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l’IPhT pendant ma thèse, je souhaite leur en porter crédit ici (de manière désor-
donnée). Tout d’abord, les discussions que j’ai pu avoir avec Sam Grushevsky,
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plus généralement les chercheurs avec qui j’ai pu discuter en divers endroits et
diverses occasions, pour ces discussions et aussi pour certains pour leur sou-
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à l’acharnement que j’ai pu mettre dans mes entreprises de déconcentration
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(quel nom bizarre) a été que j’ai pu profiter de la compagnie fort agréable de
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tour de te remercier ici pour les moments agréables passés dans ce bureau.
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plus intime. 800 mots, salade tomates oignons, emballez c’est pesé.3
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Je me dois maintenant d’adopter un ton plus sérieux, pour premièrement
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Chapter 1

Introduction

Throughout this text we use the standard system of notations where ~ = c = 1
and our space-time signature is (−,+, . . . ,+). Our kinematic Mandelstam
invariants for two-to-two scattering are defined by s = −(k1 +k2)2, t = −(k1 +
k4)2 and u = −(k1 + k3)2 where all particles are incoming particles with light-
like momentum ki. The bosonic sector of the heterotic string will always be
the left-moving (anti-holomorphic) sector.

1.1 The UV question in quantum gravity.

Quantum gravity is one of the most challenging conundrums in modern physics.
Conceptually, this theory is the missing link between quantum field theories
that describe particles physics and Einstein’s General Relativity that describes
the dynamics of space-time. Einstein’s equations relate the two realms as

Rµν −
1

2
gµνR︸ ︷︷ ︸

space-time

= 16πGNTµν︸ ︷︷ ︸
matter, energy

, (1.1.1)

then how could one be quantum and not the other ? The issue is that a naive
quantization process leads quickly to inconsistencies, as we expose below.

The quantum nature of space-time is supposed to manifest itself at the
Planck energy mass-scale, MPl = 1019 GeV. Needless to say, this energy scale
is far away from the reach of modern colliders. Quantum gravity effects are
more likely to be detected in primordial cosmology experiments in the following
decades, as the Big-Bang offers a more direct observational window to high
energies.

Violation of unitarity One of the basic issues with a naive quantization of
gravity is that it causes unitarity violations, already at the classical-level, as a
consequence of the structure of gravitational interactions. These are described
by the Einstein-Hilbert action coupled to matter

SEH+matter =
1

2κ2
D

∫
dDx
√
−g(R + Lmatt(φ, ψ,Aµ)) , (1.1.2)
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h

Figure 1.1: Graviton exchange violates unitary at tree-level.

where R is the scalar Ricci curvature, D is the space-time dimension and
Lmatt is a given matter Lagrangian. By expanding this action around a flat
background gµν = ηµν + κDh

µν , where hµν is the spin-2 graviton field, standard
manipulations [1] yield the Lagrangian of matter coupled to gravitons:

SEH =

∫
dDx

(
1

2
∂h ∂h+ κDc0h∂h ∂h+O(κDh∂h∂h) + . . .

+
1

2κ2
D

Lmat(φ, ψ,Aµ) +
h

2κD
Lmat(φ, ψ,Aµ) + . . .

)
.

(1.1.3)
The structure of this action indicates that gravitons couple to (massless) fields
with a two-derivative interaction. Consequently, a single graviton exchange
between massless fields such as the one depicted in figure 1.1 has an amplitude
proportional to the dimensionless ratio E2/κD where E is the energy of the
process. Eventually, unitarity is violated for processes such that E � κ2

D. At
loop level, this classical breakdown of unitarity transfers directly to ultraviolet
divergences of the theory. For instance, the amplitude of the double graviton-
exchange depicted in fig. 1.2 contains an intermediate sum over states which
induces a divergent behavior in the UV as

E2

κ2
D

∫ Λ

dẼ Ẽ ∼ E2Λ2

κ2
D

(1.1.4)

where Λ is a UV momentum cut-off. Alternatively these issues can be seen
as the consequence of the positive mass dimension κD = MD−2

Pl of the gravity
coupling constant, which makes the theory non-renormalizable for D > 2.
The first divergence of pure Einstein gravity occurs at the two-loop order [2, 3]
and is followed by an infinite series of divergences which should be removed,
thereby introducing an infinite amount of arbitrariness in the choice of the
counterterms and making the quantum theory un-predictive or ill-defined.

Although this manuscript exclusively deals with the perturbative regime of
quantum gravity and string theory, it is worth mentioning here that quantum
gravity also seems to violate unitarity in black holes physics. On the one
hand, the no-hair theorem states that classical black holes should be solely
characterized by their mass, spin, and charge. Therefore, Hawking radiation

h h

Figure 1.2: One-loop double graviton exchange diverge in the UV.
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has to be thermal and can not radiate away the information that fells in the
black hole. On the other hand, when the black hole has completely evaporated,
this information is “lost”, which is impossible in a unitary quantum mechanical
evolution. This goes under the name of the “information paradox”.

There exists nowadays two main paradigms to remedy these issues. The
first possibility is to assume that gravity is truly a fundamental theory that
should be quantized non-pertubatively and that the previously mentioned is-
sues are artifacts of the perturbative quantization process. This is the point of
view adopted by the Loop Quantum Gravity theory and by a somehow related
Asymptotic Safety program.

The other option, that we follow and on which are based supergravity and
string theory, postulates that general relativity is a low energy effective field
theory of a more fundamental theory. Therefore, possibly drastic modifications
of the law of physics at the quantum gravity scale are expected to happen.

UV divergences and effective field theories. The UV behavior of quan-
tum gravity is of central importance in the effective field theory paradigm,
where the presence of UV divergences signals a wrong identification of the mi-
croscopic degrees of freedom of the theory at high energy. In the language of
effective actions, UV divergences correspond to local operators, called coun-
terterms, that should be added to the effective action. They parametrize the
ignorance about the high energy theory. These operators have to obey the
symmetries of the theory, which in gravity include in particular diffeomorphism
invariance. This constrains the counterterms to be expressed as tensorial com-
binations of the Riemann tensor Rµναβ or derivatives thereof. For a n-graviton
scattering, they are of the form

∇mRn , m = 0, 1, 2, . . . (1.1.5)

where ∇ is the covariant derivative. These have mass dimension

[∇mRn] = Mm+2n . (1.1.6)

In order to understand more precisely what kind of divergences these countert-
erm may cancel, let us look back at the structure of the action (1.1.3). The
n-graviton vertex always carries at least two derivatives, therefore the most
divergent graph at leading order in the gravity coupling constant is made of 3-
valent vertices which bring two powers of loop momentum each. Using Euler’s
relation for a connected graph with L loops, V vertices and I internal edges
legs:

V − I + L = 1 (1.1.7)

we obtain the naive superficial UV behavior of a L-loop n-graviton amplitude

ML−loop
n =

∫
dD`

`2V

`2I
∼
∫ Λ d`

`
`L(D−2)+2 ∼ ΛL(D−2)+2 . (1.1.8)

However, we know that a divergence should be canceled by a counterterm of the
form ∇mRn. In other words, diffeomorphism invariance of the theory implies

9



that divergent integrals have to factor out a term which can be canceled by
such operators, and if ML−loop

n in (1.1.8) diverges, the power-counting (1.1.6)
indicate that there exists a m a d a n such that

ML−loop
n = ∇mRn

∫ Λ d`

`
`L(D−2)+2−m−2n . (1.1.9)

From this we read the actual superficial degree of divergence of such an ampli-
tude, as depicted in eq. (1.1.10). A priori, all of these operators appear in the

L
loops n− 1

3
2

1
n

∼ ∇mRn × ΛL(D−2)+2−m−2n (1.1.10)

effective action, where they allow for an infinite number of UV divergences.

1.2 Supergravities

Supergravity theories are proposals for modifications of gravity at high en-
ergy with a enhanced UV behavior. These theories are conceptually close to
Kaluza-Klein theories, where geometry in higher dimension provides matter
and various interactions in lower dimensions. They differ from these in that
the “higher” dimensions of supergravity theories include fermionic dimensions.
Hence, the four-dimensional space-time is immersed in a higher-dimensional
superspace.

From the field-theory viewpoint, the geometry of this superspace obeys a
new local symmetry, called supersymmetry. This symmetry is characterized
by a certain number of real anti-commuting charges called supercharges, from
4 in four dimensions to 32 for the maximal extension defined in any dimen-
sion up to D = 11 [4–6].4 For definiteness, we shall refer to the number of
four-dimensional supercharges N of the theory only when we talk about the
four-dimensional theory. Consequently, N = 1 supergravity is the minimal
supergravity in four dimensions and has 4 real supercharges, while N = 8
is maximal supergravity in four dimensions. Half-maximal supergravity or
N = 4 in four dimensions is the subject a full chapter of this manuscript,
chap. 3. There, we distinguish between (2, 2) and (4, 0) type of constructions,
depending on what string theory model the theory arises from.

These theories, some of which are listed in tab. 1.1, have much a richer spec-
trum than Einstein gravity and seemingly look more complicated. However, at
the level of scattering amplitudes, the number of symmetries help to reduce the

4Adding more supercharges to a gravity theory forces to include an infinite tower of
higher spin excitations
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s = 2 s = 3/2 s = 1 s = 1/2 s = 0

N = 0
smax = 2 1
smax = 2 (N = 0, YM) 1

N = 1

smax = 2 1 1
smax = 3/2 1 1
smax = 1 1 1
smax = 1/2 1 1

N = 2

smax = 2 1 1
smax = 3/2 1 1
smax = 1 (N = 2, vect.) 1 1
smax = 1/2 (N = 2,hyper.) 1 1

N = 4
smax = 2 (N = 4, grav.) 1 4 6 4 1+1
smax = 3/2 1 4 6 4+4
smax = 1 (N = 4,matt.) 1 4 6

N = 6
smax = 2 1 6 15+1 20+6 15+15
smax = 3/2 (N = 6,matt.) 1 6 15 20

N = 8 smax = 2 (N = 8) 1 8 28 56 70

Table 1.1: Partly reproduced after the textbook on supergravity theories [7].
Spin content of massless supersymmetry representations with maximal spin
smax ≤ 2 in four dimensions. The first line with N = 0 corresponds to pure
Einstein gravity. The supermultiplet denominations within the parentheses
correspond to notations used throughout the text.

complexity of the theories. Part of the discussion in this manuscript is focused
on understanding these simplifications from the string theory perspective.

Among these extended supergravity theories, maximal supergravity have
held a favorite position as the most promising candidate for a four-dimensional
UV complete point-like theory of quantum gravity. It was however understood
that an R4 counterterm did respect the linearized maximal supersymmetry,
very likely indicating a 3-loop divergence [8–12] in four dimensions. Despite
this belief, curious similarities between the UV behavior of maximal super-
Yang-Mills (SYM) and maximal supergravity were observed in particular in
[13, 14]. Since maximal SYM is UV finite in four dimensions [15], this suggested
that N = 8 might indeed be a UV finite theory. We recall that L-loop ampli-
tudes in maximal SYM are UV finite in dimensions D such that [13, 16, 17]

D < Dc = 4 + 6/L , (1.2.1)

where Dc is called the critical UV dimension and is defined here to be the
smallest space-time dimension for which the theory diverges logarithmically at
L loops.

In ref. [18], Green et al. predicted, using non-renormalization theorems
in string theory, that the UV behavior of maximal supergravity might be
softer than previously expected and that the three-loop divergence at could
actually vanish. This issue was definitely settled by the explicit computa-
tion of Bern et al. in [19, 20], that was followed by a similar result at four
loops [21]. Nowadays, the most elaborate predictions based on string theory
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non-renormalization theorems [18, 22, 23], supersymmetry [24–26] and dual-
ity symmetry analysis [27–32] predict that the critical behavior should change
abruptly at five loops due to an allowed ∇8R4 counterterm, according to

D < Dc = 4 + 6/L , L < 5 ,

D < Dc = 2 + 14/L , L ≥ 5 ,
(1.2.2)

This critical behavior predicts that maximal supergravity may diverge at seven
loops in four dimensions.

Despite the important progress made in the last decade in the field of
scattering amplitude computations (see chapter 4 for a short review), the 7-
loop order is still out of reach. Nonetheless, already the analysis of the UV
behavior at five loops may indicate if the current string theory understanding
is correct or needs to be deepened. If the critical dimension of N = 8 is

1 2 3 4 5 6 7
L

4

5

6

7

8

UV divergent ?

Figure 1.3: Critical UV behavior of maximal supergravity. �: UV divergences
predicted by string theory. � : 5-loop possible UV behavior indicating that
N = 8 might be UV finite.

strictly the same as the one of N = 4 SYM, the five-loop divergence should
occur in D = 26/5, corresponding to a ∇10R4 counterterm. On the contrary,
according to the previous predictions, the ∇8R4 counterterm is expected to
cause a divergence in Dc = 24/5 at five loops.

The importance of the five-loop explicit computation is therefore crucial.
As a matter of fact, this computation has been started for several years by
the group of [21]. The first approach to the computation relied on the use of
the “Bern-Carrasco-Johansson” duality [33] applied to the so-called double-
copy construction of gravity amplitudes [34]. Despite important successes at
three and four loops [34, 35], the prescription seems to work less efficiently at
five-loop and for the moment has not been implemented [36]. In addition to
the intrinsic interest of a first principle explanation of this BCJ duality, the
five-loop problem acted as a motivation for the analysis of [PT4] which we
describe in chap. 4, on first steps towards a string theoretic understanding of
the BCJ duality at one-loop.

Another way to test the accuracy of string theory predictions is to study
theories with reduced supersymmetry. This allows to trigger more divergent
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theories, thereby more accessible by explicit computations. In that perspective,
half-maximal supergravity is the most natural candidate whose UV behavior
should be investigated. This theory has a richer structure than maximal super-
gravity and can be realized in the low energy limit of various kind of string
models, some of which we describe in chapter 3. The theory admits couplings
to maximally SYM matter multiplets [37], which render the theory UV diver-
gent already at one-loop for amplitudes with external matter fields [38]. The
first section, sec. 3.1 of chap. 3 is dedicated to a review of the analysis given
in [PT2] of graviton amplitudes at one-loop in several type of string theory
models providing N = 4 supergravity, in heterotic string and orbifolds of type
II string.

The following section, sec. 3.2 deals directly with the UV behavior of pure
half-maximal supergravity. It was shown in [39–41] that R4 is a half-BPS one-
loop exact operator in heterotic string toroidal compactifications, and con-
firmed later in [42] by using the explicit two-loop computation of [43–49].
We review the analysis of [PT1] based on the use of the “Chaudhuri-Hockney-
Lykken” [50–52] orbifolds of the heterotic string to show a non-renormalization
theorem for the R4 counterterm in pure half-maximal supergravity. This analy-
sis provides a worldsheet supersymmetry argument for the origin of the vanish-
ing of the R4 3-loop logarithmic divergence in pure half-maximal supergravity
originally observed in [53]. However, an additional element enters the analysis
in this theory, due to the presence of a U(1) anomaly [54] whose implication
in the UV behavior of the theory is still unclear.

There are two lessons to draw from the previous discussion. First, it ap-
pears that string theory is a good tool to understand the UV behavior of
supergravity theories. Second, supergravities do not seem to be drastic enough
modifications of gravity to ensure a proper quantum behavior. Therefore, the
same reason for which string theory is an efficient tool also indicates it as an
empirical necessary UV completion for supergravity theories.

1.3 String theory

String theory has an even richer history than maximal supergravity, which
we do not intend to recapitulate completely here.5 It was born almost half-
a-century ago as a model to describe strong interactions with the Veneziano
amplitude [56], that was soon after supplemented by a proposal from Virasoro
[57], which we reproduce here:

MVir(s, t, u) =
Γ(−1− α′ s

4
)Γ(−1− α′ t

4
)Γ(−1− α′ u

4
)

Γ(−2− α′ s
4
− α′ t

4
)Γ(−2− α′ t

4
− α′ u

4
)Γ(−2− α′ u

4
− α′ s

4
)
,

(1.3.1)
The variables s and t and u are the usual kinematic Mandelstam invariants,
respectively defined by −(k1 + k2)2, −(k1 + k4)2 and −(k1 + k3)2 and α′ was
called the Regge slope. Later it was understood that these amplitudes describe

5See [55] for a detailed historical perspective and list of references.
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the interactions and scattering of open and closed relativistic bosonic strings of
size `s =

√
α′ and tension T = (2πα′)−1. Quantization and Lorentz invariance

imposed that they propagate in a target 26-dimensional space-time and that
their spectrum contains an infinite tower higher spin excitations with quantized
masses given by

m2
closed =

4n

α′
, m2

open =
n

α′
, n = −1, 0, 1, . . . ,+∞ (1.3.2)

and maximal spins Jmax = α′m2 +1. Both theories contained a tachyonic state
(at n = −1) and the massless excitations of the closed string always contained
a graviton. Later, the theory was extended to a theory of supersymmetric
strings living in a 10-dimensional target space-time, where the tachyon was
automatically projected out via the so-called “Gliozzi-Sherck-Olive” (GSO)
projection [58]. This theory was shown to possess maximal supergravity in its
massless spectrum in [59], making it a UV completion thereof.

Let us try to give a flavor of how string theory cures the structural problems
of perturbative quantum gravity, namely unitarity violation and UV incom-
pleteness. Firstly, the amplitude (1.3.1) has a high energy behavior now com-
patible with unitarity. In particular, in the hard scattering limit (s, t→ +∞,
fixed angle), this amplitude exhibits an exponentially soft behavior:

MVir(s, t) ∼ exp

(
−α

′

2
(s ln s+ t ln t+ u lnu)

)
(1.3.3)

which can be seen as a restoration of the unitarity due to the infinite tower of
massive states smoothing the interaction.

In order to comment on UV divergences, we need first to say a word on
the quantization of string theory. String theory scattering amplitudes are
computed in a first quantized formalism, as Feynman path integrals over the
trajectories of the string in space-time. These trajectories draw a worldsheet,
and the quantization process reduce the sum over trajectories to a finite di-
mensional integral over the moduli space of Riemann surfaces. The genus
thereof, denoted by the letter g in this text, is related to the number of times
the strings have split or joined during their evolution, and indicate the loop
order of the interaction. One of the most notable features of string theory first-

Figure 1.4: Perturbative expansion of string theory (four-point scattering
exmaple).

quantized amplitudes is the compactness of the expressions. This is firstly a
consequence of the fact that there is a single string graph at each order in per-
turbation theory; this is considerably simpler than the sum of Feynman graphs
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in quantum field theory. In addition, the computations of the string theory in-
tegrands are based on powerful conformal field theory (CFT) techniques which
also simplify drastically the computations and give rise to a superior organi-
zation of the amplitude, in particular making manifest some cancellations not
easily visible by other means. On the other hand, the integral over the moduli
space of Riemann surfaces is most of the time impossible to carry, and despite
the compactness of final answers, intermediate steps of computation can be
fastidious.

Physically, the mathematical reduction from all trajectories to Riemann
surfaces is a consequence of string theory not being simply a theory of an infi-
nite tower of interacting states; the latter wouldn’t be a UV complete theory,
as recalled in [60, sec. 7.3]. String theory has an additional, crucial, physical
feature: it gives a minimal length to space-time phenomena, the string length√
α′. In loop amplitudes, this implies that the ultraviolet region is simply ab-

sent from the phase space of string theory ! As a consequence, string theory
is a UV complete theory.

In contrast, the theory has an infrared (IR) region, which is precisely the
one of interest for us in this text, as it describes the regime in which the strings
effectively behave as particles. We shall alternatively refer to this regime as
the α′ → 0 limit6, low energy limit or the field theory limit of string theory.
One of the objectives of this text is to discuss some of the techniques known in
the literature concerning this limit in the context of string theory amplitudes.
It is not surprising that if the advantages of string theory amplitudes motivate
the use of such procedures, its drawbacks should be encountered along the way.
There are basically two classes of physical objects that can be extracted out of
string theory amplitudes; field theory amplitudes – with their UV divergences
– and low energy effective actions. The present text mostly describes the first
type of computations.

In chap. 2 we discuss the general procedure to extract field theory am-
plitudes from string theory amplitudes. These techniques were pioneered by
Green and Schwarz in [59], and their use culminated at one-loop with the de-
velopment by Bern and Kosower of a set of rules to write one-loop gauge theory
n-gluon amplitudes in [61–64], as the α′ → 0 limits of string theory amplitudes.
The reason why such a procedure is efficient is because of the compactness of
string amplitudes. The technical difficulties that are faced in general (g ≥ 2)
involve firstly the geometry of the moduli space of Riemann surfaces, which
should be described correctly in order to reproduce the various graph topolo-
gies in the low energy. Another class of difficulties come precisely from the
degenerations of the CFT on higher genus Riemann surfaces. In [PT3], we ar-
gued that tropical geometry, a somewhat recent branch of mathematics, helps
to solve these issues.

