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Résumé

Le sujet de cette thèse est l’étude de solutions non-supersymétriques de la théorie
des cordes. Leur utilisation est d’une importance fondamentale dans une variété
d’applications : dans la correspondance jauge/gravité, pour construire des duals de
vides non-supersymétriques et des modèles de “holographic gauge mediation” ; en
cosmologie, pour construire vides de de Sitter et étudier le problème de la constante
cosmologique ; pour les trous noirs, pour construire leurs microétats. De façon plus
générale, il est important d’étudier l’espace des solutions de la théorie des cordes et de
comprendre ses structures mathématiques au-delà des simplifications qui découlent
de la supersymétrie.

Nous étudions principalement des solutions dans la limite de supergravité. Nous
construisons un vaste espace de perturbations non-supersymétriques autour de so-
lutions de supergravité duals à des théories de jauge supersymétriques confinantes,
dans quatre et trois dimensions.

Nous procédons ensuite à une étude rigoureuse et détaillée d’une façon particu-
lière de briser la supersymétrie dans les compactifications avec flux, obtenu ajoutant
des branes avec une charge de signe opposé par rapport aux flux. Nous découvrons
que la solution de supergravité correspondante est singulière, et nous discutons en
détail les possibles résolutions en théorie des cordes de cette singularité.

Nous considérons ensuite les conséquences de ces résultats pour l’existence des
états non-supersymétriques métastables dans les théories des champs duals et pour
l’existence d’un grand “landscape” de vides de de Sitter en théorie des cordes.
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Abstract

The subject of this thesis is the study of non-supersymmetric solutions of string
theory. Their use is of fundamental importance in a variety of applications: in
gauge/gravity correspondance, to construct gravity duals to non-supersymmetric
vacua and models of mediated supersymmetry breaking; in cosmology, to construct
de Sitter vacua and to study the cosmological constant problem; for black holes,
to construct their microstates. More broadly, it is important to study the solution
space of string theory and to understand its deep mathematical structures beyond
the simplifications which stem from supersymmetry.

We mainly consider solutions in the supergravity limit. We construct a vast space
of non-supersymmetric perturbations around supergravity solutions dual to confining
supersymmetric gauge theories, in four and three dimensions.

We then proceed to a rigorous and detailed study of a particular way to break
supersymmetry in flux compactifications, namely by adding some branes with charge
of opposite sign with respect to the fluxes. We discover that the supergravity solution
corresponding to these objects is singular, and we discuss in details possible string
theory resolutions of this singularity.

We then consider the consequences of these results both for the existence of
metastable non-supersymmetric states in the dual field theories and for the existence
of a large landscape of de Sitter vacua in string theory.
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Chapter 1

Introduction

String theory is a quantum theory of gravity, which includes gauge interactions in
a consistent and elegant way. This great success calls for an intense study of the
foundations of the theory as well as its phenomenological applications. Despite a
prodigious amount of effort during the last decades, the mathematical structures at
the core of string theory are still being developed, and only a very small corner of
the space of solutions has been explored.

String theory is well defined in ten space-time dimensions, a striking feature
which is responsible for its richness: some of the space dimensions can be realized
as small compact manifolds and, after suitable decoupling limits, one is left with a
theory of matter and interactions in the non-compact space-time. Depending on the
dimension and the shape of the compact “internal” manifold, we can obtain a large
space of different theories. In general, the compact space can support various fluxes
and to describe the allowed compact manifolds one needs to use advanced techniques
in differential and algebraic geometry. The study of these “flux compactifications”
is crucial for phenomenology, for example in the construction of inflationary models
and de Sitter vacua.

The techniques developed to study flux compactifications can actually be ap-
plied even if the internal space is non-compact. While this situation is not of a direct
phenomenological relevance, it is important in the context of gauge/gravity corre-
spondence: string theory on the non-compact transverse space is “dual”, in a precise
sense that we will review in the following, to a field theory without gravity. The
interest in this duality comes from the fact that usually a perturbative regime of the
theory with gravity corresponds to a strong coupling regime of the field theory, where
traditional field theory techniques are often inadequates to obtain accurate results.
Viceversa, one can also use field theory techniques to study quantum properties of
gravity.

One of the most important tools in the study of solutions of the theory is su-
persymmetry. In ten dimensions string theory is necessarily supersymmetric, but a
general compactification can break supersymmetry completely. Nevertheless, requir-
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Introduction

ing that supersymmetry is preserved dramatically simplifies the task of constructing
explicit solutions, and it also guarantees stability. However, many interesting prob-
lems require non-supersymmetric solutions: inflation, the physics of de Sitter vacua
and the cosmological constant problem, black hole mysteries, holography and con-
finement in QCD. While many models have been proposed, the concrete construction
of non-supersymmetric solutions has been very limited up to now.

The goal of this thesis is to construct explicit solutions of the supergravity equa-
tions of motion which break supersymmetry. It will deal with supersymmetry break-
ing deformations of non-compact manifolds, known as conifolds, which have a vast
range of applications both in phenomenology and in gauge/gravity correspondance.
In particular, one of the main focus of the thesis is the rigorous study of a pop-
ular way to break supersymmetry, namely by introducing a brane in a given flux
compactification with opposite charge dissolved in fluxes.

These solutions find many applications in different contexts:

Gauge/gravity duality. The interest in constructing non-supersymmetric grav-
ity duals is to eventually unveil a gravity description of QCD, the theory of strong
forces. We will construct a family of analytic solutions dual to non-supersymmetric
theories in four and three dimensions by perturbing gravity backgrounds dual to
certain N = 1 supersymmetric gauge theories with interesting properties such as
confinement and chiral symmetry breaking. In particular, we will study in great
detail the solution corresponding to anti-branes in warped cones, which are widely
believed to be dual to metastable non-supersymmetric states in the supersymmetric
field theories. In four dimensions, this kind of solutions are also very popular as
models of holographic gauge mediation.

String phenomenology. Non-compact conifolds are used as a model of warped
throats in string compactifications. Anti-branes in these throats are an essential in-
gredient to construct a de Sitter vacuum with small cosmological constant, and they
are the main evidence on the existence of a large space of de Sitter vacua in string
theory, known as the landscape. Anti-branes in warped throats are also widely used
as models of brane/anti-brane inflation.

Geometry of string compactifcations. The study of supersymmetric flux compact-
ifications in string theory leads to the unveil of beautiful and elegant mathematical
structures, such as those in generalized complex geometry. The first-order equations
derived from supersymmetry can be casted in a concise form by using natural vari-
ables, which are spinors of an O(6, 6)-bundle over the internal manifold. We will
show how conifold solutions fit into this framework and we will study how the super-
symmetric first-order equations are modified for a large class of non-supersymmetric
solutions. This is a first step toward a systematic understanding of the geometry of
non-supersymmetric compactifications.

2
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Black holes geometries. We will not consider this point in this thesis, but we men-
tion that anti-branes in flux compactifications can be used to construct non-extremal
black hole microstates. These are supergravity solutions which are believed to de-
scribe the quantum nature of black holes: the singularity of the semi-classical picture
is replaced by a macroscopic quantum object of the order of the horizon scale. In the
so-called fuzzball approach [136, 32, 154, 11] the constituents are stringy microstate
geometries which can be found by various string and supergravity techniques. While
many of such microstates are known for supersymmetric and non-supersymmetric but
still extremal black holes, the construction of these geometries for non-extremal black
holes is much harder. One way is to put anti-branes in an extremal solution, thus
breaking supersymmetry much like with anti-D3 branes in the Klebanov-Strassler
solution [29, 30].

Let us briefly comment on the above points, by illustrating in details the moti-
vations and the results that will be derived in this thesis.

1.1 Gauge/gravity duality and supersymmetry breaking

The idea of a relation between gauge theory and strings was pioneered by Polyakov [147].
An incarnation of these ideas involves a particular limit in which gravity decouple,
and is thus known as gauge/gravity duality. The best understood example of such
a gauge/gravity correspondence is the AdS/CFT duality [129, 92, 162] (for a review
see for example [2, 113, 35, 130, 145]), which is the conjecture (by now supported
by a huge number of checks) that four dimensional N = 4 supersymmetric SU(N)
gauge theory is equivalent to type IIB string theory on AdS5 × S5 with N units of
5-form flux.

The string theory origin of this striking statement is very natural, and descends
from the existence of D-branes in the spectrum and their twofold interpretation: on
one hand, a D-brane has a description in terms of perturbative open string theory
as an hyperplane on which the strings end; on the brane world-volume exists then a
confined gauge theory whose excitations are the massless states of open strings ending
on the brane. On the other hand, D-branes are sources of closed string states and can
be regarded as non-perturbative solitons of the low-energy supergravity equations of
motion. By implementing an open/closed duality, one recovers the correspondance
between the gauge theory enginereed on the brane world-volume and the supergravity
solution sourced by the brane.

It is of clear interest to extend this duality to gauge theories with less super-
symmetries and which are not conformal, as it is the case for the N = 4 theory.
In order to do this, one needs to put the D-branes in non-trivial backgrounds, such
as orbifolds or conifolds. An orbifold is a quotient of flat space by a discrete group
Zn; the endpoints of strings on this backgrounds are then matrices which form a
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Gauge/gravity duality and supersymmetry breaking

Xn�1
Yn

r

Figure 1.1: A n-dimensional cone Yn over a compact space Xn−1.

representation of this discrete group. As a consequence, there exist branes associ-
ated with open strings wich carry irreducible representations of the orbifold group,
called fractional branes, which engineer on their world-volume gauge theories with
reduced amount of supersymmetry and with non-trivial beta functions (see for in-
stance [62, 112, 34, 36, 35, 105]).

More generally, one can put branes on conifolds, more precisely a Calabi-Yau
manifold with conical type singularities [47]. In order to break conformal invariance,
one can wrap branes on some cycle of the CY manifold. A fractional D3 brane on an
orbifold becomes now a D5 brane wrapped on a 2-cycle inside the CY. The first use
of conifolds to extend the Maldacena duality was described by Klebanov and Witten
in [117]. They identified the field theory on D3 branes at a conical singularity as
the dual theory of type IIB string theory on AdS5 × X5, where X5 is the Einstein
manifold base of the cone. For the Klebanov-Witten theory X5 is a homogeneous
space T 1,1 = (SU(2)×SU(2))/U(1). Topologically, this space is a product of a three
and a two sphere. The corresponding gauge theory is a N = 1 superconformal theory
with chiral superfields A1,2, B1,2 and a superpotential W = λεijεklTrAiBkAjBl.
One can generalize this construction to M-theory, where the relevant background is
a Calabi-Yau four-fold that is a cone over a compact space known as the Stenzel
space [156], which is the quotient SO(5)/SO(3).

In order to break conformal invariance one needs to wrap a stack ofM D5 branes
on the vanishing cycle of the conifold [114, 118]. In this way we engineer a N = 1
SU(N)×SU(N+M) gauge theory with a logarithm running of the coupling constant.
The renormalization group flow to the infrared was then understood in the work of
Klebanov and Strassler [116] (KS in the following). In the supergravity picture we
have that the three-form flux sourced by the fractional D3 branes blows up the three
cycle of T 1,1, resolving the singularity of the cone via a geometric transition. The end
result is a regular supergravity solution based on the deformed conifold (see Chapter
2, where we will derive these solutions, for more details). The deformation of the
cone is the geometrical counterpart of chiral symmetry breaking and confinement in
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the dual gauge theory.
Having obtained gravity duals to confining supersymmetric gauge theories the

next step would be to explore the possibilities to break supersymmetry completely.
Chapter 3 is devoted to analyzing this problem. We will introduce a computational
tool to handle the second-order equations of motion, provided that the symmetries
of the solution are enough to preserve the angular independence as in the Klebanov-
Strassler solution. We will then construct a space of analytic non-supersymmetric
solutions, obtained as a small (first-order) deformation of the Klebanov-Strassler
supersymmetric solution. This set contains solutions dual to theories in which the
Lagrangian has been perturbed by operators of various dimensions, corresponding to
a particular radial falloff in the ultraviolet region of the supergravity solution. For
example, it contains a two parameter family of solutions in which supersymmetry is
broken by a small mass for the gauginos.

A particularly important mechanism to break supersymmetry on the deformed
conifold, which will be one of the main subjects of this thesis, is to add some sources
that do not preserve the supersymmetry of KS. A model proposed by Kachru, Pear-
son and Verlinde [111] (KPV), uses a stack of anti-D3 branes with world-volume
extending along the space-time directions (see also [59]). In a certain limit, in which
the interaction between the branes and the background is neglected (known as the
probe approximation), and for a particular range of parameters, these anti-branes
were found to polarize by the Myers effect [142] into a classically stable expanded
NS5 brane source, wrapping a two-cycle on the three-sphere of the deformed conifold
(see figure 2.3 and next chapter for more details). This state is quantum mechan-
ically metastable, since it can tunnel to a supersymmetric state with lower energy
via non-perturbative bubble nucleation. KPV conjectured that this metastable con-
figuration gives a gravity dual to a metastable non-supersymmetric state in the KS
field theory. While adding D3 branes, which are BPS object in KS, gives vacua on
the mesonic branch of the theory, the conjecture is that anti-D3 branes uplift the
baryonic branch (see [68] for a detailed study of the moduli space of the KS theory).

Chapter 4 and 5 of this thesis contains a detailed study of anti-D3 branes on the
deformed conifold. We will first derive and analyze the linearized supergravity solu-
tion corresponding to these anti-D3 branes, which should be dual to the metastable
state in the field theory. We thoroughly discuss the boundary conditions that cor-
respond to spontaneous supersymmetry breaking, by determining numerically the
ratio of the parameters which corresponds to the ratio of confinement scales of the
false and true vacuum.

As we will discuss in detail, the study of this system shows however a surprise.
The supergravity solution is singular in the infrared region, near the source, and
the singularity naively appears to be unphysical. Since in the infrared region the
linearized approximation breaks down, we will proceed to solve for the full non-
linear backreaction in the near brane region. We find that the singularity, which
appear in the three-form fluxes and is not directly sourced by the branes, survive in
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the full solution.
It is fairly common in string theory to obtain singular supergravity solutions:

analogous situations are the enhançon locus in N = 2 gravity duals [108] and the
singularity of the GPPZ solution [80] for the N = 1? theory. Studying possible
mechanisms which can resolve these singularities usually teaches us deep concepts.
In the aforementioned examples, such a mechanism does indeed exist, and it is related
to the way strings see the geometry: the appearance of non-commutativity in string
coordinates leads to a “fuzzy” geometry which resolves the singularity. In the GPPZ
solution, this fuzzy geometry is represented as an expanded brane source which is
crucial for the dual interpretation, as described by Polchisnksi and Strassler [146]
(PS in the following). We will investigate a similar mechanism, suggested by the
KPV probe computation, for the singularity of the anti-brane solutions, extending
the PS analysis to a non-supersymmetric setup.

Our result is that the singularity of the anti-D3 solution is not resolved in any
obvious way by brane polarization, at least not in the usual Polchinski-Strassler
mechanism. We will discuss in detail this puzzle, its possible resolutions and the
consequences for the existence of metastable states in the KS field theory.

1.2 String phenomenology

The ability to control supersymmetry breaking in string theory is crucial in the
applications of theory to cosmology. Soon after the KPV conjecture, it was realized
that the same mechanism can be used to construct a de Sitter compactification. This
idea was elaborated in [110] (in the following KKLT). The construction involves two
steps: firstly, one needs to find a AdS compactification with all moduli stabilized;
then, one put a stack of anti-D3 branes in a highly warped region of the given
compactification (see Figure 1.2). This “throat” can be modeled on the deformed
conifold solution; the ambient space is thus glued to the ultraviolet region of the
Klebanov-Strassler solution and from the field theory perspective corresponds to a
UV completion of the KS theory. If the KPV conjecture is true, then the anti-
D3 branes will polarize into the NS5 metastable configuration, which is dual to a
metastable state in the theory. As we discussed above, the fact that the breaking
of supersymmetry is spontaneous translates into the absence of non-normalizable
modes in the supergravity solution. This guarantees that when this solution is glued
to the ambient compact space, the supersymmetry breaking effects on that space
can be made arbitrarily small, essentially by making the throat arbitrarily long. The
conclusion seems to be that the anti-branes can contribute by a very tiny amount to
the vacuum energy of the given compactification, and thus we can get very generically
a de Sitter compactification out of an AdS one. This process is usually referred to
as the “uplift” of the AdS compactification.

We stress that, besides the ability to stabilize all the moduli in the initial AdS con-
figuration, the KKLT model essentially relies on the assumption that anti-branes in
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Anti-D3

Figure 1.2: Anti-branes in a warped throat are used to break supersymmetry in a
controllable way in a flux compactifcation.

warped throat give rise to a non-supersymmetric and arbitrarily long-lived metastable
state, and that the breaking of supersymmetry is spontaneous, which translates in
the assumption that the supergravity solution corresponding to the metastable state
does not have non-normalizable UV modes.

We remark that the uplifting procedure does not solve the hierarchy problem as-
sociated to having a dS space with a very small cosmological constant, since one needs
to fine tune the length of the warped throat to obtain the experimentally mesured
value of Λ ∼ 3 · 10−120 in Planck units. However, even if the KKLT mechanism does
not directly help solving the cosmological constant problem, it is at the core of an
“anthropic” solution of this problem within string theory. This leads us to the notion
of the string landscape, introduced by Leonard Susskind in [157]. The idea is that
the large number of de Sitter vacua in string theory (obtained by the generic anti-D3
uplift) can be populated by non-perturbative Coleman-De Luccia tunnelling between
the different extrema. This has been used to provide a concrete realization of the an-
thropic solution of the cosmological constant problem [161, 42] (see for example [42]
for a review and a list of references). The value of Λ is not regarded as a fundamental
physical quantity, but as an environmental quantity which is set statistically, by an
appropriate average over the landscape. The basic concept is that the large part of
the landscape with big cosmological constant is highly suppressed by the very small
probability that life can form in a universe with big Λ. It is important to remember
that one usually assumes that string theory has a large landscape of de Sitter vacua,
but rigorous constructions are still lacking. While there are different mechanisms to
uplift an AdS solution to a dS one (for example F/D-term uplifting [153, 124] and
Kahler-uplift [10, 152]), these are generically strongly model-dependent, and thus it
is not clear whether they support the existence of a large landscape of vacua. In this
sense the KKLT scenario is one of the main evidences for this claim.

In this perspective, our investigation on the existence of metastable vacua in
the Klebanov-Strassler theory translates into the question of existence of a large
landscape of de Sitter vacua in string theory, and the fact that anti-branes in flux
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compactifications give singular supergravity solutions is an indication that a rigorous
evidence for such large space of vacua is indeed lacking. Moreover, if the singularity
is not resolved in string theory, as the results presented in Chapter 5 seem to indicate,
it could means that the singularity is a signal of an instability. Various investigations
have been performed to elucidate the nature of the singularity. Different setups have
been studied, in which one inserts anti-branes of various worldvolume dimensions in
flux compactifcations: anti-D6 branes [37, 38, 39, 28, 15], anti-M2 branes [24, 135, 79]
(see also Chapter 6), anti-D2 branes [78]. All those examples show the same feature
discussed for anti-D3 branes in the KS background, namely an unphysical-looking
singularity in the fluxes. For the anti-D6 case, it has also been proven that this
singularity is not resolved by brane polarization in string theory [28, 15]. This seems
to indicate that there is a universal physical phenomenon underlying the appearance
of such singularity, whose nature is still object of debates. It has been suggested
that a time-dependent solution will resolve the singularity by showing a perturbative
decay toward the supersymmetric solution [40].

It could be interesting to note an analogy with recent investigations about quan-
tum field theory on de Sitter space time. Surprisingly, very little is known about this
subject, even if it is of clear direct relevance for cosmology. It has been proposed
by Polyakov [148, 149, 121, 150] that interacting particles in de Sitter space create
an instability, which should help in solving the cosmological constant problem in a
dynamical way by a screening mechanism. For example, the introduction of a cou-
pling like λφ4 in a scalar field theory on de Sitter space, leads to an explosive particle
production, and even in the limit λ → 0 one does not recover the free field result.
The main reason is a logarithm IR divergency and the breaking of the dS symmetry.
These results seem to suggest that pumping energy to obtain a positive cosmologi-
cal constant will result in an instability of the dS space. It could be interesting to
explore whether this general result is related to the appearance of singularities (and
instabilities) in the “uplifting” anti-brane backreaction. It is not inconceivable that
a solution to the cosmological constant problem will not come from the anthropic
landscape argument, but from a more concrete dynamical mechanism which sets an
IR/UV mixing. It would be extremely interesting if anti-branes in warped throats
could be helpful in this direction.

Another important application of anti-brane supersymmetry breaking is to con-
struct explicit models of inflation in string theory. The idea of considering brane
inflation, namely using the attractive potential between branes in a given flux com-
pactification as an inflaton potential, was proposed in [66] and developed in [109] (in
the following KKLMMT). This subject has produced a very vast literature, and we
refer to some review for a detailed account of references [137, 14, 44, 52]. The basic
scenario is to add a D3 brane in a warped throat with a stack of anti-D3 branes. The
motion of the D3 branes toward the tip is governed by the inflaton potential of the
model. The study of such D3 brane potentials has been intense (see for example [13])
and many different models have been proposed. In general however the presence of
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an anti-brane as a supersymmetry breaking source is a common ingredient, and thus
the fate of anti-branes in a warped flux compactification is of great importance for
this class of models. There are principally two problems that can arise in those
setups. One is the question of (meta)stability of the non-supersymmetric vacuum
obtained by placing anti-branes in the throat. As we discussed before, the inclu-
sion of the backreaction of anti-branes can induce perturbative instabilities and a
rigorous computation is needed to prove or disprove the KPV conjecture. Another
problem, that we also mentioned, is that even if the anti-branes end up in a long lived
metastable state, one should make sure that the supersymmetry breaking contribu-
tion is localized in the infrared region of the throat by the warping (in the language
of gauge/gravity, this means to have only normalizable UV modes).

This latter property is violated in different supersymmetry breaking setups. For
example, in models of axion monodromy inflation [138, 71] which require the presence
of a NS5/anti-NS5 brane pair at the end of two long throats, is has been shown in [53]
that the backreaction is large in the bulk due to a logarithm grow of a supergravity
mode. This means that backreaction effects are not warped down and the scale of
the brane/antibrane potential is set by the UV scale (where the throat is glued to
the bulk space) and not by the IR scale. This in turn invalidates the model. The
mechanism responsible for this behavior is very similar to what happens in a type IIA
brane engineering of the Intriligator, Seiberg and Shih (ISS) [106] metastable state
of N = 1 SQCD. This model involves D4 and NS5 branes and it reproduces the ISS
vacuum in the probe limit (i.e. for gs = 0, the limit in which the branes are rigid).
As shown in [16], the backreaction of the branes results in a logarithm bending which
destroys the ISS vacuum in the string construction: here again a logarithm mode
is responsible for the presence of a non-normalizable mode in the UV. As we will
discuss in detail, also in the setup considered in this thesis, namely anti-D3 branes
on the KS geometry, there are log modes in the UV. However, whether these modes
are dangerous or not is a much more subtle question in cascading theories such as
the KS field theory. We will come back to this problem in chapter 4.

1.3 The geometry of non-supersymmetric string vacua

In the previous sections we discussed the importance of non-supersymmetric string
compactifications in different contexts: in string phenomenology and string cosmol-
ogy they provide models of de Sitter vacua and inflation, in the gauge/gravity cor-
respondance they supply solutions which can be used to study metastable vacua in
the gauge theory and they are important as a computational tool in models of me-
diated supersymmetry breaking; they are needed to study microstate geometries of
astrophysical non-supersymmetric black-holes.

All this motivates a deeper and formal understanding of string compactifications
which break the supersymmetries down to N = 0. While the geometrical structures
which arise in the study of supersymmetric compactifications have been intensely
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studied during the past years, the geometry of non-supersymmetric solutions is a
largely unexplored subject.

This is in part motivated by the difficulties in studying supersymmetry breaking
solutions. In fact, one of the main simplification which arise from supersymmetry is
the saturation of a Bogomol’nyi-Prasad-Sommerfield (BPS) bound, which essentially
results in a first-order formulation of the equations of motion: by solving the first-
order system found by imposing supersymmetry, one automatically gets a solution
of the supergravity equations of motion. The first-order system of supersymmetry
equations is also the key to a formal study of the geometry of the solution. As we
will review at the beginning of the next chapter, it is possible to reformulate the
variations of the fermionic fields in terms of differential forms on the compactifica-
tion manifold, and the first-order equations can be concisely written as the closure
of certain forms under a given differential operator. There is a natural structure
which underlies these equations, which is known as generalized complex geometry.
This was introduced by Hitchin [104] and refined by Gultieri [91] and it concerns
the study of a particular G-bundle over a given manifoldM. For a six-dimensional
compactifcation manifold we have G = O(6, 6), which is the structure group of a
bundle which is the direct sum T ⊕ T ? of the tangent and cotangent bundle over
M. Generalized geometry unifies two seemingly unrelated geometrical structures:
complex and symplectic geometry, which are related in string theory by dualities.
Generalized geometry thus provides the natural setup to study string compactifica-
tions in full generality. The use of generalized geometry and G-structure techniques
in the context of flux compactifcations has been studied by many groups. A partial
list of references is [85, 86, 87, 88, 89] and reviews on this subject are [84, 61].

We stress that, besides the inherent beauty and elegance of this formulation,
generalized geometry provides very powerful and useful tools to construct explicit
solutions in the domains we mentioned above. In fact, most of the techniques of
string compactifications are useful if the internal manifold is non-compact as well;
this is the case of direct interest for the gauge/gravity correspondance. We will
show the powerful of this approach in the next chapter, where we will derive the
Klebanov-Strassler solution by using generalized geometry techniques.

It is clear that this formalism is closely related to supersymmetry, and thus the
study of general non-supersymmetric compactifications is much more difficult. One
can start by asking if there is a subset of non-supersymmetric solutions which share
the same integrability properties then supersymmetric flux compactifications; the
answer is positive and there exists ways to break supersymmetry where one keeps
these integrability properties. In type IIB theories this is for example achieved by
turning a particular component of the fluxes [90, 127]; in this case the solution is
still described by a first-order system. This configuration is roughly speaking the
analogous of what in supergravity are known as “fake” BPS system or extremal non-
BPS black holes.

This class of non-supersymmetric compactifications is still a very limited subset
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of solutions, and for many applications one needs to explore more general solutions.
The problem then becomes, if it is possible to find natural variables in order to
simplify as much as possible the general second-order equations of motion, and to
study the geometrical structures that emerge in this case. The answer to this question
is largely unknown.

A first step is to realize that in practical situations, it is often already useful to
study small supersymmetry breaking effects around a given and known supersym-
metric solution. In this situation we can make use of the natural variables provided
by the generalized geometry approach, and use the equations of motion to derive
how the first-order description changes in the non-supersymmetric case. In the last
chapter of this thesis we will study this problem, and we will use explicit analytic non-
supersymmetric solutions based on conifolds to investigate how the first-order equa-
tions in the generalized geometry language are modified in the non-supersymmetric
case. We will then provide evidence that using an expansion in a small supersym-
metry breaking parameter, one can preserve a first-order description for the general
background at any order in the series expansion.

Organization of the work

This thesis is organized as follows.
In chapter 2, we give a brief introduction to flux compactification techniques,

with the aim of providing a short reference for the following chapters. We also
discuss conifold solutions in a somewhat unorthodox way by using pure spinor tech-
niques, we recall their use for the gauge/gravity correspondance and for models of
supersymmetry breaking.

In chapter 3 we describe a computational technique to study non-supersymmetric
string compactifications perturbatively around a given supersymmetric solution. We
then apply these tools to derive a large class of linearized analytic non-supersymmetric
perturbations around the Klebanov-Strassler solution.

In chapter 4 we derive the solution for the backreaction of a stack of anti-D3
branes smeared at the tip of the Klebanov-Strassler geometry, in a linear approxi-
mation. We discuss in detail anti-brane boundary conditions, and we numerically
compute the ratio between the parameters related to the confinement scales of the
false and true vacuum. We also discuss a different solution with a new Lagrangian,
by adding operators corresponding to small gaugino masses.

Chapter 5 deals with the problem of infrared singularities which are found in the
backreacted anti-brane solutions. We first solve for the full non-linear backreaction
in the near-brane region, and we then discuss a possible resolution of the singularity
via brane polarization.

In Chapter 6 we present a detailed study of the linearized solution corresponding
to the backreaction of anti-M2 branes on a warped cone, which is a higher dimensional
generalization of the deformed conifold.
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We end in Chapter 7 with a collection of results concerning the geometry of the
solutions discussed in the previous chapters, in connection to generalized geometry
techniques.

Chapter 8 contains a brief conclusion and we add a number of appendices with
notations and more technical details.

This thesis is based on the following papers:

1. I. Bena, G. Giecold, M. Grana, N. Halmagyi, S. Massai, “On Metastable
Vacua and the Warped Deformed Conifold: Analytic Results,” Class. Quan-
tum Grav. 30 (2013) 015003, arXiv:1102.2403 [hep-th].

2. I. Bena, G. Giecold, M. Grana, N. Halmagyi, S. Massai, “The backreaction
of anti-D3 branes on the Klebanov-Strassler geometry,” submitted to JHEP,
arXiv:1106.6165 [hep-th].

3. S. Massai, “Metastable Vacua and the Backreacted Stenzel Geometry,” JHEP
1206 (2012) 059, arXiv:1110.2513 [hep-th].

4. S. Massai, “A comment on anti-brane singularities in warped throats,” sub-
mitted to Phys.Rev.D, arXiv:1202.3789 [hep-th].

5. I. Bena, M. Grana, S. Kuperstein, S. Massai, “Anti-D3’s - Singular to the
Bitter End,” to appear in Phys.Rev.D, arXiv:1206.6369 [hep-th].
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Chapter 2

Flux compactifications and their
use

This chapter gives a brief introduction to the main topics of the thesis. While most
of the material covered here is by now standard, we offer a new derivation of the
Klebanov-Strassler solution and we present some results that will be used in the
following chapters.

2.1 Supersymmetry and generalized geometry

In this thesis we will mainly be interested in the construction of solutions of su-
pergravity theories in different dimensions. These should be viewed as low energy
limits of string theory, and the first step toward the understanding of various stringy
effects. Constructing a supergravity solution with all possible fields is still an ex-
tremely challenging problem, since the source terms in Einstein’s equations can be
rather cumbersome. The situation gets greatly simplified if one looks for a super-
symmetric solution. In this case one should first solve the conditions imposed by
supersymmetry, which in general are a set of first-order differential equations. In
most of the cases, these BPS conditions imply the equations of motion, thus the task
of finding solutions is much simpler for supersymmetry: a first-order system replaces
the second-order equations of motion.

This property has been extensively used to construct string compactifications
that preserve some supersymmetries, in various contexts: string phenomenology,
gauge/gravity duality and black hole solutions. Sometimes, the same structure can
be extended to solutions that break supersymmetry: examples are the (0, 3)-flux
supersymmetry breaking [90, 76, 127], the “almost-BPS” black hole solutions [83, 18]
and “fake” supergravity flows [70, 56, 50, 107, 159]. However, a vast region of the
space of non-supersymmetric solutions remains unexplored, since generically one
needs to abandon the hope of a first-order description.

One of the aims of this thesis is to initiate the exploration of general kind of
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non-supersymmetric solutions in the context of gauge/gravity duality and in string
phenomenology. As we will see in the next chapter however, the techniques used
to construct supersymmetric solutions are still extremely useful also to solve for a
generic non-supersymmetric problem, and we will extensively use these techniques in
the following. Thus, in the present section we will very briefly review what is known
about supersymmetric flux compactifications.

We will focus on type IIB supergravity, which will plays a major role in this
thesis. The field equations for this theory can be derived by the following action in
the Einstein frame:

SIIB =
1

2κ2

∫
d10x
√
−GR− 1

κ2

∫ [
dφ ∧ ?dφ+ e2φdC ∧ ?dC + ge−φH3 ∧ ?H3

+ geφF3 ∧ ?F3 +
g2

2
F5 ∧ ?F5 + g2C4 ∧H3 ∧ F3

]
+ S(loc) , (2.1)

supplemented by the on-shell self-duality condition F5 = ?F5. The general problem
is to derive a first-order description for supersymmetric solutions of the type IIB
field equations inside a given Ansatz. We are interested in compactifications to four-
dimensions, thus we take an Ansatz for the metric which is the most generic one
compatible with maximal symmetry in four-dimensions. This Ansatz is a warped
product of the form

ds2
10 = e2Ãds2

4 + ds2
6 , (2.2)

where ds6 is a metric on six-dimensional “internal” manifoldM6, possibly with non–
zero fluxes1. We will assume for now that ds2

4 is the Minkowski metric, although the
results below can be generalized to an Anti-de-Sitter compactification. The warping
Ã is a function of the internal coordinates. One can perform a reduction of the ten
dimensional action (2.1) and derive an effective action for the specific Ansatz (2.2).
To find a first-order description for a supersymmetric solution essentially means to
perform a “BPS rewriting” of this effective action.

To explain the general idea is better to look at a very simple example. Suppose
that we search for a metric ds2

6 with enough symmetries, in a such a way that
the solution will depend on just one internal coordinate. Although this seems a very
restrictive assumption, solutions of this kind play an important role in gauge/gravity
duality, as we will discuss in the next section. In this situation it is usually possible
to perform a reduction of the action to obtain a one dimensional effective action for
the dynamics of all the degrees of freedom that participate in the solution. This
dynamics can be thought of as a one dimensional motion on a given moduli space,
whose coordinates φa, a = 1, . . . , n are given by the n degrees of freedom of the
problem. Let us assume that the effective action is of the form

L =
1

2
Gab(φ)φ̇aφ̇b + V (φ) . (2.3)

1We will use the notation Ã for the warp factor, while the function A is a combination of other
metric modes that we will often use in the following chapters.

14



Supersymmetry and generalized geometry

The equations of motion are simply

∇φ̇φ̇ = gradV , (2.4)

and if V = 0 the solution is a geodesic on the moduli space. It is clear that to
find a first-order description of the system, namely a system of first-order ordinary
differential equations of the form

φ̇a = va(φ) , (2.5)

we need to find a vector field v = va∂a such that ∇vv = gradV . The problem can
also be casted in the form of a Hamilton-Jacobi equation. In this case the Hamilton-
Jacobi procedure gives a principal function W such that v = gradW . In this case,
one can easily show that the effective action can be written in the following BPS
form:

L =
1

2
Gab(φ̇

a − va)(φ̇b − vb) +
dW

dτ
. (2.6)

In general, to find the vector field v or the functionW from their defining equations, it
is as difficult as to solve directly the second-order system (2.4). This is precisely where
supersymmetry plays a crucial role: by looking at the supersymmetry conditions, one
gets directly a system of the form (2.5), in an essentially algebraic way. From this
point of view, supersymmetry gives one integration of the Hamilton-Jacobi equation.

We can now come back to the general problem. We need to find the natural
variables, analogous to the vector field v of the previous example, which permit to
use the supersymmetric variation to rewrite the action in a natural first-order, or
BPS, formulation. Since a full derivation will require a lengthy explanation, here we
limit to state the results of this investigation and we refer the reader to the original
references (in particular [84, 87, 88]) for more details.

The starting point are the supersymmetry variations of type IIB supergravity.
Since they contain ten dimensional spinors, one need to first decompose the spinors
in a 4+6 splitting. The problem is then to get rid of the spinors, and to recast
the supersymmetric variations as a first-order system of differential bosonic equa-
tions. This means to construct some geometric objects which encode some algebraic
structure and which satisfy a first-order equation. Since we are compactifying on a
six-dimensional manifold M6, we expect that such geometrical objects will be sec-
tions of a bundle overM6, on which we can apply a first-order differential operator.

We will now briefly follow the discussion in [87, 88]. The requirements to have
an N = 1 supersymmetric compactification involve both algebraic and differential
conditions. The supersymmetry variations of type IIB supergravity (we will mainly
consider the type IIB string, analogous results can be derived for type IIA) contain
two Majorana-Weyl spinors ε1,2 in ten dimensions; since we want to preserve N = 1
supersymmetry in the non-compact four dimensional space, we need a conserved
spinor ζ in four dimensions, and thus we decompose

ε1,2 = ζ+ ⊗ η1,2
+ + ζ− ⊗ η1,2

− , (2.7)
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where η1,2 are two six-dimensional Weyl spinors. If these two spinors are just parallel,
we get as an algebraic condition the existence of a nowhere vanishing spinor onM6.
This condition is equivalent to a reduction of the structure group SO(6) of the
tangent bundle of M6 to the stabilizer of η, namely SU(3). This case contains
the well known example of a Calabi-Yau manifold: in this case the spinor η is also
covariantly constant, ∇η = 0 and it is the simplest example of a compactification
besides the torus. An SU(3) structure can be defined in an equivalent way in terms
of differential forms; indeed, there is a correspondance between the pair (g, η), where
g is the metric onM6 and a pair (J,Ω), where J is a real two-form and Ω a volume
form:

(g, η)↔ (J,Ω) . (2.8)

This is a considerable progress since the explicit form of the metric is generically
unknown. We now search for a more general connection between reduction of the
structure group and differential forms, also valid in the general case in which the
two spinors η1,2 can have arbitrary relative orientation. It is easy to realize that the
tangent bundle T is not the natural framework to study this general case. This is
because the bundle of differential forms Λ•(T ?M6) carries a natural representation
of the Clifford algebra Cliff(6, 6). This algebra is associated to a bundle over M6

which is the sum of the tangent and cotangent bundle T ⊕ T ?, with structure group
O(6, 6). The study of complex structures on such bundles is the subject of what
is known as generalized complex geometry and it was introduced by Hitchin and
Gualtieri [104, 91] as a way to unify complex and symplectic structures on T . In this
language, one can encode the metric, the B-field and the spinors η1,2 as a pair of
Cilff(6, 6) spinors Φ± which are compatible and pure. Here ± refers to the chiralities,
so that Φ± ∈ Λeven/odd(T ?M6). One can also show that a pair of compatible pure
spinors corresponds to a reduction of the structure group of the generalized bundle
from O(6, 6) to SU(3)× SU(3). In terms of the two spinors η1,2, in general one can
write

Φ± = eBη1
+ ⊗ η2 †

± . (2.9)

IfM6 has SU(3) structure, there is a natural set of pure spinors, given by the pair
(J,Ω) as follows:

Φ− = −iΩ Φ+ = e−iJ . (2.10)

Since in this thesis we will mainly focus on manifolds with SU(3) structure, it is
interesting to classify them. We start by the simplest example of a manifold with
SU(3) structure, namely a Calabi-Yau manifold. In this case the Levi-Civita con-
nection has a SU(3) holonomy and the forms J and Ω are closed. In the general
case, one can define a connection with SU(3) holonomy which is not torsionless;
the torsion is a mesaure of the failure to satisfy the integrability condition of the
Calabi-Yau manifold. One usually decompose this torsion in SU(3) representations,
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as follows:

dJ = −3

2
Im (W1Ω̄) +W4 ∧ J +W3 (2.11)

dΩ =W1 ∧ J ∧ J +W2 ∧ J +W5 ∧ Ω .

The forms Wi are known as torsion classes and they provide useful information on
the geometry of a given manifold. For example, a complex manifold is characterized
by the necessary and sufficient conditionW1 =W2 = 0. We will discuss more details
about the intrinsic torsion in Chapter 7.

This conclude the brief survey on the algebraic conditions imposed by supersym-
metry on a given compactification. We now come to the differential part, namely
the first-order conditions on the metric and the fluxes which ensure supersymmetry,
and give a first-order formulation of the equations of motion. We skip the tech-
nical details of the derivation, which can be found in great clarity in Appendix A
of [88]. For the type IIB theory, N = 1 supersymmetry on a warped Minkowski 4D
compactification requires:

e−3Ã+φdH

[
e3Ã−φΦ−

]
= 0 (2.12)

e−3Ã+φdH

[
e3Ã−φΦ+

]
+ dÃ ∧ Φ̄+ + eφ ?6 λ(F ) = 0 ,

where dH is the H-twisted differential given by dH• = d•−H∧• (H being the NS-NS
three form), F is a polyform constructed from the sum of RR fluxes: F = F1+F3+F5,
λ is the following transposition

λ(X) =
∑
n

(−)[(n+1)/2]Xn (2.13)

and φ is the dilaton. The main advantage of this pure spinor approach in deriving the
conditions imposed by supersymmetry is that they provide directly a set of first–order
differential equations, without the need of explicitly computing the supersymmetry
variations of the supergravity fields.

The fact that this first-order system implies the supergravity equations of motion
can be proved from integrability arguments [119]. One can also show that the pure
spinors Φ± are the natural variable in which a BPS rewriting of the action is possible,
and roughly speaking they reduce to the Hamilton-Jacobi result (2.5) in a cone-like
compactification. We will come back to these ideas in chapter 7.

2.2 Conifolds and gauge/gravity duality

In this section we would like to show the powerful of the pure spinor equations de-
scribed above also in the case that the internal manifold is non-compact. Generalized
geometry techniques indeed prove very useful to derive solutions of interest for the
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gauge/gravity duality, where the six-dimensional compactification manifold is a cone
Y6 over a compact five-dimensional base Xn−1 (see Figure 1.1). The radial direc-
tion plays a crucial role, since it is dual to the renormalization group flow in the
gauge theory [80, 74, 155]. In this situation, the solution usually preserves enough
symmetries so that all the degrees of freedom depend only on the radial coordinate.
The supersymmetry equations then simplify considerably and one can hope to find
explicit analytic solutions.

We will now apply the machinery described in the previous section to derive the
Klebanov-Strassler solution, which is the gravity dual to a confining N = 1 gauge
theory, first obtained in [116]. We begin by a brief review of the geometry of conifolds;
for more details we refer to the reviews [101, 102]. The conifold is described in C4

by the equation
4∑

n=1

z2
n = 0 . (2.14)

The metric can be written in the following way:

ds2
6 = dr2 + r2ds2

T 1,1 , (2.15)

where the space T 1,1 is the coset space T 1,1 = (SU(2)×SU(2))/U(1) and its metric
is

ds2
T 1,1 =

1

9

(
dψ +

2∑
i=1

cos θidφi

)2
+

1

6

2∑
i=1

(
dθ2
i + sin2 θidφ

2
i

)
, (2.16)

where ψ has range in [0, 4π] and (θi, φi) parametrize two S2’s. The metric is thus
an S1 fibration over S2 × S2; the topology of this bundle is S2 × S3. It is useful to
introduce the following basis of one-forms on T 1,1 [141]:

g1 =
1√
2

(
− sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2

)
, (2.17)

g2 =
1√
2

(
dθ1 − sinψ sin θ2dφ2 − cosψdθ2

)
,

g3 =
1√
2

(
− sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2

)
,

g4 =
1√
2

(
dθ1 + sinψ sin θ2dφ2 + cosψdθ2

)
,

g5 = dψ + cos θ2dφ2 + cos θ1dφ1 .

