constant B as:

B = −eLµ

Q0

. (II.104)

Let us also define a convolution kernel K, as:

K(z, z̃) =
∞∑
k=1

qk

1− qk
(

(z/z̃)k + (z/z̃)−k
)

(II.105)

and the associated convolution operator X:

X[f ](z) =

∮
c1

dz̃

ı2πz̃
f(z̃)K(z, z̃). (II.106)

Using those, one can find that − log
(
P (qy)Q(q/y)/Q0

)
= X[W ](y). It can be done

simply by separating all the monomials from P and Q/Q0 in the logarithms, and expand-
ing them. Each positive or negative power ±k of y has the same coefficient in both sides,
up to a factor qk in the left side of the equation, and (1 − qk) in W . The convolution
then serves to replace that (1− qk) by qk.

All in all, we can finally rewrite eq.(II.101) in terms of only one unknown function W :

W (z) = − ln
(

1−Bh(z)eX[W ](z)
)

(II.107)

which is a logarithmic equivalent of a Fredholm integral equation of the second kind [153].
This gives us, in principle, W (z) in terms of Bh(z). The next step is to use the equations
we found earlier to express both E and µ in terms of B, which will give us E in terms of
µ implicitly.

Let us remark here that, until now, we never had to specify which eigenvector of Mµ

it was that we were considering. Everything we have done so far is therefore valid for
any eigenvalue E which can be obtained by Bethe Ansatz. For the next step, however,
we need to input information specific to the steady state.

We know that in that state, all configurations are equiprobable (this is easily checked),
so that all the zi’s must be 1, i.e. all the yi’s are equal to 0. This tells us that:

lim
µ→0

B = 0 (II.108)

and that, for µ small enough, all the yi’s are inside the unit circle. We can also show
that the opposite goes for the ỹi’s: they are infinite for µ = 0 and they stay outside of
the unit circle for a small µ.

The two equations that we will need to use to get E(µ) and µ in terms of B are the
left part of eq.(II.95), and eq.(II.103) for y = 0, which we rewrite here:

E(µ) = (1− q) d
dy

log

(
Q(q/y)

Q(1/y)

)∣∣∣∣
y=−1

, Lµ = −W (0) (II.109)

As we see, E(µ) is not written in terms of W , but only of Q. This is where the
behaviour of the yi’s and ỹi’s becomes useful. Because of their respective positions on
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the complex plane, and if we take z to be on the unit circle, each factor log(1 − yi/z)
(coming from Q) in W can be expanded as a series in 1/z, and each factor log(1− z/qỹi)
(coming from P ) as a series in z without any pole inside of the unit circle. Simply put,
P is holomorphic inside of the unit circle. This assures us that a contour integral over
the unit circle will only pick up contributions from Q, and not from P .

All that being said, we can finally write E(µ) and µ in terms of contour integrals, as:

Lµ = −
∮
c1

dz

ı2πz
W (z) = −

∞∑
k=1

Ck
Bk

k
(II.110)

and

E(µ) = −(1− q)
∮
c1

dz

ı2π(1 + z)2
W (z) = −(1− q)

∞∑
k=1

Dk
Bk

k
. (II.111)

The coefficients Ck and Dk are what we get after expanding W in powers of B in this
expression (we recall that B ∼ 0 for µ small), and can be written in terms of contour
integrals over combinations of h and K.

The factor L in eq.(II.110) comes from the fact that we counted the current over all
the bonds of the system. To get the equivalent formulae for the current over only one
bond, we just have to take that L away (or to replace µ by µ/L).

For the simpler case of the TASEP, we have q = 0, so K(z, z′) = 0, and W =

− ln
(

1−Bh(z)
)

. In this case, W is easily expanded in B, and we find:

Ck =

∮
c1

dz

ı2πz
hk(z) =

(
kL

kN

)
(II.112)

and

Dk =

∮
c1

dz

ı2π(1 + z)2
hk(z) =

(
kL− 2

kN − 1

)
(II.113)

where
(
X
Y

)
= X!

Y !(X−Y )!
is a binomial coefficient.

Those are the same results as were found by Derrida and Lebowitz in [94].

Now that we have the explicit expression of those coefficients, we can find the cu-
mulants of the current by inverting eq.(II.110) to find B in terms of µ, and then inject
the result into eq.(II.111), in order to get E(µ) explicitely as an exponential generating
series in µ (the coefficients Ek of which are precisely the cumulants of the current). This
doesn’t give a closed formula for any Ek, but they can be calculated order by order, in a
finite number of calculation steps for a given k. The first few of those are given by:

E1 = (1− q)LD1

C1

,

E2 = (1− q)L2D1C2 −D2C1

2C3
1

, (II.114)

E3 = (1− q)L3 3D1C
2
2 − 2D1C1C3 − 3D2C1C2 + 2D3C

2
1

6C5
1

.
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Because of the complexity of eqs.(II.110) and (II.111), it is not possible, in practice,
to find the large deviation function of the cumulants of the current explicitly for a finite
L. It can be done in the large L limit, however. The result for the case of where L = 2N ,
along with the calculations involved, can be found in sections IV.1.4, IV.2.3 and part of
IV.4, which treat of the open ASEP at the HD-MC transition (we will see that this its
behaviour on that transition is exactly that of a half-filled periodic ASEP).
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CHAPTER III

Perturbative Matrix Ansatz

and Fluctuations of the Current

Now that we have reviewed all the tools and pre-existing results that we might need,
we can finally get to the core of this thesis, namely the generalisation of the matrix
Ansatz [24] to the calculation of the exact generating function of the cumulants of the
current in the open ASEP. We will refer to this new method as ‘perturbative matrix
Anatz’, for reasons that will become clear in a few pages.

This chapter gives a logical (rather than chronological) account of the results, as
opposed to the order in which they were published. That is to say, we will present the
method before the results, whereas while we were exploring the subject in search of a
solution, we managed to make our way to the final formulae [1,2] long before we had a neat
idea of how the proof worked. Needless to say that a fair amount of guesswork entered
into play, and those formulae were published as conjectures, first for the simpler case of
the TASEP [1], then for the general ASEP [2]. In both cases, the results were backed by
exact numerical calculations on systems of small size and by DMRG calculations from
our collaborators M. Gorissen and C. Vanderzande. All this will be presented in more
detail further down in section III.4.

The layout of this chapter is the following:

• In section III.1, we apply what we saw in chapter I and give a few results related to
the Gallavotti-Cohen symmetry, which are well-known, but will be useful later on.

• The perturbative matrix Ansatz method is presented in part section III.2, the con-
tents of which are pretty much the same as part 4 of [3].

• Section III.3 contains the formulae for the generating function of the cumulants of
the current in the open ASEP and its simpler expression for the open TASEP.

• Section III.4 only contains calculation details and can be skipped entirely: we obtain
the first few cumulants, which allows us to infer the form of the complete solution,
and take a look at the numerical verifications that were carried out to validate our
result.

It should be noted that, although, at this point, the formulae in section III.3 are still,
strictly speaking, conjectured, we take care of that issue in chapter V (which can be read
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instead of section III.2), where we further generalise our perturbative matrix Anatz and
relate it to the algebraic Bethe Ansatz [39] and to Baxter’s Q-operator [40].

III.1 Current-counting Markov matrix and Gallavotti-

Cohen symmetry

We first define the most general current-counting Markov matrix for the open ASEP.
After a quick derivation of the Gallavotti-Cohen symmetry, which relies on the relation
between the macroscopic current of particles and the microscopic production of entropy
in the system, we reduce the deformed Markov matrix to a simpler form.

III.1.1 Current-counting Markov matrix

Let us first quickly recall the jumping rules of the open ASEP:

α β

γ δ

1

q

Figure III.1: Dynamical rules for the ASEP with open boundaries. The rate of forward
jumps has been normalised to 1. Backward jumps occur with rate q < 1. All other pa-
rameters are arbitrary. The jumps shown in green are allowed by the exclusion constraint.
Those shown in red and crossed out are forbidden.

Just as for the periodic case in the last section of chapter II, the observable we’re
interested in is the particle current, which is time-additive, so that the results from chapter
I apply. In principle, we could count the currents over each of the bonds independently,
with different fugacities eµi between each neighbouring sites i and i + 1 (where i goes
from 0 to L, site 0 being the left reservoir, and site L+ 1 the right reservoir). The most
general deformed Markov matrix for the current is therefore:

M{µi} = m0(µ0) +
L−1∑
i=1

Mi(µi) +mL(µl) (III.1)

with

m0(µ0) =

[
−α γe−µ0

αeµ0 −γ

]
, Mi(µi) =


0 0 0 0
0 −q eµi 0
0 qe−µi −1 0
0 0 0 0

 , mL(µL) =

[
−δ βeµL

δe−µL −β

]
(III.2)

(where, as before, it is implied that m0 acts as written on site 0 in the basis {0, 1} and
as the identity on the other sites, and the same goes for mL on site L; similarly, Mi is
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expressed by its action on sites i and i+1 in the basis {00, 01, 10, 11} and acts as the
identity on the rest of the system).

The largest eigenvalue E({µi}) of that matrix is the joint generating function of the
cumulants of all the local currents, and the left and right eigenvectors carry the proba-
bilities of configurations conditioned on the values of the integrated currents going to or
coming from the steady state (as explained in chapter I).

It would stand to reason that, since the system is one-dimensional, the current should
be conserved from one reservoir to the other, and that the bond over which it is measured
should make no difference at all in the long time limit. This is easy enough to prove, and
is done in the next section.

III.1.2 Gallavotti-Cohen symmetry

In this section, we prove that two current-counting Markov matrices M{µi} and M{µ′i} are

similar (and therefore have the same eigenvalues) as long as
∑L

i=0 µi =
∑L

i=0 µ
′
i, which

is to say that the current and its fluctuations only depend on µ =
∑L

i=0 µi, regardless of
how the fugacities are distributed: the currents through each of the bonds are all exactly
equivalent. This is a well known result, which can be found in [18], and was also used
in [86].

Let us consider the diagonal matrix Ri(λi) (with 1 ≤ i ≤ L) which multiplies by eλi

all configurations for which site i is occupied. The transformation Ri(λi)
−1M{µi}Ri(λi)

acts only on Mi−1(µi−1) and Mi(µi), and a trivial calculation gives

Ri(λi)
−1Mi−1(µi−1)Ri(λi) = Mi−1(µi−1 − λi) (III.3)

and

Ri(λi)
−1Mi(µi)Ri(λi) = Mi(µi + λi). (III.4)

One can therefore transfer any fraction λ of µ =
∑L

i=0 µi from one bond to the previous
or the next one. Using this, one can go from {µi} to {µ′i} step by step, or simply derive

the global similarity matrix R
{µ′i}
{µi} such that

M{µ′i} =
(
R
{µ′i}
{µi}

)−1

M{µi}R
{µ′i}
{µi} (III.5)

which one can easily find to be

R
{µ′i}
{µi} =

L∏
i=1

Ri

( i−1∑
j=0

(µj − µ′j)
)
. (III.6)

There is a particular set of weights {µi} defined by

{µ0 = ν log

(
α

γ

)
, µi = ν log (1/q), µL = ν log

(
β

δ

)
} (III.7)
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for which M{µi} becomes:

m0 =

[
−α γ1+να−ν

α1+νγ−ν −γ

]
, Mi =


0 0 0 0
0 −q q−ν 0
0 q1+ν −1 0
0 0 0 0

 , mL =

[
−δ β1+νδ−ν

δ1+νβ−ν −β

]
(III.8)

which is the deformed Markov matrix measuring the entropy production. We see imme-
diately, as before, that

M−1−ν = tMν (III.9)

which proves the Gallavotti-Cohen symmetry for the eigenvalues and between the left
and right eigenvectors of Mν with respect to the transformation ν ↔ (−1−ν).

Considering that µ = ν log
(

αβ
γδqL−1

)
, we also obtain the Gallavotti-Cohen symmetry

related to the current, namely

E(µ) = E

(
− log

( αβ

γδqL−1

)
− µ

)
(III.10)

which is also valid for the other eigenvalues of Mµ, and the corresponding relations be-
tween the right and left eigenvectors, as well as a simple relation between the microscopic
entropy production s, conjugate to ν, and the macroscopic current j, conjugate to µ:

s = j log
( αβ

γδqL−1

)
. (III.11)

The equilibrium case, where αβ = γδqL−1 (which is to say that the boundary chemical
potentials compensate exactly the field in the bulk of the system), is somewhat patho-
logical: s = 0, so that there is no entropy production, and all the odd cumulants of j
vanish, but not the even ones. In this case only, the current contains more information
than the entropy production.

All this being said, we can now consider, without any loss of generality, the case
where only the first bond (between the leftmost reservoir and the first site) is marked:
µ0 = µ , µi 6=0 = 0, so that the individual jump matrices we will work with are given by

m0(µ) =

[
−α γe−µ

αeµ −γ

]
, Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 , mL =

[
−δ β
δ −β

]
. (III.12)

Our goal is to find a way to get at the largest eigenvalue E(µ) of this matrix, and at its
corresponding eigenvectors ||Pµ〉〉 and 〈〈P̃µ||.

Let us make one final important remark. We have just shown that E(µ) doesn’t
depend on the choice of {µi}. The eigenvectors, however, do (they are related to one
another by multiplication with the diagonal similarity matrix expressed in (III.6)). This
is easily understood if we remember that, for instance, ||Pµ〉〉 gives probabilities of a final
configuration conditioned on a value of the mean current. If we count the current on the
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last bond, and we want a high current, the best way for the system to do that is to do a
final rush, and make all the particles leave (through that last bond) just before the time
is up. The most probable final configuration will therefore be completely empty. But
if we count the current on the first bond, the system had better fill itself up (through
that first bond) just before the end, and the most probable final configuration is now
completely full.

What doesn’t depend on {µi}, however, is the probability of a configuration at some
point far enough from the beginning or the end of the run: the coefficients from the
similarity matrix used on ||Pµ〉〉 compensate with their inverses from 〈〈P̃µ|| (because that
matrix is diagonal), so that, for any configuration C, the probability P̃µ(C)Pµ(C) is inde-
pendent of {µi}. That is why we will only consider this quantity, and not the other two,
to be physically relevant.

III.2 Perturbative matrix Ansatz for the open ASEP

Let us now look at some of the main results of this thesis: the definition and proof of the
perturbative matrix Ansatz.

This section is largely based on [3]. We first define all the necessary objects to con-
struct our Ansatz, then we present the Ansatz itself, give its proof, and an alternative
formulation which will be useful for carrying out calculations in section III.4.

III.2.1 Definitions

We recall that we have defined, for the matrix Ansatz for the steady state of the open
ASEP (section II.2.1), matrices D and E and vectors 〈〈W || and ||V 〉〉 such that:

DE − q ED = (1− q) (D + E) ,

〈〈W ||(αE − γD) = (1− q)〈〈W ||,
(βD − δE)||V 〉〉 = (1− q)||V 〉〉, (III.13)

and we rewrote those equations in terms of d and e defined by:

D = 1 + d,

E = 1 + e (III.14)

obtaining:

de− q ed = (1− q), (III.15)

〈〈W || [α(1 + e)− γ(1 + d)] = (1− q)〈〈W ||, (III.16)

[β(1 + d)− δ(1 + e)] ||V 〉〉 = (1− q)||V 〉〉. (III.17)

We also noticed that the algebra verified by matrices d and e is that of a q-deformed
harmonic oscillator, where e is the creation operator, and d the annihilation operator.

We will now need another matrix Aµ, defined by:

eAµ = eµ Aµe, (III.18)

Aµd = eµ dAµ, (III.19)
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and two more vectors 〈〈W̃ || and ||Ṽ 〉〉 such that:

〈〈W̃ || [α(1− e)− γ(1− d)] = 0, (III.20)

[β(1− d)− δ(1− e)] ||Ṽ 〉〉 = 0. (III.21)

We finally construct two transfer matrices Tµ and Uµ acting on the same space Mµ

(i.e. on the configurations of the ASEP). For that, we first need to define a 2× 2 matrix
X, the entries of which are matrices d, e or 1, and is given, in basis {0, 1}, by:

X =

[
1 e
d 1

]
(III.22)

(the sum of the rows of X gives back the vector that was also called X in section II.2.1).

This matrix is the building block of Uµ and Tµ (just as the vector was for the matrix
Ansatz), which we define by expressing the transfer weight from a configuration C ′ = {n′i}
to a configuration C = {ni} of the ASEP:

Uµ(C, C ′) =
1

ZL
〈〈W ||Aµ

L∏
i=1

Xni,n′i
||V 〉〉 (III.23)

with ZL = 〈〈W ||
(
2 + d+ e

)L||V 〉〉, and

Tµ(C, C ′) = 〈〈W̃ ||Aµ
L∏
i=1

Xni,n′i
||Ṽ 〉〉. (III.24)

The construction of those matrices is similar to that of the steady state vector of the
original matrix Ansatz: each weight is a product of matrices between two vectors, ordered
from one boundary to the other, and each matrix depends only on the occupancies of the
corresponding site. Since it is a transfer matrix, and not a vector, there is, for each site,
an initial occupancy and a final occupancy. The matrix to be placed in the product is d if
the occupancy goes from 0 to 1, e if it goes from 1 to 0, and the identity if the occupancy
is unchanged, which is to say that matrices d and e act on the space of configurations
as, respectively, creation and annihilation operators. Since it is the opposite as in their
internal space (i.e. that of the q-deformed harmonic oscillator), it can also be said that
d transfers a particle from the oscillator to a site, and e transfers a particle from a site
to the oscillator.

The weights of those two matrices are entirely determined by the algebra defined
above. We may note that the matrix Aµ is set between the left boundary vector and
the first matrix because it is the bond between the left reservoir and the first site over
which we count the current. For a general set of parameters {µi}, we would have to add
a matrix Aµi on each appropriate bond, i.e. between Xni,n′i

and Xni+1,ni′+1
, in both of the
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products above, so that:

U{µi}(C, C ′) =
1

ZL
〈〈W ||Aµ0

L∏
i=1

Xni,n′i
Aµi ||V 〉〉, (III.25)

T{µi}(C, C ′) = 〈〈W̃ ||Aµ0
L∏
i=1

Xni,n′i
Aµi ||Ṽ 〉〉. (III.26)

III.2.2 Statement of the perturbative matrix Ansatz

We give here the main results pertaining to those two transfer matrices Uµ and Tµ. The
derivation of those results will be done in the next section.

First of all, their product commutes with the deformed Markov matrix:[
Mµ, UµTµ

]
= 0. (III.27)

Furthermore, for µ = 0, i.e. for no deformation with respect to the current, T0 is
a projector onto the constant vector {1}i on both sides (i.e. a matrix with all entries
equal to 1), and U0T0 is a projector onto the principal eigenvectors of M , which allows
to recover the original matrix Ansatz:

T0 = [1]C,C′ = |1〉〈1|, (III.28)

U0|1〉 = |P ?〉. (III.29)

From this, it follows that UµTµ is a quasi-projector onto the principal eigenvectors of
Mµ:

UµTµ ∼ |Pµ〉〈P̃µ|+O (µ) (III.30)

up to a multiplicative constant, so that when used repeatedly, for instance on |P ?〉, it
allows to access increasingly precise approximations in powers of µ of those vectors. Put
into equations, this reads:

|Pµ〉 =
1

Z
(k)
L

(UµTµ)k|P ?〉+O
(
µk+1

)
, (III.31)

〈P̃µ| =
1

Z
(k)
L

〈1|(UµTµ)k +O
(
µk+1

)
, (III.32)

where Z
(k)
L = 〈1|(UµTµ)k|P ?〉.

Finally, by applying Mµ to (III.31), one obtains the corresponding approximation for
E(µ):

E(µ) =
〈1|Mµ(UµTµ)k|P ?〉
〈1|(UµTµ)k|P ?〉 +O

(
µk+2

)
(III.33)

which means that the ratio of matrix products on the right hand side of the equation
yields the cumulants of the current up to order k + 1.

Those results hold for any integer k, so that, in essence, we have complete exact
expressions for |Pµ〉, 〈P̃µ| and E(µ), expanded as infinite series in µ, which is why we
described this Ansatz as perturbative.

59



Let us also note that this Ansatz applies just as well to the periodic ASEP, by replacing
UµTµ by a single matrix T perµ defined, if the marked bond is the one between sites L and
1, as:

T perµ (C, C ′) =
1

ZL
Tr
[
Aµ

L∏
i=1

Xni,n′i

]
(III.34)

which is to say that a trace replaces the boundary vectors, consistently with the transla-
tional invariance of the system.

III.2.3 Validation of the perturbative matrix Ansatz

This section contains the proofs of all the previous statements. We first verify the com-
mutation relation (III.27). The technical part of the proof can be found in [3] (which is
appended at the end of this manuscript). All the other results stem out from the same
simple observation (III.30), and are taken care of next.

Commutation of UµTµ and Mµ

Relation (III.27) is the main reason why our construction is of interest: since UµTµ com-
mutes with Mµ, it has the same eigenvectors, and we can use that to obtain information
on Mµ without having to diagonalise it directly.

Before proving this relation, we first need to set a few notations. For convenience, we
will here write Uµ and Tµ as:

Uµ =
1

ZL
〈〈W ||Aµ

L∏
i=1

X(i)||V 〉〉, (III.35)

Tµ = 〈〈W̃ ||Aµ
L∏
i=1

X(i)||Ṽ 〉〉, (III.36)

with

X(i) =

[
1 e
d 1

]
(III.37)

as we did in section II.2.1. As previously, the product symbol in these expressions rep-
resents a matrix product in the auxiliary space, and a tensor product in configuration
space. All the matrices X(i) are identical, but they act on different sites, so we will need
to keep track of their position in the matrix products, hence the superscript.

Let us now define the ‘hat’ matrices X̂ by X̂n,n′ = (−1)n (1−q)
2
Xn,n′ :

X̂(i) =
(1− q)

2

[
1 e
−d −1

]
=

(1− q)
2

[
1 0
0 −1

]
�X(i) (III.38)

(where we note � the product in the 2-dimensional space corresponding to the occupancy
number on one site).

The first step in proving (III.27) is to see how the matrix products react to commuting
with one of the local jump matrices Mi. Since Mi acts only on sites i and i + 1, only
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the part X(i)X(i+1) of the matrix products is affected. If a fugacity is set between those
sites, Mi and X(i)X(i+1) become Mi(µi) and X(i)AµiX

(i+1), and we will write the general
relation for the latter, the former being simply the case µi = 0. What we find is:

[Mi(µi), X
(i)AµiX

(i+1)] = X̂(i)AµiX
(i+1) −X(i)AµiX̂

(i+1) (III.39)

and the proof of this can be found in [3] (cf. end of the manuscript) or in section V.1.1.
This equation is related to (II.37), and will be used in the same way.

We may note that this relation is somewhat similar to an integration by parts, or to its
discrete equivalent. Mi(µi) can be seen as a local differential operator (which it is in the
continuous limit), and the difference (rather than the sum) of two partial differentiations,
one to the right and one to the left, gives the difference of two boundary terms, one at i
and one at i+ 1, where matrices X are replaced by X̂. This relation also verifies Chasles’
theorem, so that, by applying all of the bulk matrices Mi or their deformed relatives,
the boundary terms cancel one another except for the extremal ones. In other words, we
have:

[L−1∑
i=1

Mi,
L∏
i=1

X(i)
]

= X̂(1)

L∏
i=2

X(i) −
L−1∏
i=1

X(i)X̂(L) (III.40)

(this is written without fugacities, but the same is true with a general set of µi, provided
matrices Aµi are put where needed in the matrix product).

These calculations, involving ‘hat matrices’ cancelling one another, have also appeared
in [121] to validate the matrix Ansatz for the steady state of the multispecies ASEP on
a ring.

This gives us two independent relations for the commutation of the bulk part of Mµ

with Uµ and Tµ:

[L−1∑
i=1

Mi, Uµ

]
=

1

ZL
〈〈W ||AµX̂(1)

L∏
i=2

X(i)||V 〉〉 − 1

ZL
〈〈W ||Aµ

L−1∏
i=1

X(i) X̂(L)||V 〉〉, (III.41)

[L−1∑
i=1

Mi, Tµ

]
= 〈〈W̃ ||AµX̂(1)

L∏
i=2

X(i)||Ṽ 〉〉 − 〈〈W̃ ||Aµ
L−1∏
i=1

X(i) X̂(L)|||Ṽ 〉〉, (III.42)

which we may write as:

[L−1∑
i=1

Mi, Uµ

]
= Û (1)

µ − Û (L)
µ , (III.43)

[L−1∑
i=1

Mi, Tµ

]
= T̂ (1)

µ − T̂ (L)
µ , (III.44)

so that: [L−1∑
i=1

Mi, UµTµ

]
= Û (1)

µ Tµ − Û (L)
µ Tµ + UµT̂

(1)
µ − UµT̂ (L)

µ . (III.45)
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The last step is to check that

[m0(µ), UµTµ] = −Û (1)
µ Tµ − UµT̂ (1)

µ , (III.46)

[mL, UµTµ] = Û (L)
µ Tµ + UµT̂

(L)
µ . (III.47)

As before, m0 acts only on site 1, so that only X(1) is affected, and the same goes for mL

and site L. These relations are proven in [3] (cf. end of the manuscript) and in section
V.2.1.

Combining all these equations, we see that the terms from commutation in the bulk are
exactly cancelled out by those from each boundary, which proves (III.27). Let us finally
note that both Uµ and Tµ are necessary in (III.46) and (III.47), so that the commutation
does not hold independently for the two matrices, but only for their product.

Projectors and perturbative expansion in µ

An important remark that needs to be made at this point is that the representation
we use for d and e in Uµ is not necessarily the same as that for Tµ. Specifically, for
µ = 0, one particular solution to (III.15), (III.20) and (III.21) for the elements of T0 is
d = e = A0 = 1, so that for any C ′ and C, we have T0(C, C ′) = 〈〈W̃ ||Ṽ 〉〉 which we can set
to 1. This proves (III.28). The same does not work for U0, because it is not compatible
with equations (III.16) and (III.17).

Furthermore, projecting U0 onto |1〉 means summing over all configurations C ′ in
(III.23), so that

〈C|U0|1〉 =
∑
C′
Uµ(C, C ′) = 〈〈W ||A0

L∏
i=1

(Xni,0 +Xni,1)||V 〉〉. (III.48)

We can set A0 to 1, and remark that for ni = 0, we have (Xni,0 +Xni,1) = 1 + e = E and
that for ni = 1, we have (Xni,0 + Xni,1) = d + 1 = D, so that this expression is exactly
that of P ?(C) as given in eq.(II.30), which proves (III.29).

Using relations (III.27), (III.28) and (III.29) together, at µ = 0, we get

[M,U0T0] = 0 =
(
M |P ?〉〈1|

)
−
(
|P ?〉〈1|M

)
. (III.49)

Since we know that 〈1|M = 0 (because M is a stochastic matrix), this implies that
M |P ?〉 = 0, which yields the original matrix Ansatz that we saw in section II.2.1.

This alternative proof of (II.30) relies on the fact that the transfer matrix UµTµ is
a projector in the limit µ → 0. It would be interesting to determine whether for other
situations with matrix product states, one can generically find a transfer matrix that
commutes with a deformation of the dynamics of the system and is a projector in the
non-deformed limit. One could for instance look at the ASEP in discrete time with
different versions of the update [128], or at the multispecies ASEP on a ring [121].

To prove (III.31) and (III.32), we use the relations derived above. Since, for µ = 0,
the matrix U0T0 is the projector onto the principal eigenspace of M , one can write, for
an infinitesimal µ:

UµTµ = Λµ|Pµ〉〈P̃µ|+ rµ (III.50)

62



where Λµ ∼ 1 + O (µ) is the largest eigenvalue of UµTµ, and rµ ∼ O (µ) is the part of
UµTµ that is orthogonal to its principal eigenspace (i.e. orthogonal to |Pµ〉〈P̃µ|), and has
eigenvalues of order µ. In other words, UµTµ is almost a projector, with an error rµ of
order µ.

Since rµ|Pµ〉 = 0 and 〈P̃µ|rµ = 0, one has that:

(UµTµ)k = Λk
µ|Pµ〉〈P̃µ|+ rkµ (III.51)

so that the difference from the projector onto |Pµ〉〈P̃µ| is now rkµ ∼ O
(
µk
)
.

Let us now remark that the parts of |P ?〉 and of 〈1| which are not in the kernel of rµ
are of order µ, so that both rkµ|P ?〉 and 〈1|rkµ are of order µk+1. It follows that (UµTµ)k|P ?〉
is proportional to |Pµ〉 with an error of order µk+1 (and the same goes for 〈P̃µ|), which
proves (III.31).

Equation (III.33) is then proven by simply applying Mµ to (UµTµ)k|P ?〉:

〈1|Mµ(UµTµ)k|P ?〉 = E(µ)Λk
µ〈1|Pµ〉〈P̃µ|P ?〉+ 〈1|Mµr

k
µ|P ?〉, (III.52)

〈1|(UµTµ)k|P ?〉 = Λk
µ〈1|Pµ〉〈P̃µ|P ?〉+ 〈1|rkµ|P ?〉, (III.53)

where 〈1|Mµr
k
µ|P ?〉 is of order µk+2 because 〈1|Mµ is of order µ and rkµ|P ?〉 is of order

µk+1, and 〈1|rkµ|P ?〉 is of order µk+2 for the reason given above. The ratio of those two
equations is therefore equal to E(µ) up to order µk+1.

III.2.4 Formulation as a matrix product

In this section, we give a different formulation of equations (III.31) and (III.32), in terms
of a matrix product akin to (II.30) rather than a product of transfer matrices. This
alternative formulation is particularly useful for the explicit calculations of the cumulants
of the current that we will carry out in section III.4.

The main point that needs to be made here is that, unlike the Markov matrix, which
is a sum of elementary matrices, the transfer matrices Uµ and Tµ are products of the
elementary matrices Xn,n′ , so that a product of those transfer matrices can be seen as a
tensor network, the tensors being of order four:

[
Xn,n′

]
i,j

, where i and j are the internal

indices of X (cf. fig.-III.2).
A consequence of this is that the object (UµTµ)k|P ?〉 can be written in terms of the

columns of this tensor network instead of the lines. Let us therefore define, by recursion
(and denote the product between successive rows by a tensor product ⊗):

D(k+1) = (1⊗ 1 + d⊗ e)⊗D(k) + (1⊗ d+ d⊗ 1)⊗ E(k), (III.54)

E(k+1) = (1⊗ 1 + e⊗ d)⊗ E(k) + (e⊗ 1 + 1⊗ e)⊗D(k), (III.55)

A(k+1)
µ = Aµ ⊗ Aµ ⊗ A(k)

µ , (III.56)

with D0 = D, E0 = E and A
(0)
µ = 1, and

||V (k+1)〉〉 = ||V 〉〉 ⊗ ||Ṽ 〉〉 ⊗ ||V (k)〉〉, (III.57)

〈〈W (k+1)|| = 〈〈W || ⊗ 〈〈W̃ || ⊗ 〈〈W (k)||, (III.58)
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Ṽ

AµW

AµW̃

0 01 1 1

d

0

E

Figure III.2: One of the tensor networks that compose UµTµ|P ?〉 when expanded in terms
of the intermediate configurations at each step of the product. Lines represent the transfer
matrices Uµ and Tµ, whereas columns represent E(k) or D(k). See the detailed explanation
below.

with ||V0〉〉 = ||V 〉〉 and 〈〈W0|| = 〈〈W ||.
In this formalism, equation (III.31) becomes:

〈C|Pµ〉 =
1

Z
(k)
L

〈〈W (k)||A(k)
µ

L∏
i=1

(
niD

(k) + (1− ni)E(k)
)
||V (k)〉〉+O

(
µk+1

)
. (III.59)

We can do just the same with (III.32), building the matrices and vectors recursively
towards the right rather than the left.

To give a simple explicit example, in fig.-III.2 is shown one of the tensor networks
which compose UµTµ|P ?〉 for L = 5, namely Uµ(C, C ′)Tµ(C ′, C ′′)P ?(C ′′), where we chose
C = {1, 0, 0, 1, 1}, C ′ = {1, 0, 1, 1, 0} and C ′′ = {0, 1, 0, 0, 1}. The blue rectangle corre-
sponds to Tµ(C ′, C ′′), the black one to P ?(C ′′), and the red rectangle is one of the elements
in D(1), namely X1,1⊗X1,0⊗E. Summing over the second and third indices in any column
gives E(1) or D(1), depending on whether the first (upper) index is 0 or 1.

The equivalent form for the periodic case is the same, with a trace instead of the
boundary vectors, and with only one tensor product per stage of the recursion, starting
from D(0) = E(0) = 1, so that matrices of order k in the open case correspond to matrices
of order 2k + 1 in the periodic case.

While the transfer matrix formulation (III.31) is better suited to the algebraic proof
of the Ansatz, this matrix product formulation (III.59) is useful for doing explicit cal-
culations, like those of the cumulants of the current (cf. section III.4). Naturally, all
the calculations done here using the transfer matrix formulation can be done with these
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matrix products (and were, for the most part, done that way in order to obtain the re-
sults in [1,2]), but are much more cumbersome and convoluted. Let us also note that the
matrices E(k) and D(k) are related to the ones used in the matrix Ansatz solution of the
multispecies periodic ASEP [121].

III.3 Cumulants of the Current

Using the matrix product formulation of our perturbative matrix Ansatz, we can infer,
from low order calculations, the general formula for the generating function of the cu-
mulants of the current in the open ASEP. In this section, we present the final result,
and what it reduces to for the simpler case of the TASEP. Everything in this section was
at first conjectured from the calculations we present in the next one, and then proven
through what can be found in chapter V.

We first recall a few definitions that we used in section II.2. From section II.2.1, we
need:

a =
1

2α

[
(1− q − α + γ) +

√
(1− q − α + γ)2 + 4αγ

]
, (III.60)

ã =
1

2α

[
(1− q − α + γ)−

√
(1− q − α + γ)2 + 4αγ

]
, (III.61)

b =
1

2β

[
(1− q − β + δ) +

√
(1− q − β + δ)2 + 4βδ

]
, (III.62)

b̃ =
1

2β

[
(1− q − β + δ)−

√
(1− q − β + δ)2 + 4βδ

]
, (III.63)

and

F (z) =
(1 + z)L(1 + z−1)L(z2, z−2)∞

(az, a/z, ãz, ã/z, bz, b/z, b̃z, b̃/z)∞
. (III.64)

From section II.2.2, we redefine the convolution kernel K, as:

K(z, z̃) = 2
∞∑
k=1

qk

1− qk
(

(z/z̃)k + (z/z̃)−k
)

(III.65)

and the associated convolution operator X:

X[f ](z) =

∮
S

dz̃

ı2πz̃
f(z̃)K(z, z̃) (III.66)

where S = {0, qka, qkã, qkb, qkb̃} for k in N. Note that there is an extra factor 2 in K,
and that the integration domain of X has changed.

If we now define the function W (z) such that:

W (z) = −1

2
ln
(

1−BF (z)eX[W ](z)
)

(III.67)
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we find that:

µ = −
∮
S

dz

ı2πz
W (z) = −

∞∑
k=1

Ck
Bk

k
(III.68)

and

E(µ) = −(1− q)
∮
S

dz

ı2π(1 + z)2
W (z) = −(1− q)

∞∑
k=1

Dk
Bk

k
. (III.69)

The form of this result is exactly the same as what we found for the periodic ASEP
in section II.2.2. The only differences are a factor 2 in X, a factor 1

2
in front of the

logarithm in the definition of W (z), and h(z) being replaced by the function F (z) that
we used in II.2.1 for the mean current (with all the contour integrals being taken over
the appropriate integration domain instead of the unit circle). As before, the coefficients
Ck and Dk can be expressed in terms of combinations of F and K, such as, for instance:

C2 =
1

2

∮
S

dz

ı2πz
F (z)2 +

1

2

∮
S

dz1

ı2πz1

∮
S

dz2

ı2πz2

F (z1)F (z2)K(z1, z2) (III.70)

and a few more explicit examples can be found in section IV.1. The cumulants of the
current can then be obtained by inverting eq.(III.68) order by order and injecting the
result in eq.(III.69).

Let us note that if we choose the boundary parameters to be a = 1, ã = −q, b =√
q and b̃ = −√q, which is to say α = 1

2
, γ = q

2
, β = 1 and δ = q, we find that

(1+z)(az, ãz, bz, b̃z)∞ = (z2)∞ and (1+z−1)(a/z, ã/z, b/z, b̃/z)∞ = (z−2)∞, so that F (z)
reduces to (1 + z)L+1(1 + z−1)L+1. This is the same as the function h for the periodic
ASEP with 2L + 2 sites and L + 1 particles. Because of the extra factors 2 and 1

2
, the

generating function of the cumulants of the current is half that which we found in the
periodic case, taken at 2µ. This also works if we exchange a with b and ã with b̃. Those
two special points correspond to ρa = 1

2
and 1 − ρb = 1

1+q
, or the opposite, and are on

the transition lines between the MC phase and the LD or HD phase. We will come back
to this remark in section IV.4.

In the simpler case of the TASEP, we have K = 0, and we find:

Ck =
1

2

∮
{0,a,b}

dz

ı2πz
F k(z) (III.71)

and

Dk =
1

2

∮
{0,a,b}

dz

ı2π(1 + z)2
F k(z) (III.72)

where F (z) reduces to:

F (z) =
(1 + z)L(1 + z−1)L(1− z2)(1− z−2)

(1− az)(1− a
z
)(1− bz)(1− b

z
)

(III.73)

with a = 1−α
α

and b = 1−β
β

.
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In the even simpler case where α = β = 1, so that a = b = 0, we can do the integrals
explicitly, and find:

µ = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)]!

[k(L+ 1)]! [k(L+ 2)]!

Bk

2k
, (III.74)

E(µ) = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)− 2]!

[k(L+ 1)− 1]! [k(L+ 2)− 1]!

Bk

2k
. (III.75)

In chapter IV, we take the large L asymptotics of these formulae to see what we
can learn on the behaviour of the system. But first, let us see how we can infer their
expression from a few low-order calculations.

III.4 Appendix - low-order calculations and conjec-

ture

In this section, we make use of formula (III.33) to calculate a few of the first cumulants
of the current, first for the TASEP, then for the ASEP. We then use these calculations,
along with what we know of the corresponding results in the periodic case, to guess the
general formula for the generating function of the cumulants of the current. Finally, we
validate that formula using exact numerical calculations on systems of small size, and
DMRG calculations provided by M. Gorissen and C. Vanderzande.

Our starting point is equation (III.33):

E(µ) =
〈1|Mµ(UµTµ)k|P ?〉
〈1|(UµTµ)k|P ?〉 +O

(
µk+2

)
=

k+1∑
l=1

El
µl

l!
+O

(
µk+2

)
. (III.76)

Our goal is to extract, from this formula, an explicit expression for the cumulants of
the current. In principle, this is easy enough: one simply has to take equation (III.76)
for every k and keep only the coefficient of order k + 1 in µ. Unfortunately, the ratio of
two matrix products in that equation makes this calculation extremely difficult: it’s not
enough to calculate just one coefficient in the numerator and one the denominator to get
a certain order for the ratio. It so happens that the simplest coefficient to calculate for
any expression of the form 〈1|(UµTµ)k|P ?〉 is the one of order k in µ, and the simplest in
〈1|Mµ(UµTµ)k|P ?〉 is that of order k + 1. As we said, getting just those will give us only
partial information on the corresponding cumulant, but we will see that it will actually
be enough to make a guess, which we can then check against numerical data.

More precisely, what we will do now is the following: for the case of the periodic
TASEP, we will calculate the coefficient of order k + 1 in the numerator of eq.(III.76)
(with UµTµ replaced by T perµ ) and that of order k in the numerator, for small values of
k, and compare what we get with the exact expressions (II.110) and (II.111), which we
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recall here:

E(µ) = −
∞∑
k=1

Dk
Bk

k
, (III.77)

µ = −
∞∑
k=1

Ck
Bk

k
, (III.78)

with

Ck =

∮
c1

dz

ı2πz

(1 + z)kL

zkN
=

(
kL

kN

)
, (III.79)

Dk =

∮
c1

dz

ı2π(1 + z)2

(1 + z)kL

zkN
=

(
kL− 2

kN − 1

)
, (III.80)

where c1 is the unit circle.
We will find that a part of the denominator matches coefficient Ck, and that a part of

the numerator matches Dk. We will then calculate the same coefficients from eq.(III.76)
for the open TASEP, and find good candidates for Ck and Dk, assuming that the structure
of the answer is a double series in a parameter B as well. Note that, here, this structure
is entirely assumed, but we will see in chapter V that it naturally arises from the Bethe
Ansatz, just as it did in the periodic case.

III.4.1 Totally asymmetric case

We first focus our attention on the TASEP.
Let us recall the expressions of the objects we will be calculating in terms of matrix

products. The denominators are given, in the open case, by:

〈1|(UµTµ)k|P ?〉 = 〈〈W (k)||A(k)
µ (D(k) + E(k))L||V (k)〉〉 (III.81)

and, in the periodic case, by

〈1|(T perµ )k|P ?〉 =

∮
c1

dz0

ı2πz0

Tr[A(k)
µ (z0D

(k) + E(k))L]z−N0 (III.82)

and the numerators, in the open case, by

〈1|Mµ(UµTµ)k|P ?〉 = (eµ − 1)〈〈W (k)||A(k)
µ E(k)(D(k) + E(k))L−1||V (k)〉〉 (III.83)

and, in the periodic case, by

〈1|Mµ(T perµ )k|P ?〉 = (eµ − 1)

∮
c1

dz0

ı2πz0

Tr[D(k)A(k)
µ E(k)(z0D

(k) +E(k))L−2]z−N+1
0 . (III.84)

To obtain those last two expressions, one has to write Mµ = M + (eµ− 1)M+, where M+

is the off-diagonal part of the local matrix acting on the bond over which we count the
current, and remember that 〈1|M = 0.

In the expressions concerning the periodic case, the contour integral over z0 serves to
select only the configurations with N particles.
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In what follows, we will be writing the term of order µk in 〈1|(UµTµ)k|P ?〉 as Xk, and
the terms of order µk+1 in 〈1|Mµ(UµTµ)k|P ?〉 as Yk+1 (one order in µ will be coming from
the factor (eµ − 1)).

For the TASEP, the algebra satisfied by d and e reduces to de = 1. The representation
that we will be using for d and e is given by the matrices:

d =
∞∑
n=1

||n− 1〉〉〈〈n|| =


0 1 0 0 · · ·
0 0 1 0
0 0 0 1
0 0 0 0
...

. . .

 (III.85)

and

e =
∞∑
n=0

||n+ 1〉〉〈〈n|| =


0 0 0 0 · · ·
1 0 0 0
0 1 0 0
0 0 1 0
...

. . .

 (III.86)

which can be considered as jump matrices for a random walk on a one-dimensional lattice
with a wall at site −1.

The matrix Aµ can be written as:

Aµ = (1− e−µ)
∞∑
n=0

e−nµ||n〉〉〈〈n|| = (1− e−µ)


1 0 0 0 · · ·
0 e−µ 0 0
0 0 e−2µ 0
0 0 0 e−3µ

...
. . .

 (III.87)

where the factor (1− e−µ) is there so that the trace of Aµ has a finite limit for µ = 0.
Let us also recall that, in the periodic case, D(k) and E(k) are tensor products of order

k, whereas in the open case they are of order 2k + 1.

We will now try to determine Xk and Yk order by order, first for the periodic case,
and then for the open case.

Periodic case - first order

This one is easy: for the periodic case, D(0) = E(0) = 1, so that we find immediately:

X0 =

∮
c1

dz0

ı2πz0

(1 + z0)L

zN0
(III.88)

and

Y1 =

∮
c1

dz0

ı2πz0

(1 + z0)L−2

zN−1
0

(III.89)

(the one order in µ corresponding to Y1 comes from the prefactor (eµ − 1) in (III.84)).
We recognise C1 and D1, but it’s too early to be drawing conclusions.
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Periodic case - second order

For the second order, we have only one row of matrices d and e:

X1 =

∮
c1

dz0

ı2πz0

Tr[Aµ(z0D + E)L]z−N0

∣∣∣∣
µ1
. (III.90)

Just as in section II.2.1, we need to look for eigenvectors of (z0D +E). Let us define
the plane wave vector

||z〉〉 =
∞∑
n=0

zn||n〉〉. (III.91)

The action of d and e on ||z〉〉 is as follows:

d||z〉〉 = z||z〉〉 , e||z〉〉 = z(||z〉〉 − ||0〉〉) (III.92)

where, since z will always be on the unit circle, we write z for the inverse of z, which is
more compact than z−1 or 1

z
.

Because of that ||0〉〉 in the right side of this last equation, which is due to the wall in
the random walk that d and e represent, we need to use the method of images to build
the vector we seek. We ultimately find that:

(z0d+ e)
(
zz0||zz0〉〉 − z||z〉〉

)
= (z + z0z)

(
zz0||zz0〉〉 − z||z〉〉

)
(III.93)

so that:

(z0D + E)
(
zz0||zz0〉〉 − z||z〉〉

)
= (1 + z)(1 + z0z)

(
zz0||zz0〉〉 − z||z〉〉

)
. (III.94)

The closure identity for these combinations of plane waves is:

1 =
1

2

∮
c1

dz

ı2πz

(
zz0||zz0〉〉 − z||z〉〉

)(
zz0〈〈zz0|| − z〈〈z||

)
(III.95)

so that, if we inject it at the left of matrix Aµ in (III.90), we get:

X1 =
1

2

∮ ∮
c1

dz0

ı2πz0

dz

ı2πz

(1+z)L(1+z0z)L

zN0

(
zz0〈〈zz0||−z〈〈z||

)
Aµ

(
zz0||zz0〉〉−z||z〉〉

)∣∣∣∣
µ1
. (III.96)

The right part of the argument of the integral is easily calculated:(
zz0〈〈zz0||−z〈〈z||

)
Aµ

(
zz0||zz0〉〉−z||z〉〉

)
= (1− e−µ)

( ∞∑
n=0

(2− (z0z
2)n+1 − (z0z

2)n+1)e−nµ
)

(III.97)
and we need to take µ to order 1 in this expression.

This is where we start throwing terms away for no apparent reason. The part of this
last expression which doesn’t depend on z (i.e. the factor 2) will produce a contribution
to X1 which is equal to X2

0 . We are not interested in this part. In what is left, (1− e−µ)
is taken at order 1 in µ, so that everything else is taken at µ = 0. This gives us, up to a

minus sign:
∞∑

k=−∞
(z0z

2)k.
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This series, in a contour integral over the unit circle, is a delta function:

∞∑
k=−∞

xk = δ(1− x) (III.98)

because, if applied to a function f(x) =
∞∑

k=−∞
akx

k, it gives:

∮
c1

dx

ı2πx

∞∑
k=−∞

akx
k

∞∑
l=−∞

xl =
∞∑

k=−∞

ak = f(1). (III.99)

This tells us that we must take z0 = z2 in the left part of (III.96). In the end, we get:

X1 ∼
1

2

∮
c1

dz

ı2πz

(1 + z)2L

z2N
(III.100)

where the ∼ symbol means nothing rigorous.
The reason we kept only the terms that we did is that they produce a contribution

to X1 equal to C2, which is what we are looking for. If we’re lucky, we might be able to
find Ck in every Xk−1 and Dk in every Yk.

