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Abstract

Ultra-Relativistic heavy-ion physics is a promising field of high energy physics
connecting two fields: nuclear physics and elementary particle physics. Exper-
imental achievements of the last years have provided an opportunity to study
the properties of a new state of matter created in heavy-ion collisions called
quark-gluon plasma.

The initial state of two colliding nuclei is affected by fluctuations coming
from wave-functions of nucleons. These fluctuations lead to the momentum
anisotropy of the hadronic matter which is observed by the detectors. The
system created in the collision behaves like a fluid, so the initial state is con-
nected to the final state via hydrodynamic evolution. In this thesis we model
the evolution with relativistic viscous hydrodynamics. Our results, combined
with experimental data, give non trivial constraints on the initial state, thus
achieving "reverse engineering" of the heavy-ion collisions.

The observable which characterizes the momentum anisotropy is the anisotropic
flow vn. We present the first measurements of the first harmonic of the anisotropic
flow called directed flow v1 in Pb-Pb collisions at the LHC. We then perform
the first viscous hydrodynamic modeling of directed flow and show that it is less
sensitive to viscosity than higher harmonics. Comparison of these experimental
data with the modeling allows to extract the values of the dipole asymmetry
of the initial state, which provides constraints on the models of initial states.
A prediction for directed flow v1 in Au-Au collisions is also made for RHIC.
We then perform a similar modeling of the second and third harmonics of the
anisotropic flow, called respectively elliptic v2 and triangular v3 flow. A com-
bined analysis of the elliptic and triangular flow data compared with viscous
hydrodynamic calculations allows us to put constraints on initial ellipticity and
triangularity of the system. These constraints are then used as a filter for dif-
ferent models of initial state. At the end of this thesis, we show perspectives
in the studies of the initial state which are opened by recent measurements of
event-plane correlations which could shed light on the initial state fluctuations.

Key words: anisotropic flow, relativistic heavy-ion collisions, relativistic
viscous hydrodynamics, initial state, event-plane correlations.
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Chapter 1

Introduction

1.1 Experimental overview

The story of heavy-ion collisions starts with the pioneering works of Enrico
Fermi and Lev Landau on the hot matter and multi particle production in the
50’s. Theoretical works motivated the experiments and in the 70’s the first
experiments on heavy-ion collisions were done at Berkeley in LBNL and at
Dubna in JINR, where the first studies of compressed and excited matter were
done. The further research programs at higher energies were launched in the
80’s in Brookhaven and at CERN. In the 90’s "beam-target" experimental high
energy collisions were run in Brookhaven (AGS, gold beams on gold target)
and at CERN (SPS, lead beam on lead target and later uranium beam on
uranium target). In 2000, the first "beam–beam" heavy ion collider RHIC (The
Relativistic Heavy Ion Collider) started to run in Brookhaven, opening a new
era in the experimental studies of heavy-ion physics. Nowadays, RHIC and LHC
(The Large Hadron Collider) located in CERN, constitute the two relativistic
heavy ion colliders. The main heavy ions which are used in these colliders are
respectively gold and lead ions.

1.1.1 RHIC

Launched in 2000, RHIC has provided a lot of important results on the study of
matter created in the relativistic heavy-ion collisions [21, 22, 23]. Thus it was
found out that this matter is behaving more like a strongly coupled liquid than
a gas as it was considered earlier [24, 25].

RHIC is designed to collide AuAu nuclei with a center-of-mass energy of
200 GeV per nucleon pair. During the first year of running this energy was not
achieved, and the first runs were made at the energy 130 GeV. Later during
several years RHIC was running with designed energy of 200 GeV per nucleon

1
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Figure 1.1: STAR and PHENIX events.

pair. During all these years RHIC was running not only AuAu systems, but
also dAu, pp, CuCu and recently CuAu as well as UU collisions.

Initially, there were four experiments at RHIC: PHOBOS, BRAHMS, PHENIX
and STAR. The experiments PHOBOS, BRAHMS have finished their programs
and were closed. The STAR experiment [21] is measuring the hadron production
over a large solid angle whereas the PHENIX experiment [22] focuses mainly on
the measure of muons, electrons, photons and hadrons.

The project eRHIC, designed to collide electrons with heavy-ions [26, 27, 28,
29, 30, 31, 32], offers new perspectives for the RHIC collider.

1.1.2 LHC

The present and the future of the heavy-ion physics is connected with the new
collider LHC, built at CERN, Geneva. The first PbPb collisions started at
the end of 2010. The designed energy of 5.5 TeV per pair of nucleons was not
reached and runs were made at the energy 2.76 TeV per pair. At the end of
2012 runs of pPb collisions at 5 TeV were also made before the planned stop of
the collider for the renovations until 2015.

There are three experiments at the LHC participating in the heavy-ion pro-
gram: ALICE, designed especially for heavy-ion collisions [33], CMS [34] and
ATLAS [35]. Although CMS and ATLAS designed in a first place for the dis-
covery of the Higgs boson, they have also an important role in the heavy-ion
program. The LHC has already provided remarkable results. Indeed, in august
2012 the highest temperature ever achieved in a lab was reached: 5.5 trillion
degrees [36]. This value, corresponding to T = 304 ± 51 MeV was obtained
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from the exponential fit of the measured direct photons in PbPb collisions by
ALICE collaboration.

The high energy obtained at the LHC allows to probe the quark-gluon plasma
properties with a better accuracy. Theoretical understanding of these measure-
ments is challenging and is one of the most important questions in heavy ion
physics today.

Figure 1.2: ALICE, ATLAS and CMS heavy-ion events.

1.1.3 Experimental observables

Geometry and kinematics of heavy-ion collisions

During the development of the heavy-ion physics, a basic dictionary was created
and is commonly used among the physicists of the field. In this section, we will
present the common terminology used [37, 38].

The standard picture of a nucleus-nucleus (AA) collision is the following:
the two nuclei are accelerated close to the speed of light and due to the Lorentz
contraction of distances in the boost direction, the two nuclei collide as two flat
"pancakes" in their center of mass frame. The distance in the transverse plane
between the centers of two colliding ions of radius R is called impact parameter
and usually is denoted b. A collision where b is close to zero is called a central
collision. For 0<b<2R, collisions are non-central and for b close to 2R collisions
are called peripheral. The nucleons that participate in the collision are called
participants, other nucleons which are passing by without collision are called
spectators. The participants which had at least one inelastic interaction are
called wounded nucleons.

We denote "z" the axis parallel to the beam direction and "x" the axis
parallel to the impact parameter vector. The plane defined by the z− and
x−axis is called the reaction plane of the collision.

A single collision is called an event. The number of particles produced in one
event is called multiplicity.
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Figure 1.3: Schematic view on a heavy-ion collision.

In order to make a description of the kinematics of heavy-ion collisions the
definition of rapidity is used. Rapidity is defined through the longitudinal com-
ponent of momentum pz and the energy E =

√
m2 + |p|2 of particle

y =
1

2
ln

(E + pz)

(E − pz)
= Atanh

(pz
E

)
. (1.1)

In order to calculate the rapidity, one needs to know the value of the total energy
which is not always available in the experiments. In the experiment usually one
measures the momentum p of the particles but not their masses, i.e. their
energy. The momentum components of one of these so-called non-identified
particles reads

px = pt cosφ, (1.2)
py = pt sinφ, (1.3)
pz = pt sinh η, (1.4)

where pt is the transverse momentum, φ is the azimuthal angle in the transverse
plane and η is the pseudorapidity which can actually be measured.

For this reason, in experiment, it is more convenient to use an observable
called the pseudorapidity, which is defined in a similar way

η =
1

2
ln

(|p|+ pz)

(|p| − pz)
= ln

(
cot

θ

2

)
= ln

(
tan

θ

2

)
= Atanh

(
pz
|p|

)
, (1.5)

where θ is the polar angle, or the scattering angle, pz = |p| cos θ.
Experimental measurements are usually expressed in terms of pseudorapidity

distribution. In hydrodynamic calculations, we deal with identified particles,
in particular pions, kaons, protons and their anti-particles, thus we simulate
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the rapidity distribution and not the pseudorapidity distribution. In order to
compare to experimental data, we need to derive pseudorapidity distribution
from rapidity distribution [39]. From the two definitions above (1.1), (1.5), it
can be obtained

dy =
|p|
E
· dη . (1.6)

Using eq. (1.6), one obtains

dN

pt dpt dη
(pt) =

dN

pt dpt dy
(pt) ·

|p|
E

=
dN

pt dpt dy
(pt) ·

|p|√
m2 + |p|2

=
dN

pt dpt dy
(pt) ·

pt cosh η√
m2 + p2

t cosh2 η
. (1.7)

Note that the factor
pt cosh η√

m2 + p2
t cosh2 η

,

is less than 1, leading to a distribution in pseudorapidity smaller than the dis-
tribution in rapidity.

In the region where y ≈ η ≈ 0 (called midrapidity region) the relation
between the pseudorapidity distribution and the rapidity distribution reads

dN

pt dpt dη
(pt) =

dN

pt dpt dy
(pt) ·

pt√
m2 + p2

t

. (1.8)

The rapidity distribution has an experimental Gaussian structure, the transfor-
mation of eq. (1.8) leads to a flat pseudorapidity distribution [40, 41] as it is
shown in fig. 1.4.

Multiplicity and centrality

In theoretical calculations, it is needed to make a connection between such
concepts as centrality and impact parameter.

The total inelastic cross-section is defined as

σin =

∫ ∞
0

2πb′db′P (b′), (1.9)

where P (b′) is the probability of inelastic collision and b′ is the impact param-
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Figure 1.4: Pseudorapidity distribution for AuAu collisions at RHIC [1].

eter.
The centrality c(%) is generally defined as

c(%) =
σbmaxin

σin
, (1.10)

where bmax is a cut-off on the b′ integral defining

σbmaxin =

∫ bmax

0

2πb′db′P (b′) . (1.11)

If bmax is not too large, then the probability to have an inelastic collision is
close to 1 due to the fact that the number of participants is large when b′ → 0,
i.e. P (b′) = 1. Then the formula eq. (1.10) can be simplified as

c(%) ∼ πb2
max

σin
. (1.12)

The range of centrality is usually indicated as 0− c% and the maximum value
of the impact parameter bmax in this range. For example thel central collisions
are the collisions with a centrality range of 0−10% and peripheral with a range
of 90− 100%. Note that the approximated definition (1.12) stops to work after
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∼ 80% for the peripheral regions.
The definition (1.12) is suitable for theoretical calculations but not for ex-

periments as the impact parameter is not directly measured but estimated via
Monte Carlo models. One of the most common methods used in experiments
is the definition of centrality as the % of events with the largest multiplicity
recorded by detectors or with the largest number of participants [42].

1.2 Theoretical overview

In the last decades, there were a lot of attempts to describe the matter created in
heavy-ion collisions. Different theoretical methods suitable for the description of
large macroscopic systems were used, such as thermodynamics, hydrodynamics,
transport theory, field theory at finite temperature and density, non-equilibrium
field theory, Monte-Carlo simulations, etc. None of these approaches has pro-
vided as good description of the dynamic properties of quark-gluon plasma as
relativistic viscous hydrodynamics [43, 44].

After a short introduction into basics of the fundamental theory of strong
interactions, I will focus on the hydrodynamic description of the heavy-ion col-
lisions which is the approach used in this thesis.

Basics of QCD

The system created in heavy-ion collisions seems to behave as a strongly coupled
liquid. The fundamental theory of strong interactions is called QCD (Quantum
Chromodynamics). QCD describes the interactions between quarks and gluons,
which constitute the hadronic matter. The strong force is carried by gluons
which are the vector bosons of the SU(3) color gauge group of QCD. Quarks and
antiquarks carry respectively color and anti-color charges. Quarks, antiquarks
and gluons are generically called partons.

Two main properties in QCD are the confinement of the colored particles in
color singlet states and the so-called asymptotic freedom of QCD. Although it
is not yet proven analytically, confinement is considered to be true because it
explains the nonexistence of free quarks and can be shown in lattice QCD.

Asymptotic freedom is the fact that the strong coupling between partons
decreases with the energy of the interaction.

If one adjusts the energy to the system, at some point the distance between
the quarks is so increased, that it become energetically favorable to create an-
other quark-antiquark pair, which will join these two separated quark-antiquarks
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and thus creates 2 hadrons. This can be illustrated with the so-called string
model shown in the Fig. 1.5.

qq

q q

q q

q q q q q q

q q

Figure 1.5: Schematic picture of the confinement. The pair qq̄ stretches the string and breaks
into two pairs of qq̄ [2].

The name quark-gluon plasma (QGP) was introduced by Shuryak [45, 46] in
1978. One of the main interest of the heavy-ion collisions is the observation of
the phase transition between the hadronic phase and the quark-gluon plasma.
This phase transition can take place if one increases the temperature or the
baryon density (or both of them at once) [47, 48, 49]. The phase transition
that happened in the Early Universe appears to be a cross-over as it is shown
in fig. 1.6.

The lattice calculations has shown the extremely high temperature T ≈ 175MeV

(though recent calculations show T ≈ 155MeV ) needed to pass this transition
from the hadronic phase to the quark-gluon plasma [50, 51, 52]. Such a high
temperature is complicated to reach in the lab, the matter cannot be heated un-
til this level by any chemical or nuclear reaction. The only way is to accelerate
the matter, as we can see from the energy definition

E =
mc2√

1− v2/c2
. (1.13)

In 2012 during Quark Matter 2012 it was announced by ALICE collaboration
that 5.5 trillion (5.5 · 1012) degrees Celsius was reached at the LHC, what is
100000 times higher than the temperature in the center of the Sun [36]. This
fact has been marked as the Guinness record.

In order to describe quark-gluon plasma one needs to define the equation
of state (EoS). Equation of state is relating thermodynamic parameters, i.e.
ε and P . If it isconsidered that the medium expands as a pure conformal
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Figure 1.6: QCD phase diagram [3].

gas without a phase-transition, the conformal equation of state reads as ε =
3P . In order to have more realistic description it is needed to characterize
the color confinement phase transition and the hadron gas at the later time
of the evolution, i.e. at lower temperatures. In this case one consider the
equation of state from lattice QCD. There are a number of different groups
working with the EoS from lattice QCD. Some of the results of these groups are
shown in figs. 1.7. In our calculations we use the equation of state from lattice
QCD by Laine and Schroeder [53] shown in fig. 1.7 left, denoted as "Laine".
This equation is obtained from the concept of a hadron resonance gas at low
temperatures, a high-order weak-coupling perturbative QCD calculation at high
temperatures and an analytic crossover regime interpolating between the high
and low temperature regime. One of the most modern lattice QCD equations
of state [5] using the physical quark masses is shown in fig. 1.7 right, but such
equations are not considered in this thesis.

One of the most remarkable evidences of the existence of the quark-gluon
plasma is the appearance of the so-called anisotropic flow. In this phenomenon
the initial anisotropy of the coordinate space resulting from the geometry of
non-central collisions is transformed into anisotropy in the momentum space.
This effect is caused by the interactions in the created matter, that would not
be the case for the hadron gas [21, 23, 54, 22].
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Figure 1.7: Left: Normalized energy density and pressure vs temperature from the lattice
QCD, full line represents results from ref. [4]. Right: the normalized pressure vs temperature
from the Wuppertal-Budapest group [5].

The main observable we study in this thesis is the anisotropic flow which we
present in the next section.

1.3 Anisotropic flow

Collective flow characterizes the collective expansion as the response to the
fluctuating initial geometry [55, 56]. After the collision the system starts to
expand and later breaks down into the outgoing hadronic particles. Within a
pure hydrodynamic approach these particles are emitted independently. Due
to the fluctuations in the initial state there is no azimuthal symmetry, so the
azimuthal distribution of these particles can be written as a Fourier series with
respect to the azimuthal angle φ of the momentum of the outgoing particle

2π

N

dN

dφ
= 1 +

∞∑
n=1

2vn(pt, η) cosn (φ−Ψn(pt, η)) , (1.14)

where Ψn is the reference angle (usually referred to as event-plane) for each
harmonic n that is defined [57, 58] as the phase of the complex Fourier coeffi-
cient1

〈
einφ
〉

= vne
inΨn, or equivalently 〈sinn(φ−Ψn)〉 = 0. Defined this way,

both Ψn and vn can be dependent on transverse momentum and pseudorapidity.
The coefficients vk are called flow coefficients and characterize the momentum
anisotropy. v1 is called directed flow, v2 - elliptic flow, v3 - triangular flow etc.
Note that event-by-event anisotropic flow is well defined only in hydrodynamics.
The event-by-event vn, as defined above from the single-particle distribution,

1The brackets indicate an average over the probability density in a single event.
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Figure 1.8: Flow coefficients vn.

cannot be measured experimentally. Indeed, one measures the system after
thermalization when a single event has already turned out into a thermal en-
semble. The number of particles per event in the experiment is too small to
measure both differential and integrated flow vn. Anisotropic flow can only be
measured through event-averaged azimuthal correlations between particles as
this will be discussed later in this chapter.

The interest to the studies of the particle momentum anisotropy in the di-
rections transverse to the beam has grown after the first observation of elliptic
flow [38] which was first suggested by Ollitrault [55]. The anisotropy of the flow
is the only observable that allows to unravel the early state of the collective
system. This is due to the fact that it can only be generated at first few fm/c
of the system evolution, before the spatial asymmetries of the system decrease.
The anisotropic flow must be sensitive to the particle interactions in the early
system evolution. It is a unique hadronic observable which can provide infor-
mation on the properties of the quark-gluon plasma present in the early stage
of collisions.

1.3.1 Directed flow

In the absence of fluctuations, the directed flow v1 is believed to arise from the
aside deflection of the colliding ions [38] and develops along the direction of the
impact parameter [59]. Due to the collision symmetry, directed flow is an odd
function of pseudorapidity

vodd1 (η) = −vodd1 (−η) . (1.15)

The illustration of the vodd1 is shown in the fig. 1.9. We see the deflection of
the participants of the incoming nucleus, positive in rapidity with x > 0 and
negative in rapidity for the zone x < 0.

Fluctuations in the initial state have an influence on the reference angles Ψn
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Figure 1.9: Net baryon density in the reaction plane illustrating vodd1 with velocity arrows
for midrapidity fluid elements, bold red arrows corresponds to the flow [6] (left). Schematic
picture of elliptic and directed flow vodd1 (right).

x(a) reaction plane

projectile spectators

participant zone

target spectators

projectile (η>0)target (η<0)

z

(b) transverse plane

ΨSP
(t )

ΨSP
(p)

ΨPP

y

x

projectiletarget

Figure 1.10: Schematic picture of the veven1 component in the reaction (a) and the transverse
(b) plane. ΨPP is the participant plane angle defined by the dipole asymmetry of the initial
energy density. Ψp

SP and Ψt
SP are projectile (η > 0) and target (η < 0) spectators plane

angles respectively.

for all n, see fig. 1.10. As a consequence, one can expect an additional contribu-
tion to the directed flow from the fluctuations [60]. With the fluctuations taken
into account, the directed flow has additional component which is even function
of pseudorapidity [61]

veven1 (η) = veven1 (−η) . (1.16)

This additional even component is not vanishing at midrapidity, while the odd
component is zero due to the symmetry. The even component of the directed
flow is the subject of studies in the Chapters 2 and 3.

The directed flow can be written as a sum of the odd and even compo-
nents [61]

v1(η)eiψ1(η) = veven1 (η)eiΨ
even
1 (η) + vodd1 (η)eiΨ

odd
1 (η) . (1.17)
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Figure 1.11: vodd1 and veven1 with dependence on pseudorapidity for Pb-Pb collisions at√
sNN = 2.76 TeV (a), the 〈px〉/〈pt〉 dependence on pseudorapidity for Pb-Pb collisions

at
√
sNN = 2.76 TeV (b), vodd1 comparison of ALICE Pb-Pb measurements with the STAR

data (scaled) [7] for Au-Au collisions at
√
sNN = 200(62.4) GeV (c), taken from [8].

Recent studies show that both v1(η)odd and v1(η)even have a weak centrality
dependence.

The component v1(η)odd has shown a negative slope [7, 8] in the experimen-
tal measurements whereas a positive slope was expected in the model calcula-
tions [62, 63], though some of them had also a negative slope [64]. The even
component v1(η)even measured at ALICE was found to be negative and inde-
pendent of pseudorapidity within uncertainties. Both behaviours are illustrated
in the figs. 1.11(a) and 1.11(c).

At the beginning of 2012, vodd1 was already measured [65, 66, 67, 68, 7, 69, 70,
71] and studied [64] for RHIC energies. At that time, veven1 was not measured
yet neither at RHIC nor at LHC.
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Figure 1.12: Elliptic and triangular flows from fluctuated initial state [9].

1.3.2 Elliptic and triangular flows

The second Fourier coefficient v2, elliptic flow, is the most studied flow coef-
ficient. The origin of the elliptic flow in non-central collisions is the spatial
anisotropy of initial distribution [55] which has an elliptic form. If the collision
is central, the overlap area has a round form, in this case the origin of elliptic
flow is connected with fluctuations which are coming from the wave-functions
of nucleons in each event.

Recent studies have shown some remarkable features of the elliptic flow. It
was shown that v2 increases with centrality percentage for small centralities as
we can see from the fig. 1.13. This can be explained by the fact that elliptic flow
is proportional to the initial eccentricity. Indeed, when eccentricity is smaller,
i.e. for bigger centrality percentage, the flow is growing. For more peripheral
collisions the system becomes so small that the viscous effects become more
important. Indeed, the viscous effects are inversely proportional to the size
of the system. These viscous effect decrease the flow. In the same time, the
eccentricity is larger for peripheral collisions, leading to a bigger flow. These
two processes are in competition. For peripheral collisions, the viscous effect
dominates.

Elliptic flow is growing with energy of collisions, thus we have bigger values
of v2 with LHC energies than with lower energies [72] as we can see in fig. 1.14.
Indeed, with higher energies of collisions, the initial temperature of the system
is higher so that the system will take more time to cool down to the freeze out
temperature meaning that its life-time is increased.

As shown in fig. 1.15 the v2 is growing linearly for low pt range which is what
one expects from hydrodynamics. However, at high pt the flow is not anymore
linear which can be explained by the presence of hard probes, particularly the



CHAPTER 1. INTRODUCTION 15

0 10 20 30 40 50 60 70 80

nv

0

0.05

0.1
(a)

| > 1}!"{2, |2v
| > 1}!"{2, |3v
| > 1}!"{2, |4v

{4}3v
RP#3/v

2
2#3/ v$100 

centrality percentile
0 10 20 30 40 50 60 70 80

n%/ nv

0

0.1

0.2

0.3

0.4

(b)
{2}CGC

2%/| > 1}!"{2, |2v

{2}CGC
3%/| > 1}!"{2, |3v

{2}W
2%/| > 1}!"{2, |2v

{2}W
3%/| > 1}!"{2, |3v

Figure 1.13: v2 and v3 dependence on centrality, ALICE collaboration [10].

Figure 1.14: Integrated v2 by ALICE collaboration compared with lower energy results [72],
20–30% centrality range.

presence of jets.
The triangular flow, v3, was first discovered during the studies of the two-

particle correlations as an explanation of the structures "ridge" and "shoulders"
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Figure 1.15: v2(pt) by ALICE collaboration compared [72], 40–50% centrality range.

appeared in the correlations [73], see later in this Chapter. The triangular flow
v3 is understood as the response of a triangular deformation which is caused by
fluctuations of initial geometry [73]. The physics of v3 was found to have a lot
of similar features with the physics of elliptic flow v2. Here I only mention the
main properties of the triangular flow. The magnitude of the integrated values
of v2 and v3 is similar for central collisions [74], and is the largest among all
the Fourier coefficients. The triangular flow v3 is also linear with pt, though it
grows quicker with pt than v2 as it can be seen in fig. 1.16.