Another remarkable feature of string theory is that it provides a framework
where it is possible to carry the exact computation of some coefficient of the
operators in low energy effective action. Let us here simply mention that the

6In strict rigor, it is rather defined as a limit where the energy E of the scattered states
is much smaller than the string scale α′E � 1.
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automorphic form program [22, 23, 65–71] led to the exact non-perturbative
computation of R4, ∇4R4 and ∇6R4 couplings in the type II string effec-
tive action in various dimensions. These exhibit directly non-renormalization
properties, since they receive only a finite number of loop corrections. For
instance, the essence of the previous prediction on the critical UV behavior
of maximal supergravity follows from the fact that R4 is not perturbatively
renormalized beyond one-loop, ∇4R4 beyond two loops, ∇6R4 beyond three
loops. The coupling corresponding to ∇8R4 has not been computed yet, but
it is expected to receive contributions through all loop orders by different type
of arguments mentioned above [24–32]. The counterpart of these computa-
tions in string theory amplitudes corresponds to factorization of derivatives in
the pure spinor formalism [17]. In [PT1] we presented an explication for the
vanishing of the three-loop divergence of N = 4 pure supergravity [53] due to
a non-renormalization theorem in heterotic string orbifold models for the R4

term at two-loops. The computation is based on the explicit factorization of
two derivatives in the computation of D’Hoker and Phong at two loops [43–49].

Structure of the manuscript.

Below is a quick summary of the organization of this manuscript.
In chap. 2 we review the analysis of [PT3] on the low energy limit of string

theory amplitudes and the connexion with tropical geometry. We discuss ap-
plications in sec. 2.3, where we provide a novel analysis on the low energy limit
and in particular the graph structure of the four-graviton three-loop amplitude
computed in [72].

In chap. 3 we cover the content of [PT1, PT2] on half-maximal supergravity
amplitudes at one-loop and the UV divergences of this theory at higher loops.
We provide novel piece of analysis on the worldline structure of these ampli-
tudes at two-loop.

In chap. 4, we describe the arguments presented in [PT4] towards a string
theoretic understanding of the BCJ duality at one-loop.

The final chapter contains open questions and future directions of research.
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Chapter 2

The field theory limit of closed
string amplitudes and tropical
geometry

In the introduction, we motivated the study of string theory amplitudes as an
efficient way to access field theory amplitudes. Physically, there is no doubt
that the perturbative expansion of string theory reproduces the Feynman graph
expansion of the low energy effective field theory in the point-like limit α′ → 0
of the string. However, this procedure has not been applied beyond one-loop7

and a lot of technical tools are missing at higher genus. In [PT3], the author
initiated a program to develop these tools by using a previously unnoticed
connexion between the α′ → 0 limit of string theory amplitudes and a recent
field of mathematics called tropical geometry.8 This chapter is a review of this
work. We also present in the last section some elements of a novel three-loop
analysis.

2.1 Closed string theory amplitudes and their

field theory limit.

Our intention here is not to provide an exhaustive recapitulation of the material
present in the standard textbooks [60, 77–79] on the perturbative quantization
of string theory, but rather to recall some essential facts about string pertur-
bation theory in order to introduce some important notions for the discussion
of this chapter.

7Except the recent work at two loops of [73] in the Schottky parametrization, continuing
the older works [74, 75]

8Let us take the opportunity here to mention that the construction of [76] is actually the
first time where tropical geometry was used (even before its “official” birth !) in physics, in
a different context though. There, tropical varieties, called “grid diagrams”, were defined as
configurations of branes in the five-dimensional decompactification limit of four-dimensional
N = 2 gauge theories.

17



2.1.1 Superstring theory amplitudes

Bosonic string path integral String theory scattering amplitudes or S-
matrix elements are computed in a first quantized formalism. The coordinates
Xµ of the string define an embedding of the two-dimensional manifold swept
by the string – the worldsheet – in the target space-time in which it evolves.
From this worldsheet viewpoint, the Xµ’s are scalar fields, whose dynamics is
governed by Polyakov action9

SPolyakov = − 1

4πα′

∫
dσdτ

√
ggab∂aX

µ∂bX
νGµν(X) (2.1.1)

where σ and τ are the worldsheet coordinates, gab is the worldsheet quantum
metric and Gµν(X) is the target space-time metric. Lorentz invariance and
mathematical consistency allow for only two kind of space-time interactions
between strings (open or closed): splitting and joining.

The quantum mechanical amplitude for a process including propagation
with or without interactions is given by a path integral over worldsheets that
connect initial and final asymptotic states, weighted by the string action,∫

DX Dg
VDiff×Weyl

exp(−S) (2.1.2)

The factor VDiff×Weyl is the volume of the diffeomorphisms and gauge freedom
on the worldsheet required to counterbalance the over-counting of the path-
integral. At the g-th order in perturbation theory, for an n-point scattering,
standard BRST procedure fixes this gauge redundancy and reduces the inte-
gration to a finite dimensional space of dimension 3g−3+n: the moduli space
of genus-g n-pointed Riemann surfacesMg,n. The outcome of the quantization
of the bosonic string is well known; the theory should live in 26 dimensions,
has no fermions and has a tachyon.

Superstring path-integral Extending the bosonic formulation to a super-
symmetric one projects out the bosonic string tachyon by introducing fermions.
Conceptually, this gives a heuristic motivation for the existence of fermions, as
a necessity to produce a sensible quantum theory of strings. A similar situation
happens for supergravity, where fermions soften the bad UV behavior of Ein-
stein gravity. Three formulations of superstring theory are known; the Green-
Schwarz [77, 80] and Berkovits pure spinor [81, 82] space-time supersymmetric
formalisms, and the Ramond-Neveu-Schwarz worldsheet supersymmetric for-
malism.

The advantage of the first two is to implement the very appealing physical
idea that the superstring should move in a “super-spacetime”. In this case the
bosonic coordinates Xµ are supplemented with fermionic ones θα and space-
time supersymmetry is guaranteed from the start. The drawback of the Green-
Schwarz formalism is the difficulty to gauge the so-called κ-symmetry, which

9We skipped the traditional pedagogical introduction of the Nambu-Goto action with its
square root that creates difficulties in the quantization.
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the pure spinor formalism manages to do thanks to the introduction of a pure
spinor ghost field. A lot of results have been obtained in this formalism, among
which a recent three-loop four-graviton amplitude computation [72] which we
discuss in this text. It should be noted that above genus five, the prescription
to compute the pure spinor ghost path integral has to be changed [83], and that
the impact of this change in explicit computations has not been cross-checked
so far.

On the other hand, the Ramond-Neveu-Schwarz formulation has the ad-
vantage of mathematical robustness. The formulation is based on the exten-
sion of the usual worldsheet to a super-worldsheet, by supersymmetrizing the
Polyakov action and adding superpartners to the Xµ scalars, the fermionic
fields ψµ, and a superpartner to the metric field g, the gravitino field χα:

SRNS = − 1

8π

∫
Σ

dσdτ
√
g

(
2

α′
gαβ∂αX

µ∂βX
µ + 2iψµσα∂αψ

µ

− iψµσβσαχβ

(√
2

α′
∂αX

µ − i

4
(χαψ

µ)

))
(2.1.3)

In this formalism, suitable gauging of the supergravity fields on the a genus-
g n-pointed super-worldsheet induces an integration over 3g − 3 + n bosonic
and 2g − 2 + n fermionic moduli which span the moduli space of genus-g n-
pointed super-Riemann surfaces Mg,n [84–86]. The amplitude is obtained by
integrating a correlation function of vertex operators V1, . . . , Vn corresponding
to external scattered states as

A
(g,n)
α′ =

∫
Mg,n

dµSS 〈V1...VnO1...Ok〉 (2.1.4)

where dµSS is the supermoduli space measure and O1 . . .Ok are a certain num-
ber of picture changing operators, required to saturate superghosts background
charges. Until the recent series of papers [86–91], the procedure to compute
such integrals was believed to rely on the existence of a global holomorphic
section of Mg,n [85, 92]. This would allow to integrate out the odd moduli first
and reduce the integral to an integral over its bosonic base. Such a procedure
is now known not to exist in the general case. In particular, for g ≥ 5 it
is known that Mg,0 is not holomorphically projected [93], while the question
remains open for g = 3, 4.

Our case In [PT3], the author discussed the low energy limit of string am-
plitudes in the cases where they can be written as integrals over the ordinary
bosonic moduli space Mg,n. As a consequence of the non-projectedness is-
sues, the discussion is restricted to genus g ≤ 4 amplitudes. Note that in the
Green-Schwarz and pure spinor formalisms, this “restricted” RNS set-up is the
standard set-up and the question of the compatibility of the three formalisms
in view of this discussion is open. In this context, the amplitudes take the
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generic form:

A
(g,n)
α′ =

∫
Mg,n

dµbos Wg,n exp(Qg,n) , (2.1.5)

where dµbos is a (3g−3+n)-dimensional integration measure and the string in-
tegrand is written as a product ofWg,n, which generically accounts for the kine-
matics of the scattering process, with exp(Qg,n), the universal Koba-Nielsen
factor. It comes from the plane-wave parts of the vertex operators10

〈: eik1X(z1,z̄1) : · · · : eiknX(zn,z̄n) :〉 = exp
(∑

i<j

ki ·kj〈X(zi, z̄i)X(zj, z̄j)〉
)

(2.1.6)

and writes explicitly

Qg,n =
∑
i<j

ki · kj G(zi − zj, z̄i − z̄j) (2.1.7)

in terms of the momenta ki of the n scattered states and of the two-point
function

G(z − w, z̄ − w̄) = 〈X(z, z̄)X(w, w̄)〉 . (2.1.8)

whose explicit expression given below in eq. (2.2.34) was determined in [85, 94].
We shall describe several type of Wg,n, these are obtained from application of
Wick’s theorem and typically write as products of two-point correlators of the
X and ψ fields, as well as of ghosts and superghosts fields.

2.1.2 The field theory limit.

How could one create a graph out of a closed Riemann surface ? The first
thing one would have in mind is to stretch the surface to create very long and
thin tubes. This actually does not produce graphs but degenerate Riemann
surfaces with nodes. Nevertheless, it is a good start, and physically these
stretched surfaces probe the IR region of string theory. To obtain a graph out of
these tubes one still has to integrate out their cylindrical dependence. A good
flavor of what is tropical geometry can be found in the survey [95], where the
tropicalization procedure is presented as a way to “forget the phases of complex
numbers”. In the previous example, if σ and τ are respectively angular and
longitudinal coordinates along the tube, w = τ+iσ can be conformally mapped
to the plane via w → z = eiw, and we see that integrating out the cylindrical
dependence of w amounts to integrating out the phase of z. Therefore tropical
geometry describes how surfaces are turned into graphs by integrating out the
phases of complex numbers.

The genus one bosonic string partition function is a handful example to
illustrate the basic mechanism of the field theory limit in string theory, and
point out where do come from the “phases” and “modulus” of complex num-
bers. It can be found in standard string theory textbooks mentioned before
and writes

Z(τ, τ̄) = Tr
(
qL0−1q̄L̃0−1

)
, (2.1.9)

10: : denotes normal ordering.
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where the trace is performed over the Hilbert space of physical states of string
theory. The parameter q is defined by q = exp(2iπτ) where τ = Re τ + iIm τ
is the modulus of the complex torus C/(Z + τZ). This expression can be
rewritten to make manifest “phases” and “modulus” as:

Z(τ, τ̄) = Tr e+2iπRe τ(L0−L̄0)e−2πIm τ(L0+L̄0−2) . (2.1.10)

Thus the level-matching condition (L0 − L̄0) = 0 is enforced by integration
over the “phases”

∫
dRe τ while the “moduli” cause a mass weighting. More

precisely, the masses of the oscillator states are given by m2 = 4
α′

(
N+N̄

2
− 1
)

where N and N̄ are the number operators for the left-moving and right-moving
sector defined by L0 = N + α′p2/4− 1 and L̄0 = N̄ + α′p2/4− 1. The lowest
mass state has N = N̄ = 0; it is the tachyon, whose mass is m2 = −4/α′.
Then come the massless states at N = N̄ = 1 which constitute the gravity
sector. For N = N̄ ≥ 2 the states are massive with masses m2 = 4(N − 1)/α′.

Thus in the region of modular parameter τ where Im τ ∼ 1/α′, the torus
looks like a long and thin wire and one has Im τ(N + N̄ − 2) ∼ m2. As
α′ → 0, the massive states with N ≥ 2 give rise to exponentially suppressed
contributions in the partition function; only the massless modes propagate.11

Since all states are now massless, the level matching condition is trivial and
may be integrated out; we classically recover a worldline loop of length

T = α′Im τ , (2.1.11)

as we explain in detail in sec. 2.2.3. In the range of complex moduli τ where
Im τ stays of order O(1), the massive modes are not decoupled and dictate
the UV behavior of the low energy theory. We will see later that these tori,
that are well known to generate the insertion of higher order operators and
counter-terms in the supergravity effective action, give rise to natural objects
of tropical geometry. Although there is no trivial integration of the phase
dependence in this case, one can think of these phases as phases of complex
numbers of vanishingly small modulus which are integrated out as well. To
summarize, the tropical nature of the α′ → 0 of string theory is apparent if we
decompose it in two steps:

Step 1 (Point-like limit) Send α′ → 0 and distinguish between the con-
tribution of massive states and massless states in the amplitudes,

Step 2 (Level matching) Integrate out the phases of the complex numbers
that are not vanishingly small to get the contributions of the massless states,
and integrate out the regions of phase space where the complex numbers are
vanishingly small to get the contributions of massive states.

11The tachyon state N = N̄ = 0 creates an infrared divergence, that can simply be ignored
here.
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The technical implementation to higher genus of these well known ideas
led the author in [PT3] to study the general formula

lim
α′→0

A
(g,n)
α′ =

∫
Mtrop

g,n

dµtropFg,n , (2.1.12)

which means that string theory amplitudes, written as integrals over the
bosonic moduli space, are projected onto integrals over the tropical moduli
spaceMtrop

g,n in the α′ → 0 limit. This was called the “tropical representation”
of the field theory limit of the string theory amplitude. Later we describe
in detail the tropical form of the integrand Fg,n and the structure of trop-
ical moduli space Mtrop

g,n . Physically one can think of this space as the set
of all Feynman diagrams at a particular loop-order, parametrized in terms of
Schwinger proper times. Hence, the formula in eq. (2.1.12) is a compact and
well-defined way to write the result of the field theory limiting procedure in
string theory and quantify how strings worldsheets are degenerated to differ-
ent kind of worldlines. Moreover, the amplitude is renormalized according to
a particular renormalization scheme that we describe later.

Such a formula, very natural for the physicist, would by itself not be of
great interest besides its curious link with a new branch of mathematics, if it
did not enable us to extract new physics and do new computations. In [PT3],
we managed to derive the form of the low-energy limit of the genus-two four-
graviton amplitude in type II superstring written in [96]. We shall recall the
essential step of the reasoning here and show at little cost that the form of
the genus-three amplitude written in [72] is compatible with the explicit set of
graphs found in [34, 35]. Before getting there, we would like to discuss some
aspects of tropical geometry, which we will need to describe the field theory
limits of the genus two and three amplitudes.

2.2 A few words about tropical geometry and

its link with classical geometry

In this section, we introduce basic notions of tropical geometry of graphs, then
recall the analogous classical notions for Riemann surfaces and finally come to
the correspondence between classical and tropical geometry in the context of
the α′ → 0 limit of string theory amplitudes.

2.2.1 Tropical geometry

Tropical graphs From the viewpoint of particle physics, tropical graphs
are Schwinger proper time parametrized graphs, where loops are allowed to
degenerate to vertices with a weight indicating the number of degenerated
loops. On these can be inserted operators or counterterms of the effective
action of corresponding loop order, which regulate the high energy behavior of
the theory. This is physically sensible since short proper times correspond to
high energies.
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1

2

3 1 w,w > 0

Figure 2.1: Examples of tropical graphs. From left to right: a 3-point tropical
tree, a once-punctured graph of genus one, a genus-2 tropical graph, a graph
of genus 1 + w.

A more formal definition is as follows. An (abstract) tropical graph is a
connected graph with labeled legs, whose inner edges have a length and whose
vertices are weighted. The external legs are called punctures. A pure tropical
graph is a tropical graph that has only vertices of weight zero. Pure tropical
graphs were first introduced in [97, 98], then later extended by [99, 100] to
tropical graphs with weights, simply called tropical graphs here. Therefore a
tropical graph Γ is a triple Γ = (G,w, `) where G is a connected graph called
the combinatorial type of Γ, ` and w are length and weight functions:

` : E(G) ∪ L(G)→ R+ ∪ {∞}
w : V (G)→ Z+

(2.2.1)

In these two definitions, E(G), L(G) and V (G) are respectively the sets of
inner edges, legs and vertices of the graph. The total weight |w| of a tropical
graph is the sum of all the weights of its vertices |w| =

∑
V (G) w(V ). The

genus g(Γ) of a tropical graph Γ = (G,w, `), is the number of loops g(G) of G
plus its total weight

g(Γ) = g(G) + |w| . (2.2.2)

Hence the genus of a pure tropical graph is the number of loops of G in the
usual sense. Moreover, every vertex of weight zero should have valence at least
three (vertices with weight w ≥ 1 may be of arbitrary non-zero valency). This
automatically enforces a global stability condition for a given tropical graph
of genus g and n punctures

2g − 2 + n ≥ 1 , (2.2.3)

which is the exact analogues of the classical stability condition.12 Vertices
weights obey natural rules under degenerations as shown in the figure 2.2.
Now it should be clear that the vertices weights keep track of degenerated
loops. It is easily checked that the genus of a graph (2.2.2) and the stability
criterion (2.2.3) are stable under specialization.

12Strictly speaking, the local valency condition should be viewed as considering classes
of abstract tropical graphs under the equivalence relation that contracts edges connected
to 1-valent vertices of weight 0, and removes weight 0 bivalent vertices. Physically, on the
worldline, this equivalence relation is perfectly sensible, since no interpretation of these 1-
or 2- valent vertices of weight zero seem obvious in the absence of external classical sources.
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Tropical Jacobians In this paragraph, following closely [97], we introduce
tropical analogues of the classical objects, such as abelian one-forms, period
matrices and Jacobians. A slight subtlety absent in the classical case comes the
fact that tropical graphs of identical genus may not have the same number of
inner edges. For simplicity, here, we shall only deal with pure tropical graphs,
while we mention in [PT3] how this is generalized following [99].

Tropical graphs support an homology basis and corresponding one-forms.
Let Γ be a pure tropical graph of genus g and (B1, , . . . , Bg) be a canonical ho-
mology basis of Γ as in figure 2.3. The linear vector space of the g independent
abelian one-forms ωtrop

I can be canonically defined by

ωtrop
I =

{
1 on BI ,

0 otherwise .
(2.2.4)

These forms are constant on the edges of the graph. The period matrix KIJ

is defined as in the classical case by integration along B cycles,∮
BI

ωtrop
J = KIJ . (2.2.5)

It is a g× g positive semi-definite real valued matrix. These abelian one-forms
and period matrix were already used in [96, 101] where they were observed to
be the exact analogs of the classical quantities. The Jacobian variety of Γ is a
real torus defined by

J(Γ) = Rg/KZg , (2.2.6)

where KZg is the g-dimensional lattice defined by the g columns of the period
matrix K.

The tropical version of the Abel-Jacobi map µtrop of [97, 102] is defined
by integration along a path γ between base point P0 and end point P1 of the
vector of the abelian one-forms:

µtrop
γ (P0, P1) =

∫ P1

P0

(ωtrop
1 , . . . , ωtrop

g ) mod KZg . (2.2.7)

Since changing γ by elements of the homology basis only results in the addition
to the right hand side of elements of the lattice KZg, µtrop is well defined as
a map in the Jacobian variety J(Γ). Before we introduce the tropical moduli
space, let us discuss two examples, taken from [97], in order to illustrate these
notions.

t

w −→ w + 1
t

w1 w2
−→

w1 + w2

Figure 2.2: The genus of a graph is stable under degenerations t→ 0.
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Figure 2.3: a) A g = 2 graph Γ with edges lengths T1, T2, T3. b) The image of
Γ (thick line) by the tropical Abel-Jacobi map in the Jacobian variety J(Γ) =
R2/K(2)Z2 (shaded area). Dashes indicate the K(2)Z lattice.

Example 1. Let Γ be the genus two tropical graph of fig. 2.3 a) with canonical
homology basis (B1, B2) as depicted. Using the definition (2.2.5), its period
matrix is written:

K(2) =

(
T1 + T3 −T3

−T3 T2 + T3

)
. (2.2.8)

Choosing P0 as depicted, one can draw the image of Γ by the tropical Abel-
Jacobi map in J(Γ), as shown in the figure 2.3 b).

Example 2. The picture 2.4 below shows two inequivalent pure tropical graphs
of genus two. The period matrix K(2) of the graph a) is given in (2.2.8),
the period matrix of the graph b) is just Diag(T1, T2). Thus, the Jacobian
description is blind to such kind of “separating edges”.

Tropical moduli space The moduli space Mtrop(Γ) associated to a single
tropical graph Γ = (G,w, `) is the real cone spanned by the lengths of its inner
edges modulo the discrete automorphism group of the graph [99]

Mtrop(Γ) = R|E(G)|
+ /Aut(G) . (2.2.9)

The moduli space of all genus-g, n-punctured tropical graphs is the space
obtained from gluing all these cones together. This space is precisely the
tropical moduli space introduced in [99, 100] denoted Mtrop

g,n which enters the
formula (2.1.12).