The metric then reads

ds2
T 1,1 =

1

9
g2

5 +
1

6

4∑
i=1

g2
i . (2.18)

One can add a stack of N regular D3-branes and M fractional D3-branes on the
conifold, obtaining a gravity description of an SU(N) × SU(N + M) gauge the-
ory [114, 118]. The fractional D3 branes are just D5 branes wrapped on the S2 of
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Figure 2.1: The resolution and deformation of the singular conifold.

the conifold, and thus they source a magnetic R-R three-form flux on the S3, in
addition to the N units of five-form flux which come from the regular D3-branes:

1

(4π2α′)2

∫
T 1,1

F5 = N ,
1

(4π2α′)2

∫
S2

F3 = M . (2.19)

The solution of Klebanov and Tseytlin [118] which describes this situation is singular
in the infrared. The resolution of this singularity was described by Klebanov and
Strassler in [116]. The singularity of the conifold can be repaired in two ways (see
Figure 2.1). The first is a deformation in which the apex is replaced by a three-sphere,
the second is a small resolution in which the apex is replaced by a two-sphere [47].
The KS solution deals with the deformation of the singularity; an heuristic way to
see this is that in the KT solution there are M units of F3 on the S3. In the infrared
the S3 shrinks to zero size at the apex of the cone, causing the energy density of
the flux to diverge. Clearly, to resolve this singularity one can try to find a solution
in which the three-sphere remains of finite size at the apex (deeper reasons actually
come from a field theory analysis, which we skip here for simplicity). The deformed
conifold is described by the equation

4∑
n=1

z2
n = ε2 , (2.20)

where we introduced a new parameter ε, the radius of the blowed-up three-sphere
at the apex of the cone. A Ricci-flat metric on the deformed conifold was derived
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in [47]; here we will present an heuristic derivation which also includes the fluxes of
the Klebanov-Strassler solution, by using the techniques described in the previous
section. We start by writing an Ansatz for the fields. As in [116, 144], we need the
most general metric compatible with the symmetries of the T 1,1 space, which are
SU(2) × SU(2) × U(1). The U(1) symmetry, coming from a shift of the angular ψ
coordinate, is broken by the deformation of the conifold down to its Z2 subgroup
acting on the complex coordinates as a reflection zk → −zk. The field theory origin
of this is the breaking of a U(1) R-symmetry2. We thus seek for the most general
SU(2) × SU(2) × Z2 symmetric Ansatz for the metric and the fluxes. This was
constructed by Papadopolus and Tseytlin (PT) in [144] (they actually wrote a more
general Ansatz in which the Z2 symmetry is completely broken). The solution is
parametrized by eight scalars

φa = (x, y, p, A, f, k, φ) , (2.21)

depending only on the radial direction of the cone τ . The ten dimensional PT metric
is:

ds2
10 = e2A+2p−x ds2

1,3 + e−6p−x dτ2 + ex+y
(
g2

1 + g2
2

)
+ ex−y

(
g2

3 + g2
4

)
+ e−6p−x g2

5 .
(2.22)

We should require that in the infrared (ie at small τ) this metric approaches a finite
size three-sphere, while the S2 shrinks to zero. The metric on the S3 is given by

dΩ2
3 =

1

2
ε4/3

(
2

3

)1/3 [
g2

3 + g2
4 +

1

2
g2

5

]
, (2.23)

while the S2 forms are g1 and g2. The S2 should shrinks to zero as τ2 (this can
be shown for instance by solving the equations of motion in the infrared). These
infrared boundary conditions fix the leading order behavior of the metric functions
in the PT Ansatz (2.22):

x ∼ cx + log τ , y ∼ cy + log τ , p ∼ cp −
1

6
log τ , A ∼ cA +

2

3
log τ . (2.24)

We now write the Ansatz for the fluxes. In order to find F3, we note that at the
apex the flux should lie within the S3, so that

F3(τ = 0) = 2Pg3 ∧ g4 ∧ g5 , (2.25)

and in the ultraviolet should approach the KT value

F3(τ =∞) = P (g1 ∧ g2 + g3 ∧ g4) ∧ g5 . (2.26)
2The U(1) is actually broken to a Z2M subgroup by instanton effects, but this is a 1/M effect

not visible in the SUGRA approximation, while the breaking to Z2 is a leading order effect.
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Here we are setting P = M/4 and α′ = 1. The simplest interpolating Ansatz is

F3 = F g1 ∧ g2 ∧ g5 + (2P − F ) g3 ∧ g4 ∧ g5 + F ′ dτ ∧ (g1 ∧ g3 + g2 ∧ g4) , (2.27)

with F (0) = 0 and F (∞) = P . For the NSNS flux, a simple Z2 symmetric Anstaz
for the B-field is

B = f g1 ∧ g2 + k g3 ∧ g4 , (2.28)

and H3 = dB2. For the five-form flux, we have

F5 = F5 + ∗F5 , (2.29)

where
F5 =

[
πQ

4
+ (k − f)F + 2Pf

]
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (2.30)

For Q = 0, the Ansatz automatically implies F5 = B2 ∧ F3. A nonzero Q measures
the number of explicit D3-brane sources present at the tip of the cone.

We are interested in deriving the first-order equations imposed by supersymmetry
for the fields of the PT Ansatz discussed in detail above. In order to do that, we will
use the pure spinor equations described in the previous section. We will only consider
the case of an SU(3) structure, so the only information that we need to write down
the pure spinor equations explicitly is the knowledge of the complex structure form
Ω and the Kähler form J . These have been derived in [144] and they are very simple
in the basis Gi, related to gi by equation (A.2):

J = G1 ∧G2 +G3 ∧ g4 +G5 ∧G6 , (2.31)
Ω = (G1 + iG2) ∧ (G3 + iG4) ∧ (G5 + iG6) .

In terms of the basis gi these forms read

J = e−6p−xdτ ∧ g5 − exg1 ∧ g4 + exg2 ∧ g3; (2.32)

Ω = e−3p+x
2

[
− ieydτ ∧ g1 ∧ g2 + dτ ∧ g1 ∧ g3 + dτ ∧ g2 ∧ g4 (2.33)

+ ie−ydτ ∧ g3 ∧ g4 + eyg1 ∧ g2 ∧ g5 + ig1 ∧ g3 ∧ g5

+ ig2 ∧ g4 ∧ g5 − e−yg3 ∧ g4 ∧ g5

]
.

From this, we recall that we can obtain the pure spinors Φ± as follows:

Φ− = −iΩ , Φ+ = e−iJ . (2.34)

At this point we have all the ingredients to compute the pure spinor equations (2.12).
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The final result for the first equation is the following

e−3Ã+φdH

[
e3Ã−φΦ−

]
= (2.35)

=
1

2
e−3p+x

2

[
2idτ ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5

(
f − k + e−yf ′ − eyk′

)
− dτ ∧ (∧g1 ∧ g3 ∧ g5 + g2 ∧ g4 ∧ g5)

(
2 cosh y + 6p′ − x′ − 6Ã′ + 2φ′

)
− ie−ydτ ∧ g3 ∧ g4 ∧ g5

(
2ey + 6p′ − x′ + 2y′ − 6Ã′ + 2φ′

)
− ieydτ ∧ g1 ∧ g2 ∧ g5

(
−2e−y − 6p′ + x′ + 2y′ + 6Ã′ − 2φ′

) ]
= 0 ,

while for the Φ+ equation we find

e−3Ã+φdH

[
e3Ã−φΦ+

]
+ dÃ ∧ Φ̄+ + eφ ? λF = (2.36)

= e−6pdτ ∧ g1 ∧ g2 ∧ g3 ∧ g4

[
−2 + e6p+2x(4Ã′ + 2x′ − φ′)

]
+ e−2xdτ

[
eφP (f(2P − F ) + Fk) + e2x

(
4Ã′ − φ′

)]
+

1

2
(g1 ∧ g3 + g2 ∧ g4) ∧ g5

[
f − k − 2eφF ′

]
+ dτ ∧ g1 ∧ g2

[
e2y+φ(F − 2P )− f ′

]
+ dτ ∧ g3 ∧ g4

[
−e−2y+φF + e−φk′

]
+ ie−6p−xdτ ∧ (g1 ∧ g4 − g2 ∧ g3)

[
−1 + e6p+2x(2Ã′ + x′ − φ′)

]
= 0 .

We note that the warp factor Ã is related to the mode A of the PT Ansatz by
2Ã = 2A + 2p − x. From these expressions, we want to get a system of first-order
equations for the first derivatives of the PT scalars φa. If we try to solve algebraically
for φ̇a we see that there are too many independent equations, so we can rewrite
the previous conditions as a system of eight differential equations plus an algebraic
constraint. The latter comes from the top form in (2.35) (which is roughly H ∧ Ω)
and thus represents the (0, 3)–flux. We can thus rewrite the pure spinor equations
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in the form

(0, 3) : f − k + e−yf ′ − eyk′ = 0 , (2.37)

flow eqs : x′ =
1

2
e−2x

(
2e−6p + f(2P − F ) + kF

)
, (2.38)

y′ = − sinh y ,

p′ =
1

6

(
−2 cosh y + e−2x(e−6p + f(−2P + F )− kF )

)
,

Ã′ =
1

4
e−2x (f(−2P + F )− kF ) ,

f ′ = e2y(F − 2P ) ,

k′ = −e2yF ,

F ′ =
1

2
(f − k) ,

φ′ = 0 .

For simplicity we already used the last equation to set eφ = 1 in the above system,
in order to avoid redefinition of the metric modes in passing from the string frame
(in which we usually write the pure spinor equations) and the Einstein frame of the
PT Ansatz. We are now interested in finding a regular solution of this system, which
has the desired boundary conditions described above. Before solving the system, let
us pause and comment about this result. We derived the system of supersymmetry
equations in a rather unconventional way for the literature on gauge/gravity duality;
we now describe a more standard way to derive the same result. Since the solution
depends only on the radial variable, one can perform a reduction of the type IIB
supergravity action and derive an effective one-dimensional dynamics for the scalars
φa. This is a useful way to look at the problem and we will use it in the following.
The result of this procedure is a Lagrangian of the type of eq. (2.3), where Gab is a
metric on a moduli space whose coordinates are the scalars φa. In the specific case
of the PT Ansatz the result for Gab is the following:

Gabφ
′a φ′b = e4p+4A

[
x′2 +

1

2
y′2 + 6p′2 − 6A′2 +

1

4
φ′2

+
1

4
e−Φ−2x

(
e−2yf ′2 + e2yk′2 + 2e2Φ F ′2

) ]
. (2.39)

The scalar potential V (φ) has the following integrability property:

V (φ) =
1

8
Gab

∂W

∂φa
∂W

∂φb
. (2.40)

The real functionW (φ) is known as the superpotential, and this is basically one inte-
gration of the Hamilton-Jacobi equation for the one-dimensional system at hand [60].
In our case W is known:

WKS(φ) = e4A−2p−2x + e4A+4p cosh y +
1

2
e4A+4p−2x

[
f(2P − F ) + kF

]
. (2.41)
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From this superpotential we naturally derive gradient flow equations, which imply
the equations of motion:

φ′a =
1

2
Gab

∂WKS(φ)

∂φb
. (2.42)

While this is usually the form of the supersymmetry first-order system, with this
procedure it is not clear the relation with supersymmetry. With the pure spinor
result, we are now in the position to check if the system (2.42) is equivalent to the
requirement of supersymmetry. It is easy to show that the flow equations are indeed
the same as the system (2.38). However, supersymmetry imposes the additional
algebraic constraint (2.37), so we conclude that there exist solutions of the flow
equations (2.42) which break supersymmetry. This implies that W is not a true
superpotential, but a “fake” one. Indeed, this result agrees with the five–dimensional
gauged supergravity analysis of [97] (the fact that there exist solutions to (2.42) with
susy–breaking (0, 3)–flux was originally noticed in [122]).

Let us now solve the first-order system (2.38). We will solve for the eight functions
in the following order:

y, f, k, F, x, p, Ã, φ. (2.43)

The equation for y(τ) has a general solution of the form

y(τ) = log
[
tanh

(τ
2

+ Cy

)]
. (2.44)

In order to match the IR series y(τ) ∼ const + log τ + . . . we see that we can take
Cy = 0. With this solution we see that the system for the flux modes f, k, F decouple;
we thus need to solve:

f ′ = tanh2
(τ

2

)
(F − 2P ) ,

k′ = coth2
(τ

2

)
F ,

F ′ =
1

2
(f − k) . (2.45)

The solution with regular boundary conditions is

f = −P (τ coth τ − 1)(cosh τ − 1)

sinh τ
(2.46)

k = −P (τ coth τ − 1)(cosh τ + 1)

sinh τ
(2.47)

F = P
(sinh τ − τ)

sinh τ
. (2.48)

With this solution we can now solve for the metric functions x and p. We can easily
solve for the combination x+ 3p, which is given by

x+ 3p = log

[
1

2
cschτ

√
3 sinh(2τ)− 6τ + Cx

]
, (2.49)
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Figure 2.2: The warp factor of the Klebanov-Strassler solution.

and the regular boundary condition corresponds to Cx = 0. Recalling that the warp
factor is defined as h = e−4Ã, we have

h′ = −e−2(x+2Ã)(f(2P − F ) + kF ) . (2.50)

This can be solved by noticing that

x′ + 2Ã′ = e−2(3p+x) =
4 sinh2 τ

3(sinh(2τ)− 2τ)
(2.51)

and thus

x+ 2Ã =

∫ τ 4 sinh2 u

3(sinh(2u)− 2u)
du =

1

3
log (sinh(2τ)− 2τ)− 7

√
2

3
, (2.52)

where the constant follows from the definition h = e−4Ã. This expression gives the
warp factor h in terms of a single integral:

h = h0 − 16 22/3P 2

∫ τ (u cothu− 1) (sinh(2u)− 2u)1/3

sinh2 u
du . (2.53)

This integral cannot be evaluated analytically and a plot of its numerical values is
shown in Figure 2.2. The constant h0 ∼ 18.2373P 2 is chosen to have h(∞) = 0. In
terms of this integral the metric mode x is then

x = log

[
2−1/3

4

√
h(sinh(2τ)− 2τ)1/3

]
. (2.54)

This concludes the derivation of the IR and UV regular solution of the first-order
system (2.38), which was first derived by Klebanov and Strassler in [116]. It is easy
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to show that the constraint (2.37) is automatically satisfied for this solution, which
is thus supersymmetric (this fact was first proven in [93]). We summarize here the
Klebanov-Strassler solution we just derived, in terms of the function A that we will
use in the following chapters. We also reintroduce the ε parameter of the conifold:

ex =
1

4
h(τ)1/2

(
1
2 sinh(2τ)− τ

)1/3
,

ey = tanh(τ/2) ,

e6 p = 24

(
1
2 sinh(2 τ)− τ

)1/3
h(τ) sinh2 τ

,

e6A =
ε4

3 · 29
h(τ)

(
1
2 sinh(2τ)− τ

)2/3
sinh2 τ , (2.55)

f = −P (τ coth τ − 1) (cosh τ − 1)

sinh τ
,

k = −P (τ coth τ − 1) (cosh τ + 1)

sinh τ
,

F = P
(sinh τ − τ)

sinh τ
,

φ = 0 ,

Q = 0 .

2.3 The baryonic branch of Klebanov-Strassler

In this section we would like to show the power of the generalized geometry tech-
niques in deriving another cone-like solution of interest for the gauge/gravity corre-
spondance: the dual of the baryonic branch of Klebanov-Strassler field theory. We
will not need this solution in this thesis, although we will use a number of facts about
the baryonic branch of the theory. We thus include this section for completeness.
The original derivation of the solution is in [45] (BGMPZ in the following); here we
will rederive it in a slightly different and simpler way, making use of the pure spinor
equations.

As we discussed in the previous section, the Klebanov-Strassler solution has a Z2

symmetry which interchanges the two S2’s parametrized by (θ1, φ1) and (θ2, φ2). It
was then suggested in [94] that the KS solution should lie at a Z2 symmetric point
inside a moduli space of vacua which includes a baryonic branch, namely a locus
where the global U(1)B symmetry is broken by a VEV for baryonic operators B, B̄

B ∼ εα1...α2M (A1)α1
1 . . . (A1)αMM (A2)

αM+1

M+1 . . . (A2)α2M
2M ,

B̄ ∼ εα1...α2M (B1)1
α1
. . . (B1)MαM (B2)M+1

αM+1
. . . (B2)2M

α2M
. (2.56)
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The spontaneous breaking of the baryonic U(1)B is associated to a massless Goldston
boson which was identified in [94]. This boson should have a companion partner in
a N = 1 chiral multiplet, the saxion. The VEV for this mode corresponds to a one
parameter family of supersymmetric solutions. A VEV for the saxion corresponds to
the breaking of the Z2 symmetry in the gravity background, thus in order to find this
solution one should start by the most general SU(2)× SU(2) Ansatz for the metric
and the fluxes. This was already written down in [144]. Based on this Ansatz,
BGMPZ derived the first-order system of supersymmetric conditions by using G-
structure techniques, essentially by matching the intrinsic torsion and the fluxes in
each SU(3) representation. Here we will show how to derive this system by using the
same techniques of the previous chapter, namely by writing down the pure spinor
equations.

The PT Ansatz [144] for the metric is very simple in the basis Gi:

ds2 = e2Ads2
4 +

6∑
i=1

G2
i , (2.57)

while for the fluxes it is more concise in the original basis (ei, εj) (we refer to Ap-
pendix A for the definitions):

H = h2ε̃3 ∧ (ε1 ∧ e1 + ε2 ∧ e2) + dτ ∧
[
h′1(ε1 ∧ ε2 + e1 ∧ e2),

+ χ′(e1 ∧ e2 − ε1 ∧ ε2) + h′2(ε1 ∧ e2 − ε2 ∧ e1)
]
;

F3 = P
[
ε̃3 ∧ (ε1 ∧ ε2 + e1 ∧ e2 − b(ε1 ∧ e2 − ε2 ∧ e1)) + b′dτ ∧ (ε1 ∧ e1 + ε2 ∧ e2)

]
,

F5 = F5 + ?F5, F5 = Ke1 ∧ e2 ∧ ε1 ∧ ε2 ∧ ε3.

We recall that a prime denotes derivative with respect to the radial direction τ . We
also fix the following SU(3) structure:

J = (G1 ∧G2) + (G3 ∧G4) + (G5 ∧G6) (2.58)
Ω = (G1 + iG2) ∧ (G3 + iG4) ∧ (G5 + iG6). (2.59)

The PT Ansatz thus consists of ten scalars φa:

φa = (a, g, x, p,A, φ, b, h1, h2, χ) . (2.60)

To obtain the Z2 symmetric Ansatz we used in the previous chapter one has to fix a
particular relation between the metric modes a and g:

e2g = 1− a2 , (2.61)

and set χ = 0. The flux modes h1, h2 and b are related to the scalars f, k and F of
previous section by

f(τ) = h1(τ)− h2(τ) (2.62)
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k(τ) = h1(τ) + h2(τ)

b(τ) =
F (τ)

P
− 1 .

The dynamics of the ten PT scalars is described by the type IIB supergravity action,
which can be reduced to an effective one-dimensional problem of the type (2.3), with
a moduli space metric given by:

1

2
Gabφ̇

aφ̇b = e4A+2x−2φ
[
− 1

4
e−2gȧ2 + 3Ȧ2 − 1

4
ġ2 +

1

4
ẋ2 + φ̇2 − 6Ȧṗ+ 3Ȧẋ+ 3Ȧẋ

− 3ṗẋ− 4Ȧφ̇+ 3ṗφ̇− 3

2
ẋφ̇
]
− 1

8
e4A
[
2P 2ḃ2 + e−2φ

(
e2g(ḣ1 − χ̇)2

+ 2(aḣ1 + ḣ2 − aχ̇)2 + e−2g((1 + a2)ḣ1 + 2aḣ2 + (1− a2)χ̇)2
)]
,

(2.63)

and an interaction potential:

V (φa) =
1

8
e4A
[
2e−2(g−x+φ)a2 + e−2(g+6p+x+φ)

(
1 + e4g + 2(−1 + e2g)a2 + a4

)
− 4e−g−6p−2φ(1 + e2g + a2) + 2e−2φh2

2 + e−2x(Q+ 2P (h1 + bh2))2

+ P 2
(
e2g + 2(a− b)2 + e−2g(1 + a2 − 2ab)2

)]
. (2.64)

A superpotential W which satisfies the defining relation (2.40) is not known, even
if there has recently been some attention to this problem (see for example [22, 97]).
It has been suggested that a solution for this equation with the desired boundary
conditions (as we will see, the solution should interpolate between the KS and the
Maldacena-Nunez solution) does not exist [77]. A compromise was to find a function
W that gives the potential V only after some algebraic constraints are imposed [49].
We will come back in a moment on these constraints. Now we want to follow the same
procedure of the previous section, namely to write down the pure spinor equations
and derive the corresponding system of first-order equations. This computation is
more involved than in the KS case, but it is entirely algebraic and thus can be easily
carried out with Mathematica. One important difference from the KS case is that
we should be more general and allow for arbitrary phases θ±(τ) (functions of the
radial variable τ) in the pure spinor definitions:

Φ+ = eiθ+eiJ , Φ− = −ieθ−Ω . (2.65)

The reason is that the solution we seek should interpolate between different classes
of SU(3) structures (see for example [75] for interpolating G-structures). The KS
solution derived in the previous section corresponds to θ± = 0 (which is known as
the class B, see e.g. [45]). With this definition we can carry out the computation of
the pure spinor equations; to avoid clutter we show the final result in Appendix C.
These expressions contain the ten PT scalars φa and their first derivatives φ̇a, as
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well as the SU(3) structure functions A, B, θ±. With some algebraic manipulations,
one can show that the pure spinor equations are equivalent to the following set of
first-order ODEs:

a′ = −aC − 1

S
eg−2x−6p +

a(a− b)S
bC − 1

, (2.66)

g′ = e−2g

[
aS + (C − a)

(
−aC − 1

S
eg−2x−6p +

a(a− b)S
bC − 1

)]
,

x′ = aSe−g−6p−2x +
b− C
bC − 1

h2
2Se

−2x ,

p′ = − e−2g

12S(bC − 1)

[
e−2x−6p(4(b− C)(−1− a2 + 2aC)e6ph2

2S
2

− 2a(bC − 1)egS2)− (4a+ 2b+ 2a2b− 2C − 2a2C − 4abC

+ 4aS2 + 4bS2 + 2a2bS2 + 2a2CS2 − 8abCS2)
]
,

A′ =
b− C − b2C + bC2

8S
e−2x+2φ ,

φ′ = −h2S −
(

2a2C − b(−1 + a2 + 2aC)

bC − 1
e−2gh2S

)
C ,

b′ =
2a2C − b(−1 + a2 + 2aC)

bC − 1
e−2gh2S ,

h′1 =
1− bC
S

,

h′2 =
2a(b− C)(aC − 1)

bC − 1
e−2gh2S ,

χ′ =
(C − b)(aC − 1)2

(bC − 1)S
e−2g ,

together with two algebraic constraints:

1 =
4e−2φ

(bC − 1)2

[
e−2g+2x(aC − 1)2 + h2S

2
]
, (2.67)

h2 = − 2ah1

1 + e2g + a2
,

where we defined the combination C and S as:

C =
1

2a

(
1 + a2 + e2g

)
, (2.68)

S =
1

2a

[
a4 + 2a2(e2g − 1) + (e2g + 1)2

]1/2
. (2.69)

The SU(3) structure functions are fixed by

A =
1

S

(
C − a

)
, B = −e

g

S
, eiθ+ =

eg+φP (bC − 1)

iex(aC − 1)− egh2S
, eiθ− = 1 .

(2.70)
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One can show that the system (2.66), together with the two algebraic constraints,
imply the second-order equations of motion for the PT scalars. When we try to
solve the first-order equations, we find that a regular supersymmetric solution is
determined by two coupled ODEs for the fields a(τ) and v(τ) = e6p+2x, while all
other modes can be obtained from algebraic equations or simple decoupled ODEs.
The solution cannot be determined analytically, but a numerical analysis has been
performed in [45]. The end result is a family of supersymmetric solutions which
interpolate between the KS solution of the previous section and the Maldacena-
Nunez solution [128, 51] (MN), another N = 1 background dual to a confining
theory. MN corresponds to a phase θ+ = π

2 and it is known as a class C. For more
details about this family of solutions and its relation to the baryonic branch of the KS
gauge theory we refer to the original paper [45] (see also [68] for a detailed analysis
of the moduli space of the gauge theory).

2.4 Metastable supersymmetry breaking

In the previous sections we reviewed the construction of the Klebanov-Strassler so-
lution, which is a supergravity background dual to a confining N = 1 gauge the-
ory. This is clearly a good starting point to explore supersymmetry breaking in the
gauge/gravity correspondence. This will be one of the main subjects of this the-
sis and we will discuss in great detail various solutions which break supersymmetry
on the conifold. Here we want to introduce one particularly important mechanism,
which plays a crucial role in the following chapters.

The idea is to add an ingredient which does not preserve the same supersym-
metries of the Klebanov-Strassler solution. The simplest option is to add a stack
of anti-D3 branes with worldvolume transverse to the conifold directions. Since the
fluxes of the Klebanov-Strassler solution are BPS with D3 branes, a brane with op-
posite charge breaks supersymmetry down to N = 0. Of course, supersymmetry
is not there anymore to guarantee stability, and in general one expects this sort of
configurations to be unstable. We will discuss in length about the stability in the
following chapters. Here we review a simple analysis, due to Kachru, Pearson and
Verlinde (KPV) [111], which leads to conjecture that for some range of parameters,
the anti-D3 branes result in a metastable state, which is classically stable and decays
via bubble nucleation.

The proposed mechanism is based on the fact that the anti-branes can polarize
via the Myers effect [142] into a classically stable expanded five-brane, due to the
presence of the background three-form fluxes. This conjecture is supported by a
probe computation, in which one neglects the interaction of the anti-D3 branes with
the background. There is however a quantum non-perturbative channel, which is me-
diated by an instanton, which causes the five-brane to be metastable, but extremely
long-lived. If the five-brane is metastable, then the corresponding supergravity so-
lution should be dual to a metastable non-supersymmetric state in the Klebanov-
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Figure 2.3: The KPV process.

Strassler theory. This is because of the intuition that the effects of supersymmetry
breaking should be irrelevant in the UV, due to the IR redshift which comes from
the warping. This holographic model of spontaneous supersymmetry breaking is
extremely interesting, since in the gauge theory the identification of the metastable
point is difficult due to strong coupling, and a field theory evidence is still lacking,
despite various attempts to study the moduli space of the theory [68]. While Chapter
3 will be devoted to the construction of this supergravity solution, we now briefly
review the KPV conjecture, following [111].

We start by placing a stack of N̄ anti-D3 branes, extended along the x0, . . . x3

directions, at a given point τ0 along the radial direction of the deformed conifold. It
is easy to compute the force which is acting on the anti-branes, due to the warping
and the five-form flux. The DBI potential is proportional to e4A+4p−2x, while the
WZ term comes from the five-form flux and it is given by Ke4A+4p−2x. We thus have

FD3± = FDBI + FWZ ∼
[
kF + f(2P − F )

]
e4A+4p−2x ± ∂τe4A+4p−2x , (2.71)

where the ± means D3 and anti-D3 respectively. We see that a D3 brane is BPS
in the Klebanov-Strassler solution, since the DBI and Wess-Zumino term cancel due
to the supersymmetric equations (2.38). For anti-D3 branes, they sum up and they
create a net attractive force which brings the anti-D3 branes toward τ = 0, the tip
of the cone. Thereby, we consider a situation in which the anti-D3 branes sit at the
tip of the cone, which is topologically a three-sphere S3 and we suppose that the
branes sit at the north pole of the sphere. Since now we neglect the backreaction
of the branes, the metric which surrounds them is that of the near-tip limit of the
Klebanov-Strassler solution:

ds2
10 = dxµdxµ + b20

[
1

2
dτ2 + dΩ2

3 + τ2dΩ2
2

]
, (2.72)

where dΩ3 and dΩ2 are the metric on the round three and two spheres of the deformed
conifold and b0 ∼ 0.93266. Since the three-sphere supports M units of the R-R
three-form fluxes F3, we want to check wether, in the probe limit, the anti-branes

31



Metastable supersymmetry breaking

0.0 0.5 1.0 1.5 2.0 2.5 3.0
y

0.02

0.04

0.06

0.08

0.10

0.12
VeffHyL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
y

0.05

0.10

0.15

0.20
VeffHyL

Figure 2.4: The effective potential Veff (ψ) for different values of N̄/M . On the left:
N̄/M = 0.04 (we see the metastable minimum); on the right: N̄/M = 0.08 (the
minimum disappears).

can undergo a Myers effect [142] and polarize into an expanded brane. To check this,
we need to compute the potential of the would-be expanded brane and look for some
local minimum. Since the configuration breaks supersymmetry, we generically expect
to find at most a metastable point (provided that a domain wall interpolating between
this non-supersymmetric solution and one supersymmetric configuration with lower
energy exists). We can think of various polarization channels: in general, one expects
D5 and NS5 phases, together with obliques phases of (p, q)-branes [146, 160]. The
KPV conjecture is about the existence of the NS5 channel, in which the anti-D3
branes polarize into a NS5 brane wrapping a two-sphere inside the S3 at the tip,
and sitting at particular value of a polar angle ψ. As we now show, this channel is
present in the probe approximation. We consider the worldvolume action of the NS5
brane (we set α′ = 1):

S = µ5

∫
R3,1×S2

[
det g‖ det(g⊥ + 2πF)

]1/2
+ µ5

∫
R3,1×S2

B6 + C4 ∧ 2πF , (2.73)

where 2πF = 2πF2−C2 and the integral of F2 over the S2 gives the induced anti-D3
charge on the NS5 brane worldvolume:∫

S2

F2 = 2πN̄ . (2.74)

We are interested in the dynamics of the NS5 brane, described by the time evolution
of an angular variable ψ(t), such that ψ(t = 0) is the north pole. This time evolution
is generated by the following Hamiltonian H:

H = −A0

2π
(2ψ − sin(2ψ)) +

[
A2

0VDBI(ψ)2 + P 2
ψ

]1/2
, (2.75)

where Pψ = ∂L/∂ψ, A0 = 4π2µ5M/gs and

VDBI(ψ) =
1

π

√
b40 sin4 ψ +

(
π
N̄

M
− ψ +

1

2
sin(2ψ)

)2
. (2.76)
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Figure 2.5: The values of N̄/M for which there is a minimum of the potential Veff (ψ).
For N̄/M bigger then about 0.08 the potential has no minima.

We seek for a static solution, so we can use an effective potential derived by setting
Pψ = 0, obtaining

Veff (ψ) = A0

[
1

π

√
b40 sin4 ψ +

(
π
N̄

M
− ψ +

1

2
sin(2ψ)

)2
− 1

2π

(
2ψ − sin(2ψ)

)]
.

(2.77)
It is useful to look at an expansion of this potential valid for small ψ. We are actually
interested in the dependence of V on the two variables, ψ and N̄/M . The region
near the north pole is well approximated by a small ψ expansion:

Veff (ψ, N̄/M) ∼ N̄

M
− 4

3π
ψ3 +

b40
2π(N̄/M)

ψ4 +O(ψ5) +O
(
(M/N̄)2

)
. (2.78)

This expansion shows that the potential has a minimum at

ψ0 =
2πN̄

b40M
. (2.79)

We should note that this approximation breaks down as ψ0 becomes large, namely
when the number of anti-D3 branes grows. By plotting the full potential we can see
that the minimum is destroyed for large N̄/M (see Figure 2.4). Indeed, by requiring
that ∂ψVeff (ψ) = 0 one find the condition:

4π
N̄

M
= 4ψ + (b40 − 1) sin(2ψ)− 2 tanψ . (2.80)

By plotting the right hand side (see Figure 2.5) we see that one can find a solution
if N̄/M is less then a threshold value indicated by the dotted line. The precise value
can be found numerically to be(

N̄

M

)?
∼ 0.0714797 . (2.81)
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We note that this analysis is valid for a process in which the stack of N̄ anti-D3 branes
polarize into a single “giant graviton” NS5 brane. If N̄ exceed the value (2.81) for
fixed M the NS5 brane does not find an equilibrium configuration and rolls down to
ψ = π. However, one can consider a process in which the anti-branes are divided into
smaller subgroups, each of which does not exceed the threshold value for polarization:
in this way one can end up with a state of multiple polarized NS5 branes. Let us
focus now on a single NS5 brane, which finds a classically stable configuration at
a given angle. From this point the decay towards the true vacuum at the south
pole ψ = π can only occur via non-perturbative effects. Indeed, a bubble of the
supersymmetric vacuum can nucleate, surrounded by a spherical domain wall, which
in our case is a NS5 brane wrapped on the S3.

The solution for such domain wall was constructed by KPV in [111]. The compu-
tation of the decay rate reveals that one can tune the parameters in order to obtain
an extremely long-lived metastable state. Here we skip the details of this computa-
tion. It is however easy to understand the result of this non-perturbative decay. For
this it suffices to consider conservation of charge at infinity. We will discuss this in
much more detail in Chapter 4, here we just note that the H-flux across the afore-
mentioned domain wall jumps by one unit. Thus, if we start from a configuration
for which

1

4π2

∫
S3

F3 = M ,
1

4π2

∫
S2×[0,τ?]

H3 = K , (2.82)

where S3 is the A-cycle of the manifold and S2 × [0, τ?] is the B-cycle (this would
be correct in a compact space, here we consider a cutoff τ?) we end up with a
configuration for which the units of H-flux are K − 1. Then, charge conservation
requires:

−N̄ +KM = Qψ=π + (K − 1)M , (2.83)

where Qψ=π is the net D3 charge of the true vacuum. We thus get

Qψ=π = M − N̄ . (2.84)

In the decay process the N̄ units of anti-D3 charge are “eaten up” by the fluxes, but
to compensate a number M − N̄ of explicit D3 brane sources should materialize.
This kind of process is known as brane/flux annihilation.

We will discuss in much more details the polarization mechanism in Chapter 5.
For now we just note that the expansion of the effective potential (2.78), misses a
ψ2 term, which is expected when the full backreaction of the branes is taken into
account, as in [146]. In a supersymmetric configuration, this term can easily be
guessed from supersymmetry; a direct computation is much more involved, but gives
the same result [73]. It was argued in [59] that in the present situation the potential,
once full backreaction of the branes is taken into account, should behave in the same
way as in the Polchinksi-Strassler solution [146]. However, it is not clear why this
is the case, since supersymmetry breaking effects can allow for more general terms
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which can spoil the structure of the original PS setup. Indeed, in Chapter 5 we will
prove that the current situation is rather different from the PS solution, since some
of the phases, such as the D5 brane channel, are missing.

A final note is about the dual interpretation of the metastable state. In [111]
some conjectures were made about the nature of the metastable state in the KS
theory; the idea is that when N̄ = 1, and M is large, the non-supersymmetric
minimum is closely related to the baryonic branch of the KS theory for N̄ = 0. The
NS5 domain wall interpolating between the true and the false vaccum represents
then a transition between the baryonic and the mesonic branches of the theory.
Indeed the supersymmetric family of vacua with a number N of D3 branes on the
deformed conifold is dual to the mesonic branch of the KS theory. While we refer
to the original paper [111] for more details, it is important to keep in mind that
a compelling evidence for the existence of such metastable states in the theory is
lacking, the reason of which is mainly due to the difficulties in performing a strong
coupling analysis.

We end this section by mentioning that there exists a vast literature on metastable
supersymmetry breaking in string theory from different perspectives. A rather in-
complete list of works on this subject includes [64, 65, 6, 72, 143, 160, 82, 63, 8, 9,
43, 1, 132, 123].
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Chapter 3

Non–supersymmetric deformations
of conifolds

In this chapter we introduce a computational technique to study non-supersymmetric
deformations of supersymmetric flux compactifications of interest for the gauge/gravity
duality. We will then solve analytically the equations governing the space of first–
order deformations around the Klebanov-Strassler solution. We express the results
in terms of at most three nested integrals. These are the simplest expressions for
the space of SU(2)×SU(2)×Z2–invariant deformations. Among these solutions, we
expect to find the putative solution for smeared anti–D3 branes that we will discuss
in detail in the next chapter. We also explain why one cannot claim to identify this
solution without fully relating the coefficients of the infrared and ultraviolet expan-
sions of the deformation modes. This chapter is in part based on unpublished results
an on the paper [20].

3.1 Motivation

As we discussed in the previous chapter, there are various motivations to study non-
supersymmetric solutions based on conifold backgrounds. From the gauge/gravity
point of view, it is interesting to have solutions corresponding to different models of
supersymmetry breaking in the gauge theory. One can for example break supersym-
metry explicitly by adding some mass terms, or look for mechanisms of spontaneous
supersymmetry breaking. In phenomenology, this latter scenario is particularly im-
portant, since it is obtained by adding anti-D3 branes at the apex of the deformed
conifold. Anti–D3 branes in Klebanov-Strassler (KS) throats [116] are a key ingredi-
ent in string model building and string cosmology, where they are used both for lifting
AdS to de Sitter solutions [110], and to construct models of inflation using D3 branes
moving in KS–like geometries [109]. Solving for a space of non-supersymmetric so-
lutions is also useful to study how the pure spinor equations that we used to derive
the KS solution are modified for a non-supersymmetric compactification, providing
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a first step in the exploration of general flux compactifications in string theory.
In this section we will discuss a very useful method, introduced in [41], that

greatly simplifies the task of solving the second-order equations of motion for a cone-
like compactification. We will also present an extension of the method of [41], which
is more general and it will prove essential in the following chapters. The idea is
to solve the equations perturbatively in a small supersymmetry breaking parameter
around a given supersymmetric solution. By choosing the right variables, one can
reformulate the second-order system as a set of two first-order ones, which decouple
at any order of the expansion parameter. This formalism will also be useful to study
the non-linear case directly, without relying on a perturbative scheme.

We then proceed to solve for linearized perturbations of the Klebanov-Strassler
solution, inside the PT Ansatz that we discussed in the previous chapter. This set
of solutions contains the backreaction of anti-D3 branes smeared at the tip of the
deformed conifold. In the next chapter we will discuss the boundary conditions that
permit to identify this solution and we will study the backreaction in great detail.

3.2 A first–order formalism

We consider a type IIB supergravity background which is a warped product of the
form

ds2
10 = e2Ãds2

4 + ds2
6 , (3.1)

where ds2
6 = gmn dx

mdxn is the line element of an internal manifoldM6 with metric
gmn. We turn on a B field with field strength H = dB, RR fluxes F1, F3, F5 and
a running dilaton Φ1. We parametrize all the degrees of freedom by some scalars
φa(xm) which depend on the internal coordinates and which have values in a moduli
spaceM. Schematically,

φa = {g, h,Φ, H, Fa} . (3.2)

We will use indices a, b = 0, . . . , n to indicate coordinates on moduli space and we
will often use a coordinate free notation in which φ are maps φ :M6 →M.

We are interested in the situation in whichM6 has a cone-like structure, and the
scalars φa only depends on the radial direction of the cone, denoted by τ . In this
case we can perform a dimensional reduction of the type IIB supergravity action and
obtain a one dimensional n–body dynamics over the radial direction, which play the
role of time. The effective action is given by

S =

∫
L(φa, φ̇a) dτ , (3.3)

where
L =

1

2
Gab(φ) φ̇a φ̇b + V (φ) . (3.4)

1In the following we call the dilaton Φ, in order to avoid confusion with the map φ.
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A dot means derivative with respect to τ . The scalars φa are components of a map
φ : R+ → M, where M is the moduli space for this one–dimensional problem,
which we assume a Riemannian manifold with metric Gab. The equations of motion
following from this action are the equations of a falling body in the potential V :

Dφ̇ = ∇φ̇φ̇ = gradV , (3.5)

whereD is the covariant derivative along the curve φ : R+ →M, ∇ is the Levi-Civita
connection on M and (gradV )a = Gab∂bV . From the supersymmetry equations,
we also know a first-order system which implies the equations of motion, namely
functions va(φ) such that the supersymmetry conditions can be written as

φ̇a = va(φ) . (3.6)

This is for example the case for the KS system (2.42). In this situation we also know
one integration of the Hamilton-Jacobi equation, namely a superpotential W such
that

V (φ) =
1

8
Gab

∂W

∂φa
∂W

∂φb
, (3.7)

and the functions v(φ)a are given by

va(φ) = (gradW )a . (3.8)

These functions satisfy the equations of motion, namely

∇vv = gradV . (3.9)

The knowledge of the vector field v(φ) is crucial to derive an efficient perturbative
expansion scheme to study general non–supersymmetric solutions of the mechanical
system described by the Lagrangian (3.4). The idea is to parametrize the supersym-
metry breaking by introducing a new vector field ξ, defining:

φ̇ = v + ξ . (3.10)

Now we plug this definition into the equations of motion:

0 = ∇v+ξ(v + ξ)− gradV = ∇vv − gradV +∇vξ +∇ξv +∇ξξ = ∇vξ +∇ξv +∇ξξ ,
(3.11)

where we used the defining properties of C∞(M)– and R–linearity of the connection
∇ and the fact that v solves the equations of motion (3.9). Thus we get the system:

φ̇ = v + ξ (3.12)
∇vξ = −∇ξ(v + ξ) . (3.13)

In component, this system is a set of 2n first–order ODEs which is equivalent to the
set of n second–order equations of motion. This is a particularly nice parametrization
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since the scalar potential V disappear. As we will now describe, equations (3.12), (3.13)
can be conveniently solved in a perturbative expansion around the supersymmetric
solution.

We introduce a small supersymmetry breaking parameter γ and we expand the
fields v and ξ in a power series in γ:

v = v0 +
J−1∑
j=1

γjvj +O(γJ) , (3.14)

ξ =

J−1∑
j=1

γjξj +O(γJ) . (3.15)

We note that ξ0 = 0 since the field ξ parametrizes the supersymmetry breaking.
From equation (3.13) we get:

∇v0+v1+v2+...(ξ1+ξ2+. . . )+∇ξ1+ξ2+...(v0+v1+v2+. . . )+∇ξ1+ξ2+...(ξ1+ξ2+. . . ) = 0 .
(3.16)

As it is clear from this expression, the fact that ξ0 = 0 imply that at a given order
j in the perturbative expansion, there cannot be any term which couples vj to ξj .
This means that at the jth–order, equation (3.13) decouples from (3.12), and only
the modes φl, ξl with l < j enter in the equations as source terms. Once the solution
of the system for the ξj modes is known, one plugs the result in (3.12) and solves
this equation at order j. This procedure clearly simplifies the task of solving the
full equations of motion since at every order in γ one has to solve two systems of
decoupled first–order ODEs. Here we are particularly interested in the linearized
order. By writing

∇ξv = ξc ∂cv
a + ξc Γacbv

b , ∇v+ξξ = (vc + ξc)∇c ξa = ξ̇a + (vc + ξc) Γacbξ
c , (3.17)

where ξ̇a = φ̇c∂cξ
a = (vc + ξc)∂cξ

a, and the connection is derived from the metric on
moduli space Gab:

Γabc =
1

2
Gad

[
∂bGcd + ∂cGdb − ∂dGbc

]
, (3.18)

one can write the equations, at first-order in γ, as follows:

dφa1(τ)

dτ
=
∂va(φ0)

∂φc
φc1(τ) + ξa(τ) , (3.19)

dξa(τ)

dτ
= −

[
∂va(φ0)

∂φc
+ 2 Γabc(φ0) vb(φ0)

]
ξc(τ) . (3.20)

We write φa = φa0 + γφa1 +O(γ2), and in the following sections we will assume that
φa0 are the scalars of a given supersymmetric regular cone-like solution, such as the
Klebanov-Strassler one (reviewed in section 2.2).
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3.2.1 The Borokhov–Gubser method

If the functions va come from a superpotential W , namely can be written as in (3.8),
equations (3.19)-(3.20) have a simpler form in terms of the inverse modes ξa. The
system can be rewritten as follows:

dξa(τ)

dτ
+ ξb(τ)M b

a(φ0) = 0 , (3.21)

dφa1(τ)

dτ
−Ma

b(φ0)φb1(τ) = Gab(φ0) ξb(τ) , (3.22)

where
M b

d ≡
1

2

∂

∂φd

(
Gbc

∂W

∂φc

)
. (3.23)

In this form these equations were first derived in [41]. Since in the following we
will perturb around supersymmetric solutions for which a superpotential is known,
we will use this form of the system. However we remark that from the pure spinor
approach one does not need to know a superpotential in order to apply this method.

We note that in addition to the equations of motion (6.8), the functions ξa should
additionally satisfy a zero–energy condition coming from Einstein’s equations:

Gab(φ)
dφa

dτ

dφb

dτ
− V (φ) = 0 . (3.24)

It easy to show from the definition (3.22) that this amount to set:

ξa
dφa0
dτ

= 0 . (3.25)

In the following section we specify the equations above to study perturbations
around the Klebanov-Strassler (KS) solution. We write the expansion of the fields
φa (a = 1, ..., n) as follows

φa = φa0 + φa1(X) +O(X2) , (3.26)

where X represents the set of perturbation parameters, φa1 is linear in them, and φa0
are the functions in the Klebanov–Strassler solution, written explicitly in (2.55).

3.3 Analytic solutions

In this section we apply the method described above to the Papadopoulos and
Tseytlin Ansatz, we derive the two set of first-order equations for linearized deforma-
tion modes φa and their conjugate momenta ξa and we then solve these systems in
closed form, thus providing analytic formulae for the full set of SU(2)×SU(2)×Z2–
invariant deformation space around the Klebanov–Strassler solution. The method
follows that of [25], but here we present numerous analytical improvements.
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For sake of clarity, let us recall the metric and the fluxes of our Ansatz, that we
already discussed in chapter 2.2. We use the Ansatz for the supergravity background
fields proposed by Papadopoulos and Tseytlin (PT) [144], which is the most general
Ansatz consistent with the SU(2)×SU(2)×Z2–symmetry of the Klebanov–Strassler
background:

ds2
10 = e2A+2p−xds2

1,3 + e−6 p−xdτ2 + ex+y
(
g2

1 + g2
2

)
+ ex−y

(
g2

3 + g2
4

)
+ e−6p−xg2

5 ,
(3.27)

where all the functions depend on the variable τ . The fluxes and dilaton are

H3 = 1
2 (k − f) g5 ∧ (g1 ∧ g3 + g2 ∧ g4) + dτ ∧

(
f ′g1 ∧ g2 + k′g3 ∧ g4

)
,

F3 = Fg1 ∧ g2 ∧ g5 + (2P − F ) g3 ∧ g4 ∧ g5 + F ′dτ ∧ (g1 ∧ g3 + g2 ∧ g4) , (3.28)
F5 = F5 + ∗F5 , F5 = [kF + f (2P − F )] g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

Φ = Φ(τ) , C0 = 0 , (3.29)

where P is a constant while f, k and F are functions of τ and a prime denotes a
derivative with respect to τ . We will denote the set of functions φa, a = 1, ..., 8 of
the PT Ansatz in the following order

φa = (x, y, p, A, f, k, F,Φ) . (3.30)

The field–space metric in (3.4) is

Gab φ
′aφ′b = e4p+4A

[
x′2 +

1

2
y′2 + 6p′2 − 6A′2 +

1

4
Φ′2

+
1

4
e−Φ−2x

(
e−2yf ′2 + e2yk′2 + 2e2ΦF ′2

) ]
(3.31)

and the superpotential is given by

W (φ) = e4A−2p−2x + e4A+4p cosh y +
1

2
e4A+4p−2x (f(2P − F ) + kF ) . (3.32)

The background fields are given by the Klebanov–Strassler solution [116], sum-
marized in (2.55).

