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aux Énergies Alternatives (CEA) de Saclay

Precision cosmology with the

large-scale structure of the universe

par Hélène Dupuy
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Introduction

The title of my PhD thesis, “Precision cosmology with the large-scale structure of

the universe”, encompasses a wide range of searches, all equally exciting. Cosmology

is an ancient questioning: understanding what the universe is made of, how it

formed, how it evolved since then and what its future is. Yet it is entering a new

era, whence the denomination precision cosmology. The investigation method is

still the same, i.e. switching back and forth between observations of the sky and

formulation of theories, but lately the level of description has amazingly evolved.

The twentieth century has been a golden period for cosmology. On the theo-

retical side, about a hundred years ago, Albert Einstein’s general relativity ([64])

brought the mathematical tools allowing to represent appropriately time and space

in a gravitation theory. Soon after appeared the first models based on this theory

to describe the structure of the universe and its time evolution. The expansion

of the universe has been discovered at the same epoch, jointly thanks to the ob-

servations of the astrophysicist Edwin Hubble (carried out and discussed between

1925 and 1929, [94]) and to the relativistic calculations of several theorists, such as

Georges Lemâıtre (in 1927, [103]), Alexandre Friedmann (in 1922, [79]) and Willem

de Sitter (in 1917, [53]). A cosmological model naturally emerged from the study

of the physics at play in an expanding universe. It is the Big Bang theory, accord-

ing to which the universe was born 13.8 billion of years ago (from a process called

Big Bang and involving unimaginably high energies) and then progressively cooled

down and dilated.

In this context, cooling down means dropping from a temperature1 T ∼ 1019

GeV to T ≈ 2.73 K. Such different temperatures lead perforce to extremely di-

1In cosmology, it is common to use the electronvolt as unit of temperature, or more precisely the
electronvolt divided by the Boltzmann constant since 1 eV / kB ≈ 11604.5 K, kB being the Boltz-
mann constant (kB = 1.3806488 × 10−23 m2.kg.s−2.K−1). In practice, one omits the Boltzmann
constant so that T (K) ≈ 11604.5 T (eV).
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versified physical processes. The chain of cosmological eras, each characterized by

specific physical processes, is called thermal history of the universe. All stages of

the thermal history are not equally understood. In particular, understanding mech-

anisms involving energies that are not accessible in laboratories is very challenging.

Some epochs are thus described very speculatively. Conversely, the Big Bang nu-

cleosynthesis and the recombination era are particularly well depicted. The former

is the process during which nuclei heavier than the lightest isotope of hydrogen

are created thanks to the trapping of protons and neutrons that previously freely

evolved in the cosmic plasma (T ∼ 1 MeV). The latter refers to the epoch at which

electrons and protons first became bound to form electrically neutral hydrogen

atoms (T ∼ 3000 K).

One specificity of the Big Bang model is that it predicts the existence of a

radiation which started to propagate freely about 380 000 years after the Big Bang.

This “cosmic microwave background”, detected incidentally in 1964 by the two

physicists Arno Penzias and Robert Wilson ([128]), is nothing but the photons

that emerged when the temperature of the cosmic plasma became lower than the

temperature of ionization of hydrogen. Its detection was such a strong argument

in favor of the Big Bang model that this discovery has been awarded the Nobel

Prize in 1978. Nowadays, observing and studying carefully the cosmic microwave

background is still one of the driving force of cosmology.

So far, the Big Bang model has not been ruled out by observations. Rather,

each new set of cosmological data provided by exploration of space strengthens the

so-called “standard model of cosmology”. This model relies on the Big Bang theory

and assumes the existence of a cosmological constant, which mimics the acceleration

of the expansion of the universe, and of cold dark matter, a form of matter proposed

in response to some unexpected observations.

More precisely, two observational projects realized in 1998 by the scientific teams

headed by the cosmologists Saul Perlmutter, Brian P. Schmidt and Adam Riess

showed independently that the expansion of the universe is accelerating ([129, 148]).

This breakthrough has been honored with the Nobel Prize in 2011. Gravity being

an attractive unstoppable force, astrophysicists originally thought that expansion

could only decelerate. It has therefore been necessary to imagine a form of re-

pulsive energy, capable of accelerating the expansion of the universe. This cosmic

component of unknown nature has been called dark energy. In the standard model,

it is characterized by a parameter denominated cosmological constant and repre-
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senting about 70% of the energy content of the universe. Note nevertheless that

several alternatives to the cosmological constant (and thus alternatives to the stan-

dard model) can be imagined to describe the same effect. At this time, it is still

very difficult to determine which representation of dark energy is the most credible.

Hopefully, the Euclid space mission ([157]), proposed in 2005 to the European Space

Agency and whose launch is planned for 2020, will enrich (or even conclude) the

debate.

Besides, many observations suggest the presence of an unfamiliar form of matter,

invisible and with a non-zero mass, called dark matter. Dark matter would explain

for instance why galaxies and clusters of galaxies seem much more massive when one

studies their gravitational properties than when one infers their mass from the light

they emit or why the cosmic microwave background displays spatial fluctuations

too faint to initiate the formation of structures by gravitational instability (see

more details about gravitational instability in section 1.1). In the standard model

of cosmology, this dark matter is assumed to be cold, i.e. made of particles whose

velocity is already much smaller than the speed of light in vacuum when it decouples

from other species. Unveiling the nature and the properties of those dark elements

is a major challenge, at the core of modern cosmology. It is the main raison d’être

of the Euclid mission.

Another very puzzling piece of modern cosmology is cosmic inflation. It is an

idea that arose in the late seventies-early eighties to complement the Big Bang model

(see the foundational works of the physicists Alexei Starobinsky ([172]), Alan Guth

([84]) and Andrei Linde ([110])). According to this theory, the primordial universe

underwent an extremely fast and violent phase of expansion. Adding this step to

the thermal history of the universe is useful in many ways to get a coherent whole.

However, the paradigm of inflation is not yet perfectly controlled theoretically.

The agreement between the standard model of cosmology and observational

surveys is remarkably good. So, at the present time, most cosmologists focus their

effort on the refinement of this model. The technical means available today allow to

probe a huge quantity of astrophysical objects, of various nature, spread over very

large areas of the sky. Specific developments, involving to a large extent numerical

simulations and statistical physics, are necessary to deal with such an amount of

data. But an exquisite exploration of the universe is useless if there is no comparable

progress in theoretical cosmology.

The present thesis is a tiny illustration of the theoretical efforts currently re-
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alized in order to anticipate a project such as the Euclid mission. As already

mentioned, it has been designed primarily to examine the dark content of the uni-

verse. It will moreover supply a catalog of galaxies of unprecedented richness and

refinement, showing how galaxies and clusters of galaxies arranged with time to

form tremendous filaments, commonly referred to as “the large-scale structure of

the universe”.

The purpose of this thesis is twofold. A minor part of the time has been dedi-

cated to a study designed to question a leading principle of cosmology, namely the

cosmological principle. According to it, on very large scales2 (& 100 Mpc), the dis-

tribution of matter in the universe is homogeneous and isotropic. Many predictions

of modern cosmology ensue from it. In collaboration with Dr. Jean-Philippe Uzan

and his PhD student Pierre Fleury, I have participated in a project consisting in

simulating observations of supernovae in an inhomogeneous model of the universe

in order to infer the impact of inhomogeneities on cosmology. We highlighted in

particular the fact that using the same kind of geometrical models to interpret ob-

servations corresponding to very different spatial scales could become inappropriate

in the precision cosmology era (see chapter 1). The second topic I am specialized in

is the enhancement of cosmological perturbation theory methods (see chapter 3 for

a quick presentation of the current challenges of cosmological perturbation theory),

especially within the nonlinear and/or relativistic regime(s). It is the main task

developed in this thesis (see chapters 4, 5 and 6). In particular, I have proposed

with my PhD advisor Dr. Francis Bernardeau a new analytic method, which is a

multi-fluid approach, to study efficiently the nonlinear time evolution of non-cold

species such as massive neutrinos (see chapter 2 for a modest overview of neutrino

cosmology). This research project is at the interface between two topical subjects:

neutrino cosmology and cosmological perturbation theory beyond the linear regime.

The manuscript is organized as follows. In chapter 1, I take the example of

an analytic questioning of the cosmological principle, in which I participated, to

illustrate what is at stake in precision cosmology. Chapter 2 introduces basics

of neutrino cosmology, with an emphasis on the key role it plays in the study of

the formation of the large-scale structure of the universe. In chapter 3, I present

standard results of cosmological perturbation theory on which I based most of my

PhD work. The three next chapters expose the developments that I realized with

my advisor with the aim of incorporating properly massive neutrinos, or any non-

2pc stands for parsec, defined so that 1 pc≈ 3.1× 1016m.
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cold species, in analytic models of the nonlinear growth of structure. Chapter 4

presents the method and questions its accuracy. Chapter 5 shows that the results

presented in chapter 3, valid for cold dark matter, can then partly be extended to

massive neutrinos. Finally, in chapter 6, I explain how our method can be helpful to

determine the scales at which nonlinear effects involving neutrinos are substantial

and should be accounted for in models of structure formation.
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Chapter 1

An illustration of what

precision cosmology means

1.1 Is the cosmological principle stringent enough for

precision cosmology?

A specificity of cosmology is that the system of interest is studied from inside.

Furthermore, it is studied from a given position (the earth and surroundings) at a

given time (epoch at which human beings are present on earth). Hence, since light

propagates with a finite velocity and the universe has a finite age, only a portion of

the universe can be reached observationally. This area is called observable universe

and its boundary is called cosmological horizon. Consequently, cosmological models

intended to describe the entire universe necessarily involve untestable assumptions

(see e.g. [67] for discussions on this subject). In particular, as already mentioned,

the standard model of cosmology relies on the cosmological principle, according to

which the spatial distribution of matter is homogeneous and isotropic on large scales.

This is encoded mathematically in the metric chosen to characterize the geometry

of the universe, namely the Friedmann-Lemâıtre metric (see section 1.3.1).

Of course, the universe is not perfectly smooth. Otherwise, growth of structures

from gravitational instability wouldn’t have been achievable. It is indeed commonly

assumed that density contrasts existed in the primordial universe and initiated the

formation of the large-scale structure. More precisely, this scenario is encapsulated

in the inflationary paradigm. During this stage, in theory, quantum fluctuations

of a cosmic scalar field became macroscopic, generating fluctuations of the metric

9



1.1. Is the cosmological principle stringent enough for precision cosmology?

([7, 85, 89, 173, 30, 122]). Those metric fluctuations then resulted into density fluc-

tuations, as predicted by general relativity, and thus into gravitational instability.

The study of the time evolution of such fluctuations is generally performed thanks

to cosmological perturbation theory (see chapter 3). In practice, this means adding

perturbations, assumed to be small compared with the background quantities, in

the Friedmann-Lemâıtre metric.

In its minimal version (in particular, in the absence of neutrinos), the standard

model of cosmology allows to summarize the properties of the universe in six pa-

rameters, called cosmological parameters. Defining them at this stage would be

premature since none of the cosmological effects behind them has been introduced

yet. Nevertheless, for the record, here is the list:

• the primordial spectrum amplitude As,

• the primordial tilt ns,

• the baryon density ωB,

• the total non-relativistic matter density ωm,

• the cosmological constant density fraction ΩΛ,

• the optical depth at reionization τreion.

Their values are not predicted by the model, whence the importance of constraining

them observationally. Several kinds of sources provide this opportunity. The lead-

ing ones are Type Ia supernovae (SNIa), baryon acoustic oscillations (BAO) and

the cosmic microwave background (CMB). A supernova is an astrophysical object

resulting from the highly energetic explosion of a star. SNIa are particular super-

novae whose spectra contain silicon but no hydrogen. They are useful in particular

for the tracking of the expansion history of the universe. More precisely, they give

information about the equation of state of dark energy (see e.g. [38, 146]). BAO

are periodic fluctuations experimented by the baryonic1 components of the uni-

verse and the knowledge of their properties brings also much to cosmology (see e.g.

[5]). CMB observations provide an estimation of cosmological parameters with an

exquisite precision, especially when combined with other astrophysical data ([137]).

1Baryonic means made of particles called baryons. In particular, all the matter made of atoms
is baryonic.
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1.1. Is the cosmological principle stringent enough for precision cosmology?

Since its first detection, the CMB has been inspected in great detail by several

satellites looking for anisotropies in it. The motivation of such an investigation

is the evidence of a dipole anisotropy2, presented in 1977 in [168] (which brought

another Nobel Prize to cosmologists, this time George Fitzgerald Smoot and John

C. Mather, in 2006). Higher order anisotropies3 have then been measured by the

satellites COBE (launched in 1989, [167]), WMAP (launched in 2001, [10, 90])

and Planck (launched in 2009, [134]). Those space projects are complementary to

ground-based experiments ([145, 175, 165]) and to balloon-borne instruments such

as BOOMERanG4 (launched in late 1998, [52]) and Archeops (launched in 2002,

[11]).

The combination “standard model of cosmology + perturbations” seems to be a

satisfactory description. As proof, it is in agreement with most existing data. Such

an accuracy is a bit surprising given the simplicity of the model and the thorough-

ness with which the observable universe is explored. For instance, it is assumed

that the matter is continuously distributed. This involves in particular a smooth-

ing scale, not explicitly given in the model ([68]). Besides, some observables used

in cosmology are “point sources” and thus probe scales at which the cosmological

principle does not hold (and furthermore scales that are not accessible by numerical

simulations, see section 1.2.2 for more details). This is particularly true for SNIa,

which emit very narrow beams probing scales smaller than5 1 AU. For this reason,

it has been argued in several references that the use of the cosmological principle

might lead to misinterpretations (see for instance [33]). This is precisely the kind

of questioning raised by the precision cosmology era.

2The earth is in motion in the universe. Consequently, when cosmologists measure the tem-
perature of the CMB, one of the celestial hemispheres appears hotter than the other one. This
phenomenon is called dipole anisotropy.

3Higher order anisotropies are reflective of plasma oscillations that develop when the last scat-
tering surface is reached. They superimpose over dipole anisotropies.

4The BOOMERanG experiment has brought a strong support to the inflationary paradigm by
showing that the geometry of the universe is Euclidean.

5AU stands for astronomical unit, defined so that 1 AU ≈ 1.5× 1011 m.
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1.2. Questioning the cosmological principle analytically

1.2 Questioning the cosmological principle analytically

1.2.1 Redshift, luminosity distance and Hubble diagram

Redshift

The universe being in expansion, one can observe that galaxies are moving away

from the earth. This phenomenon is called recession of galaxies and is not due to a

genuine proper motion of galaxies. Galaxies (and other astrophysical objects) are

in fact taken away by the dilatation of the universe itself, even if some of them

have a proper motion oriented towards us. Because of this relative displacement,

the observed wavelengths λobs are shifted to longer wavelengths (compared to the

emitted ones λem). It is known as cosmological redshift, denoted z and defined so

that (see section 1.3.4 for a more general interpretation)

z =
λobs − λem

λem
. (1.1)

More precisely, in his contribution to the discovery of the expansion of the universe,

Edwin Hubble brought to light a law stating that the recession velocity6, vrec,

of galaxies is proportional to their distance7 d. Actually, this relation had been

previously found by Georges Lemâıtre but remained almost unnoticed since stated

in French. It reads

vrec = H0d, (1.2)

it is called Hubble’s law and H0 is Hubble’s constant. H0 is usually not considered

as part of the six cosmological parameters of the standard model of cosmology but

it can be readily computed once those parameters are known8. Its value is currently

estimated to be H0 = (67.8± 0.9) km.s−1.Mpc−1([137]). To get information about

the expansion of the universe, it is thus useful to make measurements of velocities

(or equivalently redshifts) on the one hand and of distances on the other hand.

6The recession velocity is the observed velocity to which the peculiar velocity has been sub-
tracted.

7The distance at play in Hubble’s law is the distance between the source and the observer at
the observation time. Because of expansion and since the speed of light is finite, this distance is
larger than what it was at the emission time.

8Note nevertheless that, H0 being in one-to-one correspondence with the standard cosmological
parameter ΩΛ, H0 is sometimes considered as a cosmological parameter instead of ΩΛ. In practice,
the nuance is inconsequential (provided that dark energy is assumed to be a cosmological constant).
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1.2. Questioning the cosmological principle analytically

Luminosity distance

Distances are not directly measurable. What observers can measure when they

probe the sky is e.g. the angular diameter between two points or the amount of en-

ergy collected by their telescopes. Cosmologists have introduced several definitions

of distances from these observables. For instance, the “luminosity distance” of a

source, DL, is easy to define with the help of the intrinsic luminosity of the source

Lsource (energy emitted per unit of time) and of the observed flux Fobs (energy

received per unit of time and surface). It is given by

Lsource = 4πD2
LFobs. (1.3)

SNIa are extremely bright. Furthermore, after their apparition in the sky, the

time evolution of their brightness is very well known, which allows one to calibrate

their intrinsic luminosity. Those particularities make them precious suppliers of

luminosity distances. Such sources are often called standard candles.

Hubble diagram

Building diagrams luminosity distance versus redshift is an efficient way of probing

the history of the expansion of the universe since redshifts and distances are related

via cosmological parameters. Such diagrams, naturally called Hubble diagrams, are

largely used in modern cosmology (see e.g. [2]). An example is given in figure 1.1.

1.2.2 Misinterpretation of Hubble diagrams

The main message of [33] is that, to meet the requirements of precision cosmology, it

is crucial to model accurately the propagation of the ultra-narrow beams produced

by SNIa. Otherwise, using those observables as widely as it is done in cosmology

would be inappropriate.

The fact that there seems to be a paradox between the real universe and its

smooth representation was already discussed in the sixties ([199, 50, 19, 83, 98, 144]).

More recently, consequences regarding the interpretation of Hubble diagrams have

been studied. In particular, according to general relativity, the presence of massive

objects (such as clusters of galaxies) affects the geometry of the universe. Since

the way light propagates depends on the geometry, this results into a modification

of the observed luminosity of sources. This phenomenon is called gravitational

13



1.2. Questioning the cosmological principle analytically

Figure 1.1: One example of a Hubble diagram. It has been obtained from the
observation of 42 high-redshift SNIa of the Supernova Cosmology Project and 18
low-redshift SNIa of the Calàn/Tololo Supernova Survey. mB is the apparent
magnitude in the spectral band B, the magnitude m being related to Lsource via
m = −2.5 logLsource + 4.76. Authors: Perlmutter et al., [129].

lensing and it has been pointed out that it probably induces a scattering in Hubble

diagrams ([99, 80, 191, 190, 192]). Because of the thinness of the beams emitted

by SNIa, such beams spend most of their propagation time in underdense regions

(and rarely, but sometimes, encounter clusters of matter). They are a priori too

narrow for the effects of such fluctuations of density to be negligible. Yet, Hubble

diagrams are interpreted assuming that the geometry of the universe is on average

homogeneous and isotropic.

Perturbative approaches, i.e. descriptions in which perturbations are added in

the metric, have been proposed ([92, 39, 54]). However, in these works, there is

still a smoothing scale at play. It is of the order of 1 arcminute9 whereas lensing

dispersion arises to a large extent from subarcminute scales (see e.g. [48]). Besides,

performing an average is problematic since SNIa probe the sky in directions where

the density of matter encountered is smaller than the cosmological average (contrary

9The arcminute is a unit of angular measurement defined so that 1◦ = 60 arcminutes.
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1.2. Questioning the cosmological principle analytically

to the beams of BAO and CMB, which are large enough for the average density

encountered to be representative of the overall cosmological density, [195]). Hubble

diagrams are thus prone to an observational selection effect. All these problems are

discussed in detail in [33].

Numerical simulations are an alternative to analytic modeling which can take

inhomogeneities into account. However, it has been argued in [33] that, because of

the limitation in resolution, only the distribution of matter encountered by beams

larger than a few tens of kpc can be accurately described by N-body simulations.

It is much wider than the characteristic diameter of a SNIa light beam.

1.2.3 An idea to test analytically the impact of inhomogeneities

Since a theoretical study seems necessary to investigate the way in which inhomo-

geneities affect the aspect of Hubble diagrams, we decided to elaborate analytically

a toy model, representing a very inhomogeneous universe, and to study propaga-

tion of light in it. More precisely, we chose to consider a geometry of the type

“Swiss cheese”. Swiss-cheese configurations are obtained from a homogeneous and

isotropic basis (i.e. a Friedmann-Lemâıtre metric) by removing spheres of matter

at some places and replacing them by point masses, equal to the mass removed

(see figure 1.2 for an illustration and [65, 158] for the cornerstones of Swiss-cheese

representations).

Figure 1.2: A Swiss-cheese configuration. The background is homogeneous. Spheres
are empty except at their centers, where a point mass is present. The point mass is
equal to the density of the background multiplied by the volume of the blank area
surrounding it.

Our model is not intended to be realistic but rather to test the impact of inho-

mogeneities on light propagation. From a theoretical point of view, it is as justified

as the standard homogeneous and isotropic description because it is an exact solu-

tion of general relativity which preserves the global dynamics (see section 1.3 for

more details).

As a first step, we studied analytically the effect of light crossing a single hole
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1.3. Generalities about propagation of light in a Swiss-cheese model

and implemented it in a Mathematica program. It was then easy to predict the

effect of several holes. We proposed to do it with the help of Wronski matrices (see

our paper, presented in section 1.5). Eventually, we simulated Hubble diagrams by

imagining SNIa beams evolving in our Swiss-cheese universe. To do this, we took

inspiration from the SNLS 3 data set ([38]).

The cosmological parameters of this mock universe being under control, we have

been able to test the impact of inhomogeneities on cosmology (see section 1.4).

Note that using Swiss-cheese models to study the effect of inhomogeneities is not

new at all. The specificity of our study is that it is neither a “modern” Lemâıtre-

Tolman-Bondi (LTB) solution, which is an extension of Swiss-cheese solutions in

which point masses are replaced by continuous gradients of density (here is only

a sample of the existing LTB studies: [31, 116, 24, 185, 32, 35, 183, 176, 74, 200,

72, 73, 143, 151, 150, 121, 40, 149, 70]) nor a real step backwards into the original

works on Swiss-cheese models ([98] and [62]) because our investigation is totally

embedded in the framework of modern cosmology. Actually, we were interested in

testing a discontinuous distribution of matter, which is not the case for LTB or

perturbative approaches, in order to avoid the compensation effects due to a finite

smoothing scale. Consequently, we did not expect to obtain results similar to those

of the literature.

1.3 Generalities about propagation of light in a Swiss-

cheese model

Rather than starting with general considerations about general relativity, I will

merely introduce progressively the concepts that help to understand my PhD work.

Comprehensive presentations of general relativity suited to the study of cosmology

can be found in a broad collection of references (see in particular the indispensable

[193] and [120]).

1.3.1 The homogeneous background

The standard model of cosmology assumes that gravitation is well described by gen-

eral relativity. In general relativity, time and space are not independent quantities,

whence the use of the concept of spacetime. In standard cosmology, spacetimes

encompass four dimensions and are mathematically characterized by a quantity
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1.3. Generalities about propagation of light in a Swiss-cheese model

called metric. The Friedmann-Lemâıtre metric emerges naturally when one wants

to write a metric in agreement with the cosmological principle and simple enough

for analytic calculations to be manageable. Its expression is (see e.g. [194] for a

demonstration)

ds2 = −dT 2 + a2(T )γij

(
xk
)

dxidxj . (1.4)

Geometrically, ds2 is the square of the distance separating two points of the space-

time infinitely close to each other, or equivalently the self scalar product of the

infinitesimal vector separating them. In this expression, units are chosen so that

the speed of light in vacuum, c, is equal to unity and Latin indices run from 1 to

3. Besides, the Einstein convention is used, which means that a summation over

repeated indices is implicitly assumed. In other words, one postulates

γij

(
xk
)

dxidxj ≡
3∑

i=1

3∑

j=1

γij

(
xk
)

dxidxj . (1.5)

The Einstein convention will be used in all this manuscript. In relativity, time

depends on the frame in which it is measured. The proper time of an observer is

the time corresponding to his rest frame. The cosmic time T that appears in (1.4) is

the proper time of comoving observers, who are by definition observers moving along

with the Hubble flow10 (without peculiar velocity). a(T ) is an arbitrary function of

the cosmic time. In cosmology, it is called scale factor and it encodes the expansion

of the universe, i.e. distances are expected to grow like a(T ) in a Friedmann-

Lemâıtre metric11. This is the reason why the derivation of the metric (1.4) by A.

Friedmann and G. Lemâıtre in 1922 and 1927 is regarded as part of the discovery

of the expansion of the universe. So expansion appears spontaneously when general

relativity is applied to cosmology. However, when he published the first cosmological

solution of the Einstein equations12 in 1917, A. Einstein introduced artificially a

quantity called cosmological constant to force the universe to be static. It is the

observation of the recession of galaxies by E. Hubble that made him eventually

10The Hubble flow is the recession motion due to expansion.
11It is important to have in mind that it is true for “cosmological” distances only, that is to say

for the very high distances separating objects that do not interact via electromagnetic forces or
form gravitationally bound systems. For example, it is not true within the solar system or between
the atoms of macroscopic objects.

12The Einstein equations are fundamental equations of general relativity describing gravitation
as a result of a curvature of spacetime by matter and energy.
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1.3. Generalities about propagation of light in a Swiss-cheese model

accept the idea of an expanding universe. Nowadays, the cosmological constant has

been reintroduced in the standard model of cosmology to mimic dark energy. The

quantities xk of (1.4) are space coordinates called comoving coordinates. Lastly, γij

are equal-time hypersurfaces, that is to say the geometrical figures obtained in the

four-dimensional spacetime when imposing a given value to T . Assuming that in

the universe space has a constant curvature K, one can show that there are only

three possible expressions for γij (see e.g. [131]):





γijdx
idxj = dχ2 +

1

K
sin2(

√
Kχ)dΩ2,

γijdx
idxj = dχ2 + χ2dΩ2,

γijdx
idxj = dχ2 − 1

K
sinh2(

√
−Kχ)dΩ2,

(1.6)

where χ is a radial coordinate, dΩ2 = dθ2 +sin2 θdϕ2 is the infinitesimal solid angle,

ϕ varies from 0 to 2π, θ from −π to π,
√
|K|χ from 0 to π when K > 0 and from

0 to +∞ otherwise. The first possibility, for which K > 0, is characteristic of a

space with a spherical geometry. The second one, for which K = 0, corresponds

to an Euclidean geometry. The last one, for which K < 0, describes a hyperbolic

geometry.

The Friedmann-Lemâıtre metric is often written using another definition of time,

called conformal time. It is denoted η and it satisfies

dη =
dT

a(T )
. (1.7)

In this framework, the metric reads

ds2 = a2(η)
(
−dη2 + γijdx

idxj
)
. (1.8)

The equations describing the time evolution of the scale factor are obtained from

the Einstein equations. When they are written in the Friedmann-Lemâıtre metric,

one gets (see [194] or any cosmology course)

H2 =
κ

3
ρ− K

a2
+

Λ

3
(1.9)

and
1

a

d2a

dT 2
= −κ

6
(ρ+ 3P ) +

Λ

3
. (1.10)
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1.3. Generalities about propagation of light in a Swiss-cheese model

H is the Hubble parameter, defined as H ≡ 1

a

da

dT
. It gives the velocity at which

the universe expands. Λ is a cosmological constant. One can note that Λ could

be intentionally fine-tuned to impose a static universe (like A. Einstein initially

did) but in general there is no reason for H to be zero. κ ≡ 8πG, G being the

gravitational constant, and ρ is the energy density of a cosmic fluid with a pressure

P . Those equations are called Friedmann equations. The time evolution of the scale

factor being given by second order equations, in addition to H, another observable

is necessary to probe the expansion of the universe. It is generally incarnated by

the deceleration parameter, denoted q and defined as

q = − äa
ȧ2
, (1.11)

where a dot stands for a time derivative. Equivalently, with the conformal time,

the Friedmann equations read

H2 =
κ

3
ρa2 −K +

Λ

3
a2, (1.12)

dH
dη

= −κ
6
a2 (ρ+ 3P ) +

Λ

3
a2, (1.13)

where H ≡ 1

a

da

dη
. In our study, we consider pressureless fluids only and we use those

results in the homogeneous background of the Swiss-cheese spacetime.

1.3.2 Geometry inside the holes

In astrophysics, it is common to study the gravitational field caused by objects with

a spherical symmetry. There exists in general relativity an equivalent of Gauss’s law

for Newtonian gravity, according to which the gravitational field outside a spherical

object depends on the mass of this object only (and thus not on its structure). When

a cosmological constant is taken into account, it is encoded in a metric known as

the Kottler metric. It has been derived independently by Kottler in 1918 ([102])

and Weyl in 1919 ([197]). It is given by

ds2 = −A(r)dt2 +A−1(r)dr2 + r2dΩ2, (1.14)
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1.3. Generalities about propagation of light in a Swiss-cheese model

where

A(r) = 1− 2GM

r
− Λr2

3
. (1.15)

M is the mass of the astrophysical object considered, t is a time coordinate, r a

radial coordinate, Λ a cosmological constant and dΩ2 the infinitesimal solid angle.

For Λ = 0, this metric is known as the Schwarzschild metric, which is a solution

of the Einstein equations derived in 1915 by the astrophysicist Karl Schwarzschild.

The Schwarzschild metric is the first solution of general relativity that includes a

mass, allowing to study the gravitational effect of e.g. stars, planets or certain types

of black holes.

1.3.3 Junction of the two metrics

In order to be a spacetime well-defined in the sense of general relativity, the space-

time resulting from the junction of the Friedmann-Lemâıtre and Kottler metrics

must satisfy the Israel junction conditions ([96]). They impose continuity of two

quantities, namely the induced metric and the extrinsic curvature, on junction hy-

persurfaces. In our study, junction hypersurfaces Σ are given by

Σ ≡ {χ = χh}, (1.16)

where χh is a constant, in the Friedmann-Lemâıtre metric and by

Σ ≡ {r = rh(t)} (1.17)

in the Kottler metric.

Continuity of the induced metric

If the coordinates of the Friedmann-Lemâıtre metric are Xα = {T, χ, θ, φ}, one can

define “intrinsic coordinates” on Σ as13 σa = {T, θ, φ}. The parametric equation of

the hypersurface (1.16) is therefore X̄α(σa) = {T, χh, θ, φ}. What is called induced

metric is the quantity

hab = gαβ j
α
a j

β
b . (1.18)

13Latin indices run from 1 to 3 whereas Greek indices run from 0 to 3, the 0 index corresponding
to the time coordinate.
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1.3. Generalities about propagation of light in a Swiss-cheese model

gαβ is the metric tensor of the spacetime in which the hypersurface is immersed. It

means that, in this spacetime, the scalar product is given by

~u.~v = gαβu
αvβ. (1.19)

It imposes in particular ds2 = gαβdxαdxβ. So the coordinates of the Friedmann-

Lemâıtre metric tensor are given in (1.4) and those of the Kottler metric tensor are

given in (1.14). Besides, one defines jαa as

jαa =
∂X̄α

∂σa
. (1.20)

Similarly, in the Kottler regions, one introduces Xα = {t, r, θ, φ} and one defines

intrinsic coordinates as σa = {t, θ, φ}, whence X̄α(σa) = {t, rh(t), θ, φ}.
Using those definitions, the relations imposed by the continuity of the induced

metric are eventually





rh(t) = a(T )χh,

dT

dt
=

√
A (rh)− 1

A (rh)

(
drh

dt

)2

.
(1.21)

Continuity of the extrinsic curvature

By definition, if the unit vector normal to the hypersurface Σ is denoted nµ and if

one calls Kab the extrinsic curvature of this hypersurface, one has

Kab = nα;β j
α
a j

β
b . (1.22)

I use here the notation “ ; ” to indicate a covariant derivative. Its definition can be

found in any course in general relativity: for any vector T ν ,

T ν;µ = ∇µT ν = ∂µT
ν + ΓνµαT

α, (1.23)

where the notation ∂µ stands for
∂

∂xµ
and where Γνµα are the Christoffel symbols,

related to the metric tensor via

Γνµα =
1

2
gνσ (∂µgσα + ∂αgµσ − ∂σgµα) , (1.24)
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with gασgσβ = δαβ, δαβ being the Kronecker symbol, i.e. δαβ = 1 if α = β and 0

otherwise. Let us mention here a useful property of the metric tensor allowing to

raise and lower indices of vectors conveniently: the metric tensor is defined so that

uα = gαβu
β and uα = gαβuβ. (1.25)

Generally, the unit vector normal to a hypersurface defined by {q = ...} is given by

nµ =
∂µq√

gαβ ∂αq ∂βq
. (1.26)

When imposing continuity to Kab, the whole calculation gives finally on Σ





rh A (rh)√
A (rh)− 1

A (rh)

(
drh

dt

)2
= a(T )χh,

3

(
drh

dt

)2

∂rA (r = rh)− 2
d2rh

dt2
A (rh)−A2 (rh) ∂rA (r = rh) = 0.

(1.27)

Consequences on the properties of the holes

Equations (1.21) and (1.27) govern the dynamics of the hole boundary by connecting

the time and space coordinates of the two metrics. When combined with (1.10),

they impose equality between the cosmological constants of the two metrics and the

(almost intuitive) relation

M =
4π

3
ρa3f3

K(χh), (1.28)

where

fK(χ) =
sin
√
Kχ√
K

, χ or
sinh
√
−Kχ√
−K (1.29)

respectively for a positive, zero or negative spatial curvature. Note that, in the

Friedmann-Lemâıtre metric, the hole boundaries χh are defined with comoving co-

ordinates, i.e. with coordinates not affected by expansion. Hence, holes are not

expected to overlap at any stage.

Such constraints ensure that the holes inserted in the homogeneous background

do not modify its global dynamics. The resulting spacetime is indeed an exact
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1.3. Generalities about propagation of light in a Swiss-cheese model

solution of the Einstein equations. In this context, it is possible to insert as many

holes as one wants provided that holes do not overlap initially.

1.3.4 Light propagation

Geodesics

The equivalence principle is a pillar of gravitation theory. In classical mechanics,

it predicts that the acceleration of massive objects in free fall (i.e. falling under

the sole influence of gravity) does not depend on their masses. In other words,

gravitation appears as a property of space rather than of objects themselves.

In general relativity, it is reflected by the use of the concept of geodesics. The

successive positions occupied by free-falling objects in spacetime are interpreted

as a consequence of a bending of this spacetime. Those trajectories, or “world

lines”, are called geodesics. In metrics with a signature14 (−,+,+,+), geodesics are

curves that extremize the “distances” ds2 between two points. More precisely, time-

like15 geodesics maximize the distances between time-like world lines connecting two

points; space-like16 geodesics minimize the distances between space-like world lines

connecting two points; null17 geodesics are defined so that the distances between

null world lines connecting two points are zero.

To study the propagation of light rays in a spacetime, one thus has to write that

photons are particles following null geodesics. The mathematical implementation

suited to our study is given in our paper (see section 1.5).

As an illustration, for a null geodesic of a Friedmann-Lemâıtre universe, (1.4)

gives

dT 2

a2(T )
= γij

(
xk
)

dxidxj . (1.30)

14With a signature (−,+,+,+) means that there exists a basis in which the scalar product
between two 4-dimensional vectors with coordinates (u0, u1, u2, u3) and (v0, v1, v2, v3) is −u0v0 +
u1v1 + u2v2 + u3v3. It is the case for the metrics (1.4) and (1.14).

15A time-like vector is a vector whose self scalar product is negative and a time-like world line
is a curve whose tangent vectors are in any point time-like vectors.

16A space-like vector is a vector whose self scalar product is positive and a space-like world line
is a curve whose tangent vectors are in any point space-like vectors.

17A null vector is a non-zero vector whose self scalar product is zero and a null world line is a
curve whose tangent vectors are in any point null vectors.

23
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In the particular case of a radial trajectory18, for which dΩ2 = 0, it leads to

dT

a(T )
= dχ. (1.31)

Let us imagine two photons emitted at times T1 and T1 +δT1 and observed at times

T0 and T0 + δT0. Since χ is a comoving distance, it is a constant, whence

χ =

∫ T1

T0

dT

a(T )
=

∫ T1+δT1

T0+δT0

dT

a(T )
. (1.32)

Subtracting integration over the time interval [T0 + δT0, T1] on each side, one gets

∫ T0+δT0

T0

dT

a(T )
=

∫ T1+δT1

T1

dT

a(T )
. (1.33)

If the lags are assumed to be very small compared to T0 and T1, the scale factor is

expected to be almost constant in (1.33). In this context, one can write

δT0

a(T0)
≈ δT1

a(T1)
. (1.34)

Furthermore, one can decide that δT1 is the period of the electromagnetic wave at

emission. In that case, δT0 is the period of the electromagnetic wave measured by

the observer. Denoting λ1 and λ0 the associated wavelengths, one has (see (1.1))

a(T0)

a(T1)
=
λ0

λ1
= 1 + z. (1.35)

The cosmological redshift can thus be interpreted as a witness of the time evolution

of the expansion rate of the universe.

Light beams

Despite their narrowness, beams emitted by SNIa have a finite section. They are

collections of light rays. A study of the relative displacements between the rays

is therefore required to infer the deformation of the beams, and consequently the

change in luminosity distance, induced by the presence of structures in the space-

time. It is encoded in the geodesic deviation equation, which governs the time

evolution of the “separation vectors” that connect the geodesics of a beam. It is

18One can show that such trajectories are indeed geodesics, that is to say that they obey equations
of general relativity called geodesic equations. They can be found in any general relativity book.
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obtained by considering two geodesics γ0 and γ1 described by xµ(λ), xµ being the

coordinates and λ an affine parameter19. Then, between γ0 and γ1, one defines a

collection of geodesics, each of them being associated with a label s ∈ [0, 1] (γ0’s

label is 0 and γ1’s label is 1). To indicate both the geodesic considered and the

value of the affine parameter, one uses the notation xµ(λ, s). Besides, maintain-

ing λ constant and varying s, one gets another collection of curves (which are not

geodesics in general). The separation vectors ξµ = ∂sx
µ are tangent to this col-

lection of curves and establish a connection between the geodesics. Besides, the

vectors kµ = ∂λx
µ are tangent to the null geodesics (see figure 1.3 and more details

in the paper presented in section 1.5).

Figure 1.3: A geodesic bundle.

Let us define the acceleration of the separation vector:

D2ξµ

Dλ2
= ∇ν

(
kβ∇βξµ

)
kν . (1.36)

In a flat spacetime, it is zero because in that case geodesics are straight lines so the

variation of ξµ with λ is necessarily linear. Hence, a non zero acceleration reveals

a curvature. In general relativity, it means that one expects this acceleration to be

proportional to the Riemann tensor20 Rµγβν . Noticing that kβ∇βξα = ξβ∇βkα and

using the geodesic equation kν∇νkµ = 0, one can see that the quantity ξµkµ is con-

served along the geodesic γ0

(
d (ξµkµ)

dλ
= 0

)
. Consequently, one can parametrize

19An affine parameter λ is a parameter defined so that the geodesic equations governing the

behavior of geodesics described by xα(λ) take the form
d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0.

20By definition, Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα.
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the curves so that, on γ0, ξµ and kµ are always orthogonal (ξµkµ = 0). The same

properties allow to compute the acceleration of γ1 with respect to γ0 (see e.g. [131]):

D2ξµ

Dλ2
= −ξβRµγβνkγkν . (1.37)

It is the geodesic deviation equation.

Once projected on a judicious basis, it leads to the so-called Sachs equation and

finally the separation vectors can be related to observables such as the luminosity

distance (see our paper, section 1.5).

Strategy adopted to determine the light path

In practice, what we did to determine the light path between a source and an

observer is to start from the observer (assumed to stand in the Friedmann-Lemâıtre

region) and to reconstruct, step by step, the trajectory of photons back to the

source. The first step is the identification of the coordinates corresponding to a

photon leaving the last hole encountered before reaching the observer (resolution of

the geodesic equation in the Friedmann-Lemâıtre metric). Next, the resolution of

the Sachs equation gives the behavior of the separation vector. It is then necessary

to switch to the Kottler metric to infer the deviation caused by the point mass

inside the hole. Identification of the geodesics relies on two conservation laws which

reflect that the Kottler metric is static21 and with a spherical symmetry. It gives

the coordinates associated with the event corresponding to photons entering the

last hole. Then the Sachs equation is integrated again and one goes back to the

Friedmann-Lemâıtre metric. One can iterate this procedure for an arbitrary number

of holes, until one assumes that the source has been reached. Throughout the

whole calculation, the evolution of the wavenumber is also studied, which gives the

evolution of the cosmological redshift of the source (by comparing the wavenumber

at emission and reception times). Thanks to the resolution of the Sachs equation,

the luminosity distance is also part of the traceable observables. Consequently,

Hubble diagrams can be computed once the observation conditions, the distribution

of the holes, the value of the point masses and the redshifts of the sources are

specified (full details are given in section 1.5). Besides, they can be easily compared

to what they would be in a configuration similar but with no hole.

21The fact that it is static is a consequence of Birkhoff’s theorem, see e.g. [69].
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1.4 Impact of inhomogeneities on cosmology

Cosmological parameters are omnipresent in the equations of our study so the as-

pect of Hubble diagrams strongly depends on them. We therefore introduced the

quantities

ΩΛ =
Λ

3H2
0

, Ωm =
8πGρ0

3H2
0

, ΩK = − K

a2
0H

2
0

, (1.38)

where an index 0 indicates that the quantity is evaluated at present time. ΩΛ is one

of the six cosmological parameters of the standard model of cosmology. It charac-

terizes the amount of dark energy in the universe. According to [135], results from

the Planck satellite lead to the 1σ-constraint22 ΩΛ = 0.686± 0.020 (the meaning of

“1σ-constraint” is given below.). Ωm characterizes the amount of non-relativistic

matter (and is related to the standard cosmological parameter ωm via ωm = Ωmh
2,

with h defined so that H0 = 100 h km.s−1). It is the sum of the amounts of bary-

onic matter and cold dark matter. Still from [135] and with the same precision, one

estimates Ωm = 0.315± 0.017. ΩK indicates what the spatial curvature of the uni-

verse is. It is given by ΩK = 1− ΩΛ − Ωm. Observational constraints are therefore

compatible with ΩK = 0, which means that the universe can reasonably be assumed

to have a flat geometry.

On the one hand, we used our Hubble diagrams as mock data and tried to inter-

pret them assuming a homogeneous and isotropic geometry. More precisely, we used

the Chi-Square Goodness of Fit Test to estimate the values of the parameters (1.38)

that best fit the resulting diagrams when the spacetime is entirely characterized by

the Friedmann-Lemâıtre metric. Generally, this test summarizes the discrepancy

between observed values O (here the mock data) and the values E expected under

the model in question (here the homogeneous model). The generic formula is

χ2 =
∑

data

(O − E)2

∆2
, (1.39)

where ∆ is an observational error bar23. The values of χ2 give the best fit, i.e.

the values of E that best match observations, and confidence contours, i.e. areas

in parameter space in which the parameters are expected to lie with a probability

22This estimation is yet highly model dependent.
23In our study, we estimated ∆ by imitating a real catalog of SNIa observations.
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exceeding a given value24 (see e.g. [141] for more details). We found that the es-

timated cosmological parameters can be very different from the actual parameters

characterizing the Swiss-cheese spacetime in which we simulated light propagation.

In other words, in some cases, the homogeneity assumption largely affects the esti-

mation of the cosmological parameters (see the detailed study in section 1.5).

Another test we performed is the estimation of the cosmological parameters of

the Swiss-cheese model that best reproduce real observations. Using the same χ2

method, we found that replacing a Friedmann-Lemâıtre model by a Swiss-cheese

one can in some cases induce a significant (regarding the accuracy intended by pre-

cision cosmology, i.e. a few percent) difference in the prediction of the parameters

(see section 1.5). It required in particular to estimate analytically a luminosity

distance-redshift relation of a Swiss-cheese universe. Evaluating such effects is an

important issue since the 2013 Planck results ([135]) highlighted a tension between

the estimation of H0 and Ωm from CMB observations and their estimation from

other observables, such as SNIa. In the paper presented in section 1.6, we demon-

strate that Swiss-cheese descriptions make possible the reconciliation between the

values of Ωm inferred from Planck and from SNIa. This is illustrated in figure 1.4.

Besides, the 2015 Planck results ([137]) show that the estimation of H0 from

Planck is in fact consistent with its estimation from the recent “Joint Light-curve

Analysis” sample of SNIa (constructed from the SNLS and SDSS supernovae data,

together with several samples of low redshift supernovae, [20]).

24For a Gaussian probability distribution of the parameters, we call “1σ-contours” the contours
associated with a 68.3% probability, “2σ-contours” the contours associated with a 95.4% probability
and “3σ-contours” the contours associated with a 99.73% probability.
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1.5. Article “Interpretation of the Hubble diagram in a nonhomogeneous
universe”

Figure 1.4: Comparison of the constraints obtained by Planck on (Ωm, h), [135],
and from the analysis of the Hubble diagram constructed from the SNLS 3 catalog,
[86]. f is the “smoothness parameter”, which gives the ratio between the volume
which is not in form of holes and the total volume. Hence, f = 1 corresponds to
the Friedmann-Lemâıtre metric.

1.5 Article “Interpretation of the Hubble diagram in a

nonhomogeneous universe”
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In the standard cosmological framework, the Hubble diagram is interpreted by assuming that the light

emitted by standard candles propagates in a spatially homogeneous and isotropic spacetime. However, the

light from ‘‘point sources’’—such as supernovae—probes the Universe on scales where the homogeneity

principle is no longer valid. Inhomogeneities are expected to induce a bias and a dispersion of the Hubble

diagram. This is investigated by considering a Swiss-cheese cosmological model, which (1) is an exact

solution of the Einstein field equations, (2) is strongly inhomogeneous on small scales, but (3) has the

same expansion history as a strictly homogeneous and isotropic universe. By simulating Hubble diagrams

in such models, we quantify the influence of inhomogeneities on the measurement of the cosmological

parameters. Though significant in general, the effects reduce drastically for a universe dominated by the

cosmological constant.
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I. INTRODUCTION

The standard physical model of cosmology relies on a
solution of general relativity describing a spatially homo-
geneous and isotropic spacetime, known as the Friedmann-
Lemaı̂tre (FL) solution (see e.g. Ref. [1]). It is assumed to
describe the geometry of our Universe smoothed on large
scales. Besides, the use of the perturbation theory allows
one to understand the properties of the large scale struc-
ture, as well as its growth from initial conditions set by
inflation and constrained by the observation of the cosmic
microwave background.

While this simple solution of the Einstein field equa-
tions, together with the perturbation theory, provides a
description of the Universe in agreement with all existing
data, it raises many questions on the reason why it actually
gives such a good description. In particular, it involves a
smoothing scale which is not included in the model itself
[2]. This opened a lively debate on the fitting problem [3]
(i.e. what is the best-fit FL model to the lumpy Universe?)
and on backreaction (i.e. the fact that local inhomogene-
ities may affect the cosmological dynamics). The ampli-
tude of backreaction is still actively debated [4–6], see
Ref. [7] for a critical review.

Regardless of backreaction, the cosmological model
assumes that the distribution of matter is continuous (i.e.
it assumes that the fluid approximation holds on the scales
of interest) both at the background and perturbation levels.
Indeed numerical simulations fill part of this gap by deal-
ing with N-body gravitational systems in an expanding
space. The fact that matter is not continuously distributed

can however imprint some observations, in particular
regarding the propagation of light with narrow beams, as
discussed in detail in Ref. [8]. It was argued that such
beams, as e.g. for supernova observations, probe the space-
time structure on scales much smaller than those accessible
in numerical simulations. The importance of quantifying
the effects of inhomogeneities on light propagation was
first pointed out by Zel’dovich [9]. Arguing that photons
should mostly propagate in vacuum, he designed an
‘‘empty beam’’ approximation, generalized later by Dyer
and Roeder as the ‘‘partially filled beam’’ approach [10].
More generally, the early work of Ref. [9] stimulated many
studies on this issue. [11–25].
The propagation of light in an inhomogeneous universe

gives rise to both distortion and magnification induced by
gravitational lensing. While most images are demagnified,
because most lines of sight probe underdense regions,
some are amplified because of strong lensing. Lensing
can thus discriminate between a diffuse, smooth compo-
nent, and the one of a gas of macroscopic, massive objects
(this property has been used to probe the nature of dark
matter [26–28]). Therefore, it is expected that lensing shall
induce a dispersion of the luminosities of the sources, and
thus an extra scatter in the Hubble diagram [29]. Indeed,
such an effect does also appear at the perturbation level—
i.e. with light propagating in a perturbed FL spacetime—
and it was investigated in Refs. [30–35]. The dispersion
due to the large-scale structure becomes comparable to the
intrinsic dispersion for redshifts z > 1 [36] but this disper-
sion can actually be corrected [37–42]. Nevertheless, a
considerable fraction of the lensing dispersion arises
from sub-arc minute scales, which are not probed by shear
maps smoothed on arc minute scales [43]. The typical
angular size of the light beam associated with a supernova
(SN) is typically of order 10�7 arc sec (e.g. for a source of
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physical size �1 AU at redshift z� 1), while the typical
observational aperture is of order 1 arc sec. This is smaller
than the mean distance between any massive objects.

One can estimate [27] that a gas composed of particles
of mass M can be considered diffuse on the scale of
the beam of an observed source of size �s if M<
2� 10�23M�h2ð�s=1 AUÞ3. In the extreme case for which
matter is composed only of macroscopic pointlike objects,
then most high-redshift SNeIa would appear fainter than in
a universe with the same density distributed smoothly, with
some very rare events of magnified SNeIa [27,44,45]. This
makes explicit the connection between the Hubble diagram
and the fluid approximation which underpins its standard
interpretation.

The fluid approximation was first tackled in a very
innovative work of Lindquist and Wheeler [46], using
a Schwarzschild cell method modeling an expanding
universe with spherical spatial sections. For simplicity,
they used a regular lattice which restricts the possibilities
to the most homogeneous topologies of the 3-sphere [47].
It has recently been revisited in Refs. [48] and in Refs. [49]
for Euclidean spatial sections. They both constructed
the associated Hubble diagrams, but their spacetimes are
only approximate solutions of the Einstein field equations.
An attempt to describe filaments and voids was also pro-
posed in Refs. [50].