Below we describe a few examples of tropical moduli spaces. The moduli
space of genus-0 tropical curves, Mtrop

0,n is a well defined space that has the
peculiar property of being itself a tropical variety of dimension n− 3 [98, 103].
Because of the stability condition (2.2.3) one should start with n = 3. The
space Mtrop

0,3 contains only one graph with no modulus (no inner length): the

3-pointed tropical curve. HenceMtrop
0,3 is just a one-point set. The spaceMtrop

0,4

Figure 2.4: The period matrix is blind to the central length of the rightmost
graph.
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Figure 2.5: Tropical moduli space Mtrop
0,4 (thick line). Each semi infinite line

corresponds to one of three inequivalent graphs. The X coordinate on these
gives the length of the inner edge of the graphs. The central point with X = 0
is common to the three branches.

has more structure; it has the topology of the three-punctured tropical curve
and contains combinatorially distinct graphs which have at most one inner
length, as shown in figure 2.5.

The space Mtrop
0,5 is a two dimensional complex with an even richer struc-

ture. It is represented in figure 2.6. At genus one,Mtrop
1,1 is still easily described.

A genus one tropical graph with one leg is either a loop or a vertex of weight
one. Hence, Mtrop

1,1 is the half infinite line R+.

In general, Euler’s relation gives that a given graph has at most 3g− 3 +n
inner edges (and has exactly that number if and only if the graph is pure
and possess only trivalent vertices). This implies thatMtrop

g,n is of “pure (real)
dimension” 3g − 3 + n, which means that some of its subsets are of lower
dimension

dimR Mtrop
g,n “ ≤ ” 3g − 3 + n . (2.2.10)

a)

(12)

(15) (23)

(24)

(25) (13)

(14)

(34)
(35)

(45)

b)

(15)

(23)

2

3 4 5

1

2

3

4 5

1

2

3 4

5

1

2

3

4

5

1

Figure 2.6: a) A slice of M0,5. The vertices (black dots) carry a two digits
index, which corresponds to rays of M0,5, while edges corresponds to the 15
quadrants (one for each tree with 5 external legs and trivalent vertices). b)
M0,5, with a specific quadrant in grey.
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Figure 2.7: Canonical homology basis at g = 2.

2.2.2 Classical geometry of Riemann surfaces

We recall now classical facts about homology and Jacobian varieties of smooth
Riemann surfaces. For a more elaborate introduction, we refer to the standard
textbooks [104, 105]. Let Σ be a generic Riemann surface of genus g and let
(aI , bJ) I, J = 1, . . . , g be a canonical homology basis on Σ with intersection
aI ∩ bJ = δIJ and aI ∩aJ = bI ∩ bJ = 0 as in figure 2.7. The abelian differential
ωI , I = 1, . . . , g form a basis of holomorphic one-forms. They can be normal-
ized along a-cycles so that their integral along the b-cycles defines the period
matrix ΩIJ of Σ:

2iπ

∮
aI

ωJ = δIJ , 2iπ

∮
bI

ωJ = ΩIJ . (2.2.11)

Note also Riemann’s bilinear relations∫
Σ

ωI ∧ ω̄J = −2i Im ΩIJ . (2.2.12)

The modular group Sp(2g,Z) at genus g is spanned by the 2g×2g matrices of
the form

(
A B
C D

)
where A,B,C and D are g×g matrices with integer coefficients

satisfying ABt = BAt, CDt = DCt and ADt − BCt = 1g. The g × g matrix
1g is the identity matrix. For g = 1, the modular group reduces to SL(2,Z).
The Siegel upper half-plane Hg is the set of symmetric g× g complex matrices
with positive definite imaginary part

Hg = {Ω ∈ Mat(g × g,C) : Ωt = Ω, Im (Ω) > 0} . (2.2.13)

The modular group Sp(2g,Z) acts on the Siegel upper half-plane by

Ω 7→ (AΩ +B)(CΩ +D)−1 (2.2.14)

Period matrices of Riemann surfaces are elements of the Siegel upper half-plane
and the action of the modular group on these is produced by Dehn twists of
the surface along homology cycles. The Jacobian variety J(Σ) of Σ with period
matrix Ω is the complex torus

J(Σ) = Cg/(Zg + ΩZg) . (2.2.15)

The classical Abel-Jacobi map µ is defined by integration along a path
C between two points (divisors) p1 and p2 on the surface of the holomorphic
one-forms

µ(p1, p2)C =

∫ p2

p1

(ω1, . . . , ωg) mod Zg + ΩZg . (2.2.16)
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Figure 2.8: a) A separating degeneration. b) A non-separating degeneration.
Dashes represent double points.

As in the tropical case, the right hand side of (2.2.16) does not depend on the
integration path as it is considered only modulo the Jacobian lattice. Note
that apart for the very special case of genus one where µ(Σ1) ∼= Σ1, the image
of a genus g ≥ 2 Riemann surface Σg by µ is strictly included in J(Σg),
µ(Σg) ( J(Σg).

Classical Moduli Mg,n space and its Deligne-Mumford compactifica-
tion Mg,n. Smooth Riemann surfaces of genus g with n punctures can be
arranged in a moduli space denotedMg,n of complex dimension is 3g− 3 + n.
The 3g− 3 +n complex parameters that span this space are called the moduli
of the surface. This space is not compact, as surfaces can develop nodes when
non-trivial homotopy cycles pinch and give rise to nodal surfaces with ordi-
nary double points. The result of adding all such nodal curves to Mg,n is the
well known Deligne-Mumford compactified moduli space of curvesMg,n [106].
There exists two types of such degenerations. As depicted in fig. 2.8, a “sepa-
rating” degeneration splits off the surface into a surface with two disconnected
components that are linked by a double point, while a “non-separating” de-
generation simply gives rise to a new surface with two points identified whose
genus is reduced by one unit. Note that no degeneration may split off a sur-
face that does not satisfy the stability criterion shared with tropical graphs,
eq. (2.2.3). As a consequence, a maximally degenerated surface is composed
of thrice punctured spheres.

These degenerations induce a stratification on Mg,n, characterized by the
combinatorial structure of the nodal curves, represented by its “dual graph”.
It is obtained by making a line go through each pinched cycle and turning
each non-degenerated component of genus g ≥ 0 into a vertex of weight g.
Finally, the legs of a dual graph are just what used to be punctures on the sur-
face. Examples are provided in fig.2.9. The strata corresponding to maximally
degenerated curves are the deepest ones. The stratum corresponding to the
non-pinched curves, whose dual graphs are a vertex of weight g, is the most
superficial one (it is the interior of Mg,n). We come back to this in section
2.2.3.

A surface where a node is developing locally looks like a neck whose coordi-
nates x and y on each of its side obey the equation xy = t, where the complex
number t of modulus |t| < 1 is a parameter measuring the deformation of
the surface around the singularity inMg,n. The surface is completely pinched
when t = 0. After a conformal transformation, one sees that this surface is
alternatively described by a long tube of length − ln |t| and the tropicaliza-
tion procedure classically turn these tubes into edges. The exact relation in

28



string theory involves a factor of α′ such that for instance the length T of the
worldloop coming from a torus is

T = −α′ ln |q| , (2.2.17)

which coincides with (2.1.11).

2.2.3 From classical to tropical geometry

Moduli Spaces In [PT3] we outlined a construction of the tropicalization
of Mg,n into Mtrop

g,n , which we later applied to string theory. Here we give
a shortened version of this discussion based on more physical grounds. The
starting point is the following question: “How can one commute the α′ → 0
limit and the integration symbol in (2.1.5)”? Schematically, we wonder how
to give sense to

lim
α′→0

(∫
Mg,n

Wg,n exp(Qg,n) dµbos

)
?
=

∫
Mg,n

lim
α′→0

(
Wg,n exp(Qg,n) dµbos

)
,

(2.2.18)
Such a procedure should treat well the integration domain, i.e. should not for-
get regions nor double counts others. If the integration domain were compact
and the integrand a well behaved funcion, standard integration theorems would
allow to simply commute the symbols. Here, we cannot replace Mg,n by its
compactificationMg,n precisely because the integrand has singularities at the
boundary, which correspond to the IR singularities of string theory massless
thresholds.

Hence, to deal with this integral we will follow the method pioneered at
one-loop by Green and Schwarz in their work [59] where they showed that
maximal supergravity and maximal SYM were the massless limits of type
II and I strings, respectively. At generic loop order, their approach can be
formulated by splitting the integral in the left-hand side of (2.2.18) into a sum
of integrals over different regions where the limit can be safely taken. These
regions are open sets of Mg,n, such that

Mg,n =
⊔
G

DG , (2.2.19)

where each DG contains the nodal curve with combinatorial type G. The point
is that these dual graphs correspond to particular Feynman graphs, and the

0 1

0 0

Figure 2.9: Degenerating surfaces, nodal curves and their dual graphs.
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limit is obtained for each integral as∫
DG

dµbos Wg,n exp(Qg,n) =

∫
Mtrop(Γ)

dµtrop Wg,n exp(Qg,n)+O(α′) . (2.2.20)

In [PT3] we described in great detail the limiting integration measure and
integrand and show that they coincide with the contribution of the Feynman
graph corresponding to Γ.

Example at genus one Before we describe these technical points, let us
come back to genus one and discuss what could be a decomposition ofM1,1 like
the one in (2.2.19). Genus one Riemann surfaces are complex tori13 C/Z+ τZ
parametrized by a complex parameter, τ with positive imaginary part, τ ∈
H1 = {τ ∈ C, Im (τ) > 0}. Modding out by the action of the modular group
SL(2,Z) further restricts τ which eventually lies in an SL(2,Z) fundamental
domain. A representative one that we will use is F = {τ ∈ C, |τ | > 1, −1/2 ≤
Re τ < 1/2, Im τ > 0}, depicted in the figure 2.10. Therefore

M1,1
∼= F (2.2.21)

There is only one singularity in M1,1, the pinched torus, at q = 0. Topo-
logically, it is a sphere with three punctures, two of which are connected by
a double point. The dual graph G1 of this surface is a single loop with one
external leg, and the corresponding domain should be defined such that it is
possible to integrate out the real part of τ (phase of q) independently of the
value of Im τ . Therefore we see that if we define DG1 in terms of an arbitrary
number L > 1 such that DG1 = {τ ∈ F , Im τ > L}, we can define families of
tori with Im τ = T/α′ tropicalizing to a worldloop of length T , independently
of Re τ . In this way, F is split in two parts, F+(L) ≡ DG1 and a lower part
F−(L) defined by F−(L) = {τ ∈ F , Im τ ≤ L}:

F = F+(L) t F−(L) . (2.2.22)

The dual graph corresponding to F−(L) is a weight one vertex with a single
leg. To the knowledge of the author, this precise decomposition was first used

13The complex tori is actually the Jacobian variety of the Riemann surface, but at genus
one both are isomorphic. This property does not hold for higher genus curves.

Figure 2.10: SL(2,Z) fundamental domain of the torus.
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by Green and Vanhove in [107], where F+(L) and F−(L) were respectively
called FL and RL. With this splitting, let us for definiteness introduce the
following quantities

A
(1,4)
α′,+(L) =

∫
F+(L)

dµbos Wg,n exp(Qg,n) (2.2.23a)

A
(1,4)
α′,−(L) =

∫
F−(L)

dµbos Wg,n exp(Qg,n) (2.2.23b)

According to the previous property in (2.2.20), the α′ → 0 limit of A
(1,4)
α′,+(L)

gives the contribution of graphs with worldline loops of finite size T = Im τ/α′.
Therefore, the condition Im τ > L gives the following field theory cut-off

T ≥ TUV = α′L (2.2.24)

In [107], the authors explained that since the total amplitude A
(1,4)
α′,+(L) +

A
(1,4)
α′,−(L) does not depend on L, any divergent term in A

(1,4)
α′,+(L) has to be

canceled by a term coming from the field theory limit of A
(1,4)
α′,−(L). This sup-

ports the fact that these integrals produce counterterms in the effective action.
In [PT3, section VI.B], we describe this cancellation in the trivial case of the
quadratic R4 one-loop 10-dimensional divergence of the four-graviton ampli-
tudes in type II supergravity, while in this manuscript in appendix 3.A we
present a one-loop computation for the R4 logarithmic divergence in 8 dimen-
sions for four-graviton amplitudes in heterotic string models. Several other
examples are discussed in the original work [107]. As a consequence, the field
theory limit of the sum of the two contributions is written as an integral over
Mtrop

1,1 with a contact term inserted at T = 0 and gives, as claimed below
eq. (2.1.12), the renormalized field theory amplitude. Let us now come back
to the integrand in the right-hand side of eq. (2.2.20).

Back to the tropical form of the integrand. The bosonic measure dµbos

is a (3g − 3 + n)-dimensional measure that can be traded for an integration
over the period matrices for genus 1, 2, 3, 4.14 In this way, the tropical limit of
the measure is given by

dµbos =
|
∏

1≤I<J≤g dΩIJ |2

| det Im Ω|5
n∏
i=1

d2zi → dµtrop =

∏
i∈{edges} d`(i)

| detK|5
(2.2.25)

14 We recall that the description of moduli of Riemann surfaces in terms of these of
Jacobian varieties is called the classical Schottky problem (for a recent survey see [108]).
Algebraically, the Jacobian varieties are characterized by g(g + 1)/2 complex numbers that
span period matrices, while Riemann surfaces have only 3g − 3 moduli. These numbers
coincide for g = 1, 2, 3 (for g = 1 one should have n = 1 because of conformal invariance
on the torus), for g = 4, M4 is a hypersurface in the moduli space of Jacobian variety of
co-dimension one, but it is known that the zero locus of the so called “Schottky-Igusa” form
furnishes a defining equation of this hypersurface. For g ≥ 5 the problem is totally open.
We describe later the Schottky-Igusa form, in chapter 3, sec. 3.2
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where `(i) is the length of the edge i. The interest of writing the measure
explicitly in terms of period matrices is the appearance of the det Ω5 factor,
giving rise to detK, an important element of Feynman graph as we explain
below.

We also explained that the Koba-Nielsen factor descends to a tropical Koba-
Nielsen factor, modulo a conjecture on a would-be “tropical” prime form which
we mention below. Under this hypothesis, the bosonic propagator G descends
to the worldline Green’s function Gtrop computed by Dai and Siegel in [101],
and we have

Qg,n −→
α′→0

Qtrop
g,n = −

∑
i,j

ki.kjG
trop(Zi, Zj) +O(α′) (2.2.26)

where details and explicit expressions can be found in [PT3, sec. V.A, eq(V.11)]
and below in eq. (2.2.43).

To convince the reader that we are really describing Feynman graphs in
this procedure, it is worth recalling the classical exponentiation procedure
that leads to Schwinger proper time parametrized Feynman graphs. Starting
from an arbitrary g-loop D-dimensional Feynman integral, we exponentiate
the Feynman propagators D2

i and obtain∫
(dDp)g

n(p)∏
iD

2
i

=

∫ ∞
0

∏
i

dai

∫
(dDp)g n(p) exp(−

∑
aiD

2
i )

=

∫ ∞
0

∏
i dai

(det K̃)D/2

〈
n(ai, K̃)

〉
exp(−Qtrop

g,n )

(2.2.27)

where we used that
∑
aiD

2
i = 1/2 tp · K̃ · p+ tA · p+ c(ai) is a quadratic form

which produces a determinant after completing the square to∑
aiD

2
i = 1/2 t(p+ K̃−1A) · K̃ · (p+ K̃−1A)− 1/2tAK̃−1A+ c(ai) (2.2.28)

and D-dimensional Gaussian integration over a suitable Wick rotation of the
shifted momentum p̃ = (p + K̃−1A). The fact that the loop momentum con-
stant part −1/2tAK̃−1A + c(ai) in the exponential equals Qtrop

g,n defined as in
(2.2.26) is indirectly proven in [101]. The last line is the desired Schwinger
proper time form of the Feynman graph, where the ai correspond to the inner
edges of the graph `(i) in (2.2.25). In this way, it is then easy to show that
K̃ is the period matrix K of the tropical graph as defined in (2.2.5). Finally,
the bracket notation in (2.2.27) refers to the fact that 〈n(ai, K)〉 is a Gaus-
sian average of n(p). The K-dependence comes from Gaussian integrating the
terms with non-trivial loop momentum dependence in n(p). The correspon-
dence between the tropical form (2.2.20) with the measure (2.2.25) and this
form is now, hopefully, clearer.15 We use this procedure in the last chapter of
this manuscript at one loop.

15The reader familiar with Symanzik polynomials may notice that the tropical Koba-
Nielsen factor is the second Symanzik polynomial of the graph, while the detK of the
proper time measure is the first Symanzik polynomial of the graph.
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At this point, we have an almost complete description of the α′ → 0 limit of
string theory amplitudes between the tropical form of the integrand in (2.2.20)
and the Feynman graph. The only missing point is also the most interesting
one; the numerator of the Feynman graph 〈n〉, corresponding to Wg,n. Below
we introduce a few technical elements necessary to tackle the tropical limit of
the numerator Wg,n for g ≥ 2.

Cohomology Thanks to the splitting ofMg,n (2.2.19), it is possible in each
domain to safely define families of degenerating worldsheets, and show that
their period matrices and one forms descend to their tropical analogues, as
described in [PT3, sec. IV.C]. The one-forms, at a neck i0 parametrized by a
local coordinate t0 around t0 = 0, locally behave as on a very long tube:

ωI =
c

2iπ

dz

z
+O(t0) , (2.2.29)

with c = 1 or 0 depending on if i belongs to the cycle bi or not. As a conse-
quence, the bilinear relation descends to∫

Σ

ωI ∧ ω̄J = −2i Im ΩIJ ∼
α′→0

−2i
KIJ

α′
+O(1) . (2.2.30)

which indicates the fundamental scaling relation of the tropical limit. At one-
loop, this is the relation (2.1.11), but at higher loop this gives non-trivial
information on the behavior of the period matrices of the degenerating world-
sheets.

Fourier-Jacobi expansions As a consequence, this provides a nice system
of local coordinates in each patch DG around the nodal curve G (at least for
when G corresponds to deepest strata16 of Mg,n), defined as

qj = exp(2iπτj) (2.2.31)

for j ∈ E(G) such that Im τj = `(j)/α′. It is then possible to perform the
so-called “Fourier-Jacobi” expansion of the various quantities defined on the
worldsheet in terms of these qj’s. Generically a function F of the moduli of
the worldsheet admits a Fourier-Jacobi expansion of the form (neglecting the
the punctures for simplicity):

F =
∑
ni,mj

F
(n1,...,n3g−3)
hol qn1

1 . . . q
n3g−3

3g−3 F
(m1,...,m3g−3)
anti−hol (q̄1)m1 . . . (q̄3g−3)m3g−3 (2.2.32)

where at g = 1, it is understood that 3g − 3 should be replaced by 1. The
general strategy to extract the tropical form of integrand W is to perform the
Fourier-Jacobi expansion of the integrand (step 1 of sec. 2.1.2) then integrate
the phase of the qi’s (step 2). The procedure tells us that it is safely possible

16We recall that we defined these strata before, as the ones corresponding to maximally
degenerated curves made of tri-valent weight-0 vertices only.
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to commute the integration and the Fourier Jacobi expansion. The outcome of
this procedure is that higher order contributions in qi vanish; only the constant
terms stay and constitute the tropical form of the integrand.

At this point the reader might wonder why the phase integration is not sim-
ply redundant with the qj → 0 limit; since non-zero powers of qj are projected
out anyway, what is the point of the phase-integration of constant terms ? As
a matter of fact, the integrands of string theory amplitudes do contain a par-
tition function, whose Fourier-Jacobi expansion typically starts with inverse
powers of qj: q

−1
j for the bosonic sector of heterotic string and q

−1/2
j for the NS

sector of the superstring. Therefore, a term like qj(q̄j)
−1 is not killed by the

qj → 0 limit alone, while it is by the phase integration
∫

d(Re τj)qj(q̄j)
−1 = 0;

this is the level matching condition (step 2 of sec. 2.1.2). For maximal super-
gravity amplitudes, the tachyon is projected out of the spectrum by the GSO
projection and the limit is easier to extract, but in general the inverse powers
of the partition function do contribute via residue contributions of the form∫

dRe τ1 . . . dRe τ3g−3
F

qn1
1 . . . q

n3g−3

3g−3 (q̄1)m1 . . . (q̄3g−3)m3g−3
= cn1,...,m3g−3F

trop .

(2.2.33)
At one-loop, there is only one q and these techniques are perfectly well under
control as we review in chap. 3. They led Bern and Kosower to develop the
eponymous rules which allow to compute n-gluon amplitudes [61–64]. These
were first derived from the low energy limit of heterotic string fermionic models,
later understood from first principles in field theory [109] then extended to
gravity amplitudes [64, 110]. See also the review [111] for an exhaustive account
on this worldline formalism. At higher loop, such residue formulas are still not
known, and are required to extract general amplitudes, as we discuss later in
the chapter dedicated to half maximal supergravity amplitudes at two loops,
3.2. The basic building block of which these generic integrands are made of is
the bosonic correlator G and its derivatives, to which we come now.

A tropical prime form ? In this paragraph, we describe the first term of
the Fourier-Jacobi expansion of bosonic Green’s function on Riemann surfaces.
Its complete expression is [85, 94]17

G(z1, z2) = −α
′

2
ln (|E(z1, z2)|)− α

′

2

(∫ z1

z2

ωI

)
(Im Ω−1)IJ

(∫ z1

z2

ωJ

)
(2.2.34)

It is defined in terms of the prime form E, whose definition requires to introduce
first the classical Riemann theta function:

θ(ζ|Ω) =
∑
n∈Zg

eiπn
tΩne2iπmtζ (2.2.35)

17The normalization differs from the one used in [PT3] by the factor α′ that we keep inside
G here.
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where ζ ∈ J(Σ) and Ω ∈ Hg. Theta functions with characteristics are defined
by

θ

[
β

α

]
(ζ|Ω) = eiπβ

tΩβ+2iπβt(ζ+α)θ(ζ + Ωβ + α|Ω) (2.2.36)

where α and β are g dimensional vectors of 1
2
(Z/2Z)2g called the theta-characteristics.