Let’s continue with Y2:

Y2 = (eµ − 1)

∮
c1

dz0

ı2πz0

Tr[DAµE(z0D + E)L−2]z−N+1
0

∣∣∣∣
µ2
. (III.101)

Using the same closure identity as before, we get:

Y2 =
(eµ − 1)

2

∮ ∮
c1

dz0

ı2πz0

dz

ı2πz

(1 + z)L−2(1 + z0z)L−2

zN−1
0(

zz0〈〈zz0|| − z〈〈z||
)
DAµE

(
zz0||zz0〉〉 − z||z〉〉

)∣∣∣∣
µ2

(III.102)

and, as before, we need to deal with the right part.
We calculate:

DAµE = Aµ + dAµ + Aµe+ dAµe = Aµ + eµAµd+ eµeAµ + eµAµ (III.103)

so that: (
zz0〈〈zz0|| − z〈〈z||

)
DAµE

(
zz0||zz0〉〉 − z||z〉〉

)
=

(1− e−µ)
( ∞∑
n=0

(
(1 + e−µ + e−µzz0 + e−µzz0)

− (1 + e−µ + e−µzz0 + e−µz)(z0z
2)n+1

− (1 + e−µ + e−µz + e−µzz0)(z0z
2)n+1

+ (1 + e−µ + e−µz + e−µz)
)
e−nµ

)
. (III.104)
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Just as before, we only keep the terms that are part of a delta function, and take µ
to order 2, one from the prefactor (eµ− 1) in Y2 and one from the factor (1− e−µ) in this
last equation, the rest being taken at µ = 0. We obtain:

∞∑
n=0

(2 + zz0 + z)(z0z
2)n+1 + (2 + z + zz0)(z0z

2)n+1 ∼ (2 + z + z̄)δ(1− z0z
2). (III.105)

Putting this back into Y2 and taking z0 = z2, we finally obtain:

Y2 ∼
∮
c1

dz

ı2πz

(1 + z)2L−2

z2N−1
(III.106)

in which we recognise D2.
Let us do one more order, to see how we can deal with the tensor products in D(2)

and E(2).

Periodic case - third order

We consider:

X2 =

∮
c1

dz0

ı2πz0

Tr[A(2)
µ (z0D

(2) + E(2))L]z−N0

∣∣∣∣
µ2

(III.107)

where we recall that

D(2) = 1
1 + d

1 + 1
d + d

e , E(2) = 1
1 + e

1 + 1
e + e

d , A(2)
µ = Aµ

Aµ
(III.108)

(we write the tensor product in columns, in a way similar to the diagram we drew earlier
in fig.-III.2, for compactness).

The action of (z0D
(2) + E(2)) on a product of plane waves is, if we forget the extra

||0〉〉 terms due to the action of e:(
z0D

(2) + E(2)
)||z1〉〉
||z2〉〉 ∼

(
z0(1 + z1 + z2 + z2z1) + (1 + z1 + z2 + z1z2)

)
||z1〉〉
||z2〉〉

= (1 + z0z1)(1 + z1z2)(1 + z2)||z1〉〉||z2〉〉. (III.109)

We will therefore try to build the true eigenvectors of (z0D
(2) +E(2)) using a method

of images. Their eigenvalues will be of the form (1 + z0z1)(1 + z1z2)(1 + z2). The way to
go is to find all the transformations that leave that eigenvalue invariant, and combine the
corresponding plane waves to force a coefficient 0 where the walls of the random walks
are (i.e. on the basis vectors ‘|| − 1〉〉’).

Let us change variables, and define:

φ0 = z0z1 , φ1 = z1z2 , φ2 = z2, (III.110)

z2 = φ2 , z1 = φ1φ2 , z0 = φ0φ1φ2. (III.111)

The vectors we seek are obtained by exchanging the φi’s, as a determinant:

||φ(2)〉〉 =
∑
σ

ε(σ) φσ(1)

(
φσ(2)

)2||φσ(1) φσ(2)〉〉
||φσ(2)〉〉

(III.112)
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where σ is a permutation on {0, 1, 2} and ε(σ) is its signature. These vectors are such
that: (

z0D
(2) + E(2)

)
||φ(2)〉〉 = (1 + φ0)(1 + φ1)(1 + φ2)||φ(2)〉〉 (III.113)

and the relevant closure identity is:

1 =
1

3!

∮
c1

∏
dφi∏

(ı2πφi)
||φ(2)〉〉〈〈φ(2)||. (III.114)

Injecting this into (III.107), we get:

X2 =
1

3!

∮
c1

∏
dφi∏

(ı2πφi)

(1 + φ0)L

φN0

(1 + φ1)L

φN1

(1 + φ2)L

φN2
〈〈φ(2)||A(2)

µ ||φ
(2)〉〉
∣∣∣∣
µ2

(III.115)

where

〈〈φ(2)||A(2)
µ ||φ

(2)〉〉=(1− e−µ)2

∞∑
n,m=0

e−(n+m)µ
∑
σ,σ′

(φσ(1)φσ′(1))
n+1(φσ(2)φσ′(2))

n+m+2 (III.116)

This is where we need to keep certain terms and throw the others away. The sum
over the permutations, in the previous equation, contains 36 terms. We will only keep
the 12 terms for which σ′ ◦ σ−1 is an irreducible permutation (i.e. with only one cycle of
size 3). These terms are:(φ1

φ2

)n+1(φ2

φ0

)n+m+2

+
(φ0

φ2

)n+1(φ2

φ1

)n+m+2

+
(φ1

φ0

)n+1(φ0

φ2

)n+m+2

+
(φ2

φ1

)n+1(φ0

φ2

)n+m+2

+
(φ2

φ0

)n+1(φ1

φ2

)n+m+2

+
(φ0

φ1

)n+1(φ2

φ0

)n+m+2

+
(φ2

φ1

)n+1(φ1

φ0

)n+m+2

+
(φ2

φ0

)n+1(φ0

φ1

)n+m+2

+
(φ0

φ1

)n+1(φ1

φ2

)n+m+2

+
(φ1

φ2

)n+1(φ0

φ1

)n+m+2

+
(φ0

φ2

)n+1(φ1

φ0

)n+m+2

+
(φ1

φ0

)n+1(φ2

φ1

)n+m+2

. (III.117)

The first six are the same as the last six with φ1 ↔ φ2, so that we can keep only the first
lot and multiply X2 by 2.

All those terms can be written using only ψ1 = φ1/φ0 and ψ2 = φ2/φ0. The exponents
of those two variables in each of the first six terms are:

1 : {n+ 1,m+ 1} 2 : {−n−m− 2,m+ 1} 3 : {n+ 1,−n−m− 2}
4 : {−n− 1,−m− 1} 5 : {n+m+ 2,−m− 1} 6 : {−n− 1, n+m+ 2} (III.118)

for n and m in N. If we draw these regions on Z2 (fig.-III.3), we see that all the powers
of ψ1 and ψ2 are there except for a few lines.

If we add those, the sum of all these terms becomes:

∞∑
n=−∞

∞∑
m=−∞

ψn1ψ
m
2 = δ(1− φ1/φ0)δ(1− φ2/φ0) (III.119)
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1
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Figure III.3: The six regions listed above for the exponents of ψ1 and ψ2 in X2.

and by putting these deltas back in X2, we finally get:

X2 ∼
1

3

∮
c1

dz

ı2πz

(1 + z)3L

z3N
. (III.120)

A similar calculation on Y3 gives:

Y3 ∼
1

3

∮
c1

dz

ı2πz

(1 + z)3L−2

z3N−1
. (III.121)

We recognise those two terms to be C3 and D3, and we have all we need to go to an
arbitrary order.

Periodic case - any order

We can finally consider Xk for any k:

Xk =

∮
c1

dz0

ı2πz0

Tr[A(k)
µ (z0D

(k) + E(k))L]z−N0

∣∣∣∣
µk
. (III.122)

As in the previous case, the action of (z0D
(k) + E(k)) on a plane wave gives, up to

some boundary terms:

(
z0D

(k) + E(k)
)
||{zi}〉〉 ∼

k∏
i=0

(1 + zizi+1)||{zi}〉〉. (III.123)
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We define new variables φi, under the exchange of which the eigenvalues of (z0D
(k) +

E(k)) are invariant, as:

φi = zizi+1 , zi =
k∏
l=i

φl (III.124)

and express the true eigenvectors of (z0D
(k) + E(k)) as determinants of plane waves:

||φ(k)〉〉 =
∑
σ

ε(σ)
k∏
i=1

(
φσ(i)

)i∣∣∣∣∣∣{ k∏
l=i

φσ(l)}
〉〉

(III.125)

such that: (
z0D

(k) + E(k)
)
||φ(k)〉〉 =

k∏
i=0

(1 + φi)||φ
(k)〉〉. (III.126)

The closure identity for those vectors is given by:

1 =
1

(k + 1)!

∮
c1

∏
dφi∏

(ı2πφi)
||φ(k)〉〉〈〈φ(k)|| (III.127)

which gives, once introduced into eq.(III.122):

Xk =
1

(k + 1)!

∮
c1

∏
dφi∏

(ı2πφi)

k∏
i=0

(1 + φi)
L

φNi
〈〈φ(k)||A(k)

µ ||φ
(k)〉〉

∣∣∣
µk
. (III.128)

The last part of this equation gives:

〈〈φ(k)||A(k)
µ ||φ

(k)〉〉 = (1− e−µ)k
∞∑
ni=0

e−(
∑
ni)µ

∑
σ,σ′

k∏
i=1

(φσ(i)φσ′(i))
∑i
l=1(nl+1). (III.129)

From the sum on σ and σ′, which contains (k + 1)!2 terms, we keep only those such
that σ′ ◦ σ−1 is an irreducible permutation. This leaves us with k!(k+ 1)! terms. We can
separate them into k! groups, related to one another through the permutation of the φi’s
for i 6= 0. Keeping only one of these groups, and multiplying Xk by k!, we can write each
term using only the k variables ψi = φi/φ0. The exponents of these variables in each of the
terms we kept determine regions in Zk, arranged as the vertices of a permutohedron, or as
the faces of its dual (fig.-III.4), which fill the whole lattice except for a few hyperplanes.

If we add those hyperplanes by hand, we get a product of delta functions. Putting
those back into Xk, we finally get:

Xk−1 ∼
1

k

∮
c1

dz

ı2πz

(1 + z)kL

zkN
(III.130)

and

Yk ∼
1

k

∮
c1

dz

ı2πz

(1 + z)kL−2

zkN−1
(III.131)

where we recognise Ck and Dk, multiplied by the factor 1
k

which is also present in (II.110)
and (II.111).
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Figure III.4: The permutohedron of order 3 (truncated octahedron) and its dual (tetrakis
hexahedron).

Note that all the terms we threw away in calculating these coefficients would have
produced combinations of lower order Cl’s and Dl’s (with l < k), which is precisely why
we threw them away, to isolate the part that produced Ck and Dk.

What we intend to do next is to make the same calculations in the open case, and
identify the terms which look like the ones we kept for the periodic case. This should
give us a good candidate for the coefficients Ck and Dk for the open ASEP.

Open case - first order

As is the periodic case, the first order is easy to deal with. We have X0 = ZL and
Y1 = ZL−1, as we saw in section II.2.1. Nevertheless, we will redo the calculation here, in
the case of the TASEP, just to refresh our memory.

We have:

X0 = 〈〈W ||(D + E)L||V 〉〉 (III.132)

with

〈〈W || =
∞∑
n=0

an〈〈n|| = 〈〈a|| , a =
1− α
α

, (III.133)

||V 〉〉 =
∞∑
n=0

bn||n〉〉 = ||b〉〉 , b =
1− β
β

. (III.134)

For the eigenvectors of (D + E), and, later, of (D(k) + E(k)), we can use the ones we
found earlier, with z0 set to 1.

This gives us:

(D + E)
(
z||z〉〉 − z||z〉〉

)
= (1 + z)(1 + z)

(
z||z〉〉 − z||z〉〉

)
(III.135)

and

1 =
1

2

∮
c1

dz

ı2πz

(
z||z〉〉 − z||z〉〉

)(
z〈〈z|| − z〈〈z||

)
(III.136)
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so that

X0 =
1

2

∮
c1

dz

ı2πz
(1 + z)L(1 + z)L〈〈a||

(
z||z〉〉 − z||z〉〉

)(
z〈〈z|| − z〈〈z||

)
||b〉〉. (III.137)

We know that, for a < 1 and b < 1:

〈〈a||z〉〉 =
1

1− az , 〈〈z||b〉〉 =
1

1− bz . (III.138)

We will stick to that case for now, and generalise to any a and b at the end. All the
contour integrals are done on the unit circle for now.

We get:

〈〈W ||
(
z||z〉〉 − z||z〉〉

)(
z〈〈z|| − z〈〈z||

)
||V 〉〉 =

( z

1− az −
z

1− az
)( z

1− bz −
z

1− bz
)

=
(z − z)(z − z)

(1− az)(1− az)(1− bz)(1− bz)
(III.139)

so that

X0 =
1

2

∮
c1

dz

ı2πz

(1 + z)L(1 + z)L(1− z2)(1− z2)

(1− az)(1− az)(1− bz)(1− bz)
(III.140)

and

Y1 =
1

2

∮
c1

dz

ı2πz

(1 + z)L−1(1 + z)L−1(1− z2)(1− z2)

(1− az)(1− az)(1− bz)(1− bz)
. (III.141)

By rewriting z as z−1, and adapting the contour integral to cases where a and b may
be larger than 1, we recognise the expressions of C1 and D1 from (III.71) and (III.72).

Open case - second order

For the next order, things get tougher: we now have to deal with tensor products of order
3. X1 is expressed as:

X1 = 〈〈W (1)||A(1)
µ (D(1) + E(1))L||V (1)〉〉

∣∣∣
µ

(III.142)

with

D(1) =
1
1
1

+
1
d
1

+
1
1
d

+
1
d
e

+
d
1
1

+
d
e
1

+
d
1
e

+
d
e
d
, E(1) =

e
1
1

+
e
d
1

+
e
1
d

+
e
d
e

+
1
1
1

+
1
e
1

+
1
1
e

+
1
e
d

(III.143)

and

〈〈W (1)|| =
〈〈a||
〈〈1||
〈〈a||

, ||V (1)〉〉 =
||b〉〉
||1〉〉
||b〉〉

, A(1)
µ =

Ãµ
Aµ
Ãµ

(III.144)

where 〈〈1|| is not the basis vector, but the plane wave with argument 1, and

Ãµ =
∞∑
n=0

e−nµ||n〉〉〈〈n|| = (1− e−µ)−1Aµ. (III.145)
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Notice that we have replaced Aµ with Ãµ for the first and third rows. It is exactly
the same matrix, without the normalisation factor (1− e−µ). The reason for this is that,
on those rows, the matrix product is set between vectors 〈〈a|| and ||b〉〉 (which are the
q = 0 limit of vectors 〈〈W || and ||V 〉〉 that we found in section II.2.1), of which any scalar
product converges if a < 1 and b < 1 (which we assume for now). On the secod row,
however, those boundary vectors are replaced by 〈〈1|| and ||1〉〉 (which can easily be found
to be the solutions for vectors 〈〈W̃ || and ||Ṽ 〉〉 for q = 0), and the normalisation becomes
necessary.

We can make the same change of variables (III.124) as in the periodic case, but with
z0 = 1, i.e.

z0 =
2k+1∏
i=0

φi = 1 (III.146)

We inforce this last condition through a delta function in Xk. We then insert the
closure identity of order 2k + 1 next to the right boundary in Xk, and get:

Xk=
1

(2k + 2)!

∮
c1

∏
dφi∏

(ı2πφi)
δ
(

1−
∏

φi

) k∏
i=0

(1+φi)
L〈〈W (k)||A(k)

µ ||φ
(2k+1)〉〉〈〈φ(2k+1)||V (k)〉〉

∣∣∣∣
µk
.

(III.147)

Contrary to what we had in the periodic case, the left and right vectors of the closure
identity don’t project onto one another (which they did because of the trace), but onto the
boundary vectors, separately. We therefore have two objects to calculate independently.

We first look at the simpler case where a = b = 0.

For k = 1, we need to calculate:

〈〈φ(3)||V (1)〉〉 =
∑
σ

ε(σ)
(
φσ(1)φ

2
σ(2)φ

3
σ(3)

) ∞∑
n=0

(φσ(2)φσ(3))
n

=
1

4

∑
σ

ε(σ)
(

(φσ(1) − φσ(0))(φσ(3) − φσ(2))
) ∞∑
n=0

(φσ(2)φσ(3))
n+2 (III.148)

=
1

8

∑
σ

ε(σ)
(

(φσ(1) − φσ(0))(φσ(3) − φσ(2))
) ∞∑
n=0

(
(φσ(2)φσ(3))

n+2 + (φσ(0)φσ(1))
n+2
)
.

To get from the first to the second line, we collected the terms with σ(0)↔ σ(1) and/or
σ(2)↔ σ(3) (for which the prefactor is different but the sum over n is the same). To go
from the second to the third, we collected those with σ(0)↔ σ(2) and σ(1)↔ σ(3) (for
which the prefactor is the same but the sum over n is different).

We now need to use the delta function imposing φ0φ1φ2φ3 = 1, to write φσ(0)φσ(1) =
(φσ(2)φσ(3))

−1 in that last expression. Because of that, the sum over n is only three terms
short of a delta function (those terms being the ones for n = −1, n = 0 and n = 1).
These missing terms acually compensate between one permutation and another, so that
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we finally get:

〈〈φ(3)||V (1)〉〉 =
(

(φ1 − φ0)(φ3 − φ2)
)
δ
(
1− φ2φ3

)
+
(

(φ2 − φ0)(φ3 − φ1)
)
δ
(
1− φ1φ3

)
+
(

(φ3 − φ0)(φ2 − φ1)
)
δ
(
1− φ1φ2

)
. (III.149)

For the term from (III.147) involving the left boundary, things are a bit different due
to the presence of Aµ. We can make the same transformations except for the very last
one, and get:

〈〈W (1)||A(1)
µ ||φ(3)〉〉 = (1− e−µ)

(
(φ1 − φ0)(φ3 − φ2)

) ∞∑
n=0

(
(φ2φ3)n+2 + (φ2φ3)−n−2

)
e−nµ

+(1− e−µ)
(

(φ2 − φ0)(φ3 − φ1)
) ∞∑
n=0

(
(φ1φ3)n+2 + (φ1φ3)−n−2

)
e−nµ

+(1− e−µ)
(

(φ3 − φ0)(φ2 − φ1)
) ∞∑
n=0

(
(φ1φ2)n+2 + (φ1φ2)−n−2

)
e−nµ. (III.150)

For the open case, this is the point where we throw a few terms away. In the product
between the two previous equations, the first delta from (III.149) transforms each term
is the first sum from (III.150) into 1s, and produces contribution to X1 equal to X2

0 . We
won’t keep this term, nor will we keep the two we get by multiplying the second delta with
the second sum, or the third delta with the third sum. In all the other combinations, we
can take the prefactors (1− e−µ) to order 1, and the rest at µ = 0. The sums in (III.150)
can be completed into delta functions, and we get:

X1 ∼
1

4!

∮
c1

∏
dφi∏

(ı2πφi)

k∏
i=0

(1 + φi)
L
(

(φ1 − φ0)(φ3 − φ2)(φ2 − φ0)(φ3 − φ1)
)

δ
(

1−
∏

φi

)
δ
(
1− φ2φ3

)
δ
(
1− φ1φ3

)
+ permutations (III.151)

which gives us, in the end:

X1 ∼
1

4

∮
c1

dz

ı2πz

(
(1 + z)L(1 + z)L(1− z2)(1− z2)

)2

. (III.152)

Open case - third order

For the next order, the calculations are pretty much the same, with two more variables.
The factors we get from 〈〈φ(5)||V (2)〉〉 are of the form:(

(φ1 − φ0)(φ3 − φ2)(φ5 − φ4)
)
δ
(
1− φ2φ3

)
δ
(
1− φ4φ5

)
(III.153)

plus permutations of the indices.
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If we set ψi = φ2iφ2i+1, with ψ0 = 1/ψ1ψ2, the terms that we get from 〈〈W (2)||A(2)
µ ||φ(5)〉〉

are, up to a prefactor (φ1 − φ0)(φ3 − φ2)(φ5 − φ4), of the form:(
ψ1

)n+2(
ψ2

)n+m+4
+

(
ψ0

)n+2(
ψ2

)n+m+4
+

(
ψ1

)n+2(
ψ0

)n+m+4

+
(
ψ2

)n+2(
ψ1

)n+m+4
+

(
ψ2

)n+2(
ψ0

)n+m+4
+

(
ψ0

)n+2(
ψ1

)n+m+4
. (III.154)

As in the periodic case, if we map those terms onto Z2 (fig.-III.5), we have six regions:

1 : {n+ 2, n+m+ 4} 2 : {−n− 2,m+ 2} 3 : {−n− 2,−n−m− 4}
4 : {n+m+ 4, n+ 2} 5 : {−n−m− 4,−n− 2} 6 : {m+ 2,−n− 2} (III.155)

and we see that we are only a few lines short of a product of delta functions.

n

m

1

4

2

6

3
5

Figure III.5: The six regions listed above for the exponents of ψ1 and ψ2 in X2.

Completing them by hand, we finally get:

X2 ∼
1

6

∮
c1

dz

ı2πz

(
(1 + z)L(1 + z)L(1− z2)(1− z2)

)3

. (III.156)

Open case - any order

For an arbitrary order k, the exact same reasoning gives us a sum of terms corresponding
to regions of Z2 organised as the faces of a permutohedron, or as the vertices of its dual,
(fig.-III.4), which is the reverse of the periodic case (that was not clear for k = 2 because
the dual of a hexagon is another hexagon). We can then complete that sum to get a
product of delta functions, and obtain, in general:

Xk−1 ∼
1

2k

∮
c1

dz

ı2πz

(
(1 + z)L(1 + z)L(1− z2)(1− z2)

)k
. (III.157)
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For Yk, we might as well assume that what we’ve seen in all case until now (i.e.
dividing the argument of Xk−1 by (1 + z)(1 + z)) still works, which is to say:

Yk ∼
1

2k

∮
c1

dz

ı2πz

(
(1 + z)L(1 + z)L(1− z2)(1− z2)

)k
(1 + z)(1 + z−1)

. (III.158)

To generalise to any a and b, we simply replace (1 + z)L(1 + z)L(1− z2)(1− z2) by the
full function F (z) (which we know from the calculation of the mean current in section
II.2.1), rewriting z as z−1, and we replace the unit circle by the appropriate integration
contour:

Xk−1 ∼
1

2k

∮
{0,a,b}

dz

ı2πz
F (z)k (III.159)

and

Yk ∼
1

2k

∮
{0,a,b}

dz

ı2πz

F (z)k

(1 + z)(1 + z−1)
(III.160)

with

F (z) =
(1 + z)L(1 + z−1)L(1− z2)(1− z−2)

(1− az)(1− a/z)(1− bz)(1− b/z)
. (III.161)

We also remark that the factor 1
k

from the periodic case has turned into 1
2k

, which
accounts for the factor 1

2
in (III.67). Multiplying Xk−1 and Yk by k, we get a conjecture

for Ck and Dk for the open TASEP.

Numerical checks

Naturally, we now need to validate our conjecture.
As we saw at the end of section II.2.2, using the expressions we found for Ck and Dk,

we can write the first few cumulants of the current, by inverting eq.(III.68) and injecting
the result into eq.(III.69). We find:

E1 = J =
D1

C1

,

E2 =
D1C2 −D2C1

C3
1

, (III.162)

E3 =
3D1C

2
2 − 2D1C1C3 − 3D2C1C2 + 2D3C

2
1

C5
1

,

E4 =
15D1C

3
2 − 20D1C1C2C3 + 6D1C

2
1C4 − 15D2C1C

2
2 + 8D2C

2
1C3 + 12D3C

2
1C2 − 6D4C

3
1

C7
1

,

and so on.
We checked our formulae against the first six cumulants for systems of size up to 10,

for rational values of α and β (which produce rational values of the cumulants), and
found them to match in every case. More detail on this can be found in [1].

We were also able to compare our results to numerical calculations provided by
M. Gorissen and C. Vanderzande, obtained by a DMRG-like algorithm [137], for system
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sizes of up to 100. Those are shown in the following plots, and show excellent agreement
with our formulae.

α = 0.50, β = 0.65

E3(L)

L

(×10−2)
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82



III.4.2 Partially asymmetric case

We now examine the general case where q 6= 0. We expect the function F (z) from the
totally asymmetric case to be replaced by its full expression (III.64). We also expect to
find expressions involving convolutions with a kernel K, as in the periodic case, but it
might not be the same one, so we need to find how K appears in the periodic ASEP, and
by what it is replaced in the open case.

Periodic case

For this, and considering eq.(III.70), we only need to look at X1 in both cases. We start
with the periodic ASEP.

We have:

X1 =

∮
c1

dz0

ı2πz0

Tr[Aµ(z0D + E)L]z−N0

∣∣∣
µ1
. (III.163)

As we saw in section II.2.1, the vectors that replace the plane waves we have used for
the TASEP involve q-deformed Hermite polynomials. Let’s define:

||x, y〉〉 =
∞∑
n=0

Hn(x, y)

(q)n
||n〉〉 , 〈〈x, y|| =

∞∑
n=0

Hn(x, y)〈〈n||. (III.164)

Those vectors are such that:

(z0d+ e)||z, z0z〉〉 = (z + z0z)||z, z0z〉〉 (III.165)

and, considering that Hn(xy, x/y) = xnHn(y, 1/y), the closure identity (II.75) becomes:

1 =
(q)∞

2

∮
c1

dz

i2πz
(z2/z0, z0/z

2)∞||z, z0z〉〉〈〈z, zz0||. (III.166)

We insert this identity into X1 next to Aµ, and we get:

X1 =
(q)∞

2

∮
c1

dz0

ı2πz0

dz

ı2πz

(1+z)L(1+z0z)L

zN0
(z2/z0, z0/z

2)∞〈〈z, zz0||Aµ||z, z0z〉〉
∣∣∣
µ1
. (III.167)

Using the q-Mehler formula (II.71) on the last scalar product, we obtain:

(z2/z0, z0/z
2)∞〈〈z, zz0||Aµ||z, z0z〉〉 =

(1− e−µ)(z2/z0, z0/z
2, e−2µ)∞

(z2/z0e−µ, z0/z2e−µ, e−µ, e−µ)∞
. (III.168)

We need to separate, in that last equation, the terms that don’t contain a q (i.e.
the first terms of every q-Pochhammer symbol), from the rest. Those become, when
truncated to order 1 in µ:

(1− e−µ)(1− z2/z0)(1− z0/z
2)(1− e−2µ)

(1− e−µ)2(1− z2/z0e−µ)(1− z0/z2e−µ)
∼ 1− µ

(
1 + 2

∞∑
k=1

(z2/z0)k + (z0/z
2)k

)
= 1− µ

(
2δ(1− z2/z0)− 1

)
(III.169)
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and the rest gives:

(q, qz2/z0, qz0/z
2, qe−2µ)∞

(qz2/z0e−µ, qz0/z2e−µ, qe−µ, qe−µ)∞
∼ 1− µ

(
∞∑
k=1

qkz2/z

1− qkz2/z
+

qkz0/z
2

1− qkz0/z2

)

= 1− µ
∞∑
k=1

qk

1− qk
((
z2/z

)k
+
(
z0/z

2
)k)

(III.170)

where we have expanded and re-summed every term between the first and second line.

We now keep only the terms of order µ in the product of those two terms. The first
part, coming from (III.169), is a delta function (we throw the −1 away), and gives, as it
did for the TASEP:

X
(1)
1 ∼

∮
c1

dz

ı2πz

(1 + z)2L

z2N
. (III.171)

The second part, from (III.170), is what we are interested in. If we define a new
variable z̃ as z̃ = z0/z, we find:

X
(2)
1 ∼ 1

2

∮
c1

dz

ı2πz

dz̃

ı2πz̃

(1 + z)L

zN
(1 + z̃)L

z̃N
K(z, z̃) (III.172)

with

K(z, z̃) =
∞∑
k=1

qk

1− qk
((
z/z̃
)k

+
(
z̃/z
)k)

(III.173)

which is what we were expecting.

We now only need to do the same calculation for the open ASEP.

Open case

To make our lives simpler, we will consider the case where ã = b̃ = 0, which is to say
γ = δ = 0.

Unfortunately, we have no idea what the vectors ||φ(3)〉〉 and 〈〈φ(3)|| turn into for q 6= 0,
which forces us to change our method entirely. However, seeing that, for the periodic
case, the vectors had changed but not their associated eigenvalues, we will be looking for
eigenvectors of D(3) + E(3) with eigenvalues of the form (1 + φ1)(1 + φ2)(1 + φ3)(1 + φ4)
(using the same notations as for the TASEP), with the constraint that φ1φ2φ3φ4 = 1.

Let us separate D(3) + E(3) into groups of matrices, defining:

S1 =
d
1
1

+
e
d
1

+
1
e
d

+
1
1
e
, (III.174)

S2 =
1
e
1

+
1
d
1

+
e
1
d

+
d
1
e

+
e
d
e

+
d
e
d
, (III.175)

S3 =
e
1
1

+
d
e
1

+
1
d
e

+
1
1
d
, (III.176)

such that D(3) + E(3) = 1 + S1 + S2 + S3 + 1.
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Using de − q ed = (1 − q), we can easily check that [Si, Sj] = 0 for any i and j.

By examining those matrices acting on ||φ(3)〉〉 for q = 0, we find their eigenvalues to be
symmetric functions of the φi’s:

S1 → σ1 = φ1 + φ2 + φ3 + φ4, (III.177)

S2 → σ2 = φ1φ2 + φ1φ3 + φ1φ4 + φ2φ3 + φ2φ4 + φ3φ4, (III.178)

S3 → σ3 = φ1φ2φ3 + φ1φ2φ4 + φ1φ3φ4 + φ2φ3φ4. (III.179)

Now, instead of writing the eigenvectors of D(3) +E(3) on the basis we used before, we
will write them as generating functions: for a vector

∑
an||n〉〉, we define f(z) =

∑
anz

n,
which is the projection of this vector onto a plane wave with argument z. The action of
d and e, in this formalism, is as follows:

e : f(z)→ zf(z) , d : f(z)→ 1

z

(
f(z)− f(qz)

)
. (III.180)

We are looking for vectors with three integer indices, so we define f(x, y, z), where x
bears the first of those indices, y the second, and z the third.

The action of S1, S2 and S3 on this function is:

σ1f(x, y, z) =
1

x

(
f(x, y, z)− f(qx, y, z)

)
+
x

y

(
f(x, y, z)− f(x, qy, z)

)
+
y

z

(
f(x, y, z)− f(x, y, qz)

)
+ zf(x, y, z), (III.181)

σ2f(x, y, z) = yf(xyz) +
1

y

(
f(x, y, z)− f(x, qy, z)

)
+
x

z

(
f(x, y, z)− f(x, y, qz)

)
+
z

x

(
f(x, y, z)− f(qx, y, z)

)
+
xz

y

(
f(x, y, z)− f(x, qy, z)

)
+

y

xz

(
f(x, y, z)− f(qx, y, z)− f(x, y, qz) + f(qx, y, qz)

)
, (III.182)

σ3f(x, y, z) = xf(x, y, z) +
y

x

(
f(x, y, z)− f(qx, y, z)

)
+
z

y

(
f(x, y, z)− f(x, qy, z)

)
+

1

z

(
f(x, y, z)− f(x, y, qz)

)
. (III.183)

By combining those, we can find simpler equations. For instance, we have:

(1−xσ1+x2σ2−x3σ3+x4)f(x, y, z)=(1−xz)(1−xy
z

)f(qx, y, z)+
xy

z
f(qx, y, qz) (III.184)

(1−zσ3+z2σ2−z3σ1+z4)f(x, y, z)=(1−xz)(1− zy
x

)f(x, y, qz)+
zy

x
f(qx, y, qz) (III.185)

Considering the expressions we have for the σi’s, the terms on the left factorise into:

(1− xσ1 + x2σ2 − x3σ3 + x4) = (1− xφ1)(1− xφ2)(1− xφ3)(1− xφ4), (III.186)

(1− zσ3 + z2σ2 − z3σ1 + z4) = (1− z

φ1

)(1− z

φ2

)(1− z

φ3

)(1− z

φ4

). (III.187)

For y = 0, (III.184) and (III.185) take the simpler form:

(1− xφ1)(1− xφ2)(1− xφ3)(1− xφ4)f(x, 0, z) = (1− xz)f(qx, 0, z), (III.188)

(1− z

φ1

)(1− z

φ2

)(1− z

φ3

)(1− z

φ4

)f(x, 0, z) = (1− xz)f(x, 0, qz), (III.189)
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which give us, through iteration:

f(x, 0, z) =
(xz)∞

(xφ1, xφ2, xφ3, xφ4)∞
g(z), (III.190)

f(x, 0, z) =
(xz)∞

( z
φ1
, z
φ2
, z
φ3
, z
φ4

)∞
h(x), (III.191)

where g and h are functions of only one variable.
Combining those two, we finally get:

f(x, 0, z) =
(xz)∞

(xφ1, xφ2, xφ3, xφ4,
z
φ1
, z
φ2
, z
φ3
, z
φ4

)∞
. (III.192)

Considering the nice symmetry of those relations, we want to do the same with y. A
good candidate to be applied to f instead of (III.186) or (III.187) is:

(1− yφ1φ2)(1− yφ1φ3)(1− yφ1φ4)(1− yφ2φ3)(1− yφ2φ4)(1− yφ3φ4) (III.193)

which we find to be equal, in terms of the σi’s, to:

(1− y2)2(1− σ2y + y2) + y2(σ1 − σ3y)(σ3 − σ1y) (III.194)

and, applying this to f(x, y, z), with the help of (III.181), (III.182) and (III.183), we get:

(1− yφ1φ2)(1− yφ1φ3)(1− yφ1φ4)(1− yφ2φ3)(1− yφ2φ4)(1− yφ3φ4)f(x, y, z)

=
(1− qy2)

(1− q2y2)

(
(1− y2)(1− q2y2)(1 +

xz

q
)− y((1 + qy2)(σ1z + σ3x),

− y(1− q)(σ1x+ σ3z)

)
f(x, qy, z),

− xz

q

(1− y2)(1− q xy
z

)(1− q zy
x

)

(1− q2y2)
f(x, q2y, z), (III.195)

which is not terribly useful as is. However, if we take x = z = 0, the right hand side of
the equation reduces to (1− y2)(1− qy2)f(0, qy, 0), and we find that:

f(0, y, 0) =
(y2)∞

(yφ1φ2, yφ1φ3, yφ1φ4, yφ2φ3, yφ2φ4, yφ3φ4)∞
. (III.196)

It is now time to use the preliminary calculations we have just performed to analyse

the factor 〈〈W (1)||A(1)
µ ||φ(3)〉〉〈〈φ(3)||V (1)〉〉 which appears in X1. First of all, we recall from

(III.144) that 〈〈W (1)||A(1)
µ is, for ã = 0, the product of three plane waves of arguments

ae−µ, e−µ and ae−µ, up to a factor (1− e−µ), so that we have, according to the definition
of f :

〈〈W (1)||A(1)
µ ||φ

(3)〉〉 = (1− e−µ)f(ae−µ, e−µ, ae−µ). (III.197)

On the other side, with an appropriate definition of f , we find:

〈〈φ(3)||V (1)〉〉 = f(b, 1, b). (III.198)
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Since we didn’t find an expression for f with all three variables, we will get rid of the
first and the third by noticing that eq.(III.192), when replacing x and z by a or b, and
after equating the different φi’s using the delta functions that will undoubtedly emerge
at some point from the next calculation, gives a contribution to X1 which is simply the
denominator in F (z), which we expected. This is not what we are after, and we can take
a = b = 0 for now.

We now only have to consider eq.(III.196). Expanding the terms without a q, as we
did for the periodic case, and then taking y to 1, gives us the delta functions we were
expecting. Taking, for instance, δ(1−φ1φ2) from the right boundary term, and applying
it to the left boundary, gives:

(1− y)(y2, φ1φ3, φ1/φ3, φ3/φ1, 1/φ1φ3)∞
(y, yφ1φ3, yφ1/φ3, yφ3/φ1, y/φ1φ3, y)∞

(III.199)

with y = e−µ (the numerator comes from the closure identity). If we then expand the
part of that is left after we take the first term of each q-Pochhammer symbol away, we
get what should take the place of the convolution kernel in the open case. We find:

K(z, z̃) =
∞∑
k=1

qk

1− qk
((
z/z̃)k +

(
z̃/z
)k

+
(
zz̃
)k

+
(
1/zz̃

)k)
(III.200)

where we replaced φ1 and φ3 by z and z̃. Because of the z ↔ 1/z symmetry of F (z), this
actually gives us twice the kernel we had for the periodic case.
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Numerical checks

This time, we cannot check our conjecture on small systems, because the extra parameter
q makes it difficult to get exact results even for small sizes. What’s more, the contour
integrals we found have infinitely many poles, and getting an exact value for those is
impossible. What we can do, however, is to check numerical evaluations of our results
against numerical calculations from DMRG, as we did before. The plots below give a few
examples of those comparisons. They are in nearly perfect agreement.
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CHAPTER IV

Large Deviations of the Current

in the S-Ensemble

Calculating the exact generating function for the cumulants of the current is nice, but
using it to learn something about the physical behaviour of the system is even better. In
section III.3, we presented the expression we found for the exponential generating function
E(µ) of the cumulants of the current in the open ASEP, with generic boundary parameters
and asymmetry (where µ is the variable conjugate to the current). In this chapter, we see
how, combining calculations from large size asymptotics of those cumulants, macroscopic
fluctuation theory (MFT), and direct diagonalisation in particular limits, we can describe
the phase diagram of the system in the s-ensemble (which is to say, with the current as
a tunable parameter). We will uncover two new phases, on top of the low density, high
density and maximal current ones: a shock phase, which continues the shock line for
positive fluctuations of the current, and an anti-shock phase, which can be reached from
the maximal current phase, through negative fluctuations of the current. We will also be
able to obtain the large deviation function for the current, and the optimal profiles, in
all phases but one (the maximal current phase, for which we will have some asymptotic
results nevertheless). Those phases will be, incidentally, exactly those where the MFT
gives correct results.

In the first section of this chapter, we take the large size limit in the cumulants of the
current that we have just obtained, and see that the phase diagram for all the cumulants
is the same as that for the current. We get a particularly simple result in the high and
low density phases, where E(µ) takes a closed form in terms of µ. We also note that
considering the ASEP instead of the simpler TASEP makes no difference apart from a
global (1− q) factor in each cumulant.

In the second section, we try to see what we can learn, from that large size limit,
about the large deviations of the current, by taking the Legendre transform of the results
from the first section. Except in the high and low density phases, these calculations give
us only the first non-trivial order in j of the large deviation functions.

In the third section, we start back from the deformed Markov matrix itself, and take
three extreme limits, in which we can calculate what we need directly. The first limit
we take is that for an extremely low current (which is to say µ→ −∞ for the TASEP),
in which Mµ is almost diagonal. The second is for extremely low entry and exit rates
(which also implies extremely low current). In those two limits, we see how an effective
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description of the system in a reduced phase space allows to easily recover the dominant
eigenvectors and eigenvalues of Mµ. The third limit we take is that of an extremely large
current. In that limit, we will see that the deformed Markov matrix can be related to the
Hamiltonian of the open XX spin chain with anti-diagonal boundaries, which can then
be solved exactly using free fermions techniques. The distribution of the steady state, in
that limit, can be related to a discrete Coulomb gas (also called Dyson-Gaudin gas) with
anti-symmetric boundary conditions.

In the fourth and last section, we see how a simple trick, which consists in using the
MFT on the weakly asymmetric simple exclusion process (WASEP) and then taking the
weak asymmetry to infinity, allows us to conjecture the form of the full phase diagram
for the open ASEP in the s-ensemble, as well as an expression for the large deviation
function of the current and a description of the typical density profiles in four of the five
phases we find. We check that the expressions we find for the large deviation function
are consistent with all the calculations from the previous three sections.

Note that the first three sections are mostly calculation details, and can be skipped
except for the final results in each subsection (which are boxed). Also note that all the
results in this chapter are new (to our knowledge), apart from those in section IV.4.1,
where the appropriate reference is given.

IV.1 Large size asymptotics of the cumulants

Our starting point here is the expression we found in section III.3 for the generating func-
tion of the cumulants of the current E(µ) in the open ASEP. We recall that expression,
where both E(µ) and µ are written as series in a parameter B:

µ = −
∮
S

dz

ı2πz
W (z) = −

∞∑
k=1

Ck
Bk

k
, (IV.1)

E(µ) = −(1− q)
∮
S

dz

ı2π(1 + z)2
W (z) = −(1− q)

∞∑
k=1

Dk
Bk

k
, (IV.2)

with W (z) defined as:

W (z) = −1

2
ln
(

1−BF (z)eX[W ](z)
)
. (IV.3)

The function F (z) is given by:

F (z) =
(1 + z)L(1 + z−1)L(z2, z−2)∞

(az, a/z, ãz, ã/z, bz, b/z, b̃z, b̃/z)∞
(IV.4)

which is symmetric in z ↔ z−1 (this will be useful later), and the convolution operator
X by:

X[f ](z) =

∮
S

dz̃

ı2πz̃
f(z̃)K(z, z̃) (IV.5)
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with a kernel

K(z, z̃) = 2
∞∑
k=1

qk

1− qk
(

(z/z̃)k + (z/z̃)−k
)
. (IV.6)

All the contour integrals in µ, E(µ) and X are taken around a set of points given by
S = {0, qka, qkã, qkb, qkb̃} for k in N.

From these expressions, each coefficient Ck and Dk can be obtained by expanding
W (z) in terms of B. The first few of these are given by:

C1 =
1

2

∮
S

dz

ı2πz
F (z), (IV.7)

D1 =
1

2

∮
S

dz

ı2π(1 + z)2
F (z), (IV.8)

which are fairly simple, then

C2 =
1

2

∮
S

dz

ı2πz
F (z)2 +

1

2

∮
S

dz1

ı2πz1

dz2

ı2πz2

F (z1)F (z2)K(z1, z2), (IV.9)

D2 =
1

2

∮
S

dz

ı2π(1 + z)2
F (z)2 +

1

2

∮
S

dz1

ı2π(1 + z1)2

dz2

ı2πz2

F (z1)F (z2)K(z1, z2), (IV.10)

in which a first convolution appears, then

C3 =
1

2

∮
S

dz

ı2πz
F (z)3

+
1

2

∮
S

dz1

ı2πz1

dz2

ı2πz2

(3

2
F (z1)2F (z2) +

3

4
F (z1)F (z2)2

)
K(z1, z2)

+
1

2

∮
S

dz1

ı2πz1

dz2

ı2πz2

dz3

ı2πz3

F (z1)F (z2)F (z3)
(3

4
K(z1, z2)K(z2, z3)

+
3

8
K(z1, z2)K(z1, z3)

)
, (IV.11)

D3 =
1

2

∮
S

dz

ı2π(1 + z)2
F (z)3

+
1

2

∮
S

dz1

ı2π(1 + z1)2

dz2

ı2πz2

(3

2
F (z1)2F (z2) +

3

4
F (z1)F (z2)2

)
K(z1, z2)

+
1

2

∮
S

dz1

ı2π(1 + z1)2

dz2

ı2πz2

dz3

ı2πz3

F (z1)F (z2)F (z3)
(3

4
K(z1, z2)K(z2, z3)

+
3

8
K(z1, z2)K(z1, z3)

)
, (IV.12)

and so on and so forth. These expressions, in terms of combinations of F and K, are
equivalent to the ‘tree expansion’ which can be found in [27] for the case of the periodic
ASEP.
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Once we have the coefficients Ck and Dk, all we have to do to find the cumulants of
the current is to invert (IV.1) and inject it in (IV.2), to get the coefficients Ek of E(µ)
expanded as an exponential series in µ, as we did at the end of section II.2.2:

∞∑
k=1

Ek
µk

k!
= E(µ) = E

(
B(µ)

)
(IV.13)

The first few of these are given by:

E1 = J =
D1

C1

,

E2 =
D1C2 −D2C1

C3
1

, (IV.14)

E3 =
3D1C

2
2 − 2D1C1C3 − 3D2C1C2 + 2D3C

2
1

C5
1

,

E4 =
15D1C

3
2 − 20D1C1C2C3 + 6D1C

2
1C4 − 15D2C1C

2
2 + 8D2C

2
1C3 + 12D3C

2
1C2 − 6D4C

3
1

C7
1

,

etcetera.

In this section, we will find what happens to those cumulants when we take the size
of the system to infinity. As we recall, from the end of section II.2.1, the behaviour of the
contour integrals in C1 and D1 in that limit depend on the position of a and b with respect
to the unit circle. From that, we can read the phase diagram of the system (fig.-IV.1): in
the MC phase, both a and b are inside the circle, in the LD phase a is outside and larger
than b, in the HD phase b is outside and larger than a, and on the SL a and b are equal
and outside of the circle.

We will see that this remains valid for the other cumulants, so that we can simply
treat all the phases an transition lines one by one, and do only one calculation for each
to get all the cumulants at once. In every case, we start by looking at the TASEP, and
then we justify that considering the general ASEP only contributes a global factor (1−q)
to each cumulant.

IV.1.1 High/Low density phases

We start with the high and low density phases (which are symmetric to one another
through a↔ b). In this case, a few of the poles in S are out of the unit circle. The first
thing we need to do is to deform the integration contour around S as shown on fig.IV.2.

We start from an infinite collection of small contours around each point in S (first
image, in red). We then deform all the contours inside of the unit circle to a single
contour on the circle, removing the poles that are inside of the circle but not in S (which
are the inverses of the poles that are in S but not inside of the circle) by integrating
around them clockwise (second image, in blue). Thanks to the z ↔ z−1 symmetry of
F (z), we can consider that a clockwise integral over a pole at z0 is the same as a counter-
clockwise integral around z−1

0 , and transfer those blue contours to the other side of the
circle, changing their direction and adding them to the contours that are already there
(third image). In the end, we get one integral around the unit circle, and twice around
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∞

1

1
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b

MCLD
0

0

SL HD

Figure IV.1: Positions of a (blue circles) and b (red circles) with respect to the unit circle
(black circles) in each phase of the open ASEP.

each pole in S that is out of the circle. There is a finite number of those, and the one
furthest away from 1 is a in the low density phase, and b in the high density phase.

Considering the TASEP for the moment, we only keep the first term in each Ck and
Dk, containing F (z)k (the other terms vanishing because K = 0). The set S is reduced
to {0, a, b}. Let us assume that a > b. Since the part of F (z) that depends on L is
(1 + z)L(1 + z−1)L, which is minimal, on the real axis, at z = 1, all the contour integrals
are dominated by the pole which is the furthest away from 1, which is a. We can therefore
write:

Ck=
1

2

∮
S

dz

2iπz
F (z)k∼

∮
{a}

dz

2iπz

φ(z)k

(z − a)k
=

1

(k − 1)!

dk−1

dzk−1

{φk(z)

z

}∣∣∣∣
z=a

(IV.15)

and

Dk=
1

2

∮
S

dz

2iπ(1 + z)2
F (z)k∼

∮
{a}

dz

2iπ(1 + z)2

φ(z)k

(z − a)k
=

1

(k − 1)!

dk−1

dzk−1

{ φk(z)

(1 + z)2

}∣∣∣∣
z=a

(IV.16)
with

φ(z) = (z − a)F (z) = z
(1 + z)L(1 + z−1)L(1− z2)(1− z−2)

(1− az)(1− bz)(1− b/z)
. (IV.17)
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qa+ a+

1/a+ 1/qa+

q2a+

1/q2a+

0

Figure IV.2: Only the pole at 0 and those related to a+ are represented ; the dashed line
in the first figure is part of the unit circle ; the three sets of contours are equivalent.