These approaches are conceptually different from the
solution we adopt in the present article. We consider an

exact solution of the Einstein field equations with strong
density fluctuations, but which keeps a well-defined FL
averaged behavior. Such conditions are satisfied by the
Swiss-cheese model [51]: one starts with a spatially homo-
geneous and isotropic FL geometry, and then cuts out
spherical vacuoles in which individual masses are em-
bedded. Thus, the masses are contained in vacua within a
spatially homogeneous fluid-filled cosmos (see bottom
panel of Fig. 2). By construction, this exact solution is
free from any backreaction: its cosmic dynamics is identi-
cal to the one of the underlying FL spacetime.
From the kinematical point of view, Swiss-cheese

models allow us to go further than perturbation theory,
because not only the density of matter exhibits finite fluc-
tuations, but also the metric itself. Hence, light propagation
is expected to be very different in a Swiss-cheese universe
compared to its underlying FL model. Moreover, the in-
homogeneities of a Swiss cheese are introduced in a way
that addresses the so-called ‘‘Ricci-Weyl problem.’’
Indeed, the standard FL geometry is characterized by a
vanishing Weyl tensor and a nonzero Ricci tensor, while in
reality light mostly travels in vacuum, where conversely
the Ricci tensor vanishes—apart from the contribution of
�, which does not focus light—and the Weyl tensor is
nonzero (see Fig. 1). A Swiss-cheese model is closer to
the latter situation, because the Ricci tensor is zero inside
the holes (see Fig. 2). It is therefore hoped to capture the
relevant optical properties of the Universe.

Ricci = 0
Weyl = 0

Ricci = 0
Weyl = 0

SN Ia

SN Ia

Real Universe

FL model

FIG. 1 (color online). The standard interpretation of SNe data
assumes that light propagates in purely homogeneous and iso-
tropic space (top). However, thin light beams are expected to
probe the inhomogeneous nature of the actual Universe (bottom)
down to a scale where the continuous limit is no longer valid.

Ricci = 0
Weyl = 0

Ricci = 0
Weyl = 0

SN Ia

SN Ia

FL model

Swiss−cheese model

FIG. 2 (color online). Swiss-cheese models (bottom) allow us
to model inhomogeneities beyond the continuous limit, while
keeping the same dynamics and average properties as the FL
model (top).
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In fact, neither a Friedmann-Lemaı̂tre model nor
a Swiss-cheese model can be considered a realistic
description of the Universe. They share the property of
being exact solutions of the Einstein equations which satisfy
the Copernican principle, either strictly or statistically.
Swiss-cheese models can be characterized by an extra-
cosmological parameter describing the smoothness of their
distribution of matter. Thus, a FL spacetime is nothing but a
perfectly smooth Swiss cheese. It is legitimate to investigate
to which extent observations can constrain the smoothness
cosmological parameter, and therefore to quantify how close
to a FL model the actual Universe is.

The propagation of light in a Swiss-cheese universe was
first investigated by Kantowski [52], and later by Dyer and
Roeder [53]. Both concluded that the effect, on the Hubble
diagram, of introducing ‘‘clumps’’ of matter was to lower
the apparent deceleration parameter. The issue was revived
within the backreaction and averaging debates, and the
Swiss-cheese models have been extended to allow for
more generic distributions of matter inside the holes—
instead of just concentrating it at the center—where space-
time geometry is described by the Lemaı̂tre-Tolman-Bondi
(LTB) solution. The optical properties of such models have
been extensively studied (see Refs. [54–62]) to finally
conclude that the average luminosity-redshift relation re-
mains unchanged with respect to the purely homogeneous
case, contrary to the early results of Refs. [52,53].

In general, the relevance of ‘‘LTB holes’’ in Swiss-
cheese models is justified by the fact that they allow one
to reproduce the actual large-scale structure of the
Universe (with voids and walls). However, though inho-
mogeneous, the distribution of matter in this class of
models remains continuous at all scales. On the contrary,
the old-fashioned approach with ‘‘clumps’’ of matter inside
the holes breaks the continuous limit. Hence, it seems more
relevant for describing the small-scale structure probed by
thin light beams.

In this article, we revisit and update the studies of
Refs. [52,53] within the paradigm of modern cosmology.
For that purpose, we first provide a comprehensive study of
light propagation in the same class of Swiss-cheese mod-
els, including the cosmological constant. By generating
mock Hubble diagrams, we then show that the inhomoge-
neities induce a significant bias in the apparent luminosity-
redshift relation, which affects the determination of the
cosmological parameters. As we shall see, the effect in-
creases with the fraction of clustered matter but decreases
with �. For a universe apparently dominated by dark
energy, the difference turns out to be small.

The article is organized as follows. Section II describes
the construction and mathematical properties of the Swiss-
cheese model. In Sec. III, we summarize the laws of light
propagation, and introduce a new tool to deal with a patch-
work of spacetimes, based on matrix multiplications. In
Sec. IV, we apply the laws introduced in Sec. III to

Swiss-cheese models and solve the associated equations.
The results allow us to investigate the effect of one hole
(Sec. V) and of many holes (Sec. VI) on cosmological
observables, namely the redshift and the luminosity dis-
tance. Finally, the consequences on the determination of
the cosmological parameters are presented in Sec. VII.

II. DESCRIPTION OF THE SWISS-CHEESE
COSMOLOGICAL MODEL

The construction of Swiss-cheese models is based on the
Einstein-Straus method [51] for embedding a point-mass
within a homogeneous spacetime (the ‘‘cheese’’). It con-
sists in cutting off a spherical domain of the cheese and
concentrating the matter it contained at the center of the
hole. This section presents the spacetime geometries inside
and outside a hole (Sec. II A), and how they are glued
together (Sec. II B).

A. Spacetime patches

1. The ‘‘cheese’’—Friedmann-Lemaı̂tre geometry

Outside the hole, the geometry is described by the
standard FL metric

d s2 ¼ �dT2 þ a2ðTÞ½d�2 þ f2Kð�Þd�2�; (2.1)

where a is the scale factor and T is the cosmic time. The
function fKð�Þ depends on the sign of K and thus of the
spatial geometry (spherical, Euclidean or hyperbolic),

fKð�Þ ¼ sin
ffiffiffiffi
K

p
�ffiffiffiffi

K
p ; � or

sinh
ffiffiffiffiffiffiffiffi�K

p
�ffiffiffiffiffiffiffiffi�K

p (2.2)

respectively for K > 0, K ¼ 0 or K < 0. The Einstein field
equations imply that the scale factor aðTÞ satisfies the
Friedmann equation

H2 ¼ 8�G

3
�� K

a2
þ�

3
; with H � 1

a

da

dT
; (2.3)

and where � ¼ �0ða0=aÞ3 is the energy density of a
pressureless fluid. A subscript 0 indicates that the quantity
is evaluated today. It is convenient to introduce the
cosmological parameters

�m¼8�G�0

3H2
0

; �K¼� K

a20H
2
0

; ��¼ �

3H2
0

; (2.4)

in terms of which the Friedmann equation takes the form�
H

H0

�
2 ¼ �m

�
a0
a

�
3 þ�K

�
a0
a

�
2 þ��: (2.5)

2. The ‘‘hole’’—Kottler geometry

Inside the hole, the geometry is described by the exten-
sion of the Schwarzschild metric to the case of a nonzero
cosmological constant, known as the Kottler solution
[63,64] (see e.g. Ref. [65] for a review). In spherical
coordinates ðr; �; ’Þ, it reads
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d s2 ¼ �AðrÞdt2 þ A�1ðrÞdr2 þ r2d�2; (2.6)

with AðrÞ � 1� rS
r
��r2

3
; (2.7)

and where rS � 2GM is the Schwarzschild radius associ-
ated with the mass M at the center of the hole. It is easy to
check that the above metric describes a static spacetime.
The corresponding Killing vector �� ¼ �

�
0 has norm

g�	�
��	 ¼ AðrÞ and is therefore timelike as long as

A > 0. Hence, there are two cases:
(1) If 9ðGMÞ2�> 1, then AðrÞ< 0 for all r > 0, so that

�� is spacelike. In this case, the Kottler spacetime
contains no static region but it is spatially
homogeneous.

(2) If 9ðGMÞ2�< 1, then AðrÞ> 0 for r between rb and
rc > rb which are the two positive roots of the
polynomial rAðrÞ, and correspond respectively to
the black hole and cosmological horizons. We have

rc ¼ 2ffiffiffiffi
�

p cos

�
c

3
þ �

3

�
; (2.8)

rb ¼ 2ffiffiffiffi
�

p cos

�
c

3
� �

3

�
; (2.9)

with cos c ¼ 3GM
ffiffiffiffi
�

p
, so that

rS < rb <
3

2
rS <

1ffiffiffiffi
�

p < rc <
3ffiffiffiffi
�

p : (2.10)

In the region rb < r < rc, the Kottler spacetime is
static. Note also that r ¼ rb and r ¼ rc are Killing
horizons, since � vanishes on these hypersurfaces.

In practice, we use the Kottler solution to describe the
vicinity of a gravitationally bound object, such as a galaxy,
or a cluster of galaxies. In this context, we have typically
9ðGMÞ2�< 10�14 (see Sec. VA), so we are in the second
case. Moreover, this solution only describes the exterior
region of the central object; it is thus valid only for r >

rphys, where rphys is the physical size of the object. For the

cases we are interested in, rphys � rb, so that there is

actually no black-hole horizon.

B. Junction conditions

Any spacetime obtained by gluing together two different
geometries, via a hypersurface �, is well defined if—and
only if—it satisfies the Israel junction conditions [66,67]:
both geometries must induce (a) the same 3-metric, and
(b) the same extrinsic curvature on �.

The junction hypersurface � is the world sheet of a
comoving 2-sphere, as imposed by the symmetry of the
problem. Hence, it is defined by � ¼ �h ¼ cst in FL
coordinates, and by r ¼ rhðtÞ in Kottler coordinates. Both
points of view are depicted in Fig. 3.

In the FL region, the normal vector to the hypersurface is

given by nðFLÞ� ¼ �
�
�=a. The 3-metric and the extrinsic

curvature induced by the FL geometry are respectively

d s2� ¼ �dT2 þ a2ðTÞf2Kð�hÞd�2; (2.11)

KðFLÞ
ab dxadxb ¼ aðTÞfKð�hÞf0Kð�hÞd�2; (2.12)

where ðxaÞ ¼ ðT; �; ’Þ are natural intrinsic coordinates for
�. We stress carefully that, in the following and as long as
there is no ambiguity, a dot can denote a time derivative
with respect to T or t, so that _a ¼ da=dT and _rh ¼ drh=dt,
while a prime can denote a derivative with respect to � or r,
so that f0K ¼ dfK=d� and A0 ¼ dA=dr.
The 3-metric induced on � by the Kottler geometry is

ds2 ¼ �
2ðtÞdt2 þ r2hðtÞd�2; (2.13)

where


ðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2½rhðtÞ� � _r2hðtÞ

A½rhðtÞ�

s
: (2.14)

Therefore, the first junction condition implies

rhðtÞ ¼ aðTÞfKð�hÞ; (2.15)

dT

dt
¼ 
ðtÞ; (2.16)

which govern the dynamics of the hole boundary, and
relate the time coordinates of the FL and Kottler regions.
The extrinsic curvature of � induced by the Kottler

geometry, but expressed in (xa) coordinates, reads

KðKÞ
ab dx

adxb ¼ � €rh þ 
2A0ðrhÞ=2

3

dT2 þ rhAðrhÞ



d�2:

(2.17)

Hence, the second junction condition is satisfied only if


 ¼ AðrhÞ
f0Kð�hÞ ; whence

dT

dt
¼ A½aðTÞfKð�hÞ�

f0Kð�hÞ : (2.18)

χh

T

,θ ϕ
,θ ϕ

t

χ

tT

r

M M

n

n
FL

KottlerKottler

FL

( )thr  

Σ Σ

FIG. 3 (color online). The junction hypersurface as seen from
the FL point of view with equation � ¼ �h (left); and from the
Kottler point of view with equation r ¼ rhðtÞ (right).
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It is straightforward to show that Eq. (2.18), together with
the Friedmann equation (2.3), imply that the Kottler and FL
regions have the same cosmological constant, and

M ¼ 4�

3
�a3f3Kð�hÞ: (2.19)

C. Summary

Given a FL spacetime with pressureless matter and a
cosmological constant, aðTÞ is completely determined
from the Friedmann equation. A spherical hole of
comoving radius �h, which contains a constant mass
M ¼ 4��a3f3Kð�hÞ=3 at its center, and whose geometry is
described by the Kottler metric, can then be inserted any-
where. The resulting spacetime geometry is an exact
solution of the Einstein field equations.

By construction, the clump inside the hole does not
backreact on the surrounding FL region. It follows that
many such holes can be inserted, as long as they do not
overlap. Note that if two holes do not overlap initially, then
they will never do so, despite the expansion of the universe,
because their boundaries are comoving.

III. PROPAGATION OF LIGHT

A. Light rays

The past light cone of a given observer is a constant
phase hypersurface w ¼ const. Its normal vector k� �
@�w (the wave four-vector) is a null vector satisfying the

geodesic equation, and whose integral curves (light rays)
are irrotational:

k�k� ¼ 0; k	r	k� ¼ 0; r½�k	� ¼ 0: (3.1)

For an emitter and an observer with respective four-
velocities u�em and u�obs, we define the redshift by

1þ z ¼ u�emk�ðvemÞ
u
�
obsk�ð0Þ

; (3.2)

where v is an affine parameter along the geodesic, so that
k� ¼ dx�=dv, and v ¼ 0 at the observation event. The
wave four-vector can always be decomposed into temporal
and spatial components,

k� ¼ ð1þ zÞðu� � d�Þ; d�u� ¼ 0; d�d� ¼ 1;

(3.3)

where d� denotes the spatial direction of observation. In
Eq. (3.3), we have chosen an affine parameter adapted to
the observer, in the sense that 2�	0 ¼ u

�
obsk�ð0Þ ¼ 1. This

convention is used in all the remainder of the article.

B. Light beams

1. Geodesic deviation equation

A light beam is a collection of light rays, that is, a bundle
of null geodesics fx�ðv; �Þg, where � labels the curves and

v is the affine parameter along them. The relative behavior
of two neighboring geodesics x�ð�; �Þ and x�ð�; �þ d�Þ is
described by their separation vector �� � dx�=d�. Hence,
this vector encodes the whole information on the size and
shape of the bundle.
Having chosen v ¼ 0 at the observation event—which is

a vertex point of the bundle—ensures that the separation
vector field is everywhere orthogonal to the geodesics,
k��� ¼ 0. In such conditions, the evolution of �� with v

is governed by the geodesic deviation equation

k�k
r�r
�
� ¼ R�

	�
k
	k��
; (3.4)

where R�
	�
 is the Riemann tensor.

2. Sachs equation

Consider an observer with four-velocity u�. In view of
relating �� to observable quantities, we introduce the
Sachs basis ðs�A ÞA2f1;2g, defined as an orthonormal basis

of the plane orthogonal to both u� and k�,

s�A sB� ¼ �AB; s�Au� ¼ s�Ak� ¼ 0; (3.5)

and parallel-transported along the geodesic bundle,

k	r	s
�
A ¼ 0: (3.6)

The plane spanned by ðs1; s2Þ can be considered a screen on
which the observer projects the light beam. The two-vector
of components �A ¼ ��s

�
A then represents the relative

position, on the screen, of the light spots corresponding
to two neighboring rays separated by ��.
The evolution of �A, with light propagation, is deter-

mined by projecting the geodesic deviation equation (3.4)
on the Sachs basis. The result is known as the Sachs
equation [1,68,69], and reads

d2�A

dv2
¼ RAB�

B; (3.7)

where RAB ¼ R�	�
k
	k�s�A s



B is the screen-projected

Riemann tensor, called optical tidal matrix. It is conven-
iently decomposed into a Ricci term and a Weyl term as

ðRABÞ ¼
�00 0

0 �00

 !
þ �Re�0 Im�0

Im�0 Re�0

 !
(3.8)

with

�00��1

2
R�	k

�k	; �0��1

2
C�	�
�

�k	k��
; (3.9)

and where �� � s�1 � is�2 .

3. Notions of distance

Since the light beam converges at the observation event,
we have �Aðv ¼ 0Þ ¼ 0. The linearity of the Sachs
equation then implies the existence of a 2� 2 matrix
DA

B, called Jacobi matrix, such that
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�AðvÞ ¼ DA
BðvÞ

�
d�B

dv

�
v¼0

: (3.10)

From Eq. (3.7), we immediately deduce that this matrix
satisfies the Jacobi matrix equation

d2

dv2
DA

B ¼ RA
CD

C
B; (3.11)

with initial conditions

D A
Bð0Þ ¼ 0;

dDA
B

dv
ð0Þ ¼ �A

B: (3.12)

We shall also use the short-hand notation � ¼ ð�AÞ and
D ¼ ðDA

BÞ so that Eq. (3.11) reads d2D=dv2 ¼ R �D,

with Dð0Þ ¼ 0 and _Dð0Þ ¼ 1.
Since the Jacobi matrix relates the shape of a light beam

to its ‘‘initial’’ aperture, it is naturally related to the various
notions of distance used in astronomy and cosmology. The
angular distance DA is defined by comparing the emission
cross-sectional area d2Ssource of a source to the solid angle
d�2

obs under which it is observed,

d 2Ssource ¼ D2
Ad�

2
obs: (3.13)

It is related to the Jacobi matrix by

DA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detDðvsourceÞj

q
; (3.14)

where vsource is the affine parameter at emission.
The luminosity distance DL is defined from the ratio

between the observed flux Fobs and the intrinsic luminosity
Lsource of the source, so that

Lsource ¼ 4�D2
LFobs: (3.15)

It is related to the angular distance by the following
distance duality law:

DL ¼ ð1þ zÞ2DA: (3.16)

Hence, the theoretical determination of the luminosity
distance relies on the computation of the Jacobi matrix.

C. Solving the Sachs equation piecewise

Since we work in a Swiss-cheese universe, we have to
compute the Jacobi matrix for a patchwork of spacetimes.
It is tempting, in this context, to calculate the Jacobi matrix
for each patch independently, and then try to reconnect
them. In fact, such an operation is unnatural, because the
very definition of D imposes that the initial condition is a
vertex point of the light beam. Thus, juxtaposing two
Jacobi matrices is only possible at a vertex point, which
is of course too restrictive for us.

We can solve this problem by extending the Jacobi
matrix formalism into a richer structure. This requires us
to consider the general solution of Eq. (3.7), for arbitrary
initial conditions. Thus, we have

� ðvÞ ¼ Cðv;vinitÞ � �v¼vinit
þDðv;vinitÞ � d�dv

��������v¼vinit

;

(3.17)

as for any linear second order differential equation, solved
from vinit to v. In the following, Cðv;vinitÞ is referred to as
the scale matrix. It is easy to check that both the scale and
Jacobi matrices satisfy the Jacobi matrix equation (3.11)
but with different initial conditions:

D ðvinit;vinitÞ ¼ 0;
dD
dv

ðvinit;vinitÞ ¼ 1; (3.18)

whereas

C ðvinit;vinitÞ ¼ 1;
dC
dv

ðvinit;vinitÞ ¼ 0: (3.19)

The most useful object for our problem turns out to be
the 4� 4 Wronski matrix constructed from C and D,

W ðv;vinitÞ �
Cðv;vinitÞ Dðv;vinitÞ
dC
dv ðv;vinitÞ dD

dv ðv;vinitÞ

 !
; (3.20)

in terms of which the general solution (3.17) reads

�
d�
dv

� �
ðvÞ ¼ W ðv;vinitÞ � �

d�
dv

� �
ðvinitÞ: (3.21)

It is clear, from Eq. (3.21), that W satisfies the relation

W ðv1;v3Þ ¼ W ðv1;v2Þ �W ðv2;v3Þ: (3.22)

Hence, the general solution of the Sachs equation in a
Swiss-cheese universe can be obtained by multiplying
Wronski matrices, according to

W ðvsource; 0Þ ¼ W FLðvsource;v
ð1Þ
in Þ �WKðvð1Þ

in ;v
ð1Þ
outÞ

�W FLðvð1Þ
out;v

ð2Þ
in Þ . . .W FLðvðNÞ

out ; 0Þ
(3.23)

whereW FL and WK are the Wronski matrices computed

respectively in the FL region and in the Kottler holes; vðiÞ
in

and vðiÞ
out are the values of the affine parameter respectively

at the entrance and the exit of the ith hole.

IV. INTEGRATION OF THE GEODESIC
AND SACHS EQUATIONS

Consider an observer lying within a FL region, who
receives a photon after the latter has crossed a hole. In
this section, we determine the light path from entrance to
observation by solving the geodesic equation, and we
calculate the Wronski matrix for the Sachs equation.
The main geometrical quantities are summarized in

Fig. 4. d� is the direction of observation as defined in
Eq. (3.3). The spatial sections of the FL region can be
described either by comoving spherical coordinates
ð�; �; ’Þ or, when the spatial sections are Euclidean, by
comoving Cartesian coordinates ðX; Y; ZÞ.
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The hole is characterized by its comoving spatial
position Xi

h, in terms of the FL coordinates, and its mass

M, or equivalently its comoving radius �h. Note that,
contrary to Sec. II A, it is no longer denoted �h, in order
to avoid confusion with the radial comoving coordinate of
the center of the hole.

A photon enters into the hole with wave vector k
�
in, exits

from it with wave vector k
�
out, and reaches the observer with

wave vector k�0 . We respectively denote Ein, Eout and E0 the

associated events. The coordinates of the first two can be
expressed either with respect to FL, e.g. as ðTin; X

i
inÞ in

Cartesian coordinates, or with respect to the hole, e.g. as
ðtin; rin; �in; ’inÞ in the Kottler spherical coordinate system.

Our calculations go backward in time. Starting from E0,
we first determine Eout, W FLðvout;vobsÞ, and second Ein,
WKðvin;voutÞ. The same operations can then be repeated
starting from Ein and so on.

A. Friedmann-Lemaı̂tre region (from E0 to Eout)

The geometry of the Friedmann-Lemaı̂tre region is
given by the metric (2.1) which can be rewritten in terms
of the conformal time �, defined by d� ¼ dT=aðTÞ, as

d s2 ¼ a2ð�Þ½�d�2 þ d�2 þ f2Kð�Þd�2�: (4.1)

1. Geodesic equation

If one chooses the center � ¼ 0 of the FL spherical
coordinate system on the worldline of the (comoving)
observer, then the geodesic equation is easily solved as

�ð�Þ ¼ �0 � �; � ¼ �0; ’ ¼ ’0; (4.2)

which corresponds to a purely radial trajectory. Note
however that for a generic origin, this is no longer true.
The associated wave vector remains collinear to the
observed one, k�0 . It is only subject to a redshift induced

by the cosmic expansion, so that

k� ¼
�
a0
a

�
2
k�0 : (4.3)

We stress that, in Eq. (4.3),� ¼ 0 refers to components on
@�, not on @T ¼ @�=a.

2. Intersection with the hole

Once the geodesic equation has been solved and the
position of the hole has been chosen, we can calculate
the intersection Eout between the light ray and the hole
boundary. In the particular case of a spatially Euclidean
FL solution (K ¼ 0), the Cartesian coordinates Xi

out of Eout

satisfy the simple system of equations

8<
:�ijðXi

out � Xi
hÞðXj

out � Xj
hÞ ¼ �2

h

Xi
out ¼ Xi

0 þ ð�0 � �outÞdi;
(4.4)

where Xi
h and Xi

0 are the respective Cartesian coordinates

of the hole and the observer, while di is the spatial direction
of observation. Although conceptually similar, the deter-
mination of Eout for a FL solution with arbitrary spatial
curvature is technically harder.
In general, we deduce from Eq. (4.3) that the wave

vector at Eout is k
�
out ¼ ða0=aoutÞ2k�0 , where aout � að�outÞ.

3. Wronski matrix

In the FL region, the Sachs basis ðs1; s2Þ is defined with
respect to the fundamental observers, comoving with four-
velocity u ¼ @T . The explicit form of this basis does not
need to be specified here.
The Sachs equation can be solved analytically by means

of a conformal transformation to the static metric

d ~s2 ¼ a20½�d�2 þ f2Kð�Þd�2� � ~g�	dx
�dx	: (4.5)

FL

Kottler

ϕout

new initial
conditions

0

light propagation

our calculations

out in

µ

θout

in

k

k

out

Z

Y

X

d

µ

µ

hρ

FIG. 4 (color online). A light ray propagates alternatively in FL and Kottler regions. The main geometrical quantities defined and
used in Sec. IV are depicted in this simplified view of a single hole.
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Because the geometries associated with g�	 and ~g�	 are

conformal, any null geodesic for g�	 affinely parametrized

by v is also a null geodesic for ~g�	 affinely parametrized

by ~v, with a2d~v ¼ a20dv. As dv ¼ ða2=a0Þd�, it follows
that ~v ¼ a0�.

For the static geometry, the optical tidal matrix reads
~R ¼ �ðK=a20Þ1, so that the Sachs equation is simply

d2 ~�

d�2
¼ �K ~�: (4.6)

We then easily obtain the Jacobi and scale matrices:

~D ¼ a0fKð�� �initÞ1; ~C ¼ f0Kð�� �initÞ1: (4.7)

To go back to the original FL spacetime, we use that
dv ¼ a2d� and the fact that the screen projections of
the separation vectors for both geometries are related by

a ~� ¼ a0�. The final result is

D FL ¼ ainit
a

a0
fKð�� �initÞ1; (4.8)

CFL ¼ a

ainit
½f0Kð�� �initÞ �H initfKð�� �initÞ�1; (4.9)

whereH � a0ð�Þ=að�Þ is the conformal Hubble function.
This completely determines W FL.

Note that we can recover the standard expression of
the angular distance by taking the initial condition at the
observer. The relation (3.14) then implies

DA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDFL

p ¼ a0
ð1þ zÞ fKð�sourceÞ; (4.10)

where z ¼ a0=a� 1 is the redshift of a photon that only
travels through a FL region.

B. Kottler region (from Eout to Ein)

1. Initial condition at Eout

In the previous section, we have determined Eout and k
�
out

in terms of the FL coordinate system. However, in order to
proceed inside the hole, we need to express them in terms
of the Kottler coordinate system ðt; r; �; ’Þ.

A preliminary task consists in expressing Eout and k
�
out in

terms of FL spherical coordinates, with origin at the center
of the hole. This operation is straightforward. The event
Eout is then easily converted, since (a) we are free to set
tout ¼ 0, (b) Eq. (2.15) implies rout ¼ að�outÞ�h, and
(c) the angular coordinates �out, ’out remain unchanged
if the Kottler axes are chosen parallel to the FL ones.

The first junction condition ensures that light is not
deflected when it crosses the boundary � of the hole.
Indeed, the continuity of the metric implies that the
connection does not diverge on �. Integrating the geodesic
equation dk� ¼ ���

�
k
�k
dv between v�

out and vþ
out then

shows that k� is continuous at Eout. Therefore, we just need

to convert its components from the FL coordinate system to
the Kottler one. The result is

ktout ¼ aout
AðroutÞ

�
k
�
out þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AðroutÞ

q
k
�
out

�
(4.11)

krout ¼ aout

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AðroutÞ

q
k
�
out þ k

�
out

�
(4.12)

k�out ¼ k�out (4.13)

k’out ¼ k’out: (4.14)

2. Shifting to the equatorial plane

Since the Kottler spacetime is spherically symmetric, it
is easier to integrate the geodesic equation in the equatorial
plane � ¼ �=2. In general, however, we must perform
rotations to bring both Eout and kout into this plane.
Starting from arbitrary initial conditions ðEout; k

�
outÞ, we

can shift to the equatorial plane in two steps. In the
following, Rið#Þ denotes the rotation of angle # about
the xi-axis. The operations are depicted in Fig. 5.
(i) First, bring Eout to the point Eout;eq on the equatorial

plane by the action of two successive rotations,
Rzð�’outÞ followed by Ryð�=2� �outÞ. The wave

vector after the two rotations is denoted k0�out.
(ii) Then, bring k

0�
out to the equatorial plane with

Rxð�c Þ, where c is the angle between the projec-

tion of k
0�
out on the yz-plane and the y-axis. Note that

such a rotation leaves Eout;eq unchanged.

It follows that, after the three rotations

R ¼ Rxð�c Þ 	Ry

�
�

2
� �out

�
	Rzð�’outÞ; (4.15)

Eout and k
�
out are changed into Eout;eq and k

�
out;eq which lie in

the equatorial plane. In the following, we omit subscripts
‘‘eq,’’ keeping in mind that we will have to apply R�1 to
recover the original system of axes.

3. Null geodesics in Kottler geometry

In the Kottler region, the existence of two Killing vec-
tors associated to statisticity and spherical symmetry im-
plies the existence of two conserved quantities, the energy
E and the angular momentum L of the photon. It follows
that a null geodesic1 is a solution of

AðrÞ dt
dv

¼E;

�
dr

dv

�
2þ L

r

� �
2
AðrÞ¼E2; r2

d’

dv
¼L:

(4.16)

1See e.g. Refs. [70,71] for early works on the propagation of
light rays in spacetimes with a nonvanishing cosmological
constant.
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Introducing the dimensionless variable u � rS=r and the
impact parameter b ¼ L=E, Eqs. (4.16) imply

r2S

�
du

dt

�
2 ¼ u4

"21
PðuÞA2ðuÞ; (4.17)

�
du

d’

�
2 ¼ PðuÞ; (4.18)

r2S
E2

�
du

dv

�
2 ¼ u4

"21
PðuÞ; (4.19)

with

AðuÞ ¼ 1� u� "2u
�2; PðuÞ � "21 � u2AðuÞ;

(4.20)

and where "1 � rS=b and "2 � �r2S=3.
Our purpose is now to compute the coordinates

ðtin; rin; ’inÞ and the components k�in of the wave vector at
the entrance event Ein, given those at Eout. The situation is
summarized in Fig. 6.

The radius rin (or alternatively uin) and time tin at
entrance are determined by comparing the radial dynamics
of the photon, governed by Eq. (4.17), to the one of the hole
boundary. The latter is obtained fromEqs. (2.14) and (2.18).
By introducing uh ¼ rS=rh, it reads

rS
duh
dt

¼ �u2hAðuhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AðuhÞ

q
: (4.21)

Equations (4.17) and (4.21) are then integrated2 as tphotonðuÞ
and tholeðuhÞ. The entrance radius then results from solving
numerically the equation tphotonðuinÞ ¼ tholeðuinÞ, which

also provides tin.
The usual textbook calculation of the deflection angle

�’1 of a light ray in Kottler geometry yields

�’1 ¼ 2"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2

"21

s
¼ 4GM

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�b2

3

s
(4.22)

at lowest order in "1 and "2. However, we cannot use this
expression here—although it gives its typical order of
magnitude—because �’1 represents the angle between
the asymptotic incoming and outgoing directions of a ray,
whereas we must take into account the finite extension of
the hole (see Fig. 6).
In general, the deflection angle �’ ¼ ’out � ’in is

�’ ¼
Z um

uin

duffiffiffiffiffiffiffiffiffiffi
PðuÞp þ

Z um

uout

duffiffiffiffiffiffiffiffiffiffi
PðuÞp � 2� (4.23)

where PðuÞ is the polynomial defined in Eq. (4.20), and
um is the value of u at minimal approach. The integral
involved in Eq. (4.23) can be rewritten as

Z um

u

du0ffiffiffiffiffiffiffiffiffiffiffi
Pðu0Þp ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u3 � u2
p F

2
4arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u

u2 � u1

s
;
u2 � u1
u2 � u3

3
5;

(4.24)

out

y

z

ψ

x

kout’µ

out,eq
y

x

z

kout,eq
µ

out,eq

out

θout

x

ϕout

z

kout
µ

(a)

(b)

y

FIG. 5 (color online). An arbitrary initial condition is rotated so that the geodesic lies in the equatorial plane � ¼ �=2. Left: Eout is
brought (a) to ’ ¼ 0 by the rotation Rzð�’outÞ, and (b) to � ¼ �=2 by the rotation Ryð�=2� �outÞ. The resulting event and wave

vector are denoted Eout;eq and k
0�
out. Middle: k

0�
out is brought to the equatorial plane by the rotation Rxð�c Þ. Right: Final situation.

x

y

ϕin
kout

µ

in

out

r

r

in
µk

out

in

FIG. 6 (color online). Null geodesic in the Kottler region.
Depicted with the Kottler coordinate system, the hole grows so
that the ray enters with rin and exits with rout > rin.

2The integration can be performed either numerically, or
analytically in the case of Eq. (4.17) and perturbatively for
Eq. (4.21).
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where u1 < u2 ¼ um < u3 are the three (real) roots of
PðuÞ, and Fðc ; eÞ denotes the elliptic function of the first
kind [72]

Fðc ; eÞ �
Z c

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� esin 2�

p : (4.25)

Thus, Eq. (4.24) provides an exact expression of the
deflection angle �’, and therefore of ’in.

Once Ein is determined, it is easy to obtain k�in by using

the constants of motion. The result is

ktin ¼
E

AðrinÞ ¼
AðroutÞ
AðrinÞ k

t
out; (4.26)

k’in ¼
L

r2in
¼
�
rout
rin

�
2
k’out; (4.27)

krin ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½AðrinÞktin�2 � AðrinÞðrink’inÞ2

q
: (4.28)

4. Final conditions at Ein

The last step consists in coming back to the original FL
coordinate system. That means (a) usingR�1 to recover the
initial system of axes, and (b) converting the components
of Ein and k

�
in in terms of the FL coordinate system. We

have already described such operations in Secs. IVB 2 and
IVB 1 respectively, except for the time coordinate
(since we set tout ¼ 0).

The easiest way to compute the cosmic time Tin at
entrance is to use the relation rin ¼ aðTinÞfKð�hÞ. In a
spatially Euclidean FL spacetime (K ¼ 0), we get

Tin ¼ 2

3H0

ffiffiffiffiffiffiffiffi
��

p argsinh

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��

1���

s �
rin
a0�h

�
3=2

3
5: (4.29)

With this last result, we have completely determined the
entrance event Ein.

5. Sachs basis and optical tidal matrix

Once the geodesic equation is completely solved, we are
ready to integrate the Sachs equation in the Kottler region,
that is, to determine the Wronski matrix WK. Such a task
requires us to first define the Sachs basis ðs1; s2Þ with
respect to which WK will be calculated.

The four-velocity u is chosen to be the one of a radially
free-falling observer,

u � 1

AðrÞ@t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AðrÞp

@r: (4.30)

This choice ensures the continuity of u through the hole
frontier, where u ¼ @T . The wave four-vector k is imposed
by the null geodesic equations, and reads

k ¼ E

AðrÞ @t 
 E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2AðrÞ

r2

s
@r þ L

r2
@’ (4.31)

where the 
 sign depends on whether the photon ap-
proaches (� ) or recedes (þ ) from the center of the hole.
By definition, the screen vectors s1, s2 form an

orthonormal basis of the plane orthogonal to both u and
k. Here, since the trajectory occurs in the equatorial plane,
the first one can be trivially chosen as

s1 � @z ¼ � 1

r
@�: (4.32)

The second one is obtained from the orthogonality and
normalization constraints, and reads

s2 � 1

N

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� AðrÞp
AðrÞ @t þ @r

þ 1

bAðrÞ

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� AðrÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2AðrÞ

r2

s 1
A@’

3
5; (4.33)

where the normalization function is

N � r

bAðrÞ

0
@1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� AðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2AðrÞ

r2

s 1
A: (4.34)

Using the Sachs basis defined by Eqs. (4.30), (4.31), (4.32),
and (4.33), we can finally compute the optical tidal matrix,
and get

R ¼ �RðrÞ 0

0 RðrÞ

 !
; (4.35)

where the function RðrÞ is
RðrÞ � 3

2

�
L

r2S

�
2
�
rS
r

�
5
: (4.36)

As expected from the general decomposition (3.8), R is
trace free because only Weyl focusing is at work. Let us
finally emphasize that � does not appear in the expression
(4.36) of RðrÞ, which is not surprising since a pure
cosmological constant does not deflect light.

6. Wronski matrix

The Sachs equations can now be integrated in order to
determine the scale matrix CK and the Jacobi matrix DK

that compose the Wronski matrix WK.
First, sinceR is diagonal, the Sachs equations (3.7) only

consist of the following two decoupled ordinary differen-
tial equations:

d2�1

dv2
¼ �R½rðvÞ��1ðvÞ; (4.37)

d2�2

dv2
¼ þR½rðvÞ��2ðvÞ: (4.38)
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Clearly, the decoupling implies that the off-diagonal terms
of CK and DK vanish,

C K
12 ¼ CK21 ¼ DK

12 ¼ DK
21 ¼ 0: (4.39)

The calculation of the diagonal coefficients requires
us to integrate Eqs. (4.37) and (4.38). This cannot be
performed analytically because there is no exact expres-
sion for r as a function of v along the null geodesic. Indeed,
we can write v as a function of r from Eq. (4.19) but this
relation is not invertible by hand.

Nevertheless, we are able to perform the integration
perturbatively in the regime where "2="1 � "1 � 1,
the relevance of which shall be justified by the orders of
magnitude discussed in the next section. Solving Eq. (4.19)
at leading order in "1, "2 leads to

uðvÞ ¼ "1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðv� vmÞ2=�v2

p þO
�
"21;

"2
"1

�
(4.40)

with �v � b=E, and where vm denotes the value of the
affine parameter v at the point of minimal approach.
Equation (4.37) then becomes, at leading order in "1, "2,
and using the dimensionless variable w � ðv� vmÞ=�v,

d2�1

dw2
¼ � 3"1

2

�
1

1þ w2

�
5=2

�1: (4.41)

The perturbative resolution of Eq. (4.41) from vinit to v
finally leads to

CK11 ¼ 1� 3"1
2

½�B0ðwinitÞðw� winitÞ þ BðwÞ � BðwinitÞ�

þO
�
"21;

"2
"1

�
; (4.42)

and

DK
11 ¼ ðv� vinitÞ þ 3"1

2
�vfwinit½BðwÞ � BðwinitÞ

� B0ðwinitÞðw� winitÞ� � ½CðwÞ � CðwinitÞ
� C0ðwinitÞðw� winitÞ�g þO

�
"21;

"2
"1

�
; (4.43)

where the functions B and C are given by

BðwÞ � 1þ 2w2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p and CðwÞ � �w

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p : (4.44)

The expressions of CK22 and DK
22 are respectively obtained

from Eqs. (4.42) and (4.43) by turning "1 into �"1.
Note that in the limit "1, "2="1 ! 0, i.e. b ! 1 and

� ¼ 0, we find C ¼ 1 andD ¼ ðv� vinitÞ1, which are the
expected expressions in Minkowski spacetime.

C. Practical implementation

This section has described the complete resolution of the
equations for light propagation in a Swiss-cheese universe.
All the results are included in a Mathematica program

OneHole which takes, as input, the observation conditions
and the properties of the hole; and returns Ein, kin and
W ðvsource;vobsÞ ¼ WKðvin;voutÞ �W FLðvout;vobsÞ. For
simplicity, this program has been written assuming that
the FL region has Euclidean spatial sections (K ¼ 0).
Iterating OneHole allows us to propagate a light signal

back to an arbitrary emission event. Eventually, the redshift
z is obtained by comparing the wave vector at emission
and reception; and the luminosity distance is extracted
from the block Dðvsource;vobsÞ of the Wronski matrix
W ðvsource;vobsÞ, according to

DL ¼ ð1þ zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDðvsource;vobsÞ

q
: (4.45)

Note finally that, when iterating OneHole, we must also
rotate the Sachs basis ðs1; s2Þ, to take into account that the
plane of motion differs for two successive holes.

V. EFFECT OF ONE HOLE

Our method is first applied to a Swiss cheese with a
single hole. The purpose is to study the effects on the
redshift and luminosity distance—for the light emitted by
a standard candle—due to the presence of the hole.

A. Numerical values and ‘‘opacity’’ assumption

The mass M of the clump inside the hole depends on
what object it is supposed to model. The choice must be
driven by the typical scales probed by the light beams
involved in supernova observations. As discussed in the
introduction the typical width of such beams is �AU; for
comparison the typical interstellar distance within a galaxy
is �pc. Hence, SN beams are sensitive to the very fine
structure of the Universe, including the internal content of
galaxies. This suggests that the clump inside the hole
should represent a star, so that the natural choice should
be M�M�. Unfortunately, we cannot afford to deal with
such a fine description, for numerical reasons.
Instead, the clump is chosen to stand for a gravitation-

ally bound system, such as a galaxy (M� 1011M�), or a
cluster of galaxies (M� 1015M�). By virtue of Eq. (2.19),
the corresponding hole radii are respectively rh � 1 Mpc
and rh � 20 Mpc. It is important to note that this choice
keeps entirely relevant as far as the light beam does not
enter the clump (so that its internal structure does not
matter), that is, as long as

b > bmin 
 rphys; (5.1)

where rphys is the physical size of the clump. For a galaxy

rphys � 10 kpc, and for a cluster rphys � 1 Mpc. We choose

to work under the assumption of Eq. (5.1); in other words
we proceed as if the clumps were opaque spheres.
In the case of galactic clumps this ‘‘opacity’’ assumption

can be justified by the three following arguments (in the
case of clusters, however, it is highly questionable).
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Statistics. Since rphys � rh the cross section of the

clumps is very small; thus we expect that most of the
observations satisfy the condition (5.1).

Screening. A galaxy standing on the line of sight can
simply be bright enough to flood a SN located behind it.
For comparison, the absolute magnitude of a galaxy ranges
from �16 to �24 [73], while for a SN it is typically
�19:3 [74].

Strong lensing.A light beam crossing a galaxy enters the
strong lensing regime, because the associated Einstein

radius is rE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSDA;SN

p
& 10 kpc� rphys. In this case,

we expect a significant magnification of the SN which
could be isolated, or even removed during data processing.

The ‘‘opacity’’ assumption is at the same time a key
ingredient and a limitation of our approach.

The various distance scales involved in the model are
clearly separated. The resulting hierarchy is depicted in
Fig. 7, and the typical orders of magnitude are summarized
in Table I. The latter includes the small parameters
"1 ¼ rS=b and "2 ¼ �r2S=3� ðrS=rHubbleÞ2. Their values
justify a posteriori the perturbative expansion performed in
Sec. IVB 6, where we assumed that "2="1 � "1 � 1. In
fact, one can show from Eq. (2.19) that "2 � "31;min .

In this section and the next one, we temporarily set for
simplicity the cosmological constant to zero. The FL re-
gion is therefore characterized by the Einstein–de Sitter
(EdS) cosmological parameters

�m ¼ 1; �K ¼ 0; �� ¼ 0: (5.2)

The effect of the cosmological constant will be studied in
detail in Sec. VII. The value of the Hubble parameter is
fixed to H0 ¼ h� 100 km=s=Mpc, with h ¼ 0:72.

B. Setup

In order to study the corrections to the redshift z and
luminosity distanceDL, due to the presence of the hole, we
consider the situation depicted in Fig. 8.
Our method is the following. We first choose the massM

inside the hole and the redshift zsource of the source. We then
fix the comoving distance between the observer and the
center of the hole, in terms of the cosmological (FL) redshift

zðFLÞh of the latter. To finish, we choose a direction of obser-

vation, defined by the angle 
 between the line of sight and
the line connecting the observer to the center of the hole.
Given those parameters, the light beam is propagated

(in presence of the hole) until the redshift reaches zsource.
We obtain the emission event Esource and the luminosity

distance DL. We then compute zðFLÞsource and DðFLÞ
L by consid-

ering a light beam that propagates from Esource to the
observer without the hole (bottom panel of Fig. 8).

C. Corrections to the redshift

1. Numerical results

The effect of the hole on the redshift is quantified by

�z � z� zðFLÞ

zðFLÞ
; (5.3)

where we used the short notation z instead of
zsource. Figure 9 shows the evolution of �z with 
, for

>>rphys rS

rh << rHubble

rphys << rh

KottlerFL

FIG. 7. Geometry and hierarchy of distances for a typical
Swiss-cheese hole: rS � rphys � rh � rHubble.

TABLE I. Typical orders of magnitude for galaxylike
(M�1011M�) and clusterlike (M�1015M�) Swiss-cheese holes.

Type rS (pc) rphys (kpc) rh (Mpc) "1 "2

Galaxy 10�2 10 1 10�8–10�6 10�23

Cluster 100 1000 20 10�6–10�4 10�15

source

DL

z  source
β M

(FL)zh

(FL)zsource

DL
(FL)

source

FIG. 8 (color online). Setup for evaluating the effect of one
hole on the redshift and luminosity distance.
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zsource ¼ 0:05 and various hole positions and masses.
We have chosen M� 1015M� because the effect is more
significant and displays fewer numerical artifacts than for
M� 1011M�.

We only consider directions of observation such that the
light beam crosses the hole. Thus, 
min <
<
max

where 
min and 
max depend on the physical cutoff
rphys, the radius rh of the hole, and its distance to the

observer zðFLÞh . Those dependences can be eliminated by

plotting �z as a function of ð
� 
min Þ=ð
max � 
min Þ
instead of 
, as displayed in Fig. 10.

As expected, �z tends to zero when 
 approaches 
max

(light ray tangent to the hole boundary). We notice that �z
does not significantly depend on the distance between the
observer and the hole. However, the effect clearly grows
with the mass of the hole.

2. Analytical estimation of the effect

The correction in redshift due to hole can be understood
as an integrated Sachs-Wolfe effect (see e.g. Chapter 7 of

Ref. [1]). As the boundary of the hole grows with time
(see Fig. 6), the light signal undergoes a stronger gravita-
tional potential at entrance than at exit. That induces a
gravitational redshift �zgrav which adds to the cosmological

one, and reads

1þ �zgrav ¼ ktin
ktout

¼ AðroutÞ
AðrinÞ : (5.4)

The order of magnitude of �zgrav can be evaluated as

follows. Let �r ¼ rout � rin be the increase of the radius of
the hole between entrance and exit. The expansion dynam-
ics implies �r� ffiffiffiffiffi

"1
p

�t, where �t ¼ tout � tin � rin, rout
is the time spent by the photon inside the hole. Using
Eq. (5.4), we conclude that

�zgrav � "3=21 : (5.5)

For M ¼ 1015M� (clusterlike hole), the numerical values
given in Table I yield �zgrav;max � 10�6. This order of

magnitude is compatible with the full numerical integra-
tion displayed in Figs. 9 and 10.
Such an analytical estimate enables us to understand

why �z increases with M, that is, with the size of the
hole. Indeed, the bigger the hole, the longer the photon
travel time so that the hole has more time to grow, and
finally AðroutÞ � AðrinÞ is larger.
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FIG. 9 (color online). Relative correction to the redshift z, due
to the hole in the line of sight, as a function of the direction of
observation 
, for a source at zsource ¼ 0:05. Top panel: The
mass of the hole is M ¼ 1015M�, and three positions between

the source and the observer are tested, zðFLÞh =zsource ¼ 0:1
(blue, dot-dashed), 0.5 (purple, dashed), and 0.9 (red, solid).

Bottom panel: The hole is at zðFLÞh ¼ 0:5zsource and three values

for the mass are tested, M=1015M� ¼ 3 (blue, dot-dashed),
2 (purple, dashed), and 1 (red, solid).
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FIG. 10 (color online). Same as Fig. 9, but plotted in
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D. Corrections to the luminosity distance

The effect of the hole on the luminosity distance can be
characterized in a similar way by

�DL � DL �DðFLÞ
L

DðFLÞ
L

: (5.6)

The associated results, in the same conditions as in the
previous paragraph, are displayed in Figs. 11 and 12.

We notice that �DL is maximum if the hole lies halfway
between the source and the observer, which is indeed
expected since the lensing effects scale as

DAðobserver; lensÞ �DAðlens; sourceÞ
DAðobserver; sourceÞ

; (5.7)

which typically peaks for zlens 
 zsource=2. The maximal
amplitude of the correction is of order 10�4, for masses
ranging from 1015M� to 3� 1015M�. Just as for the red-
shift, the effect increases with the size of the hole.

Note that �DL can be related to the relative magnifica-
tion�, frequently used in the weak-lensing formalism, and
defined by

� �
�
DðFLÞ

A

DA

�
2 ¼

�
1þ z

1þ zðFLÞ

�
4
�
DðFLÞ

L

DL

�
2
: (5.8)

Hence, if the correction on z is negligible compared to the
one of DA, then the relation between �DL and � is

�DL 
 1ffiffiffiffi
�

p � 1: (5.9)

E. Summary

The presence of a single hole between the source and the
observer induces both a correction in redshift and luminos-
ity distance. For a hole with mass M� 1015M�, the rela-
tive amplitudes of those corrections are �z� 10�7–10�6

and �DL � 100�z. The same study forM� 1011M� leads
to similar results with �z� 10�10–10�9. Therefore, the
effects of a single hole seem negligible.

VI. EFFECT OF SEVERAL HOLES

We now investigate a Swiss-cheese model containing
many holes arranged on a regular lattice. Again, in this
entire section, the cosmological parameters characterizing
the FL region are the EdS ones.
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FIG. 11 (color online). Relative correction to the luminosity
distance DL, due to the hole in the line of sight, as a function of
the direction of observation 
, for a source at zsource ¼ 0:05. Top
panel: The mass of the hole is M ¼ 1015M�, and three positions

between the source and the observer are tested, zðFLÞh =zsource ¼
0:1 (blue, dot-dashed), 0.5 (purple, dashed), and 0.9 (red, solid).

Bottom panel: The hole is at zðFLÞh ¼ 0:5zsource and three values

for the mass are tested, M=1015M� ¼ 3 (blue, dot-dashed), 2
(purple, dashed), and 1 (red, solid).
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A. Description of the arrangement of holes

1. Smoothness parameter

The smoothness of the distribution of matter within a
Swiss cheese can be quantified by a parameter f con-
structed as follows. Choose a region of space with—

comoving or physical—volume V, where V1=3 is large
compared to the typical distance between two holes.
Thus, this volume contains many holes, the total volume
of which is Vholes, while the region left with homogeneous
matter occupies a volume VFL ¼ V � Vholes. We define the
smoothness parameter by

f � lim
V!1

VFL

V
: (6.1)

In particular, f ¼ 1 corresponds to a Swiss cheese with no
hole—that is, perfectly smooth—while f ¼ 0 corresponds
to the case where matter is under the form of clumps. Of
course, f also characterizes the ratio between the energy
density of the continuous matter and the mean energy
density.