3.3.1 ξ̃a equations

We start by writing down the first-order system of eight ODEs (3.21) for the modes
ξa. As in [25] we shift to a slightly more convenient basis ξ̃a, defined as

ξ̃a ≡ (3ξ1 − ξ3 + ξ4, ξ2,−3ξ1 + 2ξ3 − ξ4,−3ξ1 + ξ3 − 2ξ4, ξ5 + ξ6, ξ5 − ξ6, ξ7, ξ8) .
(3.33)

The equations in the order in which we solve them, are2

ξ̃′1 = e−2x0 [2Pf0 − F0 (f0 − k0)] ξ̃1 (3.34)
2We have accounted for two misprints in the published version of [25].
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ξ̃′4 = −e−2x0 [2Pf0 − F0 (f0 − k0)] ξ̃1 (3.35)

ξ̃′5 = −1

3
Pe−2x0 ξ̃1 (3.36)

ξ̃′6 = −ξ̃7 −
1

3
e−2x0 (P − F0) ξ̃1 (3.37)

ξ̃′7 = − sinh(2y0)ξ̃5 − cosh(2y0)ξ̃6 +
1

6
e−2x0 (f0 − k0) ξ̃1 (3.38)

ξ̃′8 =
(
Pe2 y0 − sinh(2y0)F0

)
ξ̃5 +

(
Pe2y0 − cosh(2y0)F0

)
ξ̃6 +

1

2
(f0 − k0) ξ̃7 (3.39)

ξ̃′3 = 3e−2x0−6p0 ξ̃3 +
[
5e−2x0−6p0 − e−2x0 (2Pf0 − F0 (f0 − k0))

]
ξ̃1 (3.40)

ξ̃′2 = ξ̃2 cosh y0 +
1

3
sinh y0

(
2ξ̃1 + ξ̃3 + ξ̃4

)
+ 2

[(
Pe2y0 − cosh(2y0)F0

)
ξ̃5 +

(
Pe2y0 − sinh(2y0)F0

)
ξ̃6

]
. (3.41)

The key development we present here is to solve for all the ξ̃a in terms of two
simple integrals, one of which is the KS warp factor:

h(τ) = h0 − 32P 2

∫ τ

0

u cothu− 1

sinh2 u
(coshu sinhu− u)1/3 du , (3.42)

j(τ) =

∫ τ du

(coshu sinhu− u)2/3
, (3.43)

with h0 = 18.2373P 2 a numerical constant.
In solving the system of ξ̃ equations, we make the following key observations. In

the equations for ξ̃1 and ξ̃4, we note that

e−2x0 [2Pf0 − F0 (f0 − k0) ] =
h′

h
. (3.44)

This implies
ξ̃1 = X1h(τ) , ξ̃4 = −X1h(τ) +X4 . (3.45)

To obtain ξ̃8 we use the relations (which can be easily derived from the first-order
flow equations for the KS fields (2.38))

Pe2y0 − sinh(2y0)F0 = −1

2
(f0 + k0)′ , (3.46)

Pe2y0 − cosh(2y0)F0 = −1

2
(f0 − k0)′ , (3.47)

which yields

ξ̃′8 = −1

2
(f0 + k0)′ ξ̃5 −

1

2
(f0 − k0)′ ξ̃6 +

1

2
(f0 − k0) ξ̃7 . (3.48)

Integrating by parts and using (3.37) and (3.45), we get

ξ̃′8 = −1

2

(
(f0 + k0) ξ̃5

)′
− 1

2

(
(f0 − k0) ξ̃6

)′
− 1

6
X1h

′ . (3.49)
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This easily integrates to

ξ̃8 = −1

2
(f0 + k0) ξ̃5 −

1

2
(f0 − k0) ξ̃6 −

1

6
X1h(τ) +X8 . (3.50)

For ξ̃3 we observe that, from (2.51)

e−2x0−6p0 =
4

3

sinh2 τ

sinh 2τ − 2τ
=

1

3

ξ̃′3,h

ξ̃3,h

, (3.51)

where ξ̃3,h is the solution to the homogeneous equation, namely

ξ̃3,h = sinh 2τ − 2τ . (3.52)

As a result,

ξ̃′3 = 3e−2x0−6p0 ξ̃3 +
[
5e−2x0−6p0 − e−2x0 (2Pf0 − F0 (f0 − k0))

]
ξ̃1

= 3e−2x0−6p0 ξ̃3 +X1

(5

3

hξ̃′3,h

ξ̃3,h

− h′
)
. (3.53)

Henceforth,

ξ̃3 = −5

3
X1h(τ) +

2

3
X1ξ̃3,h

∫ τ

du
h′

ξ̃3,h

+X3ξ̃3,h . (3.54)

The above observations allow us to write the full solution in terms of two simple
integrals. We collect here the full solution

ξ̃1 = X1h(τ) , (3.55)

ξ̃3 = −5

3
X1h(τ)− 32

3
P 2X1csch2τ (sinh τ cosh τ − τ)4/3

− 128

9
P 2X1 (sinh τ cosh τ − τ) j(τ) + 2X3 (cosh τ sinh τ − τ) , (3.56)

ξ̃4 = −X1h(τ) +X4 , (3.57)

ξ̃5 = −16P

3
X1j(τ) +X5 , (3.58)

ξ̃6 = − 1

sinh τ
λ6(τ)− cosh τ sinh τ − τ

2 sinh τ
λ7(τ) , (3.59)

ξ̃7 = − cosh τ

sinh2 τ
λ6(τ) +

−3 + cosh 2τ + 2τ coth τ

4 sinh τ
λ7(τ) , (3.60)

ξ̃8 = P (τ coth τ − 1) coth τ ξ̃5 − P
τ coth τ − 1

sinh τ
ξ̃6 −

1

6
X1h(τ) +X8 , (3.61)

where

λ6(τ) = X6 +
1

2

(
−τ + coth τ − τ coth2 τ

)
ξ̃5(τ) +

1

6

X1

P
h(τ) , (3.62)
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λ7(τ) = X7 − csch2τ ξ̃5(τ) +
16

3
PX1csch2τ (cosh τ sinh τ − τ)1/3 +

64

9
PX1j(τ) .

(3.63)

Finally, ξ̃2 can be obtained through the zero–energy condition (3.25) or just by
direct integration of (3.41). The latter will introduce another integration constant,
X2, that one could then determine as some combination of the other ones via the
zero–energy condition. We find

ξ̃2 =− 2

3
X3τ cosh τ +

1

3
X4 cosh τ + PX6cschτ

(
coth τ − τcsch2τ

)
+ PX5cschτ

(
1− 2τcothτ + τ2csch2τ

)
+X2 sinh τ

+
1

2
PX7

(
−2τ coth3 τ + csch2τ + τ2csch4τ

)
sinh τ

− 1

108
X1

[
3csch3τ h(τ) (6τ − 5 sinh 2τ + sinh 4τ)

+ 2P 2csch5τ
(
− 15 + 24τ2 + 16 cosh 2τ − cosh 4τ − 32τ sinh 2τ + 4τ sinh 4τ

)
×
[
4 sinh2 τj(τ)− 6 (cosh τ sinh τ − τ)1/3

]]
. (3.64)

The zero–energy condition then amounts to

X2 −
2

3
X3 − PX5 −

3

2
PX7 = 0 . (3.65)

3.3.2 φ̃a equations

The analytic expressions we obtain for the eight φ̃a modes are all double integrals,
except for φ̃4 where we obtain a triple integral. This is a considerable improvement
over all previous works. Depending on the reader’s taste, the expressions may appear
somewhat cumbersome but they will be crucial for explicit numerical computations
that we will discuss in the next chapter.

To solve the system of φa, we also use a shifted basis [25]

φ̃a = (x− 2p− 5A, y, x+ 3p, x− 2p− 2A, f, k, F,Φ) . (3.66)

The system of equations for the φ̃a modes is (in the order in which we actually solve
them)

φ̃′8 = −4e−4A0−4p0 ξ̃8 , (3.67)

φ̃′2 = − cosh y0φ̃2 − 2e−4A0−4p0 ξ̃2 , (3.68)

φ̃′3 = −3e−6p0−2x0 φ̃3 − sinh y0 φ̃2 −
1

6
e−4A0−4p0

(
9ξ̃1 + 5ξ̃3 + 2ξ̃4

)
, (3.69)

φ̃′1 = 2e−6p0−2x0 φ̃3 − sinh y0 φ̃2 +
1

6
e−4A0−4p0

(
ξ̃1 + 3ξ̃4

)
, (3.70)
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φ̃′5 = e2y0 (F0 − 2P )
(

2φ̃2 + φ̃8

)
+ e2y0 φ̃7 − 2e−4A0−4p0+2x0+2y0

(
ξ̃5 + ξ̃6

)
, (3.71)

φ̃′6 = e−2y0

[
F0

(
2φ̃2 − φ̃8

)
− φ̃7

]
− 2e−4A0−4p0+2x0−2y0

(
ξ̃5 − ξ̃6

)
, (3.72)

φ̃′7 =
1

2

(
φ̃5 − φ̃6 + (k0 − f0) φ̃8

)
− 2e−4A0−4p0+2x0 ξ̃7 , (3.73)

φ̃′4 =
1

5
e−2x0 [f0 (2P − F0) + k0F0]

(
2φ̃1 − 2φ̃3 − 5φ̃4

)
+

1

2
e−2x0 (2P − F0) φ̃5

+
1

2
e−2x0F0φ̃6 +

1

2
e−2x0 (k0 − f0) φ̃7 −

1

3
e−4A0−4p0 ξ̃1 . (3.74)

The expressions for the ξ̃a modes are given in equations (3.55)–(3.61). We will now
show the solutions of this system. For clarity, we omit all the lengthy derivations
of the results. As in [25], we use the Lagrange method of variation of parameters
to obtain a solution in terms of integrals. We then performs various integrations by
part in order to reduce the number of nested integrations and to pick a nice basis of
integrals.

The general procedure is the following. Given a system of first-order ODEs

f ′i = Mj
i fj + bi , (3.75)

where i = 1, . . . , n and fi, Mi
j , bi are functions of τ , we first solve the homogeneous

equations, to find solutions f j(h),i. To obtain a solution of the inhomogeneous sys-
tem, we write a linear combination of the homogeneous solutions, promoting the
coefficients to functions of τ . Then we have

fi =

n∑
j=1

f j(h),iΛj(τ) , Λ(τ) =

∫
(f−1

(h))
i
j bi . (3.76)

For n = 1 we simply get

f = f(h)

∫ τ b(u)

f(h)(u)
du , f(h) = exp

∫
M . (3.77)

The integration constant depends on the limit of the integration in Λ.

The φ̃8 solution

By directly integrating (3.67) and a little bit of massaging, we arrive at

φ̃8 =Y8 − 64X8 j(τ) +
X7

P
h(τ)

− 64P X6

∫ τ (u cothu− 1)

sinh2 u (coshu sinhu− u)2/3
du

+
2

P
h(τ) ξ̃5(τ) +

16

3
X1 csch2τ (cosh τ sinh τ − τ)1/3 h(τ)

+
64

9
X1 h(τ) j(τ) +

64

3
X1

∫ τ
(
sinh2 u+ 1− u cothu

)
sinh2 u (coshu sinhu− u)2/3

h(u) du . (3.78)

45



Analytic solutions

The φ̃2 solution

The solution to equation (3.68) is given by

φ̃2 = cschτ Λ2(τ) , (3.79)

where

Λ2(τ) =Y2 − 16P X7

∫ τ
(
−2u coth3 u+ csch2u+ u2 csch4u

)
sinh2 u

(coshu sinhu− u)2/3
du

− 32P X6

∫ τ cothu− u csch2u

(coshu sinhu− u)2/3
du− 32P X5

∫ τ 1− 2u cothu+ u2 csch2u

(coshu sinhu− u)2/3
du

− 32

3
X4

∫ τ coshu sinhu

(coshu sinhu− u)2/3
du+

64

3
X3

∫ τ u coshu sinhu

(coshu sinhu− u)2/3
du

− 48X2 (cosh τ sinh τ − τ)1/3 +
8

9
X1

∫ τ 6u− 5 sinh 2u+ sinh 4u

sinh2 u (coshu sinhu− u)2/3
h(u) du

− 32

9
P 2X1

∫ τ −15 + 24u2 + 16 cosh 2u− cosh 4u− 32u sinh 2u+ 4u sinh 4u

sinh4 u (coshu sinhu− u)1/3
du

+
64

27
P 2X1

∫ τ −15 + 24u2 + 16 cosh 2u− cosh 4u− 32u sinh 2u+ 4u sinh 4u

sinh2 u (coshu sinhu− u)2/3
j(u) du .

(3.80)

The φ̃3 solution

Equation (3.69) is solved by

φ̃3(τ) =
1

sinh 2 τ − 2 τ
Λ3(τ) , (3.81)

where Λ3 is specified as

Λ3 =Y3 −
32

3
X4

∫ τ

(coshu sinhu− u)1/3 du− 112

3
X1

∫ τ

(coshu sinhu− u)1/3 h(u) du

− 80

3

∫ τ

(coshu sinhu− u)1/3 ξ̃3(u) du+ 2 τ coth τ Λ2(τ)− 2

∫ τ

u cothuΛ′2(u) du .

(3.82)

Expanding and simplifying this expression, it becomes

Λ3 =Y3 + 32P X7

∫ τ u coshu
(
−2u coth3 u+ csch2u+ u2 csch4u

)
sinhu

(coshu sinhu− u)2/3
du

+ 64P X6

∫ τ u cothu
(
cothu− u csch2u

)
(coshu sinhu− u)2/3

du
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+ 64P X5

∫ τ u cothu
(
1− 2u cothu+ u2 csch2u

)
(coshu sinhu− u)2/3

du

+
32

3
X4

{
2

∫ τ u cosh2 u

(coshu sinhu− u)2/3
du−

∫ τ

(coshu sinhu− u)1/3 du

}

− 32

3
X3

{
5

∫ τ

(coshu sinhu− u)4/3 du+ 4

∫ τ u2 cosh2 u

(coshu sinhu− u)2/3
du

}

+ 2 τ coth τ Λ2(τ) + 64X2

∫ τ u coshu sinhu

(coshu sinhu− u)2/3
du

+
64

9
X1

∫ τ

(coshu sinhu− u)1/3 h(u) du

+
10240

27
P 2X1

∫ τ

(coshu sinhu− u)4/3 j(u) du

+
2560

9
P 2X1

∫ τ

csch2u (coshu sinhu− u)5/3 du

− 16

9
X1

∫ τ u cothu csch2u (6u− 5 sinh 2u+ sinh 4u)

(coshu sinhu− u)2/3
h(u) du

+
64

9
P 2X1

∫ τ u cothu
(
−15 + 24u2 + 16 cosh 2u− cosh 4u− 32u sinh 2u+ 4u sinh 4u

)
sinh4 u (coshu sinhu− u)1/3

du

− 128

27
P 2X1

∫ τ (
−15 + 24u2 + 16 cosh 2u− cosh 4u− 32u sinh 2u+ 4u sinh 4u

)
× u cothu csch2u

(coshu sinhu− u)2/3
j(u) du . (3.83)

The φ̃1 solution

Next comes φ̃1 which we express concisely in terms of Λ2 and φ̃3:

φ̃1 =Y1 +
40

9
X4 j(τ)− 2

3
φ̃3(τ)− 160

9
X3

∫ τ

(coshu sinhu− u)1/3 du

+
5

3

∫
cothuΛ′2(u) du− 5

3
coth τ Λ2(τ) +

2560

27
P 2X1

∫ τ

csch2u (coshu sinhu− u)2/3 du

+
10240

81
P 2X1

∫ τ

(coshu sinhu− u)1/3 j(u) du− 80

27
X1

∫ τ h(u)

(coshu sinhu− u)2/3
du .

(3.84)

The (φ̃5, φ̃6, φ̃7) solutions

The fields φ̃5,6,7 are determined by a system of coupled ordinary differential equations.
The homogeneous solutions are easily found and then we apply the Lagrange method
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of variation of parameters to find the following expressions

φ̃5 =
1

2
sech2(τ/2) [τ + 2 τ cosh τ − (2 + cosh τ) sinh τ ] Λ5(τ) +

1

1 + cosh τ
Λ6(τ) + Λ7(τ) ,

φ̃6 =

[
τ

(
2− 1

1− cosh τ

)
− coth(τ/2) + sinh τ

]
Λ5(τ) +

1

1− cosh τ
Λ6(τ) + Λ7(τ) ,

φ̃7 = (− cosh τ + τ cschτ) Λ5(τ)− cschτ Λ6(τ) , (3.85)

where

Λ5 =Y5 −
1

2
P (τ coth τ − 1) csch2τ φ̃8(τ)− 32P

∫ τ (u cothu− 1) csch2u

(coshu sinhu− u)2/3
ξ̃8(u) du

+
1

4
X7

∫ τ

csch4u [2u (2 + cosh 2u)− 3 sinh 2u] h(u) du−X6

∫ τ 2 + cosh 2u

sinh4 u
h(u) du

+

∫ τ

csch2u
[
−3 cothu+ u

(
2 + 3 csch2u

)]
h(u) ξ̃5(u) du− 1

2
P

cosh τ sinh τ − τ
sinh4 τ

Λ2(τ)

+
1

2
P

∫ τ

csch4u (coshu sinhu− u) Λ′2(u) du− X1

6P

∫ τ

(2 + cosh 2u) csch4uh2(u) du

+
16

9
P X1

∫ τ

csch4u [2u (2 + cosh 2u)− 3 sinh 2u] j(u)h(u) du

+
4

3
P X1

∫ τ

csch6u (coshu sinhu− u)1/3 [2u (2 + cosh 2u)− 3 sinh 2u] h(u) du ,

(3.86)

Λ6 =Y6 −
1

2
P
[
−τ + coth τ + τ (−2 + τ coth τ) csch2τ

]
φ̃8(τ)

− 32P

∫ τ
[
−u+ cothu+ u (−2 + u cothu) csch2u

]
(coshu sinhu− u)2/3

ξ̃8(u) du

+
1

2
X7

∫ τ [
cosh 2u+ csch2u

(
3 + 2u2 − 6u cothu+ 3u2 csch2u

)]
h(u) du

+X6

∫ τ

csch2u
[
3 cothu− u

(
2 + 3 csch2u

)]
h(u) du

+

∫ τ [
1 +

(
3 + 2u2 − 6u cothu

)
csch2u+ 3u2 csch4u

]
h(u) ξ̃5(u) du

− 1

2
P
[
2 coth2 τ (−1 + τ coth τ) + csch2τ − τ2 csch4τ

]
Λ2(τ)

+
1

2
P

∫ τ [
2 coth2 u (−1 + u cothu) + csch2u− u2 csch4u

]
Λ′2(u) du

+X1

∫ τ {csch4u [−2u (2 + cosh 2u) + 3 sinh 2u]

12P
h(u) +

1

36
P csch6u

×
[
8 j(u) sinh2 u+ 6 (coshu sinhu− u)1/3

] [
− 28 + 32u2 +

(
31 + 16u2

)
cosh 2u
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− 4 cosh 4u+ cosh 6u− 48u sinh 2u
]}

h(u) du (3.87)

and

Λ7 =Y7 + P
[
−τ + coth τ + τ (−2 + τ coth τ) csch2τ

]
φ̃8(τ)

+ 64P

∫ τ
[
−u+ cothu+ u (−2 + u cothu) csch2u

]
(coshu sinhu− u)2/3

ξ̃8(u) du

+X7

∫ τ [
−1 +

(
−3− 2u2 + 6u cothu

)
csch2u− 3u2 csch4u

]
h(u) du

+X6

∫ τ

csch4u [2u (2 + cosh 2u)− 3 sinh 2u] h(u) du

+

∫ τ [
−2− 2 csch2u

(
3 + 2u2 − 6u cothu+ 3u2 csch2u

)]
h(u) ξ̃5(u) du

− P csch2τ
(
1− 2 τ coth τ + τ2 csch2τ

)
Λ2(τ)

+ P

∫ τ

csch2u
(
1− 2u cothu+ u2 csch2u

)
Λ′2(u) du

+X1

∫ τ {csch4u [2u (2 + cosh 2u)− 3 sinh 2u]

6P
h(u)− 1

9
P csch6u

×
[
8 j(u) sinh2 u+ 6 (coshu sinhu− u)1/3

]
×
[
−9 + 16u2 + 8

(
1 + u2

)
cosh 2u+ cosh 4u− 24u sinh 2u

]}
h(u) du .

(3.88)

The φ̃4 solution

While all the φ̃a modes so far have been double integrals, we obtain for φ̃4 a triple
integral expression

φ̃4(τ) =
1

h(τ)

{
Y4 −

16

3
X1

∫ τ h(u)2

(coshu sinhu− u)2/3
du+ 32P

∫ τ (u cothu− 1) csch2uΛ6(u)

(coshu sinhu− u)2/3
du

+ 16P

∫ τ Λ7(u)

(coshu sinhu− u)2/3
du+

32

5
P

∫ τ

(u cothu− 1) csch2u (coshu sinhu− u)1/3

×
[
5 Λ5(u) + 2P

(
−φ̃1(u) + φ̃3(u)

)]
du
}
. (3.89)

It may be possible that this expression can also be reduced to double integrals, but
we could not find any obvious way to do it and we will not need a simpler expressions
in the following. This completes the solution to the system.

49



Boundary conditions and anti–D3 branes

3.4 Boundary conditions and anti–D3 branes

The deformation space we have solved for is a fifteen–dimensional linear space (one
of the X’s can be eliminated through the zero–energy condition (3.65)) and con-
tains numerous solutions, out of which one can fish out the possible solution for
backreacted anti–D3 branes by imposing appropriate boundary conditions.

The strategy for doing this is explained in detail in [25]: one should eliminate
all integration constants that give divergent fields in the IR or non-normalizable
modes in the UV. Furthermore, to argue that the solution corresponds to D3 branes
one should set the divergence in the warp factor perturbation (given by φ̃4) to be
commensurate with the divergence coming from the five–form. This should fix all
the integration constants in terms of the would–be anti–D3 charge. Nevertheless,
to obtain the precise values of these constants, one needs to relate the infrared and
ultraviolet expansion parameters of the modes we presented in this chapter, and this
can only be done by numerical integration. This analysis will be the subject of the
next chapter.
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Chapter 4

Anti-D3 branes on the
Klebanov-Strassler geometry

In this chapter we study the full numerical solution for the 15-dimensional space
of linearized deformations of the Klebanov-Strassler background which preserve the
SU(2) × SU(2) × Z2 symmetries, which we constructed in closed form in the pre-
vious chapter. We identify within this space the solution corresponding to anti-D3
branes, modulo the presence of a certain “subleading” singularity in the infrared.
All the 15 integration constants of this solution are fixed in terms of the number of
anti-D3 branes, and the solution differs in the UV from the supersymmetric solution
into which it is supposed to decay by a mode corresponding to a rescaling of the
field theory coordinates. Deciding whether two solutions that differ in the UV by
a rescaling mode are dual to the same theory is involved even for supersymmetric
Klebanov-Strassler solutions, and we explain in detail some of the subtleties associ-
ated to this. We then discuss in some detail the infrared singularity of the anti-D3
solution, and we present a physical argument which shows that such singularity is
not due to the linearized approximation. This chapter is based on [21] and [134].

4.1 Introduction

As we discussed in the first chapters, antibranes in warped deformed conifold back-
grounds [116] are a staple ingredient of string phenomenology and cosmology con-
structions, being essentially the only generic method for lifting AdS solutions with
stabilized moduli, to dS solutions, and thus give rise to a landscape of dS vacua
of string theory [110]. These configurations are also believed to be dual to non-
supersymmetric metastable states in the KS confining gauge theory [111, 58].

In the previous chapter we constructed the full space of first-order SU(2) ×
SU(2)×Z2-invariant deformations around the KS background. We now want to use
these solutions to establish whether a solution corresponding to anti-D3 branes in
this background exists, whether it has the properties one expects from the brane-
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probe analysis of [111], and whether it is dual to a metastable vacuum of the dual
boundary theory. The underlying philosophy of this investigation is that one cannot
decide a-priori that a metastable anti-D3 brane solution must exist, and then accept
whatever boundary conditions are necessary in order for this to happen, but rather
one should start from a set of physical infrared and ultraviolet boundary conditions,
and ask whether a solution compatible with these boundary conditions exists or not.

Partial results about this investigation, which we will review in the following,
where obtained in [25, 19], and they can be summarized in the following points:

• The force on a probe D3 brane in the first-order perturbed background depends
only on one of the 16 integration constants, and this constant must be nonzero
if the solution is to correspond to antibranes [25]. Furthermore, the full func-
tional expression of this force can be calculated [19], and matches exactly the
expression one obtains from considering the action of probe anti-D3 branes in
a background with backreacted D3 branes à la KKLMMT [109].

• The putative solution for anti-D3 branes smeared on the three-sphere at the
tip of the KS solution is expected to have a singularity in the five-form and
warp factor, coming from the physical brane sources. Besides this, the solution
linear in N̄/M has three-form RR and NS-NS field strengths that diverge at
the tip, but are subleading with respect to the five-form and warp factor. This
subleading singularity is proportional to the coefficient of the brane-attracting
mode of the solution.

As explained in [25], if the singularity is not physical, then the backreaction of anti-
D3 branes in the KS solution gives rise to a large deformation of this solution, which
cannot be captured in perturbation theory, much like when one tries to construct
metastable vacua using type IIA brane engineering [16]. On the other hand, if the
singularity is physical, then our technology produces the full first-order backreacted
solution corresponding to antibranes in the KS background, as well as all first-order
deformation of the KS solution by non-normalizable SU(2) × SU(2) × Z2-invariant
modes, corresponding to all the relevant and irrelevant deformations of the dual field
theory.

In the following chapters we will discuss in detail about the nature of the sin-
gularity and about its possible resolution in string theory. Before coming to that,
in this chapter we ask whether inside the 15-dimensional space of parameters that
characterize our first-order solution one can identify a solution that has the correct
physics to correspond to anti-D3 branes in the KS geometry, subleading singularity
aside. Identifying this solution inside the 15-dimensional space is simpler than find-
ing a needle in a haystack, but not by far: One has to throw away divergent terms
both in the UV and in the IR expansion [25], and to impose the correct D-brane
boundary conditions on the divergence of the warp factor and electric field in the
infrared.
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Those conditions yield algebraic relations between the various integration con-
stants that appear in the UV or IR expansions of the fields; however, the integration
constant that appears in the UV expansion of a given field, say the dilaton, is not
the same as the one that appears in its IR expansion, but differs by highly nontrivial
combination of the other integration constants. Hence, even if we impose all the
physical boundary conditions in the UV and in the IR, we are far from being done,
because the UV conditions are expressed using the UV integration constants, and the
IR conditions are expressed using the IR integration constants, and it is possible that
upon translating the UV conditions into IR variables one may have the unpleasant
surprise that these conditions are incompatible. Hence, in order to establish whether
there is an antibrane solution, to correctly identify it inside the 15-dimensional space
of first-order deformations, and to establish whether this solution is dual or not to
a metastable vacuum of a supersymmetric field theory, it is crucial to relate the UV
and IR solutions, which is the main subject of the following sections.

Before unveiling those results, we would like to point out that identifying whether
two asymptotically-KS supergravity solutions are dual to vacua of the same field the-
ory is not as straightforward as it might seem, even for supersymmetric solutions,
essentially because, besides the seven normalizable and seven non-normalizable de-
formations, there exists another deformation corresponding to rescaling the four-
dimensional coordinates. Of course, if two solutions differ by non-normalizable de-
formations, they clearly are dual to two different field theories; however, as we will
explain in section 4.4, two solutions that differ by a rescaling of the field theory
coordiates, though technically the same, may or may not belong to the same theory.
Hence, using purely UV data one cannot distinguish asymptotically-KS supersym-
metric solutions that we expect [68] to be dual to different field theories, unless one
introduces extra assumptions about the infrared of the solutions, or about their bulk
behavior.

Anticipating our results, we compute the unique solution that has the correct
infrared and ultraviolet divergences (modulo the subleading singularity) to describe
anti-D3 branes in the KS background. All the parameters of this solutions can be
determined in terms of the number of antibranes.

We then discuss in detail the nature of the infrared singularity, and we will argue
that, even if the linearized approximation we use breaks down near the source, the
singularity is not an artifact of the perturbation scheme, and will be present in the
full non-linear solution as well. We will come back on this point with more technical
details in the next chapter.

In order to simplify the reading of this chapter, we include a brief overview. In
section 4.2 we recall very briefly the results of the previous chapter and of some
previous papers on the subject [25, 19]. In section 4.3 we explain the procedure
we use to relate the UV and the IR integration constants, and illustrate with more
details how this procedure can be implemented for one of the perturbation modes.
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We also give the relations between the UV and IR integration constants of the other
modes; the derivation of all these relations is left for appendix D. In section 4.4 we
present the different criteria for distinguishing supersymmetric asymptotically-KS
solutions, and in section 4.5 we identify the solution for anti-D3 branes inside the
space of solutions. Section 4.6 is devoted to the relation between our solution and the
one obtained in [58] by perturbing around the Klebanov-Tseytlin (KT) solution, and
to the identification within our space of solutions to perturbation of the KS solution
by non-normalizable modes dual to gaugino masses. In section 4.7 we study in more
detail the infrared singularity of the anti-D3 solution, and we show that both the
ISD and AISD fluxes G± are singular. We present an argument which shows that
this singularity is not an artifact of perturbation theory and we discuss the relation
with other works on anti-brane backreaction.

4.2 Setup

We wish to construct the backreacted solution corresponding to N̄ anti-D3 branes
smeared on the S3 at the tip of the warped deformed conifold. Since the smearing
preserves the symmetries of the background solution, we use the Ansatz proposed by
Papadopoulos and Tseytlin [144], which is the most general one (with vanishing RR
axion C0) that preserves the SU(2)×SU(2)×Z2-symmetry of the Klebanov-Strassler
solution (KS). The metric and the fluxes are given in (3.27), (3.28).

The fields from this Ansatz are collectively denoted φa, a = 1, ..., 8. In the
previous chapter we studied and fully determined the solution space of first-order
non-supersymmetric deformations of the supersymmetric Klebanov-Strassler theory,

φa = φa0 + φa1(Z) +O(Z2) . (4.1)

The background fields φa0 are given by the Klebanov-Strassler solution without
mobile D3-branes, summarized in (2.55). We reproduce them here for the reader’s
convenience:

ex =
1

4
h(τ)1/2

(
1
2 sinh(2τ)− τ

)1/3
,

ey = tanh(τ/2) ,

e6 p = 24

(
1
2 sinh(2 τ)− τ

)1/3
h(τ) sinh2 τ

,

e6A =
ε4

0

3 · 29
h(τ)

(
1
2 sinh(2τ)− τ

)2/3
sinh2 τ , (4.2)

f = −P (τ coth τ − 1) (cosh τ − 1)

sinh τ
,

k = −P (τ coth τ − 1) (cosh τ + 1)

sinh τ
,
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F = P
(sinh τ − τ)

sinh τ
,

Φ = 0 ,

Q = 0 .

where ε0 is the deformation parameter of the conifold, related to the confinement
scale of the dual gauge theory. Of significance are also the warp factor h and the
Green’s function j for this background:

h(τ) = 32P 2

∫ ∞
τ

u cothu− 1

sinh2 u
(coshu sinhu− u)1/3 du , (4.3)

j(τ) = −
∫ ∞
τ

du

(coshu sinhu− u)2/3
. (4.4)

Note that the last equality in (4.2) implies we are taking gs = 1. Furthermore,
the dimensionful constant P is related to the quantized dimensionless units of flux
M entering in the rank of the gauge groups of the dual field theory (see section 4.4.2)
by

P =
1

4
M α′ , (4.5)

So as to avoid extra clutter, in what follows we take α′ = 1, and ε0 = 1.
In the previous chapter we described how, by using a method due to Borokhov

and Gubser [41], finding linearized deformations away from a supersymmetric so-
lution can be reduced to solving two sets of first-order ordinary differential equa-
tions in the radial variable τ , instead of second-order differential equations. Out of
those two sets, the first one forms a closed system for the variables ξa that can be
thought of as “conjugate momenta" for the perturbations φa1 of the fields entering our
Ansatz (3.27), (3.28). The integration constants associated to that first system are
labelled Xa, and are non-zero for a non-supersymmetric solution. The integrations
constants from the second system of coupled 1st-order ODE’s are denoted Ya.

For the problem of present interest, i.e. the backreaction of anti-D3’s on KS, there
is one relation between the constants Xa that has to be obeyed on the whole space
of solutions. Namely, the zero-energy condition

6X2 − 4X3 − 6PX5 − 9PX7 = 0 . (4.6)

Another integration constant, Y1 as it happens, looks naively like it can be gauged
away by a rescaling of the four-dimensional coordinates but as we will see later plays
a crucial role in the physics. We are therefore left with fifteen meaningful integration
constants.

Out of those fifteen parameters, the one called X1 plays a key role. Indeed, the
force exterted on a probe D3-brane is directly proportional to it and does not depend
on any other integration constant [25]. Its expression was found in [19] and is given

55



Numerical integration

by

FD3+ =
2

3
e−2x0ξ1

=
2

3
e−2x0 X1 h(τ) ,

=
32

3

22/3X1

(sinh 2 τ − 2 τ)2/3
. (4.7)

One can also use the conventions of [76] to describe the same result for a first or-
der expansion around any warped Calabi-Yau background with ISD flux. Here the
derivative of the DBI and WZ actions for D3-branes are respectively proportional to
the warp factor e4 Ã and the four-form RR potential C4 = αdx0 ∧ ...∧ dx3, where in
the language of (3.27) and (3.28), we have

Ã = A+ p− x

2
, α′ = −e4A+4 p−4x

[
πQ

4
+ k F + f (2P − F )

]
. (4.8)

The force is found to be

FD3± = Φ′∓ , where Φ± = e4 Ã ± α , (4.9)

and by D3− we mean D3-branes. The combinations Φ± are sourced by D3± respec-
tively, and by |G±|2 [59, 67] where G± = G3 ∓ i ∗ G3 and G3 = F3 + ie−φH3. We
refer to section 4.7 for more detail about this notation.

4.3 Numerical integration

In the previous chapter, we found that the fully analytic generic solution to the
most general first-order deformation of the Klebanov-Strassler background involves
at most two nested integrals of the form∫ τ

h(u) f(u) du , or
∫ τ

j(u) f(u) du , (4.10)

where f(τ) is a certain combination of hyperbolic functions. Expressions for the
warp factor h(τ) of the KS background and its Green’s function j(τ) are provided
in (4.3) and (4.4).

Let us illustrate this with the result for φ̃8, corresponding to shifts in the dilaton,
whose expressions is given in (3.78) and we reproduce it here:

φ̃8 =Y8 − 64X8 j(τ) +
X7

P
h(τ)

− 64P X6

∫ τ

1

(u cothu− 1)

sinh2 u (coshu sinhu− u)2/3
du

56



Numerical integration
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Figure 4.1: The profile of the field φ̃8 corresponding to a shift of the dilaton, for
the following choices of integration constants (with e.g. P = 1). Blue, also labelled
a©: X1 = 1, X5 = −15

2 , X6 = X7 = 5, X8 = 2, Y8 = −88.05; Red b©: X1 = X6 =
X7 = 1, X5 = −7

6 , X8 = 1.8, Y8 = −111.5; Yellow c©: X1 = X7 = 2, X5 = −7
6 , X6 =

8.608, X8 = −0.843, Y8 = −133.9. In each case, Y8 is fixed so as to ensure that
φ̃8(∞) = 0.

+ 2
X5

P
h(τ) +

16

3
X1 csch2τ (cosh τ sinh τ − τ)1/3 h(τ)

+
64

9
X1 h(τ) j(τ)− 32

9
X1

∫ τ

1

(
sinh2 u+ 1− u cothu

)
sinh2 u (coshu sinhu− u)2/3

h(u) du . (4.11)

We have chosen to integrate in the domain [1, τ ], given that many of the integrands
(like the one from the last term above) are infrared-divergent. Once the limits of
integration are fixed, the constant Y8 in (4.11) is defined unambiguously. The profile
for φ̃8 is given in Figure 4.1.

The infrared and ultraviolet behaviors of the modes are given in Appendix D.
Some of the integration constants appearing in the infrared expansions (like Y IR

3 or
Y IR

6 ) correspond to unphysical divergences of various fields, and we will set them
to zero. Other constants (like Y IR

7 or X1) correspond to physical divergences in
the warp factor and in the RR five-form field strength coming from the presence of
smeared anti-D3 branes, and we need to keep them in the final solution. We will
explain this procedure when we construct the antibrane solution in section 4.5.

In order to stress out how the integration constants Xa and Y a are paired into
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normalizable and non–normalizable modes we also remind the reader of the UV
behaviors of those modes [25], which one can also extract from the expansions in
Appendix D:

dim ∆ non-norm/norm integration constants
8 r4/r−8 Y4/X1

7 r3/r−7 Y5/X6

6 r2/r−6 X3/Y3

5 r/r−5 −−−
4 r0/r−4 Y7, Y8, Y1/X5, X4, X8

3 r−1/r−3 X2, X7/Y6, Y2

2 r−2/r−2 −−−

Table 4.1: The UV behavior of all sixteen modes for the SU(2) × SU(2) × Z2-
symmetric deformation Ansatz around the Klebanov-Strassler solution.

4.3.1 Relating the IR and UV integration constants

Given that ultimately we will have to impose boundary conditions on the generic
analytic solution to the full space of first order deformations around KS, we should
look at the IR and UV behavior of the modes φ̃a. Moreover, it is not enough to
consider the expansions shown in Appendix D. The zeroth-order terms in the ex-
pansions collected in that Appendix include arbitrary integration constants coming
from indefinite integrations, which are generically denoted as Y IR

a , Y UV
a . In order to

determine how the Y IR
a ’s are related to the Y UV

a ’s and thus to connect the IR and
UV regions, we have to perform a numerical integration that will fix Y UV

a as follows:

Y UV
a = Y IR

a +
8∑
b=1

Na
bXb , (4.12)

where N is a matrix of numerical coefficients arising out of evalutions of the single
and double integrals appearing in the analytic solutions for the φ̃a modes.

All in all, following the procedure we have just outlined, the relations between
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all1 the Y UV
a and Y IR

a that we have derived are as follows:



Y UV
8

Y UV
2

Y UV
3

Y UV
1

Y UV
5

Y UV
6

Y UV
7


=



Y IR
8

Y IR
2

Y IR
3 − 2Y IR

2

Y IR
1 − 5

3 Y
IR

2

Y IR
5 + P

6 Y
IR

8

Y IR
6 + 3P

2 Y IR
2 − P

2 Y
IR

8

Y IR
7 − P Y IR

2 + P Y IR
8


+ N ·



X1

X2

X3

X4

X5

X6

X7

X8


, (4.13)

with the matrix N

N =

−235.3P 2 0 0 0 −36.47P 35.71P −18.24P 53.56

−3.870P 2 0 83.34 7.791 83.34P −12.37P 166.7P 0

93.63P 2 250.0 206.7 93.84 −284.0P 61.22P −243.8P 0

−123.8P 2 −40.25 70.31 −1.827 22.93P 35.50P 71.33P 0

−165.9P 3 −20.16P 19.52P 1.488P 14.08P 2 11.90P 2 36.32P 2 17.85P

100.6P 3 −166.7P 81.27P −46.06P 221.4P 2 −48.57P 2 265.8P 2 −8.545P

−225.8P 3 83.34P −94.65P 16.52P −158.9P 2 35.92P 2 −221.4P 2 17.09P


.

The above relations (4.13) depend at an intermediary stage on our results for
the relation between the integration constants Ya that appear in the analytic solu-
tion derived in section 3.3.2 and the constants Y IR

a that appear in the IR expan-
sions (D.3)–(D.10), obtained via the method summarized at the beginning of this
section and further expanded upon in the next subsection. We provide them here as
a matter of having accessible intermediate results:



Y IR
8

Y IR
2

Y IR
3

Y IR
1

Y IR
5

Y IR
6

Y IR
7


=



Y8

Y2

2Y2 + Y3

Y1

Y5 − P
6 Y8

−P
2 Y2 + Y6

P Y2 + Y7


+ M(Y IR,Y ) ·



X1

X2

X3

X4

X5

X6

X7

X8


, (4.14)

1Except Y4, which is far more difficult to get and will not be needed for our following analysis
in any case.
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M(Y IR,Y ) =

352.6P 2 0 0 0 36.47P −41.56P 18.24P −53.56

25.86P 2 0 −33.23 3.918 −38.81P −3.432P −69.25P 0

−18.62P 2 −99.69 15.54 −0.9673 7.797P −7.959P 15.92P 0

144.4P 2 98.79 −67.47 5.146 −81.34P −44.35P −153.9P 0

92.62P 3 12.26P −9.501P −4.435P −16.54P 2 −18.03P 2 −22.52P 2 −11.85P

8.129P 3 24.44P −1.632P 1.147P −4.773P 2 2.180P 2 −11.20P 2 −3.979P

−1.307P 3 −38.81P −4.754P 3.491P 1.749P 2 3.599P 2 −6.256P 2 7.959P


.

Analogously, the link between the parameters Y UV
a and Ya can similarly be obtained

from the UV/IR relation (4.13).

4.3.2 An illustration of the procedure

As an example making this procedure plainer to the reader, we show how we relate
Y UV

8 and Y IR
8 . This is a three-stage procedure:

(i) first, we relate Y IR
8 and the parameter Y8 appearing in (4.11);

(ii) we next obtain the relation between Y UV
8 and Y8;

(iii) finally, using results from the above steps, we get Y UV
8 in terms of Y IR

8 .
In order to implement step (i) above and relate Y IR

8 to Y8, we expand the inte-
grands entering the IR expansion of the solution to the φ̃8 equation up to a certain
power in τ . We then evaluate the indefinite integral and call Y IR

8 the constant term
in φ̃8. The first few terms in those expansions are given by (D.3), which we provide
here for convenience:

φ̃IR8 =
1

τ

(32

3

(
2

3

)1/3

(3PX6 − h0X1) + 32 · 21/3 · 32/3X8

)
+ Y IR

8 +O(τ) . (4.15)

We now have to match (4.15) at some small τ with the numerical value of φ̃8 that
we obtain by performing the integrals in (4.11) numerically. Since the expansions
for the integrands are good up to τ > 1, we did choose to match at τ = 1, where
the integrals that enter the solutions for the φ̃’s are zero by definition. Evaluating
numerically (4.11) at τ = 1, we find

φ̃8(τ = 1) = Y8 +84.0493P 2X1 +28.5159P X5 +14.2579P X7 +41.2221X8 , (4.16)

while from the IR expansion of φ̃8 (4.15), we have

φ̃IR8 (1) = Y IR
8 − 268.524P 2X1 − 7.9588P X5 + 41.5621P X6

− 3.97940P X7 + 94.786X8 . (4.17)

Comparing the above two results, (4.16) and (4.17), we finally obtain the end-result
of step (i) above:

Y IR
8 = Y8 + 352.574P 2X1 + 36.4747P X5 − 41.5621P X6
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Figure 4.2: The numerical solution for the field φ̃8 for X1 = 1, X5 = −15
2 , X6 =

5, X7 = 5, X8 = 2, Y8 = −88.05, P = 1 (underlying blue solid line). The red and
orange dashed lines correspond respectively to the IR and UV expansions.

+ 18.2373P X7 − 53.5642X8 . (4.18)

With this relation at hand, we can furthermore make sure, as one more consistency
test, that the numerical integrals and the series agree at small τ . The result is shown
on Figure 4.2.

We go through the same recipe for the UV and compare the value of the UV
series of the integrands with the value of φ̃8 that we have obtained by performing
the integrals numerically2 at τ = 15. When the dust settles down, we find the
following relation between Y UV

8 and Y8:

Y UV
8 = Y8 + 117.318P 2X1 − 5.85263P X6 . (4.19)

As one extra check, inserting the above result in the UV expansions, we can verify
that the UV series approximates well our numerical results at large τ . This can also
be see on Figure 4.2.

Note that for φ̃8 there is a rather large range of overlap between its IR and UV
series expansions. So, with hindsight, for this particular mode, we could have avoided
going through tedious numerical work. On the other hand, for most of the other
φ̃a fields, the overlap is much narrower. Therefore, in order to attain satisfactory
precision in relating the IR and UV integration constants, we have opted for a careful
numerical analysis.