Putting this back in µ and E(µ), we get:

µ = −
∞∑
k=1

Bk

k!

dk−1

dzk−1

{φk(z)

z

}∣∣∣
z=a

, (IV.18)

E(µ) = −
∞∑
k=1

Bk

k!

dk−1

dzk−1

{ φk(z)

(1 + z)2

}∣∣∣
z=a

. (IV.19)

This calls for the Lagrange inversion formula [154]. Considering two variables w and
z related by:

w = z +Bφ(w) (IV.20)

we can express a function f taken at w by expanding it around z, as:

f(w) = f(z) +
∞∑
k=1

Bk

k!

dk−1

dzk−1

(
φk(z)f ′(z)

)
. (IV.21)

This last sum is exactly what we have, for f ′(z) = −1/z in µ and 1/(1 + z) in E(µ).
This allows us to write:

µ = − log(w) + log(a) (IV.22)

and

E(µ) =
1

w + 1
− 1

a+ 1
(IV.23)

where w is as defined in (IV.20). We can now combine those two last equations and get:

E(µ) =
a

a+ 1

eµ − 1

eµ + a
. (IV.24)

The same goes for the high density phase, with b replacing a.

94



Using this expression, the cumulants of the current can be expressed as:

Ek =
a(−1)(k+1)

(1 + a)(k+1)
Ak(−a) (IV.25)

where Ak it the Eulerian polynomial of order k, defined by:

∞∑
n=0

An(t)
xn

n!
=

t− 1

t− e(t−1)x
. (IV.26)

We now examine the case of the ASEP.
The convolution kernel K can be rewritten as:

K(z, z̃) =
∞∑
k=1

qk

1− qk
(

(z/z̃)k + (z/z̃)−k
)

=
∞∑

k,l=1

qkl
(

(z/z̃)k + (z/z̃)−k
)

=
∞∑
l=1

( qlz

z̃ − qlz +
qlz̃

z − qlz̃
)
. (IV.27)

Now, remembering that the first term in C2, for instance, is of order:∮
S

dz

ı2πz
F (z)2 ∼

(
(1 + a)(1 + 1/a)

)2L

(IV.28)

(which is the value of F (z) at z = a, where we have kept only the part depending on L),
we must find the behaviour, with respect to L, of the other term in C2, which is:∮

S

dz1

ı2πz1

∮
S

dz2

ı2πz2

F (z1)F (z2)K(z1, z2). (IV.29)

The only way we can get a term of order
(

(1 + a)(1 + 1/a)
)2L

out of this is to take

both residues at a, and since K has no pole at (a, a), it only contributes a global factor
K(a, a) rather than change the order of one of the poles (which it would have around
(a, qa), for instance). This goes for any Ck and Dk: the only contribution not negligible
with respect to the first term is the one where all the residues are taken at a for all
integrals.

This tells us that, in the large L limit, we can approximate W (z) with:

W (z) = −1

2
ln
(

1−BF (z)eK(a,a)
∮
{a}

dz̃
ı2πz̃

W (z̃)
)

(IV.30)

and, redefining φ(z) as:

φ(z) = (z − a)F (z)eK(a,a)
∮
{a}

dz̃
ı2πz̃

W (z̃) (IV.31)
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we can repeat the calculations we did for the TASEP exactly. Since the result doesn’t
depend on φ, the only difference from before is the factor (1− q) in E(µ), so that, in the
end:

E(µ) = (1− q) a

a+ 1

eµ − 1

eµ + a
. (IV.32)

This result was conjectured in [118] using numerical techniques related to the Bethe
Ansatz, and can also be derived from the corresponding large deviation function which
was found in [85] using MFT. We will come back to this in section IV.4. Note that this
is the only case where we get a closed expression for E(µ) around µ = 0. In all other
cases, we will not be able to get rid of the parametric series in B. It is also the only case
where the result doesn’t depend on the size of the system.

IV.1.2 HD-LD transition line

We now consider the shock line, i.e. a = b > 1. We start with the TASEP.
As before, the residue at a dominates all the contour integrals, so we can write Ck

and Dk as:

Ck ∼
∮
{a}

dz

2iπ

(1 + z)kL(1 + z−1)kLφ(z)k

z(z − a)2k
=

1

(2k − 1)!

d2k−1

dz2k−1

{
(1+z)kL(1+z−1)kL

φk(z)

z

}∣∣∣
z=a

(IV.33)
and

Dk ∼
∮
{a}

dz

2iπ

(1 + z)kL(1 + z−1)kLφ(z)k

(1 + z)2(z − a)2k
=

1

(2k − 1)!

d2k−1

dz2k−1

{
(1+z)kL(1+z−1)kL

φk(z)

(1 + z)2

}∣∣∣
z=a

(IV.34)
with

φ(z) = z2 (1− z2)(1− z−2)

(1− az)2
. (IV.35)

Unfortunately, we have here only half of the derivatives we need for the Lagrange
inversion formula (the odd ones), so the same method will not work here. Instead, we
consider that, for some large N :

dn

dzn

{
f(z)Ng(z)

}
∼ Nnf ′(z)nf(z)N−ng(z) (IV.36)

(where we have only differentiated fN n times, since all the other terms in the derivative
are of lower order in N), which gives us, for N = kL,

Ck ∼
1

(2k − 1)!
(kL)2k−1(1− a−2)2k−1

(
(1 + a)(1 + 1/a)

)k(L−2)+1φk(a)

a

∼ 2

L

a+ 1

a− 1

k2k

(2k)!

[
L2(1− a−2)

(
(1 + a)(1 + 1/a)

)L−2

φk(a)

]k
(IV.37)

and, similarly,

Dk ∼ Ck
a

(1 + a)2
. (IV.38)
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This tells us that
E(µ) ∼ Jµ with J =

a

(1 + a)2
(IV.39)

which is to say that the current converges to J for L→∞ (which we already knew). To
get the rest of the cumulants, we have to look at the next order in every Dk, which we
do by subtracting JCk from Dk. Considering that

z

(1 + z)2
− a

(1 + a)2
=

(1− az)(z − a)

(1 + z)2(1 + a)2
(IV.40)

we get

Dk−JCk ∼
∮
{a}

dz

2iπ

(1 + z)kL(1 + z−1)kL(1− az)φ(z)k

z(1 + z)2(1 + a)2(z − a)2k−1

=
1

(2k − 2)!

d2k−2

dz2k−2

{
(1 + z)kL(1 + z−1)kL

(1− az)φk(z)

z(1 + z)2(1 + a)2

}∣∣∣
z=a

∼ (1− 2k)
2

L2

a

a2 − 1

k2k−1

(2k)!

[
L2(1− a−2)

(
(1 + a)(1 + 1/a)

)L−2

φk(a)

]k
(IV.41)

We notice that, in this last result, expanding the first monomial (1− 2k), the second
term gives:

(−2k)
2

L2

a

a2 − 1

k2k−1

(2k)!

[
L2(1− a−2)

(
(1 + a)(1 + 1/a)

)L−2

φk(a)

]k
∼ − 2

L
JCk (IV.42)

which only contributes for a vanishing term in J , so that we can throw it away. What’s
more, the factor in brackets, which is in both Ck and Dk − JCk, can be gotten rid of

by redefining
[
L2(1− a−2)

(
(1 + a)(1 + 1/a)

)L−2
φk(a)

]
B as B. Since it is the only place

where φ appeared, we see that the final result doesn’t depend on φ at all.
We also note that, as in the previous section, the only difference for the ASEP is a

different function φ (on which the result doesn’t depend), for the same reasons as before,
and a factor (1− q) in E(µ).

Putting all those calculations together, we finally get:

µ = − 2

L

a+ 1

a− 1

∞∑
k=1

k2k−1

(2k)!
Bk,

E(µ)− (1− q) a

(1 + a)2
µ = −(1− q) 2

L2

a

a2 − 1

∞∑
k=1

k2k−2

(2k)!
Bk.

(IV.43)

(IV.44)

Considering this and (IV.13), we find that the cumulants behave as:

Ek ∼ (1− q) a

a2 − 1

(a− 1

a+ 1

)k
Lk−2 (IV.45)

for k ≥ 2, up to a numerical factor. This means that every cumulant higher than the
second diverges for L → ∞, which has an effect on the power law behaviour of g(j)
around j = J (as we will see further down).
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We can also note that the series in B in µ and E(µ), which are pure mathematical
functions (all the dependence in a and L has factored out), can be expressed in terms
of the Lambert W function [155], defined as the solution to x = WLeWL . The series
expansion of WL(x) around 0 is:

WL(x) = −
∞∑
n=1

nn−1

n!
(−x)n (IV.46)

so that the sum in µ can be seen as the even part of WL:

−
∞∑
k=1

k2k−1

(2k)!
Bk =WL(

√
B/2) +WL(−

√
B/2) (IV.47)

and the sum in E(µ) can be found to be, through integration of the previous one:

−
∞∑
k=1

k2k−2

(2k)!
Bk = 2

(
WL(
√
B/2) +WL(−

√
B/2)

)
+WL(

√
B/2)2 +WL(−

√
B/2)2.

(IV.48)
This will come in handy in section IV.2.2.

IV.1.3 Maximal current phase

We now consider the maximal current phase, where both a and b are inside of the unit
circle. All the poles of F (z) that are in S are inside of that circle, and all those that aren’t
are outside, so that the contour integrals can be taken around the unit circle instead of
S. On that circle, because of the factor (1 + z)L(1 + z−1)L, F (z) has a saddle point at
z = 1. We will be doing an approximation around that point.

In fact, it is more convenient, for the calculations we need to do, to consider angular
integrals. Defining z = eiθ, with dz

iz
= dθ, we find:

(1 + z)(1 + z−1) = 2(1 + cos(θ)) ∼ 4(1− θ2/4), (IV.49)

(1− z2)(1− z−2) = 2(1− cos(2θ)) ∼ 4θ2, (IV.50)

so that, around z = 1, i.e. θ = 0, we get

F (z) ∼ 4L+1θ2e−L
θ2

4 . (IV.51)

This gives us, quite simply:

Ck ∼
1

2

∫
dθ

2π
4k(L+1)θ2ke−kL

θ2

4 =
L−1/2

2
√
π

(2k)!

k!k(k+1/2)

4k(L+1)

Lk
(IV.52)

As before, we find that

Dk ∼ JCk with J =
1

4
(IV.53)

Considering that
z

(1 + z)2
− 1

4
= − (1− z)2

4(1 + z)2
∼ θ2

16
(IV.54)
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we get

Dk −
Ck
4
∼ 1

2

∫
dθ

2π
4k(L+1)−2θ2(k+1)e−kL

θ2

4 = (2k + 1)
L−3/2

16
√
π

(2k)!

k!k(k+3/2)

4k(L+1)

Lk
. (IV.55)

Expanding the first monomial (2k + 1), the first term gives

(2k)
L−3/2

16
√
π

(2k)!

k!k(k+3/2)
∼ 1

L
JCk (IV.56)

which we can throw away, as before. We can also redefine B to get rid of the factor 4k(L+1)

Lk

in each coefficient, and finally get:

µ = −L
−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk,

E(µ)− 1

4
µ = −L

−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk.

(IV.57)

(IV.58)

In the case of the ASEP, let us look at the two terms in C2. The first gives:∮
s

dz

ı2πz
F (z)2 ∼

∫
dθ

2π
θ4e−2L θ

2

4 ∼ L−5/2 (IV.59)

and the second, with both variables expanded around z = 1, gives:∮
S

dz1

ı2πz1

dz2

ı2πz2

F (z1)F (z2)K(z1, z2) ∼
∫
dθ1

2π

dθ2

2π
θ2

1e−L
θ21
4 θ2

2e−L
θ22
4 K(1, 1) ∼ L−3. (IV.60)

We see that the extra dθ causes the expression to go down by half a power in L. This
goes for any terms with convolutions in all the Ck’s and Dk’s, so that the only terms
worth keeping are those without convolutions, which are the same as for the TASEP.
Because of the global (1− q) factor in E(µ), we finally get:

µ = −L
−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk

E(µ)− (1− q)1

4
µ = −(1− q)L

−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk.

(IV.61)

(IV.62)

In this case, the cumulants behave as:

Ek ∼ (1− q)π(πL)(k−3)/2 (IV.63)

for k ≥ 2. They are divergent with respect to L for k > 3, which, as previously, has an
impact on the power law behaviour of g(j) around j = J .
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IV.1.4 HD-MC transition line

We now take a < 1 and b = 1. The factors (1 − bz)(1 − b/z) from the denominator
compensate part of (1− z2)(1− z−2) from the numerator, and we get (for the TASEP):

F (z) =
(1 + z)L+1(1 + z−1)L+1

(1− az)(1− a/z)
∼ 4L+1e−L

θ2

4 (IV.64)

using the same saddle-point approximation as in the previous section.
We find:

Ck ∼
1

2

∫
dθ

2π
4k(L+1)e−kL

θ2

4 =
L−1/2

2
√
π

1

k1/2
4k(L+1) (IV.65)

and

Dk ∼ JCk with J =
1

4
(IV.66)

and, furthermore,

Dk −
Ck
4
∼ 1

2

∫
dθ

2π
4k(L+1)−2θ2e−kL

θ2

4 =
L−3/2

16
√
π

1

k3/2
4k(L+1). (IV.67)

In the case of the ASEP, we find for the first term in C2:∮
s

dz

ı2πz
F (z)2 ∼

∫
dθ

2π
e−2L θ

2

4 ∼ L−1/2 (IV.68)

and for the second:∮
S

dz1

ı2πz1

dz2

ı2πz2

F (z1)F (z2)K(z1, z2) ∼
∫
dθ1

2π

dθ2

2π
e−L

θ21
4 e−L

θ22
4 K(1, 1) ∼ L−1 (IV.69)

so that, for the same reasons as in the previous section, all the convolutions can be thrown
away. We finally get:

µ = −L
−1/2

2
√
π

∞∑
k=1

Bk

k3/2
,

E(µ)− (1− q)1

4
µ = −(1− q)L

−3/2

16
√
π

∞∑
k=1

Bk

k5/2
,

(IV.70)

(IV.71)

and
Ek ∼ (1− q)π(πL)(k−3)/2 (IV.72)

for k ≥ 2.

We mentioned, in section III.3, that for a special choice of the boundary parameters,
namely a = q1/2, ã = −q1/2, b = 1, b̃ = −q, which is to say α = 1, β = 1/2, γ = q, δ = q/2,
and considering that

(z)∞(−qz)∞(q1/2z)∞(−q1/2z)∞ =
(z2)∞

(1 + z)
(IV.73)
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we find that F (z) is equal to:

F (z) = (1 + z)L+1(1 + z−1)L+1 (IV.74)

which is the same function as for the periodic ASEP with 2L+ 2 sites, and at half filling.
It is therefore not surprising to see that the large size asymptotics of the cumulants on
the HD-MC (or the LD-MC) transition line, on which that choice of parameters sits, are
the same (up to a factor 1

2
) as those found in [94] for the periodic TASEP. This fact will

be useful to us in section IV.2.3.

IV.1.5 Triple point

The last region of the phase diagram we must consider is the triple point a = b = 1.
This one is particularly tricky, as we shall see, and cannot set a and b to 1 right away.
Instead, we need to approach the point in the most convenient way that we can find. We
will therefore take b = 1, with the same simplifications as in the previous section, and
consider a→ 1−. We will also need to define s = −L log(a)→ 0.

The function F becomes:

F (z) =
(1 + z)L+1(1 + z−1)L+1

(1− az)(1− a/z)
=

(
2 cos( θ

2
)
)L+1

(1 + a)2(1−X cos( θ
2
))
∼ 4L+1

(1 + a)2

e−(L+1) θ
2

4

1−Xe−
θ2

4

(IV.75)
where X = 4a

(1+a)2
∼ a = e−s/L < 1.

We will have to consider F (z)k, and use this relation:

yN

(1−Xy)k
=

1

(k − 1)!

( d

dX

)k−1 yN−k+1

1−Xy (IV.76)

with d
dX
∼ d

da
= −L

a
d
ds

, so that
(

d
dX

)k−1

∼ (−1)k−1
(
L
a

)k−1(
d
ds

)k−1

(these are not the

same approximation: from the first one to the second one, we need not to differentiate
any factor 1/a with respect to s, which would lower the exponent of L).

Putting this into Ck, we get:

Ck ∼
1

2

1

(k − 1)!

( d

dX

)k−1
∫

dθ

2π

e−(kL+1) θ
2

4

1−Xe−
θ2

4

=
1

2
√
π

1

(k − 1)!

( d

dX

)k−1
∞∑
n=0

Xn

√
kL+ 1 + n

∼ (−1)k−1

2
√
π

1

(k − 1)!

(L
a

)k−1( d
ds

)k−1
∞∑
n=0

e−sn/L√
kL+ 1 + n

(IV.77)

where we get from the first to the second line by expanding the integrand in powers of
X, and from the second to the third using the approximation we just mentioned.

Now, considering that

∞∑
n=0

e−sn/L√
kL+ 1 + n

∼
∞∫

0

e−sx√
k + x

√
L/kdx (IV.78)
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we get

Ck ∼
1

2
√
π

Lk−1/2

(k − 1)!

∞∫
0

xk−1e−sx

(k + x)1/2
dx. (IV.79)

Once more, for Dk, at first order, we find

Dk ∼ JCk with J =
1

4
(IV.80)

and then, through the same calculations as for Ck, we get:

Dk −
Ck
4
∼ 1

16
√
π

Lk−3/2

(k − 1)!

∞∫
0

xk−1e−sx

(k + x)3/2
dx. (IV.81)

Assuming that the only difference for the ASEP is, as in all the previous cases, a
factor (1− q) in E(µ), we can finally write:

µ = −L
−1/2

2
√
π

∞∑
k=1

∞∫
0

xk−1e−sx

(k + x)1/2
dx
Bk

k!
,

E(µ)− (1− q)1

4
µ = −(1− q)L

−3/2

16
√
π

∞∑
k=1

∞∫
0

xk−1e−sx

(k + x)3/2
dx
Bk

k!
.

(IV.82)

(IV.83)

Notice that although we need to take s→ 0, we have kept it until now, otherwise all
of the coefficients Ck and Dk would have diverged. Keeping only the dominant term in
1/s in each expression is not an option, because their contributions compensate in the
cumulants. What we must do, instead, is to use expressions (IV.14) to get the cumulants,
and then take s to 0, which should produce a finite value for each of the Ek.

Also note that we can replace the integrals in (IV.82) and (IV.83) by hypergeometric
series:

µ =
L−1/2

2
√
π

∞∑
k=1

(
s1/2−kΓ(k − 1/2) 1F1(1/2; 3/2− k; ks)

+
kk−1/2

√
π

Γ(1/2− k)Γ(k) 1F1(k; k + 1/2; ks)

)
Bk

k!
(IV.84)

E(µ)− (1− q)
4

µ =
(1− q)L−3/2

16
√
π

∞∑
k=1

(
s3/2−kΓ(k − 3/2) 1F1(3/2; 5/2− k; ks)

+ 2
kk−3/2

√
π

Γ(3/2− k)Γ(k) 1F1(k; k − 1/2; ks)

)
Bk

k!
(IV.85)

which is slightly less compact, but, arguably, slightly more explicit than the previous
expressions.
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IV.2 Large deviations of the current

Now that we have the generating function for the cumulants of the current, we can try to
get at its large deviation function, of which it is easier to make physical sense. We recall
that this function g(j) is given by the Legendre transform of E(µ):

g(j) = µj − E(µ) with
d

dµ
E(µ) = j. (IV.86)

We will try to get whatever information we can on g(j) in each of the cases we
considered in the previous section, except for the last one, which is too pathological
(meaning that we didn’t manage to get a result). Note that, since we threw a lot of
terms away in obtaining the expressions from the last section, we will here only get the
behaviour of g(j) for small fluctuations of j. We will see how to get the rest in section
IV.4, and show that the two are consistent.

IV.2.1 High/Low density phases

We first look at the low density phase. We recall that:

E(µ) = (1− q) a

a+ 1

eµ − 1

eµ + a
. (IV.87)

In this case, we can simply do the Legendre transform right away. The second part
of equation (IV.86) gives:

eµ = a
(1− q − 2j)−

√
(1− q)(1− q − 4j)

2j
=

1− ρa
ρa

r

1− r (IV.88)

where r is such that j = (1− q)r(1− r) and we recall that ρa = 1
(1+a)

.

Putting this in the first part of (IV.86), we get:

g(j) = (1− q)
[
ρa − r + r(1− r) log

(1− ρa
ρa

r

1− r
)]
. (IV.89)

There is a very simple physical interpretation of this function, which we will present
in section IV.4.

In all the other cases we must now consider, things won’t be as easy. We will first
have to obtain an asymptotic expression for E(µ) for large µ, which will be different for
positive and negative fluctuations, and only then take a Legendre transform.

IV.2.2 HD-LD transition line

For a = b > 1, we recall that:

µ =
2

L

a+ 1

a− 1

[
WL(
√
B/2) +WL(−

√
B/2)

]
(IV.90)

E(µ)− (1− q) a

(1 + a)2
µ = (1− q) 2

L2

a

a2 − 1

[
2
(
WL(
√
B/2) +WL(−

√
B/2)

)
+WL(

√
B/2)2 +WL(−

√
B/2)2

]
(IV.91)
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where WL(x) is the Lambert W function [155], solution to x =WLeWL .

Luckily for us, many things are known about this function, such as its asymptotic
behaviour, which is what we need. For the main branch of the function, called W0, which
is defined everywhere except on ]−∞,−1/e], it is known that WL(x) behaves as log(x)
(even for x complex, in which case the angular part of x can be neglected and we get
log(|x|)). This will be useful for B < 0. For B > 0, however, the functions WL(−

√
B/2)

in our expressions have to be continued analytically to the second branch W−1, on which
x goes back from −1/e to 0 and behaves as log(−x) (fig.-IV.3).

0.5

x

WL(x)

0

1

-1

-0.5

Figure IV.3: Plot of the Lambert W function. The principal branch (blue) behaves as
log(x) for x→∞. The second branch (red) behaves as log(−x) for x→ 0−.

We can now put those remarks to good use. For B → −∞, we have WL(±
√
B/2) ∼

log(|B|)/2, so that:

µ ∼ 2

L

a+ 1

a− 1
log(|B|) (IV.92)

E(µ)− (1− q) a

(1 + a)2
µ ∼ (1− q) 2

L2

a

a2 − 1
log(|B|)2/2 (IV.93)

meaning that, for µ > 0 but not too large, we have

E+(µ)− (1− q) a

(1 + a)2
µ ∼ (1− q) a(a− 1)

4(a+ 1)3
µ2. (IV.94)

We can now take the Legendre transform of this and get, for j > J = (1−q)ρa(1−ρa):

g+(j) ∼ (j − J)2

J(1− 2ρa)
(IV.95)

(where J = (1− q)ρa(1− ρa) is the mean current).
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To do the same for µ < 0, we need to get on the second branch of WL, for which
we have B → 0+. In that case, we have WL(−

√
B/2) ∼ log(B)/2, but WL(

√
B/2) ∼ 0

(because that part is still on the main branch). This gives us:

µ ∼ 2

L

a+ 1

a− 1
log(|B|)/2 (IV.96)

E(µ)− (1− q) a

(1 + a)2
µ ∼ (1− q) 2

L2

a

a2 − 1
log(|B|)2/4 (IV.97)

so that, for µ < 0 but not too large, we have

E−(µ)− (1− q) a

(1 + a)2
µ ∼ (1− q) a(a− 1)

2(a+ 1)3
µ2. (IV.98)

We can now take the Legendre transform of this and get, for j < J :

g−(j) ∼ (j − J)2

2J(1− 2ρa)
. (IV.99)

There are a number of things to be said about these formulae. Notice that the
dependence in L has vanished from both cases, so that even though all the cumulants of
the current depend on L at µ = 0, none of them do for a finite µ. Notice also that g−
differs from g+ by a factor 1

2
, which comes from the fact that for µ > 0, both functions

WL in µ and W2
L in E(µ) contribute to the limit, whereas for µ < 0, only one of each

does. This results in g(j) not being analytic at j = J (fig.IV.4), which is the signature
of a non-equilibrium phase transition (see sections IV.4.3 and IV.4.4 for a description of
the phase on each side of the transition). We will see many more of these in this chapter.

IV.2.3 Maximal current zone

We finally focus on the maximal current zone (i.e. the MC phase and the MC-LD or
MC-HD transition lines, which we bundle together because the same method applies to
both).

LD-MC line

We start with one of the transition lines bordering the MC phase, where we recall that:

E(µ)− 1− q
4

µ = (1− q)L
−3/2

16
√
π
H(B) (IV.100)

µ =
L−1/2

2
√
π
BH ′(B) (IV.101)

with

H(B) = −
∞∑
k=1

Bk

k5/2
∼ 2√

π

∫ +∞

−∞
dθ θ2 log

[
1−Be−θ

2]
(IV.102)
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j

g(j)

1-1

10

0

J

Figure IV.4: Large deviation function of the current around the shock line, for ρa = 1
4
.

The function is made of two hyperbolic parts with different widths, meeting at j = J .
The complements of each parabola are represented in dashed lines.

which is a polylogarithm: H(B) = −Li5/2(B).
As in the previous section, the cases µ < 0 and µ > 0 require different approaches.

For µ > 0, we need to take B → −∞. In this case, the integrand in H(B) can be
approximated by:

log
[
1−Be−θ

2]∼ log
[
|B| e−θ

2] I[θ2 < log(|B|)
]

(IV.103)

where I[X] is the indicator of X, equal to 1 if X is true, and 0 if X is false.
We can then estimate:

H(B) ∼ 4√
π

∫ log(|B|)1/2

0

dθ θ2
(
log(|B|)− θ2

)
=

8

15
√
π

log(|B|)5/2 (IV.104)

and

BH ′(B) ∼ 4

3
√
π

log(|B|)3/2 (IV.105)

so that

E+(µ)− 1− q
4

µ ∼ (1− q) 1

20

(3

2

)2/3

L−2/3π2/3µ5/3. (IV.106)

We can then take the Legendre transform of this result. We find, for j > J = 1−q
4

:

g+(j) ∼ (j − J)5/2 32
√

3L

5π(1− q)3/2
(IV.107)

and notice that, for once, it depends on L. More on that in section IV.4.
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For µ < 0, things get trickier. We have to take into account the fact that the poly-
logarithm Li5/2(x) has a branch cut at x = 1 and is not defined for x > 1. Luckily, these
calculations have already been done in [95] for the periodic TASEP (which is equivalent
to the open one at the transition we are considering), and we only need to reproduce
them. What’s more, they will serve as a guide for the next case.

The reasoning goes roughly like this: the expressions we have of E(µ) and µ in terms
of B, for all eigenvalues of Mµ, are obtained by taking contour integrals over Bethe roots,
and depend on which roots are included in the integral. In the case of the steady state,
for B small enough, all the roots we consider are inside of the unit circle. However, it
can be shown that, as B gets closer to 1, one of the roots z0 goes to 1, and touches its
counterpart z−1

0 from outside of the unit circle (fig.-IV.5). Now, since we know, from the
Perron-Frobenius theorem, that E(µ) never crosses any other eigenvalue of Mµ, the choice
of roots that consists in taking z−1

0 instead of z0 must correspond to E(µ) as well (because
they coincide for B = 1). We can therefore find the correct analytic continuations for µ
and E(µ) in terms of B by finding z0, replacing its contribution in those series by that of
z−1

0 , and taking B back from 1 to 0. This procedure is explained in more detail in [156].

Figure IV.5: Bethe roots for a periodic system with 20 sites and 10 particles. The roots
are at the centres of the white discs. The unit circle is represented in black. On the left,
where B < 1, a pair of roots can be seen to approach the unit circle on the real axis. On
the right, where B = 1, those roots have merged.

We can find those two roots using equation (IV.102). An integration by parts turns
it into:

H(B) ∼ 2

3
√
π

∫ +∞

−∞
dθ θ3 2θBe−u

Be−u − 1
. (IV.108)

For 0 < B < 1, the poles in this expression are at θ± = ±i
√
− log(B). The cor-

responding residues are i4
√
π

3
θ3
± (as explained in [156]), and we must subtract the one
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corresponding to θ− and add the other one to H. We get, for B → 0:

H(B) =
8

3

√
π
[
− log(B)

]3/2− ∞∑
k=1

Bk

k5/2
∼ 8

3

√
π
[
− log(B)

]3/2
(IV.109)

and

BH ′(B) = −4
√
π
[
− log(B)

]1/2− ∞∑
k=1

Bk

k3/2
∼ −4

√
π
[
− log(B)

]1/2
. (IV.110)

Putting those together, we find, for µ < 0:

E−(µ)− 1− q
4

µ ∼ −(1− q) 1

48
µ3 (IV.111)

and, for j < J = 1−q
4

,

g−(j) ∼ (J − j)3/2 8

3(1− q)1/2
. (IV.112)

Once more, we find a result that is independent of L. We also see that the phase
transition that takes place here at µ = 0 is of a different nature than the one on the
shock line: the behaviour of g(j) with respect to L changes from one side to the other.
This will be explained in section IV.4.

MC phase

We will now try to repeat all this for the inside of the maximal current phase. Here,
H(B) is replaced by:

H(B) = −
∞∑
k=1

(2k + 1)
(2k)!

k!k(k+5/2)

(B
4

)k
∼ 2√

π

∫ +∞

−∞
dθ θ2 log

[
1−Bθ2e−θ

2]
. (IV.113)

For µ > 0, i.e. B → −∞, we have:

log
[
1−Bθ2e−θ

2]∼ log
[
|B|θ2e−θ

2] I[|B|θ2e−θ
2

> 1
]
. (IV.114)

The upper bound of the integral can therefore be set at θB such that |B|θ2
Be−θ

2
B = 1,

in which we recognise the square root of the Lambert W function: θB =
√
−W−1(−1/B).

For large B, it behaves as log(|B|)1/2, just as in the previous case.
A few more calculations show that the term θ2 inside of the log in (IV.113) makes in

fact no difference at all for B → −∞, so that we get the same results:

E+(µ)− 1− q
4

µ ∼ (1− q) 1

20

(3

2

)2/3

L−2/3π2/3µ5/3 (IV.115)

and, for j > J = 1−q
4

,

g+(j) ∼ (j − J)5/2 32
√

3L

5π(1− q)3/2
. (IV.116)
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For µ < 0, the story is slightly different. The same scenario as we saw before applies,
but this time, there are two pairs of roots crossing the unit circle instead of one (fig.-
IV.6), all close to the real axis. Using the same procedure as before, we find them to have
exactly the same behaviour with respect to B, so that the only difference is that we have
twice as many residues as we had then.

Figure IV.6: Bethe roots for an open system with 9 sites. The unit circle is represented
in black. This time, there are two pairs of roots that merge for a critical value of B.
Those roots get closer to the real axis as L becomes large.

This gives us:

H(B) ∼ 16

3

√
π
[
− log(B)

]3/2
(IV.117)

and

BH ′(B) ∼ −8
√
π
[
− log(B)

]1/2
(IV.118)

so that, for µ < 0,

E−(µ)− 1− q
4

µ ∼ −(1− q) 1

192
µ3 (IV.119)

and, for j < J = 1−q
4

,

g−(j) ∼ (J − j)3/2 16

3(1− q)1/2
. (IV.120)

The fact that we do not find the same behaviour for negative fluctuations of the
current inside of the MC phase and on its boundaries is a sign that there might be a
phase transition between those two regions for µ < 0. Since the behaviour is the same for
positive fluctuations, there probably isn’t one for µ > 0. We will confirm this in section
IV.4.
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IV.3 Asymptotics for extreme currents

In this section, we go back to the definition of Mµ itself, and try to find its largest
eigenvalue, and possibly the associated eigenvectors, using direct diagonalisation, in some
simplifying limits. The first limit, which we will take in all the cases we will consider, is
that of the TASEP (which, from what we’ve seen before, makes no difference apart from
the absence of a factor (1− q) in E(µ)).

As we recall, Mµ is defined by:

Mµ = m0(µ0) +
L−1∑
i=1

Mi(µi) +mL(µl) (IV.121)

with

m0(µ0) =

[
−α 0
αeµ0 0

]
, Mi(µi) =


0 0 0 0
0 0 eµi 0
0 0 −1 0
0 0 0 0

 , mL(µl) =

[
0 βeµL

0 −β

]
(IV.122)

and µ =
∑
µi. We have kept the fugacities on all bonds, because we will need to distribute

them differently depending on the situation.
The three limits we will consider are that of a very low current (µ → −∞), that of

very low boundary rates in the shock phase (α = β → 0), and that of a very high current
(µ→∞).

IV.3.1 Low current limit

We start with the µ→ −∞ limit. We choose µi = µ
L+1

for every bond, and note ε =

eµ/(L+1) → 0.
We can then write Mµ as:

Mµ = Md + εMj (IV.123)

where Md is the matrix containing the diagonal (escape) rates, and Mj is the matrix
containing the non-diagonal (jumping) rates. We see that Mµ is almost diagonal, and we
are going to treat it perturbatively in ε.

The entries of Md are given by:

Md(C, C) = −(1− n1)α−
L−1∑
i=1

ni(1− ni+1)− nLβ (IV.124)

where ni is the occupancy of site i in C. At lowest order in ε, those are the eigenvalues
of Mµ.

Since we are looking for the highest eigenvalue of Mµ, we see that there are four
possible situations (assuming that α and β are limited to [0, 1]): if α < β, then the best
configuration is empty (ni = 0 for all i’s), with an eigenvalue of E = −α. If β < α, we
have the same in reverse: the best configuration is full (ni = 1 for all i’s) and E = −β
(those two first cases are symmetric to one another, and we will only be considering the
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first one). If α = β < 1, then E = −α, and we have two competing configurations: empty
or full. Finally, if α = β = 1, then any configuration with a block of 1’s followed by a
block of 0’s has an eigenvalue of E = −1, which is the highest, and there are L + 1 of
those. We therefore have two phases, one line, and one point, to investigate (fig.-IV.7).

0 α

β

1

0
0 L

1

0
0 L

Empty

Full

1

1

1

0
0 L

1

0
0 L

Figure IV.7: Phase diagram of the open ASEP for very low current. The mean den-
sity profiles are represented in red the insets. The profiles in orange are the individual
configurations which compose the steady state.

Empty/full phases

We first consider the case where α < β. We know that the dominant eigenvalue of Mµ in
this case is equal to −α at leading order in ε, but since we need to differentiate it with
respect to µ to get the current and its large deviation function, we will have to find the
next to leading order as well.

We expand that eigenvalue and its corresponding eigenvector as a series in ε:

E(µ) = E0 +
∑

Ekε
k , |Pµ〉 = |P0〉+

∑
εk|Pk〉 (IV.125)

where
E(µ)|Pµ〉 = Mµ|Pµ〉. (IV.126)

We already know that

|P0〉 = |00 . . . 00〉 , E0 = −α. (IV.127)

The first order in ε in (IV.126) gives:

E1|P0〉+ E0|P1〉 = Mj|P0〉+Md|P1〉. (IV.128)
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Since the only state that can be reached from |P0〉 through Mj is |10 . . . 00〉, which
has no overlap with |P0〉, we get:

|P1〉 =
1

E0 −Md

Mj|P0〉 ∼ |10 . . . 00〉 , E1 = 0 (IV.129)

so that the first correction to E(µ) is 0. The second order in ε in (IV.126) gives:

E2|P0〉+ E0|P2〉 = Mj|P1〉+Md|P2〉. (IV.130)

Again, the only state that can be reached from |P1〉 through Mj is |010 . . . 00〉, which
has no overlap with |P0〉:

|P2〉 =
( 1

E0 −Md

Mj

)2

|P0〉 ∼ |010 . . . 00〉 , E2 = 0 (IV.131)

and once more, the correction to E(µ) is 0.
The first possible non-zero correction to E(µ) that we might get is when we find a

|Pk〉 which has an overlap with |P0〉. The shortest way to go back to |P0〉 through jumps
is to have one particle enter the system (the first step being |P1〉), and then travel all
the way to the other end, and exit the system. This can be done in L+ 1 steps, so that
Ek = 0 for k : 1..L, and

EL+1|P0〉+ E0|PL+1〉 = Mj|PL〉+Md|PL+1〉. (IV.132)

Putting those L+ 1 first equations together, we get

|PL+1〉 = Mj

( 1

E0 −Md

Mj

)L
|P0〉 ∼ |P0〉+ . . . (IV.133)

and
EL+1 = 〈P0|PL+1〉 =

α

1− α. (IV.134)

Putting this back into E(µ), we get:

E(µ) ∼ −α + eµ
α

1− α (IV.135)

and

g(j) = α + j log(j)− j
(
log(α/(1− α)) + 1

)
. (IV.136)

We may note that taking the limit µ→−∞ in (IV.32) gives the same result:

E(µ) =
a

a+ 1

eµ − 1

eµ + a
∼ − 1

1 + a
+

1

a
eµ = −α + eµ

α

1− α (IV.137)

which indicates that this expression for E(µ) remains valid for all µ < 0. We will be more
specific in section IV.4.

Finally, note that in this case, the second largest eigenvalue is −β for ε → 0 (and
corresponds to a completely full system), so that the gap between the first two eigenvalues
of Mµ is finite and equal, at leading order, to ∆E = (β − α).

The corresponding results for β < α (the ‘full’ phase) can be obtained by exchanging
α with β.
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Coexistence line

We now consider the slightly more complex case where α = β < 1. This time, there are
two states with equal eigenvalues for µ = −∞:

|P0〉 = |0〉 = |00 . . . 00〉 with E0 = −α (IV.138)

and
|P̃0〉 = |1〉 = |11 . . . 11〉 with Ẽ0 = −α. (IV.139)

As in the previous case, the first corrections to those eigenvalues are the rates with
which we can go from these configurations back to themselves, but since they are degen-
erate, we must also consider how we can go from one to the other. As before, it takes the
same L+ 1 steps to go from |0〉 to itself, or from |1〉 to itself, so that the first correction
to both E and Ẽ is eµ α

1−α . At this stage, those states are still degenerate. To lift the
degeneracy, we have to consider the shortest way to go from |0〉 to |1〉, or the opposite.
This means completely filling or emptying the system, and can be done in L(L + 1)/2
steps. This tells us that the difference between the two highest eigenvalues is of order
εL(L+1)/2 = e

L
2
µ. For symmetry reasons, the main eigenvector is then 1

2
(|0〉+ |1〉), and the

second one is 1
2
(|0〉 − |1〉).

In conclusion, we have, as in the previous case,

E(µ) ∼ −α + eµ
α

1− α (IV.140)

and

g(j) = α + j log(j)− j
(
log(α/(1− α)) + 1

)
(IV.141)

but this time, the gap goes like ∆E ∼ e
L
2
µ.

There is a systematic way to perform the calculations we just did, called the ‘resolvent
formalism’ [157]. We present it here for two reasons: it will be useful to us in the next
section, and it allows, in the case of a perturbation around degenerate states, to rigorously
define an effective interaction matrix between those states. This gives us, in essence, a
reduced dynamics for the system in the subset of phase space which contains only the
dominant configurations.

This formalism can be stated as follows: for a general matrix M with eigenvalues Ei
and eigenvectors |Pi〉 and 〈Pi|, we have:∮

C

dz

i2π

1

z −M =
∑
Ei∈C

|Pi〉〈Pi| (IV.142)

where the sum is over the eigenvalues of M which lie inside of the contour C. What’s
more, we have ∮

C

dz

i2π

z

z −M =
∑
Ei∈C

Ei|Pi〉〈Pi|. (IV.143)

Now, considering Mµ with α = β, a good way to isolate the two dominant eigenvectors
is to consider that same contour integral, with a contour close enough to −α so that the
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two highest eigenvalues are inside it, but not any of the others. The simplest way to do
that is to consider a small circle around −α. This gives us an effective matrix Meff such
that:

Meff = −α +

∮
C

dz

i2π

z

z − α−Md − εMj

(IV.144)

where C is a small circle centred at 0.

We can now expand this expression in terms of ε:

Meff = −α +

∮
C

dz

i2π

∞∑
k=0

z

z − (Md + α)

(
Mj

1

z − (Md + α)

)k
εk (IV.145)

which is a sum over paths of length k, with transitions given by Mj and a ‘potential’
given by (z −Md − α)−1. We see that the only terms which contribute to the integral
(i.e. that give first order poles which yield non-zero residues) are those for which Md is
taken at −α exactly twice, which is to say the paths that go through |0〉 or |1〉 twice.

It is now fairly easy to find the amplitudes of Meff between |0〉 and |1〉: we only have
to project that expression between those states, and since Md = −α in both of those,
we only have to consider all the paths going from one of those states to another without
going through them at any other point. Since we are doing a perturbative expansion in ε,
we only need the term with the lowest number of steps. Between |0〉 and itself, or |1〉 and
itself, there is only one path of the lowest length, which is L + 1, and the amplitude for
that path is α

1−α . Between |0〉 and |1〉, or the opposite, the shortest length is L(L+ 1)/2.
There are many suitable paths for that transition, and the total amplitude is some X
which we don’t need anyway, since that factor doesn’t appear in the dominant term in
E(µ) (it would be of order e

L
2
µ).

All in all, we have an effective matrix given by:

Meff =

[
−α + eµ α

1−α Xe
L
2
µ

Xe
L
2
µ −α + eµ α

1−α

]
(IV.146)

which is easy to diagonalise, and we can retrieve the results we found earlier.

Equal rates point

For the last case, where all the jumping rates are equal (α = β = 1), we find L+ 1 states
with an eigenvalue equal to−1 for µ = −∞. Those states are given by |k〉 = |{1}k{0}L−k〉,
i.e. by configurations made of a block of 1’s followed by a block of 0’s. Those are
called ‘anti-shocks’, being symmetric to the usual shocks which have a low density region
followed by a high density one.

Using the resolvent formalism, we find:

〈k|Meff |k〉 ∼ −1 + εL+1, (IV.147)

〈k + 1|Meff |k〉 ∼ εk+1, (IV.148)

〈k − 1|Meff |k〉 ∼ εL−k+1, (IV.149)
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as well as terms of the type

〈k + 2|Meff |k〉 ∼ Xε2k+3, (IV.150)

〈k − 2|Meff |k〉 ∼ Y ε2L−2k+3, (IV.151)

〈k + 3|Meff |k〉 ∼ Zε3k+6, (IV.152)

and so on. We checked those last terms to be of sub-leading order in the end, so we will
save ourselves the trouble of dealing with them and neglect them right away.

We now have:

Meff = −1 + εL+1 +
L∑
k=1

εk|k〉〈k − 1|+ εL−k+1|k − 1〉〈k|. (IV.153)

We can transform it through a matrix similarity to have all the non-diagonal coeffi-
cients be equal to ε(L+1)/2, which yields:

Meff = −1 + εL+1 + ε(L+1)/2

L∑
k=1

|k〉〈k − 1|+ |k − 1〉〈k|. (IV.154)

This is a well known tridiagonal matrix, used to model the electronic interactions
in conjugated dienes through the Hückel method [158], among other things. It is easily
diagonalised. Its eigenvalues are:

E(k) = −1 + 2ε(L+1)/2 cos(kπ/(L+ 2)) (IV.155)

for k ∈ [[1, L+ 1]]. The highest one is

E(1) = −1 + 2ε(L+1)/2 cos(π/(L+ 2)) (IV.156)

and the gap to the second one is

∆E = 2ε(L+1)/2
(

cos(π/(L+ 2))− cos(2π/(L+ 2))
)
∼ 3π2

L2
eµ/2. (IV.157)

In the end, we find that

E(µ) ∼ −1 + 2eµ/2 (IV.158)

and

g(j) = 1 + 2j log(j)− 2j. (IV.159)

Moreover, knowing that the eigenvector associated to that first eigenvalue is dis-
tributed according to a sine function, which is to say that the probability of |k〉 is:

P(k) ∼ sin

(
πk

L+ 1

)2

(IV.160)

we find that the mean density ρn at site n is of the form:

ρn = 1− n

L+ 1
+

1

2π
sin

(
2πn

L+ 1

)
. (IV.161)
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IV.3.2 Low boundary rates limit

We now look at the case where α = β → 0. We choose µ0 = µL = µ
L+1
− L−1

L+1
log(α) and

µi = µ
L+1

+ 2
L+1

log(α) for i ∈ [[1, L]], so that αeµ0 = βeµL = eµi , which we shall note as
ε. Note that for α fixed, ε is not small if µ is too large, and that for µ finite, it is larger
than α.

In this case, we can write Mµ as:

Mµ = Md + εMj − α(nL + 1− n1) (IV.162)

with Mj having all rates equal to 1, and

Md(C, C) =
L−1∑
i=1

ni(1− ni+1). (IV.163)

This time, because α is close to 0, the configurations with the highest eigenvalues at
first order are the ones with the lowest numbers of 10’s in them (each of those lowers the
eigenvalue by 1), which is to say the shock configurations |k〉 = |{0}k{1}L−k〉. Using the
resolvent formalism again, we find:

〈0|Meff |0〉 ∼ −α + εL+1, (IV.164)

〈L+ 1|Meff |L+ 1〉 ∼ −α + εL+1, (IV.165)

〈k|Meff |k〉 ∼ −2α + εL+1, (IV.166)

〈k + 1|Meff |k〉 ∼ εk+1, (IV.167)

〈k − 1|Meff |k〉 ∼ εL−k+1, (IV.168)

and other rates which we will be neglecting, as in the previous section.
After a matrix similarity, we find that Meff takes the simple form:

Meff = −2α+εL+1+α
(
|0〉〈0|+|L+1〉〈L+1|

)
+ε(L+1)/2

L∑
k=1

|k〉〈k−1|+|k−1〉〈k|. (IV.169)

We were not able to diagonalise it exactly as for (IV.154), but could determine nu-
merically that for L→∞, the largest eigenvalue behaves as:

E = −2α + εL+1 + α + εL+1/α if ε(L+1)/2 < α (IV.170)

E = −2α + εL+1 + 2ε(L+1)/2 if ε(L+1)/2 > α (IV.171)

Replacing ε by its definition, we find that ε(L+1)/2 = αeµ/2, so that the two cases
above become µ < 0 and µ > 0 respectively. We then have, for µ < 0:

E−(µ) = −α + eµα (IV.172)

and

g−(j) = α + j log(j)− j(log(α) + 1) (IV.173)

and, for µ < 0:

E+(µ) = −2α + 2eµ/2α (IV.174)

and

g+(j) = 2α + 2j log(j)− 2j(log(α) + 1). (IV.175)
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IV.3.3 Large current limit

The last limit we consider is that where µ→∞.
We first consider µi = µ

L+1
for all i’s. In this case, it’s the diagonal part of Mµ that is

negligible. We can write:
Mµ ∼ eµ/(L+1)Mj (IV.176)

with

Mj = αS+
1 +

L−1∑
n=1

S−n S
+
n+1 + βS−L (IV.177)

where S±n are the operators for the creation or annihilation of a particle at site n.
The bulk part of that matrix looks like half that of the Hamiltonian of the XX spin

chain [159]. If we could somehow combine this matrix with its transpose, we could rebuild
that Hamiltonian, and then diagonalise it using free fermions techniques.