Figure 1.16: vn(pt), n = 2, 3, 4, 5 by ALICE collaboration for central collisions [10].

The v3 is growing more slowly than v2 with centrality percentage as we
can see on fig. 1.13. In the central collisions, the system is larger and thus it
has less fluctuations, i.e. the triangularity is smaller. For smaller systems at
peripheral collisions fluctuations become more important and as a consequence
v3 increases with centrality percentage. The v3 is also dependent on the energy
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of the collisions and it is higher for LHC energies.
The elliptic and triangular flow are the subjects of studies described in the

Chapter 4.

1.3.3 Flow measurements

Two-particle correlations

The study of the two-particle correlations in ∆φ and ∆η has been a very debated
topic of the heavy-ion physics of the last years [75]. Indeed, it was found out that
the measured two-particle correlation behavior for proton-proton collisions and
heavy-ion collisions is different. As it is shown in fig. 1.17 the distribution in pp
collisions is almost flat in the azimuth with the specific ridge around ∆η = 0 for
all ∆φ range. For AA collisions, the distribution presents additional structures
at large ∆η. The structure around ∆φ ∼ 0 wide in ∆η is called the ridge,
while the structure at ∆φ ∼ π is called the shoulders [76, 77, 78, 79]. The
explanation of these phenomena can be found in the flow-harmonics studies
[80, 81, 82, 83, 84, 85, 73, 74]. Recently the ridge structures were also found in
pp-collisions at LHC [86].
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Figure 1.17: Two-particle correlations for pp ( 200 GeV) and AuAu ( 200 GeV) collisions at
RHIC [11].

The flow harmonics vn can be measured from two or many particle corre-
lations. The simplest method in order to extract the flow coefficients vn is
the two-particle correlations method. The measured anisotropy from the two-
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particle azimuthal distribution reads

dNpairs

d∆φ
∝

(
1 +

∞∑
n=1

2Vn∆(pat , p
b
t) cos (n∆φ)

)
, (1.18)

where a pair of particles is correlated. The relative azimuthal angle is ∆φ =
φa − φb and the pseudorapidity is ∆η = ηa − ηb [78]. Thus, the two-particle
correlations denoted as Vn∆ can be represented as

Vn∆ ≡ 〈cos [n∆φ]〉 . (1.19)

This value Vn∆ can be measured as a function of pt for both particles a and b.
If the anisotropy is driven by the collective motion, the Vn∆ should factorize

into the product of two single-particle correlation [87].

Vn∆ = vn(p
a
t )vn(p

b
t) . (1.20)

In the two-particle correlation method, the left hand side of eq.(1.20) repre-
sents an N × N symmetric matrix which can be generally fitted by the right
hand side of the equation with the N parameters vn where N is the number of
pt bins [14].

The azimuthal correlations Vn∆ which factorizes as (1.20) is called "flow"
correlation. The two-particle correlation usually has a contribution called "non-
flow" which breaks this factorization. Thus, the two-particle correlation with
the non-flow contribution reads

Vn∆ = vn(p
a
t )vn(p

b
t) + δn . (1.21)

The non-flow contribution leads to fluctuation of the magnitude and the direc-
tion of the anisotropic flow at fixed centrality, from one event to another. The
equation (1.21) can also be used in the two-particle correlation method with
an additional parameter taken into account. This method will be used in our
calculations in the Chapter 2.

Other methods

The flow can be also measured by other methods. One of them is the multi-
particle correlations method described in ref. [88]. The advantage of higher
order cumulants is that one can separate the so-called "flow" from the "non-
flow" correlations that will be discussed in the next section. In this thesis we will
mainly focus on the two-particle correlation method and therefore we will not
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detail other methods such as: Lee-Yang Zeros, q-distributions, Bessel, Fourier,
for which one can find more details in ref. [38] and therein.

1.4 Initial conditions

In order to make a study of the initial state, one has to model all the evolution of
the quark-gluon plasma from the initial stage to the freeze-out. By comparing
the model results with the experimental data, one could draw conclusions about
the initial state.

The first step of any hydrodynamic modeling is to specify initial conditions.
Since we work with ultra-relativistic hydrodynamics, we need the energy-density
profile as an input for the hydrodynamic equations.

For a long time smooth and symmetric profile was used in hydro simulation,
showing quite reasonable results. Only recently it was realized that due to the
fluctuations existing in initial state the geometry of initial profile is not smooth
and symmetric, and changes from one event to another, this statement gave life
to numerous models of initial state, taking into account initial fluctuations [89,
90, 73] .

Here we are going to speak about two main types of models of initial condi-
tions: The Glauber type of models and the QCD-inspired type of models. Typ-
ically these models are using the Monte Carlo approach. As it was shown [43],
both types of models give a reasonable description of the spectra but they give
different predictions for initial spatial eccentricity which leads to different val-
ues of the differential flow. We discuss here the main features of each type of
models.

1.4.1 Glauber model

The Glauber model [91, 92, 93] is one of the oldest models of initial state. In this
thesis, we use two implementations of the Glauber model: the optical Glauber
model used in our calculations, and the Monte Carlo variation of the Glauber
model [93] called PHOBOS Monte Carlo model [94], tested in the Chapter 4.

In the optical Glauber model, densities of participants and binary collisions
are calculated directly from the probability distribution as one can see from
eqs.(1.25), (1.26).

In the Glauber model the nuclei can be described by Woods-Saxon density
distribution

ρA(x) =
ρ0

1 + exp[(|x| − r0)/a]
(1.22)
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where we take A=208, r0 = 6.56 fm and a = 0.45 fm for the lead nucleus. The
value of ρ0 is chosen in such a way that

A =

∫
d3x ρA(x) . (1.23)

We define the nuclear thickness function as

TA(x) =

∫ ∞
−∞

dz ρA(x) . (1.24)

The density of nucleons participating in the collision npart reads

npart(x, y, b) = TA

(
x+

b

2
, y

)1−

(
1−

σ TA
(
x− b

2 , y
)

A

)A


+TA

(
x− b

2
, y

)1−

(
1−

σ TA
(
x+ b

2 , y
)

A

)A
 . (1.25)

The density of binary collisions ncoll reads

ncoll(x, y, b) = σ TA

(
x+

b

2
, y

)
TA

(
x− b

2
, y

)
(1.26)

where b is the impact parameter and σ is the nucleon-nucleon cross section. For
Pb-Pb collisions we take the value σ = 67.7 mb at

√
s = 2.76 TeV per nucleon

pair.

The total number of participating nucleons

Npart(b) =

∫
npart(x, y, b)dxdy (1.27)

is used to characterize the centrality class of the collision.

The total number of binary collisions is

Ncoll(b) =

∫
ncoll(x, y, b)dxdy . (1.28)

As an initial condition for the energy density, the following parametrization
is used

ε(τ = τ0, x, y, b) = Const ncoll(x, y, b) (1.29)

which gives a good description of the multiplicity distribution of the experimen-
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tal data. The constant is chosen in such a way that at zero impact parameter
the energy density ε(τ0, 0, 0, 0) corresponds to a temperature Ti, defined from
the equation of state. Ti is used as a free parameter which is tuned during the
calculations in such a way that the final value of the multiplicity corresponds
to the experimental value.

In some particular cases, we need to have more precise results in our calcu-
lations. In this case we use the parametrization for entropy density, combining
both density of participant nucleons and the density of binary collisions

s(τ = τ0, x, y, b) = Anpart(x, y, b) +B ncoll(x, y, b) . (1.30)

The coefficients A and B are corresponding to the values used by the collabo-
rations.

In the Monte Carlo version of the Glauber model, the positions of nucleons
within nuclei are sampled according to the Monte Carlo method and their po-
sitions in the transverse plane are used to decide if there is interaction between
the nucleons. In this way the total number of participants Npart and the total
number of binary collisions Ncoll can be calculated. Typically each nucleon is
modeled as a Gaussian source so that the resulting energy density is the sum
of Gaussians. The comparison of the initial energy density profiles from Monte
Carlo and Optical Glauber models is represented in the fig. 1.18.

Figure 1.18: Monte Carlo Glauber (left) [12, 13] and Optical Glauber (right) initial energy
density profile.

Recently the Glauber approach has been developed further by taking into
account additional fluctuations [95] but we do not consider such models in this
thesis.
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1.4.2 Color-Glass-Condensate

The Color-Glass-Condensate (CGC) model belongs to the large class of the
QCD-inspired models. This model is based on the idea of the gluon satura-
tion at high energy. “Color” refers to a type of the charges carried by gluons.
“Glass” refers to a material that is disordered and acts like a solid on short time
scales but as a liquid on long time scales. Indeed, during heavy-ion collisions,
the gluons themselves are disordered and do not change their positions rapidly
because of the Lorentz time dilation. “Condensate” means that the density of
gluons is very high. These gluons can be packed until their phase space density
is so high that interactions prevent higher gluon occupation. With increasing
density, the gluons are forced to occupy higher momenta where the coupling
becomes weak. The density saturates at dN/d2ptd

2rt ∼ 1/αs � 1 [96]. Within
this QCD inspired model, the energy density is proportional to the density of
gluons.

The oldest CGC model of initial state is KLN (Kharzeev-Levin-Nardi) model
which is using kT -factorization [97, 98].

Different implementations of this and other QCD-inspired models will be
discussed in the Chapter 4.

1.5 Hydro approach

The hydrodynamic approach proposed historically in the 50’s by Landau and
continued by Bjorken, gives a reasonable description of the matter created in the
heavy-ion experiments. Today’s hydrodynamic calculations continue the gen-
eral concepts proposed by Landau and Bjorken, including the recent knowledge
about the initial conditions, transverse expansion and the modern equation of
state from the lattice QCD.

1.5.1 Hydrodynamic models

Nowadays, the hydrodynamic approach is the most popular and has been in-
tensively studied in the last decade.

There are several types of the hydrodynamic codes that exist in order to
simulate the heavy-ion collisions. Usually it is 2+1D and 3+1D which can be
ideal hydrodynamics codes, or the codes taking into account different transport
phenomena, such as viscosity etc.

Currently, a major role in this area is played by the codes taking into account
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the viscosity and fluctuations. For our purposes we use a 2+1D viscous hydrody-
namic code created by U. and P. Romatschke and modified by M. Luzum [99].
The code has been used for several years and provides a good description of
experimental data [43].

1.5.2 Event-by-event hydrodynamic versus single-shot hydrodynamic

Until recently, event-by-event fluctuations were taken into account only as an
average of an ensemble of events [100, 101, 102, 103, 104, 89]. This type of
hydrodynamics is called single-shot hydrodynamics. In these calculations the
initial density profile is smooth and propagated hydrodynamically. In the single-
shot hydrodynamic only average values of flow components can be computed.
Another type of hydrodynamics got the name event-by-event hydrodynamics.
In this case flow fluctuations can be computed from event to event [105, 106,
107, 108, 13, 109, 110, 111, 9, 112, 113, 114].

In the experiment, heavy-ion collisions take place event by event, in theory
often hydrodynamic evolution is not computed for each event, but approxi-
mately by generating a single smooth initial density distribution, from where
the mean values of flow coefficients are extracted, corresponding to mean par-
ticipant eccentricities. This value is not measured in experiment. What can
be measured is the average of an ensemble of events. Though the single-shot
hydrodynamic calculations give a good qualitative picture and agreement with
data, there is a difference of a few % for peripheral collisions in results for flow
components and eccentricities [18].

1.5.3 Hydro evolution

According to Landau [115], the dynamic state of a liquid is determined by the
fluid velocity v = v(x, y, z, t) and by any two thermodynamic properties such
as pressure p(x,y,z,t) and fluid density ρ(x, y, z, t). Indeed, the equation of
state relates the thermodynamic quantities so that the definition of v, p and ρ
is enough to uniquely define the dynamic state of liquid. These quantities are
connected by the continuity equation

∂ρ

∂t
+ div j = 0, (1.31)

where j = ρv is the current density.
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The equation of motion, or Euler equation is defined as

∂v

∂t
+ (v∂)v = −1

ρ
grad(p) . (1.32)

By adjusting the equation of state p = p(ρ), we get a complete system of
equations for the ideal liquid.

In the relativistic case the system is not anymore described by the mass
density ρ(x, y, z, t) because it ignores kinetic energy which becomes important
for high velocities. In the relativistic case, the description is made through the
energy density ε(x, y, z, t) which transforms back to the mass density in non-
relativistic limit. In the same way the velocity v(x, y, z, t) has to be replaced
by 4-velocity uµ which is defined as2

u0 =
1√

1− v2
, (1.33)

u =
v√

1− v2
, (1.34)

which satisfies
u2 = uµuµ =

(
u0
)2 − u2 = 1. (1.35)

In order to get the relativistic equations [116, 117], we work with the energy-
momentum tensor T µν where T 00 = T00 is the energy density, T 0α = −T0α is
the density of the momentum component, T αβ = Tαβ is the pressure tensor of
the flux along the α axis of the momentum component and T α0 is the energy
flux along the α axis. In the local rest frame the tensor of energy-momentum is

T µν =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (1.36)

For an arbitrary fluid velocity the energy-momentum tensor can be written as

T µν = (ε+ P )uµuν − P gµν , (1.37)

where gµν = diag(1,−1,−1,−1) is the Minkowski metric tensor.
The conservation of energy and momentum reads

∂µT
µν = 0 . (1.38)

2The natural units c = ~ = 1 are used.
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In order to generalize the continuity equation to the relativistic case, we define
a baryon density n in the rest frame such that in the moving frame the density
reads nu0. We replace then the density ρ by nu0 and use the equation u = u0v.
Thus, we obtain the equation of conservation of the baryon number

∂µ (nuµ) = 0 , (1.39)

where nuµ is the 4-vector, nu0 is the baryon density and nu is the baryon flux,
and we denote j = nu. Eqs. (1.37), (1.38) and (1.39) adjusted by the equation
of state of the fluid, provide the full system of equations of ideal relativistic
hydrodynamics.

Viscous hydrodynamics

For a non-ideal fluid where dissipation takes place, the equation of motion is
generalized by the Navier-Stokes equation [117, 43]

ρ

(
∂vi
∂t

+ vk
δvi
δxk

)
= − ∂p

∂xi
+

∂

∂xk

(
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

))
+
∂

∂xi

(
ζ
∂vl
∂xl

)
,

(1.40)
where the dissipation part is usually written in terms of the viscous stress tensor

Πki = −η
(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

)
− ζδik

∂vl
∂xl

, (1.41)

where i=1,2,3, mean space directions, η is the shear viscosity and ζ is the bulk
viscosity.

The energy-momentum tensor for a non-ideal fluid reads

T µν = T µν0 + Πµν (1.42)

where T µν0 is the energy-momentum tensor for an ideal liquid while Πµν is the
viscous stress tensor that contains the dissipation effects.

Considering a system at zero chemical potential, the conservation of energy-
momentum reads

uµT
µν = εuν , uµΠµν = 0 . (1.43)

For a relativistic viscous fluid dynamics then the continuity equation reads

Dε+ (ε+ p) ∂µu
µ − Πµν∇(µuν) = 0 , (1.44)
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where [43]

∇(µuν) =
1

2

(
∇

µ
uν +∇

ν
uµ
)
, (1.45)

and the relativistic Navier-Stokes equation reads

(ε+ p)Duα −∇αp+ ∆α
ν∂µΠµν = 0 , (1.46)

with D ≡ uαDα and ∇µ ≡ ∆µαDα where we denote the covariant derivative
Dα = ∂

∂xα .
The viscous tensor can be represented as a sum of a traceless term πµν and

the remainder Π
Πµν = πµν + ∆µνΠ , (1.47)

where
πµν = η∇<µuν> , Π = ζ∇αu

α , (1.48)

with η the shear viscosity and ζ the bulk viscosity, where [43]

∇<µuν> = 2∇(µuν) −
2

3
δµν∇αu

α . (1.49)

Numerical solution

Navier-Stokes equations are difficult to solve numerically [43, 118]. In order
to overcome the numerical instabilities, higher gradient terms are added to the
shear and bulk viscosity terms as following

πµν = ησµν − ητπ
(
<Dσµν> +

4

3
(∇ · u)σµν

)
− λ1

2
σ<µλ σν>λ +

λ2

2
σ<µλ wν>λ − λ3

2
ω<µλ ων>λ

− ητ ∗π
4

3
(∇ · u)σµν +

λ4

2
∇<µ ln s∇ν> ln s (1.50)

Π = ζ (∇ · u)− ζτΠD (∇ · u)− ξ1σ
µνσµν − ξ2 (∇ · u)2

− ξ3ω
µνωµν + ξ4∇µ ln s∇µ ln s . (1.51)

In eqs. (1.50) and (1.51), the entropy density is denoted s = (ε + p)/T in zero
chemical potential. In these equations we consider a flat space. In addition to
the first-order transport coefficients, η and ζ, there are 11 second-order transport
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coefficients introduced: τπ,τ ∗π , λ1, λ2, λ3, λ4, τΠ, ξ1, ξ2, ξ3 and ξ4. We denote
σµν = ∇<µuν> and the fluid vorticity is defined ωµν = −∇[µuν], where the
brackets are defined as

A[µBν] =
1

2
(AµBν − AνBµ) . (1.52)

The transport coefficients should be in principle calculated from the under-
lying theory (QCD) which is generally not possible. These coefficients are thus
considered as free parameters. In order to reduce the number of parameters, the
positive divergence of the entropy can be required to provide two constraints
[119] leaving only 9 free parameters.

The ratio ζ/s, bulk viscosity over entropy density is generally small in com-
parison to the shear viscosity over entropy density η/s [120, 121, 122]. Thus
we put ζ = 0, and consider conformal fluids. Under these assumptions, one
gets [123]:

Πµν = πµν = ησµν − ητπ
[
〈Dσµν〉 +

4

3
(∇ · u)σµν

]
− λ1

2
σ
〈µ
λ σ

ν〈λ +
λ2

2
σ
〈µ
λ ω

ν〉λ − λ3

2
ω
〈µ
λ ω

ν〉λ . (1.53)

It is valid to replace σµν → πµν/η = Πµν/η, in order to solve it numerically:

Πµν = η∇<µuν> − τπ
(
∇µ
α∇ν

βDΠαβ +
4

3
Πµν (∇αu

α)

)
− λ1

2η2
Π<µ
λ Πν>λ +

λ2

2η
Π<µ
λ ων>λ − λ3

2
ω<µλ ω<µλ ων>λ. (1.54)

Note, that only 4 second-order coefficients left: τπ, λ1, λ2, λ3.
The hydrodynamic code that we use for the calculations presented in this

thesis is based on eq. (1.54). It was found that λ1, λ2, λ3 do not affect the
boost-invariant hydrodynamic evolution in heavy-ion collision systems [124] so
their values were set to zero. The value of relaxation time τπ is expected to
lie in the range τπ

η (ε + p) = 2.6 − 6 [124] and is set to τπ
η (ε + p) = 4 in our

calculations [99].

1.6 Freeze-out

During its expansion the matter created in a heavy-ion collision at some stage
reaches the point where hadrons almost stop to interact. This stage is called
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thermal or kinetic freeze-out, since after this point the momenta of particles
does not change anymore (freeze). It is a phase transition from the strongly
coupled matter to a weakly coupled one. The thermal freeze-out takes place
when the collision time τcoll becomes larger than the expansion time τexp. It is
common to say that the thermal freeze-out takes place when the mean free path
of particles is of the same order of size as the system.

The freeze-out process is complicated, for example particles with different
cross sections may freeze-out at a different time and similarly different types of
processes may be turned off at different times.

The thermal freeze-out happens after the so-called chemical freeze-out. As
the system expands and cools down, the inelastic collisions are decreasing and
stop at some point, this point is called chemical freeze-out. The temperature of
chemical freeze-out is higher than the temperature of thermal freeze-out Tch >
Tth. During the time between chemical and thermal freeze-out, elastic processes
and strong decays of heavier resonances are taking place.

In practice the most popular concept is to use fixed final temperature Tf
for the thermal freeze-out. It means that all processes in the fluid element
stop when the system reaches the temperature Tf during cooling. At the point
T = Tf we have a 3D hypersurface in the Minkowski space, where due to
hydrodynamic calculations we know the values of hydrodynamic parameters
and flow on this hypersurface. After this information is obtained, it is possible
to calculate different observables and compare them with existing data. The
formalism is based on the utilization of Cooper-Frye formula [37].

The number of particles that decouple on the freeze-out hyperface Σ is

N =

∫
d3p

Ep

∫
dΣµ(x)pµf(x, p), (1.55)

where f(x, p) is the equilibrium distribution.
When system is close to equilibrium, it is possible to describe it with the

equilibrium function of Bose or Fermi distribution with an additional viscous
correction which must vanish in the limit of ideal hydrodynamics

f(p) = f0 + δf(p). (1.56)

The correction δf(p) depends on the interactions between the particles [125].
There are several types of ansatzs used, the most traditional way is the quadratic
ansatz, δf(p) ∝ p2 [126], however, a linear ansatz δf(p) ∝ p is also often used
and gives a good agreement with the data [127].
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1.6.1 Other models

Other models exist in order to describe heavy-ion collisions. The so-called hybrid
models give a good description of the bulk properties of the quark-gluon plasma.
These models are based on hydrodynamics for the early stage and on transport
theory for the late stages where the matter is out of equilibrium [112]. Here is
an non-exhaustive list of other different approaches:

- transport theory: AMPT [128],
- hybrid models: UrQMD [129],
- thermal models: HRGM [130],
- string decay models: HIJING [131], RQMD [132], HIJET [133], MCMHA [134].
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Chapter 2

Directed flow measurements

In hydrodynamics the anisotropic flow is defined through the Fourier decompo-
sition

vne
inΨn = 〈einφ〉 , (2.1)

where vn is the magnitude of anisotropic flow [135] and Ψn is the reference
angle in harmonic n. The average is taken over the distribution of particles.
The coefficient v1 is called the directed flow.

The theoretical description of the directed flow was given in the Chapter 1.
Thus, it was discussed that due to the fluctuations the directed flow has the
component which is even in rapidity, see eq. (1.16). This component was not
measured yet by 2012. In this Chapter, we present the first measurements of
the veven1 at the LHC. The results of this Chapter were published in ref. [136].

2.1 Two-particle correlations

In order to measure veven1 component of the directed flow, the measurements
should be done in such a way that it would be average over rapidity in order to
make the odd component vodd1 vanishing. The symmetry of the detector ALICE
allows such measurements. veven1 can thus be measured from ALICE data.

In the standard picture of the heavy-ion collisions, the created matter ex-
pands and breaks into particles. In hydrodynamics these particles are emitted
independently in each event with an azimuthal distribution which fluctuates
from one event to another. The two-particle correlation factorizes into the
product of two single-particle distributions vn

Vn∆(ptt, p
a
t ) = vn(p

t
t)vn(p

a
t ) , (2.2)

here we follow a standard practice in correlation studies [14], where one particle

31
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pa,tt (N) pat (1) pat (2) pat (3) ...
ptt(1) Vn∆(11) ... ... ...
ptt(2) Vn∆(21) Vn∆(22) ... ...
ptt(3) Vn∆(31) Vn∆(32) Vn∆(33) ...
... ... ... ... ...

Table 2.1: The N ×N symmetric matrix Vn∆.

is referred to as "trigger" particle and labeled with t and another particle is
referred to as "associated" particle denoted as a. These particles can be taken
from different pt bins. Currently, the flow is the only known mechanism that
produces a factorized correlation at low pt.