2With as much precision as desired. Here, for both IR and UV expansions, we have settled for
20 orders of WorkingPrecision using Mathematica. The UV series expansions were derived up to
order 15.
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4.4 Asymptotically KS solutions and their field theory
interpretation

Having found the full 15-dimensional space of perturbative solutions around the KS
background, we would now like to develop the machinery that will allow us to identify
whether the antibrane solution is in the same theory as the supersymmetric back-
ground into which it is conjectured to decay [111]. However, as mentioned in the
introduction, distinguishing between asymptotically-KS solutions and arguing which
background is dual to which field theory using only UV data is not trivial even for
supersymmetric solutions, essentially because of the existence of the scale deforma-
tion Y1, which equivalently can be traded for the ε parameter that characterizes the
size of the deformed conifold before the warping.

If two solutions differ by non-normalizable deformations, they are dual to two
different field theories. However, our fifteen-dimensional deformation space has the
peculiarity that there are seven pairs of normalizable/non-normalizable modes and
then one extra mode Y1. The putative partner to Y1 is eliminated by the zero-energy
condition and it may seem that Y1 itself is a gauge artifact which can be removed by
rescaling the four-dimensional space-time coordinates. As we will mention in more
detail below, while for a single vacuum this is true, if there are two isolated vacua in
the same theory then there remains a dimensionless number (essentially the ratio of
the confinement scales) which can be attributed to Y1.

One can inquire whether two solutions that have the same non-normalizable
modes but two different ε’s, hence two different scale deformations, are dual to the
same field theory. The answer is not clear, because one can change ε and at the
same time change also the number of mobile branes, keeping the total charge at
infinity constant. Changing ε changes the volume of the space, and since the space
has charge dissolved in flux, one also changes the total charge; one can compensate
for this change by introducing or taking away mobile branes.

Hence, a vacuum with no mobile branes and one value for ε has exactly the same
UV data as a vacuum with one mobile brane and another value of ε, or a vacuum
with, say, 17 mobile branes and yet another value of ε. Clearly these solutions
cannot be all dual to vacua of the same KS field theory. On the other hand, a
background with M mobile branes (where M is the amount of RR three-form flux
on the KS three-cycle) and a certain value of ε and another one with no mobile
branes were argued in [68] to be dual respectively to the mesonic vacuum and the
baryonic vacuum of the same SU(kM) × SU(kM + M) theory. Hence, even in the
supersymmetric theory, one cannot decide whether two vacua with different scales
and different amounts of mobile branes are in the same theory by simply examining
their UV data.

In this section, we discuss the supersymmetric KS situation in detail, and argue
that in order to be able to use UV data to distinguish between two supersymmetric
asymptotically-KS solutions that should not be dual to the same theory, one must
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introduce an additional criterion. The most obvious choice is requiring that the value
of the NSNS B2 field that wraps the S2 which shrinks to zero size at the conifold tip
must be zero, and can only jump by integral periods. After all, the S2 is topologically
trivial, and if the integral of B2 is nonzero, one can stay at a fixed radius, consider
a very small closed fundamental string at the north pole and take it around the S2

to the south pole; during this process its world-sheet action will pick up a phase
proportional to the B2 integral. If one now brings back the string to the north pole,
the string will interfere destructively with itself unless the integral of B2 on S2 is an
integer3. This argument is similar to that ruling out Dirac strings, and in principle
should also hold in the presence of D3 or anti-D3 branes.

A second possible criterion is requiring that the integrals of the H3 from the
origin to a certain holographic screen differ by an integer amount for two solutions in
the same theory, or equivalently that the difference in the number of Seiberg duality
cascades between two solutions dual to vacua of the same theory has to be integer-
valued. This criterion has a clear physical justification for compact settings, where
the KS throat is seen as the zoom-in of a compact CY, and where the three-cycle
wrapped by H3 that appears non-compact from a KS perspective is in fact embedded
into a compact CY three-cycle. However, for a non-compact KS solution this criterion
is very hard to justify from a holographic perspective, because it involves integrals
over the whole bulk.

Since neither the first nor the second criterion satisfy a “hard core holography”
point of view, according to which all the data of the boundary theory must be
readable from the UV of solution that is regular in the bulk, one can also try to
use the analysis of [68] to reverse-engineer such a criterion. This third criterion
boils down to imposing that two solutions must satisfy equation (4.50) (and its
equivalents for higher mesonic vacua) in order to describe vacua of the same theory.
This criterion, if correct, would allow one to distinguish between vacua with various
numbers of mobile branes without introducing any extra IR boundary conditions,
and using only UV data. However, it certainly begs for a more physical explanation.

Of course, another possibility is that the holography is just not refined-enough to
distinguish between these different theories, especially because we are dealing with
cascading solutions that are not asymptotically AdS, cannot be thought of as the
near-horizon of any brane, and have an infinite charge unless one imposes an UV
cut-off.

In this section, we will use the first criterion, and give a holographic recipe
for distinguishing between asymptotically-KS vacua that have different numbers of
mobile branes.

3We thank Nick Warner for this argument.
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4.4.1 Maxwell charge, Page charge and mobile D3-branes

For a supergravity solution with non-trivial Wess-Zumino terms one can generally
define three different types of charges [131, 3], which we review in this section. The
D3-Page charge, specialized to the KS background is

QPageD3 =
1

(4π2)2

∫
T 1,1

(
F5 −B2 ∧ F3

)
. (4.20)

This is conserved and is independent of the radius at which it is evaluated. In string
theory it must also be quantized. If we shift B2 by a small gauge transformation
B2 → B2 + dΛ1 for some one-form Λ1, the charge stays invariant. In principle there
are two independent ways to generate a non-zero, integer-valued QPageD3 starting from
the smooth KS background:

F5 → F5 + 27Qπ volT 1,1 , (4.21)

B2 → B2 +
p

M
π ω2 , (4.22)

⇒ QPageD3 = Q− p (4.23)

where (Q, p) ∈ Z2, M is related to P by (4.5) and

volT 1,1 =
1

108
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) . (4.24)

Having Q 6= 0 generates a singularity in both the warp factor and ∗F5, which one
must interpret as due to Q D3 branes smeared on the tip of the deformed conifold.
On the other hand, the meaning of the singularity due to p 6= 0 is more subtle, and
if one imposes as an IR regularity condition that the B2 field at the KS tip be zero
or an integer mod M, then QPageD3 = Q measures the number (modulo M) of mobile
BPS D3-branes in any particular KS background.

The Maxwell D3-charge is

QMax
D3 =

1

(4π2)2

∫
T 1,1
rc

F5 , (4.25)

where the integral is performed on a Gaussian surface at the UV cut-off r = rc.
There are two physically distinct contributions to the Maxwell charge, from mobile
branes (qb) and from charge dissolved in flux (qf ):

QMax
D3 = qb + qf , (4.26)

qb =
1

(4π2)2

∫
T 1,1

0

F5 , (4.27)

qf =
1

(4π2)2

(∫
T 1,1
rc

F5 −
∫
T 1,1

0

F5

)
=

1

(4π2)2

∫
M6

H3 ∧ F3 . (4.28)
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The Maxwell charge depends on the scale at which it is measured, but if we fix a
holographic screen, we expect physical processes to preserve its value at the screen.
In particular, for a given scale, it must be the same if two solutions are to describe
different vacua of the same theory. Using the Ansatz (3.28), this is

QMax
D3 = Q+

4

π
[(k − f)F + 2P f ] . (4.29)

Note that if we set
∫
S2 B2 = 0 at the tip (i.e. requiring f(τ = 0) = 0), then we

have Q = qb = QPageD3 modulo M , while the second term in (4.29) gives the flux
contribution to the Maxwell charge.

4.4.2 A dictionary for the charges

Our purpose is to establish using only UV data at a holographic screen whether
two asymptotically-KS solutions describe vacua of the same theory. Any particular
KS field theory is defined at a scale Λc through a gauge group SU(N1) × SU(N2)
and the associated gauge couplings (g1, g2). The UV data of the supergravity theory
consists of QMax

D5 (= M),QMax
D3 ,

∫
S2 B2,Φ, and the “standard lore” dictionary between

the supergravity UV data and the field theory is

N1 = QMax
D3 +QMax

D5 , (4.30)
N2 = QMax

D3 , (4.31)
4π2

g2
1

+
4π2

g2
2

= πg−1
s e−Φ , (4.32)[4π2

g2
1

− 4π2

g2
2

]
gs e

Φ =

[
1

2π α′

∫
S2

B2 − π
]
mod (2π) , (4.33)

as reviewed in [101]. We can also trade the integral of B2 for QPageD3 using∫
S2
rc

B2 = (QMax
D3 −QPageD3 )/QMax

D5 = qf/QMax
D5 +

∫
S2

0

B2 . (4.34)

As we will see shortly, this dictionary is in fact more involved.
All this data is defined in the supergravity solution at some UV cut-off rc related

to the field theory scale Λc. To obtain this relation, we change to a radial coordinate r
such that the metric on the transverse six-dimensional space asymptotes to a warped
conical metric:

ds2
10 = h−1/2 ds2

1,3 + h1/2 ds2
6 , (4.35)

with

ds2
6 ∼ dr2 + r2 ds2

T 1,1 , r >> 1 .
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For any KS background (4.2), this r coordinate is related to the deformed-conifold
τ coordinate via

r2 =
3

25/3
ε

4/3
0 e2τ/3 . (4.36)

The field theory cut-off Λc should then be identified with the holographic cut-off rc.
Note that from the point of view of the τ coordinate, the parameter ε only enters
the function A from the Ansatz, and changing it corresponds to a rescaling of the
four-dimensional metric (see (4.2)).

We now run into the first puzzle, which can be expressed on the supergravity
side alone. According to the dictionary above, since the field theory gauge group
ranks depend only on QMax

D3 but not on QPageD3 or qb, one can see from equation
(4.26) that the duals to solutions with different qb and qf but the same QMax

D3 have
the same charges and should be dual to the same field theory. This is achieved by
shortening the domain of integration in (4.28), which lowers qf , and by increasing
qb to compensate this. Hence, the only UV holographic data that will be different
between, say, a solution with no mobile branes and a solution with one mobile brane
will be the integral of B2 on the S2. However, this difference is not gauge-invariant,
and if one does not impose any infrared boundary condition on B2, we can see from
(4.34) that this value is arbitrary, and hence nothing in the UV will distinguish
between a solution with one mobile brane and one with no mobile brane; we expect
this to be incorrect.

One way to remedy this is to impose an IR boundary condition, namely that
the integral of B2 on the shrunken S2 at the tip be gauge-equivalent to zero. If
so, then two solutions with different numbers of mobile branes and different qf will
have different B fields in the UV, and will correspond to different theories. The only
situation when the UV fields will be the same is when the number of mobile branes
differs by multiples of M , when indeed we expect these solutions to correspond to
different vacua of the same theory [68]. In the next subsection we will illustrate this
in detail using our perturbation theory machinery.

The second quandary has to do with the field theory interpretation of two so-
lutions that have the same QMax

D3 but different numbers of mobile branes. If one
is to take a holographic screen at rc and use the dictionary (4.30,4.31,4.32,4.33), a
solution with p < M mobile branes and one with none will be dual to two field
theories that have the same ranks of the gauge group at the same cutoff, but differ
only in the coupling constant. Furthermore, a solution that has QMax

D3 = M + 1
at a holographic screen at rc will have QMax

D3 = M at a holographic screen placed
further down in the infrared; this would appear to imply that a theory with rank
SU(2M + 1)× SU(M + 1) at some energy flows at lower energies to a theory with
rank SU(2M)×SU(M), then SU(2M−1)×SU(M−1), which is definitely incorrect.

A partial solution to this puzzle is given by a comment in [101], where it was
noted that one cannot relate the UV supergravity data to field theory data at an
arbitrary UV holographic screen. The dictionary (4.30,4.31,4.32,4.33) can only be
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used at special values of rc, given by the requirement that from the infrared up to that
scale the number of duality cascades is an integer, or alternatively, that the value of
qf is a multiple ofM . This is a stronger requirement than demanding that the ranks
of the putative dual gauge groups are integer-valued. We will call for convenience
the holographic screens at which one can define the dictionary “K-screens.”

However, this cannot be the whole story. As we can see from equation (4.34), this
restriction alongside the requirement that B2 be zero at the tip imply that the value
of the B2 integral at the K-screen is a multiple of M , and hence the two field theory
coupling constants will have the same values at any K-screen. Thus, at those screens
(which are the only places where the field theory has an approximate Lagrangian
description), the right-hand side of equation (4.33) is always equal to π, and the
coupling constant of one of the gauge group always becomes infinite. Conversely,
out of the set of possible field theory data defined at a scale Λc via the 4 parameters
N1, N2, g1 and g2, the KS supergravity solutions would only describe field theories
that belong to a codimension-one subspace, and hence not the most generic field
theory.

In order to avoid the above-mentioned problems, equations (4.32) and (4.33)
should be used to obtain the values of the coupling constants as a function of the
corresponding energy Λc. However, the ranks of the gauge groups given in equa-
tions (4.30),(4.31) must be read from the K-screen right above it. Those equations
then provide the ranks of the gauge groups both at the scale corresponding to rc and
at the scale corresponding to the K-screen above. The ranks do not change when one
changes the position of the holographic screen by decreasing rc, unless one crosses
another K-screen, which corresponds to a Seiberg duality in the dual theory.

One can also ask how can a holographist tell, using purely UV data, where the
K-screen lies. The answer is given by (4.33) – the screen is at the location above rc
where the B2 integral is gauge equivalent to zero. Hence, if the B2 integral at the
tip is zero, this dictionary gives a way to relate all 4 parameters of the field theory
to the four parameters of the supergravity solution, using UV data alone.

4.4.3 Baryonic and mesonic branches

When the ranks of the two gauge groups are

N1 = (k + 1)M , N2 = kM , k ∈ Z (4.37)

the theory has two classically disconnected supersymmetric moduli spaces, the bary-
onic and mesonic branches [68]. For more general (N1, N2) the mesonic branch is
supersymmetric while the baryonic branch is lifted. It is instructive to use the dictio-
nary above together with the infrared boundary condition for B2 to demonstrate in
the supergravity perturbation theory framework we have developed that when they
exist, both the baryonic and mesonic branches are indeed different vacua of the same
theory.
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As mentioned in section (4.4.1), if one imposes
∫
S2 B2 = 0 modulo M at the tip,

then the function f shoud go to zero at the origin. On the other hand, we have
from (D.7) in Appendix D that

φ̃5(τ = 0) = f(τ = 0) +
πQ

2M
= Y IR

7 , (4.38)

where we have set Y IR
6 = 0 since this mode diverges as 1/τ3, and we have used the

relation between P and M from (4.5). This implies that in our perturbation theory

QPageD3 = Q =
2

π
M Y IR

7 . (4.39)

Setting this equal to an integer multiple of −M , leads to4

QPageD3 = −`M , (4.40)

⇒ Y IR
7 = −π

2
` . (4.41)

Physically this corresponds to adding `M > 0 mobile D3-branes smeared on the tip
of the KS solution and for each ` ∈ Z this provides the bulk dual to the `-th mesonic
branch. Let us note for later use that from (D.10), Appendix D, we get that the
warp factor at the tip is

τ φ̃4(0) = −6
M

h0

(
2

3

) 1
3

Y IR
7 =

3

h0

(
2

3

) 1
3

π |Q| . (4.42)

To compare the Maxwell charges of the baryonic and mesonic branches, we must
demand that they are defined at the same scale Λc. To do so we must address the
fact that the constant ε0 appearing in (4.36) is not gauge invariant and can be set
to one by rescaling the space-time coordinates xµ. As such one would normally fix
the gauge and eliminate this constant. Indeed, ε0 is dimensionful and just serves
to fix the units which may as well be set to unity. However the ratio between the
value of ε0 in two different KS vacua, such as the mesonic and baryonic branches, is
dimensionless and physically relevant.

This is similar to the familiar domain wall solution from one AdS vacuum to
another. In either vacuum the AdS radius sets the units in which all other dimen-
sionful numbers are measured but the ratio of the two radii is related to the ratio
of central charges and is physically meaningful. Having said this, it is important to
establish that in our Ansatz the rescaling of xµ is done by the constant shift in A,
given in the UV by

A =
1

3
(φ̃4 − φ̃1) = −1

5
Y UV

1 +O(1/τ) , (4.43)

4In our conventions the KS background has negative D3 charge.

68



Asymptotically KS solutions and their field theory interpretation

where we have preemptively used the UV boundary conditions (4.62) introduced
below. So, allowing for just Y7 and Y1 to be non-zero, we can find the supergravity
solution of the mesonic branch as a perturbation of the baryonic branch. Using (4.29)
and (4.2), along with (D.16)-(D.18), we find that in our perturbation theory the
zeroth- and first-order Maxwell charge at a particular radius rc >> 1, is5

QMax
D3 = −8P 2

π
(τ − 1) +

8P

π
Y UV

7 +O
(
e−τ/3

)
. (4.44)

Using an expansion of ε

ε = ε0

(
1 +

ε1

ε0
+O(Z2)

)
, (4.45)

where ε0 denotes that of the baryonic branch, it is apparent that if we want to stay
at a fixed rc, then (4.36) requires at first order

δτ = −2
ε1

ε0
. (4.46)

Demanding that QMax
D3 at rc is equal for the baryonic and mesonic vacua, yields the

relation

ε1

ε0
= −Y

UV
7

2P
. (4.47)

Using (4.13) and the fact that Xa = 0, we have Y UV
7 = Y IR

7 . Then, referring
to (4.41), we have

ε1

ε0
=
` π

M
, (4.48)

which is the first-order approximation to the known result ε` = ε0 e
` π/M [68, 67].

Now, we can find the value of the other integration constant, Y1. Using the way
that ε enters into the PT Ansatz through A, equation (4.2) and the UV expansions
of Section (D.2) for A = (φ̃4 − φ̃1)/3 we get

ε1

ε0
= −3Y UV

1

10
. (4.49)

Combining this with (4.47) results in an expression for Y1 in terms of Y7:

Y UV
1 =

5

3P
Y UV

7 . (4.50)

The relations obtained in this subsection can also be used to formulate the second
and the third criteria for distinguishing between asymptotically-KS solutions.

5See footnote (4).
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4.5 Finding the anti-D3 brane solution

We can now summarize the necessary ingredients for identifying the candidate su-
pergravity solution describing the backreaction of anti-D3 branes. Firstly, we must
eliminate unphysical IR singularities. For many modes this is entirely unambiguous,
for other modes this can be somewhat subtle and as such we will discuss each mode
as it arises. Secondly, we demand that the UV asymptotics are the same as for the
original KS solution which we are perturbing around.

In total, we have sixteen integration constants but the seven physical modes (dual
to seven gauge invariant operators) account for just fourteen of these. In addition,
one is accounted for by the zero energy condition (6.11), which we use to eliminate
X5:

X5 =
1

P

(
X2 −

2

3
X3

)
− 3

2
X7 . (4.51)

The zero-energy condition is necessary to completely fix the reparameterization in-
variance of the radial coordinate (see [95] for a very explicit description of this). The
final mode corresponds to the rescaling of xµ and for reasons discussed above this is
an important physical constant which is given again by (4.49). It was pointed out
in the revised version of [67] that the two vacua of the Klebanov-Strassler theory
necessarily have different values of ε. With our technology we are able to in fact
compute the precise ratio of ε in the two different vacua.

The reader who is more interested in the end-process and in seeing or using our
solution than in the boundary conditions we imposed to pick it out of the full pa-
rameter space of first-order deformations around the Klebanov-Strassler background
can directly proceed to Section 4.5.3.

4.5.1 IR boundary conditions

We impose that the divergences in the IR for all the fields are zero, except for φ̃4 and√
F2

5 , the warp factor and 5-form flux along the brane, which should go respectively
like 1/τ and 1/τ2 due to the anti-D3-brane sources. The latter means that φ̃5 should
go to a constant.

From the divergent term in φ̃8 appearing in equation (D.3) of Appendix D, one
finds the first relation among X’s and Y ’s parameters that must be enforced:

X8 =
1

9
(h0X1 − 3P X6) . (4.52)

From the divergent terms in φ̃2 we get upon using (4.51) that

Y IR
2 = 0 , X6 =

h0X1 − 3X4

6P
. (4.53)

Out of the divergent terms in φ̃3 we set (after using (4.51) and (4.53))

Y IR
3 = 0 , X4 =

2

3
h0X1 . (4.54)
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Note that the log τ/τ term is automatically zero once we take into account (4.53).
Finally, the divergent term in φ̃6 requires

Y IR
6 = 0 . (4.55)

Likewise, the other piece is zero upon using (4.53), (4.54).
In summary, out of requiring IR regularity in all fields apart from the warp factor,

we have obtained the following relations

Y IR
2 = Y IR

3 = Y IR
6 = 0 , X4 =

2

3
h0X1 , X6 = − h0

6P
X1 , X8 =

1

6
h0X1 .

(4.56)
They are part of the relations that pick out of the full space of first order KS de-
formations the candidate solution describing the dual to a metastable state, taking
into account the backreaction of anti-branes onto the zeroth order background. Let
us move on and impose the remaining IR boundary conditions.

We will now impose that there are N̄ anti-D3 sources at the tip. The IR regularity
conditions (4.56) yields

φ̃5(0) = Y IR
7 , (4.57)

as in the supersymmetric case described in Section 4.4.3, equation (4.38). We require
Q = N̄ (cf. footnote 4), which results in

Y IR
7 =

π

8P
N̄ , (4.58)

where we have used (4.39) and (4.5). On the other hand, the warp factor is such
that

τ φ̃4(0) = 8

(
2

3

) 1
3
(
h0X1 −

3P

h0
Y IR

7

)
. (4.59)

It ensues from requiring this exhibits the expected behavior for regular 3-branes
(given in (4.42)) that

X1 =
3π

4h2
0

N̄ . (4.60)

Before moving on to discussing UV boundary conditions in the subsequent sec-
tion, we note that inserting (4.60) in (4.7) leads to the following expression for the
force exerted on a D3-brane probing this backreacted supersymmetry-breaking solu-
tion:

FD3 =
8π

h2
0

22/3 N̄

(sinh 2 τ − 2 τ)2/3
. (4.61)

This is precisely equal to the force on a probe anti-D3 brane exerted by N̄ D3-branes
that is computed in KKLMMT [109]. This provides further support that our IR
boundary conditions are the right ones for anti-D3 branes.

71



Finding the anti-D3 brane solution

4.5.2 UV boundary conditions

As part of our UV boundary conditions, we impose the absence of non-normalizable
modes (we will come back to discussing this point in section 4.6.2). Requiring no
divergent terms in φ̃3, φ̃4 as well as φ̃5, φ̃6 and φ̃7 implies

Y UV
4 = 0 , X3 = 0 , Y UV

5 = 0 . (4.62)

Requiring no e−τ/3 ∼ 1/r terms in φ̃2, and using (4.62) then determines

X7 = 0 , X2 = −2

9
h0X1 . (4.63)

Besides, we do not want to turn on the non-normalizable mode that shifts the dilaton,
which would correspond in the gauge theory to changing the sum of the coupling
constants for the gauge group. Hence, we must enforce that

Y UV
8 = 0 . (4.64)

From (4.62) and (4.64), we see that the Maxwell charge in the UV is the same as
in Section 4.4.3, equation (4.44). We should demand that at a given bulk radial slice
r, this is the same as the Maxwell charge for the supersymmetric vacuum, which is
in the (first) mesonic branch and has M − N̄ = 4P − N̄ D3-branes at the bottom.
Keeping in mind that ε is allowed to differ in the two vacua, which using (4.36)
implies that the Maxwell charges have to be evaluated at different τ , we require
that6

QMax
D3 = −8P 2

π
(τ0 + δτms − 1) +

8P

π
Y UV

7 (4.65)

!
= −8P 2

π
(τ0 + δτ1 − 1)− 4P + N̄ . (4.66)

Here δτ1 corresponds to the cut-off associated to the first mesonic branch. It is given
by

δτ1 = − π

2P
, (4.67)

where we have used7 (4.46) and (4.48) for ` = 1. We therefore have

16P 2

π

εms
ε0

+
8P

π
Y UV

7 = N̄ . (4.68)

Using (4.49) to relate the change in ε to Y UV
1 leads to

−8P 2

π

3

5
Y UV

1 +
8P

π
Y UV

7 − N̄ = 0 . (4.69)

6See Figure 4.4 below.
7Recall that P = 1

4
M α′. For convenience we have fixed α′ = 1 throughout.

72



Finding the anti-D3 brane solution

Note that if Y UV
7 were equal to Y IR

7 , the latter being given in (4.58), it would ensue
that Y UV

1 = 0 and no change in ε would be necessary. However, consequent on
inserting all our boundary conditions apart from the one associated to Y1 in (4.13),
one finds

8P

π
Y UV

7 =
8P

π
5.64178Y IR

7 = 5.64178 N̄ . (4.70)

The shift in ε can be tuned to cancel the difference in the first-order Maxwell charge
QMax between the anti-D3 and the supersymmetric solution.

4.5.3 The perturbative solution for anti-D3 branes in KS

In summary, from the IR and the UV boundary conditions, all the integration con-
stants turn out to be expressed in terms of the number N̄ of anti-D3’s at the tip
of the throat. As a reminder, h0 = h(τ = 0) denotes the zeroth order warp factor
of the Klebanov-Strassler solution (4.3) evaluated at the tip. Below we collect the
outcome of the analysis from the previous two subsections:

X1 =
3π

4h2
0

N̄ , Y UV
1 =

3.03804

P 2
N̄ , Y IR

1 =
4.33971

P 2
N̄ ,

X2 = − π

6h0
N̄ Y IR

2 = 0 , Y UV
2 = −1.48261

P 2
N̄ ,

X3 = 0 , Y IR
3 = 0 , Y UV

3 =
8.40238

P 2
N̄ ,

X4 =
π

2h0
N̄ , Y UV

4 = 0 , (4.71)

X5 = − π

6P h0
N̄ , Y UV

5 = 0 , Y IR
5 =

0.70514

P
N̄ ,

X6 = − π

8P h0
N̄ , Y IR

6 = 0 , Y UV
6 = −4.08244

P
N̄ ,

X7 = 0 , Y IR
7 =

π

8P
N̄ , Y UV

7 =
2.21552

P
N̄ ,

X8 =
π

8h0
N̄ , Y UV

8 = 0 , Y IR
8 =

0.234935

P 2
N̄ .

All the constants in the leftmost and middle columns, with the exception of Y UV
1 ,

have been obtained by directly imposing boundary conditions in either the IR or
UV. From there on, Y UV

1 was obtained from Y UV
7 via (4.69). Finally, the rightmost

column was derived from the numerical integration which is tabulated in (4.13). We
have not computed the value of Y IR

4 as it is more involved than the others and we
do not need it, but in principle it can be done through numerical integration of the
analytic solution (3.89).

It is interesting to observe the profile of the first-order perturbation to the
Maxwell D3 charge QMax

D3 , given in Figure 4.3 for N̄ = 1 (see footnote 4). Note
that it does not increase monotonically.
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On Figure 4.4 we have plotted the total Maxwell D3 charge (i.e. the zeroth-
plus first-order contributions) for the anti-D3-brane solution, alongside the Maxwell
charge of the supersymmetric vacuum (4.66), the latter belonging to the first mesonic
branch. For the purpose of illustrating equations (4.65)-(4.66), we also plot the
“would-be supersymmetric vacuum" in the baryonic branch, that we use as a reference
to measure the difference in UV cut-off, δτ . This branch obviously does not exist for
N̄ 6= 0, but it is instructive to use it as yardstick.
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Figure 4.3: The profile of the first-order Maxwell charge for the anti-D3 solution,
setting N̄ = 1.
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Figure 4.4: Total Maxwell charge for the anti-D3 solution (blue), for the su-
persymmetric vacuum from the first mesonic branch (red) and for the “would-
be supersymmetric vacuum in the baryonic branch" (black dashed line), fixing
N̄ = 1,M = 3 (P = 3

4) .
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4.5.4 Asymptotics of the solution

The Green’s function for the KS background diverges in the IR (D.1), and we denote
the constant in its series expansion around τ = 0 as j0, Eq. (D.2). The IR and UV
series expansions of the solution in terms of h0, j0 and X1 = 3π

4h2
0
N̄ are as follows.

Behavior in the infrared

In the IR the solution behaves as

φ̃8 = 33.1634P 2X1 −
512

3

(
2

3

)2/3

P 2X1 τ +

[
64

27

(
2

3

)1/3

h0 P
2X1 +

512

27

(
2

3

)1/3

j0 P
2X1

]
τ2

+O(τ3) , (4.72)

φ̃2 = −128

(
2

3

) 2
3

P 2X1 τ +
128

81

(
2

3

) 1
3 (
h0 + 16P 2 j0

)
X1 τ

2 +O(τ3) , (4.73)

φ̃3 = −224

3

(
2

3

) 2
3

P 2X1 τ +
128

405

(
2

3

) 1
3 (
h0 + 136P 2 j0

)
X1 τ

2 +O(τ3) , (4.74)

φ̃1 = 612.592P 2X1 −
704

3

(
2

3

) 2
3

P 2X1 τ +
64

405

(
2

3

) 1
3 (

7h0 + 352P 2 j0
)
X1 τ

2 +O(τ3) ,

(4.75)

φ̃5 =
1

6
h2

0 P X1 − 4

(
2

3

) 1
3

h0 P X1 τ
2 +O(τ3) , (4.76)

φ̃6 =
1

6
h2

0 P X1 −
16

3

(
2

3

) 1
3

h0 P X1 +
2

81

(
4h2

0

P
− 160h0 j0 P + 10451.6P 3

)
X1 τ

+

(
4

3

(
2

3

) 1
3

P h0 −
1280

9

(
2

3

) 2
3

P 3

)
X1 τ

2 +O(τ3) , (4.77)

φ̃7 =
8

3

(
2

3

) 1
3

h0 P X1 τ − 83.769P 3X1 τ
2 +O(τ3) , (4.78)

φ̃4 =

(
4

(
2

3

) 1
3

h0X1

)
1

τ
+ Y IR

4 +

(
8

15

(
2

3

) 1
3

h0X1 −
64

3

(
2

3

) 2
3

P 2X1

)
τ +O(τ2) ,

(4.79)

UV behavior of the solution

As for the ultra-violet behavior of the solution, it is described by the following UV
series expansions:

φ̃8 = −64

3
21/3 e−4τ/3 h0X1 (τ − 1)− 288 22/3 e−8τ/3 P 2X1 +O(e−10τ/3) , (4.80)
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φ̃2 = −418.571 e−τ P 2X1 +
16

3
21/3 e−7τ/3 h0X1 (1 + 8τ) +O(e−3τ ) , (4.81)

φ̃3 = −32

3
21/3 e−4τ/3 h0X1 + 2 e−2τ (1186.08− 418.571 τ) P 2X1 −

1152

5
22/3 e−8τ/3 P 2X1

+O(e−10τ/3) , (4.82)

φ̃1 = 428.85P 2X1 +
8

3
21/3 e−4τ/3 h0X1 −

2

3
e−2τ (1325.73− 837.143 τ) P 2X1

+
24

5
22/3 e−8τ/3 P 2 (29 + 40 τ) X1 +O(e−10τ/3) , (4.83)

φ̃5 = 312.743P 3X1 + e−τ (−1361.84 + 418.571 τ) P 3X1 − 4 21/3 e−4τ/3 h0 P X1 (1 + 8 τ)

+ 2 e−2τ (1361.84− 837.143 τ) P 3X1 +O(e−7τ/3) , (4.84)

φ̃6 = 312.743P 3X1 + e−τ (1361.84− 418.571 τ) P 3X1 − 4 21/3 e−4τ/3 h0 P X1(1 + 8 τ)

+ 2 e−2τ (1361.84− 837.143 τ) P 3X1 +O(e−7τ/3) , (4.85)

φ̃7 = e−τ (943.269− 418.571 τ) P 3X1

− 4

125
21/3 e−7τ/3 h0 P (1199 + 80 τ (1 + 10 τ)) X1 +O(e−11τ/3) , (4.86)

φ̃4 = 171.54P 3X1 +
4 21/3 e−4τ/3 h0 (7 + 32 τ)X1

3 (4 τ − 1)
− 625.486P 2X1

(4 τ − 1)
+O(e−2τ ) .

(4.87)

4.6 Additional comments

Having solved for the full space of linearized perturbations around the Klebanov-
Strassler background, we now discuss other solutions that we easily obtain as a
by-product of our analysis, as well as other possible interpretations of our results.

4.6.1 Relation to previous works

The first attempt to construct the a linearized antibrane solution in the UV region
alone was [58], which studied several of the SU(2) × SU(2) × Z2-invariant modes
around the Klebanov–Tseytlin (KT) background [118]. Since the KT solution is a
subset of the parametrization (3.27)–(3.28) given by

y(τ) = 0, k(τ) = f(τ), F (τ) = P , (4.88)

in our setup we can understand the perturbations around KT as solutions of a reduced
system of first-order differential equations in the Borokhov–Gubser formalism. The
“backreacted” KT solution contains some integration constants that cannot be fixed
by infrared boundary conditions, and hence we cannot relate them to the constant
X1, which is proportional to N̄ .

We can directly compare the UV expansion of our full KS solution (4.80)-(4.87)
to the perturbed KT solution of [58] and we find the following crucial discrepancy:
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The correct UV expansion has terms of order O(r−3) in (4.81,4.84,4.85,4.86) while
the first non-trivial terms in the solution of [58] are at O(r−4).

In hindsight this is not so surprising, since [58] only considered a subset of the
modes, and furthermore, the KT solution precisely agrees with the UV limit of the
KS solution only at leading order. At subleading order the KT solution has an
ambiguity which can be fixed to agree with the UV limit of the KS solution but then
the lower-order perturbation theory around each solution quantitatively differs. For
this reason, we conclude that one cannot derive the correct UV expansion for the
anti-brane solution by starting with the KT geometry. Another problematic issue
with the Ansatz made in [58] is that, as we have explicitly demonstrated in this work,
the anti-D3-branes turns on modes which are outside of the truncation, so it is not
consistent to restrict oneself to this subset of mode.

4.6.2 Gaugino masses

As an additional outcome of our analysis, we can easily identify other interesting
solutions that correspond to different deformations of the dual gauge theory. In
particular, we can construct a solution in which the non-normalizable UV modes
X2 and X7 are turned on. They decay as 1/r, and are associated to operators of
dimension ∆ = 3, which correspond to deformations by gaugino mass terms for each
of the gauge groups, Tr(λ1λ1 ± λ2λ2). We will identify a one-parameter subfamily
for which QMax

D3 approaches the same constant value in the IR and in the UV, and
therefore for which the parameter ε does not need to be modified.

The boundary conditions we have to impose are exactly the same as before,
except that now we do not require (4.63). Relaxing these, we find that the leading
terms in the IR expansions are not modified, and the value of φ̃5 at the origin is still
given by (4.57), together with the relations (4.58),(4.60)

φ̃5(0) = Y IR
7 =

h2
0

6P
X1. (4.89)

By using the UV/IR relation (4.13) we get that in the UV

φ̃5(∞) = Y UV
7 = 154.299P 3X1 − 19.5477P (2X2 + PX7) . (4.90)

Imposing φ̃5(0) = φ̃5(∞), we thus see that for the family of solutions

2X2 + PX7 = 5.05767P 2X1 (4.91)

we get that the first order Maxwell D3 charge at infinity is the same as that of the
supersymmetric vacuum with the same ε as for the original KS background. The
profile of the perturbation to the D3-brane Maxwell charge is shown in Figure 4.5,
where it is plotted as a function of N̄ using the condition from equation (4.91).

We also note that by setting X1 = 0, i.e. requiring that no anti-D3 brane be
present at the origin, we obtain a family of solutions parametrized by the constants
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Figure 4.5: The profile of the first order Maxwell charge for the solution with gaugino
masses turned on, satisfying the constraint (4.91) (blue solid line). The plot is for
N̄ = 1 and X7 = 1/(24 21/3P 3). The red dashed curve is the profile for N̄ = 0.

X2 and X7 which in the dual gauge theory describe soft supersymmetry breaking
due to gaugino mass terms. This solution encompasses the one built in [122], which
corresponds8 to the family X2 = PX7 .

4.6.3 Other UV boundary conditions

In section 4.5 we have identified the anti-D3 backreacted solution using one of the
three criteria to distinguish asymptotically-KS supersymmetric solutions that we
have put forth in section 4.4. The resulting solution has a different scale parameter
Y1 than its supersymmetric counterpart, and if the criterion that the NSNS B2 field
be zero at the KS tip is the correct one, then, putting aside concerns about the
subleading singularity and about backreaction, the anti-D3 perturbative solution we
have constructed describes a metastable state of a supersymmetric KS field theory,
and would be the first metastable solution constructed in supergravity.

However, we can also ask whether this result holds if one imposes the other cri-
teria, or if one insists, perhaps with a view towards embedding the KS solution in a
compact setting, that the UV scale parameter Y1 be the same as in the supersym-
metric theory. It is not hard to see that if one imposes the criterion that the H3

8The constant X in [122] is then related to X7 by X = − 1
2
X7 and their parameter µ is such

that µ = 48 21/3PX7.
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integral only jumps by integer units, one finds again that Y UV
1 has to change; the

anti-D3 solution is identical to the one we have written down above, and would be
dual also to a metastable field theory vacuum.

If one on the other hand imposes the criterion that two vacua of the same theory
must have a Y UV

1 related to Y UV
7 as in equation (4.50) (which also distinguishes

between various supersymmetric KS vacua), or imposes the requirement that the UV
scale must be the same as in the supersymmetric theory, then the resulting solution
will have a different IR Maxwell charge than the one inferred from the UV data
(essentially because antibranes give rise to negative charge dissolved in flux in their
vicinity, as shown in Figure 4, and if one cannot make the throat longer to compensate
for this, this charge will be visible at infinity). As a result, the relation between the
force on a probe D3 brane and the anti-D3 charge of the background will not be
the one of [109]. If one then insists that this relation does not receive corrections at
first order in the number of antibranes, as suggested by the no-screening results of
[19], then the anti-D3 solution must have a nontrivial 1/r mode turned on, of the
type presented in the previous subsection, such that the contribution to the charge
dissolved in flux from the antibranes is canceled by the contribution from the X2 and
X7 modes. The value of this non-normalizable relevant perturbation can be easily
read off from our analysis. Interestingly enough, such modes were argued in [12]
to be present when a KS solution is embedded in a stabilized flux compactification,
and it would be interesting to see if the relation between the anti-D3 charge and the
strength of this mode that we find here has any relevance to this analysis.

4.7 Flux singularities

In this section we analyze in more details the infrared limit of the anti-D3 solution.
Let us recapitulate our findings. The boundary conditions that we imposed in the
near–brane region are those consistent with smeared anti–branes at the tip: singular
warp factor and five–form flux, coming from the anti–D3 source with equal mass and
charge, and regularity in all other modes. This requirement fixes half of the sixteen
integration constants of the general linearized deformation around the conifold in
terms of a physical quantity: the number N̄ of anti–D3 branes at the tip. In partic-
ular, this fixes the value of the mode X1 that gives rise to the force felt by a probe
D3 brane in the backreacted geometry

FD3 =
8 22/3 π N̄

h2
0

j′(τ) , (4.92)

where j(τ) is the Green’s function at the linear order, defined in (4.4). This agrees
with the computation à la KKLMMT [109] and is a nice check that the boundary
conditions are the correct ones to describe anti–branes. However, we will now show
that once all those requirements are fulfilled, one finds that remnant nonzero pertur-
bations to three–form fluxes near τ = 0 cause the energy density of such fluxes to
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diverge [140, 25]. We stress that this is purely an infrared phenomenon, in the sense
that the presence of the singularity is insensitive to the UV boundary conditions.

In particular we will show that the perturbative solution contains a singular
imaginary self–dual (ISD) and anti-imaginary self-dual (AISD) fluxes and we will
provide physical intuition of why these singularities are expected to be present in the
full non-linear solution. This is supported by the construction of the fully backreacted
solution for anti–D6 branes in a flux background [37, 38, 39], where a singularity in
the H-flux is unavoidable. This solution can be thought as a toy model for ours:
by T-dualizing it three times along the D6 worldvolume one obtains a solution for
anti–D3 branes in R3× T 3, which is an increasingly better approximation of the KS
near–tip region as the S3 radius grows or as the number of anti–D3 branes becomes
ever more smaller than the number of fractional branes.

A we will discuss in detail, this result suggests that at least some components
of the singular ISD and AISD fluxes, already visible in the linearized solution, will
persist in the fully backreacted regime. In the next Chapter we will verify this
conjecture by the explicit computation of the non-linear backreaction in the near-
brane region. We will then address the question of possible string theory resolutions
of the singularity.

4.7.1 ISD and AISD fluxes

By using the linearized solutions obtained in the previous sections, we will compute
the GKP modes Φ±, G±, defined in (4.8)9

G± = ?6G3 ± iG3 , Φ± = e4Ã ± α , (4.93)

where G± are the ISD and IASD parts of the three–form flux, α is the RR 4–form and
e−4Ã is the warp factor. The dynamics of these modes is described by the equation
of motion [76]

(d+ i
dτ

Im τ
∧ Re )(Φ−G+ + Φ+G−) = 0 . (4.94)

In our Ansatz we have τ = e−φ since C0 = 010. As explained in the previous section,
we linearize the problem by expanding in the parameter γ = N̄/M :

G± = G0
± + G1

±(γ) +O(γ2) , (4.95)

Φ± = Φ0
± + Φ1

±(γ) +O(γ2) . (4.96)

For the Klebanov–Strassler background we have

Φ0
− = G0

− = 0, (4.97)
9The modes Φ± have nothing to do with the pure spinors introduced in section 2.1. Since this

notation is standard and we never use these objects together, we keep the same name for both.
10The axion/dilaton τ in equation (4.94) should not be confused with the radial direction of the

conifold.
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while

Φ0
+ =

2

h(τ)
, (4.98)

G0
+ = (f0 − k0) (g1 ∧ g3 ∧ g5 + g2 ∧ g4 ∧ g5 + ig1 ∧ g3 ∧ g6 + ig2 ∧ g4 ∧ g6) (4.99)

+ 2i(2P − F0) g3 ∧ g4 ∧ g5 + 2iF0 g1 ∧ g2 ∧ g5

+ 2e2y0(2P − F0) g1 ∧ g2 ∧ g6 + 2e−2y0F0 g3 ∧ g4 ∧ g6 ,

where the function h(τ) is the KS warp factor defined in (4.3), while the other KS
functions are given in (4.2). At the linear order in γ, by using the expansions for the
flux modes we find the fluxes:

G1
− = 2e−4A0

[ (
ig1 ∧ g2 ∧ g5 − e−2y0g3 ∧ g4 ∧ g6

) (
ξ̃5 − ξ̃6

)
(4.100)

−
(
e2y0g1 ∧ g2 ∧ g6 − ig3 ∧ g4 ∧ g5

) (
ξ̃5 + ξ̃6

)
− (g1 ∧ g3 ∧ g5 + g2 ∧ g4 ∧ g5 − ig1 ∧ g3 ∧ g6 − ig2 ∧ g4 ∧ g6) ξ̃7

]
,

G1
+ = e−4A0

[
2ig3 ∧ g4 ∧ g5

(
ξ̃5 + ξ̃6 − e4A0 φ̃7

)
+ 2ig1 ∧ g2 ∧ g5

(
ξ̃5 − ξ̃6 + e4A0 φ̃7

)
(4.101)

+ 2e2y0g1 ∧ g2 ∧ g6

(
ξ̃5 + ξ̃6 + e4A0(4Pφ̃2 − 2F0φ̃2 − φ̃7)

)
+ 2e−2y0g3 ∧ g4 ∧ g6

(
ξ̃5 − ξ̃6 − e4A0(2F0φ̃2 − φ̃7)

)
− (g1 ∧ g3 ∧ g5 + g2 ∧ g4 ∧ g5 + ig1 ∧ g3 ∧ g6 + ig2 ∧ g4 ∧ g6) ·
·
(

2ξ̃7 + e4A0(φ̃6 − φ̃5 + (f0 − k0)φ̃8)
) ]

.

We recall that the modes ξ̃a and φ̃a are respectively linear combinations of the
conjugate–momenta ξa and the perturbations modes δφa (see (3.33) and (3.66) for
their definition). By using the definition (4.93), we find the expressions for the Φ±
modes at the linearized level in terms of the modes ξ̃a, φ̃a

dΦ1
−

dτ
=

2

3
e−2x0 ξ̃1 , (4.102)

dΦ1
+

dτ
= −2

3
e−2x0 ξ̃1 +

4φ̃4h
′(τ)− 4h(τ)φ̃′4
h(τ)2

. (4.103)

The first equation can be integrated by using the equation of motion for ξ̃5 (6.23)
and gives

Φ1
− = − 2

P
ξ̃5 + const =

32

3
X1j(τ) + const , (4.104)
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where P = M/4 and from (4.60) X1 is proportional to the number of anti–branes N̄

X1 =
3π

4h2
0

N̄ , (4.105)

where h0 = 18.2373P 2. The equation for Φ1
+ can be easily integrated to get

Φ1
+ = −

(32

3
X1j(τ) +

4 φ̃4

h(τ)

)
+ const . (4.106)

We note that G1
− and Φ1

− are parametrized by the modes ξ̃a only, and thus vanish
if the perturbation is supersymmetric. One can check that the equation of mo-
tion (4.94) is equivalent to the equations for the modes ξ̃5,6,7.