The prime form E is then defined by [85, 112, 113]

E : (x, y) ∈ Σ× Σ −→ E(x, y|Ω) =
θ
[
β
α

]
(µ(x, y)|Ω)

hκ(x)hκ(y)
∈ C , (2.2.37)

with the requirement that κ =
[
β
α

]
∈ 1

2
(Z/2Z)2g should be a non-singular

odd18 theta-characteristics and hκ the half-differentials defined on Σ by hκ(z) =√∑g
i=1 ωI(z)∂Iθ

[
β
α

]
(0|Ω) . Also, µ is the classical Abel-Jacobi map defined

in (2.2.16). Defined in this way, the prime form is a differential form of weight
(−1/2,−1/2) which do not depend on the spin structure κ chosen. In a sense,
it is the generalization of the map x, y ∈ C2 7→ x − y to arbitrary Riemann
surfaces. In particular, E(x, y) vanishes only along the diagonal x = y and
locally behaves as

E(x, y) ∼
x→y

x− y√
dx
√
dy

(1 +O(x− y)2) (2.2.38)

It is multi-valued on Σ× Σ since it depends on the path of integration in the
argument of the theta function. More precisely, it is invariant up to a sign if
the path of integration is changed by a cycle aI , but it picks up a multiplicative
factor when changing the path of integration by a cycle bJ

E(x, y)→ exp(−ΩJJ/2−
∫ y

x

ωJ)E(x, y) . (2.2.39)

In G, it is easily checked that the additional terms with holomorphic forms
precisely cure this ambiguity.

In [PT3] was proposed a definition of a the tropical prime form as the result
of the following limit:

Etrop(X, Y ) := − lim
α′→0

(
α′ ln

∣∣E(xα′ , yα′|Ωα′)
∣∣) (2.2.40)

where Ωα′ are the period matrices of a family of curves tropicalizing as in
(2.2.30), xα′ , yα′ are two families of points on the surface whose image by the
Abel-Jacobi map tropicalizes as in (2.2.29) and X and Y are the two limit
points on the tropical graph. Inspired by [101], we made the conjecture that
the tropical prime form defined in this way corresponds to the graph distance
dγ(X, Y ) between X and Y along a path γ:

Etrop(X, Y ) = dγ(X, Y ) (2.2.41)

18Odd means that 22nα · β ≡ 1[2] and “non-singular” that θ[κ](ζ|Ω) vanishes exactly to
first order at ζ = 0. Even characteristics are these for which 22nα · β ≡ 0[2]
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This object is also ill-defined on the graph since it depends on γ. To prove
this conjecture, the first ingredient to use would be tropical theta functions
with characteristics. Tropical theta functions without characteristics were in-
troduced in [97] and it is easy to show directly that they arise in the limit of
the classical ones;

Θtrop(Z|K) = lim
α′→0
−α′ ln |θ(ζα′ |Ωα′)| (2.2.42)

where (ζα′) = µ(xα′ , yα′) is sent to Z = µtrop(X, Y ) as defined previously. So
far, the author has not managed to prove this property in the case of tropical
theta functions with characteristics, as defined in [97]; this is a crucial missing
step. As this limit is not fully under control, it does not make sense to try to
describe higher order corrections in the Fourier-Jacobi expansion of the prime
form, which would enter residue formulas as (2.2.33).

The other class of terms in the right-hand side of (2.2.34) are easily dealt
with by replacing the one-forms and period matrix by their tropical analogues,
and, using (2.2.41) we obtain the α′ → 0 limit of the bosonic correlator of
(2.2.34) is the following quantity

G(Z1, Z2) = lim
α′→0
G(z1, z2) = −1

2
Etrop(Z1, Z2)−1

2

(∫ Z1

Z2

ωtrop

)
K−1

(∫ Z1

Z2

ωtrop

)
(2.2.43)

which is precisely the expression computed by Dai and Siegel in [101]. Note
that it is now well defined on the graph.

A Remark On Contact Terms Before closing the section, let us clar-
ify a point concerning contact-terms. In the usual perturbative expansion of
quantum field theory, the Feynman rules include vertices of valency four in
non-abelian gauge theories and arbitrarily high in gravity theories, to guaran-
tee gauge invariance. What is referred to as “contact-term” in string theory
is different. It is the vertex that results from integrating out the length of a
separating edge in a one-particle-reducible graphs:∫ (

X

)
dX = c0 × (2.2.44)

In the tropicalization procedure, we do not perform these integrations. There-
fore, higher valency vertices (of weight zero) are present in our considerations,
but only as boundaries between domains in Mtrop

g,n of maximal codimension
and should not carry any localized contribution in the integrands, unlike in
Feynman rules where they carry a distinct structure compared to the lower
valency vertices.

Furthermore, in string theory, these type of contributions only arise from
configurations where two neighboring vertex operators Vi and Vj collide to-
wards one another, zi − zj � 1. It can be shown in full generality that a
contact term can arise only if the string integrand Wg,n contains a factor of
|∂G(zi − zj)|2. The basic argument is that in the region where the position of
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the punctures collide, the local behavior of E (2.2.38) grants that ∂G has a
first order pole ∂G ∼ 1/(zi−zj) and the change of variable19 zi−zj = e−X/α

′
eiθ

can be used to take the limit of
∫

d2zi|∂G(zi − zj)|2 exp
(
− ki.kjα′ ln(zi − zj)

)
in the string amplitude to obtain the following integral over dX, the length of
the separating edge:∫

d2zi|∂G(zi − zj)|2e−2ki.kjα
′ ln |zi−zj | = −2π

α′

∫
dXe−2Xki·kj (2.2.45)

after integrating the phase dθ. The crucial point here is that if |∂G(zi − zj)|2
had not been in the integrand, either the local behavior would have failed or
the phase integration would have killed the contribution.

The “Analytic” and the “Non-Analytic” domains.

For simplicity let us exclude the punctures of that discussion. The authors
of [107] introduced the splitting (2.2.22) because it actually decomposes the
string amplitude into its analytic and non-analytic parts, respectively obtained
from the lower- and upper-domain integration. In [PT3] we proposed an ex-
tension of these “lower” and “upper” domains for higher genus. We defined
the analytic and non-analytic domains in Mg,n by the requirement that the
first should correspond to the more superficial stratum of Mg and the second
should correspond to the deepest strata of Mg in the decomposition (2.2.19).
These strata where defined in paragraph concerning the structure of Mg,n.

Therefore, the analytic domain is defined by removing all neighborhoods
around the singularities ofMg; it is a compact space. In this region, the string
integrand has no singularity and the limit may be safely commuted with the
integration, where the factor α′ present in the definition of Qg,n via G simply
sends exp(Qg,n) to 1. This reasoning justifies why in an important part of
the literature, “taking the low energy limit” is often translated as getting rid
of the Koba-Nielsen factor. This may be done only modulo these non-trivial
geometric assumptions.

This also suggests that to compute the primary divergence of an ampli-
tude, it is possible to compute the string integral over the analytic domain, as
illustrated in the one-loop example of secs.2.2.3 and 3.A. Understanding the
role of the precise form of the boundary of this domain is an open interesting
question. Regarding the non-analytic domains, they provide the contribution
of the pure tropical graphs, made of trivalent vertices only. Summed over,
they give rise to the unrenormalized field theory amplitude, with all of its
sub-divergences.

2.3 Extraction of supergravity amplitudes

The α′ → 0 limit of tree-level amplitudes is sketched later in this text when
we discuss a formula related to the BCJ duality at tree-level in sec. 4.2. One-
loop amplitudes are also discussed in some detail in the following chapter 3.

19In [PT3] we discussed this tree-level behavior in detail
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Here we discuss the somewhat non-trivial and interesting cases of g = 2, 3
four-graviton amplitudes in type II string theory.

2.3.1 Two-loops field theory limit in maximal super-
gravity

The two-loop four-graviton type II amplitude in 10 dimensions has been com-
puted explicitly in the RNS formalism by D’Hoker and Phong in [43–49] and
later obtained in the pure spinor formalism in [114, 115]. The normalizations
between the two results was carefully observed to match in [116]. We reproduce
the RNS form here:

A
(2,4)
α′ =

t8t8R
4

212π4

∫
F2

|
∏

I≤J dΩIJ |2

(det Im Ω)5

∫
Σ4

|YS|2exp
(
Q2,4

)
(2.3.1)

where
∫

Σ4 denotes integration over the surface Σ of the position of the four
punctures and t8t8R

4 is the only supersymmetric invariant in maximal super-
gravity made of four powers of the Riemann tensor (see [77, Appendix 9.A]).
The domain F2 is an Sp(4,Z) fundamental domain, isomorphic to M2. The
quantity YS arises from several contributions in the RNS computation and
from fermionic zero-mode saturation in the pure spinor formalism. Its expres-
sion is given in terms of bilinears in the holomorphic one-forms ∆(z, w) =
ω1(z)ω2(w)− ω1(w)ω2(z) as follows

3YS = (k1 − k2) · (k3 − k4) ∆(z1, z2)∆(z3, z4) + (13)(24) + (14)(23) . (2.3.2)

Thus, |YS|2 is a top-form on Σ4. In [PT3], we checked the conjecture of
[96] on the low energy limit of the string theory amplitude, starting from the
field theory amplitude derived in [13] rewritten in a worldline language. This
concerns only the non-analytic domain of the amplitude. The essence of the
demonstration is to find the tropical form of YS. As noted in the previous
section, in amplitudes where maximal supersymmetry is not broken, the NS
tachyons are projected out of the spectrum by the GSO projection, and there is
no non-trivial residue to extract. The tropical form of YS is then immediately
obtained:

3YS → 3YS = (k1 − k2) · (k3 − k4) ∆trop(12)∆trop(34) + (13)(24) + (14)(23) .
(2.3.3)

where ∆trop descends from ∆ by replacing ω by ωtrop. As explained in [PT3,
section VI.C], it is not difficult to see that YS has the simple behavior summa-
rized in table 2.1.
In total, the non-analytic part of the amplitude is written as

A
(2,4)
non−ana(L) = N t8t8R4

∫ ∞
K22>K11≥α′L

∏
I≤J dKIJ

(detK)5

∫
Γ4

Y 2
S exp

(
Qtrop

2,4

)
, (2.3.4)

where N is a global normalization factor,
∫

Γ4 represents the integration of the
positions of the four punctures on the graph and

∫
K22>K11≥α′L represents a pos-
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Graph

YS 0 0 −sij −sij

Table 2.1: Numerators for the two-loop four-graviton worldline graphs.

sible choice for the boundaries of the non-analytic domain described before.20

This object coincides with the one derived in [96, eq. 2.12] from the two-
loop field theory computation of [13], thus it is the two-loop unrenormalized
four-graviton amplitude.

The other domains of M2 have been studied as well, but for the moment
the author is missing some technology for genus-2 modular integrals, which
hopefully would be resolved once the questions raised in [117] are answered.
To be complete, we should also mention that the absence of |∂G|2 terms forbids
the appearance of contact-terms.

2.3.2 New results at three loops

Recently a four-graviton amplitude three-loop amplitude in type II superstring
was proposed in [72] in the pure spinor formalism. This amplitude passes a
very important consistency check by matching the S-duality prediction of [118]
confirmed in [68] for the coefficient of the ∇6R4 in the effective action in ten
dimensions after carefully matching normalizations.21 Here we propose new
results concerning the set of graphs that appear (or rather, the ones that do
not) in the field theory limit of this amplitude in the non-analytic domains.
There are two different vacuum topologies of genus 3 graphs, depicted in the
figure 2.11. Let us reproduce the structure of this genus three amplitude. In
our notations, up to a global normalization factor N3, it writes

A
(3,4)
α′ (εi, ki) = N3

∫
M3

|
∏

I≤J dΩIJ |2

(det Im Ω)5

∫
Σ4

[
〈|F|2〉+ 〈|T |2〉

]
exp

(
Q3,4

)
, (2.3.5)

where
∫

Σ4 is again the integration of the positions of the four punctures. The
integrand is a top form and F and T are correlation functions of the bosonic
pure spinor ghosts λ, λ̄, including kinematic invariants, polarization tensors,
derivatives of the genus three Green’s function and holomorphic one-forms
ωI(zi), ω̄J(zj), where I, J = 1, 2, 3 and i, j = 1, . . . , 4. The one-forms appear
in objects generalizing the genus-two bilinears ∆ defined by:

∆(zi; zj; zk) = εIJKωI(zi)ωJ(zj)ωK(zk) , (2.3.6a)

∆µ(zi, zj; zk; zl) = εIJK(Πω)µI (zi, zj)ωJ(zk)ωK(zl) , (2.3.6b)

20Looking back at the explicit parametrization of K in (2.2.8), this contribution sets the
length of both B1 and B2 loops to be greater than the cutoff scale.

21A subtle reasoning on the symmetries of genus-three surfaces led the authors of [72] to
include a global factor of 1/3 a posteriori. A first-principle computation or a cross-check
appears necessary to ensure the validity of this result.
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Figure 2.11: The two vacuum topologies at three loops: the Mercedes one
and the ladder (hyperelliptic) one, endowed with the choice of a particular
homology.

where (Πω)µI := Πµ
IωI(zi)ωI(zj) (no sum on I) and the index µ = 0, . . . , 9 is

the target spacetime index. The quantity Πµ
I is the zero mode part of the mo-

mentum Πµ that flows through the cycle BI . One-forms are also present in the
derivatives of the Green’s function, since ∂ziG(zi, zj) =

∑3
I=1 ωI∂ζIG(zi, zj)

where ζI is the I-th component of µ(zi, zj). Finally, F is solely defined in
terms of ∆ and derivatives of the Green’s function (not mentioning the tenso-
rial structure involving polarization vectors, momenta and pure spinor ghosts)
while T is only defined in terms of ∆µ and does not contain derivatives of the
Green’s function.

This being said, what we want to show here is that in the tropical limit,
F and T vanish before integration for both topologies of graphs in fig.2.11
where three or more particles are on the same edge of the graph, possibly via
a tree-like contact-term. For the quantity, F , this property follows from the
antisymmetry of the tropical version of ∆(zi; zj; zk), ∆trop, defined by replacing
the ω’s by they tropical counterparts

∆trop(i, j, k) = εIJKωtrop
I (i)ωtrop

J (j)ωtrop
K (k) (2.3.7)

Whenever two particles, for instance 1 and 2 are on the same edge, one has
ωtrop
I (1) = ωtrop

I (2) and ∆trop(1, 2, i) vanishes by antisymmetry. Therefore,
when three particles (or more) are on the same edge, any triplet of particles
(i, j, k) necessarily involves two particles inserted on the same edge and ∆
always vanishes. As regards T , the vanishing follows from symmetry properties
of its defining building blocks rather than on these of the ∆µ’s. We reproduce
the definition of T given in eq. (3.26) in [72]:

T = T µ1234∆µ(z1, z2; z3; z4) + T µ1324∆µ(z1, z3; z2; z4) + T µ1423∆µ(z1, z4; z2; z3)

+ T µ2314∆µ(z2, z3; z1; z4) + T µ2413∆µ(z2, z4; z1; z3) + T µ3412∆µ(z3, z4; z1; z2)
(2.3.8)

where

T µ1234 = Lµ1342 + Lµ2341 +
5

2
Sµ1234 . (2.3.9)

We do not need any detail about L and S but their symmetry properties. The
quantity Lijkl is antisymmetric in [ijk], which is enough to ensure vanishing
of the L part in T when three particles are on the same edge of the graph.
However Sµijkl is only symmetric in (ij) and antisymmetric in [kl] and we need
additional identities. It is indeed possible to show the following relation

Sµ1234 + Sµ1324 + Sµ2314 = 0 (2.3.10)
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from the properties of the defining constituents22 of Sµ, and this identity even-
tually brings the desired results after a few manipulations of the indices i, j, k, l.
The integrand does vanish in the more general case where at least one B cycle
is free of particles, while it is not trivially zero in the other cases, we arrive
at the aforementioned property. Before concluding, we shall also mention that
the regions of the moduli space where vertex operators collide to one-another
here provide non-vanishing contributions. The required ∂G terms are present
in F , which leaves room for contact-terms to arise in the field theory limit of
(2.3.5).

The conclusion is the following; the tropical limit of the amplitude (2.3.5)
describes the same set of 12 graphs as the one used in the computation of the
four graviton three-loop amplitude in maximal supergravity of Bern et. al. in
[34]. The complete extraction of the tropical form of the integrand would be
a very interesting thing to do.

22The author is grateful to Carlos Mafra for a discussion and sharing results on that point.
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Chapter 3

Half-Maximal Supergravity

In this chapter, we turn to the theory of half-maximal supergravity and its one-
and two-loop amplitudes. We recall that this theory is interesting because of
its UV behavior and because of its richer structure than N = 8 since it can be
coupled to N = 4 SYM matter fields.

We review in sec. 3.1 the one-loop computation of [PT2], and focus in par-
ticular on the amplitudes computed in CHL orbifolds of the heterotic string.
Then in sec. 3.2 we describe the two-loop analysis of [PT1] concerning the UV
behavior of half-maximal supergravity. We also provide unpublished material
on the genus-two partition function in CHL models and propose a genuine
worldline description of the field theory limit of these two-loop amplitudes.
Finally we present in appendix 3.A an example of computation of one-loop
logarithmic divergence in the case of half-maximal supergravity four-graviton
amplitudes D = 8. This illustrates the discussion of the previous chapter on
the cancellation of divergences between the analytic and non-analytic contri-
butions at one-loop.

The one-loop analysis of this chapter does not require the technical mate-
rial exposed in the previous section since the techniques involved were fully
described already in the Bern-Kosower works [61–64]. In contrast, the analysis
of the two-loop amplitude is what originally led the author to look for more
advanced mathematical tools.23

3.1 String theory models and their one-loop

amplitudes.

To start this chapter on gravity amplitudes on a concrete basis, we begin
by recalling some details of the computation of one-loop amplitudes in string
theory. At four-point, in heterotic or type II string, they write as a correlation

23The author would like to thank here the mathematician Samuel Grushevsky for sug-
gesting him to look at tropical geometry.
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function of a product of vertex operators

A1-loop
string = N

∫
F

d2τ

Im τ 2

∫
T

3∏
i=1

d2zi
Im τ
〈V1(z1)V2(z2)V3(z3)V4(z4)〉 , (3.1.1)

where the normalization constant N depends on the details of the string theory
model. The domain of integration F has been defined in the previous chapter
and the zi belong to T = {z ∈ C,−1/2 < Re z ≤ 1/2, 0 < Im z < Im τ}. One
of the vertex operators is fixed to z4 = i Im τ by conformal invariance. The un-
integrated vertex operators have a holomorphic part and an anti-holomorphic
part:

V (z) = : V (L)(z)V (R)(z̄)eikX(z,z̄) : , (3.1.2)

where V (L) and V (R) are the chiral vertex operators for the left- and right-
moving sectors.24 In heterotic string, the anti-holomorphic chiral vertex oper-
ators for gravitons are the bosonic vertex operators, normalized as in [60]:

V
(L)

(0) (z̄) = i

√
2

α′
εµ∂̄X

µ(z̄) , (3.1.3)

while the right-moving are supersymmetric chiral vertex operators:

V
(R)

(0) (z) =

√
2

α′
εµ(k)

(
i∂Xµ +

α′

2
(k · ψ)ψµ

)
. (3.1.4)

Type II graviton vertex operators are obtained by choosing both chiral vertex
operators to be supersymmetric vertex operators.

The periodicity conditions for the fermionic fields ψµ, ψ̄ν upon transport
along the a- and b-cycles, corresponding to the shifts z → z+1 and z → z+ τ ,
respectively, define spin structures, denoted by two integers a, b ∈ {0, 1} such
that

ψµ(z + 1) = eiπaψµ(z) , ψµ(z + τ) = eiπbψµ(z) . (3.1.5)

All of these sectors should be included for modular invariance of the string inte-
grand. The GSO projection indicates relative signs between the corresponding
partition functions. The partition function of a supersymmetric sector in the
spin structure a, b writes

Zab(τ) ≡
θ
[
a
b

]
(0|τ)4

η12(τ)
, (3.1.6)

where the Dedekind η function is defined by

η(τ) = q1/24

∞∏
n=1

(1− qn) , (3.1.7)

and the theta functions with characteristics have been defined in (2.2.36).
The GSO projection gives rise to supersymmetric cancellation identities on

24The vertex operators Vi can all be chosen in the (0) superghost picture since the su-
perghost background charge is zero on the torus.
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the worldsheet, which generically go under the name of “Riemann identities”
[112, 113] of which we reproduce two below;∑

a,b=0,1
ab=0

(−1)a+b+abZa,b(τ) = 0 , (3.1.8a)

∑
a,b=0,1
ab=0

(−1)a+b+abZa,b(τ)
4∏
i=1

Sa,b(zi − zi+1|τ) = −(2π)4 (with z5 ≡ z1) ,

(3.1.8b)

The first identity ensures the vanishing of the string self-energy, as expected
in supersymmetric theories. The second identity involves fermionic correla-
tors Sa,b = 〈ψµ(z)ψν(w)〉a,b in the spin structure a, b and is the consequence
of supersymmetric simplifications on the worldsheet in the RNS formalism.25

In amplitudes of maximally supersymmetric theories, these identities kill the
terms in the correlator (3.1.1) with less than four bilinears of fermions : ψψ :.
They produce the t8F

4 tensor when there are exactly four of them. Details on
these identities can be found in appendix A of [PT2].