Let us examine the commutator between Mj and tMj (where all the signs of the
operators are inverted). Since all S±n commute for different sites, we only have to consider
a few terms:

[αS+
1 , αS

−
1 ] = α2(2n1 − 1), (IV.178)

[S−n S
+
n+1, S

+
n S
−
n+1] = nn+1 − nn, (IV.179)

[βS−L , βS
+
L ] = β2(1− 2nL). (IV.180)

We see that if (and only if) α = β = 1/
√

2, those terms cancel one another and we
get [Mj,

tMj] = 0. Let us therefore change our fugacities to:

µ0 =
µ

L+ 1
+

1

L+ 1
log(2αβ)− log(

√
2α), (IV.181)

µi =
µ

L+ 1
+

1

L+ 1
log(2αβ), (IV.182)

µL =
µ

L+ 1
+

1

L+ 1
log(2αβ)− log(

√
2β), (IV.183)

for which we have:
Mµ ∼ A Mj (IV.184)

with A = (2αβeµ)
1

L+1 and

Mj =
1√
2
S+

1 +
L−1∑
n=1

S−n S
+
n+1 +

1√
2
S−L . (IV.185)

Note that, since A is the only thing that depends on α and β, and that for L→∞ we
have A ∼ eµ/L, all the results in this section will be entirely independent of the boundary
parameters.

We know, from the Perron-Frobenius theorem, that the highest eigenvalue of that
matrix is real and non-degenerate. It is therefore also the highest eigenvalue of its trans-
pose, with the same eigenvectors (because they commute). This allows us to define
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H = 1
2
(Mj + tMj), which has the same highest eigenvalue and the same eigenvectors as

Mj. H is given by:

H =
1√
8
Sx1 +

1

2

L−1∑
n=1

(S−n S
+
n+1 + S+

n S
−
n+1) +

1√
8
SxL (IV.186)

which is the Hamiltonian for the open XX chain with spin 1/2 and extra boundary terms
Sx1 and SxL (with Sx = S+ + S−). This spin chain was studied for general boundary
conditions in [159]. We will present here a simpler version of their calculations, only
applicable to our situation but much less intricate than their general solution. Note that
applying their solution to our simpler case turned out to be more difficult than solving
it ourselves directly, which is what we did in the end.

The first step in diagonalising this Hamiltonian is to consider two extra sites, one at
0 and one at L+ 1, which we couple with our system by defining an new Hamiltonian:

H̃ =
1√
8
Sx0S

x
1 +

1

2

L−1∑
n=1

(S−n S
+
n+1 + S+

n S
−
n+1) +

1√
8
SxLS

x
L+1. (IV.187)

Since [H̃, Sx0 ] = [H̃, SxL+1] = 0, this modified Hamiltonian has four sectors, corre-
sponding to the eigenspaces of Sx0 and SxL+1. Since each of those has two eigenvalues 1

and −1, we can recover H by projecting H̃ onto the eigenspaces of Sx0 and SxL+1 where
both eigenvalues are 1:

H =
1

4

(
〈00|+ 〈10|

)
⊗
(
〈0L+1|+ 〈1L+1|

)
H̃
(
|00〉+ |10〉

)
⊗
(
|0L+1〉+ |1L+1〉

)
. (IV.188)

We are now left with diagonalising H̃, which is better than H in that it is quadratic.

The next step in solving that problem is to do a Jordan-Wigner transformation on
the operators S±n :

cn =

(
n−1∏
m=0

(−1)nm

)
S−n , c†n =

(
n−1∏
m=0

(−1)nm

)
S+
n , (IV.189)

S−n =

(
n−1∏
m=0

(−1)c
†
mcm

)
cn , S+

n =

(
n−1∏
m=0

(−1)c
†
mcm

)
c†n, (IV.190)

which yields fermionic operators:

{c†n, cm} = δn,m, (IV.191)

{c†n, c†m} = 0, (IV.192)

{cn, cm} = 0. (IV.193)

The elements of H̃ become:

S+
n S
−
n+1 = c†ncn+1, (IV.194)

S−n S
+
n+1 = c†n+1cn, (IV.195)

Sx0S
x
1 = (c†0 − c0)(c†1 + c1), (IV.196)

SxLS
x
L+1 = (c†L − cL)(c†L+1 + cL+1), (IV.197)
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so that

H̃ =
1√
8

(c†0− c0)(c†1 + c1) +
1

2

L−1∑
n=1

(c†ncn+1 + c†n+1cn) +
1√
8

(c†L− cL)(c†L+1 + cL+1). (IV.198)

We now perform a Bogoliubov transformation on H̃, writing it as

H̃ = E0 +
∑
k

Ekd†kdk (IV.199)

with all the Ek > 0, and the dk’s to be determined.
We want the dk’s to be fermionic, so that [H̃, d†k] = Ekd†k, which is the equation we

will now try to solve. We have two trivial solutions with energy 0 (called zero-modes):
(c†0 + c0) and (c†L+1 − cL+1). For the other solutions, we write:

d†k =
X(k)

√
2

(c†0 − c0) +
L∑
n=1

A
(k)
i c†n +B(k)

n cn +
Y (k)

√
2

(c†L+1 + cL+1) (IV.200)

and [H̃, d†k] = Ekd†k becomes:

A
(k)
n+1 + A

(k)
n−1 = 2EkA(k)

n for n ∈ J2, L− 1K, (IV.201)

−B(k)
n+1 −B(k)

n−1 = 2EkB(k)
n for n ∈ J2, L− 1K, (IV.202)

X(k) + A
(k)
2 = 2EkA(k)

1 , (IV.203)

X(k) −B(k)
2 = 2EkB(k)

1 , (IV.204)

A
(k)
1 +B

(k)
1 = 2EkX(k), (IV.205)

Y (k) + A
(k)
L−1 = 2EkA(k)

L , (IV.206)

−Y (k) −B(k)
L−1 = 2EkB(k)

L , (IV.207)

A
(k)
L −B

(k)
L = 2EkY (k). (IV.208)

All those equations can be written in a more compact form by defining:

A
(k)
L+1 = Y (k), (IV.209)

A
(k)
L+1+n = (−1)nB

(k)
L+1−n, (IV.210)

A
(k)
0 = X(k), (IV.211)

for which they become:

A
(k)
n+1 + A

(k)
n−1 = 2EkA(k)

n for n ∈ J1, 2LK, (IV.212)

A
(k)
2L + (−1)LA

(k)
0 = 2EkA(k)

2L+1, (IV.213)

(−1)LA
(k)
2L+1 + A

(k)
1 = 2EkA(k)

0 . (IV.214)

These are the same equations which we would have found for a periodic XX spin
chain with 2L+ 2 sites, the only (but important) difference being that d†k mixes ck’s and

c†k’s, so that the total spin is not conserved.
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We look for plane wave solutions of the form An = rn, with 2E = r + 1
r
. This

automatically solves eq.(IV.212). The other two equations become:

r2L + (−1)L = r2L + r2L+2, (IV.215)

(−1)Lr2L+1 + r = r +
1

r
(IV.216)

and both simplify into
r2L+2 = (−1)L. (IV.217)

We have 2L + 2 solutions to this equation, given by r = ωk = e
iπ(L−2k+2)

2L+2 for k ∈
J1, 2L+ 2K, so that A

(k)
n = ωnk , and the energies are given by:

Ek = cos

(
(L− 2k + 2)π

2L+ 2

)
= sin

(
(2k − 1)π

2L+ 2

)
for k ∈ J1, 2L+ 2K. (IV.218)

We can then write the d†k’s as:

d†k =
1√

2L+ 2

(
1√
2

(c†0 − c0) +
L∑
n=1

ωnk c
†
n − (−ωk)−ncn +

ωL+1
k√

2
(c†L+1 + cL+1)

)
(IV.219)

and the inverse relations as:

1√
2

(c†0 − c0) =
1√

2L+ 2

2L+2∑
k=1

d†k, (IV.220)

c†n =
1√

2L+ 2

2L+2∑
k=1

ω−nk d†k, (IV.221)

cn =
1√

2L+ 2

2L+2∑
k=1

−(−ωk)nd†k, (IV.222)

1√
2

(c†L+1 + cL+1) =
1√

2L+ 2

2L+2∑
k=1

ω−L−1
k d†k. (IV.223)

Note that the d†k’s are fermions, but, because there are 2L+2 of them, and only L+2

c†k’s, they are not all independent: we have ωL+1+k = −ωk, so that d†L+1+k = −dk.

We now need to determine the constant term E0 in H̃. Considering only the scalar
terms in

∑
k

Ekd†kdk, we find:

L+1∑
k=1

Ek
1

2L+ 2

(
1

2
(c†0 − c0)(c0 − c†0) +

L∑
n=1

c†ncn + cnc
†
n +

1

2
(c†L+1 + cL+1)(cL+1 + c†L+1)

)

=
1

2

L+1∑
k=1

Ek. (IV.224)
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Since there is no scalar part in H̃, we must therefore have:

E0 = −1

2

L+1∑
k=1

Ek. (IV.225)

The highest eigenvalue can then be obtained by considering the state with all the
energy levels occupied:

E = E0 +
L+1∑
k=1

Ek =
1

2
sin
( π

2L+ 2

)−1

∼ L

π
(IV.226)

for the eigenstate defined by

|ψ〉 =
L+1∏
k=1

d†k|Ω〉 (IV.227)

which is such that d†k|ψ〉 = 0 for k ∈ [[1, L + 1]]. The vector |Ω〉 is arbitrary (provided

that it is not in the kernel of any of the d†k’s that we apply to it).

Remembering the factor A which we took out of Mµ at the beginning of this section,
we finally get:

E(µ) ∼ L

π
eµ/L (IV.228)

and

g(j) ∼ Lj log(j)− Lj(1− log(π)) (IV.229)

which is proportional to L, consistently with eq.(IV.116) which was obtained for positive
fluctuations of the current in the MC phase.

We now have what we wanted, but while we’re at it, we might as well analyse the
eigenstate (IV.227) too.

The first and easiest calculation that we can do here is that of the two-point correla-
tions in |ψ〉. The connected correlation between the occupancies of sites n and m is given
by:

Cnm = 〈ψ|c†ncnc†mcm|ψ〉 − 〈ψ|c†ncn|ψ〉〈ψ|c†mcm|ψ〉
= −〈ψ|c†nc†m|ψ〉〈ψ|cncm|ψ〉+ 〈ψ|c†ncm|ψ〉〈ψ|cnc†m|ψ〉 (IV.230)

(using Wick’s theorem).
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We find that:

〈ψ|c†ncm|ψ〉 =
1

2L+ 2

L+1∑
k=1

ωm−nk , (IV.231)

〈ψ|cnc†m|ψ〉 =
1

2L+ 2

L+1∑
k=1

(−ωk)n−m, (IV.232)

〈ψ|c†nc†m|ψ〉 = − 1

2L+ 2

L+1∑
k=1

ω−nk (−ωk)−m, (IV.233)

〈ψ|cncm|ψ〉 = − 1

2L+ 2

L+1∑
k=1

(−ωk)nωmk , (IV.234)

If n and m have same parity, each of those terms sum to 0 (unless n = m in the first
two sums, but here we consider two different sites). If not, we get:

〈ψ|c†ncm|ψ〉 =
1

L+ 1

eiπ(L)(m−n)/(2L+2)

1− e−iπ(m−n)/(L+1)
, (IV.235)

〈ψ|c†nc†m|ψ〉 = − 1

L+ 1
(−1)m

eiπ(L)(−m−n)/(2L+2)

1− eiπ(m+n)/(L+1)
, (IV.236)

〈ψ|cncm|ψ〉 = − 1

L+ 1
(−1)n

eiπ(L)(m+n)/(2L+2)

1− e−iπ(m+n)/(L+1)
, (IV.237)

so that

Cmn =
1

4(L+ 1)2 sin2
(
π(m+n)
(2L+2)

) − 1

4(L+ 1)2 sin2
(
π(m−n)
(2L+2)

) . (IV.238)

The correlations are therefore exactly 0 for sites which are an even number of bonds
apart (this was also the case in [100] for a half-filled periodic chain), and behave as

Cmn ∼ −
1

π2(m− n)2
(IV.239)

otherwise, if the two sites are far away enough from the boundaries. Note that those
correlations do not vanish with the size of the system, in contrast with the steady state
of the ASEP at µ = 0, where they behaved as L−1 in the maximal current phase and
vanished exponentially in the high and low density phases.

We can now look at the (un-normalised) probability of any given configuration. This
can be expressed as

P ({hn, pn}) = 〈ψ|
N∏
n=0

chnc
†
hn

(c†L+1 + cL+1)2

2

L∏
n=N+1

c†pncpn|ψ〉 (IV.240)

which is to say that we select only the configuration that has holes at positions {hn} and
particles at positions {pn} in |ψ〉, and project it onto its Hermitian conjugate. Note that
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the term
(c†L+1+cL+1)2

2
makes no difference (since it is equal to a constant factor 1

2
), but

is there to have effectively L + 1 sites instead of L, which will be useful shortly. From
the expression of this term in (IV.223), we see that it corresponds to having a hole (or,
in fact, a particle) at site L + 1. Note also that the terms in (IV.240) can be reordered
as long as any pair {cn, c†n} is kept in the same order, so that we can regroup all the c’s
from the first product to the left, for instance.

We can now use Wick’s theorem [160] on this expression, and write it as the Pfaffian of
an anti-symmetric matrix A whose upper triangle consists of all the mean values 〈ψ|ab|ψ〉
where a and b are two terms from the product in (IV.240), taken in the same order. We
can write it as a block matrix:

A =


A1 〈ψ|chnc†hm|ψ〉 〈ψ|chnc†pm|ψ〉 〈ψ|chncpm |ψ〉

−〈ψ|chmc†hn|ψ〉 A2 〈ψ|c†hnc†pm|ψ〉 〈ψ|c†hncpm|ψ〉
−〈ψ|chmc†pn|ψ〉 −〈ψ|c

†
hm
c†pn|ψ〉 A3 〈ψ|c†pncpm|ψ〉

−〈ψ|chmcpn|ψ〉 −〈ψ|c†hmcpn|ψ〉 −〈ψ|c†pmcpn|ψ〉 A4

 (IV.241)

where A1|n,m = 〈ψ|chnchm|ψ〉 if n < m and A1|n,m = −〈ψ|chmchn|ψ〉 if n > m. The same

goes for A2 with c†hn , A3 with cpn and A4 with c†pn .
Looking at the expression given in (IV.231) to (IV.234), we see that −〈ψ|cmcn|ψ〉 =

〈ψ|cncm|ψ〉, −〈ψ|c†mc†n|ψ〉 = 〈ψ|c†nc†m|ψ〉 and −〈ψ|cmc†n|ψ〉 = 〈ψ|c†ncm|ψ〉 − δn,m. We also
note that all those block matrices can be factorised in a simple way: if we define

X−n,k = −(−wk)hn , X+
n,k = w−hnk , (IV.242)

Y −n,k = −(−wk)pn , Y +
n,k = w−pnk , (IV.243)

then A can be rewritten as

A =


X−(X+)† X−(X−)† X−(Y −)† X−(Y +)†

X+(X+)† − 1h X+(X−)† X+(Y −)† X+(Y +)†

Y +(X+)† Y +(X−)† Y +(Y −)† Y +(Y +)†

Y −(X+)† Y −(X−)† Y −(Y −)† − 1p Y −(Y +)†

 (IV.244)

where 1h and 1p are identity matrices whose respective sizes are the numbers of holes and
particles (one of which is occupying site L + 1, so that the sum of the two numbers is
L+ 1).

In order to calculate P ({hn, pn}) = Pf
[
A
]
, we need to first consider its square

P ({hn, pn})2 = Det
[
A
]
. After exchanging a few lines and columns in that determinant,

we can write it in a factorised form:

Det
[
A
]

= Det

[
X+

Y −
−1L+1

X−

Y + 0

]
�
[

(X+)† (Y −)† (X−)† (Y +)†

1L+1 0

]
. (IV.245)

Each block in this last expression is of a square matrix of size L+ 1 (which is where the
fact that we included site L+ 1 becomes useful). That determinant then reduces to:

P ({hn, pn})2 = Det
[
X−

Y +

]
Det
[
(X−)† (Y +)†

]
=
∣∣Det

[
X−

Y +

]∣∣2. (IV.246)

After a few final simplifications, we find

P ({hn, pn}) = Det
[
ωhnk, ω−pnk

]
(IV.247)
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where ω = e
iπ
L+1 . We recognise this to be Vandermonde determinant which gives, for any

configuration:

P ({nn}) =
∏

nn=nm

[sin(rm − rn)]
∏

nn 6=nm

[sin(rm + rn)] (IV.248)

where nn is the occupancy of site n, and rn = nπ/(2L+2). Note that all these probabilities
are still un-normalised.

This distribution is exactly that of a Dyson-Gaudin gas [161], which is a discrete
version of the Coulomb gas, on a periodic lattice of size 2L+ 2, with two defect sites (at
0 and L + 1) that have no occupancy, and a reflection anti-symmetry between one side
of the system and the other (fig.-IV.8). The first (upper) part of the gas is given by the
configuration we are considering, and the second (lower) is deduced by anti-symmetry.
The interaction potential between two particles at positions rn and rm is then given by:

V (rn, rm) = − log
(
sin(rm − rn)

)
. (IV.249)

Figure IV.8: Dyson-Gaudin gas equivalent of the configuration (110101000110111) for
the open ASEP conditioned on a large current. The lower part of the system is deduced
from the upper part by an axial anti-symmetry.

It was noticed in [100] that the large current limit of the steady state of the periodic
ASEP of size L also converges to a Dyson-Gaudin gas (this time, the standard periodic
case, without defects or symmetry).

IV.4 Phase diagram of the open ASEP

in the s-ensemble

In this section, we put all the information we have gathered in the previous ones together,
and attempt to describe the full phase diagram of the open ASEP in the s-ensemble (i.e.
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with j or µ as a variable).
We first show how to retrieve the large deviation function of the current in the low

and high density phases, given in eq.(IV.89), using a simple hydrodynamic description of
the system, called the macroscopic fluctuation theory (MFT), and a method first devised
in [85]. We then examine the domain of validity of that expression, and, assuming that
it is large enough, we see how this same method gives us access to the large deviation
function of the current in three other domains: a shock phase, which continues the shock
line for positive fluctuations of j, a coexistence plane, which separates the high and low
density phases for negative fluctuations of j, and an anti-shock phase, which sits on top
of the maximal current phase for negative fluctuations of j. In each of those cases, we
also obtain an expression for E(µ), and we check that everything is consistent with the
limits we have found before. Finally, in the extended maximal current phase, where we
cannot find an expression for g(j) and E(µ), we review whatever information we do have
on the behaviour of the system.

IV.4.1 Macroscopic fluctuations for the WASEP

We will now present a method, which was pointed out to us by B. Derrida, and can
be found in [85], with which we can retrieve the large deviation function of the current
in the low and high density phases through a hydrodynamic description of the system.
This relies on a not entirely rigorous trick which consists in starting from the weakly
asymmetric simple exclusion process (WASEP), in which the asymmetry scales as L−1,
and in which the MFT is applicable, and then take that weak asymmetry to be finite
again.

Let us therefore define ν such that (1− q) = ν
L

. We will first consider ν to be finite,
and, when it suits us, replace it by L(1− q) and see what happens. In all the following,
we will consider the continuous limit of the system, rescaled to have a size 1, and recall
that the mean field description of the system is governed by eq.(II.21):

jL = LJ = νρ(1− ρ)− λ∇ρ (IV.250)

with boundary conditions ρa and ρb, and where jL is the space-integrated current and
λ = 1+q

2
.

The macroscopic fluctuation theory, as stated, for instance, in [75], consists in assum-
ing that the fluctuations of the density profile are Gaussian around the mean-field profile
given by (IV.250). The large deviation functional of a history ρ(t) with a current j(x, t)
is written as:

gt(j, ρ) =
1

t

∫ t

0

dτ

∫ 1

0

[
j − νρ(1− ρ) + λ∇ρ

]2
2ρ(1− ρ)

dx (IV.251)

which is to say that the difference between a profile and the mean field solution is a
Gaussian white noise with a variance ρ(1− ρ).

The contraction principle which we presented in eq.(I.9) allows us to get the large
deviation function for j alone by taking the optimal value of ρ in the previous equation.
What’s more, as we saw at the end of section I.2.2, the joint probability distribution of
the current and of the configurations (therefore of the density) is independent of time in
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the large time limit, so that we can get rid of the integral on τ , and obtain:

g(j) = min
ρ

∫ 1

0

[
j − νρ(1− ρ) + λ∇ρ

]2
2ρ(1− ρ)

dx

= min
ρ

∫ 1

0

[
j − νρ(1− ρ)

]2
+
[
λ∇ρ

]2
2ρ(1− ρ)

dx+ 2λ

∫ ρb

ρa

[
j − νρ(1− ρ)

]
2ρ(1− ρ)

dρ (IV.252)

(where we just expanded the square in the first line, and find that the cross product is
conservative in ρ). Note that, if t is not taken to be large, the time integral cannot be
removed, because of transient regimes at the beginning and end of the evolution, which
depend on the initial and final conditions, and make the profile dependent on time.

If we now define X(ρ) = [j−νρ(1−ρ)]2

2ρ(1−ρ)
, we find that the profile that extremises the first

integral satisfies the Euler-Lagrange equation:

X ′(ρ)− λ2∆ρ

ρ(1− ρ)
+ (λ∇ρ)2 1− 2ρ

2ρ(1− ρ)
= 0. (IV.253)

Multiplying that by ∇ρ, we get

∇
[
X(ρ)

]
−∇

[ (λ∇ρ)2

2ρ(1− ρ)

]
= 0 (IV.254)

which is to say [
j − νρ(1− ρ)

]2
=
[
λ∇ρ

]2
+K 2ρ(1− ρ) (IV.255)

where K is a constant, which can be found to be 0 for ν → ∞ [85] (since in a region
where the profile is constant, i.e. where ∇ρ = 0, the current is given by j = νρ(1− ρ)).

This tells us that we must have λ∇ρ = ±(j − νρ(1− ρ)). The sign is determined by
the position of ρ with respect to the two densities r and (1 − r) that produce a current
j = νr(1− r), compared to the sign of ∇ρ.

Putting this back into (IV.252), we get 0 if ρ is such that λ∇ρ = −(j − νρ(1 − ρ))
(which is to say if ρ satisfies the mean field equation (IV.250)), and otherwise:[

j − νρ(1− ρ) + λ∇ρ
]2

2ρ(1− ρ)
dx =

[
2(j − νρ(1− ρ))

][
2λ∇ρ

]
2ρ(1− ρ)

dx = 2λ

[
j − νρ(1− ρ)

]
ρ(1− ρ)

dρ

which is to say that the only parts of a density profile that contribute to g(j) are those
where the sign of ∇ρ is inconsistent with the mean field equation (fig.IV.9).

For instance, if the imposed current j = νr(1 − r) (with r < 1
2
) and the boundary

densities ρa and ρb are such that ρa < 1 − r, ρb < 1 − r and ρa < 1 − ρb, the only part
of the optimal profile that doesn’t satisfy the mean field equation is the first boundary
layer going from ρa to r, so that:

g(j) = 2λ

∫ r

ρa

[
j − νρ(1− ρ)

]
ρ(1− ρ)

dρ = 2λj log
(1− ρa

ρa

r

1− r
)
− 2λν(r − ρa) (IV.256)

Taking the limit q = 0 in (IV.256), which is to say λ = 1
2

and ν = L, and going from
the space-integrated current to the local current (i.e. taking j → Lj), we find:

g(j) = j log
(1− ρa

ρa

r

1− r
)
− (r − ρa) (IV.257)
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ρc

1− ρc

ρa ρb

0
0

0

11

L

Figure IV.9: Various optimal profiles for a fixed ρc. The parts in green satisfy the mean
field equation, and do not contribute to g(j), whereas the portions in red do.

which is the same as eq.(IV.89).
In other cases, the contribution to g(j) of each portion [r1, r2] for which the variations

of ρ contradicts the mean field equation is given by:

f(j; r1, r2) =

∫ r2

r1

[
j − ρ(1− ρ)

]
ρ(1− ρ)

dρ = j log
(1− r1

r1

r2

1− r2

)
+ r1 − r2 (IV.258)

where j has to be equal to either r1(1− r1) or r2(1− r2). This is the same as the function
F res from [85].

What we are now going to do is to find all the possible configurations for j = r(1−r),
ρa and ρb that lead to different forms of g(j) (i.e. with different combinations of the
function f), and determine, in each of those phases, the expressions of g(j), E(µ), j(µ),
and the boundaries of the phase. We will also compare the asymptotic behaviours of those
results with everything we found in sections IV.2 and IV.3, to confirm their validity. We
will then summarise all we know about the maximal current phase, which is not accessible
by this method (and which is defined by j > 1

4
). Finally, we will put all this together in

order to draw the phase diagram of the open ASEP with respect to ρa, ρb and µ.
In all cases, we will be noting r the density for which j = r(1− r) which is below 1

2
.

Also note that we will do all the calculations for the TASEP, knowing that the same for
the ASEP can be obtained merely by multiplying E(µ) by (1− q). We also recall that we
have defined two other boundary parameters a = 1−ρa

ρa
and b = ρb

1−ρb
, which we will use

in certain formulae to make them more compact. Finally, we will, for the same reason,
sometimes use, instead of µ, the variable u defined by:

u =
1

1 + eµ
. (IV.259)

The non-perturbed case is given by u = 1
2
, u = 0 corresponds to an infinite current, and

u = 1 to zero current.
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IV.4.2 Low/high density phases

We start with the low density phase, from which we can deduce the high density phase
through ρa ↔ 1− ρb.

This phase is defined by ρa < 1− ρb, ρa < 1− r and ρb < 1− r. The optimal profile
is almost always on ρ = r, with possible boundary layers at both ends, with only the one
at the left boundary contributing to g(j) (fig.-IV.10).

ρa
ρb

0
0

0

11

L

Figure IV.10: Optimal profiles for a fixed ρc in the low density phase. Only the portion
in red contribute to g(j).

As we saw earlier, the large deviation function of the current is in this case:

g(j) = f(j; ρa, r) = j log
(1− ρa

ρa

r

1− r
)

+ ρa − r. (IV.260)

The generating function of the cumulants of the current is

E(µ) =
a

a+ 1

eµ − 1

eµ + a
=

eµ

eµ + a
− 1

1 + a
(IV.261)

and the current is, in terms of µ:

j(µ) =
a eµ

(eµ + a)2
= ρa(1− ρa)

u(1− u)

(ρa + u− 2uρa)2
. (IV.262)

The boundaries of the phase are given by:

ρa < 1− ρb (IV.263)

u >
ρ2
a

1− 2ρa + 2ρ2
a

with ρa >
1

2
, (IV.264)

u >
ρaρb

1− ρb − ρa + 2ρaρb
with ρb >

1

2
, (IV.265)

u > ρa with ρa <
1

2
, ρb <

1

2
, (IV.266)

where this last condition corresponds to j < 1
4
, which is the boundary with the MC phase.

According to this, the LD phase goes all the way up to u = 1. We have already
checked in section IV.3.1 that this expression of E(µ) is consistent with what we found
for µ→ −∞, i.e. u→ 1.
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We may also note that, on the line ρa = 1
2
, which corresponds to the LD-MC transition

line for µ = 0, we find:

E(µ) =
1

2

eµ − 1

eµ + 1
(IV.267)

which is consistent with the expression found in [95] for the half-filled periodic TASEP
(we recall that the open system with ρa = 1

2
and ρb < 1/2 is equivalent to a half-filled

periodic system of twice the size). The µ→ 0− limit gives:

E(µ) ∼ µ

4
− µ3

48
(IV.268)

which is the same as eq.(IV.111).

IV.4.3 LD-HD coexistence plane

We now look at the case where ρa = 1 − ρb and r < ρa < 1 − r. There are two possible
profiles in this case: one around ρ = r with a left boundary layer contributing to g(j),
and one around ρ = 1− r with a right boundary layer contributing to g(j) for the same
amount (fig.-IV.11).

ρa

ρb

0
0

0

11

L

Figure IV.11: The two optimal profiles for a fixed ρc in the LD-HD coexistence plane.
Only the portions in red contribute to g(j).

Since the large deviation function of any of those two profiles is the same, and equal
to that of the LD phase (or of the HD phase with b = a), the expressions for g(j), E(µ)
and j(µ) are exactly the same as in the previous case. The boundaries of this plane are
given by:

ρa = 1− ρb, (IV.269)

u >
ρ2
a

1− 2ρa + 2ρ2
a

with ρa >
1

2
, (IV.270)

u >
1

2
with ρa <

1

2
. (IV.271)

We have three asymptotic results to check in this case. The one for µ → −∞, from
section IV.3.1, is the same as for the LD phase. We also looked at the case ρa → 0 in
section IV.3.2. The corresponding limit for E(µ) given by eq.(IV.261) is:

E(µ) ∼ −ρa + eµρa (IV.272)
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which is consistent with eq.(IV.172).
Finally, for ρa <

1
2

and µ→ 0−, we have:

E(µ) ∼ a

(1 + a)2
µ+

a(a− 1)

2(a+ 1)3
µ2 (IV.273)

which is consistent with eq.(IV.98) from section IV.2.2.

IV.4.4 Shock phase

We consider the case where ρa < r and ρb > 1 − r. Here, there is a number of optimal
profiles of order L. Each of them has a boundary layer around each boundary, both of
them contributing to g(j), and two constant regions, where ρ = r near the left boundary
and ρ = 1−r near the right boundary, separated by a shock that can be placed anywhere
in the system (fig.-IV.12).

ρa

ρb

0
0

0

11

L

Figure IV.12: A few optimal profiles for a fixed ρc in the shock phase. Only the portions
in red contribute to g(j).

The large deviation function of the current is given by:

g(j) = f(j; ρa, r)+f(j; 1−r, ρb) = j log

(
(1− ρa)ρb
ρa(1− ρb)

r2

(1− r)2

)
+ρa−ρb+1−2r. (IV.274)

The generating function of the cumulants of the current is

E(µ) =
2eµ/2

eµ/2 +
√
ab
− 1

1 + a
− 1

1 + b
(IV.275)

and the current is:

j(µ) =

√
ab eµ/2

(eµ/2 +
√
ab)2

=

√
(1− ρa)ρb
ρa(1− ρb)

(1− u)

u

(√
(1− ρa)ρb
ρa(1− ρb)

+

√
(1− u)

u

)−2

. (IV.276)

The boundaries of the phase are given by:

u <
ρaρb

1− ρb − ρa + 2ρaρb
with ρa <

1

2
, ρb >

1

2
, (IV.277)

u <
(1− ρa)(1− ρb)

1− ρb − ρa + 2ρaρb
with ρa <

1

2
, ρb >

1

2
, (IV.278)

u >
ρa(1− ρb)

ρb + ρa − 2ρaρb
with ρa <

1

2
, ρb >

1

2
, (IV.279)
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where the last condition corresponds to j < 1
4
. Strangely enough, the volume that is

defined by these boundaries is symmetric under any permutation of ρa, 1− ρb and u.

The shock phase concerns two of the asymptotic results we found before. For µ→ 0+,
which imposes ρa = 1− ρb, we find:

E(µ) ∼ a

(1 + a)2
µ+

a(a− 1)

4(a+ 1)3
µ2 (IV.280)

which is what we found in eq.(IV.94). For ρa → 0, which also imposes ρa = 1 − ρb, we
find:

E(µ) ∼ −2ρa + 2eµ/2ρa (IV.281)

which is identical to eq.(IV.174).

IV.4.5 Anti-shock phase

The last phase we can access through the MFT is for ρa > (1 − r) and ρb < r. In this
case, there also is a number of possible profiles of order L: the first go down from ρa to
(1− r), then down from (1− r) to r through an anti-shock that can be placed anywhere,
and that contributes to g(j), and finally down from r to ρb (fig.-IV.13).

ρa

ρb
0

0
0

11

L

Figure IV.13: A few optimal profiles for a fixed ρc in the Anti-shock phase. Only the
portions in red contribute to g(j).

The large deviation function of the current is given by:

g(j) = f(j; 1− r, r) = 2j log
( r

1− r
)

+ 1− 2r. (IV.282)

The generating function of the cumulants of the current is

E(µ) =
2eµ/2

eµ/2 + 1
− 1 = tanh(µ/4) (IV.283)

and the current is:

j(µ) =
1− tanh(µ/4)

4
=
−2(u− u2) +

√
u− u2

1− 4(u− u2)
. (IV.284)
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The boundaries of the phase are given by:

u <
ρ2
a

1− 2ρa + 2ρ2
a

with ρa >
1

2
, ρa > 1− ρb, (IV.285)

u <
(1− ρb)2

1− 2ρb + 2ρ2
b

with ρb <
1

2
, ρa < 1− ρb, (IV.286)

u >
1

2
, (IV.287)

where the last condition corresponds to j < 1
4
.

We note that this phase corresponds to one of the examples that can be found in [85].
The expression for E(µ) also comes up as a side note in [118].

The limit µ→ 0− gives:

E(µ) ∼ µ

4
− µ3

192
(IV.288)

which is consistent with eq.(IV.120). The limit µ→ −∞, which implies ρa = 1− ρb = 1,
gives:

E(µ) ∼ −1 + 2eµ/2 (IV.289)

which is the same as equation (IV.158), and this is the last asymptotic limit that we had
to check.

IV.4.6 Maximal current phase

There is one phase left for us to examine, to a much lesser extent than all the the others
because the MFT breaks down in this case: the maximal current phase. Once we take out
the phases we have already considered, we are left with a volume, in the three-dimensional
phase space with variables ρa, ρb and u, defined by:

u <
1

2
with ρa >

1

2
, ρb <

1

2
, (IV.290)

u < ρa with ρa >
1

2
, ρb >

1

2
, (IV.291)

u < 1− ρb with ρa <
1

2
, ρb <

1

2
, (IV.292)

u <
ρa(1− ρb)

ρb + ρa − 2ρaρb
with ρa <

1

2
, ρb >

1

2
. (IV.293)

We know that, asymptotically:

g(j) ∼ (j − J)5/2 32
√

3L

5π(1− q)3/2
(IV.294)

for µ→ 0+ with ρa >
1
2

and ρb <
1
2

(i.e. right next to the MC phase for the steady state),
which we found in eq.(IV.107), and that:

g(j) ∼ Lj log(j)− Lj(1− log(π)) (IV.295)
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for µ→∞, as we saw in eq.(IV.229).
Since this last result is valid independently of the boundary parameters, we know that

all the plane u = 0 belongs to the same phase. We have, however, no way to be certain
that all of the volume we have described above is just one phase. That being said, we
know that the whole region corresponds to a mean current higher than 1

4
. There is no

way for the system to produce such a current through a hydrodynamic profile, for which
the maximal possible current is 1

4
if ρ = 1

2
, so to go higher than that, the system must

produce correlations, which is why the MFT breaks down. Those correlations must be
negative for neighbouring sites (if the particles are next to holes, they will jump more
easily and produce more current), which is consistent with what we found in the large
current limit in eq.(IV.239). What’s more, those correlations must be created everywhere
in the system, because a single non-correlated zone would cause a blockage and bring the
current back down to 1

4
. We can also argue that the mean density should be around 1

2
,

because it is easier to get to a large current starting from 1
4

than from anything lower.
In all these remarks, the boundaries play little part: independently of them, the system
must be around ρ = 1

2
, and anti-correlated at every point. We therefore don’t expect any

sub-phases in this region.

IV.4.7 Phase diagram

Now that we have considered all the possible combinations of ρa, ρb and u, we can draw
the phase diagram of the ASEP in the s-ensemble (fig.-IV.14). Each phase is represented
using a different colour: blue for the low density phase, green for the high density phase,
orange for the shock phase, purple for the anti-shock phase, and red/pink for the maximal
current phase. The full diagram can be seen in the centre of the figure, with black lines
marking the corners of the phases, and an exploded view of the LD, MC, shock (S) and
anti-shock (AS) phases is also shown, with coloured lines representing slices for regularly
spaced values of u. The HD phase can be deduced from the LD phase through the
symmetry ρa ↔ 1 − ρb. The top and bottom parts of the figure contain slices of the
diagram for specific values of u (top) and ρa (bottom), with a few iso-current lines drawn
in all phases except the MC phase. Note that those iso-current lines do not represent
evenly spaced values of the current (j varies, in fact, more slowly as one approaches the
MC phase).

We will conclude this section with a few remarks.

First of all, in this section, we focused on the TASEP for the sake of simplicity, but,
as we remarked throughout section IV.1, the only difference for the ASEP (with q < 1)

is an overall factor (1− q) in E(µ), which translates into the fact that g((1−q)j̃)
(1−q) , where j̃

is the current rescaled by (1− q), is independent of q. In other terms, the probability of
producing a current (1−q)j̃ for a given j̃ during a time t

(1−q) depends neither on q nor on

t (that is, for a given value of the boundary densities, not of the boundary rates). This
can be understood through a simple argument: considering that (1− q) is effectively the
driving field that is applied to the bulk of the system, any event such as a particle entering
the system from the left, going through it under the action of the field, and exiting it at
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Figure IV.14: Phase diagram of the open ASEP in the s-ensemble. Top: diagrams at
fixed t. Centre: complete diagram with phase boundaries and exploded view. Bottom:
diagrams at fixed ρa. 134



the right, is done at a speed (i.e. current) proportional to the driving field (1 − q), and
takes a time which is therefore inversely proportional to it. In yet other terms: the only
time scale in the system (in the continuous limit, where the boundary rates have become
boundary densities) is the instantaneous speed of the particles, which is proportional to
the field (1− q). We can therefore rescale time by that factor so that everything becomes
independent of q.

As we noticed before, the boundary of the shock phase, which looks somewhat like a
triangular dipyramid with the three middle edges smoothed out, is symmetric through
ρa ↔ 1− ρb ↔ u. The first part of that symmetry comes from the global particle↔hole
and left↔right symmetry of the system, but we do not know whether the second part
can be understood in any meaningful way.

From the expressions we gave of E(µ) and j in each phase, one can see that they are
both continuous throughout the system, so that there are no first order transitions with
respect to the current. This does not contradict the numerical results that were found
in [138], where the total current is considered instead of the local current, so that the scale
of u is dramatically changed, and the whole diagram is flattened vertically into a plane,
with an apparent first order between zero current and an infinite current everywhere.

As for the density profiles, they are discontinuous for all transitions except the ones
involving the MC phase.

We have established, on the line ρa = 1
2

with ρb <
1
2
, a correspondence between the

current in the open ASEP and that in periodic system of twice the size, at half filing.
This indicates that the transition between the HD or LD phases and the MC phase is
the same as that which was found on the periodic ASEP, between a flat density profile
and a modulated profile [90–93] which may be time-dependent (if the density is not
1
2
). Unfortunately, we have not yet found a precise correspondence between the density

profiles in those two cases.

Finally, by examining the expressions we found for g(j) in all phases, we notice that it
is independent on the size L of the system everywhere except in the MC phase, where it
is proportional to L. This can be understood by considering that, in all cases where the
MFT is valid, only a finite number of particles need to be controlled (i.e. slowed down or
accelerated, depending on the sign of the fluctuation of j) for the current to be modified,
the rest of the system being governed by its normal hydrodynamics. For instance, in the
LD phase, in order to obtain a smaller current, it is enough to slow down the first few
bonds of the system, in order to create an effective reservoir with a density lower than
ρa, and the rest of the system can then obey its unmodified dynamics. This shows in the
expression of the large deviation function g(j), where only a small portion of the profile
has a contribution, near the left boundary. This reasoning can be applied everywhere
except in the MC phase, where no hydrodynamic profile can create the desired current
j > 1

4
, so that no small modification of the density or jumping rates may bring us into

that phase. Instead, as we saw, the system has to create anti-correlations between the
particles in order to counter the exclusion constraint and increase the current. These
correlations have to be created everywhere in the system, because a single mean field
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region would be enough to create a blockage and bring the current back down to 1
4
, so

that the cost of that operation, in terms of large deviations, must be proportional to L.
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CHAPTER V

Bethe Ansatz and Q-Operator

for the Open ASEP

We have seen, in section II.2.2, how the periodic ASEP with current-counting defor-
mations could be treated through the coordinate Bethe Ansatz. For the open ASEP,
unfortunately, the presence of reservoirs makes it impossible to number the particles,
which makes that method inapplicable. There is however another version of the Bethe
Ansatz, called the ‘algebraic Bethe Ansatz’ [39], which can in principle be used instead.
Its formulation comes from the fact that the Markov matrix of the ASEP (or the Hamil-
tonian of the XXZ spin chain), can be expressed in relation to the row-by-row transfer
matrix of an ice-type two-dimensional equilibrium statistical system called the ‘six-vertex
model’ [40]. That transfer matrix commutes with the Markov matrix, much like the one
we constructed in section III.2, but unlike ours, depends on a free parameter, called the
‘spectral parameter’. It has the form of a product of local tensors, called ‘Lax matrices’,
traced over an ‘auxiliary space’ which is usually of dimension 2, like the physical space of
a single site, although any dimension can be chosen (in contrast, the auxiliary space of
our transfer matrix is of infinite dimension). That product of Lax matrices, if the trace
on the auxiliary space is not taken, is called the ‘monodromy matrix’ of the system, and
creation and annihilation operators for the particles can be extracted from it, that depend
on their own spectral parameters. The algebraic Bethe Ansatz then consists in finding
a trivial eigenvector of the transfer matrix (a ‘vacuum state’), on which the creation op-
erator is then applied to obtain the other eigenvectors. Commutation relations between
the transfer matrix and the creation operators, depending on their respective spectral pa-
rameters, produce the same Bethe equations as for the coordinate Bethe Ansatz, where
the role of the Bethe roots is played by those spectral parameters.

In the case of a periodic system, with a fixed number of particles (or a fixed magneti-
sation sector), that vacuum state can be chosen as either completely empty, or completely
full, and the rest of the resolution is rather straightforward. In the case of an open sys-
tem, there are two extra difficulties. Firstly, the transfer matrix is more complicated, and
involves two rows of the vertex model instead of one, with certain ‘reflection operators’
at the boundaries [162, 163] (this is also the case for our own transfer matrix: in the
open case, we need two rows of tensors, with special vectors at the boundaries). This
makes things harder, but not intractable. The second difficulty, however, does: for an
open system, with no occupancy sectors and no trivial eigenvectors, we do not know, in
general, how to find a suitable vacuum state. Such states have been found for certain
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special boundary conditions, such as triangular boundary matrices [164,165], or full ma-
trices with constraints on their coefficients [41,42,44,45], for which some pseudo-particles
are conserved and the full construction can be performed. Recent progress has also been
made for a semi-infinite chain [166,167], which has only one boundary, through a method
deriving from the Bethe Ansatz. The case of completely general boundary conditions,
however, remains unsolved.

Luckily, there is a way to obtain the eigenvalues of the Markov matrix (or Hamiltonian,
or transfer matrix) we are interested in without having to deal with the eigenvectors at
all. This can be done through Baxter’s so-called ‘Q-operator’. It was first used as an
alternative method to solve the six-vertex model [40], but was later discovered to be, in
fact, a limit of the algebraic Bethe Ansatz with an infinite-dimensional auxiliary space
[168, 169]. Certain algebraic relations between the Q-operator and the Bethe transfer
matrix, called ‘T-Q’ relations, allow to obtain the functional Bethe Ansatz equations
for the eigenvalues directly, without need of the eigenvectors [170–174]. However, even
with that method, the open case was solved only for certain constraints on the boundary
parameters [174–176] (in the case of the ASEP deformed to count the current, those
constraints involve all four boundary parameters, the current-counting fugacity, and the
size of the system). In [174], it was even argued that, in all probability, those constraints
are necessary in order to construct the appropriate Q-operator.

In this chapter, we show that it is in fact possible to solve the most general case,
by constructing explicitly the Q-operator (or rather, the PQ-operator, since what we
construct is the product of two different operators, the second of which we will call P),
for the open ASEP with any boundary parameters and current-counting deformation,
and obtaining the functional Bethe equations for the eigenvalues of the deformed Markov
matrix. Our PQ-operator has two spectral parameters instead of one (the second of which
is what is usually called the ‘representation parameter’ of the Uq[SU(2)] algebra [146],
and often fixed to a specific value, but we will see that it is essential to us to treat it as a
free parameter), and can be constructed as a natural generalisation of the transfer matrix
presented in section III.2, with the boundary vectors playing the part of the reflection
operators we mentioned. We will also see how, taking special values of these two spectral
parameters, we can recover Bethe transfer matrices with any auxiliary space dimension,
and the T-Q relations for all of those matrices. We will conclude by connecting this
approach to that of the functional Bethe Ansatz presented in section II.2.2, noticing that
the polynomials P and Q that we constructed then are the eigenvalues of the operators
P and Q that we consider here, and we will then proceed to use the same method as in
II.2.2 to obtain the expression of the generating function of the cumulants of the current
in the open ASEP that we presented in section III.3.

This work was done in collaboration with V. Pasquier.

V.1 Periodic ASEP

In this first section, we treat the periodic case, for which we know what to expect.
By generalising the tensors X that we defined in chapter III, as well as the algebraic
relations their elements satisfy, we construct a transfer matrix with two free parameters,
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which commutes with the deformed Markov matrix of the periodic ASEP for any values
of those parameters. We then show that, for certain special values, the transfer matrix
decomposes into two independent blocks, one of which is the Bethe transfer matrix for
some dimension of the auxiliary space. We also show that our transfer matrix is in fact
the product of two one-parameter operators P and Q. Putting these results together, we
are able to recover the functional Bethe equations for the periodic ASEP, which we saw
in section II.2.2.

We recall that the Markov matrix of the periodic ASEP is given by:

M =
L∑
i=1

Mi (V.1)

with

Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 (V.2)

and where mL connects site L with site 1.

V.1.1 Bulk algebra and commutation relations

The starting point for everything we are about to do in this chapter is to realise that
the definition of matrices d and e that we used until now, with the algebraic relation
that they satisfy, de− q ed = (1− q), is in fact a special representation of the Uq[SU(2)]
algebra (up to a simple gauge transformation that we present in section V.2.5). Knowing
this, it seems natural to wonder whether a more general representation might be used,
and produce different, and perhaps better, results.

Let us therefore redefine:

X(x, y) =

[
n0 e
d n1

]
, X̂ =

[
n̂0 ê

d̂ n̂1

]
(V.3)

with

n0 = 1 + xA, (V.4)

n1 = 1 + yA, (V.5)

n̂0 =
(1− q)

2
(1− xA), (V.6)

n̂1 =
(1− q)

2
(−1 + yA), (V.7)

ê =
(1− q)

2
e, (V.8)

d̂ = −(1− q)
2

d, (V.9)
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where matrices A, d and e satisfy:

de− q ed = (1− q)(1− xyA2),

Ae = q eA,

dA = q Ad.

(V.10)

(V.11)

(V.12)

The solution to these equations which we will use is a generalisation of the one we
used in chapter III:

A =
∞∑
n=0

qn||n〉〉〈〈n|| (V.13)

d =
∞∑
n=1

(1− qn)||n− 1〉〉〈〈n|| = S−(1− A) (V.14)

and

e =
∞∑
n=0

(1− xyqn)||n+ 1〉〉〈〈n|| = S+(1− xyA) (V.15)

where S+ and S− are simply operators increasing or decreasing n by 1 (not to be confused
with the spin operators that we saw in section IV.3.3). We recover the simpler versions
of these matrices simply by taking x = y = 0.