2. Lattice

We want to construct a Swiss cheese for which the
smoothness parameter is as small as possible. If all holes
are identical, this close-packing problem can be solved by
using, for instance, a hexagonal lattice. The corresponding
arrangement is pictured in Fig. 13. The minimal value of
the smoothness parameter is in this case

fmin ¼ 1� �

3
ffiffiffi
2

p 
 0:26: (6.2)

In order to reach a smoothness parameter smaller than
fmin , one would have to insert a second family of smaller
holes. By iterating the process, one can in principle make f
as close as one wants to zero.

B. Observations in a unique line of sight

We now focus on the corrections to the redshift and
luminosity distance of a source whose light travels through
the Swiss-cheese universe described previously. We study

the influence of (a) the distance between the source and the
observer, (b) the smoothness parameter f, and (c) the mass
M of the holes.

1. Setup

After having chosen the parameters ðf;MÞ of the model,
we arbitrarily choose the spatial position of the observer in
the FL region, and fix its direction of observation. The
method is then identical to the one of Sec. V. The light
beam is propagated from the observer until the redshift
reaches the one of the source, z. The ending point defines
the emission event Esource. We emphasize that only emis-
sion events occurring in the FL region are considered in
this article.

2. Influence of the smoothness parameter

In this paragraph, the mass of every hole is fixed to
M ¼ 1011M� (galactic holes). The relative corrections to
the redshift �z and luminosity distance �DL, as functions
of the redshift z of the source, have been computed and are
displayed in Fig. 14 for different values of the smoothness
parameter f.

FIG. 13 (color online). Hexagonal lattice of identical holes. On
the left, the arrangement is close-packed, so that the smoothness
parameter is f ¼ fmin 
 0:26. On the right, f ¼ 0:7.
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While the corrections to the redshift remain small—
typically �z < 10�5—the cumulative effect of lensing on
the luminosity distance is significant. For instance, a source
at z� 1:5would appear 10% farther in a Swiss cheese with
f ¼ 0:26, than in a strictly homogeneous universe. Both �z
and �DL increase with z and decrease with f, as intuitively
expected. Thus, the more holes, the stronger the effect. As
examples, the light beam crosses�300 holes for (f¼0:26,
z¼0:1) or (f ¼ 0:9, z ¼ 1), but it crosses�2000 holes for
(f ¼ fmin , z ¼ 1).

3. Influence of the mass of the holes

We now set the smoothness parameter to its minimal
value fmin 
 0:26, and repeat the previous analysis for
various hole masses. The results are displayed in Fig. 15.

We conclude that neither �z nor �DL depends signifi-
cantly on M, that is, on the size of the holes. Thus, what
actually matters is not the number of holes intersected by
the beam, but rather the total time spent inside holes.

C. Statistical study for random directions
of observation

The previous study was restricted to a single line of sight,
but since a Swiss-cheese universe is not strictly homoge-
neous, the corrections to z andDL are expected to vary from
one line of sight to another. As pointed out by e.g.

Refs. [57,61], such a restrictive analysis can lead to over-
estimate the mean corrections induced by inhomogeneities.
Besides, as stressed by Ref. [8], the dispersion of the data is
crucial for interpreting SN observations. Hence, the
conclusions of the previous subsection need to be com-
pleted by a statistical study, with randomized directions of
observation.
Since the effect on the redshift is observationally negli-

gible, we focus on the luminosity distance. After having set
the parameters ðf;MÞ of the model, we fix the position of
the observer in the FL region. Then, for a given redshift z,
we consider a statistical sample of Nobs randomly distrib-

uted directions of observation ~d 2 S2, and compute

�DLðz; ~dÞ for each one.
Figure 16 shows the probability distribution of �DL for

sources at redshifts z ¼ 0:1 (top panel) and z ¼ 1 (bottom
panel). We compare two Swiss-cheese models with the
same smoothness parameter f ¼ fmin but with different
values for the masses of their holes (M ¼ 1011M� and
1015M�). The histograms of Fig. 16 are generated from
statistical samples which contain Nobs ¼ 200 directions of
observation each.
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From the statistical samples, we can compute the mean
correction h�DLiðzÞ and its standard deviation ��DL

ðzÞ,
whose evolutions are plotted in Fig. 17.

The results displayed in Fig. 17 confirm the conclusions
of Sec. VI B. The distance-redshift relation in a Swiss
cheese is biased with respect to the one of a purely homo-
genous universe. This effect is statistically significant, we
indeed estimate (empirically) that

h�DLiðzÞ 
 8� ��DL
ðzÞ: (6.3)

The bias slightly decreases with the mass parameter M.
However, it can be considered quite robust because a
variation of 4 orders of magnitude for M only induces a
variation of �10% for the bias.

The intrinsic dispersion of DL, associated with ��DL
,

can be compared with the typical dispersion of the obser-
vation. For instance, at z ¼ 1 the former is�1%, while the
latter is estimated to be typically �10% [75]. It follows
that the dispersion induced by the inhomogeneity of the
distribution of matter remains small compared to the
observational dispersion.

D. Summary and discussion

This section has provided a complete study of the effect
of inhomogeneities on the Hubble diagram, investigating
both the corrections to the redshift and luminosity distance
of standard candles. The Swiss-cheese models are made of
identical holes, defined by their massM, and arranged on a
regular hexagonal lattice. The fraction of matter remaining
in FL regions defines the smoothness parameter f. For the
hexagonal lattice, fmin 
 0:26.

The effect on the redshift is negligible (�z < 10�5),
while the correction to the luminosity distance is signifi-
cant (�DL > 10% at high redshift). Compared to the ho-
mogeneous case, sources are systematically demagnified in

a Swiss-cheese universe. The effect increases with z and
decreases with f.
Our results differ from those obtained in Swiss-cheese

models with LTB solutions inside the holes. In the latter
case, a source can be either demagnified if light mostly
propagates through underdense regions [54,55,59] (and if
the observer is far away from a void, see Ref. [76]), or
magnified otherwise. It has been proven in Refs. [58,61,62]
that the global effect averages to zero when many sources
are considered. Hence, LTB holes introduce an additional
dispersion to the Hubble diagram, but no statistically sig-
nificant bias. On the contrary, in the present study, light
only propagates through underdense regions, because we
only consider light beams which remain far from the hole
centers. This assumption has been justified in Sec. VA by
an ‘‘opacity’’ argument. The bias displayed by our results
is mostly due to the selection of the light beams which can
be considered observationally relevant.
Our results also differ qualitatively from those obtained

in the framework of the perturbation theory. In Ref. [31],
the probability density function Pð�Þ of the weak lensing
magnification �, due to the large scale structure, has
been analytically calculated by assuming an initial
power spectrum with slope n ¼ �2. Just as for LTB
Swiss-cheese models, the magnification shows no intrin-
sic bias (i.e. h�i ¼ 1), but it is shown that Pð�Þ peaks at
a value �peak slightly smaller than 1. Hence, a bias of

order �peak � h�i, which is typically 1% at z ¼ 1, can

emerge from observations because of insufficient statis-
tics. However, this bias is far smaller than the one
obtained in our Swiss-cheese model, of order 2�DL �
15% at z ¼ 1.
Besides, the dispersion around the mean magnification is

stronger for perturbation theory (� 10%) than for both
LTB and Kottler Swiss-cheese models (� 2%).

VII. COSMOLOGICAL CONSEQUENCES

Since the Hubble diagram is modified by the presence of
inhomogeneities, the resulting determination of the cos-
mological parameters must be affected as well.
More precisely, consider a Swiss-cheese universe whose

FL regions are characterized by a set of cosmological
parameters ð�m;�K;��Þ, called background parameters
in the following. If an astronomer observes SNe in this
inhomogeneous universe and constructs the resulting
Hubble diagram, but fits it with the usual FL luminosity-
redshift relation—that is, assuming that he lives in a strictly
homogeneous universe—then he will infer apparent cos-

mological parameters ð ��m; ��K; ���Þ which shall differ
from the background ones. Evaluating this difference is
the purpose of Secs. VII A, VII B, and VII C.
The natural question which comes after is, assuming that

our own Universe is well described by a Swiss-cheese
model, what are the background cosmological parameters

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

z

D
L

D
L

FL

FL
D

L

FIG. 17 (color online). Evolution, with redshift z, of the rela-
tive correction to the luminosity distance averaged over Nobs ¼
200 random directions of observation. Error bars indicate the
dispersion ��DL

around the mean correction h�DLi. As in

Fig. 16, we compare Swiss-cheese models with M ¼ 1011M�
(blue, filled markers) andM ¼ 1015M� (purple, empty markers).
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which best reproduce the actual SN observations? This
issue is addressed in Sec. VII D.

A. Generating mock Hubble diagrams

The Hubble diagram observed in a given Swiss-cheese
universe is constructed in the following way. We first
choose the parameters of the model: f, M, and the
background cosmology (�m, �� ¼ 1��m).

3 We then
fix arbitrarily the position of the observer in the FL region,
and we simulate observations by picking randomly the

line of sight ~d, the redshift z 2 ½0; zmax �, and we compute

the associated luminosity distance DLðz; ~dÞ as in Sec. VI.
In order to make our mock SNe catalog resemble the
SNLS 3 data set [77], we choose zmax ¼ 1:4 and
Nobs ¼ 472.

An example of mock Hubble diagram, corresponding to
a Swiss-cheese model with f ¼ fmin , M ¼ 1011M� and
ð�m;�K;��Þ ¼ ð1; 0; 0Þ is plotted in Fig. 18. As a com-
parison, we also displayed DLðzÞ for a homogeneous uni-
verse with (1) the same cosmological parameters, and
(2) with ð�m;�K;��Þ ¼ ð0:3; 0; 0:7Þ.

B. Determining apparent cosmological parameters

The apparent cosmological parameters ��m,
��� and

��K ¼ 1� ��m � ��� are determined from the mock
Hubble diagrams by performing a �2 fit. The �2 is
defined by

�2ð ��m; ���Þ �
X472
i¼1

�
�i ��FLðzij ��m; ���Þ

��i

�
2
; (7.1)

where� no longer denotes the magnification, but rather the
distance modulus associated with DL, so that

� � 5log 10

�
DL

10 pc

�
: (7.2)

In Eq. (7.1), ðzi; �iÞ is the ith observation of the simulated
catalog. In order to make the analysis more realistic, we
have attributed to each data point an observational error bar
��i estimated by comparison with the SNLS 3 data set

[77]. Besides, �FLðzj ��m; ���Þ is the theoretical distance
modulus of a source at redshift z, in a FL universe with

cosmological parameters ��m,
���,

��K ¼ 1� ��m � ���.
The results of this analysis for two mock Hubble dia-

grams are shown in Fig. 19. An EdS background leads to

apparent parameters ð ��m; ��K; ���Þ ¼ ð0:5; 0:8;�0:3Þ,
which are very different from (1,0,0). Thus, the positive
shift of DLðzÞ—clearly displayed in Fig. 18—turns out to
be mostly associated to an apparent spatial curvature,
rather than to an apparent cosmological constant. In this
case the apparent curvature is necessary to obtain a good fit

( ��K ¼ 0 is out of the 2� confidence contour), because a
spatially flat FL model does not allow us to reproduce both
the low-z and high-z behaviors of the diagram. The effect is
weaker for a background with ð�m;��Þ ¼ ð0:3; 0:7Þ,
which leads to ð ��m; ��K; ���Þ ¼ ð0:2; 0:2; 0:6Þ.
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FIG. 18 (color online). Hubble diagram of a Swiss-cheese
universe (dots) with f ¼ fmin , M ¼ 1011M� and EdS back-
ground cosmology. For comparison, we also display the
distance-redshift relations of purely FL universes, with EdS
parameters (blue, solid) and ð�m;�K;��Þ ¼ ð0:3; 0; 0:7Þ
(black, dashed).

K
0

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

m

FIG. 19 (color online). Comparison between background
parameters (crosses) and apparent parameters (disks) for two
Swiss-cheese models with f ¼ fmin and M ¼ 1015M�. In blue,
ð�m;��Þ ¼ ð1; 0Þ leads to ð ��m; ���Þ ¼ ð0:5;�0:3Þ. In black,
ð�m;��Þ ¼ ð0:3; 0:7Þ leads to ð ��m; ���Þ ¼ ð0:2; 0:6Þ. The 1�
and 2� contours are respectively the solid and dashed ellipses.
The solid straight line indicates the configurations with zero
spatial curvature.

3Recall that in the practical implementation of the theoretical
results (see Sec. IVC), we assumed that K ¼ 0, so that the
background cosmology of our Swiss-cheese models is com-
pletely determined by �m or ��. Nevertheless, the apparent
curvature parameter ��K is a priori nonzero.
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C. Quantitative results

1. Influence of the smoothness parameter

Consider a Swiss-cheese model with EdS background
cosmology. Figure 20 shows the evolution of the apparent
cosmological parameters with smoothness f. As expected,

we recover ��i ¼ �i when f ¼ 1, the discrepancy between
background and apparent cosmological parameters being
maximal when f ¼ fmin . Surprisingly, a Swiss-cheese
universe seems progressively dominated by a negative
spatial curvature for small values of f.

The apparent deceleration parameter �q ¼ ��m=2� ���

is plotted in Fig. 21 as a function of f. Interestingly, even
for f ¼ fmin , �q remains almost equal to its background
value q ¼ 1=2. Therefore, though the apparent cosmologi-
cal parameters can strongly differ from the background

ones, the apparent expansion history is almost the same—
at second order—as the background one.
Note that the results displayed in Figs. 20 and 21 are

consistent with each other. The apparent cosmological

constant ��� is slightly smaller for M ¼ 1015M� than for
M ¼ 1011M�, so that �q is slightly larger.

2. Influence of the background cosmological constant

Now consider a Swiss-cheese model with f ¼ fmin and
change its background cosmology. Figure 22 shows the
evolution of the apparent cosmological parameters versus
the background cosmological constant ��. As it could
have already been suspected from Fig. 19, the difference
between apparent and background parameters decreases
with ��, and vanishes in a de Sitter universe. This can
be understood as follows. The construction of a Swiss-
cheese universe consists in changing the spatial distribu-
tion of the pressureless matter, while the cosmological
constant remains purely homogeneous. Thus, the geometry
of spacetime is less affected by the presence of inhomoge-
neities if ��=�m is greater. In the extreme case
ð�m;��Þ ¼ ð0; 1Þ, any Swiss cheese is identical to its
background, since there is no matter to be reorganized.
We also plot in Fig. 23 the difference between the

apparent deceleration parameter �q and the background
one q ¼ �m=2���, as a function of q. Again, �q does
not significantly differ from q. This result must be com-
pared with Fig. 11 of Ref. [53], where ð �q� qÞ=q 
 100%.

3. Comparison with other recent studies

The impact of a modified luminosity-redshift relation—
due to inhomogeneities—on the cosmological parameters
has already been investigated by several authors. In
Ref. [55], it has been suggested that a Swiss-cheese model
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FIG. 20 (color online). Apparent cosmic parameters ��m (gray
disks), ��K (red squares) and ��m (black diamonds) versus
smoothness parameter f, for a Swiss-cheese universe with EdS
background ð�m;�K;��Þ ¼ ð1; 0; 0Þ. Solid lines and filled
markers correspond to M ¼ 1011M�, dashed lines and empty
markers to M ¼ 1015M�.
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FIG. 21 (color online). Apparent deceleration parameter �q as a
function of smoothness parameter f, for Swiss-cheese models
with EdS background (q ¼ 1=2). Solid lines and filled markers
correspond to M ¼ 1011M�, dashed lines and empty markers to
M ¼ 1015M�.
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FIG. 22 (color online). Difference between apparent and back-
ground cosmological parameters ��m ��m (gray disks),
��K ��K (red squares) and ��� ��� (black diamonds) versus
background ��, for Swiss-cheese models with f ¼ fmin . Solid
lines and filled markers correspond to M ¼ 1011M�, dashed
lines and empty markers to M ¼ 1015M�.
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with LTB holes and EdS background displays an apparent

cosmological constant ��� ¼ 0:4; but as already
mentioned in Sec. VID, such a claim was proven to be
inaccurate in Refs. [57,58,62], because it relies on obser-
vations along a peculiar line of sight. When many random
directions of observation are taken into account, the mean
magnification goes back to 1. Hence, contrary to our
results, the apparent cosmological parameters of a Swiss-
cheese model with LTB holes are identical to the back-
ground ones. This conclusion is in agreement with
Ref. [78], where similar studies are performed in various
cosmological toy models; and also with Ref. [31] in the
framework of perturbation theory.

However, it is crucial to distinguish those approaches
(LTB Swiss-cheese models and perturbation theory)
from the one adopted in this article, because they do not
address the same issue. The former share the purpose of
evaluating the influence of inhomogeneities smoothed on
large scales, while we focused on smaller scales for which
matter cannot be considered smoothly distributed. Thus,
our results must not be considered different, but rather
complementary.

D. An alternative way to fit the Hubble diagram

Let us now address the converse problem, and determine
the background cosmological parameters of the Swiss-
cheese model that best reproduces the actual observations.
For that purpose, the simplest method would be to fit our
observed Hubble diagram using the theoretical luminosity-
redshift relationDSC

L ðzÞ of a Swiss-cheese universe. Hence,
we need to derive such a relation in order to proceed.

1. Analytical estimation of the distance-redshift relation
of a Swiss-cheese universe

As argued in Sec. V, any observationally relevant
light beam which crosses a Kottler region has an impact

parameter b much larger than the Schwarzschild radius rS
of the central object. Moreover, since the cosmological
constant has no effect on light focusing, we conclude that
inside a hole, the evolution of the cross-sectional area of a
light beam behaves essentially as in Minkowski spacetime.
This conclusion is supported by the perturbative calcula-
tion of the Wronski matrix WK performed in Sec. IVB 6.
If both the observer and the source are located on the

surface of a hole, their angular distance is therefore

Dhole
A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

detD
p 
 vout � vin, where v denotes the affine

parameter. More generally, for a beam which crosses N
contiguous holes, we get

Dholes
A 
 XN

i¼1

�vi; (7.3)

where �vi � vout;i � vin;i is the variation of the affine

parameter between entrance into and exit from the i th
hole. Let us now evaluate �vi. The time part of the
geodesic equation in Kottler geometry yields

kt � dt

dv
¼ E

AðrÞ 
r�rS
E ¼ constant; (7.4)

where E is the usual constant of motion. We conclude that
�vi 
 ktout;i�ti. Besides, the relations (2.16) and (4.11)

between FL and Kottler coordinates on the junction hyper-
surface, together with AðrhÞ 
 1, lead to �ti 
 �Ti and
ktout 
 aout=a0. Finally,

Dholes
A 
 XN

i¼1

aout;i
a0

�Ti 

Z Tobs

T

aðT0Þ
a0

dT0; (7.5)

where we approximated the sum over i by an integral. This
operation is valid as far as �Ti remains small compared to
the Hubble time. In terms of redshifts, we have

Dholes
A ðzÞ ¼

Z z

0

dz0

ð1þ z0Þ2Hðz0Þ : (7.6)

By construction, this formula describes the behavior of the
angular distance when light only travels through Kottler
regions. In order to take the FL regions into account, we
write the distance-redshift relation DSC

A ðzÞ of the Swiss

cheese as the following (heuristic) linear combination

DSC
A ðzÞ ¼ ð1� fÞDholes

A ðzÞ þ fDFL
A ðzÞ; (7.7)

where f still denotes the smoothness parameter defined in
Sec. VIA 1, andDFL

A ðzÞ is the distance-redshift relation in a
FL universe, given by Eq. (4.10).
A comparison between the above analytical estimation

and the numerical results is plotted in Fig. 24. The agree-
ment is qualitatively good, especially as it is obtained
without any fitting procedure. Moreover, it is straightfor-
ward to show that DSC

A ðzÞ and DFL
A ðzÞ are identical up to

second order in z. This is in agreement with—and some-
how explains—the numerical results of Secs. VII C 1 and
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FIG. 23 (color online). Difference between apparent and back-
ground deceleration parameters �q� q as a function of q, for
Swiss-cheese models with f ¼ fmin . Solid lines and filled
markers correspond to M ¼ 1011M�, dashed lines and empty
markers to M ¼ 1015M�.
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VII C 2, where we showed that the apparent deceleration
parameter �q is the same as the background one q.

Note finally that the general tendency of our analytical
relation is to overestimate �DL at high redshifts. The main
reason is that its derivation uses the behavior of WK at
zeroth order in rS=b; that is, it neglects the effect of the
central mass in the Kottler region. The first-order term in
WK—taken into account in the numerical results—tends
to lower the associated luminosity distance.

2. Comparison with the Dyer-Roeder approach

Another widely used approximation to model the propa-
gation of light in underdense regions was proposed by Dyer
and Roeder [10] in 1972. It assumes that (1) the Sachs
equation and the relation vðzÞ are the same as in a FL
spacetime—in particular, the null shear vanishes—and
(2) the optical parameter �00 (see Sec. III B 2) is replaced
by �ðzÞ�00, where �ðzÞ represents the fraction of matter
intercepted by the geodesic bundle. In brief, the DR model
encodes that light propagates mostly in underdense regions
by reducing the Ricci focusing, while still neglecting the
Weyl focusing. Under such conditions, the DR expression
of the angular distance DDR

A ðzÞ is determined by

d2DDR
A

dz2
þ
�
d lnH

dz
þ 2

1þ z

�
dDDR

A

dz

¼ � 3�m

2

�
H0

H

�
2ð1þ zÞ�ðzÞDDR

A ðzÞ: (7.8)

This attempt to model the average effect of inhomogene-
ities, while assuming that the Universe is isotropic and
homogeneous, has been widely questioned [79–82] and
recently argued to be mathematically inconsistent [8].

Interestingly, our estimation DSC
A ðzÞ of the distance-

redshift relation in a Swiss-cheese universe reads

d2DSC
A

dz2
þ
�
d lnH

dz
þ 2

1þ z

�
dDSC

A

dz

¼ � 3�m

2

�
H0

H

�
2ð1þ zÞfDFL

A ðzÞ; (7.9)

which is similar to Eq. (7.8) with �ðzÞ ¼ f, except that the
right-hand side is proportional to DFL

A instead of DSC
A .

Nevertheless, it turns out that such a difference has only
a very weak impact, in the sense that

DSC
A ðzÞ 
 DDR

A ðzÞ; i:e: DSC
L ðzÞ 
 DDR

L ðzÞ; (7.10)

if �ðzÞ ¼ f. This appears clearly in Fig. 24, where the
dashed and solid lines are almost superimposed. In fact, it
is not really surprising, since both approaches rely on the
same assumptions: no backreaction, no Weyl focusing and
an effective reduction of the Ricci focusing.
Note however that this approach models the effect of the

inhomogeneities on the mean value of the luminosity dis-
tance but does not address the dispersion of the data.

3. Fitting real data with DSC
L ðzÞ

The modified luminosity-redshift relation DSC
L ðzÞ de-

rived in the previous paragraph can be used to fit the
observed Hubble diagram. We apply the same �2 method
as described in Sec. VII B, except that now (1) the triplets
ðzi; �i;��iÞ are observations of the SNLS 3 catalog [77],

and (2) �FLðzj ��m; ���Þ is replaced by �SCðzj�m; fÞ,
where the background curvature �K is fixed to 0 (so that
�� ¼ 1��m). Hence, we are looking for the smoothness
parameter f, and the background cosmological parameters,
of the spatially Euclidean Swiss-cheese model which best
fits the actual SN observations.
The results of the �2 fit are displayed in Fig. 25. First of

all, we note that the confidence areas are very stretched
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FIG. 24 (color online). Comparison between the approxi-
mate luminosity-redshift relation DSC

L ðzÞ ¼ ð1þ zÞ2DSC
A ðzÞ in a

Swiss-cheese universe (solid lines), simulated observations
(dots), and the Dyer-Roeder model DDR

L ðzÞ with �ðzÞ ¼ f
(dashed lines). Three different values of the smoothness parame-
ter are tested, from top to bottom: f ¼ fmin 
 0:26, f ¼ 0:7,
f ¼ 0:9.

FIG. 25 (color online). Fit of the Hubble diagram constructed
from the SNLS 3 data set [77], by using the luminosity-redshift
relation DSC

L ðzj�m; fÞ of a spatially Euclidean Swiss-cheese

model. The colored areas indicate (from the darkest to the
lightest) the 1�, 2� and 3� confidence levels.
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horizontally, so that the smoothness parameter f cannot be
reasonably constrained by the Hubble diagram. There are
two reasons for this. On the one hand, we know from
Sec. VII C 2 that f has only a weak influence on the
luminosity-redshift relation in a universe dominated by
the cosmological constant, which is the case here
(�� � 0:7–0:8). On the other hand, since DSC

L ðzÞ and
DFL

L ðzÞ only differ by terms of order z3 and higher,
one would need more high-redshift observations to
discriminate them. However, all the current SNe
catalogs—including the SNLS 3 data set—contain mostly
low-redshift SNe.

Besides, Fig. 25 shows that fixing a given value of f
changes the best-fit value of �m. In the extreme case of a
Swiss cheese only made of clumps (f ¼ 0) we get
�m ¼ 0:3, while in the FL case (f ¼ 1) the best value is
�m ¼ 0:24, in agreement with Ref. [77]. Such a discrep-
ancy, of order 20%, is significant in the era of precision
cosmology, where one aims at determining the cosmologi-
cal parameters at the percent level.

Let us finally emphasize that such a fit is only indicative,
because it relies on an approximation of the luminosity-
redshift relation in a Swiss-cheese universe.

VIII. CONCLUSION

In this article, we have investigated the effect of the
distribution of matter on the Hubble diagram, and on the
resulting inference of the cosmological parameters. For
that purpose, we have studied light propagation in Swiss-
cheese models. This class of exact solutions of the Einstein
field equations is indeed very suitable, because it can
describe a strongly inhomogeneous distribution of matter
which does not backreact on the global cosmic expansion.
The latter is entirely governed by the background cosmo-
logical parameters �m, �� characterizing the FL regions
of the model. The inhomogeneities are clumps of mass M,
while the fraction of remaining fluid matter is f—called
smoothness parameter. The Swiss-cheese models are there-
fore defined by two ‘‘dynamical’’ parameters ð�m;��Þ,
and two ‘‘structural’’ parameters ðf;MÞ.

The laws of light propagation in a Swiss-cheese universe
have been determined by solving the geodesic equation and
the Sachs equation. For the latter, we have introduced a new
technique—based on the Wronski matrix—in order to deal
more easily with a patchwork of spacetimes. Our results,
mostly analytical, have been included in a Mathematica
program, and used to compute the impact of the Swiss-
cheese holes on the redshift and on the luminosity distance.
For a light beam which crosses many holes, we have shown
that the effect on the redshift remains negligible, while the
luminosity distance increases significantly with respect to
the one observed in a FL universe (�DL � 10% for sources
at z� 1), inducing a bias in the Hubble diagram.

The consequences of the bias on the inference of the
cosmological parameters have been investigated by

simulating Hubble diagrams for various Swiss-cheese
models, and by fitting them with the usual FL
luminosity-redshift relation. In general, the resulting
‘‘apparent’’ cosmological parameters are very different
from the ‘‘background’’ ones which govern the cosmic
expansion, but in a way that leaves the deceleration pa-
rameter unchanged. Moreover, the discrepancy between
apparent and background cosmological parameters turns
out to decrease with�, and is therefore small for a universe
dominated by the cosmological constant. Finally, we have
derived an approximate luminosity-redshift relation for
Swiss-cheese models, which is similar to the one obtained
following the Dyer-Roeder approach. Using this relation to
fit the Hubble diagram constructed from the SNLS 3 data
set, we have found that the smoothness parameter cannot
be constrained by such observations. However, turning
arbitrarily f ¼ 1 into f ¼ 0 has an impact of order 20%
on the best-fit value of�m, which is significant in the era of
precision cosmology (see Ref. [83] for further discussion).
Of course, our model is oversimplifying for various

reasons. First, it does not take into account either the
complex distribution of the large scale structures, or the
presence of diffuse matter on small scales—such as gas
and possibly dark matter. Second, it does not take strong
lensing effects into account, assuming that clumps are
‘‘opaque.’’ We can conjecture that this overestimates the
actual effect of the inhomogeneities. Nevertheless, it shows
that their imprint on the Hubble diagram cannot be ne-
glected, and should be modeled beyond the perturbation
regime. Note finally that several extensions are allowed by
our formalism. For instance, we could introduce different
kinds of inhomogeneities, in order to construct fractal
structures for which the smoothness parameter is arbi-
trarily close to zero. Additionally to the Hubble diagrams,
we could also generate the shear maps of Swiss-cheese
models, and determine whether their combination allows
for better constraints on the various parameters.
This work explicitly raises the question of the meaning

of the cosmological parameters, and of whether the values
we measure under the hypothesis of a pure FL background
represent their ‘‘true’’ or some ‘‘dressed’’ values. Similar
ideas have actually been held in other contexts [84,85], and
in particular regarding the spatial curvature [86,87]. We
claim that the simplest Swiss-cheese models are good
models to address such questions—as well as the Ricci-
Weyl problem and the fluid approximation—with their
own use, between the perturbation theory and N-body
simulations.
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The recent analysis of the Planck results reveals a tension between the best fits for (�m0, H0) derived

from the cosmic microwave background or baryonic acoustic oscillations on the one hand, and the Hubble

diagram on the other hand. These observations probe the Universe on very different scales since they

involve light beams of very different angular sizes; hence, the tension between them may indicate that they

should not be interpreted the same way. More precisely, this Letter questions the accuracy of using only

the (perturbed) Friedmann-Lemaı̂tre geometry to interpret all the cosmological observations, regardless of

their angular or spatial resolution. We show that using an inhomogeneous ‘‘Swiss-cheese’’ model to

interpret the Hubble diagram allows us to reconcile the inferred value of�m0 with the Planck results. Such

an approach does not require us to invoke new physics nor to violate the Copernican principle.

DOI: 10.1103/PhysRevLett.111.091302 PACS numbers: 98.80.Es, 98.62.Py, 98.70.Vc, 98.80.Jk

The standard interpretation of cosmological data relies
on the description of the Universe by a spatially homo-
geneous and isotropic spacetime with a Friedmann-
Lemaı̂tre (FL) geometry, allowing for perturbations [1].
The emergence of a dark sector, including dark matter
and dark energy, emphasizes the need for extra degrees
of freedom, either physical (new fundamental fields
or interactions) or geometrical (e.g., a cosmological
solution with lower symmetry). This has driven a lot
of activity to test the hypotheses [2] of the cosmological
model, such as general relativity or the Copernican
principle.

The recent Planck data were analyzed in such a frame-
work [3] in which the cosmic microwave background
(CMB) anisotropies are treated as perturbations around a
FL universe, with most of the analysis performed at linear
order. Nonlinear effects remain small [4] and below the
constraints on non-Gaussianity derived by Planck [5]. The
results nicely confirm the standard cosmological model of
a spatially Euclidean FL universe with a cosmological
constant, dark matter, and initial perturbations compatible
with the predictions of inflation.

Among the constraints derived from the CMB, the
Hubble parameter H0 and the matter density parameter
�m0 are mostly constrained through the combination
�m0h

3, where H0 ¼ h� 100 km=s=Mpc. It is set by the
acoustic scale �� ¼ rs=DA, defined as the ratio between the
sound horizon and the angular distance at the time of last
scattering. The measurement of seven acoustic peaks
enables one to determine �� with a precision better than
0.1%. The constraints on the plane (�m0,H0) are presented
in Fig. 3 of Ref. [3] and clearly show this degeneracy.
The marginalized constraints on the two parameters were
then derived [3] to be

H0 ¼ ð67:3� 1:2Þ km=s=Mpc;

�m0 ¼ 0:315� 0:017 (1)

at a 68% confidence level. It was pointed out (see
Secs. 5.2–5.4 of Ref. [3]) that the values of H0 and �m0

are, respectively, low and high compared with their values
inferred from the Hubble diagram. Such a trend was
already indicated by WMAP-9 [6] which concluded
H0 ¼ ð70� 2:2Þ km=s=Mpc.
Regarding the Hubble constant, two astrophysical

measurements are in remarkable agreement. First, the
estimation based on the distance ladder calibrated by
three different techniques (masers, Milky Way cepheids,
and Large Magellanic Cloud cepheids) gives [7] H0 ¼
ð74:3� 1:5� 2:1Þ km=s=Mpc, respectively, with statisti-
cal and systematic errors. This improves the earlier con-
straint obtained by the Hubble Space Telescope (HST)
Key program [8], H0 ¼ ð72� 8Þ km=s=Mpc. Second, the
Hubble diagram of type Ia supernovae (SNe Ia) calibrated
with the HST observations of cepheids leads [9] to H0 ¼
ð73:8� 2:4Þ km=s=Mpc. Other determinations of the
Hubble constant, e.g., from very-long-baseline interferom-
etry observations [10] or from the combination of Sunyaev-
Zel’dovich effect and X-ray observations [11], have larger
error bars and are compatible with both the CMB and
distance measurements.
Additionally, the analysis of the Hubble diagram of SNe

Ia leads to a lower value of�m0—e.g., 0:222� 0:034 with
the SNLS 3 data set [12]—compared to the constraint (1)
by Planck. As concluded in Ref. [3], there is no direct
inconsistency, and it was pointed out that there could be
residual systematics not properly accounted for in the
SN data. Still, it was stated that ‘‘the tension between
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CMB-based estimates and the astrophysical measurements
of H0 is intriguing and merits further discussion.’’

Interestingly, the CMB constraints on (�m0, H0) are in
excellent agreement with baryon acoustic oscillation
(BAO) measurements [13], which allow one to determine
the angular distance up to redshifts of order 0.7. The
common point between the CMB and BAO measurements
is that they involve light beams much larger than those
involved in astronomical observations. Indeed, a pixel of
Planck’s high-resolution CMB maps corresponds to 5 arc
min [14], while the typical angular size of a SN is
10�7 arc sec. This means that the two kinds of observa-
tions probe the Universe at very different scales. Moreover,
for both the CMB and BAO measurements the crucial
information is encoded in correlations, while SN observa-
tions rely on ‘‘1-point measurements’’ (we are interested in
the luminosity and redshift of each SN, not in the correla-
tions between several SNe). Because of such distinctions
one can expect the two classes of cosmological observa-
tions to be affected differently by the inhomogeneity of the
Universe, through gravitational lensing.

The effect of lensing on CMB measurements is essen-
tially due to the large-scale structure, and it can be taken
into account in the framework of cosmological perturba-
tion theory at linear order [15] (see, however, Ref. [16] for
a discussion about the impact of strong inhomogeneities).
We refer to Ref. [17] for a description of the lensing effects
on BAO measurements. Regarding the Hubble diagram,
the influence of lensing has also been widely investigated
[18]. The propagation of light in an inhomogeneous uni-
verse gives rise to both distortion and magnification. Most
images are expected to be demagnified because their lines
of sight probe underdense regions, while some are ampli-
fied due to strong lensing. It shall thus induce a dispersion
of the luminosities of the sources, that is, an extra scatter in
the Hubble diagram [19]. Its amplitude can be determined
from the perturbation theory [20] and subtracted [21].
However, a considerable fraction of the lensing effects
arises from sub-arc-min scales, which are not probed by
shear maps smoothed on arc min scales [22].

The tension on (�m0, H0) may indicate that, given the
accuracy of the observations achieved today, the use of a
(perturbed) FL geometry to interpret the astrophysical data
is no longer adapted. More precisely, the question that we
want to raise is whether the use of a unique spacetime
geometry is relevant for interpreting all the cosmological
observations, regardless of their angular or spatial resolu-
tion and of their location (redshift). Indeed, each observa-
tion is expected to probe the Universe smoothed on a
typical scale related to its resolution, and this can lead to
fundamentally different geometrical situations. In a uni-
verse with a discrete distribution of matter, the Riemann
curvature experienced by a beam of test particles or
photons is dominated by the Weyl tensor. Conversely, in
a (statistically spatially isotropic) universe smoothed on

large scales, it is dominated by the Ricci tensor. Both
situations correspond to distinct optical properties [23].
In the framework of geometric optics, a light beam is

described by a bundle of null geodesics. All the informa-
tion about the size and the shape of a beam can be encoded
in a 2� 2 matrixDa

b called the Jacobi map (see Ref. [24]

for further details). In particular, the angular and luminos-
ity distances read, respectively,

DA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detDa
bj

q

; DL ¼ ð1þ zÞ2DA; (2)

where z denotes the redshift. The evolution of the Jacobi
map with light propagation is governed by the Sachs
equation [25,26]

d2

dv2
Da

b ¼ Ra
cDc

b; (3)

where v is an affine parameter along the geodesic bundle.
The term Rab, which controls the evolution of Da

b, is a

projection of the Riemann tensor called the optical tidal

matrix. It is defined by Rab � R����k
�k�s

�
a s

�
b , where k

�

is the wave vector of an arbitrary ray, and the Sachs basis
fs�a ga¼1;2 spans a screen on which the observer projects the

light beam. Because the Riemann tensor can be split into a
Ricci part R�� and a Weyl part C����, the optical tidal

matrix can also be decomposed as

ðRabÞ ¼
�00 0

0 �00

 !

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ricci lensing

þ �Re�0 Im�0

Im�0 Re�0

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Weyl lensing

; (4)

with �00 � �ð1=2ÞR��k
�k� and �0 � �ð1=2ÞC����

ðs�1 � is�2 Þk�ðs�1 � is�2 Þk�. It clearly appears in Eq. (4)

that the Ricci term tends to isotropically focus the light
beam, while the Weyl term tends to shear and rotate it. The
behavior of a light beam is thus different whether it expe-
riences Ricci-dominated lensing (large beams, e.g., CMB
measurements) or Weyl-dominated lensing (narrow beams,
e.g., SN observations).
This Ricci-Weyl problem can be addressed with differ-

ent methods. One possibility, a representative of which is
the Dyer-Roeder approximation [27], is to construct a
general distance-redshift relation which would take into
account the effect of inhomogeneities in some average
way. However, such approaches are in general difficult to
control [18] because they rely on approximations whose
domain of applicability is unknown. An alternative possi-
bility consists in constructing inhomogeneous cosmologi-
cal models, with a discrete distribution of matter, and
studying the impact on light propagation. Several models
exist in the literature: the Schwarzschild-cell method [28]
or the lattice universe [29], which are both approximate
solutions of the Einstein equations, and the Swiss-cheese
models [30], which are constructed by matching together
patches of exact solutions of the Einstein equations.
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This last approach is the one that we shall follow in this
Letter.

Consider a Swiss-cheese model in which clumps of
matter (modeling, e.g., galaxies), each of them lying at
the center of a spherical void, are embedded in a FL
spacetime. The interior region of a void is described by
the Kottler geometry—i.e., Schwarzschild with a cosmo-
logical constant—while the exterior geometry is the FL
one. By construction, such inhomogeneities do not modify
the expansion dynamics of the embedding FL universe,
thus avoiding any discussion regarding backreaction. The
resulting spacetime is well defined, because the Darmois-
Israel junction conditions are satisfied on the boundary of
every void. Compared to a strictly homogeneous universe,
a Swiss-cheese model is therefore characterized by two
additional parameters: the size of the voids (or equivalently
the mass of their central bodies) and the volumic fraction of
the remaining FL regions, which encodes the smoothness
of the distribution of matter. It is naturally quantified by the
smoothness parameter

f � lim
V!1

VFL

V
; (5)

where VFL is the volume occupied by the FL region within
a volume V of the Swiss cheese. With the definition (5),
f ¼ 1 corresponds to a model with no hole (i.e., a FL
universe), while f ¼ 0 corresponds to the case where
matter is exclusively under the form of clumps inside
voids.

Of course such a model cannot be considered realistic,
but neither does the exact FL geometry, used to interpret
the Hubble diagram. Both spacetimes describe a spatially
statistically homogeneous and isotropic universe, and the
former permits additionally the investigation of the effect
of a discrete distribution of matter. Since the FL universe is
a particular Swiss-cheese model, this family of spacetimes
therefore allows us to estimate how good the hypothesis
of strict spatial homogeneity—with a continuous matter
distribution at all scales—is.

The propagation of light in a Swiss-cheese model has
been comprehensively investigated in Ref. [24], generaliz-
ing earlier works [31], with the key assumption that light
never crosses the clumps. This ‘‘opacity assumption’’ can
be observationally justified in the case of SN observations
if the clumps represent galaxies (see Ref. [24] for a dis-
cussion). Compared to the strictly homogeneous case, any
light signal traveling through a Swiss-cheese model then
experiences a reduced Ricci focusing. This leads [see
Eqs. (2)–(4)] to an increase of the observed luminosity
distance DL. The effect of Weyl lensing—i.e., here
shear—is relatively small.

This systematic effect, due to inhomogeneities, tends to
bias the Hubble diagram in a way that mimics the contri-
bution of a negative spatial curvature or a positive cosmo-
logical constant. In other words, if one interprets the
Hubble diagram of a Swiss-cheese universe by wrongly

assuming that it is strictly homogeneous, then one under-
estimates the value of �m0. The error reaches a few per-
cent, which is comparable to other estimates in similar
contexts [32]. Note, however, that in the case of Swiss-
cheese models with Lemaı̂tre-Tolman-Bondi patches
instead of Kottler voids, the effect of inhomogeneities
has a much smaller impact on the Hubble diagram [33].
Thus, the systematic effect exhibited in Ref. [24] must be
attributed to the discreteness of the distribution of matter.
Simulating the mock Hubble diagrams for Swiss-cheese

universes with various values of its parameters, we inferred
a phenomenological expression for the luminosity distance
DLðz;�m0;��0; H0; fÞ, which is very close to the Dyer-
Roeder one. This expression was then used to fit the
Hubble diagram constructed from the SNLS 3 catalog
[12]. Figure 25 of Ref. [24] shows that f influences the
result of the best fit on �m0 that can shift from 0.22 for
f ¼ 1 (in agreement with the standard FL analysis per-
formed in Ref. [12]) to 0.3 for f ¼ 0.
Figure 1 shows the constraints in the plane (h, �m0)

imposed by Planck on the one hand, and by the Hubble
diagram on the other hand, whether it is interpreted in a
spatially flat FL universe (f ¼ 1) or in a spatially flat
Swiss-cheese model for which matter is entirely clumped
(f ¼ 0). The agreement between the CMB and the Hubble
diagram is clearly improved for small values of f, espe-
cially regarding �m0, while h is almost unaffected.
Note that SN observations alone cannot constrain H0,

because of the degeneracy with the (unknown) absolute
magnitude M of the SNe. For the results of Fig. 1 the
degeneracy was broken by fixing M ¼ �19:21, according
to the best-fit value obtained by Ref. [12] with a fiducial
Hubble constant h ¼ 0:7. Thus, the horizontal positions of
the SN contours in Fig. 1 are only indicative.

FIG. 1 (color online). Comparison of the constraints obtained
by Planck on (�m0, h) [3] and from the analysis of the Hubble
diagram constructed from the SNLS 3 catalog [12]. The shaded
contour plots correspond to two different smoothness parame-
ters. For f ¼ 1, the geometry used to fit the data is the FL one.
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Alleviating the tension on H0 remains an open issue.
Because inferring its value from SNe is a local measure-
ment, a promising approach consists in taking into account
the impact of our close environment. It has been suggested
[34] that cosmic variance increases the uncertainty on
Hlocal

0 and thus reduces the tension with HCMB
0 . More

speculatively, Hlocal
0 >HCMB

0 may be a hint that our local

environment is underdense [35]. Our conclusions on �m0

remain, however, unaffected by this issue.
Our analysis, though relying on a particular class of

models, indicates that the FL geometry is probably too
simplistic to describe the Universe for certain types of
observations, given the accuracy reached today. In the
end, a single metric may not be sufficient to describe all
the cosmological observations, just as Lilliputians and
Brobdingnag’s giants [36] cannot use a map with the
same resolution to travel. A better cosmological model
probably requires an atlas of maps with various smoothing
scales, determined by the observations at hand.

Other observations, such as lensing [37], may help to
characterize the distribution and the geometry of voids
[38], in order to construct a better geometrical model.
For the first time, the standard FL background geometry
may be showing its limits to interpret the cosmological
data with the accuracy they require.
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1.7. Continuation of this work

1.7 Continuation of this work

Several improvements could be brought to this work, which is a mere manipulation

of a toy model. For example, to be more realistic, it would be useful to study

in detail the space distribution of the structures of the universe. What are the

relevant masses? What fraction of the total volume do these structures represent?

How lumpy the universe is? Introducing holes with different sizes could in particular

be relevant. We could also envisage a similar study in which light is replaced by

gravitational waves (playing the role of “standard sirens”) to check that conclusions

about cosmology do not depend on the observables considered.

In the continuity of our project, my collaborators P. Fleury and J. P. Uzan

have realized several studies. For instance, in [78], they propose a comprehensive

analysis of light propagation in a spatially anisotropic and homogeneous spacetime

and in [75] P.Fleury compares the distance-redshift relation of a certain class of

Swiss-cheese models to the one predicted by the so-called Dyer-Roeder approach

([61]).

This kind of study is an illustration of what precision cosmology means because

it is the description of the very fine structure of the universe that is questioned.

Such approaches do not aim at proposing new models but rather at adding a level

of description to the existing ones. In the present case, the novelty would consist in

adapting the mapping of the universe to the scale considered instead of using homo-

geneous and isotropic descriptions smoothed on large scales. Precision cosmology

can also be developed by considering the large-scale structure of the universe. In

the framework of perturbation theory, a common effort is indeed realized in order

to go beyond the linear regime and to account for cosmic components that had been

neglected so far. This is exactly the type of issues addressed in the remainder of

this manuscript.
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Chapter 2

A glimpse of neutrino

cosmology

Neutrino phenomenology is extremely rich. Rather than getting into the details,

details which are nevertheless captivating, I confine this chapter to elements that

I consider relevant for familiarizing with neutrino cosmology and understanding

what is at stake in the part of this thesis oriented towards neutrinos. A clear and

comprehensive review of the role of neutrinos in cosmology can be found in [104].

2.1 Basic knowledge about neutrinos

In December 1930, Wolfgang Pauli suggested the existence of an unknown particle.

This was motivated by the observation that, if it did not exist, conservation laws

would be violated in β decay. For energy, momentum and angular momentum to

be conserved, this particle had to be electrically neutral, extremely light and with a

spin 1/2. Besides, to explain why it had never been detected, it has been postulated

that it should interact very weakly with matter. At that time, its existence was

purely hypothetical. Pauli’s idea was even considered by many as a desperate

theorist’s attempt to keep up appearances.

However, Enrico Fermi took it seriously and incorporated the new particle, that

he named neutrino, in his theory of β decay in 1934. This theory was to become

the theory of the weak interaction.

Between 1953 and 1956, Clyde Cowan and Frederick Reines achieved the first

neutrino detections thanks to a nuclear reactor of the Savannah River site ([41]).
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2.2. Why are cosmologists interested in neutrinos?

For this finding, they received the Nobel Prize in 1995.

Then it has been demonstrated that neutrinos are of several types, or flavors,

i.e. one can distinguish between “electron neutrinos” (the firsts to be discovered),

“muon neutrinos” (discovered in 1962 by Leon M. Lederman, Melvin Schwartz and

Jack Steinberger, winners of the Nobel Prize for their research on neutrinos in 1988)

and “tau neutrinos” (whose detection has been announced in 2000 by the DONUT

collaboration at Fermilab).

A remarkable fact is that, even before muon neutrinos were discovered, Bruno

Pontecorvo suggested that, provided they are massive, neutrinos can change in na-

ture during their time evolution (see his paper [138], which dates from 1957). As-

suming a non-zero mass is a modification of the standard model of particle physics1,

in which neutrinos are massless leptons. On the other hand, the absence of mass

is a mere assertion, which is not justified theoretically by the model. Naturally,

the detection of a second neutrino flavor strengthened B. Pontecorvo’s intuition

([139]). The existence of flavor neutrino oscillations, i.e. of transitions from one

flavor to another, has been confirmed by the Homestake experiment thirty years

later ([34]). It is a thrilling point since its theoretical justification demands to go

beyond the standard model of particle physics, that is to say to invoke new physics.

At the present time, thanks to experiments involving atmospheric and solar neutri-

nos, there is no doubt that at least two of the three neutrino species are massive.

Planetary atmospheres (when excited by cosmic rays) and stars are indeed powerful

natural sources2 of neutrinos.

2.2 Why are cosmologists interested in neutrinos?

At ordinary energies, neutrinos interact so weakly with matter that they can go

through a planet with no consequence. Such an insensitiveness is annoying for

particle physicists. It makes the detection of neutrinos and the study of their prop-

erties very challenging. But the universe is an amazing laboratory in which highly

energetic phenomena occur naturally. By looking far into space, one accesses to

the extreme physical conditions that characterized the young universe. Observa-

tional astrophysics offers therefore an opportunity to get unhoped constraints on

1The standard model of particle physics is a scientific theory describing interactions between
the elementary particles that constitute matter. It was developed throughout the latter half of the
twentieth century.

2Among such sources, one can cite supernovae too.
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2.2. Why are cosmologists interested in neutrinos?

particles and fundamental interactions. This is what justifies the existence of the

research field called astroparticle physics. In particular, when the observed object

is the observable universe and the studied particles are neutrinos, it is referred to

as neutrino cosmology.

For the game to be fair, cosmologists too should enjoy the benefits of testing

neutrino properties. And they definitely do! Indeed, the ambitions of precision

cosmology require to develop a solid knowledge of the properties of each cosmic

component involved in the dynamical evolution of the universe. As will be sketched

in the next sections, neutrinos truly had a role to play in this evolution, their means

of action being weak interaction and gravitation.