In orbifold compactifications, the GSO boundary conditions can be mixed
with target-space shifts and the fields Xµ and ψµ acquire non-trivial bound-
ary conditions, mixing the standard spin structures with more general (g, h)-
orbifold sectors [119, 120];

Xµ(z + 1) = (−1)2hXµ(z) , ψµ(z + 1) = −(−1)2a+2hψµ(z) ,

Xµ(z + τ) = (−1)2gXµ(z) , ψµ(z + τ) = −(−1)2b+2g ψµ(z) .
(3.1.9)

The string theory four-graviton scattering amplitude is then computed using
Wick’s theorem as a sum in the various GSO/orbifold sectors in terms of the
two points correlators 〈X(z)X(w)〉 and 〈ψ(z)ψ(w)〉a,b. It assumes the following
general form

Astring
1-loop = N

∫
F

d2τ

(Im τ)D/2−3

∫
T

3∏
i=1

d2zi
Im τ
×(∑

s,s̃

Zss̃
(
W(L)

s (z) W(R)
s̃ (z̄) +WL−R

s,s̃ (z, z̄)
)
eQ

)
,

(3.1.10)
where we dropped the (1, 4) index in the Koba-Nielsen factorQ1,4, s = (a, b, g, h)
and s̃ = (ã, b̃, g̃, h̃) label the GSO and orbifold sectors of the theory with their

corresponding partition functionZs,s̃ and conformal blocksW(L/R)
s,s̃ , WL−R

s,s̃ (z, z̄).
Explicit expressions for these terms can be found in [PT2] for the heterotic and
type II orbifold models. The term WL−R

s,s̃ (z, z̄) contains contractions between
left- and right- moving fields like

〈∂X(z1, z̄1)∂̄X(z2, z̄2)〉 = −α′πδ(2)(z1 − z2) +
α′

2πIm τ
. (3.1.11)

25In the space-time supersymmetric formalisms, there are no sums over spin structures
since there are no worldsheet fermions and these simplifications occur from zero mode sat-
uration.
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In a generic compactification, the partition function contains a lattice sum
corresponding to the Kaluza-Klein states and an oscillator part. For illustrative
purposes, let us write the basic compactification lattice sum for a toroidal
compactification to D = 10− d dimensions

Γd,d(G,B) =
∑
PL,PR

q̄
P2
L
2 q

P2
R
2 , (3.1.12)

where the momenta PL and PR span the Narain lattice of the compactification
(see chapter 4.18.5 and appendix D of the textbook [79] for more details).
In our toroidal compactifications, we will always be in a regime where the
Kaluza-Klein states are decoupled. For this it is sufficient to choose the radii of
compactification Ri to be of the order of the string-length Ri ∼

√
α′. Therefore

we will always set Γd,d to 1 in the following.
The field theory limit is extracted by following the two-step procedure

described in the previous section. Here we are interested only in the non-
analytic part of the amplitude where the condition Im τ ≥ L gives the field
theory cutoff T ≥ α′L. The heterotic string and type II orbifolds partition
function respectively exhibit 1/q and 1/

√
q poles. When they hit the integrand,

the amplitude picks up non-zero residues upon the phase integration as in
(2.2.33). More precisely, in the heterotic string case, the following identities
have been used in [PT2, eqs.(III.33), (III.38)]:26∫ 1/2

−1/2

d(Re τ)d(Re z)
1

q̄
(∂G(z))2) = (α′iπ)2 , (3.1.13a)∫ 1/2

−1/2

d(Re τ)
∏
i

d(Re zi)
1

q̄

∏
j

∂G(zj − zj+1) = (α′iπ)4 , (3.1.13b)

They describe how derivatives of the propagator are eaten up by an inverse
power of q. Note that other type of identities can be shown to produce van-
ishing contributions. Later we connect this to supersymmetric simplifications.
Once all phases (real parts of τ and zi’s) are integrated out, the tropical vari-
ables corresponding to Im τ and Im z are obtained by

Im τ = T/α′ , T ∈ [α′L; +∞[ ,

Im zi = Tui/α
′ , ui ∈ [0; 1[ .

(3.1.14)

After repeated use of (3.1.13), we obtain the tropical form of W obtained by
turning all ∂G’s which have not been eaten-up in the process to derivatives of
the worldline propagator (2.2.43) which writes explicitly at one-loop as

G(ui, uj) = T (|ui − uj| − (ui − uj)2) . (3.1.15)

Its derivatives with respect to the unscaled variables ti = Tui indicated by
dots write

Ġ(ui, uj) = sign(ui − uj)− 2(ui − uj) ,

G̈(ui, uj) =
2

T
(δ(ui − uj)− 1) ,

(3.1.16)

26These identities were obtained in [PT2] in a normalization where α′ was set to 1/2.
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In supersymmetric sectors, the fermionic propagators left-over from Riemann
identities are also subject to residues identities involving 1/

√
q poles. Normally

the propagators escaping these two simplifications descend to their worldline
analogues GF (ui, uj) = sign(ui − uj). In the computations [PT2], these re-
maining terms eventually appeared in squares and disappeared of the final
expressions. In conclusion, the field theory limit of our expressions can be
recast as a worldline integrand WX which schematically writes solely in terms
of Ġ and G̈ as

∑
n,m,i,j,k,l Cn,m(G̈ij)

m(Ġkl)
n. The monomials satisfy the power

counting

(Ġ)n(G̈)m ∼ uni
Tm
←→ `n+2m , (3.1.17)

which can be proven by Gaussian integration of ` as explained in (2.2.27)
and also in [121, 122]. Eventually, one obtains the following type of worldline
integrals for the contribution of the multiplet X to the low energy limit of the
string amplitudes

M1−loop
X =

π4t8t8R
4

4

µ2ε

πD/2

∫ ∞
0

dT

TD/2−3

∫ 1

0

3∏
i=1

duiWX e
−π T Qtrop

(3.1.18)

where µ is an infrared mass scale and the factor t8t8R
4 encompasses the polar-

ization dependence of these supersymmetric amplitudes. Moreover, we traded
the hard cut-off T ≥ α′L for dimensional regularization to non-integer dimen-
sion D. Now that this general discussion of the low energy limit of string
theory one-loop amplitudes is complete, let us come to particular models.

3.1.1 CHL models in heterotic string

Chaudhuri-Hockney-Lykken models [50–52] are asymmetric ZN orbifolds of
the heterotic string compactified on a T 5×S1 manifold that preserve all of the
half-maximal supersymmetry.27 They act geometrically by rotating N groups
of ` bosonic fields X̄a belonging to the internal T 16 of the heterotic string or
to the T 5 and produce an order-N shift on the S1. More precisely, if we take
a boson X̄a of the (p+ 1)-th group (p = 0, . . . , N − 1) of ` bosons we have a ∈
{p`, p`+ 1, . . . , p`+ (`− 1)} and for twists g/2, h/2 ∈ {0, 1/N, . . . , (N − 1)/N}
we get

X̄a(z̄ + τ̄) = eiπgp/NX̄a(z̄) , X̄a(z̄ + 1) = eiπhp/NX̄a(z̄) . (3.1.19)

The massless spectrum is then composed of the half-maximal supergravity
multiplet coupled to nv maximal SYM matter multiplets. The number of
matter vector multiplets is found to be

nv =
48

N + 1
− 2 . (3.1.20)

In [PT1, PT2], we restricted to prime N and considered the models with
N = 1, 2, 3, 5, 7 displayed in the upper part of tab. 3.1. Here we also observe

27There also exists type IIA duals [52, 123, 124].
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N ` k nv Gauge group
1 12 10 22 U(1)22

2 8 6 14 U(1)14

3 6 4 10 U(1)10

5 4 2 6 U(1)6

7 3 1 4 U(1)4

11 2 0 2 U(1)2
}

Unphysical ?
23 1 -1 0 ∅

Table 3.1: Adapted from [128]; CHL orbifolds geometry and massless spec-
trum.

that it is in principle possible to formally define models with N = 11 as noted
by [125, footnote 2], but also N = 23. This model would have nv = 0, meaning
that it would describe pure half-maximal supergravity. To achieve this in full
rigor, one should actually compactify the theory further on a T 6 × S1 and
T 7 × S1 to 3 and 2 dimensions, respectively. 28

Finally, these models have the following moduli space:

Γ\SU(1, 1)/U(1)× SO(6, nv;Z)\SO(6, nv)/SO(6)× SO(nv) , (3.1.21)

where the Γ’s are discrete subgroups of SL(2,Z) defined in appendix A.3 of
[PT2]. The scalar manifold SU(1, 1)/U(1) is parametrized by the axion-dilaton
in the N = 4 gravity supermultiplet. The U(1) duality symmetry is known
to be an anomalous symmetry [54], whose intriguing implications in the UV
behavior of the theory [129, 130] have not been clarified yet .

In loop amplitudes, supergravity is realized by the following combination
of the bosonic and supersymmetric sectors;

(11, 1/24, 06)N=4,vect. × (11, 1/20, 00)N=0 = (21, 3/24, 16, 1/24, 01+1̄)N=4,grav.

(3.1.22)
From the worldsheet point of view, the supersymmetric sector of the amplitude
is left untouched by the orbifold and is computed as usual with Riemann
identities which reduce the holomorphic integrand to the t8F

4 tensor.
Hence, the non-trivial part of the computation concerns the bosonic sec-

tor. The orbifold partition function writes as a sum of the twisted partition
functions in the orbifold twisted and untwisted sectors:

Z(nv)
(4,0)het(τ) =

1

N

∑
(g,h)

Zh,g(4,0)het(τ) . (3.1.23)

28We did not make any additional comment on that point, as we already had a type II
superstring compactification with (4, 0) supersymmetry that had nv = 0. Here we note
that CHL models also appear to be related to the Mathieu Moonshine program (see [126]
and references therein), where in particular the order N of the orbifold should relate to the
conjugacy class of the Mathieu group M24 via the duality with type II orbifolds of K3. To
the understanding of the author, despite that an N = 23 model might exist, it has not been
constructed yet. This putative model, similarly to the observation of [125] for the N = 11
one, should act non-geometrically, thus it would not be described by the previous geometric
analysis (see also the review of [127] on the classical symmetries of the Mathieu group).
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At a generic point in the moduli space, Wilson lines give masses to the adjoint
bosons of the E8×E8 or SO(32) gauge group, and decouple the (6, 24) Kaluza-
Klein lattice sum. The low energy limit also decouples the massive states of
the twisted sector (h 6= 0) of the orbifold. As a result, only the ` gauge bosons
of the U(1)` group left invariant by the orbifold action stay in the massless
spectrum. The untwisted (g = h = 0) partition function reduces to the bosonic
string partition function

Z0,0
(4,0)het(τ) = Zbos =

1

η̄24(τ̄)
, (3.1.24)

and the partition functions describing the quantum fluctuations of the massless
sectors of the theory with g 6= 0 are independent of g and write

Zg,0(4,0)het(τ) =
1

fk(τ̄)
. (3.1.25)

The modular form fk(τ) has weight29 ` = k + 2 = 24/(N + 1) and is defined
by:

fk(τ) = (η(τ)η(Nτ))k+2 . (3.1.26)

In total, the low energy limit of the CHL partition function writes

ZnvCHL =
1

N

(
1

(η̄(τ̄))24
+
N − 1

fk(τ̄)

)
=

1

q̄
+ (nv + 2) +O(q̄) , (3.1.27)

where for the first time we encounter explicitly this 1/q̄ pole which was adver-
tised.

At the next step of the computation, we need to write the conformal block

WB
coming from Wick contractions30 of the bosonic chiral vertex operators.

It is defined by (3.1.3)

WB
=
〈
∏4

j=1 ε
j · ∂̄X(zj)e

ikj ·X(zj)〉
〈
∏4

j=1 e
ikj ·X(zj)〉

, (3.1.28)

which can be schematically rewritten as

WB ∼
∑

(∂̄G)4 . (3.1.29)

The ∂̄G’s come from OPE’s between the ∂X̄ and the plane-waves, but also
from integrating by parts the double derivatives created by ∂̄X∂̄X OPE’s.
The coefficients of the monomials are not indicated but carry the polarization
dependence of the amplitude.

29We recall that a modular form of weight w transforms as f(az+bcz+d ) = (cz + d)wf(z) for(
a b
c d

)
∈ SL(2,Z)

30At four-point, supersymmetry in the right-moving sector does not allow for left-right
contractions.
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Putting everything together and using residue identities of the form given
in (3.1.13), we find that the part of the integrand contributing to the low
energy limit of the CHL amplitudes is given by

Z(4,0)hetW
B
eQ →

(
WB

eQ
)
|q̄︸ ︷︷ ︸

Ġ0,Ġ2

+(nv + 2)
(
WB

eQ
)
|q̄0︸ ︷︷ ︸

Ġ4

+O(q̄) . (3.1.30)

This formula already exhibits the organization of the amplitude by the
field theory limit. As indicated by the braces, the first terms give rise to
worldline polynomials of degree Ġ0 and Ġ2, due to the 1/q̄ pole, while the
second term is not reduced of full degree Ġ4. Using the dictionary of (3.1.17),
these respectively correspond to numerators with `0, `2 and `4 homogeneous
polynomials in loop momentum.

Asymmetric orbifolds of type II superstrings In [PT2], we presented an
analysis of the low energy limit of four-graviton amplitudes in the asymmetric
orbifold of type II superstrings models with (4, 0) supersymmetry of [131–
133]. One of these models has the property that matter is totally decoupled
[132, 133]. The physical and technical content of this analysis being highly
redundant with the heterotic and symmetric orbifold cases, we shall skip it
here.

3.1.2 Symmetric orbifolds of type II superstrings

Here we briefly discuss (2, 2) models of four-dimensional N = 4 supergravity.
These models can be obtained from the compactification of type II string
theory on symmetric orbifolds of K3 × T 2. The difference with the heterotic
CHL models is that the scalar parametrizing the coset space SU(1, 1)/U(1)
that used to be the axio-dilaton S is now the Kähler modulus of the two-torus
T 2 for the type IIA case or complex structure modulus for the type IIB case.
The non-perturbative duality relation between these two classes of models is
discussed in detail in [124, 131].

The way in which these models are constructed structurally forbids the
possibility to decouple completely the matter states. Indeed, supersymmetry
is realized by the tensor product between two N = 2 vector multiplet theories,
which yield the N = 4 gravity multiplet plus two N = 4 matter vector states

(11, 1/22, 02)N=2,vect. × (11, 1/22, 02)N=2,vect. = (21, 3/24, 16, 1/24, 01+1̄)N=4,grav.

+ 2 (20, 3/20, 11, 1/24, 06)N=4,matt.

(3.1.31)
The same phenomenon arises when trying to construct pure gravity from pure
Yang-Mills:

(11, 1/20, 00)N=0,YM× (11, 1/20, 00)N=0,YM = (21, 3/20, 12, 1/20, 01) , (3.1.32)

Therefore, if an N = 23 CHL model was constructed, it would be interesting
to understand the mechanism that decouples the matter fields and translate
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it in a type II symmetric duals. This might shed light on how to build pure
gravity amplitude directly from Yang-Mills amplitudes [134].

Regarding the structure of the partition function, no novelties arise in this
construction compared to the previous analysis. However, a new element en-
ters the computation of the integrand where reduced supersymmetry on both
sectors now leave enough room for Wick contractions between the holomorphic
and anti-holomorphic sectors of the theory.

3.1.3 Worldline limit

The outcome of these three computations is first that the amplitudes computed
in each model do match for identical nv’s. Second, the N = 4 supergravity
coupled to nv N = 4 vector supermultiplets field theory amplitude is always
decomposed as follows;

M1-loop
(N=4,grav)+nv (N=4matt.) =M1-loop

N=8,grav − 4M1-loop
N=6,matt + (nv + 2)M1-loop

N=4,matt .

(3.1.33)
Explicit integrated expressions for the integrals can be found in [PT2, eqs. (IV.11),
(IV.23),(IV.25)]. These match the known results of [135–137]. For ease, the
computation was performed in a helicity configuration (1−, 2−, 3+, 4+), called
the MHV configuration.31 We set as well the reference momenta qi’s of gravi-
ton i = 1, . . . , 4 as follows, q1 = q2 = k3 and q3 = q4 = k1. In that fashion,
the covariant quantities t8F

4 and t8t8R
4 are written in the spinor helicity for-

malism32 2t8F
4 = 〈12〉2[34]2, and 4t8t8R

4 = 〈12〉4[34]4, respectively. In this
helicity configuration, no triangles or bubbles can be generated from neighbor-
ing vertex operators as in (2.2.45) in the symmetric construction.33 We display
below the integrands that were found:

WN=8,grav = 1 , (3.1.34a)

WN=6,matt = W3 , (3.1.34b)

in both models. The matter contributions assume structurally different forms
in the two models:

W asym
N=4,matt(= WB) = W1 +W2 , (3.1.35a)

W sym
N=4,matt = W 2

3 +W2/2 , (3.1.35b)

as a consequence of the different ways supersymmetry is realized in string the-
ory, as apparent in eqs.(3.1.22), (3.1.31). Moreover, the factor W2 in (3.1.35b)
comes from the left-right mixing contractions allowed by half-maximal super-
symmetry on both sectors of the symmetric orbifold. In the asymmetric mod-
els W2 is simply present in double derivatives in WB. The explicit worldline

31At four points in supersymmetric theories, amplitudes with more + or − helicity states
vanish.

32See [138] for an introduction to the Spinor-Helicity formalism.
33Supersymmetry discards them in the asymmetric models from the start.
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M1-loop
(N=4,grav)+nv (N=4matt.) = +nv

Figure 3.1: One loop worldline description of N = 4 gravity amplitudes cou-
pled to matter fields. Straight lines indicate N = 4 gravity states, dashes
indicate N = 4 matter states.

numerators write

W1 =
1

16
(Ġ12 − Ġ14)(Ġ21 − Ġ24)(Ġ32 − Ġ34)(Ġ42 − Ġ43) ,

W2 = −1

u
(Ġ12 − Ġ14)(Ġ32 − Ġ34)G̈24 ,

W3 = −1

8

(
(Ġ12 − Ġ14)(Ġ21 − Ġ24) + (Ġ32 − Ġ34)(Ġ42 − Ġ43)

)
.

(3.1.36)

Notice that the 1/u factor in the definition of W2 is dimensionally present since
the double derivative G̈24 in W2 contains a 1/T . Alternatively, integration by
parts of the double derivative would bring down powers of ki · kj from the
exponential of the tropical Koba-Nielsen factor (2.2.26) and trade 1/uG̈ for
terms like s/u(Ġ)2.

Now that all the quantities entering the decomposition (3.1.33) are defined,
we can look back at eq. (3.1.30). We confirm a posteriori the link between
decreasing powers of Ġn due to residue identities and the degree of super-
symmetry of the multiplets running in the loop. This obeys the qualitative
empirical power-counting in gravity amplitudes, which states that the maxi-
mal degree of loop momentum in a (n = 4)-point one-loop amplitude should
be related to the number of supersymmetries N by34

`2n−N . (3.1.37)

Finally, we found interesting to associate to the expansion in eq. (3.1.30) a
worldline description in terms of the (N = 4) gravity and (N = 4) matter
multiplets, as depicted in fig. 3.1. This description extends to the two-loop
analysis that we propose now.

3.2 Two loops

The techniques and results described in the previous sections are well under
control and widely used since the 80’s. In this section, we describe an attempt
to push them at the second loop order, where almost nothing similar has been
constructed so far. Our starting point is the two-loop heterotic string four-
graviton amplitude of [43–49], adapted in CHL models. It assumes the general

34Another possibility for power-counting seems to be compatible: `4s−N .
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Figure 3.2: Potential pole singularities that would eat up the factorised ∂2.

form in D = 10:

M(nv)
4,2−loop = N2

t8F
4

64π14

∫
F2

|d3Ω|2

(det Im Ω)5
Z(nv)

2

∫ 4∏
i=1

d2νiW
(2) Ys eQ , (3.2.1)

where Z(nv)
2 is the full genus-two partition function of the model under consid-

eration which contains an oscillator and a lattice part35, N2 is a normalization

constant andW(2)
is defined asWB

in (3.1.28) in terms of the genus two prop-
agators and we dropped the index (2, 4) in Q. The only difference between
this amplitude and the heterotic one of [43–49] is that the chiral bosonic string
partition function has been replaced with Znv2 and the integration domain is
now an Sp(4,Z) fundamental domain (as in sec. 2.2.2).

In [PT1], we used this set-up to argue that there existed a non-renormalization
theorem for theR4 counterterm at two loops in pure half-maximal supergravity.
The argument goes as follows. First, the YS term factors two derivatives out
of the integral. Second, no 1/sij poles as in fig. 3.2 can appear to cancel this
factorization in regions where |zi− zj| � 1. The reason for this is the absence
of terms like |∂Gij|2 in the integrand of (3.2.1). Finally, the matter multiplet
contributions, described solely by the partition function Znv2 similarly to the
one-loop case, do not prevent this factorization, therefore we may do as if there
were none.