4.7.2 Infrared behavior

We now discuss the behavior of the three–form flux in the near–brane region, namely
at small τ , and we will show that both the ISD and IASD modes are singular.
The presence of a singularity in the IASD flux mode was first noticed in [140, 25].
An explanation of this behavior was given in [140, 67], where the singularity was
interpreted as coming from the coupling of anti–D3 branes to the mode Φ−, which
is singular in the linearized solution, as we will show in (4.119). We remark that
the G+ mode also presents a singularity at linearized level and discuss the possible
implications of this behavior.

We derived the infrared expansions for the perturbations modes, as well as the
anti–D3 boundary conditions, in the previous sections. For the IASD flux G− we
only need the expansions for the scalars conjugate to the flux perturbation modes
ξ̃5,6,7 which are given by:

ξ̃5 =
1

τ

(
8

(
2

3

)1/3

PX1

)
− 2

9
(h0 + 24j0)PX1 +

16

15

(
2

3

)1/3

PX1τ +O(τ3) ,

ξ̃6 =
1

τ

(
8

(
2

3

)1/3

PX1

)
− 2

9
(h0 + 24j0)PX1 +

4

5
21/3 32/3PX1τ +O(τ2) ,

ξ̃7 = − 2

27
(h0 − 40j0)PX1τ −

4

5
21/3 22/3PX1τ

2 +O(τ3) , (4.107)

where j0 = 0.836941. From them and (4.100) we get

G1
− =

1

τ

(
32

3

(
2

3

)1/3

Ph0X1

)
(g3 ∧ g4 ∧ g6 + 3ig3 ∧ g4 ∧ g5) +O(τ0) , (4.108)

where X1 is defined in (4.105). For the ISD flux G+ we also need the expansions for
the modes φ̃a which can be found in appendix D. The final result is

G1
+ =

1

τ

(
32

3

(
2

3

)1/3

Ph0X1

)
(g3 ∧ g4 ∧ g6 + 3ig3 ∧ g4 ∧ g5) +O(τ0) . (4.109)
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We note that G+ shows the same kind of singularity as the G− mode. However
we remark that, as we can see from (4.101), two contributions enter in (4.109): one
is from the ξ̃a modes, the other is from the φ̃a terms and both give rise to the
singularity. We are now going to rederive these results in a way that will makes clear
their interpretation.

Let us introduce a set of functions λ(τ)A that parametrize the breaking of the
ISD condition

H3 = −
∑
A

λ(τ)A e
φ ? FA3 , (4.110)

where the index A runs over the components of the three–forms. A straightforward
calculation shows that the ISD and IASD fluxes are given by

G± =
∑
A

[(
1± λ(τ)A

)
? FA3 + i

(
± 1 + λ(τ)A

)
FA3

]
. (4.111)

The functions λ(τ)A can be obtained from the Ansatz (3.28). By expanding at first–
order in γ = N̄/M around the Klebanov–Strassler solution (for which the fluxes are
imaginary–self–dual), one finds the following non–vanishing components:

λ(τ)345 = −e
−2y−φ f ′

2P − F = 1 +
2e−4A0

2P − F0
(ξ̃5 + ξ̃6) +O(γ2) , (4.112)

λ(τ)125 = −e
2y−φ k′

F
= 1 +

2e−4A0

F0
(ξ̃5 − ξ̃6) +O(γ2) , (4.113)

λ(τ)136 = λ(τ)246 =
e−φ(f − k)

2F ′
= 1 +

4e−4A0

f0 − k0
ξ̃7 +O(γ2) . (4.114)

Recall that the legs 1 and 2 are on the shrinking S2, while legs 3, 4 and 5 are on the
S3. While these expressions are valid for the whole conifold, we need their near–tip
behavior. The infrared expansions (4.107) yields

λ(τ)345 ∼ 1

τ

(
16

(
2

3

)1/3

Ph0X1

)
, λ(τ)125 ∼ −1

τ

(
16

(
2

3

)1/3

Ph0X1

)
, (4.115)

while λ(τ)136 = λ(τ)246 = O(τ). We thus see than only two components of λ(τ)A
are relevant for the infrared physics. We can now compute G1

± by expanding the
expression (4.111) at first–order in γ. We find

G1
+ =

∑
A

[
2 (?FA3 )1 + λ(τ)1

A(?FA3 )0 + iλ(τ)1
A(FA3 )0

]
, (4.116)

G1
− =

∑
A

[
− λ(τ)1

A(?FA3 )0 + iλ(τ)1
A(FA3 )0

]
, (4.117)

where we indicated by the superscript 0,1 the order of the expansion in γ. We can
now analyse the near–tip behavior of the ISD and IASD fluxes, namely find the
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leading terms in an expansion near τ = 0. We are interested in the origin of the
singular behavior of such modes.

For the imaginary part, we can see from the infrared expansions of the KS
fields (2.37) that the only component that contributes to the singularity is F 345

3 .
Since 2P − F0 ∼ 2P − τ2/6, from λ(τ)345 in (4.115) we recover the imaginary part
of the G± fluxes (4.108), (4.109). For the real part, we find that the only relevant
component is F 125

3 . We have (?F 125
3 )0 = e−2y0 F0 g3∧ g4∧ g6 ∼ 2

3P g3∧ g4∧ g6, while
(?F 125

3 )1 = e−2y0(φ̃7 − 2F0 φ̃2) g3 ∧ g4 ∧ g6. Since

e−2y0(φ̃7 − 2F0 φ̃2) =
1

τ

(
32

3

(
2

3

)1/3

Ph0X1

)
+O(τ0) , (4.118)

we see that the two terms in the real part of G+ (4.116) give the same singularity
as in the real part of G−, in agreement with (4.108), (4.109). Before discussing the
interpretation of these results, let us show the expansions of the modes Φ± at the
first order in γ

Φ1
− = −1

τ

(
16

(
2

3

)1/3

X1

)
+

32j0X1

3
− 32

15

(
2

3

)1/3

X1τ +O(τ2) , (4.119)

Φ1
+ = −32j0X1

3
− 4Y IR

4

h2
0P

4
+O(τ2) . (4.120)

The singularity in Φ1
− is expected since the Green’s function j(τ) at the linearized

level diverges at the tip. The regular behavior of Φ1
+ is one of the infrared boundary

conditions that we imposed in section 4.5.1 and ensures that no regular D3 branes
are present at the tip.

Let us summarize our findings. The ISD and IASD three–form fluxes in the
linearized anti–D3 solution have a singularity of order τ−1 in the infrared. Another
mode in the solution has the same τ−1 singularity, namely the mode Φ− which is
coupled to the anti–D3 branes.

We can see that the singularity in G1
− compensates the singularity in Φ− in the

equation of motion (4.94) [67, 140]. Indeed, at τ ∼ 0 we find

Φ0
+G

1
− + Φ1

−G
0
+ = O(τ) . (4.121)

Based on this observation, it was argued in [67, 140] that at the non–linear level, since
Φ− will be finite at the tip, the G− singularity will disappear in the full backreacted
solution. We remark however that in the linearized solution also the G+ mode (4.109)
have a singular behavior near τ = 0, as shown in figure 4.6.

4.7.3 Discussion

A similar situation to the one discussed above was found for the full backreaction
of anti–D6 branes in [39]. While this latter setup differs in many aspects from the
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Figure 4.6: The ISD flux with legs on g3, g4 and g5 for the Klebanov–Strassler
geometry perturbed by anti–D3 branes. The plot is for P = 1, 3, 6 (solid, dashed
and dotted lines) and N̄ = 1.

Klebanov–Strassler background, it displays the same kind of singular behavior of
our linearized solution, as we will now explain. One can perform three T–dualities
along the worldvolume of the anti–D6 branes and finds that this setup will describe
anti–D3 branes on R3 × T 3. If one regards the three–torus as a large radius limit of
the finite S3 at the tip of the Klebanov–Strassler throat, we expect that the anti–D6
solution will describe the behavior of the three–form flux F3 with legs on the three–
sphere. From the result of [39], we then expect that for this flux the full backreacted
solution will be described by the relation

H = −λ(τ) eφ ? F3 , (4.122)

with a divergent λ(τ) in the near–brane region (with λ(τ) → +∞). We can now
compare this expectation to our result for the linearized anti–D3 solution (4.115).
We see that the three–form flux with legs on the S3 (i.e. the g3∧ g4∧ g5 component)
is precisely described by a relation of the form (4.122), with λ(τ) = λ(τ)345. As
we established in (4.116), (4.117), this analogy would point towards a divergency in
the imaginary part of both the ISD and IASD fluxes at the full non–linear order.
However, the leg structure of the three–form flux in our linearized anti–D3 solu-
tion is more complicated, and there is another component of the flux, F 125

3 , which
contributes to the singularity in λ(τ), making the anti–D6 analogy alone not fully
conclusive.

A discussion on the interpretation of the behavior described by (4.122) can be
found in [40], where it is argued that it describes an H–flux accumulation toward the
anti-branes, which will eventually lead to a critical value for which the barrier against
brane/flux annihilation is destroyed. This is a time-dependent resolution of the
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singularity. In the next section we will study in detail other possible ways to resolve
it. In particular we will consider the possibility, as schematically depicted in [59, 67],
that in the very near–tip region the solution might be altered by the polarization
process in which the anti–branes form a fuzzy five–brane wrapping an S2 ⊂ S3. In
particular, one may hope that the three–form flux singularity will be cured much as in
the Polchinski–Strassler solution [146]. If the geometry is smoothed–out in this way,
then the effects of the backreaction will alter only quantitatively the KPV model,
by making the bound on N̄/M for the existence of a metastable state more strong.
However, at least for smeared anti–D3 branes, the singular ISD flux (4.109) does not
have the correct legs needed for brane polarization, as also mentioned in [25].

To conclude, in this last section we have computed the ISD and IASD fluxes for
the linearized backreaction of N̄ anti–D3 branes on the Klebanov–Strassler geometry.
Both these modes have an infrared singularity. While it has been suggested [67, 140]
that the IASD mode may be regular in the full non–linear solution, this argument
does not apply to the ISD flux. In fact, by analogy with the anti–D6 backreaction [37,
38, 39], one can even argue that some components of the IASD flux could be singular
at the non–linear level as well. It is clearly important to verify this by computing
the full backreaction near the anti–D3 branes. If confirmed, one should address
the question of whether the interpretation of this singularity is compatible or not
with the existence of a metastable state. In the next chapter, we will address these
questions and we will confirm the results conjectured above.
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Chapter 5

Infrared singularities and brane
polarization

As we discussed in great detail in the previous chapters, anti-D3 branes at the tip of
the Klebanov-Strassler solution with D3-charge dissolved in fluxes give rise, in the
probe approximation, to a metastable state. However, as we showed in section 4.7,
the linearized back-reacted smeared solution has singular three-form fluxes in the
IR. In this chapter we will prove that these singularities persist in the fully non-
linear backreaction, by solving the second-order equations of motion directly. The
presence of such singularities in the full solution suggests a stringy resolution by brane
polarization à la Polchinski-Strassler. We thus investigate the polarization process
and we show that there is no polarization into anti-D5-branes wrapping the S2 of
the conifold at a finite radius. We will then discuss the implications of this result for
phenomenology, in particular for uplift AdS and obtain a very large landscape of de
Sitter vacua in string theory. This Chapter is based on the paper [27].

5.1 Introduction

In this chapter we will focus on the singularity of the solution corresponding to
smeared anti-D3 branes at the tip of the KS cone, constructed in the previous chapter.
This singularity has been argued to go away when considering the full backreaction
of the anti-D3 branes [67], but as we discussed before this argument does not fully
work and we expect the singularity to be a true feature of the non-linear supergravity
solution. We will rigorously prove this in the next sections, and we will then consider
the problem of a string theory resolution of the singularity.

Singularities in string theory have been studied extensively over more than ten
years, and there are two very important lessons that have come out of this study:
the first is that if a solution has a singularity one cannot hope to obtain correct
physics by doing calculations in some region far away from the singularity, where the
curvature is low; the resolution of the singularity may involve low-mass modes that
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S3S2S3

NS5 D5

S2

D5

Figure 5.1: Left : localized anti-D3 branes at the north pole of the S3 can polarize
into a NS5 brane wrapping a two sphere S2 ⊂ S3 and into a D5 brane wrapping the
shrinking S2 of the conifold. Right : smearing the anti-D3 branes on the S3 wipes
out the KPV channel but the D5 channel still survives.

modify the spacetime at macroscopic distances away from the singularity, or may
signal an instability of the whole spacetime. A second lesson, which is a corollary of
the first, is that in the context of the AdS-CFT correspondence only singularity-free
solutions are dual to vacua of the gauge theory, while singular solutions (such as
the Polchinski-Strassler unpolarized solution [81, 146], the singular giant graviton
[139, 125] or the Klebanov-Tseytlin solution [118]) are not dual to any vacuum of the
gauge theory and have to be discarded as unphysical.

Thus, the healthy instinct when seeing a singular solution is to discard it, unless
there is a good physical reason to accept it. For anti-D3 branes in Klebanov-Strassler
one would expect that there is such a reason: brane polarization [142] à la Polchinski-
Strassler [146]. Indeed, in the probe approximation, the probe anti-D3 branes were
found to polarize into NS5 branes that wrap a contractible S2 inside the large S3

at the tip of the conifold [111], as drawn in Figure 5.1, and reviewed in section 2.4.
One might thus expect that this polarization will continue to happen in the fully
backreacted solution. However, to check this directly one would need to construct a
solution for multiple anti-D3 branes localized at the north pole of the S3. Unfortu-
nately, constructing non-supersymmetric solutions that depend on two variables is
beyond current technology1, so the resolution of the singularity via polarization into
NS5 branes cannot be directly checked.

However, one can use a less direct route to this result by remembering a very
important feature of the Polchinski-Strassler construction: the D3 branes that po-
larize into NS5 branes wrapping an S2 inside a three-plane can also polarize into
D5 branes wrapping an S2 inside an orthogonal plane, and more generally into a
(p, q) five-brane wrapping an S2 inside a diagonal three-plane. Hence, if the NS5
polarization channel is present and can cure the anti-brane singularity, so should be
the other (p, q) five-brane channels, as well as the D5 channel. The latter channel

1Only the supersymmetric KS solution with localized D3 branes is known [120].
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would correspond to a polarization of the anti-D3 branes localized at the north pole
of a large S3 at the tip of KS into a D5 brane wrapping the contractible S2 of the
deformed conifold at a finite distance away from the KS tip (see Figure 5.1). At
fist glance this calculation looks as hopeless as the previous one, as it appears to
also require the backreacted localized anti-D3 solution. However, things are much
better: as shown in [146] and as we will review in Section 5.5.2, the polarization
potential is independent of the location of the branes that polarize, and hence the
potential for the D3’s to polarize into D5 branes can be calculated from the smeared
near-antibrane solution. The purpose of this chapter is to calculate this polarization
potential.

We find that this potential has exactly the same type of terms as the polarization
potential in Polchinski-Strassler, which confirms the expectation that brane polar-
ization may be the mechanism of choice for resolving this singularity. However, the
coefficients of the terms are not the same as in [146]; in particular, these coefficients
depend nontrivially on two parameters that can only be fixed if one knows the full in-
terpolating solution between the IR and the UV. Thus, in general, our potential could
have had either SUSY minima (as in [146]), stable non-SUSY minima, metastable
minima, or no polarization whatsoever. However, we find that, for any values of the
unknown parameters, the terms are such that no polarization is possible.

Hence, our result shows that the singularity of the smeared anti-D3 infrared
solution of [26] cannot be resolved by brane polarization, and by the arguments above,
that also the localized anti-D3 brane solution will not be resolvable by polarization
into D5 branes. Of course, our result does not directly rule out a resolution of the
antibrane singularity in KS by polarization into NS5 branes that wrap the S2 inside
the S3 at the tip à la KPV. However, the fact that D3 brane polarization always
happens in multiple channels, and the fact that at least one of this channels is absent,
suggests that the KPV polarization channel into NS5 branes might also be absent
at full backreaction.

Our calculation pose the problem of whether anti D-branes in solutions with
charge dissolved in fluxes can give rise to metastable vacua. If the the KPV channel
is also absent in the full backreaction, two immediate corollaries follow: the first one is
that the dual gauge theories, despite having a intricate structure of supersymmetric
vacua [68], do not have metastable vacua. The other is that the mechanism for
uplifting AdS vacua with stabilized moduli to dS vacua by adding anti-D3 branes in
regions of high warp factor [110] will probably not work and will have to be replaced
by another uplift mechanism. While there are several other uplift mechanisms in the
market (F/D-term uplifting [153, 124] and Kahler-uplift [10, 152]), none is as generic
as anti-D3 uplifting. Hence, it may be necessary to revisit the idea that string theory
has a large landscape of dS vacua and to fall back to the old “non-anthropic” approach
to understanding the physics of our universe.
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5.2 The setup

We will use the PT Ansatz discussed in details in the previous Chapters and we will
apply the technique introduced in 3.2 for the full non-linear case.

We recall that the potential in the one-dimensional Lagrangian (3.4) can be
obtained from a superpotential W :

V =
1

8
Gab

∂W

∂φa
∂W

∂φb
. (5.1)

In fact this equation has two different solutions, and therefore V has two possible
superpotentials:

W± = e4(p+A)

(
cosh y ± e−6p−2x ± 1

2
e−2xK

)
. (5.2)

Using either of the two W , the supersymmetry conditions can be neatly written as
a first-order flow equation

Gabφ̇
b − 1

2

∂W

∂φa
= 0 . (5.3)

The presence of the two superpotentials follows directly from the invariance of
the type IIB action under the flip (C4, H3) → (−C4,−H3). In our notations this
corresponds to the change of sign of f , k, Q and, as a result, of K. The first-order
equations following from the two superpotentials impose either an imaginary self-
duality (ISD) or imaginary anti-self-duality (IASD) condition on the complex 3-form,
G3 ≡ F3+ie−ΦH3. As the subscript suggests, in our conventions, the supersymmetric
solution derived from W+ is the Klebanov-Strassler background with ISD 3-form,
while W− leads to the anti-Klebanov-Strassler solution with IASD fluxes. The two
solutions preserve different supersymmetries. Consequently the supersymmetric KS
solution can also include arbitrary number of the mobile D3-branes, Q > 0, but no
anti-D3 branes, Q < 0; and vice versa for the supersymmetric anti-KS background.

5.2.1 The KS and anti-KS solutions

Before proceeding it is worth recalling how the eight integration constants of the
eight first-order superpotential equations (5.3) (with W = W+) are fixed in the KS
solution with Q smeared mobile D3 branes (Q > 0):

• The zero-energy condition of the effective Lagrangian fixes the τ -redefinition
gauge freedom and is automatically solved, but the constant shift τ → τ + τ0

still remains unfixed, and so τ0 appears as a “trivial" integration constant.

• The conifold deformation parameter ε and the constant dilaton eφ0 give two
other free parameters.
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• An additional parameter renders the conifold metric singular in the IR [47] and
has to be discarded.

• The three equations for the flux functions f , k and F appear to have three
free parameters [122]. The first corresponds to an IR singular (2, 1) complex
3-form G3 ≡ F3 + ie−φH3, the second gives a (0, 3) form which is singular in
the UV2, and the third is related to the B-field gauge transformation (f, k)→
(f + c, k+ c), which is just a shift of the D3 brane charge and can be absorbed
in the redefinition of Q.

• The warp function h ∼ e2x−4(p+A) can only be determined up to a constant,
which is fixed requiring that h(τ) vanishes at infinity:

h(τ) =

∫ ∞
τ

dτ̄

(
4πQ+ 32gsP

2 (τ̄ coth(τ̄)− 1) (sinh(τ̄))−2 (1
2 sinh(2τ̄)− τ̄

))
(

1
2 sinh(2τ̄)− τ̄

)2/3 .

(5.4)
It is important to stress here that for the anti-KS solution with anti-D3’s
(Q < 0) one has to put |Q| instead of Q, since otherwise h(τ) is negative for
small τ . This is contrary to the flux K(τ) which flips sign once we go from the
KS to the anti-KS solution.

As has been explained above, the anti-KS solution can be easily found by flipping
the sign of the functions f and k. Notice that the (2, 1) and the (0, 3) 3-forms will be
now (1, 2) and (3, 0). The remaining functions are exactly the same for the solutions
derived from W+ and W−.

5.2.2 The first-order formalism

In order to solve for the anti-D3 backreaction we will need to solve the full set of
second-order equations of motion, which we show in Appendix B. We now introduce
a computational technique that will be extremely useful: the idea, explained in
section 3.2, is to recast the eight second-order EOMs for the scalars φa as a set of
sixteen coupled first-order equations by introducing conjugate momenta ξa, defined
as

ξa = Gabφ̇
b − 1

2

∂W

∂φa
. (5.5)

Since we have two superpotentials that govern the system, W+ and W−, we can
introduce two sets of conjugate modes, denoted by ξ+

a and ξ−a respectively. With
this notation the supersymmetric KS first-order flow equations (with ISD fluxes)
are simply ξ+

a = 0, while the first-order equations corresponding to supersymmetric
anti-KS solutions (with IASD fluxes) are ξ−a = 0. It is easy to verify that solutions of

2Importantly the singular (2, 1) form is supersymmetric exactly as the 3-form of the KS solution,
while the (0, 3) form breaks SUSY [90, 93].
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these eight first-order equations solve also the full set of EOM. Indeed, by plugging
the definition (5.5) into the second order EOMs we obtain:

ξ̇a =
1

2

[
∂Gbc

∂φa
ξbξc +

∂Gbc

∂φa
∂W

∂φb
ξc −Gbc

∂2W

∂φa∂φb
ξc

]
, (5.6)

which is equivalent to equation (3.13) and which is indeed trivially solved by putting
all of ξa’s to zero.

Replacing the second-order EOMs for the eight fields φa by sixteen first-order
ones, equations (5.5) and (5.6), proves very efficient when studying supersymmetry
breaking perturbatively as we showed in the previous Chapters, and turns out to
be extremely useful for our purpose as well. As we will review in the next section,
it was shown in [26] that without introducing singular fluxes it is not possible to
interpolate between the ISD Klebanov-Strassler solution in the UV and the anti-D3
branes (Q < 0) boundary conditions in the IR. The regularity conditions on the
fields near the anti-branes determine almost uniquely the leading-order behavior of
the fields ξa’s derived from W−, which in turn appears to be incompatible with the
equations (5.6). Moreover, we will provide a “topological" argument leading to the
same conclusion but using instead the ξa functions derived from W+. Since we will
make an extensive use of both functions ξ, the following should be useful to keep
track of the notation:

W+ = WKS , BPS solution : ξ+ = 0 , G3 ISD , FD3 = 0

W− = WAKS , BPS solution : ξ− = 0 , G3 IASD , FD3 = 0

where in the last equality we have added the force on probe D3 and anti-D3 branes.
The explicit form of (5.5) for the conjugate momenta is:

ξ±1 = −e4(p+A)

(
ẋ− 2ṗ− 2Ȧ∓ 1

2
e−2xK

)
ξ±2 = −e4(p+A)

(
ẋ+ ṗ− 2Ȧ+ cosh y − 1

2
e−6p−2x

)
ξ±3 = −6e4(p+A)

(
ṗ+ Ȧ− 1

2
e−6p−2x

)

ξ±y = −1

2
e4(p+A) (ẏ + sinh y)

ξ±Φ = −1

4
e4(p+A)φ̇

ξ±f = −1

4
e−2x+4(p+A)

(
e−Φ−2yḟ ± (2P − F )

)
ξ±k = −1

4
e−2x+4(p+A)

(
e−Φ+2yk̇ ± F

)
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ξ±F = −1

2
e−2x+4(p+A)

(
eΦḞ ± 1

2
(k − f)

)
, (5.7)

where

ξ±1 ≡ ξ±x −
ξ±p
3

+
ξ±A
3
, ξ±2 ≡ ξ±x +

ξ±p
6

+
ξ±A
3
, ξ±3 ≡ ξ±p − ξ±A . (5.8)

The ξ1 redefinition3 is will prove to be especially convenient, since we can show that
this mode has a very clear physical meaning: it parameterizes the force felt by D3
branes probing a given solution. Indeed, the force on probe D3 and anti-D3 branes
only depends on ξ1 and no other ξa:

FD3 = −2e−2xξ+
1 , FD3 = −2e−2xξ−1 . (5.9)

As expected, adding a probe D3 brane to a solution derived from the superpoten-
tial W+ (with ISD fluxes) does not break supersymmetry, and hence the force on
probe D3 branes, FD3, vanishes. Analogously, an anti-D3 brane in the anti-KS so-
lution does not break supersymmetry and therefore feels no force. In a general non-
supersymmetric solution, such as the singular anti-D3 in KS backreacted solution
that we analyze in Section 5.4, both forces are nonzero.

5.3 A regular solution does not exist

In this section we will prove that there is no IR-regular solution with smeared anti-
D3 branes (Q < 0) at the tip of the conifold and with KS asymptotics in the UV.
Indeed, starting with a singularity-free anti-brane solution in the IR, one necessarily
ends up with an anti-KS solution in the UV. Moreover, we will prove that the only
regular solution with |Q| anti-D3 branes is exactly the anti-KS version of the solution
with Q mobile anti-branes we described in the previous subsection.

5.3.1 Regular boundary conditions for anti-D3 branes

In order to prove our statement, we need to understand first the IR boundary con-
ditions corresponding to the presence of smeared anti-D3 branes at the tip of the
KS geometry. We will also impose regularity of the 3-form fluxes. These conditions,
which we will call IR regularity conditions , are the following:

• The dilaton is finite at τ = 0.

• the 6d conifold metric has the tip structure of the KS solution: the 2-sphere
(the g2

1 + g2
2 part of the 6d metric) shrinks smoothly at τ = 0 and the 3-sphere

(the g2
3 + g2

4 + 1
2g

2
5 term) has finite size. The former condition is equivalent to

3In the notation of Chapter 4 we have ξ+
1 = 1

3
ξ̃1.
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2e−6p−x ≈ ex−y near τ = 0, and the latter requires τ2e−6p−x ≈ 2ex+y. All in
all, we find that

e6p+2x = τ +O(τ2) , ey =
τ

2
+O(τ2) . (5.10)

• The warp factor comes from |Q| anti-D3 branes smeared on the 3-sphere, and
hence goes like h(τ) ∼ |Q|/τ . In our notation it amounts to demanding that
both e12p+2x and e4(p+A)−2x go like τ . The precise proportionality coefficients,
though, cannot be fixed in this approach. Instead, one coefficient can be elim-
inated by a proper rescaling of the 4d space-time coordinates, while the other
is a free parameter that measures the size of the non-shrinking 3-sphere (the
conifold deformation parameter ε). We will use the 4d rescaling to match the
expansion of e6p+x to the supersymmetric solution (see (5.4) and (4.2)):

e12p+2x =
4

πQ
· τ +O(τ2) , e4(p+A)−2x = c0

4

πQ
· τ +O(τ2) . (5.11)

For the KS solution one finds c0 = 2−10/33−2/3ε
8/3
0 .

• There is no singularity in the three-form fluxes; their energy densities, H2
3 and

F 2
3 , do not diverge at τ = 0. From (3.27) we obtain that

|F3|2 = FµνρF
µνρ = 6e6p−x

(
e2y(2P − F )2 + e−2yF 2 + 2Ḟ 2

)
|H3|2 = HµνρH

µνρ = 6e6p−x
(
e−2yḟ2 + e2yk̇2 +

1

2
(k − f)2

)
. (5.12)

Hence, using (5.10) and (5.11) the Taylor expansions of the functions f , k and F
start from τ3, τ and τ2 terms respectively, exactly like in the KS background
(see (4.2)). To be more precise, in a solution with branes at the tip, the
functions f , k and F can also start with non-integer powers (τ9/4, τ1/4 and
τ5/4), but it is not hard to show that the logarithmic terms in x, p, A and y
imply that the IR expansion of the solution proceeds only with integer powers
of τ . In either situation the expansion of K starts with a constant Q term.

Let us summarize the leading IR terms in the expansion of the metric functions:

eΦ = eΦ0 +O(τ) , e2x =
πQ

4
· τ +O(τ2) , ey =

τ

2
+O(τ2) , ,

e6p =
4

πQ
+O(τ) , e6A = c

3
2
0

πQ

4
· τ3 +O(τ4) , (5.13)

f = O(τ3) , k = O(τ) , F = O(τ2) , K = −πQ
4

+O(τ3) .

Even if we arrived at the boundary conditions (5.13) by physical arguments, one my
wonder whether these are the most general conditions we can impose. We checked
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that if we start by allowing a general Taylor expansion for the functions x, y, p and
A, the equations of motion imply precisely the behavior summarized in (5.13).

For our proof that this IR behavior does not glue to a solution with ISD fluxes in
the UV, it will be essential to determine the leading-order behavior of the conjugate
modes ξ+

a ’s and ξ−a ’s (defined in (5.7)) in the IR. Let us denote by n+
a and n−a the

lowest possible leading orders of these two functions respectively. We find that the
boundary conditions (5.13) imply:(

n+
1 , n

+
2 , n

+
3 , n

+
y , n

+
f , n

+
k , n

+
F , n

+
Φ

)
= (1, 2, 2, 2, 1, 3, 2, 2)(

n−1 , n
−
2 , n

−
3 , n

−
y , n

−
f , n

−
k , n

−
F , n

−
Φ

)
= (2, 2, 2, 2, 1, 3, 2, 2) . (5.14)

The only difference between the two sets is in n+
1 and n−1 . Indeed, from (5.13) one

sees that the leading (logarithmic) terms cancel out in the parenthesis of ξ−1 , eq.
(5.7), and sum up for ξ+

1 . Similar cancelations happen also for ξ+
2 , ξ+

3 , ξ+
y and their

ξ−a counterparts. However, for the 3-form ξa’s we cannot argue for such a cancelation
neither for ξ+

f , ξ
+
k and ξ+

F nor for ξ−f , ξ
−
k and ξ−F . This is since we have no control

over the coefficients of the leading terms in the expansions of f , k and F .
It is important to stress again that in arriving at (5.14) we have not imposed

neither the ISD nor the IASD flux condition. Instead, we insisted on having a
regular 3-form flux in the IR, with all other components of the solution being that
of a smeared D3-brane solution: 1/τ behavior of the warp function, constant 5-form
flux proportional to Q, plus a constant dilaton.

Finally, we should also briefly mention the UV boundary conditions, although
their details will not be used in our discussion. In general we must insist on KS
(and not anti-KS) asymptotic with some normalizable UV modes turned on. Having
only normalizable modes in the UV should be essential for the construction, since
the new solution must describe a new vacuum in the same theory. Since in the UV
region the non-supersymmetric solution should be just a small perturbation of the
KS solution, one can use the linearized version of the equations of motion. A careful
analysis reveals (see Chapter 4) that ξ+

f (τ) and ξ+
k (τ) approach the same non-zero

constant value at large τ , while all the other functions ξ+
a (τ) vanish.

We would like to demonstrate now that one cannot meet both the IR and the UV
boundary conditions advocated above. We will do it in two different ways. We will
find that the only possible solution is ξ−a = 0 for all a’s, meaning that one has anti KS
solution not only in the IR, but also all the way to the UV. Hence, any solutions with
anti-D3 branes in the infrared must necessarily have singular three-form fluxes. This
result is in agreement with the linearized analysis of [25, 21], where the equations of
motion (5.5)-(5.6) were solved perturbatively in the number of antibranes. Similar
results were obtained for other types of anti-branes in background with opposite
charge dissolved in fluxes [24, 135, 78, 37, 38, 39].

We will provide two proofs of this claim. First, we will argue that the IR condi-
tions (5.14) are in odds with the ξ−’s equations of motion. This analysis has been
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carried out originally in [26], where it was referred to as the “IR obstruction". Sec-
ond, we will present a “global" argument which is also based on the ξ−’s equations
of motion, but does not employ the Taylor expansion of these functions.

5.3.2 The first proof

Our immediate goal is to show that when solving the equations (5.6) for ξ−1 , ξ−f , ξ
−
k

and ξ−F in the IR (small τ) and imposing the IR regularity conditions, one finds only
trivial solutions for these functions. This essentially means that the IASD conditions
ξ−f , ξ

−
k , ξ

−
F = 0 will be satisfied all the way to the UV and not only at τ = 0.

The equations we need are:

ξ̇−1 +Ke−2xξ−1 = 4e2x−4(p+A)

[
eΦ+2y(ξ−f )2 + eΦ−2y(ξ−k )2 +

1

2
e−Φ(ξ−F )2

]
(5.15)

and

ξ̇−f =
1

2
e−2x(2P − F )ξ−1 +

1

2
e−Φξ−F

ξ̇−k =
1

2
e−2xFξ−1 −

1

2
e−Φξ−F (5.16)

ξ̇−F =
1

2
e−2x(k − f)ξ−1 + eΦ

(
e2yξ−f − e−2yξ−k

)
.

The equations of motion for the remaining four ξ̇−a modes are:

ξ̇−2 = −Ke−2xξ−1 + 3e−6p−2xξ−2

−e−4(p+A)

(
(ξ−1 )2 +

2

3
ξ−2 ξ

−
3 −

1

18
(ξ−3 )2 + 2(ξ−y )2 + 4(ξ−Φ )2

)
ξ̇−3 = 6e−6p−2xξ−2

ξ̇−y = cosh y · ξ−y +
1

3
sinh y · ξ−3 − 2eΦ

(
e2y(2P − F )ξ−f − e−2yFξ−k

)
+4eΦ+2x−4(p+A)

(
e2y(ξ−f )2 − e−2y(ξ−k )2

)
ξ̇−Φ = −eΦ

(
e2y(2P − F )ξ−f + e−2yFξ−k

)
+

1

2
e−Φ(k − f)ξ−F

+2e2x−4(p+A)

(
eΦ
(
e2y(ξ−f )2 + e−2y(ξ−k )2

)
− 1

2
e−Φ(ξ−F )2

)
. (5.17)

Remember that if the fluxes are regular, the IR expansions of f(τ), k(τ) and F (τ)
can only start from τ3, τ and τ2 respectively (see the discussion around (5.13)). As
we have pointed out earlier, lower but non-integer powers are not ruled out. One
can easily check, though, that our proof still goes through even in this situation.

Let us denote by n the lowest power in the Taylor expansion of ξ−1 , i.e. ξ−1 =
a1τ

n+ . . . , We already know from (5.14) that n > 2. Together with (5.13), equation
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(5.15) implies that the leading terms in the expansions of ξ−f , ξ
−
k and ξ−F are

ξ−f = af τ
(n−2)/2 + . . . , ξ−k = ak τ

(n+2)/2 + . . . , ξ−F = aF τ
n/2 + . . . , (5.18)

Note that an additional comparison with (5.14) shows that actually for a regular
solution n > 4. Moreover, since all the terms on the right hand side of (5.15) are
non-negative and Ke−2x = τ−1 + . . ., at least one of the constants af , ak and aF
has to be non-zero. Next, plugging these expansions into the last two equations of
(5.16) we see that for n > 4, the terms involving ξ−1 and ξ−f disappear from the
leading-order expansions of all these equations. A simple calculation then reveals
that (5.16) has only two possible solutions, ξ−F ∼ τ or ξ−F ∼ τ−2, and both yield
a singular 3-form flux.4 Thus we have to put ak, aF = 0, in which case the first
equation in (5.16) gives n = −2, and so we arrive at a contradiction.

We observe, therefore, that with regular boundary conditions at τ = 0, the
equations (5.15) and (5.16) have only the trivial solution ξ−1 = ξ−f = ξ−k = ξ−F = 0.
This means that we obtain an IASD solution all the way from the IR to the UV. In
other words, one cannot “glue" the solution near the smeared anti D3-branes to the
KS solution, since the latter has an ISD 3-form.

Importantly, with a bit of an effort we can demonstrate that the anti-KS geometry
with mobile anti-D3’s at the tip is the only regular solution of the remaining equations
of motion. In other words, there is no non-singular solution with anti-D3 branes in
the IR and anti-KS asymptotics in the UV. To do this we have to prove that all the
remaining ξ− functions identically vanish, exactly as ξ−1 , ξ−f , ξ

−
k and ξ−F .

Plugging ξ−1,f,k,F = 0 into (5.17) we find that ξ−Φ = 0 (otherwise the dilaton
diverges), while the remaining functions satisfy:

ξ̇−2 = 3e−6p−2xξ−2 − e−4(p+A)

(
2

3
ξ−2 ξ

−
3 −

1

18
(ξ−3 )2 + 2(ξ−y )2

)
ξ̇−3 = 6e−6p−2xξ−2

ξ̇−y = cosh y ξ−y +
1

3
sinh y ξ−3 . (5.19)

In the (anti) KS solution e−4(p+A) goes to zero as e−4τ/3 for large τ , while e−6p−2x

asymptotes to 2/3. From the first two equations we find that ξ̇−2 ≈ 2ξ−2 . The
functions ξ−2 , ξ−3 and ξ−y , exactly like the functions ξ+

2 , ξ+
3 and ξ+

y , have to vanish at
infinity both for KS and anti KS solutions. So we have to put ξ−2 = 0. This in turn
implies that ξ−3 = ξ−y = 0.

We have shown that a regular solution with anti-D3 branes in the IR remains
anti-KS all the way to the UV using the conjugate variables ξ. But actually, the
most straightforward way to see it is to solve the second-order φa equations (shown
in Appendix B) directly in powers of τ subject to the regularity conditions (5.13). We

4We will come back to the ξ−F ∼ τ singular solution in the next section.
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found that to order τ15 the space of solutions is parameterized by three independent
parameters, none of which breaks the IASD condition confirming that ξ−f , ξ

−
k and

ξ−F are indeed zero for the IR regular solution. Furthermore, one parameter leads to

ξ−2 = 3cτ3 + . . . , ξ−3 = 6cτ3 + . . . , ξ−y = −cτ3 + . . . , . (5.20)

This is consistent with (5.19) and, as we already know, produces a UV divergent
solution. The remaining two parameters correspond to two UV-singular solutions of
the supersymmetric ξ−a = 0 equations that we have already mentioned in the previous
section. The first introduces the (0, 3) complex 3-form and the second shifts the warp
function.

To sum up, IR regularity of the 3-form fluxes implies that all of the ξ−a ’s identically
vanish. The integration constants emerging from the ξ−a = 0 equations are then fixed
by the UV regularity and we end up with the anti KS background with |Q| mobile
anti D3 branes.

5.3.3 The second proof

We can also present a “global" argument why the functions ξ−1 , ξ−f , ξ
−
k and ξ−F have

to vanish in a regular solution, without focusing on their Taylor expansions. The
proof for the remaining four functions proceeds precisely as above.

Our key observation is that the flux functions f(τ), k(τ) and F (τ) appear only
in equations (5.15) and (5.16). None of the remaining ˙ξ−a equations has any flux
function in it. Next, the equations in (5.16) might be derived from the following
reduced Lagrangian:

Lfluxes = 4e2x−4(p+A)

[
eΦ+2y(ξ−f )2 + eΦ−2y(ξ−k )2 +

1

2
e−Φ(ξ−F )2

]
+ e−4(p+A)(ξ−1 )2 .

(5.21)
Recall that the ξ−’s are first order in the derivatives of φ’s and so the Lagrangian
is of second order in τ -derivatives, as it should be. It differs from the flux part
of the one-dimensional Lagrangian (3.3) for the KS field only by total derivative
terms. Written this way, however, Lfluxes has a remarkable property: it is strictly
non-negative and vanishes only if all the functions ξ−1 , ξ−f , ξ

−
k and ξ−F are zero.

Again, we treat Lfluxes as the effective Lagrangian only for the fields f(τ), k(τ)
and F (τ). In particular, it means that the first three terms in (5.21) are kinetic
terms, while the last one is a potential term. We assume now that one first solves
(5.16) for these three fields and for arbitrary x, y, p, A, Φ (but with the proper
boundary conditions ensuring regularity of the metric), and then substitutes the
result into the remaining five EOM.

Since Lfluxes is bounded from below, in other words has a global minimum for

ξ−f (τ), ξ−k (τ), ξ−F (τ), ξ−1 (τ) = 0 , (5.22)
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one may wonder whether this trivial IASD solution is, in fact, the unique solution
of the EOM (5.16). The answer depends on the boundary conditions for f(τ), k(τ)
and F (τ). If these are incompatible with (5.22), the final solution will be more
complicated. If on the other hand, the regular boundary conditions we imposed on
the 3-form flux are compatible with the trivial IASD solution, then the latter will
also be the only possible solution.

For our Lagrangian (5.21) the fields ξ−f , ξ
−
k and ξ−F are the conjugate momenta of

the fields f , k and F respectively. In general, one may impose boundary conditions
either on these fields or on their conjugate momentum, in the IR or/and in the UV.

The regularity requirement we considered in the previous sections, however, con-
strains all the three flux functions and their conjugate momenta in the IR. Indeed,
we saw that both (f, k, F ) and (ξ−f , ξ

−
k , ξ

−
F ) have to vanish at τ = 0 for a regular

solution. Furthermore, ξ−1 = 0 in the IR, therefore the IR boundary conditions fol-
lowing from the regularity are consistent with the trivial solution (5.16). Thus we
see that requiring regularity in the IR forces upon us the anti-KS solution.

This proof, though, has to be taken with a grain of salt, since the EOM for
the flux fields are strictly speaking singular at τ = 0, and so we cannot rule out
completely the possibility that there are two different solutions of (5.16) subject to
the same boundary conditions. One can promptly make our proof more rigid by
listing Taylor τn-expansions of all six possible solutions in the IR and verifying that
only one of them, the IASD, is not at odds with (5.22). However, the main goal of
this subsection is to prepare the ground for the localized case discussion, where the
power counting method of the first proof will be most likely unavailable making a
“topological" argument we presented here a more efficient tool.

5.4 The singular anti-D3 solution

In the previous section we proved that by imposing the regular IR boundary con-
ditions summarized in (5.13), it is not possible to find a supersymmetry-breaking
solution (except the one that we have mentioned before, corresponding to ISD fluxes
with a (0, 3) component, which diverges in the UV). Thus, the regular IR boundary
conditions are incompatible with the presence of anti-D3 branes in the infrared. One
can try to construct a singular solution describing the backreaction of these anti-D3
branes by relaxing the assumptions we made in the previous section, and considering
a more general expansion for the fields. In this section we therefore analyze the
equations of motion dropping the assumption of regularity in the three-form fluxes
discussed in Section 5.3.1.

Let us start by noticing that even in a solution with singular 3-forms, all ξ−a ’s,
but ξ−f , ξ

−
k and ξ−F , have the same leading term powers at small τ as for any regular

solution, see (5.14). In particular, we still have ξ−1 ∼ τ2, since otherwise the solution
will not describe anti D3’s at the tip of the conifold. At the same time, ξ−f , ξ

−
k and

ξ−F will now start with lower powers of τ . Remarkably, equation (5.15) suffices to
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determine this behavior. Indeed, since the left hand side is still of order τ exactly
like in the regular case, and the right hand side is a sum of positive terms, we see
that:

ξ−f = bf +O(τ) , ξ−k = bk τ
2 +O(τ3) , ξ−F = bF τ +O(τ2) . (5.23)

In deriving this result we used the first two lines of (5.13). The expansions of the
original flux functions are:

f = −πQ
8c0

eΦ0bf τ
2+O(τ3) , k =

πQ

c0

(
bF + 2eΦ0bk

)
+O(τ) , F =

πQ

c0
bk τ+O(τ2) ,

(5.24)
where in going from (5.23) to f(τ), k(τ) and F (τ) we have eliminated two additional
solutions (see the end of the previous section): the first one is the “very” singular
(1, 2) solution with k ∼ τ−2 and F ∼ τ−1 which we will not consider, and the second
corresponds to the gauge transformation (f, k)→ (f +c, k+c) we mentioned earlier.
We fix the gauge freedom by requiring that f(τ) vanishes at τ = 0.

It seems that, all in all, we have a singular solution in the UV parameterized
by three independent parameters bf , bk and bF . However, only two parameters are
independent, since both the ξ̇−k and the ξ̇−F equations in (5.16) imply that

bF = −4eΦ0bk . (5.25)

Thus we have (at least) a two-dimensional space of singular solutions in the IR. At
the same time, by gluing the solution to the UV we expect to arrive at a unique
solution for the entire range of τ that depends on two parameters Q and P . The UV
regularity will then impose an additional constraint on bf and bk (as well as on all
the other “free" IR parameters like the dilaton), so that one will have to switch on
both these modes in order to avoid a divergent UV solution. In fact, the perturbative
solution constructed in Chapter 4 at linear order in Q/P has exactly this singularity
structure (5.24) with bf = −12bk ∼ 0.02 ε

8/3
0 P−2. However, for the full solution this

result is expected to change.
We see now that the singular solution will necessarily have a non-zero ξ−f at

τ = 0. In this case the arguments from the end of the previous section do not apply
and, as a result, there is no “global minimum" obstruction for the singular solution.