The factorization (2.2) was studied at the LHC in Pb-Pb collisions [14, 137].
The values of Vn∆ are measured for N pt bins for the trigger and the associated
particles. This data are presented in a N ×N symmetric matrix as illustrated
in Table. 2.1.

The ALICE collaboration has tested the factorization by fitting the matrix
Vn∆ by the expression (2.2) with the vn as N fit parameters. In the figures 2.1
we see the values of Vn∆ and the values of the ratios Vn∆/fit where “fit” is
vn(p

t
t)vn(p

a
t ). This ratio is supposed to be close to 1 if the factorization works

well. All the values far from 1 means that the factorization breaks and can
be considered as a non-flow contribution, see Chapter 1. As it was shown by
ALICE, the factorization works well for the low pt range for n = 2, 3, 4, 5,
but breaks for n = 1 even at low pt. In the high pt range the difference can
be explained by the presence of jets or by flow fluctuations [138, 139]. The
explanation of the results for n = 1 can be found in the fact that the first flow
harmonic is affected by the additional long-range term due to the momentum
conservation [85]. The study of the momentum conservation contribution will
be discussed in the next Section.

2.2 Momentum conservation

In this section we rederive the contribution of momentum conservation to V1∆ [85].
The two-particle distribution can be written as the sum of a factorized prod-

uct of single particle distributions and the two-particle correlation function in
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Figure 2.1: Fit results from ALICE collaboration [14]: the measured Vn∆ coefficients plotted
on pt axis (upper plots) and the ratio of the data to the fit Vn∆/fit (lower plots).

the following way:

dNjk

d3p1d3p2
=
dNj

d3p1

dNk

d3p2
(1 + Cjk(p1,p2)) , (2.3)
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where Cjk(p1,p2) is the connected two-particle correlation function responsible
for the non-flow contribution. We denote p1, ...pN the momenta of N particles
emitted in a heavy ion collision. We are interested in azimuthal correlations, so
we consider only the transverse momenta pt1, ...ptN . Global momentum conser-
vation yields back-to-back correlations between the outgoing particles. Follow-
ing ref. [85] we compute the momentum conservation contribution C

∑
pt

jk (p1,p2)
to the Cjk(p1,p2) function. The transverse momentum conservation reads:

pt1 + ...+ ptN = 0 . (2.4)

We want to calculate two-particle distribution of p1,p2, namely f(p1,p2). If
momentum conservation is the only source of correlations then the distribution
of p1, ...pN is defined as

fc(p1, ...,pk) =

(∏k
i=1 f(pi)

) ∫
δ2(pt1 + ...+ ptN)

∏N
i=k+1(f(pi)d

3pi)∫
δ2(pt1 + ...+ ptN)

∏N
i=1(f(pi)d3pi)

, (2.5)

where k < N and f(p) is the single particle normalized transverse momentum
distribution. The average transverse momentum is assumed to be zero:

〈pt〉 ≡
∫

ptf(p)d3p = 0 . (2.6)

The statement (2.6) is in agreement with experimental results [8].

The transverse momentum distribution is assumed isotropic in the trans-
verse plane because the effect of azimuthal asymmetries is of the order of a few
percent. According to the central limit theorem, the sum of M uncorrelated
momenta

Pt =
M∑
i=1

pti (2.7)

has a gaussian distribution if M is large:

FM(Pt) =

∫
δ2

(
−Pt +

M∑
i=1

pti

)
M∏
i=1

(
f (pi) d

3pi
)

=
1

πσ2
exp

(
−Pt

2

σ2

)
,

(2.8)
where the square of the width reads

σ2 =
〈
Pt

2
〉

= M
〈
p2
t

〉
(2.9)
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Taking into account eqs. (2.8) and (2.9) the distribution (2.5) can be written as

fc(p1, ...,pk) =

(∏k
i=1 f(pi)

) ∫
δ2
(∑k

i=1 pti +
∑N

i=k+1 pti

)∏N
i=k+1

(
f (pi) d

3pi
)

∫
δ2
(

0 +
∑N

i=1 pti

)∏N
i=1 (f (pi) d3pi)

=

(
k∏
i=1

f(pi)

)
FN−k

(
−
∑k

i=1 pti

)
FN (0)

=

(
k∏
i=1

f(pi)

)
σ2
N

σ2
N−k

exp

(
−(
∑k

i=1 pti)
2

σ2
N−k

)

=

(
k∏
i=1

f(pi)

)
N

N − k
exp

(
− (

∑k
i=1 pti)

2

(N − k) 〈pt2〉

)
. (2.10)

Now the expressions for the cases k = 1 and k = 2 can be obtained.
In the case k = 1, expanding the expression to the leading order 1/N we get

fc(p) = f(p)
N

N − 1
exp

(
− pt

2

(N − 1) 〈pt2〉

)
∼ f(p)

(
1 +

1

N
− pt

2

N 〈p2
t 〉

)
.

(2.11)
For the case with two particles the distribution (2.10) reads as

fc(p1,p2) = f(p1)f(p2)
N

N − 2
exp

(
− (pt

2
1 + pt

2
2)

(N − 2) 〈pt2〉

)
∼ f(p1)f(p2)

(
1 +

2

N
− (pt

2
1 + pt

2
2)

N 〈p2
t 〉

)
. (2.12)

According to (2.3), the two-particle correlation due to momentum conservation
has a form:

C
∑
pt(p1,p2) =

fc(p1,p2)

fc(p1)fc(p2)
− 1 = −2pt1pt2

N 〈p2
t 〉
. (2.13)

The first Fourier coefficient V1∆(ptt, p
a
t ) = 〈cos ∆φ〉 can be written in a

way (2.2):
〈cos ∆φ〉 = v1(p

t
t)v1(p

a
t ) + 〈cos ∆φ〉corr , (2.14)

where the correction 〈cos ∆φ〉corr due to momentum conservation (2.13) reads

〈cos ∆φ〉corr = − pttp
a
t

N 〈p2
t 〉
. (2.15)
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Thus (2.2) can be rewritten in the final form with the additional non-flow term:

V1∆(ptt, p
a
t ) = v1(p

t
t)v1(p

a
t )− kpttpat , (2.16)

where k is the coefficient of momentum conservation [140]. Note that the non-
flow correlation also factorizes in this particular case, but the sum does not.

Following (2.15), coefficient k can be calculated as

k =
1

N 〈p2
t 〉
. (2.17)

This coefficient will be estimated in two different ways in the following section.

2.3 Extraction of directed flow from two-particle correla-
tions

In order to extract v1 from the values of two-particle correlations measured by
ALICE collaboration, we use the formula (2.16). The left side of this equation
represents the N × N matrix which we fit with the right part of the equation
using N + 1 parameter: N values of v1(pt) and one additional parameter k.
Note, that the fit of ALICE collaboration

V1∆(ptt, p
a
t ) = v1(p

t
t)v1(p

a
t ) (2.18)

had N parameters instead of N + 1. Table 2.2 compares the quality of the χ2

fit to V1∆ using the eqs. (2.18) and (2.16) respectively. One more additional
parameter k noticeably improve the fit for all the centralities. It was checked
that the values of the fit parameters v1 and k depend little on the chosen pt
window. However if we include higher pt values, the quality of the fit gets
worse [14]. The entire range of valuesis included as a systematic error bar,
this uncertainty is obtained by varying the lower value of pt cutoff between
0.25 − 0.75 GeV, and the upper cutoff in the range of 2.5 − 15 GeV. These
uncertainties are presented in the table 2.2. The same procedure was used also
later in order to estimate systematic uncertainties in the extracted values of v1.

The second way to extract the parameter k uses the theoretical definition
(2.17) which we rewrite in the following way:

k =
1

〈
∑

i p
2
t 〉
, (2.19)

where the sum runs over all particles emitted in one event, and angular brackets
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denote an average over events in the centrality class. In order to calculate the
momentum conservation coefficient, it is needed to know the total number of
particles. The problem is that experiments measure only charged particles and
only in a restricted phase-space window. Due to this fact, only rough estimation
could be done with the eq. (2.19). A computation of the number of particles
in the full pt range is needed. For this, the extrapolatation of the spectra
outside the pt acceptanceis required. In order to extrapolate the spectra the
analytic function in order to fit the spectra should be found. In order to fit the
preliminary identified particle pt spectra measured by ALICE collaboration at
midrapidity [15] we have tested 3 functions.
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Figure 2.2: The preliminary identified particle spectra measured by ALICE collaboration at
midrapidity [15], from left to right: pions, kaons, protons.

First, the following functions were tested:

d2N

dydpt
= A · pte−

√
p2t+m

2

T (2.20)

and
d2N

dydpt
= B · pt

(
1 +

pt
p0

)−n
, (2.21)

where A, B, p0 are fit parameters. Then, the fits were performed with Levy (or
Tsallis) fit functions [141]:

d2N

dydpt
= N0pt

(n− 1)(n− 2)

nC(nC +m(n− 2))

(
1 +

√
p2
t +m2 −m
nC

)−n
, (2.22)

where N0 = dN/dy, n and C are the parameters of Levy function and m is the
mass of particles used in the spectra: pions, kaons and protons.

The Levy formula gave better fit than other functions. This is in agreement
with ref. [142]. This function is now widely used by collaborations [141]. With
the Levy function fit, the spectra was extrapolated outside the pt acceptance of
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the detector. In order to calculate
〈
p2
t

〉
for each type of the particles we use

〈
p2
t

〉
=

∫
p2
t
d2N
dydpt

dpt∫
d2N
dydpt

dpt
. (2.23)

In order to extrapolate the spectra to all rapidities, we assume that pt spectra
are independent of rapidity. We use the total charged multiplicity N tot

ch from
the fig. 2.3 calculated by ALICE collaboration [143].

Figure 2.3: Total number of charged particles N tot
ch as a function of number of participants

Npart.

In order to take into account the neutral particles we assumed isospin sym-
metry and neglected the contribution of particles heavier than nucleons.

Knowing dN/dy as a fit parameter of the Levy function eq. (2.22) for each
type of the particles, calculating

〈
p2
t

〉
with eq. (2.23) and extracting the N tot

ch ,
we finally get

〈∑
p2
t

〉
= N tot

ch

3[
〈
p2
t

〉
dN/dy]π + 4[

〈
p2
t

〉
dN/dy]K + 4[

〈
p2
t

〉
dN/dy]p

2[dN/dy]π + 2[dN/dy]K + 2[dN/dy]p
, (2.24)

where the coefficients in the numerator mean total number of particles and in
the denominator mean the number of charged particles.

The resulting estimated value of k is shown in the last column of the table 2.2.
The fit results have the same order of magnitude as the estimated value and
they increase with the centrality procentage. However, the fit values of k are
increasing quicker than for estimated k. Unfortunately, we do not know the
reason of such behavior. The discrepancy in k has almost no effect on the
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Centrality χ2, Eq.(2.18) χ2, Eq.(2.16) kfit 〈
∑
p2
t 〉−1

0–10% 6 2.0 2.5+1.1
−0.3 6.2

10–20% 16 1.7 4.7+1.4
−0.4 8.9

20–30% 45 2.2 10.2+2.1
−0.5 13

30–40% 75 2.2 20.6+3.2
−1.6 21

40–50% 126 2.4 41.5+4.7
−3.0 35

Table 2.2: From left to right: χ2 per degree of freedom of the fit to the ALICE V1∆ (restricted
to pt < 4 GeV/c) using Eq. (2.18), and using Eq. (2.16); value of k from the fit; estimated
value of k from momentum conservation, both in units of 10−5(GeV/c)−2.

extracted directed flow values and this ambiguity was also included in the error
bar for the extracted v1 values which is shown in fig. 4.1.

The resulting extracted values of the directed flow are presented in the fig.
2.4. The v1 component is showing negative results at low pt unlike the v2 and v3

Figure 2.4: First measurement of v1 at the LHC.

components which are positive in all the pt range. This is explained by the condi-
tion that the net transverse momentum of the system is zero, i.e. 〈ptv1(pt)〉 = 0
which implies that low pt particles flow in the opposite direction to the high
pt particles. From the fig. 2.4 we can see the dependence of v1 on centrality,
showing larger values of v1 for more peripheral collisions. The v1 components
originates from the fluctuations, and the fluctuations are more important for
smaller systems, i.e. for more peripheral collisions. The magnitude of veven1

is several times more than the measured vodd1 magnitude which is denoted as
"odd" in fig. 2.6.

The resulting v1(pt) can be considered as a reliable measurement of directed
flow v1 for the LHC. These data were later confirmed by the ATLAS collabo-
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Figure 2.5: v1 at the LHC: ATLAS with two-particle correlations method [16].

Figure 2.6: v1 at ALICE with the spectators method [8].

ration [16] which also used the method of two-particle correlations in order to
extract the v1 values.

Later in 2013, another attempt to measure the veven1 was done by ALICE
collaboration [8]. They used the detector ZDC which registers the spectators.
If for ATLAS results the v1 component changes of sign at transverse momenta
around 1 GeV/c, for ALICE the cross-point is at 1.2-1.5 GeV/c. The magnitude
that was observed in this estimation was 40 times smaller than at ATLAS
and in our calculations, see fig. 2.6. The measurements of ALICE were done
with respect to the collision plane defined by the spectator nucleons ΨSP , see
fig. 1.10, while the measurements of ATLAS were done with respect to the
collision plane defined by participants Ψ

(1)
PP . This difference in the magnitudes
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of measured directed flow gives 〈cos
(

Ψ
(1)
PP −ΨSP

)
〉 = v1{Ψ(1)

PP}v1{ΨSP} << 1,
i.e. that fluctuating participant and spectator collision symmetry planes are
weakly correlated.
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Chapter 3

First viscous hydrodynamic modeling of
the directed flow v1

Relativistic viscous hydrodynamics has been a successful theory for the predic-
tions of flow coefficients vn for n = 2, 3, 4 [13]. Here I present the first viscous
hydro calculations of directed flow v1.

By definition in hydrodynamics v1 is

v1e
iΨ1 ≡ 〈eiφ〉 , (3.1)

where Ψ1 is the corresponding event-plane angle and the average is taken over
the momentum distribution [144]. At midrapidity for AA collisions the symme-
try φ → φ + π takes place, so odd flow harmonics like v1 and v3 are naturally
zero. These odd flow components appear due to initial geometry fluctuations.
In order to study the initial states we perform hydrodynamic simulations of the
directed flow v1 which can be compared to experimental data on v1, extracted
in the previous Chapter. These calculations could also show the dependence of
directed flow on viscosity which is unknown.

The results of this Chapter were published in ref. [136].

3.1 Hydrodynamic modeling of directed flow at LHC

The hydrodynamic modeling usually has 3 main steps: one put energy density
profile as initial conditions, then one evaluates the system with hydrodynamics
and finally one converts the fluid into particles at freeze-out.

In event-by-event ideal hydro calculations v1 was found with good approxi-
mation to be proportional [61] to the dipole asymmetry of the system ε1

v1 ∝ ε1 , (3.2)

43
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where the dipole asymmetry ε1 is defined as [60]:

ε1 ≡
|{r3eiφ}|

r3
, (3.3)

the average is taken over initial energy density after recentering the coordinate
system, {reiφ} = 0.

We use 2+1D single-shot viscous hydrodynamic calculations with a smooth
initial profile ε(r, φ). This profile is taken from the optical Glauber model [93]
and is symmetric with respect to the reaction plane, see fig. 1.18. With such
profile the value of ε1 and accordingly the value of v1 is zero due to the symmetry.
In order to create the dipole asymmetry we deform the profile in the following
way:

ε(r, φ)→ ε
(
r
√

1 + δ cos (φ− Φ1), φ
)
, (3.4)

where δ is a small parameter and ε1 ∝ δ for δ << 1, Φ1 is the dipole asymmetry
angle. For the central collisions the direction of v1 is Φ1, but for the non-central
collisions it is not strictly true because of additional non-linear correlations of
v1 with v2 and v3 [145]. Our calculation is averaged over Φ1. This deformation
is illustrated in fig. 3.1.

Figure 3.1: Deformed initial energy-density profile.

At the next step of modeling we run the hydrodynamic evolution equations
corresponding to eq. (1.54). This hydrodynamic evolution is stopped when
the system reaches the freeze-out temperature Tfr and the fluid is converted
into particles. The resonances are taken into account in this calculation in
the following way: the decays of unstable particles are calculated from the
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particle spectra obtained after freeze-out calculation. The modified program
AZHYDRO [146] is used to perform these calculations.

The resulting hydrodynamic calculations of v1/ε1 with different parameters
of viscosity are presented in the fig.3.2. We choose to present the ratio v1/ε1

and not v1 in order to be independent on the initial state model. A slight
dependence on the models was pointed out in ref. [18], but we ignore it in our
calculations.
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Figure 3.2: v1/ε1 vs pt for central collisions.

Note, that the dependence of v1 on pt has the same behavior as for experi-
mental values extracted in the Chapter 2, in hydrodynamic calculations the net
transverse momentum of the system is set to zero.

In our calculations we used the ratio viscosity over entropy η/s as a free
parameter and varied it as η/s = 0, 0.08, 0.16, 0.24. Dependence of v1/ε1 on
viscosity in the fig.3.2 shows that with higher values of viscosity we have less
flow. This effect can be explained due to the fact that flow is created by the
interactions. If there were no interactions there would be no flow. The viscos-
ity is approximately inversely proportional to the cross-section, so with larger
viscosity one has smaller interactions which leads to less flow.

The flow harmonics vn are expected to have an increasing sensitivity to vis-
cosity because smaller systems are more sensitive to the viscous effects. Indeed,
we find that v1 is less sensitive to viscosity than v2 [43] and other higher har-
monics [13, 74]. This effect is illustrated in the fig. 3.3. In this figure we see
the ratio of the flow coefficient calculated with the value of viscosity η/s = 0.08
to the flow coefficient calculated with η/s = 0.24. For n=1 this ratio is close
to 1 which demonstrates that directed flow is slightly dependent on the viscos-
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Figure 3.3: vn(η/s = 0.08)/vn(η/s = 0.24), comparison of the ratio values of vn with different
viscosities, n = 1, 2.

ity. The ratio for n = 2 is closer to 1.5, so the elliptic flow v2 shows stronger
dependence on viscosity than directed flow.

This insensitivity to viscosity combined with the approximate proportionality
v1 ∝ ε1, provides a unique opportunity to place a direct constraint on the dipole
asymmetry of the early-time stage and to exclude some models of initial state.
Such constraints will be done in the next Chapter.

3.2 Viscous hydrodynamic predictions for directed flow
at RHIC

In this section we show predictions for the directed flow v1 for RHIC energies.
In order to compare hydrodynamic data at the LHC with the experimental

values we write

vLHC1 =

(
v1

ε1

)LHC
hydro

εbest1 . (3.5)

In the left-hand side, vLHC1 denotes the directed flow extracted from data as
shown in Chapter 2. In the right-hand side, the values (v1/ε1)

LHC
hydro are viscous

hydrodynamic calculations. The εbest1 is the parameter which we tune in order
to get the best fit to the data. We assume little change in the average dipole
asymmetry in a centrality bin. The value of εbest1 at LHC is obtained by taking
the best fit to the experimental v1 for pt < 1.5 GeV/c, which is the range where
hydrodynamics agrees best with data [144]. The best value εbest1 calculated for
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Figure 3.4: v1(pt), hydrodynamic predictions (curve) for RHIC, compared with measured
experimental data (points). Data are taken from Y.Pandit proceedings, QM2012 [17].

LHC can be applied at RHIC energies, as ε1 change little with the energy of
collisions.

Then
(
v1
ε1

)
hydro

is calculated for Au-Au collisions with RHIC energies. Our

calculations use η/s = 0.16 both at LHC and at RHIC, but the extrapolation
from LHC to RHIC are almost independent of η/s [124]. Thus, the predicted
values of v1 at RHIC are:

vRHIC1 =

(
v1

ε1

)RHIC
hydro

εLHC1 . (3.6)

Later our data were compared with experimental data from RHIC, as it is
shown on Fig. 3.4 [17]. Our result was found to be well consistent with the data
at low transverse momentum and in central collisions.
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Chapter 4

Constraining models of initial conditions
using anisotropic flow data

One of the most important topics in heavy-ion physics is the understanding of
the initial state. In hydrodynamics, initial conditions means the initial energy-
density profile at thermalization time t0 [147]. This profile is not smooth and
fluctuates due to the wave-functions of the incoming nuclei. The magnitude of
these fluctuations is still unconstrained by the data.

Many models exist in order to describe the initial state. These models predict
different values for the transport coefficients in order to match the data. In
particular, by tuning the value of η/s [148], the experimental data can be fitted
with one model or another [43]. Thus, it is important to understand which
of these models are physically reliable. We propose a systematic approach for
constraining models of initial conditions using the anisotropic flow data.

In this Chapter, we present two different methods to constrain models of
initial state. The first of them is using the data on directed flow v1, these data
are rms values. We compare them to v1/ε1 values from hydrodynamics with
different values of viscosity and extract the allowed range on rms values of ε1

depending on centrality. Computing ε1 in different Monte Carlo models, one
could compare them with the allowed range. In the second method we use the
combination of the experimental data on v2 and v3, these data are also rms
values. We compare experimental values with hydrodynamic calculations of
vn/εn, n = 2, 3. By varying the free parameters in hydrodynamic calculations,
we extract the allowed region on the plane (rms ε2, rms ε3). Computation of
(rms ε2, rms ε3) values in Monte Carlo models allows to make a comparison
with the extracted range and constrain some of the models.

The results of this Chapter were published in refs. [136, 149, 150].
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4.1 Linear response

One of the most remarkable features of the first three flow harmonics vn is that
hydrodynamic response to the initial state is dominated by the linear response.
Thus, it was shown that vn is with a good approximation proportional [151] to
the initial eccentricity εn

vn ∝ εn , (4.1)

for n < 4. Higher flow harmonics have additional non-linear terms and will be
discussed in the Chapter 5.

For the directed flow the dipole asymmetry ε1 of the initial system is defined
as

ε1 ≡
|
∫
r3eiφε(r, φ)rdrdφ|∫
r3ε(r, φ)rdrdφ

, (4.2)

where the integration is over the transverse plane in polar coordinates, the ε(r, φ)
is the energy density at z ∼ 0. The average is calculated after the recentering
coordinate system as ∫

reiφε(r, φ)rdrdφ = 0 . (4.3)

For the elliptic flow the ellipticity ε2 is defined as [90]

ε2 ≡
|
∫
r2ei2φε(r, φ)rdrdφ|∫
r2ε(r, φ)rdrdφ

, (4.4)

where recentering is taken into account as in (4.3) .
The triangular flow v3 is generated by fluctuations in the initial state with

triangular form. The triangular flow is proportional to the initial participant tri-
angularity ε3 [152] which can be defined in two different ways. A first definition
that was used earlier is given by

ε3 ≡
|
∫
r2ei3φε(r, φ)rdrdφ|∫
r2ε(r, φ)rdrdφ

. (4.5)

According to [60, 153], the definition should be

ε3 ≡
|
∫
r3ei3φε(r, φ)rdrdφ|∫
r3ε(r, φ)rdrdφ

, (4.6)

with (4.3) taken into account.
We will use the definition given by eq. (4.6).
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4.2 Constraining models of initial state with v1 data

The first Fourier coefficient v1 originates from dipole deformation characterized
by the dipole asymmetry ε1. As it was shown in Chapter 3, the directed v1 is
less affected by viscous effects than the higher harmonics. This fact provides a
good opportunity to put direct constraints on the dipole asymmetry ε1 of the
initial system, defined as (4.2).