The bottom line of this non-renormalization theorem is a string theory
explanation, based on worldsheet supersymmetry, for the cancellation of the
3-loop divergence of N = 4 pure supergravity in four dimensions [53]. Since
R4 is ruled out, the results of [25] on ∇2R4 being a full-superspace integral
make this term a valid counter-term in N = 4 supergravity, which signals that
a four-loop divergence should happen. This divergence has now been explicitly
observed in [130], we shall come back on this result in the last chapter of this
manuscript, chap. 5, where we discuss future directions of research.

In the rest of this chapter, we provide a novel analysis on the worldline
structure of the low energy limit of the amplitude (3.2.1).

Worldline in the tropical limit

The amplitude (3.2.1) has a rather simple structure, in spite of the complexity
of the RNS computation performed to derive it. In the supersymmetric sector,

35 See explicit expressions in [67, 139] for the case of toroidal compactifications. More
details on the twisted sectors of genus two string orbifolds and corresponding partition
functions and propagators have been worked out in [140, 141] based on the classical references
[142, 143].
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cancellations due to genus-two Riemann identities produced YS t8F 4. There-
fore, in analogy with the one-loop case, the essential step of the computation
consists in understanding the partition function of the bosonic sector and its
influence on the W(2) when applying residue formulas.

The partition function The chiral genus-two partition function of the G =
E8 × E8 or SO(32) bosonic sector of the heterotic string in ten dimensions
writes as the product of the G lattice theta function ΘG by the bosonic string
partition function (quantum oscillator part)

ZGg=2 =
ΘG

Φ10

, (3.2.2)

where Φ10 is a cusp modular form of weight 12, known as the Igusa cusp
form [144]. It is the analogue of the genus-one cusp form η24 and its explicit
expression is given by the product of theta functions with even characteristics

Φ10 = 2−12
∏
δ even

(θ[δ](0,Ω))2 . (3.2.3)

The genus-two lattice theta functions for E8×E8 and SO(32) have the following
explicit expressions generalizing the one-loop ones (3.A.7)

ΘE8×E8(Ω) =
(1

2

∑
δ even

(θ [δ] (0|Ω))8
)2

, ΘSO(32)(Ω) =
1

2

∑
δ even

(θ [δ] (0|Ω))16 ,

(3.2.4)
Similarly to the one-loop case (3.A.8), it is possible to show the equality be-
tween these two objects

ΘE8×E8(Ω) = ΘSO(32)(Ω) , (3.2.5)

which ensures that the partition functions of the two heterotic strings are
identical.36

Now that we have written down all explicit expressions, a Mathematica

computation provides the first few terms of the Fourier-Jacobi expansion of
these partition functions:

ΘE8×E8 = 1 + 480
∑

1≤i<j≤3

qiqj + 26880 q1q2q3 +O(q4
i ) , (3.2.6)

1

Φ10

=
1

q1q2q3

+ 2
∑

1≤i<j≤3

1

qiqj
+ 24

3∑
i=1

1

qi
+ 0 +O(qi) , (3.2.7)

36As a side comment, this identity is still valid at g = 3. At g = 4, the identity does not
hold for all period matrices Ω, but only for the subset of these which precisely correspond to
actual Riemann surfaces. We recall that at g = 4, the space of symmetric g×g matrices with
positive definite imaginary parts, called A4, is 10-dimensional, while M4 is 9-dimensional.
The Schottky problem consists in identifying the locus of Mg inside Ag, which is solved in
g = 4 since this locus is precisely the zero locus of the modular form defined by ΘE8×E8 −
ΘSO(32). For g ≥ 5 no solution is known. The question of a connection between this five
and the one of M5 is, to the understanding of the author, an open question.
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combine into:

ZE8×E8
2 =

1

q̄1q̄2q̄3

+ 2
∑

1≤i<j≤3

1

q̄iq̄j
+ 504

3∑
i=1

1

q̄i
+ 29760 +O(qi) . (3.2.8)

Before making any further comments, let us observe that when compactify-
ing the theory on a d-dimensional torus we can introduce Wilson lines and
break the heterotic gauge group to its Cartan subgroup U(1)16. The partition
function of this model is then simply equal to the quantum oscillator part

ZU(1)16

2 = Zbos
2 ∼ 1

Φ10

. (3.2.9)

where it is understood that the previous identity is an equality when consid-
ering that a lattice partition function Γd,d for the genus two amplitude as in
eq. (3.1.12) reduces to unity due to a choice of vanishing radii of compactifica-
tion Ri ∼

√
α′ which causes both the Kaluza-Klein states and the E8 × E8 or

SO(32) gauge bosons and higher mass modes to decouple. Therefore (3.2.9),
is not the partition function of the full CFT but simply the quantum oscillator
part, while the numerator, which should ensure a correct modular weight, has
been decoupled.

We shall come back later on the form of the corresponding partition func-
tions for the CHL models. For now, these two partition functions are sufficient
to observe interesting consequences on the worldline limit.

Worldline limit The analysis of chap. 2 indicates the kind of residue formula
analogous to (3.1.13) we should look for at two loops:∫ 3∏

i=1

d(Re τi)

(
1

qn1
1 qn2

2 qn3
3

∂G(zij)
2

)
= cn1,n2,n3 (3.2.10)

with n1, n2, n3 being either 0 or 1, and similar kind of relations where ∂G(zij)
2

is replaced by a term of the form ∂G4. The author confesses his failure so
far in deriving the values of the coefficients cn1,n2,n3 from a direct computa-
tion, although he hopes that the tropical geometry program will help in this
quest. One of the main issues in this computation was to obtain expressions
independent on the odd spin-structure δ chosen to define G (see eq. (2.1.8)).

In the following, we simply assume that we are given such a set of identities.
They render the extraction of the field theory limit of the amplitude (3.2.1)
expressible in the following schematic worldline form, similarly to the one-loop
case in eq. (3.1.30):

lim
q1,q2,q3→0

∫ 3∏
i=1

d(Re τi)
(
ZX2 W

(2)
eQ
)

=

{
c2 + c1Ġ

2 + 29760 Ġ4 if X = E8 × E8

c̃2 + c̃1Ġ
2 + 0 if X = U(1)16

(3.2.11)
where in particular the constant term present in (3.2.8) gives that the E8 ×
E8 worldline integrand possesses a term of full degree Ġ4, while the U(1)16

integrand has only a Ġ2.
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Figure 3.3: Two loop worldline diagrams N = 4 matter-coupled supergravity
amplitudes. Plain lines are N = 4 gravity states, dashes are N = 4 YM matter
states.

Let us try to understand the implications of this remark. Following the dic-
tionary (3.1.17), these integrands respectively correspond to loop momentum
polynomials of maximum degree 4 and 2. However, the presence of a factorized
∇2R4 operator outside of the integrals does not allow for loop-momentum nu-
merators of degree higher than two, as shown in the introduction in eq. (1.1.10).
The situation is all the more puzzling that we already argued that no pole
would transmute the ∂2 to an `2, creating a total `4 in the numerators. More-
over, this implies that the E8 ×E8 integrand has a worse ultraviolet behavior
than the U(1)16 model, so the issue is definitely not innocent.

The solution to this apparent paradox is linked to the spectrum content and
interactions of the E8×E8 (or SO(32)) model. This model indeed describes 16
abelian gauge bosons but also 480 non-abelian gauge bosons, which can create
diagrams such as the rightmost one in fig.3.3. This diagram is not dressed
with a κ6

D but with a κ4
Dg

2
YM . Since the coupling constants are related via

2κD =
√
α′ gYM (3.2.12)

we now realize that an additional power of α′ counterbalances the apparent
superabundant `4 in the model with non-abelian gauge interactions. In addi-
tion, numerology indicates us that the numerical factor 29760 = 480 × 496/8
is related to the interactions of the non-abelian gauge bosons in one way or
another. Therefore this divergence only arises in the mixed gravitational-Yang-
Mills sector. This does not affect the discussion of the divergences in purely
gravitational sector of N = 4 supergravity with or without vector-multiplets.
This reasoning brushes aside the potential UV issue with the `4 term in the
pure half-maximal supergravity amplitudes. In addition, it gives a heuristic
argument on the form of the partition function for CHL models.

CHL models

In [125] were used the so called Siegel genus-two modular forms of weight k
generalizing Φ10 as N = 4 CHL Dyon partition functions. We give below their
Fourier-Jacobi expansion, as obtained from [125]:

1

Φk

=
1

q1q2q3

+2
∑

1≤i<j≤3

1

qiqj
+

24

N + 1

3∑
i=1

1

qi
+

48N

(N − 1)(N + 1)
+O(qi) . (3.2.13)

for N = 2, 3, 5, 7 with conjectural extension to N = 11, 23. See again (3.2.7)
for N = 1. These forms are the analogues of the fk(τ) defined in (3.1.26) at
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g = 1 and enter the computation of the genus two partition function, as we
will see in an explicit example for N = 2 below.

The reasoning of the previous section indicates that the constant term of
the partition function should vanish in the absence of non-abelian interactions
in the massless spectrum, and that the dependence on the nv should be linear
in nv+2. This requirement and the knowledge of the Fourier-Jacobi expansion
of the partition functions at N = 1 and N = 2 will be enough to prove that
they should generally have the following Fourier-Jacobi expansion;

ZCHLN2 =
1

q̄1q̄2q̄3

+ 2
∑

1≤i<j≤3

1

q̄iq̄j
+ (nv + 2)

3∑
i=1

1

q̄i
+ 0 +O(qi) . (3.2.14)

up to the lattice factor that reduce to one in the limit we are considering.
This relationship holds true for N = 1. Below we provide a short compu-

tation based on the derivation in [132] of the N = 2 CHL partition function in
the context of dyon counting, after the classic reference [142]. The evaluation
of the twisted quantum oscillator determinants is performed through the use
of a double covering of the genus two surface by a Prym variety, and the de-
pendence on the Prym period ultimately cancels and yield the following result
for the partition function with a twist in a particular A cycle;

Ztwisted =
1

Φ6(Ω)
+

1

16

1

Φ′6(Ω)
− 1

16

1

Φ′′6(Ω)
. (3.2.15)

where the theta function lattice (explicitly computed in [128]) have been re-
placed by 1’s, since the gauge group is broken by Wilson lines, and the cor-
responding lattice partition function which also reduces to one have not been
written. The Siegel modular forms Φ6, Φ′6 and Φ′′6 are images of Φ6 under mod-
ular transformations and their explicit expressions in terms of theta functions
are given in [128], eqs. (4.32)-(4.34). The Fourier-Jacobi expansion of Φ6 is
given in (3.2.13), and we also computed explicitly the other two;

Φ′6 =
16

√
q1q2
√
q3

+
128

q2

− 256

Φ′′6 =
16

√
q1q2
√
q3

− 128

q2

+ 256
(3.2.16)

In total we obtain;

Ztwisted =
1

q1q2q3

+
2

q1q3

+
2

q2q3

+
2

q1q2

+
8

q1

+
8

q3

+
24

q2

+ 0 +O(qi) (3.2.17)

As is, it is not symmetric under the exchange the qi’s together, which is required
to ultimately yield the correct symmetry of the edges of the worldline graphs.
Indeed, this partition function has been obtained for a particular twisted sector
of the orbifold, along the A2 cycle. Summing over all sectors, and including
the untwisted one, with appropriate weight yields;

1

4

(
1

Φ10

+ (Ztwisted + (q2 ↔ q1) + (q2 ↔ q3))

)
(3.2.18)
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which has the Fourier-Jacobi expansion given in (3.2.14).

Finally, the worldline arguments developed before imply that we expect
the dependence on nv to be linear in these models, therefore having two points
(N = 1, 2) is enough to show that the genus two partition function of the other
models (N ≥ 3) should have a Fourier-Jacobi expansion given by (3.2.14).

3.A Appendix on the one-loop divergence in

D = 8 in CHL models

The section 3.1 was dedicated to the extraction of field theory amplitudes from
the α′ → 0 limit of the non-analytic part of string theory amplitudes, meaning
that we focused on the part the moduli space restricted to the upper domain
F+(L) defined in eq. (2.2.22) and fig. 2.10.

In this section, we compute the 8-dimensional R4 logarithmic divergence of
these half-maximal supergravity amplitudes from both the non-analytic and
analytic parts of the string theory amplitudes. As global normalizations be-
tween the two computation remain unfixed, relative normalizations between
the contribution of the vectors multiplets and gravity multiplet agree. This
section is intended to be a simple example of the reasoning of [107] described
previously, supplementing the trivial computation given in [PT3] and the ex-
plicit examples given in the seminal paper. We expect that the ln(L) divergence
coming from the integral over F+(L) will be canceled by a term coming from
F−(L). The starting point is the four-graviton CHL amplitude

M(nv)
(4,0)het = N

(π
2

)4

t8F
4

∫
F

d2τ

(Im τ)D/2−3

∫
T

∏
1≤i<j≤4

d2zi
Im τ

eQZ(nv)
(4,0)hetW̄

B ,

(3.A.1)
which we split into the sum of two integrals as in (2.2.23) that we denote

M(nv)
(4,0)het(L,±).

3.A.1 Divergence in the non-analytic terms

The procedure described in the previous section produced explicit expressions
for the D-dimensional worldline integrands of half-maximal supergravity scat-
tering amplitudes descending from M(nv)

(4,0)het(L,+), given in (3.1.34), (3.1.35).
All we have to do here is to extract the divergence piece of the corresponding
integrals in eight dimensions.

The integration is most easily performed in dimensional regularization to
D = 8− 2ε dimensions, using the standard techniques described in [111, 145–
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147] The leading 1/ε divergence of these integrals is found to be:

Mspin 2
N=8

∣∣∣
D=8+2ε, div

=
i

(4π)4
〈12〉4[34]4

(
1

2ε

)
Mspin 3/2
N=6

∣∣∣
D=8+2ε, div

=
i

(4π)4
〈12〉4[34]4

(
1

24ε

)
Mspin 1
N=4

∣∣∣
D=8+2ε, div

=
i

(4π)4
〈12〉4[34]4

(
1

180ε

) (3.A.2)

where we expect the 1/ε term to match the ln(α′L) divergence. These diver-
gences match the expressions of [148]. These of [149] are recovered as well
after flipping a sign for the N = 6 spin-3/2 divergence. The divergence of
the half-maximal supergravity multiplet is obtained from the decomposition
(3.1.33) in D = 8 + 2ε with nv vector multiplets:

Mnv
N=4

∣∣∣
div

=
i

(4π)4
〈12〉4[34]4

(
62 + nv

180 ε

)
(3.A.3)

which matches eq (3.8) of [148] with the identitifaction nv = Ds − 4. The
normalizations are the ones of [PT4, eq. 5.16].

3.A.2 Divergence in the analytic terms

Let us now consider M(nv)
(4,0)het(L,−), defined by the integral (3.A.1) restricted

to the region F−(L). We already argued that since τ is of order O(1), it is
possible to safely take the α′ → 0 limit of the string theory integrand, which
results in dropping the Koba-Nielsen factor.37 Following the classical reference
[150, appendix A,B], the resulting integrals involve terms of the form38

∫
T

3∏
i=1

d2zi
Im τ

(∂G(z12))2 (∂G(z34))2 =

(
2π

12
Ê2(τ)

)4

, (3.A.4a)

∫
T

3∏
i=1

d2zi
Im τ

(∂G(z12)) (∂G(z23)) (∂G(z34)) (∂G(z41)) =
(2π)4

720
E4(τ) , (3.A.4b)

where a global factor of α′4 has not been displayed. Up to permutations
of the indices, any other combination of propagators integrates to zero. The
non-holomorphic Eisenstein series Ê2 writes

Ê2 = E2 −
3

πIm τ
. (3.A.5)

37Actually one should here also make sure that no triangle like contribution may arise
from colliding vertex operators, which is the case.

38The integrals involving double derivatives in W2 can always be turned into such kind of
integrals after integration by parts.
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in term of the holomorphic Eisenstein series E2, which together with E4 write

E2(τ) = 1− 24
∞∑
n=1

nqn

1− qn
= 1− 24q +O(q2) , (3.A.6a)

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240q +O(q2) . (3.A.6b)

Eisenstein series are also related to partition functions of toroidal lattice sums
or lattice theta functions:

ΘE8×E8(τ) = E4(τ)2 =
1

2
(θ2(0, τ)8 + θ3(0, τ)8 + θ3(0, τ)8) ,

ΘSO(32)(τ) = E8(τ) =
1

2
(θ2(0, τ)16 + θ3(0, τ)16 + θ3(0, τ)16) .

(3.A.7)

The identity E4(τ)2 = E8(τ) ensures that the one-loop partition functions of
the E8 × E8 and SO(32) heterotic string are identical:

ΘE8×E8 = ΘSO(32) . (3.A.8)

Coming back to the amplitude and collecting the previous results, we obtain

M(nv)
(4,0)het(L,−) = N

(π
2

)4
∫
F−(L)

d2τ

Im τ
A(R, τ) (3.A.9)

where the reader should pay attention to the fact that we replaced D with
D = 8, which explains the factor of 1/Im τ in the integrand. The quantity
Â(R, τ) is obtained from the heterotic string elliptic index of [150] by changing
the bosonic string partition function 1/η(τ)24 to the CHL partition function
of eq. (3.1.27):

Â(R, τ) = ZnvCHL
(

1

27 · 32 · 5
E4 t8 trR4 +

1

29 · 32
Ê2

2 t8 (trR2)2

)
. (3.A.10)

where the normalization is adjusted so that the t8trF4 term has coefficient 1.
The t8, tr 4 and (tr 2)2 tensors are related by the following identity [151]:

t8t8R
4 = 24t8trR4 − 6t8(trR2)2 . (3.A.11)

The logic now is to compute the integral of eq. (3.A.9) and extract the
lnL term. This could be done in full rigor by following the argument of [27]
relating the coefficient of counterterms in the Einstein frame to the coefficient
of the logarithm of the D-dimensional string coupling constant in the string
frame. This coefficient has be exactly computed for integrals of the form of
eq. (3.A.10) with a Γ2,2 included and can be found in [152, Appendix E], [153],
or by using the new methods developed in [139, 154–156] . The result of this
procedure can be obtained by a shortcut where one attributes exclusively the

60



coefficient of lnL in (3.A.9) to the logarithmic divergence created by the 1/Im τ
term in the expansion of Â. This term writes precisely

Â(R, τ)
∣∣∣
1/Im τ

=
1

Im τ

(
1

27 · 32 · 5
((nv + 2) + 240)t8trR4+

1

29 · 32
((nv + 2)− 48)(trR2)2

)
.

(3.A.12)

Going to the MHV configuration thanks to the following identities

24t8trR4 =
3

8
× [12]4〈34〉4 , −6t8(trR2)2 = −1

8
× [12]4〈34〉4 . (3.A.13)

gives the coefficient of lnL

Mnv
N=4

∣∣∣
div

= c′0〈12〉4[34]4(62 + nv) lnL (3.A.14)

This result matches the one in (3.A.3) up to a global normalization constant
which has not been fixed rigorously. An important consistency check that this
example passes is that the relative coefficients between the vector multiplets
and gravity contribution are identical in both approaches.

A similar computation is given in [PT3] for the case of the quadratic di-
vergence of maximal supergravity in 10 dimensions, where exact matching
is precisely observed. Moreover, several other examples are discussed in the
original paper [107].
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Chapter 4

BCJ double-copy in string
theory

The domain of scattering amplitudes in quantum field theories is at the heart
of high energy physics and bridges the gap between theory and collider experi-
ments led nowadays at the Large Hadron Collider. It has been developing fast
for the last twenty years, mostly pioneered by the work of Bern, Dixon and
Kosower. For moderns reviews on scattering amplitudes, we refer to [138, 157].
In this context, gravitational scattering amplitudes are not directly related to
precision physics39 but rather to more conceptual aspects of the perturbative
structure of quantum gravity. These can also serve as consistency checks for
certain string theory computations.

The basic difficulty with gravity amplitudes is their complicated kinemat-
ical structure, partly due to the presence of arbitrarily high-valency vertices
which make the number of diagrams grow very fast. The main idea to sim-
plify these computations is to implement that some of the gravity (spin-2)
degrees of freedom are described by the tensorial product of two Yang-Mills
spin-1 fields. In string theory, this can be done very efficiently at tree-level,
where the Kawai-Lewellen-Tye (KLT) relations [159] relate closed string am-
plitudes to a product of open strings amplitudes. The paradigm can be loosely
formulated as

“open× open = closed” . (4.0.1)

The modern version of the KLT relations, known as the monodromy relations
[160–163] led to the so-called “Momentum Kernel” construction of [164]. The
latter relates closed-string amplitudes to open-string amplitudes at any multi-
plicity via the Momentum Kernel Sα′ as

Mclosed
n,tree = Aopen

n,tree · Sα′ · A
open
n,tree . (4.0.2)

In the α′ → 0 limit, this relation provides a similar relation between gravity
and Yang-Mills amplitudes:

Mgravity
n,tree = AYM

n,tree · S · AYM
n,tree (4.0.3)

39Except the work [158] in which scattering amplitude methods are used to re-derive the
first ~ correction to the Newtonian potential.
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Figure 4.1: Generic ambiguities with blowing-up the contact-terms, with 2-
parameters freedom determined by λs+λt+λu = 1. The diagrams are dressed
with 1/p2 propagators.

where S is the field theory limit of Sα′ . In this way, the computation of gravity
amplitudes is considerably simplified, as it is reduced to that of gauge theory
amplitudes, which is done with 3- and 4-valent vertices only.