As a consistency check we may show that the net force on a probe D3 brane in this
background will be pointed towards the tip, as expected for a solution with smeared
anti-D3 branes. This force is given by (5.9) and in our conventions it means that ξ+

1

should be non-negative. Let us demonstrate it with the help of the ξ+
1 equation of

motion:

ξ̇+
1 −Ke−2xξ+

1 = 4e2x−4(p+A)

[
eΦ+2y(ξ+

f )2 + eΦ−2y(ξ+
k )2 +

1

2
e−Φ(ξ+

F )2

]
. (5.26)

We know from (5.13) that ξ+
1 = 1

2c
2
0τ + . . . near τ = 0. Thus, for function ξ+

1 (τ) to
vanish at some τ = τ? and to become negative for τ > τ?, we must have ξ̇+

1 (τ?) < 0.
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Figure 5.2: The function ξ1(τ) is positive for small τ but cannot have a zero (left) at
finite τ = τ?, since ξ̇1(τ) < 0 is not allowed. As a consequence, it will be everywhere
positive (right). Notice that it goes to zero at infinity, otherwise we do not get
asymptotic KS solution.

This, however, is at odds with the equation (5.26), since its right hand side is non-
negative. We conclude that ξ+

1 (τ) > 0 for τ ∈ (0,∞), see Figure 5.2.
Let us now come back to the ξ− equations of motion. We may further use (5.15)

in order to extract a relation between bf , bk, bF and the constant b1 defined by

ξ−1 = b1τ
2 +O(τ3) . (5.27)

Plugging (5.23) into (5.15) we get:

b1 =
πQ

3c0

(
eΦ0

(
b2f
4

+ 4b2k

)
+ e−Φ0

b2F
2

)
=

πQ

12c0
eΦ0

(
b2f + 48b2k

)
>

πQ

12c0
eΦ0b2f .

(5.28)
This last inequality will play a crucial rôle in the next section when we will deter-
mine the form of the polarization potential. For this we will also need the explicit
expressions for the RR 4 and 6-form gauge fields:5

C4 =
(
−2χ1 + e−2x+4(p+A)

)
dx0 ∧ . . . ∧ dx3

C6 = χf · g1 ∧ g2 + χk · g3 ∧ g4 , (5.29)

where6

χ̇1 = e−2xξ−1 , χ̇f = 4e2y+Φξ−f + 2ḟχ1 , χ̇k = 4e−2y+Φξ−k + 2k̇χ1 . (5.30)

5In our conventions dC6 = eΦ ?10 F3 −H3 ∧ C4.
6Notice that C6 depends only on ξ−’s and vanishes for the anti KS solution. It is also zero for

the KS background as one can show using (5.7).
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The integration constants of χ1, χf and χk can be eliminated by gauge transforma-
tions of C4 and C6. We will fix the freedom by requiring that all these functions
vanish at τ = 0. Using (5.23) and (5.13) we can find the leading order behavior of
χ1 and χf :

χ1 =
2

πQ
b1 · τ2 + . . . , χf =

1

3
eΦ0bf · τ3 + . . . . (5.31)

We end this section by making explicit the singular character of our solution, and
explaining the various terms that contribute to the singularity. First, it is easy to
verify by plugging the IR behavior into (5.12) that the 3-form flux densities diverge,
namely

|H3|2 ∼
(bf )2 + 8(bk)

2

√
τ

+O(τ0) |F3|2 ∼
(bk)

2

√
τ

+O(τ0) . (5.32)

It is useful to characterize the singularity of our solution in terms of the ISD and
IASD components of the three form flux. Let us recall the notation of Section 4.7,
where we defined three scalar functions of the radial variable λA, by

e−ΦH3 = −λ(τ)A ∗ FA3 (5.33)

where FA3 denotes each of the three components of F3, namely along g125, g345 and
dτ (g13 + g24). These definitions ensure that for ISD (IASD) fluxes, λA = 1. We find
that the component with legs g345 is singular:

λ345(τ) = − πQ

2c0P
bfτ
−1 +O(τ0) , (5.34)

while the other two are regular. We should note that in the linearized anti-D3
solution of [25, 20, 21], there was actually an additional singular λ, namely λ125.
We thus see that at the full non-linear level one singularity gets resolved, but the
singularity in λ345 (which corresponds to three-form field strengths that have the
legs on the S3) persists, precisely confirming our conjecture in Section 4.7.

We end this section by comparing our results to the ones in the solution considered
in [40], corresponding to anti-D6-branes wrapping a T 3. As explained in [28], that
solution can be T-dualized three times, and will yield a KS-like solution where the
warped deformed conifold is replaced by T 3 × R3. As argued in Section 4.7 this
solution can be regarded as a toy model for the KS infrared region. Indeed, there
is a flux singularity very much like the one found here, but in a sense simpler: the
fluxes can be parameterized by a single function λ, defined by H3 = λ(τ) ∗3 F0,
where F0 is the mass parameter in massive type IIA, which is the toy-model version
of the dual 3-form F3 on the S3. The fully backreacted anti-D6 solution has [39]
λ(τ) = λ0 τ

−1 + O(τ0), and the whole (IR singular) solution can be parameterized
by λ0.
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5.5 D5 polarization

In this section we would like to address the main question of this paper: can the
3-form flux singularity of the anti-D3 brane putative solution be cured by the polar-
ization of the anti-D3 branes into D5 branes? The singularity occurs at τ = 0 and if
we find that there is a stable configuration with a polarized D5 brane wrapping the
2-sphere at a finite distance away from the tip, it will imply that the singularity is
still physically meaningful. In the first subsection we will compute the potential of a
probe D5 brane with anti-D3 charge n in the singular solution sourced by Q anti-D3
branes smeared on the KS tip. We will then argue in the second subsection that this
potential also governs the polarization of all Q anti-D3 branes into D5 branes.

5.5.1 The D5 potential

In order to see if the anti-branes polarize or not into D5-branes we need to compute
the potential of a probe D5-brane that wraps the S2 of the deformed conifold and
has n anti-D3 branes dissolved in it. The D5 brane action (in string frame) is

SD5 = SDBI + SWZ (5.35)

with

SDBI = −µ5

∫
d6ξe−φ

√
−det (g + 2πF2) , SWZ = µ5

∫
(C6 + 2πF2 ∧ C4) ,

(5.36)
where 2πF2 ≡ 2πf2 − B2 and f2 is the D5 worldvolume gauge field strength that
gives the number of anti-D3 branes dissolved in the D5:

f2 =
n

2
ωS2 , (5.37)

where ωS2 is proportional to g1 ∧ g2. The larger n the easier to polarize it is, and in
that limit one can expand the DBI action in a 1/n series. The leading term cancels
the leading term in the WZ action, and the polarization potential has in general the
following form:

V (τ) ∼ 2πn · c2τ
2 − c3τ

3 +
1

2πn
c4τ

4 , (5.38)

where the quadratic term comes from the imperfect WZ-DBI cancelation (and is
equal to the force on a probe anti-D3 brane), the cubic term7 comes from the C6

term in the WZ action and the quartic terms is the subleading term in the 1/n
expansion of the DBI action.

It is easy to show that if the following relation is satisfied

(c3)2 <
32

9
c2c4 , (5.39)

7In our conventions c3 is positive.
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then the potential (5.38) has no minima for any τ away from zero, and thus there is
no polarization. In our singular solution we obtain

c2 = lim
τ→0

(χ1

τ2

)
, c3 = lim

τ→0

(χf
τ3

)
, c4 = lim

τ→0

(
e4(p+A)+2y+Φ

τ4

)
, (5.40)

where χ1 and χf are defined in eqs. (5.29), (5.30), and their IR behavior is given in
(5.31). Using this and (5.13), we arrive at the following result:8

c2 =
2

πQ
b1 , c3 =

1

3
eΦ0bf , c4 =

1

4
c0e

Φ0 . (5.41)

We can now rewrite the inequality in (5.28) in terms of c2, c3 and c4 and find that
in all anti-D3 singular solutions:

(c3)2 6
8

3
c2c4 . (5.42)

From this result we see that the condition (5.39) is always satisfied. This is the main
result of this Chapter. It proves that the potential (5.38) has no minimum, not even
a metastable one. Thus no polarization into D5 branes occurs and the 3-form flux
singularity appears to be genuine. Even more importantly, we were able to prove
this statement without extending the solution from the IR all the way to the UV.

In fact, the story here is strikingly similar to the D6 toy model of [28] that
we briefly mentioned in the previous section. Remarkably, in this model there is
also no need to determine the full backreacted solution in order to see that the
polarization potential has no minimum away from zero. Moreover, the inequality
(5.42) was exactly saturated. Our potential is more complicated, and reduces to the
one of [28] if one sets bk = bF = 0. However, turning this parameter back on makes
polarization even more difficult, and hence does not modify the physics that the toy
model predicted.

5.5.2 The mean field argument

To understand the relation between the potential for probe anti-D3 branes that we
calculated in the previous section, the potential that governs the polarization of all
the smeared D3 branes into smeared D5 branes, and the potential for the polarization
of localized D3 branes into D5 branes it is important to recapitulate several very
important features of the Polchinski-Strassler construction [146].

Despite the absence of a fully-backreacted solution, Polchinski and Strassler com-
pute in [146] the potential for all the D3 branes that source the AdS5×S5 geometry
to polarize into D5, NS5 or (p, q)-5 branes. This computation has three ingredients.
One starts from a singular solution sourced by N D3 branes, and calculates the po-
tential of a probe D5 brane that wraps a topologically-trivial S2 and has n units

8Notice that neither bk nor bF appear in the potential.
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of D3 brane charge inside, where n � N . This potential has three terms, that go
respectively like r4, r3 and r2. One then finds that in the r4 term the various factors
of the warp function of the backreacted D3 branes cancel out, and this term is there-
fore independent of the location of the backreacted branes (all the information about
the angular location of the D branes is stored in the warp factor). Furthermore, the
r3 term is proportional to the IASD three-form, which is closed and co-closed, and
hence depends only on the asymptotic boundary conditions; hence, this term is also
independent of the location of the backreacted D3 branes.

The r2 term in [146] is much more complicated, as it comes from the the back-
reaction of the fluxes on the metric, dilaton and five-form field strength. When
supersymmetry is present, one can find this term by completing the squares in the
supersymmetric polarization potential [146]. However, computing this term directly
is much more painful, and has been done in [73, 158]. Not surprisingly, the two
calculations agree, and the r2 term also turns out to be independent of the warp
factor sourced by the backreacted D3 branes, although this is much more difficult
to see from the supergravity calculation. When supersymmetry is broken by the
introduction of a fourth fermion mass, one can still compute the r2 term by using
various supersymmetric limits as well as the fact that this term comes from interact-
ing three-form field strengths (see for example section IV of [146]) and one still finds
that this term is independent of the warp factor, and therefore of the position of the
backreacting D3 branes. Hence, both in supersymmetric and in non-supersymmetric
Polchinski-Strassler backgrounds the polarization potential for a probe D5 brane
with D3 charge n is independent of the position of the N D3 branes that source the
solution.

Armed with this fact, one can consider then the much more general problem of a
large number of D5 branes that have charges ni, such that

∑
i ni = N and ni � N .

Each of these D5 branes can now be treated as a probe in the supergravity solution
created by the other branes, and because the polarization potential is independent of
the position of the D3 branes that source the background, the potential felt by each
D5 brane in this configuration is the same as the potential of this D5 brane in the
singular solution above. Hence, one can construct self-consistently the full solution
by requiring that each probe is at a minimum in the background sourced by the other
probes. This “mean-field” construction can then be generalized straightforwardly to
D3 branes polarizing into multiple shells that can also have NS5 or more general
(p, q)-5-brane dipole charge. More generally, this construction can also be used to
study all the other types of brane polarization that occur in the region where the
branes that polarize dominate the geometry. The correctness of this “mean-field"
Polchinski-Strassler construction of vacua with polarized branes has been confirmed
in the few examples where the fully-backreacted brane polarization supergravity solu-
tion exists, such as the mass-deformed M2 brane theory [31, 125], or the supergravity
dual of the mass-deformed 5D Super Yang-Mills theory [17]. Hence the probe cal-
culation that we presented in the previous section gives the full potential for the
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smeared anti-D3 branes to polarize into D5 branes at a finite distance away from the
tip.

However, one can do much more: one can use this independence of the Polchinski-
Strassler polarization potential on the location of the polarizing branes to compute
the potential for N D3 branes that are localized near the north pole of the large S3

at the bottom of the KS solution to polarize into a D5 brane wrapping the conifold
S2 at a finite distance from the tip. By the arguments above, this potential is the
same as the potential for several probe D3 branes to polarize on this S2 in the
singular geometry sourced by a large number of D3 branes that are localized on the
KS three-sphere, as long as the polarization occurs in the region where these D3
branes dominate the geometry. In turn, this potential is independent of the location
of the D3 branes that dominate the geometry, and hence is the same as the potential
for several probe D3’s to polarize into a D5 brane in the geometry where these D3
branes are smeared, which we calculated in the previous subsection.

Hence, our calculation indicates that neither smeared nor localized anti-D3 branes
do not polarize into D5 branes, and therefore that brane polarization à la Polchinski-
Strassler does not appear to cure the singularity of antibranes in KS.

5.5.3 Validity of approximations

We now discuss the range of validity of our calculation. We see from the probe D5
potential (5.38) and the expressions (5.41) that the radius τ∗ at which the D5 would
sit is of the order

τ∗ ∼ n
c3

c4
∼ n bf . (5.43)

Here we immediately face a problem. Since we do not know the full solution we
cannot fix the dependence of bf and all other coefficients on P (the 5-form flux) and
Q (the number of the anti D3’s). We can still estimate however this dependence
using the method utilized in [28]. The full solution is expected to be unique, namely
having no parameters other than P and Q. We, therefore, anticipate that for a fixed
order in the τ expansion the contributions coming from various terms in the EOM
will be of the same order in terms of P and Q. In other words, there should be a
detailed balance between different terms.

Let us introduce the following notation:

ξ−f = b
(0)
f + b

(1)
f τ + b

(2)
f τ2 + . . . (5.44)

and similarly for the other ξ−’s. The additional index stands for the power of τ
and in terms of the notation introduced in the previous section we have b(0)

f = bf ,

b
(2)
k = bk, etc.

We can start our analysis, for instance, from the τ2 contribution to the following
term in the ξ−1 equation (5.15)

e2y
(
ξ−f

)2
+ e−2y

(
ξ−k
)2
. (5.45)
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We see that the detailed balance implies b(0)
f ∼ b

(2)
k . Next, the e2yξ−f − e−2yξ−k term

in the ξ̇−F equation gives b(0)
f ∼ b

(4)
k . We conclude that b(2)

k ∼ b
(4)
k . With a bit of

effort, one can further show that in fact all b(i)f ’s and b(i)k ’s are of the same order of

magnitude. Moreover, b(i)F ∼ eΦ0b
(j)
k for all i and j.

Let us now consider the b(i)1 coefficients. From (5.15) and the ξ̇−f equation in (5.16)

we learn that b(2)
1 ∼ QeΦ0

(
b
(0)
f

)2
and b(2)

f ∼ PQ−1b
(2)
1 respectively. Combining the

two we see that b(i)f ∼ e−Φ0P−1 and b(i)F ∼ P−1.

Finally, we have to compare the ξ−f and ξ−f
2 terms on the right hand side of the

˙ξ−Φ equation in (5.17). We find b(1)
f ∼ P/Q and comparing this with the observations

of the previous two paragraphs we see eventually that eΦ0 ∼ Q/P 2.
To summarize, we find that:

b
(i)
f ∼ b

(i)
k ∼

P

Q
, b

(i)
F ∼

1

P
, and eΦ0 ∼ Q

P 2
. (5.46)

The remaining coefficients are irrelevant for our analysis.
We are now in a position to check the validity region of our polarization calcula-

tion. In order to trust our computation we need to assume the following conditions:

• The anti-D3 charge of the probe D5 should be much smaller than the anti-D3
charge of the background

n� Q . (5.47)

We recall that in our conventions Q is the number of anti-D3 branes.

• In order to trust the IR expansions we should demand that τ∗ is small compared
to the ratio between the leading and next-to-leading terms in the series. Since,
for instance, all of the b(i)f are of the same order, we must require τ∗ � 1. This
in turn amounts to

n� Q

P
. (5.48)

• Since we expanded the square root in the DBI action we should demand that
det(2πF2) � det(g⊥). Recalling that in our Ansatz det(g⊥) = e2x+2y ∼
Qτ3 + . . . we obtain n2 � τ3

∗Q or

n� Q2

P 3
. (5.49)

• The radius of the S2 at which the D5 brane would polarize should be large
in string units. Since the radius is given by (det(g⊥))1/4 this amounts to
demanding τ3

∗Q� 1 or

n� Q2/3

P
. (5.50)
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• The string coupling should be small at τ∗. This means that

Q� P 2 . (5.51)

To conclude, we have the following criteria

Q2/3

P
� n� Q2

P 3
� Q

P
� Q . (5.52)

This can be easily achieved. For example, we can set n ∼ σ, Q ∼ σ7 and P ∼ σ4 for
large σ.

5.6 Discussion

We reviewed in detail the non-linear solution corresponding to Q anti-D3-branes
smeared on the S3 at the tip of the deformed conifold, focusing on the fact that such
solution has singular three-form fluxes in the infrared. These singularities could have
suggested a stringy resolution by polarization à la Polchinski-Strassler. However, we
showed that the anti-D3-branes do not polarize into anti-D5-branes wrapping the S2

at a finite radius, and therefore such mechanism of resolution of singularities is not
in place here.

In order to show that, we computed the polarization potential, which has quadratic,
cubic and quartic terms in the radial variable, but with coefficients such that there
is no minimum, regardless of any UV data. All information needed to reach that
conclusion are the IR boundary conditions reviewed in detail in the text. This result
is quite strong, as on one hand we had shown that any solution with anti-D3-brane
boundary conditions leads to either an anti-KS solution or to a singular solution, and
on the other hand we are showing that this singularity is not resolved by polarization
into anti-D5-branes, no matter what irrelevant or relevant operators one adds in the
UV.

It is worth mentioning again the striking similarities between our results and
those on anti-D6-branes in backgrounds with D6-charge dissolved in fluxes, which
serves indeed as a toy model for the IR of KS. They both have the same type of
singularities, and in neither case these can be resolved by polarizing into anti-branes
of two dimensions higher. Furthermore, the potential for polarization in the case of
anti-D3 branes reduces exactly to the one for anti-D6 if one integration constant is
set to zero. The second integration constant, which should be related to the first one
by UV boundary conditions, only makes things worse in terms of getting a minimum.

Our result also suggests that in the fully back-reacted solution there may be no
polarization into NS5-branes, opposite to what happens in the probe calculation. In
order to pin down this question one would need the localized solution, though, as
smearing the charge on the S3 wipes out this polarization channel. However, one
might hope that, as was the case here, only very few details of the solution are needed
to get an answer, and such details might be within reach.

109



Chapter 6

Metastable states in M-theory

In this chapter we will focus on non-supersymmetric eleven dimensional supergrav-
ity solutions. By using the same method followed for the deformed conifold in six
dimensions, we construct an M–theory background dual to a metastable state in
a (2+1)-dimensional field theory, which corresponds to placing a stack of anti–M2
branes at the tip of a warped Stenzel space, which is a higher dimensional gen-
eralization of the deformed conifold. With this purpose we analytically solve for
the linearized non–supersymmetric deformations around the warped Stenzel space,
preserving the SO(5) symmetries of the supersymmetric background, and which in-
terpolate between the IR and UV region. We identify the supergravity solution
which corresponds to a stack of N̄ backreacting anti–M2 branes by fixing all the
12 integration constants in terms of N̄ . In the UV this solution has the desired
features to describe the conjectured metastable state of the dual (2+1)-dimensional
theory, while in the IR it suffers from a singularity in the four–form flux, which
we describe in some details and which is similar in nature to the singularity of the
anti-D3 brane backreaction studied in the previous sections. This Chapter is based
on the paper [135].

6.1 Introduction and motivation

In the previous Chapters we discussed in great details the construction of non-
supersymmetric cone-like four-dimensional compactifications of type IIB string the-
ory. The reason to focus on these constructions is the immediate phenomenolog-
ical interest in constructing de Sitter vacua and cosmological models in the four-
dimensional space time. However, a large part of the motivation also comes from
the gauge/gravity correspondance, since these solutions are conjectured to be dual
to non-supersymmetric states in the field theory, and to deformations by a full set
of non-normalizable modes. Attention to mechanisms of metastable supersymmetry
breaking in quantum field theories was drawn by the work of Intriligator, Seiberg and
Shih [106]. Since the constructions of such states involve strongly coupled regimes,
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it is natural to address the study of this phenomenon in stringy realizations of the
supersymmetric theories.

The approach we followed in this thesis is to consider brane realisations which
extend the AdS/CFT correspondance to non–conformal or less–supersymmetric the-
ories and try to construct metastable states in this context. One way to achieve
this is to start by a configuration of branes placed at some Calabi-Yau singularity
and consider the supergravity solution obtained after smoothing the singular point.
While in the previous sections we explored this possibility for the six-dimensional
Klebanov-Strassler cone, it is of obvious interest to address the same question in
different contexts where metastable states are conjectured to exist, by string theory
arguments, in supergravity backgrounds dual to strongly coupled field theories.

Here we focus on the case of an AdS4/CFT3 correspondence, which involves an
N = 2 supersymmetric (2+1)–dimensional theory, whose supergravity dual is AdS4×
V5,2, where V5,2 is the 7–dimensional Sasaki–Einstein space V5,2 = SO(5)/SO(3). A
gravity dual for a long-lived metastable state has been proposed in [115] based on
the probe analysis, by placing a stack of anti–M2 branes at the tip of the warped
M–theory background with transverse Stenzel space [156]. Here, the analogue of
the KS solution is the supersymmetric solution of Cvetič, Gibbons, Lü and Pope
(CGLP) [54]; indeed, the 8–dimensional Stenzel space is a part of a family of Ricci–
flat solutions parametrized by the dimension n, which include the deformed conifold
for n = 6. The mechanism for which the false vacuum decays is similar to the KPV
process [111] (see Section 2.4): the anti–M2 branes fall in the warped throat and
at the tip they polarize into M5–branes wrapping an S3 ⊂ S4. The probe analysis
of [115] shows that this state is metastable if p/M̃ ≤ 0.054, where M̃ is the number
of units of the 4–form flux of the CGLP background.

The effects of the backreaction of the anti–M2 branes on the transverse geometry
have been partially studied in [24], where the linearized equations that govern the
first–order backreacted solution have been solved implicitly in terms of integrals
by using the first–order formalism introduced by Borokhov and Gubser [41] and
discussed in section 3.2; the full solution was presented separately in the small and
large radius limit. The main purpose of that work was to study the IR behavior of
the perturbed solution, and the conclusion of this analysis was similar to the anti–
D3 case, namely that the conjectured solution dual to the metastable state exhibits
certain singularities which in the anti–M2 case lead to a divergent action in the IR1.

As we discussed for the deformed conifold solution, it is important to check
whether the solution, beside the singularity, has the correct features to correspond
to the metastable state in the field theory. For this, one needs to connect the IR
and the UV region and to see if the ultraviolet region has the desired properties. In
this perspective, it is clearly interesting to perform such an analysis in the anti–M2
brane configuration, which in the IR can be thought as the M-theory generalization
of the Type IIB KS solution, but has a rather different behavior in the UV. For ex-

1See [78] for a similar analysis in a Type IIA context.
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ample, in the M-theory background there is not a logarithmic running of the charge,
which is an important feature of the KS background, and was crucial in the analy-
sis of the backreaction, as we discussed in Chapter 4. In this Chapter we perform
the analysis outlined above and by extending the results of [24] we present the full
analytic solution of the linearized supergravity equations which describe the most
general non–supersymmetric deformation of the warped Stenzel space compatible
with the symmetries of the CGLP background. With this result we are able to study
the effects of IR boundary conditions on the ultraviolet behavior of the supergravity
modes and we identify the unique solution which has the desired features to describe
anti–M2 branes in the CGLP background (leaving open the issue of the singularity
discussed above).

This Chapter is organized as follows. In Section 6.2 we review the computational
formalism and we solve analytically the system of first–order differential equations
governing perturbations around the CGLP supersymmetric solution. Our full solu-
tion, which is shown in Appendix E, contains few single integrals that cannot be
explicitly performed, but they can easily be handled with numerical integration. In
Section 6.3 we show the expansions of our solution in the IR and in the UV region
in terms of a set of twelve integration constants denoted (Xa, Ya). In Section 6.4 we
discuss the various charges in the Stenzel background and we identify the pertur-
bation due to the presence of M2 branes. In Section 6.5 we impose the boundary
conditions that arise from placing a stack of anti–M2 branes at the tip (r = 0) of the
geometry and we discuss the problems associated to an infrared singularity in the
fluxes. We then summarize the asymptotic behavior of the anti–M2 solution, which
is expressed in terms of the number of anti–M2 branes. As a check of our boundary
conditions, we compute the force exerted on a probe M2 brane and we show that it
agrees with the one derived from the brane/antibrane potential (which we review in
Appendix F). We end with a discussion in Section 6.6.

6.2 Linearized equations and their solutions

The linearized equations governing the deformations around the warped Stenzel space
have been derived in [24] by using the Borokhov–Gubser [41] first–order formalism.
We use the ansatz for the SO(5)–invariant supergravity solution of [115]:

ds2
11 = e−2z(r)dxµdx

µ + ez(r)
[
e2γ(r)dr2 + e2α(r)σ2

i + e2β(r)σ̃2
i + e2γ(r)ν2

]
, (6.1)

where σi, σ̃i (i = 1, 2, 3) and ν are the 1–forms in the coset SO(5)/SO(3) and
µ = 0, 1, 2. The four–form field strength G4 is given by

G4 = dK(r) ∧ dx0 ∧ dx1 ∧ dx2 +mF4 , (6.2)

where the internal flux F4 is parametrized by

F4 = f ′(r)dr ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + h′(r) εijkdr ∧ σi ∧ σj ∧ σ̃k (6.3)
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+
1

2
(4h(r)− f(r))εijkν ∧ σi ∧ σ̃j ∧ σ̃k − 6h(r) ν ∧ σ1 ∧ σ2 ∧ σ3 ,

and the function K(r) is fixed in terms of the other functions by the equation of
motion

d ? G4 =
1

2
G4 ∧G4 . (6.4)

We recall that the method introduced in [41] relies on the existence of a superpotential
W defined such that its square gives the potential, namely

V (φ) =
1

8
Gab

∂W

∂φa
∂W

∂φb
. (6.5)

We consider an expansion for the fields φa (a = 1, ..., n) around the supersymmetric
background

φa = φa0 + φa1(X) +O(X2) , (6.6)

where X represents the set of perturbation parameters, φa1 is linear in them, and φa0
are the functions in the CGLP solution, written explicitly in (6.15). We will denote
the set of functions φa, a = 1, ..., 6 in the following order

φa = (α, β, γ, z, f, h) . (6.7)

The first order formalism gives a set of 2n linear first–order differential equations for
the perturbations φa1 and their conjugates ξa (see section 3.2):

dξa
dτ

+ ξbM
b
a(φ0) = 0 , (6.8)

dφa1
dτ
−Ma

b(φ0)φb1 = Gab ξb , (6.9)

where

ξa ≡ Gab(φ0)

(
dφb1
dτ
−M b

d(φ0)φd1

)
, M b

d ≡
1

2

∂

∂φd

(
Gbc

∂W

∂φc

)
. (6.10)

The equations (6.9) are the definitions of the ξa,while the n equations (6.8) form a
closed set and imply the equations of motion [41]. The functions ξa should addition-
ally satisfy the zero–energy condition

ξa
dφa0
dτ

= 0 . (6.11)

The field–space metric in (6.10) is

Gab φ
′a φ′b =

1

2
e−α−3(β+z)

[
3e4α+6β+3z

(
3z2 − 4α2 − 12αβ − 4β2 − 4αγ − 4βγ

)
+ e4αm2f2 + 12e4βm2h2

]
, (6.12)
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and the superpotential is given by [24]

W (φ) = −3e2α+2β
(
e2α + e2β + e2γ

)
− 6m2e−3z

[
h(f − 2h)− 1

54

]
. (6.13)

The background fields satisfy the flow equation2

dφa0
dτ

=
1

2
Gab

∂W

∂φb0
(6.14)

and they are given by the CGLP solution [54]

e2α0 =
1

3
(2 + cosh 2r)1/4 cosh r , (6.15)

e2β0 =
1

3
(2 + cosh 2r)1/4 sinh r tanh r ,

e2γ0 = (2 + cosh 2r)−3/4 cosh3 r ,

f0 =
1− 3 cosh2 r

33/2 cosh3 r
,

h0 = − 1

2 33/2 cosh r
,

z0 =
1

3
log(m2H(r)) ,

where the warp factor H is defined by the following integral:

H(r) =

∫ ∞
r

3 sech3u tanhu

(2 + cosh 2u)3/4
du =

√
2
y (7− 5y4)

(y4 − 1)3/2
+ 5
√

2F
(

arcsin(y−1)| − 1
)
,

(6.16)
where

y = (2 + cosh(2r))1/4 (6.17)

and F is the incomplete elliptic integral of the first kind

F (φ|q) =

∫ φ

0
(1− q sin2(θ))−1/2dθ . (6.18)

As shown in [24], it is useful to solve for the following linear combinations of the
fields ξa and φa

ξ̃a = (ξ1 + ξ2 + ξ3, ξ1 − ξ2 + 3 ξ3, ξ1 + ξ2 − 3ξ3, ξ4, ξ5, ξ6) , (6.19)

φ̃a = (φ1 − φ2, φ1 + φ2 − 2φ3, φ3, φ4, φ5, φ6) . (6.20)

2Note that the equations for a = 1, 2, 3 are equivalent to the the Ricci–flat Kähler condition for
the metric [133], while the ones for a = 5, 6 give the self–duality of the internal form F4.
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The first–order systems of coupled differential equations for the fields ξ̃a and φ̃a are:

ξ̃′4 =
1

9
e−3(z0+α0+β0)m2

(
54h0(f0 − 2h0)− 1

)
ξ̃4 , (6.21)

ξ̃′1 =
2

9
e−3(z0+α0+β0)m2

(
54h0(f0 − 2h0)− 1

)
ξ̃4 , (6.22)

ξ̃′5 =
1

2
eα0−β0 ξ̃6 − 2m2h0e

−3(z0+α0+β0)ξ̃4 , (6.23)

ξ̃′6 = 6e−3α0+3β0 ξ̃5 − 2eα0−β0 ξ̃6 − 2m2(f0 − 4h0)e−3(z0+α0+β0)ξ̃4 , (6.24)

ξ̃′3 = 4e−α0−β0+2γ0 ξ̃3 +
2

9
e−3(z0+α0+β0)m2

(
54(f0 − 2h0)h0 − 1

)
ξ̃4 , (6.25)

ξ̃′2 = 2 cosh(α0 − β0)ξ̃2 −
3

2
eα0−β0 ξ̃1 +

3

2
e−α0−β0(e2α0 − 2e2γ0)ξ̃3 (6.26)

− 36h0e
−3α0+3β0 ξ̃5 + eα0−β0(f0 − 4h0)ξ̃6 ,

and

φ̃′1 = −2 cosh(α0 − β0)φ̃1 +
1

12
e−3(α0+β0)(−3ξ̃1 + 4ξ̃2 + 3ξ̃3) , (6.27)

φ̃′2 = −4e−α0−β0+2γ0 φ̃2 − 6 sinh(α0 − β0)φ̃1 +
1

12
e−3(α0+β0)(−3ξ̃1 + 7ξ̃3) , (6.28)

φ̃′3 = 3 sinh(α0 − β0)φ̃1 +
3

2
e−α0−β0+2γ0 φ̃2 +

1

12
e−3(α0+β0)(ξ̃1 − 3ξ̃3) , (6.29)

φ̃′5 =
2

m2
e−3α0+3β0(−3m2φ̃6 + 9m2h0φ̃1 + e3z0 ξ̃5) , (6.30)

φ̃′6 =
1

6m2
eα0−β0(−3m2φ̃5 + 12m2φ̃6 − 3m2(f0 − 4h0)φ̃1 + e3z0 ξ̃6) , (6.31)

φ̃′4 =
1

9
e−3(z0+α0+β0)

(
2e3z0 ξ̃4 +m2((1 + 54h0(2h0 − f0))φ̃2 + 2φ̃3 + φ̃4 (6.32)

+ 18(h0(−3(f0 − 2h0)(2φ̃3 + φ̃4) + φ̃5) + (f0 − 4h0)φ̃6))
)
.

6.2.1 Solutions for ξ̃a

We first note that the equation for ξ̃4 can be easily integrated by using the flow
equations (6.14); for a = 4 this reads:

z′0(r) = 2e−3(z0+α0+β0)m2
(
h0(f0 − 2h0)− 1

54

)
. (6.33)

This shows that ξ̃4 is proportional to the warp factor:

ξ̃4 = m2H(r)X4. (6.34)

In terms of the radial variable r the solutions for the remaining modes are

ξ̃4 = m2X4H(r) , (6.35)
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ξ̃1 = 2m2X4H(r) +X1 ,

ξ̃5 = −csch2r sechr
(3
√

3

2
m2X4

∫ r csch3u

(cosh 2u+ 2)3/4
du+X5

)
− cosh r coth2 r

(
− 3
√

3

2
m2X4

∫ r cosh 2u csch3u sech4u

(cosh 2u+ 2)3/4
du+X6

)
,

ξ̃6 = (3 cosh 2r + 1) csch2r sech3r
(3
√

3

2
m2X4

∫ r csch3u

(cosh 2u+ 2)3/4
du+X5

)
+ (4 coth r cschr − 2 cosh r)

(
− 3
√

3

2
m2X4

∫ r cosh 2u csch3u sech4u

(cosh 2u+ 2)3/4
du+X6

)
,

ξ̃3 = −6 sinh4 r (cosh 2r + 2)
(
m2X4

∫ r csch3u sech4u

(cosh 2u+ 2)7/4
du+X3

)
,

ξ̃2 = sinh r cosh r
[
X2 +

3

2
X1 coth r + 9X3 sinh3 r cosh r +

4

3
√

3
X5 cschr sech5r

+
4

3
√

3
X6 (coth r − 3 tanh r) +m2X4

(
3H(r) coth r − 2 tanh r sech3r

(cosh 2r + 2)3/4

+ 2 cschr sech5r

∫ r csch3u

(cosh 2u+ 2)3/4
du+ 9 sinh3 r cosh r

∫ r csch3u sech4u

(cosh 2u+ 2)7/4
du

+ 4(cosh 2r − 2) csch2r

∫ r cosh 2u csch3u sech4u

(cosh 2u+ 2)3/4
du
)]
.

The zero energy condition (6.11) reads

X2 = 0. (6.36)

By using the change of variables (6.17) it is easy to show (see Appendix E) that the
solution can be expressed in terms of only two integrals, the warp factor H(r) and
the Green’s function [19]

G(r) =

∫ r 3
√

3 csch3u

2 (cosh 2u+ 2)3/4
du =

√
3

2

[
3y(y4 − 1)1/2

√
2 (9− 3y4)

− 3 2−1/2 F
(

arcsin(y−1)|1
)

−
√

2 Π
(
−
√

3;− arcsin(y−1)|1
)
−
√

2 Π
(√

3;− arcsin(y−1)|1
)]

, (6.37)

where we use the standard definition for the incomplete elliptic integral of the third
kind

Π(n;φ|m) =

∫ φ

0
(1− n sin2(θ))−1(1−m sin2(θ))−1/2dθ . (6.38)

6.2.2 Solutions for φ̃a

We now present the solution for the φ̃a modes. Here we show the result in a compact
form in terms of the variable r and we relegate to Appendix E the involved analytic
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expressions which are obtained by explicitly performing the integrations. The first–
order perturbations to the metric modes and fluxes are

φ̃1 = − 1

sinh 2r

∫ r 9 cothu cschu

2 (2 + cosh 2u)3/4
ξ̃123 du+

Y1

sinh 2r
, (6.39)

φ̃2 = − 9 csch4r

4 (2 + cosh 2r)

∫ r sinhu

(2 + cosh 2u)3/4

[
(15 + 3 cosh 2u) ξ̃1 − 12 ξ̃2 − (23 + 7 cosh 2u) ξ̃3

]
du

− 3

2 + cosh 2r
φ̃1 +

csch4r

2 + cosh 2r
Y2 ,

φ̃3 = Y3 −
9

32

∫ r csch3u

(2 + cosh 2u)3/4

[
ξ̃1 + 3 cosh 2u ξ̃123 + 3 ξ̃3

]
du− 3

8
cosh 2r φ̃1 −

3

8
φ̃2 ,

φ̃5 = sinh3 r tanh3 rΛ5 +
1

2
cosh r (5− cosh 2r) Λ6 ,

φ̃6 = −1

4
(3 + cosh 2r) sinh r tanh rΛ5 +

1

2
cosh3 rΛ6 ,

where we defined

Λ5 = Y5 +
1

24

∫ r [
12 sinhu ξ̃5 − (5− cosh 2u) coth2 u cschu ξ̃6

]
H(u) du (6.40)

+

√
3

8

∫ r (2− cosh 2u)csch3u

(2 + cosh 2u)3/4
ξ̃123 du+

2− cosh 2r

6
√

3
φ̃1 ,

Λ6 = Y6 +
1

12

∫ r

sechu tanh3 u
[
3 (3 + cosh 2u) ξ̃5 + cosh2 u ξ̃6

]
H(u) du

−
√

3

8

∫ r

(2 + cosh 2u)1/4sech3u tanhu ξ̃123 du−
(2 + cosh 2r) tanh4 r

6
√

3
φ̃1 ,

and we dubbed ξ̃123 the following combination of ξ̃a

ξ̃123 = 3 ξ̃1 − 4 ξ̃2 − 3 ξ̃3 .

The last mode we solve for is the perturbation to the warp factor φ̃4. Its integral
expression is

φ̃4 =
1

m2H(r)

∫ r 6m2 csch3uH(u)

(2 + cosh 2u)3/4
ξ̃4 du+

1

m2H(r)

∫ r 3m2 sech3u tanhu (φ̃2 + 2φ̃3)

(2 + cosh 2u)3/4
du

− 1

m2H(r)

∫ r 3
√

3m2 cschu sechu (csch2u φ̃5 + 2 sech2u φ̃6)

(2 + cosh 2u)3/4
du+

Y4

m2H(r)
.

(6.41)

We now briefly explain the procedure we followed in order to obtain this solution.
We firstly solve the system (6.27)–(6.32) using the Lagrange method of variation of
parameters. While in principle this produce a solution with an increasing number
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of nested integrations, we found that successive integrations by parts reduce the
outcome of this method to the compact form (6.39). We note that since the solution
for the ξ̃a modes is analytic in the variable y, the aforementioned solution for the φ̃a
modes contain at most single integrals of the from∫ y

f(u)L(u) du, (6.42)

where L(y) is a combination of incomplete elliptic integrals and f(y) is a polynomial
function of the variable y. In this form the expressions for the modes φ̃a can be easily
evaluated numerically, and thus provide a full interpolating solution which connects
the IR and the UV region.

The space of solutions we solved for is parametrized by twelve integration con-
stants Xa, Ya, of which only ten are physical since X2 can be eliminated through
the zero energy condition (6.36) and Y3 corresponds to a rescaling of the three–
dimensional coordinates. In Appendix E we show the full solution obtained after
replacing the analytic expressions for the modes ξ̃a and by recasting some of the
integrations in terms of incomplete elliptic integrals. We were not able to further
simplify the resulting solution, but we stress that the crucial improvement that per-
mits to easily handle numerical evaluation is the absence of nested integration (as
opposed for example to what happens for the anti–D3 case).

6.3 Asymptotic behavior

In order to impose the desired boundary conditions we need to calculate the behavior
of the solution presented in the previous section in the small and large r limits. For
that we need the expansions of the elliptic integrals that enter in the expressions for
the φ̃a modes. In the IR the first terms of the relevant functions are

F
(

arcsin(y−1)| − 1
)

= F0 −
r2

2
√

2 33/4
+

r4

12
√

2 33/4
+O(r6) , (6.43)

Π
(
−
√

3;− arcsin(y−1)| − 1
)

= K1 +
r2

4
√

2 33/4
− r4

48
√

2 33/4
+O(r6) , (6.44)

Π
(√

3;− arcsin(y−1)| − 1
)

= K2 +
31/4 log(r)√

2
− r2

4
√

2 33/4
+

r4

40
√

2 33/4
+O(r6) ,

(6.45)

where in order to keep notation intelligible, we used the following abbreviations:

F0 = F
(

arcsin
( 1

31/4

)
|−1
)
≈ 0.7896 , K1 = Π

(
−
√

3;− arcsin
( 1

31/4

)
|−1
)
≈ −0.6142

and K2 ∼ −0.9102. We also encounter the constant

K(−1) = 2

√
2

π
Γ

(
5

4

)2

≈ 1.3110 ,
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where K is the complete elliptic integral of the first kind3. Finally, we need the
expansion of the warp factor (6.16) which is

H(r) = H0−
1

2
31/4r2+

7 r4

4 33/4
+O(r6) , H0 = −4 31/4+5

√
2F0 ≈ 0.3187 . (6.46)

With these expansions we can easily find the IR behavior of the solution. In order to
match with the UV behavior we only need to perform a numerical integration to find
the expansions of the integrals that appear as the coefficients of X4 in the solution
shown in Appendix E.

6.3.1 Numerical matching

We now briefly describe the numerical method used to relate the UV and IR ex-
pansions of the integrals that appear in the solution for the φ̃a modes. They are
of the form (6.42), thus by using (6.43)–(6.45) we easily get the IR expansions for
the integrands. By performing an indefinite integration we therefore get the desired
expansions up to an integration constant which is generically different in the IR
and in the UV. Since these integrals are divergent in the small r limit but vanish at
r =∞, we chose to do the definite integration in the range [r,∞]; in this way the UV
integration constant is zero and we only need to match in the IR. This can be done
up to an arbitrary precision p by fixing an r0 smaller than the radius of convergence
of the IR series, evaluating the IR expansion S of the indefinite integral at r0 up to
the appropriate order n and then fixing a constant k such that∣∣∣∣Sn(r0) + k −

∫ ∞
r0

f(u)L(u) du

∣∣∣∣ < 10−p. (6.47)

We kept a precision of p ≈ 10, which we found enough for our purposes. As a check,
we can verify that the expansions obtained in the aforementioned way approximates
well the numerical solution for small and large r, as shown in Figure 6.1 for one of
the perturbation modes.

6.3.2 Infrared expansions

We now show the IR expansions of the modes φ̃a, focusing on the singular behavior
which is needed in order to impose boundary conditions in Section 6.5. These expan-
sions appeared already in [24] and apart from making sure our results are fine here
we relate Y IR to Y UV , a crucial step in order to try and write the backreacted state
at linearized order for all radii. Here the integration constants Xa and Ya are those
appearing in the analytic solution shown in section 6.2.1 and 6.2.2 and we defined
the Ỹa as

Ỹa = Ya + m2X4 kφ̃a , (6.48)

3Defined as K(q) = F (π
2
|q).
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φ̃6(r)

0.5 1.0 1.5 2.0 2.5

�8

�6

�4

�2

0

2

4

6

r

Figure 6.1: The solution for the mode φ̃6, for X2 = 0, X1 = X3 = X5 = X6 = 1,
X4 = 10, Ya = 1, m = 1 (underlying blue solid line). The red and orange dashed
curves correspond to the IR and UV expansions (respectively up to 20 and 15 terms).

kφ̃1
= 7.45479 , kφ̃2

= 0.301287 , kφ̃3
= 0.112188 , kφ̃5

= 0.576358 , kφ̃6
= −0.00504419 .