A few remarks need to be made here. First of all, the matrix A that we have just de-
fined plays an important role in building the matrix Ansatz for the multispecies periodic
ASEP [121]. Secondly, we could have chosen for d and e their contragredient representa-
tion e = td and d = te, which is equivalent to a gauge transformation on d and e. We will
be using this fact abundantly in the rest of the chapter. Finally, we can actually define
A, S+ and S− over Z rather than N, so that S+ and S− are the inverse of one another:
S+S− = 1 (which wouldn’t work on N because of the cut at −1). Because of the term
(1 − qn) in d, which is 0 between states ||0〉〉 and || − 1〉〉, we are assured that, if starting
from a state ||n〉〉 with n ≥ 0, we can never go to one with n < 0 through any combination
of d, e and A. We just need to make sure that those expressions are always applied to
vectors that have non-zero coefficients only for n ≥ 0, which is enforced by the matrix
Aµ that we keep as defined in chapter III, on N alone. This fact will make many future
calculations much easier.

All our matrices are now combinations of only A and S+, which satisfy a simple
algebra:

AS+ = q S+A, (V.16)

with S− = (S+)−1.

The first thing that we need to show is, as in chapter III, that the transfer matrix

T perµ (x, y) = Tr[Aµ

L∏
i=1

X(i)] (V.17)

commutes with the deformed Markov matrix Mµ. Note that, as in chapter III, the
product symbol refers to a matrix product in the auxiliary space and a tensor product in
configuration space, and that the trace is taken only on the auxiliary space.
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This can be shown through a calculation almost identical to that for the simpler case
(which can be found in the appendixes of [3]). The parts of the transfer matrix and of
the Markov matrix involving sites i and i+ 1 are:

X(i)X(i+1) =


n0n0 n0e en0 ee
n0d n0n1 ed en1

dn0 de n1n0 n1e
dd dn1 n1d n1n1

 , Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 . (V.18)

The commutator of those two gives:

[Mi, X
(i)X(i+1)] =


0 0 0 0

dn0 − q n0d de− q n0n1 n1n0 − q ed n1e− q en1

q n0d− dn0 q n0n1 − de q ed− n1n0 q en1 − n1e
0 0 0 0



−


0 q(en0 − n0e) n0e− en0 0
0 q(ed− n0n1) n0n1 − ed 0
0 q(n1n0 − de) de− n1n0 0
0 q(n1d− dn1) dn1 − n1d 0



=


0 q(en0 − n0e) n0e− en0 0

dn0 − q n0d de− q ed (1− q)ed n1e− q en1

q n0d− dn0 (q − 1)de q ed− de q en1 − n1e
0 q(n1d− dn1) dn1 − n1d 0



=


0 q(en0 − n0e) n0e− en0 0

dn0 − q n0d de− q ed (1− q)ed n1e− q en1

q n0d− dn0 (q − 1)de q ed− de q en1 − n1e
0 q(n1d− dn1) dn1 − n1d 0


= X̂(i)X(i+1) −X(i)X̂(i+1) . (V.19)

where we got from the second to the third line using:

de− qed = (1− q)(1− xyA2) = n̂0n1 − n0n̂1,

q(n0e− en0) = (q − 1)Ae = n̂0e− n0ê,

en0 − n0e = (1− q)eA = ên0 − en̂0,

n1e− q en1 = (1− q)e = ên1 − en̂1,

q(dn1 − n1d) = (q − 1)dA = d̂n1 − dn̂1,

n1d− dn1 = (1− q)Ad = n̂1d− n1d̂,

dn0 − q n0d = (1− q)d = n̂0d− n0d̂. (V.20)

The equivalent commutation relation for the part of the matrix bearing the current
counter Aµ (i.e. between sites 0 and L) is proven through the exact same calculation,
up to a few terms e±µ here and there, and is left as an exercise to the reader. Note that
this relation is in fact the infinitesimal equivalent of the so called ‘RLL equation’ for the
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commutation of matrices X with different parameters, where X̂ is the derivative of X for
a well chosen variable.

We can now recover Mµ in its entirety by summing over i in (V.19). The hat matrices
cancel out from one term to the next, and we are left with 0, so that:

[Mµ, T
per
µ (x, y)] = 0. (V.21)

This is the same result as before, but we now have two non-trivial parameters to play
with. Which we will do right away.

Note that the results from the end of section III.2.1 hold, namely the fact that for a
general set of fugacities {µi}, the corresponding transfer matrix is the same as the one we
defined here, with matrices Aµi inserted at their appropriate place in the matrix product:

T per{µi}(x, y) = Tr[Aµ0

L∏
i=1

X(i)Aµi ]. (V.22)

V.1.2 Decomposition of the transfer matrix

Considering the representation we chose for matrix e in (V.15), namely S+(1 − xyA),
there is a good chance that something might happen for xy = q−k+1 with k ∈ N? (which
sets one coefficient to 0 in e).

Let us therefore impose y = 1/qk−1x. The four matrices in X become:

d =
∞∑
n=1

(1− qn)||n− 1〉〉〈〈n|| , e =
∞∑
n=0

(1− qn−k+1)||n+ 1〉〉〈〈n|| (V.23)

n0 =
∞∑
n=0

(1 + qnx)||n〉〉〈〈n|| , n1 =
∞∑
n=0

(1 + qn−k+1/x)||n〉〉〈〈n|| (V.24)

and the coefficient of ||k〉〉〈〈k−1|| in e vanishes. This makes all these matrices lower block-
triangular (n0 and n1 obviously are, since they are diagonal, and d already was, but not
e in general) with a block of size k (for n from 0 to k − 1 in the four series above) and
one of infinite size (for n from k to ∞).

The coefficients of that second block happen to be the same as the coefficients of the
whole matrix for x → qkx and y → q/x and in the dual representation of d and e (i.e.
exchanging and transposing them):

te =
∞∑
n=0

(1− qn+k)||n− 1〉〉〈〈n|| , td =
∞∑
n=1

(1− qn+1)||n+ 1〉〉〈〈n||, (V.25)

n0 =
∞∑
n=0

(1 + qn+kx)||n〉〉〈〈n|| , n1 =
∞∑
n=0

(1 + qn+1/x)||n〉〉〈〈n||. (V.26)

Indeed, taking n→ n+ k in (V.23) and (V.24), and removing the k negative indices, we
get exactly (V.25) and (V.26).
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Since the trace of a product of block-diagonal matrices is the sum of the traces of the
products of the blocks, this gives us an equation for T perµ , which is one of the two results
essential to our derivation of the functional Bethe Ansatz:

T perµ (x, 1/qk−1x) = (1− e−µ)t(k)(x) + e−kµT perµ (qkx, q/x) (V.27)

where the factor (1− e−µ) comes from the normalisation of Aµ, and the factor e−kµ is the
first coefficient of Aµ on the second block. The transfer matrix t(k) is the contribution
coming from the first block, which can be written as:

(1− e−µ)t(k)(x) = Tr[Aµ

L∏
i=1

X
(i)
k (x)] (V.28)

where Xk(x) contains the same entries as X(x, 1/qk−1x), but truncated at n = k − 1 (so
that the auxiliary space is k-dimensional).

We saw that T perµ commutes with Mµ for any values of x and y, so it also commutes
with another T perµ at different values of the parameters (this is in fact not certain, because
any one of those matrices could have a degenerate eigenspace, but we will assume that it
is true, for now; there is a better way to show that two matrices T perµ at different values
of x and y commute, and we will come back to it in the next section). This tells us that
those matrices also commute with t(k)(x) for any k, and that the t(k)(x)’s with different
k’s commute together. This matrix equation therefore implies the same relation for the
eigenvalues Λi(x, y) of T perµ (x, y) and the eigenvalues Λ

(k)
i (x) of t(k)(x).

To go further, we need to examine the first two cases in this last equation.
For k = 1, the first block of X is given by:

X1(x) =

[
1 + x 0

0 1 + 1
x

]
(V.29)

(where we separated the blocks from n0, e, n1 and d). The matrix t(1)(x), which is scalar
inside of a given occupancy sector, is then given by:

t(1)(x) = (1 + x)L−N(1 + x−1)N = h(x). (V.30)

This is the same as the function h(x) that we defined in section II.2.2, and is usually
called the ‘quantum determinant’.

For k = 2, the 2× 2 blocks from n0, e, n1 and d are:

X2(x) =


1 + x 0 0 0

0 1 + qx 1− 1
q

0

0 1− q 1 + 1
qx

0

0 0 0 1 + 1
x

 (V.31)

and

t(2)(x) = Tr[A(2)
µ

L∏
i=1

X
(i)
2 (x)] (V.32)
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with A
(2)
µ =

[
1 0
0 e−µ

]
.

This matrix is, in fact, the standard Bethe transfer matrix for the periodic XXZ spin
chain, with a two-dimensional auxiliary space. To write it in its usual form, we need to
make a few transformations and change variables. To that effect, let us consider:

1

1 + x

[
1 0
0 x

]
�X2(x) =


1 0 0 0
0 1+qx

1+x
q−1

q(1+x)
0

0 x(1−q)
1+x

1+qx
q(1+x)

0

0 0 0 1

 =


1 0 0 0
0 qλ 1− λ 0
0 1− qλ λ 0
0 0 0 1

 (V.33)

with λ = 1+qx
q(1+x)

, i.e. x = − 1−qλ
q(1−λ)

. We recall that the symbol � is used to signify a product
in configuration space, so that it not be confused with a product in the auxiliary space
(for which we use the usual product notation). This is the common form of the Lax
matrix for the ASEP:

Li(λ) =


1 0 0 0
0 qλ 1− λ 0
0 1− qλ λ 0
0 0 0 1

 = Pi(1 + λMi) (V.34)

where Pi is a permutation matrix which has the effect of exchanging the physical space
at site i with the auxiliary space (fig.-V.1).

M

i

i

aa

i

i

aaLi(λ)= +λ

Figure V.1: Schematic representation of Li(λ). The first box represents Pi, which ex-
changes the occupancies of the auxiliary space a and the physical space i (the matrix is
seen as acting from SE to NW). The second box is the same exchange operator, with the
local matrix M acting during the exchange.

The matrix we applied toX2 from the left in (V.33) multiplies every entry by x for each
occupied site (and since this number is conserved between the left and right entries of the
transfer matrix, this operation actually commutes with t(2), so that we haven’t modified
its eigenvectors). All in all, this operation multiplies t(2) by xN/(1 + x)L = 1/h(x). We
therefore define:

t̂(2)(λ) =
xN

(1 + x)L
t(2)(x) = Tr[A(2)

µ

L∏
i=1

Li(λ)] (V.35)

which is the Bethe transfer matrix for the periodic ASEP with one marked bond.
Since Li(0) = Pi is a permutation matrix, and its derivative with respect to λ at 0 is

d
dλ
Li(0) = PiMi, we find that t̂(2)(0) is the matrix that transposes the whole system back

one step, and that, for the whole transfer matrix t̂(2) (fig.-V.2):

Mµ =
(
t̂(2)(λ)

)−1 d

dλ
t̂(2)(λ)

∣∣
λ=0

=
d

dλ
log
(
t̂(2)(λ)

)∣∣
λ=0

(V.36)
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(we have not considered how Aµ comes into play, but we can easily check that it gives
the correct term in Mµ).

L− 1 L 1 2 3 4

M

M

L− 1 L 1 2 3 4

L− 1 L 1 2 3 4

L− 1 L 1 2 3 4

1 2

1 2

t̂(2)(0)=

=t̂(2)(0)=d
dλt̂(2)−1

Figure V.2: Schematic representation of the value and first logarithmic derivative of t̂(2)

at 0. The first is a translation matrix which takes each site i to i − 1. The second (of
which only one part of the sum over sites is represented) gives the local jump matrix Mi.

Written in terms of t(2)(x), this becomes:

Mµ = −(L−N)−Nq + (1− 1/q)
d

dx
log
(
t(2)(x)

)∣∣
x=−1/q

. (V.37)

We recognise eq.(II.98), which we found through the coordinate Bethe Ansatz in
section II.2.2. This identifies the eigenvalues of t(2)(x) with the functions T (x) which we
introduced back then (we recall that there was a different T for each eigenspace of Mµ).

Doing the same calculations at λ =∞ instead of 0, after a few modifications (such as
taking the contragredient representation for X and multiplying everything by h(x)/h(qx))
would have given us eq.(II.97) instead:

Mµ = −(L−N)q −N + (1− q) d
dx

log
(
t(2)(x)

)∣∣
x=−1

(V.38)

which is also what we would have obtained if we had considered a system with L − N
particles, exchanging Q with P , and kept y = 1/qx as a variable. This identity is usually
called the ‘crossing symmetry’ in the language of quantum spin chains.

V.1.3 R matrix

The next step is to show that the eigenvalues Λi(x, y) of T perµ are in fact a product
of a function of x and a function of y, which we will note as Pi(x) and Qi(y). This
factorisation property is a well known fact for the periodic XXX [177, 178] and XXZ
[152, 172] spin chains. This result will actually be derived in the next section, as there
are a few preliminary calculations which need to be done first, mainly in order to find
the R matrix of our system.
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One way to go about this is through a method used in [179, 180] which consists in
introducing two new Lax matrices, defined by:

L1 = L(a1, b1, c1, d1) =

[
a1A1 b1S

+
1

−c1S
−
1 A1 d1

]
, (V.39)

L̃2 = L̃(a2, b2, c2, d2) =

[
a2A2 −c2S

+
2 A2

b2S
−
2 d2

]
, (V.40)

where the operators Ai and S±j obey (V.16) and (??) for i = j (i.e. if they act on the
same space), and commute otherwise.

We then take the product of those matrices (which is a matrix product on the physical
two-dimensional space and a tensor product on the infinite-dimensional auxiliary spaces
of L1 and L̃2):

L1L̃2 =

[
a1a2A+ b1b2S

+
1 S
−
2 b1d2S

+
1 − a1c2S

+
2 A

d1b2S
−
2 − c1a2S

−
1 A c1c2S

+
1 S
−
2 A+ d1d2

]
(V.41)

with A = A1A2. We will omit the notation � for the product between those new Lax
matrices, since the indices are there to signify that their elements act on different spaces.

We now need to consider two special cases for the coefficients of L1 and L̃2. Let us
first set them as follows: a1 = x, c2 = y and the rest is 1. We write the corresponding
matrices as L+

1 and L̃−2 :

L+
1 (x)L̃−2 (y) =

[
xA+ S+

1 S
−
2 S+

1 − xyS+
2 A

S−2 − S−1 A yS+
1 S
−
2 A+ 1

]
(V.42)

and, by projecting each element on S+
1 = S+

2 = S+ (i.e. by applying
∑ ||i, j〉〉〈〈i + j|| to

the right and its contragredient to the left), we get:

L+
1 (x)L̃−2 (y) =

[
xA+ 1 S+(1− xyA)

S−(1− A) yA+ 1

]
= X(x, y). (V.43)

Naturally, we check that A and S+ satisfy the correct relations.
Let us now set a2 = x, c1 = y/q, c2 = q and the rest to 1. We write the corresponding

matrices as L−1 and L̃+
2 :

L−1 (y)L̃+
2 (x) =

[
xA+ S+

1 S
−
2 S+

1 − qS+
2 A

S−2 − xy/qS−1 A yS+
1 S
−
2 A+ 1

]
(V.44)

and, through the same operation as before, we get:

L−1 (y)L̃+
2 (x) =

[
xA+ 1 (1− A)S+

(1− xyA)S− yA+ 1

]
= X(x, y). (V.45)

In both of those special cases, one of the non-diagonal elements has a factor (1− A)
which allows us to truncate the representation at state ||0〉〉 and avoid some conver-
gence issues. It would not be the case, however, if we were to construct L+

1 (x)L̃+
2 (y)

or L−1 (x)L̃−2 (y), which we will therefore avoid at any cost.
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We will now use this formalism in order to find the so-called ‘R matrix’ which is such
that:

X(x, y) �X(x′, y′) R(x, y;x′, y′) = R(x, y;x′, y′) X(x′, y′) �X(x, y) (V.46)

where R acts on the two auxiliary spaces of both X matrices. We will comment on the
use of such a matrix at the end of this section.

Considering that X(x, y) �X(x′, y′) = L+
1 (x)L̃−2 (y)L+

3 (x′)L̃−4 (y′), we will perform this
exchange of parameters in steps, exchanging the parameters of only two Li’s at a time.
The first thing we could try is to exchange y and x′, but this would transform L̃−2 (y)
into L̃+

2 (x′), so we would have L+
1 (x)L̃+

2 (x′) on the left, and we can’t have this. The
solution is then to first exchange x′ and y′, then y′ and y, and finally y and x′, to obtain
X(x, y′) �X(x′, y), and then do the same once more to exchange x and x′.

We first need to find f12(x, y) such that L+
1 (x)L̃−2 (y)f12(x, y) = f12(x, y)L−1 (y)L̃+

2 (x),
which is to say:

X(x, y)f12(x, y) = f12(x, y)X(x, y). (V.47)

That f12 may depend on A and S+. In terms of the elements of X(x, y), this writes:

[1 + xA, f12] = 0, (V.48)

[1 + yA, f12] = 0, (V.49)

S+(1− xyA) f12 = f12(1− A)S+, (V.50)

S−(1− A) f12 = f12(1− xyA)S−. (V.51)

The first and second equations tell us that f12 commutes with A (i.e. it is diagonal),
so it should be a function of A alone. The third or fourth equations then give us:

S+(1− xyA)f12[A] = f12[A](1− A)S+ = S+(1− qA)f12[qA] (V.52)

(where the second equality is due to the commutation of S+ with A), which we can
rewrite as

f12[A]

f12[qA]
=

(1− qA)

(1− xyA)
. (V.53)

Iterating this last equation, we finally find:

f12(xy) =
(qA)∞

(xyA)∞
. (V.54)

To exchange the parameters back, one simply has to apply f−1
12 (xy).

This was for the exchange of parameters between the first and second or third and
fourth matrices in L+

1 (x)L̃−2 (y)L+
3 (x′)L̃−4 (y′) (i.e. inside of a same X matrix). We now

need to exchange parameters between the second and third matrices in that product.
Let us consider L̃2L3 with c2 = y, c3 = y′/q, and the rest set to 1:

L̃−2 (y)L−3 (y′) =

[
(1 + yy′/qS+

2 S
−
3 )A2A3 (S+

3 − yS+
2 )A2

(S−2 − y′/qS−3 )A3 S−2 S
+
3 + 1

]
. (V.55)
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f−1fx
y x x

xy y
y

Figure V.3: Schematic representation of f12 and f−1
12 . The exponents + and − of the L

matrices on one side and the other are represented by, respectively, right and left arrows
(the top row being L1, and the second L̃2), and their arguments are represented by colours
(blue for x and orange for y).

We need to find g−23(y, y′) such that L̃−2 (y)L−3 (y′)g−23(y, y′) = g−23(y, y′)L̃−2 (y′)L−3 (y). As
before, the commutation for each of the four elements of L̃−2 (y)L−3 (y′) is:

[(1 + yy′/qS+
2 S
−
3 )A2A3, g

−
23] = 0, (V.56)

[1 + S−2 S
+
3 , g

−
23] = 0, (V.57)

(S+
3 − yS+

2 )A2 g
−
23 = g−23(S+

3 − y′S+
2 )A2, (V.58)

(S−2 − y′/qS−3 )A3 g
−
23 = g−23(S−2 − y/qS−3 )A3. (V.59)

The first and second equations tell us that g−23 commutes with S+
2 S
−
3 and with A2A3.

the third and fourth suggest that g−23 keeps A2 and A3 separated, so it should only depend
on S+

2 S
−
3 . The third equation then gives:

(S+
3 −yS+

2 )A2 g
−
23[S+

2 S
−
3 ] = g−23[qS+

2 S
−
3 ](S+

3 −yS+
2 )A2 = g−23[S+

2 S
−
3 ](S+

3 −y′S+
2 )A2 (V.60)

which can be rewritten as:

g−23[S+
2 S
−
3 ]

g−23[qS+
2 S
−
3 ]

=
(1− yS+

2 S
−
3 )

(1− y′S+
2 S
−
3 )

(V.61)

and produces, through iteration:

g−23(y, y′) =
(yS+

2 S
−
3 )∞

(y′S+
2 S
−
3 )∞

. (V.62)

Finally, we look for g+
23(x, x′) such that L̃+

2 (x)L+
3 (x′)g+

23(x, x′) = g+
23(x, x′)L̃+

2 (x′)L+
3 (x).

Setting a2 = x, c2 = q, a3 = x′, and the rest to 1, in L̃2L3, we find:

L̃+
2 (x)L+

3 (x′) =

[
(xx′ + qS+

2 S
−
3 )A2A3 (xS+

3 − qS+
2 )A2

(x′S−2 − S−3 )A3 S−2 S
+
3 + 1

]
(V.63)

and the exact same operations as before produce:

g+
23(x, x′) =

(x′S−2 S
+
3 )∞

(xS−2 S
+
3 )∞

. (V.64)

Let us note that g+ and g− commute with the projection which we perform on L1L̃2

and L3L̃4 to get the X matrices.
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g+ g−x
x′ x

x′ y
yy′
y′

Figure V.4: Schematic representation of g+
23 and g−23. The top row represents L̃2, and the

second L3, and their arguments are represented by colours (red for x and y and green for
x′ and y′).

We can finally forget everything about that alternative construction of X(x, y), and
simply define those operators f and g± as what we found them to be. After re-indexing
them so that 1 refers to the auxiliary space of the first X matrix, and 2 to the second,
we can write:

X1(x, y) �X2(x′, y′) Ry(x, y;x′, y′) = Ry(x, y;x′, y′) X1(x, y′) �X2(x′, y),

X1(x, y) �X2(x′, y′) Rx(x, y;x′, y′) = Rx(x, y;x′, y′) X1(x′, y) �X2(x, y′),

(V.65)

(V.66)

with

Ry(x, y;x′, y′) = f2(x′y′)g−12(y, y′)f−1
2 (x′y),

Rx(x, y;x′, y′) = f1(xy)g+
12(x, x′)f−1

1 (x′y).

(V.67)

(V.68)

where we relabelled f12 as f1, f34 as f2, and g±23 as g±12, consistently with the indexes of
the X matrices.

Applying those one after the other, we find the full R matrix:

X1(x, y) �X2(x′, y′) R(x, y;x′, y′) = R(x, y;x′, y′) X1(x′, y′) �X2(x, y) (V.69)

with

R(x, y;x′, y′)=Ry(x, y;x′, y′)Rx(x, y
′;x′, y)

=
(qA2)∞

(x′y′A2)∞

(yS+
1 S
−
2 )∞

(y′S+
1 S
−
2 )∞

(x′yA2)∞
(qA2)∞

(qA1)∞
(xy′A1)∞

(x′S−1 S
+
2 )∞

(xS−1 S
+
2 )∞

(x′y′A1)∞
(qA1)∞

(V.70)

(cf. fig.-V.5), or an equivalent expression if we apply Rx to the left of Ry instead.

f

g−
f

f−1

g+
f−1x

y
x′
y′

x
y

x′
y′

=

Rx
y
x′
y′

x
y

x′
y′

Figure V.5: Schematic representation of the R matrix for the periodic ASEP.

There are many things to be said about that R matrix. First of all, it is the rigorous
way to go if we want to prove that T perµ (x, y) commutes with T perµ (x′, y′) for any value
of those parameters: to do that, we insert R(x, y;x′, y′)R−1(x, y;x′, y′) at any point in
the matrix product expression of T perµ (x, y)T perµ (x′, y′), and make R(x, y;x′, y′) commute
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R−1R
X X X X X X X X

R R−1

X X X X X X X X

=

Figure V.6: Schematic representation of the commutation between R matrices and X
matrices with different parameters (represented by different colours).

to the left all the way around the trace (fig.-V.6), exchanging parameters between the
two rows along the way. When crossing the marked bond, we just need to note that R
commutes with Aµ � Aµ.

Equations (V.65) and (V.66) are also of interest by themselves: they tell us that
T perµ (x, y) and T perµ (x′, y′) can actually exchange only one of their parameters and keep
the other, instead of commuting altogether (by applying the procedure we just described,
but with Rx or Ry instead of R). This will be extremely useful to us in the next section.

Moreover, considering the decomposition (V.27) which we obtained in the previous
section for special values of the spectral parameters in T perµ (x, y), by taking y = 1/qk−1x
and y′ = 1/ql−1x′ in R(x, y;x′, y′), we should be able to recover the R matrix between
auxiliary spins k−1

2
and l−1

2
as an independent part of the whole matrix. In other words,

this R matrix of twice infinite dimension should contain all the smaller R matrices for
the XXZ chain. Taking y = 1/qx, in particular, should yield the Lax matrix X (possibly
up to a permutation). Because of the complexity of eq.(V.70), those facts are yet to be
verified.

V.1.4 Q-operator and Bethe equations

From the previous section, we now know that T per satisfies:

T per(x, y)T per(x′, y′) = T per(x, y′)T per(x′, y). (V.71)

Fixing x′ = y′ = 0 in that equation (although any other constants would do), we can
therefore write:

T per(x, y) = (1− e−µ)P (x)Q(y) (V.72)

with:

P (x) =
[
T perµ (0, 0)

]−1

T perµ (x, 0) , Q(y) = (1− e−µ)−1T perµ (0, y) (V.73)

(the factor (1−e−µ)−1 in Q is there to make our notations consistent with section II.2.2).
Since the matrices P and Q are combinations of the matrix T perµ taken at various values
of its parameters, and considering eq.(V.71), we immediately see that P (x) and Q(y)
commute for any values of x and y.

This relation is crucial to our reasoning, and, put together with (V.27), will allow us
to reach our conclusion in just a few more lines.
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Using this, we can now rewrite (V.27) as:

P (x)Q(1/qk−1x) = t(k)(x) + e−kµP (qkx)Q(q/x). (V.74)

The first and second orders of this equation give:

P (x)Q(1/x) = h(x) + e−µP (qx)Q(q/x), (V.75)

P (qx)Q(1/qx) = h(qx) + e−µP (q2x)Q(1/x), (V.76)

P (x)Q(1/qx) = t(2)(x) + e−2µP (q2x)Q(q/x), (V.77)

where we have written the first one twice (once at x, once at qx). We immediately
recognise equation (V.75) to be exactly the same as (II.101) (with µ instead of Lµ, which
comes from the fact that in section II.2.2, we had marked every bond instead of just
one), written as one single matrix equation rather than a functional equation for each
eigenspace of Mµ.

We still need to make sure that the eigenvalues ofQ really are the same as the functions
we defined in section II.2.2. To do that, we consider a combination of the three previous
equations: Q(1/qx)×(V.75)+e−µQ(q/x)×(V.76)−Q(1/x)×(V.77), which yields:

t(2)(x)Q(1/x) = h(x)Q(1/qx) + e−µh(qx)Q(q/x). (V.78)

We saw earlier that the eigenvalues of t(2) are the same as the functions T we intro-
duced for the coordinate Bethe Ansatz, so that this equation can be identified with (II.94).
This confirms that the matrix Q that we have defined is indeed Baxter’s Q-operator.
Equation (V.78) is called the T-Q relation, and its eigenvalues give the functional Bethe
equations. Note that we could have obtained equation (II.100) instead through a different
combination of equations (V.75), (V.76) and (V.77).

From here, we just need to repeat the final steps from section II.2.2 to obtain an
expression for E(µ). We start from (II.101), which is the same as (V.75). Equation
(II.95) follows from (V.37) and (V.78). The constant B from (II.104) becomes a matrix:

B = −e−µ
(
Q(0)

)−1
. (V.79)

We then only need to show eq.(II.108), which is specific to the steady state, and
states that the first eigenvalue of B (which corresponds to the steady state) goes to 0
with µ→ 0 while the others do not.

This can be proven by first showing that T perµ (x, y) → |1〉〈1| for µ → 0. Every entry
in T perµ (x, y) is the trace of (1− e−µ)Aµ times a product of matrices n0, n1, d and e. Each
of those matrices is the sum of a term proportional to the identity (or S±) and a term
proportional to A. If we expand the trace on all those sums, there is only one contribution
not proportional to (1 − e−µ), which is the one where we took the term not containing
A in every matrix. This contribution is just the trace of (1− e−µ)Aµ multiplied by some
product of S+ and S−, which is equal to 1 for every entry in T perµ (x, y). This proves that
T perµ (x, y) is a projector on |1〉〈1| for µ→ 0. All the other eigenvalues of T perµ (x, y) are at
least of order µ.
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Knowing that, and the fact that P (0) = 1, we get from (V.72) that:

B = −e−µ(1− e−µ)
(
T perµ (0, 0)

)−1

(V.80)

so that its first eigenvalue goes to 0 for µ→ 0, but not the others.

Let us finally note that using equs.(V.74), we can obtain all the equations from the so-
called ‘fusion hierarchy’ [173,174], which gives equations on the decomposition of products
of matrices t(k), as well as the T-Q equations for any t(k) (which involve products of k− 1
matrices Q).

V.2 Open ASEP

We will now try to apply the same procedure to the open ASEP. Considering the same
generalised X matrix as before, we first need to find out what the boundary vectors
become. We then show the PQ factorisation of the transfer matrix (which is much easier
to prove this time). Finally, we see how it decomposes into blocks, one of which is the
Bethe transfer matrix, according to the same equation as the periodic case but with a
different quantum determinant (the boundaries make this much harder to prove than for
the previous case). We also show, as an appendix, what this all becomes in the language
of the XXZ chain with spin 1

2
.

We recall that the Markov matrix for the open ASEP is given by:

M = m0 +
L−1∑
i=1

Mi +mL (V.81)

with

m0 =

[
−α γ
α −γ

]
, Mi =


0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

 , mL =

[
−δ β
δ −β

]
(V.82)

V.2.1 Boundary algebra and commutation relations

Let us first find out how the presence of boundaries make this case different from the
previous one. We define:

Uµ(x) =
1

ZL
〈〈W ||Aµ

L∏
i=1

X(i)(x, x)||V 〉〉,

Tµ(y) = 〈〈W̃ ||Aµ
L∏
i=1

X(i)(y, y)||Ṽ 〉〉,

(V.83)

(V.84)

which has the same structure as the transfer matrix from chapter III, but with the X
matrices replaced by their generalisation. Note that, since we have two rows of matrices,
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we have, in principle, four free parameters (two in each row), but we will see in a moment
that we must in fact put the same parameter twice in each row (so that Uµ depends only
on x, and Tµ on y) if we want to be able to find suitable boundary vectors. To simplify

notations, we will therefore rewrite X and X̂ as:

X(x) =

[
nx e
d nx

]
, X̂ =

(1− q)
2

[
ñx e
−d −ñx

]
(V.85)

with nx = 1 + xA and ñx = 1− xA.

Note that for a general set of fugacities, the generalisation (V.22) holds, with the
matrices Aµi being inserted in both U and T .

The conditions that these boundary vectors must satisfy is:

[β(d+ nx)− δ(e+ nx)− (1− q)] ||V 〉〉 = 0,

〈〈W || [α(e+ nx)− γ(d+ nx)− (1− q)] = 0,

[β(d− ny)− δ(e− ny) + (1− q)yA] ||Ṽ 〉〉 = 0,

〈〈W̃ || [α(e− ny)− γ(d− ny) + (1− q)yA] = 0,

(V.86)

(V.87)

(V.88)

(V.89)

where we notice that the first two are the same as in chapter III with nx replacing 1, and
the next two also have an extra term (1 − q)yA. For x = y = 0, we naturally recover
the conditions we had in chapter III. Note that those conditions were found by trial and
error, so that they may not be unique.

Commutation relations

We now show that these conditions lead to Uµ(x)Tµ(y) commuting with Mµ for any x
and y. The bulk part of the derivation is the same as for the periodic case, and produces,
for the left boundary, a term Û

(1)
µ Tµ + UµT̂

(1)
µ (with the same notations as in (III.46))

which must be cancelled by the left boundary matrix. We have:[
m0, 〈〈W ||X(1)

]
= 〈〈W ||

[
γd− αe −(α− γ)e
(α− γ)d αe− γd

]
= (α− γ)〈〈W ||

[
nx −e
d −nx

]
+ (1− q)〈〈W ||

[
−1 0
0 1

]
(V.90)[

m0, 〈〈W̃ ||X(1)
]

= 〈〈W̃ ||
[
γd− αe −(α− γ)e
(α− γ)d αe− γd

]
= (α− γ)〈〈W̃ ||

[
−ny −e
d ny

]
+ (1− q)〈〈W̃ ||

[
yA 0
0 −yA

]
(V.91)

where we used (V.87) and (V.89). Equivalent relations can be found for the right bound-
ary.

The first terms in each of those two equations cancel one another:[
nx −e
d −nx

]
�X(y) +X(x) �

[
−ny −e
d ny

]
= 0 (V.92)
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We note that if we had had two different parameters for the two diagonal terms in X(x) or
X(y), this relation wouldn’t have been possible (or we would have needed two equations
on each boundary vector instead of one).

As for the second terms, a straightforward calculation gives:

(1− q)
([
−1 0
0 1

]
�X(y) +X(x) �

[
yA 0
0 −yA

])
= −X̂(x) �X(y)−X(x) � X̂(y). (V.93)

This compensates exactly the contribution of the bulk, coming, as in the periodic case,
from eq.(V.19) (these cancellations are identical to those we saw in section III.2.3) . The
exact same calculations can be done at the right boundary. We have omitted the matrix
Aµ here, because, as in the periodic case, its action is trivial.

We can now conclude that, for any values of x and y, we have:

[Mµ, Uµ(x)Tµ(y)] = 0. (V.94)

Explicit expressions for the boundary vectors

We will need to do a few explicit calculations involving the four boundary vectors in a
few pages, so we might as well calculate them now.

In terms of the parameters a, ã, b and b̃ that we have defined in section III.3, equations
(V.86)-(V.89) become:

[d+ bb̃e+ (1 + bb̃)xA− (b+ b̃)] ||V 〉〉 = 0, (V.95)

〈〈W || [e+ aãd+ (1 + aã)xA− (a+ ã)] = 0, (V.96)

[d+ bb̃e+ (b+ b̃)yA− (1 + bb̃)] ||Ṽ 〉〉 = 0, (V.97)

〈〈W̃ || [e+ aãd+ (a+ ã)yA− (1 + aã)] = 0. (V.98)

We first focus on the right boundary. We saw that a possible representation for d and
e is e = S1(1 − x2A1) in Uµ or e = S2(1 − y2A2) in Tµ, and d = S−1

i (1 − Ai) (where we
write S = S+ and S−1 = S−, and indices 1 and 2 refer to the auxiliary spaces of Uµ and
Tµ, respectively). Equations (V.95) and (V.96) become:

[S−1
1 (1− A1) + bb̃S1(1− x2A1) + (1 + bb̃)xA1 − (b+ b̃)] ||V 〉〉 = 0, (V.99)

[S−1
2 (1− A2) + bb̃S2(1− y2A2) + (b+ b̃)yA2 − (1 + bb̃)] ||Ṽ 〉〉 = 0, (V.100)

which is to say, multiplying by Si to the left:

[(1− bS1)(1− b̃S1v)− (1− xS1)(1− bb̃xS1)A1] ||V 〉〉 = 0, (V.101)

[(1− S2)(1− bb̃S2)− (1− byS2)(1− b̃yS2)A2] ||Ṽ 〉〉 = 0. (V.102)

Much as we did in section III.4.2, we can write those vectors as generating functions,
which will make it easier for us to manipulate them. Let us then write ||V 〉〉 = V (S1)||0〉〉 =
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∞∑
k=0

VkS
k
1 ||0〉〉, which is such that A1||V 〉〉 = V (qS1)||0〉〉. Those two last equations now

become:

V (S1)

V (qS1)
||0〉〉 =

(1− xS1)(1− bb̃xS1)

(1− bS1)(1− b̃S1)
||0〉〉, (V.103)

Ṽ (S2)

Ṽ (qS2)
||0〉〉 =

(1− byS2)(1− b̃yS2)

(1− S2)(1− bb̃S2)
||0〉〉, (V.104)

which we can iterate to get:

||V 〉〉 =
(xS1)∞(bb̃xS1)∞

(bS1)∞(b̃S1)∞
||0〉〉,

||Ṽ 〉〉 =
(byS2)∞(b̃yS2)∞

(S2)∞(bb̃S2)∞
||0〉〉.

(V.105)

(V.106)

As for the left boundary, it is simpler to treat it using the contragredient representation
X of X on both vectors (which are then the exact symmetric of ||V 〉〉 and ||Ṽ 〉〉, but with
a and ã replacing b and b̃), and then apply the operator fi that we found in section V.1.3
in order to go back to X. This gives us:

〈〈W || = 〈〈0||(x/S1)∞(aãx/S1)∞
(a/S1)∞(ã/S1)∞

(x2A1)∞
(qA1)∞

,

〈〈W̃ || = 〈〈0||(ay/S2)∞(ãy/S2)∞
(1/S2)∞(aã/S2)∞

(y2A2)∞
(qA2)∞

,

(V.107)

(V.108)

to which we could add factors (q)∞
(x2)∞

and (q)∞
(y2)∞

for normalisation.

In fact, in most future calculations, we will use X for Uµ and X for Tµ, so that the

factor (y2A2)∞
(qA2)∞

goes to ||Ṽ 〉〉 instead of 〈〈W̃ ||.

There are two things that we now need to show: that the transfer matrix is a product
of two commuting matrices, one depending on x and one on y, and that for special values
of the parameters it decomposes into two independent blocks.

V.2.2 PQ factorisation and R matrix

Unlike what we did for the periodic case, we will first show that Uµ(x)Tµ(y) factorises into
two commuting matrices P (x) and Q(y). It is much easier to show than the previous time,
because of the structure of the transfer matrix, in which x and y are already separated.
Notice however that it is not trivial: Uµ and Tµ do not commute, so P is not simply equal
to Uµ and Q to Tµ.

To show this, we need to assume that eq.(V.94), which states that Uµ(x)Tµ(y) com-
mutes with Mµ for any x and y, implies that Uµ(x)Tµ(y) commutes with Uµ(x′)Tµ(y′) for
any values of x, y, x′ and y′ (which is true unless Mµ has a degenerate eigenspace which is
not degenerate for Uµ(x)Tµ(y)). We could, in principle, prove this more rigorously later
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using R matrices, as we did before, but we will see that it is much more complicated to
do in the open case. We also need to assume that Tµ is, generically, invertible.

We start from the commutation of Uµ(x)Tµ(y) with Uµ(x′)Tµ(y):

Uµ(x)Tµ(y) Uµ(x′)Tµ(y) = Uµ(x′)Tµ(y) Uµ(x)Tµ(y), (V.109)

Uµ(x)Tµ(y) Uµ(x′) = Uµ(x′)Tµ(y) Uµ(x), (V.110)

Uµ(x)Tµ(y) Uµ(x′)Tµ(y′) = Uµ(x′)Tµ(y) Uµ(x)Tµ(y′), (V.111)

where we applied
(
Tµ(y)

)−1
to the right between the first and second lines, and Tµ(y′)

between the second and the third. This tells us that, as in the periodic case, we may
exchange just one of the parameters between the two transfer matrices. Taking x′ = y′ =
0, we get:

Uµ(x)Tµ(y) = (1− e−µ)P (x)Q(y) (V.112)

with

P (x) = Uµ(x)
[
Uµ(0)

]−1

, Q(y) = (1− e−µ)−1Uµ(0)Tµ(y). (V.113)

As for the R matrix, from our calculations on the periodic case, we actually already
know its expression here. Since we have two matrix rows instead of one, this can now be
written as a product of 20 ratios of q-Pochhammer symbols instead of the 6 we had in
eq.(V.70). We will not white it here, but we represent it schematically on fig.-V.7.

f
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f−1
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f

f−1

g+

g−
f

f−1

g+

g−
f

f−1

g+

g−
f

f−1

g+

Figure V.7: Schematic representation of the R matrix for the open ASEP.

Unfortunately, we cannot use it as easily as we did before, because of the boundaries:
instead of taking R around a trace to exchange the top and bottom matrices, we now
need to show that when applied to a boundary, R transfers the spectral parameters from
the top vectors to the bottom ones (fig.-V.8). Considering that each boundary is the
product of 8 more ratios of q-Pochhammer symbols, we will not try to make that full
calculation directly, but search for a clever way to do it as simply as possible. We haven’t
found it yet.
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Figure V.8: Schematic representation of the equation involving the R matrix and the
right boundary vectors. This has yet to be verified.

V.2.3 Decomposition of the transfer matrix

The last thing we need to investigate is whether anything happens for those special values
of x and y that we considered in section V.1.2. The calculations involved are slightly more
complicated that they were then, not only because of the boundaries, but also because x
and y are now separated, and the factors (1−xyA) in e have been replaced by (1−x2A1)
and (1− y2A2), which don’t give anything useful for xy = q1−k.

The simple solution to this problem is to put x and y back together, using g−12(x, y)
(as defined in section V.1.3) to go from X(x, x) �X(y, y) to X(x, y) �X(y, x). We choose
to keep the second row of matrices in the contragredient representation to simplify future
calculations. This operation makes the boundary vectors more complicated: they are
not a product of two simple vectors acting each on one row any more (see fig.-V.9). We
now have two complicated operators instead, which we will write as K+ for the right
boundary and K− for the left one:

K− = 〈〈01, 02||
(x/S1)∞(aãx/S1)∞

(a/S1)∞(ã/S1)∞

(x2A1)∞
(qA1)∞

(ay/S2)∞(ãy/S2)∞
(1/S2)∞(aã/S2)∞

(xS1/S2)∞
(yS1/S2)∞

,

K+ =
(yS1/S2)∞
(xS1/S2)∞

(xS1)∞(bb̃xS1)∞

(bS1)∞(b̃S1)∞

(y2A2)∞
(qA2)∞

(byS2)∞(b̃yS2)∞

(S2)∞(bb̃S2)∞
||01, 02〉〉.

(V.114)

(V.115)

We will denote by K+
i,j the coefficient of ||i, j〉〉 in K+ (i.e. the coefficient of Si1S

j
2 in the

expansion of the ratios of q-Pochhammer symbols in K+), and by K−j,i the coefficient of
〈〈i, j|| in K−.

Before getting on with the calculations, there are a few things to be said about the
structure of what we have here. Let us for a moment forget that the upper and lower rows
of matrices are connected, except through the boundary operators K±. Since the lower
row is written in the contragredient representation of d and e, it is natural to consider it
as acting towards the left rather than towards the right, and ‘untwist’ the whole lower
row by cutting it somewhere in the middle and flipping both ends to their respective
side (fig.-V.10). While doing that, we implicitly transpose the elements of X(y, x) on the
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Figure V.9: Two equivalent representations for Uµ(x)Tµ(y). In the first one, the two rows
of X matrices are independent, and the two spectral parameters x (orange) and y (blue)
are separated. In the second, x and y are back together in X, but the two rows are now
intertwined.

lower row and invert their order. Now, the transposed elements of X(y, x) are exactly the
same as the elements of X(x, y), with the occupancies of the physical space exchanged
(i.e. n0 exchanged with n1 and d with e). This can be interpreted as an exchange of
particles with holes on the whole lower row of the matrix product. What’s more, the
boundary operators K± are now matrices acting on one of the auxiliary spaces to the
right, and the other to the left, so that those spaces can in fact be considered as one and
the same. What we have, in the end, is a chain of size 2L + 2, with periodic boundary
conditions, two defects where K+ and K− are, and an anti-symmetry on the occupancies
of one half of the chain. We can write it as:

UTµ(x, y) = Tr[AµK
−Aµ

L∏
i=1

X(i)(x, y)K+

1∏
i=L

X(i)(x, y)] (V.116)

which is the usual formalism for the Bethe transfer matrix for an open system [163]. Note
that there is an implicit transpose in the physical space on the second product of X(i)’s
and a trace between the ingoing configurations of the first product and the outgoing
configurations of the second product.

This remark can be related to two results that we obtained previously. One is the
fact that, as we saw in section III.3, for certain values of the boundary parameters,
the cumulants of the current for the open ASEP are exactly those of a periodic system
with 2L + 2 sites, at half filling. The other is that the dominant eigenstate of the open
ASEP for an extremely large current, which we saw in section IV.3.3, is that of an anti-
periodic Dyson-Gaudin gas on a periodic lattice with 2L+ 2, two being defects (without
occupancies), where the boundaries should be. These similarities cannot be coincidental,
but we have not found any way to make sense of them yet.

Let us now go back to the matter at hand, which is to find whether anything useful
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Figure V.10: Opening the loop at the right boundary.

happens for xy = q1−k in the open case. Half of the question, we just answered: in the
bulk of the system, now that x and y have been reunited, the same decomposition (into
block triangular matrices) happens as did in the periodic case. We now only have to see
whether the same happens to the boundary matrices K±.

One-way boundaries

We first focus on the simpler case where ã = b̃ = 0, which is to say γ = δ = 0.
Considering that K+ and K− are roughly the same if we exchange a and b, we will
do all the calculations only on K+ and simply give the equivalent results for K− in
passing.

For this simpler case, we have:

K+ =
(xS1)∞
(bS1)∞

(yS1/S2)∞
(xS1/S2)∞

(y2A2)∞
(qA2)∞

(byS2)∞
(S2)∞

(q)∞
(y2)∞

(V.117)

where the factor ||01, 02〉〉 on which this whole function acts is implicit.
This can be expanded into:

K+ =
(xS1)∞
(bS1)∞

∞∑
k=0

(y/x)k
(q)k

(xS1/S2)k
∞∑
n=0

(by)n
(y2)n

(S2)n (V.118)

where the first sum comes from (yS1/S2)∞
(xS1/S2)∞

, and the second from everything that is to the
right of that.

We will shortly be in need of one of Heine’s transformation formulae for basic hyper-
geometric series, which we give now. For a function 2φ1(a, b; c; z) defined as:

2φ1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(q)n(c)n

zn (V.119)

we have [147]:

2φ1(a, b; c; z) =
(zab/c)∞

(z)∞
2φ1(c/a, c/b; c; zab/c). (V.120)

We will also need this simple identity on q-Pochhammer symbols:

(x)j+k = (x)j(xq
j)k. (V.121)
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Coming back to K+, we have:

K+ =
(xS1)∞
(bS1)∞

∞∑
j=0

(by)j
(y2)j

(S2)j
∞∑
k=0

(y/x)k
(q)k

(xS1/S2)k
(byqj)k
(y2qj)k

(S2)k

=
∞∑
j=0

(by)j
(y2)j

(S2)j
(xS1)∞
(bS1)∞

2φ1(y/x, byqj; y2qj;xS1)

=
∞∑
j=0

(by)j
(y2)j

(S2)j2φ1(xyqj, y/b; y2qj, bS1)

=
∞∑
j=0

(by)j
(y2)j

(S2)j
∞∑
i=0

(xyqj)i(y/b)i
(q)i(y2qj)i

(bS1)i (V.122)

where we used (V.121) between the first line and the second, and (V.120) between the
second and the third. This finally gives us:

K+
i,j(x, y) =

(xyqj)i(y/b)ib
i(by)j

(q)i(y2)i+j
(V.123)

and, at the left boundary:

K−j,i(x, y) =
(xyqi)j(x/a)ia

i(ax)j
(q)j(x2)i+j

. (V.124)

We need to compare those values for (x, y) equal to (1/qk−1y, y) or (q/y, qky) (which
are the same values as before, but keeping y as a variable instead of x). We get:

K+
i,j(1/q

k−1y, y) =
(qj−k+1)i(y/b)ib

i(by)j
(q)i(y2)i+j

, (V.125)

K+
i,j(q/y, q

ky) =
(qj+k+1)i(yq

k/b)ib
i(byqk)j

(q)i(y2q2k)i+j
. (V.126)

Since (qj−k+1)i = 0 for j − k + 1 ≤ 0 and i + j − k + 1 ≥ 0, i.e. for j ≤ k − 1 and
i ≥ k − 1− j, the first matrix is, as we expected, block triangular.