2.2.1 An equilibrium that does not last long

At the beginning, the particles of the universe are all maintained in equilibrium

by processes involving very high energies. At that time, neutrinos are relativistic

and interact continuously with the rest of the cosmic plasma. In the meantime the

universe cools, which lowers the rate at which neutrinos interact. This decrease is

faster than the one of the Hubble rate. Hence, there is a moment at which weak

interactions are beaten by expansion: neutrinos decouple from electrons, positrons

and photons and then propagate freely. So, in the same way as there exists a cosmic

microwave background, there exists a cosmic neutrino background. Unfortunately,

there is little chance for the latter to be detected directly someday because neutrinos

interact very weakly, which is worsened by the fact that their interaction rate is

largely suppressed by the cooling of the universe. However, some imprints left by

neutrinos during different cosmological eras are present in several observables. As

we will see, the role played by neutrinos is especially significant at late times, i.e.

during the formation of the large-scale structure of the universe.

Neutrino decoupling takes place much earlier than photon decoupling, when the

universe is at most few-minute-old3 and has a temperature in the MeV range4. At

this temperature, neutrinos are still relativistic, whence the appellation “hot relics”

which is sometimes used.

3There is no single decoupling time because decoupling is not an instantaneous phenomenon.
It is nevertheless possible to obtain a correct order of magnitude in the “instantaneous decoupling
limit”. Neutrino decoupling is estimated to start about one-tenth of a second after the Big Bang.

4The typical temperature of neutrino decoupling is thus almost seven orders of magnitude higher
than the one of photon decoupling (photon decoupling marks the start of the CMB propagation).
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2.2. Why are cosmologists interested in neutrinos?

Thermodynamical considerations show that, when equilibrium is broken, the

neutrino-to-photon temperature ratio, which used to be 1, becomes5

Tν
Tγ

=

(
4

11

)1/3

. (2.1)

Note that, as well as photons, neutrinos are exceptionally cold today. Indeed,

the measurement of the present CMB temperature gives Tγ,0 = 2.725 K, whence

Tν,0 = 1.945 K (∼ 10−4 eV). As explained in [104], it means in particular that at

least two of the three neutrino species are non-relativistic today.

2.2.2 The effective number of neutrino species, a parameter rele-

vant for precision cosmology

Definition

After decoupling and as long as neutrinos are relativistic, the total energy density

of relativistic species can be written (see also [104])

ρR = ργ

[
1 +

7

8

(
4

11

)4/3

Neff

]
. (2.2)

ργ is the photon energy density. Neff is called effective number of neutrino species.

It characterizes the neutrino abundance in the early universe, plus possibly extra

relativistic species. In the instantaneous decoupling limit, provided that neutrinos

are well described by Fermi-Dirac distribution functions with no chemical potential6

and that the only relativistic components of the universe are photons plus three

neutrino species, Neff is equal to 3. So, as a first approximation, any deviation

from Neff = 3 would be indicative of a need for a refinement of the cosmological

model, hence the importance of measuring this parameter. Actually, the standard

model of cosmology predicts Neff = 3.046, the difference from three being due

to a small amount of entropy inherited by neutrinos from the electron/positron

annihilation process (see [114]). The latest observational constraint, obtained by

combining Planck data with other surveys, is Neff = 3.15±0.23 ([137]). As the rest

of the Planck results, this estimation confers credibility to the cosmological scenario

currently adopted.

5It is valid only when T � me, me being the electron mass. See e.g. [104] for a demonstration.
6See section 2.3.2 for discussions on the form of the phase-space distribution function of neutri-

nos.
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2.2. Why are cosmologists interested in neutrinos?

Impact of Neff on primordial abundances

It is also at a temperature of the order of 1 MeV that neutrons are trapped by

protons for the first time, producing deuterium,

n+ p↔ 2H + γ, (2.3)

and initiating subsequent formations of light elements, mainly 3He, 4He and 7Li.

This key period of the history of the universe is called primordial nucleosynthesis,

or Big Bang nucleosynthesis (see e.g. [156, 124, 174, 95, 140] for reviews on Big

Bang nucleosynthesis).

So, do neutrinos intervene in this? Equation (2.2) tells one that extra relativistic

species (with respect to photons) enhance the primordial radiation energy density.

Consequently, they affect the expansion rate of the universe before and during the

Big Bang nucleosynthesis (see the Friedmann equations (1.9) and (1.10)). It changes

in particular the freezing temperature of the neutron-to-proton ratio, and thus the

primordial abundance of 4He. More precisely, the larger Neff is, the quicker the

universe expands so the earlier the neutron-to-proton ratio is frozen. It leads to a

larger relic neutron abundance and eventually to a higher production of 4He. The

theoretical impact of Neff on primordial abundances is depicted in figure 2.1. Yp

characterizes the 4He abundance7. It is this abundance that is the most impacted

but one can see that all primordial abundances of light elements are influenced by

the effective number of neutrino species.

The measurement of such abundances is an investigation tool widely exploited in

precision cosmology. It is also part of the elements that favored historically the Big

Bang model. One can find a recent update of the predictions related to primordial

nucleosynthesis, based on the results of the Planck mission, in [36]. The dependence

of primordial abundances on Neff illustrates the importance of including neutrinos

in modern cosmological models.

Impact of Neff on the anisotropies of the cosmic microwave background

Given the richness of the information contained in CMB anisotropies, it seems

crucial to determine if the presence of neutrinos makes a difference.

Recombination marks the end of thermal equilibrium between baryons, elec-

7Yp = 4
n4He

nB
, n standing for number densities and B for baryons.
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Figure 2.1: Big Bang nucleosynthesis abundance predictions as a function of the
baryon-to-photon ratio η, for Neff = 2 to 7. The bands show the 1σ error bars. All
bands are centered on Neff = 3. Authors: Cyburt et al., [47].

trons and photons. From this time, photons propagate freely and carry with them

physical characteristics of their last scattering point. In particular, after decoupling,

each photon can be associated with a local temperature T + δT (η, ~x, n̂), where n̂

gives the direction of propagation. It is therefore possible to construct a CMB tem-

perature map. The relevant information is contained in the angular scale, shape

and amplitude of its angular correlation function.

To be more precise, temperature anisotropies on the last scattering surface are

usually expanded in the following way,

δT

T
(n̂) =

∑

lm

almYlm(n̂). (2.4)

Then one defines the harmonic power spectrum Cl as

Cl = 〈alma∗lm〉 ∀m. (2.5)
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This power spectrum is isotropic, i.e. it depends on l but not on m. Here, and

throughout the manuscript, the symbol “〈 〉” denotes ensemble averages of variables

X depending on scalar stochastic8 fields, s(x). Those fields are random variables:

they can be described with the help of distribution functions, which determine the

probability for them to have given values at given positions. Explicitly,

〈X〉 ≡
∫
X(s1, s2, ...)P(s1, s2, ...)ds1ds2..., (2.6)

with P(s1, s2, ...)ds1ds2... the probability for s to have a value between s1 and

s1+ds1 at position x1, between s2 and s2+ds2 at position x2, etc. When the number

of variables is sufficient (which is usually not restrictive in cosmology, especially

given the richness of the latest observation surveys), it is commonly assumed that

ensemble averages are equivalent to space averages (ergodic hypothesis).

Isolating the theoretical impact of Neff on this power spectrum is a subtle task,

described in full detail in [104]. The difficulty arises from the fact that a large

variety of effects, originating from several species, are entangled in the Cl’s. On

the one hand, at the background level, each cosmic component affects the time

evolution of the scale factor and, on the other hand, perturbations of decoupled

species disturb the growth of metric perturbations. Depending on the effect that

one wants to bring to light, one decides to fix one or another set of parameters of the

model. As an illustration, figure 2.2 highlights the effect of Neff for three different

settings. The tuning of the parameters has been done so that the features of the

upper curve can entirely be interpreted in terms of direct effects due to neutrino

perturbations, whereas the lower curve is more realistic but mixes background and

perturbative effects. More precisely, the rapid decrease at high l’s visible on the

lower curve is a background effect due to diffusion damping, or Silk damping ([166]).

Indeed, varying Neff affects the typical length of the random walk that character-

izes interactions between photons and electrons. In multipole space, this length is

hidden in the parameter lD
9 and the envelope of the curve is controlled by a fac-

tor exp[−(l/lD)2]. Concerning the perturbative level, basically, metric fluctuations

are reduced on scales at which neutrinos free-stream because they do not cluster

8The reason why statistics occupies inevitably a place in cosmology is briefly addressed in the
item “Impact of Neff on the matter power spectrum” of the present subsection.

9lD ∼ kD(η0−ηLS), where kD is the wavenumber associated with the comoving distance traveled
by a photon during Thomson diffusion, η0 is the present comoving time and ηLS is the last scattering
comoving time.
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while free-streaming. One can refer to e.g. [93, 9, 104] for analytic interpretations

of the patterns of the curves. In the plot 2.2, neutrino masses have been fixed to

zero for the contribution of the mass not to mix with the one of Neff (see section

2.2.3 for discussions on mass effects). Note chiefly that the suppression of the Cl’s

that appears when one switches from a neutrinoless model to a model with three

neutrino species is close to 20% in the case represented by the upper curve, which

is non-negligible in precision cosmology.

Figure 2.2: CMB temperature spectrum for models with Neff = 3.046 divided by the
spectrum of a model with Neff = 0. zeq is the redshift of equality between matter
and radiation. zΛ is the redshift of equality between matter and dark energy. lD
is a multipole parameter which characterizes diffusion damping. It has been fixed
in the second case in order to get rid of diffusion damping effects. ISW stands for
Integrated Sachs-Wolfe effect, whose contribution is tiny in this context. Authors:
Lesgourgues et al., [104].

Impact of Neff on the matter power spectrum

Strictly speaking, density perturbations are realizations of stochastic fields. Ac-

cording to the inflation theory, stochasticity is present from the beginning because

inhomogeneities originate from quantum fluctuations, whose evolution is not deter-

ministic. Furthermore, the ignorance of the initial conditions and the existence of

unobservable regions confirm the necessity of a statistical approach in cosmology.
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2.2. Why are cosmologists interested in neutrinos?

Besides, it is very common to describe the observable universe in terms of vari-

ables belonging to the reciprocal space (in particular when it comes to compute

correlation functions). As usual, one switches from real space to reciprocal space

with the help of Fourier transforms. In this thesis, the convention that we use is

(for any field X)

X(x) =

∫
d3k

(2π)3/2
X(k) exp(ik.x), (2.7)

X(k) =

∫
d3x

(2π)3/2
X(x) exp(−ik.x). (2.8)

Since initial fluctuations of density emerge from a field which is free in the

sense of quantum mechanics, they are usually assumed to be Gaussianly distributed

(which is in very good agreement with the latest results of the Planck mission, [136]).

In this context, all the needed information regarding initial time derives from two-

point correlation functions (but the observables that one uses to study large-scale

structures at a later time are in general multi-point correlation functions). It is a

consequence of Wick’s theorem. More precisely, cosmologists introduced a quantity

P (k), omnipresent in studies of large-scale structure formation and defined so that

〈δm(~k)δm(~k′)〉 = P (k)δD(~k + ~k′), (2.9)

where δD is the Dirac delta function and δm is the matter density contrast, i.e.

δm =
ρm

ρ̄m
− 1 with ρ̄m the spatial average of the matter density ρm. P (k) is called

matter power spectrum. According to Wick’s theorem, higher order initial-time

correlations are zero if they involve an odd number of fields. In contrast, in case of

an even number 2N of fields, then (2N − 1)!! terms contribute to the correlators.

Those terms correspond to all different pairings of the 2N fields:

〈δ1
m(~k1)...δ2N

m (~k2N )〉 =
∑

all pair associations

∏

pairs (i,j)

〈δim(~ki)...δ
j
m(~kj)〉. (2.10)

If one assumes, in addition, that initial conditions are adiabatic, all species share

initially the same density contrast (with only a known species-dependent factor

in front of it). It means that primordial power spectra of photons and neutrinos

(and of any hypothetical other species, like dark energy) are proportional to the
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primordial matter power spectrum. More details about the meaning of adiabaticity

will be given in section 4.3.3. We will see that it can generally be considered as a

reasonable assumption.

As in the case of the power spectrum of CMB anisotropies, it is not possible to

disentangle totally the contributions of the various parameters to the matter power

spectrum (again, I refer the reader to [104] for a thorough analysis). Illustratively,

figure 2.3 shows how the phase and amplitude of BAO, imprinted in the matter

power spectrum, are altered by the presence of massless neutrinos. The lower curve

mixes neutrino perturbation effects with a background effect due to the fact that the

baryon density ωB
10 is not fixed: a non-zero value of Neff increases ωB, leading to

an earlier release of baryons. On the contrary, ωB is fixed in the case corresponding

to the upper curve whereas the baryon-to-cold dark matter ratio varies, this latter

variation altering the BAO amplitude. In both cases, neutrino perturbations damp

the BAO amplitude and induce a phase shift in it.

All these examples prove that even massless neutrinos would contribute to the

development of the universe. Yet, to be in tune with reality, neutrino masses should

not be ignored.

2.2.3 Neutrino masses: small but decisive

Current estimates

It is thanks to neutrino oscillation experiments that neutrino masses have been

revealed. Such experiments are in fact interference experiments, which can only de-

tect differences between squares of neutrino masses (see [119, 66, 21, 8, 118, 130, 71]

for precisions). The absolute neutrino mass scale being still out of reach11, many

efforts realized in order to constrain neutrino masses consist in putting bounds on

the total neutrino mass Mν =
∑

imνi , where each value of i denotes a neutrino

species. The number of studies carried out for that purpose is phenomenal. Predic-

tions vary from one study to another, depending on the selected data and on the

cosmological assumptions made to interpret them. Table 2.1 presents few examples

of mass constraints (including the estimation from the 2015 release of the Planck

10ωB is part of the six parameters of the standard model of cosmology. It is defined as ωB = ΩBh
2,

with ΩB =
8πG

3H2
0

mNnB, mN being the average nucleon mass.

11It is nevertheless reasonable to hope that, in the near future, large-scale structure surveys will
unveil the absolute neutrino mass scale.
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Figure 2.3: Matter power spectra for models with Neff = 3.046 divided by the power

spectrum of a model with Neff = 0. ΩM =
8πG

3H2
0

ρm,0, with ρm,0 the present energy

density of the matter fluid. ωC is the cold dark matter density and ωB is the baryon
density. Authors: Lesgourgues et al., [104].

mission, [137]) among many others.

Observables Year and reference Result

CMB+BAO 2015, [137] Mν < 0.23 eV
CMB+BAO+Lyman-α forest 2014, [125] Mν < 0.14 eV

CMB+BAO 2014, [135] Mν < 0.23 eV
Galaxy survey+CMB+BAO 2014, [147] Mν < 0.18 eV

Galaxy survey+CMB+BAO+Supernovae 2010, [115] Mν < 0.33 eV

Table 2.1: Some 2σ-upper bounds on the total neutrino mass.

What cosmological repercussions can one expect from sub-eV masses?

Impact of Mν on the anisotropies of the cosmic microwave background

Assuming the existence of three equal-mass neutrino species and adjusting judi-

ciously the other parameters, the authors of [104] highlight the impact of non-zero

neutrino masses on the CMB temperature spectrum. It is presented in figure 2.4.
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2.2. Why are cosmologists interested in neutrinos?

Figure 2.4: CMB temperature spectra for models with either Mν = 3 × 0.3 eV or
Mν = 3× 0.6 eV divided by the spectrum of a model with three massless neutrinos
sharing the same temperature. lpeak, which is kept constant here, is a parameter
fixing the l’s at which acoustic oscillations peak. Authors: Lesgourgues et al., [104].

The leading effect, impacting the multipoles for which l < 20, is a background

effect. At late times, dark energy becomes predominant, which makes metric fluctu-

ations decay and therefore disturbs photons in their path between the last scattering

surface and observers. This phenomenon, known as late integrated Sachs-Wolfe ef-

fect12, is affected by massive neutrinos because the time of equality between matter

and dark energy depends on neutrino masses. In figure 2.4, the integrated Sachs-

Wolfe effect is controlled by the parameter ISW, which has been fixed on the upper

curves to differentiate ISW from other phenomena.

The rise visible at l > 500 is also a background effect, corresponding to the Silk

damping induced by the neutrinos that are already non-relativistic at decoupling.

Between l = 20 and l = 500, features of the two lower curves are mainly at-

tributed to the early integrated Sachs-Wolfe effect, which is simply the disclosure

of the impact of neutrino masses on metric perturbations after decoupling. This

perturbation effect, in the order of 3% for 0.3 eV masses, can seem tiny but it is

12The Sachs of the Sachs-Wolfe effect, Rainer K. Sachs, is the same as the Sachs of the Sachs
equation discussed in chapter 1.
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within the range of precision targetted today in cosmology.

Impact of Mν on the matter power spectrum

As already mentioned, in cosmological models, one usually assumes that initial con-

ditions are adiabatic. So, as long as free-streaming can be neglected, assigning a

mass to neutrinos does not affect the matter power spectrum13 because such mas-

sive particles behave as cold dark matter. However, the free-streaming of massive

neutrinos can not be mimicked by any other species. During free-streaming, mas-

sive neutrinos increase the expansion rate of the universe without clustering under

the influence of gravitational instability. Such a behavior slows down the growth of

structure, or equivalently damps the matter power spectrum on small scales. This

is well illustrated in figure 2.5.

Figure 2.5: Steplike suppression of the matter power spectrum due to neutrino
mass. The power spectrum of a standard cosmological model with two massless
and one massive species has been divided by that of a massless model, for several
values of mν between 0.05 eV and 0.50 eV, spaced by 0.05 eV. All spectra have the
same primordial power spectrum and the same parameters (Ωm, ωm, ωB). kNR is the
free-streaming wavenumber at the non-relativistic transition (kNR ∼ 5.10−3h/Mpc).
Authors: Lesgourgues et al., [104].

13It is true provided that the total matter density and the primordial power spectrum are un-
changed.
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An analytic justification, based on linear perturbation theory, can be found in

[104] (see also references herein). In fact, while particularly enriching, adopting

a linear approach to model this kind of phenomenon is not sufficient. Indeed, on

small scales and at small redshifts, the evolution of cosmological perturbations is not

linear14. Actually, the scales that are the most sensitive to neutrino masses (roughly

k > 0.1h/Mpc) correspond to the nonlinear part of the matter power spectrum.

Hence the importance of modeling the behavior of massive neutrinos beyond the

linear regime when trying to describe the formation of the large-scale structure of

the universe. Another argument along this is that a large amount of cosmological

data would be wasted if the absence of theoretical counterpart made one skip the

observations corresponding to nonlinear scales. Besides, it has been shown in several

studies that neglecting the nonlinear corrections induces a spurious behavior on

small wavenumbers due to a violation of momentum conservation (see [82, 91, 126,

27]). So a common effort is currently carried out to investigate the nonlinear regime

(see section 2.3.2), in particular in the field of numerical simulations. Achieving this

objective is to a large extent what motivates the work undertaken for my PhD thesis,

during which I developed a new analytic description of the nonlinear evolution of

massive neutrinos (see chapters 4, 5 and 6).

2.3 How cosmic neutrinos are studied

2.3.1 Observation

It is fortunate that there exists a great variety of astrophysical sources because all

are not sensitive to the same properties. The recent explosion in the number of

high precision observational projects allows to multiply the possible combinations

of data, increasing dramatically the relevance of the constraints. CMB, BAO and

large galaxy surveys have already been mentioned as observables useful for neutrino

cosmology but the list can be extended.

One can cite for instance quasars, which are objects particularly luminous and

distant. In a range of frequencies called Lyman-α forest, their spectra are good

tracers of hydrogen density fluctuations on mildly nonlinear scales, and thus indi-

rectly of the matter perturbations that govern the matter power spectrum (see e.g.

14Density perturbations grow with time and only extremely small perturbations can be treated
at linear level (see chapter 3 for precisions).
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[186, 188, 152] for recent studies in which the Lyman-α forest is put at the service

of neutrino cosmology).

Gravitational lensing, i.e. distortion of galaxy images due to density fluctuations

along the line of sight, is also useful in this context ([187, 178]). Note that the

upcoming Euclid mission will give particular importance to the examination of

gravitational lensing.

Even cosmic voids contribute to the exploration of neutrino properties ([188]).

Giving an exhaustive list and dissecting the advantages and drawbacks of each

kind of observation is not the purpose here (an enlightening overview adapted to

neutrino cosmology is nevertheless given in [104]). The intent was rather to ex-

emplify the richness of observational cosmology, which is a direct gateway between

infinitely large and infinitely small.

2.3.2 Modeling

The Boltzmann hierarchy

The standard way of modeling massive neutrinos is to consider them as a non-cold

fluid, i.e. a fluid made of particles that are still relativistic when they decouple. As

soon as the fluid is out of equilibrium, a kinetic approach is necessary to depict what

happens. It is therefore convenient to describe the fluid with its phase-space distri-

bution function, f(xµ, pµ), where xµ is a space coordinate and pµ is the conjugate15

momentum of xµ, i.e.

pµ = muµ with uµ = gµνdxν/
√
−ds2. (2.11)

m is the particle mass so, if neutrino masses are not degenerate, m is different for

each species. Using standard results of general relativity, it is straightforward to

show that pµ satisfies the mass-shell condition pµpµ = −m2.

The starting point is that, in the absence of interactions, the Liouville operator,

L(f) ≡ df

dλ
(xµ(λ), pµ(λ)) , (2.12)

is zero16. In this equation, λ is an arbitrary parameter. Note that the possibility

15Actually, there are several ways to define a phase-space momentum but only the conjugate
momentum is defined so that d3xid3pi is the phase-space unit volume and that the number of
particles in it is d6N = f(xi, pi)d

3xid3pi (see the reference paper [111]).
16To demonstrate it, one can e.g. write the geodesic equation for uµ and use the fact that f is
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of interacting neutrinos has been explored in many non-standard models (see the

references given in [104]) and that the eventuality of self-interacting neutrino fluids

is disfavored by observations ([51, 4]). The time evolution of f is then governed by

an equation called collisionless Boltzmann equation or Vlasov equation. In terms

of the conformal time η, it reads:

∂f

∂η
+

dxi

dη

∂f

∂xi
+

dpi
dη

∂f

∂pi
= 0. (2.13)

During the equilibrium stage, neutrinos are expected to be characterized by a

relativistic Fermi-Dirac distribution in which the chemical potential is negligible,

f(q) =
(

1 + exp
q

aT

)−1
, (2.14)

where T is the temperature and q is the physical momentum17. The absence of

chemical potential is justified theoretically, thanks to quantum field theory consid-

erations, in [104]. Besides, this assertion can be tested experimentally.

When equilibrium breaks down, the previous description is not valid anymore.

However, the Boltzmann equation can be studied perturbatively. To that aim,

f is decomposed into a homogeneous part f0 (given by equation (2.14)) and a

perturbation f0Ψ,

f
(
xi, q

)
= f0 (q)

[
1 + Ψ

(
xi, q

)]
. (2.15)

Note that, in the relativistic regime, the expression of Ψ is known. Indeed one

can show that18, before the non-relativistic transition, f keeps a Fermi-Dirac form

except that it exhibits local fluctuations of temperature:

f
(
xi, q

)
=

[
1 + exp

q

a (T + δT (xi))

]−1

in the relativistic regime. (2.16)

conserved along geodesics when particles do not interact.
17The physical momentum is defined so that the energy ε measured by a comoving observer is

ε2 = m2 +(q/a)2. Explicit relations between pi and qi (in different metrics) are given in the papers
presented in sections 4.4 and 5.4.

18The theoretical argument is the writing of the geodesic equation for qi. Indeed, provided that
q � m, the momentum shift induced by metric perturbations does not depend on the momentum
itself (see [104]).
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Hence, one has

Ψ
(
xi, q

)
= −δT (xi)

T

d ln f0

d ln q
in the relativistic regime. (2.17)

More generally, one can derive an equation governing the time evolution of Ψ.

Its form depends on the gauge which is chosen, i.e. on the form of the metric. As will

be explained in chapter 3, a convenient way to take inhomogeneities into account is

to add spatial perturbations in the homogeneous and isotropic Friedmann-Lemâıtre

metric (1.4). In the gauge called conformal Newtonian gauge, those perturbations

are denoted φ and ψ and the metric reads (assuming a flat universe)

ds2 = a2 (η)
[
− (1 + 2ψ) dη2 + (1− 2φ) dxidxjδij

]
. (2.18)

Calculations are usually made in the linear regime, which means that all couplings

between any perturbations are neglected. In this framework, qi = a2(1− φ)pi (see

[57]). Noticing that
dxi

dη
=

pi

p0
and writing the geodesic equation in the metric

(2.18) to compute
dpi
dη

, one gets from equation (2.13),

∂ηΨ +
q

aε
n̂i∂iΨ +

d ln f0(q)

d ln q

(
∂ηφ−

aε

q
n̂i∂iψ

)
= 0, (2.19)

where n̂ gives the direction of the physical momentum.

Besides, in momentum space, the only dependence on k is through its angle with

n̂. Hence, one can define α ≡ k̂.n̂ and rewrite the linearized Boltzmann equation

as

∂ηΨ̃ + iαk
q

aε
Ψ̃ +

(
∂ηφ− iαk

aε

q
ψ

)
= 0, (2.20)

where Ψ̃ ≡
(

d log f0(q)

d log q

)−1

Ψ.

The standard treatment is then to expand Ψ̃ in Legendre polynomials,

Ψ̃ =
∑

`

(−i)`Ψ̃` P`(α), (2.21)

where P`(α) is the Legendre polynomial of order `. By plugging this expansion into
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the Boltzmann equation (2.20), one obtains the Boltzmann hierarchy,

∂ηΨ̃0(η, q) = − qk

3aε
Ψ̃1(η, q)− ∂ηφ(η) (2.22)

∂ηΨ̃1(η, q) =
qk

aε

(
Ψ̃0(η, q)− 2

5
Ψ̃2(η, q)

)
− aεk

q
ψ(η), (2.23)

∂ηΨ̃`(η, q) =
qk

aε

[
`

2`− 1
Ψ̃`−1(η, q)− `+ 1

2`+ 3
Ψ̃`+1(η, q)

]
(` ≥ 2). (2.24)

It should be mentioned that the Boltzmann hierarchy is often written in a slightly

different form, obtained by replacing the decomposition (2.21) by Ψ̃ =
∑

`(−i)`(2l+

1)Ψ̃` P`(α). As highlighted in [111], the interest of the introduction of a factor

(2l + 1) is that it makes more natural the writing of the harmonic coefficients Ψ̃`’s

in terms of spherical Bessel functions when neutrinos free stream. It is useful in

particular for the formulation of truncation schemes (see the next section).

It is from the integration of the Boltzmann hierarchy that the relevant physical

quantities are computed. Note that this approach is very general. In particular,

it applies to photons provided that the Fermi-Dirac distribution is replaced by the

Bose-Einstein one. It means that there exists a CMB Boltzmann hierarchy too.

Codes dedicated to the numerical integration of such hierarchies are called Boltz-

mann codes (see below). The Boltzmann approach is very powerful. However, the

fact that it is a linear theory is too restrictive to be considered totally satisfactory.

Boltzmann codes

The Boltzmann hierarchy is infinite. It can nevertheless be handled by numerical

codes since it is convergent. The first scheme that comes to mind to integrate it

numerically consists in finding theoretical arguments to perform a sharp truncation

at a given lmax, i.e. to set a Ψ̃lmax brutally to zero. In this context, the multipoles

of interest must be i) of a lower order and ii) sufficiently far from Ψ̃lmax in the

hierarchy for their evolution not to be impacted by the truncation. In practice,

the only multipoles whose integration over phase-space momenta gives macroscopic

quantities useful for cosmology correspond to l = 0, 1, 2. They allow to compute

respectively the linear density perturbation ρν
(1), velocity divergence θν

(1) and shear

stress σν
(1):
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ρν
(1)(η) = 4π

∫
q2dq

εf0(q)

a3

d log f0(q)

d log q
Ψ̃0(η, q), (2.25)

(ρν
(0) + Pν

(0))θν
(1)(η) =

4π

3

∫
q2dq

εf0(q)

a3

d log f0(q)

d log q

q

aε
Ψ̃1(η, q), (2.26)

(ρν
(0) + Pν

(0))σν
(1)(η) =

8π

15

∫
q2dq

εf0(q)

a3

d log f0(q)

d log q

q2

a2ε2
Ψ̃2(η, q), (2.27)

where superscripts (0) denote background quantities and P stands for pressure. As

explained in [104], the “sharp truncation method” has proven to be accurate when

lmax is sufficiently large. The problem is that, despite the truncation, the number

of equations that one needs to integrate is huge. Indeed, lmax must be chosen well

above19 2 and the hierarchy is coupled to other equations describing baryons and

dark matter. Moreover, each calculation should be performed for a large number

of wavenumbers and, in the case of neutrinos, several momenta. In practice, the

resulting numerical cost is prohibitive.

A more subtle procedure is proposed in [111]. The authors show in particular

that, for free-streaming species, the harmonic coefficients of the Boltzmann hierar-

chy are easily expressible in terms of the spherical Bessel functions (especially when

a factor (2l + 1) has previously been introduced in the harmonic decomposition

(2.21)). Recurrence relations can thus be used to relate Ψ̃l+1 to Ψ̃l and Ψ̃l−1, which

allows to control the impact of a truncation down to lmax − 2. In usual Boltzmann

codes, it is this strategy that is adopted. In this framework, experience shows that

choosing lmax ∼ 10 has very little impact on the three first multipoles. Typically,

depending on the desired level of precision, lmax is at most 20 in usual codes. For

instance, in the numerical tests performed in the study that I will present in chapter

4, we truncated the Boltzmann hierarchy at lmax = 6.

The main reference Boltzmann codes are CMBFAST ([162]), CAMB ([107]), CMBEASY

([55]) and CLASS ([28]). Note that, for codes which include massive neutrinos, it

is the integration of massive neutrino equations that is the most time-consuming

part because of the need to sum over momenta (see [106] for the presentation of

a method, called quadrature approach, allowing to keep the number of momenta

reasonable).

19In [104], the authors give kηnr as typical value of lmax for massive neutrinos, ηnr being the
conformal time at the non-relativistic transition.
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Modeling the nonlinear evolution of neutrinos

So far, most descriptions of the nonlinear evolution of neutrinos rely on N-body

simulations. One can find a presentation of the algorithms at play in such simu-

lations in [104]. In this context, one of the most powerful code is the one called

GADGET ([170]).

Interestingly, the numerical works [29, 186, 23, 88, 189] conclude that, in the

nonlinear regime, the steplike suppression induced by massive neutrinos on the

matter power spectrum is replaced by a “spoon-shaped” suppression, see figure 2.6.

Since the total matter density is fixed in figure 2.6, it is not surprising that non-

zero neutrino masses induce an extra suppression of the nonlinear matter power

spectrum. Indeed, in that case, the density perturbations of cold dark matter

evolve more gently, which postpones the nonlinear clustering that enhances the

matter power spectrum. Upcoming large-scale surveys should exhibit features of

this subtle scale dependence of the suppression of the matter power spectrum.

Figure 2.6: Spoon-shaped suppression of the matter power spectrum due to neu-
trino masses. The solid lines show the power spectrum of a standard model with
three massive species of total mass Mν = 0.6 eV, divided by that of a massless
model with the same parameters (Ωm, ωm). Baryons have been neglected in these
simulations. In each plot, the two solid lines correspond to two different N-body
simulations with different resolution scales. The step-shaped dashed line shows the
linear predictions whereas the spoon-shaped dashed curve represents the nonlinear
prediction accounting for massive neutrino effects. Authors: Bird et al., [23].

Such results, obtained from N-body simulations, are reliable and very enlight-
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ening. However, the successes of numerical cosmology do not exclude the need for

analytic models, in particular to avoid heavy calculations and to be able to explore

a wider variety of cosmological parameters and scales. Note that the recent theo-

retical study [27] manages to explicitly predict an extra suppression of the matter

power spectrum due to nonlinearities thanks to nonlinear cosmological perturbation

theory.

Still on the analytic side, a natural idea is to extend the Boltzmann hierarchy

to the nonlinear regime. It has been done in [184], in which the moments of f ,

Aij...k ≡
∫

d3q

[
qi

aε

qj

aε
...
qk

aε

]
εf

a3
, (2.28)

are studied without performing any linearization. In the conformal Newtonian

gauge (2.18), the nonlinear hierarchy resulting from the collisionless Boltzmann

equation is

∂ηA
i1...in + (H− ∂ηφ)

[
(n+ 3)Ai1...in − (n− 1)Ai1...injj

]

+
n∑

m=1

(∂imψ)Ai1...im−1im+1...in +
n∑

m=1

(∂imφ)Ai1...im−1im+1...injj

+(1 + φ+ ψ)∂jA
i1...inj + [(2− n)∂jψ − (2 + n)∂jφ]Ai1...inj = 0. (2.29)

For physical interpretation, a non-trivial mapping between the Aij...k’s and the Ψl’s

is provided in [184]:

A = 4π

∫
q2dq

εf0

a3
(1 + Ψ0), (2.30)

Aii = 4π

∫
q2dq

q2

a2ε2
εf0

a3
(1 + Ψ0), (2.31)

ikiA
i =

4π

3

∫
q2dq

q

aε

εf0

a3
Ψ1, (2.32)

[
1

3
k2δij + (iki)(ikj)

]
Aij = k2 8π

15

∫
q2dq

q2

a2ε2
εf0

a3
Ψ2, (2.33)

[
1

3
k2δij + (iki)(ikj)

]
Aijkk = k2 8π

15

∫
q2dq

q4

a4ε4
εf0

a3
Ψ2, (2.34)

[
1

3
k2δij + (iki)(ikj)

]
(ikk)A

ijk = −k3 16π

45

∫
q2dq

q3

a3ε3
εf0

a3
Ψ1... (2.35)
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One can see in particular from (2.25) that A = ρν , from (2.26) that ikiA
i = (ρν

(0) +

Pν
(0))θν and from (2.27) that

[
1

3
k2δij + (iki)(ikj)

]
Aij = k2

[
ρν

(0) + Pν
(0)
]
σν . Be-

sides, Aii is nothing but three times the pressure. Unfortunately, the fact that

the nonlinear hierarchy (2.29) is multi-dimensional makes its numerical integra-

tion cumbersome, especially because developing a satisfying truncation scheme is

extremely difficult.

Independently on this attempt, and as will be explained in chapter 3, there exist

robust analytic approaches that study the behavior of the nonlinear power spectrum.

Originally, neutrinos were not included in such works. Then some extensions have

been proposed to account for a neutrino component (see in particular [198, 154,

105]). The limitation is that massive neutrinos are treated at the linear level in

those studies, which are furthermore valid in a very small range of scales (up to

k ∼ 0.2h/Mpc for z > 2 and k ∼ 0.15h/Mpc for z = 1). Some recent improvements

will also be presented in chapter 3. One can cite in particular the studies [27] and

[81].
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Chapter 3

Refining perturbation theory to

refine the description of the

growth of structure

I included a glimpse of neutrino cosmology in my manuscript because, to understand

the interest of my work, one has to be aware of the crucial role played by neutrino

cosmology in precision cosmology. However, studying neutrino phenomenology was

not the objective of my thesis. My everyday task consisted rather in very gen-

eral thoughts regarding cosmological perturbation theory beyond the linear regime

and beyond the Newtonian approximation. The link with neutrinos is that such

considerations suit perfectly for the study of the impact of neutrinos on the nonlin-

ear matter power spectrum. In this chapter, I introduce all the tools of nonlinear

cosmological perturbation theory that I used in the studies presented in the three

following chapters.

Since physical conditions evolve drastically over the cosmological eras, the sim-

plifying hypotheses that can be formulated in the models evolve accordingly. Some

stages of the history of the universe are thus more difficult to describe than others.

In particular, modeling analytically the late-time evolution of perturbations (dur-

ing which the large-scale structure emerges) is very challenging. In this context,

numerical cosmology is very helpful. Indeed, advanced numerical simulations such

as the Horizon-AGN simulation ([56]) or the Millennium simulation ([171]) provide

insightful pictures of the construction of the cosmic web.

On the theoretical side, important advances have been realized since the 2000s.

83



3.1. A brief presentation of cosmological perturbation theory

The initiating element has been standard perturbation theory then several refine-

ments have followed. A review of standard perturbation theory is given in [13]

and an outline of the subsequent developments can be found in [12]. In this chap-

ter, I introduce the concepts of perturbation theory on which I based my work on

neutrinos. The approach that I present in the next chapters is indeed a relativistic

extension of the standard formalism, which had originally been designed to describe

the emergence of gravitational instabilities in the cold dark matter component.

3.1 A brief presentation of cosmological perturbation

theory

Cosmological perturbation theory is based on the observation that, on very large

scales, the universe is quasi-homogeneous. More precisely, maps obtained by prob-

ing all the directions of the sky exhibit relative spatial fluctuations in the order

of 10−5. This is certified by the CMB temperature maps obtained by the Planck

satellite, as illustrated in figure 3.1. Consequently, strictly speaking, the geometry

of the universe can not be characterized by the Friedmann-Lemâıtre metric (1.8),

even on large scales. However, it seems reasonable to assume that, on appropriate

scales, the real metric differs little from the homogeneous and isotropic one. This is

the reason why cosmologists usually consider perturbed Friedmann-Lemâıtre met-

rics, that is to say metrics in which inhomogeneous quantities, assumed to be small

compared with the background values, have been introduced (see the pioneer work

[108], reviewed in [109, 193, 126, 101, 123, 63] and standardly used since then). A

generic form of a perturbed Friedmann-Lemâıtre metric is

ds2 = a2(η)
[
− (1 + 2A) dη2 + 2Bidx

idη + (γij + hij) dxidxj
]
, (3.1)

where the metric perturbations are A, Bi and hij .

As expected in general relativity, a given phenomenon can be described by

different equations, their forms depending on the point of view adopted. In this

context it is the form chosen for the metric perturbations, usually called choice of

gauge, which is determining. The conformal Newtonian gauge, given by (2.18), is

an example of gauge widely used in cosmology. It is characterized by the absence

of time-space perturbations and by a diagonal space-space perturbation. Many

studies have also been carried out using the Synchronous gauge, characterized by
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the absence of time-time and time-space perturbations (i.e. by A = 0 and Bi = 0).

The predictions of cosmological perturbation theory in those two gauges have been

studied in full detail in [111]. Besides, a presentation of the most common gauges

and of the transformations laws allowing to switch from one to another is given in

[131]. In cosmology, a particular effort is devoted to the identification of quantities

that are gauge-independent (see [6, 60]). Note that the quantities that can be

observed, called observables, naturally satisfy this property.

As described by the Einstein equations, such metric perturbations generate den-

sity perturbations, which in turn affect the geometry of the spacetime, and so forth.

Understanding the time evolution of density perturbations under the influence of

gravity in an expanding universe is precisely the purpose of cosmological perturba-

tion theory.

Figure 3.1: CMB temperature map obtained from the SMICA pipeline of
the Planck satellite (February 2015). c© EUROPEAN SPACE AGENCY - PLANCK

COLLABORATION.

3.2 The Vlasov-Poisson system, cornerstone of stan-

dard perturbation theory

In standard perturbation theory, the large-scale structures observed in galaxy sur-

veys are interpreted as the result of the clustering of collisionless cold dark matter,

represented by a non-relativistic pressureless fluid. The particles of the fluid un-

dergo gravitational interaction only and have a mass m. In this framework, the
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starting point of the description is again the Vlasov equation1

∂f

∂T
+

dxi

dT

∂f

∂xi
+

dpi
dT

∂f

∂pi
= 0, (3.2)

where T denotes here the cosmic time.

Because of the expansion of the universe, a distinction should be made between

comoving distances ~x and physical distances ~r = a(T )~x. The same distinction ap-

plies to velocities: peculiar velocities ~u must not be confused with physical velocities

~v = ~u+ ~vH, where ~vH is the velocity associated with the Hubble flow2. For ~p to be

the conjugate momentum of ~x in the Lagrangian describing the dynamics, it has to

be defined as

~p = ma~u. (3.3)

Besides, the study is much simplified by the fact that cold species can be studied in

the Newtonian approximation. In this context, it is straightforward to notice that

d~x

dT
=

~p

ma2
(3.4)

and

d~p

dT
= −m~∇Φ, (3.5)

Φ being the gravitational potential.

It is convenient to define macroscopic fields from f and to derive their time

evolution from the first moments of the Vlasov equation. Since the phase-space

variables have been chosen so that d3~x d3~p f is the number of particles contained

in a phase-space comoving unit volume, the density ρ of the cold dark matter fluid,

i.e. the total mass contained in a physical unit volume, is given by

ρ(~x, T ) =
m

a3

∫
f(~x, ~p, T )d3~p. (3.6)

1The Vlasov equation can be applied because two-point interactions are neglected and the
number of particles is conserved.

2~u = a
d~x

dT
and ~v = ~u+

da

dT
~x.
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The velocity field is defined as the average of the phase-space velocities:

ui(~x, T ) =
1∫

f(~x, ~p, T )d3~p

∫
pi
ma

f(~x, ~p, T )d3~p. (3.7)

The velocity dispersion field σij(~x, T ) is defined so that

ui(~x, T )uj(~x, T ) + σij(~x, T ) =
1∫

f(~x, ~p, T )d3~p

∫
pi
ma

pj
ma

f(~x, ~p, T )d3~p. (3.8)

Finally, one introduces the density contrast field δ(~x, t):

δ(~x, T ) =
ρ(~x, T )

ρ̄
− 1, (3.9)

where ρ̄ is the spatial average of the density field.

In the Newtonian approximation, the Poisson equation then imposes3

∆Φ = 4πGa2ρ̄δ. (3.10)

Equations (3.2) and (3.10) form the Vlasov-Poisson system. They are the basis on

which all the calculations of standard perturbation theory rely.

From the Vlasov equation, it is easy to show that the fields previously defined

satisfy the continuity and Euler equations4

∂δ(~x, T )

∂T
+

1

a
∂i [(1 + δ(~x, T ))ui(~x, T )] = 0, (3.11)

∂ui(~x, T )

∂T
+

1

a

da

dT
ui(~x, T )+

1

a
uj(~x, T )∂jui(~x, T ) = −1

a
∂iΦ(~x, T )−∂j [ρ(~x, T )σij(~x, T )]

aρ(~x, T )
.

(3.12)

3.3 The single-flow approximation and its consequences

Cold fluids do not experience much thermal motion. Consequently, in the early

stages of gravitational instability, one expects velocity dispersion to be small com-

pared with the velocity gradients induced by density fluctuations. It is only at more

3Here, it is assumed that the gravitational effect of other cosmic components is negligible.
4The Einstein convention applies in those equations.
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3.3. The single-flow approximation and its consequences

advanced stages that velocity dispersion becomes effective. Indeed, gravity guides

the different flows in the same direction so there is a time at which they cross. This

phenomenon, called shell crossing, is illustrated in figure 3.2.

Figure 3.2: Schematic illustration of the emergence of multi-flow regions under the
influence of gravity. Distances and velocities are represented as one-dimensional
quantities. Author: Bernardeau, [12].

It is during the late phase of virialization that astrophysical objects such as

galaxies begin to form (see [22]). Unfortunately, as soon as shell crossing starts, the

physical processes at play become very difficult to model analytically (there exist

nevertheless attempts of post-shell-crossing modeling, see e.g. [87, 180, 37]). So far,

what is known about this epoch relies mostly on N-body simulations.

On the contrary, before shell crossing, analytic developments are possible be-

cause velocity dispersion is negligible. More precisely, one can impose σij = 0 in the

Euler equation, which makes the second term of the right hand side vanish. This

approximation is known as the single-flow approximation. It means that, at given

time and position, all the particles of the fluid have the same velocity.

In the single-flow approximation, the Euler equation reads5

d [aui(~x, T )]

dT
= −∂iΦ(~x, T ). (3.13)

One can see from this equation that the velocity field ui(~x, T ) is a gradient (plus

possibly a homogeneous function of time). Consequently, no vorticity can appear

in the fluid in the absence of shell crossing (see [132, 182, 142] for more details). In

this context, the behavior of the velocity field can entirely be described in terms of

5For any field X(~x, T ),
dX

dT
= ∂TX + ∂iX∂Tx

i = ∂TX +
1

a
ui∂iX.
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3.3. The single-flow approximation and its consequences

its divergence θ(~x, T ), defined as

θ(~x, T ) =
1

aH
∂iui(~x, T ). (3.14)

This property is very useful. In particular, it allows to rewrite the system of equa-

tions on a compact form, much easier to manipulate.

To that aim, it is convenient to move to reciprocal space, to use the conformal

time as time variable and to introduce the doublet6

Ψb(k, η) ≡ (δ(k, η),−θ(k, η))T. (3.15)

In this framework, after taking the divergence of the Euler equation to make the

quantity θ appear7, the equations of motion can be grouped into a single equation8

(the convention that repeated Fourier arguments are integrated over applies here),

a(η)∂aΨb(k, η) + Ω c
b (η)Ψc(k, η) = γ cd

b (k1,k2)Ψc(k1, η)Ψd(k2, η). (3.16)

The left-hand side is linear (i.e. there is no mode coupling at play in it) and the right

hand side contains all nonlinear interactions between the fields. Note in particular

that those couplings are quadratic without adding any approximation.

The explicit expression of Ω c
b (η) is

Ω c
b (η) =


 0 −1

−3

2
Ωm 1 + a

∂aH
H


 , (3.17)

where Ωm =
8πGρ̄a2

3H2
. Note in particular that this matrix is scale-independent.

Besides, the non-zero elements of the symmetrized coupling matrix γ cd
b (k1,k2) are

given by

γ 22
2 (k1,k2) = δD(k− k1 − k2)

|k1 + k2|2(k1.k2)

2k2
1k

2
2

, (3.18)

6The index b is either 1 (Ψ1 = δ) or 2 (Ψ2 = −θ).
7Note that, in reciprocal space, ui(k, η) = −i

aH

k2
kiθ(k, η).

8By definition, ∂a =
1

aH
∂T .
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γ 12
1 (k1,k2) = δD(k− k1 − k2)

(k1 + k2).k2

2k2
2

, (3.19)

γ 21
1 (k1,k2) = δD(k− k1 − k2)

(k1 + k2).k1

2k2
1

. (3.20)

Note that, in this approach, this matrix does not depend on time.

The compact equation presents the benefit of making possible the writing of a

formal solution:

Ψb(k, η) = g c
b (η)Ψc(k, η0) +

∫ η

η0

dη′g c
b (η, η′)γ de

c (k1,k2)Ψd(k1, η
′)Ψe(k2, η

′),

(3.21)

η0 being the initial time and g c
b the Green function of the equation (3.16) (see the

reference articles [159, 160, 45]). The first term of the right hand side of (3.21) is

the linear solution, i.e. the solution of the linear equation

a(η)∂aΨb(k, η) + Ω c
b (η)Ψc(k, η) = 0. (3.22)

Studying the properties of this linear limit is not problematic in standard per-

turbation theory (see [13]). However, dealing with the nonlinear terms is more

challenging. Several approaches aiming at going beyond the linear regime have

nevertheless been proposed in order to gain accuracy.

3.4 Perturbation theory at NLO and NNLO

In nonlinear perturbation theory, many achievements rely on the use of diagram-

matic representations. Indeed, the form of the solution (3.21) quite naturally incites

one to describe couplings in terms of diagrams (analogs of the Feynman diagrams

of quantum field theory). As can be seen clearly in (3.21), the time evolution of a

given field Ψb(k, η) is determined by the initial values of all fields. The statistical

quantities that are relevant for cosmology are thus the correlation functions involv-

ing those initial (Gaussian) fields. The simplest one is of course the one involving

only two fields, i.e. the linear power spectrum

〈Ψa(k, η)Ψb(k
′, η)〉 = Pab(k, η)δD(k + k′). (3.23)
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3.4. Perturbation theory at NLO and NNLO

Its diagrammatic representation is in accordance with it, simple and linear. This

level of description is called tree-level.

Obviously, one can increase accuracy by increasing the number of contributing

initial fields taken into account. Diagrammatically, it simply means adding loops

in linear diagrams, those loops symbolizing pair associations9. Indeed, one can

introduce l-order power spectra P
(l)
ab (l being also the number of loops) so that

Pab(k, η) =
∞∑

l=0

P
(l)
ab (k, η), (3.24)

with

δD(k + k′)P (l)
ab (k, η) =

2l+1∑

m=1

〈Ψ(m)
a (k, η)Ψ

(2l+2−m)
b (k′, η)〉. (3.25)

The exponents in brackets are the numbers of interacting modes k1, k2, ... (satis-

fying k = k1 + k2 + ...) taken into account in Ψ
( )
a (k, η).

Usually, one-loop corrections are called next-to-leading-order (NLO) corrections

and two-loop corrections are called next-to-next-to-leading-order (NNLO) correc-

tions. The first calculations of loop corrections were performed in the nineties

([112, 97, 161]). More recent studies allow to reach the two-loop level ([15, 177]) or

even the three-loop level ([26]).

I do not present in more detail the associated formalism because it would be

cumbersome and not particularly helpful to understand the work I did as a PhD

student. Indeed, I did not directly use diagrammatic representations and renormal-

ization techniques. Besides, all the needed information can be found in very detailed

references. The two leading methods that make a fruitful use of diagrammatic rep-

resentations thanks to renormalization group techniques are [45]10 and [117]. A

particular formulation of such developments is the so-called time-flow equation ap-

proach ([133]). Several improvements of such approaches have been achieved since

then. One can cite e.g. the MPTBREEZE ([46]) or RegPT ([177]) approaches. Such

enhancements of standard perturbation theory involving resummation techniques

are necessary because the expansion of standard perturbation theory, order by or-

der, is not convergent (see [15] and [26]).

9Again, only pair associations matter in virtue of Wick’s theorem. See section 2.2.2.
10This reference also explains in detail the procedure to be followed to draw diagrams and to

interpret them.
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What is important here is rather to stress on the fact that all those developments,

which are the cornerstones of the understanding of the nonlinear growth of structure,

rely on the equation (3.16). For this reason, when starting my work on neutrinos, it

was precisely in the relativistic generalization of this equation that I was interested.

Succeeding in it would indeed mean that, in the long term, one could hope for

comparable predictions without the need to restrict the studied cosmic fluid to cold

dark matter.