The procedure is the following: we extract the experimental values of v1

from two-particle correlation data of ALICE as it is shown in Chapter 2, then
we run viscous hydrodynamics calculations and we get v1/ε1 as it is described
in Chapter 3.

We want to compare hydrodynamic data with the experimental values. For
this goal we compute

v1 =

(
v1

ε1

)
h

εtune1 . (4.7)

The value of εtune1 which fits the experimental data in all the pt range does
not exist. By tuning this parameter, we can obtain a good fit either in the
low pt range, or in the high pt range as shown in fig. 4.1. In the first case we
overpredict data in the upper range whereas in the second case we overpredict
data in lower range. The idea is then to match the data with one set of data
from below and with another set from above for a given viscosity. The values
of εtune1 obtained after fitting the data establish upper and lower bounds on the
actual value.

Fig. 4.1 displays v1 versus pt. The experimental points are extracted from
ALICE correlation data, as discussed in Chapter 2. The two lines shown in
fig. 4.1 correspond to the two sets of values of v1 calculated with the eq. (4.7)
with two different values of viscosity. One of them fits the data from below
and another one from above. Thus, we take the line with the viscosity η/s = 0
and fit the data at low pt and the second line with η/s = 0.24 and fit the
data at high pt. These lines are chosen in such a way that we get the largest
possible range in the values of εtune1 . The extracted range for 0 < η/s < 0.24 is
demonstrated in fig. 4.2 as the light gray bounds.

The extraction of the extreme values of ε1 is done for all centralities. We
show in fig. 4.2 the allowed values of ε1 as a function of centrality with the rms
values from various Monte-Carlo models of initial conditions. The allowed range
taking into account viscosity range 0.08 < η/s < 0.16 is also shown in a darker
band in order to illustrate the small effect of viscosity. The fact that v1 has a
smaller dependence on viscosity gives a more narrow band of allowed values.
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Figure 4.1: v1 vs pt for different centrality ranges.

This allows to constrain some models and could not be done with higher-order
flow harmonics as good as with v1.
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CHAPTER 4. CONSTRAINING MODELS OF INITIAL CONDITIONS USING
ANISOTROPIC FLOW DATA 53

4.2.1 Results

In fig. 4.2, we see that two models, MC-KLN [154, 155] Nara [155] are inside the
allowed region for all centralities. We see that ALICE data exclude DIPSY [156]
above 10% centrality. Two models, PHOBOS Glauber [94] model and an im-
proved mckt model [157, 155] with KNO fluctuations, can be excluded over
the full centrality range. Concerning MC Glauber models, the binary collision
fraction for both of the models was taken as αNcoll, α = 0.18 [158]. Since
hydrodynamics is more reliable at low pt, we believe that the real value of ε1

lies close to the upper bound. The two models which have the largest values of
dipole asymmetry only need a small tuning to be inside the allowed region of
ε1. Other models may lead to too low values of ε1.

This study does not provide strong constraints on the models and in the next
section we propose another study for more accurate conclusions.

4.3 Constraining models of the initial state with v2 and
v3 data

The anisotropic flow is the hydrodynamic response [60] to initial spatial anisotropy
of the strongly-interacting system appearing in the initial state of the heavy-
ion collision. In this section, we focus on two of corresponding experimental
observables: the elliptic v2 [159, 72] and the triangular v3 flow coefficients, see
fig. 1.12. The main properties of elliptic and triangular flow were discussed in
the Chapter 1.

In spite of the fact that v2 and v3 are the most studied harmonics of anisotropic
flow, many questions remain to be answered. It was found out that both v2 and
v3 hydrodynamic values can fit the data using different models of initial state
by tuning η/s. As it was shown in ref. [43] CGC models predict higher values
of initial eccentricity than Glauber model, which gives higher values of the flow
for CGC model. The viscous effect decreases the flow, so in order to fit the
data with CGC initial conditions thet higher value of viscosity has to be put.
However some of the models of initial state are unable to fit both v2 and v3 the
same time [74, 160]. By combining v2 and v3 data we could constrain models
of initial state even if the viscosity is unknown.

In order to create the range of allowed values we combine together viscous hy-
drodynamic calculations with experimental data from RHIC [160] and LHC [10].
These constraints are used later in order to exclude some of the existing mod-
els of initial state. This provides a simple method that could be used by any
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Monte Carlo group in order to quickly and easily compare their model with
the constraints and determine weather or not this model is compatible with the
data.

4.3.1 Principle of our approach

In our approach, we focus on the integrated anisotropic flow [161], i.e. the
anisotropic flow averaged over pt. Collaborations have published data of the
integrated anisotropic flow coefficients vn up to the sixth harmonics n = 6 [16].
In this study, we deal only with the elliptic and the triangular flow coefficients.
The reason why we do not consider here higher order Fourier harmonics of
anisotropic flow as v4, v5, v6 is that these components have non-linear additional
terms in the hydrodynamic response to the initial state geometry [162, 163,
145, 164], while the elliptic and the triangular flow coefficients are to a good
approximation linear in the response to the initial state [165, 151] as it was
shown in the first section of this Chapter.

Assuming linear response to the initial anisotropy, the anisotropic flow in
an event is vn = κnεn. The response coefficient κn is the same for all events
in a centrality bin, but εn fluctuates, so that initial-state fluctuations result
in event-by-event flow fluctuations. The experimental data of integrated flow
are taken from the ALICE and PHENIX collaborations [160, 10]. The ALICE
collaboration uses two-particle correlations method in order to extract the data
whereas PHENIX collaboration uses an event-plane method. Both methods
provide the root-mean-square values (rms) of the event-by-event distribution
over a centrality bin of the anisotropic flow vn [89]. It can therefore be written:

√
〈ε2
n〉 =

√
〈(vn)2〉
κn

, (4.8)

where 〈...〉 is an average over collision events, n = 2, 3 and
√
〈(vn)2〉 is the

measured rms value of the integrated flow. In hydrodynamics, the coefficient
κn is calculated as κn = (vn/εn)hydro and the rms values of ε2 and ε3 can be
extracted with the eq. (4.8).

There are several free parameters in hydrodynamic calculations which give
uncertainties in the hydrodynamic response. These uncertainties are taken into
account and are represented by the shadow bands in the (rms ε3, rms ε2) plane.
As we will discussed in sec 4.3.3 , these uncertainty bands are narrow enough
to constrain models of initial state.
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4.3.2 Uncertainties in hydro response

Each step of standard hydro modeling [166] induces its own uncertainties [167].
An ideal evaluation that would take into account all these uncertainties would
be too expensive [168]. In our calculations we simplify the problem by keeping
at each step the main source of uncertainties. In the next section, we will
discussed the leading sources of uncertainties.

Viscous effect

The main uncertainty in the hydrodynamics is the value of the shear viscosity.
This value is not well constrained neither in theory nor the experiment [169,
167, 170]. We treat η/s as a free parameter that we vary from 0 to 0.24 by
steps of 0.04. The hydrodynamic approach can be applied only if η/s is not too
large [171]. Though effect of bulk viscosity can be not negligible for some values
of temperature [122], its effect on the integrated flow is smaller than those from
shear viscosity [172]. Then in the spirit of keeping only the main uncertainty
source, we do not take into account the effect of bulk viscosity [173, 174]. The
second-order corrections [123] are also not taken into account because they have
a small effect [43].

Initial conditions

The optical Glauber model profile is smooth and has already an ellipticity,
so automatically gives us elliptic flow values and we can directly compute the
values of κ2. If we want to obtain the values of ε3 or v3 with this profile, we get
zero values for both of them due to the symmetry. In order to calculate κ3 we
deform the third harmonic in the profile in the similar way as for v1 [74]:

ε(r, φ)→ (r
√

1 + ε′n cos(n(φ− Φn)), φ) (4.9)

where ε′n is the magnitude of the deformation and Φn is the orientation of
the deformation. As far as the elliptic deformation does not interfere with the
triangular deformation [145, 74], we choose Φ3 = 0 for our calculations. We also
check that the dependence of the ratio (v3/ε3)h on the values chosen for ε′3 [74]
is negligible. This calculation uses the same values of ε′3 as [74]. The values of
ε′3 differs from ε3 by a few percent. Our studies show that recentering (4.3)1 the
distribution in coordinate space after performing the deformation of the profile

1We found out that in ref. [74] this recentering correction was neglected and the resulting values of
hydrodynamic response were lower by up to 10% for peripheral collisions.
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by ε′3, shifts the center by a distance which is proportional to ε2ε3. This shift
leads to a correction to ε3 which decreases its value by a term of the relative
order of (ε2)

2.
As the Fourier coefficients have, with a good approximation, a linear response

to the initial state, we consider the values of the hydrodynamic response κn =
vn/εn to be independent on the initial state model. In reality this response is not
exactly linear and should depend on the initial state model. These effects were
studied in ref. [18] and it was shown that the response have a weak dependence
on the initial state model. By comparing in figs. 4.3 and 4.4 the curves for
"single-shot" and "event-by-event" calculations for the different models, on can
see that the effects are small.

Figure 4.3: v2/ε2 dependence on impact parameter for pions. Solid lines correspond to event-
by-event hydrodynamics, dashed lines correspond to single-shot hydrodynamics. Left: for
MC Glauber initial state model, right: MC-KLN initial state model [18].

In order to estimate the uncertainty on the value of κn from the initial profile,
we use two definitions of εn: with energy density weighting as in eqs. (4.4), (4.6)
and entropy density weighting. Both definitions provide reasonable predictions
of vn [163], the difference between the two calculations indicates the size of
the uncertainty due to the linear approximation. The deformation of optical
Glauber profile as in Eq. 4.9, gives exactly the same values of ε3 for the central
collisions for both types of weighting [74], though in other type of calculations
this difference can take place [18]. The values of ε2 calculated with entropy
density weighting and with energy density weighting, are different for the optical
Glauber model, so this difference can be used as the part of the error bar in our
calculations.

Another free parameter in our calculations is the thermalization time t0 [147,
144] at which hydrodynamics becomes a good approximation. This parameter is
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Figure 4.4: v3/ε3 dependence on impact parameter for pions. Solid lines correspond to event-
by-event hydrodynamics, dashed lines correspond to single-shot hydrodynamics. Left: for
MC Glauber initial state model, right: MC-KLN initial state model [18].

not well known. In previous studies [144] the transverse flow expansion before t0
was neglected. t0 is typically close to 1 fm/c. In reality the transverse flow exists
directly after the collision happened, independently on the fact if the system
thermalizes or not. This so-called initial flow has given a good explanation
of interferometry data [175, 176, 177]. Initial flow is universal [178] and can
be obtained in calculation with vanishing flow at t0, by choosing a very small
values [176] of t0. We would like to take into account the effect of initial flow and
thus we choose two values of the thermalization time which are 0.5 fm/c and
1 fm/c. As we vary the thermalization time, we tune the starting temperature
Tstart and the freeze-out temperature Tfr in order to match the pt spectrum.

Freeze-out stage

At some point during its expansion the fluid can be described as a gas of hadrons
with collective and thermal motion. The question here is at what point the hy-
drodynamic approach is still valid. We assume that hydrodynamics is still rea-
sonable in the hadronic stage, using only a single freeze-out temperature [144].

Some other groups use the so-called afterburners which simulates hadronic
decays and two-body collisions [56, 179, 180]. These afterburners are useful for
reproducing the elliptic flow and identified particle spectra, though afterburner
have quite a little effect on integrated properties of unidentified hadrons. These
afterburners are now used in calculations for both RHIC and at LHC ener-
gies [112, 114]. Some groups also use the hydrodynamics with bulk viscosity
in the hadronic stage [181] which also successfully generate the properties of
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identified particles.
In our approach we run hydrodynamic calculations starting from initial time

t0 and we choose the freeze-out temperature Tfr in such a way that we would
have the average transverse momentum unchanged 〈pt〉. Thus choosing smaller
values of t0, we stop the hydro simulation earlier, that means we put larger Tfr.
We take into account resonance decays, but we neglect hadronic collisions.

In the hadronic part, a significant uncertainty comes from the freeze-out
viscous correction [126, 182] which momentum dependence is unknown and
involves microscopic information about hadronic cross-sections [125]. Due to
this, we make two types of calculations with two possible ansatzs which were
introduced in the Chapter 1: the quadratic ansatz ∝ p2 [125] which is commonly
used, and the linear ansatz ∝ p [127] which also gives a reasonable description
of the data.

4.3.3 Calculations

In this section we use Glauber optical model for the initial conditions, with the
energy density weighted with the linear combination of the number of collisions
Ncoll and the number of participants Npart as it was described in the Chapter 1.

The cuts on the transverse momentum pt and pseudorapidity η used by
experiments, are: ALICE collaboration [10] uses 0.2 < pt < 5 GeV/c cut
for the transverse momentum and |η| < 0.8 cut for the pseudorapidity, the
PHENIX collaboration [160] uses the cuts 0.25 < pt < 4 GeV/c and |η| < 0.35.
Our model is independent of rapidity because it is invariant under longitudinal
boosts.

Our calculations take into account the difference in rapidity and pseudo-
rapidity [39], as described in Chapter 1. Changing variables from rapidity to
pseudorapidity increases v2 by 3% and v3 by 4%. In order to suppress non-flow
correlations, the ALICE collaboration [87] uses pair correlations with a pseu-
dorapidity gap |∆η| > 1 between particles in the pair. This condition excludes
particles at |η| < 0.2. Since all pairs are weighted the same way, it gives more
weight to particles near |η| = 0.8. We take into account this additional cut in
∆η which decreases v2 by 0.3 % and v3 by 0.4%.

After taking into account the uncertainties, we can calculate ε2 and ε3 using
Eq. (4.8). The resulting values are shown in the fig. 4.5 for the 20–30% centrality
range at the LHC. In this figure one hydro calculation with one set of parameters
corresponds to one point on the (rms ε3, rms ε2) plane. Six types of symbols
correspond to different sets of parameters:
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Figure 4.5: (Color online) R.m.s. values of
ε2(ε3) from hydro simulations + ALICE data
for 20-30% centrality range. Purple squares
correspond to tinit = 1 fm/c with quadratic
freezeout. Blue circles correspond to tinit =
1 fm/c with linear freezeout. Yellow dia-
monds correspond to tinit = 0.5 fm/c with
quadratic freezeout. Open symbols mean
entropy-density profile used. The shaded
band is an allowed band encompassing un-
certainty in the extracted values.
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Figure 4.6: (Color online) The shaded band
is the same as in fig. 4.5 and represents
allowed values. Symbols are predictions
from various models of initial state. The
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- blue circles, use as parameters the thermalization time 1 fm/c and the linear
ansatz
- purple squares use thermalization time 1fm/c and quadratic ansatz
- yellow diamonds correspond to thermalization time 0.5 fm/c and quadratic
ansatz
- open symbols mean that the entropy-density weighting is used.

These symbols are composing six lines with viscosity η/s changing. Each
line has seven points, corresponding to seven values η/s = 0, 0.04, 0.08, 0.12,
0.16, 0.2, 0.24 (from left to right).

The difference between the linear and the quadratic ansatz is small, except
for high viscosity values which makes the values of ε2 with quadratic ansatz
slightly smaller than for linear ansatz. The difference in the thermalization
time gives the resulting decrease of ε2 and ε3 values with t0 = 0.5 fm/c in
comparison with the values for t0 = 1 fm/c. Since the hydro evolution starts
earlier, more flow is produced. From the ratio (4.8) it can be seen that if more
flow is produced, both values of ε2 and ε3 are decreasing.

With the lines drawn on the plane (rms ε3, rms ε2), a shaded band is created
such that all the points are inside this band as it is shown in the fig. 4.5. This
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band defines the allowed range. The important fact here is that even with all
uncertainties taken into account, we obtain a narrow band, which allows us to
constrain models as we show in the fig. 4.6.

Note that the curves can be fitted by a power law function:√
〈ε2

2〉/
(√
〈ε2

3〉
)k

= C, (4.10)

where the best fits leads to k=0.6 for LHC and k=0.5 for RHIC and where C
is fixed. k can be understood as the ratio of the relative change in v2 to the
relative change in v3 when viscosity is increasing. Note that for k < 1, viscosity
has a smaller effect on v2 than on v3 as it is expected.

We can determine the range of values for C by computing the maximum
and the minimum values of C allowed by hydrodynamics. The resulting min-
imum and maximum values are shown in Table 4.1 and corresponding figure
fig. 4.7, showing the allowed C region for RHIC and Table 4.2 with the fig. 4.8
corresponding to the LHC respectively.

4.3.4 Results

The region of allowed values for (ε3, ε2) obtained in the previous section can be
used to constrain models of initial state. Since ε3 is solely created by fluctuations
we test Monte Carlo models which have fluctuations. We test two types of the
models: Glauber type [93] and QCD-inspired models.

The type of the Monte Carlo Glauber model we use, is the PHOBOS Monte
Carlo [94] model which we shortly describe in the Chapter 1. Other imple-
mentations of MC Glauber [183, 184] are not taken into account here. In this
section we differ Glauber models by the participant weighting and denote them
as following:
- “Glauber Npart” is the Glauber model, where each participant can be given or
the equal weight.
- “Glauber Ncoll” is the Glauber model, where the weight is proportional to the
number of collisions
- “Glauber” is the Glauber model, where the weight is taken as the linear com-
bination of Npart and Ncoll.

Among the QCD-inspired models, we test four of them: the oldest QCD
model we refer to as MC-KLN [185, 154] which is using kT factorization and
taking into account fluctuations of the positions of the nucleons. The second
model MCrcBK [157] is an improved MC-KLN model with additional KNO
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fluctuations in order to match multiplicity distribution in pp collisions. The
third one is the DIPSY [156] model, a QCD model which takes into account
the multiple gluon cascade. The last one is the IP Glasma model [186] which
does not assume kT factorization and includes non-linearities and fluctuations
of color charges within a nucleon.

Table 4.1: Values of the ratio
√
〈ε2

2〉/
√
〈ε2

3〉
0.5

at RHIC. First two lines: minimum and max-
imum values allowed by hydrodynamics and experimental data. Next lines: values predicted
by various models.

% centrality 0-10 10-20 20-30 30-40 40-50
minimum 0.36 0.56 0.69 0.75 0.74
maximum 0.41 0.63 0.79 0.90 0.91
MC-Glauber 0.38 0.57 0.69 0.76 0.80
MC-Glauber (Ncoll) 0.44 0.64 0.76 0.81 0.83
MC-Glauber (Npart) 0.34 0.52 0.64 0.73 0.78
MC-KLN 0.49 0.78 0.95 1.03 1.06
MC-rcBK 0.49 0.73 0.87 0.95 0.98
IP-Glasma 0.43 - 0.76 0.85 -
DIPSY 0.39 0.59 0.72 0.80 0.84
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Figure 4.7: (Color online) Ratio of eccentricity moments
√
〈ε2

2〉/
(√
〈ε2

3〉
)k

versus centrality.
Shaded bands are allowed by experiment values, combined with hydrodynamic calculations,
for RHIC. Symbols are predictions from various models of initial state.

For all the models the centrality bins are set using the total entropy of each
Monte Carlo event which is close to the total multiplicity, obtained in hydro
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evolution. As it was mentioned before, experimental definitions of centrality are
also using multiplicity, so the uncertainties in centrality definition are negligible
and are not taken into account.

The results for the values of C calculated in different Monte Carlo models
are shown in the Tables 4.1 and 4.2 and the corresponding figures 4.7, 4.8. We
put constraints on the initial state models by comparing the values of Monte
Carlo models with the C minimal and maximum values. Thus, one can see
that MC-KLN is excluded for all centralities both at RHIC and LHC. It is in
agreement with recent studies which have shown that this model underpredicts
the values of triangular flow v3 at RHIC, while the elliptical flow v2 is well
reproduced [74, 160]. The MC Glauber model (which we basically use with a
superposition weight of number of participants and number of binary collisions),
does not show agreement with data at LHC, except for the most central region,
while it shows a good agreement for RHIC. The MC-rcBK model is excluded
at RHIC and is inside allowed band for several centralities at the LHC. DIPSY
and IP-Glasma models shows good results for both RHIC and LHC, and so does
the MC Glauber models when binary collision scaling is chosen.

Since MC-Glauber model has as a free parameter, the value of the source
size σ, we demonstrate how the source smearing effect can change the predicted
values with the variation of σ. In fig. 4.6 we display as an example the 20-30%
centrality range. The MC-Glauber model (superposition weight) is shown for
different values of the width of gaussian σ=0 fm, 0.4 fm, 0.8 fm and 1.2 fm [151]
which are denoted by different symbol sizes. By changing this parameter, the re-
sult is shifted along the band which has the same effect as changing the viscosity,
so that the agreement with data cannot be improved by adjusting the unknown
source size. Thus, the ratios in Table 4.1 and Table 4.2, only change respectively
by 2% and 1%. This can be understood as following: only the denominator in
the (4.4), (4.6) is affected by the smearing of the sources [187] while the numer-
ator remains unchanged. Thus, the effect of source smearing is a small increase
in the system size which results in smaller εn. Since {r3} ∝ {r2}2/3, the value
of εn is decreasing so that

ε2/ε
2/3
3 ∼ const . (4.11)

Since the value of k in equation (4.10) is close to 2/3, the smearing process
moves the results parallel to the allowed band due to (4.11).

In fig. 4.9 one can see the predictions of the MC models of initial state with
the shaded bands of the allowed region for all the centrality range. All models
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Table 4.2: Values of the ratio
√
〈ε2

2〉/
√
〈ε2

3〉
0.6

at LHC.

% centrality 0-5 5-10 10-20 20-30 30-40
minimum 0.40 0.58 0.76 0.88 0.94
maximum 0.43 0.65 0.87 1.06 1.13
MC-Glauber 0.39 0.50 0.66 0.78 0.85
MC-Glauber (Ncoll) 0.46 0.61 0.79 0.92 0.96
MC-Glauber (Npart) 0.33 0.42 0.57 0.71 0.80
MC-KLN 0.46 0.73 0.98 1.17 1.25
MC-rcBK 0.48 0.67 0.88 1.04 1.12
IP-Glasma 0.43 - 0.83 0.97 1.03
DIPSY 0.40 0.58 0.76 0.90 0.95
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Figure 4.8: (Color online) Ratio of eccentricity moments
√
〈ε2

2〉/
(√
〈ε2

3〉
)k

versus centrality.
Shaded bands are allowed by experiment values, combined with hydrodynamic calculations,
for LHC. Symbols are predictions from various models of initial state.

show that the rms ε2 and rms ε3 increase with centrality, as it was expected
from the explanation given in the first section. The difference between LHC
energies and RHIC energies depends on the model. Thus, the MC Glauber
model shows a decrease of ε2 and ε3 by several % which could be explained by
the fact that lead nuclei used at LHC are bigger system than gold nuclei used
at RHIC, though this explanation is not complete. For the MC-rcBK model the
values are quite similar for both experiments. For the DIPSY model the ε2 is
increased, while ε3 stays the same.

The claim that some model is compatible with data or can be excluded seems
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Figure 4.9: (Color online) Shaded bands are root-mean-square values of (ε2, ε3) allowed by
experimental data in combination with hydrodynamic calculations, for Au-Au collisions at√
sNN = 0.2 TeV (left)and Pb-Pb collisions at

√
sNN = 2.76 TeV (right)in various central-

ity windows (from top to bottom). Symbols are predictions from various models of initial
conditions (see text for details).

to be strong with respect to several uncertainties in the definitions of ε2 and ε3.