At loop-level, the analytic structure of the S-matrix is not compatible with
squaring. A ln(s) in a one-loop Yang-Mills amplitude does not indicate the
presence of a ln(s)2 in any one-loop gravity amplitude – this would trivially
violate unitarity of the theory. However, a squaring behavior similar to KLT
was early observed at the level of the unitarity cuts of N = 4 SYM and N = 8
amplitudes [13].

The Bern-Carrasco-Johansson duality and double-copy construction [33,
34] provide all-at-once a working algorithm to reduce gravity amplitudes to
a cubic-graph expansion,40 built from gauge theory amplitudes and working
at loop level. These gauge theory amplitudes have to be written in a par-
ticular representation, satisfying the so-called BCJ duality. The analysis and
discussion of current understanding of this construction in string theory is the
subject this chapter.

4.1 Review of the BCJ duality and double-

copy.

The BCJ duality between color and kinematics in gauge theory amplitudes is
defined in tree and loop amplitudes written in terms of cubic-graphs only. This
reduction induces a first level of ambiguity when the quartic contact-terms
are blown-up to cubic vertices by multiplying and dividing by momentum
invariants, as shown in fig. 4.1. In this way, gauge theory amplitudes write

ALn = iLgn+2L−2
∑

cubic graphs Γi

∫ L∏
j=1

dd`j
(2π)d

1

Si

ci ni(`)

Di(`)
, (4.1.1)

where the sum runs over distinct non-isomorphic cubic graphs. The denomi-
nator Di(`) is the product of the Feynman propagators of the graph and the
integral is performed over L independent D-dimensional loop momenta. Fi-
nally, the symmetry factors 1/Si remove over counts from summing over the
different configurations of the external legs. The ci are the color factors of

40Cubic graphs are graphs made of trivalent vertices only.
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Figure 4.2: Jacobi identity for the color or numerator factors.

`
1

2 3

4

−

`
1

2 4

3

=

`

1

2 3

4

Figure 4.3: Sample Jacobi identity for one-loop numerators

the graph obtained by dressing each vertex with the structure constants of the
gauge group f̃abc defined by

f̃abc = i
√

2fabc = tr ([T a, T b]T c) . (4.1.2)

The ni’s are the kinematic numerators of the graph. This representation of the
amplitude satisfies the BCJ duality if the Jacobi relations of the color factors
are also satisfied by the corresponding kinematic numerators;

ci − cj = ck ⇒ ni − nj = nk , (4.1.3)

as depicted in fig. 4.2. Let us emphasize that this property is really not re-
stricted to tree-level four-point diagrams, but should hold for any situation
where the graphs of fig. 4.2 are embedded in a bigger graph. An example is
show in fig. 4.3 at one-loop. Note that the loop momentum dependence should
be traced with care and the “external legs” of the central edge on which the
Jacobi relation is being applied should keep their momentum constant.

Such representations do not trivially follow from blowing-up the contact-
terms randomly, but rather necessitate an important reshuffling of the am-
plitude. This is possible thanks to an additional freedom that possess BCJ
representations, called “generalized gauge invariance”. This freedom corre-
sponds to the fact that a set of BCJ numerators {ni} can be deformed by any
set of quantities that leave the Jacobi relations (4.1.3) invariant. If one defines
n′m = nm + ∆m for m = i, j, k, the numerators n′m obey (4.1.3) as long as
∆i − ∆j = ∆k. This freedom can be used to reduce the non-locality of the
BCJ numerators.

Once a BCJ duality satisfying representation is found, the double-copy
procedure prescripts to replace the color factors ci in (4.1.1) by another set of
kinematic numerators ñi to obtain the gravity amplitude:

ML−loop
n = iL+1

(κ
2

)n+2L−2 ∑
cubic graphs Γi

∫ L∏
j=1

dd`j
(2π)d

1

Si

ni(`) ñi(`)

Di(`)
. (4.1.4)
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Due to generalized gauge invariance of the first set of numerators {ni}, the
set {ñi} does not need to be in a BCJ representation [165]. The duality
has been demonstrated to hold classically by construction of a non-local La-
grangian [165]. In [166], it was observed to be more restrictive than the strict
KLT relations, and later understood in open string theory by Mafra, Schlot-
terer and Stieberger in [167] by means of worldsheet integration by part (IBP)
techniques. Part of our work [PT4] heavily relies on this “Mafra-Schlotterer-
Stieberger” (MSS) construction to which we come back in sec. 4.2.

The BCJ duality was successfully applied in the hunt for UV divergences
of supergravity theories, at three and four loops in N = 8 [34, 35]. In half-
maximal supergravity, the vanishing of the three-loop R4 divergence in D =
4 was observed in a direct computation [53] and the four-loop logarithmic
divergence created by the ∇2R4 in D = 4 explicitly determined [130]. More
broadly, it was also applied to compute N ≥ 4 supergravity amplitudes at
various loop orders [137, 148, 168, 169] and even for pure Yang-Mills and pure
gravity theories at one and two loops [170].

The existence of BCJ satisfying representations at any loop order is an
open question. In particular, at five loops in N = 4, no BCJ representation
has yet been found, despite tenacious efforts [36].41 At one loop there exist
constructive methods to build some class of BCJ numerators in N = 4 SYM
[171] and orbifolds thereof [172, 173]. Nevertheless, the generic method to find
BCJ representations for numerators is to use an ansatz for the numerators,
which is solved by matching the cuts of the amplitude [172, 174]. The free-
parameters that remain (if any) after satisfying all the constraints are a subset
of the full generalized gauge invariance. In [PT4], we also studied some aspects
of the string theory viewpoint on the ansatz approach.

4.2 Tree-level string theory understanding of

BCJ

We already described that the KLT relations in string theory relate open to
closed strings amplitudes. However, this does not directly relate color to kine-
matics at the integrand level. In [PT4] we argued that this can be done by
slightly modifying the paradigm of (4.0.1) to the following purely closed-string
one:

“left-moving sector× right-moving sector = closed” . (4.2.1)

which means that instead of focusing on an definite string theory, we consider
as a freedom the possibility to plug different CFT’s in both sectors of the closed
string. These are tied together by the low energy limit and realize various
theories, as illustrated in Table 4.1, where “Color CFT” and “Spacetime CFT”
refer to the respective target-space chiral polarizations and momenta of the
scattered states.

41We recall that 5-loop in N = 8 is crucial to understand the UV behavior of the theory,
see again fig. 1.3.
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Left-moving Right-moving Low-energy limit Closed string theory
Spacetime Color Gauge theory Heterotic
Spacetime Spacetime Gravity theory Type II, (Heterotic)
Color Color Cubic color scalar Bosonic

Table 4.1: Different string theories generate various field theories in the low-
energy limit. “Spacetime” and “color” refer to the CFT’s plugged in the left-
and right- moving sectors, respectively.

A gauge theory is realized by the closed string when one of the chiral sectors
of the external states is polarized in an internal color space, this is the basic
mechanism of the heterosis [175]. The use of heterotic string in this context was
first described in [162] where it was realized that it sets color and kinematics
on the same footing. In this sense our work descends from these ideas. A
gravity theory is realized when both the left- and right-moving polarizations
of the gravitons have their target space in Minkowski spacetime, as it can be
done both in heterotic and type II string.42

The last line of the table, mostly shown as a curiosity, deserves a comment.
As we mention later, this cubic scalar theory is the result of compactifying the
bosonic string on a (T 16×R1,9)× (T 16×R1,9) background where the T 16 is the
internal torus of the heterotic string. At tree-level, the bosonic string tachyon
can be decoupled by hand, and the remaining massless states bi-polarized in
the T 16 give rise to these cubic color scalar interactions. At loop-level the
tachyon cannot be easily decoupled and the construction probably cannot be
given much sense.43

Our starting point for the following analysis is the open string construction
of MSS [176]. We recall that MSS have shown how a worldsheet IBP proce-
dure in the open string leads to a particular representation of the open string
integrand in terms of (n − 2)! conformal blocks. From this representation, it
is explained how to extract the BCJ numerators for gauge theory amplitudes
at any multiplicity. In [PT4], we argued that this construction can be recast
in the closed string sector and gives rise to a somewhat stronger result, where
we get all-at-once the Jacobi identities of MSS but also the double-copy form
of the gravity amplitudes. Our reasoning was mostly supported by an explicit
five-point example that we worked out explicitly. We outlined a n-point proof
of the systematics of the result.

Below we give a more detailed account on this systematics. Regarding the
material available in the literature44, we shall base our reasoning on the fact

42Neither in the paper nor in this text have we described the gravity sector of the heterotic
string, as it is always non-symmetric. Instead, we focused on the symmetric orbifolds of
the type II string described in chapter 3 to obtain symmetric realizations of half-maximal
supergravity.

43Anyway the cubic scalar theory is possible to deal with by standard techniques.
44Addendum: After the first version of this manuscript was written, Schlotterer and Mafra

proposed in [177] a formalism for describing the systematics of the tree combinatorics based
on “multi-particle vertex operators”, which can be used for the present problem.
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that type I and II string amplitudes are known at n-point in the pure spinor
formalism [176, 178–180] and their field theory limits have been extensively
studied in [176, 181] as well as their α′ expansion in [181–184]. Hence we start
with an n-point closed string theory amplitude, written as:

Astring
n =|z1,n−1zn−1,nzn,1|2×

×
〈
V1(z1)Vn−1(zn−1)Vn(zn)

∫ n−2∏
i=2

d2ziV2(z2) . . . Vn−2(zn−2)
〉
.

(4.2.2)
A global normalization gn−2

c 8π/α′, where gc is the closed string coupling con-
stant, has been omitted. The factor |z1,n−1zn−1,nzn,1|2 comes from gauging the
SL(2,C) conformal invariance of the sphere by fixing the positions of 3 vertex
operators, here z1, zn−1 and zn. The unintegrated vertex operators have a
holomorphic part and an anti-holomorphic part:

V (z) = : V (L)(z)V (R)(z̄)eikX(z,z̄) : , (4.2.3)

as already described in the beginning of chap 3. The anti-holomorphic part of
the heterotic gauge-boson vertex operators are made of a current algebra

V (R)(z̄) = T a Ja(z̄) . (4.2.4)

The currents satisfy the following operator product expansion (OPE):

Ja(z̄)J b(0) =
δab

z̄2
+ ifabc

J c(z̄)

z̄
+ ... , (4.2.5)

where the fabc’s are defined in (4.1.2).
On the sphere, there is a (+2)/(+2,+2) superghost background charge in

heretoric/type II string that needs to be canceled, therefore we need to provide
expressions for the kinematic parts of the vertex operators in the (−1) picture:

V
(L)

(−1)(z) = εµ(k) e−φψµ . (4.2.6)

The complete vertex operators for gluons or gravitons (4.2.3) are obtained by
plugging together the pieces that we described, following tab. 4.1.

The essential point of the discussion is that the correlation function (4.2.2)
can be split off as a product of a holomorphic and of an anti-holomorphic
correlator thanks to the “canceled propagator argument”. As explained in the
classical reference [60, sec. 6.6], the argument is an analytic continuation which
makes sure that Wick contractions between holomorphic and anti-holomorphic
operators

〈∂X(z, z̄)∂̄X(w, w̄)〉 = −α′πδ(2)(z − w) , (4.2.7)

provide only vanishing contributions at tree-level. At loop-level, the left- and
right-moving sectors couple via the zero-mode of the X(z, z̄) field and, as
we saw (3.1.35b), the left-right contractions are necessary to produce correct
amplitudes. These terms are the subject of the one-loop analysis of [PT4],
which we review in sec. 4.3.
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Kinematic sector We start with the open-string kinematic correlator of
MSS, who proved that it can decomposed in terms of (n− 2)! basis elements

〈V1(z1) . . . Vn(zn)〉 =
∑

σ∈Sn−2

K̃σ
z1,σ(2)zσ(2),σ(3) . . . zσ(n−2),σ(n)zσ(n),n−1zn−1,1

,

(4.2.8)
where Sn−2 is the set of permutations of n−2 elements and K̃σ are kinematical
objects whose explicit expression do not concern us here.45 The procedure used
to reach this representation solely relies on worldsheet IBP’s and fraction-by-
part identities.

As emphasized above, the use of the canceled propagator argument grants
us that performing the same IBP’s on the chiral heterotic string correlator does
not yield contact terms due to ∂ derivatives hitting ∂̄G for instance.46 There-
fore, one can legitimately consider that the formula written above in eq. (4.2.8)
is also the expression of the chiral closed string kinematical correlator in full
generality.

Planar color sector Following [185], we write the planar sector 47 of the
n-point correlator for the color currents from the basic OPE (4.2.5) as follows:

〈Ja1(z1) . . . JaN (zN)〉plan. =

− 2n−3
∑

σ∈Sn−2

fa1aσ(2)c1f c1aσ(3)c2 . . . f cn−3aσ(n)an−1

z1,σ(2)zσ(2),σ(3) . . . zσ(n−2),σ(n)zσ(n),n−1zn−1,1

(4.2.9)

Pay attention to the special ordering of the last terms of the denominator; it
is designed so that one obtains directly the (n− 2)! element of the MSS basis.
The low-energy limit of these correlators was thoroughly described in [185],
and proven to reproduce the color ordering usually produced by color ordering
along the boundary of the open string disk.

Low energy limit Now we need to describe how the two sectors of the
closed string are tied together by the field theory limit. In [PT4] we carried
the explicit procedure at five points and gave details on how the 5-punctured
sphere degenerates into thrice punctured spheres connected by long tubes.
Here, we rather focus on the similarities between the field theory limit in open
string and the one in closed string, at tree-level.

This procedure is by now well understood and the limit can be described by
the following rule [181]. In the open string, a given gauge theory cubic diagram
Γ receives contributions from the color-ordered amplitudeAopen

n (1, σ(2), . . . , σ(n−
45It was determined in terms of the (n−2) elements Klσ of [167, eq. (3.5)] for l = 1, . . . , n−2

and σ ∈ Sn−3. Here we implicitly relabeled these in terms of the elements of Sn−2.
46In the open string the IBP’s on the boundary of the disk yield contact-terms which are

also discarded by use of the canceled propagator argument.
47We decouple by hand the gravitational sector which creates non planar-corrections in

heterotic string vacua.
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2), n, σ(n− 1)) only from the integrals

IOρ,σ =

∫
z1=0<zσ(2)<···<zσ(n−1)=1

n−1∏
i=2

dzi

∏
i<j(zij)

−α′ki.kj

z1,ρ(2)zρ(2),ρ(3) . . . zρ(n−2),ρ(n)zρ(n),n−1zn−1,1

(4.2.10)
where the ordering of ρ and σ are compatible with the cubic graph G under
consideration, see the section 4 of [181] for details and precise meaning of the
compatibility condition. We can then write:

IOρ,σ =
∑

Γ|(ρ∧σ)

1

sΓ

+O(α′) (4.2.11)

where the summation is performed over the set of cubic graphs Γ compatible
with both σ and ρ and sΓ is the product of kinematic invariants associated to
the pole channels of Γ.

In closed string, we first consider a heterotic gauge-boson amplitude. The
latter has to match the result obtained from the field theory limit of the open
string amplitude. Therefore, if we select a particular color-ordering σ for the
open-string, we can identify the corresponding terms in the heterotic string
color correlator (4.2.9). Actually, only one of them does, precisely the one
with the permutation σ. This is actually sufficient to see that the mechanism
that describes the low energy limit of closed string amplitudes has to be the
following one: the field theory limit of the integrals

ICσ,ρ =

∫ n−1∏
i=2

d2zi
∏
i<j

|zij|−2α′ki.kj
( 1

z1,ρ(2)zρ(2),ρ(3) . . . zρ(n−2),ρ(n)zρ(n),n−1zn−1,1

×

1

z̄1,σ(2)z̄σ(2),σ(3) . . . z̄σ(n−2),σ(n)z̄σ(n),n−1z̄n−1,1

)
(4.2.12)

contribute to the set of cubic diagrams which are compatible (in the sense
mentioned above) with ρ and σ. This gives the same formula as for the open
string

ICρ,σ =
∑

Γ|(ρ∧σ)

1

sΓ

+O(α′) (4.2.13)

up to factors of 2π created by phase integration of the zij’s. A direct proof in
the sense of [181] would require to work out the complete combinatorics. This
could be done, though it does not appear necessary as we are simply describing
generic features of these amplitudes.

The formula (4.2.13) can now be applied to more general amplitudes, as
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long as their chiral correlators are recast in the MSS representation:

〈V (L)
1 (z1) . . . V (L)

n (zn)〉 =
∑

σ∈Sn−2

aLσ
z1,σ(2)zσ(2),σ(3) . . . zσ(n−2),σ(n)zσ(n),n−1zn−1,1

(4.2.14a)

〈V (R)
1 (z1) . . . V (R)

n (zn)〉 =
∑

σ∈Sn−2

aRσ
z̄1,σ(2)z̄σ(2),σ(3) . . . z̄σ(n−2),σ(n)z̄σ(n),n−1z̄n−1,1

(4.2.14b)

In these formulas, the a(L/R) variables are independent of the zi and carry
color or kinematical information, they write as tensorial products between
the group structure constants fabc or polarization εi and momenta kj of the
external states. The total contribution to a given graph Γ of the low energy
limit of closed string amplitude made of these chiral correlators is found to be
given by the following sum

NΓ

sΓ

= lim
α′→0

∑
ρ,σ∈{σ1,...σp}

ICρ,σa(L)
ρ a(R)

σ

=
1

sΓ

 ∑
ρ∈{σ1,...σp}

a(L)
ρ


︸ ︷︷ ︸

×

 ∑
σ∈{σ1,...σp}

a(R)
σ


︸ ︷︷ ︸

=
1

sΓ

(
n

(L)
Γ × n

(R)
Γ

)
,

(4.2.15)

where {σ1, . . . σp} is the set of permutations compatible with Γ. We see that the
numerator of the graph NΓ splits as a product of two numerators corresponding
to each sector of the theory. Summing over all cubic graphs produces the total
n-point field theory amplitude as:

Atree
n (L,R) =

∑
cubic graphs

Γi

n
(L)
Γi
n

(R)
Γi

sΓi

, (4.2.16)

where a global normalization factor of (gYM)n−2 or (κD/2)n−2 should be in-
cluded according to what L and R vertex operators were chosen.48

This formula have been written without referring to the actual theories
plugged in the left-moving and in the right-moving sector of the closed string,
hence we have the possibility to choose the string theory we want, following the
table 4.1. Therefore, Atree

n (L,R) could be either a gauge theory amplitude, if
for instance, we had been doing the computation in heterotic string where the
(L = col) and n

(L)
Γi

= cΓi are color factors while (R = kin) so that n
(R)
Γi

= nΓi

are kinematic factors. It could as well be a gravity amplitude if we had been

48We recall that gc = κD/2π = (
√
α′/4π)gYM . The appearance of (2π)n−2 factors is com-

pensated in the final result in the field theory limit by phase integrations for the tropicalized
zi.
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doing the computation in type II where (L = R = kin) so that both n
(L)
Γi

and

n
(R)
Γi

are kinematic numerators. Another possibility would be to choose both

n
(L)
Γi

and n
(R)
Γi

to be color factors, in which case Atree
n (col, col) corresponds to

the scattering amplitude between n color cubic scalars. Note also that these
relations do not depend on supersymmetry nor on spacetime dimension.

Finally, let us note that recently, Cachazo, He and Yuan proposed a new
prescription to compute scalar, vector and gravity amplitudes at tree-level
[186–188]. This prescription was elucidated from first principles by Mason and
Skinner in [189], where a holomorphic worldsheet sigma model for the so-called
“Ambitwistor strings” was demonstrated to produce the CHY prescription at
tree-level.49 The CHY prescription at tree-level is naturally a closed string
type of construction, although there are no right movers, and the way by
which color and kinematics are generated is very similar to the one that we
reviewed in this section; the authors of [189] built “type II” and “heterotic”
Ambitwistor string sigma models. In [190], formulas for type II Ambitwistor
n-graviton and heterotic Ambistwistor string n-gluon amplitudes have been
proposed. The properties of the gravity amplitude form a very interesting
problem on its own. It is also important to understand to what extent the
heterotic Ambitwistor string have to or can be engineered in order to produce
pure N = 4 Yang-Mills amplitudes at one-loop, where the couplings to N = 4
gravity are suppressed. These are a traditional issue encountered in Witten’s
twistor string [191].

4.3 Towards a string theoretic understanding

in loop amplitudes

At loop-level, the form of the amplitudes integrand depends on the spectrum
of the theory. We already emphasized the simplicity of maximally super-
symmetric Yang-Mills and gravity theories. This simplicity here turns out to
be a problem in the sense that the one- and two-loop four-gluon and four-
graviton amplitudes are too simple to obtain non-trivial insight on a stringy
origin of the BCJ duality. The box numerators reduce to 1 at one-loop in SYM
and maximal supergravity [59] and they are given by s, t, u and s2, t2, u2 at two
loops (result of [13, 96] which we discussed in eq. (2.3.1)). In addition, there
are no triangles and the Jacobi identities 4.3 are satisfied without requiring any
special loop momentum identities besides the trivial 1− 1 = 0 and s− s = 0.