3.5 Eikonal approximation and invariance properties

In the standard case of a cold pressureless fluid, a strategy has been developed

to better understand how couplings between modes of very different wavelengths

contribute to the nonlinear growth of structure. This strategy relies on the eikonal

approximation, which in this context can be associated with the invariance prop-

erties of the equation of motion (3.16). I will briefly present the principle of the

reasoning in this section. Then it will be convenient to expose in the next chap-

ters the way in which I started to extend those results to relativistic flows. Full

details concerning the standard approach are to be found in [14] and [16]. Be-

sides, the role of the so-called extended Galilean invariance is examined carefully in

[25, 127, 100, 44, 43, 42].

3.5.1 Eikonal approximation

The notion of eikonal approximation intervenes in various fields of theoretical physics.

The way it is used in cosmology is very similar to the method described in the quan-

tum electrodynamics paper [1], i.e. highlighting the impact of given modes (in the

QED case, those of soft photons) on the propagation of other modes (in the QED

case, those of electrons).

The starting point to apply the eikonal approximation to the equation of motion

(3.16) is the fact that the amplitudes of the coupling terms (3.18), (3.19) and (3.20)

vary a lot with the wavenumber ratio
k1

k2
. Hence, it is convenient to split the

right hand side of equation (3.16) into two integration domains. The hard domain

(characterized in the following by an indexH) contains all modes whose wavelengths

are of the same order and the soft domain (characterized in the following by an index

S) encompasses modes of very different wavelengths.
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3.5. Eikonal approximation and invariance properties

Assuming that the soft domain is obtained for k2 � k1, k1 ≈ k so that the

contribution corresponding to the soft domain appears simply as a corrective term

in the linear equation of motion of the mode k, (3.22). Indeed, in this context,

equation (3.16) can be rewritten

a∂aΨb(k, η) + Ω c
b (η)Ψc(k, η)− Ξ c

b (k, η)Ψc(k, η)

=
[
γ cd
b (k1,k2) Ψc(k1, η) Ψd(k2, η)

]
H
, (3.26)

with

Ξ c
b (k, η) ≡ 2

∫

S
d3q eik.γ cd

b (k,q)Ψd(q, η) . (3.27)

The soft momenta q (i.e. q � k) at play in equation (3.27) being integrated over,

Ξ c
b (k, η) is a mere field, not a coupling matrix. When the contribution of the hard

domain is negligible, the equation of motion reads

a∂aΨb(k, η) + Ω c
b (η)Ψc(k, η)− Ξ c

b (k, η)Ψc(k, η) = 0. (3.28)

It can be interpreted as the equation of motion of the mode k evolving in a medium

perturbed by large-scale modes. It is particularly interesting for cosmologists be-

cause it is much simpler than the full equation while encoding the way in which

long-wave modes alter the growth of structure.

In the eikonal limit (i.e. when k2 � k1), k1 ≈ k and k2 ≈ q so the predominant

elements of the coupling matrix are

γ 22
2 (k,q) = γ 12

1 (k,q) ≈ k.q

2q2
. (3.29)

One neglects γ 21
1 (k,q) because

γ 21
1 (k,q) ≈ 1

2
� k.q

2q2
. (3.30)

In this context, the NLO correction Ξ c
b (k, η) simply reads

Ξ c
b (k, η) ≡ −δ c

b

∫

S
d3q

k.q

q2
θ(q, η) = δ c

b Ξ(k, η). (3.31)

Note in particular that it does not directly depend on the density contrast field
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3.5. Eikonal approximation and invariance properties

δ(k, η). Besides, it is a purely imaginary quantity because the velocity divergence

is real and θ(q, η) = θ∗(−q, η) implies Ξ c
b (k, η) = −Ξ c

b
∗(−k, η).

The advantage of the equation of motion (3.28) is that it can easily be solved.

Indeed, its Green functions ξ b
a (k, η, η0) are related to the Green functions g b

a (η, η0)

of the zeroth order equation (3.22) simply by

ξ c
b (k, η, η0) = g c

b (η, η0) exp

[∫ η

η0

dη′Ξ(k, η′)
]
. (3.32)

Given the definition (3.31), the time integration of Ξ(k, η) is nothing but a displace-

ment d projected along the direction k,

ξ c
b (k, η, η′) = g c

b (η, η′) exp
[
ik.d(η, η′)

]
. (3.33)

More precisely, the quantity d(η, η′) should be interpreted as the total displacement

induced by the long-wave modes between times η and η′. Expression (3.33) shows

that the only impact of long-wave modes is to shift the phase of the propagator of

the background equation.

Renormalized perturbation theory comes into play when one decides to construct

nonlinear propagators associated with the general nonlinear equation of motion

(3.16). Such propagators, denoted G c
b , are defined so that

G c
b (k, η)δD(k− k′) ≡

〈
Ψb(k, η)−Ψ

(0)
b (k, η)

Ψc(k
′, η0)−Ψ

(0)
c (k′, η0)

〉
. (3.34)

They must in particular take into account the perturbations induced by the soft

domain, that is to say that one needs to compute (among others) the quantities

〈
ξ c
b (k, η, η′)

〉
= g c

b (η, η′) exp

[
−1

2
k2σ2

d(η, η′)
]
, (3.35)

with σ2
d(η, η′) =

1

3

〈
d2(η, η′)

〉
. The idea developed in [45] is that, in diagrammatic

representation, one-loop contributions to nonlinear propagators (then called renor-

malized propagators) can be divided into sub-diagrams, whose resummations are

connectable to physical quantities. For instance, the authors showed that

σ2
d(η, η′) =

(
eη − eη′

)2
∫

d3q
1

3q2
P lin(q), (3.36)

where P lin is the two-point correlation function of initial linear fields. This key
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result is the starting point of the computation of resummed propagators at NLO

(see [45] for the “RPT method”, [46] for the “MPTBREEZE method” and [177] for the

“RegPT method”). In this context, perturbative expansions of the nonlinear power

spectrum contain renormalized propagators plus terms describing mode couplings.

Interestingly (and independently on renormalized perturbation theory), one can

show that introducing an eikonal correction in the linear equation of motion has

no impact on the power spectra, provided that they involve fields evaluated at the

same time. The reason is that the different phase shifts appearing in the corrected

propagators (3.33) exactly cancel each other out. We will see now that it is directly

related to the invariance properties of the equations of motion.

3.5.2 Invariance properties

It is easy to check that, in the single-flow approximation, the system of equations

(3.11)-(3.12) is invariant under the change of coordinates (written here in terms of

conformal time)

x̃i = xi +Di(η), (3.37)

η̃ = η,

δ̃ = δ,

ũi = ui +
dDi(η)

dη
,

Φ̃ = Φ− 1

a

da

dη

dDi(η)

dη
xi − d2Di(η)

dη2
xi,

where Di(η) is an arbitrarily time-dependent uniform field. The relative motion

between the two frames depending on time, this invariance is sometimes called ex-

tended Galilean invariance. As shown in [44], it actually derives from the equivalence

principle. It is a powerful property since it states that any acceleration of a given

area of the universe does not affect the development of gravitational instabilities in

it.

The striking point is that such a change of frame affects the linear propagator

precisely in the same way as the eikonal correction Ξ c
b (k, η) does. Indeed, according
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to (2.8), transformations (3.37) impose

g̃ c
b (η̃, η̃′) = g c

b (η, η′) exp{−ik.
[
D(η)−D(η′)

]
}. (3.38)

So the displacement Di at play in the transformations (3.37) can be related to the

eikonal displacement di in such a way that

g̃ c
b (η̃, η̃′) = g c

b (η, η′) exp
[
ik.d(η, η′)

]
. (3.39)

In other words, the perturbation of the linear propagator generated by long-wave

modes, (3.33), can be wiped out by a mere change of coordinates. It explains why

equal-time statistical quantities such as power spectra are not sensitive to Ξ c
b (k, η).

Regarding unequal-time correlation functions, it is possible to derive consistency

relations involving them. We have seen that velocity divergences (or equivalently

density contrasts according to the continuity equation (3.11)) involving soft modes

perturb the medium by generating displacement fields in the form

d(η, η′) = i

∫
d3q

1

q2
q

∫ η

η′
dη′′ θ(q, η′′). (3.40)

Hence, taking the effect of a soft mode q into account is equivalent to considering

that all other modes evolve in a perturbed medium, the perturbed fields being here

nothing but the original fields transformed according to (3.37):

〈δ(x1, η1)...δ(xn, ηn)〉p.m. =
〈
δ̃(x̃1, η̃1)...δ̃(x̃n, η̃n)

〉
u.m.

, (3.41)

where “p.m.” stands for “perturbed medium” and “u.m.” for “unperturbed medium”.

In reciprocal space, to compute a correlation function involving a field evaluated

at q, one can therefore compute the correlation function of all other fields (in the

perturbed medium) and then correlate it with the disturber field:

〈δ(q, η)δ(k1, η1)...δ(kn, ηn)〉q→0, u.m. =
〈
δ(q, η) 〈δ(k1, η1)...δ(kn, ηn)〉p.m.

〉
u.m.

.

(3.42)

In general, the form of the consistency relations (also called Ward identities) that

can be derived from such considerations depends on the assumptions made to ex-

press the perturbed density contrasts. Examples can be found in [100]. In the case

of perturbations corresponding to “extended Galilean” transformations (3.37), one
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finds as a first approximation for the three-point correlator

〈δ(q, η)δ(k1, η1)δ(k2, η2)〉q→0 (3.43)

= −q.(k1 + k2)

q2
P lin(q; η) 〈δ(k1, η1)δ(k2, η2)〉

(
eη1−η − eη2−η) ,

where P lin(q; η) is the linear power spectrum defined in (3.23).

Note that, at equal times, 〈δ(k1, η1)δ(k2, η1)〉 ∝ δD(k1 + k2) so that the right-

hand side of (5.29) is zero. In theory, consistency relations such as (5.29) are

particularly interesting because they allow to gain one order in the knowledge of

correlation functions. However, the fact that it involves unequal-time correlators

only makes the measurement of such observables very challenging.

3.6 Perturbation theory applied to the study of massive

neutrinos

The formalism described in the previous sections is valid only for cold fluids in which

the velocity dispersion is negligible. It is tempting to extend it to other species than

cold dark matter. For instance, multi-fluid approaches involving cold dark matter

and baryons ([169, 17]) or dark energy ([155, 49, 3]) have been realized. Including

neutrinos is challenging because it is a hot species so neglecting velocity dispersion

would not be realistic. Other simplifying assumptions are thus necessary.

In [153, 198, 105, 181], mixtures of baryons, cold dark matter and massive

neutrinos are considered at NLO but neutrino perturbations (whose effect is as-

sumed to be particularly small) are kept at linear order. In [164, 106, 163], it is

the time-dependence of the free-streaming length of neutrinos that is neglected.

[27] proposes a hybrid approach: the fluid approach based on the Vlasov-Poisson

system is applied at NLO at small redshifts and, at high redshifts, neutrinos are

described using the linear Boltzmann hierarchy. Indeed, at small redshifts, a simple

expression can be found for the velocity dispersion and the Newtonian approxi-

mation holds whereas nonlinearities can be neglected at high redshifts. Note that

[81] also recommends the use of hybrid approaches. Besides, it warns against the

use of approximation schemes, invoking the emergence of spurious behaviors due to

unrealistic assumptions.
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The work that I present in the next chapters is based on the idea that considering

neutrinos as a collection of single-flow fluids instead of a single multi-flow fluid could

allow one to get rid of velocity dispersion.
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Chapter 4

A new way of dealing with the

neutrino component in

cosmology

We have seen that there exist two standard ways to account for neutrinos in cosmo-

logical models. In the one based on the Vlasov-Poisson system, the main difficulty

arises from the velocity dispersion term present in the Euler equation. Regarding

the Boltzmann approach, it is rather the treatment of nonlinearities that appears

challenging. As discussed in section 3.6, considering a hybrid approach that mixes

those two methods might be a solution to get a satisfactory description of massive

neutrinos beyond the linear regime.

In this thesis, I propose an alternative which consists in decomposing neutrinos

into several fluids labeled by their initial velocities and exploiting the nonlinear

continuity and Euler equations of each flow. To extend its scope of application, this

approach does not rely on the Newtonian approximation.

4.1 Principle of the method

It is clear that the single-flow approximation is decisive in the analytic modeling

of the development of inhomogeneities, responsible for the formation of the large-

scale structure, in cold pressureless fluids. The idea behind the article presented

in section 4.4 is that one can take advantage of the single-flow approximation for a

greater variety of species simply by splitting non-cold fluids into collections of flows.
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To be more precise, instead of considering a unique neutrino fluid with a con-

tinuous phase space, one can discretize the momentum space at initial time and

consider N fluids corresponding to the N initial momenta. This is illustrated in

figure 4.1 for N = 11. Note that initial momenta are characterized not only by a

norm but also by a sense and, in multi-dimensional spaces, by a direction. Further-

more, by construction, such a description applies to one mass eigenstate at a time.

What makes the decomposition possible is the fact that, after decoupling, neutri-

nos free-stream. In other words, provided that initial conditions are chosen after

neutrino decoupling, no interactions between cosmic fluids need to be taken into

account. In the picture, variations of thickness represent fluctuations of density. It

should be noticed that, at given positions, densities differ from one fluid to another

on this snapshot. It is not surprising since we know that the number of particles

will not be the same in each flow (we have seen in section 2.3.2 that phase-space

distribution functions depend on p). However, one expects usual global quantities,

which depend only on time and position, to be recovered after summing over all

the flows (explicit summation formulae are given later in this chapter).

Figure 4.1: Discretized phase space at initial time for a collection of eleven flows.
In each flow, momenta are initially homogeneous. Variations of thickness represent
fluctuations of density. For simplicity, momenta and positions have been represented
as one-dimensional quantities.

Although momenta are initially homogeneous, the unavoidable presence of fluc-

tuations of density makes momentum gradients develop over time in each flow. Note

that, for a given mass, flows of neutrinos are all the more sensitive to density fluctu-

ations that the norm of their initial momentum is small because, in that case, they

fall easily into potential wells. In particular, a fluid characterized by a zero initial

momentum is expected to behave as cold dark matter. The development of spa-

tial variations in momentum space is illustrated in figure 6. Momentum gradients
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are located on an inclined axis, characterizing the direction of the initial momenta

(which is unique here since it is a one-dimensional representation). In the same way

as for the cold dark matter component, one expects multi-flow regions to emerge

eventually. It is clear in figure 6 that it will occur much earlier in fluids with low

initial velocities. However, before shell crossing starts, it is reasonable to assume

that each fluid of neutrinos can be studied in the single-flow approximation. As

for cold dark matter, describing shell crossing is beyond the scope of the study.

Besides, it is worth noting that shell crossing occurs likely only after neutrinos have

become sufficiently slow to be rightly considered as cold species.

Figure 4.2: Development of momentum gradients in the discretized phase space
for a collection of eleven flows. This phenomenon is due to fluctuations of density,
represented by variations of thickness.

As already mentioned, in this kind of description, the global behavior of neu-

trinos should be recovered after summing results over all the single-flow fluids,

provided that the number of flows is sufficient for the sample to be representative.

Each flow being characterized by an initial momentum that I will denote ~τ , the

total phase-space distribution function is given for instance by

f tot(η,x,p) =
∑

~τ

f~τ (η,x,p) (4.1)

or, in the three-dimensional continuous limit,

f tot(η,x,p) =

∫
d3τf~τ (η,x,p), (4.2)

where f~τ is the phase-space distribution function of the fluid labeled by ~τ .

Symbolically, the choice of labeling fluids by their initial momenta and then

deriving equations of motion specific to each of them can be seen as an analog of
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the choice of adopting a Lagrangian point of view to describe a flow. The difference

is that, in a Lagrangian description, it is the initial position that is used as a label.

Conversely, the standard description of neutrinos relying on the study of f tot(η,x,p)

is more similar to an Eulerian approach.

4.2 Derivation of the equations of motion

Our first study concerning neutrinos (section 4.4), whose main goal was to test

the reliability of the method described above, has been performed in the conformal

Newtonian gauge (2.18). General relativity is indeed relevant to capture the effect

of neutrino perturbations from the local universe to super-Hubble scales. The gauge

has been chosen to facilitate comparison with the Newtonian equations of motion

presented in chapter 3. To be in tune with this formalism, we wished to derive

nonlinear equations of motion governing the behavior of a density contrast field

and of a velocity divergence field. This ambition maintains some freedom regarding

the choice of variables. As we will see, the desired equations can be obtained from

basic conservation laws. For simplicity, couplings between the metric perturbations

φ and ψ are neglected throughout the analysis. It is important to have in mind that

this action does not prevent one to depict the nonlinear growth of structure. Indeed,

couplings involving density contrasts and/or velocity divergences are untouched and

it is these nonlinear interactions that are relevant for the modeling of the formation

of the large-scale structure of the universe.

4.2.1 Conservation of the number of particles

Once the flows have been defined at initial time, the number of neutrinos contained

in each of them is constant. Indeed, only the initial momentum determines the flow

to which each neutrino is assigned. The way in which one chooses the number of

neutrinos assumed to have a given initial momentum will be discussed in section

4.3.3. Mathematically, the conservation of the number of particles is encoded in

the continuity equation. In general relativity, it is given by the conservation of a

quantity Jµ called particle four-current1,

Jµ;µ = 0. (4.3)

1I recall that the symbol “ ; ” stands for the covariant derivative defined in section 1.3.3.
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4.2. Derivation of the equations of motion

The four-current is the four-dimensional analog of the current density of classical

physics, i.e. of a flow rate. It can thus be expressed in terms of a density and a

velocity or momentum. Several possibilities concerning the choice of variables are

explored in the article presented in section 4.4 and a continuity equation is given

for each doublet. With hindsight, the variables that I retain are:

• the comoving number density nc(η,x), defined as the number of particles per

comoving unit volume d3xi,

• the comoving momentum field2 Pi(η,x).

The latter choice will be argued in section 4.3.1 and definitively justified in chapter

5. In terms of the phase-space distribution function, the comoving number density

is given by

nc(η,x) =

∫
d3pi f(η, xi, pi) (4.4)

and Pi(η,x) is nothing but the average of the phase-space comoving momenta

Pi(η,x) =

∫
d3pi f(η, xi, pi)pi∫
d3pi f(η, xi, pi)

. (4.5)

Besides, the four-current satisfies (see e.g. [18])

Jµ(η,x) = −
∫

d3pi(−g)−1/2 p
µ

p0
f(η, xi, pi), (4.6)

where g is the determinant of the metric tensor3 .

The single-flow approximation is particularly helpful in this context. Indeed, at

given time η and position x, all the particles of the fluid have the same momentum

Pi(η,x) whence

f(η, xi, pi) = nc(η,x)δD(pi − Pi(η,x)). (4.7)

It imposes directly

Jµ = −a−4(1− ψ + 3φ)
Pµ

P 0
nc. (4.8)

2As the comoving phase-space momentum defined in (2.11), it satisfies the mass-shell condition
PµPµ = −m2.

3I recall that the metric tensor gαβ is defined so that ds2 = gαβdxαdxβ . In the conformal
Newtonian gauge, ds2 is given by (2.18) whence (−g)−1/2 = a−4(1− ψ + 3φ).
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4.2. Derivation of the equations of motion

Putting this into the conservation equation (4.3), one finds eventually (φ and ψ

being kept at linear order in the calculation) the succinct equation

∂ηnc + ∂i

(
P i

P 0
nc

)
= 0. (4.9)

This equation of motion contains two independent variables only because P 0 and P i

are related via the mass-shell condition (the explicit relation is given in the article

of section 4.4). Note that
P i

P 0
is simply

dxi

dη
(see (2.11)). The form of the continuity

equation (4.9) is thus particularly reminiscent of the continuity equation (3.11) of

the cold pressureless fluid. It should be supplemented by a relativistic equivalent

of the Euler equation (3.12).

4.2.2 Conservation of the energy-momentum tensor

In the single-flow approximation, deriving the equation of motion of the momen-

tum field is straightforward. Indeed, in that case, the energy-momentum tensor is

simply4 (see again [18])

Tµν = −PµJν . (4.10)

Given the conservation of the four-current, the conservation of the energy-momentum

tensor,

Tµν;ν = 0, (4.11)

reduces to

Pµ;νJ
ν = 0. (4.12)

When applied to the spatial part of Pµ, it results in

∂ηPi − (1 + 2φ+ 2ψ)
Pj
P0
∂jPi = P0∂iψ +

PjPj
P0

∂iφ. (4.13)

It should be compared with the Newtonian Euler equation (3.12) taken in the single-

flow approximation. In the article presented in section 4.4, variants of equation

4In the article presented in section 4.4, we omitted the minus sign. Fortunately, it is a harmless
mistake.
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4.2. Derivation of the equations of motion

(4.13) are proposed. They involve more concrete variables such as the physical

velocity field or the energy field.

Encoding the time evolution of neutrino perturbations in a system such as (4.9)-

(4.13) is a novel point of view. It has been made possible thanks to the trick consist-

ing in splitting the overall neutrino fluid into several flows. Those equations are very

general because they have been derived from general relativity without neglecting

field couplings. We will see in chapter 5 that even more general equations of this

type can be found if one decides not to specify the gauge. Concrete applications

will be presented in the next chapters. In the present one, the focus is placed on

the comparison with the standard Boltzmann approach presented in section 2.3.2.

4.2.3 An alternative: derivation from the Boltzmann and geodesic

equations

In the case of a cold pressureless fluid, the continuity and Euler equations had been

obtained from the first moments of the collisionless Boltzmann equation combined

with Newton’s second law. The phase-space distribution functions of the different

flows of neutrinos satisfying also the Vlasov equation, one expects the equations of

motion of neutrinos to be re-derivable from comparable manipulations. It is useful

to ensure that it is true. Indeed, recovering our equations from an alternative

method would confer credibility to our results.

So let’s write again the Vlasov equation:

∂

∂η
f + ∂i

(
dxi

dη
f

)
+

∂

∂pi

(
dpi
dη

f

)
= 0. (4.14)

Note that this form is more general than the one given in section 2.3.2. It is thanks

to the Hamiltonian evolution of the system that both formulations are valid. In the

non-relativistic case,
dxi

dη
had been expressed in terms of the phase-space variables

thanks to the classic definition (3.4) and
dpi
dη

had been related to the gravitational

potential thanks to Newton’s second law (3.5).

In general relativity, those relations are replaced respectively by

dxi

dη
=
pi

p0
, (4.15)

which derives from the very definition (2.11) of the momentum pi, and by the

105



4.2. Derivation of the equations of motion

geodesic equation

dpi
dη

= p0∂iψ +
pjpj
p0

∂iφ. (4.16)

Note that the definition of the macroscopic momentum field, (4.5), is equivalent to

Pi(η,x)nc(η,x) =

∫
d3pi f(η, xi, pi)pi. (4.17)

More generally, in the single-flow approximation, (4.7) imposes to any macroscopic

field F depending on Pi(η,x) the relation

F [Pi(η,x)]nc(η,x) =

∫
d3pi f(η, xi, pi) F [pi] , (4.18)

which gives a direct mapping between phase-space variables and macroscopic fields.

In this framework, it is easy to show that the integration of equation (4.14) over

phase-space momenta leads to

∂ηnc + ∂i

(
P i

P 0
nc

)
= 0, (4.19)

which is precisely our first equation of motion (4.9). Besides, by combining the

geodesic equation (4.16) with (4.18), one finds5

∂ηPi − (1 + 2φ+ 2ψ)
Pj
P0
∂jPi = P0∂iψ +

PjPj
P0

∂iφ, (4.20)

which is actually our second equation of motion (4.13). The system (4.9)-(4.13) ap-

pears as a true relativistic generalization of the system (3.11)-(3.12). Indicatively,

we also showed in our article that our approach allows to re-derive the nonlinear

Boltzmann hierarchy (2.29). Finally, to close the system of equations, metric per-

turbations should be related to the fields chosen as variables. In general relativity,

such relations are given by the Einstein equations, which generalize the Poisson

equation (3.10) of the Vlasov-Poisson system.

5It requires to notice that
dpi
dη

= ∂ηpi +
pj

p0
∂jpi = ∂ηpi − (1 + 2φ+ 2ψ)

pj
p0
∂jpi.
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4.3. Comparison with standard results

4.3 Comparison with standard results

We have seen in section 2.3.2 that it is in the linear regime that the Boltzmann

hierarchy is concretely exploitable. Indeed, the linearized Boltzmann hierarchy

(2.22)-(2.23)-(2.24) allows to compute the linear perturbations of the first multipoles

of the energy distribution (2.25)-(2.26)-(2.27) whereas the nonlinear Boltzmann

hierarchy (2.29) is fruitless. To make a preliminary test of the accuracy of our

approach, we thus expressed the linearized energy multipoles in terms of our fields

and derived their time evolution from our equations of motion taken in the linear

limit.

4.3.1 Linearized equations of motion

The equation of motion (4.13) shows that the zeroth order of the momentum field,

Pi
(0), is constant. Besides, since the momentum field is initially homogeneous,

Pi (ηin) = Pi
(0) (ηin) (ηin being the initial time). The label of each flow τi ≡ Pi (ηin)

is thus not only the initial momentum but also the homogeneous part of the mo-

mentum at any time, i.e.

τi ≡ Pi(0). (4.21)

Once linearized, the Euler equation (4.13) can thus be rewritten

dPi
(1)

dη
= ∂i

[
τ0ψ +

τ2

τ0
φ

]
, (4.22)

where

τ =
√
δijτiτj (4.23)

and

τ0(η) = −
√
τ2 +m2a2(η). (4.24)

The form of the equation (4.22) is pleasant because it is reminiscent of the form

(3.13), according to which the relevant characteristics of the velocity field ui are all

contained in its divergence. This gives a first incitement to choose the momentum

field Pi as one of our variables. In our second study (see chapter 5), we showed that

Pi keeps this attractive property in any gauge and at any order in perturbation

theory. One can therefore definitely consider it as “the good variable”, especially
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4.3. Comparison with standard results

since none of the other fields that we tested presents this particularity.

It is legitimate to wonder what differentiates inherently Pi from P i for instance.

A first clue may be the fact that Pi
(1) is a gradient in terms of its canonically

conjugate space coordinates xi so one can expect P i
(1)

to be a gradient in terms

of the space coordinates xi. Note moreover that it was already pointed out in

[104] that lowering the momentum indices to work with the conjugate momenta of

the comoving space coordinates is useful since the geodesic equation written in a

homogeneous universe shows that P i
(0) ∝ a−2 whereas Pi

(0) is constant.

After moving to Fourier space and introducing, in the spirit of the study of the

cold pressureless fluid, a density constrast field

δn(η,x) =
n

(1)
c (x, η)

n
(0)
c

, (4.25)

and a divergence field

θP (x) = ∂iP
(1)
i , (4.26)

the linearized equations of motion take the form

∂ηδn = iµk
τ

τ0

[
δn + ψ + φ

(
2− τ2

τ2
0

)]
+
θP
τ0

(
1− µ2τ2

τ0
2

)
(4.27)

and

∂ηθP = iµk
τ

τ0
θP − k2

(
τ0ψ +

τ2

τ0
φ

)
, (4.28)

with µ the Cosine of the angle between the wave vector k and the initial momentum

direction,

µ =
kiτi
kτ

. (4.29)

In general, µ runs from −1 to 1 since the other number that characterizes the initial

momentum, τ , is defined in (4.23) as a positive quantity. Note nevertheless that

the equations of motion impose

δn(−µ, k, τ) = δn(µ,−k, τ) = δ∗n(µ, k, τ) (4.30)

and the same for θP . Such relations would reduce the number of equations if one

assumed that the real and imaginary parts of the fields are not independent.
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4.3. Comparison with standard results

In the large mass limit, i.e. when τ → 0 (and thus τ0 → −ma), one recovers

the standard linear equations of cold dark matter (3.22)6. The additional terms,

all proportional to
τ

τ0
, reflect the influence of a non-zero initial velocity. Their

presence in the equations of motion affects the time evolution of the perturbations

δn and θP (in a different way for each flow). Such contributions characterize the

free-streaming of neutrinos, i.e. they add in solutions a transitory period before the

fall into potential wells. Usually, free-streaming is taken into account by assuming a

non-zero (but approximate and hence valid only at given scales) velocity dispersion

in the Euler equation and by taking the contribution of neutrinos into account in

the Poisson equation (valid only on scales at which relativistic effects are negligible).

The point of view adopted here is therefore less restrictive.

4.3.2 Linearized multipole energy distribution

Our study allows to track individually the behavior of each flow of neutrinos but

what is of most interest for cosmology is of course the global effect of neutrinos.

We were thus interested in reconstructing the global multipole energy distribution

from individual features.

In terms of the global energy-momentum tensor of neutrinos, the first global

multipoles ρν , θν and σν read in Fourier space and in the linear regime (see [111]):

ρν
(1) ≡ −T 0

0
(1)
, (4.31)(

ρν
(0) + P (0)

ν

)
θν

(1) ≡ ikiT 0
i
(1)
, (4.32)

(
ρν

(0) + Pν
(0)
)
σν

(1) ≡ −
(
kikj

k2
− 1

3
δij

)(
T ij

(1) − 1

3
δijT

k
k

(1)
)
, (4.33)

with ([18])

Tµν(η,x) =

∫
d3pi(−g)−1/2 p

µpν

p0
f(η, xi, pi). (4.34)

A distinctive sign of our approach is that integrations over phase-space momenta

are replaced by integrations over all the flows of the collection, or equivalently over

6Indeed, in the non-relativistic regime, δn = Ψ1, θP = −maHΨ2 and ψ is the gravitational
potential Φ.
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all the initial momenta ~τ . More explicitly, since (4.2) and (4.7) impose

f tot(η, xi, pi) =

∫
d3τi nc(η,x;~τ)δD(pi − Pi(η,x;~τ)), (4.35)

the mapping between the two approaches reads

∫
d3pi f

tot(η, xi, pi) F(pi) =

∫
d3τi nc(η,x;~τ) F(Pi(η,x;~τ)). (4.36)

Eventually, in terms of our fields, the linearized multipole energy distribution is

therefore given by

ρν
(1) = −4π

a4
Re
∫ τmax

0
τ2dτ

∫ 1

−1
dµ τ0 nc

(0)(µ, τ)× (4.37)

[
δn(µ, τ) + φ

(
3 +

τ2

τ2
0

)
− i

µτ

kτ2
0

θP (µ, τ)

]
,

(
ρν

(0) + P (0)
ν

)
θν

(1) =
4π

a4
Re
∫ τmax

0
τ2dτ

∫ 1

−1
dµ nc

(0)(µ, τ) {iµkτ [δn(µ, τ) + 4φ] + θP (µ, τ)},

(4.38)

(
ρν

(0) + Pν
(0)
)
σν

(1) =
4π

a4
Re
∫ τmax

0
τ2dτ

∫ 1

−1
dµ τ0 nc

(0)(µ, τ)× (4.39)

{
τ2

τ2
0

(
µ2 − 1

3

)[
δn(µ, τ) + φ

(
5− τ2

τ2
0

)
+ i

µτ

kτ2
0

θP (µ, τ)

]
− 4

3
i
µτ

kτ2
0

θP (µ, τ)

}
,

where the “Re” operator takes the real part of the quantity it precedes. We give

alternative expressions, involving other fields, in our article. This is precisely in

the comparison between this way of calculating the energy distribution and the

standard one, (2.25)-(2.26)-(2.27), that we were interested.

4.3.3 Initial conditions

When the initial time is assumed to lie between the time of neutrino decoupling

and the moment at which neutrinos become non-relativistic, an analytic expression

of the global phase-space distribution function is known. It is given by equation

(2.16):

f tot
(
xi, q

)
=

[
1 + exp

q

a (T + δT (xi))

]−1

at initial time, (4.40)
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where qi = a2(1− φ)pi in the conformal Newtonian gauge (see [111]).

The mechanisms at play in the emergence of inhomogeneities (such as the lo-

cal fluctuations of temperature δT ) are complex7. To simplify the description, a

common practice is to assume that initial conditions are linear combinations of

adiabatic (also called isentropic) and isocurvature modes. The former are the two

solutions (a growing one and a decaying one) obtained by assuming that all species

have been perturbed in the same way when homogeneity ended (see more details

in [196]). It means in particular that relative entropies between flows, which are in

general non zero after a thermodynamic process has occurred, have been neglected.

The latter encompass all the combinations for which the spatial curvature remains

homogeneous while two (and only two) cosmic fluids undergo density fluctuations.

Hence, when considering N fluids (each characterized by two equations of mo-

tion), solutions are a priori a superposition of one growing adiabatic mode, (N −1)

growing isocurvature modes and N decaying modes. Neglecting decaying modes is

natural because they have become too small to be observable today. Besides, for

simplicity, isocurvature modes are also neglected in most studies (see nevertheless

[113] for an illustration of how to deal with isocurvature modes). Fortunately, the

second simplifying hypothesis (that might appear arbitrary) is strongly supported

by observations8.

Following this trend, we assumed initial conditions to be purely adiabatic in our

study. Actually, this option was really lucky for us. Indeed, our approach would

have made the description of isocurvature solutions particularly heavy since we con-

sider an increased number of fluids (see the next section for discussions concerning

the requisite number of neutrino flows). As explained in our paper (and follow-

ing some standard results), in the conformal Newtonian gauge, the adiabaticity

hypothesis leads to (on appropriate scales)

δT
(
ηin, x

i
)

T
= −ψ

(
ηin, x

i
)

2
. (4.41)

The physical meaning of equation (4.35) is that all the flows whose time evolu-

tion is such that, at time η and location xi, the particles have a momentum equal

to pi contribute to f tot
(
η, xi, pi

)
. However, at initial time, the only flow that con-

7The most robust theories describing this phenomenon are inflationary paradigms and models
describing topological defects.

8For example, according to the 2015 Planck results [137], the isocurvature contribution repre-
sents less than about 3% of the adiabatic contribution.
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tributes to f tot
(
η = ηin, x

i, pi
)

is the one labeled by τi = pi, whence a perfect match

between the global initial distribution functions f tot
(
ηin, x

i, pi = τi
)

and the initial

comoving number densities nc
(
ηin, x

i;~τ
)
.

As demonstrated in the article of section 4.4, one finds eventually9

δn(ηin, x
i;~τ) =

(
ψ
(
ηin, x

i
)

2
+ φ(ηin, x

i)

)
df0(τ)

d log τ
, (4.42)

where f0 is the background distribution function given by (2.14).

Besides, the definition

Pi(ηin, x
i;~τ) = τi (4.43)

dictates in each flow the initial condition

θP (ηin, x
i;~τ) = 0. (4.44)

The expressions (4.42) and (4.44) give the leading behavior of the fields at initial

time. They depend on τ but not on µ, which means that they describe isotropic

fields. To be able to depict the early development of anisotropic pressure in the

neutrino streams, we computed also the first early-time corrections obtained by

expanding the fields in one-dimensional10 Legendre polynomials (whose variable is

µ). The procedure is described in our article. In practice, the initial conditions that

we implemented in our code are

δn
init(µ, τ) = δ0 +

(
1

3
− µ2

)[
θ1

2Hτ0
+

k2

2H2
(δ0 + φ+ ψ)

]
− i

µk

H (δ0 + φ+ ψ)

(4.45)

and

θP
init(µ, τ) = θ1 − i

µk

2Hθ1, (4.46)

where δ0 =

(
ψ

2
+ φ

)
d log f0

d log τ
and θ1 = −k2 τ0

H (φ+ ψ).

9Note that, in our article, initial conditions are presented in terms of the proper number density
whereas I consider here the comoving number density.

10It is possible to express the angular dependence with one-dimensional polynomials because the
only variable that characterizes the direction of the initial momentum in the equations is µ.
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Note that the symmetries previously mentioned are preserved in those initial

fields.

4.3.4 Numerical tests and discussion on the appropriateness of the

multi-fluid approach

Once the analytic expression of the linearized multipole energy density distribu-

tion, the equations of motion of the fields and the initial conditions are known, it is

easy to check that the perspective we propose is consistent with the standard de-

scription. The principle of the integration scheme, as well as the numerical results,

are presented in the article of section 4.4. The main conclusions we drew are the

followings.

• For small wavenumbers, the most influential parameters are the numbers of

momenta taken into account in the discretized sums involved in the two for-

mulations of the energy multipoles. On the contrary, the number of discrete

values of µ, Nµ, and the order at which the Boltzmann hierarchy is trun-

cated, lmax, are not determining at those scales. For example, with Nµ = 12,

`max = 6, k = 0.002h/Mpc and m = 0.05 eV, the mean relative errors decrease

from 10−2 to 10−4 when the number of discrete momenta (in each approach)

is increased from 16 to 100. For the number of equations to remain reasonable

in our study, one can thus keep Nµ small as long as k . 0.01h/Mpc.

• For larger wavenumbers, the numerical integration is more demanding because

the fields undergo rapid oscillations and also depend more significantly on τ

and µ (which is visible on the equations (4.27) and (4.28) and is reminiscent

from the fact that the pulsation of acoustic oscillations is expected to be

proportional to k in neutrino fluids, see [104]). Illustratively, it is necessary

to go up to Nµ = 100 to get a percent accuracy for k = 0.1h/Mpc. Clearly,

a concrete numerical exploitation of our results would therefore require to

search for strategies allowing to reduce the numerical cost. It is something

that we have not done yet.

• Considering smaller masses also requires to improve the discretization scheme

since, in that case, the dependence on ~τ is increased.

• At late times, all the flows behave as cold dark matter. Unsurprisingly, the

convergence towards this regime strongly depends on µ, τ and m. During the
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oscillatory phase, neutrino and cold-dark-matter fields are generally out of

phase so, before the integration over µ has been performed, some velocity and

density perturbations of neutrinos have a larger real part than the fluctuations

experienced by the cold-dark-matter fluid. This can be misleading at first

glance but global perturbations have actually the expected behavior.

Those numerical tests show unequivocally that both approaches are consistent

in the linear regime. We have proven it up to a 10−5 accuracy. Illustratively, a

10−3 accuracy (obtained for k = 0.01h/Mpc and m = 0.3 eV) is presented in figure

4.3, which shows the comparison of the behaviors of the first energy multipoles.

The main drawback of our method is that, for the agreement to be satisfying, our

number of equations must generally be larger than the one required in the Boltz-

mann approach. However, our analytic model is valid beyond the linear regime.

Besides, as will be illustrated in the next chapters, the great similarities that exist

between our study and the study of the cold pressureless component inspire further

developments.
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4.4. Article “Describing massive neutrinos in cosmology as a collection of
independent flows”
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Figure 4.3: Time evolution of the energy density contrast (solid line), velocity
divergence (dashed line) and shear stress (dotted line) of the neutrinos. The dot-
dashed line is presented for comparison and corresponds to the density contrast of
the cold-dark-matter component. Top panel: the quantities are computed with our
multi-fluid approach. Bottom panel: residuals (defined as the relative differences)
when the two methods are compared. Numerical integration has been done with 40
values of τ and q and 12 values of µ. k is set to 0.01h/Mpc, m is set to 0.3 eV and
lmax is set to 6. The resulting relative differences are of the order of 10−3.

4.4 Article “Describing massive neutrinos in cosmology
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in this paper allows to show how each neutrino flow settles into the cold dark matter flow
depending on initial velocities. Although valid up to shell-crossing only, it is a further step
towards a fully non-linear treatment of the dynamical evolution of neutrinos in the framework
of large-scale structure growth.
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1 Introduction

The recent results of the Planck mission [1, 2] crown three decades of observational and
theoretical investigations on the origin, evolution and statistical properties of cosmological
perturbations. Those properties are governed not only by the mechanisms that produced
cosmological perturbations — inflation is the most commonly referred explanation — but also
by matter itself. In addition to the information they give regarding inflationary parameters,
observations of the Cosmic Microwave Background (CMB) temperature anisotropies and
polarization are thus a very precious probe of the matter content of the universe. Although
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this observational window is confined to the time of recombination, in a regime where the
metric or density perturbations are all deeply rooted in the linear regime,1 it allows an
exquisite determination of several fundamental cosmological parameters. However, some of
them remain elusive. This is in particular the case of the neutrino masses if they are too
small to leave an imprint on the recombination physics.

The experiments on neutrino flavor oscillations demonstrating that neutrinos are indeed
massive are thus of crucial importance and it is necessary to examine minutely the impact
of those masses on various cosmological observables. Understandably, such a discovery has
triggered a considerable e↵ort in theoretical, numerical and observational cosmology to infer
the consequences on the cosmic structure growth. The first study in which massive neutrinos
are properly treated in the linear theory of gravitational perturbations dates back from ref. [3]
(see also its companion paper ref. [4]). The consequences of these results are thoroughly
presented in ref. [5], where the connection between neutrino masses and cosmology - in the
standard case of three neutrino species - is investigated in full detail. It is shown that CMB
anisotropies are indirectly sensitive to massive neutrinos whereas the late-time large-scale
structure growth rate, via its time and scale dependences, o↵ers a much more direct probe of
the neutrino mass spectrum. To a large extent current and future cosmology projects aim at
exploiting these dependences to put constraints on the neutrino masses. Indeed, the impact
of massive neutrinos on the structure growth has proved to be significative enough to make
such constraints possible, as shown for instance in [6–11]. These physical interpretations
are based on numerical experiments, the early incarnations dating back from the work of
ref. [12], which have witnessed a renewed interest in the last years [13–16], and also on
theoretical investigations such as [17–20], where the e↵ect of massive neutrinos in the non-
linear regime is investigated with the help of Perturbation Theory. An important point is
that it is potentially possible to get better constraints than what the predictions of linear
theory o↵er. Observations of the large-scale structure within the local universe are indeed
sensitive to the non-linear growth of structure and thus also to the impact of mode-coupling
e↵ects on this growth. Such a coupling is expected to strengthen the role played by the
matter and energy content of the universe on cosmological perturbation properties. This is
true for instance for the dark energy equation of state [21] or for the masses, even if small,
of the neutrino species, as shown in numerical experiments [14].

One can mention another alternative that has been proposed to study the e↵ect of
neutrinos on the large-scale structure growth, [22], where the neutrino fluid is tentatively
described as a perfect fluid. In the present study we are more particularly interested in
designing tools to explore the impact of massive neutrinos within the non-linear regime of
the density perturbation growth. Little has been obtained in this context in presence of
massive neutrinos. One of the reasons for such a limitation is that the non-linear evolution
equations of the neutrino species are a priori cumbersome and di�cult to handle (the most
thorough investigations of the non-linear hierarchy equations are to be found in [23]). On
the other hand Perturbation Theory applied to pure dark matter systems has proved very
valuable and robust (see [24] for a recent review on the subject). The aim of this paper is
thus to set the stage for further theoretical analyses by presenting a complete set of equations
describing the neutrino perturbation growth, from super-Hubble perturbations of relativistic
species to those of non-relativistic species within the local universe. In particular we are
interested in deriving equations from which the connection with the standard non-linear
system describing dark matter particles is convenient.

1Except the e↵ects of lensing, which reveal non-linear line-of-sight e↵ects.

– 2 –



J
C
A
P
0
1
(
2
0
1
4
)
0
3
0

The strategy usually adopted to describe neutrinos, massive or not, is calqued from that
used to describe the radiation fluid (see e.g. refs. [3–5]): neutrinos are considered as a single
hot multi-stream fluid whose evolution is dictated by the behavior of its distribution function
in phase-space f . Calculations are performed in a perturbed Friedmann-Lemâıtre spacetime.
The key equation is the Boltzmann equation. For neutrinos, contrary to radiation, it is taken
in the collisionless limit since neutrinos do not interact with ordinary matter (neither at the
time of recombination nor after). It leads to the Vlasov equation, which derives from the
conservation of the number of particles applied to a Hamiltonian system, df

d⌘ = 0, where ⌘ is
a time coordinate. The di↵erent terms participating in the expanded form of this equation
are computed in particular with the help of the geodesic equation. In practice, whether at
super or sub-Hubble scales, the motion equations are derived at linear order with respect
to the metric fluctuations. We will here also restrict ourselves to this approximation as the
late-time non-linearity of the large-scale structure growth is not due to direct metric-metric
couplings but to the non-linear growth of the density contrasts and velocity divergences.

The possibility we explore in the present work is that neutrinos2 could be considered as
a collection of single-flow fluids instead of a single multi-flow fluid. We take advantage here
of the fact that neutrinos are actually free streaming: they do not interact with one another
and they do not interact with matter particles. We will see in particular that it is possible
to distinguish the fluid elements of the collection by labeling each of them with an initial
velocity. The complete neutrino fluid behavior is then naturally obtained by summing the
contributions of each fluid element over the initial velocity distribution. As we will see, this
description is actually very similar to that of dark matter from the very beginning. It also
breaks down for the same reason: an initially single-flow fluid can form multiple streams after
shell crossings. But this regime corresponds to the late-time evolution of the fields, which is
beyond the scope of Standard Perturbation Theory calculations so no shell-crossing is taken
into account in the following.

The paper is organized as follows. In section 2, the geometric context in which the
calculations are performed is specified as well as some physical quantities of interest. We
then derive the non-linear equations of motion associated with each fluid of neutrinos and
we make the comparison with the first moments of the Boltzmann hierarchy. In section 3,
we describe the linearized system. Section 4 is devoted to the description of the specific
construction of a multi-fluid system of single flows. We present in particular the initial and
early-time number density and velocity fields corresponding to adiabatic initial conditions.
This section ends by the presentation of the results given by the numerical integration of
the system of equations, when the whole neutrino fluid is discretized into a finite sum of
independent fluids. Results are explicitly compared to those obtained from the standard
integration scheme based on the Boltzmann hierarchy. Finally we give some hints on how
each flow settles into the cold dark matter component.

2 Equations of motion

In this section we present the derivation of the non-linear equations of motion for a single-flow
fluid of particles, relativistic or not. A confrontation of our findings with those of a more
standard approach based on the use of the Vlasov equation is presented in the last part of
the present section.

2As a matter of fact, neutrinos of each mass eigenstate.

– 3 –



J
C
A
P
0
1
(
2
0
1
4
)
0
3
0

2.1 Spacetime geometry, momenta and energy

In order to describe the impact of massive neutrinos on the evolution of inhomogeneities,
we consider a spatially flat Friedmann-Lemâıtre spacetime with scalar metric perturbations
only. Units are chosen so that the speed of light in vacuum is equal to unity. We adopt in
this work the conformal Newtonian gauge, which makes the comparison with the standard
motion equations of non-relativistic species, the Vlasov-Poisson system, easier. The metric
is given by

ds2 = a2 (⌘)
⇥
� (1 + 2 ) d⌘2 + (1 � 2�) dxidxj�ij

⇤
, (2.1)

where ⌘ is the conformal time, xi (i = 1, 2, 3) are the Cartesian spatial comoving coordinates,
a (⌘) is the scale factor , �ij is the Kronecker symbol and  and � are the metric perturbations.
The expansion history of the universe, encoded in the time dependence of a, is driven by
the overall matter and energy content of the universe. It is supposed to be known and for
practical calculations we adopt the numerical values of the concordance model.

Following the same idea, in the rest of the paper metric perturbations will be considered
as known, determined by the Einstein equations. Furthermore, following the framework
presented in the introduction, only linear terms in  and � will be taken into account in all
the derivations that follow, in particular in the motion equations we will derive.

We will consider massive particles, relativistic or not, freely moving in space-time (2.1).
Their kinematic properties are given by their momenta so we introduce the quadri-vector pµ

as the conjugate momentum of xµ, i.e.

pµ = muµ where uµ = gµ⌫dx⌫/
p

�ds2. (2.2)

It obviously implies pµpµ = �m2. In the following we will also make use of the momentum
qi, defined as

qi = a2(1 � �)pi (2.3)

in such a way that

pip
i = gijp

ipj = �ij
qiqj

a2
. (2.4)

Another useful quantity is the energy ✏ measured by an observer at rest in metric (2.1), which
is such that

p0p0 = g00p
0p0 ⌘ �✏2. (2.5)

It satisfies

✏2 = m2 + (q/a)2. (2.6)

2.2 The single-flow equations from conservation equations

We now proceed to the derivation of the motion equations satisfied by a single-flow fluid
starting from elementary conservation equations. Such a fluid is entirely characterized by
two fields, its local numerical density field n(⌘,x) and its momentum3 field P i(⌘,x)(the zero
component can be deduced from the spatial ones using the on-shell mass constraint). This
approach contrasts with a description of the complete neutrino fluid for which one has to
introduce the whole velocity distribution.

3We use an uppercase to distinguish it from a phase-space variable and we use sometimes in this paper
the velocity field V i(⌘,x) rather than the momentum field.
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2.2.1 Evolution equation of the proper number density n

The key idea is to consider a set of neutrinos that form a single flow, i.e. a fluid in which there
is only one velocity (one modulus and one direction) at a given position. If a fluid initially
satisfies this condition, it will continue to do so afterwards since the neutrinos it contains
evolve in the same gravitational potential. Thus in the following we consider fluids in which all
the neutrinos have initially the same velocity. In such physical systems, neutrinos are neither
created nor annihilated nor di↵used through collision processes so neutrinos contained in
each flow obey an elementary conservation law,

Jµ
;µ = 0, (2.7)

where Jµ is the particle four-current and where we adopt the standard notation; to indicate
a covariant derivative. It is easy to show that, in the metric we chose, this relation leads to,

@⌘J
0 + @iJ

i + (4H + @⌘ � 3@⌘�)J0 + (@i � 3@i�)J i = 0, (2.8)

where H is the conformal Hubble constant, H = @⌘a/a.