Chapter 5

Event-plane correlations

The anisotropy of the particle distribution is characterized by the Fourier ex-
pansion

dN

dφ
∝ 1 + 2

∞∑
n=1

vn cosn(φ− Φn) , (5.1)

where φ is an azimuthal angle, vn is a magnitude of the n’th flow harmonics
and Φn is an event plane characterizing the phase of the n’th flow harmonic.

Anisotropic flow is usually measured in two-particle angular correlations [188,
14, 137, 16] as it was described in Chapter 1. A new study of the so called event-
plane correlations among the event planes of different flow harmonics started
recently [153, 10, 19, 189]. The event-plane correlations are defined by the
functions

〈cos (c1Φ1 + ...+ lclΦl)〉 . (5.2)

Since the azimuthal orientation cannot be controlled in the experiments and
only rotationally symmetric quantities can be measured, the coefficients must
add up as c1 + 2c2 + ...+ lcl = 0 [153].

In 2012, ATLAS presented measurements of event plane correlations in Pb-
Pb collisions [19, 189] and significant correlations were observed for two-plane
(e.g., the correlation between second Φ2 and fourth harmonics Φ4) and three-
plane correlations (e.g., the correlation between second Φ2, third Φ3 and fifth
Φ5 harmonics). These correlations can be qualitatively explained within the
hydrodynamic approach by the combination of flow response in the medium
with initial state fluctuations. Thus, as we discussed earlier in Chapter 4, in
hydrodynamics v1, v2 and v3 with a good approximation have a linear response
to the medium. However, higher flow harmonics have an additional non-linear
response. Thus, v4 has an additional non-linear contribution where magnitude
scales as v2

2, i.e. v4 ∝ v2
2, and is oriented along Φ2. This non-linear mixing

65
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results in the correlations between Φ4 and Φ2 event plane angles, denoted as
〈cos 4 (Φ2 − Φ4)〉. The coefficient v5 also has an additional non-linear response
which represents a mixing between v2 and v3 harmonics, i.e. v5 ∝ v2v3. This
non-linear response results in correlations between Φ2, Φ3 and Φ5 planes, de-
noted 〈cos (2Φ2 + 3Φ3 − 5Φ5)〉. These correlations are strong where v2 is large,
i.e. in more peripheral collisions as we can see in fig. 5.1. Note, that if the
event planes Φn were correlated completely, the values of 〈cos 4 (Φ2 − Φ4)〉 and
〈cos (2Φ2 + 3Φ3 − 5Φ5)〉 would be equal to 1.
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Figure 5.1: 〈cos 4 (Φ2 − Φ4)〉(left) and 〈cos (2Φ2 + 3Φ3 − 5Φ5)〉(right) vs Npart from [19].

The measurements of event-plane correlations suggest that both the fluctu-
ations in the initial state and the evolution of the medium in the final state
are important for the formation of these correlations. There were several suc-
cessful attempts to reproduce these correlations with different theoretical mod-
els [108, 20, 164]. In order to study the event-plane correlations we propose a
theoretical approach based on a simple model of initial state fluctuations, called
independent source model. For the modelisation of the hydrodynamic response
we use the cumulant expansion formalism [145]. Our goal is to see what can
be learnt from the hydrodynamic response from ATLAS data with minimal
assumptions concerning the initial state.

In this Chapter we present such analysis for the correlations 〈cos 4 (Φ2 − Φ4)〉
and 〈cos (2Φ2 + 3Φ3 − 5Φ5)〉. The experimental data for the calculations and
the notations in this section are taken from ref. [19].

All data and conclusions presented in this Chapter are preliminary.
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5.1 Event-plane correlations measurements

In order to perform the analysis of chosen correlations, it is important to un-
derstand how the event-plane correlations are measured in the experiment.

The ATLAS collaboration was measuring [19] the angular correlations be-
tween the harmonics Φn. The method they used is the event plane (EP) method.
It was shown [190] that the traditional event-plane method [191] does not mea-
sure the mean value. In fact, in EP method, the measured value is lying
between the event-average mean value 〈vn〉 and the root-mean-square value〈
v2
n

〉1/2 [190, 192] and depends on the reaction plane resolution. The mea-
surements of mixed-harmonic correlations have even stronger influence from
this effect [193]. Thus this affects the measured correlation between the event
planes Φ4 and Φ2

c{2, 2,−4} = 〈cos 4 (Φ4 − Φ2)〉 . (5.3)

This correlation cannot be measured directly if v2 and v4 fluctuate. However it
is possible to measure

c{2, 2,−4} =

〈
v4v

2
2 cos 4(Φ4 − Φ2)

〉√
〈v2

2〉
2 〈v2

4〉
. (5.4)

Note, that if there are no fluctuations of v2 and v4, (5.4) is equivalent to (5.3).
The values, measured1 by the ATLAS collaboration with the EP method [19]

are between the values obtained with (5.3) and (5.4). Recently the ATLAS
collaboration published [189] new measurements with the scalar-product (SP)
method [191, 194, 193, 20] which corresponds to the value given by (5.4) but
we do not consider them here2.

The measured value of 3-particle correlation denoted by ATLAS as
〈cos (2Φ2 + 3Φ3 − 5Φ5)〉:

c{2, 3,−5} =
〈v2v3v5 cos (2Φ2 + 3Φ3 − 5Φ5)〉√

〈v2
2〉 〈v2

3〉 〈v2
5〉

. (5.5)

This representation was suggested in the refs. [153, 193] and is more suitable
for our analysis.

1Note, that ATLAS collaboration papers [19, 189] and the theoretical works [164, 20] have different
notations. Thus, ATLAS define Φn as the event-plane angle, and theoreticians define it as Ψn. In order to
avoid misunderstanding we denote the measured correlations between nk harmonics as c{n1, n2...}.

2Our analysis was done before the new data were published, so this analysis needs to be updated in the
future with the new data sets, though we can notice that for the chosen correlations the data does not change
significantly.
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5.2 Our model

In order to describe anisotropic flow vn response to the medium in hydrody-
namics we denote the complex flow coefficient as3

Vn = vne
inΨn , (5.6)

where Ψn is an event-plane angle.
As it was described in Chapter 4, the hydrodynamic response for first three

flow harmonics is linear with a good approximation. We recall that this reads

V1 = a1E1 , (5.7)
V2 = a2E2 , (5.8)
V3 = a3E3 , (5.9)

where an are linear hydrodynamic response to the initial state, and En is the
complex coefficient depending on the initial density profile, which will be defined
below. In this section we consider higher flow harmonics v4 and v5. These
harmonics have additional non-linear response to the medium [163]. Thus, in
analogy with the hydrodynamic response of the lower flow harmonics, it can be
written

V4 = a4E4 + b4E
2
2 , (5.10)

V5 = a5E5 + b5E2E3 . (5.11)

There are two terms which relate V4 and V5 to the initial profile: linear one
and non-linear one. The coefficients an is indicating the linear hydrodynamic
response to the medium and bn is a non-linear hydrodynamic response. The
values En are characterizing the medium properties defined by the initial condi-
tions. Thus, we need two models: hydrodynamic response model and a model
of initial state. In this section we discuss the hydrodynamic response model and
the initial state model is presented in the section 5.4.

Following refs. [60, 164], we assume that the hydrodynamic response is rep-
resented in terms of cumulants4 En, where its complex notation with the corre-
sponding orientation Φn reads as

En = EneinΦn . (5.12)

3From here we follow the notations and definitions used in theoretical works, in particular in ref. [164].
4In order to distinguish moments from cumulants the moments are denoted as εn and cumulants are

denoted as En.
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The general definition of the cumulants is

EneinΦn ≡ −{r
neinφ} − δn
{rn}

, (5.13)

where δn denotes the subtractions. The values δn = 0 turns cumulant represen-
tation to the moment representation which was used in Chapters 2, 3, 4.

For first three harmonics azimuthal cumulants and moments are identical as
defined in Chapter 4. eqs. (4.2), (4.4), (4.6) [164], but 4th and 5th harmonics
have additional non-linear response to the medium:

E4e
i4Φ4 ≡ −

[
{r4ei4φ} − 3{r2ei2φ}2

]
{r4}

, (5.14)

E5e
i5Φ5 ≡ −

[
{r5ei5φ} − 10{r2ei2φ}{r3ei3φ}

]
{r5}

. (5.15)

The cumulants E1, E2, E3, E4 and E5 characterize the deformation of energy
density profile in the transverse plane, respectively: dipole, elliptic, triangular,
quadrangular and pentagonal.

The definitions presented earlier were given for one single event. In the
following calculations we will need to calculate the mixed terms of the cumulants
averaged over all the events. We will use following notations [153, 187]

E{n1, ..., nk} ≡ 〈En1En2...Enk〉, (5.16)

where 〈...〉 denotes an average over events in a centrality class. The rms average
of En [89]:

En{2} ≡ 〈E2
n〉1/2 = E{n,−n}1/2. (5.17)

The symmetry with respect to the reaction plane (y → −y) means that all
the cumulants are real, i.e. E{−n1, ...,−nk} = E{n1, ..., nk}. The symmetry
(x, y) → (−x,−y) means that the odd values of n1 + ... + nk are vanishing.
The azimuthal orientation of each collision in not measured experimentally, so
the only possible measurements are symmetric to the rotation values. Thus, the
only cumulants taken into account must satisfy the following rule:

n1 + ...+ nk = 0 . (5.18)
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5.3 Event-averaged observables

The event-plane correlations averaged over events which we study in this Chap-
ter are 〈cos 4 (Φ4 − Φ2)〉 and 〈cos (2Φ2 + 3Φ3 − 5Φ5)〉.

Using the notations of the previous section, the measured value for 〈cos 4 (Φ4 − Φ2)〉
(5.4) reads

c{2, 2,−4} =
〈V ∗4 V2V2〉√
〈|V 2

2 |〉
2 〈V 2

4 〉
. (5.19)

Applying the eqs. (5.8)-(5.11), the previous equation can be written as

c{2, 2,−4} =

〈
(a4E

∗
4 + b4E

2
2)a2E2a2E2

〉√
〈(a2E2)2〉2 〈(a4E∗4 + b4E2

2)2〉
. (5.20)

We introduce the following variables:

λ224 =

(
b4

a4

)√
〈E2

2E
∗2
2 〉√

〈E4E∗4〉
, (5.21)

C224 =

〈
E∗4E

2
2

〉√
〈E4E∗4〉 〈E2

2E
∗2
2 〉

, (5.22)

where a4 and b4 are linear and non-linear response coefficients from the eq. (5.33).
The variable λ224 represents the ratio of the non-linear response over the linear
response to the medium. The coefficient C224 is the Pearson correlation between
E4 and E2

2 which is small. In these terms the desired correlation has a form:

c{2, 2,−4} =
λ224 + C224√

1 + 2λ224C224 + λ2
224

' λ224√
1 + λ2

224

, (5.23)

where we have neglected the correlation C224.
In the similar way a 3-event plane correlation c{2, 3,−5} can be presented

as
c{2, 3,−5} =

〈V2V3V
∗

5 〉√
〈V 2

2 〉 〈V 2
3 〉 〈V 2

5 〉
, (5.24)

where using eqs. (5.8)-(5.11), we have

c{2, 3,−5} =
〈a2E2a3E3(a5E

∗
5 + b5E2E3)〉√

〈(a2E2)2〉 〈(a3E3)2〉 〈(a5E∗5 + b5E2E3)2〉
, (5.25)
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In analogy with (5.21) we denote the following parameters:

λ235 =

(
b5

a5

)√
〈E2E3E∗2E

∗
3〉√

〈E5E∗5〉
, (5.26)

C235 =
〈E∗5E2E3〉√

〈E5E∗5〉 〈E2E∗2〉 〈E3E∗3〉
. (5.27)

Thus, (5.24) reads

c{2, 3,−5} =
λ235 + C235√

1 + 2C235λ235 + λ2
235

' λ235√
1 + λ2

235

. (5.28)

In order to perform the calculations of desired correlations first we need
to calculate the following terms: 〈E2E

∗
2〉 ≡ E{2,−2}, 〈E4E

∗
4〉 ≡ E{4,−4},〈

E∗4E
2
2

〉
≡ E{2, 2,−4},

〈
E2

2E
∗2
2

〉
≡ E{2, 2,−2−2}, 〈E2E3E

∗
2E
∗
3〉 ≡ E{2, 3,−2,−3},

〈E5E
∗
5〉 ≡ E{5,−5}, 〈E∗5E2E3〉 ≡ E{2, 3,−5} and 〈E3E

∗
3〉 ≡ E{3,−3}. In or-

der to calculate these correlations we need a model of the initial state that we
present in the next section.

Secondly, we need to know the constants of the hydrodynamic response b4/a4

and b5/a5. The calculations of the hydrodynamic response coefficients will be
presented in sections 5.5 and 5.6.

5.4 Independent source model

As the model of the initial state in our work we choose the independent source
model. Here we introduce the formalism of this model [187].

In this model authors assume that initial energy density profile in the trans-
verse plane is the superposition of N random independent sources

ε(x) =
N∑
j=1

ρ(|x− xj|), (5.29)

where xj are N independent random variables with a probability distribution
p(xj) and ρ(r) - profile of a single source, where the standard choice for ρ(r) is
a Gaussian profile

ρ(r) = ρ0e
− r2

σ2 , (5.30)

where σ is controlling the width.
All cumulants can be calculated analytically as a systematic expansion in
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powers of 1/N within the independent-source model formalism.

5.4.1 Application of the model

In this section we introduce the analytic tools that are needed in order to cal-
culate cumulants E{n1, ..., nk} within the independent source model [187].

We denote 〈f(x, y)〉 the average value of f(x, y) with the source probability
density p(xj) and introduce

δf ≡ {f} − 〈f〉 (5.31)

for the event-by-event fluctuations, and {...} denotes an average over the trans-
verse plane in a single event

{f(x, y)} ≡
∫
f(x, y)ε(x, y)dxdy∫

ε(x, y)dxdy
, (5.32)

where the average is weighted with the energy density ε(x, y).
We use complex coordinates z = x+ iy and z̄ = x− iy. The reiφ is replaced

by z − δz in order to take into account the recentering correction. Thus the
expressions for cumulants are obtained in the leading order on fluctuations as

E1 = −{(z − δz)
2(z̄ − δz̄)}
{r3}

' −
δz2z̄ − 2 〈zz̄〉 δz −

〈
z2
〉
δz̄

〈r3〉
, (5.33)

E2 = −
〈
z2
〉

+ δz2 − δ2
z

〈zz̄〉+ δzz̄ − δzδz̄
, (5.34)

E3 = −
δz3 − 3

〈
z2
〉
δz − 3δz2δz

〈r3〉
, (5.35)

E4 = −
〈
z4
〉

+ δz4 − 3
〈
z2
〉2 − 6

〈
z2
〉
δz2 − 3δ2

z2 + 12
〈
z2
〉
δ2
z − 4δz3δz

〈z2z̄2〉+ δz2z̄2 − 2δz2z̄δz̄ + 〈z2〉 δ2
z̄ − 2δzz̄2δz + 4 〈zz̄〉 δzδz̄ + 〈z̄2〉 δ2

z̄

,

(5.36)

E5 = −
δz5 − 5

〈
z4
〉
δz − 10

〈
z2
〉
δz3 + 30

〈
z2
〉2
δz − 5δz4δz − 6

〈
z2
〉
δz2δz + δz2δz3

〈r5〉
.

(5.37)

The calculations of E{n1, ..., nk} involve an average over events of products of
δ’s. Two-point averages are computed within the formalism of the independent



CHAPTER 5. EVENT-PLANE CORRELATIONS 73

source model as following:

〈δfδg〉 =
〈fg〉 − 〈f〉 〈g〉

N
. (5.38)

We use the following equations

〈znz̄m〉 = 0, n-m− odd , (5.39)
〈znz̄m〉 =

〈
rn+m cos ((n−m)φ)

〉
, n-m− even . (5.40)

With the equations (5.33)-(5.40) we are able now to get any cumulants
E{n1, ..., nk}. In the following sections we use the notation

εs ≡ −
〈r2 cos 2φ〉
〈r2〉

, (5.41)

which denotes the standard eccentricity.

5.5 Correlation c{2, 2,−4}

In this section we present the calculations of the value event-plane correlation
c{2, 2,−4} in the terms of the independent source model.

In order to calculate E{2,−2} we repeat the calculation as in [187]. We
apply the formulas (5.33), (5.38) and (5.40) and get the following equation:

E{2,−2} = ε2
s +

〈
r4
〉

+ 3ε2
s

〈
r4
〉

+ 4εs
〈
r4 cos 2φ

〉
〈r2〉2N

. (5.42)

In the similar way it can be obtained

E{2, 2,−2,−2} =
ε2
s(2(2 + 5ε2

s)
〈
r4
〉

+ 16εs
〈
r4 cos 2φ

〉
+ 2

〈
r4 cos 4φ

〉
+ ε2

s

〈
r2
〉2
N)

〈r2〉2N
.

(5.43)

The expressions for the correlations E{4,−4}, E{4,−2,−2} are too large,
so we present their general form in the Appendix. Knowing the four correla-
tions E{2,−2}, E{2, 2,−2,−2}, E{4,−4} and E{4,−2,−2} one can obtain the
expressions for λ224 and C224 which are also presented in the Appendix.

The average values 〈rn+m cos (n−m)φ〉 presented in the terms of the expres-
sions for λ224 and C224 are calculated in the Gaussian model, PHOBOS Monte
Carlo Glauber model and MC-KLN model.
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5.5.1 Correlations for c{2,2,-4} in the Gaussian model

In this section we present the calculations of correlations E{n1, n2, ...nk} with
the Gaussian model.

For the Gaussian model the density distribution is

ρ(x, y) =
1

2πσxσy
e
− x2

2σ2x
− y2

2σ2y (5.44)

from where
〈r2〉 = σ2

x + σ2
y , (5.45)

and the eccentricity reads as

εs =
σ2
x − σ2

y

σ2
x + σ2

y

. (5.46)

Integration over ρ(x, y) gives following expressions for the correlations:

E{2,−2} =
2 + 3ε4

s + ε2
s(−5 +N)

N
, (5.47)

E{4,−4} =
24

(2 + ε2
s)

2N
, (5.48)

E{4,−2,−2} =
6ε4

s(6 + ε2
s)

(2 + ε2
s)

2N
, (5.49)

E{2, 2,−2,−2} =
ε2
s(8 + 10ε4

s + ε2
s(−18 +N))

N
. (5.50)

Thus, the expression for λ224 reads

λ224 =

√
εs2(8+10εs4+εs2(−18+N))

N

2
√

6
√

1
(2+εs2)

2
N

. (5.51)

And the expression for C224 is following:

C224 =

√
3
2ε

4
s

(
6 + ε2

s

)
(2 + ε2

s)
2
√

ε2s(8+10ε4s+ε
2
s(−18+N))

(2+ε2s)
2
N2

N
. (5.52)

Note, that Gaussian model is given only for the demonstration and we
do not use this model in our following calculations. In order to calculate
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〈rn+m cos (n−m)φ〉 we use PHOBOS MC-Glauber and MC-KLN models of
initial state in the following sections.

5.5.2 Calculations of a4/b4 parameter with MC-Glauber and MC-
KLN models

After we have got the values of the correlations defined in the section 5.3, we
need to calculate the parameter a4/b4. For this goal we combine experimental
data on measured correlations with the calculations of these correlations from
independent source model which were in previous sections.

In this method the experimental data on c{2, 2,−4}(Npart) can be fit with
the function (5.23) and use the a4/b4 as a parameter.

We represent the fit function in the following way

(b4/a4)L224√
1 + (b4/a4)2L2

224

(Npart) (5.53)

or in general case

(b4/a4)L224 + C224√
1 + (b4/a4)2L2

224 + 2(b4/a4)L224C224

(Npart) , (5.54)

where

L224 =
λ224

(b4/a4)
=

√
〈E2

2E
∗2
2 〉√

〈E4E∗4〉
. (5.55)

The behavior of the hydrodynamic response coefficients a4 and b4 can be
expressed as a function of the size of the system R ≡

√
〈r2〉. Thus, from the

eq. (1.40) the hydrodynamic response coefficients decreases as ∝ 1/R [195] due
to the viscous correction. This viscous correction is found to be more important
for the linear response a4. Thus, the ratio of nonlinear to linear response can
be written in the following way:

(b4/a4) =
β4(

1− α4√
〈r2〉

) . (5.56)

In the eqs. (5.53) and (5.54) the parameters (b4/a4), L224 and C224 are in
fact functions of Npart. In order to make a fit of the experimental data with
one of the functions (5.53) or (5.54), one needs to find a form for the functions
L224(Npart) and C224(Npart). We do this by the fit of the numerical points got
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Figure 5.2: Comparison of experimental data of c{2, 2,−4} (blue circles) with the fit made
with MC-Glauber (yellow diamonds) and MC-KLN models (purple squares) with the help of
independent source model calculations.

from MC-Glauber or MC-KLN models with the polynomial functions. The
value

√
〈r2〉 in (5.56) is also dependent on Npart and is fitted as well with a

polynomial function. These functions then can be used in the fit models (5.53)
or (5.54). The fit functions have only two parameters α4 and β4. The resulting
fit is shown in fig. 5.2.

The parameters α4 and β4 extracted from the fit allow us to construct the
function for the a4/b4(Npart). The resulting values are shown in fig. 5.3. In
this figure we can see that the values of a4/b4 are different for MC-Glauber and
MC-KLN models. These models give different prediction for 〈E2

2E
∗2
2 〉, thus the

MC-KLN gives higher values, so the value of a4/b4 is also higher.
The extracted values of a4/b4 for the CGC model are of the same order

of magnitude as the values obtained from the hydrodynamic calculations by
Teaney and Yan [196].

5.6 Correlations for c{2, 3,−5} in the Gaussian model

In this section we present similar calculations for the measure 3-event plane
correlation c{2, 3,−5}.

The general formulas calculated within the independent source model for-
malism are presented in the Appendix.
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Figure 5.3: a4/b4 extracted from the fit, for MC Glauber (yellow diamonds) and MC-KLN
models (purple squares).

Here we present the expressions for cumulants in the Gaussian model. The
expressions which we get within this model demonstrate the usefulness of the
cumulant formalism, thus one gets E{2, 3,−5} = 0.

E{5,−5} =
(120〈r2〉5)
〈r5〉2N

, (5.57)

E{3,−3} =
(6〈r2〉3)
〈r3〉2N

, (5.58)

E{2, 3,−2,−3} =
(6ε2

s〈r2〉3)
〈r3〉2N

, (5.59)

E{2, 3,−5} = 0 , (5.60)

λ235 =

√
ε2s〈r2〉3
〈r3〉2N

2
√

5
√

〈r2〉5
〈r5〉2N

, (5.61)

C235 = 0 . (5.62)

where εs and 〈r2〉 are defined by eqs. (5.45) and (5.46).
In the following sections these values are calculated within PHOBOS MC-
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Glauber model.

5.6.1 Calculation of a5/b5 parameter with MC-Glauber model

In this section we do the same fit procedure as for a4/b4 parameter. Thus, we
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Figure 5.4: Comparison of experimental data of c{2, 3,−5} (blue circles) with the fit made
with MC-Glauber (yellow diamonds) with the help of independent source model calculations.
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Figure 5.5: a5/b5 extracted from the fit with MC-Glauber model.