We now consider, for j ≥ k − 1, the ratio:

K+
i+k,j+k(1/q

k−1y, y)

K+
i,j(q/y, q

ky)
=

(y/b)kb
k(by)k

(y2)2k

(qj+1)k
(qi+1)k

. (V.127)

The term (qj+1)k
(qi+1)k

accounts for going to the contragredient representation on both lines

(consistently with what happens to the X matrices), and can be transferred to the left
boundary, where they compensate similar terms, emerging from the same calculation:

K−j+k,i+k(x, 1/q
k−1x)

K−j,i(q
kx, q/x)

=
(x/a)ka

k(ax)k
(x2)2k

(qi+1)k
(qj+1)k

. (V.128)
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All the other terms depend only on k, and factor out of the matrix product. We will now
put them together.

First, we need to make a few transformations on those factors. For y = 1/qk−1x, we
have:

(y/b)kb
k = (−x)−kq−k(k−1)/2(bx)k, (V.129)

(by)k = (bq−k+1/x)k, (V.130)

(x/a)ka
k = (−x)kqk(k−1)/2(aq−k+1/x)k, (V.131)

which gives us:

(x/a)ka
k(ax)k(y/b)kb

k(by)k
(x2)2k(y2)2k

=
(aq−k+1/x)k(bq

−k+1/x)k(ax)k(bx)k
(x2)2k(x−2q−2k+2)2k

=
hb(q

kx)hb(q/x)

hb(x)hb(1/qk−1x)
(V.132)

with

hb(x) =
(x2)∞

(ax, bx)∞
. (V.133)

What we have, then, is that the boundary matrices, just as the bulk matrices, are
upper block triangular, with a first block of auxiliary dimension k, and a second of infinite
auxiliary dimension, which is the same as the full matrix at different values of the spectral
parameters, up to a global factor which we have just computed. Put into equations, this
becomes:

P (x)Q(1/qk−1x) = t(k)(x) + e−2kµ hb(q
kx)hb(q/x)

hb(x)hb(1/qk−1x)
P (qkx)Q(q/x) (V.134)

where the factor e−2kµ comes, as before, from the first coefficient of the matrices Aµ (of
which there are now 2) in the second block.

To make things simpler, we can redefine all our matrices as:

P̃ (x) = hb(x)P (x) , Q̃(x) = hb(x)Q(x) , t̃(k)(x) = hb(x)hb(1/q
k−1x)t(k)(x) (V.135)

which is equivalent to choosing another normalisation for Uµ and Tµ. Written in terms
of those new transfer matrices, this last equation takes its definitive form:

P̃ (x)Q̃(1/qk−1x) = t̃(k)(x) + e−2kµP̃ (qkx)Q̃(q/x). (V.136)

This has the exact same form as eq.(V.74), the only difference being a factor 2µ
instead of µ in the right hand side.

The rest of the reasoning is the same as in the periodic case. We first consider the case
where k = 1. This gives us quite simply: t(1)(x) = (1 + x)L(1 + 1/x)L = h(x) (where half
of the monomials come from the upper matrix row, and the other half from the lower; the
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occupancy anti-symmetry between the two rows imply that whatever the configuration,
there will be L particles and L holes in total). From this, we get:

t̃(1)(x) = h(x)hb(x)hb(x
−1) =

(1 + x)L(1 + 1/x)L(x2, x−2)∞
(ax, bx, a/x, b/x)∞

= F (x) (V.137)

which is the quantum determinant for the open ASEP with one-way boundaries. This
explains how the function F (x) replaces h(x) (from the periodic case) in all the expressions
for the cumulants of the current.

Now, for k = 2, we need to verify that t̃(2)(x) is related to Mµ through some derivative.
We will do this directly in the general case (with all four boundary rates), in a few pages.
For now, we just give the two-dimensional boundary matrices that we find from K+ and
K−:

K+
2 =

[
1 qx(qx−b)

(q2x2−1)
x(1−qxb)
(q2x2−1)

0

]
, K−2 =

[
1 (a−x)

(1−x2)
(ax−1)
q(1−x2)

0

]
. (V.138)

Two-way boundaries

In the general case, where both boundaries have two non-zero rates, we were not able to
do the first step of calculation leading to the decomposition of each boundary matrix into
blocks (i.e. the step equivalent to (V.122)). We were, however, able to find the result of
that calculation using a formal analysis software. We find that K+ can be written as:

K+
i,j =

min[i,j]∑
n=0

(−1)n
(q)j

(q)n(q)j−n

(xyqn)i−n
(q)i−n(y2q2n)i+j−2n

A+
i−n,j−n(qny)

n−1∏
l=0

τ+(qly) (V.139)

where A+
i,j is a polynomial and

τ+(y) =
(1− by)(1− b̃y)(y − b)(y − b̃)

y(1− y2)(1− qy2)
. (V.140)

As before, we take y = 1/qk−1x, so that (xyqn)i−n = (qn−k+1)i−n. This is 0 for
i− k + 1 ≥ 0 and n− k + 1 ≤ 0 for all n : 0..j, i.e. fori− k + 1 ≥ 0 and j − k + 1 ≤ 0,
which says precisely that it is upper block triangular with a first block of size k.

We then calculate:

K+
i+k,j+k(1/q

k−1y, y)

K+
i,j(q/y, q

ky)
= (−1)k

k−1∏
l=0

τ+(qly)
(qj+1)k
(qi+1)k

(V.141)

where
k−1∏
l=0

τ+(qly) = q−k(k−1)/2 (by)k(y/b)kb
k(b̃y)k(y/b̃)kb̃

k

yk(y2)2k

. (V.142)

At the other boundary, we get:

K−j,i =

min[i,j]∑
n=0

(−1)n
(q)i

(q)n(q)i−n

(xyqn)j−n
(q)j−n(x2q2n)i+j−2n

A−j−n,i−n(qnx)
n−1∏
l=0

τ−(qlx) (V.143)
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where A−j,i a polynomial, and

τ−(x) =
(1− ax)(1− ãx)(x− a)(x− ã)

x(1− x2)(1− qx2)
(V.144)

which gives us

K−j+k,i+k(x, 1/q
k−1x)

K−j,i(q
kx, q/x)

= (−1)k
k−1∏
l=0

τ−(qlx)
(qi+1)k
(qj+1)k

(V.145)

where
k−1∏
l=0

τ−(qlx) = q−k(k−1)/2 (ax)k(x/a)ka
k(ãx)k(x/ã)kã

k

xk(x2)2k

. (V.146)

As previously, apart from factors (qj+1)k
(qi+1)k

and (qi+1)k
(qj+1)k

which account for the change

from X to X on both rows, everything else depends only on k, factors out of the matrix
products, and gives, when put together:

k−1∏
l=0

τ−(qlx)τ+(ql−k+1/x) =
hb(q

kx)hb(q/x)

hb(x)hb(1/qk−1x)
(V.147)

with

hb(x) =
(x2)∞

(ax, ãx, bx, b̃x)∞
(V.148)

which replaces the simpler version (V.133).
Using this, we do the exact same operations as in the previous case, and we get the

complete quantum determinant for the open ASEP with all non-zero boundary rates:

F (x) =
(1 + x)L(1 + 1/x)L(x2, x−2)∞

(ax, ãx, bx, b̃x, a/x, ã/x, b/x, b̃/x)∞
. (V.149)

We finally look at the transfer matrix t̃(2)(x) and try to relate it to Mµ, as we did
in section V.1.2 for the periodic case. By analogy with eq.(V.35), we will try to rewrite
t̃(2)(h)/F (x) as the standard Bethe transfer matrix.

The two-dimensional blocks from K+ and K− for y = 1/qx are:

K+
2 =

[
1 qx(qx+qxbb̃−b−b̃)

(q2x2−1)
x(1+bb̃−qxb−qxb̃)

(q2x2−1)
−bb̃x

]
, K−2 =

[
1 (a+ã−x−aãx)

(1−x2)
(ax+ãx−1−aã)

q(1−x2)
−aã
qx

]
(V.150)

and the corresponding blocks from the bulk are:

X2(x) =


1 + x 0 0 0

0 1 + qx 1− 1
q

0

0 1− q 1 + 1
qx

0

0 0 0 1 + 1
x

 , (V.151)

X2(x) =


1 + 1

qx
0 0 0

0 1 + 1
x

1− q 0
0 1− 1

q
1 + x 0

0 0 0 1 + qx

 . (V.152)
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Consider these transformations, with λ = 1+qx
q(1+x)

, i.e. x = − 1−qλ
q(1−λ)

:

Li(λ) =
1

1 + x

([
1 0
0 −q

]
X2(x)

[
1 0
0 −1/q

])
�
[

1 0
0 x

]
=


1 0 0 0
0 qλ 1− qλ 0
0 1− λ λ 0
0 0 0 1

 (V.153)

and

Li(λ) =
1

1 + x

[
x 0
0 1

]
�
([

0 1
1 0

]
X2(x)

[
0 1
1 0

])
=


1 0 0 1− qλ
0 λ 0 0
0 0 qλ 0

1− λ 0 0 1

 (V.154)

where the matrix products inside the parentheses are done in the auxiliary space, on each
element of X2 or X2, and the third product is done on the physical space at each site.
Notice that the inner products cancel out between one site and the next, and that the
outer products are done between X2 and X2 and amount to a global factor x

(1+x)2
on each

site. Taking a product of L matrices X2 �X2, this transformation gives, apart from the
inner products at each end of the chain, a global factor xL

(1+x)2L
, which accounts for the

bulk part h(x) of F (x). Also note that the matrices from Li need to be transposed if
multiplied from right to left.

Considering that t̃(2) has a factor hb(x)hb(1/qx), and that

h(x)hb(x)hb(1/qx) = F (x)
(1− 1/q2x2)(1− 1/qx2)

(1− a/qx)(1− ã/qx)(1− b/qx)(1− b̃/qx)
(V.155)

the transformations we need to do on the boundary matrices are:

K̂+
2 (λ) =

(1− 1/q2x2)

(1− b/qx)(1− b̃/qx)

[
1 0
0 −q

]
K+

2

[
0 1
1 0

]
, (V.156)

K̂−2 (λ) =
(1− 1/qx2)

(1− a/qx)(1− ã/qx)

[
0 1
1 0

]
K−2

[
1 0
0 −1/q

]
, (V.157)

which are too complicated to be written in terms of λ. Their values and first derivatives
at λ = 0, which is all we will need, are, in terms of the original boundary parameters:

K̂+
2 =

[
1 0
0 1

]
,

d

dλ
K̂+

2 =

[
−2δ 2β
2δ 1− q − 2β

]
, (V.158)

K̂−2 =

[
1−α+γ

1+q
γ
q

α α−γ+q
1+q

]
,

d

dλ
K̂−2 =

[
−α + γ + A−B γ(2q−α−γ)

q

α(1 + q − α− γ) −2γ − q − A+B

]
, (V.159)

with A = 2+(α−2)α−γ2
1+q

and B = 2(1−α+γ)
(1+q)2

.

We now put all these matrices together, obtaining t̃(2)(h)/F (x) as desired, and see
what happens. The Lax matrices Li are not exactly the same as those we had for the
periodic case. Their values at λ = 0 are Li(0) = Pi and Li(0) = P i, where Pi is the
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permutation matrix exchanging the auxiliary space with the physical space when applied
to the right in the matrix product, and P i is the same but when applied to the left.
We see that the two boundaries don’t play the same role. The right boundary matrix is
simply the identity at λ = 0, and serves to connect the Lax matrices on the last site. The
left boundary matrix is traced, at λ = 0, because of the Lax matrices on the first site,
and we see that its trace is 1. All in all, at λ = 0, the whole transfer matrix is simply
the identity (see fig.-V.11-a).

1 2 3 4 5 6

1 2 3 4 5 6

7

7

8

8

1

1

ML

2

2

8

8

M0

4 5 6

4 5 6

M4

M0

M0

M4

a

b c d

Figure V.11: Schematic representation of the value and first logarithmic derivative of t̂(2)

at 0. The first is the identity matrix (a). The second is a sum of terms adding up to Mµ:
three terms at the left boundary (b), two for each bond in the bulk (c) and one term at
the right boundary (d).

As for its first derivative with respect to λ, we find that each pair of Lax matrices
Li and Li have a total contribution of 2Mi + (1 − q)(ni − ni+1). The right boundary
matrix, as can be seen in (V.158), gives a term 2mL + (1 − q)nL. At the left boundary,
we have three terms to consider, one involving the derivative of K− and the first Lax
matrices taken at 0, and two more where we take the derivative of the first Lax matrices,
and the boundary matrix at 0. The sum of those terms gives a total contribution of
2m0− (1− q)n1. If we now sum all the terms that we have found, the parts proportional
to (1− q) all cancel out, and we are simply left with 2Mµ.

At the end of the day, we find that:

Mµ =
1

2

(
1− 1

q

) d
dx

log

(
t̃(2)(x)

F (x)

)∣∣∣∣
x=−1/q

(V.160)

which is the same as eq.(V.37), with h(x) replaced by F (x), and an extra factor 1
2
. We

haven’t mentioned the matrices Aµ in those last calculations, because their behaviour is
trivial, and it is left to the reader, as an exercise, to check that adding one between two
sites gives the correct deformation for Mµ.
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As for the periodic case, we could have done all those calculations around λ = ∞
instead of 0, which would have given an equivalent result:

Mµ =
1

2
(1− q) d

dx
log

(
t̃(2)(x)

F (qx)

)∣∣∣∣
x=−1

. (V.161)

This is the last equation we needed in order to obtain the results from section III.3. In
the next section, we put everything together and give a summary of the whole procedure.

V.2.4 Summary - Functional Bethe Ansatz for the open ASEP

In this section, we collect all the results we found for the open ASEP, and show how they
lead to the expressions for the cumulants of the current from section III.3.

The first step is to construct two transfer matrices Uµ(x) and Tµ(y):

Uµ(x) = hb(x)
1

ZL
〈〈W ||Aµ

L∏
i=1

X(i)(x, x)||V 〉〉, (V.162)

Tµ(y) = hb(y)〈〈W̃ ||Aµ
L∏
i=1

X(i)(y, y)||Ṽ 〉〉 (V.163)

(involving the function hb defined in eq.(V.148)), such that, for any x and y, we have:

[Mµ, Uµ(x)Tµ(y)] = 0. (V.164)

Using these, we can construct two commuting matrices P (x) and Q(y) as:

P (x) = Uµ(x)
[
Uµ(0)

]−1

, Q(y) = (1− e−µ)−1Uµ(0)Tµ(y) (V.165)

such that:
Uµ(x)Tµ(y) = (1− e−µ)P (x)Q(y). (V.166)

Note that a completely rigorous proof of the commutation of P and Q, involving the
R-matrix, has not yet been obtained.

We can show that those matrices verify, for any positive integer k:

P (x)Q(1/qk−1x) = t(k)(x) + e−2kµP (qkx)Q(q/x) (V.167)

(where we omit the tildes, since we have correctly normalised P and Q from the start).
The matrix t(k)(x) is the Bethe transfer matrix with a k-dimensional auxiliary space.

The first two of those relations write:

P (x)Q(1/x) = F (x) + e−2µP (qx)Q(q/x), (V.168)

P (x)Q(1/qx) = t(2)(x) + e−4µP (q2x)Q(q/x), (V.169)

where F (x) is the quantum determinant, and t(2) is such that:

Mµ =
1

2
(1− q) d

dx
log

(
t(2)(x)

F (qx)

)∣∣∣∣
x=−1

. (V.170)
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Using eq.(V.168) at x and qx, and eq.(V.169), we can find the T-Q equation:

t(2)(x)Q(1/x) = F (x)Q(1/qx) + e−2µF (qx)Q(q/x) (V.171)

which allows us to express Mµ in terms of Q instead:

Mµ =
1

2
(1− q) d

dx
log

(
Q(q/x)

Q(1/x)

)∣∣∣∣
x=−1

. (V.172)

We now consider:

B = −e2µ
(
Q(0)

)−1
= −e2µ(1− e−µ)

(
Uµ(0)Tµ(0)

)−1
. (V.173)

We saw in section III.2 that Uµ(x)Tµ(y) = |P ?〉〈1| for µ = 0 (in fact, we saw that
only for x = y = 0, but the derivation also works in this case), which tells us that the
dominant eigenvalue of Uµ(x)Tµ(y) goes to 1 when µ → 0, while the others are at least
of order µ. From this, we find that the first eigenvalue of B goes to 0 for µ→ 0, and the
others remain finite. This also tells us that all the roots of the first eigenvalue of Q(1/x)
go to 0 for µ→ 0, while those of P (x) go to ∞.

Notice that for a < 1 and b < 1, P (x) is expandable as a series in x around of
the unit circle, while Q(1/x) is expandable as a series in 1/x. This is because P (x) is
a product of L matrices containing only monomials in x, two boundary vectors which
contain polynomials in x, and a function hb(x) which is expandable in x as long as all
the constants in its denominator are inside of the unit circle (hence the constraint on a
and b). The same can be said of Q(1/x) with respect to 1/x. This tells us that, for µ
small enough, and in the first eigenspace of P and Q, P is holomorphic inside of the unit
circle, so that a contour integral over that circle will only pick up contributions from Q
and not from P . This is the same reasoning as we did in section II.2.2 to justify the
contour integral expressions for µ and E(µ).

Knowing all this, we can do the same calculations as in section II.2.2, starting from
eq.(II.103), with only a few minor differences coming from the factor 2 in front of µ in
(V.168) and the factor 1

2
in (V.172). We define a function W (x) as:

W (x) = −1

2
log

(
P (x)Q(1/x)

e−2µP (qx)Q(q/x)

)
, (V.174)

and a convolution kernel K, as:

K(z, z̃) = 2
∞∑
k=1

qk

1− qk
(

(z/z̃)k + (z/z̃)−k
)

(V.175)

along with the associated convolution operator X:

X[f ](z) =

∮
c1

dz̃

ı2πz̃
f(z̃)K(z, z̃). (V.176)

Using those, one can find that − log
(
P (qx)Q(q/x)/Q(0)

)
= X[W ](x), and we can

finally rewrite eq.(V.168) in terms of only one unknown function W :

W (x) = −1

2
ln
(

1−BF (x)eX[W ](x)
)

(V.177)
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which is the same as eq.(III.67).
The last step is to take eq.(V.172) in the first eigenspace of Mµ, and eq.(V.174) at

x = 0, to find:

E(µ) =
1

2
(1− q) d

dx
log

(
Q(q/x)

Q(1/x)

)∣∣∣∣
x=−1

, µ = −W (0) (V.178)

Considering what we said before about P being holomorphic inside of the unit circle,

we can replace 1
2

log

(
Q(q/x)
Q(1/x)

)
by −W (x) when expressing E(µ) as a contour integral

(since P will not contribute), and obtain:

µ = −
∮
c1

dz

ı2πz
W (z) (V.179)

and

E(µ) = −(1− q)
∮
c1

dz

ı2π(1 + z)2
W (z), (V.180)

in which we recognise (III.68) and (III.69) from section III.3. All this is done for a < 1
and b < 1, but can then be generalised to any a and b through the same reasoning as in
section II.2.1 for the mean current, replacing the unit circle c1 by small contours around
S = {0, qka, qkã, qkb, qkb̃}.

V.2.5 Appendix - XXZ spin chain with general boundary con-
ditions

In this section, we explain how our construction for the open ASEP can be translated for
the spin-1

2
XXZ chain with non-diagonal boundary conditions [38].

Let us first define the bulk Hamiltonian of the XXZ spin chain of length L:

Hb =
1

2

L−1∑
k=1

hi (V.181)

with hi acting as:

hi =


∆ 0 0 0
0 −∆ 1 0
0 1 −∆ 0
0 0 0 ∆

 (V.182)

on sites i and i+ 1 (in basis {00, 01, 10, 11}, as usual), and as the identity on the rest of
the chain. We define ∆ as 1

2
(q−1/2 − q1/2), which is not the usual definition for the XXZ

chain (that can be obtained simply by replacing q by q2).

Let us also write the deformed Markov matrix M{µi} for the special choice of weights
defined by:

{µ0 =
1

2
log

(
γ

α

)
+ ν0, µi =

1

2
log (q), µL =

1

2
log

(
δ

β

)
+ νL} (V.183)
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which is on the line µ = 1
2

log

(
γδ
αβ
qL−1

)
+ ıR if ν0 and νL are imaginary numbers (in

which case M{µi} is Hermitian). The deformed local matrices become:

m0(µ0) =

[
−α √

αγ e−ν0√
αγ eν0 −γ

]
, (V.184)

Mi(µi) =


0 0 0 0
0 −q √q 0
0
√
q −1 0

0 0 0 0

 , (V.185)

mL(µl) =

[
−δ √

βδeνL√
βδe−νL −β

]
. (V.186)

It is straightforward to check that in this case, we have M{µi} =
√
qH + ε, where ε is

a constant, with the boundary matrices being equal to:

h0 =
1

2
√
q

[
(1− q − α + γ) 2

√
αγ e−ν0

2
√
αγ eν0 (−1 + q + α− γ)

]
, (V.187)

hL =
1

2
√
q

[
(−1 + q + β − δ) 2

√
βδeνL

2
√
βδe−νL (1− q − β + δ)

]
. (V.188)

Since we have three nontrivial parameters in each of those matrices, they are com-
pletely general: we can write (without restricting ourselves to hermitian matrices)

h0 = azσz + a+σ
+ + a−σ

− =

[
az a−
a+ −az

]
, (V.189)

hL = bzσz + b+σ
+ + b−σ

− =

[
bz b−
b+ −bz

]
, (V.190)

with

az = (1− q − α + γ)/2
√
q , a+ =

√
αγ/q eν0 , a− =

√
αγ/q e−ν0 , (V.191)

bz = (−1 + q + β − δ)/2√q , b+ =
√
βδ/q e−νL , b− =

√
βδ/q eνL , (V.192)

which is to say

ν0 = −2 log(a+/a−), (V.193)

α =
√

(
√
qaz − (1− q)/2)2 + a+a− −

√
qaz + (1− q)/2, (V.194)

γ =
√

(
√
qaz − (1− q)/2)2 + a+a− +

√
qaz − (1− q)/2, (V.195)

and

νL = −2 log(b−/b+), (V.196)

β =
√

(
√
qbz + (1− q)/2)2 + b+b− +

√
qbz + (1− q)/2, (V.197)

δ =
√

(
√
qaz + (1− q)/2)2 + b+b− −

√
qbz − (1− q)/2. (V.198)
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Those are well defined for any values of az, a+, a−, bz, b+ and b−.
Considering expression (V.22), or its equivalent for an open chain, and noting that

Aµi
2

= A−1/4, we can rewrite U(x) and T (y) in a way better suited to this situation:

U(x) =
1

ZL
〈〈φ||

L∏
i=1

Y (i)(x)||ψ〉〉, (V.199)

T (y) = 〈〈φ̃||
L∏
i=1

Y (i)(y)||ψ̃〉〉, (V.200)

with

Y (x) =

[
Nx Σ+

Σ− Nx

]
(V.201)

where

Nx = A−1/2 − xA1/2 (V.202)

Σ+ = A−1/4eA−1/4 = q−1/4S+(A−1/2 − x2A1/2), (V.203)

Σ− = A−1/4dA−1/4 = q1/4S−(A−1/2 − A1/2). (V.204)

The boundary vectors become:

〈〈φ|| = 〈〈W ||Aµ0A1/4, (V.205)

||ψ〉〉 = AµLA
1/4||V 〉〉, (V.206)

〈〈φ̃|| = 〈〈W̃ ||Aµ0A1/4, (V.207)

||ψ̃〉〉 = AµLA
1/4||Ṽ 〉〉. (V.208)

Matrices Nx, Σ+ and Σ− satisfy the Uq[SU(2)] algebra [146]:

[Σ+,Σ−] = (q−1/2 − q1/2)(A−1 − x2A), (V.209)

Σ−A = q AΣ−, (V.210)

AΣ+ = q Σ+A, (V.211)

and the conditions on the boundary vectors become:

〈〈φ|| [a+Σ+ − a−Σ− − 2azNx − (q−1/2 − q1/2)xA1/2] = 0, (V.212)

[b−Σ− − b+Σ+ + 2bzNx − (q−1/2 − q1/2)xA1/2] ||ψ〉〉 = 0, (V.213)

〈〈φ̃|| [a+Σ+ − a−Σ− − 2azNy + (q−1/2 − q1/2)A−1/2] = 0, (V.214)

[b−Σ− − b+Σ+ + 2bzNy + (q−1/2 − q1/2)A−1/2] ||ψ̃〉〉 = 0. (V.215)

It was surprising to find that this solution has a structure almost identical to that
of the Lindblad master equation found in [181], where Y is noted Ω and Ŷ is noted Ξ.
In that case, the algebraic relations satisfied by the boundary vectors 〈〈φ|| and ||ψ̃〉〉 are
different from ours, as there is only one vector per boundary but two equations per vector.
It would be interesting to understand the precise relation between those two a priori very
different situations.
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Conclusion

We have studied, in this thesis, a very simple, and yet very rich model from non-
equilibrium statistical physics: the asymmetric simple exclusion process.

In doing so, we have used various methods, from simple mean field calculations to the
matrix Ansatz, perturbation theory, fluctuating hydrodynamics, and the Bethe Ansatz.
Through those, we have been able to find new and interesting results on the fluctuation
of the macroscopic current of particles, which is one of the fundamental characteristics
of systems out of equilibrium.

Our main result, which we presented in chapter III, is an exact formula for the cumu-
lants of the current in the steady state of the open ASEP, valid for any size and values of
the boundary parameters. We first showed, in that chapter, how we derived that result
using a generalisation of the matrix Ansatz and a fair amount of guesswork. Later, in
chapter V, we gave a more rigorous proof of that result, using a variant of the algebraic
Bethe Ansatz applicable to the most general open ASEP, which was, to our knowledge,
not known to be possible. We also saw how the matrix Ansatz could be obtained as a
special case of our method.

Starting from our newly found formula for the cumulants of the current, we analysed,
in chapter IV, their behaviour in the limit of a large system. Combining it to results from
the macroscopic fluctuation theory, and from direct diagonalisation in a few extreme cases,
we were able to describe the large deviations of the current and the associated density
profiles in four of the five phases that the system might find itself in, and give asymptotic
results for the fifth.

All the results that we have obtained are, a priori, specific to the ASEP, but this is
not the end of the story. The next step is precisely to find out what general insights we
can extract from our specific results: what methods could be applied to other models,
and what aspects of this system’s behaviour might be in fact universal. These are the
two most important of the many open questions that remain unanswered for now. Here
are a few of those that we might want to tackle in the near future:

• The first one is, expectedly, the gaping hole left in chapter IV by the absence of
an expression for the large deviations of the current inside of the maximal current
phase. A precise analysis of the local anti-correlations in the system might shed
some light on this, as we argued that they are an important feature of that phase.
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• We uncovered, in that same chapter, a few non-equilibrium phase transitions, for
which the order parameter is µ, the quantity conjugate to the current in the sys-
tem. However, that parameter does not correspond to any physical variable, and
the signature of those transitions on a dynamical level (as would be observed in
experiments, for instance) is very unclear. We saw in particular, in section IV.1.5,
that the mathematical form of the cumulants of the current was most complex at
the point ρa = ρb = u = 1

2
, which sits at the interface between all five phases of

the system. We do not know if that complexity is due to any physically relevant
behaviour.

• We might wonder to what extent the results from chapter IV could be generalised
to other systems, and in particular to other interacting particle models, to which
the macroscopic fluctuation theory is in principle applicable. It would be especially
interesting to know precisely which part of our results comes from integrability, and
which part might be transposable to other non-equilibrium systems.

• For those results that are not due to integrability, we could ask ourselves whether
they could be obtained directly from a macroscopic description of the system rather
than from its microscopic details. In particular, we saw that the generating function
of the cumulants of the current around a phase transition (i.e. in the steady state
MC phase or on the shock line) is best expressed as an implicit function of a
parameter B. We do not know if and how a similar structure could arise from
large scale calculations. We also do not know if these expressions are in any way
universal.

• The Bethe Ansatz calculations we performed in chapter V were aimed specifically
at deriving rigorously the result that we had guessed in chapter III, but it would
certainly be nice to use our method in order to obtain some new results as well.
We could, for instance, consider the multispecies ASEP, for which it might be fairly
straightforward to generalise the existing matrix Ansatz into the algebraic Bethe
Ansatz.

• The few final steps of those Bethe Ansatz calculations were specific to the steady
state of the ASEP. It would be useful to generalise them to other eigenstates, which
are in principle obtainable through our method, although the calculations involved
would probably be much more complex. It would, in particular, give us access to
the transient regime, which holds interesting information on the physical behaviour
of the system. The first step in this would be to retrieve and extend the results
of [43] on the spectral gap in the open ASEP.

• Moreover, we could only obtain an eigenvalue of the deformed Markov matrix, but
no expression for the corresponding eigenvectors (other than perturbatively, as in
chapter III). Such an expression would allow us to see precisely how the hydro-
dynamic regime which we observed in chapter IV emerges from the microscopic
structure of that state.

• Finally, we saw that the original matrix Ansatz can be retrieved as a special case of
the transfer matrix we built in chapter V. It would be interesting to know whether
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there is anything general about that remark, which is to say if matrix product states,
in other systems that exhibit them, are generically a special value of a Bethe-like
transfer matrix, or if it is merely a coincidence.
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[113] M. Dudzinski and G. M. Schütz. Relaxation spectrum of the asymmetric exclusion
process with open boundaries. Journal of Physics A: Mathematical and General
33(47), 8351–8363 (2000).

[114] A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky and J. P. Straley. Phase diagram
of one-dimensional driven lattice gases with open boundaries. Journal of Physics A:
Mathematical and General 31(33), 6911–6919 (1998).

[115] L. Santen and C. Appert. The asymmetric exclusion process revisited: Fluctuations
and dynamics in the domain wall picture. Journal of Statistical Physics 106(Jan-
uary), 187–199 (2002).

[116] S. Varadhan. The complex story of simple exclusion. N. Ikeda, S. Watanabe,
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[181] D. Karevski, V. Popkov and G. M. Schütz. Exact Matrix Product Solution for the
Boundary-Driven Lindblad XXZ Chain. Physical Review Letters 110(4), 47201
(2013).

187



188



Appendix : Published articles

[1] An Exact Formula for the Statistics of the Current in the TASEP
with Open Boundaries, Alexandre Lazarescu and Kirone Mallick, Jour-
nal of Physics A: Mathematical and Theoretical 44 (2011) 315001.
Received the 2012 ”Best Paper Prize” of Journal of Physics A.

[2] Exact Current Statistics of the ASEP with Open Boundaries, Mieke
Gorissen, Alexandre Lazarescu, Kirone Mallick and Carlo Vanderzande,
Physical Review Letters 109, 170601 (2012).
Selected as a Physical Review Letters editors’ suggestion and for a Viewpoint
in Physics.

[3] Matrix Ansatz for the Fluctuations of the Current in the ASEP
with Open Boundaries, Alexandre Lazarescu , Journal of Physics A:
Mathematical and Theoretical 46 (2013) 145003.
Selected for IOPselect.



190



IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 44 (2011) 315001 (16pp) doi:10.1088/1751-8113/44/31/315001

An exact formula for the statistics of the current in the
TASEP with open boundaries

Alexandre Lazarescu and Kirone Mallick1
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Abstract
We study the totally asymmetric exclusion process on a finite one-dimensional
lattice with open boundaries, i.e. in contact with two reservoirs at different
potentials. The total (time-integrated) current through the system is a random
variable that scales linearly with time in the long-time limit. We conjecture a
parametric representation for the generating function of the cumulants of the
current, which is related to the large deviation function by Laplace transform.
This formula is valid for all system sizes and for all values of the boundary
coupling parameters.

PACS numbers: 05.40.−a, 05.60.−k, 02.50.Ga

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The asymmetric simple exclusion process (ASEP) is one of the fundamental models in non-
equilibrium statistical mechanics. The ASEP involves particles that perform asymmetric jumps
on a discrete lattice under the exclusion constraint: two particles cannot occupy the same site
at the same time. This very simple and minimal system appears as a building block in more
realistic descriptions for low-dimensional transport with constraints. Such phenomena occur
in various contexts and scales ranging from micrometric cellular motors to traffic networks
[32, 40]. The remarkable properties of the ASEP and its numerous variants have stimulated
hundreds of studies during the last two decades. The ramifications of this mundane-looking
model through non-equilibrium statistical mechanics, combinatorics, probability, random
matrices and representation theory are tremendous [1, 9, 21, 32, 39, 42, 43].

Generically, a system out of equilibrium carries at least one non-vanishing current in its
steady state (this is related to the breaking of detailed balance). Such currents can be considered
as archetypal observables for non-equilibrium behaviour [40]. Classifying the different
independent stationary currents in a given system, identifying some generic features and

1 Author to whom any correspondence should be addressed.
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relations obeyed by the distributions of these currents and calculating their statistical properties
as the functions of the control parameters are some of the important tasks in non-equilibrium
statistical physics. Current fluctuations are usually non-Gaussian: their characteristics can
be quantified by the moments of the current (mean value, variance, skewness, kurtosis, etc)
or by a large-deviation function that measures the probability for the current to assume a
non-typical value. There is growing evidence that large-deviation functions play a crucial role
in non-equilibrium statistical physics, akin to that of thermodynamic potentials at equilibrium
[10, 44].

Currents transport information from one part of the system to another. In particular, in
a system far from equilibrium, boundary conditions can drastically alter the behaviour of the
bulk even if interactions are short ranged (in contrast with the generic case at equilibrium). For
example, as was recognized in the earliest studies [26, 28], phase transitions can be induced
by the boundaries or by a localized alteration of the dynamical rules. It is therefore crucial to
specify the boundary conditions (e.g. periodic, twisted, open boundaries, infinite system, etc).
The phenomenology of the system and the mathematical techniques that are used to analyse
it depend strongly on the chosen boundary conditions.

In the present work, we consider the exclusion process on a finite lattice with open
boundaries, which can be viewed as a model for a conducting rod in contact with two
reservoirs that are not in thermodynamic equilibrium with each other (for example, they
are at different temperatures, or have different chemical, mechanical or electrical potentials).
Besides, an external field may be applied to the system. This external field and the reservoirs
drive a current through the system and, in the long-time limit, the connecting rod reaches a
non-equilibrium stationary state. Our aim is to study the statistics of this stationary current.
We give explicit formulae, equations (15)–(19), for the cumulant generating function of the
totally asymmetric simple exclusion process (TASEP) with open boundaries that are valid
for arbitrary values of the entrance and exit rates and for all values of the system size L. We
emphasize the fact that our results are of combinatorial nature and not only asymptotic: they
describe the TASEP in all possible regimes, including the phase-transition lines. This is in
contrast with the asymptotic expression for the large-deviation function of the current obtained
very recently using the Bethe Ansatz [8]. Indeed, as of today, the Bethe Ansatz for the open
TASEP [7] seems to be tractable only in the L → ∞ limit, and only inside the low- and
high-density phases far from the phase-transition lines. We show that the formula obtained
in [8] for L → ∞ can be retrieved as a limiting case of our general results. The parametric
representation we have found is obtained by using the matrix Ansatz technique [1, 16]. The
calculations are very cumbersome and some combinatorial patterns have been guessed rather
than fully calculated. The formulae we obtain must therefore be considered as conjectures.
But as we shall explain, the results are exact albeit they have been obtained, at present, in a
non-rigorous manner. They have also been thoroughly verified against exact computations
for systems of small sizes. Besides, all known special cases can be deduced from our general
result.

The outline of this work is as follows. In section 2, we recall the definition of the model
and the basic properties that will be used later (the master equation, the matrix solution and
the phase diagram). Section 3 contains the main results of this work; we first restate the
problem of current fluctuations in the standard mathematical framework and then describe the
simpler case where all the parameters in the system are equal and taken to be 1. The general
formulae are presented in subsection 3.3 and are followed by a physical discussion of the
behaviour of the system through the phase diagram; we also discuss some connections with
previously known results. In section 4, we explain the line of reasoning that we have followed
to obtain the formula for the current fluctuation, show where the unproven assumptions reside
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Figure 1. Illustration of the TASEP with open boundaries on a finite lattice with L sites.

and describe some numerical verifications. The last section is devoted to concluding remarks.
A detailed derivation of the large L limit [8] from the general formula is given in the appendix.

2. Definition of the TASEP and basic properties

We consider the TASEP on a finite lattice of size L with open boundaries. Each site of the
system can be occupied by at most one particle (exclusion condition). The dynamics of the
model is defined by the following stochastic rules (see figure 1): a particle at site i in the bulk
of the system (with 1 � i � L − 1) can jump with rate p = 1 (i.e. with probability dt during
the time interval dt) to site i +1 if this target site is vacant; if site 1 is empty, a particle can enter
with rate α; a particle at site L can leave the system with rate β. The entrance and exit rates
represent the coupling of the finite system with infinite reservoirs located at its boundaries. At
a given time, the system is in one of its 2L possible configurations and evolves according to
its stochastic dynamics as a Markov process. The evolution of the system can be encoded in
the Markov matrix M as follows: the probability Pt(C) of being in configuration C at time t
satisfies the master equation

dPt(C)

dt
=

∑
C′

M(C, C′)Pt (C′). (1)

The non-diagonal matrix element M(C, C′) represents the transition rate from C′ to C.
The diagonal part M(C, C) = −∑

C′ �=C M(C′, C) represents (minus) the exit rate from C.
The Markov matrix is a stochastic matrix: the sum of the elements in any given column
vanishes.

In the long-time limit, the system reaches a steady state in which each of the 2L possible
configurations occurs with a stationary probability. This steady-state probability lies in the
kernel of the Markov matrix: the rules of the ASEP ensure that this kernel is non-degenerate
and that all other eigenvalues of M have strictly negative real parts that correspond to relaxation
states with a possible oscillatory behaviour (Perron–Frobenius theorem). Finding this
stationary measure is a non-trivial task: the model is far from equilibrium with a non-vanishing
steady-state current; there is no underlying Hamiltonian and no temperature. Therefore, the
fundamental principles of equilibrium statistical mechanics, such as the Boltzmann–Gibbs
law, cannot be used.

The exact calculation of the stationary measure for the TASEP with open boundaries and
the derivation of its phase diagram have played a seminal role by triggering a whole field
of research on exactly solvable models in non-equilibrium statistical mechanics. We recall
that the fundamental observation [13] is the existence of recursion relations for the stationary
probabilities between systems of different sizes. These recursions are particularly striking
when α = β = 1 [13]; they can be generalized to arbitrary values of α and β [16, 42] and also
to the more general case in which backward jumps are allowed (PASEP). The most elegant
and efficient way to encode these recursions is to use the matrix Ansatz [16]. A configuration
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Figure 2. The phase diagram of the TASEP as a function of the boundary rates.

C can be represented by the binary string of length L (τ1, . . . , τL), where τi = 1 if the site i is
occupied and τi = 0 otherwise. Then, with each C, the following matrix element is associated:

P(C) = 1

ZL

〈α|
L∏

i=1

(τiD + (1 − τi)E) |β〉. (2)

The scalar P(C), thus defined, will be equal to the stationary probability of C if the operators
D and E, the bra-vector 〈α| and the ket-vector |β〉 satisfy the following algebraic relations:

D E = D + E

D |β〉 = 1

β
|β〉

〈α| E = 1

α
〈α|. (3)

This algebra allows the calculation of any matrix element of type (2). The normalization
constant in equation (2) is given by

ZL = 〈α| (D + E)L |β〉. (4)

For α = β = 1, ZL is a Catalan number [16]. More generally, the matrix product representation
method has proved to be very fruitful for solving many one-dimensional systems: a very
thorough review of this method can be found in [1].

From the exact solution, the phase diagram of the TASEP, as well as stationary equal-time
correlations and density profiles, can be determined. In the limit of large system sizes, the
phase diagram (figure 2) consists of three main regions.

• For α < min(β, 1/2), the system is in the low-density phase and its behaviour is driven
by the entrance rate α. The bulk density is ρ = α and the average current J = α(1 − α).

• The high-density phase, for β < min(α, 1/2), is characterized by ρ = 1 − β and
J = β(1 − β).

• In the maximal current phase, with α > 1/2 and β > 1/2, the bulk behaviour
is independent of the boundary conditions and one has ρ = 1/2 and J = 1/4.
However, correlations with the boundaries decay only algebraically, whereas they decay
exponentially in the two other phases.
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• The low- and high-density phases are separated by the ‘shock line’, α = β � 1/2, across
which the bulk density is discontinuous. In fact, the profile on this line is a mixed state
of shock profiles interpolating between the lower density ρl = α and the higher density
ρH = 1 − β.

Detailed properties of the phase diagram are reviewed for example in [1, 9, 41]. We
note that the phase diagram was obtained in [28] through physical reasoning by using a
hydrodynamic limit and mean-field arguments (see also [43]). However, a finer analysis does
require the knowledge of the exact solution.

3. Current fluctuations for the TASEP

Many properties of the ASEP have been understood using different techniques (matrix Ansatz,
Bethe Ansatz, random matrices) [1, 9, 21, 24, 32, 39–41, 43]. However, the determination
of current fluctuations in the original TASEP model with open boundaries has remained a
vexing and challenging unsolved problem. This question is interesting and important: first, in
the presence of reservoirs, the model is quite realistic and can be related to real experimental
situations [23, 27] (a more detailed discussion can be found in [14]); second, the exact
calculation of fluctuations to all order is akin to determining the large deviations of the current
which are expected to play a central role in non-equilibrium statistical mechanics [10, 44].

3.1. Statement of the problem

We consider the TASEP with open boundaries and want to study the total (i.e. time-integrated)
current that has flowed through it in the long-time limit. One way to quantify this total current
is to place a counting variable Nt at the entrance site. At t = 0 we have N0 = 0; each time a
particle enters the system, we increment the value of Nt by 1. Hence, Nt is a random variable
that counts the total number of particles that have entered the TASEP between the time 0 and
t. Because the size L is bounded and no particles are created or destroyed in the bulk, Nt also
represents, when t → ∞, the number of particles that have crossed any bond in the system,
or have exited from the TASEP from its right boundary. We call Nt the total current at time t
and we intend to study its statistical properties.

When t → ∞, the expectation value of Nt/t converges toward the average stationary
current J:

lim
t→∞

〈Nt 〉
t

= J (α, β, L) = ZL−1

ZL

. (5)

The value of ZL, defined in equation (4), was determined exactly in [16] using the matrix
Ansatz.

The variance of Nt in the long-time limit also increases linearly with time. This allows
one to define a ‘diffusion constant’ � as follows:

lim
t→∞

〈
N2

t

〉 − 〈Nt 〉2

t
= �(α, β,L). (6)

An exact expression for �(α, β,L) was obtained in [17]. It involved an extension of the
matrix method to represent some two-time correlations in the stationary state. For α = β = 1,
the formula for � is quite elegant and involves simple factorial factors (see the next section).
Unfortunately, the general result is somehow less compact (see equations (58)–(61) in [17]).

More generally, one can define moments and cumulants to all orders for the random
variable Nt. These data can be encoded in the exponential generating function 〈exp(γ Nt)〉.

5
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The moments of Nt are obtained by taking successively the derivatives of this function at
γ = 0. In the long-time limit, we have

〈exp(γ Nt)〉 � exp(E(γ )t). (7)

(A mathematical equality is obtained by taking the logarithm of both sides, dividing by t and
taking t → ∞.) The derivation of this result is recalled in section 4. Because the logarithm
of 〈exp(γ Nt)〉 generates the cumulants of Nt, we observe that these cumulants grow linearly
with time and that their values are given by the derivatives of E(γ ) at γ = 0. The cumulant
generating function E(γ ) is related to the large-deviation function of the current by Laplace
transform. For finite-size systems, both functions carry the same information.

The function E(γ ) was calculated for the symmetric exclusion process in [14]. Very
recently, the analysis of the Bethe Ansatz equations, for L → ∞, was carried out for the
asymmetric case, in the low- and in the large-density phases [8]. In the present work, we
obtain an explicit representation of the generating function of the cumulants of the current for
all values of α and β and for all values of the system size L. The technique used is an extension
of the matrix method (see section 4).

For pedagogical reasons, we shall first discuss the case α = β = 1, which belongs to
the maximal current phase. Here, the formulae are explicit, quite simple and appealing. The
general case with arbitrary values of (α, β) is presented in a separate subsection 3.3.

3.2. The cumulant generating function for α = β = 1

Here, we consider the values α = β = 1. Historically, the TASEP with α = β = 1 was the
first case for which the stationary measure was determined exactly [13]. For the cumulants of
the current, these special values lead to simple mathematical expressions.

The generating function of the cumulants E(γ ) is given as a function of γ through the
following representation in terms of a parameter B:

γ = −
∞∑

k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
, (8)

E = −
∞∑

k=1

(2k)!

k!

[2k(L + 1) − 2]!

[k(L + 1) − 1]! [k(L + 2) − 1]!

Bk

2k
. (9)

These two conjectured equations are part of the central result of this work. For the special
case, α = β = 1, they allow us to calculate all the cumulants of the TASEP current. Indeed, by
expressing B in terms of γ in equation (8) and substituting into equation (9) we can calculate
E as a function of γ to any desired order. The coefficients of this expansion, that we denote by

E(γ ) = E1γ +
E2

2!
γ 2 +

E3

3!
γ 3 + · · · , (10)

give the successive cumulants of Nt in the long-time limit. For example, we obtain

lim
t→∞

〈Nt 〉
t

= J = E1 = L + 2

2(2L + 1)
. (11)

This expression is identical to that found in [16]. When L → ∞, J → 1/4 as expected in the
maximal current phase. At the second order, we obtain

lim
t→∞

〈
N2

t

〉 − 〈Nt 〉2

t
= � = E2 = 3

2

(4L + 1)![L!(L + 2)!]2

[(2L + 1)!]3(2L + 3)!
. (12)

6



J. Phys. A: Math. Theor. 44 (2011) 315001 A Lazarescu and K Mallick

This is the same formula as the one derived in [17]. When L → ∞, we have � � 3
√

2π
64 L−1/2,

i.e. the diffusion constant vanishes in the maximal current phase.
The third cumulant, known as the skewness, is given by

E3 = 12
[(L + 1)!]2[(L + 2)!]4

(2L + 1)[(2L + 2)!]3

{
9
(L + 1)!(L + 2)!(4L + 2)!(4L + 4)!

(2L + 1)![(2L + 2)!]2[(2L + 4)!]2

− 20
(6L + 4)!

(3L + 2)!(3L + 6)!

}
. (13)

This formula was not known before. For a large system, the skewness behaves as

E3 � 2187 − 1280
√

3

10 368
π ∼ −0.009 0978. . .. (14)

Carrying on the elimination of B, the next few orders can also be found explicitly. It is found
that the kth cumulant scales as π(πL)k/2−3/2 for k � 2. We determined the constant prefactor
for the first few values of k. We note that this scaling is compatible with the KPZ universality
class, investigated in the case of periodic boundary conditions in [34].