The four-current is related to the number density of neutrinos as measured by an
observer at rest in metric (2.1), n(⌘,x), by n = JµUµ, where Uµ is a vector tangent
to the worldline of this observer. The latter satisfies UµUµ = �1 and U i = 0. Thus

n = J0U0 = �a (1 +  ) J0. Given that J i = J0 P i

P 0 , eq. (2.8) can thereby be rewritten

@⌘n + @i

✓
P i

P 0
n

◆
= 3n

✓
@⌘�� H + @i�

P i

P 0

◆
. (2.9)

We signal here that this number density is the proper number density, not to be confused
with the comoving number density that we will define later (eq. (2.29)). The fact that the
right-hand side of its evolution equation is non-zero is thus not surprising. It simply reflects
the expansion of the universe. This relation can alternatively be written with the help of the
momentum Pi, expressed with covariant indices, thanks to the relations Pi = a2 (1 � 2�) P i

and P0 = �a2 (1 + 2 ) P 0. It leads to,

@⌘n � (1 + 2�+ 2 )@i

✓
Pi

P0
n

◆
= 3n(@⌘�� H) + n(2@i � @i�)

Pi

P0
, (2.10)

where a summation is still implied on repeated indices. Note that in all these transformations
we consistently keep all contributions to linear order in the metric perturbations.4

2.2.2 Evolution equation of the momentum Pi

The second motion equation expresses the momentum conservation. It is obtained from the
observation that, for a single-flow fluid, all particles located at the same position have the
same momentum so that the energy momentum tensor Tµ⌫ is given by Tµ⌫ = PµJ⌫ . The
conservation of this tensor then gives

Tµ⌫
;⌫ = Pµ

;⌫J
⌫ + PµJ⌫;⌫ = 0, (2.11)

4We note however that the factor (1 + 2�+ 2 ) that appears in the second term of this equation could be
dropped as it is multiplied by a gradient term that vanishes at homogeneous level. For the sake of consistency
we however keep such factor here and in similar situations in the following.
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which combined with equation (2.7) leads to

Tµ⌫
;⌫ = Pµ

;⌫J
⌫ = 0. (2.12)

This relation should be valid in particular for spatial indices, P i
;⌫J

⌫ = 0. It eventually
imposes,

@⌘Pi � (1 + 2�+ 2 )
Pj

P0
@jPi = P0@i +

PjPj

P0
@i� (2.13)

on the covariant coordinates of the momentum. Eq. (2.13) is our second non-linear equation of
motion. At this stage the fact that we choose covariant coordinates Pi instead of contravariant
P i or a combination of both such as qi is arbitrary but we will see that it is crucial when it
comes to actually solve this system in the linear regime, see section 3.

We have now completed the derivation of our system of equations. It is a generaliza-
tion of the standard single-flow equations of a pressureless fluid composed of non-relativistic
particles. The latter is obtained simply by imposing to the velocity to be small compared
to unity (while keeping its gradient large). To see it more easily, let us express the motion
equations in terms of the proper velocity field.

2.2.3 Other formulations of the momentum conservation

An alternative representation of eq. (2.13) can be obtained by introducing the physical ve-
locity field V i(⌘,x) (expressed in units of the speed of light). This velocity is along the
momentum P i and is such that V 2 = �PiP

i/(P0P
0). We can easily show that,

V i = �Pi

P0
(1 + �+  ). (2.14)

Note that V i can entirely be expressed in terms of Pi with the help of the relation

P 2
0 = P 2

i (1 + 2�+ 2 ) + m2a2(1 + 2 ). (2.15)

Its evolution equation derives from eq. (2.13) and reads

@⌘V
i+V i(H�@⌘�)(1�V 2)+@i +V 2@i�+(1+�+ )V j@jV

i�V iV j@j(�+ ) = 0. (2.16)

From this equation, it is straightforward to recover the standard Euler equation in the limit
of non-relativistic particles.

Similarly, the evolution equation of the energy field ✏(⌘,x), defined by5

✏(⌘,x) =
mp

1 � V (⌘,x)2
= �(1 �  )

a
P0(⌘,x), (2.17)

can be deduced from eq. (2.13),

@⌘✏+ (1 + �+  )V i@i✏+ ✏V i@i + ✏V 2(H � @⌘�) = 0. (2.18)

We will now compare these field equations to those obtained from the Boltzmann approach,
which is based on the evolution equation of the phase-space distribution function.

5P0 = �a(1 +  )✏ is a sign convention that we use in all this paper.
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2.3 The single-flow equations from the evolution of the phase-space distribution
function

2.3.1 The non-linear moments of the Boltzmann equation

The Boltzmann approach consists in studying the evolution of the phase-space distribution
function f(⌘, xi, pi), defined as the number of particles per di↵erential volume d3xid3pi of
the phase-space, with respect to the conformal time ⌘, the comoving positions xi and the
conjugate momenta pi. The particle conservation implies that

@

@⌘
f + @i

✓
dxi

d⌘
f

◆
+

@

@pi

✓
dpi

d⌘
f

◆
= 0, (2.19)

where dxi/d⌘ and dpi/d⌘ are a priori space and momentum dependent functions. Because
of the Hamiltonian evolution of the system, eq. (2.19) can be simplified into,

@

@⌘
f +

dxi

d⌘
@if +

dpi

d⌘

@

@pi
f = 0. (2.20)

In other words, f satisfies a Liouville equation, df/d⌘=0. To compute this total derivative,
there is some freedom about the choice of the momentum variable (but this choice does not
a↵ect the physical interpretation of f , which remains in any case the number of particles per
d3xid3pi). On the basis of previous work, we adopt here the variable qi defined in eq. (2.3).
In this context, the chain rule gives for the Liouville equation,

@f

@⌘
+

dxi

d⌘

@f

@xi
+

dqi

d⌘

@f

@qi
= 0. (2.21)

We are not interested in deriving a multipole hierarchy at this stage so we keep here a
Cartesian coordinate description. From the very definition of qi we have,

dxi

d⌘
=

pi

p0
=

qi

a✏
(1 + �+  ). (2.22)

On the other hand the geodesic equation leads to,

dqi

d⌘
= �a✏ @i + qi@⌘�+ (n̂in̂j � �ij)

q2

a✏
@j�, (2.23)

where q2 = �ijq
iqj and n̂i is the unit vector along the direction qi,

n̂i =
qi

q
. (2.24)

The resulting Vlasov (or Liouville) equation takes the form,

@f

@⌘
+ (1 + �+  )

qi

a✏
@if + a✏

@f

@qi


�@i +

qi

a✏
@⌘�+

⇣
n̂in̂j � �ij

⌘ q2

a2✏2
@j�

�
= 0. (2.25)

By definition, the proper energy density ⇢ and the energy-momentum tensor are related
by ⇢ = �T 0

0 . As demonstrated in [4], ⇢ can thereby be expressed in terms of the distribution
function,

⇢(⌘,x) =

Z
d3qi ✏f

a3
. (2.26)
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Its evolution equation is obtained by integrating equation (2.25) with respect to d3qi with
proper weight,

@⌘⇢+ (H � @⌘�)(3⇢+ Aii) + (1 + �+  )@iA
i + 2Ai@i( � �) = 0, (2.27)

where the quantities Aij....k are defined as,

Aij...k(⌘,x) ⌘
Z

d3qi


qi

a✏

qj

a✏
. . .

qk

a✏

�
✏f

a3
. (2.28)

As explicitly shown in appendix A, a complete hierarchy giving the evolution equations of
Aij...k can be obtained following the same idea.

2.3.2 The single-flow equations from the moments of the Boltzmann equation

The aim of this paragraph is to show that the motion equations we derived previously, (2.10)
and (2.13), can alternatively be obtained from the Vlasov equation (2.25). This comparison
requires to precise the physical meaning of the quantities defined in both approaches in order
to explicitly relate them.

Let us start with the number density of particles. By definition, for any fluid, the
comoving number density nc(⌘,x), i.e. the number of particles per comoving unit volume
d3xi, is related to the distribution function f associated with this fluid thanks to

nc(⌘,x) =

Z
d3pi f(⌘, xi, pi). (2.29)

On the other hand, the proper number density n(⌘,x), which is such that the proper energy
density is given by ⇢(⌘,x) = n(⌘,x)✏(⌘,x), reads

n(⌘,x) =

Z
d3qi f(⌘, xi, pi)

a3
(2.30)

to be in agreement with eq. (2.26). Given that d3qi = (1 + 3�)d3pi, the relation between
nc(⌘,x) and n(⌘,x) is therefore

n(⌘,x) =
1 + 3�(⌘,x)

a3
nc(⌘,x). (2.31)

Similarly, the momentum field Pi(⌘,x) can be defined as the average of the phase-space
comoving momenta pi. Using the distribution function to compute this mean value, one
thus has

Pi(⌘,x)nc(⌘,x) =

Z
d3pi f(⌘, xi, pi)pi or Pi(⌘,x)n(⌘,x) =

Z
d3qi f(⌘, xi, pi)

a3
pi. (2.32)

In the particular case explored in this section, fluids are single flows so, for each of them,

f(⌘, xi, pi) = fone�flow(⌘, xi, pi) = nc(⌘,x)�D(pi � Pi(⌘,x)), (2.33)

where �D is the Dirac distribution function. As a result we have, for any macroscopic field
depending on Pi(⌘,x), F [Pi(⌘,x)],

F [Pi(⌘,x)] nc(⌘,x) =

Z
d3pi f(⌘, xi, pi) F [pi] . (2.34)
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Taking advantage of this, we proceed to show that the Vlasov and geodesic equations together
with the relations (2.29), (2.32) and (2.34) allow to recover the equations of motion we derived
previously. We first note that the field P0(⌘,x) defined previously as a function of Pi(⌘,x)
is nothing but

P0(⌘,x)n(⌘,x) =

Z
d3qi f(⌘, xi, pi)

a3
p0. (2.35)

It is then easy to see that integration over d3pi of the equation (2.19) gives

@⌘nc + @i

✓
P i

P 0
nc

◆
= 0, (2.36)

which is exactly the first equation of motion, (2.9), after nc is expressed in terms of n following
eq. (2.31). Finally, it is also straightforward to show that the average (as defined by eq. (2.34))
of the geodesic equation (2.23) directly gives the second equation of motion when expressed
in terms of Pi, eq. (2.13).

Note that conversely, it is possible to derive the hierarchy (A.3)–(A.5) from our equations
of motion. For instance, the combination of eqs. (2.9) and (2.18) gives the following evolution
equation for ⇢(⌘,x) = n(⌘,x)✏(⌘,x),6

@⌘⇢+ ⇢(H � @⌘�)(3 + V 2) + (1 + �+  )@i(⇢V
i) + 2⇢V i@i( � �) = 0. (2.37)

Given that A(⌘,x) = ⇢(⌘,x) and that, for a single-flow fluid, the fields Ai1...in(⌘,x) are
related to A(⌘,x) by

Ai(⌘,x) = V i(⌘,x) A(⌘,x), Aij(⌘,x) = V i(⌘,x)V j(⌘,x) A(⌘,x), etc., (2.38)

eq. (2.37) is exactly the average of eq. (2.27), i.e. eq. (2.27) multiplied by f/a3, integrated
over d3qi and divided by n. It is then a simple exercise to check that the subsequent equations
of the hierarchy can be similarly recovered with successive uses of eq. (2.16).

3 The single-flow equations in the linear regime

In this section we explore the system of motion equations (2.10)–(2.13) in the linear regime.
It is useful in particular in order to properly set the initial conditions required to solve the
system.

3.1 The zeroth order behavior

Let us start with the homogeneous quantities. It is straightforward to see that the zeroth
order contribution of (2.10) is

@⌘n
(0) = �3Hn(0), (3.1)

and that the unperturbed equation for Pi is (see eq. (2.13)),

@⌘Pi
(0) = 0. (3.2)

As a result the number density of particles is simply decreasing as 1/a3 and Pi
(0) is constant.

This latter result is attractive as it makes P
(0)
i a good variable to label each flow. To take

advantage of this property, we introduce a new variable, ⌧i, defined as

⌧i ⌘ Pi
(0) (⌘) = Pi

(0) (⌘in) , (3.3)

6The energy field ✏(⌘,x) satisfies ✏(⌘,x)n(⌘,x) =
R

d3qi f(⌘,x,q)

a3 ✏(q).
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where ⌘in is the initial time. We also introduce the norm of ⌧i, ⌧ , given by

⌧ =
p
�ij⌧i⌧j . (3.4)

Similarly, we define ⌧0 as P0
(0). Note that this quantity is not constant over time. Given the

sign convention for P0 adopted in this paper, it satisfies

⌧0 = �
p
⌧2 + m2a2. (3.5)

By definition, Pi is the comoving momentum so the fact that Pi
(0) is constant does not

conflict with the fact that the physical velocities of neutrinos - as well as the velocities of any
other massive particles - are smoothed with time because of the expansion of the universe.
At this stage, we can already note that,7

Pi
(0) ⇠ constant and P i(0) ⇠ a�2. (3.6)

To be more comprehensive regarding notations, let us mention that the flows can alternatively
be labeled by the zeroth order velocity, denoted vi,

vi = V i(0)
. (3.7)

It satisfies
vi =

⌧i

(m2a2 + ⌧2)1/2
= � ⌧i

⌧0
, v2 = �ijv

ivj (3.8)

or alternatively,
⌧i
a

=
mvi

p
1 � v2

. (3.9)

3.2 The first order behavior

We focus now on the first order system. In order to simplify the notations, we introduce the
total first order derivative operator as,

dX(1)

d⌘
= @⌘X

(1) +
P i(0)

P 0(0)
@iX

(1). (3.10)

It can be written alternatively,

dX(1)

d⌘
= @⌘X

(1) � ⌧i
⌧0
@iX

(1) = @⌘X
(1) + vi@iX

(1). (3.11)

With this notation the first order equation of the number density reads,

dn(1)

d⌘
= 3@⌘�n(0) � 3Hn(1) + (2@i � @i�)

⌧i
⌧0

n(0) +

 
@iPi

(1)

⌧0
� ⌧i@iP0

(1)

⌧2
0

!
n(0) (3.12)

and that for the momentum is given by,

dPi
(1)

d⌘
= ⌧0@i +

⌧2

⌧0
@i�. (3.13)

7The behavior of the momentum variables with respect to the scale factor can also be deduced from the
geodesic equation (see e.g. ref. [25]).
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The latter equation exhibits a crucial property: it shows that the source terms of the evolution

of P
(1)
i form a gradient field. As a consequence, although one cannot mathematically exclude

the existence of a curl mode in P
(1)
i , such a mode is expected to be diluted by the expansion

so that P
(1)
i remains e↵ectively potential. At linear order, this property should be rigorously

exact for adiabatic initial conditions.8

As a consequence, the P
(1)
i behavior is dictated by the gradient of ⌧0 + ⌧2/⌧0�. It is

not the case of other variables such as P i(1)
, which is a combination of P

(1)
i and vi. This is

the reason we preferably write the motion equations in terms of this variable.

We close the system thanks to the on-shell normalization condition of Pµ, which gives
the expression of P0 at first order,

P
(1)
0 =

⌧iP
(1)
i

⌧0
+
⌧2

⌧0
�+ ⌧0  . (3.14)

Eqs. (3.12) and (3.13) associated with relation (3.14) form a closed set of equations describing
the first order evolution of a fluid of relativistic or non-relativistic particles.

3.3 The system in Fourier space

To explore the properties of the solution of the system (3.12)–(3.13)–(3.14), let us move to
Fourier space. Each field is decomposed into Fourier modes using the following convention
for the Fourier transform,

F (x) =

Z
d3k

(2⇡)3/2
F (k) exp(ik.x). (3.15)

We will consider the Fourier transforms of the density contrast field �n(x)

�n(x) =
1

n(0)
n(1)(x), (3.16)

of the divergence field,

✓P (x) = @iP
(1)
i , (3.17)

and of the potentials. We can here take full advantage of the fact that Pi is potential at
linear order. It indeed implies that Pi

(1) is entirely characterized by its divergence,

P
(1)
i (k) =

�iki

k2
✓P (k). (3.18)

After replacing equation (3.13) by its divergence, one finally obtains from equations (3.12)
and (3.13)

@⌘�n = iµk
⌧

⌧0
�n + 3 @⌘�+

✓P

⌧0

✓
1 � ⌧2

⌧2
0

µ2

◆
� iµk

⌧

⌧0

✓
1 +

⌧2

⌧2
0

◆
��  

�
(3.19)

and

@⌘✓P = iµk
⌧

⌧0
✓P � ⌧0k

2 � ⌧2

⌧0
k2�, (3.20)

8But there is no guarantee it remains true to all orders in Perturbation Theory.
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Figure 1. Sketch of 1D phase-space evolution. The top panel shows flows with initially no velocity
gradients but density fluctuations (illustrated by the thickness variation of the lines). The bottom
panel shows how the flows develop velocity gradients at later times. They can ultimately form multi-
flow regions after they experience shell-crossing, in a way similar to what happens to dark matter
flows. It is expected to happen preferably to flows with low initial velocities. Note that a flow with
no initial velocity would behave exactly like a cold dark matter component.

where µ gives the relative angle between k and ⌧ or alternatively between k and v,

µ =
k.⌧

k⌧
=

k.v

k v
. (3.21)

These equations can alternatively be written in terms of the zeroth order physical velocity v,

@⌘�n = �iµkv �n + 3 @⌘��
p

1 � v2
�
1 � v2µ2

� ✓P

ma
+ iµkv

⇥�
1 + v2

�
��  

⇤
, (3.22)

@⌘✓P = �iµkv ✓P +
map
1 � v2

k2
�
v2�+  

�
. (3.23)

This is this system that we encode in practice. As we will see, it provides a valid representa-
tion of a fluid of initially relativistic species. In the following, we explicitly show how it can
be implemented numerically.

4 A multi-fluid description of neutrinos

In this section, we explain how one can define a collection of flows to describe the whole
fluid of neutrinos. Note that this construction is valid for any given mass eigenstate of the
neutrino fluid. If the masses are not degenerate, it should therefore be repeated for each
three eigenstates.

4.1 Specificities of the multi-fluid description

In a multi-fluid approach, the overall distribution function is obtained taking several fluids
into account (see figure 1 for illustration purpose). More precisely, the overall distribution
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function f tot has to be reconstructed from the single flows labeled by ⌧i,

f tot(⌘, xi, pi) =
X

⌧i

fone�flow(⌘, xi, pi; ⌧i) =
X

⌧i

nc(⌘,x; ⌧i)�D(pi � Pi(⌘,x; ⌧i)). (4.1)

In the continuous limit, we thus have

f tot(⌘, xi, pi) =

Z
d3⌧i nc(⌘,x; ⌧i)�D(pi � Pi(⌘,x; ⌧i)), (4.2)

the parameter ⌧i being assumed to describe a 3D continuous field.

It means in particular that the momentum integrations in phase-space used in the
standard description (i.e. for a single multi-flow fluid) to compute global physical quantities
should be replaced in our description by a sum over the ⌧i-fluids (i.e. a sum over all the
possible initial momenta or velocities),

Z
d3pi f

tot(⌘, xi, pi) F(pi) =

Z
d3⌧i nc(⌘,x; ⌧i) F(Pi(⌘,x; ⌧i)) (4.3)

or equivalently

Z
d3qi f tot(⌘, xi, qi)

a3
F(pi) =

Z
d3⌧i n(⌘,x; ⌧i) F(Pi(⌘,x; ⌧i)) (4.4)

for any function F . For each flow, the evolution equations are known but we still have to set
the initial conditions to be able to use them in practice, see 4.3. Before doing this, we will
compute the multipole energy distribution associated with our description.

4.2 The multipole energy distribution in the linear regime

Of particular interest to compare our results to those of the Boltzmann approach is the com-
putation of the overall multipole energy distribution. We will focus on the total energy density
⇢⌫ , the total energy flux dipole ✓⌫ and the total shear stress �⌫ . These quantities are directly
related to the phase-space distribution function thanks to the following relations (see [4]),

⇢⌫ = �T 0
0 =

Z
d3qi ✏(q

i)

a3
f, (4.5)

⇣
⇢⌫

(0) + P (0)
⌫

⌘
✓⌫ = iki�T 0

i = i�

Z
d3qi kjqj

a4
f

�
, (4.6)

⇣
⇢⌫

(0) + P⌫
(0)
⌘
�⌫ = �

✓
kikj

k2
� 1

3
�ij

◆✓
�T i

j �
1

3
�i
j�T k

k

◆

=
1

3
�

Z
d3qi qiqj

a5✏(qi)

✓
�ij � 3

kikj

k2

◆
f

�
, (4.7)

where ⇢
(0)
⌫ and P

(0)
⌫ are the density and pressure of the neutrino fluid at background level

and � stands for the perturbed part of the quantity it precedes.
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At linear order these quantities can be expressed with the help of the linear fields
introduced in our description. More precisely, eq. (4.4) yields

⇢(1)
⌫ = 4⇡

Z
⌧2d⌧

Z 1

�1
dµ⇢(1)(⌧, µ), (4.8)

⇣
⇢⌫

(0) + P (0)
⌫

⌘
✓(1)
⌫ = 4⇡i

Z
⌧2d⌧

Z 1

�1
dµ
h
⇢(1)(⌧, µ)v(⌧, µ)µk + ⇢(0)

⌫ (⌧, µ)kiV i(1)
(⌧, µ)

i
,

(4.9)
⇣
⇢⌫

(0) + P⌫
(0)
⌘
�(1)
⌫ = �4⇡

Z
⌧2d⌧

Z 1

�1
dµ


⇢(1)(⌧, µ)v2(⌧, µ)

✓
µ2 � 1

3

◆�

� 8⇡

Z
⌧2d⌧

Z 1

�1
dµ

"
⇢(0)(⌧, µ)v(⌧, µ)

 
µkiV i(1)

(⌧, µ)

k
� V (1)(⌧, µ)

3

!#
.

(4.10)

For explicit calculation, note that ⇢(1)(⌧, µ) = n(1)(⌧, µ)✏(0)(⌧, µ) + n(0)(⌧, µ)✏(1)(⌧, µ), where

✏(1)(⌧, µ) =
mv2(⌧, µ)p
1 � v2(⌧, µ)

�� iµv(⌧, µ)

ak
✓P (⌧, µ) (4.11)

and that

V i(1)
(⌧, µ) = (1 � v2)vi�� i

k2

p
1 � v2

ma

�
ki � kjvjvi

�
✓P (⌧, µ). (4.12)

The physical quantities ⇢
(1)
⌫ , ✓

(1)
⌫ and �

(1)
⌫ are source terms generating the metric fluctuations

involved in the growth of the large-scale structure of the universe. We use them to compare
the predictions of the multi-fluid approach with those of the standard Boltzmann approach
in section 4.4.

4.3 Initial conditions

The initial time ⌘in is chosen so that the neutrino decoupling occurs at a time ⌘ < ⌘in and
neutrinos become non-relativistic at a time ⌘ > ⌘in. The initial conditions depend obviously
on the cosmological model adopted. In this paper, we describe solutions corresponding to

adiabatic initial conditions. It imposes to the quantities ✓
(1)
⌫ and �

(1)
⌫ , defined by eqs. (4.9)–

(4.10), to be zero but we still have some freedom in the way we assign each neutrino to one
flow or to another. The initial conditions we present in the following correspond to a simple
choice respecting the adiabaticity constraint.

4.3.1 Initial momentum field Pi(⌘in,x; ⌧i)

The description we adopt is the following: at initial time we assign to the flow labeled by ⌧i
all the neutrinos whose momentum Pi is equal to ⌧i within d3⌧i. It obviously imposes

Pi(⌘in,x; ⌧i) = ⌧i. (4.13)

It implies in particular that Pi
(1)(x, ⌘in; ⌧i) = 0 and consequently that ✓P (x, ⌘in; ⌧i) = 0.
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4.3.2 Initial number density field n(⌘in,x; ⌧i)

Although the velocity fields are initially uniform, it is not the case of the individual numerical
density fields as we expect the total numerical density field to depend on space coordinates
at linear order.

Initial number densities are obviously strongly related to initial distribution functions
in phase-space f . Before decoupling, the background distribution of neutrinos is expected
to follow a Fermi-Dirac law f0 with a temperature T and no chemical potential (see e.g.
refs. [3–5, 25] for a physical justification of this assumption),

f0 (q) / 1

1 + exp [q/(akBT )]
, (4.14)

where kB is the Boltzmann constant and q is the norm - previously defined, see the geodesic
equation (2.23) - of the phase-space variable qi. As explained in ref. [25], after neutrino
decoupling, the phase-space distribution function of relativistic neutrinos is still a Fermi-
Dirac distribution but modified by local fluctuations of temperature, whence

f (⌘in,x, q) / 1

1 + exp [q/(akB(T + �T (⌘in,x))]
. (4.15)

In terms of the variable pi, it can be rewritten

f (⌘in,x, pi) /
1

1 + exp [p(1 + �(x, ⌘in))/(akB(T + �T (x, ⌘in)))]
. (4.16)

Given eqs. (2.29) and (2.31) and recalling that f is non zero only for pi = ⌧i at initial time,
the initial numerical density contrast follows directly,

�n(⌘in, x
i; ⌧i) =

f (1)(⌘in, x
i, ⌧i)

f (0)(⌘in, xi, ⌧i)
+ 3�(⌘in, x

i). (4.17)

The expression of f (1)(⌘, xi, pi) can be easily computed. It reads

f (1)(⌘in, x
i, p) =

p

akBT

✓
�T (⌘in, x

i)

T
� �(⌘in, x

i)

◆
exp[p/(akBT )]

1 + exp[p/(akBT )]
f0(p), (4.18)

which can be reexpressed in the form,

f (1)(⌘in, x
i, p) = �

✓
�T (⌘in, x

i)

T
� �(⌘in, x

i)

◆
df0(p)

d log p
. (4.19)

The last step of the calculation consists in relating the local initial temperature fluctuations
to the metric fluctuations for adiabatic modes. As mentioned in [5], on super-Hubble scales,
the temperature perturbation of the neutrino fluid is proportional to its density constrast:
4�T (x, ⌘in)/T (⌘in) = ⇢(1)(x, ⌘in)/⇢

(0)(⌘in). Besides, the adiabaticity hypothesis imposes
equality between the initial density contrasts of all species. Using the standard result that, for

photons, ⇢
(1)
� (x, ⌘in)/⇢

(0)
� (⌘in) = �2 (x, ⌘in), one thus finds �T (x, ⌘in)/T (⌘in) = � (x, ⌘in)/2.

Besides, at super-Hubble scales, the neutrino distribution is static (see e.g. [4]). We finally
get the following expression for the linearized initial number density fluctuations,

�n(⌘in,x; ⌧i) = 3�(x, ⌘in) +

✓
 (⌘in,x)

2
+ �(⌘in,x)

◆
d log f0(⌧)

d log ⌧
. (4.20)

It can then easily be checked from eqs. (4.8)–(4.10) that ✓⌫ and �⌫ both vanish at initial time
with this choice of initial conditions.

– 15 –



J
C
A
P
0
1
(
2
0
1
4
)
0
3
0

4.3.3 Early-time behavior

A remarkable property of the initial fields we just computed is that they are isotropic, i.e.
they do not depend on µ. We know however that neutrinos develop an anisotropic pressure
which is a source term of the Einstein equations. For practical purpose, e.g. to implement
these calculations in a numerical code, it is therefore useful to examine in more detail the
sub-leading behavior at initial time. To that aim, we study how higher order multipoles
arise at early time by decomposing the µ dependence of the fields �n and ✓P into Legendre
polynomials,

�n(⌘,k; ⌧, µ) =
X

`

�n,`(⌘,k; ⌧) (�i)`P`(µ) (4.21)

and
✓P (⌘,k; ⌧, µ) =

X

`

✓P,`(⌘,k; ⌧) (�i)`P`(µ). (4.22)

In order to properly compute the source terms of the Einstein equations, one needs to know
the expression of the number density multipoles up to ` = 2 and the one of the momentum
divergence multipoles up to ` = 1. The leading order behavior corresponding to these terms
can be obtained easily from the motion equations (3.22)–(3.23) noting that � and  are
constant, H scales like 1/a and

p
1 � v2 scales like a at superhorizon scales for adiabatic

initial conditions.
Once the equations of motion are decomposed into Legendre polynomials, one gets

successively,

✓P,0 =
a

H
mp

1 � v2
k2 (�+  ) (4.23)

✓P,1 =
k

2H ✓P,0 (4.24)

�n,0 = 3�+

✓
 

2
+ �

◆
d log f0(⌧)

d log ⌧
(4.25)

�n,1 =
k

H [�n,0 �  + 2�)] (4.26)

�n,2 = � k

3H�n,1 � (1 � v2)1/2 ✓P,0

3amH , (4.27)

where ✓P,` scales like a`+1 and �n,` scales like a` at leading order.

4.4 Numerical integration

This section aims at describing the numerical integration scheme developed to deal with a
multi-fluid description and to compare its e�ciency with that of the standard integration of
the Boltzmann hierarchy. All the plots we will present to illustrate our findings are made
using the WMAP5 cosmological parameters. In the following, the wave number values k are
expressed in units of keq., where keq. ⇡ 0.01 h/Mpc is the horizon crossing wave number at
matter-radiation equality. Similarly, the time dependence will be expressed in units of aeq..
Besides, convergence tests are realized for a neutrino mass of 0.05 eV or 0.3 eV.

4.4.1 Method

The equations of motion in Fourier space (3.22) and (3.23) are numerically integrated with
the help of a Mathematica program in which the time evolution of the metric perturbations
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Nq (#) and N⌧ (!) 16 40 100

16 10�2 5 10�3 5 10�3

40 10�2 10�3 2 10�4

100 10�2 10�3 10�4

Table 1. Relative errors (averaged in time between a/aeq = 10�2 and a/aeq = 103) between the
results obtained with the Boltzmann hierarchy and those obtained with the multi-fluid approach. For
each value of Nq and N⌧ , the largest magnitude of the relative error on either the density, the dipole
or the shear is given. Calculations are made with Nµ = 12, `max = 6, k = 0.2 keq. and m = 0.05 eV.

is given. It is as usual determined by the Einstein equations but in practice simply extracted
from a standard Boltzmann code (the code presented in [26]). The initial conditions we
implement correspond to the adiabatic expressions appearing in eqs. (4.23)–(4.27). The main
objective of this numerical experiment is to check that the multipole energy distributions
are identical when computed from the resolution of the Boltzmann hierarchy or from the
equations of the multi-fluid description. In appendix A, we succinctly review the construction
of the Boltzmann hierarchy. In this approach, energy multipoles are computed thanks to
eqs. (A.10)–(A.15). The angular dependence of qi is taken into account via the Legendre
polynomials used to decompose the distribution function in phase-space. Of course, because
of the integration on d3qi necessary to compute the multipoles, the amplitude of q has to be
discretized for numerical integration.

In the multi-fluid description, integrals that appear in the distribution energy (4.8)–
(4.10) also involve a discretization on momentum directions, i.e. a discretization on µ. In
both approaches, all integrals are estimated using the third degree Newton-Cotes formula
(Boole’s rule) which consists in approximating

R x5

x1
dx by,

Z x5

x1

f(x)dx ⇡ 2h

45
[7f(x1) + 32f(x2) + 12f(x3) + 32f(x4) + 7f(x5)], (4.28)

that is to say in using five discrete values regularly spaced, i.e. x1+n = x1 + nh, h = (x5 �
x1)/4, to compute the integral. In such a scheme, which gives exact results when integrating
polynomials of order less than 6, the error term is proportional to h7. In practice, we divide
the ⌧ , q and µ ranges into respectively N⌧ , Nq and Nµ intervals - where N⌧ , Nq and Nµ

are multiples of four - and we apply the integration scheme N⌧/4, Nq/4 and Nµ/4 times.
Besides, since the Fourier modes computed for µ and �µ are conjugate complex numbers
when the initial gravitational potentials are real, we can restrict our calculations to the range
[0, 1] for µ.

4.4.2 Results

We first compare the consistency of the two approaches by varying N⌧ and Nµ on one side
and Nq and `max on the other side, where `max is the order at which the Boltzmann hierarchy
is truncated. Preliminary results are presented on table 1 and on figure 2.

They show that the values computed in both descriptions can reach an extremely good
agreement. For example, Nq = N⌧ = 40, Nµ = 12 and `max = 6 give for k = 0.2 keq.

and m = 0.05 eV a 10�3 accuracy. However, the relative performances of the two methods
actually depend on wave numbers. Indeed, table 1 and figure 2 correspond to particular cases
for which there are no or very few oscillations in the neutrino fluid (due to the relatively small
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Figure 2. Time evolution of the energy density contrast (solid line), velocity divergence (dashed
line) and shear stress (dotted line) of the neutrinos. The dot-dashed line is presented for comparison
and corresponds to the density contrast of the dark matter component. Left panel: the quantities are
computed with the multi-fluid approach. Right panel: residuals (defined as the relative di↵erences)
when the two methods are compared. Numerical integration has been done with 40 values of ⌧ and
q, k is set to keq. and m is set to 0.3 eV. The resulting relative di↵erences are of the order of 10�3.
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Figure 3. Same as left panel of figure 2 (with adapted values of N⌧ and Nq) for k = 2 keq. and
k = 5 keq..

value of the wave number and, for figure 2, to the quite large value of the neutrino mass).
In such a situation, the main limitation in the relative precision is the number of points we
put in the ⌧ or q intervals. With 16 values for each, only percent accuracy is reached for
k = 0.2 keq. and m = 0.05 eV (see table 1 for more details regarding the relative precision
one can get). Meanwhile, the parameters Nµ and `max do not appear as critical limiting
factors in the accuracy of the numerical integration, provided of course that they are not too
small. For instance, with Nµ = 12, the numerical scheme (4.28) allows to reach an exquisite
accuracy and with Nµ = 8, it is still possible to reach 10�3. These tests show that the extra
cost of the use of our representation, where neutrinos are described by a set of 2 ⇥ Nµ ⇥ N⌧

equations instead of `max ⇥ Nq, is not dramatically large if k . keq..

For larger values of k (or smaller neutrino masses), the field values experience rapid
oscillations during a significant time interval (as seen on figure 3). Time integrations become
then particularly long as the system is becoming sti↵er. Furthermore, at fixed times, the field
amplitudes depend more significantly on the momentum, both on its amplitude and on its
direction, making necessary the improvement of the discretization scheme resolution. This
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phenomenon is illustrated on figure 4, where the µ dependence of the total energy density
is presented9 at fixed times a/aeq. = 10 and a/aeq. = 100. Clearly, as k increases, a better
resolution in µ is required (up to Nµ = 100 for a percent resolution if k ⇡ 10 keq.). Similarly
a better resolution in q is necessary (for both schemes). We leave for further studies a more
thorough analysis of the numerical requirements.

To finish, we illustrate the fact that the multi-fluid approach, by its specificity, allows to
show the convergence of the number density contrast and of the velocity divergence of each
flow to the ones of the Cold Dark Matter (CDM) component. Let us remind that each flow
is characterized by two parameters: its initial momentum modulus ⌧ and µ, the cosine of the
angle between its initial velocity vector vi and the wave vector ki. Unsurprisingly, for a fixed
mass, the smaller the initial momentum ⌧ is, the quicker the convergence takes place. This is
illustrated on the left panels of figures 5 and 6, which show the convergence of the fluctuation
amplitudes of several neutrino flows to those of the dark matter component when µ is set to
zero.10 The convergence is also more rapid when, for a fixed momentum, the neutrino mass is
larger, as illustrated by the di↵erence between the solid and the dashed lines of these figures.
Concurrently, the right panels show that the way this convergence takes place is strongly
dependent on the value of µ, this convergence exhibiting non trivial patterns when µ 6= 0.
In that case, the fluctuations of the neutrino flows and of the CDM component are indeed
expected to be out of phase, in particular during the oscillatory periods. This phenomenon
is particularly important for µ 6= 0, but only partially visible on these plots as they give only
the real values of complex Fourier modes. A consequence of this complex dependence is that,
after integration over µ, the resulting number density and velocity divergence are largely
suppressed compared to those of the CDM component (as can be seen on the left panel of
figure 2 and on figure 3, to be compared e.g. to figure 11 of [5]). Finally, let us remark that
the convergence of the velocity divergence is more rapid than the one of the number density.
It simply illustrates the fact that the former acts as a source term of the latter in the motion
equations.

5 Conclusions

We have developed an alternative approach to the method based on the Boltzmann hierarchy
to account for massive neutrinos in non-linear cosmological calculations. In this new descrip-
tion, neutrinos are treated as a collection of single-flow fluids and their behavior is encoded
in fluid equations derived from conservation laws or from the evolution of the phase-space
distribution function. The resulting fluid equations, (2.10) and (2.13), are derived at linear
level with respect to the metric perturbations but at full non-linear level with respect to the
density fluctuations and velocity divergences. They can easily be compared to the equations
resulting from the standard study of the distribution function of a single hot fluid of dark
matter particles. In both cases, equations describe single-flow fluids so shell-crossing is be-
yond the scope of this kind of study. After having considered in detail these equations in
the linear regime, we have shown precisely how a proper choice of the single-flow fluids and
a proper choice of the initial conditions allow to recover the physical behavior of the overall
neutrino fluid. These initial conditions are given explicitly in the case of initially adiabatic
metric perturbations.

9More precisely, it corresponds to ⇢(1)(µ) = 4⇡
R
⌧2d⌧⇢(1)(⌧, µ).

10The velocity divergence that appears on figure 5 is related to the momentum divergence by eq. (4.12).
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Figure 4. Angular dependence of the neutrino energy fluctuations. The amplitude is arbitrarily set
to unity for µ = 0. It is computed for a neutrino mass m = 0.3 eV. The left panel corresponds to a
time where a/aeq. = 10 and the right panel to a/aeq. = 100. The wave numbers associated with the
solid, dashed, dotted and dot-dashed lines are respectively k=keq., k=2 keq., k=5 keq. and k=10 keq..
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Figure 5. Time evolution of the velocity divergence. Left panel: values of ⌧ range from 0.45 kBT0

(bottom lines) to 9 kBT0 (top lines) with µ = 0. Right panel is for ⌧ = 3.6 kBT0 and µ ranging from
µ = 0 (top lines) to µ = 1 (bottom lines). The time evolution of the velocity divergence of each flow
is plotted in units of the dark matter velocity divergence. The wave number is set to k = keq., the
solid lines correspond to a 0.05 eV neutrino mass and the dashed lines to a 0.3 eV neutrino mass.

We then check that the two descriptions are equivalent at linear level through numerical
experiments. The conclusion is that the whole macroscopic properties of the neutrino fluid
can actually be accounted for by studying such a collection of flows with an arbitrary precision
(in practice we reached a 10�5 relative precision). An additional information exists in our
approach since it also describes the physics of each flow separately. We illustrate this point
by showing how individual neutrino flows converge to the CDM component as a function of
their initial momentum and of the neutrino mass at play.

This representation opens the way to a genuine and fully non-linear treatment of the
neutrino fluid during the late stage of the large-scale structure growth - as long as shell-
crossing can be neglected - since the two evolution equations satisfied by each flow can be
incorporated separately into the equations describing the non-linear dynamics of this growth.
In particular, it should be possible to apply resummation techniques such as those introduced
in [27–29] or to incorporate the neutrino component at non-linear level in approaches such
as [30, 31]. We leave for future work the examination of the importance of non-linear e↵ects
on observables such as power spectra.
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A The Boltzmann hierarchies

Starting from the Vlasov equation (2.25), one can build hierarchies to describe the evolution
of the moments of the phase-space distribution function. There are several ways to do this.

A.1 A Boltzmann hierarchy from tensor field expansion

A first hierarchy can be built by integrating equation (2.25) with respect to d3q, weighted by

products of qi

a✏ . To that end, it is useful to introduce the tensorial fields A, Ai, Aij ,. . . defined
as (see [23])

A ⌘ ⇢, (A.1)

Aij...k ⌘
Z

d3q


qi

a✏

qj

a✏
. . .

qk

a✏

�
✏f

a3
. (A.2)

After multiplying eq. (2.25) by adequate factors such as ✏/a3, ✏/a3 qi/(a✏) and in general
✏/a3 qi1/(a✏) . . . qin/(a✏), integrations by parts directly give the desired hierarchy of equations.
For A it leads to

@⌘A + (H � @⌘�)(3A + Aii) + (1 + �+  )@iA
i + 2Ai@i( � �) = 0, (A.3)

for Ai it leads to,

@⌘A
i + 4(H � @⌘�)Ai + (1 + �+  )@jA

ij + A@i + Aij@j � 3Aij@j�+ Ajj@i� = 0, (A.4)
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and in general it leads to the following equation,

@⌘A
i1...in + (H � @⌘�)

⇥
(n + 3)Ai1...in � (n � 1)Ai1...injj

⇤

+
nX

m=1

(@im )Ai1...im�1im+1...in +
nX

m=1

(@im�)Ai1...im�1im+1...injj

+(1 + �+  )@jA
i1...inj + [(2 � n)@j � (2 + n)@j�] Ai1...inj = 0

(A.5)

Note that this hierarchy of coupled equations retains the same level of non-linearities as
eqs. (2.10) and (2.13). Once linearized, it is equivalent to the standard hierarchy of equa-
tions describing the multipole decomposition of the distribution function perturbation as
given below.

A.2 A Boltzmann hierarchy from harmonic expansion

We recall here the standard construction of the Boltzmann hierarchy, i.e. of the hierarchy
that Boltzmann codes usually implement (see refs. [3–5, 23] for more details). It is based on
a decomposition of the phase-space distribution function f(x,q) into a homogeneous part
and an inhomogeneous contribution,

f(x,q) = f0(q) [1 +  (x,q)] (A.6)

and a decomposition of the latter into harmonic functions. At linear order, the Vlasov
equation for f (2.25) leads to the following equation for  ,

@⌘ +
q

a✏
n̂i@i +

d log f0(q)

d log q

✓
@⌘�� a✏

q
n̂i@i 

◆
= 0, (A.7)

where the local momentum is defined trough its norm q and its direction n̂. In momentum
space, the only dependence on k is through its angle with n̂, so we define ↵ ⌘ k̂.n̂ and rewrite
the linearized Boltzmann equation as

@⌘ ̃ + i↵k
q

a✏
 ̃ +

✓
@⌘�� i↵k

a✏

q
 

◆
= 0, (A.8)

where  ̃ ⌘
⇣

d log f0(q)
d log q

⌘�1
 . The next step is to expand  ̃ using Legendre polynomials thus

we introduce the moments  ̃`,

 ̃ =
X

`

(�i)` ̃` P`(↵), (A.9)

where P`(↵) is the Legendre polynomial of order `. By plugging this expansion into the
Boltzmann equation (A.8), one obtains the standard hierarchy,

@⌘ ̃0(⌘, q) = � qk

3a✏
 ̃1(⌘, q) � @⌘�(⌘) (A.10)

@⌘ ̃1(⌘, q) =
qk

a✏

✓
 ̃0(⌘, q) �

2

5
 ̃2(⌘, q)

◆
� a✏k

q
 (⌘), (A.11)

@⌘ ̃`(⌘, q) =
qk

a✏


`

2`� 1
 ̃`�1(⌘, q) �

`+ 1

2`+ 3
 ̃`+1(⌘, q)

�
(` � 2). (A.12)
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Since this hierarchy is infinite, it is of course necessary to truncate it at a given order
for practical implementation. Finally, relevant physical quantities can be built out of the
coe�cients  ̃`(⌘, q),

⇢(1)
⌫ (⌘) = 4⇡

Z
q2dq

✏f0(q)

a3

d log f0(q)

d log q
 ̃0(⌘, q) (A.13)

(⇢(0)
⌫ + P (0)

⌫ )✓(1)
⌫ (⌘) =

4⇡

3

Z
q2dq

✏f0(q)

a3

d log f0(q)

d log q

q

a✏
 ̃1(⌘, q) (A.14)

(⇢(0)
⌫ + P (0)

⌫ )�(1)
⌫ (⌘) =

8⇡

15

Z
q2dq

✏f0(q)

a3

d log f0(q)

d log q

⇣ q

a✏

⌘2
 ̃2(⌘, q). (A.15)

Note that as the numerical integration of the Boltzmann hierarchy gives access to  ̃`, ex-

pressions of ⇢(1)(⌘), ✓
(1)
⌫ and �

(1)
⌫ are computed from eqs. (A.13)–(A.15).
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Chapter 5

Towards a relativistic

generalization of nonlinear

perturbation theory

In this chapter, the previously described multi-fluid approach is used to extend

the scope of application of some standard results of nonlinear perturbation theory.

In particular, I highlight analogies between the subhorizon limit of our nonlinear

equations of motion and the equations describing cold pressureless fluids. I also

show that it is possible to take inspiration of the Newtonian approach to identify

and exploit invariance properties. Full details are given in the article of section 5.4.

5.1 Generic form of the relativistic equations of motion

In section 4.2.3, the equation reflecting the conservation of the number of particles

in each flow, (4.19), has been derived without writing explicitly the metric. It is

thus valid in any gauge. Besides, it does not rely on any approximation.

Similarly, the method presented in section 4.2.2 is valid in any metric gαβ. It is

then easy to show that the universal equation of motion of the comoving momentum

is

P ν∂νPi =
1

2
P σP ν∂igσν . (5.1)

The system {(4.19), (5.1)} is actually an exact representation of the time evo-

lution of a single-flow fluid, relativistic or not, provided that it interacts only grav-
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5.2. Useful properties in the subhorizon limit

itationally. In cosmology, it can thus describe the time evolution of any decoupled

species as long as shell crossing can be neglected (whence the necessity of defining

several neutrino species in our approach). It must be supplemented, on the one

hand, with general initial conditions (the ones adapted to flows of massive neutri-

nos are given in the paper of section 5.4) and, on the other hand, with the Einstein

equations, which read in this context (in the absence of a cosmological constant,

see the demonstration in section 5.4)

Gµν(η, xi) = 8πG
∑

species and flows

PµPν

(−g)1/2P 0
nc, (5.2)

where Gµν is the Einstein tensor1.

5.2 Useful properties in the subhorizon limit

Equations (4.19) and (5.1) have the advantage of being very general. Yet, they

contain many coupling terms. In order to make them easier to manipulate (in the

light of the handy equation (3.16)), we decided to eliminate the coupling terms that

are not indispensable for the description of structure formation. More precisely, we

used the Hubble radius2 as characteristic scale and focused on subhorizon scales,

i.e. on scales smaller than the Hubble radius. Indeed, the nonlinear growth of

structure being a late-time event, the terms that become evanescent on subhorizon

scales are a priori not determining in this context. Those terms are easy to identify

in reciprocal space by putting conditions on the highest power of kH/k taken into

account, kH being the inverse of the Hubble radius (see more details in our paper).

When calculations are performed in a generic perturbed Friedmann-Lemâıtre metric

(3.1), the subhorizon limit of the equations of motion eventually takes the form3

1Gµν = Rµν − 1

2
Rgµν , with Rµν the Ricci tensor (i.e. Rµν = Rαµαν , with Rαµαν the Riemann

tensor defined in section 1.3.4) and R the scalar curvature, also called Ricci scalar (i.e. R =
Rµνg

µν).
2The Hubble radius is defined as the inverse of Hubble’s constant. It gives the order of magnitude

of the radius of the observable universe (whose boundary is called cosmological horizon).
3Here again, non-linearities involving the fields of interest are taken into account whereas cou-

plings between metric perturbations are neglected.
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5.2. Useful properties in the subhorizon limit

Dηnc + ∂i(Vinc) = 0, (5.3)

DηPi + Vj∂jPi = τ0∂iA+ τj∂iBj −
1

2

τjτk
τ0

∂ihjk, (5.4)

with

Dη = ∂η −
τi
τ0
∂i and Vi = −Pi − τi

τ0
+
τi
τ0

τj(Pj − τj)
(τ0)2

. (5.5)

Those equations are very rewarding for several reasons.

Consequences on Pi

First, they enabled us to prove that the rotational part of the momentum field Pi

is zero for adiabatic initial conditions. Indeed, as demonstrated in our article, the

sole source of the rotational part Ωi of the momentum field is the rotational part

itself on subhorizon scales4, which is initially zero because of adiabaticity. It can

be seen by deriving Ωi’s evolution equation from that of Pi, (5.4). It means that,

on subhorizon scales, Pi can be fully described in terms of its divergence even in

the nonlinear regime and independently on the gauge. This is a major result of

our study given the repercussion this property has when it concerns the velocity

field of cold pressureless fluids. By analogy with (3.14), it is therefore convenient

to introduce the velocity divergence in units of H,

θ~τ (η, xi) ≡ ∂iPi(η, x
i;~τ)

maH . (5.6)

Invariance properties

The form of equations (5.3) and (5.4) is favorable to a generalization of the in-

variance properties given in (3.37). Indeed, one checks easily that the following

transformations do not modify the system5

4Note that the general equation (5.1) shows that, in the linear regime, it is not necessary to
drop any term to write Pi as a gradient.

5The transformation law for Vi is equivalent to P̃i(η̃, x̃
i;~τ) = Pi(η, x

i;~τ) − τ0∂ηDi(η) −
τ0

τ20−τjτj
τiτj∂ηDj(η).
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5.2. Useful properties in the subhorizon limit

x̃i = xi +Di(η), (5.7)

η̃ = η, (5.8)

δ̃~τ (η̃, x̃i) = δ~τ (η, xi), (5.9)

Ṽi(η̃, x̃
i) = Vi(η, x

i) + ∂ηDi(η), (5.10)

where

δ~τ (η, xi) =
nc(η, x

i;~τ)

n
(0)
c (~τ)

− 1 (5.11)

and with τi and τ0 left unchanged. Note that the metric perturbations A, Bi and

hi,j are not affected by such a transformation since the metric ds2 is an invariant in

general relativity. Hence, the transformation of Φ (in the system (3.37)) is not the

non-relativistic limit of our transformations of metric perturbations written in the

conformal Newtonian gauge6. It is due to the fact that equations (3.11) and (3.12)

contain additional terms compared to the non-relativistic limit of the relativistic

equations when the latter are taken in the subhorizon limit. The momentum di-

vergence, ∂iPi, is also preserved. We used this relativistic version of the extended

Galilean invariance to derive consistency relations (see section 5.3) and to exploit

the eikonal approximation in a study involving non-cold species (see chapter 6).

The existence of invariance properties was predictable according to the equivalence

principle. As a matter of fact, we also identified transformation laws keeping the

general equations (4.19) and (5.1) invariant (see the paper of section 5.4). I do not

present them here because, in practice, it is the subhorizon limit of the equations

that we handled.