CHAPTER 5. EVENT-PLANE CORRELATIONS 79

choose the fit function in the following way:

(b5/a5)L235√
1 + (b5/a5)2L2

235

(Npart) , (5.63)

or in general case

(b5/a5)L235 + C235√
1 + (b5/a5)2L2

235 + 2(b5/a5)L235C235

(Npart) , (5.64)

where we denote

L235 =
λ235

(b5/a5)
=

√
〈E2E3E∗2E

∗
3〉√

〈E5E∗5〉
. (5.65)

The resulting fit is shown in fig. 5.4.
As in the case with a4 and b4, we assume the following dependence on the

size of the system for the coefficients a5 and b5:

(b5/a5) =
β5(

1− α5√
〈r2〉

) . (5.66)

The extracted function of a5/b5(Npart) is presented in fig. 5.5. These values
are in a good agreement with the hydrodynamic predictions by Teaney and
Yan [196].

5.6.2 Verification of the independent source model.
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Figure 5.6: E4

√
Npart(Npart), E5

√
Npart(Npart) and E3

√
Npart(Npart) with MC-Glauber model

One of the main statements of the independent source model is that all
the cumulants are ∝ 1√

Npart
. In order to check this statement we compute

E4

√
Npart(Npart), E5

√
Npart(Npart) and E3

√
Npart(Npart). In this calculations

we used PHOBOS MC-Glauber model as the initial state model for the cumu-
lants. The resulting functions are presented in figs. 5.6.
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We expect these values to be close to a constant. In these figures we see
that these values are approximately constant in the low centrality range, so the
independent source model is considered reliable.

5.7 Predictions for the 4-particle correlation c{2,−3,−4, 5}.

In this section we propose a prediction for the possible future measurement of
4-particle correlation c{2,−3,−4, 5} = 〈cos (2Φ2 − 3Φ3 − 4Φ4 + 5Φ5)〉.

We assume that

c{2,−3,−4, 5} =
c{2, 2,−4}c{2, 3,−5}

√
〈E2〉4

〈E2
2〉

. (5.67)
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Figure 5.7: Prediction of 〈cos (2Φ2 − 3Φ3 − 4Φ4 + 5Φ5)〉 with MC-Glauber model.

Figure 5.8: Prediction of 〈cos (2Φ2 − 3Φ3 − 4Φ4 + 5Φ5)〉 (Npart) from the AMPT model, from
[20] (blue squares: calculations made with SP method, green circles: calculations made with
EP method)
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Here c{2, 2,−4} and c{2, 3,−5} are 2-particle and 3-particle correlations

measured by ATLAS and the values of
√
〈E2〉4 and

〈
E2

2

〉
can be calculated

within some model of initial state. As the model of initial state here we choose
PHOBOS MC-Glauber model. The resulting prediction is shown in fig. 5.7.

These predictions are consistent with the predictions made within AMPT
model [20] with the SP method, see fig. 5.8.
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Conclusions

In this thesis we were studying the physics of anisotropic flow in heavy-ion col-
lisions. Anisotropic flow characterizes the collective expansion as the response
to the fluctuating initial state. A relativistic hydrodynamics is used in order
to describe the evolution of the fluid created in the heavy-ion collision. Dur-
ing its evolution the fluid turns into independently emitted outgoing particles.
The azimuthal distribution of produced particles is characterized by a Fourier
distribution with the flow coefficients vn

dN

dφ
=
N

2π

(
1 + 2

∞∑
n=1

vn cosn(φ−Ψn)

)
, (6.68)

where Ψn are the reference angles of harmonics n.
In the first chapter of this thesis we gave a general introduction which

includes a historical review on the heavy-ion physics and recent theoretical and
experimental approaches.

In the second chapter we present the first measurements of the Fourier
coefficient v1, called directed flow. For this goal we used the data on two-
particle correlations Vn∆ from ALICE collaboration. These correlations can be
represented as the product of two single-particle flow coefficients

Vn∆ = vanv
b
n , (6.69)

where a and b are two particles. It turns out that for the case n = 1 this
factorization does not work and one needs to take into account an additional
term due to the momentum conservation. Thus the two-particle correlation
reads

V1∆ = va1v
b
1 − kpat pbt , (6.70)

where k is the momentum conservation coefficient.
In order to extract v1 we fit the experimental data V1∆ which represent a

N×N matrix by the right side of the equation (6.70) with N+1 parameters: N
parameters v1 and one parameter k, where N is the number of pt bins. The val-

83
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ues of v1 extracted as the parameter of the fit, thus were the first measurements
of rapidity-even directed flow at the LHC. Later these results were confirmed
by the ATLAS collaboration.

In the third chapter we present the first viscous hydrodynamic calculations
of the directed flow v1. For this goal we use 2+1D viscous hydrodynamic model
with the optical Glauber model for the initial state. As far as the initial profile
of the optical Glauber model is symmetric and smooth it had to be deformed
in order to create the dipole asymmetry which causes the directed flow. With
the viscous hydrodynamic calculations we have found that v1 has a weaker
dependence on viscosity than v2 and v3. In this chapter we also present the
predictions of the directed flow at RHIC. These results were later confirmed by
the measurements at RHIC.

In the fourth chapter we focus on the initial state models. The initial
conditions are poorly constrained, so there is a number of models of initial state.
We propose two ways to constrain the models of initial state by using anisotropic
flow data. In the first part of this chapter we constrain the models of initial
state by using v1 flow data. Directed flow v1 is found with a good approximation
to be proportional to the initial dipole symmetry ε1. The following equation
can be written:

vLHC1 =

(
v1

ε1

)
h

εtune1 . (6.71)

In order to fit the left part of the equation which represents experimental data
extracted in Chapter 2, with the right part of the equation, one can tune the
value εtune1 .

(
v1
ε1

)
h
are the values calculated from hydrodynamics as shown in

Chapter 3. By tuning the coefficient εtune1 one can fit the experimental values
at low pt and at high pt. The corresponding values of εtune1 are considered as
upper and lower bounds on the actual values of ε1. Calculating the values of
ε1 with different Monte Carlo models of initial state one can compare them
with the allowed region and thus exclude or constrain these models. The fact
that v1 is weakly dependent on viscosity allows us to put a constrain on some
models of initial state, because the created band is rather narrow. However,
the constraints provided by this method are not strong enough. In the second
part of the chapter we propose more strong constraints on the models of initial
state by using v2 and v3 data. In this method we perform a combined analysis
of v2 and v3 using viscous hydrodynamics. Elliptic and triangular flow are
proportional to the elliptic and triangular asymmetry respectively, which reads
as vn = κεn, n = 2, 3, where κ is the linear response in harmonic n. Combining
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experimental values with hydrodynamic calculations we extract the values ε2

and ε3 in the following way √
〈ε2
n〉 ≡

√
〈(vn)2〉
κn

, (6.72)

where 〈(vn)2〉 is the measured rms value of integrated flow, average is taken
over collision events. The coefficient κn = (vn/εn)hydro is calculated in hydro-
dynamics. This way we are able to extract the rms values of εn. By varying free
parameters in the hydrodynamic calculations, we have obtained range of ε2 and
ε3 values. These values placed in the (rms ε2, rms ε3) plane create a band of
allowed values. After calculating the values of rms ε2 and rms ε3 in the models
of initial state, we put them on the (rms ε2, rms ε3) plane and constrain models
of initial state. This method could be used as a test by any group which has a
Monte Carlo model.

The fifth chapter, prospects for initial state studies were given. In this
chapter, we perform calculations of event-plane correlations recently measured
by the ATLAS collaboration. In order to study these correlations one needs a
model for the initial state and a model for the hydrodynamic response. In our
study we used the independent source model proposed by Ollitrault, Luzum
and Bhalerao and the cumulant approach proposed by Teaney and Yan. In
the cumulant approach the medium response is represented as a sum of linear
and non-linear order responses. We analyze two correlations, c{2, 2 − 4} =
〈cos 4(Φ2−Φ4)〉 and c{2, 3,−5} = 〈cos(2Φ2+3Φ3−5Φ5)〉. The method provides
the ratio of linear over non-linear response. The values are in agreement with
the predictions from hydrodynamics. In this chapter we also propose a simple
method for a prediction of the possible future measurement of the 4-particle
correlation c{2,−3,−4, 5} = 〈cos(2Φ2 − 3Φ3 − 4Φ4 + 5Φ5)〉, the predicted
values are similar to the predictions made with the AMPT model.

In this thesis, we have performed a full analysis of the first five harmonics vn,
n < 6. This analysis allowed us to put constraints on the initial state models.
The future of the studies of the initial state is connected with the analysis of
event-plane correlations. We hope that these studies could shed light on initial
fluctuations and the hydrodynamic expansion.
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Appendices
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Cumulants calculations

Cumulants for c{2, 2,−4} correlation

Here we present the general formulas for cumulants, calculated within the cumu-
lan expantion formalism and within the independent source model. The values
presented here and used in the Chapter 5. Later they are calculated within
Gauss, MC-Glauber and MC-KLN models.

The following expressions are calculated with the formulas for cumulants
within the independent source model formalism:

E1e
iΦ1 = E1 = −{(z − δz)

2(z̄ − δz̄)}
{r3}

' −
δz2z̄ − 2 〈zz̄〉 δz −

〈
z2
〉
δz̄

〈r3〉
, (A.73)

E2e
2iΦ2 = E2 = −

〈
z2
〉

+ δz2 − δ2
z

〈zz̄〉+ δzz̄ − δzδz̄
, (A.74)

E3e
3iΦ3 = E3 = −

δz3 − 3
〈
z2
〉
δz − 3δz2δz

〈r3〉
, (A.75)

E4e
4iΦ4 = E4 = −

〈
z4
〉

+ δz4 − 3
〈
z2
〉2 − 6

〈
z2
〉
δz2 − 3δ2

z2 + 12
〈
z2
〉
δ2
z − 4δz3δz

〈z2z̄2〉+ δz2z̄2 − 2δz2z̄δz̄ + 〈z2〉 δ2
z̄ − 2δzz̄2δz + 4 〈zz̄〉 δzδz̄ + 〈z̄2〉 δ2

z̄

,

(A.76)

E5e
5iΦ5 = E5 = −

δz5 − 5
〈
z4
〉
δz − 10

〈
z2
〉
δz3 + 30

〈
z2
〉2
δz − 5δz4δz − 6

〈
z2
〉
δz2δz + δz2δz3

〈r5〉
,

(A.77)

where
δf ≡ {f} − 〈f〉 (A.78)

for the event-by-event fluctuations, and {...} denotes an average over the trans-
verse plane in a single event:

{f(x, y)} ≡
∫
f(x, y)ε(x, y)dxdy∫

ε(x, y)dxdy
. (A.79)
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We use complex coordinates z = x+ iy and z̄ = x− iy. We replace reiφ by
z − δz in order to take into account the recentering correction.

Two-point averages are computed as following:

〈δfδg〉 =
〈fg〉 − 〈f〉 〈g〉

N
(A.80)

We use the following equations:

〈znz̄m〉 = 0, n−m− odd (A.81)
〈znz̄m〉 =

〈
rn+m cos ((n−m)φ)

〉
, n−m− even, (A.82)

Thus, we get following equations

E{2,−2} = ε2
s +

〈
r4
〉

+ 3ε2
s

〈
r4
〉

+ 4εs
〈
r4 cos 2φ

〉
〈r2〉2N

(A.83)

E{2, 2,−2,−2} =
ε2
s(2(2 + 5ε2

s)
〈
r4
〉

+ 16εs
〈
r4 cos 2φ

〉
+ 2

〈
r4 cos 4φ

〉
+ ε2

s

〈
r2
〉2
N)

〈r2〉2N
(A.84)

E{4,−4} =
1

〈r4〉4N
(−36ε6

s

〈
r2
〉6 〈

r4
〉
− 6

〈
r4
〉2 〈

r4 cos 4φ
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Denoting λ224 and C224 in the following way
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and the value of C224
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Cumulants for c{2, 3,−5} correlation

Here we perform the calculations of cumulants which we need in order to cal-
culate c{2, 3,−5} correlations.
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1CEA, IPhT, Institut de physique théorique de Saclay, F-91191 Gif-sur-Yvette, France
2CNRS, URA2306, IPhT, Institut de physique théorique de Saclay, F-91191 Gif-sur-Yvette, France

(Received 6 March 2012; published 19 June 2012)

We analyze published data from the ALICE Collaboration in order to obtain the first extraction of the

recently proposed rapidity-even directed flow observable v1. An accounting of the correlation due to the

conservation of transverse momentum restores the factorization seen by ALICE in all other Fourier

harmonics and thus indicates that the remaining correlation gives a reliable measurement of directed flow.

We then carry out the first viscous hydrodynamic calculation of directed flow, and show that it is less

sensitive to viscosity than higher harmonics. This allows for a direct extraction of the dipole asymmetry

of the initial state, providing a strict constraint on the nonequilibrium dynamics of the early-time system.

A prediction is then made for v1 in Au-Au collisions at RHIC.

DOI: 10.1103/PhysRevLett.108.252302 PACS numbers: 25.75.Ld, 24.10.Nz

Introduction.—Azimuthal correlations between particles
emitted in heavy-ion collisions are a useful observable to
probe the behavior of these systems [1]. Specifically, one
measures the Fourier coefficient [2]

Vn� � hcosn�’i; (1)

where �’ is the relative azimuthal angle between a pair of
particles, and h� � �i denotes an average over pairs and
collisions. The long-range part of this correlation (defined
by a rapidity gap between the pair) is mostly generated by
collective, anisotropic flow of the strongly coupled matter
created in the collision [3].

The most studied Fourier component is V2� [4–6], cor-
responding to elliptic flow [7]. Recently it was realized that
event-by-event fluctuations [2] generate a whole series of
harmonics. This has triggered detailed analyses of Vn� for
n ¼ 3–6 [8–13].

Neglected in these analyses is the first Fourier harmonic
V1�. The observed V1� is smaller than V2� and V3� [3,10],
and receives a sizable contribution from global momentum
conservation [14,15], which makes its interpretation less
straightforward. Fluctuations are expected to create a di-
pole asymmetry in the system [16], resulting in a specific
directed flow pattern, with high transverse momentum
particles flowing in the direction of the steepest gradient
and low pT particles flowing in the opposite direction.
Hints of this directed flow have been extracted from pub-
lished V1� data at the Relativistic Heavy-Ion Collider
(RHIC) by two of the authors [17], and its magnitude
and pT-dependence were shown to be in agreement with
ideal hydrodynamic calculations [18]. Note that this quan-
tity is distinct from the directed flow observable that has
been obtained in the past from measurements employing a
rapidity-odd projection [19]. That rapidity-odd v1 gives a
negligible contribution to V1� near midrapidity and repre-
sents different physics [20].

In this Letter, we show that data on V1� obtained by
ALICE [10] can be explained by the superposition of two
effects: global momentum conservation and directed flow.
This allows for the first reliable measurement of directed
flow at midrapidity. We then carry out the first viscous
hydrodynamic calculation of directed flow, and show that
these data can be used to constrain the initial dipole asym-
metry of the system for each centrality, putting strong
constraints on models of initial conditions.
Directed flow from dihadron correlations.—The stan-

dard picture of heavy-ion collisions is that an approxi-
mately thermalized fluid is created, which eventually
breaks up into particles. Particles are emitted indepen-
dently in each event, with an azimuthal distribution that
fluctuates from event to event. This yields a two-particle
correlation which factorizes into the product of two single-
particle distributions [21]:

Vn�ðpt
T; p

a
TÞ ¼ vnðpt

TÞvnðpa
TÞ; (2)

where the superscripts t and a refer to trigger and associ-
ated particles that can be taken from different bins in
transverse momentum, and vnðpTÞ is the anisotropic flow
coefficient. Note that it is possible for the event-averaged
correlation to not factorize even if independent emission
holds in each event [21], and it is also possible for intrinsic
(‘‘nonflow’’) pair correlations to factorize [22]. However,
flow is currently the only known mechanism that produces
a factorized correlation in the range of transverse momen-
tum studied here (the bulk of particles). This factorization
has been tested in Pb-Pb collisions at the Large Hadron
Collider (LHC) [10,12]: this is done by fitting the left-hand
side of Eq. (2), which is a N � N symmetric matrix for
N bins in pT , with the right-hand side of Eq. (2), using the
N values of vnðpTÞ as fit parameters. The ALICE
Collaboration has shown that, while the data do factorize
for n > 1, this factorization breaks down for n ¼ 1 [10].
This is not surprising since there is expected to be an
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additional long-range correlation induced by momentum
conservation that only affects the first harmonic [14]. The
constraint that all transverse momenta add up to 0 yields a
back-to-back correlation between pairs, which increases
linearly with the transverse momenta of both particles.
This correlation adds to the correlation from flow:

V1�ðpt
T; p

a
TÞ ¼ v1ðpt

TÞv1ðpa
TÞ � kpt

Tp
a
T: (3)

(Note that the nonflow correlation also factorizes in this
particular case [22], but the sum does not.) Table I com-
pares the quality of the fit to V1� using Eqs. (2) or (3).
Adding one single fit parameter k tremendously increases
the quality of the fit for all centrality windows. We have
checked that the values of the fit parameters depend little
on the pT window. However, the quality of the fit decreases
as higher pT particles are included, as observed for other
harmonics [10]. Nevertheless, we include the entire range
of values as a systematic uncertainty in Table I, varying the
lower pT cutoff between 0.25 and 0.75 GeV, and the upper
cutoff between 2.5 and 15.0 GeV. Similarly, we use this
procedure to estimate a systematic uncertainty in v1 (see
Fig. 2 below).

Next, we check whether the value of k from the fit is
compatible with the value expected from momentum con-
servation. Assuming for simplicity that momentum con-
servation is the only source of correlation, one obtains [14]
k ¼ hP p2

Ti�1, where the sum runs over all particles emit-
ted in one event, and the angular brackets denote an
average over events in the centrality class. Since experi-
ments measure only charged particles in a restricted phase-
space window, only a rough estimate of this quantity can be
made, by extrapolating from existing data. We have used
the preliminary identified particle pT spectra from ALICE
at midrapidity [23], and extrapolated them outside the pT

acceptance of the detector using Levy fits [24]. In order to
extrapolate to all rapidities, we have assumed for simplic-
ity that the pT spectra are independent of rapidity, and we
have used the total charged multiplicity estimated by the
ALICE Collaboration [25]. Neutral particles were taken
into account assuming isospin symmetry, and the contri-
bution of particles heavier than nucleons was neglected.

The resulting estimate is shown in the last column of
Table I. The fit result in general has the correct size and

increases with percent centrality, as expected. The central-
ity dependence is steeper than expected from our rough
estimate, however—the fit value is larger than the esti-
mated value for the most peripheral bin, while it is sig-
nificantly smaller for central collisions. We cannot explain
this, but overall the agreement is reasonable, and a dis-
crepancy in k of this size has a very small effect on the
extracted directed flow; the extracted directed flow curves
with k fixed to the estimated values were also included in
the systematic error band in v1, but only have a small effect
on the two most central bins.
It has been suggested that the correlation from momen-

tum conservation could be larger than our estimate because
of approximate conservation of transverse momentum
within smaller subsystems of the entire collision sys-
tem—specifically rapidity slices of roughly unit extent
[26,27]. However, we see no evidence here for such an
enhancement.
Thus, by taking into account the only obvious nonflow

correlation, the factorization seen in higher harmonics is
restored, and we can take the resulting v1ðpTÞ as a reliable
measurement of directed flow v1 (presented in Fig. 2
below).
Results of hydrodynamic calculations.—Relativistic vis-

cous hydrodynamics has been shown to successfully re-
produce vn for n ¼ 2, 3, 4 [28]. Here, we present the first
viscous hydrodynamic calculation for directed flow, v1. In
hydrodynamics, v1 and the corresponding event-plane
angle �1 are defined by v1e

i�1 � hei’i, where angular
brackets denote an average over the momentum distribu-
tion at freeze-out [29]. A collision of identical nuclei at
midrapidity has ’ ! ’þ � symmetry except for fluctua-
tions; hence, v1 at midrapidity is solely due to event-by-
event fluctuations in the initial state.
In event-by-event ideal hydrodynamic calculations, v1

was found [18] to be approximately proportional to the
dipole asymmetry of the system "1 defined as [16]

"1 � jfr3ei�gj
fr3g : (4)

where f� � �g denotes an average value over the initial
energy density after recentering the coordinate system
(frei�g ¼ 0).
Here, in order to make a systematic study, we use a

smooth, symmetric density profile which we deform to
introduce a dipole asymmetry of the desired size and
orientation. Specifically, our calculation is a 2þ 1 dimen-
sional viscous hydrodynamic calculation which uses as
initial condition the transverse energy density (�ðr;�Þ)
profile from an optical Glauber model [30], which is
deformed in a way analogous to the previous study of v3

and higher harmonics in Ref. [31]:

�ðr; �Þ ! �ðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � cosð���1Þ

q
; �Þ; (5)

TABLE I. From left to right: �2 per degree of freedom of the
fit to the ALICE V1� [10] (restricted to pT < 4 GeV=c) using
Eq. (2), and using Eq. (3); value of k from the fit; estimated value
of k from momentum conservation in units of 10�5ðGeV=cÞ�2.

Centrality �2, Eq. (2) �2, Eq. (3) k [10�5 GeV�2] hP p2
Ti�1

0%–10% 6 2.0 2:5þ1:1
�0:3 6.1

10%–20% 16 1.7 4:7þ1:3
�0:4 8.8

20%–30% 45 2.1 10:2þ2:1
�0:5 13

30%–40% 75 2.2 20:6þ3:2
�1:6 21

40%–50% 126 2.4 41:5þ4:7�3:0 35
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where � is a small parameter. Both v1 and "1 are propor-
tional to � for � � 1. For noncentral collisions, v1 de-
pends mildly on the orientation of the dipole asymmetry
�1 with respect to the impact parameter. Our results are
averaged over �1.

Figure 1 presents the ratio v1="1 as a function of the
transverse momentum pT for central collisions. Unlike
higher-order harmonics, which are usually positive for all
pT , v1 changes sign. The reason is that the net transverse
momentum of the system is zero by construction, which
implies hpTv1ðpTÞi ¼ 0: low-pT particles tend to flow in
the direction opposite to high-pT particles.

The harmonics vn tend to probe smaller length scales
with increasing n, and as a result are expected to have an
increasing sensitivity to viscosity. Our results show that,
indeed, v1 is less sensitive to viscosity than v2 [32] and
higher harmonics [28,31]. This insensitivity to viscosity
combined with the approximate proportionality v1 / "1
provides a unique opportunity to place a direct constraint
on the dipole asymmetry of the early-time system.

In a realistic Pb-Pb collision,"1 varies from event to event.
The contribution of directed flow to V1� scales like "21.
Therefore the experimentally measured v1 scales like the
root-mean-square (rms) value of "1 in the centrality bin. As
we shall see below, there is a wide range of predictions for
this quantity. With these new data we can now quickly
discernwhich are compatiblewith experiment by identifying
an allowed range of values for the rms dipole asymmetry.

Figure 2 displays v1 versus pT extracted from ALICE
correlation data using Eq. (3). The magnitude and pT

dependence of v1 are similar at LHC and at RHIC [17],
and the mild centrality dependence, reminiscent of v3

[8,9], is expected since both are generated purely from
fluctuations in the initial state.