The constants kφ̃a are obtained with the numerical procedure outlined in the previous
subsection. We also impose the zero energy condition (6.36) and so in what follows
we set X2 = 0. With these remarks and notations in mind, we now provide the IR
expansions for the first–order perturbation modes

φ̃1 =
1

4 33/4r2

[
− 27X1 − 16

√
3 (X5 +X6)− 30m2H0X4

]
(6.49)

+
1

12r

[
6Ỹ1 +

√
2 31/4(−45

√
3X1 − 162

√
3X3 + 40X5 + 112X6)K(−1)

]
+

1

12 · 33/4

(
189X1 − 80

√
3 (X5 +X6) + 6m2X4(83H0 − 31/4 33)

)
+O(r) ,

φ̃2 =
1

r4

[
Ỹ2

3
+

4

105
H0 (63X1 + 432X3 − 7

√
3 (5X5 + 11X6)) +

63 31/4

5
X1 +

2808

35
31/4X3

− 72

5
33/4X6

]
+

1

r2

[
− 291

20
31/4X1 −

3744

35
31/4X3 + 2 33/4X5 +

106

5
33/4X6

(6.50)

+H0

(
− 16

5
X1 −

768X3

35
+

3 31/4m2X4

2
+

16 (5X5 + 11X6)

15
√

3

)
− 4 Ỹ2

9

]
− 1

12r

[
6 Ỹ1 −

√
2 31/4(45

√
3X1 + 162

√
3X3 − 40X5 − 112X6)K(−1)

]
120



Asymptotic behavior

+
137 31/4X1

25
+

12792 31/4X3

175
+ 6
√

3m2X4 −
1

675
(225 33/4X5 + 9081 33/4X6 − 205Ỹ2)

+H0

(164

75
X1 +

2624

175
X3 −

23 31/4m2X4

2
− 164 (5X5 + 11X6)

225
√

3

)
+O(r) ,

φ̃3 =
1

r4

[
H0

70

(
− 63X1 − 432X3 + 7

√
3(5X5 + 11X6)

)
− 189 31/4X1

40
− 1053

35
31/4X3

(6.51)

+
27 33/4X6

5
− Ỹ2

8

]
+

1

r2

[
2H0

105

(
63X1 + 432X3 − 7

√
3(5X5 + 11X6)

)
+

237 31/4X1

40
+

1404 31/4X3

35
− 33/4

10
(5X5 + 77X6) +

Ỹ2

6

]
+

61

160
31/4X1 −

1167

100
31/4X3 −

67

16

√
3m2X4 −

671X5 − 1033X6

120 31/4
− 41

360
Ỹ2 + Ỹ3

+
F0

630
√

2

(
− 10836X1 − 69444X3 + 6300 31/4m2X4 + 7

√
3 (725X5 + 1847X6)

)
+
K1 +K2

4
√

2

(
21X1 − 4

√
3(X5 +X6)

)
+ 30
√

2 31/4m2X4 F0 log r

+
1

8

(
21 31/4X1 − 210

√
3m2X4 − 4 33/4 (X5 +X6)

)
log r +O(r) ,

φ̃5 =
1

5

(
− 12 33/4X1 − 81 33/4X3 + 18 31/4X6 + 10 Ỹ6

)
(6.52)

− H0

60

(
21
√

3X1 + 4 (27
√

3X3 + 10X5 + 4X6)
)

+O(r3) ,

φ̃6 =
H0

12 r2

[√
3H0m

2X4 − 2 (X5 +X6)

]
−H0

(7
√

3X1

80
+

9
√

3X3

20
+

7m2X4

24 31/4
+

10X5 +X6

90

)
− H2

0 m
2X4

12
√

3
− 43 33/4X1

80
− 81 33/4X3

20
+

25X5 + 106X6

30 33/4
+
Ỹ6

2
+O(r) ,

(6.53)

φ̃4 =
1

r2

[
− 3

4
31/4H2

0 m
2X4 −

1

H0

(207
√

3X1

40
+

2403
√

3X3

70
− 54

5
X6 +

Ỹ2

8 33/4
− 33/4 Ỹ6

)
− 33

40
31/4X4 −

333

70
31/4X3 −

5X5 −X6

5 31/4

]
+O(r0) . (6.54)

6.3.3 Ultraviolet expansions

Here we show the leading terms in the UV expansions of the perturbation modes φ̃a

φ̃1 = −27X3

21/4
e−r/2 + 2e−2r Y1 − e−5r/2 27/4

(
27X1 + 81X3 − 16

√
3X6

)
(6.55)

+
1

20 21/4
e−9r/2

(
3267X3 − 1024

√
3X6

)
+O(e−6r) ,

121



Asymptotic behavior

φ̃2 = − 63X3

10 21/4
e3r/2 − 52569X3

280 21/4
e−5r/2 − 12e−4r Y1 +O(e−9r/2) , (6.56)

φ̃3 = Y3 −
3Y1

8
+

81X3

20 21/4
e3r/2 − 29079X3

560 21/4
e−5r/2 +

15

4
e−4r Y1 +O(e−9r/2) , (6.57)

φ̃5 =
Y5 − Y6

8
e3r − 9 (Y5 − Y6)

8
er +

1

24
e−r
(
− 8
√

3Y1 + 117Y5 + 27Y6

)
(6.58)

− 38 23/4
√

3e−3r/2X3 +
1

72
e−3r

(
168
√

3Y1 − 9 (111Y5 + Y6)
)

+
2

195
23/4e−7r/2(−3348

√
3X1 + 1323

√
3X3 + 6160X6) +O(e−5r) ,

φ̃6 = −Y5 − Y6

16
e3r − 3 (Y5 − Y6)

16
er +

1

144
e−r
(
− 8
√

3Y1 + 117Y5 + 27Y6

)
(6.59)

− 5 23/4
√

3 e−3r/2X3 +
1

48
e−3r

(
8
√

3Y1 − 51Y5 + 3Y6)
)

+
1

585
23/4e−7r/2

(
− 1188

√
3X1 + 243

√
3X3 + 2320X6) +O(e−5r) ,

φ̃4 =
3Y UV

4

16 23/4m2
e9r/2 +

27Y UV
4

26 23/4m2
e5r/2 − 27X3

10 21/4
e3r/2 +

350271Y UV
4

182872 23/4m2
er/2

(6.60)

+
3Y1

2
− 2Y3 − 2

√
3Y5 + 2

√
Y6 −

324

325
23/4X3 e

−r/2 +
484605Y UV

4

298792 23/4m2
e−3r/2

− 24

13
(Y1 − 6

√
3Y6) e−2r − 11957859009X3

28155400 21/4
e−5r/2 +

7978373883Y UV
4

21130570240 23/4m2
e−7r/2 +O(e−4r) .

From these expansions we can extract the UV behavior of the fields φ̃a, which is
important to understand the holographic physics. For this purpose we have to relate
our radial variable r to the standard AdS coordinate ρAdS as

ρAdS ∼ e3r/2 . (6.61)

A discussion of the holographic behavior can be found in [24], where it was shown
that the integration constants Xa and Ya are paired into normalizable and non-
normalizable mode. In order to be self–contained we tabulate in Table 6.1 (which
is adapted from [24]), the leading terms coming from each modes. Note that since
we obtain the asymptotic behavior from an analytic solution, we can relate the
integration constants of [24] to the IR singular behavior of the same modes. In
particular, one can explicitly check if an IR regularity condition on one integration
constant is compatible with the absence of the respective non–normalizable mode
in the UV. We will come back on this point in the next section. In the following
table ∆ is the dimension of the local operator O holographically associated to the
two supergravity modes whose asymptotic is ρ−∆

AdS (dual to the vacuum expectation
value of O) and ρ∆−3

AdS (dual to a deformation of the action δS =
∫
d3xO). Also, the

combination which appears at dimension ∆ = 7/3 is the linear combination of Y1,
Y5 and Y6 which appears in the corresponding terms in (D.16) and (D.17).
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dim ∆ non-norm/norm integration constants
6 ρ3

AdS/ρ
−6
AdS Y4/X4

5 ρ2
AdS/ρ

−5
AdS Y5 − Y6/X5 −X6

4 ρAdS/ρ
−4
AdS X3/Y2

3 ρ0
AdS/ρ

−3
AdS Y1 + Y3/X2

7
3 ρ

−2/3
AdS /ρ

−7/3
AdS Y5 + Y6 + Y1/X5 +X6

5
3 ρ

−4/3
AdS /ρ

−5/3
AdS Y1/X1

Table 6.1: The UV behavior of all fourteen modes for the SO(5)-symmetric defor-
mation around the CGLP solution, extracted from the asymptotic of our analytic
solution.

6.4 Charges and M2–branes

The space of solutions we solved for in the previous sections should contain the
linearized perturbation of the warped Stenzel space due to the presence of a stack
of smeared anti–M2 branes placed at the tip of the geometry. This configuration
was studied in the probe approximation in [115] and corresponds in the dual gauge
theory to a metastable supersymmetry breaking state. In order to identify the back-
reacted solution, we need to impose the correct boundary conditions associated to
the presence of the anti–branes at the tip. In this section we start by discussing the
standard notions of charge in the Stenzel background (see for example [96, 3, 99])
and as a warmup we identify the BPS perturbation of the CGLP solution ascribed
to the presence of M2 branes. The anti–M2 brane perturbation will be discussed in
the next section.

In the Stenzel background we can define a “running” M2 charge by integrating
?11G4 on a 7–dimensional sectionMr = V5,2 of the transverse cone at a fixed r

QM2(r) =
1

(2πlp)6

∫
Mr

?11G4 , (6.62)

where lp is the Planck length in eleven dimensions. We can also integrate G4 over
the 4–sphere which has a finite size at the tip and define the quantity

q(r) =
1

(2πlp)3

∫
S4

G4 . (6.63)

For the parametrization (6.1)-(6.2) and for the CGLP background we find from (6.33)
(see also Appendix F)

Q0
M2(r) = −6 211m2 VolV5,2

34 (2πlp)6

(
h0(f0 − 2h0)− 1

54

)
, (6.64)
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q0(r) = − 16π2m

(2πlp)3
h0(r) , (6.65)

where VolV5,2 = 27π4/128 [33]. Substituting the zeroth–order solution (6.15) we find

Q0
M2(r) =

m2 tanh4 r

108π2 l6p
, q0(r) =

m sechr

3
√

3π l3p
, (6.66)

which is the known result for the CGLP solution [115].
We now want to calculate the first–order corrections to these charges from the

first–order perturbation of the Stenzel geometry. The simpler case is the BPS one,
where a stack of M2–branes smeared over the S4 is placed at the origin r = 0.
The perturbation on the geometry should still preserve supersymmetry, so we are
forced to set Xa = 0, a = 1, . . . , 6 since the “conjugate–momenta” ξ̃a are the modes
that parametrize the supersymmetry breaking. Note that in this case the solutions
for the modes φ̃a are given by the homogenous solutions of the coupled system of
ODE’s (6.27)–(6.32) and they are easily found by setting ξ̃a = 0 in (6.39). The
perturbation due to the presence of M2 branes at the tip is found by imposing the
following conditions on the Ya integration constants: Y1 = Y2 = 0 to cancel IR
divergencies in φ̃1 and φ̃2, Y4 = Y5− Y6 = 0 to cancel the divergent terms in the UV
expansions of φ̃4 and φ̃5, and finally Y3 = 0 to fix the freedom of rescaling the three–
dimensional coordinates. The first–order perturbation to (6.64) is proportional to
h0(φ̃5 − 4φ̃6) + f0φ̃6 and at the linearized level the running M2 charge is given by

QM2 = Q0
M2 +Q1

M2 =
m2 l−6

p

108π2

[
tanh4 r + 6

√
3Y6

(
1− tanh4 r

)]
. (6.67)

The profile of the charge is shown in Figure 6.2 for different values of the constant
Y6. The asymptotic behavior is the following

QIRM2 =
m2 l−6

p

6
√

3π2
Y6 +O(r4) , QUVM2 =

m2 l−6
p

108π2
+O(e−2r) . (6.68)

The integral of G4 over the four–sphere is given by the behavior of the mode h ∼ φ̃6

and thus

q = q0 + q1 =
ml−3

p

3
√

3π

(
1− 3

√
3Y6

)
sechr . (6.69)

We see that q vanishes at infinity while in the IR it approaches a constant value

qIR =
ml−3

p

3
√

3π

(
1− 3

√
3Y6

)
+O(r2) , qUV = O(e−r) . (6.70)

We will denote M̃ = q0(0) the number of G4 flux units through the non–vanishing
S4 at the tip. Note that for the zeroth-order solution we have

(M̃)2

4
= QUVM2 . (6.71)
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Figure 6.2: The profile of the M2 charge QM2 for the BPS perturbation, for different
values of the parameter Y6. The black dashed line is the zeroth–order solution
(Y6 = 0). Note that at the linearized level the perturbations vanish in the UV.

At first–order, we expect a term related to the explicit brane charge in the IR; in
fact, we easily see from (6.70) that our solution satisfies

(qIR)2

4
= QUVM2 −QIRM2 , (6.72)

which indeed reduces to (6.71) when Y6 = 0, which corresponds to having no regular
M2–branes4. Allowing a nonzero Y6 introduces a singularity in the warp factor φ̃4

φ̃4 =
33/4 Y6

H0 r2
+O(r0) , (6.73)

which is the expected divergency due to smeared M2 branes on the S4 at the tip.
We could have derived these results without relying on the actual solution for

the φ̃a modes. In fact, the linearized BPS perturbation can be obtained by simply
shifting the fluxes as follows5

φ̃5 = 2c , (6.74)

φ̃6 =
c

2
,

4Note that equation (6.72) is just the standard relation introduced in [96]. The quantities of
equation (2.16) of that reference are Φ = QUVM2 , N = QIRM2 and

∫
G ∧G = (qIR)2

4
(see also [98]).

5By shifting the fluxes f → f + 2 c, h → h + c
2
we can obtain the full nonlinear solution, but

this introduce terms proportional to c2 which are not seen in our linearized deformation space.
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where c is the number of M2 branes. The M2 charge thus changes in the following
way

Q
(1)
M2 = −

m2 l−6
p

2π2

(
h0(φ̃5 − 4φ̃6) + f0φ̃6

)
= −

cm2 l−6
p

4π2
f0 =

cm2 l−6
p

6
√

3π2
+O(r4) ,

(6.75)
while for the warp factor we have, from (6.32)

∆φ̃′4 = cm2f0(r) e−3(z0+α0+β0) r→0∼ −2 33/4 c

H0 r3
, (6.76)

from which we get

φ̃4 =
33/4 c

H0 r2
+O(r0) , (6.77)

which agrees with (6.73) with the identification Y6 = c. From this result we can also
extract the correct mass/charge normalization between the warp factor divergency
and the charge sourced by the branes, which will be useful in the next section

m2H0 r
2 φ̃4 = 18 · 31/4 π2 l6p |QIRM2| . (6.78)

In the next section, we will turn to the case of interest in which we add a stack
of anti–M2 branes at the tip of the transverse Stenzel space. In this case the expres-
sions (6.64), (6.65) evaluated at first–order in perturbation theory will depend on all
of the Xa, Ya integration constants. However, we have to impose appropriate regu-
larity conditions for the IR and UV behavior of the modes φ̃a, and we will see that
this fixes all the integration constants in terms of X4, which is the one responsible
for the force on a probe M2 brane in this background (see section 6.5.3), and Y6.
We thus expect the expressions for the charges in the BPS case to be modified by
some pieces proportional to X4. By requiring the variation in the M2 charge Q(1)

M2 to
be commensurate to the singularity introduced in the warp factor, equation (6.78),
we will derive a relation which fixes Y6 in terms of X4 and so we will fix all the
integration constants in terms of the number of anti–M2 branes.

6.5 The anti–M2 brane perturbation

In this section we consider the perturbed solution corresponding to a stack of N̄
anti–M2 branes at the tip of the transverse geometry. It was shown in [115] that in
the probe approximation, for N̄/M̃ . 0.054 this configuration is metastable and will
eventually decay into a supersymmetric configuration in which M̃−1−N̄ M2 branes
are present at the tip 6. In order to find the supergravity dual to the metastable state,

6The units of G4 flux for the susy state are then M̃ − 2. A way to understand these values is
to look at (6.72). We then see that these are the correct values so that the charge at infinity is
conserved: QUVsusy = (M̃−2)2

4
+ M̃ − 1− N̄− = q2

4
− N̄ = QUVms , where Qsusy and Qms are the charges

for the susy and metastable states.
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we will adopt the following strategy. Firstly, we consider the IR behavior and we
allow only for divergencies that are directly sourced by the anti-branes. Secondly, we
demand that the UV non-normalizable modes described in section 6.3.3 are absent, so
that the UV asymptotic is the same as for the original CGLP background. As we will
show, these requirements (together with the mass/charge normalization discussed
in the previous section) provide enough independent contraints on the deformation
space to fix every integration constants in terms of a single physical quantity, namely
the number of anti–M2 branes present at the tip. We then compute the relevant
charges for the perturbed solution, as well as the explicit expression for the force felt
by probe M2 branes in the backreacted anti–M2 background.

6.5.1 IR and UV boundary conditions

We now proceed to impose regularity conditions on the IR behavior of the modes φ̃a.
We demand that divergencies are zero except for the singularity in the warp factor
φ̃4 which is directly sourced by the anti–M2 branes. We first impose the zero energy
condition, which amounts to setting

X2 = 0 . (6.79)

From regularity of φ̃1 we derive

X1 = − 2

27

[
8
√

3(X5 +X6) + 15m2X4H0

]
, (6.80)

X5 =
27
√

3X3

20
− 8X6

5
− Y1

20
√

2 31/4K(−1)
−
m2X4

(
100H0K(−1) +

√
2 31/4kφ̃1

)
80
√

3K(−1)
,

while from the singular terms in φ̃2 we derive X6 and Y2 in terms of X3, X4 and Y1

X6 =
9
√

3X3

4
− Y1

12
√

2 31/4K(−1)
−
m2X4

(
220H0K(−1) +

√
2 31/4kφ̃1

)
48
√

3K(−1)
, (6.81)

Y2 =
594

35
(3 31/4 −H0)X3 −

√
231/4(9 31/4 +H0)Y1

5K(−1)
− m2X4

10K(−1)

[√
231/4(9 31/4 +H0)kφ̃1

+ 30K(−1)kφ̃2
+ 8H0(153 31/4 + 2H0)K(−1)

]
.

We can check that with these conditions the other IR divergencies of the modes φ̃a
are automatically canceled, except for a log r mode in the IR behavior of the field
φ̃3, which is a perturbation of the metric, which is proportional to X4. It is not clear
why one should not be able to kill such divergent behavior. However, after imposing
the previous boundary conditions, the solution presents an even worse singularity
appearing in the field strength F 2

4 [24]

F 2
4 ∼

X2
4

r4
, (6.82)

127



The anti–M2 brane perturbation

which is quite analogous to the divergence found in the anti–D3 solution, with the
difference that now the action is divergent. This behavior is sub–leading with respect
to the energy density associated to the divergency in the warp factor, which is of order
r−6. Note that this is an IR phenomenon insensible to UV boundary conditions; in
fact, the integration constant X4 cannot be set to zero for the very simple reason
that it parametrizes the force felt by a probe M2 brane [24] and thus is indicative of
the presence of anti–M2 branes at the tip. Despite arguments in the literature, there
is not a rigorous proof that shows if this singularity is acceptable or not. Given the
difficulties in proving this, we will assume that the singularity is harmless and we will
try to see if the anti–M2 solution develops problems in the UV; if this is not the case,
the solution we find describes the holographic dual of the conjectured metastable
state in the field theory, but clearly a more detailed study of the IR singularity,
along the lines of Chapter 5, is required to decide whether this supergravity solution
can be trusted or not.

We now proceed by imposing boundary conditions in the UV, where we demand
that non–normalizable modes in the UV expansions for the modes φ̃a are absent.
The first condition is from the e3r/2 term in φ̃2, from which we get

X3 = 0 . (6.83)

From the divergent term in φ̃5 we get

Y5 = Y6 , (6.84)

and finally from the term e−2r in φ̃1 we get

Y1 = 0 . (6.85)

Note that we should allow an e−r term in the fluxes, which is dual to the dimension
∆ = 7/3 operator, since it is the charge mode sourced by the branes. We thus see
that we fixed the ten physically relevant integration constants in terms of X4 and Y6,
which are related respectively to the force on a probe M2 brane and to the number
N̄ of anti–M2 branes placed at the tip [24].

6.5.2 Charges and anti–M2 branes

In order to relate X4 and Y6 we look at the M2 charge (6.62). Once all the boundary
conditions are imposed, we get that

QIRM2 =
m2 φ̃5(0)

12
√

3π2 l6p
=

m2

6
√

3π2 l6p
(Y6 − αm2X4) , (6.86)

where the coefficient α is the following combination of the numerical constants which
enters in the expansions for the modes φ̃a

α =
H0(63 31/4 + 22H0)

60
√

3
− kφ̃6

+
(27 + 33/4H0) kφ̃1

360
√

2K(−1)
≈ 0.900178 . (6.87)
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We impose that this variation gives the correct singularity in the infrared expansion
for the warp factor, which is found to be

φ̃4 =
33/4 (Y6 − β m2X4)

H0 r2
+O(r0) , (6.88)

with

β = α+
H2

0√
3
≈ 0.958828 . (6.89)

From the mass/charge normalization (6.78) we thus get the following condition

−Y6 + αm2X4 = Y6 − β m2X4 , (6.90)

which results in

Y6 =
1

2
(α+ β)m2X4 =

(
α+

H2
0

2
√

3

)
m2X4 . (6.91)

If we now plug this relation back into the expression for the charge (6.86), we find
the following relation

QIRM2 = −N̄ =
H2

0 m
4X4

36π2 l6p
. (6.92)

We note that this result does not depend on the UV boundary conditions. Indeed,
although it is not clear from our derivation, it is easy to show that if we only impose
IR boundary conditions the terms proportional toX3, Y5 and Y1 that appear in (6.86)
and (6.88) cancel in (6.91).

Since QIRM2 is related to the number N̄ of anti–M2 branes placed at the tip,
from (6.92) we determine X4 as a function of N̄ and thus we fix all the integration
constants in terms of this parameter.

With these results, we can explicitly compute the charges associated to the anti–
M2 brane perturbation (in Figure 6.3 we show the profile of the first–order pertur-
bation to the Maxwell charge Q(1)

M2). In particular, the M2 charge QM2 evaluated
at a holographic screen at infinity should be the same for the metastable and the
supersymmetric state. This condition ensures that the metastable state is a state in
the same theory which is dual to the supersymmetric vacuum. Unfortunately, we see
from (6.68) that the perturbation to the M2 charge vanishes at infinity at the lin-
earized level, and so in our backreacted solution the value of QUVM2 is fixed. We expect
shifts of this quantity to appear only at second–order in perturbation theory. While
we cannot directly check whether the value of the charge at infinity is conserved,
we can look in the IR and check whether the charges are perturbed in a consistent
way. From the probe computation (see footnote 6), we expect relation (6.72) to be
satisfied. For a supersymmetric domain wall, this easily follows from the equation
of motion (6.4) and the self–duality of the flux G4, and indeed we found that the
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Figure 6.3: The profile of the first–order M2 charge Q(1)
M2 for the anti–M2 solution,

setting N̄ = 1.

BPS perturbation considered in section 6.4 is consistent with this constraint at the
linearized level. For the non–supersymmetric case, one should be more careful. It is
useful to write the first–order perturbation to the Maxwell charge in the IR in the
following way

QIRM2 =
m2 l−6

p

2π2

[
1

6
√

3

(
φ̃5(0)− 4 φ̃6(0)

)
+

2

3
√

3
φ̃6(0)

]
, (6.93)

from which we derive, at the linearized level

(qIR)2

4
=
m2 l−6

p

π2

[
− 1

6
√

3
+φ̃6(0)

]2
= QUVM2−QIRM2+

m2 l−6
p

12
√

3π2

[
φ̃5(0)−4 φ̃6(0)

]
+O(X2) .

(6.94)
After imposing the anti–M2 IR boundary conditions, we find that the term in the
brakets in the right hand side of the last equation is not zero

φ̃5(0)− 4 φ̃6(0) = H0 3−1/4m2X4 . (6.95)

Indeed, this is the term which gives rise to the singularity in the field strength F 2
4

that we discussed in section 6.5.1. This result is consistent with the fact that at
the linearized level the self–duality of the four–form flux is spoiled, and we do not
expect relation (6.72) to be satisfied for the anti–M2 solution. As we discussed in the
previous subsection, it is possible that this result is an artifact of the perturbation
theory. While we cannot address this issue within our first–order technology, we
believe that further investigation is needed on this problem.
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6.5.3 The force on a probe brane

With the results obtained in the previous subsections, we are able to compute ex-
plicitly the coefficient of the force exerted on a probe M2–brane in the anti–M2
backreacted background, whose functional form has been derived in [24, 19]:

FM2 = − 18X4 csch3r

(2 + cosh 2r)3/4
. (6.96)

Inserting the expression for X4 that we derive from (6.92) we obtain

FM2 =
648π2 l6p N̄ csch3r

m4H2
0 (2 + cosh 2r)3/4

. (6.97)

This result has to be compared to the one given by the probe anti–brane potential
à la KKLMMT [109], which is given in [19] and reviewed in Appendix F. The result
of this computation is given in (F.10). Once we substitute d2 we see that the two
expressions exactly agree. This is a nontrivial check that our IR boundary conditions
are the correct ones to describe anti–M2 branes in the Stenzel geometry.

6.5.4 Asymptotic of the anti–M2 solution

We now collect the results we obtained for the twelve (Xa, Ya) integration constants
and which determine the anti–M2 solution in terms of the constant X4, which is
fixed in terms of N̄ by (6.92)

X4 = −
36π2 l6p
m4H2

0

N̄ . (6.98)

For the Xa integration constants we have

X1 = −2H0m
2X4 , X2 = 0 , X3 = 0 , (6.99)

X5 =

[
73H0 + 2 31/4√π kφ̃1

Γ

(
1

4

)−2 ] m2X4

12
√

3
,

X6 =

[
− 55H0 − 2 31/4√π kφ̃1

Γ

(
1

4

)−2 ] m2X4

12
√

3
,

For the Ya integration constants we have

Y1 = 0 , (6.100)

Y2 =

[
− 4

5
H0(153 31/4 + 2H0)− 3 kφ̃2

− 4

5
31/4(9 31/4 +H0)

√
π Γ

(
1

4

)−2 ]
m2X4 ,

Y3 = 0 ,

Y5 = Y6 =

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]m2X4

180
.
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The IR and UV behavior of the backreacted anti–M2 solution, up to the desired
order, can be read off from the analytic solution presented in Appendix E after
imposing the boundary conditions (6.99), (6.100). For the reader’s convenience, we
show here the first few terms of the ultraviolet behavior of the solution.

φ̃1 =
4m2X4

3K(−1)

[
29 23/4H0K(−1) + 61/4 kφ̃1

]
e−5r/2 (6.101)

+
16m2X4

15K(−1)

[
110 23/4H0K(−1) + 61/4 kφ̃1

]
e−9r/2

+
7m2X4

3K(−1)

[
29 23/4H0K(−1) + 61/4 kφ̃1

]
e−13r/2 +O(e−17r/2) ,

φ̃2 =
8m2X4

3K(−1)

[
143 23/4H0K(−1) + 4 61/4 kφ̃1

]
e−9r/2 (6.102)

− 16m2X4

5K(−1)

[
8H0 (153 31/4 + 2H0)K(−1) +

√
2 31/4(9 31/4 +H0) kφ̃1

+ 30K(−1) kφ̃2

]
e−6r

+ m2X4

[
2816 23/4H0 +

128 61/4 kφ̃1

5K(−1)

]
e−13r/2 +O(e−17r/2) ,

φ̃3 = −4m2X4

9K(−1)

[
295 23/4H0K(−1) + 8 61/4 kφ̃1

]
e−9r/2 (6.103)

+
6m2X4

5K(−1)

[
8H0 (153 31/4 + 2H0)K(−1) +

√
2 31/4(9 31/4 +H0) kφ̃1

+ 30K(−1) kφ̃2

]
e−6r

− m2X4

[
14080

13
23/4H0 +

128 61/4 kφ̃1

13K(−1)

]
e−13r/2 +O(e−17r/2) ,

φ̃5 =
m2X4

30

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−r

(6.104)

− 7m2X4

90

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−3r

−m2X4

[
48872 23/4H0

585
√

3
+

308 21/4 kφ̃1

117 31/4K(−1)

]
e−7r/2

+
m2X4

6

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−5r

+m2X4

[
301448 23/4H0

585
√

3
+

131012 21/4 kφ̃1

9945 31/4K(−1)

]
e−11r/2 +O(e−7r) ,

φ̃6 =
m2X4

180

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−r

(6.105)
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− m2X4

180

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−3r

−m2X4

[
10516 23/4H0

1755
√

3
+

58 21/4 kφ̃1

351 31/4K(−1)

]
e−7r/2

+
m2X4

180

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−5r

+m2X4

[
4244 23/4H0

1755
√

3
+

1466 21/4 kφ̃1

3315 31/4K(−1)

]
e−11r/2 +O(e−7r) .

φ̃4 =
4
√

3m2X4

65

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−2r

+
2192

√
3m2X4

14365

[√
3H0(63 31/4 + 52H0)− 180 kφ̃6

+ 2 (27 + 33/4H0)
√
π kφ̃1

Γ

(
1

4

)−2 ]
e−4r

− 8m2X4

135K(−1)

[
2617 23/4H0K(−1) + 80 61/4 kφ̃1

]
e−9r/2 +O(e−6r) . (6.106)

6.6 Discussion

In this Chapter we constructed the analytic solution for the twelve–dimensional
space of linearized non-supersymmetric deformations of the warped Stenzel space,
consistent with the SO(5) symmetries of the supersymmetric background. Our so-
lution provides an interpolation between the IR and UV behaviors previously con-
structed in [24] and it should contain interesting informations about the dual (2+1)-
dimensional gauge theory. In particular, we were interested in finding the super-
gravity solution dual to metastable states, which were conjectured in [115] to be
described by a stack of anti–M2 branes placed at the tip of the transverse geometry.
We were able to identify this solution by imposing suitable boundary conditions on
the set of twelve integration constants (Xa, Ya) that parametrize the full deforma-
tion space, and indeed we showed that this solution is unique and it depends only
on the number N̄ of anti–M2 branes placed at the tip. We then used this solution to
compute the force exerted on a probe M2 brane placed in the anti–M2 backreacted
supergravity background and we showed that it exactly agrees with the calculation
à la KKLMMT [109] in which one considers the anti–M2 brane as probing the back-
reacted geometry of M2 branes on the Stenzel background

The linearized supergravity solution displays however an IR singularity in the
four-form flux, which leads to a divergent action, whose nature is still poorly un-
derstood. Our analysis shows that this is the only drawback of the supergravity
solution, which otherwise has the desired features to describe the metastable state
in the dual gauge theory. It is thus of great importance to establish the nature of

133



Discussion

this singularity. It would be of interest to perform in the M-theory context the same
analysis we described for the anti-D3 branes in Chapter 5.
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Chapter 7

The geometry of
non-supersymmetric conifolds

In this Chapter we present some results about the geometry of the non-supersymmetric
conifold solutions derived analytically in Chapter 3. We also briefly mention how
the first-order formalism described in that Section for one-dimensional cone-like so-
lutions can be extended to a general flux compactification, by using the language
of generalized complex geometry. This Chapter is based on unpublished results in
collaboration with Mariana Graña.

7.1 Introduction

As we discussed in section 2.1, the study of supersymmetric flux compactifications
with the use of generalized geometry [84, 87, 88] has received much attentions in
the past years, in part because of the flexibility and the vast range of applications
of differential geometry techniques. In this context, at least for type II theories
compactified on a six–dimensional manifoldM6, the equations that govern the metric
and the fluxes are under very good control and they can be conveniently expressed
in terms of pure spinors of O(6, 6). Schematically we have

dH

[
e3A−φΦ−

]
= 0 , dH

[
e3A−φΦ+

]
+ R-R fluxes = 0 . (7.1)

The main advantage of this approach is that equations involving spinor quantities,
that appear from the supersymmetry variations of the fermionc fields, are trans-
lated in equations involving differential forms of different degree (called polyforms),
namely sections of the bundle Λ•(T ?M6). While traditionally one requires M6 to
be compact, these techniques apply to non–compact manifolds as well, and in this
context can be used to study solutions which are of interest for the AdS/CFT corre-
spondance. In section 2.2 and 2.3 we provided some examples of this, by recovering
the Klebanov-Strassler [116] and BGMPZ [45] solutions from pure spinor equations.
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In those cases one usually deals with internal spaces which have a cone-like structure
and demands the scalars that parametrize the solution to depend only on the radial
variable. The presence of a particular radial direction is important for the holo-
graphic applications, in which radial evolution is associated to a RG flow [80, 74].

Given the success of generalized geometry in the study of supersymmetric com-
pactifications, it is natural to ask whether a similar approach can be useful to study
supersymmetry breaking. Although some progress in this direction has been made by
restricting the analysis to particular classes of supersymmetry–breaking backgrounds
(see for example [46, 127, 5, 100]), a general description of non–supersymmetric vacua
remains a challenge. On the other hand, when restricted to cone-like solutions, su-
perpotential methods [57, 155, 55, 41] have proven extremely useful in constructing
non–supersymmetric deformations of the supersymmetric solutions, as we described
in details in the previous chapters.

In this context it is possible to analyse very general kind of supersymmetry break-
ing, for which a six–dimensional geometric description is not known. Examples
include softly broken supersymmetry induced by gaugino masses [122] and the back-
reaction of explicit susy–breaking sources such as anti–branes [25, 21, 24, 135] that
we constructed in chapter 4. Let us note that even for cone-like compactifications,
a superpotential approach is not always possible. There are cases in which such a
function is very difficult to find. For example much effort [23, 126, 97] has been
recently devoted to construct a superpotential for the Papadopouloss and Tseytlin
Ansatz [144], which contains the supersymmetric solution describing the baryonic
branch of the Klebanov–Strassler field theory [116]. However, it seems that such a
superpotential would fail to reproduce the whole baryonic branch [77]. This essen-
tially follows from the fact that the first-order equations imposed by supersymmetry,
that we derived in Section 2.3, are not in the form of a simple system of ODEs,
but they contain some algebraic constraints. One can indeed derive a superpotential
which reproduces the equations only after these constraints are imposed [49].

Beyond these simple cone-like situations, supersymmetry breaking is more diffi-
cult to study and very few results are known. For this reason it would be extremely
helpful to understand general properties of non-supersymmetric backgrounds and
study their geometry. In this Chapter we will study a geometric approach to non-
supersymmetric compactifications in a concrete example, where we have controls
from other method. We then use this as a guide in trying to infer the general equa-
tions. The example we use is the analytic family of non-supersymmetric solutions
constructed explicitly in Section 3. We recall that the solutions are of the form

ds2
10 = e2Ãds2

1,3 + ds2
6 , (7.2)

where the shape and the fluxes of the internal manifold with metric ds2
6 are parametrized

by scalars φa(τ) which depend only on the radial direction. In this situation all the
solutions to the type IIB equations of motions can be thought as paths on a moduli
space parametrized by the scalars φa: the effective action which describes these paths
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Figure 7.1: The tangent space at a point φ = (φ1, . . . , φN ) on the moduli spaceM.
φ̇ = φ̇A∂A is the vector tangent to the non–supersymmetric solution. The arrow v
represents the velocity vector field that describes the supersymmetric first–order flow
and we define a quantity ξ that parametrizes the supersymmetry breaking. At the
linearized level in a perturbative expansion in terms of a susy breaking parameter γ
these two fields satisfy decoupled systems of first–order ODEs.

can be obtained by dimensional reduction of the type IIB Lagrangian down to one
radial dimension. The Hamilton-Jacobi equation for this one-dimensional system
can be integrated and gives a superpotential W . This is the starting point of the
first-order formalism described in section 3. Starting from a particular solution (i.e.
a path on the moduli space), we can construct linearized perturbations around it
that break supersymmetry, by solving two systems of decoupled ODEs. Let us recall
the reason beyond this simplification. We call v the velocity vector field tangent to
the given supersymmetric path (in our case, the Klebanov-Strassler solution), and
we solve for a general solution φ(τ) with velocity φ̇. We define a quantity

ξ = φ̇− v , (7.3)

which parametrizes the supersymmetry breaking (see Figure 7.1). The type IIB
supergravity equations of motion for φ(τ) can then be recasted as equations for ξ:

∇vξ = −∇ξ(v + ξ) . (7.4)

At the linear level, namely if ξ is a first-order quantity in some supersymmetry
breaking parameter, this equation becomes a decoupled system of first-order ODEs
for the vector field ξ. It is clear that this is a very general feature and it is ulti-
mately due to the integrability properties of the supersymmetric solution, namely
that the first-order system obtained from supersymmetry requirement implies the
supergravity equations of motion.

Guided by this example, one can try to apply the same idea to the general case.
The pure spinors equations now provide the obvious definition of the supersymmetry
breaking modes:

dH

[
e3A−φΦ−

]
= Υ , dH

[
e3A−φΦ+

]
+ R-R fluxes = Ξ , (7.5)
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where now Υ,Ξ ∈ Λ•(T ?M6). In the case of a cone-like solution, this should be
equivalent to the definition (7.3), and the modes ξa are just the components of the
polyforms Υ,Ξ. In this Chapter, we will explicitly construct these two polyforms
for the example of the linearized perturbations around the deformed conifold. We
will also discuss in detail the geometry of these solutions by computing some SU(3)
structure data such as the intrinsic torsion, that measure deviations from having
SU(3) holonomy.

The last step would be to “uplift” the equations of motion for the modes ξa to the
bundle of polyforms, thus finding the equations for Υ,Ξ in a geometrical and general
form. For this, we encounter the problem of recasting the equations of motion of
type IIB supergravity compactified on a six-dimensional manifold in terms of pure
spinors. In the last section we will discuss a possible approach to this problem.

7.2 Supersymmetry breaking polyforms

In section 2.2 we computed the pure spinor equations for the Z2 symmetric PT
Ansatz [144]. Here we will explicitly determine how these equations fail to be satisfied
for the family of non-supersymmetric solutions derived in chapter 3. We recall that
we use an SU(3) structure Ansatz, so the two pure spinors Φ± are given by

Φ− = −iΩ , Φ+ = e−iJ . (7.6)

The pure spinors quantities that we need are given in equations (2.35), (2.36), which
we reproduce here for the reader’s convenience:

e−3Ã+φdH

[
e3Ã−φΦ−

]
= (7.7)

=
1

2
e−3p+x

2

[
2idτ ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5

(
f − k + e−yf ′ − eyk′

)
− dτ ∧ (∧g1 ∧ g3 ∧ g5 + g2 ∧ g4 ∧ g5)

(
2 cosh y + 6p′ − x′ − 6Ã′ + 2φ′

)
− ie−ydτ ∧ g3 ∧ g4 ∧ g5

(
2ey + 6p′ − x′ + 2y′ − 6Ã′ + 2φ′

)
− ieydτ ∧ g1 ∧ g2 ∧ g5

(
−2e−y − 6p′ + x′ + 2y′ + 6Ã′ − 2φ′

) ]
= 0 ,

e−3Ã+φdH

[
e3Ã−φΦ+

]
+ dÃ ∧ Φ̄+ + eφ ? λF = (7.8)

= e−6pdτ ∧ g1 ∧ g2 ∧ g3 ∧ g4

[
−2 + e6p+2x(4Ã′ + 2x′ − φ′)

]
+ e−2xdτ

[
eφP (f(2P − F ) + Fk) + e2x

(
4Ã′ − φ′

)]
+

1

2
(g1 ∧ g3 + g2 ∧ g4) ∧ g5

[
f − k − 2eφF ′

]
+ dτ ∧ g1 ∧ g2

[
e2y+φ(F − 2P )− f ′

]
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+ dτ ∧ g3 ∧ g4

[
−e−2y+φF + e−φk′

]
+ ie−6p−xdτ ∧ (g1 ∧ g4 − g2 ∧ g3)

[
−1 + e6p+2x(2Ã′ + x′ − φ′)

]
= 0 .

The family of solutions we found is parametrized by 16 integrations constants, out
of which 8 parametrize solutions of the first-order system

φ′a = va(φ) =
1

2
Gab

∂WKS(φ)

∂φb
, (7.9)

while the others 8 correspond to deviations from this system and are parametrized
by supersymmetry breaking modes ξa. As we discussed in section 2.2 the flow equa-
tions (7.9) are not equivalent to the pure spinor equations above. In fact, the top
form in (7.7) is proportional to the (0, 3)-component of the three-form flux and it is
not set to zero by (7.9). Apart from this component, we expect that for our family
of solutions the right hand side of the pure spinor equations are given just in terms
of the modes ξa. This is a big simplification since the equations for these modes are
much simpler then the equations for the modes φa. It is easy to compute the various
components by using the definitions (3.19). The result is the following: we define

e−3A+φdH

[
e3A−φΦ−

]
= Υ , (7.10)

e−3A+φdH

[
e3A−φΦ+

]
+ dA ∧ Φ̄+ + eφ ? λF = Ξ , (7.11)

and we find for the polyforms Υ and Ξ:

Υ =
1

2
e−4(A0+p0)−3p0+

x0
2

[
12ie−3p0+

x0
2 dτ ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 G

(0,3) (7.12)

− dτ ∧ (∧g1 ∧ g3 ∧ g5 + g2 ∧ g4 ∧ g5)

(
−ξ̃1 −

2

3
ξ̃3 +

1

3
ξ̃4 + 4ξ̃8

)
− ie−y0dτ ∧ g3 ∧ g4 ∧ g5

(
−ξ̃1 −

2

3
ξ̃3 +

1

3
ξ̃4 − 4ξ̃2 + 4ξ̃8

)
− iey0dτ ∧ g1 ∧ g2 ∧ g5

(
ξ̃1 +

2

3
ξ̃3 −

1

3
ξ̃4 − 4ξ̃2 − 4ξ̃8

)]
,

Ξ = e−4(A0+p0)+2x0

[
− 2

3
dτ ∧ g1 ∧ g2 ∧ g3 ∧ g4

(
2ξ̃1 + ξ̃3 + ξ̃4 + 6ξ̃8

)
(7.13)

+
2

3
e−2x0dτ ξ̃1 + 2 (g1 ∧ g3 + g2 ∧ g4) ∧ g5 ξ̃7

+ 2dτ ∧ g1 ∧ g2e
2y0

(
ξ̃5 + ξ̃6

)
+ 2dτ ∧ g3 ∧ g4e

−2y0

(
ξ̃5 − ξ̃6

)
− i

3
e−x0dτ ∧ (g1 ∧ g4 − g2 ∧ g3)

(
2ξ̃1 + ξ̃3 + ξ̃4

) ]
,

where G(0,3) cannot be expressed nicely in terms of ξ̃a and hence we omit it for
simplicity. The functions ξa(τ) are parametrized, as expected, by 8 integrations
constants Xa and their analytic solution is given in equations (3.55)–(3.61).
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We now discuss some general features of this geometrical rewriting. First of all,
we want to make contact with previous attempts to use generalized geometry to
study non–supersymmetric backgrounds.

7.2.1 Domain wall supersymmetry breaking

The authors of [127] identified a particular class of SU(3) × SU(3) structure back-
grounds that generalize the solution of Graña and Polchinski [90] and they used
equations similar to (7.10), (7.11) to parametrize these solutions in terms of gener-
alized geometric quantities. When restricted to the case of SU(3) structures their
solution indeed corresponds to SUSY–breaking by the G(0,3) flux component [90].
Their general class of vacua are described by the pure spinors equations (7.10), (7.11)
with the condition

Ξ = 0 , (7.14)

which is motivated by some calibration condition. If we impose this condition in our
explicit example (7.13), we see from the solution given in (3.55)-(3.61) that we are
forced to set all the Xa integration constants to zero: Xa = 0, a = 0, . . . , 8. This
naively seems to imply that we are forced to consider only supersymmetric perturba-
tions of the deformed conifold. However, as we discussed in the previous section, the
ξa modes do not parametrize the full space of non–supersymmetric solutions. Since
WKS is a fake superpotential, there exist solutions with ξa = 0 which still break
supersymmetry. In fact, by imposing that all the ξa modes are zero, the polyform Υ
becomes

Υ ∼ −P
3/2 Y5h(τ)3/4 sinh2 τ√

6
dτ ∧ · · · ∧ g5 . (7.15)

This term is precisely the G(0,3) part of the fluxes which breaks supersymmetry. This
is consistent with the analysis in [127], where condition (7.15) is the specialization
to the SU(3) structure case of what they call “domain wall (non)BPSness”. We note
that the class of vacua analysed in [127] captures only a one dimensional family
of susy–breaking solutions, and it misses the remaining seven–dimensional space
parametrized by the ξa modes (there are eight of such modes but one is fixed by the
zero energy condition). While our analysis is carried out in a very specific example
and only at first–order in perturbation theory, this situation clearly calls for further
investigation of generic N = 0 vacua. Our analysis suggests that both the polyforms
Υ and Ξ should be non vanishing in such an attempt. We can name at least two
interesting physical solutions which are captured by a non–zero polyform Ξ. One is
the gravity dual of softly broken SUSY, first studied in [122]. This corresponds to
a two–dimensional family of solution which is obtained from (3.55)-(3.61) by setting
X2 6= X7 6= 0 and all others Xs to zero. Another example is the solution which
corresponds to the backreaction of a stack of anti–D3 branes placed at the tip of the
internal conifold which we discussed in detail in section 4.
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7.3 Intrinsic torsion for non–susy conifolds

In this Section we derive the expression of other useful geometrical objects for our
family of non-supersymmetric solutions. We recall that we are using an SU(3)
Ansatz. A useful characterization of a manifold with SU(3) structure is in terms
of SU(3) representations of its geometrical objects and its fluxes. In particular, one
can classify the geometry in terms of the intrinsic torsion, which is an obstruction
to have SU(3) holonomy. The component of the torsion classes in terms of SU(3)
representations are defined in (2.11). These forms provide very useful information
about the geometry of the manifold. For example, in Table 7.1 we show the condi-
tions on Wi that corresponds to well known classes of manifolds. For more details
we refer to [84].

The expression for the torsion classes for the PT Ansatz can be computed by
inverting the relations (2.11), for example by computing:

W1 = − i
6

(dJ)ijkΩijk (W4)i =
1

2
(dJ)imnJ

mn (W5)k =
1

8
(dΩ)ijkk Ωijk .