To increase the complexity of the amplitudes, it is necessary to introduce
a non-trivial dependence in the loop momentum. Considering the empirical
power counting of eq. (3.1.37), this could be achieved in two ways; either
by increasing the number of external particles, or by decreasing the level of
supersymmetry. Five-point amplitudes inN = 4 SYM andN = 8 supergravity
were recently discussed in [192] in open and closed string. The appearance of

49Although the preprint [PT5] deals with this issues, as already emphasized it is not the
intention of the author to discuss it in this text.
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left-right mixing terms was observed to be crucial in the squaring behavior of
the open string integrand to the closed string one. These terms are central in
our one-loop analysis as well.

In [PT4], we investigated the reduction of supersymmetry and studied four-
graviton amplitudes obtained from the symmetric product of two N = 2 SYM
copies. We already discussed in eq. (3.1.31) that these constructions struc-
turally produce matter couplings in the gravity theory. Both in our string
theory construction and in our direct BCJ construction, the contribution of
the (N = 2) vector-multiplet running in the loop is realized as

A1−loop
(N=2 vect.) = A1−loop

(N=4 vect.) − 2A1−loop
(N=2 hyper) (4.3.1)

in analogy with the similar relation in N = 4 gravity in eq. 3.1.33. It can be
seen in tab. 1.1, that these identities are coherent with respect to the spectrum
of the multiplets. This implies that the non-trivial loop momentum part of
the integrands is described by the following product

(N = 2 hyper)× (N = 2 hyper) = (N = 4 matter) (4.3.2)

which is therefore the important sector of the four-graviton amplitude on which
we will focus from now on. Each of the hyper-multiplet copies will carry an
`2 dependence in the loop momentum, respectively an Ġ2 in the worldline
integrand.

4.3.1 BCJ ansatz for (N = 2) hyper multiplets.

The ansatz that we used to find a BCJ satisfying representation of N = 2
gauge theory amplitudes is described in great detail in [PT4, sec.4]. The
first constraint that we apply is our choice to start with two master boxes,
corresponding to the (s, t) and (t, u) channels, the (s, u) channel being obtained
from the (s, t) box by the exchange of the legs 3↔ 4.

The second physical requirement was to stick as much as possible to our
string theoretic construction which in particular has no triangle nor bubble
integrals in the field theory limit. Since the Jacobi identities between boxes
force triangles to be present, the best we could do was to require all bubbles to
vanish. To our surprise, this turned out to be sufficient to force the triangles to
vanish at the integrated level, despite a non-trivial loop-momentum numerator
structure.

In total, after solving all the D-dimensional unitarity cuts constraints on
the ansatz, only two free coefficients remain from the original definition of the
ansatz, called α and β in the paper. They parametrize residual generalized
gauge invariance in our representation. The total number of diagrams is there-
fore 9; three boxes and six triangles. Their explicit expressions may be found
in [PT4, eqs. (4.20)-(4.21)]. As expected from power counting, the box nu-
merators of these N = 2 gauge theory amplitudes have degree (4−N ) = 2 in
the loop momentum. In addition, we provide in [PT4, appendix C] a short ex-
plicit computation for the vanishing of a particular gauge theory triangle after

73



integration. An important additional feature of our ansatz, generally present
in other ansatzes as well [172], is that it requires the inclusion of parity-odd
terms iεµνρσk

µ
1k

ν
2k

ρ
3`
σ for consistency. In gauge theory amplitudes, they vanish

due to Lorentz invariance since the vector iεµνρσk
µ
1k

ν
2k

ρ
3 is orthogonal to any of

the momenta of the scattered states kσi . Combined with the triangles, these
terms are invisible to the string theory amplitude because they vanish when
the loop momentum is integrated. An essential feature of the BCJ double-copy
is that these terms do contribute to the gravity amplitudes after squaring.

4.3.2 String theoretic intuition

We proposed in [PT4] a possible origin for this mechanism in string theory. Our
physical intuition is based on the fact that in string theory gravity amplitudes
possess additional terms coming from Wick contractions between the left- and
right-moving sectors. Furthermore, these left-right moving contractions are
absent in gauge theory amplitudes in heterotic string because the two CFT’s
(color and kinematical) have different target spaces and do not communicate.
Therefore we naturally expect that these additional terms in BCJ and worldline
gravity amplitudes have to be related, this is indeed what was shown in [PT4].

For illustrative purposes, we display below the form of the one-loop am-
plitudes in gauge theory and gravity as obtained from the generic four-point
string theory amplitude in eq. (3.1.10) with the vertex operators described
along the text:

A1-loop
gauge =

∫ ∞
0

dT

T d/2−3

∫ 1

0

d3u ·
(
W (L, kin) W (R, col)

)
· e−TQ , (4.3.3a)

M1-loop
gravity =

∫ ∞
0

dT

T d/2−3

∫ 1

0

d3u ·
(
W (L, kin) W (R, kin) +W (L−R, kin)

)
· e−TQ .

(4.3.3b)

where the transparent abbreviations col and kin follow from the terminology
used in the previous section. The form of the gravity amplitude has been
discussed before, where the kinematic numerators W (.,kin) were described as
polynomials in Ġ and G̈. On the other hand, the form of the gauge theory
worldline amplitude deserves a comment. The presence of a current algebra
in the left-moving sector of the gauge boson heterotic-string CFT not only
prevents mixed contractions, but also produces color ordered amplitudes, so
that W (R, col) writes

W (R, col) =
∑

σ∈Sn−1

Tr (T aσ(1) . . . T aσ(n−1)T an)H(uσ(1) < · · · < uσ(n−1) < un) ,

(4.3.4)
where H is a boolean Heaviside step function. This was demonstrated by
Bern and Kosower in [61–64], where they proved that 1/q̄ residue identities tie
particular combinations of the color factors to a given ordering of the external
legs along the loop.50

50In open string gauge theory amplitudes, color-ordering naturally follows from ordering
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It should be recalled now that the left-right mixing contractions present
in the worldline integrand W (L−R, kin) descend from string theory contractions
such as 〈∂X(z, z̄)∂̄X(w, w̄)〉 as in eq. (3.1.11). In the field theory limit, they
solely provide a 1/T factor, since the δ(2)-function drops out of the amplitude
by the canceled propagator argument just like at tree-level:

〈∂X(z, w̄)∂̄X(z, w̄)〉 −→
α′→0

− 2

T
(4.3.5)

up to a global factor of α′2 required for dimensionality. We give below the
explicit worldline numerators for the (N =2) hyper multiplet51 and also recall
the form of the symmetric worldline integrand for the (N =4) matter multiplets

W(N=2), hyper = W3 ,

W(N=4), matt. = W 2
3 + 1/2W2 ,

(4.3.6)

where the worldline integrands W2 and W3 were defined in (3.1.36).

4.3.3 Comparing the integrands

In [PT4], we carried the comparison of the integrands coming from the BCJ
construction to the worldline one by turning the loop momentum representa-
tion to a Schwinger proper time representation.52 This procedure was already
sketched in chap. 2, eq. (2.2.27), when we needed to illustrate the generic form
of a worldline integrand in terms of more common Feynman graphs quantities.
We defined 〈n〉 to be the result of loop-momentum Gaussian-integration of
a given numerator n(`) after exponentiating the propagators. For a detailed
account at one-loop, the reader is referred to the section 6.1 of [PT4]. For
definiteness, let us simply reproduce here the defining equation for the bracket
notation 〈n〉:∫

dD`

(2π)D
n(`)

`2(`− k1)2 . . . (`−
∑n−1

i=1 ki)
2

=
(−1)ni

(4π)D/2

∫ ∞
0

dT

T
D
2
−(n−1)

∫ n−1∏
i=1

dui〈n〉e−TQ

(4.3.7)
which appears in boldface for readability in this equation. The left-hand side of
this formula is a n-leg (n = 3, 4 here) one-loop Feynman integral in momentum
space while the right-hand side is its Schwinger proper time representation.
We recall that the ui parameters are rescaled (see eq. (3.1.14)) so that they
belong to [0, 1]. Their ordering along the worldloop corresponds to the ordering
indicated by the Feynman propagators in the left-hand side.

of the external states along the boundary of the annulus.
51Similar computations as these performed in the gravity amplitudes can be performed to

derive this polynomial in N = 2 orbifolds of the heterotic string, in which case one should
make sure to decouple the gravitational multiplets by hand. Another possibility is to use
WN=4,vect = 1 in the identity (N = 2,hyper) × (N = 4, vector) = (N = 6, spin-3/2) to
obtain WN=2,hyper = WN=6,spin-3/2.

52In principle, it would have been desirable to perform the inverse procedure. However we
faced technical obstacles in doing so, because of the quadratic nature of the gauge theory
loop-momentum polynomials. Furthermore, the absence of triangles in string theory was
also a severe issue to match the BCJ loop momentum triangles.
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Gauge theory The first step of the analysis is to compare the gauge theory
box integrand 〈nbox〉 obtained from the BCJ procedure to the string based
numerator W3.53 We observe matching of the two quantities only up to a new
total derivative that we call δW3:

〈nbox〉 = W3 + δW3 . (4.3.8)

This δW3 integrates separately to zero in each color ordered sector of the am-
plitude. Moreover, it is sensitive to the subset of generalized gauge invariance
left-over from solving the unitarity cut-constraints for the ansatz as it depends
on α and β. A natural interpretation for this term is that it carries some
information from the BCJ representation to the string integrand and indicates
that the correct BCJ representation in string theory is not W3 but W3 + δW3.

From our experience of the MSS procedure at tree-level, we would expect
the addition of this total derivative term to be the result of worldsheet integra-
tion by part. However, in [PT4] we argued that this is not the case; W3 + δW3

cannot be the result of any chain of IBP’s. The argument is based on a rewrit-
ing δW3 as a worldline polynomial in the derivatives of the Green’s function,54

followed by the observation that this polynomial cannot be integrated away
because of the presence of squares Ġ2

ij not paired with the required G̈ij which

would make them originating from ∂i(Ġije
−TQ).55 The reason why there are

no room for such terms as G̈ in δW3 is related to the form of our box numer-
ators, whose quadratic part in the loop-momentum turns out to be traceless.
Ultimately, this is again a consequence of our restriction to discard bubble
integrals in our gauge theory ansatz.

The first conclusion of this gauge theory analysis is that the BCJ represen-
tation is visible at the integrand level in string theory, as shows the necessity
to select a particular representation. The second conclusion is that, contrary
to the intuition from the MSS procedure, there seem to exist particular BCJ
representations which cannot be reached directly from string theory, or at least
not with solely “naive” IBP’s.

Gravity At the gravity level, we compare the BCJ double-copy and string-
based integrated results. They give schematically:∫ ∑

〈n2
box〉+

∑
〈n2

tri〉 =

∫
W 2

3 + 1/2W2 . (4.3.9)

The physical intuition that we have been following so far tells us that loop
momentum total derivatives in the BCJ representation in gauge theory, which
contribute after squaring, should match the new left-right mixing term W2 aris-
ing in the string-based gravity amplitude. Therefore, we expect the triangles
〈n2

tri〉 and the parity-odd terms present in 〈n2
box〉 and 〈n2

tri〉 to be related to W2.

53We recall that the gauge theory triangle integrand vanish once the loop momentum is
integrated, in other words we have 〈ntri〉 = 0 for all BCJ triangles.

54The complete expression may be found in appendix D of [PT4].
55See the discussion above and below (6.24) in [PT4].
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To understand this relation, it is necessary to use our knowledge gained in the
analysis of the gauge theory integrands to first relate 〈n2

box〉 to W 2
3 . Since we

already argued that no IBP procedure may transform W3 to 〈nbox〉, the best
we can do is to introduce and remove by hand δW3 in (4.3.9), which transforms
W3 to W3 + δW3 = 〈nbox〉 while the W2 is modified to turn W2 → W2 + δW2

with

δW2 = −2(2δW3W3 +W 2
3 ) . (4.3.10)

Contrary to δW3, this new term is not a total derivative. This is expected,
since its integral does not vanish. In total we obtain∫

W2 + δW2 =

∫ ∑
〈n2

tri〉+
(
〈n2

box〉 − 〈nbox〉2)
)

(4.3.11)

An interesting combination, (〈n2
box〉 − 〈nbox〉2)), appears in the right-hand side

of the previous equation. This term is computed in detail in subsection 6.3.2 of
[PT4], by Gaussian integration of the loop momentum. In particular it contains
contribution coming from the parity-odd terms and other total derivatives.
However, its appearance is more generic than this and actually signals the
non-commutativity of the squaring operation in loop momentum space and in
Schwinger proper time space. Therefore, any string theory procedure supposed
to explain the origin of the BCJ double-copy should elucidate the nature of
these “square-correcting terms”.

The difficulties caused by the non-IBP nature of δW3 and δW2 prevented
us from pushing the quantitative analysis much further. However, in our con-
clusive remarks below we provide a qualitative statement based on the fact
that the square-correcting terms are always of order 1/T at least (this can be
proven by direct Gaussian integration).

Before, let us make one more comment. So far we did not describe the
worldline properties of δW2 and δW3, besides explaining that we could rewrite
δW3 as a polynomial of in the derivatives of the worldline propagator. This
implies that the same can be done for δW2. By doing so, we mean that these
polynomials, δW2 and δW3, are well defined worldline quantities and we are
implicitly pretending that they descend from certain string theoretic ancestors,
obtained by turning the G’s for G’s. However, nothing grants us from the start
that the corresponding δW2 and δW3 would not produce triangles or bubbles
in the field theory limit due to vertex operator colliding as in eq. (2.2.45). This
would spoil a correct worldline interpretation for these corrections. Hence we
had to carefully check this criterion for both polynomials, which they turn out
to pass; in [PT4], this property was referred to as the string-ancestor-gives-no-
triangles criterion. The conclusion of this paragraph gives strength to inter-
preting the δW ’s as “stringy” reactions to the BCJ change of parametrization
in gauge an gravity amplitudes.

Conclusive remarks We can now conclude. The formula eq. (4.3.11) illus-
trates that the modified left-right moving contractions, W2+δW2, are related to
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two terms in field theory; the BCJ triangles squared and the square-correcting
terms.

Noting that the square correcting terms do contain in particular the squares
of the parity-odd terms, we are lead to our first conclusion, which confirms our
physical intuition; the left-right mixing contractions in string theory, modified
by the BCJ representation, account for the need to include total derivatives in
the BCJ representation of gauge theory amplitudes.

The second important conclusion is linked to the change of representation
that we found, which we argued to be a non-IBP type of modification. At
tree-level, the MSS paradigm consists in performing integrations by parts on
the gauge theory integrands to put them in a particular representation (see
eq. (4.2.8)). At one-loop, integrations-by-part produce additional left-right
mixing contractions when ∂ derivatives hit ∂̄G terms, which eventually give rise
to worldline terms with 1/T factors (see eq. (4.3.5)). In view of our previous
comment on the 1/T order of the square-correcting terms, it is natural to
expect that these terms actually indicate missing worldsheet IBP’s in the term
W2 +δW2. Therefore, we face a paradox; on the one hand, no IBP can be done
to produce the δW ’s, on the other hand the final result seem to lack IBP’s.

A possible way out might lie in the definition of the ansatz itself. More
precisely, the issues might be caused by a mutual incompatibility of the gauge
choice in string theory producing the worldline integrand W3 and forbidding
triangle/bubble-like contributions with the choice of an ansatz constrained by
discarding all bubbles, thereby producing BCJ triangles as total derivatives
only. Put differently, the absence of triangle contributions in the string-based
computation that lead us to consequently restrict the full generalized gauge
invariance is possibly not the most natural thing to do from string theory
viewpoint on the BCJ double-copy. Then what have we learned ? It seems
that string theory is not compatible with certain too stringent restrictions of
generalized gauge invariance. A more general quantitative analysis of this issue
will certainly give interesting results on which of BCJ-ansatzes are natural from
string theory and which are not, hopefully helping to find new ansatzes.
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Chapter 5

Outlook

One of the aims of this manuscript was to draw a coherent scheme in the work
of the author during his years of PhD. Their remain open questions after these
works, in addition to the new ones that were raised. I would like to describe
a few of them now. As they are related to several chapters at the same time,
there is not point anymore in sectioning the text according to the previous
chapters.

Role of the U(1) anomaly We emphasized in the text that half-maximal
supergravity has a U(1) anomalous symmetry of the axio-dilaton parametriz-
ing the coset SU(1, 1)/U(1) [54]. The direct computation of the four-loop
∇2R4 divergence in D = 4 − 2ε dimensions of [130] using the double-copy
(N = 0)× (N = 4) also shows traces of this anomalous behavior, according
to the authors of this work. Let us reproduce the amplitude here in order to
recapitulate their reasoning:

Mfour−loop
nv

∣∣∣
div.

=
(κD/2)10

(4π)8

(nv + 2)

2304

[
6(nv + 2)nv

ε2

+
(nv + 2)(3nv + 4)− 96(22− nv)ζ3

ε

]
T ,

where T encodes the polarization dependence of the amplitude in a covariant
manner. The (nv+2)ζ3 contribution is the important term here. On one hand,
(nv + 2) was argued to be typical of anomalous one-loop amplitudes [129], on
the other hand ζ3 is a 3-loop object, therefore the four-loop divergence carried
by (nv + 2)ζ3 does seem to be caused by the anomaly. It would be really
interesting to investigate this issue further, below we describe possible topics
of research related to it.

Extract exactly the coupling of R4 and ∇2R4 in the CHL heterotic
string action ? A computation that would shed light in this direction is
to determine the exact value of the R4 and ∇2R4 couplings in the effective
action of CHL models. The program in N = 8 led to major advances both in
physics and in mathematics, and it is very reasonable to expect that the similar
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program inN = 4 would imply the discovery of new kind of automorphic forms
for orthogonal groups.

What is the significance of the N = 23 CHL orbifold ? This point is
more speculative. We mentioned that an N = 23 CHL model would decouple
totally the matter fields, hence producing pure half-maximal supergravity from
the start. The Mathieu moonshine program seems to indicate that there may
exist such a model, as a consequence of a putative M24 fundamental symmetry
of ... something. At the moment, it is not clear what theory the Mathieu
group M24 could be a symmetry group of. It is known however that it cannot
be the symmetry group of K3 sigma models, preventing naive interpretations
of this sort [127]. Maybe uncovering deeper aspects of these connexions may
lead to powerful group theoretical arguments on the low energy effective action
of pure half-maximal supergravity ?

Build some 4 ≤ N < 8 orbifolds models in pure spinor superstring
and extract non-renormalization theorems via zero-mode counting
? Another option to understand the role of the U(1) anomaly, suggested by
the authors of [130], would be to perform similar type of analysis in N ≥
5 supergravities, where the anomalous symmetry is not present. From the
superstring point of a view, such an analysis would most easily be performed
by constructing asymmetric orbifolds models in the pure spinor superstring
and perform systematically the zero-mode counting in the lines of [17].

Extract exactly the three-loop four-graviton amplitude in type II ?
Going to the tropical limit program now, a very important computation to do
is to extract explicitly the worldline numerators for the three-loop computation
in type II of [72]. In addition to the intrinsic interest of such a computation, it
may help to understand the apparent paradox between the supermoduli space
non-projectedness issues in the RNS formalism and the bosonic moduli space
integration of pure spinor formalism.

Extract exactly the two-loop four-graviton amplitude in CHL models
of heterotic string ? The genus two case is really the turning point in
terms of the technical machinery involved in extracting the tropical limit of
string amplitudes formulated as integrals over Mg,n. Therefore, developing
the tropical limit technology enough to be able to extract the complete form
of the worldline integrand of the two-loop heterotic string amplitude would
settle the last subtleties with this aspect of the α′ → 0 limit (at least in the
non-analytic domains).

Towards a super-tropical geometry ? The analysis of [86–91] has shown
that the non-projectedness of Mg,n implies that the IR behavior of RNS su-
perstring theory is naturally described by means of super-dual-graphs which
characterize the holomorphic degenerations of the super-Riemann surfaces.
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They basically account for what kind of states, NSNS, RNS, NSR and RR are
exchanged through the pinching necks. The corresponding super-dual-graphs
in type II for instance are then built out of the following vertices and their

NS/NS

NS/NS NS/NS

NS/NS

NS/R NS/R R/R

NS/R

NS/R R/R

R/R

R/R

Figure 5.1: “Superworldline Feynman rules” in type II.

weighted n-point generalization. It would be interesting and certainly helpful
to formulate in more details this super worldline picture for arbitrary RNS
string theory amplitudes. Comparison with the pure spinor worldline formal-
ism of [26] may then help to understand the connexions between the various
perturbative formalisms in string theory.

Double-copy; find a constructive way at one-loop ? The question of
understanding the nature of the generalized gauge invariance in string theory is
conceptually important, as it may be used as a guideline for the direct ansatz
approaches. Another result that hopefully may follow from a string theory
analysis would be a procedure to derive BCJ numerators at loop level from
first principles, in the lines of the tree-level MSS construction.

Is there any string theoretic understanding of the difficulties at five
loop ? In the paradigm where we consider string theory as a natural frame-
work where to understand the BCJ duality, it would be natural to assume
that the supermoduli space discussion of [86–91] may have an impact on the
BCJ duality, for instance by involving variations of the Jacobi identities ? A
way to probe this statement would be to identify an amplitude in the RNS
formalism that has to involve the super-graph picture in the low energy limit,
and investigate if there are signs of a breakdown or alteration of the duality
or of the double-copy.
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