The pT dependence of v1 in LHC data bears a striking
resemblance to that predicted by hydrodynamics (Fig. 1). In a
given centralitywindowand for a givenvalue of theviscosity,
one can tune the value of the dipole asymmetry "1 in the
hydrodynamic calculation so as to obtain reasonable

agreement with data. If one chooses to match data at the
lowest pT , calculation overpredicts data at high pT .
Conversely, if onematches data at highpT , calculation under-
predicts data at low pT . The corresponding values of "1 can
be considered upper and lower bounds on the actual value.
The values of �=s (the ratio of shear viscosity to entropy

density) implied by comparisons of elliptic flow data to
hydrodynamic calculations all lie in the range 0<�=s <
0:24 [30,33,34]. Assuming that �=s lies in this range, we
can extract an allowed range for the dipole asymmetry,
using the extremal values of �=s and "1 that still give a
reasonable fit to data (the extremal curves used are shown
in Fig. 2).
Figure 3 displays the allowed values of "1 as a function

of centrality, together with the rms "1 from various Monte
Carlo models of initial conditions. The allowed range
assuming 0:08<�=s < 0:16, representing the most com-
mon values extracted from v2 data, are also shown in a
darker band, to illustrate the small effect of viscosity. Both
the order of magnitude and the centrality dependence of "1
from Monte Carlo models resemble the allowed values
from LHC data. However, there are significant differences
between the models. LHC data already exclude DIPSY
[35] above 10% centrality, and the Phobos Glauber model
[36] as well as a recent improved MCKT model with KNO
fluctuations [37] over the entire centrality range.
Note, however, that since hydrodynamics is expected to

be more reliable at low transverse momentum, the actual
value of "1 is most likely to lie very close to our upper
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FIG. 2 (color online). v1ðpTÞ in Pb-Pb collisions at 2.76 TeV
extracted from correlation data [10], in various centrality
windows. The shaded band represents the systematic uncertainty
from the choice of pT window used for the fit. The curves are
hydrodynamic calculations, where the value of "1 has been
adjusted so as to match the data from above or below, that were
used to obtain the upper and lower bound, respectively, in Fig. 3.
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FIG. 1 (color online). Directed flow v1, scaled by the initial
dipole asymmetry "1, in a central Pb-Pb collision at 2.76 TeV, for
different values of the shear viscosity to entropy ratio �=s.
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bound. Thus it is possible that the two models with the
largest dipole asymmetry may only need a slight tuning to
achieve a correct value, while the value from the others
may in fact be too low. We prefer here to be conservative in
our claimed region of allowed values and leave it to future
study for more stringent conclusions.

Models such as those presented here do not in general
predict a significant change in dipole asymmetry with
collision energy. By extracting a best value of "1 from
these LHC data combined with hydrodynamic calculations
of lower energy collisions, we can make predictions for
Au-Au collisions at RHIC assuming little change in the
average dipole asymmetry in a centrality bin. Since the
change of "1 with collision energy predicted by each
current Monte Carlo model is much smaller than the range
spanned by the various models, this prediction is more
reliable than any obtained by assuming a particular model
for the initial conditions. These are presented in Fig. 4. The
value of "1 at LHC is obtained by taking the best fit to the
experimental v1 for pT < 1:5 GeV=c, which is the range
where hydrodynamics agrees best with data [29]. Our
calculations use �=s ¼ 0:16 both at LHC and at RHIC,
but the extrapolation from LHC to RHIC depends very
weakly on the assumed value of �=s [30].

These predictions are compatible with the attempted
extraction of v1 [17] from a much more limited set of
correlation data at 20%–60% centrality released by the
STAR Collaboration, but a dedicated analysis by one of
the experimental collaborations at RHIC will allow for a
much more precise test, including centrality dependence.

Conclusions.—We have shown that the first Fourier
component of the two-particle azimuthal correlation

measured at LHC, V1�, can be explained by collective
flow, much in the same way as higher harmonics, after
the correlation from momentum conservation is accounted
for. We have thus obtained the first measurement of di-
rected flow, v1, at midrapidity at the LHC. This experi-
mental result was compared with the first viscous
hydrodynamic calculation of directed flow. v1 was found
to have a weaker dependence on viscosity than v2 and v3,
which allows for the first time a tight constraint to be
placed directly on the geometry and fluctuations of the
early-time system, and which rules out certain current
theoretical models. The extracted values of the dipole
asymmetry of the initial conditions then allow for predic-
tions to be made for directed flow at midrapidity in lower-
energy collisions at RHIC, which were presented.
For providing experimental data from the ALICE
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We carry out a combined analysis of elliptic and triangular flow data using viscous relativistic hydrodynamics.
We show that these data allow us to put tight constraints on models of the early dynamics of a nucleus-nucleus
collision. Specifically, the rms values of the initial ellipticity ε2 and the initial triangularity ε3 are constrained
to lie within a narrow band for each centrality. We use these constraints as a filter for existing Monte Carlo
models of initial state, and provide a simple test that can be performed on any candidate model to determine its
compatibility with data.
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I. INTRODUCTION

Anisotropic flow [1] in heavy-ion collisions is understood
as the hydrodynamic response [2] of the strongly interacting
medium to a spatial anisotropy created in the early stages
of the collision. Elliptic flow, v2 [3,4], originates from the
almond shape of the overlap area between the colliding
nuclei [5]. Similarly, triangular flow, v3, is generated by
fluctuations of the initial density profile which have a triangular
shape [6].

It has long been recognized that the extraction of transport
coefficients of the strongly-coupled quark-gluon plasma (in
particular, its viscosity over entropy density ratio η/s [7])
from elliptic flow data is hindered by the poor knowledge of the
initial geometry [8]. Specifically, different models of the initial
state, supplemented with viscous hydrodynamic evolution, can
be made compatible with experimental elliptic flow data at the
expense of tuning η/s. More recently, a large number of new
flow observables have been measured, which can add extra
nontrivial constraints. For example, it was noticed that, while
either elliptic flow or triangular flow data could be reasonably
fit individually by tuning the viscosity in a hydrodynamic
calculation, only some models of the initial state could be
made compatible with both. Thus, some models can actually
be ruled out [9,10].

The goal of this paper is to propose a systematic approach
for constraining models of initial conditions using anisotropic
flow data. Early work in this direction was done by the ALICE
Collaboration, which was able to place constraints on the
relative centrality dependence of the initial eccentricity for
very central collisions at the Large Hadron Collider (LHC),
without having to perform hydrodynamic calculations [11].
Here, by combining hydrodynamic simulations with data
from Au-Au collisions at

√
sNN = 0.2 TeV [10] and Pb-

Pb collisions at
√

sNN = 2.76 TeV [11], we are able to
place strong constraints at all centralities. We then use these
constraints as a filter for existing models of initial conditions,
and we provide a simple test that can be applied to any future
model to quickly and easily determine whether it is compatible
with these data.

II. METHODOLOGY

The observable we choose for this study is the inte-
grated [12] anisotropic flow vn, i.e., averaged over the
particle transverse momentum. The reason is twofold: First,
hydrodynamics is meant to describe the bulk features of
particle production, therefore its most robust predictions are
for bulk observables. Second, differential anisotropic flow
(i.e., its relative dependence on transverse momentum) does
not depend much on the initial state:1 predictions of ideal
(nonviscous) hydrodynamics for the differential vn are to
some extent universal [9,15], while viscous corrections are
determined by the late stages of the collision [16,17]. Therefore
one does not lose essential information on the initial state by
considering only the integrated anisotropic flow.

We only use two out of the six Fourier harmonics which
have been measured [18], namely v2 and v3. Again, the
reason is twofold: First, they are the largest harmonics
for all centralities, hence they are determined with better
accuracy. Second, in these two harmonics, the hydrodynamic
response to the initial state is dominated by simple linear
response [19]. Specifically, elliptic flow v2 in hydrodynamics
is to a good approximation [20] proportional to the participant
ellipticity ε2 [21] and triangular flow is proportional [22] to
the participant triangularity ε3 [6]. εn with n > 1 is generally
defined as [2,23]

εn ≡
∣∣ ∫ rneinφε(r,φ)r dr dφ

∣∣∫
rnε(r,φ)r dr dφ

, (1)

where integration is over the transverse plane in polar
coordinates, and ε(r,φ) denotes the energy density at z ∼ 0.
The system is centered, so that

∫
reiφε(r,φ)r dr dφ = 0.

1Except at high transverse momentum where a granular density
profile yields less anisotropic flow [13] than a smooth density profile.
This effect [14] could be used to study such additional features of
the initial state, but we will see that those features do not affect the
conclusions in this work.
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Linear response is also a reasonable approximation for
v1 [24], with a specific definition of the dipole asymmetry
ε1 [2]. The constraints on the initial state from v1 were studied
in a previous publication [25]. Higher order Fourier harmonics
of anisotropic flow (v4, v5, v6) have a more complicated
relation to initial-state properties because of large nonlinear
terms in the hydrodynamic response [15,26–28].

The linear-response approximation states

vn =
(

vn

εn

)
h

εn, (2)

with n = 2,3, where vn on the left-hand side is the measured
flow in a given collision event. The first factor on the
right-hand side is the hydrodynamic response to the initial
anisotropy [2,9], which is assumed independent of the initial
profile for a given centrality, while the second factor depends
only on the initial state and encodes all information about
event-by-event fluctuations. Experimental data for moments
of the event-by-event v2 and v3 distribution, combined with
hydrodynamical calculations of (v2/ε2)h and (v3/ε3)h, thus
yield the values of the same moments of the initial anisotropies
ε2 and ε3. Here, we use ALICE data inferred from two-particle
correlations [11] and PHENIX data which use an event-
plane method [10]. In practice, both methods yield the root-
mean-square (rms) value of the event-by-event distribution of
vn [29].2 Equation (2) gives

√
〈vn〉2 =

(
vn

εn

)
h

√
〈εn〉2 . (3)

Therefore the constraints we obtain on εn also relate to rms
values.

There are several sources of uncertainties in the hydrody-
namic response: once these uncertainties are taken into ac-
count, the predictions span some region in the (rms ε3,rms ε2)
plane. As we show in Sec. III, this region turns out to be a
narrow band. This puts strong constraints on existing models
of initial conditions, which are scrutinized in Sec. IV.

III. UNCERTAINTIES IN THE RESPONSE

Hydrodynamical modeling [32] consists of three stages. It
first uses as input an initial condition for the energy-momentum
tensor of the system at an early stage of the collision, which is
provided by some model of the early dynamics. Second, one
evolves this initial condition through the equations of relativis-
tic hydrodynamics. Finally, the fluid is converted into hadrons.
Every step of this calculation comes with its own uncertainties.
Investigating sources of uncertainty [33] in hydrodynamic
modeling requires one to carry out a large number of numerical
calculations, and the computational effort of a state-of-the-art
calculation can become prohibitively expensive [34]. This cost
can be reduced by orders of magnitude at the expense of a few
simplifying assumptions. For each of the three stages, we now

2The event-plane method gives a result which coincides with the
rms value in the limit of low resolution [30], and the PHENIX analysis
has a low resolution [31].

describe the simplifications which can be made, and identify
the leading source of uncertainty.

1. Initial conditions. Our calculation uses boost-invariant
initial conditions [35]. This amounts to neglecting the rapidity
dependence of correlations due to anisotropic flow, which is
known to be small at LHC energies [18,36] but may be larger
at the Relativistic Heavy Ion Collder (RHIC) [37]. In order to
compute the hydrodynamic response in the second harmonic,
(v2/ε2)h, we parametrize the transverse density with an optical
Glauber model, with an impact parameter that corresponds
to the rms impact parameter of each bin in a Monte Carlo
Glauber calculation. The overall normalization is then set to
match the observed charged multiplicity [38,39]. In a centered
polar coordinate system (r,φ), the optical Glauber profile
has φ → φ + π symmetry for a symmetric collision, hence
ε3 = v3 = 0. In order to compute the response v3/ε3, we
introduce by hand a triangularity by deforming the optical
Glauber profile as follows [9]:

ε(r,φ) → ε(r
√

1 + ε′
3 cos[3(φ − �3)],φ), (4)

where ε′
3 is magnitude of the deformation, and �3 its

orientation. The nonlinear coupling between v2 and v3 [27]
induces a small modulation of v3 with �3, whose relative
magnitude scales like (ε2)3 cos(6�3) (the reaction plane is
chosen along the x axis). We find this dependence to be 1% or
less in all cases: therefore we neglect it and choose �3 = 0 for
all calculations. We have also checked that the dependence of
the ratio (v3/ε3)h on the values chosen for ε′

3 [9] is negligible.
This calculation uses the same values of ε′

3 as [9]. Note that re-
centering the distribution after deformation shifts the center by
a distance proportional to ε2ε3. This in turn results in a decrease
of ε3 of relative order (ε2)2. This recentering correction was
neglected in [9] and the hydrodynamic response was therefore
underestimated by up to 10% for peripheral collisions.

Within our linear-response approximation (2), the hy-
drodynamic response (vn/εn)h is assumed independent of
the fine structure of the initial profile. Event-by-event ideal
hydrodynamic calculations [40] have proven that a such a
“single-shot” calculation with smooth initial condition yields
the same value of (vn/εn)h, within a few percent, as a
calculation with fluctuating initial conditions averaged over
many events, while event-by-event viscous hydrodynamic
calculations show an even stronger correlation between initial
anisotropy εn and vn [19].

In order to estimate quantitatively the dependence of
(vn/εn)h over the initial profile, we use two different definitions
of εn, weighted either with energy density [as in Eq. (1)] or with
entropy density. Both weightings yield approximately equally
good predictors of vn [26]. So any difference in prediction
from one weighting versus the other is an indication of the
size of the uncertainty due to the linear approximation. For
central collisions, the particular deformation that we choose
to create triangular flow, Eq. (4), gives the exactly same value
of ε3 irrespective of whether one weights with entropy or
energy [9]: therefore our calculation is unable to tell the
difference between the two. However, values of ε2 differ for
the optical Glauber model, and we use the resulting difference
in (v2/ε2)h as part of our error bar.
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The thermalization time t0, at which hydrodynamics be-
comes a good approximation [41], is poorly constrained.
Early calculations [42] used to neglect transverse flow for
t � t0 (where t0 is typically of order 1 fm/c). However, the
transverse expansion starts immediately after the collision,
whether or not the system thermalizes. This “initial flow” has
proven essential in understanding interferometry data [43–45].
Furthermore, it is to some extent universal [46] and can be
obtained simply, in a traditional calculation with vanishing
flow at t0, by letting t0 go to unrealistically small values [44].
In order to estimate the uncertainty due to initial flow, we run
two sets of calculations with t0 = 0.5 fm/c and t0 = 1 fm/c;
linearity of initial transverse flow at early times [47] can then
be used to extrapolate to smaller values.

2. Fluid expansion. The main source of uncertainty in
the hydrodynamic evolution itself is the value of the shear
viscosity of the strongly interacting quark-gluon plasma,
which is poorly constrained so far, either from theory [48]
or experiment [33,49]. We take this uncertainty into account
by varying η/s from 0 to 0.24 in steps of 0.04. If η/s is too
large, hydrodynamics itself breaks down [50]. Effects of bulk
viscosity [16,51] on the integrated flow are smaller [52], even
though the bulk viscosity may be large for some values of
the temperature [53]. Second-order corrections [54] have a
negligible effect [8].

3. Hadronic stage. Eventually, the fluid expands and can
be described as a gas of hadrons with collective and thermal
motion. An open question in the description of the hadronic
phase is to what extent hydrodynamics is a valid approach.
Instead, a common approach at RHIC energies was to
couple hydrodynamics to a hadronic “afterburner” simulating
hadronic decays and two-body collisions [55–57]. Although
these afterburners usually have little affect on integrated
properties of unidentified hadrons, this approach has proven
useful for reproducing the elliptic flow and momentum spectra
of identified particles. Hadronic afterburners are also being
implemented at LHC energies [58,59]. Besides, it has been
pointed out that hydrodynamics with bulk viscosity in the
hadronic phase [60] also succeeds in reproducing identified
particle properties [61].

In this paper, we assume for simplicity that hydrodynamics
still applies in the hadronic phase, with a single freeze-out
temperature [42]. When changing the initial time in the
hydrodynamic calculation, we tune the freeze-out temperature
in such a way that the average transverse momentum of charged
particles 〈pT 〉 is unchanged: smaller values of t0 thus imply
larger freeze-out temperatures. We neglect hadronic collisions
below freeze-out, but resonance decays are taken into account.

In viscous hydrodynamics, a significant source of un-
certainty is the momentum distribution at freeze-out, which
deviates from a thermal distribution due to the viscous
correction [62,63]. The momentum dependence of this
viscous correction involves microscopic information about
hadronic cross sections [64]. The quadratic ansatz [62] is
the most commonly used. However, a linear ansatz gives
better agreement with v4 data [65]. In order to estimate the
uncertainty associated with the modeling of freeze-out, we
perform two sets of calculations with the linear and quadratic
ansatz.

FIG. 1. (Color online) Root-mean-square values of (ε2,ε3) im-
plied by hydrodynamic calculations in combination with ALICE
data for the 5% most central Pb-Pb collisions at

√
sNN = 2.76 TeV.

Squares: t0 = 1 fm/c with quadratic freeze-out. Circles: t0 = 1 fm/c

with linear freeze-out. Diamonds: t0 = 0.5 fm/c with quadratic
freeze-out. Closed symbols correspond to energy density weighting,
open symbols to entropy density weighting. For each symbol type, the
7 points correspond to different values of η/s, from 0 to 0.24 (from
left to right) in steps of 0.04. The shaded band is the area between
two curves of the type (5) with C = Cmin and C = Cmax, where the
values of Cmin and Cmax are chosen such that all hydrodynamic points
lie within the band.

The code we use to solve hydrodynamics is the same as
in Ref. [38], with resonance decays taken into account after
freeze-out.

We compute v2 and v3 for outgoing hadrons using similar
experimental cuts as the experimental data that we compare to.
Specifically, the ALICE Collaboration [11] analyzes vn for all
charged hadrons in transverse momentum range 0.2 < pt <
5 GeV/c and pseudorapidity range |η| < 0.8. The PHENIX
Collaboration [10] uses the cuts 0.25 < pt < 4 GeV/c and
|η| < 0.35. Since our model has longitudinal boost invariance,
our results are independent of rapidity. Because of the
difference in rapidity and pseudorapidity, however, the cut
in η must be taken into account in a precision calculation [66].
It typically increases v2 by 3% and v3 by 4%.

An additional subtlety of the ALICE analysis is that the
method uses pair correlations, with a pseudorapidity gap
|�η| > 1 between particles in the pair in order to suppress
nonflow correlations [67]. The analysis thus excludes particles
at |η| < 0.2, and gives more weight to particles near the
boundary |η| = 0.8, since all pairs are weighted identically.
We also take into account this additional cut in �η, which
typically decreases v2 by 0.3% and v3 by 0.4%.

Figure 1 illustrates the effects of several sources of
uncertainty on the root-mean-square values of (ε2,ε3) extracted
from Eq. (3) (for the 5% most central Pb-Pb collisions at
the LHC). Each point represents a hydrodynamic calculation
with different parameters. As the viscosity increases, the
hydrodynamic response (vn/εn)h decreases, therefore the rms
εn increases. The lines drawn in the (ε3,ε2) plane as η/s varies
are well fitted by a power law:

√〈
ε2

2

〉 = C
(√〈

ε2
3

〉)k
, (5)

where k = 0.6, and C is fixed. k is the ratio of the relative
change in v2 to the relative change in v3 when η/s increases.
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The fact that k < 1 expresses that viscosity has a smaller effect
on v2 than on v3.

Other sources of uncertainty in the hydrodynamic predic-
tion result in uncertainties in the coefficient C in Eq. (5).
Switching from the quadratic to the linear freeze-out ansatz has
a very small effect, which is visible only for the largest values
of η/s. Adding initial flow by starting the evolution earlier,
at t0 = 0.5 fm/c, yields more flow for a given value of η/s,
resulting in smaller values of εn. Although this result may seem
natural, it is not trivial as it looks: the freeze-out temperature
is adjusted so as to match the pt spectrum, so that smaller
t0 goes along with earlier freeze-out. Both effects essentially
compensate each other at RHIC energies [8], so that final
results were insensitive to t0. The situation is different at LHC
energies: in general, hydrodynamic results are less sensitive
to the hadronic phase [68] and to the freeze-out temperature,
which results in a stronger sensitivity of εn to initial flow.

FIG. 2. (Color online) Shaded bands are root-mean-square val-
ues of (ε2,ε3) allowed by experimental data in combination with
hydrodynamic calculations, for Au-Au collisions at

√
sNN = 0.2 TeV

(left) [10] and Pb-Pb collisions at
√

sNN = 2.76 TeV (right) [11]
in various centrality windows (from top to bottom). Symbols are
predictions from various models of initial conditions (see text for
details).

TABLE I. Values of the ratio
√

〈ε2
2〉/

√
〈ε2

3〉
0.5

at RHIC. First two
lines: minimum and maximum values allowed by hydrodynamics and
experimental data. Next lines: values predicted by various models.

% centrality 0–10 10–20 20–30 30–40 40–50

minimum 0.36 0.56 0.69 0.75 0.74
maximum 0.41 0.63 0.79 0.90 0.91

MC-Glauber 0.38 0.57 0.69 0.76 0.80
MC-Glauber (Ncoll) 0.44 0.64 0.76 0.81 0.83
MC-Glauber (Npart) 0.34 0.52 0.64 0.73 0.78
MC-KLN 0.49 0.78 0.95 1.03 1.06
MC-rcBK 0.49 0.73 0.87 0.95 0.98
IP-Glasma 0.43 0.76 0.85
DIPSY 0.39 0.59 0.72 0.80 0.84

In general, the takeaway message is that any effect that
causes stronger collective flow tends to increase both ε2 and
ε3 in such a way that the coefficient C in Eq. (5) is almost
unchanged.

In fact, the largest contribution to the thickness of the
uncertainty band comes not from properties of the medium
or physical parameters, but instead from the linear-response
approximation itself: weighting with entropy rather than
energy yields slightly smaller values of ε2, while ε3 remains
the same.

Once all sources of uncertainties are taken into account,
one is left with an allowed region in the (ε2,ε3) plane,
corresponding to an allowed interval for the coefficient C
in Eq. (5). The same procedure can be repeated for other
centrality intervals, and at lower energy. The value k = 0.6
in Eq. (5) gives a good fit for all centralities at LHC, while
k = 0.5 gives a better fit at RHIC. These allowed regions are
displayed as shaded bands in Fig. 2. The uncertainty becomes
larger as centrality percentile increases, which is mostly due
to the difference between energy and entropy weighting. The
minimum and maximum values of C are listed in Tables I and II
for RHIC and LHC, respectively. In the same centrality range,
the allowed band at LHC is slightly higher than at RHIC, but
they overlap.

IV. TESTING INITIAL STATE MODELS

We now use the values of the rms ellipticity ε2 and trian-
gularity ε3 obtained from data and hydrodynamic calculations

TABLE II. Values of the ratio
√

〈ε2
2〉/

√
〈ε2

3〉
0.6

at LHC.

% centrality 0–5 5–10 10–20 20–30 30–40

minimum 0.40 0.58 0.76 0.88 0.94
maximum 0.43 0.65 0.87 1.06 1.13

MC-Glauber 0.39 0.50 0.66 0.78 0.85
MC-Glauber (Ncoll) 0.46 0.61 0.79 0.92 0.96
MC-Glauber (Npart) 0.33 0.42 0.57 0.71 0.80
MC-KLN 0.46 0.73 0.98 1.17 1.25
MC-rcBK 0.48 0.67 0.88 1.04 1.12
IP-Glasma 0.43 0.83 0.97 1.03
DIPSY 0.40 0.58 0.76 0.90 0.95
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as a filter for existing models of the initial state. Since ε3 is
solely created by fluctuations of the initial geometry [6], in
order to be consistent with data there is a trivial requirement
that models take these fluctuations into account—typically
these are Monte Carlo models. The simplest is the Glauber
model [69], where each participant nucleon adds a contribution
to the initial density with Gaussian shape (in x and y)
and width σ = 0.4 fm, a value commonly used in event-
by-event hydrodynamic calculations [20,70,71]. We use the
PHOBOS Monte Carlo Glauber model [72], though other
implementations exist [73,74]. Each participant can be given
equal weight (referred to as “Glauber Npart”), or a weight
proportional to its number of collisions (referred to as “Glauber
Ncoll” scaling), or a linear combination of the two, adjusted to
match observed multiplicity spectra (default version, referred
to simply as “Glauber”) at RHIC [75] and LHC [76].