(7.16)
The result is:

W1 = 0 (7.17)

W2 = e3p+ 3x
2
−y (e2yg1 ∧ g2 + g3 ∧ g4

) (
sinh y + y′

)
(7.18)

W3 = 0 (7.19)

W4 = dt
(
x′ − e−6p−2x

)
(7.20)

W5 = −1

4
(dt− ig5)

(
2 cosh y + 6p′ − x′

)
(7.21)

It is easy to show that the flow equations (7.9) imply that

W1 =W2 =W3 = 3W4 − 2W5 = 0 , (7.22)

namely that a solution of the flow equations is conformally Calabi-Yau. It is clear
that deviations from this conditions are parametrized by the modes ξa. Indeed at
first-order we find:

W1 =W3 = 0 (7.23)

W2 = −2e−4A0−p0+
3x0
2
−y0
(
e2y0g1 ∧ g2 + g3 ∧ g4

)
ξ̃2 (7.24)

3W4 − 2W5 = −1

2
e−4(A0+p0)

(
9ξ̃1 + 5ξ̃3 + 2ξ̃4

)
dτ. (7.25)

We note that since the mode ξ̃2 is parametrized by seven integration constants

ξ̃2 = Span(X1, . . . , X7) , (7.26)
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Manifold Torsion classes
Complex W1 =W2 = 0

Symplectic W1 =W3 =W4 = 0

Half-flat Im W1 = Im W2 =W4 =W5 = 0

Special Hermitean W1 =W2 =W4 =W5 = 0

Nearly Kähler W2 =W3 =W4 =W5 = 0

Almost Kähler W1 =W3 =W4 =W5

Kähler W1 =W2 =W3 =W4 = 0

Calabi-Yau W1 =W2 =W3 =W4 =W5 = 0

Conformal Calabi-Yau W1 =W2 =W3 = 3W4 − 2W5

Table 7.1: Special SU(3) structure manifolds correspond to the vanishing of certain
torsion classes.

almost all solutions will have a non zero W2, which means that the perturbations
are not complex. An exception is the GKP case, in which all the modes ξ̃a are
zero. We stress that the vanishing of W1 and W3 is not a particular characteristic
of our perturbation scheme, but it is a consequence of the Z2 symmetry of the KS
background. More general Ansätze will lead to a more general pattern of torsion
classes.

7.3.1 Soft supersymmetry breaking

Here we study an explicit example, a non–supersymmetric gravity dual of supersym-
metry breaking induced by gaugino mass terms in the Klebanov–Strassler theory.
This solution was first studied in [122] (see also [7, 4, 69] for related works), but
only a one–parameter family of solution describing the KS background perturbed
by a operator of dimension 3 was constructed. One can be more general, since we
can actually turn on two dimension 3 operators, as we discussed in section (4.6.2).
From our deformation space, we can fish out a two parameter family of solutions
parametrized by two integration constants (X2, X7) which generalize the solution
of [122]. While to impose the desired boundary conditions one has to study the
behavior of the perturbation modes φa, here we omit this derivation and we simply
focus on the result for the susy-breaking modes ξa, for which the solution is analytic
and particularly simple. These modes are given by:

ξ̃1 = ξ̃3 = ξ̃4 = 0 , (7.27)

ξ̃2 =
X2

4
csch3(τ)(sinh(2τ)− 2τ)2

− PX7

(
csch(τ) + τ(cosh(τ)− 2 coth(τ)csch(τ) + τcsch3(τ))

)
, (7.28)

ξ̃5 =
X2

P
− 3X7

2
, (7.29)
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ξ̃6 =
X2

P
τcsch(τ) +X7

(
−1

2
cosh(τ)− τcsch(τ)

)
, (7.30)

ξ̃7 =
X2

P

(
τ coth(τ)− 1

)
csch(τ) +X7

(
csch(τ)− τ coth(τ)csch(τ) +

1

2
sinh(τ)

)
,

(7.31)

ξ̃8 = −(X2 − PX7)
(
coth(τ)− τ − 2τcsch2(τ) + τ2 coth(τ)csch2(τ)

)
. (7.32)

The solution of [122] corresponds to the subset X2 = PX7 = X. By using the
result (7.23) we see that the geometry of this family of backgrounds is characterized
by the following torsion classes:

W1 =W3 = 3W4 − 2W5 = 0 , (7.33)

W2 ∼
(
e2yg1 ∧ g2 + g3 ∧ g4

) [
f1(τ)X2 + f2(τ)X7

]
, (7.34)

where f1 and f2 can be easily read off from (7.28). We stress that this result is valid
at the linearized level. At full non-linear order we expect the mode ξ̃1 to be non-zero,
and thus very likely the combination 3W4− 2W5 will be in general non-zero as well.

7.4 Discussion

In this chapter we studied how the pure spinor equations, which describe N = 1 su-
persymmetric flux compactifications, are modified for a class of non-supersymmetric
solutions obtained as a first-order deformation of the Klebanov-Strassler deformed
conifold solution. These results are a first step toward a more systematic understand-
ing of a first-order description of non-supersymmetric backgrounds. As we discussed
in the introduction 7.1 and in Section 3.2, for cone-like solutions supersymmetry
provides the natural variables to implement a first-order formalism. If we break su-
persymmetry perturbatively, in a series expansion around a given supersymmetric
background, then one can define supersymmetry breaking modes ξa which satisfy a
decoupled first-order system of ordinary differential equations. In the one dimen-
sional case, where a solution can be thought as a path in a given moduli space (see
figure 7.1), these modes measure deviations from the supersymmetric solutions. In
fact, at first-order in supersymmetry breaking, the equations for the ξa modes are
analogous to the geodesic deviation equation (or Jacobi equation).

Besides the interest in studying the geometry of our class of non-supersymmetric
solutions, the aim of this chapter was to take a first step in extending the above
first-order formalism in the language of generalized geometry. One could use such
a formalism to study perturbations around supersymmetric background that have
less symmetries and the corresponding solution depends on more then one variables.
Even in the one-dimensional case, it would be interesting to understand the relation
between the geodesic deviation equations for the ξa modes and the equations for
the polyforms Ξ and Υ. While a full treatment of this problem is outside the scope
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of this speculative section, we would like to sketch the steps that can leads to such
equations.

The first important step is to understand the relation between the supersymmet-
ric equations and the equations of motion. This is not an easy task, since expressions
in terms of pure spinors of basic quantities such as the Riemann tensor are not known.
Luckily, it has been understood how to rewrite the effective supergravity action in
terms of generalized geometric objects. As in the one dimensional case, one obtains
an action which is basically the “square” of the supersymmetric equations. This BPS
rewriting has been obtained in [48, 127]. With the restrictions of [48], the effective
potential describing the dynamics of six-dimensional quantities has the following
schematic structure:

Veff =

∫
M6

dVol6
[
(Re Ξ)2 + (Im Ξ)2 + (Υ)2

]
+

∫
M6

[
|〈Φ+,Υ〉|2 +

∣∣〈Φ̄+,Υ
〉∣∣2 ]

+

∫
M6

〈
e4Ã−φRe Φ+ − Cel, dHF + jtot

〉
+ Sloc. . (7.35)

Here 〈, 〉 is the Mukai pairing, a natural bilinear operation on the space of polyforms,
defined as follows:

〈ω ∧ η〉 = ω ∧ σ(η)|6 , (7.36)

where σ reverses the order of indices of a given form. By varying this action with
respect to the metric gmn, one can obtain the internal Einstein equations in terms of
polyforms. It also clear that setting Ξ = Υ = 0 automatically solves the equations.
Thus, we are in the same situation as in the simple one-dimensional example, where
the polyforms Ξ and Υ have the same role of the deviations ξa. We thus expect that
at first-order in a supersymmetry breaking parameter, these polyforms will satisfy a
decoupled system of first-order differential equations.

When specialized to our class of supersymmetry breaking deformations around
the deformed conifold, the equations for Ξ and Υ should reproduce the equations
for the modes ξa, and expressions (7.12), (7.13) should provide a solution of such
equations. We hope to come back to this problem in the future.
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Chapter 8

Conclusions and outlook

In this thesis we constructed and studied various non-supersymmetric cone-like com-
pactifications of type IIB and M-theory. These solutions find applications in the
gauge/gravity duality, where they provide gravity duals to different supersymmetry
breaking scenario in the gauge theories, and in phenomenological aspects such as the
construction of de Sitter vacua and models of brane-antibrane inflation.

In the first chapters, we rederived various supersymmetric supergravity solutions
dual to confining N = 1 gauge theory (the Klebanov-Strassler [116] and BGMPZ [45]
solutions) by using generalized geometry techniques, in particular by an explicit com-
putation of the pure spinor equations. We believe that formal techniques borrowed
from the study of flux compactifications are extremely useful to construct solutions
relevant for holography. It would be interesting to extend the analysis done for type
IIB solutions for the M-theory backgrounds, like the cone based on the Stenzel space
V5,2 discussed in chapter 6. This would first need a complete reformulation of su-
persymmetry conditions in terms of differential forms. Another line of research is to
begin in this framework the study of more complicated cone-like solutions, for exam-
ple in cases where some of the symmetries are broken and the fields also depend on
some angular coordinates of the base. This is for example the case of Y p,q cones [103].
More ambitiously, one could try to use pure spinor techniques to construct part of
the solutions corresponding to polarized branes, which we discussed in Chapter 5. It
is important to keep in mind that the Polchinski-Strassler solution [146] is not known
beyond linear order, although some closely related M-theory background have been
constructed (at least when supersymmetry is not broken) [17, 31].

In Chapter 3 we described a general first-order method to study non-supersymmetric
solutions perturbatively around a given supersymmetric and known solution. This
is a generalization of the ideas introduced in [41]. We then applied this method to
the construction of an explicit solution in closed form for the linearized perturba-
tions around the KS solution preserving the SU(2)× SU(2)× Z2 symmetries of the
deformed conifold.

In Chapter 4 we integrated numerically the above solutions and discussed the in-
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frared and ultraviolet boundary conditions corresponding to a stack of anti-D3 branes
placed at the tip of the KS geometry. We computed various quantities such as the
ratio between the deformation modes of the conifold for the non-supersymmetric
and supersymmetric vacua, checking that the solution does not have any other non-
normalizable modes in the UV, which is the gravity counterpart of having spon-
taneous supersymmetry breaking in the field theory. We proved however that the
three-form flux of the solution have singular energy density.

In Chapter 5 we solved the full non-linear equations of motion for the KS system
in the infrared region, near the anti-brane source, and we proved that the singularity
is not an artifact of our previous linearization method. We then studied the most nat-
ural way to resolve the singularity in string theory, namely by brane polarization [142]
à la Polchinski-Strassler [146]. The result we obtain in the full backreaction seems to
contradict the probe analysis of [111], namely we don’t find any polarization channel
that could resolve the singularity. We should keep in mind that we worked in the
approximation of smeared sources, so the original KPV channel D3→ NS5 wrapping
an S2 on the S3 at the tip cannot be checked explicitly. However, as also discussed
in [59], one expects the fully backreacted solution in the near-brane region to be an
AdS5 throat with relevant flux perturbations, as in the original Polchinski-Strassler
setup. If this is the case, then we necessarily have different polarization channels,
the NS5 together with the D5 channel that we checked in our computation. Thus,
our result is an indication that the NS5 channel will be absent too, indicating that
anti-branes in warped throats develop perturbative instabilities and cannot be used
to uplift AdS to a dS compactification. If confirmed from a localized anti-D3 solu-
tion, it would be extremely interesting to explore further the precise nature of this
instability. In type IIA engineering of SQCD metastable states [16], the probe anal-
ysis fails because of a logarithm bending of the branes once their backreaction is
taken into account. This causes a large deviation in the ultraviolet region from the
supersymmetric configuration, meaning that the breaking of supersymmetry cannot
be spontaneous. It is suggestive that such logarithm modes are found in different but
related contexts. For example, it was shown in [53] that logarithm backreaction in
the NS5/NS5 configuration used in models of axion monodromy inflation, “climb up”
to the bulk of the compactification, setting the energy scale of the brane/antibrane
interaction to be the UV scale and not the IR one.

It could perhaps be interesting to investigate relations also with recent works
by Polyakov (see e.g. [150]), where an infrared divergency and an IR/UV relation
is conjectured to cause an instability of the de Sitter space. It is conceivable that
when trying to construct a de Sitter compactification by pumping positive energy
to the system, as in the anti-D3 model, one encounters the same problem and the
system develops instabilities. While this could invalidate the idea of a string land-
scape, it can lead to models of dynamical screening of the cosmological constant.
It is also important to keep in mind that the perturbative decay of anti-D3s into
supersymmetric D3s at the south pole of the S3 on the deformed conifold (mediated
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by the NS5 nucleation) can potentially be used as a slow-roll inflationary model, as
discussed in [59].

In Chapter 6.5 we constructed an analytic family of non-supersymmetric solu-
tions of eleven dimensional supergravity, by linearizing the equations of motion in a
perturbation series around the cone-like supersymmetric solution found in [54] and
based on the warped Stenzel space. In particular we focused on the backreaction
of anti-M2 branes on the geometry. This configuration is the M-theory analog of
anti-D3 branes on the deformed conifold, even if there are important differences,
in particular the absence of a logarithmic running of the charge. The supergravity
solution has similar features to the anti-D3 one, in particular it shows the same kind
of singularity in the energy density of the four-form flux.

While it is very reasonable that the singularity will be present in the full non-
linear solution as well, it would be interesting to study possible resolution by brane
polarization in this context. This would clarify, for example, if the presence of the
logarithm mode has a role in the physics of anti-branes in warped throats.

In Chapter 7 we studied some geometrical aspects of the non-supersymmetric
solutions discussed above. As we shown in Chapter 2, the supersymmetric first-
order equations describing supersymmetric and conformally Calabi-Yau cones can
be derived by using pure spinor techniques. By using the explicit solutions for
non-supersymmetric deformations around the Klebanov-Strassler solution, we then
computed how the pure spinor equations are modified for non-supersymmetric back-
grounds. We also computed SU(3) structure data such as the intrinsic torsion. We
then discussed how to implement the first-order formalism of Section 3.2 in the lan-
guage of generalized geometry. These results are a starting point to try to explore
more general non-supersymmetric solutions and to understand the geometrical tools
needed to study de Sitter compactifications in the context of generalized geometry.
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Appendix A

Notations

In this Appendix we collect a number of useful definitions that we use in the main
text and the relations to various conventions used in the literature. To study the
deformed conifold with topology R × S2 × S3 we introduce the following 1-forms.
The forms {e1, e2} correspond to the S2, parametrized by the angle (θ1, φ1). On
the S3, parametrized by ψ and (θ2, φ2), we introduce left invariant forms {ε1, ε2, ε3}:
dεi = −(1/2)εijkεj ∧ εk. We also define some forms ε̃i which are useful for the PT
Ansatz:

e1 = dθ1

e2 = − sin θ1dφ1

ε̃1 = ε1 − a(τ)e1 ε1 = sinψ sin θ2dφ2 + cosψdθ2

ε̃2 = ε2 − a(τ)e2 ε2 = cosψ sin θ2dφ2 − sinψdθ2

ε̃3 = ε3 + cos θ1dφ1 ε3 = dψ + cosθ2dφ2 .

Here we denote by τ the radial direction of the cone. In the text we will mainly use
the forms gi of KS [116], defined as:

g1 =
e2 − ε2√

2
g3 =

e2 + ε2√
2

g2 =
e1 − ε1√

2
g4 =

e1 + ε1√
2

g5 = ε̃3.

(A.1)

We also give the basis used in [45]:

E1 = e
x+g

2 e1 , E2 = e
x+g

2 e2 , E3 = e
x−g

2 ε̃1 ,

E4 = e
x−g

2 ε̃2 E5 = e−3p−x/2dτ , E6 = e−3p−x/2ε̃3 .

It is useful to define a rotated basis Gi

G1 = E1 , G2 = AE2 + BE4 , G5 = E5
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G3 = E3 , G4 = BE2 −AE4 , G6 = E6 ,

which is useful for manipulation of SU(3) structure representation. Here A and
B are rotations in a 2-plane and thus satisfy A2 + B2 = 1. The change of basis
between [116] gi and the BGMPZ [45] Gi is the following:

g1 =
1√
2
e−

1
2

(x+g)
[
eg(AG4 − BG2)− (a(τ)− 1)(AG2 + BG4)

]
g2 =

1√
2
e−

1
2

(g+x)
[
(1− a(τ))G1 − egG3

]
g3 =

1√
2
e−

1
2

(g+x)
[
eg(BG2 −AG4) + (1 + a(τ))(AG2 + BG4)

]
g4 =

1√
2
e−

1
2

(g+x)
[
(1 + a(τ))G1 + egG3

]
dτ = e3p+x

2G5 , g5 = e3p+x
2G6 .

The inverse is:

G1 =
1√
2
e

1
2

(x+g)
[
g2 + g4

]
(A.2)

G2 =
1√
2
e

1
2

(x−g)
[
egA(g1 + g3)− B(g1 − g3 + a(τ)(g1 + g3))

]
G3 =

1√
2
e

1
2

(x−g)
[
g4 − g2 − a(τ)(g2 + g4)

]
G4 =

1√
2
e−

1
2

(x+g)
[
egB(g1 + g3) +A(g1 − g3 + a(τ)(g1 + g3))

]
G5 = e−3p−x

2 dτ , G6 = e−3p−x
2 g5 .

From the Z2 breaking PT Ansatz, we can specialize to a Z2 symmetric one by
imposing:

e2g = 1− a2 , a = tanh y , g = log
[ 1

cosh y

]
, χ = 0 . (A.3)

The SU(3) structure functions A and B for KS are

A = eg , B = −a . (A.4)

The relation between the fields used in [116] and [144] is:

f(τ) = h1(τ)− h2(τ) (A.5)
k(τ) = h1(τ) + h2(τ)

b(τ) =
F (τ)

P
− 1 .
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Appendix B

Equations of motion for the KS
fields

The equations of motion for the KS scalars are the Euler–Lagrange equations from
the effective action:

S =

∫ [
1

2
Gab

dφa

dτ

dφb

dτ
+ V (φ)

]
dτ , (B.1)

which are

Gad(φ)∂dV (φ) = Γabc(φ)
dφb

dτ

dφc

dτ
+
d2φa

dτ2
. (B.2)

Explicitly, these are:

x′′ = e−4(3p+x)
[
2e6p+2x cosh y − e2(6p+x+y)+φP (P − F )− 1

]
(B.3)

− 1

8
e−4x

[
2e2x−2y+φ(1 + e4y)F 2 + e2x−φ(f − k)2 + 4K2

]
− 1

4
e2(x+y)−φ(f ′2 + 2e2(y+φ)F ′2 + e4yk′2)− 4(A′ + p′)x′ ,

y′′ = 2e−2x+2y+φP (P − F ) +
1

2
e−2(x+y)+φ(e4y − 1)F 2

+ (cosh y − 2e−6p−2x) sinh y +
1

2
e−2(x+y)−φ(e4yk′2 − f ′2)− 4(A′ + p′)y′ ,

p′′ =
1

3
e−4(3p+x)

[
e6p+2x cosh y + e2(6p+x+y)+φP (P − F )− 1

]
+

1

24
e−4x

[
2K2 + e2x(4eφF 2 cosh 2y + e−φ(f − k)2 + 4e2x sinh2 y

]
+

1

12
e−2(x+y)−φ

[
f ′2 + 2e2(y+φ)F ′2 + e4yk′2

]
− 1

12

[
24(A′ + p′)2 − 4x′2 − 2y′2 − φ′2

]
,
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A′′ =
1

24
e−12p−4x−2y−φ

[
2e2(6p+x+φ)

(
F 2 + e4y(F − 2P )2

)
+ e2(6p+x+y)(f − k)2

+ 2e2y+φ
(
2− 8e6p+2x cosh y + e12p(K2 + 2e4x sinh2 y)

) ]
+

+
1

12
e−2x−2y−φ

[
f ′2 + 2e2(y+φ)F ′2 + e4yk′2

]
+ 2A′2 + 4A′p′ + p′2 +

1

3
x′2 +

1

6
y′2 +

1

12
φ′2 ,

f ′′ =
1

2
e−2x

[
2e2y+φ(2P − F )K + e2x+2y(f − k)

+ 2e2xf ′(2(x′ + y′) + φ′ − 4A′ − 4p′)
]
,

k′′ =
1

2
e−2(x+y)

[
f(2eφ(2P − F )F − e2x) + (e2x + 2eφF 2)k

− 2e2(x+y)k′(4A′ + 4p′ − 2x′ + 2y′ − φ′)
]
,

F ′′ =
1

2
e−2x−φ

[
(k − f)K − 2e2x+φ(e2yP cosh(2y)F + F ′(4A′ + 4p′ − 2x′ + φ′))

]
,

φ′′ =
1

2
e−2(x+y)+φ

[
F 2 + e4y(F − 2P )2 + 2e2yF ′2

]
+

1

4
e−2(x+y)−φ

[
− e2y(f − k)2 − 2f ′2 − 2e4yk′2

]
− 4(A′ + p′)φ′ .
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Appendix C

Supersymmetric conditions for the
PT Ansatz

In the following we show the expressions for the left-hand side of the pure spinor
equations for the PT Ansatz, discussed in section 2.3. We concisely write Ga1...an =
Ga1 ∧ · · · ∧Gan . For simplicity, we also set eθ− = 1.

e−3Ã+φdH

[
e3Ã−φΦ−

]
= e−g+3p

[
ie−6p− 3x

2

(
2egaA+ B + e2gB − a2B

)
G1234

− iex2G3456

(
− egB − B2a′ + egBA′ − egAB′ + egABg′

)
+ ie

x
2G1256

(
2aA+ egB + a′ +A2a′ − egBA′ + egAB′ + egABg′

)
+

1

2
ie

x
2G2356

(
− 2egA− 2ABa′ + 6egÃ′ + (−1 +A2 − B2)egg′ − 6egp′ + egx′ − 2egφ′

)
+

1

2
e
x
2 (G2456 −G1356)

(
2egA− 2aB − 6egÃ′ + 6egp′ − egx′ + 2egφ′

)
− 1

2
ie

x
2G1456

(
2egA− 4aB − 2ABa′ − 6egÃ′ − (1−A2 + B2)egg′ + 6egp′ − egx′ + 2egφ′

)
+ ie−

x
2G123456

(
2egh2 + (2egaA− B + e2gB − a2B)h′1 + (2egA− 2aB)h′2

+ (−2egaA− B′ − e2gB + a2B)χ′
)]
,

e−3Ã+φdH

[
e3Ã−φΦ+

]
+ dÃ ∧ Φ̄+ + ?λF

= e−g−3p− 3x
2

{
−G5e

6p+g−iθ+
[
2eiθ++φP (h1 + bh2)− e2x(−Ã′ + e2iθ+(−3Ã′ − iθ′+ + φ′))

]
e6p+x(G136 −G246)

[
iex+iθ+aA+ ieg+xB + egh2 − eg+φPb′

]
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+G235

[
e6p+x+φP (egA(a− b)− (1 + a2 − 2ab)B) + eiθp(ieg(aA+ egB))

+ ie6p+2x
(
A2a′ + eg(AB′ + B(−A′ +Ag′))

)
+ eg+6p+x

(
A(h′2 + a(h′1 − χ′) + egB(h′1 − χ′))

)]
−G12345

[
eiθ+

(
(a2 − e2g − 1)A+ 2egaB

)
+ eg+6p+2x−iθ+Ã′

+ eg+6p+2x+iθ+
(

2AA′ + 3Ã′ + 2BB′ + 2x′ + iθ′+ − φ′
)
− i2eg+6p+x+iθ+B(h′2 + a(h′1 − χ′))

+ ie6p+x+iθ+
(
A(−h′1(a2 − 1)− 2ah′2 + e2g(h′1 − χ′) + (a2 − 1)χ′)

)]
+

1

2
G345e

−iθ+
[
− 2e6p+x+iθ++φPA(1 + a2 − 2ab) + ieg+6p+2x+2iθ+A2g′

+ eg
(
− 2e6p+x+iθ++φPaB + e6p+x(2eiθ++φPbB + 2iexÃ′

+ e2iθ+(−2Bh′2 − iex(6Ã′ + 2BB′ − g′ + B2g′ + 2x′ + 2iθ′+ − 2φ′)))

− 2e2iθ+aB(i+ e6p+x(h′1 − χ′))
)

+ 2e2iθ+A(ie2g − ie6p+2x(Ba′ + egA′) + e2g+6p+x(h1 − χ′))
]

+
1

2
G125e

−iθ+
[
2e2g+6p+x+iθ++φPA− ieg+6p+2x+2iθ+A2g′ − eg

(
e6p+x(−2eiθ++φPbB − 2iexÃ′

+ e2iθ+(2Bh′2 + iex(6Ã′ + 2BB′ + g′ − B2g′ + 2x′ + 2iθ′p − 2φ′)))

+ 2eiθ+aB(e6p+x+φP + eiθp(i+ e6p+x(h′1 − χ′)))
)

− 2e2iθ+A
(
− i+ ia2 + e6p+x(−iex(Ba′ − egA′) + h′1) + e6p+x(2ah′2 + a2(h′1 − χ′) + χ′)

)]
+G145

[
eg+6p+x+φP (A(a− b) + egB) + eiθ+Big(i(egaA+ B − a2B)

+ ie6p+2x((1 + B2)a′ + eg(AB′ − B(A′ +Ag′)))

+ e6p+x(egA(h′2 + a(h′1 − χ′))− B((1 + a2)h′1 + 2ah′2 − (a2 − 1)χ′))
)]}

.
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Appendix D

IR and UV expansions of analytic
solutions

In this Appendix we show the IR and UV expansions for the whole space of linearized
deformations around the Klebanov-Strassler solution, obained in chapter 3 and 4.

D.1 IR expansions

The IR behavior of the modes is obtained by Taylor expanding h, j and the integrands
in the solutions for the φ̃a modes shown in section 3.3.2, performing the indefinite
integral over τ (instead of the integral from 1 to τ), and adding an integration
constant Y IR

a (since the conjugate momenta ξa do not involve integrals other than
h and j, we do not have to introduce a second set of integration constants XIR

different from the one used in (3.55)-(3.61)).
The IR expansions of h and j are given by

hIR = h0 −
16

3

(
2

3

) 1
3

P 2τ2 +O(τ3) ,

jIR = −1

τ

(
3

2

) 2
3

+ j0 −
1

5

(
2

3

) 1
3

τ +O(τ3) , (D.1)

where

h0 = 18.2373P 2, j0 = 0.836941 . (D.2)

In the order that those equations were solved and to the order of expansions that
we need, the IR asymptotics of the φ̃a modes are given by

φ̃8 =
1

τ

32

3

(
2

3

) 1
3

(−h0X1 + 3PX6 + 9X8) + Y IR
8 +O(τ) , (D.3)
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φ̃2 =
1

τ
Y IR

2 +
log τ

τ

(
16

3

(
2

3

) 1
3

(h0X1 − 3(X4 + 2PX6))

)

+ 8

(
2

3

) 1
3

(−6X2 + 4X3 + 6PX5 + 9PX7) +O(τ) , (D.4)

φ̃3 =
3Y IR

3

4τ3
+

1

τ

(
Y IR

2

2
− 3Y IR

3

20
+

4

3

(
2

3

) 1
3

h0X1 + 8

(
2

3

) 1
3

PX6

)

+
log τ

τ

(
8

3

(
2

3

) 1
3

(h0X1 − 3(X4 + 2PX6))

)
+O(τ) , (D.5)

φ̃1 = − 1

τ3

Y IR
3

2
+

1

τ

(
− 2Y IR

2 +
Y IR

3

10
− 4

3

(
2

3

) 1
3

(4h0X1 − 3(5X4 + 12PX6))
)

+
log τ

τ

(
− 32

3

(
2

3

) 1
3

(h0X1 − 3(X4 + 2PX6))
)

+ Y IR
1

+ log τ

(
40

3

(
2

3

) 1
3

(−6X2 + 4X3 + 6PX5 + 9PX7)

)
+O(τ) , (D.6)

φ̃5 =
Y IR

6

2
+ Y IR

7 + τ2

(
− PY IR

2

2
− Y IR

6

8
+

1

36P
h2

0X1 − 4
(2

3

) 1
3
PX4

+
1

6

(
− 32 2

1
3 3

2
3P 2 + h0

)
X6 − 8 2

1
3 3

2
3PX8

)

+ τ2 log τ

(
−8

3

(
2

3

) 1
3

P (h0X1 − 3(X4 + 2PX6))

)
+O(τ3) , (D.7)

φ̃6 =
1

τ2

(
− 2Y IR

6 +
8

3

(
1

6P
h2

0X1 + h0X6

))
+
(Y IR

6

6
+ Y IR

7 − 2PY IR
2

3
− 128

9

(
2

3

) 1
3

h0PX1 +
2

27P
h2

0X1

+ 16

(
2

3

) 1
3

PX4 +

(
−64

3

(
2

3

) 1
3

P 2 +
4

9
h0

)
X6 − 32

(
2

3

) 1
3

PX8

)
− log τ

(32

9

(
2

3

) 1
3

P (h0X1 − 3(X4 + 2PX6))
)

+O(τ) , (D.8)

φ̃7 =
1

τ

(
−Y IR

6 − 2

3

(
1

6P
h2

0X1 + h0X6

))
+ τ

(
PY IR

2

3
+
Y IR

6

6
+

64

9

(
2

3

) 1
3

h0PX1

+
1

54P
h2

0X1 −
8

3

(
2

3

)1/3

PX4 +
1

9
h0X6 − 16

(
2

3

) 1
3

PX8

)
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+ τ log τ

(
16

9

(
2

3

) 1
3

P (h0X1 − 3(X4 + 2PX6))

)
+O(τ2) , (D.9)

φ̃4 =
1

τ

(8

9

P

h0

(
2

3

) 1
3
(
−6PY IR

3 − 18Y IR
6 − 27Y IR

7 +
7

P
h2

0X1 − 12h0X6

))
+ Y IR

4 +O(τ) . (D.10)

Note that the constant term in φ̃2 and the logarithmic term in φ̃1 are identically
vanishing once we impose the zero-energy condition (6.11). We omit for simplicity
the relation between the constants (X,Y IR) used here and those that first appeared
in [25]. We refer to [21] for more details.

D.2 UV expansions

The UV asymptotics of h(τ) and j(τ) are

hUV = 12 21/3P 2(4τ − 1)e−4τ/3 − 128

125
21/3P 2(12− 85τ + 25τ2)e−10τ/3 +O(e−16τ/3)

jUV = − 3

22/3
e−4τ/3 − 4

25
21/3(3 + 10τ)e−10τ/3 +O(e−16τ/3) . (D.11)

The UV expansions for the fields φ̃a are obtained by performing an indefinite integra-
tion of the UV series of the integrands as in the IR case. We call Y UV

a the 0th-order
term in the expansion for the field φ̃a (or Λa if the former is written as a product of
the homogeneous solution times Λa)

φ̃8 = Y UV
8 + 12 · 21/3 e−4τ/3

(
P (−1 + 4τ)(2X5 +X7) + 8X8

)
+O(e−8τ/3) , (D.12)

φ̃2 = −8 · 21/3 e−τ/3
(

6X2 + (6− 4τ)X3 + 2X4 + 9PX7 − 6PτX7

)
+ 2 e−τY UV

2

+O(e−7τ/3) , (D.13)

φ̃3 = −5 · 21/3X3 e
2τ/3 − 4

3
· 21/3e−4τ/3

(
108X2 + (336− 137τ)X3 + 48X4

− 108P (−3 + τ)X7

)
+O(e−2τ ) , (D.14)

φ̃1 = Y UV
1 − 10 · 21/3X3 e

2τ/3 +
2

3
· 21/3e−4τ/3

(
324X2 + (528− 316τ)X3 + 114X4

+ 81P (7− 4τ)X7

)
+O(e−2τ ) , (D.15)

φ̃5 = −Y
UV

5

2
eτ − Y UV

5 + Y UV
7 + τ(2Y UV

5 − PY UV
8 )

+ 6 · 21/3 e−τ/3P
(

6X2 + (21− 4τ)X3 + 2X4 + 21PX7

)
+

1

2
e−τ
(

(5− 4τ)Y UV
5 + 4Y UV

6 − 2P (−1 + 2τ)(Y UV
2 − Y UV

8 )
)
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+ 12 · 21/3e−4τ/3P
(
− 12(1 + τ)X2 − 15X3 − 4X4 + 2τ(X3 + 4τX3 − 2X4 + 6PX5)

+ 3P (−3 + τ + 4τ2)X7 + 6(PX5 +X8)
)

+O(e−2τ ) , (D.16)

φ̃6 =
Y UV

5

2
eτ − Y UV

5 + Y UV
7 + τ(2Y UV

5 − PY UV
8 )

− 6 · 21/3 e−τ/3P
(

6X2 + (21− 4τ)X3 + 2X4 + 21PX7

)
+

1

2
e−τ
(

(−5 + 4τ)Y UV
5 − 4Y UV

6 + 2P (−1 + 2τ)(Y UV
2 − Y UV

8 )
)

+ 12 · 21/3e−4τ/3P
(
− 12(1 + τ)X2 − 15X3 − 4X4 + 2τ(X3 + 4τX3 − 2X4 + 6PX5)

+ 3P (−3 + τ + 4τ2)X7 + 6(PX5 +X8)
)

+O(e−2τ ) , (D.17)

φ̃7 = −Y
UV

5

2
eτ + 18 · 21/3e−τ/3P

(
− 6X2 + (−9 + 4τ)X3 − 2(X4 + P (5− 2τ)X7)

)
+ e−τ

(
(−1

2
+ 2τ)Y UV

5 − 2Y UV
6 + P (Y UV

2 + 2τY UV
2 − Y UV

8 )
)

+O(e−7τ/3) ,

(D.18)

φ̃4 =
Y UV

4

12 · 21/3(4τ − 1)
e4τ/3 − 8 · 21/3(2τ + 1)X3

4τ − 1
e2τ/3 +

2Y UV
1

5
− Y UV

5

P
+
Y UV

8

2

− 2Y UV
7

P (4τ − 1)
+

4 · 22/3(12− 85τ + 25τ2)Y UV
4

1125(4τ − 1)2
e−2τ/3 +

21/3

(4τ − 1)
e−4τ/3

(
18(7 + 8τ)X2

+ 32(2τ + 1)X4 − 18P (7 + 8τ)X5 − 9P (23 + 8τ + 32τ2)X7 − 72X8

+
40803− 170884τ + 161120τ2 − 332800τ3)X3

375(4τ − 1)

)
+O(e−2τ ) . (D.19)

157



Appendix E

Analytic non-supersymmetric
M-theory solutions

Here we show the analytic solutions for the modes ξ̃a which can be obtained by
explicitly performing the integrations that appear in (6.35)

ξ̃4 = m2X4H(y) , (E.1)

ξ̃1 = 2m2X4H(y) +X1 ,

ξ̃5 = −2
√

2(y4 − 3)−1(y4 − 1)−1/2L5(y)− 2−1/2(y4 − 3)−1(y4 − 1)3/2L6(y) ,

ξ̃6 = 4
√

2(y4 − 3)−1(y4 − 1)−3/2(3y4 − 5)L5(y)−
√

2(y4 − 3)−1(y4 − 7)(y4 − 1)1/2L6(y) ,

ξ̃3 = −3

2
y4(y4 − 3)2L3(y) ,

ξ̃2 =
3

4
X1(y4 − 1) +

1

2
X2(y8 − 4y4 + 3)1/2 +

9

8
(y4 − 3)2(y4 − 1)L3(y) +

16

3
√

3
(y4 − 1)−2L5(y)

− 4

3
√

3
(y4 − 4)L6(y) +m2X4

(3

2
(y4 − 1)H(y)− 2

√
2y−3(y4 − 1)−3/2(y4 − 3)

)
,

where

L5(y) = X5 +m2X4G(y) , (E.2)

L6(y) = X6 −m2X4

(
G(y) +

√
3

2
H(y)

)
L3(y) = X3 +m2X4

( 16
√

2(2y4 − 3)

27y3(y4 − 3)(y4 − 1)3/2
+

22G(y)

27
√

3
− 13H(y)

27

)
. (E.3)

We recall that the variable y is defined as

y = (2 + cosh(2r))1/4 (E.4)

and the expression for the warp factor H(y) and the Green’s function G(y) are given
in (6.16) and (6.37).
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We now show the expanded form of the solution for the modes φ̃a in terms of the
variable y, obtained by replacing the analytic solutions for the modes ξ̃a in (6.39).
We impose the zero energy condition, so we put X2 = 0.

φ̃1 =
1

(3− 4y4 + y8)1/2

[
Y1 −

9yX1√
2(y4 − 3)1/2

− 27√
2
X3y

√
y4 − 3 +

4
√

2X5y(11− 5y4)

(y4 − 1)
√

3(y4 − 3)1/2

− 8
√

2X6y√
3(y4 − 3)1/2

− 1√
2 33/4

F
(

arcsin(31/4y−1)| − 1
)(

45
√

3X1 + 162
√

3X3 − 40X5 − 112X6

)
+

1

2
m2X4

(∫ y 3
√

2(−19− 26u4 + 13u8)H(u)

(u4 − 3)3/2
du−

∫ y 2
√

6
√
u4 − 3(11− 38u4 + 11u8)G(u)

(u4 − 1)2
du

− 48y2(y4 − 3)

(y8 − 4y4 + 3)1/2
+ 48
√

3E
(

arcsin(y2)|1
3

)
− 32
√

3F
(

arcsin(y2)|1
3

))]
,

(E.5)

φ̃2 = −3φ̃1

y4
+

4

y4(y4 − 3)2

[
Y2 +

9X1y
√
y4 − 1√
2

+
9X3y

√
y4 − 1

140
√

2
(825− 639y4 + 343y8 − 49y12)

+
4
√

6X5y(5y4 − 7)

(y4 − 1)3/2
+

4

7

√
2
(

63X1 + 432X3 − 7
√

3(5X5 + 11X6)
)
F
(

arcsin(y−1)| − 1
)

− 4
√

6X6y
√
y4 − 1 + 3m2X4

(∫ y (−171− 342u4 + 936u8 − 546u12 + 91u16)H(u)

12
√

2(u4 − 1)1/2
du

−
∫ y (u4 − 3)2(99− 342u4 + 176u8 − 154u12 + 77u16)G(u)

6
√

6(u4 − 1)5/2
du

+
2y2(138− 119y4 + 14y8)

9(1− y4)
+

16

3
arccoth y2

)]
, (E.6)

φ̃3 = Y3 −
3

8
(y4 − 2) φ̃1 −

3

8
φ̃2 +

27X1y
√
y4 − 1

8
√

2(y4 − 3)
+

27X3y
√
y4 − 1

4
√

2
+

√
3X5y(5y4 − 7)

(y4 − 1)3/2

+
1

8
√

2

(
135X1 + 432X3 − 8

√
3(5X5 + 12X6)

)
F
(

arcsin(y−1)| − 1
)

+
1

4

(
7
√

3X1 − 4(X5 +X6)
)
G(y) + 3m2X4

[ ∫ y (−51 + 9u4 + 39u8 − 13u12)H(u)

4
√

2(u4 − 3)3/2(3− 4u4 + u8)1/2
du

+

∫ y (−33 + 125u4 − 79u8 + 11u12)G(u)

2
√

6(u4 − 1)5/2
du+

5y2

4− 4y4
−
√

3

4
arctanh

(
y2

√
3

)
+ log

(
1 + y2

1− y2

)]
.

(E.7)
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For the flux perturbation we haveφ̃5

φ̃6

 =

 1
2
√

2
(y4 − 1)−3/2(y4 − 3)3 − 1

2
√

2
(y4 − 7)(y4 − 1)1/2

− 1
4
√

2
(y4 − 1)−1/2(y4 − 3)(y4 + 1) 1

4
√

2
(y4 − 1)3/2


Λ5

Λ6


(E.8)

where

Λ5 = Y5 +
4− y4

6
√

3
φ̃1 +

3
√

3X1y(7− 5y4)

5
√

2(y4 − 1)3/2
− 3
√

3X3y(−72 + 45y4 + 5y8)

10
√

2(y4 − 1)3/2
(E.9)

− 10
√

2X5y

9(y4 − 3)(y4 − 1)3/2
+

2
√

2X6y(272− 279y4 + 60y8)

45(y4 − 3)(y4 − 1)3/2
− 1

108

(
27X1 + 44

√
3(X5 +X6)

)
G(y)

+
1

180

(
− 54
√

3X1 − 297
√

3X3 + 40X5 + 106X6 − 30X6y
4 +

120(X5 +X6)

(y4 − 3)2

)
H(y)

+m2X4

[ ∫ y

H(u)

(
76 + 85u4 − 78u8 + 13u12

2
√

6(u4 − 3)3/2(u8 − 4u4 + 3)1/2
+

2

3
y3G(y) +

y3

√
3
H(y) +

8y3H(y)√
3(y4 − 3)3

)
du

+

∫ y (44− 163u4 + 82u8 − 11u12)G(u)

3
√

2(u4 − 1)5/2
du+

2
√

3y2

y4 − 1
− 2

3
arctanh

(
y2

√
2

)
− 2√

3
log

(
1 + y2

1− y2

)]
,

Λ6 = Y6 −
y4(−3 + y4)2

6
√

3(−1 + y4)2
φ̃1 +

3
√

3X1y(7− 5y4)

5
√

2(y4 − 1)3/2
+

3
√

3X3y(72− 45y4 − 5y8)

10
√

2(y4 − 1)3/2
+

2
√

2X5y(y4 − 3)

3(y4 − 1)7/2

+
2
√

2X6y(20y4 − 33)

15(y4 − 1)3/2
+H(y)

(
− 7
√

3X1

40
− 9
√

3X3

10
+
X6(11− 5y4)

30
+
X5(1 + 6y4 − 3y8)

6(y4 − 1)2

)
+m2X4

[ ∫ y

H(u)

(
y4(−19− 26y4 + 13y8)

2
√

6(y4 − 1)5/2
+

2y3(y4 − 3)(y8 + 3)G(y)

3(y4 − 1)3
+
y3H(y)√

3

)

−
∫ y u4(u4 − 3)2(11− 38u4 + 11u8)G(u)

3
√

2(u4 − 1)9/2
+

2y3(−3− 4y4 + 3y8)

3
√

3(y4 − 1)3
+

1√
3

log

(
y2 − 1

−1− y2

)]
.
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Appendix F

Brane/antibrane potential

In this Appendix we review the calculation of the force on a probe antibrane in the
Stenzel background which has been performed in [19]. We consider a stack of M2
branes at a position r = r0 in the transverse geometry and we want to compute
the force exerted on a probe anti–M2 brane placed at the tip r = 0, due to the
backreaction of the M2 branes. To compute the full backreacted geometry we only
need to add a harmonic function δH(r) to the background warp factor H0(r) [90].
This function is given by the Green’s function on the warped Stenzel space [151] and
since we are considering smeared branes, we only need to solve the radially symmetric
Laplace equation. The Laplacian is given by

∆δH =
1√
G

∂

∂xl

(√
Gglm

∂δH

∂xm

)
, (F.1)

where we are labeling the eleven dimensional coordinates by xl (l,m = 0, . . . , 10)
and G = det glm. From (6.1) we easily get

√
G = −ez+3α+3β+2γ , grr = e−z−2γ , (F.2)

and so imposing ∆δH = 0 we get the following equation for δH ′(r)

e3(α0+β0)δH ′(r) = const . (F.3)

So the two solutions of the Laplace equation are, using (6.15)

H1 = d1 (F.4)

H2 = d2

∫ r csch3u

(2 + cosh 2u)3/4
dr , (F.5)

and we should set δH = H1 for r < r0 and δH = H2 for r > r0. The constant d1 is
then fixed from the matching condition d1 = H2(r0) and the constant d2 is related
to the number of M2 branes from (6.62). In fact, we have

N =
1

(2πlp)6

∫
δM

?11G4 =
211m2 VolV5,2

34 (2πlp)6
H ′2 e

3(α0+β0) , (F.6)
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Brane/antibrane potential

where δM is a small shell around r0. If we use H2 given by (F.5), the above equation
thus fixes d2 in terms of N

d2 =
324π2 l−6

p N

m2
. (F.7)

We now compute the force exerted on the probe anti–M2 brane by looking at the
variation in the potential when we move the stack of M2 branes away from r = r0.
For anti–M2 branes, VDBI = VWZ and since we have

VDBI ∼ (g00g11g22)1/2 = e−3z =
1

m2H
, (F.8)

the potential is just proportional to 2H−1. Expanding this we get

V =
2

m2H
≈ 2

m2H0

(
1− δH

H0

)
, (F.9)

and so we easily get the force:

FM2 = − 2

m2

∂V

∂r0

∣∣∣
r=0

=
1

m2H2
0

2 d2 csch3r

(2 + cosh 2r)3/4
. (F.10)

This result agrees with the computation of the force exerted on a probe M2 brane
due to the backreaction of a stack of anti–M2 branes (6.97).
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