The fact that the large deviation function is obtained in parametric form should not come
as a surprise. On the contrary, this structure seems to be rather common: to our knowledge
it appeared first in [18], where the exact large deviation function for the TASEP on a ring
was calculated by the Bethe Ansatz; it also occurred in the case of a defect particle on a
ring [15]. The complete solution for the current fluctuations of the ASEP on a ring involves
a tree structure that is again written parametrically [34]. More generally, it was shown in
[3, 4, 10] that for a large class of non-equilibrium diffusive systems, characterized by a
linear conductivity and equilibrium diffusion coefficient, the large deviation function can be
expressed through a parametric set of equations.

We observe that the limiting value of the skewness, given in equation (14), is a finite
number. More generally, one can construct simple ratios of cumulants that have a finite limit
when L → ∞. It should be possible to ‘measure’ such numbers in simulations and to test the
universality of these ratios in a manner similar to [12].

3.3. The general case

We now give the result for the cumulant generating function, valid for any system size L and
for arbitrary values of α and β. The mathematical structure is the same as in equations (8)
and (9):

γ = −
∞∑

k=1

Ck(α, β)
Bk

2k
, (15)

E = −
∞∑

k=1

Dk(α, β)
Bk

2k
. (16)

The coefficients Ck and Dk of the series are the functions of the rates α and β and of L. Their
explicit expressions are given by

Ck(α, β) =
∮

{0,a,b}

dz

2iπ

F(z)k

z
(17)

and Dk(α, β) =
∮

{0,a,b}

dz

2iπ

F(z)k

(1 + z)2
, (18)

7
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where the rational function F(z) is given by

F(z) = −(1 + z)2L(1 − z2)2

zL(1 − az)(z − a)(1 − bz)(z − b)
with a = 1 − α

α
and b = 1 − β

β
. (19)

Equations (15)–(19) provide an exact representation for the generating function of the
cumulants of the current in the TASEP with open boundaries. These equations are valid for any
system size L and for arbitrary values of the parameters α and β. Before we proceed further,
we explain the meaning of the symbol

∮
{0,a,b}: it represents the complex integral along three

infinitesimal contours that encircle the points 0, a and b in the complex plane. Equivalently,
using the Cauchy formula we could have written equations (17) and (18) as

Ck(α, β) =
∑

z0=0,a,b

residue

[
F(z)k

z
, z0

]
,

Dk(α, β) =
∑

z0=0,a,b

residue

[
F(z)k

(z + 1)2
, z0

]
.

We note that similar integrals have already appeared in closely related problems [6, 15]. Here,
the notations implicitly assume that 0, a and b are distinct. If two or three of these numbers
coincide, one should take into account the corresponding residue only once. Hence, for
α = β = 1, which implies a = b = 0, only the residue at 0 must be calculated. The resulting
explicit expressions for Ck(1, 1) and Dk(1, 1) give the parametric representations (8) and (9)
that were discussed in the previous section2.

By inverting the series (15) order by order and substituting the result into (16), we can
derive closed expressions for the first few cumulants of the current. For example, the mean
value of the current is given by

J = D1(α, β)

C1(α, β)
. (20)

This formula is, of course, the same as obtained in [16]. We emphasize that C1(α, β) and
D1(α, β) coincide with ZL and ZL−1, respectively, as can be seen by comparing equations (17)
and (18) for k = 1 with equation (B10) of [16]. (To be fully precise, C1(α, β) and D1(α, β)

differ from ZL and ZL−1 by the normalization constant κ2 = (α + β − 1)/(αβ) that appears
in [16] and that ensures that 〈α|β〉 = 1. In our work, this constant κ2 has been absorbed in
the parameter B. If we had made the equivalent choice to use the function κ2F(z) instead of
F(z), then C1(α, β) and D1(α, β) would be identical to ZL and ZL−1.)

At second order, we obtain an expression for the diffusion constant

� = D1 C2 − D2 C1

C3
1

. (21)

We remark that C2 and D2 are natural generalizations of C1 and D1. In this form, the diffusion
constant looks more compact than the formula found in [17]. The two expressions must
coincide but we have not endeavoured to prove this fact analytically for all values of α, β and
L. We can carry on this procedure further to a few more orders to obtain higher cumulants and
we did so with the help of a symbolic mathematical calculation tool.

It is of greater interest to analyse the behaviour of the large-deviation function in the
different phases of the model when L → ∞.

2 In all the other cases where two poles of F(z) collapse (i.e when the two sets {a, b} and {1/a, 1/b} are not disjoint),
the values of the cumulants for finite L are obtained by analytic continuation from the general formulae (15) to (18).

8
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• In the maximal current phase, with α > 1/2 and β > 1/2, the parameters a and b lie
inside the unit circle. Hence, the contour integrals that appear in equations (17) and (18)
can be replaced by a single integral along the unit circle. Then, we apply the saddle-point
method to estimate the asymptotic behaviour of Ck and Dk when L → ∞. The saddle
point is at z = 1 and we observe that the values of a and b do not influence the saddle-point
estimation at dominant order: in fact they contribute by the same multiplicative factor
[(1 − a)(1 − b)]2k , which can be reabsorbed in the parameter B. Therefore, the behaviour
of the cumulants in the large L limit does not depend on the boundary rates α and β in the
maximal current phase (as expected). The results at dominant order are the same as those
obtained for α = β = 1, the special case discussed in the previous section.

• In the low-density phase, α < min(β, 1/2), the parameter a is outside the unit circle; we
have a > b and the position of b with respect to the unit circle is not determined. In the
large L limit, it is the pole at z = a that contributes dominantly to the values of Ck and
Dk and the parametric representation (15) and (16) becomes (see the appendix for more
details)

γ = −
∞∑

k=1

Bk 1

k!

dk−1

dzk−1

{
φk(z)

z

} ∣∣∣
z=a

(22)

E = −
∞∑

k=1

Bk 1

k!

dk−1

dzk−1

{
φk(z)

(z + 1)2

} ∣∣∣
z=a

, (23)

where the function φ(z) is given by

φ(z) = (z − a)F (z) = −(1 + z)2L(1 − z2)2

zL(1 − az)(1 − bz)(z − b)
. (24)

These expressions can be used to calculate the first few cumulants in the low-density
phase:

E1 = ρ(1 − ρ)

E2 = ρ(1 − ρ)(1 − 2ρ)

E3 = ρ(1 − ρ)(1 − 6ρ + 6ρ2)

E4 = ρ(1 − ρ)(1 − 2ρ)(1 − 12ρ + 12ρ2)

E5 = ρ(1 − ρ)(1 − 30ρ + 150ρ2 − 240ρ3 + 120ρ4), etc,

(25)

with the mean density ρ = α.
In fact, using equations (22) and (23), the function for E(γ ) can be obtained in a

closed form thanks to the Lagrange inversion formula [22], as explained in the appendix.
This leads to

E(γ ) = a

a + 1

eγ − 1

eγ + a
. (26)

This expression is identical in the TASEP case to the one obtained by the Bethe Ansatz
in [8]. (In [8], the general PASEP is studied: this adds a prefactor (p − q) to (26),
where p and q are the rates of forward and backward jumps, respectively, and modifies
the definition of a.) We remark that the limit formula (26) is rather simple and that it
is totally independent of the specific form of the function φ(z), as can be seen from the
derivation given in the appendix. An elementary and physical derivation of this result can
be given by using macroscopic fluctuation theory [5, 11].

9
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• The high-density phase is symmetrical to the low-density phase under the exchange of α

and β. Therefore, a separate discussion is not required.
• The shock line α = β � 1/2, i.e. a = b � 1, can also be analysed from our general

formula. We have calculated explicitly the first few cumulants and obtained the following
scaling behaviour:

Ek � εkα(1 − α)(1 − 2α)k−1Lk−2 for k � 2.

We recall that the current is given by E1 = α(1 − α). The numerical coefficients are
given by ε2 = 2/3, ε3 = −1/30, ε4 = 2/315, ε5 = −1/1890,.... The fact that the higher
cumulants grow without bounds with L whereas they are bounded in low- and high-
density phases may come as a surprise. However, it is known that in the shock phase,
particles have a vanishing chemical potential and the equivalence between canonical and
grand-canonical descriptions breaks down [29, 36].

More precisely, this puzzling scaling can be understood from the domain-wall picture,
introduced in [17] to describe the discontinuity by a factor 2/3 in the diffusion constant
along the shock line. In the limiting case α = β � 1, the dominant configurations are
shock profiles between a low-density region with ρl = α and a high-density region with
ρh = 1 − β. The shock is localized on a single site. The dynamics becomes equivalent
to that of a symmetric random walker on a lattice of L + 1 sites and confined by two
reflecting boundaries. The number of particles having entered the TASEP corresponds
to the number of leftward steps of the shock. The statistics of the steps performed by an
effective random walker between two reflecting walls is a well-posed problem that can
be studied independently. For instance, we find that the skewness (third cumulant) of the
random walker grows as −L/30. However, if we introduce some bias in the jumping
rates (which corresponds to the high- or low-density phase), the walker becomes localized
near one of the walls and all cumulants remain finite when L → ∞. Finally, the εk’s can
be calculated by remarking that the random walker between two reflecting walls can be
mapped to the TASEP with two identical particles on a periodic lattice, and then using
the results of [18].

4. Outline of the analytical procedure

We now describe briefly how expressions (15)–(19) were obtained. Detailed explanations are
deferred to a forthcoming article.

4.1. General setup

In order to study the statistics of Nt, the total number of particles that have entered into the
system, one introduces the joint distribution Pt(C, N), the probability of being at time t in
configuration C and having Nt = N . The evolution equation of Pt(C, N) can be written using
the Markov equation (1). It is then useful to introduce the Laplace transform [18, 24]

Ft(C) =
∑
N

eγNPt (C, N).

These generalized weights satisfy a deformed Markov equation
dFt

dt
= M(γ )Ft . (27)

The matrix M(γ ) of size 2L is given by

M(γ ) = M + (eγ − 1)M1, (28)

where M is the original Markov operator and the matrix M1 contains only those transitions in
which a particle enters the system, i.e. M1(C, C′) = α, if C′ evolves into C by adding a particle at

10
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site 1 and M1(C, C′) = 0 otherwise. Equation (27) is formally solved as Ft = exp(M(γ )t)F0

which, in the long-time limit, behaves as

Ft � eE(γ )t |E(γ )〉,
where E(γ ) is the dominant eigenvalue of M(γ ) and |E(γ )〉 is the associated eigenvector (it
is unique for sufficiently small γ ). Thus, we obtain equation (7):

〈exp(γNt)〉 =
∑
C

Ft(C) � exp(E(γ )t).

The cumulant generating function is therefore identical to the largest eigenvalue of the
deformed operator M(γ ) and the problem of determining the statistics of Nt has been traded
for a spectral problem. This question can be tackled using different methods. The Bethe
Ansatz is one technique for integrable systems. Another approach, valid for small values of γ ,
is to perform a perturbative expansion around the dominant eigenvector, |0〉, and the dominant
eigenvalue, 0, of the original Markov matrix M:

E(γ ) = E1γ +
E2

2!
γ 2 +

E3

3!
γ 3 + · · ·

|E(γ )〉 = |0〉 + γ |1〉 + γ 2|2〉 + · · · .
(29)

Carrying out the perturbative expansion explicitly, we find that the kth order correction to the
eigenvector satisfies an equation of the type

M|k〉 = Rk(|0〉, . . . , |k − 1〉), (30)

with Rk being a linear functional. For example, we have

M|0〉 = 0,M|1〉 = (E1 − M1)|0〉, etc.

Moreover, the solvability condition (obtained by using the fact that the vector 〈0| =
(1, 1, . . . , 1) is the left null-eigenvector of the Markov matrix M) allows one to express
the kth term in E(γ ) (i.e. the cumulant of order k) as a linear function of the k − 1 vectors
|1〉, |2〉, . . . , |k − 1〉. For example, we have

E1 = 〈0|M1|0〉, E2 = 2〈0|M1|1〉 + (1 − 2E1)〈0|1〉, etc. (31)

The cumulants of the current can be found if we are able to solve the set of linear
equations (30) for all values of k � 0. At order 0, the stationary state |0〉 and the mean
current E1 were calculated thanks to the matrix Ansatz, recalled in equations (2)–(4). In [17],
the first-order correction was also obtained by a matrix Ansatz: the required algebra was
constructed by taking tensor products of two quadratic algebras of type (3). This allowed us
to calculate the diffusion constant E2.

4.2. Steps of the calculations and numerical tests

The computations that we have carried out can be summarized by the following steps:

(1) The matrix Ansatz used in [17] has been simplified and generalized to all orders. The
operators required to calculate the (k + 1)st cumulant are denoted by Dk and Ek . These
operators are constructed by using 2k + 1 tensor products of the original D and E’s. This
may appear daunting at first sight but in fact this is not so bad: the Dk and Ek already
appear in the studies of multispecies exclusion processes [20, 30, 34]. There they were
introduced as formal objects to construct the stationary measure. Here, they are used as
tools for calculations. We have also found the boundary vectors 〈αk| and |βk〉.

(2) The fact that Dk and Ek allow us to solve the system (30) at each order has been proved
recursively. Using relations (31), an expression for the cumulant Ek in terms of matrix
elements involving Dk and Ek and the previously determined Ej’s for j < k can be written.

11
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(3) The next step is to calculate the matrix elements. Typically, one has to determine a
‘normalization’-type term 〈αk|(Dk + Ek)

L|βk〉 that generalizes (4). Such a matrix element
can be found by using the image method [17, 19] in a space of dimension 2k + 1. The
resulting expression involves the sums of products of binomial factors. These binomial
factors can be expressed as multiple contour integrals and the total sum can be recast
as a determinant. As this stage, the cumulants are written as complex integrals over
determinantal expressions.

(4) The diffusion constant (k = 2) was recalculated for arbitrary values of α and β (it was first
obtained in [17]). The skewness (k = 3) was then determined by evaluating the contour
integrals also for arbitrary values of α and β. These integrals produce a ‘generic’ term
and a very large number of boundary terms. It was found that the global contribution of
the boundary terms cancels out for k = 2 and 3. It was also observed that a parametric
expression for γ and E at order 3 as a function of an arbitrary parameter B allows us to
retrieve the diffusion constant and the skewness.

(5) At kth order, a calculation of the ‘generic’ term was performed by assuming that the
various contributions of boundary terms globally cancel out. It was observed that the
resulting formula could also be obtained through the parametric expressions (15) and (16)
for γ and E at order k with respect to B, which were guessed at all orders.

We admit that our final result was guessed rather than fully worked out. The gaps in our
derivations have to be filled. However, we emphasize that we have been using a systematic
procedure and that we are absolutely sure that equations (15)–(19) are correct. We have tested
numerically the conjectured formulae in the following cases:

• For α = β = 1, formula (13) for the skewness was compared with the exact result
obtained by solving the linear equations (30) for the first three orders for systems of sizes
L � 10. The results agreed in all cases. The expressions are rational numbers which
involve integers having more than 20 digits.

• For α = β = 1, the first six cumulants were verified for L � 10.
• The formula for the second cumulant (21) as a function of α and β was tested against the

exact result for L = 4.
• We have chosen arbitrary values of α and β throughout the phase diagram (a dozen

of different cases). By taking rational values for α and β, we ensure that the formal
mathematical program (Mathematica) performs exact calculations on integers when
solving the linear equations (30). We have worked with systems of size L � 10 and tested
the formula up to the sixth cumulant. The integers that appear involve hundreds of digits
(450 in the worst chosen case): expressions (15)–(19) give the correct answer in all cases.

Finally, we emphasize that the formulae given here allow us to re-derive results that were
known previously, such as equations (12) and (26). This provides an indirect verification of
their correctness.

5. Discussion

In the present work, we give closed formulae for the generating function of the cumulants of
the current in the open TASEP. These results hold for all values of the boundary parameters
α and β and all values of the system size L. We emphasize the fact that our expressions are
exact and not only asymptotic: they are of combinatorial nature. They allow us to describe the
ASEP at all points of its phase diagram, including the phase-transition lines. The cumulant
generating function is given in the form of a parametric representation—equations (15)–(19):

12
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a similar mathematical structure can be found in other works [15, 18, 34] and it can be related
physically to the additivity principle [3, 10].

The statistics of the current in the open TASEP had remained a challenging open problem
for many years and no exact solution for the full distribution of the current was known for
finite-size systems. The Bethe Ansatz equations for the open ASEP were studied in [7] but they
are valid only on some surfaces in the parameter space: this restriction seemed to be a major
obstruction to the computation of the large-deviation function. Only recently, a very subtle
analysis of the Bethe equations, valid in the L → ∞ limit, together with some conjectures on
the asymptotic locations of the Bethe roots, was carried out in [8], leading to an expression
for the cumulant generating function. However, the result in [8] can only be established
deep inside the low- and the high-density phases and it is an asymptotic expression, valid
only when L → ∞. In our work, we have followed a different path and used the matrix
product representation [1, 16] to calculate the cumulants of the current order by order. We
have performed some explicit calculations and uncovered the general structure of the solution.
From the mathematical point of view, our formulae are only a conjecture but we have verified
it in dozens of cases and derived from it all the previously known results. We have absolutely
no doubt that our expressions are true. In particular, the main expression obtained in [8] can
be derived as a limiting case of our results.

We have decided to present the final formulae (15) and (16) before completing the proof,
because we find the results elegant and sufficient by themselves. Furthermore, they allow us
to draw some interesting physical consequences and to open new problems. We emphasize
that although equations (15) and (16) (and also equations (8) and (9)) are conjectures, all the
results that we have drawn from them are established rigorously. We think that the proof is a
question of carrying out a very long computation rather than having some deep mathematical
insight. We are presently working on this aspect. We hope to have given enough details to
the reader to clarify what kind of assumptions were made, which allowed us to jump to the
final result and to guess the full structure of the solution. Another possibility, now that the
final formula is known, is to search for a direct method to check it: after all, the cumulant
generating function is nothing but the largest eigenvalue of a known operator.

Besides completing the derivation, we also intend to extract from equations (15) to (19)
the scaling limit of the large deviation function in the L → ∞ limit. It would be interesting to
compare that scaling form with recent numerical results obtained by Monte Carlo and DMRG
methods [25, 31, 33] and also to investigate the crossover with theoretical results derived on
the infinite lattice [21, 39].

Finally, we have considered here only the TASEP. But the matrix method can also be
applied to the partially asymmetric case (PASEP), and we have checked that the tensor
products of the PASEP quadratic algebra that appeared in multispecies PASEP models [35]
allow us to solve the hierarchy of equations (30) for the cumulants. We believe that the
parametric representation still holds in the PASEP case and that combinatorial tree structures
akin to those found for the PASEP on a periodic ring in [34] will probably play an important
role. Besides, complex integral representations for matrix elements analogous to those we
have used here also appear in the PASEP [1, 2, 37, 38]. There must exist a general and
hopefully elegant structure that encompasses all the cases, though we are well aware that such
a structure may be difficult to discover.
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Figure A1. The two sets of equivalent contours in the complex plane. In this figure, we have
supposed that b lies inside the unit disk.
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Appendix. Derivation of equation (26)

Let C0, Ca and Cb be three infinitesimal contours (circles) that surround the points 0, a and b in
the complex plane. According to equations (17) and (18), we must calculate contour integrals
along these three circles. We denote by �1 the unit circle.

In the low-density phase α < min(β, 1/2), the parameter a is outside the unit disk and
we have a > b. The point b can be either inside or outside the unit disk. In order to
perform a saddle-point analysis in the large L limit, a contour must pass through the point
z = 1. We therefore deform the infinitesimal contour C0 encircling 0 into the unit circle �1.
But then we must remove the contribution of the pole 1/a of F(z) which is inside �1 (see
figure A1). We must also distinguish the cases b < 1 or b > 1: for b < 1 we can write,
formally, C0 + Ca + Cb = �1 − C1/a + Ca . For b > 1, we can write C0 + Ca + Cb =
�1 −C1/a −C1/b +Ca +Cb. Now the function F satisfies F(z) = F(1/z). Thus, for z0 = a, b,
we have

residue

[
F(z)k

z
, z0

]
= −residue

[
F(z)k

z
, 1/z0

]

residue

[
F(z)k

(z + 1)2
, z0

]
= −residue

[
F(z)k

(z + 1)2
, 1/z0

]
.

(A.1)

Formally this can be written as C1/a = −Ca and C1/b = −Cb. Finally the contours for the
complex integrals reduce to �1 + 2Ca if b < 1 and to �1 + 2Ca + 2Cb if b > 1.

The integral over �1 is estimated by the saddle point: it is of order 4L. The integral over
Ca is of order (2 + a + 1/a)L � 4L (because a > 1). The residue at b contributes only when
b > 1 but in that case it is of order (2 + b + 1/b)L � (2 + a + 1/a)L (because b < a). Hence,
in all cases, in the large L limit, the dominant contribution comes from the contour around a,
which has to be counted twice. Finally, using Cauchy’s formula, we can write

Ck(α, β) = 2
∮

Ca

dz

2iπ

(φ(z)k/z)

(z − a)k
= 2

(k − 1)!

dk−1

dzk−1

{
(φ(z))k

1

z

} ∣∣∣
z=a

, (A.2)
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where the function φ(z) has been defined in (24). Similarly, we have

Dk(α, β) = 2

(k − 1)!

dk−1

dzk−1

{
(φ(z))k

1

(z + 1)2

} ∣∣∣
z=a

. (A.3)

Substituting these expressions into formulae (15) and (16) leads to equations (22) and (23).
We now need the Lagrange inversion formula [22], which can be stated as follows.

Suppose that the two complex variables z and w are related in terms of the parameter B as

w = z + Bφ(w) (A.4)

where φ is locally analytic. Then, any function G(w) can be expanded as a power series in B
as follows:

G(w) = G(z) +
B

1!
φ(z)G′(z) +

B2

2!

d

dz

{
(φ(z))2 G′(z)

}

+ · · · +
Bn+1

(n + 1)!

dn

dzn
{(φ(z))n+1G′(z)} + · · · . (A.5)

We can identify expression (22) for γ with the Lagrange’s inversion formula applied at
the point z = a with G(z) = − log(z). We obtain

γ = − log(w) + log(a). (A.6)

We can also compare Lagrange’s inversion formula with expression (23) for E, taking
now G(z) = 1

z+1 . We obtain

E = 1

w + 1
− 1

a + 1
. (A.7)

Eliminating w between the last two equations leads to the desired expression (26). We
note that the precise form of φ(z) has played no role. This suggests that formula (26) for the
cumulant generating function should be rather universal.
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Nonequilibrium systems are often characterized by the transport of some quantity at a macroscopic

scale, such as, for instance, a current of particles through a wire. The asymmetric simple exclusion process

(ASEP) is a paradigm for nonequilibrium transport that is amenable to exact analytical solution. In the

present work, we determine the full statistics of the current in the finite size open ASEP for all values of

the parameters. Our exact analytical results are checked against numerical calculations using density

matrix renormalization group techniques.
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A system containing carriers (of thermal energy, mass,
or electrical charge) and subject to a driving field in its
bulk, or to a difference of potentials between its bounda-
ries, will usually evolve to a nonequilibrium steady state
with a nonvanishing macroscopic current of heat, particles,
or charges flowing through it. Because of the presence of
this macroscopic current, time-reversal invariance is vio-
lated. This is a situation which lies beyond the realm of
traditional thermodynamics: Steady-state transitions at the
microscopic level break detailed balance, and the prin-
ciples of equilibrium statistical mechanics do not apply.
Hence, for a system that is bulk-driven, boundary-driven,
or both, no suitable generalization of the Gibbs-Boltzmann
formalism exists that would allow us to predict the value of
the current and of its fluctuations from first principles.

During the past two decades, substantial progress has
been made towards a statistical theory of nonequilibrium
systems [1–6]. Large-deviation functions, that encode
atypical fluctuations of a physical observable, are likely
to be the best candidates to generalize the traditional
thermodynamic potentials. Moreover, it has been proved
that large-deviation functions display symmetry properties,
called ‘‘fluctuation theorems,’’ that remain valid far from
equilibrium [2]. These remarkable relations imply linear
response theory in the vicinity of equilibrium. Hence, the
determination of large deviations in a nonequilibrium sys-
tem, whether theoretically, numerically, or experimentally,
is a question of fundamental importance [7–14].

There are very few models in nonequilibrium physics
that can be studied analytically. Among these, the asym-
metric simple exclusion process (ASEP) has become a
paradigm [15–17]. The ASEP is a one-dimensional lattice
gas model in which particles perform biased random walks
and interact through an exclusion constraint that mimics a
hard-core repulsion: Two particles cannot occupy the same
site at a given time. This minimal system appears as a
building block in a great variety of phenomena that involve
low-dimensional transport with constraints. Invented origi-

nally to represent the motion of ribosomes along mRNA
during protein synthesis, this model plays a seminal role in
nonequilibrium statistical mechanics and has been applied
to problems as different as surface growth, biological
transport, traffic flow, and pure mathematics [5,17–22].
In the long time limit, the ASEP reaches a nonequilib-

rium steady state with a fluctuating macroscopic current.
Exact results have been derived for the exclusion process
on a periodic ring and on the infinite line, using the Bethe
ansatz, determinantal processes, and random matrix theory
[22–26]. For open boundaries, the steady state has a re-
cursive structure [27] that can be encoded by a matrix
product representation [28], a fruitful method to analyze
low-dimensional transport models [5,29]. The mean value
of the stationary current, the associated density profiles,
and the phase diagram of the open ASEP are known
exactly [27,28]. However, finding the full statistical prop-
erties of the current in the open ASEP has remained, until
now, an outstanding challenge that has stimulated much
work [8,11,30–35]. A recent conjecture based on the Bethe
ansatz [30] gives the asymptotic behavior of the large-
deviation function of the current for infinitely large sys-
tems in some specific regions of the phase diagram. In the
present work, we give exact analytic expressions for the
full statistics of the current that are valid for arbitrary
system sizes and boundary parameters, thus solving this
long-standing problem.
The dynamics of the ASEP is that of a continuous time

Markov chain: During an infinitesimal time interval dt, a
particle located on a site can jump forward to the next
adjacent site with rate 1 and hop backward to the previous
site with rate q, provided these sites are empty. A particle
can enter site 1 with rate � and site L with rate � and can
exit from site 1 with rate � and from site Lwith rate � (see
Fig. 1). Each of the 2L microscopic configurations C of the
ASEP can be written as a binary string of length L
ð�1; . . . ; �LÞ, where �i ¼ 1 if the site i is occupied and
�i ¼ 0 otherwise. The probability PtðCÞ of being in con-
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figuration C at time t evolves according to the master
equation

dPtðCÞ
dt

¼ X
C0
MðC; C0ÞPtðC0Þ: (1)

The nondiagonal matrix element MðC; C0Þ represents the
transition rate from C0 to C. The diagonal element
MðC; CÞ ¼ �P

C0�CMðC0; CÞ is equal to minus the exit rate
from C.

In the long time limit, the ASEP reaches a nonequilib-
rium steady state where each configuration C occurs
with a probability P?ðCÞ, that can be written as a matrix
product [28]:

P?ðCÞ ¼ 1

ZL

hWjYL
i¼1

½�iDþ ð1� �iÞE�jVi; (2)

where the operators D and E, the bra vector hWj, and the
ket vector jVi satisfy quadratic algebraic relations

DE� qED ¼ ð1� qÞðDþ EÞ;
ð�D� �EÞjVi ¼ ð1� qÞjVi;
hWjð�E� �DÞ ¼ ð1� qÞhWj:

(3)

The normalization constant in Eq. (2) is given by ZL ¼
hWjðDþ EÞLjVi. The matrix product representation al-
lows us to determine stationary equal-time correlations
and density profiles for any system size L.

For L ! 1, the ASEP has three phases whose bounda-
ries are given in terms of the effective densities �a ¼
1=ðaþ þ 1Þ and �b ¼ bþ=ðbþ þ 1Þ of the left and right
reservoirs, where

a�¼ð1�q��þ�Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�q��þ�Þ2þ4��
p
2�

; (4)

b�¼ð1�q��þ�Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�q��þ�Þ2þ4��
p
2�

: (5)

The ASEP is in the maximal current phase when �a > 1=2
and �b < 1=2, in the low density phase when �a < 1=2 and
�a þ �b < 1, and in the high density phase when �b > 1=2
and �a þ �b > 1.

For a system of size L, the average value J of the sta-
tionary current is given by the ratio ZL�1=ZL, which can be
expressed in terms of orthogonal polynomials [34].
However, the fluctuations of the steady-state current cannot
be calculated from the knowledge of the stationary proba-
bilities alone. In order to study the current, we introduce an
observableYt that counts the number of particles exchanged
between the system and the left reservoir between times 0
and t. Therefore, Ytþdt ¼ Yt þ y, where y ¼ þ1 if a parti-
cle enters the site 1, y ¼ �1 if a particle exits from 1 during
the interval dt, and y ¼ 0 otherwise. These three mutually
exclusive types of transitions lead to a three-part decom-
position of the generator M: M ¼ Mþ þM� þM0. We
note that Yt also represents the total integrated current that
has flown through the system till time t. When t ! 1, the
expectation value of Yt=t converges to the average station-
ary current J. The convergence rate is quantified by the
large-deviation function �ðjÞ, characterizing nontypical

fluctuations of Yt and defined as PðYt

t ¼ jÞ � e�t�ðjÞ.
A different manner to encode the statistics of Yt is

through its characteristic function which, in the long time

limit, behaves as he�Yti ’ eEð�Þt, where Eð�Þ is the cumu-
lant generating function of Yt, and is the Legendre trans-
form of the large-deviation function �ðjÞ [14]:
Eð�Þ ¼ maxj½�j��ðjÞ�. Following Refs. [3,9], one can

prove that Eð�Þ is the largest eigenvalue of the deformed
operator Mð�Þ ¼ e�Mþ þ e��M� þM0. Thus, the cal-
culation of the cumulants of the current is equivalent to an
eigenvalue problem.
For the ASEP with periodic boundary conditions, Mð�Þ

can be diagonalized by the Bethe ansatz, leading to a full
solution for the current fluctuations [9,24]. In the case of
open boundary conditions, integrability conditions are met
only on hypersurfaces of the parameter space, and the
Bethe ansatz can be used only for L ! 1 and in specific
regions of the phase diagram [30].
We have obtained a solution valid for all parameters and

all system sizes using a generalized matrix product repre-
sentation. The components F�ðCÞ of the dominant eigen-

vector F� of Mð�Þ can be expanded formally as a power

series with respect to � to any given order k � 0. For each
value of k, we have proved rigorously [36] that F� can be

represented by a matrix product ansatz up to corrections of
order �kþ1, i.e.,

F�ðCÞ ¼ 1

ZðkÞ
L

hWkj
YL
i¼1

½�iDk þ ð1� �iÞEk�jVki þOð�kþ1Þ:

(6)

The matrices Dk and Ek are constructed recursively start-
ing with D1 ¼ D and E1 ¼ E and

Dkþ1 ¼ ð1 � 1þ d � eÞ �Dk þ ð1 � dþ d � 1Þ � Ek;

Ekþ1 ¼ ð1 � 1þ e � dÞ � Ek þ ðe � 1þ 1 � eÞ �Dk;

(7)

q 1

γ δ

1 L

α β

RESERVOIRRESERVOIR

FIG. 1 (color online). Dynamical rules for the ASEP with open
boundaries. The rate of forward jumps has been normalized to 1.
Backward jumps occur with rate q < 1. All other parameters are
arbitrary.
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where we have defined the operators d ¼ D� 1 and e ¼
E� 1 that satisfy the q-deformed harmonic oscillator
algebra de� qed ¼ 1� q. These matrices are related to
the ones used for the matrix product solution of the multi-
species periodic ASEP [37].

The boundary vectors hWkj and jVki are constructed by
taking tensor products of bra and ket vectors. We start with
jV1i ¼ jVi and hW1j ¼ hWj and iterate

jVkþ1i ¼ jVi � j ~Vi � jVki; (8)

hWkþ1j ¼ hW�j � h ~W�j � hWkj; (9)

where jVi is defined in Eq. (3) and

½�ð1� dÞ � �ð1� eÞ�j ~Vi ¼ 0; (10)

hW�j½�ð1þe�eÞ��ð1þe��dÞ�¼ð1�qÞhW�j; (11)

h ~W�j½�ð1� e�eÞ � �ð1� e��dÞ� ¼ 0: (12)

This matrix ansatz allows us to calculate the cumulants to
any desired order k. Our central result is a parametric
formula for the cumulant generating function Eð�Þ:

� ¼ �X
k�1

Ck

Bk

k
and E ¼ �ð1� qÞX

k�1

Dk

Bk

k
; (13)

where B is a formal parameter that has to be eliminated
from the two equations. We emphasize that similar para-
metric expressions have appeared in all known exact ex-
pressions for the current cumulant generating function
[9,24,38] and a similar generic form was derived from
the additivity principle in Ref. [8]. The function Eð�Þ is
fully specified from the knowledge of the scalars Ck and
Dk. These are given by contour integrals in the complex
plane along a contour � (to be defined below):

Ck ¼
I
�

dz

2i�

	kðzÞ
z

; Dk ¼
I
�

dz

2i�

	kðzÞ
ðzþ 1Þ2 : (14)

The 	kðzÞ’s are obtained as follows. We define a function
WBðzÞ that depends on the parameter B:

WBðzÞ ¼
X
k�1

	kðzÞB
k

k
; (15)

and we find that WBðzÞ is uniquely determined as the
solution of the functional equation:

WBðzÞ ¼ �1
2 lnð1� BFðzÞeX½WB�ðzÞÞ; (16)

where FðzÞ is given by the expression

ð1þ zÞLð1þ z�1ÞLðz2Þ1ðz�2Þ1
ðaþzÞ1ðaþz Þ1ða�zÞ1ða�z Þ1ðbþzÞ1ðbþz Þ1ðb�zÞ1ðb�z Þ1

(17)

with ðxÞ1 ¼ Q1
k¼0ð1� qkxÞ. We note that FðzÞ appears in

the definition of the Askey-Wilson polynomials, known to
be relevant to the open ASEP [34,39]. The operator X is a
linear integral operator:

X½WB�ðz1Þ ¼
I
�

dz2
2{�z2

WBðz2ÞK
�
z1
z2

�
; (18)

where the kernel K is given by

KðzÞ ¼ 2
X1
k¼1

qk

1� qk
fzk þ z�kg (19)

and the contour � in the complex plane encircles (once)
the points 0, qkaþ; qka�; qkbþ, and qkb� for all integers
k � 0. The kernel Kðz1=z2Þ was used in Ref. [24] to
calculate the current fluctuations in the periodic case.
The functional equation (16) contains the complete in-

formation about the current statistics: By solving it itera-
tively to any order k, we obtain the first k cumulants of the
current. At first order, we have 	1ðzÞ ¼ FðzÞ=2, and the
mean value of the current is

J ¼ lim
t!1

hYti
t

¼ ð1� qÞD1

C1

¼ ð1� qÞ
H
�

dz
2i�

FðzÞ
zH

�
dz
2i�

FðzÞ
ðzþ1Þ2

: (20)

This expression is identical to that given in Ref. [34]. At
second order, the variance of the current is

� ¼ lim
t!1

hY2
t i � hYti2

t
¼ ð1� qÞD1C2 �D2C1

2C3
1

; (21)

where C2 and D2 are obtained by using (14) with

	2ðzÞ ¼ 1

2

�
F2ðzÞ þ

I
�

dz2FðzÞFðz2ÞKðz=z2Þ
2{�z2

�
:

For higher cumulants, exact expressions similar to Eq. (21)
are obtained and can be expressed via a combinatorial tree
expansion akin to that found in the periodic case [24]. The
expression of the diffusion constant � generalizes the
formula of Ref. [35] obtained for the totally asymmetric
exclusion process (TASEP) in which q ¼ � ¼ � ¼ 0. For
the TASEP, the kernel K and the operator X vanish iden-
tically, and FðzÞ reduces to

FTASEPðzÞ ¼ �ð1þ zÞ2Lð1� z2Þ2
zLð1� azÞðz� aÞð1� bzÞðz� bÞ (22)

with a ¼ 1��
� and b ¼ 1��

� ; then, Eq. (16) leads to	kðzÞ ¼
Fk
TASEPðzÞ=2, and the results of Ref. [38] are retrieved. For

a periodic system of size L with N particles, the current
fluctuations can be brought into the framework described
here with the same generalized matrix ansatz, but the
boundary vectors are replaced by a trace and
Eq. (16) is modified as follows: The prefactor 1/2 is
removed, FðzÞ ¼ ð1þ zÞL=zN , and the kernel K is still
given by (19). Then, the results of Ref. [24], originally
obtained by Bethe ansatz, are retrieved.
The derivation of the above results involves combinato-

rial identities for matrix elements of the generalized matrix
ansatz. Some of these identities were guessed by induction
rather than mathematically proved [36]. It was therefore
necessary to validate our calculations numerically. For
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small size systems (L � 7), expressions for the cumulants
have been checked against the exact values from direct
calculations. For larger systems (L � 100), we compared
the analytical formulas with numerical computations of the
cumulants performed using a density matrix renormaliza-
tion group (DMRG) method. That method, originally in-
troduced to study ground state properties of quantum spin
chains [40], was recently adapted to calculate the highest
eigenvalues of deformed stochastic operators like Mð�Þ
[11]. A few of those results are displayed in Figs. 2 and 3.

For large system sizes L ! 1, the cumulant generating
function takes different expressions in different phases.
These are derived from an asymptotic analysis involving
the leading singularities of FðzÞ [29,34,36]. In the low
density phase, the dominant singularity is the pole at aþ
leading to 	kðzÞ � FkðzÞ. Using the Lagrange inversion
formula as in Ref. [38], we obtain

E ð�Þ ¼ ð1� qÞð1� �aÞ e� � 1

e� þ ð1� �aÞ=�a

: (23)

This expression agrees with the one found in Ref. [30]
using the Bethe ansatz. Its Legendre transform matches the
prediction of the additivity principle [31]:

�ðjÞ ¼ ð1� qÞ
�
�a � rþ rð1� rÞ ln

�
1� �a

�a

r

1� r

��
;

(24)

where the current j is parametrized as j ¼ ð1� qÞrð1� rÞ.
The high density phase leads to similar expressions with
aþ ! bþ and �a ! 1� �b. In both cases, the statistics of
the current do not depend on system size in the large L
limit.

In the maximal current phase, we find that kth cumulant

grows as Lðk�3Þ=2. When L ! 1, we have

� ¼ �L�1=2

2
ffiffiffiffi
�

p X1
k¼1

ð2kÞ!
k!kðkþ3=2Þ B

k; (25)

E � 1� q

4
� ¼ �ð1� qÞL�3=2

16
ffiffiffiffi
�

p X1
k¼1

ð2kÞ!
k!kðkþ5=2Þ B

k: (26)

These expressions have the same structure as those ob-
tained for the case of a periodic ring [9], and the large-
deviation functions have the same asymptotic behavior.
Moreover, for the open TASEP of size L with � ¼ 1 and
� ¼ 1=2, we observed that the formulas are identical to
those for the half-filled periodic TASEP of size 2Lþ 2.
Along the shock line (�a ¼ 1� �b < 1=2), we obtain

� ¼ �2L�1 ð1þ aþÞ
ð1� aþÞ

X1
k¼1

k2k�1

ð2kÞ! B
k; (27)

E �ð1�qÞaþ
ð1þaþÞ2

�¼�2L�2 ð1�qÞaþ
ð1�a2þÞ

X1
k¼1

k2k�2

ð2kÞ!B
k; (28)

with the kth cumulant scaling as Lðk�2Þ as can be explained
by the domain wall picture for �a � 1 [32,38]. We note
that this is the only case where the statistics of the current
depend both on the system size and on the boundary
parameters at the large L limit.
We have obtained exact formulas for the current statis-

tics of the open exclusion process in contact with two
reservoirs. Our results are valid for arbitrary sizes and
values of the parameters and have been tested by precise
DMRG computations in various regions of the phase dia-
gram. They could also be used as benchmarks to test
alternative computational algorithms [12]. In the limit of
large size systems, the asymptotic behavior of the large-
deviation function is derived in all regions of the phase
diagram as long as the asymmetry ð1� qÞ remains finite.
The diffusive limit q ! 1 represents an important open
analytical problem, and the exact formulas should coincide
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with the predictions of macroscopic fluctuation theory
[7,31]. We have used an extension of the matrix ansatz
that was introduced for multispecies exclusion models
[37]. The relation between multispecies models and cur-
rent fluctuations (and also between open and periodic
systems) is mysterious, as no direct mapping is known.
We believe that our results should be derivable from the
Bethe ansatz for a spin chain with nondiagonal boundaries,
but the corresponding Bethe equations have not yet been
derived [30]. In addition, the matrix representation given
here contains all the information about the density profiles
that generate atypical currents: The precise calculation of
these profiles represents a challenging open question [1].
Finally, the effect of global constraints—such as a finite
particle reservoir—on the current fluctuations is an inter-
esting problem which requires further investigation [41].
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667 (1992); G.M. Schütz and E. Domany, J. Stat. Phys.
72, 277 (1993).

[28] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier,
J. Phys. A 26, 1493 (1993).

[29] R. A. Blythe and M.R. Evans, J. Phys. A 40, R333 (2007).
[30] J. de Gier and F. H. L. Essler, Phys. Rev. Lett. 107, 010602

(2011).
[31] T. Bodineau and B. Derrida, J. Stat. Phys. 123, 277 (2006).
[32] M. Dudzinski and G.M. Schütz, J. Phys. A 33, 8351
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Abstract
The asymmetric simple exclusion process (ASEP) is one of the most extensively
studied models in non-equilibrium statistical mechanics. The macroscopic
particle current produced in its steady state is directly related to the breaking
of detailed balance, and is therefore a physical quantity of particular interest.
In this paper, we build a matrix product ansatz which allows us to access the
exact statistics of the fluctuations of that current for finite sizes, as well as the
probabilities of configurations conditioned on the mean current. We also show
how this ansatz can be used for the periodic ASEP and how it translates into
the language of the XXZ spin chain.

PACS numbers: 05.40.−a, 05.60.−k, 02.50.Ga

(Some figures may appear in colour only in the online journal)

1. Introduction

In the study of systems of many interacting particles, one of two situations might arise.
If the system is isolated, or if the interaction with its environment allows it (is invariant
under the reversing of time, for instance), one could observe an equilibrium state in which
the probability of any configuration is simply related to the energy of that configuration via
the Gibbs–Boltzmann law. In principle, from that information, and the expression of those
energies, one could calculate any equilibrium quantity that might take ones fancy. Obviously,
those calculations could still be extremely difficult, but the general framework provided by
the Gibbs–Boltzmann law systematically solves the first part of the problem. In the other
situation, where no equilibrium state can be observed, there is no such framework. The system
might reach a non-equilibrium steady state, where the probabilities of the configurations do
not depend on time, but there is no way to calculate those probabilities a priori, and one has
to solve the whole dynamical equation that describes the evolution of the system to obtain the
desired quantities.

1751-8113/13/145003+21$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1
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There have been, however, many attempts to generalize the concept of Boltzmann weight
to non-equilibrium systems. The best candidates to play the role of the energy in these systems
are large deviation functions, which contain information on the probabilities of rare events
or configurations, in the limit of some large extensive quantity (usually time or system size)
[2, 4–9]. Those large deviation functions have for instance helped uncover some very general
symmetries, called ‘fluctuation theorems’, that are verified by systems however far from
equilibrium [12, 13]. The study of large deviation functions is therefore an important task to
statistical physicists.

Many of those systems that display non-equilibrium steady states describe the transport of
carriers (e.g. of mass, electrical charge or thermal energy), that may interact with each other,
through some domain (a one-dimensional channel, for example), and driven by an external
field in the bulk of the system and/or unbalanced reservoirs at its boundaries. One may think,
for instance, of a metallic wire conducting electrons between two masses at different potentials,
or an artery conducting blood cells between two organs at different pressures. Because of those
driving forces, the system exhibits a non-vanishing macroscopic current in its steady state.
That current is related to the microscopic entropy production that comes from the breaking of
detailed balance and time reversal invariance, and which is characteristic of non-equilibrium
states. (In some cases, the relation between the macroscopic current and microscopic entropy
production is a very simple one, as one can see in [12].)

One of the simplest examples of driven particle models, and one of the most extensively
studied, is the asymmetric simple exclusion process (ASEP). It consists of a one-dimensional
lattice, the sites of which hold particles that jump forwards and backwards stochastically. The
particles interact via hard-core repulsion, so that there can be only one particle on a given site
at a given time (hence exclusion). They jump preferentially to one direction, which accounts
for the driving force in the bulk of the system (and makes it asymmetric). Each side of the
system is connected to a particle reservoir characterized by a fixed density. The ASEP has
many qualities which explain the extent to which it has been studied in the past 20 years or so
[1, 7, 8, 11, 14–19, 31, 53]. First of all, it is simple in its definition, and has the mathematical
property of being integrable, which makes it a good candidate for analytical calculations and
exact solutions. This integrability property implies that the methods used to treat the model
are usually not general and transposable (except to other integrable systems), but the actual
results could give us valuable insights into the general behaviour of generic non-equilibrium
systems. Moreover, the ASEP has connections with many and various other systems, such as
ribosomes travelling on a m-RNA strand [4, 20–22] (which is what the ASEP was originally
meant to describe), random polymer models [23], growing interfaces [10, 24], pedestrian
and car traffic [52], quantum spin chains [49], random matrices [25–27] and even pure
combinatorics [29, 30].

In this paper, we add our own effort to the long history of results on the steady state of the
ASEP and the fluctuations of the current it exhibits, by solving the long-standing problem of
obtaining the distribution of those fluctuations in the open case. Because the system is out of
equilibrium, the choice of the boundary conditions matters greatly, much as for systems with
long-range interactions. The statistical ensembles are not equivalent, and fixing the number of
particles (as in the periodic case) or not (as in the open case) makes the results, as well as the
methods applicable to their acquisition, significantly different. For instance, the full current
fluctuations for the periodic TASEP (where the T stands for ‘totally’, i.e. the particles jump in
only one direction) were obtained by the Bethe ansatz in [35], and the same method was used
many years later for the periodic ASEP in [36], but that method turned out to be inapplicable
to the open case, precisely because of the non-conservation of the total number of particles.
The Bethe ansatz could also have led to the distribution of the steady state probabilities in
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the periodic case, had it not been trivially flat, but the same could not be done in the open
case (we now know that the Bethe ansatz, or some variation of it, can be used to access the
steady state of the open ASEP [40], but not the fluctuations of the current; more details on
this are given in the conclusion), and another method was devised, namely the ‘matrix ansatz’
[1, 33], by which some recursion relations [32] that were found in the weights of configurations
of systems of different sizes are expressed through algebraic relations. The first extension of
that method was used to obtain the diffusion constant (second cumulant of the current) in
the open ASEP [34]. During the last couple of years, the author and collaborators managed
to generalize that method further to calculate all the cumulants in the open case, first for the
TASEP [42], and then for the ASEP [43]. In both cases, the results are exact for any values of the
parameters and for any finite size of the system. However, at the time, large portions of the proof
were guessed rather than fully worked out (more precisely, the formulation used was that of
section 4.3, and the justification for the ansatz was an inelegant version of equations (23), (25)
and (26), checked only for the TASEP in the case of [42], which was much too ad hoc to
be of interest), so that the results were given as a conjecture along with numerical evidence
to support them. In this paper, we give the complete algebraic proof of the validity of our
ansatz, and explain how it gives us access not only to the fluctuations of the current, but
also to any spatial observable conditioned on the mean current. We also show how the ansatz
extends to the periodic case, and to the spin- 1

2 XXZ chain with non-diagonal boundary
terms.

The layout of the paper is as follows: in section 2, we define the model, and do a quick
review of the matrix ansatz for the steady state; in section 3, we recall a few well-known
results as a preliminary to our calculations: we restate the problem of finding the fluctuations
of the current as that of finding the first eigenvalue of a deformed Markov matrix, and we
define the ‘s-ensemble’ as the distribution of the principal eigenstate of that same matrix;
section 4 constitutes the core of this paper and contains our new results: we present our
perturbative matrix ansatz, along with its proof (the technical portions of which are carried
out in the appendices), an alternative formulation (which was used in [43]) and its equivalent
for the periodic case and the XXZ chain; finally, in section 5, we give a quick overview of how
the explicit calculations of the cumulants of the current were carried out in [42, 43] using our
ansatz.