Generalization of the standard compact equation

Universality is the principal interest of the system {(5.3)-(5.4)}. After decoupling,

it distinguishes between baryons, cold dark matter and neutrinos only via their

initial velocities (which set τi) and masses (which set τ0). Hence, introducing the

6It is possible to find transformations of A, Bi and hi,j which have this property but they
depend on ~τ , which does not make sense.
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5.2. Useful properties in the subhorizon limit

2N -uplet

Ψb(k) = (δ~τ1(k),−θ~τ1(k), . . . , δ~τN (k),−θ~τN (k))T (5.12)

is sufficient to encode the physics of all free-streaming cosmic fluids (labeled by

~τ1, ..., ~τN ) in a unique equation (here again, the convention that repeated Fourier

arguments are integrated over applies)

a(η)∂aΨb(k, η) + Ω c
b (k, η)Ψc(k, η) = γ cd

b (k1,k2, η)Ψc(k1, η)Ψd(k2, η), (5.13)

which is formally identical to (3.16) except that i) b, c and d run now from 1 to 2N ,

ii) Ω c
b is now scale-dependent and iii) γ cd

b is now time-dependent. More precisely,

the individual equations of motion read in Fourier space

(
a∂a − i

µkτ

Hτ0

)
δ~τ (k)− ma

τ0

(
1− µ2τ2

τ2
0

)
θ~τ (k) =

ma

τ0

∫
d3k1d3k2αR(k1,k2;~τ)δ~τ (k1)θ~τ (k2), (5.14)

(
1 + a

∂aH
H + a∂a − i

µkτ

Hτ0

)
θ~τ (k) +

k2

maH2
S~τ (k) =

ma

τ0

∫
d3k1d3k2βR(k1,k2;~τ)θ~τ (k1)θ~τ (k2), (5.15)

where the source term S~τ (k) is given by

S~τ (k) = τ0A(k) + ~τ · ~B(k)− 1

2

τiτj
τ0

hij(k) (5.16)

and where the kernel functions (which differ from one flow to another) are defined

as

αR(k1,k2;~τ) = δD(k− k1 − k2)
(k1 + k2)

k2
2

·
[
k2 − ~τ

k2 · ~τ
τ2

0

]
, (5.17)

βR(k1,k2;~τ) = δD(k− k1 − k2)
(k1 + k2)2

2k2
1k

2
2

[
k1 · k2 −

k1 · ~τk2 · ~τ
τ2

0

]
. (5.18)

Hence the non-zero matrix elements (for p an integer ∈ [1, N ]),
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5.2. Useful properties in the subhorizon limit

γ 2p−1 2p
2p−1 (k1,k2, η) = − ma(η)

2τ0
[p](η)

αR(k1,k2;~τp), (5.19)

γ 2p 2p−1
2p−1 (k1,k2, η) = − ma(η)

2τ0
[p](η)

αR(k2,k1;~τp), (5.20)

γ 2p 2p
2p (k1,k2, η) = − ma(η)

τ0
[p](η)

βR(k1,k2;~τp), (5.21)

where an exponent [p] means that one refers to the fluid labeled by ~τp, and

Ω 2p−1
2p−1 = −iµ[p] k

H
τ [p]

τ0
[p]
, (5.22)

Ω 2p
2p−1 =

ma

τ0
[p]

(
1− (µ[p])2(τ [p])2

(τ0
[p])2

)
, (5.23)

Ω 2p
2p = 1 + a

∂aH
H − iµ[p] k

H
τ [p]

τ0
[p]

+ ..., (5.24)

Ω
2(p+n)−1

2p = ..., (5.25)

Ω
2(p+n)

2p (n 6= 0) = ..., (5.26)

where the “...” denote contributions coming from the source term (5.16), which

can be estimated by taking the subhorizon limit of the Einstein equations (5.2).

Note that the standard matrix elements of section 3.3, which govern the cold-dark-

matter evolution, are contained in these ones. They correspond to the two fields

Ψb labeled by ~τ = ~0. The difference here is that all gravitational contributions

(including relativistic effects) are taken into account so the source term (which

relates Ψ2p to all other fields of the collection) is not trivially connected to Ψ2p−1

via the Poisson equation.

Such a description paves the way for the implementation of resummation tech-

niques, such as the ones enumerated in section 3.4, in the relativistic and nonlinear

equation of motion (5.13). It therefore appears as a further step towards a relativis-

tic generalization of nonlinear perturbation theory. Yet, I did not develop tools to

put such an implementation into practice during my PhD thesis.
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5.3 Consistency relations

The fact that the relativistic system also satisfies an extended Galilean invariance

makes easy the generalization of Ward identities. Taking inspiration of the results

presented in section 3.5.2, we assumed in our paper that the density contrasts

evolving in the medium perturbed by ~D are related to the unperturbed ones by (as

long as the perturbation is small enough to be treated linearly)

δ̃~τ (k, η) = exp(ik. ~D)δ~τ (k, η) ≈ (1 + ik. ~D)δ~τ (k, η). (5.27)

Moreover, in the light of (3.40), we related those displacements to the perturbative

fields that generated them via

~D(η,x) =

∫
d3q
−iq

q2
eiq.xδadiab(η,q). (5.28)

The index “adiab” means that the modes q that generated such displacements are

assumed to be adiabatic, whence a displacement identical in each flow.

Following the procedure depicted in section 3.5.2, we recovered eventually the

standard consistency relations, i.e.

〈δ(q, η)δ(k1, η1)δ(k2, η2)...δ(kn, ηn)〉q→0 (5.29)

= −
∑

i

q.ki
q2

P lin(q; η, ηi)〈δ(k1, η1)δ(k2, η2)...δ(kn, ηn)〉,

where the wavenumber q is much smaller than all other wavenumbers ki and where

P lin(q; η, ηi) is the linear unequal-time power spectrum. So, in our approach, it is

still possible to relate (n+ 1)-order correlation functions to n-order ones when the

times at which the fields are computed are different. As already discussed, this

property is in fact hardly operable. Nevertheless, it strengthens the consistency of

our generalization work.

5.4 Article “Cosmological Perturbation Theory for streams

of relativistic particles”

147



J
C
A
P
0
3
(
2
0
1
5
)
0
3
0

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Cosmological Perturbation Theory for
streams of relativistic particles

Hélène Dupuya,b and Francis Bernardeaub,a
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1 Introduction

Entering in the era of precision cosmology requires an examination of the structure growth
in minute detail. So far, the impact of neutrinos on large-scale structure formation has often
been overlooked, especially in the nonlinear regime, because of the difficulties encountered
when accounting for the gravitational dynamics of such particles is needed (see recent at-
tempts in [1–3]). Since neutrinos have been shown to be massive, the situation has evolved:
it has become crucial to include neutrino masses in cosmological models to study their impact
on the late-time growth of structure. On the one hand, one indeed needs to ensure that the
estimation of the fundamental cosmological parameters is not undermined by the presence of
massive neutrinos. On the other hand, doing so is an efficient way to improve our knowledge
of those enigmatic particles because, as mentioned in many references [4–9], the signature
of neutrino masses on cosmological observables is significant enough for those masses to be
constrained observationally.

Numerical approaches are obviously a precious tool in this context and several N-body
simulations have been designed to take the nonlinear effects of massive neutrinos into account
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(see the recent works [10–16]). From a theoretical point of view, this kind of investigation is
not straightforward. Indeed, contrary to Cold Dark Matter (CDM) particles, neutrinos are
relativistic at horizon crossing so their velocity dispersion is not negligible and the Newtonian
approximation does not hold. The phase-space distribution of neutrinos is therefore difficult
to describe. Usually, in analytical models, this question is addressed in the linear regime
only by performing a harmonic decomposition of the phase-space distribution function. As
presented in some standard references (e.g. [17] and its companion paper ref. [18]), this
approach leads to a hierarchy of equations called the Boltzmann hierarchy. It is possible
to examine in full detail the impact of such results on cosmology, as reviewed for instance
in ref. [19], but this analysis is limited to the linear regime, which is too restrictive to
be in balance with the current surveys. Indeed, observational projects aiming at putting
constraints on neutrino masses are all sensitive to the nonlinear growth of structure, at least
in the mildly nonlinear regime. Problematically, the extension into the nonlinear regime of
the phase-space harmonic decomposition has proved to be very cumbersome.1 Note that
numerical simulations and analytical studies are complementary. For instance, Perturbation
Theory can be useful to test the approximation schemes (used e.g. to reduce noise or to
describe velocity dispersion) at play in some N-body simulations. It allows also to reach
better precisions, which makes the comparison with present and future data more relevant,
and to do it faster.2

A new theoretical approach, which we further explore here, has been put forward re-
cently in ref. [21]. In this study neutrinos, or more generally any non-interacting relativistic
or non-relativistic particles, were described as a collection of flows evolving independently
from one another. Such a study takes advantage of the fact that the particles at play are
free-streaming. This is this property that allows to replace the standard study of a single
multi-stream fluid by that of a collection of single-stream fluids. Somehow it takes inspiration
of the CDM description (for which the single-stream approximation is an effective approxima-
tion, see e.g. [22]), the aim being to establish a similar description for neutrinos. In our first
paper we demonstrated that, at linear level, the method we proposed led to the same results
as the standard one. In the present article, we explore in more detail the formalism associated
with the approach we developed. In particular we derive the motion equations in a more
general framework, focusing on the symmetry properties of the resulting equations. Ward
identities, resulting from those invariances, are also presented. What motivates this task is
the fact that carrying out Perturbation Theory calculations requires a good understanding
of the mode coupling structure.

The organization of the paper is the following. In section 2 we recall the specificities of
a multi-fluid description. Then we derive the fully nonlinear motion equations satisfied by
single-stream fluids of relativistic particles. The aim of the following section is to bring out
some remarkable properties related to the linear regime. Finally, section 5 explains how to
deal with relativistic streams in Perturbation Theory. In particular a global motion equation,
fully nonlinear but in which the terms that are subdominant at subhorizon scales have been
dropped, is presented in this section. We then present and comment the key properties of
this system before concluding and discussing perspectives.

1The only attempt we are aware of is described in [20].
2The computational time is very problematic in some numerical simulations modeling the nonlinear power

spectrum.
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2 A multi-fluid description of non-interacting relativistic particles

We recall here the method we developed to describe a fluid of non-interacting relativistic
massive particles as a collection of streams or flows3 (we will use hereafter the two terms
indistinctively). This approach requires to properly define the phase-space distribution func-
tion f(xi, pi, η), where xi are the comoving positions, pi the conjugate momenta of xi and η
the conformal time.

The key idea is to split a relativistic multi-flow fluid into several flows in order to enter
in the field of application of the single-flow approximation. In the absence of shell-crossing,
particles having initially the same velocity will continue to do so throughout the cosmological
time. Indeed, in that case, particles that have the same velocity at the same time are particles
that are located at the same place so such particles will travel through the same gravitational
potentials. Those sets of particles are thus single-flow fluids. A convenient way to distinguish
between the flows is to use initial momenta pi(ηin) as labels,4 denoted τi. Each single-flow
fluid considered in our multi-fluid approach is therefore defined as the collection of all the
particles that have at initial time the comoving momentum τi. The time evolution of each
flow itself is encoded in a phase-space distribution function fone−flow(η, xi, pi; τi). One also
introduces the momentum field Pi(η, xi; τ), which is the value of the momentum of any
particle of the flow labelled by τi at time η and position xi. The phase-space distribution
function fone−flow(η, xi, pi; τi) then reads

fone−flow(η, xi, pi; τi) = nc(η,x; τi)δD(pi − Pi(η,x; τi)), (2.1)

where nc is the comoving number density of the flow.
Finally, the overall distribution function f(η, xi, pi) is computed by taking all the single-

flow fluids previously defined into account:

f(η, xi, pi) =
∑

τi

fone−flow(η, xi, pi; τi) =
∑

τi

nc(η,x; τi)δD(pi − Pi(η,x; τi)). (2.2)

Assuming that the parameter τi describes a 3D continuous field, the continuous limit of this
expression is naturally

f(η, xi, pi) =

∫
d3τi nc(η,x; τi)δD(pi − Pi(η,x; τi)). (2.3)

In this context, one can see that the integration over phase-space momenta usually performed
to compute global physical quantities associated with a single multi-flow fluid is replaced by
a sum over the single-flow fluids labelled by τi (i.e. a sum over all the possible initial momenta
or velocities). It implies in particular that, for any functional form F(pi), we have

∫
d3pi f(η, xi, pi) F(pi) =

∫
d3τi nc(η,x; τi) F(Pi(η,x; τi)). (2.4)

Eq. (2.3) shows that, to determine the time evolution of the phase-space distribution
function, one needs to study the time evolution of the comoving number densities and of
the momentum fields. A derivation of the corresponding motion equations in the conformal
Newtonian gauge was presented in detail in [21]. In the next section, we succinctly generalize
this derivation to an arbitrary spacetime.

3Note that, when applied to neutrinos, this construction is valid for any given mass eigenstate. If the
masses are not degenerate, it should therefore be repeated for each three eigenstates.

4In a homogeneous expanding universe, one can easily show that pi is a constant.
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3 Derivation of the nonlinear motion equations of relativistic massive par-
ticles

3.1 Evolution equation of the comoving number densities

The comoving number density of a fluid, single-flow or not, is related to its phase-space
distribution function in a very simple way,

nc(η, x
i) =

∫
d3pi f(η, xi, pi). (3.1)

Note that nc is not necessarily the number density measured by an observer at rest in the
metric (see subsection 3.4). Its evolution equation can be derived straightforwardly from the
conservation equation5 satisfied by the phase-space distribution function f ,

∂

∂η
f +

∂

∂xi

(
dxi

dη
f

)
+

∂

∂pi

(
dpi

dη
f

)
= 0. (3.2)

The only assumption made here is that the particles we consider are conserved (they do
not decay because no disintegration or scattering process is at play at the time of interest).
Integrating over momenta leads to

∂

∂η
nc +

∂

∂xi

(∫
d3pi

dxi

dη
f

)
= 0. (3.3)

For a single-flow fluid, dxi/dη can be expressed in terms of momenta. More specifically,

dxi

dη
=

dxi

dτ

dτ

dη
=
pi

p0
, (3.4)

where τ is the particle proper time and pi and p0 are related to pi through the metric and
the on-shell mass constraint. As a result, for a single-flow fluid we have

∂

∂η
nc +

∂

∂xi

(
P i

P 0
nc

)
= 0, (3.5)

with Pµ(η, xi) = gµνPν(η, x
i) and PµPµ = −m2. Note that this motion equation does not

rely on any perturbative expansion of the metric.

3.2 Evolution equation of the momentum fields

A fluid in which particles are neither created nor annihilated nor subjected to diffusion, as
is the case with the fluids considered here, obeys general conservation laws such as

Tµν
;µ = 0, (3.6)

where Tµν is the energy-momentum tensor and where we adopt the standard notation; to
indicate a covariant derivative. The conservation of the particles can besides be expressed as

Jµ
;µ = 0, (3.7)

5The Vlasov equation derives from this equation under the assumption that the motion equations are
Hamiltonian.
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where Jµ is the particle four-current. Noting that, for a single-flow fluid, the energy-
momentum tensor Tµν is related to Jν and to the momentum field Pµ by

Tµν = −PµJν , (3.8)

the conservation of the energy momentum tensor combined with the conservation of the
four-current imposes Pµ

;νJ
ν = 0. Moreover, the energy-momentum tensor being symmetric,

Tµν = −PµJν gives J i =
P i

P 0
J0, whence

P νPµ;ν = 0. (3.9)

Expressing the covariant derivative in terms of the spatial derivative finally gives the following
motion equation

P νPµ,ν =
1

2
P σP νgσν,µ. (3.10)

Together with eq. (3.5), it dictates the time evolution of a collection of massive relativistic
particles evolving in an arbitrary metric gαβ . Once again, this equation has been obtained
without performing any perturbative expansion of the metric. Besides, the time coordinate of
the momentum field being related to the spatial ones thanks to the on-shell mass constraint,
one can restrict the coordinates µ to spatial coordinates i in the previous equation,

P νPi,ν =
1

2
P σP νgσν,i. (3.11)

Eq. (3.11) can therefore be considered as the second motion equation governing the time
evolution of the flow in the nonlinear regime.

3.3 Explicit form for the momentum field in a generic perturbed Friedmann-
Lemâıtre metric

As an illustration, we present in this section the explicit form of the motion equation satisfied
by the momentum field in a generic perturbed Friedmann-Lemâıtre metric. The metric we
use reads

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2Bidx

idη + (δij + hij)dx
idxj

]
, (3.12)

where η is the conformal time, xi (i = 1, 2, 3) are the Cartesian spatial comoving coordinates,
a(η) is the scale factor and A, Bi and hij are respectively the time-time, time-space and space-
space metric perturbations. Units are chosen so that the speed of light in vacuum is equal
to unity and the expansion history of the universe, encoded in the time dependence of a, is
driven by the overall matter and energy content of the universe. The equation of motion for
the momentum is then

dPi

dη
= a2(η)

[
−P 0∂iA+ P j∂iBj +

1

2

P jP k

P 0
∂ihjk

]
, (3.13)

where we define the operator d/dη as

d

dη
≡ ∂

∂η
+
P i

P 0

∂

∂xi
. (3.14)
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This equation is, on the one hand, a relativistic generalization of one of the two equa-
tions describing CDM and, on the other hand, a generalization to an arbitrary perturbed
Friedmann-Lemâıtre metric of eq. (2.13) of [21], which corresponds to the conformal New-
tonian gauge (in which, by definition, A = ψ, Bi = 0 and hij = −2φδij). For example, to
write the motion equation in the synchronous gauge, one only has to set A = 0 and Bi = 0
in eq. (3.13). Furthermore, in the non-relativistic limit, we simply have in the synchronous
and conformal Newtonian gauges P 0 = m/a(1 −A) and P i ≪ m/a so that eq. (3.13) simply
takes the form

dPi

dη
= −am∂iA. (3.15)

It is of course nothing but Newton’s second law written using the conformal time.

3.4 Link with the Einstein equations

In general, the energy-momentum tensor is related to the phase-space distribution function
through (see e.g. [18, 23])

Tµν(η, x
i) =

∫
d3pi (−g)−1/2 pµpν

p0
f(η, xi, pi). (3.16)

When considering single-flow fluids, integration over momenta can be done straightforwardly
and the resulting expression is

T one−flow
µν =

PµPν

(−g)1/2P 0
nc. (3.17)

This result is important since it gives the contribution of each flow to the Einstein equations.
The particle four-current Jµ can also be computed very easily,

Jone−flow
µ = − Pµ

(−g)1/2P 0
nc. (3.18)

Besides, the expression of the particle four-current can be used to express the number density
of particles as seen by an observer at rest in the metric, denoted n. If one calls the four-
velocity of such an observer Uµ, one indeed has

n = UµJµ. (3.19)

Admitting that the four-velocity of such an observer satisfies U i = 0, one gets U0 =
(−g00)−1/2 from the constraint UµUµ = −1, whence

n = − P0

(−g00)1/2(−g)1/2P 0
nc. (3.20)

In ref. [21], the evolution equation of the number density of neutrinos was formulated in
terms of n rather than nc but the two approaches are of course equivalent. Those equations
allow to study explicitely the Einstein equations after recombination because, when all the
cosmic components are free-streaming, one can write

Gµν(η, x
i) = 8πG

∑

species and flows

T one−flow
µν (η, xi), (3.21)
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the sum being performed over all species participating in the cosmic fluid and G being
Newton’s constant. Indeed, the formalism we are proposing can be applied to relativistic as
well as to non-relativistic species so no contribution is missing. Together with the evolution
equation of nc and Pi, these equations form a closed set of equations.

In the following we analyze this system in more detail, starting with the study of its
invariance properties.

3.5 Invariance properties

In this subsection, we present transformation laws that leave the motion equations unchanged.
A priori, a whole set of transformation laws can be derived from a change of variables

of the form

xµ → x̃µ(xµ). (3.22)

In this study, we are interested in generalizing the so-called extended Galilean invariance
that the standard motion equations of non-relativistic particles (or, equivalently, the mo-
tion equations of this paper written in the non-relativistic limit) satisfy. The corresponding
transformation laws are explicitly given by the following changes of coordinates and fields
(see e.g. [24]6),

x̃i = xi + di(η), η̃ = η, (3.23)

Ṽ i = V i +
d

dη
di(η), δ̃ = δ, (3.24)

Ã = A− H d

dη
di(η)x

i − d2

dη2
di(η)x

i, (3.25)

where we use the notations of this paper and where di(η) is an arbitrarily time-dependent
uniform field, V i is the velocity field and δ is the density contrast. Such an invariance
corresponds to an extension of the Galilean invariance in the sense that the displacement
can depend on time. It actually derives from the equivalence principle. As pointed out in
recent studies, such as [22], the extended Galilean invariance plays a significant role in the
computation of correlation functions involved in the study of large-scale structure formation.
To generalize it, we will explore in the following the consequences of coordinate transforms
closely connected to special Lorentz transformations.

So let us consider a transformation xµ → x̃µ defined so that

dx̃µ = ξµ
ν dxν . (3.26)

It is an acceptable transformation provided that

ξµ
ν,σ = ξµ

σ,ν . (3.27)

In particular, it is easy to check that

ξ00 = 1 + xi ∂

∂η
vi(η), ξ0i = vi(η), (3.28)

ξi
0 = vi(η) + ui(η), ξi

j = δi
j , (3.29)

6In this study several particular cases, corresponding to different possible time dependencies of the spatial
translation, are explored.
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where vi(η) and ui(η) are two arbitrarily time-dependent functions, obeys the property (3.27).
More explicitly, the change of frame corresponding to (3.28)–(3.29) is given by

x̃i = xi + di(η) + gi(η), η̃ = η + vi x
i, (3.30)

with vi = d
dηdi(η) and ui = d

dηgi(η) .
In the rest of the paper, we will assume that both vi and ui are infinitesimal quantities

and we will restrict all calculations to linear order in these quantities. Besides, the differential
operators associated with the new coordinates are related to the previous ones thanks to

∂

∂η̃
=
(
1 − v̇ix

i
) ∂
∂η

− (vi + ui)
∂

∂xi
and

∂

∂x̃i
= −vi

∂

∂η
+

∂

∂xi
. (3.31)

The momentum components therefore transform as (once again vi and ui are kept at linear
order)

P̃ 0 = (1 + xivi,0)P
0 + viP

i (3.32)

P̃ i = (vi + ui)P
0 + P i (3.33)

P̃0 = (1 − xivi,0)P0 − (vi + ui)Pi (3.34)

P̃i = −viP0 + Pi, (3.35)

the transformation of the comoving numerical density field is given by

ñc = nc

(
1 + vi

P i

P 0

)
(3.36)

and finally the potentials transform the following way,

Ã = A− Hvix
i − vi,0x

i, B̃i = Bi − ui, h̃ij = hij − 2Hδijvkx
k. (3.37)

Interestingly, we can note that the combination (−g)−1/2nc/P
0 that appears in the expression

of the energy-momentum tensor is invariant under such transformations.
It can then be easily checked that the motion equations (3.5)–(3.13) are invariant under

the transformations (3.26)–(3.28)–(3.29)–(3.37). It is also the case for the Einstein equations
but the explicit verification is more involved.

The invariance we are putting forward is clearly a generalization of the extended Galilean
invariance. We leave for further studies the exploration of the consequences of such an
invariance. In the last section, we will present a similar symmetry property satisfied by
the motion equations written at subhorizon scales and we will explore in more detail its
consequences.

4 Relativistic streams in the linear regime

This section aims at highlighting properties of relativistic streams in the linear regime. From
the motion equations (3.5) and (3.11), it is straightforward to see that, in a homogeneous
metric, the variables Pi and nc do not depend on time. Considering that metric inhomo-
geneities are small compared to background values, we develop a perturbation scheme that
consists in expanding each relevant field with respect to the metric perturbations7,

Pi(η, x
i; τi) = τi + P

(1)
i (η, xi; τi) + P

(2)
i (η, xi; τi) + . . . (4.1)

7By definition, P
(0)
i = τi since P

(0)
i is a constant and τi ≡ Pi(ηin).
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and
nc(η, x

i; τi) = n(0)
c (τi) + n(1)

c (η, xi; τi) + n(2)
c (η, xi; τi) + . . . . (4.2)

4.1 A useful property of P
(1)
i

When taking only linear perturbations into account, eq. (3.11) reads

dP
(1)
i

dη
=

1

2

P (0)µP (0)ν

P (0)0
g
(1)
µν,i. (4.3)

It appears that P
(1)
i is sourced by a gradient term. For scalar adiabatic initial conditions,

P
(1)
i will therefore remain a potential field. Note that, as already mentioned in [21], this

property is a specificity of the variable P
(1)
i only. For instance, even at linear order, the

momentum field P i does not derive from a potential8. In the particular case of a perturbed
Friedmann-Lemâıtre metric, this equation takes the form

dP
(1)
i

dη
= ∂i

(
P

(0)
j Bj − 1

2

P
(0)
j P

(0)
k

P
(0)
0

hjk + P
(0)
0 A

)
, (4.4)

which allows to express the source term whose P
(1)
i is the gradient in terms of the potentials

(for example in the conformal Newtonian and synchronous gauges). Note that, to get this
expression, only linear terms in the metric perturbations have been taken into account. The
same approximation will be used in the rest of this paper since what matters in the nonlinear
regime is not metric-metric coupling but the nonlinear coupling between the fields of interest.

4.2 Linearized equations in Fourier space

In light of what is done in the study [21], we explicitly write in this section the linearized
equations in Fourier space. To this end, we introduce a Fourier mode k and all the fields we
study in Fourier space correspond to this mode. We use the same notations as in [21],9

τ0 (η) ≡ P0
(0) (η) , θP (x, η) = ∂iP

(1)
i (x, η), (4.5)

P
(1)
i (k, η) =

−iki

k2
θP (k, η), δn(x, η) =

n
(1)
c (x, η)

n
(0)
c

. (4.6)

Note that here we have used the fact that P
(1)
i (η, xi) is potential at linear order. Besides,

the on-shell mass constraint imposing

P
(1)
0 = Biτi +Aτ0 +

τi
τ0

(
P

(1)
i − 1

2
τjhij

)
, (4.7)

one has (
P i

P 0

)(1)

= −P
(1)
i

τ0
+
P

(1)
j τjτi

τ3
0

− τi
τ0
A−Bi +

τjhij

τ0
− τi

2τ0

τjτkhjk

τ2
0

. (4.8)

8Since P
(1)
i is sourced by a gradient in terms of the space coordinates xi, we expect P i(1) to be sourced by

a gradient in terms of the space coordinates xi.
9Except δn, which applies here to the comoving number density whereas it applied to the proper number

density in [21].
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Thus, after linearizing eq. (3.5), moving to Fourier space and taking the divergence of
eq. (4.4), one finally obtains

δ̇n = iµk
τ

τ0
(δn +A− h− 4γ + κ(τ, τ0, µ, h, γ)) + ikiBi +

θP

τ0

(
1 − µ2τ2

τ02

)
(4.9)

and

θ̇P = iµk
τ

τ0
θP − k2 (τ0A+ τjBj − τ0κ(τ, τ0, µ, h, γ)) , (4.10)

where µ is the Cosine of the angle between the wave vector k and the initial momentum
direction,

µ =
kiτi
kτ

with τ2 = τ2
i , (4.11)

where h and γ are scalar modes defined so that (see e.g. [18])

hij =
kikj

k2
h+

(
kikj

k2
− 1

3
δij

)
6γ (4.12)

and where

κ(τ, τ0, µ, h, γ) =
τ2

τ02

[
1

2
µ2h+ γ

(
3µ2 − 1

)]
. (4.13)

We can see in particular that the angle between the wave vector k and the initial momentum
vector plays a significant role in the time evolution of the considered flow.

The setting of the adiabatic initial conditions, essential to numerically solve the sys-
tem (4.9)–(4.10), is explained in full detail in appendix A for the particular case of massive
neutrinos.

5 Perturbation Theory with relativistic streams

The aim of this section is to show how the formalism developed to study CDM thanks to
Perturbation Theory (PT) can be extended to the study of relativistic species. The regime
we will investigate is the one relevant in the context of large-scale structure formation, i.e. we
will focus here on subhorizon scales. This restriction will allow us to remove the subdominant
coupling terms from the motion equations. It is indeed important to keep in mind that the
nonlinear couplings that appear for example in the Einstein equations, in the source term
of the Euler equation or in the P i/P 0∂i operator do not all have the same amplitude after
subhorizon scales have been reached.

5.1 Coupling structure at subhorizon scales

The identification of the relevant coupling terms is made by comparing the wave number k
(characterizing the scale at which the field evolution is studied) with the horizon wave number
kH (defined as the inverse of the Hubble radius). First, let us notice that metric perturbations
scale like δρ k

2
H/k

2 and that the relative velocity field (Pi − τi) scales like δρkH/k, where δρ is
the typical energy density contrast. The latter is assumed to be small but can reach values
comparable with unity. This is precisely this regime of PT calculations that we want to
explore.
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Following the description of CDM fluids at subhorizon scales, in practice we neglect
in (3.5) all the terms behaving as kH (kH/k)

α with α ≥ 1 and in (3.13) all the terms behaving
as kH (kH/k)

α with α ≥ 2. In this limit, eqs. (3.5)–(3.13) take the form

Dηnc + ∂i(Vinc) = 0 (5.1)

DηPi + Vj∂jPi = τ0∂iA+ τj∂iBj − 1

2

τjτk
τ0

∂ihjk, (5.2)

with

τ0 = −
√
m2a2 + τ2

i , Dη =
∂

∂η
− τi
τ0

∂

∂xi
, (5.3)

and

Vi = −Pi − τi
τ0

+
τi
τ0

τj(Pj − τj)

(τ0)2
. (5.4)

The metric perturbations that appear in the Euler equation are computed at linear order from
the Einstein equation. Note that in the sub horizon limit, the source term of the Einstein
equation is dominated by the fluctuations of the number density.

5.2 The no-curl theorem and its consequences

In this paragraph we explicitly demonstrate one of the key results on which rely the carrying
out of Perturbation Theory calculations. What we show is that, similarly to the velocity fields
of non-relativistic flows, the momentum field Pi remains potential to all orders in Perturbation
Theory (see [22, 25] and references therein for demonstrations in the non-relativistic case).

First, let us decompose Pi into a potential and a non potential parts,

Pi = Φ,i +Wi, (5.5)

with
Wi,i = 0. (5.6)

One can then define the curl field, related to the momentum field via

Ωi = ǫijkPj,k = ǫijkWj,k, (5.7)

ǫijk being the Levi-Civita symbol, or fully antisymmetric tensor. The objective here is to
derive the evolution equation of Ωi by exploiting the relativistic Euler equation. Noticing
that

Pi,j = Pj,i + ǫkijΩk (5.8)

and applying the operator ǫkij∂k to eq. (5.2), one obtains

DηΩk + ǫkijǫmil (Vl Ωm),j + ǫkij (Vl Pl,i),j = 0. (5.9)

The last term of the left hand side of this equation eventually vanishes since VlPl,ij is
symmetric in (i, j) and

Vl,jPl,i = − 1

τ0
Pl,iPl,j +

1

(τ0)3
τkPk,j τlPl,i, (5.10)

which is also symmetric in those indices. So finally we have

DηΩk + ViΩk,i + Vi,iΩk − Vk,iΩi = 0, (5.11)
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which means in particular that the curl field is only sourced by itself. Consequently, in the
absence of such source terms in the initial conditions, as is the case for adiabatic initial
conditions, no curl modes will be created in the relativistic flows.

We are here confronted to a situation very similar to the case of non-relativistic fluids,
in which curl modes are generated after shell-crossing only. An immediate consequence is
that, in standard Perturbation Theory calculations, the evolution equations of the density
and Pi-divergence fields form, together with the equations describing the scalar modes of the
metric fluctuations, a complete set of equations.

It is then possible to write those equations on a form easily comparable to the one of a
non-relativistic pressureless fluid. To that aim, let us introduce for each fluid labelled by τi
the density contrast field δτi ,

δτi(η, x
i) =

nc(η, x
i; τi)

n
(0)
c (τi)

− 1. (5.12)

The evolution equations then read

Dηδτi + (Vi(1 + δτi)),i = 0, (5.13)

DηPi,i + (VjPi,j),i − Sτi,ii = 0, (5.14)

where Vi is related to the field Pi via (5.4) and where the source term Sτi is given by

Sτi = τ0A+ τjBj − 1

2

τjτk
τ0

hjk. (5.15)

Note that the relation (5.4) between Pi and Vi can be easily inverted,

Pi = τi

(
1 − 1

1 − τjτj/τ2
0

τjVj

τ0

)
− τ0Vi. (5.16)

In the following we explore in further detail this system.

5.3 The extended Galilean invariance

What are the invariance properties of this system? The original system (3.5)–(3.13) was
invariant under transformations that preserved the operator Pµ∂µ present in the left hand
side of the equation describing the time evolution of Pi. By analogy, here we would like to
find transformations that preserve the operator Dη + Vi∂i present in the left hand side of
the corresponding subhorizon equation, while preserving the time variable. Assuming that
τi and τ0 are unchanged, this can be obtained the following way

x̃i = xi + di(η), (5.17)

η̃ = η, (5.18)

δ̃τi(η, x̃
i) = δτi(η, x

i), (5.19)

Ṽi(η, x̃
i) = Vi(η, x

i) + ∂ηdi(η). (5.20)

The transformation rule for the velocity field Vi can be re-expressed as a transformation rule
for the momentum field Pi using (5.16),

P̃i(η, x̃
i) = Pi(η, x

i) − τ0∂ηdi(η) − τ0
τ2
0 − τjτj

τiτj∂ηdj(η). (5.21)
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Pi,i and all the potentials being unchanged under such transformations, the invariance of
the equation of interest is ensured. This result is an extension of the extended Galilean
invariance satisfied by the CDM flow. For CDM, as it has been stressed in recent papers
([24, 26]), this property has important consequences regarding large-scale structure formation.
In particular, one expects the unequal time correlation functions of fields of that type to obey
Ward identities. We will derive them for relativistic species in terms of the power spectra of
the Fourier modes.

5.4 Nonlinear equations in Fourier space

We complete this work by presenting a global motion equation in Fourier space, showing
explicitly the coupling structure of the motion equations. So let us introduce the velocity
divergence field in units of - H, θτi(η, x

i),10

θτi(η, x
i) = −Pi,i(η, x

i; τi)

maH . (5.22)

When written in Fourier space, eqs. (5.13)–(5.14) read11

(
a∂a − i

µkτ

Hτ0

)
δτi(k) +

ma

τ0

(
1 − µ2τ2

τ2
0

)
θτi(k) =

− ma

τ0

∫
d3k1d

3k2αR(k1,k2; τi)δτi(k1)θτi(k2) (5.23)

(
1 + a

∂aH
H + a∂a − i

µkτ

Hτ0

)
θτi(k) − k2

maH2
Sτi(k) =

− ma

τ0

∫
d3k1d

3k2βR(k1,k2; τi)θτi(k1)θτi(k2), (5.24)

where Sτi(k) is the Fourier transform of the field Sτi(x),

Sτi(k) = τ0A(k) + ~τ · ~B(k) − 1

2

τiτj
τ0

hij(k) (5.25)

and where the kernel functions are defined as

αR(k1,k2; τ) = δDirac(k − k1 − k2)
(k1 + k2)

k2
2

·
[
k2 − ~τ

k2 · ~τ
τ2
0

]
, (5.26)

βR(k1,k2; τ) = δDirac(k − k1 − k2)
(k1 + k2)

2

2k2
1k

2
2

[
k1 · k2 − k1 · ~τk2 · ~τ

τ2
0

]
. (5.27)

The explicit computation of the source term Sτi(k) would require to take the subhorizon
limit of the Einstein equations and to perform a summation over all the cosmic fluids (see
equation (3.21)).12 A remarkable property is that the kernel functions αR and βR depend
on the flow considered via the variable ~τ . In the non-relativistic limit (i.e. when τ0 → −ma

10In the non-relativistic limit, ∂iPi = −ma∂iV
i.

11Because of the phase shifts that appear between the flows when they propagate, those equations have a
non-zero imaginary part. However, the correlation functions of the fields are real since the fields are real in
real space and thus δτi(k) = δ∗

τi(−k) and θτi(k) = θ∗
τi(−k).

12Details about the way in which the summation over the flows should be performed is given in section 4.1
of [21].
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and τi → 0), we recover the standard equations and the kernel functions that appear in the
CDM flow equation (see [27]).

We are now in position to write the full equation of motion, including the scale-scale
nonlinear couplings in the presence of cold and hot non-interacting dark matter. We recall
that these equations are valid until the first shell-crossing occurs. Formally, we consider
a collection of n streams. Each stream is single-flow. It corresponds to either a CDM
component or a baryonic component or a massive neutrino component. All these fluids obey
the very same motion equations so there is no point in the following to distinguish them from
one another.

It means that the time-dependent 2n-uplet,

Ψa(k) = (δτ1(k), θτ1(k), . . . , δτn(k), θτn(k))T , (5.28)

contains all the relevant field components. Note that the Einstein equations relate the po-
tentials to those fields thus these potentials are eventually eliminated.

In this context, the motion equations (5.23) and (5.24) can formally be recast in the
form

∂ηΨa(k) + Ω b
a Ψb(k) = γ bc

a (k1,k2)Ψb(k1)Ψc(k2), (5.29)

where the indices a and b run from 1 to 2n.13 In the right hand side of this equation, it
is assumed that the wave modes are integrated over. The matrix elements Ω b

a encode the
linear theory couplings. They contain in particular the way in which the source terms Sτi(k)
can be re-expressed as a function of the 2n-uplet elements.

Besides, the symmetrized vertex matrix γ bc
a (k1,k2) describes the nonlinear interactions

between different Fourier modes. Its components are given by

γ 2p−1 2p
2p−1 (k1,k2) = −ma

2τ0
αR(k1,k2, τp) (5.30)

γ 2p 2p
2p (k1,k2) = −ma

τ0
βR(k1,k2, τp), (5.31)

with γ bc
a (k1,k2) = γ cb

a (k2,k1) and γ bc
a = 0 otherwise. Contrarily to the pure CDM case,

the γ bc
a matrix elements depend on time (and on the background evolution) for each mode

through the time evolution of τ0. Remarkably though, they encode all the nonlinear couplings
of the system, which is formally similar to that of a multi-component system of pressureless
fluids.

Equation (5.29) is the main result of this paper. It encodes the evolution of streams of
relativistic or non-relativistic particles in the nonlinear regime at subhorizon scales. It can in
particular be used in the context of the growth of large-scale structure in presence of massive
neutrinos. At this stage however we do not propose an operational procedure to implement
such Perturbation Theory calculations. To do so, one could think for example about making
use of the so-called Time Renormalization Group (TRG) approach introduced in [28]. In-
deed, thanks to the motion equation (5.29), it is possible to compute the time derivative of
products such as Ψa(k, η)Ψb(k

′, η) or Ψa(k1, η)Ψb(k2, η)Ψc(k3, η). Once their ensemble aver-
ages computed, one can get the coupled evolution equations for the power spectra (see [28]).
Provided the truncation is properly made, such equations encompass the standard Perturba-
tion Theory calculations but with the advantage that no explicit computation of the linear
Green function is necessary. The simplicity of this approach has already been advocated in

13The Einstein notation for the summation over repeated indices is adopted.
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this context in [1], where it is used to evaluate the impact of massive neutrinos on structure
growth (but restricting the neutrino fluid to its linear behavior).

5.5 The Ward identities

Let us define unequal time correlators as 〈δτ1(η1,k1) . . . δτn(ηn,kn)〉 for a collection of flows
τi. Due to statistical homogeneity, such quantities are expected to be proportional to
δDirac (

∑
i ki). One can then define the multi-point power spectra P so that

〈δτ1(η1,k1) . . . δτn(ηn,kn)〉 = δDirac

(∑

i

ki

)
Pτ1,...,τn (η1,k1, . . . , ηn,kn) . (5.32)

Following [24, 26] and [29], one can derive Ward identities that give consistency relations
between those quantities.

We denote δ̃(k, η) the Fourier density contrast in presence of a large-scale displacement
field di(η) (with an arbitrary time dependence and di being treated linearly). It can be
expressed as a function of the Fourier density contrast in absence of such displacement thanks
to a simple phase shift,

δ̃τi(k, η) = exp(ik.d)δτi(k, η) ≈ (1 + ik.d)δτi(k, η). (5.33)

This relation gives explicitly the dependence of each mode on a large-scale displacement field.
The Ward identities are then obtained by relating such large displacement fields to long-wave
modes. More precisely, one can define adiabatic modes inducing equal displacements in all
the flows, denoted δadiab.(q), and satisfying

dadiab(η,x) =

∫
d3q

−iq

q2
eiq.xδadiab.(η,q). (5.34)

This definition imposes14

〈δadiab.(η,q)dadiab(η
′,x)〉 =

iq

q2
Padiab.(η, η

′, q), (5.35)

Padiab.(η, η
′, q) being the unequal time power spectrum of adiabatic modes. Making use of

eq. (5.33), the correlator reads for an adiabatic displacement

〈δ̃τ1(η1,k1) . . . δ̃τn(ηn,kn)〉 =

(
1 + i

∑

i

ki.dadiab.(ηi)

)
〈δτ1(η1,k1) . . . δτn(ηn,kn)〉, (5.36)

where the ensemble average is performed over all the modes except those participating in the
large-scale displacement perturbation. Finally, assuming that the only dependence with a
large-scale adiabatic mode is in the displacement field, one can eventually derive the following
relation,

Padiab.,τ1,...,τn(η,q, η1,k1, . . . , ηn,kn) = (5.37)

−
∑

i

ki.q

q2
Padiab.(η, ηi, q) Pτ1,...,τn(η1,k1, . . . , ηn,kn).

It is obtained by computing the average of the product between the quantity at play in eq.
(5.36) and δadiab.(η,q). This relation is valid for q ≪ ki. Note that the right hand side of the
relation (5.37) automatically vanishes when all the time variables are equal as, in that case,
one expects the result to be proportional to δDirac (

∑
i ki).

14To get this result, we have neglected the e−iq.x term because we are interested here in large wavelenghts.
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6 Conclusions and perspectives

We have presented a derivation of fully nonlinear evolution equations for streams of relativistic
particles in an arbitrary background. The derivation of these equations is entirely based on
conservation laws. They lead to the equations (3.5) and (3.11), which form a closed system
once the background is given.

The key point allowing to make this construction sensible is the fact that fluids of
non-interacting particles, such as neutrinos, can be decomposed into a collection of streams,
each of them obeying the independent motion equations we derived. This is the essence of
eq. (2.4). It has been explicitly shown in [21] that this decomposition is effective at the level
of the linear evolution of the whole neutrino fluid. The initial number density of particles
in each stream can be computed once initial conditions and gauge are specified. In [21], we
computed them for adiabatic initial conditions in the conformal Newtonian gauge. Here we
extend the results to the synchronous gauge in order to be more exhaustive.

The last section of this study is devoted to the exploration of the coupling structure
that appears once the motion equations are restricted to subhorizon scales. In this derivation,
we retained only dominant nonlinear coupling terms based on a power counting argument.
The resulting equations, (5.1)–(5.2), appear as a slight extension of those describing flows
of cold dark matter at subhorizon scales. However, we think they capture all the relevant
nonlinear couplings. The exploration of the properties of the resulting system gives very
promising insights. We recall here the two most important points we noticed. The first one
is that the momentum field Pi remains potential even in the nonlinear regime. It implies
that, similarly to non-relativistic ones, relativistic streams can entirely be described by in-
troducing a two-component scalar doublet containing the number density of particles and
their velocity divergence. The second key element is that the couplings are only quadratic in
the fields,15 as for CDM. As a result the overall motion equation, which takes into account
all the streams, can be recast in the formal form (5.29). This is the main result of this pa-
per. It provides a starting point for the implementation of Perturbation Theory calculations
involving relativistic species, such as neutrinos.

Note also that, throughout the paper, we paid attention to the invariances properties
of the systems we studied. In particular, we showed that eq. (5.29) satisfies an extended
Galilean invariance. Interestingly, it paves the way for a further exploration of the mode
coupling structure, and particularly for a description of how the long-wave modes and the
short-wave modes interact. We expect in particular that the relative motions that exist
between the different streams act as a particularly efficient coupling mechanism. Indeed, as
shown in [30], it is already the case for baryon-CDM mixtures. An effective way to address
this issue is to exploit the eikonal approximation, as presented in refs. [27, 31]. We leave for
further studies those calculations.

Acknowledgments

This work is partially supported by the grant ANR-12-BS05-0002 of the French Agence
Nationale de la Recherche.

15This is true at subhorizon scales only.

– 16 –



J
C
A
P
0
3
(
2
0
1
5
)
0
3
0

A Adiabatic initial conditions for massive neutrinos

We revisit here the setting of the initial conditions as presented in [21]: at initial time we
assign to the flow labelled by τi all the neutrinos whose momentum Pi is equal to τi within
d3τi. The initial time ηin is chosen so that the neutrino decoupling occurs at a time η < ηin

and neutrinos become non-relativistic at a time η > ηin. The solutions we describe correspond
to adiabatic initial conditions. We choose the simplest alternative respecting the adiabaticity
constraint, i.e.

Pi(ηin,x; τi) = τi. (A.1)

It implies in particular that Pi
(1)(x, ηin; τi) = 0 and consequently that

θP (x, ηin; τi) = 0. (A.2)

Besides, before decoupling, the background distribution of neutrinos is expected to
follow a Fermi-Dirac law f0 with a given temperature T and no chemical potential (see e.g.
refs. [17–19, 32] for a physical justification of this assumption). Then, as explained in ref. [32],
after neutrino decoupling the phase-space distribution function of neutrinos is still a Fermi-
Dirac distribution, that we express here in terms of the momentum q defined so that the
energy measured by an observer at rest in the metric, ǫ, satisfies

ǫ2 = m2 + (q/a)2. (A.3)

Nonetheless, after decoupling, the temperature is expected to vary locally, whence

f (ηin,x, q) ∝ 1

1 + exp [q/(akB(T + δT (ηin,x))]
, (A.4)

kB being the Boltzmann constant. The relation between the energy (and thus qµ) and pµ

as well as the expression of δT/T in terms of the metric perturbations depend on the gauge
chosen.

In the synchronous and conformal Newtonian gauges, the momentum variable is defined
so that ǫ = −Uµpµ = −U0p0, U

µ being the four-velocity of the comoving observer. Thus

p0 = −aǫ(1 +A). (A.5)

Eq. (A.4) can thereby be re-expressed in terms of the variable pi thanks to the relation

q = τ − τ2
0

τ
κ(τ, τ0, µ, h, γ) +

τj
τ
p
(1)
j , (A.6)

which gives

f (ηin,x, pj) ∝


1 + exp



τ − τ2

0

τ
κ(τ, τ0, µ, h, γ) +

τj
τ
p
(1)
j

akB(T + δT (ηin,x))







−1

. (A.7)

One can see in particular that

f (1) (ηin,x, pj) = −
(
δT

T
+
τ2
0

τ2
κ(τ, τ0, µ, h, γ)

)
df0(p)

d log p
. (A.8)
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In the conformal Newtonian gauge, we recover of course eq. (4.19) of [21]. The second initial
condition we need is therefore

δn(ηin,x; τi) = −
(
δT

T
+
τ2
0

τ2
κ(τ, τ0, µ, h, γ)

)
d log f0(τ)

d log τ
. (A.9)

As mentioned in [19], on super-Hubble scales, the temperature perturbation of the neu-
trino fluid is proportional to its density contrast: 4δT (x, ηin)/T (ηin) = ρ(1)(x, ηin)/ρ

(0)(ηin).
Besides, the adiabaticity hypothesis imposes equality between the initial density contrasts of

all species. Using the standard results that, for photons, ρ
(1)
γ (x, ηin)/ρ

(0)
γ (ηin) = −2ψ(x, ηin)

in the conformal Newtonian gauge and −2

3
hii in the Synchronous gauge, one thus finds

δT (x, ηin)/T (ηin) = −ψ(x, ηin)/2 in the conformal Newtonian gauge (A.10)

and
δT (x, ηin)/T (ηin) = −hii(x, ηin)/6 in the Synchronous gauge . (A.11)

These relations are useful in order to implement the numerical resolution of the linearized
motion equations, as presented in detail in [21].
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Chapter 6

A concrete application of the

multi-fluid description of

neutrinos

This chapter draws attention to the interdependence between eikonal approxima-

tion, relative displacements of cosmic fluids and damping of the nonlinear matter

power spectrum. Understanding it qualitatively is easy but the practical imple-

mentation requires a long-term task. As a preliminary stage, an application of our

multi-fluid description, whose goal is to get a first estimate of the spatial scales at

which nonlinear couplings involving neutrinos are relevant, is outlined (see section

6.3 for a full article on this topic).

6.1 Generalized definitions of displacement fields in the

eikonal approximation

The compact equation of motion (3.16) having formally the same form with or

without incorporating non-cold species, it is straightforward to generalize the use

of the eikonal approximation.

In the multi-fluid approach, the eikonal limit of the γ matrix elements (5.19),

(5.20) and (5.21) becomes (for q � k)

γ bc
2p (k,q) ≈ −δ b

2p δ
c

2p

ma

2q2τ
[p]
0

k ·
(

q− q · ~τp
(τ

[p]
0 )2

~τp

)
, (6.1)
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γ bc
2p−1(k,q) ≈ −δ b

2p−1δ
c

2p

ma

2q2τ
[p]
0

k ·
(

q− q · ~τp
(τ

[p]
0 )2

~τp

)
, (6.2)

which generalizes the result (3.29) obtained for a single cold-dark-matter fluid.

What matters the most here is the fact that, still, all the non-zero matrix elements

are identical. Their form restricts Ξ 2p
2p and Ξ 2p−1

2p−1 , defined in (3.27), to integrals

of the field θ~τp(q, η)1. Consequently, it is still possible to interpret the eikonal

correction in terms of displacement fields deik.
p , defined so that

∫ η

η′
Ξ 2p

2p (k, η′′)dη′′ =
∫ η

η′
Ξ 2p−1

2p−1 (k, η′′)dη′′ = i k.deik.
p (η′, η). (6.3)

The way one constructs them from the velocity divergence field of the fluid labeled

by ~τp is necessarily

deik.
p (η, η′) = −i

∫ η

η′
dη′′

∫
d3q

ma

q2τ
[p]
0

(
q− q · ~τp

(τ
[p]
0 )2

~τp

)
θ~τp(q, η

′′). (6.4)

For ~τp = ~0, one recovers of course (3.40).