Another class of initial state models, which generically
go under the name CGC, implement the idea of parton
saturation [77]. They generally predict a larger ε2 [56,78].
In the earliest Monte Carlo implementation [79], which we
denote by MC-KLN, the source of fluctuations is essentially
the same as in Glauber models, resulting in similar values
of ε3. Recent works tend to incorporate additional sources
of fluctuations, at the subnucleonic level [80–83], resulting
in general in larger ε3. Specifically, we test the MC-rcBK
model which incorporates negative binomial fluctuations in
nucleon-nucleon collisions [82], the DIPSY model [81] which
incorporates a BFKL gluon cascade, and the IP-Glasma
model [83] which involves a classical Yang-Mills description
of early-time gluon fields.

In all cases, centrality bins are assigned according to the
total entropy of each Monte Carlo event, which corresponds
closely to the total multiplicity that would be obtained after
hydrodynamic evolution. Since the experimental centrality
selection is also closely related to multiplicity, any systematics
from centrality selection adds a negligible uncertainty and does
not affect any of the following conclusions

Predictions of these initial-state models are plotted in Fig. 2,
together with constrains from data and hydrodynamics. They
are generally in the ballpark for all centralities. All models
predict a strong increase of the rms ε2 with centrality percentile
(as the overlap area between colliding nuclei becomes more
elongated) and a mild increase of the rms ε3, driven by the
decrease in the system size [84]. The evolution from RHIC to
LHC at the same centrality depends on the model. The Glauber
model predicts a decrease of both ε2 and ε3 by a few percent,
which is only partially explained by the increase in system size
from Au to Pb. The MC-rcBK predicts similar values at RHIC
and LHC. Finally, DIPSY predicts a mild increase of ε2 while
ε3 is unchanged.

Equation (5) provides a simple criterion for checking
whether or not a particular model of initial conditions is
compatible with data and hydrodynamics: one computes√

〈ε2
2〉/

√
〈ε2

3〉
k

for this model, with k = 0.5 (0.6) at RHIC
(LHC), and checks whether the result falls within the allowed
band. This comparison is carried out in Tables I and II. One
sees that the MC-KLN is excluded for all centralities at RHIC
and LHC. It has already be noted that this particular model

underpredicts v3 at RHIC if tuned to reproduce v2 [9,10]. The
MC-rcBK model is also excluded at RHIC, and marginally
allowed at LHC. The Glauber model (in its default version with
a superposition of number of participants and number of binary
collisions) falls within the allowed band at RHIC, but is ex-
cluded at LHC, except for the most central bin. DIPSY and IP-
Glasma fall within the allowed region for all centralities, and
so does the Glauber model with pure binary collision scaling.

The statement of whether a particular model of initial
conditions is compatible with data or not turns out to be quite
robust with respect to several ambiguities in the definitions of
ε2 and ε3. In the Glauber model, for instance, one treats each
participant as a “source”, whose width σ is a free parameter.
There is also a similar ambiguity due to the unknown
thermalization time: if one lets the system evolve for some time
t0 before evaluating εn, the values of εn depend on t0. If one
doubles the value of σ , from 0.4 to 0.8 fm [20], ε2 decreases by
6% and ε3 decreases by 9% for central collision, but the ratios
in Tables I and II only change by 2% and 1% respectively.
This can be easily understood. It can be shown [84] that the
smearing of the sources only affects the denominator of Eq. (1),
while leaving the numerator unchanged: thus the only effect of
source smearing is a small increase in the system size, resulting
in smaller εn. Since {r3} ∝ {r2}2/3, εn decreases in such a way
that the ratio ε2/(ε3)2/3 remains constant. Comparing with
Eq. (5), where k is close to 2/3, one sees that smearing results
in a displacement of (ε2,ε3) almost parallel to the allowed
band; more or less smearing does not yield better or worse
agreement with data.

V. CONCLUSIONS

Elliptic and triangular flow, v2 and v3, are determined by
the ellipticity ε2 and triangularity ε3 of the initial density
profile, and by the linear hydrodynamic response to these
initial anisotropies. Experimental data on v2 and v3 thus allow
to constrain the rms ε2 and ε3. By varying unknown parameters
in the hydrodynamic calculations, we have obtained the
corresponding uncertainties on the rms ε2 and ε3 at RHIC
and LHC energies. They are strongly correlated, so that
region allowed by data reduces in practice to a band in the
(rms ε2,rms ε3) plane. We have described a simple test that
can be performed on any candidate model of initial conditions
to determine its compatibility with data.

While the main source of uncertainty in the hydrodynamic
response is the viscosity over entropy ratio η/s, the uncertainty
on the early stages is also significant. Both are correlated, in
the sense that more initial flow can be compensated by a larger
viscosity. For this reason, it is easier to constrain models of
initial conditions than η/s.

We have shown that elliptic and triangular flow data can be
used to exclude existing models of initial conditions. However,
it is very difficult to constrain the granularity [85] of initial
conditions from these data. As exemplified by Monte Carlo
Glauber simulations, changing the source size has a modest
effect on ε2 and ε3. In addition, the resulting change has almost
exactly the same effect as changing the viscosity, which is
unknown. Therefore it is unlikely that the granularity can be
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constrained with just elliptic and triangular flow data as long
as η/s is not precisely known. Other data can be used for
this purpose, such as the detailed structure of two-particle
correlations [14].

The width of our error band is mostly due to the error on
the linear response approximation itself, with the set of initial
conditions that we have tested. Note that the deformation that
we introduce to generate triangular flow, Eq. (4), is singular
at the origin. With realistic initial conditions, one usually
observes a stronger linear correlation between v2 (v3) and ε2

(ε3) than with our smooth initial conditions [19]. Repeating
the calculation with realistic initial conditions could thus help

reduce the width of the error band and yield tighter constraints
on initial-state models.

ACKNOWLEDGMENTS

We thank the ALICE Collaboration for providing exper-
imental data, and Jürgen Schukraft for helpful discussion.
We also thank Christoffer Flensburg and Björn Schenke, for
providing results from the DIPSY and IP-Glasma models. This
work is funded by the European Research Council under the
Advanced Investigator Grant ERC-AD-267258.

[1] S. A. Voloshin, A. M. Poskanzer, and R. Snellings,
arXiv:0809.2949.

[2] D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011).
[3] K. H. Ackermann et al. (STAR Collaboration), Phys. Rev. Lett.

86, 402 (2001).
[4] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 105,

252302 (2010).
[5] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[6] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010); ,82,

039903(E) (2010).
[7] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[8] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008); ,

79, 039903(E) (2009).
[9] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Phys.

Rev. C 82, 034913 (2010).
[10] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 107,

252301 (2011).
[11] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 107,

032301 (2011).
[12] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C 63,

054906 (2001).
[13] R. P. G. Andrade, F. Grassi, Y. Hama, T. Kodama, and W. L.

Qian, Phys. Rev. Lett. 101, 112301 (2008).
[14] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault,

Phys. Rev. C 87, 031901 (2013).
[15] N. Borghini and J.-Y. Ollitrault, Phys. Lett. B 642, 227

(2006).
[16] P. Bozek, Phys. Rev. C 81, 034909 (2010).
[17] U. W. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63,

123 (2013).
[18] G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 86, 014907

(2012).
[19] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen,

Phys. Rev. C 87, 054901 (2013).
[20] H. Holopainen, H. Niemi, and K. J. Eskola, Phys. Rev. C 83,

034901 (2011).
[21] B. Alver et al. (PHOBOS Collaboration), Phys. Rev. Lett. 98,

242302 (2007).
[22] H. Petersen, G.-Y. Qin, S. A. Bass, and B. Muller, Phys. Rev. C

82, 041901 (2010).
[23] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 84,

034910 (2011).
[24] F. G. Gardim, F. Grassi, Y. Hama, M. Luzum, and J.-Y. Ollitrault,

Phys. Rev. C 83, 064901 (2011).

[25] E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. Lett.
108, 252302 (2012).

[26] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault,
Phys. Rev. C 85, 024908 (2012).

[27] D. Teaney and L. Yan, Phys. Rev. C 86, 044908 (2012).
[28] D. Teaney and L. Yan, Nucl. Phys. A 904-905, 365c (2013).
[29] M. Miller and R. Snellings, arXiv:nucl-ex/0312008.
[30] B. Alver, B. B. Back, M. D. Baker, M. Ballintijn, D. S. Barton,

R. R. Betts, R. Bindel, W. Busza et al., Phys. Rev. C 77, 014906
(2008).

[31] S. Afanasiev et al. (PHENIX Collaboration), Phys. Rev. C 80,
024909 (2009).

[32] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[33] M. Luzum and J.-Y. Ollitrault, Nucl. Phys. A 904-905, 377c
(2013).

[34] R. A. Soltz, I. Garishvili, M. Cheng, B. Abelev, A. Glenn,
J. Newby, L. A. Linden Levy, and S. Pratt, Phys. Rev. C 87,
044901 (2013).

[35] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[36] S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 72,

2012 (2012).
[37] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 88,

014904 (2013).
[38] M. Luzum and P. Romatschke, Phys. Rev. Lett. 103, 262302

(2009).
[39] M. Luzum, Phys. Rev. C 83, 044911 (2011).
[40] Z. Qiu and U. W. Heinz, Phys. Rev. C 84, 024911 (2011).
[41] T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301 (2013).
[42] P. F. Kolb and U. W. Heinz, in Quark-Gluon Plasma 3, edited by

R. C. Hwa and X.-N. Wang (World Scientific, Singapore, 2004),
pp. 634–714.

[43] M. Gyulassy, Y. M. Sinyukov, I. Karpenko, and A. V. Nazarenko,
Braz. J. Phys. 37, 1031 (2007).

[44] W. Broniowski, M. Chojnacki, W. Florkowski, and A. Kisiel,
Phys. Rev. Lett. 101, 022301 (2008).

[45] S. Pratt, Phys. Rev. Lett. 102, 232301 (2009).
[46] J. Vredevoogd and S. Pratt, Phys. Rev. C 79, 044915 (2009).
[47] J.-Y. Ollitrault, Eur. J. Phys. 29, 275 (2008).
[48] H. B. Meyer, Phys. Rev. D 76, 101701 (2007).
[49] H. Song, Nucl. Phys. A 904-905, 114c (2013).
[50] K. Dusling and D. Teaney, Phys. Rev. C 77, 034905 (2008).
[51] G. S. Denicol, T. Kodama, T. Koide, and P. Mota, Phys. Rev. C

80, 064901 (2009).
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Abstract

We present a combined analysis of elliptic and triangular flow data from LHC and RHIC using
viscous relativistic hydrodynamics. Elliptic flow v2 in hydrodynamics is proportional to the
participant eccentricity ε2 and triangular flow is proportional to the participant triangularity ε3,
which means vn = κnεn, where κn is the linear response coefficient in harmonic n. Experimental
data for v2 and v3 combined with hydrodynamic calculations of κn thus provide us with the rms
values of initial anisotropies ε2 and ε3. By varying free parameters in the hydro calculation
(in particular the shear viscosity), we obtain an allowed band in the (rms ε2, rms ε3) plane.
Comparison with Monte-Carlo models of the initial state allows us to exclude several of these
models. We illustrate that the effect of changing the granularity of the initial state is similar to
changing the medium properties, making these effects difficult to disentangle.

1. Introduction

One of the most important topics of study in heavy-ion collisions is the observation of particle
momentum anisotropy in directions transverse to the beam [1], which can provide the evidence
for the formation of some strongly interacting medium, which thermalizes and expands as a liq-
uid, which we call the quark-gluon plasma (QGP). The corresponding experimental observables
are the flow coefficients v1, v2, v3 etc. In these proceedings we will concentrate on v2 and v3 (el-
liptic [3, 4] and triangular) flow coefficients. While elliptic flow, v2, is a response of the system
to an initial distribution with the form of ellipse in the transverse plane [5], the triangular flow,
v3, is understood as the response of triangular deformation, which is caused by fluctuations of
initial geometry [6].

In spite of the fact that v2 and v3 are the most studied harmonics of anisotropic flow, there
are still a number of open questions. Different models of initial states give different values
when trying to extract transport coefficients from data. For instance by tuning η/s (viscosity
over entropy [7]) one can match the experimental data with one model or another [8]. And it
was found out that although one could fit both v2 and v3 data separately by tuning η/s with hydro
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calculation, some of the models of initial state were unable to fit simultaneously v2 and v3 [9, 11].
This hints, that by combining v2 and v3 data we can constrain models of initial state even though
the viscosity is unknown.

2. Monte Carlo models of initial state

By initial conditions, we mean the initial energy-density profile at thermalization time t0 [32].
This profile is not smooth and has fluctuations from wave-functions of incoming nuclei. The
magnitude of these fluctuations is still to a large extent unconstrained from data. Another open
question pertaining to initial state is how elongated is the ellipse of the overlap area in non-central
collisions. We will address these issues and test different Monte Carlo models of initial state. We
are testing two types of models: Glauber-type models and QCD-inspired models. The Monte
Carlo Glauber model is the oldest and the most classic one [14]. We use the PHOBOS Monte
Carlo [15]. In this model positions of nucleons within a nuclei are sampled through Monte
Carlo. These nucleons move on straight lines and interact if their distance is less then

√
σNN/π.

Typically one then models each nucleon as a Gaussian source, so that the final energy-density is
equal to a sum of Gaussians.

Among the QCD-inspired models we are going to test 4 of them: the oldest QCD model
which we call MC-KLN [16, 17], which is using kT factorization and taking into account fluctua-
tions of the positions of the nucleons. The second model MCrcBK [19] is an improved MC-KLN
model with additional KNO fluctuations in order to match multiplicity distribution in pp colli-
sions. The third one is DIPSY [18], a QCD model which takes into account the multiple gluon
cascade. And the last one is the IP Glasma model [20], which doesn’t assume kT factorization
and includes non-linearities and fluctuations of color charges within a nucleon.

3. Hydro evolution

In spite of the fact that collaborations have published data for integrated vn[13] for n=1,
2, ... 6 [21], here we only use elliptic and triangular flow. The main reason is that these two
Fourier coefficients are determined by simple linear response to the initial state [22]. That means:
v2 ∝ ε2 [23], where ε2 is called participant ellipticity [24] and v3 ∝ ε3 [25], ε3 is called participant
triangularity [6]. The participant eccentricity εn for a single event is defined as [2, 26]:

εn =
|{rneinφ}|
{rn} , (1)

where {...} denotes an average value over the initial energy density (it can also be entropy density
profile though) after recentering the coordinate system {reiφ} = 0.

Assuming linear response to the initial anisotropy, the anisotropic flow in an event is vn =

κnεn. The response coefficient κn is the same for all events in a centrality bin, but εn fluctuates, so
that initial-state fluctuations result in event-by-event flow fluctuations. Experiments measure the
rms value of vn over a centrality bin, thus the experimentally measured flow vn is proportional to
the rms value of εn. We can therefore write:

√
〈ε2

n〉 =

√
〈(vn)2〉
κn

, (2)
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where
√
〈(vn)2〉 is the measured root mean square value of integrated flow and 〈...〉 represents

an average over collision events. The response coefficient κn is calculated in hydrodynamics as
κn = (vn/εn)hydro, so that we are able to extract the root mean square values of ε2 and ε3. We take
experimental data of integrated flow from the ALICE and PHENIX collaborations [11, 12].

4. Uncertainties in hydro response

The standard hydro modeling [27] procedure consist of 3 main steps:
1) initial conditions
2) evolve these initial conditions through relativistic hydro evolution
3) convert the liquid into hadrons at freeze-out temperature.

Each of these steps obviously has its uncertainties [28]. The main uncertainty in the hydro
evolution is the value of the shear viscosity of the strongly-interacting quark-gluon plasma. This
value is not constrained well in theory and experiment[36, 37], so we vary η/s as a parameter
from 0 to 0.24 in steps of 0.04. The value of the shear viscosity has a remarkable influence on
the values of integrated flow: the flow decreases with increasing viscosity. Another big source
of uncertainty is coming from initial conditions. Our hydro calculations are 2+1D viscous hy-
drodynamic, which uses as input initial condition the transverse energy density profile from an
optical Glauber model. This profile is smooth and already has an ellipticity, so automatically
gives us elliptic flow values. If we want to obtain the values of ε3 or v3, with this profile we get
0 for both of them, so in order to calculate κ3 we deform the third harmonic in the profile in the
following way [9] :

ε(r, φ)→ (r
√

1 + ε′n cos(n(φ − ψn)), φ) (3)

where ε′n is magnitude of the deformation, and ψn is the orientation of the deformation.
First, the linear approximation itself has an associated uncertainty, and the value of κn ob-

tained from a smooth initial condition can differ from that extracted from a set of flucuating
events [10]. We estimate this uncertainty by using values obtained from two definitions of εn:
with energy density weighting and entropy density weighting.

Another free parameter is the thermalization time t0[32, 33] which is not known. We vary it
from 0.5 fm/c to 1fm/c. While we vary the thermalization time we tune the starting temperature
Tstart and the freeze-out temperature T f r so as to match the pt spectrum [30, 31].

In the hadronic part we also have some uncertainty, which is coming from the freezeout
viscous correction, the momentum dependence of which is unknown[38, 39, 40], so we test 2
possible ansatzs: linear ∝ p[41] and quadratic ∝ p2[38]. We use the same code as in Ref.[38]
and we take into account resonance decays after hadronization.

After taking into account all types of uncertainties we can calculate ε2 and ε3 using Eq. (2).
The resulting values are shown in the Fig. 1 for the 20–30% centrality range at the LHC.

Each point in this figure corresponds to one hydro calculation with one set of parameters.
We have 6 types of symbols, corresponding different sets of parameters: thermalization time
t0, the type of ansatz and the type of εn weighting. These symbols are composing 6 lines with
viscosity η/s changing. Each line has 7 points, corresponding to η/s = 0, 0.04, 0.08, 0.12, 0.16,
0.2, 0.24 (from left to right). The first line, composed of blue circles, uses as parameters the
thermalization time 1fm/c and the linear ansatz. The line with purple squares uses thermalization
time 1fm/c and quadratic ansatz. We see the line almost doesn’t change, except for high viscosity,
which makes values of ε2 slightly smaller. The line composed of yellow diamonds corresponds

3
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Figure 1: (Color online) R.m.s. values of ε2(ε3) from
hydro simulations + ALICE data for 20–30% centrality
range. Purple squares correspond to tinit = 1 f m/c with
quadratic freezeout. Blue circles correspond to tinit =

1 f m/c with linear freezeout. Yellow diamonds corre-
spond to tinit = 0.5 f m/c with quadratic freezeout. Open
symbols mean entropy-density profile used. The shaded
band is an allowed band encompassing uncertainty in the
extracted values.
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Figure 2: (Color online) The shaded band is the same
as in Fig.1 and represents allowed values. Symbols
are predictions from various models of initial state.
The MC-Glauber model is shown for different val-
ues of the width of gaussian σ=0 fm, 0.4 fm, 0.8
fm and 1.2 fm, which are distinguished by differ-
ent symbol sizes, showing that changing the smearing
parameter has the same effect as changing viscosity.

to thermalization time 0.5 fm/c and quadratic ansatz. We see that ε2 and ε3 are both decreasing.
The explanation is that since we start the hydro evolution earlier, we produce more flow, and from
the ratio (2) obviously if we produce more flow, we will have smaller values of ε2 and ε3. Lines
composed of open symbols have the same parameters, except that entropy-density weighting is
used. Now we create a shaded band, such that all these points are inside this band. This band
defines the allowed range. The important fact here is that even with all uncertainties taken into
account, we obtain a narrow band, which eventually allows us to constrain models. These lines

are noticed to be well fitted by the law
√
〈ε2

2〉/
(√
〈ε2

3〉
)k

=C, where k=0.6 for LHC and k=0.5
for RHIC and C is fixed. By computing the maximum and minimum values of C allowed by
hydrodynamics, we determine the range of allowed values for C.

By computing the values of C in various Monte Carlo models, one can check if the values
predicted by models are inside the allowed region, as shown in Fig. 3. In this way the formula
can be used easily by any group who has an MC model of initial states in order to see if their
model is compatible with experimental data.

5. Results

We calculate the allowed region in the (rms ε2, rms ε3) plane for different centralities for
LHC and RHIC, which we represent as a shaded band. After this we test the models, introduced
in Section 2.

In Fig. 2 we display as an example the 20–30% centrality range. The MC-Glauber model is
shown for different values of the width of gaussian σ=0 fm, 0.4 fm, 0.8 fm and 1.2 fm, which
are distinguished by different symbol sizes. By changing this parameter the result moves parallel
to the band, which has the same effect as changing the viscosity, so that compatibility with data
cannot be improved by adjusting the unknown source size.
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Figure 3: (Color online) Ratio of eccentricity moments
√
〈ε2

2〉/
(√
〈ε2

3〉
)k

versus centrality. Shaded bands are allowed

by experiment values, combined with hydrodynamic calculations, for LHC and RHIC. Symbols are predictions from
various models of initial state.

Our main results are presented in Fig. 3. It displays the rms values of
√
〈ε2

2〉/
(√
〈ε2

3〉
)k

versus
centrality, where shaded bands are allowed values and symbols are predictions from different
models. We can see that one can exclude the PHOBOS MC-Glauber (as was also noticed for
20–30% centrality) and MC-KLN models for LHC energies. It seems MC Glauber works better
for lower energies, and MC-KLN doesn’t have enough fluctuations. For RHIC energies MC-
KLN can also be excluded, along with the MCrcBK model, which seems to works better at LHC
energies. Note that we have not tested all possible variants of Glauber-type models. In particular,
the PHOBOS MC-Glauber has only fluctuations from the random positions of nucleons in the
nucleus, and neglects any extra local fluctuations in entropy production.

From the Fig.2 in our paper [42] we’ve seen that rms ε2 and ε3 values predicted by MC
models both increase with centrality, but we noticed that ε2 values are increasing faster then ε3,
which can be explained by the fact, that v2 is growing faster with centrality then v3: v2 grows
due to geometry, and v3 due to the fact that fluctuations have more influence with increasing
centrality, but this effect is weaker. By looking at the ε3 values of MC models we can see
which of the models have more fluctuations, for example by comparing MC-KLN and MCrcBK,
obviously, the second has more fluctuations, as the result it has bigger value of ε3. The same
about DIPSY which seems to have big value of fluctuations.

Conclusions

We have extracted ellipticity ε2 and triangularity ε3, using experimental data and hydro cal-
culations with different sources of uncertainties and created a narrow allowed region on the
(rms ε3, rms ε2) plane. We have shown that we are able to constrain models of initial state.
It was shown that we can exclude PHOBOS MC-Glauber and MC-KLN models for LHC and
MC-KLN and MCrcBK models for RHIC. We have illustrated for the MC-Glauber model that
changing the granularity of the initial condition model has the same effect as changing viscosity,
so the effects are difficult to disentangle.

More details about this study can be found in our recently published paper [42].
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