2. Definition of the model and steady state properties

2.1. The open ASEP

The open ASEP in continuous time is defined as follows. Let us consider a chain of L sites,
numbered 1 through L, each of which can hold at most one particle. The occupation of site
i is denoted τi (equal to 0 for an empty site, and 1 for an occupied site). Those particles can
jump stochastically to the right with rate p = 1 and to the left with rate q < 1, provided that
the receiving site is empty. In addition, each end of the chain is connected to a reservoir of
particles, so that particles may enter the system at site 1 with rate α or at site L with rate δ,
and exit the system from site 1 with rate γ and from site L with rate β (figure 1) (the rate p
can be set to 1 without any loss of generality).

At any time t, the system can be described by the probability vector ||Pt〉〉, the entries
Pt (C) of which give the probability of being in the configuration C = (τi)1...L at time t. This
probability depends only on the initial condition ||P0〉〉 and verifies the master equation:

d

dt
||Pt〉〉 = M||Pt〉〉 (1)

3
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α β

γ δ

1

q

Figure 1. Dynamical rules for the ASEP with open boundaries. The rate of forward jumps has been
normalized to 1. Backward jumps occur with rate q < 1. All other parameters are arbitrary. The
jumps shown in green are allowed by the exclusion constraint. Those shown in red and crossed out
are forbidden.

solved by

||Pt〉〉 = etM||P0〉〉, (2)

where the Markov matrix M is given by

M = M0 +
L−1∑
i=1

Mi + ML (3)

with Mi containing the jumping rates between sites i and i + 1, and M0 and ML corresponding
to the couplings with the left and right reservoirs (see equation (10) with μ set to 0 for the
explicit expression of those matrices).

Each non-diagonal entry of M contains one of the aforementioned rates, and is non-zero
only if the initial and final configurations differ by the jumping of exactly one particle. The
diagonal entries contain (minus) the rate at which the system leaves a given configuration,
which is also the sum of the rates from that configuration to any other, so that the sum of each
column of M is 0 (i.e. the evolution of the system conserves probability and M is a stochastic
matrix). From the Perron–Frobenius theorem, we know that the largest eigenvalue of M is 0,
and that, for large times, ||Pt〉〉 converges to the corresponding right eigenvector ||P�〉〉 (the
corresponding left eigenvector is the vector with all entries equal to 1, and will be denoted by
〈〈1||).

2.2. Matrix ansatz for the steady state

The exact expression of the steady state ||P�〉〉 can be written in the form of a matrix product
state (also called matrix ansatz) [33]

P�(C) = 1

ZL
〈W |

L∏
i=1

(τiD + (1 − τi)E ) |V 〉, (4)

where the matrices D and E, and the vectors 〈W | and |V 〉, are defined by the following algebraic
relations:

DE − qED = (1 − q) (D + E )

〈W |(αE − γ D) = (1 − q)〈W |
(βD − δE )|V 〉 = (1 − q)|V 〉,

(5)

and ZL = 〈W |(D + E )L|V 〉.
Let us remark here that throughout this paper, we use the standard bra/ket notation for

vectors from the space on which matrices D and E act (e.g. |V 〉), and the doubled bra/ket
notation for vectors from the configurations space (e.g. ||P�〉〉).
4
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As stated in (4), the weight of a given configuration C = (τi)1...L in ||P�〉〉 can be written
as the product of L matrices D or E, contracted between two vectors. The ith matrix in the
product corresponds to the occupation of the ith site in C: it is D if τi = 1 and E if τi = 0.
The first algebraic relation in (5) encodes a recursion between the steady state probabilities of
systems of successive sizes. Combined with the two other relations, it allows, in principle, to
compute explicit expressions of any of those probabilities, although that computation would be
extremely impractical. However, it can be used, in a most elegant manner, to compute the mean
values of certain observables, like the particle current passing through the system, or the local
density [32], which are more physically relevant than the probability of a single configuration.
For instance, for a system of size L, the stationary current J is given by J = (1−q)ZL−1/ZL, and
can be expressed in terms of certain orthogonal polynomials [29, 38]. Those calculations are
especially easy to carry out in the simpler case of the TASEP [33] (for which q = γ = δ = 0),
and even more so in the case α = β = 1 [30].

In order to access the fluctuations of the current, and not only its mean value, we need to
find the steady state probabilities as a function of the time-integrated current as well as of the
configuration. That is what we propose to do in this paper.

3. Current-counting Markov matrix and the s-ensemble

Suppose that we want to keep track of the number of particles that jump over the bond that
links sites i and i + 1 through the evolution of the system, starting from some initial state
||P0〉〉. One easy way to do this is to multiply the off-diagonal entries of Mi by a fugacity e±μi ,
so that every time those jumping rates are used in the evolution of the system, the weight of
the corresponding history gets multiplied by eμi if the jump was made forwards, or e−μi if it
was made backwards. After a time t, the weight of any history C(t) carries an extra weight
eJ(C(t))μi , where J(C(t)) is the (algebraic) number of particles that jumped from site i to site
i + 1, which is precisely the time-integrated current that went through that bond. One can then
access the moments of that current simply by taking derivatives with respect to μi.

In general, one can do the same with any and all of the bonds, using different fugacities.
The corresponding Markov matrix can be written as [12, 41, 50]

M{μi} = M0(μ0) +
L−1∑
i=1

Mi(μi) + ML(μl ), (6)

where

M0(μ0) =
[ −α γ e−μ0

α eμ0 −γ

]
, Mi(μi) =

⎡
⎢⎢⎣

0 0 0 0
0 −q eμi 0
0 q e−μi −1 0
0 0 0 0

⎤
⎥⎥⎦,

ML(μl ) =
[ −δ β eμL

δ e−μL −β

]
. (7)

(It is implied that M0 acts as written on site 0 in the basis {0, 1} and as the identity on the other
sites, and the same goes for ML on site L; similarly, Mi is expressed by its action on sites i and
i + 1 in the basis {00, 01, 10, 11} and acts as the identity on the rest of the system.)

By using this deformed Markov matrix in the time evolution of ||Pt〉〉 instead of the usual
one, one obtains

||Pt ({μi})〉〉 = etM{μi} ||P0〉〉 (8)

which is the Laplace transform of the joint probabilities of the configurations and the time-
integrated currents, with respect to these currents, at time t. Taking a kth order derivative in any

5
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of the μis and then projecting this vector onto 〈〈1|| yields the kth moment of the corresponding
current, up to a normalization.

In the long time limit, the matrix etM{μi} converges to the projector onto its principal
eigenvector ||P{μi}〉〉, with the eigenvalue etE({μi}) where E({μi}) is the largest eigenvalue of
M{μi}, so that

〈〈1||Pt ({μi})〉〉 ∼ etE({μi}) (9)

and E{μi} is therefore identified as the generating function of the cumulants of the instantaneous
currents Ji/t, which is the Laplace transform of the large deviation function of those same
currents, as explained by the Donsker–Varadhan theory of temporal large deviations [2, 50].
That is the main quantity that we want to calculate. Our problem thus reduces to that of finding
the largest eigenvalue of the current-counting matrix M{μi}. The corresponding eigenvector
||P{μi}〉〉 also holds important information, as we will see below.

Let us first make things a little simpler by noting that one can go from any set {μi} to any
other set {μ′

i} by a matrix similarity, as long as
∑L

i=0 μi = ∑L
i=0 μ′

i = μ [12]. This means that
the eigenvalues of M{μi} only depend on μ, regardless of how the fugacities are distributed:
the currents through each of the bonds are all exactly equivalent. In particular, there is a set
for which μ = λ log

(
γ qL−1δ

αβ

)
, where λ is the quantity conjugate to the entropy production in

the system. This is an easy way to prove the Gallavotti–Cohen symmetry for the current in
this system, and it shows that the current and its fluctuations are simply proportional to the
entropy production. That entropy production being non-zero is the defining characteristic of a
non-equilibrium system.

All this being said, we can now consider, without any loss of generality, the case where only
the first bond (between the leftmost reservoir and the first site) is marked: μ0 = μ,μi�=0 = 0,
so that the individual jump matrices we will work with are given by

M0(μ) =
[ −α γ e−μ

α eμ −γ

]
, Mi =

⎡
⎢⎢⎣

0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

⎤
⎥⎥⎦, ML =

[−δ β

δ −β

]
(10)

and that

||Pt (μ)〉〉 = etMμ ||P0〉〉 ∼ etE(μ)||Pμ〉〉 (11)

with

E(μ) =
∞∑

k=1

Ek
μk

k!
(12)

being the exponential generating series of the cumulants of the current.
The large deviation function for the instantaneous current, G( j) ∼ − 1

t log[P(J/t = j)],
is related to E(μ) by

G( j) = μ j − E(μ),
d

dμ
E(μ) = j. (13)

Moreover, one can show [39] that the principal right eigenvector ||Pμ〉〉 of Mμ and its principal
left eigenvector 〈〈P̃μ|| hold, respectively, the probabilities of observing configurations coming
from the steady state and the probabilities of having come from configurations while in the
steady state, all conditioned on having observed a mean current j = d

dμ
E(μ):

Pμ(C) = P

(
{C, t}|{P�, t = −∞} & j = d

dμ
E(μ)

)
(14)

P̃μ(C) = P

(
{C, t}|{P�, t = +∞} & j = d

dμ
E(μ)

)
(15)
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so that the product of the two is the probability of observing a configuration at any time,
conditioned on the mean current (up to a normalization)

Pμ(C)P̃μ(C) = P

(
C
∣∣∣∣ j = d

dμ
E(μ)

)
. (16)

The ensemble defined by these probabilities, with μ as a parameter, is sometimes called the
‘s-ensemble’ [51] (the reason being that μ is often denoted s), and contains all the information
needed to build the joint large deviation functions of the current and any spatial observables (i.e.
depending only on C). We will now construct a matrix ansatz that holds the exact expressions
of those probabilities and of E(μ), as series in μ, up to arbitrary orders.

4. Perturbative matrix ansatz for the s-ensemble

In this section, we will show that we can define two transfer matrices Tμ and Uμ, such that

[Mμ,UμTμ] = 0 (17)

T0 = [1]C,C′ = ||1〉〉〈〈1|| (18)

U0||1〉〉 = ||P�〉〉, (19)

where the weights of Tμ and Uμ are expressed as products of matrices between two vectors,
much as in (4). Moreover, equation (17) for μ = 0 allows us to recover the original matrix
ansatz, as we will show below, and to define the matrix product states that were used in
[42, 43] to obtain our previous results.

Those three relations will be used to prove that the transfer matrix UμTμ is almost a
projector onto the leading eigenstate of Mμ, and that when applied repeatedly, the precision in
orders of μ of the projection increases. In other terms:

(UμTμ)k ∼ ||Pμ〉〉〈〈P̃μ|| + O(μk) (20)

up to a multiplicative constant of order 1.
We will then use that relation to show the main results of this paper, namely that

||Pμ〉〉 = 1

Z(k)
L

(UμTμ)k||P�〉〉 + O(μk+1) (21)

〈〈P̃μ|| = 1

Z(k)
L

〈〈1||(UμTμ)k + O(μk+1), (22)

where Z(k)
L = 〈〈1||(UμTμ)k||P�〉〉, and that

E(μ) = 〈〈1||Mμ(UμTμ)k||P�〉〉
〈〈1||(UμTμ)k||P�〉〉 + O(μk+2). (23)

Those results hold for any integer k, so that, in essence, we have complete exact expressions
for ||Pμ〉〉, 〈〈P̃μ|| and E(μ), expanded as infinite series in μ.

4.1. Definitions and commutation relations

Let us consider two matrices d = D − 1 and e = E − 1, where D and E are defined as in (5),
and a matrix Aμ, such that

de − qed = (1 − q)

eAμ = eμAμe

Aμd = eμdAμ.

(24)

7
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The first of these relations, which is a simple consequence of (5), defines the algebra of a q-
deformed harmonic oscillator [54], of which e is the creation operator and d is the annihilation
operator.

Let us also define two more boundary vectors 〈W̃ | and |Ṽ 〉 by

[β(1 − d) − δ(1 − e)]|Ṽ 〉 = 0

〈W̃ |[α(1 − e) − γ (1 − d)] = 0
(25)

and let us recall that
[β(1 + d) − δ(1 + e)]|V 〉 = (1 − q)|V 〉
〈W |[α(1 + e) − γ (1 + d)] = (1 − q)〈W |.

(26)

By writing

X0,0 = X1,1 = 1, X1,0 = d, X0,1 = e, (27)

we can finally define the weights of Tμ and Uμ between configurations C ′ = (τ ′
i )1...L and

C = (τi)1...L:

Uμ(C, C ′) = 1

ZL
〈W |Aμ

L∏
i=1

Xτi,τ
′
i
|V 〉, (28)

with ZL = 〈W |(2 + d + e)L|V 〉 and

Tμ(C, C ′) = 〈W̃ |Aμ

L∏
i=1

Xτi,τ
′
i
|Ṽ 〉. (29)

Those weights are entirely determined by the algebra defined above. Specifically, one can
obtain the weights of Uμ by using (24) and (26), and those of Tμ by using (24) and (25).

We may note that the matrix Aμ is set between the left boundary vector and the first matrix
because it is the bond between the left reservoir and the first site that is marked. For a general
set of weights {μi}, we would have to add matrices Aμi between Xτi,τ

′
i

and Xτi+1,τi′+1
in both of

the products above, so that

U{μi}(C, C ′) = 1

ZL
〈W |Aμ0

L∏
i=1

Xτi,τ
′
i
Aμi |V 〉 (30)

T{μi}(C, C ′) = 〈W̃ |Aμ0

L∏
i=1

Xτi,τ
′
i
Aμi |Ṽ 〉. (31)

In appendix A, we derive equation (17), using a method closely related to the matrix ansatz
for multispecies ASEP on a ring [37], and which makes use of the so-called hat matrices. That
equation is the main point to our ansatz: the transfer matrix UμTμ that we built has the same
eigenvectors as Mμ, so that we can try to extract the information we need from it instead
of Mμ.

For μ = 0, one particular solution to (24) and (25) is d = e = A0 = 1, so that for any
C ′ and C, we have T0(C, C ′) = 〈W̃ |Ṽ 〉, which we can set to 1. This proves (18). Furthermore,
projecting U0 onto ||1〉〉 means summing over all configurations C ′ in (28), so that

〈〈C||U0||1〉〉 =
∑
C′

Uμ(C, C ′) = 〈W |A0

L∏
i=1

(Xτi,0 + Xτi,1)|V 〉. (32)

We can set A0 to 1, and remark that for τi = 0, we have (Xτi,0 + Xτi,1) = 1 + e = E and
that for τi = 1, we have (Xτi,0 + Xτi,1) = d + 1 = D, so that this expression is exactly that of
P�(C) as given in (4), which proves (19).

8
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Using relations (17)–(19) together, at μ = 0, we obtain

[M,U0T0] = 0 = (M||P�〉〉〈〈1||) − (||P�〉〉〈〈1||M). (33)

Since we know that 〈〈1||M = 0 (because M is a stochastic matrix), this implies that
M||P�〉〉 = 0, which yields the original matrix ansatz (4) [33].

This alternative proof of (4) relies on the fact that the transfer matrix UμTμ is a projector in
the limit μ → 0. It would be interesting to determine whether for other situations with matrix
product states, one can generically find a transfer matrix that commutes with a deformation
of the dynamics of the system and is a projector in the non-deformed limit. One could, for
instance, look at the ASEP in discrete time with different versions of the update [48], or at the
multispecies ASEP on a ring [37].

4.2. Validation of the perturbative matrix ansatz

To prove (21) and (23), we use the relations derived above. Since, for μ = 0, the matrix U0T0

is the projector onto the principal eigenspace of M, one can write, for an infinitesimal μ:

UμTμ = 	μ||Pμ〉〉〈〈P̃μ|| + rμ, (34)

where 	μ ∼ 1 +O (μ) is the largest eigenvalue of UμTμ, and rμ ∼ O (μ) is the part of UμTμ

that is orthogonal to its principal eigenspace, and has eigenvalues of order μ. In other words,
UμTμ is almost a projector, with an error rμ of order μ.

Since rμ||Pμ〉〉 = 0 and 〈〈P̃μ||rμ = 0, one has that

(UμTμ)k = 	k
μ||Pμ〉〉〈〈P̃μ|| + rk

μ, (35)

so that the difference from the projector onto ||Pμ〉〉〈〈P̃μ|| is now rk
μ ∼ O(μk).

Let us now remark that the parts of ||P�〉〉 and 〈〈1|| which are not in the kernel of rμ are
of order μ, so that both rk

μ||P�〉〉 and 〈〈1||rk
μ are of order μk+1. It follows that (UμTμ)k||P�〉〉

is proportional to ||Pμ〉〉 with an error of order μk+1 (and the same goes for 〈〈P̃μ||), which
proves (21).

Equation (23) is then proven by simply applying Mμ to (UμTμ)k||P�〉〉:
〈〈1||Mμ(UμTμ)k||P�〉〉 = E(μ)	k

μ〈〈1||Pμ〉〉〈〈P̃μ||P�〉〉 + 〈〈1||Mμrk
μ||P�〉〉 (36)

〈〈1||(UμTμ)k||P�〉〉 = 	k
μ〈〈1||Pμ〉〉〈〈P̃μ||P�〉〉 + 〈〈1||rk

μ||P�〉〉, (37)

where 〈〈1||Mμrk
μ||P�〉〉 is of order μk+2 because 〈〈1||Mμ is of order μ and rk

μ||P�〉〉 is of order
μk+1, and 〈〈1||rk

μ||P�〉〉 is of order μk+2 for the reason given above. The ratio of those two
equations is therefore equal to E(μ) up to order μk+2.

4.3. Formulation as a matrix product

The formulation we gave here of the perturbative matrix ansatz in terms of transfer matrices
is quite different from that which was given in [43]. They are of course equivalent, which is
what we will show in this section.

The main point that needs to be made here is that, unlike the Markov matrix, which is a
sum of elementary matrices, the transfer matrices Uμ and Tμ are products of the elementary
matrices Xτi+1,τi′+1

, so that the product of those transfer matrices can be seen as a tensor
network, the tensors being of order 4: (Xτi+1,τi′+1

)i, j, where i and j are the internal indices of X
(figure 2).

9
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Ṽ

AµW

AµW̃

0 01 1 1

d

0

E

Figure 2. One of the tensor networks that add up to UμTμ||P�〉〉 when expanded in terms of the
intermediate configurations at each step of the product. Rows represent the transfer matrices Uμ

and Tμ, whereas columns represent Ek or Dk . See the detailed explanation below.

A consequence of this is that the object (UμTμ)k||P�〉〉 can be written in terms of the
columns of this tensor network instead of the rows. Let us therefore define, by recursion (and
denote the product between successive rows by a tensor product ⊗)

Dk+1 = (1 ⊗ 1 + d ⊗ e) ⊗ Dk + (1 ⊗ d + d ⊗ 1) ⊗ Ek

Ek+1 = (1 ⊗ 1 + e ⊗ d) ⊗ Ek + (e ⊗ 1 + 1 ⊗ e) ⊗ Dk

A(k+1)
μ = Aμ ⊗ Aμ ⊗ A(k)

μ

(38)

with D0 = D, E0 = E and A(0)
μ = 1, and

|Vk+1〉 = |V 〉 ⊗ |Ṽ 〉 ⊗ |Vk〉 (39)

〈Wk+1| = 〈W | ⊗ 〈W̃ | ⊗ 〈Wk|, (40)

with |V0〉 = |V 〉 and 〈W0| = 〈W |.
In this formalism, equation (21) becomes

〈〈C||Pμ〉〉 = 1

Z(k)
L

〈Wk|A(k)
μ

L∏
i=1

(τiDk + (1 − τi)Ek) |Vk〉 + O(μk+1). (41)

To give a simple explicit example, one of the tensor networks from the expansion
of UμTμ||P�〉〉 for L = 5, namely Uμ(C, C ′)Tμ(C ′, C ′′)P�(C ′′), with C = {1, 0, 0, 1, 1},
C ′ = {1, 0, 1, 1, 0} and C ′′ = {0, 1, 0, 0, 1} is shown in figure 2. The blue rectangle corresponds
to Tμ(C ′, C ′′), the black one to P�(C ′′) and the red rectangle is one of the elements in D1, namely
X1,1 ⊗ X1,0 ⊗ E. Summing over the second and third indices in any column gives E1 or D1,
depending on whether the first (upper) index is 0 or 1.

While the transfer matrix formulation (21) is better suited to the algebraic proof of the
ansatz, this matrix product formulation (41) is useful for doing explicit calculations, like those
of the cumulants of the current (see section 5). Naturally, all the calculations done here using
the transfer matrix formulation can be done with these matrix products (and were, for the
most part, done that way in order to obtain our previous results [42, 43]), but are much more
cumbersome and convoluted. Let us also note that the matrices Ek and Dk are related to the
ones used in the matrix ansatz solution of the multispecies periodic ASEP [37], although for
the moment we have no understanding of why that is the case.

10
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4.4. Periodic case and XXZ spin chain

The same ansatz can be applied to the periodic case with just one alteration: instead of
projecting the matrix products between boundary vectors, one has to take a trace. Moreover,
only one transfer matrix T per

μ needs to be defined. This can be written as

T per
μ (C, C ′) = Tr

[
Aμ

L∏
i=1

Xτi,τ
′
i

]
(42)

if the marked bond is the one between sites L and 1. One can then show that
[
Mμ, T per

μ

] = 0
and the rest follows, by replacing UμTμ by T per

μ in every equation, using the steady state ||1N〉〉
(with coefficient 1 for all configurations with N particles), and making only one tensor product
per order in (38). See appendix B for all the derivations related to the periodic case.

In appendix C, we show how a special choice of the parameters {μi} allows our ansatz
to be applied to the spin-1/2 XXZ chain with non-diagonal boundaries. We also note that the
structure of our construction is strikingly similar to that used in [47] to solve the Lindblad
equation for the XXZ chain.

5. Calculating the cumulants of the current (a quick overview)

The principal interest of the ansatz we constructed is that it allows us to calculate the expected
values of some observables without having to diagonalize Mμ explicitly. The question is, then,
how we can use formula (23) to obtain explicit expressions of the cumulants of the current.
As one can see in [42, 43], we did manage to perform that calculation. However, a certain
amount of guesswork was used, and we believe that there is a simpler and more compact way
to do it than the one we used. For that reason, we will not expose here the full detail of those
(rather tedious) calculations, but rather a quick overview of the principles behind it. We hope
to be able to do the full calculation in an elegant and self-sufficient way in the near future, and
possibly to do the same for observables other than the cumulants of the current (as we said
earlier, we should have access to any spatial observable in the s-ensemble).

5.1. Expressing E(μ) and μ as parametric infinite series

The main point of our reasoning from here on is that we expect the solution to have the same
structure as in the periodic case [35], i.e. we expect to be able to write E(μ) and μ as two
infinite logarithmic series in a parameter B which goes to 0 with μ:

E(μ) = −
∞∑

k=1

Dk
Bk

k
(43)

μ = −
∞∑

k=1

Ck
Bk

k
. (44)

From calculations using our ansatz in the periodic TASEP, and comparing them to the results
from the Bethe ansatz [35], we were able to determine that this parameter B is proportional
to (1−e−μ)

	μ
, where we recall that 	μ is the largest eigenvalue of (UμTμ) (which is the one

associated with ||Pμ〉〉, and goes to 1 when μ goes to 0).
Luckily, there is a way to write ||Pμ〉〉 as a series in (1−e−μ)

	μ
, from which we could obtain

the formulae we are looking for. Let us first define

ŨμTμ = 1

(1 − e−μ)
(UμTμ − ||P�〉〉〈〈1||) (45)

11
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which is finite for μ → 0. We can now write (by taking formally the limit k → ∞ in (21))

||Pμ〉〉 = UμTμ

	μ

||Pμ〉〉 = (||P�〉〉〈〈1|| + (1 − e−μ)ŨμTμ)

	μ

||Pμ〉〉 (46)

or equivalently

	μ||Pμ〉〉 =
(

1 − (1 − e−μ)

	μ

ŨμTμ

)−1

||P�〉〉 =
∞∑

k=0

(ŨμTμ)k||P�〉〉
(

(1 − e−μ)

	μ

)k

(47)

which is a well-defined series in (1−e−μ)

	μ
.

From this, we obtain

E(μ) = 〈〈1||Mμ||Pμ〉〉 =
∞∑

k=0

〈〈1||Mμ(ŨμTμ)k||P�〉〉
(1 − e−μ)

(
(1 − e−μ)

	μ

)k+1

, (48)

where 〈〈1||Mμ(ŨμTμ)k||P�〉〉
(1−e−μ)

is finite for μ → 0 because 〈〈1||Mμ ∼ μ.
We also obtain, tautologically (since 〈〈1||Pμ〉〉 = 1),

μ= − log[1 − (1 − e−μ)〈〈1||Pμ〉〉)] = − log

[
1 −

∞∑
k=0

〈〈1||(ŨμTμ)k||P�〉〉
(

(1 − e−μ)

	μ

)k+1]
,

(49)

which we can then expand in (1−e−μ)

	μ
.

5.2. Inferring the final formulae

There is a major difference between expressions (49) and (44) (or between (48) and (43)): the

coefficients Ck and Dk should not depend on μ, but 〈〈1||Mμ(ŨμTμ)k||P�〉〉
(1−e−μ)

, for instance, does. From
this point on, the calculations become less precise. The reasoning is as follows:

• we postulate that the coefficients Ck and Dk should be a somewhat identifiable part of,
respectively,〈〈1||(UμTμ)k||P�〉〉 and 〈〈1||Mμ(UμTμ)k||P�〉〉;

• we then calculate the equivalent terms for the periodic TASEP (which is the simplest case
to which our ansatz applies), namely 〈〈1N ||(T per

μ

)k||1N〉〉 and 〈〈1N ||Mper
μ

(
T per

μ

)k||1N〉〉, for
k = 2, using the matrix product formalism and the q-deformed oscillator algebra (which,
for q = 0, becomes a random walk on N);

• we compare the result with the coefficients from [35], and identify in which part of the
calculation they emerge;

• we isolate the corresponding part of 〈〈1||(UμTμ)k||P�〉〉 and 〈〈1||Mμ(UμTμ)k||P�〉〉, and
inject it in (44) and (43);

• we check numerically (i.e. do exact calculations on small sizes and orders of μ) that our
conjecture is correct.

The results of this calculation for the open TASEP can be found in [42]. The generalization
to the open ASEP [43] comes from applying the same reasoning to the periodic ASEP [36];

12
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in that case, we also checked our results against DMRG calculations for low-order cumulants
(E2 to E4) and larger sizes of the system (up to 100 sites).

6. Conclusion

In this paper, we define and expose the algebraic proof of a matrix ansatz which gives access
to the principal eigenvalue and eigenvectors of the current-counting Markov matrix of the
open ASEP, for any size and any value of the parameters. Using this ansatz, the author and
collaborators were able to obtain exact expressions for the cumulants of the current in the open
TASEP [42] and the open ASEP [43], which had been an open question for many years in the
field of non-equilibrium statistical physics.

Much remains to be done on this subject, and we believe that this ansatz still has a lot
to offer. For instance, as was argued in section 3, the principal eigenvectors of Mμ hold the
probabilities of observing a given configuration conditioned on the current flowing through
the system; in other words, it should allow us to analyse the best profiles (in the sense of most
probable) to produce a given atypical current. The question of finding the optimal path to
produce a rare event is an important one, notably in the context of complex chemical reactions,
and much work has been done to find algorithms that produce this optimal path [44]. Obtaining
an exact analytical result on that type of problem could provide valuable insight or help devise
simpler algorithms.

Another situation where our method could be of use is the symmetric exclusion process,
for which many results are known for the large size limit, and have been obtained using a
coarse-grained description of the system named ‘macroscopic fluctuation theory’ [45] and
the related ‘additivity principle’ [7, 8], but only a few exist for finite sizes [46]. The limit
q → 1 cannot be taken directly in our results, but the present ansatz can still be applied to the
symmetric case with a few crucial alterations. However, we have yet to analyse that case in
detail, which we intend to do in the near future.

There remains also the question of determining how specific or general the method we
have applied here could be. We have shown that by defining the transfer matrix UμTμ which
commutes with Mμ, and then taking μ to 0, one can retrieve the original matrix ansatz [33]. It
would be interesting to know whether the same procedure can be applied to other models with
matrix product eigenstates, and if there is anything general or generalizable to it. We would
also like to have a clear idea of the physical significance of that transfer matrix, which we used
as a mere calculation tool, but might be interesting in itself. Some preliminary results show
that it is closely related to the algebraic Bethe ansatz, and we are confident that we will soon
be able to demonstrate the precise nature of that relation. Up until now, the algebraic Bethe
ansatz was known to be applicable to the open ASEP with a current-counting fugacity only at
a finite set of points of its phase diagram [40] (i.e. such that the size, the boundary rates and μ

are related by a constraint that has only a finite number of solutions), which is not enough to
obtain the exact full statistics of the current (one would need an infinite number of values of μ

for given values of the other parameters). In [19], that method was used for systems of large
size, where the set of special points collapses onto a curve, to obtain the generating function
of the cumulants of the current at the large size limit, but only in the case where that function
is best behaved (that is, inside the high- and low-density phases). A clear understanding of
the relation between the Bethe ansatz and our method could allow us to study not only the
fluctuations of the mean current, but also the relaxation towards that current, and, in the most
optimistic of scenarios, relate it to the results on Tracy–Widom distributions for that same
relaxation in systems of infinite size [27, 28].
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Appendix A. Derivation of equation (17) for the open ASEP

The derivation of the commutation relation (17) can be carried out in two steps: first, we
express the commutator of Mi (for 1 � i � L) with either Uμ or Tμ (the two results are similar)
using (24), and show that for both the sum of those commutators cancels out except for two
terms, related to each of the boundaries. Secondly, we check that those boundary terms, as
they appear in the commutator of Mμ with the product UμTμ, cancel out as well, using (25)
and (26).

For convenience, we will here write Uμ and Tμ as

Uμ = 1

ZL
〈W |Aμ

L∏
i=1

X (i)|V 〉 (A.1)

Tμ = 〈W̃ |Aμ

L∏
i=1

X (i)|Ṽ 〉 (A.2)

with

X (i) =
[

1 e
d 1

]
. (A.3)

Let us therefore consider [Mi,Uμ] and [Mi, Tμ]. The elementary matrix Mi acts only on sites
i and i + 1, so that we only have to consider the commutation with the part of the matrix
products that corresponds to those sites. In both Uμ and Tμ, that part is X (i)X (i+1). Let us write
its components in the same basis as Mi in (10), and recall the expression of Mi:

X (i)X (i+1) =

⎡
⎢⎢⎣

1 e e ee
d 1 ed e
d de 1 e

dd d d 1

⎤
⎥⎥⎦, Mi =

⎡
⎢⎢⎣

0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

⎤
⎥⎥⎦. (A.4)

We now calculate

[Mi, X (i)X (i+1)] =

⎡
⎢⎢⎣

0 0 0 0
(1 − q)d de − q 1 − q ed (1 − q)e
(q − 1)d q − de q ed − 1 (q − 1)e

0 0 0 0

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣

0 0 0 0
0 q(ed − 1) 1 − ed 0
0 q(1 − de) de − 1 0
0 0 0 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 0 0
(1 − q)d de − q ed (1 − q)ed (1 − q)e
(q − 1)d (q − 1)de q ed − de (q − 1)e

0 0 0 0

⎤
⎥⎥⎦

= (1 − q)

⎡
⎢⎢⎣

0 0 0 0
d 1 ed e

−d −de −1 −e
0 0 0 0

⎤
⎥⎥⎦ (A.5)

by using the first relation in (24) to go from the third line to the fourth.
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Let us now define the ‘hat’ matrices X̂ by X̂τ,τ ′ = (−1)τ
(1−q)

2 Xτ,τ ′ :

X̂ (i) = (1 − q)

2

[
1 e

−d −1

]
= (1 − q)

2

[
1 0
0 −1

]
� X (A.6)

(where we denote by � the product in the two-dimensional space corresponding to the
occupation number on one site).

If we replace the first or the second X in X (i)X (i+1) by X̂ , we obtain

X̂ (i)X (i+1) = (1 − q)

2

⎡
⎢⎢⎣

1 e e ee
d 1 ed e

−d −de −1 −e
−dd −d −d −1

⎤
⎥⎥⎦,

X (i)X̂ (i+1) = (1 − q)

2

⎡
⎢⎢⎣

1 e e ee
−d −1 −ed −e
d de 1 e

−dd −d −d −1

⎤
⎥⎥⎦

(A.7)

and we finally find that

[Mi, X (i)X (i+1)] = X̂ (i)X (i+1) − X (i)X̂ (i+1). (A.8)

The relation equivalent to this one in the matrix product formalism (i.e. after making
multiple tensor products) can be related to the one found in [37] and used to derive the matrix
ansatz for the multispecies periodic ASEP.

Putting this relation back in Uμ or Tμ and summing over i cancels out all the terms except
for those containing X̂ (1) and X̂ (L), because all the other X̂ (i) appear exactly twice (once in
[Mi,Uμ] and once in [Mi+1,Uμ]) with opposite signs. Ultimately, we obtain

[L−1∑
i=1

Mi,Uμ

]
= 1

ZL
〈W |AμX̂ (1)

L∏
i=2

X (i)|V 〉 − 1

ZL
〈W |Aμ

L−1∏
i=1

X (i)X̂ (L)|V 〉 (A.9)

[ L−1∑
i=1

Mi, Tμ

]
= 〈W̃ |AμX̂ (1)

L∏
i=2

X (i)|Ṽ 〉 − 〈W̃ |Aμ

L−1∏
i=1

X (i)X̂ (L)|Ṽ 〉 (A.10)

which we may write as[ L−1∑
i=1

Mi,Uμ

]
= Û (1)

μ − Û (L)
μ (A.11)

[ L−1∑
i=1

Mi, Tμ

]
= T̂ (1)

μ − T̂ (L)
μ , (A.12)

so that [ L−1∑
i=1

Mi,UμTμ

]
= Û (1)

μ Tμ − Û (L)
μ Tμ + UμT̂ (1)

μ − UμT̂ (L)
μ . (A.13)

We now need to check that [M0(μ),UμTμ] = −Û (1)
μ Tμ − UμT̂ (1)

μ and [ML,UμTμ] =
Û (L)

μ Tμ +UμT̂ (L)
μ . As before, M0 acts only on site 1, so that only X (1) is affected, and the same

goes for ML and site L.
Let us recall

M0(μ) =
[ −α γ e−μ

α eμ −γ

]
, ML =

[−δ β

δ −β

]
. (A.14)

15



J. Phys. A: Math. Theor. 46 (2013) 145003 A Lazarescu

We calculate

[M0(μ), X (1)] =
[
γ e−μd − α eμe (γ − α)e

(α − γ )d α eμe − γ e−μd

]
,

[ML, X (L)] =
[

βd − δe (β − δ)e
(δ − β)d δe − βd

]
.

(A.15)

By projecting these equations on, respectively, 〈W̃ |Aμ and |Ṽ 〉, we obtain

[M0(μ), 〈W̃ |AμX (1)] = 〈W̃ |
[
(γ d − αe)Aμ Aμ(γ − α)e
Aμ(α − γ )d (αe − γ d)Aμ

]

[ML, AμX (L)|Ṽ 〉] =
[

βd − δe (β − δ)e
(δ − β)d δe − βd

]
|Ṽ 〉

(A.16)

(where we used the second and third relations in (24) to get rid of the μs). We naturally find
the same expressions for 〈W | and |V 〉.

We can then use relations (25) and (26) to simplify those four equations. We obtain

[M0(μ), 〈W |AμX (1)] = (α − γ )〈W |Aμ

[
1 −e
d −1

]
+ (1 − q)〈W |Aμ

[−1 0
0 1

]

[M0(μ), 〈W̃ |AμX (1)] = (α − γ )〈W̃ |Aμ

[−1 −e
d 1

]

[ML, AμX (L)|V 〉] = (β − δ)

[−1 e
−d 1

]
|V 〉 + (1 − q)

[
1 0
0 −1

]
|V 〉

[ML, AμX (L)|Ṽ 〉] = (β − δ)

[
1 e

−d −1

]
|Ṽ 〉

(A.17)

so that on site 1:

[M0(μ), (〈W |AμX (1)) � (〈W̃ |AμX (1))] =
(

(α − γ )〈W |Aμ

[
1 −e
d −1

])
� (〈W̃ |AμX (1))

+
(

(1 − q)〈W |Aμ

[−1 0
0 1

])
� (〈W̃ |AμX (1))

+ (〈W |AμX (1)) �
(

(α − γ )〈W̃ |Aμ

[−1 −e
d 1

])
. (A.18)

Seeing that
[

1 −e
d −1

] = X �
[

1 0
0 −1

]
and that

[−1 −e
d 1

] = [−1 0
0 1

]
�X , the first and third parts

of the right-hand side of this equation cancel out.

What is more, we can write (1 − q)
[−1 0

0 1

] = (1−q)

2

[−1 0
0 1

]
� X + (1−q)

2 X �
[−1 0

0 1

]
so that

(1 − q)

[−1 0
0 1

]
� X (1) = −X̂ (1) � X (1) − X (1) � X̂ (1), (A.19)

which means precisely that [M0(μ),UμTμ] = −Û (1)
μ Tμ −UμT̂ (1)

μ . The exact same calculations
on the other boundary lead to [ML,UμTμ] = Û (L)

μ Tμ + UμT̂ (L)
μ , and this concludes the proof.

Appendix B. Derivation of equation (17) for the periodic case

The periodic case is much simpler than the open one. Equation (17) takes the form[
Mμ, T per

μ

] = 0 (B.1)
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with

T per
μ = Tr

[
Aμ

L∏
i=1

X (i)

]
. (B.2)

By the same calculations as in the previous section, we find[
L−1∑
i=1

Mi, T per
μ

]
= (T̂ per

μ )(1) − (T̂ per
μ )(L) (B.3)

and we need to check that [ML(μ), X (L)AμX (1)] = X̂ (L)AμX (1) − X (L)AμX̂ (1).
We have

X (i)AμX (i+1) =

⎡
⎢⎢⎣

Aμ Aμe eAμ eAμe
Aμd Aμ eAμd eAμ

dAμ dAμe Aμ Aμe
dAμd dAμ Aμd Aμ

⎤
⎥⎥⎦, ML(μ) =

⎡
⎢⎢⎣

0 0 0 0
0 −q eμ 0
0 qe−μ −1 0
0 0 0 0

⎤
⎥⎥⎦

(B.4)

so that

[ML(μ), X (L)AμX (1)]

=

⎡
⎢⎢⎣

0 0 0 0
eμdAμ − qAμd eμdAμe − qAμ eμAμ − qeAμd eμAμe − qeAμ

e−μqAμd − dAμ e−μqAμ − dAμe e−μqeAμd − Aμ e−μqeAμ − Aμe
0 0 0 0

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣

0 q(e−μeAμ − Aμe) eμAμe − eAμ 0
0 q(e−μeAμd − Aμ) eμAμ − eAμd 0
0 q(e−μAμ − dAμe) eμdAμe − Aμ 0
0 q(e−μAμd − dAμ) eμdAμ − Aμd 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 0 0
(1 − q)Aμd Aμ(de − qed) (1 − q)eAμd (1 − q)eAμ

(q − 1)dAμ (q − 1)dAμe Aμ(qed − de) (q − 1)Aμe
0 0 0 0

⎤
⎥⎥⎦

= (1 − q)

⎡
⎢⎢⎣

0 0 0 0
Aμd Aμ eAμd eAμ

−dAμ −dAμe −Aμ −Aμe
0 0 0 0

⎤
⎥⎥⎦

= X̂ (L)AμX (1) − X (L)AμX̂ (1) (B.5)

(we used the second and third relations from (24) to get from line one to line two, and the first
to get from line two to line three).

Let us note that this same calculation can in fact be used anywhere in the bulk of the open
system in order to validate the ansatz using equation (30).

Appendix C. Spin-1/2 XXZ chain with nondiagonal boundaries

In this section, we explain how our construction for the open ASEP can be translated for
the spin-1/2 XXZ chain with non-diagonal boundary conditions [49] and hint at a possible
relation to the recent solution of the XXZ chain with a Lindblad boundary drive [47].
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Let us first define the bulk Hamiltonian of the XXZ spin chain of length L:

Hb = 1

2

L−1∑
k=1

hi (C.1)

with hi acting as

hi =

⎡
⎢⎢⎣


 0 0 0
0 −
 1 0
0 1 −
 0
0 0 0 


⎤
⎥⎥⎦ (C.2)

on sites i and i + 1 (in the same basis as for equation (7)), and as the identity on the rest of the
chain.

Let us then consider the von Neumann equation for the density operator ρ with the XXZ
Hamiltonian with boundary terms h0 and hL acting only on sites 0 and L:

ı�
∂ρ

∂t
= [H, ρ] with H = h0 + Hb + hL. (C.3)

We will now show how our matrix product construction can be used to find a solution of the
stationary equation ∂ρ

∂t = 0.
Let us write the deformed Markov matrix M{μi} for the special choice of weights defined

by{
μ0 = 1

2
log

(
γ

α

)
+ ıθ0, μi = 1

2
log (q), μL = 1

2
log

(
δ

β

)
+ ıθL

}
, (C.4)

which is on the line μ = 1
2 log

(
γ δ

αβ
qL−1

)
+ıR and for which M{μi} is Hermitian. The deformed

local matrices become

M0(μ0) =
[ −α

√
αγ e−ıθ0√

αγ eıθ0 −γ

]
, Mi(μi) =

⎡
⎢⎢⎣

0 0 0 0
0 −q

√
q 0

0
√

q −1 0
0 0 0 0

⎤
⎥⎥⎦,

ML(μl ) =
[ −δ

√
βδ eıθL√

βδ e−ıθL −β

]
. (C.5)

It is straightforward to check that, in this case, we have M{μi} = √
qH + ε, where ε is a

constant, with the boundary matrices being equal to

h0 = 1

2
√

q

[
(1 − q − α + γ ) 2

√
αγ e−ıθ0

2
√

αγ eıθ0 (−1 + q + α − γ )

]
,

hL = 1

2
√

q

[
(−1 + q + β − δ) 2

√
βδ eıθL

2
√

βδ e−ıθL (1 − q − β + δ)

]
.

(C.6)

The transfer matrix U{μi}T{μi} defined in (30) is therefore a solution to equation (C.3). It
might not be a suitable density matrix, as its eigenvalues might not be positive, but we may in
any case define one by

ρ = UT (UT )†

Tr[UT (UT )†]
(C.7)

(where we omitted to write the dependence in {μi}).
We can also rewrite expressions (30) in a way better suited to this situation:

U (C, C ′) = 1

ZL
〈φ|

L∏
i=1

Yτi,τ
′
i
|ψ〉 (C.8)
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T (C, C ′) = 〈φ̃|
L∏

i=1

Yτi,τ
′
i
|ψ̃〉. (C.9)

with

Y =
[

N S−
S+ N

]
(C.10)

and

N = Aμi (C.11)

S+ = A μi
2

eA μi
2

(C.12)

S− = A μi
2

dA μi
2

(C.13)

〈φ| = 〈W |A(μ0− μi
2 ) (C.14)

|ψ〉 = A(μL− μi
2 )|V 〉 (C.15)

〈φ̃| = 〈W̃ |A(μ0− μi
2 ) (C.16)

|ψ̃〉 = A(μL− μi
2 )|Ṽ 〉. (C.17)

Matrices N, S+ and S− satisfy a special parametrization of the Uq[SU (2)] algebra [54]:

[S+, S−] =
(

1√
q

− √
q

)
N2 (C.18)

S+N = 1√
q

NS+ (C.19)

NS− = 1√
q

S−N. (C.20)

It was surprising to find that this solution has a structure almost identical to that of the
Lindblad master equation found in [47], where Y is denoted � and Ŷ is denoted �. In that
case, it seems that ρ can be written in the simpler form ρ = UU†

Tr[UU†] , where the algebraic
relations satisfied by the boundary vectors 〈φ| and |ψ〉 might be different from ours. It would
be interesting to understand the precise relation between those two a priori very different
situations.
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Alexandre Lazarescu

Exact Large Deviations of the Current
in the Asymmetric Simple Exclusion Process

with Open Boundaries

Abstract
In this thesis, we consider one of the most popular models of non-equilibrium statisti-

cal physics: the Asymmetric Simple Exclusion Process, in which particles jump stochas-
tically on a one-dimensional lattice, between two reservoirs at fixed densities, with the
constraint that each site can hold at most one particle at a given time. This model has
the mathematical property of being integrable, which makes it a good candidate for exact
calculations. What interests us in particular is the current of particles that flows through
the system (which is a sign of it being out of equilibrium), and how it fluctuates with
time. We present a method, based on the ‘matrix Ansatz’ devised by Derrida, Evans,
Hakim and Pasquier, that allows to access the exact cumulants of that current, for any
finite size of the system and any value of its parameters. We also analyse the large size
asymptotics of our result, and make a conjecture for the phase diagram of the system
in the so-called ‘s-ensemble’. Finally, we show how our method relates to the algebraic
Bethe Ansatz, which was thought not to be applicable to this situation.

Keywords: Exclusion process, non-equilibrium, large deviations, Bethe Ansatz

Résumé
Dans cette thèse, on considère un des modèles les plus étudiés en physique statistique

hors équilibre : le processus d’exclusion simple asymétrique, qui décrit des particules
se déplaçant stochastiquement sur un réseau unidimensionnel, entre deux réservoirs de
densités fixées, avec la contrainte que chaque site ne peut porter qu’une particule à un
instant donné. Ce modèle a la propriété mathématique d’être intégrable, ce qui en fait
un bon candidat à une résolution exacte. Ce qui nous intéresse, en particulier, est de
décrire le courant de particules qui traverse le système (ce qui est une caractéristique des
systèmes hors équilibre) et comment ce dernier fluctue avec le temps. Nous présentons une
méthode inspirée de l’Ansatz matriciel de Derrida, Evans, Hakim et Pasquier, qui nous
permet d’obtenir une expression exacte des cumulants de ce courant, et ce pour une taille
finie du système et quelle que soit la valeur de ses paramètres. Nous analysons également
le comportement asymptotique de ce résultat à la limite d’un système de grande taille, et
émettons une conjecture quant au diagramme de phase du système dans ’l’ensemble-s’.
Enfin, nous montrons en quoi notre méthode est reliée à l’Ansatz de Bethe algébrique,
que l’on pensait ne pas être appliquable à cette situation.

Mots-clés : Processus d’exclusion, hors-équilibre, grandes déviations, Anastz de Bethe