Note that a novelty of our approach is that, since the Ω matrix has become

scale-dependent, one can also define background displacement fields, generated by

the non-zero initial velocities. Indeed, the Ω and Ξ matrices have the same status in

(3.28) when both are scale-dependent. By analogy with (6.3), such displacements

contribute to the time integrals of the scale-dependent parts of Ω 2p
2p and Ω 2p−1

2p−1

in the form i k.d
(0)
p . According to equations (5.22) and (5.24), they read

d(0)
p (η, η′) = −

∫ η

η′
dη′′

~τp

H(η′′)τ [p]
0 (η′′)

. (6.5)

Note that they do not impact on the time evolution of non-relativistic flows and

of flows in which ~τp is oriented in such a way that i k.d
(0)
p = 0. In all other cases,

d
(0)
p ’s effect is dominant and superimposes to the perturbative one of deik.

p .

More precisely, in perturbation theory, one can write

dp(η, η
′) = d(0)

p (η, η′) + deik.
p

(1)
(η, η′) + deik.

p
(2)

(η, η′) + . . . (6.6)

1Similarly to what is done in section 3.5.1, the elements γ 2p 2p−1
2p−1 are neglected since they are

reduced by a factor q/k in comparison with the other non-zero matrix elements.
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The role of such displacement fields with respect to structure formation is discussed

in the next section.

6.2 Impact on the nonlinear growth of structure

6.2.1 Qualitative description

The case of baryons + cold dark matter

The eikonal approximation is useful when it comes to describe couplings between

large-scale modes and small-scale modes. Such couplings have proven to impact

noticeably on the structure-formation rate when they intervene in fluids made of

baryons and cold dark matter, due to a non-zero relative velocity between those two

species. Reference [179] was the first to examine this. It has then been supplemented

by [17]. The relative velocity in question, vrel, emerges at recombination, when the

speed of baryons starts to decline while the one of cold dark matter remains un-

changed. Because of this, there is a transitory period during which baryons and

cold dark matter evolve differently, which postpones the time at which baryons fall

into the potential wells created by cold dark matter. Inevitably, it also postpones

the time at which astrophysical objects made of baryons start to form under gravi-

tational instability. In other words, relative motions between baryons and cold dark

matter slow down the growth of structure. The scales affected by this phenomenon

are the scales at which perturbations in the two fluids are advected relative to each

other more rapidly than they grow, i.e. the scales at which k > H/〈v2
rel〉1/2. In

the equations of motion, it is encoded in couplings between small-scale modes and

large-scale modes. In this particular context, “small scales” refers to scales at which

baryonic objects begin to form, i.e. ∼ 10 kpc, and “large scales” stands for the typ-

ical coherence length of the relative velocity field, i.e. few Mpc (see the calculation

in [179]).

One may expect relative displacements between cold dark matter and massive

neutrinos to affect the nonlinear matter power spectrum in a similar way. Verifying

it is the purpose of the article presented in section 6.3. The general reasoning is

sketched in the next paragraphs.
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The impact of adiabatic modes in the general case

In our multi-fluid approach, it is useful to notice that several modes q contribute

to each eikonal displacement field, whose expression is given by (6.4). Some of

them are perforce adiabatic modes. The corresponding perturbations, θ~τp(qadiab, η),

contribute to the displacement field in the same manner in all flows. Hence, dp can

be written as

dp = dadiab + δdp, (6.7)

with dadiab identical in each flow2. Besides, as highlighted in section 3.5.1, the only

effect of the eikonal correction is to shift the phase of the solution of equation (3.28).

It is directly related to the extended Galilean invariance, according to which δ~τp and

θ~τp are not affected by the introduction of a displacement field in the medium when

they are written in real space (see section 5.2), and are thus only phase-shifted in

reciprocal space. Hence, adiabatic displacement fields have no impact on equal-

time power spectra because all the flows of the collection still evolve in phase when

δdp = ~0. Indeed, the equal-time ensemble average of adiabatically perturbed fields3

ψ̃i(k, η) = exp[ik · dadiab(η)]ψi(k, η) is

〈ψ̃1(k1, η)...ψ̃N (kN , η)〉 = 〈ψ1(k1, η)...ψN (kN , η) exp[i

N∑

i=1

ki · dadiab(η)]〉, (6.8)

whence

〈ψ̃1(k1, η)...ψ̃N (kN , η)〉 = 〈ψ1(k1, η)...ψN (kN , η)〉 (6.9)

because of statistical homogeneity (according to which
∑

ki = ~0). The adiabatic

contributions to the displacement fields have therefore no impact on the nonlinear

matter power spectrum (at least in the standard case of a power spectrum involving

equal-time fields).

For non-relativistic species, it is known that the most growing mode is adiabatic.

Consequently, we know that adiabatic modes will be dominant in neutrino streams

at late time. However, non-adiabatic contributions can a priori play a significant

role before the non-relativistic transition. Equation (6.6) recalls that their effects

2In section 5.3, I focused on the adiabatic contribution.
3Those fields can be for instance δ~τp or θ~τp .
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6.2. Impact on the nonlinear growth of structure

are perturbative but they can take over when k.d
(0)
p is small.

The impact of non-adiabatic modes in the general case

The non-adiabatic contributions, δdp, are specific to each flow. It means that, when

such contributions are taken into account, the phases of the individual solutions of

(3.28) vary from one flow to another. In this context, couplings between species are

not effective mechanisms to enhance perturbations. The matter power spectrum is

thus expected to be damped compared to what it is in the absence of δdp. This

can be characterized by the statistical properties of relative motions between flows.

In our study, we computed them explicitly for massive neutrinos by taking the cold

pressureless fluid as benchmark.

6.2.2 Quantitative results in the case of streams of massive neu-

trinos

To identify the scales at which relative displacements damp the matter power spec-

trum, it is useful to compute the quantity

σp =
〈[k.(dp − dCDM)]2〉1/2

k
, (6.10)

where the index “CDM” refers to the fluid labeled by ~τ = ~0. In this context,

the most impacted scales are those for which k & 1/σp, i.e. the scales at which

k.(dp − dCDM) is substantial4.

In the conformal Newtonian gauge, we found (the full calculation is given in the

article presented in the next section):

〈(k.dCDM)2〉 = 4πk2

∫
dq Pψ(q)

1

3
|TCDM(q)|2 (6.11)

and

〈(k.(dp − dCDM))2〉 = 2πk2

∫
dq Pψ(q)

∫ 1

−1
dα[p] × (6.12)

{
1

2

[
1− (µ[p])2

] [
1− (α[p])2

]
|T (0)
p (q)− TCDM(q)− T (2)

p (q)|2 + (α[p])2(µ[p])2|T (2)
p (q)|2

}
.

α[p] is the Cosine of the angle between ~τp and q. TCDM and T
()
p are transfer functions

4I recall that k.δdp is the non-adiabatic contribution to Ξ c
b , see (6.3).
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defined so that

−
∫ η

η′
dη′′

ma

τ
[p]
0

(
τ [p]

τ
[p]
0

)β
θ~τp(q, η

′′) = T (β)
p (η, η′,q)ψinit(q), (6.13)

∫ η

η′
dη′′ θCDM(q, η′′) = TCDM(η, η′,q)ψinit(q), (6.14)

with ψinit the initial value of the metric perturbation ψ that appears in the per-

turbed Friedmann-Lemâıtre metric written in the conformal Newtonian gauge,

(2.18). Pψ(q) is the initial power spectrum of ψ, i.e.

〈ψinit(q)ψinit(q
′)〉 = (2π)3δD(q + q′) Pψ(q). (6.15)

One can see from (6.12) that the amplitude of σp strongly depends on the flow

considered, both via α[p], µ[p] and τ [p] (the latter being hidden in the transfer

functions). We computed numerically the per mode contributions to σp (the setting

of the cosmological parameters and initial conditions is precised in our article).

Clearly, there are fluids (those with a high initial velocity) in which σp is comparable

in amplitude with
〈[k.(dCDM)]2〉1/2

k
. This is illustrated in figure 6.1. The top panel

is of particular interest since the background displacement d
(0)
p has no effect when

µ = 0. In this context, relative displacements are the leading contributions to

the damping of the nonlinear neutrino power spectrum. Modeling their impact is

therefore crucial.

As a preliminary result, we deduced from the plot 6.1 that the relevant scales

correspond to wavenumbers larger than (or of the order of) about 0.2 to 0.5 h/Mpc,

σp being of the order of 2 to 5 Mpc/h (when considering neutrinos with a 0.3 eV

mass). A much more thorough analysis is necessary to make testable predictions

and go one step further in precision cosmology. In this exploratory study, our aim

was rather to draw attention to the way in which relative displacements between

neutrino streams and other fluids affect the nonlinear growth of structure.

173



6.3. Article “On the importance of nonlinear couplings in large-scale neutrino
streams”

0.001 0.005 0.01 0.05 0.1 0.5 1.
0

2

4

6

8

10

12

14

q @h�MpcD

4
Π 3

q
P

Ν
,c

dm
Hq

,Μ
=

0L

0.001 0.005 0.01 0.05 0.1 0.5 1.
0

2

4

6

8

10

12

14

q @h�MpcD

4
Π 3

q
P

Ν
,c

dm
Hq

,Μ
=

1L

Figure 6.1: Power spectrum of the relative displacement as a function of the mode q
for different neutrino flows. The quantities Pν,cdm are defined so that the right hand
sides of eqs. (6.11) and (6.12) read 4πk2/3

∫
dqPν,cdm(q). The values of τ range

from 2.25 kBT0 (bottom line) to 18 kBT0 (top line). On the top panel µ is set to 0,
on the bottom panel µ is set to 1 and the neutrino mass is set to 0.3 eV. The gray
dashed line represents the power spectrum of the cold dark matter displacement.

6.3 Article “On the importance of nonlinear couplings

in large-scale neutrino streams”
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1 Introduction

Statistical properties of the large-scale structure of the universe have long been proposed
as an e�cient instrument to constrain cosmological parameters. In this context, a careful
account of the role played by massive neutrinos is crucial. So far, it has often been overlooked
in the nonlinear or quasilinear regime because of the technical complexity specific to the
study of massive neutrinos (see recent attempts in [1–3]). This is all the more unfortunate
that cosmological observations can fruitfully improve our knowledge of those particles. The
signature of neutrino masses on cosmological observables is indeed expected to be significant
enough for those masses to be constrained observationally [4–9].

In the linear regime, the e↵ect of neutrinos is now well understood (see refs. [10–12]).
The need for nonlinear corrections in their equations of motion has been raised because the
cosmological observations that are the most sensitive to neutrinos masses, i.e. for wavenum-
bers in the 0.1-0.2 h/Mpc range, precisely correspond to the mildly nonlinear regime. To
deal with this issue, several strategies can be adopted. Until recently, in analytic works, the
neutrino fluids had always been treated in the linear regime, nonlinear couplings being in-
troduced in the dark matter description only. This nonlinear treatment can be implemented
with the help of the Renormalization Group time-flow approach [1, 13]. Improvements upon
such schemes have been proposed in [3], which consists in a hybrid approach that matches the
full Boltzmann hierarchy to an e↵ective two-fluid description at an intermediate redshift. [14]
is, for its part, a systematic perturbative expansion of the Vlasov equation in which high-
order corrections to the neutrino density contrast are computed without the explicit need to
track the perturbed neutrino momentum distribution.

Ideally, however, the fully nonlinear evolution of the neutrino fluid should be depicted.
A natural way to do so would be to take inspiration of the standard linear description, which
relies on the Boltzmann equation, and extend the harmonic decomposition of the phase-space
distribution function to the nonlinear regime. This has been done in [15] but this method
turned out to be particularly di�cult to handle. In [16, 17], we proposed to describe massive
neutrinos as a superposition of single-flow fluids, the equations of motion of each of them
being written in the nonlinear regime.

In this paper, we are interested in exploiting those theoretical developments in order to
identify the scales at which nonlinear couplings in the neutrino fluids are expected to play a
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significant role. In order to do so, we apply the eikonal approximation to the nonlinear equa-
tions of motion. Note that this approximation had already been exploited in the literature
to develop a Perturbation Theory approach for cold dark matter ([18]) and had proved to be
able to capture the leading coupling e↵ects.

The article is structured as follows. In section 2, we recall the form of the nonlinear
equations of motion describing the time evolution of non-interacting fluids, relativistic or not,
when using a multi-fluid approach. Section 3 explains in detail how the eikonal approximation
can be implemented in those equations and emphasizes the key role of relative displacement
fields. Finally, in section 4, power spectra of the relative displacements between neutrino
fluids and the cold dark matter component are presented. The impact on the growth of
large-scale structure is then discussed in a quantitative way.

2 Nonlinear equations of motion (multi-fluid description)

Following [16, 17], it is now clear that any non-interacting relativistic fluid can be divided
into several flows, each of them evolving then independently until first shell-crossings. In
cosmology, this approach obviously applies to massive neutrinos since they are free-streaming.
In this framework, each flow can be defined as the collection of all the particles (with a mass
m) having initially the same comoving momentum. They are entirely characterized by two
coupled fields, namely the comoving number density nc and momentum Pµ. Those fields
obey the following general equations,

@

@⌘
nc +

@

@xi

✓
P i

P 0
nc

◆
= 0, (2.1)

with Pµ(⌘, xi) = gµ⌫P⌫(⌘, x
i) and PµPµ = �m2, gµ⌫ being the metric, and

P ⌫Pµ,⌫ =
1

2
P �P ⌫g�⌫,µ. (2.2)

These equations directly ensue from the matter and momentum conservation equations, ap-
plied to each flow. At this stage, no perturbative expansion of the metric is involved. The
properties of the whole fluid are then inferred by examining an appropriate number of such
flows, each of them being labeled by the initial value of its field Pi, denoted ⌧i (found to be
constant at zeroth order in Perturbation Theory). The initial number density of particles in
each flow is constrained by the choice of initial conditions. For instance, the case of adiabatic
initial conditions is described in detail in [16].

We are interested here in equations i) involving linearized metric perturbations (but
non-linearized fields) and ii) rid of the coupling terms that are subdominant at subhorizon
scales. They can be written in terms of the number density contrast

�⌧i(⌘, x
i) =

nc(⌘, x
i; ⌧i)

n
(0)
c (⌧i)

� 1 (2.3)

and of the velocity divergence field (in units of �H, H being the conformal Hubble constant)

✓⌧i(⌘, x
i) = �@iPi(⌘, x

i; ⌧i)

maH (2.4)
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since the field Pi has found to be potential in this regime.1 For a generic perturbed Friedmann-
Lemâıtre metric,2 whose time variable is the conformal time ⌘,

ds2 = a2(⌘)
⇥
�(1 + 2A)d⌘2 + 2Bidxid⌘ + (�ij + hij)dxidxj

⇤
, (2.5)

one has in Fourier space for the mode characterized by the wave vector k ([17])

✓
a@a � i

µk⌧

H⌧0

◆
�⌧i(k) +

ma

⌧0

✓
1 � µ2⌧2

⌧2
0

◆
✓⌧i(k) =

�ma

⌧0

Z
d3k1d

3k2↵R(k1,k2; ⌧i)�⌧i(k1)✓⌧i(k2), (2.6)

✓
1 + a

@aH
H + a@a � i

µk⌧

H⌧0

◆
✓⌧i(k) � k2

maH2
S⌧i(k) =

�ma

⌧0

Z
d3k1d

3k2�R(k1,k2; ⌧i)✓⌧i(k1)✓⌧i(k2). (2.7)

We have introduced here

µ =
ki⌧i
k⌧

, ⌧2 = ⌧i⌧i and ⌧0 = �
q

m2a2 + ⌧2
i . (2.8)

Besides, S⌧i(k) is a source term given by

S⌧i(k) = ⌧0A(k) + ~⌧ · ~B(k) � 1

2

⌧i⌧j
⌧0

hij(k). (2.9)

These equations contain also the generalized kernel functions, adapted to relativistic flows,

↵R(k1,k2; ⌧) = �Dirac(k � k1 � k2)
(k1 + k2)

k2
2

·

k2 � ~⌧

k2 · ~⌧
⌧2
0

�
, (2.10)

�R(k1,k2; ⌧) = �Dirac(k � k1 � k2)
(k1 + k2)

2

2k2
1k

2
2


k1 · k2 �

k1 · ~⌧k2 · ~⌧
⌧2
0

�
. (2.11)

As mentioned in [17], they are extensions of the kernel functions found for pressureless fluids
of non-relativistic species (see [19] for details in this context.).

In any practical implementation, it is necessary to consider a collection of N streams.
In that case, the general equation of motion can conveniently be written in terms of the
time-dependent 2N -uplet,

 a(k) = (�⌧1(k), ✓⌧1(k), . . . , �⌧N (k), ✓⌧N (k))T . (2.12)

Before shell-crossing, it can incorporate all the relevant species (neutrinos, dark matter,
baryons) as long as they interact only via gravitation. In this context, the equations (2.6)
and (2.7) of all the flows can formally be recast in the form3

@z a(k) + ⌦ b
a  b(k) = � bc

a (k1,k2) b(k1) c(k2), (2.13)

1This property, rigorously demonstrated in [17], generalizes that of non-relativistic species.
2Units are chosen so that the speed of light in vacuum is equal to unity.
3The Einstein notation for the summation over repeated indices is adopted and, in the right hand side of

this equation, it is assumed that the wave modes are integrated over.
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where @/@z ⌘ a@/@a and the indices a and b run from 1 to 2N . The matrix elements ⌦ b
a

gather the linear couplings. They contain in particular the way in which the source terms
S⌧i(k) can be re-expressed as a function of the 2N -uplet elements. The left hand side of this
equation is nothing but the linear field evolution. The right hand side contains the coupling
terms. More precisely, the symmetrized vertex matrix � bc

a (k1,k2) describes the nonlinear
interactions between the Fourier modes. It is given by

� 2p�1 2p
2p�1 (k1,k2) = � ma

2(⌧p)0
↵R(k1,k2, ⌧p), (2.14)

� 2p 2p
2p (k1,k2) = � ma

(⌧p)0
�R(k1,k2, ⌧p), (2.15)

with � bc
a (k1,k2) = � cb

a (k2,k1) and � bc
a = 0 otherwise.

3 The eikonal approximation

The eikonal approximation,4 developed in [18], is based on the observation that the ampli-
tudes of the kernel functions describing mode couplings, ↵R and �R, significantly depend
on the ratio between the wave numbers at play. This has been observed for non-relativistic
fluids and we show here that it is the case for relativistic fluids too. This property leads
to the idea that the right hand side of eq. (2.13) can be split into two integration domains.
One is called the hard domain and encompasses modes whose wavelengths are of the same
order (and for which the coupling functions are always finite). The other one is referred to
as the soft domain. It is made of modes of very di↵erent wavelengths for which the coupling
functions, of the order of the wavelength ratio, are large.

The main idea is that there are regimes in which the dominant coupling structure is in
the soft domain. This is the case for instance in early-time fluids containing baryons and
cold dark matter. At the time of recombination, the baryon velocity drops steeply whereas
the velocity of cold dark matter is not a↵ected by decoupling. It means that, at intermediate
scales (i.e. between the Silk damping length and the sound horizon), the relative velocity
vrel between the baryon flow and the one of cold dark matter is substantial. Because of
this, for scales at which k > aH/hv2

reli1/2 (at decoupling), the wavelength of gravitational
potential wells is too small for baryons to fall in them before being pushed towards another
direction. Eventually, this phenomenon induces a damping of the matter power spectrum.
The relative motion between cold dark matter and baryons and its e↵ects on the matter
power spectrum have been highlighted in [21, 22]. Such studies illustrate the relevance of
couplings between large scale modes and small scale modes in the framework of structure
formation. For instance, in the case of mixtures of baryons and cold dark matter, the typical
coherence length of the relative velocity field is of the order of few Mpc, which is much larger
than the scales at which basic baryonic objects start to form under gravitational clustering
(of the order of 10 kpc). The same formalism can be used to obtain the large k behavior
of the propagators in case of a single pressureless fluid, reproducing the results obtained
in [23, 24]. In the same spirit, we propose here to investigate the impact of the relative
motion between given neutrino streams and the cold dark matter fluid with the help the
eikonal approximation. It will allow us to infer the amplitude of neutrino coupling e↵ects.

4In this context, the term refers to diagram resummations performed in quantum electrodynamic field
equations, [20].
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For convenience, let us assume that the soft domain is obtained for k2 ⌧ k1 in eq. (2.13).
We have then k = k1 and the contribution corresponding to the soft domain can be viewed
as a mere corrective term in the linear equation describing the evolution of the mode k. In
other words, eq. (2.13) can be rewritten

@

@z
 a(z,k) + ⌦ b

a (z,k) b(z,k) � ⌅b
a(z,k) b(z,k)

=
h
� bc

a (k1,k2)  b(k1, z)  c(k2, z)
i
H

, (3.1)

with

⌅ b
a (k, z) ⌘ 2

Z

S
d3q eik.� bc

a (k,q) c(q, z) . (3.2)

The soft momenta q (i.e. q ⌧ k) at play in eq. (3.2) are integrated over so that ⌅ b
a (z,k)

is independent on  a(z, k). It is a mere time and scale dependent matrix. The fact that
the integration domain is restricted to the soft wave numbers in eq. (3.2) is the key element.
Conversely, in the right-hand side of eq. (3.1), the implicit convolution product excludes
the soft domain (i.e. all the modes concerned have comparable wavelengths). When the
contribution of the hard domain is negligible, eq. (3.1) can then be viewed as the equation
of motion of the mode k evolving in a medium perturbed by large-scale modes. It therefore
encodes the way in which long-wave modes alter the growth of structure. Once ⌅b

a(z,k) is
given, eq. (3.1) can be solved as a linear equation. This is precisely the eikonal approximation
of the global equation of motion.

In practice, applying the eikonal approximation to ⌅ b
a (k, z) means that the vertex values

that appear in this quantity have to be computed assuming k2 ⌧ k1. In this framework,
one deduces from eqs. (2.10), (2.11), (2.14) and (2.15) that the eikonal limit of the vertex
elements is

eik.�bc
2p(k,k2) = � �b

2p�
c
2p

ma

2k2
2(⌧p)0

k ·
 

k2 �
k2 · ~⌧p
(⌧p)

2
0

~⌧p

!
, (3.3)

eik.�bc
2p�1(k,k2) = � �b

2p�1�
c
2p

ma

2k2
2(⌧p)0

k ·
 

k2 �
k2 · ~⌧p
(⌧p)

2
0

~⌧p

!
. (3.4)

This expression depends on each flow through its initial momentum ~⌧p, which vanishes in
the standard non-relativistic equations. Besides, (⌧p)0 ! �ma in the non-relativistic limit
so that one recovers the expected formulae in this limit (see [21, 25]).

In the following, we exploit the consequences of this approximation in order to evaluate
the relevance of the coupling terms. As a first step, we can notice from eqs. (3.2), (3.3)
and (3.4) that the two non-zero elements coming from the flow labeled by ⌧p in the ⌅ matrix,

⌅ 2p
2p and ⌅ 2p�1

2p�1 , are proportional to the velocity divergence of large-scale modes. Thus we
can write Z z

z0

⌅ b
a (z0,k)dz0 = ik.dp(z0, z) � b

a , (3.5)

where a and b are either 2p or 2p� 1 and where dp is the total displacement field induced by
the large-scale modes in the fluid labeled by ⌧p. It reads necessarily

dp(z, z0) = i

Z z

z0

dz0
Z

d3q
ma

q2(⌧p)0

 
q � q · ~⌧p

(⌧p)
2
0

~⌧p

!
 2p(z

0,q). (3.6)
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Note that this displacement is superimposed on the zeroth order displacement field induced
by the homogeneous momentum of the flow. This background displacement field is given by
(see eqs. (2.6) and (2.7))

d(0)
p = �

Z z

z0

~⌧p
H(⌧p)0

dz0 . (3.7)

We will discuss this point in greater detail in the next section.

The impact of the eikonal correction introduced in the equation of motion depends
on the way in which the various large-scale modes contribute to the displacement fields
dp. The nature of the displacement is crucial in this context. In particular, one expects
global displacement fields, which a↵ect all species in a similar way, to induce a mere phase
shift in the solution of the eikonal limit of (3.1). Remarkably, such displacements have
no impact on power spectra, provided that the fields at play are evaluated at the same
time (see the end of this section). Using the standard language of cosmology, we call those
particular displacements “adiabatic displacements” in the following. On the contrary, relative
displacements between species can induce a damping in power spectra. It is simply due to the
fact that species must evolve in phase (at least during a small period of time) for couplings
between them to generate a significant growth of perturbations. This phenomenon has been
highlighted for the first time in [21] an reconsidered in [22]. In this paper, we show that such
considerations can be extended to the study of relativistic fluids.

Knowing this, it is convenient to decompose displacement fields into

dp(z, z0) = dadiab(z, z0) + �dp(z, z0), (3.8)

where dadiab denotes naturally the adiabatic part. The other part, �dp, represents relative
motions between fluids. For non-relativistic species, it is known that the most growing mode
is part of the adiabatic modes. Since neutrinos become non-relativistic at late time, one
expects the most growing mode of each fluid of neutrinos to become also an adiabatic mode
ultimately.

When considering only the adiabatic part of the displacement field, the solution of the
eikonal equation of motion is easy to find. Its form is related to the extended Galilean invari-
ance of the equations of motion, well established for non-relativistic species and uncovered
for the system (2.6)–(2.7) in [17]. Indeed, it has been shown that this system is invariant
under the following transformations,

x̃i = xi + di(z), (3.9)

z̃ = z, (3.10)

 ̃a(z̃, x̃) =  a(⌘,x), (3.11)

where the last transformation can equivalently be written  ̃a(⌘̃,k) = exp(ik · d(⌘)) a(⌘,k).
It means that a homogeneous time-dependent displacement which disrupts the medium can
be re-absorbed in a global phase shift of the Fourier transforms of the fields. Here, we
are interested in making the large-scale adiabatic displacement fields play the role of the
disturbers of the medium.

More explicitly, it is known that the solution of the standard linear system can be fully
described with the help of its Green function, g b

a (z, z0;k), defined in such a way that (see
appendix A for details)

 a(z,k) = g b
a (z, z0;k) b(z0,k), (3.12)
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with z and z0 two arbitrary times. Besides, when the displacement field is purely adiabatic,
the Green functions ⇠ b

a of the corrected linear system (i.e. the linear system in which an
eikonal correction has been added) are related to those of the naked theory by

⇠ b
a (z, z0;k) = g b

a (z, z0;k) exp(ik.dadiab(z, z0)). (3.13)

A direct consequence of the symmetry property is that, after a transformation of the
form (3.11), ensemble averages of any product of fields  a(za,ka) become proportional to
exp[i

P
a ka · dadiab(za)], which is unity when the fields are computed at equal time. Indeed,

statistical homogeneity imposes
P

a ka = 0. This is the reason why equal time spectra or
poly-spectra are not sensitive to the presence of adiabatic displacements.

Yet, we are interested in all contributions to the displacement field, including those
that induce large motions between species. As already mentioned, in early-time mixtures of
baryons and cold dark matter, those relative displacements (i.e. those non-adiabatic contri-
butions that develop in the nonlinear regime) are the leading contributions to the nonlinear
evolution of the power spectrum. To sketch the impact of massive neutrinos on the nonlin-
ear growth rate, we evaluate in the next section the amplitude of the relative displacements
involving them and we compute the corresponding power spectra.

4 Relative displacements and power spectra: quantitative results

As stressed in the previous section, in the eikonal approximation, the displacement fields
that can cause a damping of the growth of structure are those that di↵er from one fluid to
another. Hence, in this section, we compute on the one hand the power spectrum of the
total displacement field of cold dark matter and, on the other hand, the power spectra of the
relative displacement fields of relativistic flows (with respect to the a priori dominant cold
dark matter component). Note that, in perturbation theory, such displacements are sums of

terms of di↵erent orders (the zeroth order contribution d
(0)
p being defined in eq. (3.7)),

dp(z, z0) = d(0)
p (z, z0) + d(1)

p (z, z0) + . . . (4.1)

Note also that the damping due to non-homogeneous corrections can be significant only if the

considered flow is non-relativistic (since in that case d
(0)
⌧ (z, z0) is small) or if k is orthogonal

to the zeroth order contribution (since in that case k.d
(0)
⌧ (z, z0) is small compared with the

other contributions). Hence, in the following, we compute the expected values of k.(dp�dcdm)
as a function of the angle between the initial momentum ~⌧ of the considered fluid and k.
Calculations are performed in the conformal Newtonian gauge,

ds2 = a2 (⌘)
⇥
� (1 + 2 ) d⌘2 + (1 � 2�) dxidxj�ij

⇤
. (4.2)

This choice will allow us to take advantage of the numerical work presented in [16]. First,

let us define two transfer functions Dcdm and D
(↵)
p as

Z z

z0

dz0
ma

�(⌧p)0

✓
⌧p

(⌧p)0

◆↵
✓⌧p(z

0,q) = D(↵)
p (z, z0,q) init(q), (4.3)

Z z

z0

dz0 ✓cdm(z0,q) = Dcdm(z, z0,q) init(q), (4.4)
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where  init is the initial value of the potential  . The statistical properties of those quantities
are entirely encoded in their initial power spectra P (q), defined so that

h init(q) init(q
0)i = (2⇡)3�Dirac(q + q0) P (q). (4.5)

Using the expressions of the transfer functions, the contribution of each mode to the
displacement field of each relativistic flow reads

dp(z, z0;q) = �i

✓
q

q2
D(0)

p (z, z0,q) � ~⌧p.q

q2(⌧p)2
~⌧pD

(2)
p (z, z0,q)

◆
 init. (4.6)

Besides, for the cold dark matter component, one simply has

dcdm(z, z0;q) = �i
q

q2
Dcdm(z, z0,q) init(q). (4.7)

Furthermore, one can notice that the displacement field of a relativistic flow along an
arbitrary direction k depends on the angles between both q and ~⌧ and k and ~⌧ . After
integration over the other angles, one finds for the variances of respectively k.dcdm and
k.(dp � dcdm),

h(k.dcdm)2i = 4⇡k2

Z
dq P (q)

1

3
|Dcdm(q)|2 (4.8)

and

h(k.(dp � dcdm))2i = 2⇡k2

Z
dq P (q)

Z 1

�1
dµ


1

2
(1 � µ2

k)(1 � µ2)|D(0)
p (q) � Dcdm(q)

�D(2)
p (q)|2 + µ2µ2

k|D(2)
p (q)|2

�
, (4.9)

where µk is the Cosine of the angle between the initial momentum of the flow ~⌧p and k and
where an integration is made over µ, Cosine of the angle between ~⌧p and q. In eq. (4.9),
one can notice that the dependence of the r.m.s. with respect to µk is such that it does not
vanish either for an initial momentum ~⌧p orthogonal to k (i.e. when µk = 0) or for an initial
flow momentum along k (i.e. when µk = 1).

On figure 1, we present the per mode contribution to the right hand side of eq. (4.9) in
the particular case of neutrino fluids for µk = 0 on the left panel and µk = 1 on the right
panel. The results have been computed assuming a single species of neutrinos whose mass is
m⌫ = 0.3 eV and using the cosmological parameters derived from the Five-Year Wilkinson
Microwave Anisotropy Probe (WMAP 5) observations. Besides, the values of the initial
power spectra have been obtained under the assumption that, in the cosmological model
we adopt, metric fluctuations are initially adiabatic and characterized by the scalar spectral
index ns ⇡ 0.96. We can see that the resulting neutrino power spectra are comparable in
amplitude to the cold dark matter one (represented by a thick dashed line).

Denoting �dcdm
= 1/kh(k.dcdm)2i1/2 and �d⌧ = 1/kh(k.(dp � dcdm))2i1/2 we find that

�d⌧ is of the order of 2 to about 5h�1Mpc for the cosmological modes we used for which
�dcdm

⇡ 6h�1Mpc,. This result depends of course on the flow considered and is actually of
the order of the cold dark matter value. What does it mean? Similarly to what happens
in mixtures of baryons and cold dark matter, one expects the perturbation growth to be

damped for wave numbers larger than or comparable to 1/�d⌧ , for which k · d(1)
⌧ is expected

to be finite. Besides, such a non-adiabatic damping is potentially larger than the damping

due to the homogeneous displacements d
(0)
p of each flow when µk is close to zero. A precise

determination of the amplitude of these e↵ects would require a full analysis of the nonlinear
evolution of the system. We leave this for a future study.
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Figure 1. Power spectrum of the relative displacement as a function of the mode q for di↵erent
neutrino flows. The quantities P⌫,cdm are defined so that the right hand sides of eqs. (4.8) and (4.9)
read 4⇡k2/3

R
dqP⌫,cdm(q). The values of ⌧ range from 2.25 kBT0 (bottom line) to 18 kBT0 (top line).

On the left panel µk is set to 0, on the right panel µk is set to 1 and the neutrino mass is set to 0.3 eV.
The gray dashed line represents the power spectrum of the cold dark matter displacement.

5 Conclusion

Describing neutrinos as a collection of single-stream fluids is an e�cient strategy to infer
their impact on the growth of the cosmic structure. Using this approach, one indeed gets a
complete set of equations of motion that incorporate all the nonlinear e↵ects of relativistic
or non-relativistic particles. In the subhorizon limit, the system takes the form of eq. (2.13),
which can be easily handled by a formalism originally developed to depict non-relativistic
species.

In this paper, we evaluated the amplitudes of the nonlinear couplings and determined
for each flow the scales at which they are expected to impact significantly on the structure
growth. For that purpose, we implemented the eikonal approximation into the general equa-
tion of motion. We concluded that the impact of large-scale modes on an arbitrary mode
are entirely driven by large-scale displacement fields whose expressions are given in eq. (3.6).
The comparison between the displacement field associated with each flow of neutrinos and
the one associated with cold dark matter makes easy the comparison between the power
spectra of the relative displacements between neutrinos and cold dark matter and the power
spectrum of the displacement of cold dark matter alone. We found as a preliminary result
that couplings involving massive neutrinos (with a 0.3 eV mass) are expected to induce a
damping of the perturbation growth in neutrino flows for wave numbers larger than (or of
the order of) about 0.2 to 0.5 h/Mpc. A detailed quantitative analysis of the consequences
of this phenomenon is yet to be done but those findings confirm the significance of nonlin-
ear couplings in the dynamical evolution of neutrino fluids. This sets the stage for further
numerical studies beyond the linear regime.
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A Integral form of the overall equation of motion

For a finite number of flows, the overall equation of motion (2.13) can formally be written
in an integral form. It requires the use of the associated Green operator, g b

a (z, z0;k), of the
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linear system. This operator satisfies

 a(z,k) = g b
a (z, z0;k) b(z0,k), (A.1)

with z and z0 two arbitrary times. It is besides solution of the di↵erential equation

@

@z
g b
a (z, z0;k) + ⌦ c

a (z;k) g b
c (z, z0;k) = 0 (A.2)

with the condition
g b
a (z0, z0;k) = � b

a , (A.3)

� b
a being the identity matrix. Formally, the Green function is the ensemble of all the inde-

pendent linear solutions of the system.5 Denoting u
(↵)
a (z,k) these solutions, gb

a reads

gb
a(z, z0,k) =

X

↵

u(↵)
a (z,k)cb

(↵)(z0,k), (A.4)

where the variables cb
(↵)(z0,k) are set so that (A.3) is satisfied.

Studying in detail the Green operator of such a system is beyond the scope of this
appendix. Su�ce to note here that, unlike the case of a single pressureless flow, the Green
operator generally depends on the wave mode k. This dependence is expected to gradually
decay over time and to disappear at very late time, when all the flows have become non-
relativistic. At this stage, the situation is then identical to the one of a collection of cold
dark matter fluids.

As for the standard system of non-relativistic particles, the knowledge of the Green
operator of the equation of motion allows to write a formal solution (see [26–28]), which is
given by

 a(k, z) = g b
a (k, z, z0)  b(k, z0)

+

Z z

z0

dz0 g b
a (k, z, z0) � cd

b (k1,k2) c(k1, z
0) d(k2, z

0), (A.5)

with  a(k, z0) the initial conditions. Many of the approaches developed in order to improve
upon standard Perturbation Theory rely on an accurate description of the Green functions
beyond the linear regime. This is the purpose for instance of RPT and RegPT methods
([28–30]).
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Conclusions and perspectives

This thesis, “Precision cosmology with the large-scale structure of the universe”,

provides innovative results of different types. What they have in common is the

quest for precision in the description of the physical phenomena at work in the

universe.

First, a toy model mimicking the propagation of light in an inhomogeneous

spacetime has been presented. In this study, we chose a traditional Swiss-cheese

representation. Often used in the litterature, such models offer the advantage of

dealing with exact solutions of the Einstein equations, which do not affect the global

dynamics of the universe while making it strongly inhomogeneous. A new method,

mostly analytic, is proposed by us to investigate the impact of brutal fluctuations

of density on Hubble diagrams. It relies on the introduction of Wronski matrices,

which permit to determine the cumulative effect of several holes without difficulty

when solving the geodesic and Sachs equations. We also derived an approximate

luminosity-redshift relation for Swiss-cheese models, which turned out to be simi-

lar to the formula used in Dyer-Roeder approaches. By generating mock Hubble

diagrams corresponding to the patchy spacetime, we exemplified how initial pre-

sumptions, such as the cosmological principle, can alter scientific conclusions, such

as the estimation of cosmological parameters from Hubble diagrams. In general,

the bias that an insertion of holes causes in Hubble diagrams can be large, due

to a high sensitivity of luminosity distances with respect to the geometry of the

medium. However, this effect has proven to decrease a lot with the cosmologi-

cal constant, which is fortunate since observations clearly lean towards a universe

content dominated by dark energy. By its extreme simplicity, our model (whose

fluctuations of density are exaggeratedly abrupt), probably overestimates the bias.

Indeed, large-scale structures, intergalactic gas, dark matter, etc. are likely to act

as “smoothers” in the real universe. Compensation effects are undeniable. Yet
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we are convinced that, in precision cosmology, it is worth examining this question

minutely instead of crudely ignoring the mismatch between the scales at which the

cosmological principle is valid and the scales probed by the standard candles used to

build Hubble diagrams. Let us not forget that cosmological parameters are highly

model-dependent so measuring them with an exquisite precision is not sufficient to

attest that their values are representative of reality.

In the same spirit, I have presented in this manuscript a study in which Planck

results on the one hand and observations of the SNLS 3 catalog on the other hand

are interpreted assuming that the universe has a Swiss-cheese geometry. What mo-

tivated this investigation is the fact that the estimation of cosmological parameters

from CMB and/or BAO (for instance observed by Planck) are not always con-

sistent with that obtained from observational Hubble diagrams (for instance built

from the SNLS 3 catalog). We have shown that, if one considers spacetimes that are

particularly lumpy, the estimation of the cosmological parameter Ωm from Hubble

diagrams is very different from what it is when a model with a Friedmann-Lemâıtre

spacetime is used. It can even be reconciled with the Planck estimation. Of course,

such lumpy Swiss-cheese spacetimes are not realistic representations of the universe.

What we wanted to point out is that the discrepancy might be due to the fact that

those kinds of observations probe very different angular scales and are nevertheless

interpreted with the same geometrical model. Estimations of the cosmological pa-

rameters being now very precise, a geometrical modeling which adapts to the scales

considered should be opportune, or even necessary.

Our approach has scope for improvement in many ways: introducing holes with

different sizes to get more liberty regarding the proportion of underdense regions,

replacing photons by other particles, generating mock observations other than Hub-

ble diagrams, making it more realistic by taking into account the real structure of

the universe, etc. Actually, during my PhD, I specialized in another field of cosmol-

ogy, namely the study of the large-scale structure of the universe with the help of

perturbation theory. However, my collaborator Pierre Fleury devoted a major part

of his PhD thesis (completed also this year) to light propagation in inhomogeneous

and/or anisotropic spacetimes (see in particular [78], [75]).

The major result exposed in this thesis is the proposition of a new way of deal-

ing with the neutrino component in cosmology. The idea is to decompose neutrinos

into several single-flow fluids in order to get rid of velocity dispersion in each of

them. Nonlinear equations of motion have been derived from conservation laws
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in a generic perturbed Friedman-Lemâıtre metric, as well as formulae allowing to

recover the usual physical quantities by summing over all the flows of the collection.

Using those formulae to deduce the global energy density, velocity divergence and

shear stress of massive neutrinos from our equations, we proved that, in the linear

regime, our approach is consistent with the integration of the Boltzmann hierarchy.

It required in particular to infer the individual initial conditions from the knowledge

of the global initial distribution function of neutrinos. We did it explicitly for adi-

abatic initial conditions. Similarly to the standard approach describing the growth

of perturbations in cold pressureless fluids, our method breaks down when shell

crossing emerges. We argue that this phenomenon is likely to occur when neutrinos

have become slow enough to be considered as cold. It means that, potentially, our

work can also take advantage of the efforts realized in order to model shell crossing

in cold fluids. We think that this multi-fluid description provides a more convenient

basis to investigate the nonlinear behavior of neutrinos than the Boltzmann hier-

archy. Moreover, it provides an additional information since the flows of neutrinos

can be followed individually. It can be applied not only to massive neutrinos but,

more generally, to any non-interacting species. In this context, cold dark matter

appears as a mere fluid of the collection, whose particularity is to have a zero initial

momentum. Any initial velocity (relativistic or not) and any mass can be handled

by this formalism.

On this basis, we carried out a study devoted to the exploration of the coupling

structure of our equations on subhorizon scales. The interest of this approximation

is that it makes useful properties emerge while preserving the coupling terms that

are relevant to depict the nonlinear growth of perturbations involved in structure

formation. In particular, on subhorizon scales, the momentum fields that we chose

as variables can be written as gradients in any gauge and at any order in pertur-

bation theory. This key result is the starting point of several developments. First,

taking inspiration of the description of cold dark matter, we introduced one doublet

velocity divergence/density contrast per flow. It allowed us to gather in a unique

nonlinear equation the growth of perturbations in all non-interacting fluids. The

great advantage of this equation is that it is formally the same as the one derived

from the Vlasov-Poisson system (on which most of the results of nonlinear pertur-

bation theory rely) but with a much wider range of application. For this reason,

our approach will hopefully allow to make one further step towards a relativistic

generalization of nonlinear perturbation theory. We deliberately worked in arbi-
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trary gauges in order to facilitate the demonstration of invariance properties. We

therefore easily managed to generalize the so-called extended Galilean invariance.

As for cold fluids, it has been useful to derive consistency relations and to study

couplings between short-wave modes and long-wave modes with the help of the

eikonal approximation.

We devoted a study specifically to the implementation of the eikonal approx-

imation in our equations of motion. The aim was to write explicitly the eikonal

corrections associated with each flow and to interpret them as sources of peculiar

displacements. Taking the cold-dark-matter fluid as a benchmark, we showed that,

for large wavenumbers and high initial velocities, the fields characterizing neutrinos

can be phase-shifted with respect to the cold-dark-matter ones during a substantial

amount of time. Eventually, this postpones the fall of neutrinos into potential wells

and is therefore expected to damp the growth of structure. It would of course be

interesting to examine carefully the impact it can have on the nonlinear matter

power spectrum. However, doing so is a long-term project, which is still at its

preliminary stage. In general, a considerable difficulty related to the study of the

impact of nonlinear couplings on a given dynamics is the fact that it is not easy to

forecast which couplings will cancel each other out. Thanks to our Lagrangian-like

decomposition, there is no risk of missing cancellations of this type here.

The most evident perspectives offered by the multi-fluid point of view that we

adopted are the following. Formally, standard resummation techniques allowing to

compute the matter power spectrum at NLO can be extended to the global equation

that we derived. However, the associated formalism is very heavy so replacing

brutally the usual 2×2 matrices by N×N ones, which have moreover non-zero scale-

dependent imaginary parts, would be prohibitive. The continuation will therefore

consist in finding arguments to reduce the complexity of the problem. On the

one hand, it will be crucial to examine the scales at which both nonlinearities and

relativistic corrections must be taken into account. The last study presented in this

manuscript is a first step to address this. In practice, since non-linearities emerge at

late times whereas the highest velocities concern early times, many simplifications

can be expected. On the other hand, determining the number of flows necessary

for the description to be accurate (in the sense of precision cosmology), will be

decisive. With Julien Lesgourgues, I started to implement the equations of motion

of the multi-fluid approach in his code CLASS. The results we will obtain should be

helpful to test efficiently the numerical requirements and to envisage well-controlled
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simplifications.
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de m’avoir fait confiance il y a trois ans. Débuter dans la recherche à ses côtés a été
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devenir cosmologiste), à Christine et Éric (qui acceptent d’avoir une belle-fille qui

fait parfois des calculs en même temps qu’elle discute avec eux) ainsi qu’à mes
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Hors catégorie, Jordane. Se marier avec une doctorante, c’est courageux ! Quitter

son travail pour la suivre lorsqu’elle part en post-doctorat aussi. Merci pour cela et

pour tout le reste.

Enfin, merci aux membres du jury pour avoir ajouté l’examen de ma thèse à
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Résumé de la thèse en français

Cosmologie de précision avec les grandes
structures de l’univers

Introduction

Deux thématiques, chacune ancrée dans l’ère de la cosmologie de précision, sont

abordées dans cette thèse. Dans un premier temps, c’est le principe cosmologique

qui est questionné. Il s’agit de l’hypothèse selon laquelle, à très grande échelle1

(& 100 Mpc), la distribution de matière dans l’univers est homogène et isotrope.

En cosmologie moderne, la manière dont on interprète les données observation-

nelles est grandement influencée par ce principe de base. En collaboration avec

Jean-Philippe Uzan et son étudiant Pierre Fleury, nous avons souhaité en savoir

plus sur les limites de cette hypothèse. Plus précisément, nous avons testé l’effet

induit par la présence de structures dans l’univers en simulant des observations de

supernovae dans un univers fictif non homogène. Nous avons en particulier attiré

l’attention sur le fait que, dans le contexte de la cosmologie de précision, il pourrait

être pertinent d’adapter la modélisation géométrique de l’espace-temps à l’échelle

spatiale considérée. En effet, les échelles caractéristiques explorées en cosmologie

varient considérablement d’une observable à une autre. Or la géométrie de l’univers

réel n’est pas la même à toute échelle.

Le second aspect de la cosmologie de précision traité dans cette thèse est le

développement de la théorie des perturbations cosmologiques, notamment via l’ex-

ploration des régimes non linéaire et relativiste. Il s’agit de la tâche à laquelle j’ai

consacré la grande majorité de mon temps pendant ma thèse. Avec mon directeur

de thèse, Francis Bernardeau, j’ai proposé une nouvelle approche analytique visant

1pc est le symbole de parsec, qui vérifie 1 pc≈ 3.1× 1016m.
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à décrire efficacement la croissance non linéaire des perturbations dans des fluides

où la dispersion en vitesse n’est pas nécessairement négligeable. Cette méthode,

basée essentiellement sur une décomposition des fluides en ensembles de flots, est

particulièrement adaptée à l’étude du rôle joué par les neutrinos sur la formation des

grandes structures de l’univers. La phénoménologie des neutrinos (dans un contexte

cosmologique) est donc également un domaine auquel je me suis intéressée pendant

ma thèse.

Un exemple illustrant les enjeux de la cosmologie de

précision

La cosmologie est une discipline atypique, notamment parce que l’univers est un

objet d’étude particulier. Il ne peut être ni étudié de l’extérieur ni comparé à des

systèmes similaires. De plus, on l’observe depuis une partie restreinte de celui-ci

(la Terre et ses environs) pendant une durée limitée (période durant laquelle des

êtres humains sont présents sur Terre). La distance à laquelle on peut observer est

en outre finie car il faut du temps à la lumière pour se propager d’un point à un

autre et, selon le modèle du Big Bang, l’univers n’a pas toujours existé. On parle

d’horizon cosmologique pour définir la frontière de l’univers observable.

En raison de ces spécificités, les modèles cosmologiques contiennent nécessairement

des hypothèses invérifiables, dont le principe cosmologique fait partie. En relativité

générale, l’application de ce principe se traduit par l’utilisation d’une métrique ho-

mogène et isotrope, connue sous le nom de métrique de Friedmann-Lemâıtre.

L’univers réel n’est bien sûr pas parfaitement homogène. S’il l’était, la croissance

des grandes structures par instabilité gravitationnelle n’aurait d’ailleurs pas été pos-

sible. L’explication actuellement privilégiée pour décrire l’amorçage de la croissance

des structures est en effet la présence de gradients de densité dans l’univers primor-

dial. Plus précisément, selon la théorie de l’inflation, un champ scalaire existait

au départ et ses fluctuations quantiques (inévitablement présentes) seraient deve-

nues macroscopiques en raison d’un épisode d’expansion extrêmement rapide (voir

[7, 85, 89, 173, 30, 122]). Cela aurait engendré des fluctuations de métrique et donc

inévitablement des fluctuations de densité (car en relativité générale la géométrie de

l’espace-temps agit sur la matière, et inversement). Le processus d’instabilité gravi-

tationnelle était alors lancé. L’étude de l’évolution de telles perturbations au cours
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du temps est généralement réalisée à l’aide de la théorie des perturbations cosmolo-

giques. Dans ce contexte, la métrique de Friedmann-Lemâıtre est remplacée par une

métrique de Friedmann-Lemâıtre perturbée (c’est à dire une métrique contenant des

corrections infinitésimales qui brisent l’homogénéité).

Dans la formulation la plus élémentaire du modèle standard de la cosmologie

(en particulier, en l’absence de neutrinos), les caractéristiques de l’univers sont

résumées par les valeurs de six paramètres, que l’on appelle paramètres cosmolo-

giques. Ces valeurs ne peuvent être déterminées qu’observationnellement. Plusieurs

sources offrent cette possibilité. Parmi elles, les plus largement utilisées sont les su-

pernovae de type Ia (SNIa), les oscillations acoustiques de baryons (BAO) et le fond

diffus cosmologique (CMB). Une supernova est un objet astrophysique résultant de

l’explosion d’une étoile. Les SNIa, qui sont des supernovae dont le spectre contient

du silicium mais pas d’hydrogène, sont utiles notamment pour retracer l’histoire

de l’expansion de l’univers. Plus précisément, elles donnent des informations au

sujet de l’équation d’état de l’énergie noire (voir [38, 146]). Les BAO sont des os-

cillations périodiques de la composante baryonique2 de l’univers. La connaissance

de leurs propriétés est également très utile à la cosmologie (voir notamment [5]).

Le CMB est un rayonnement émis environ 380 000 ans après le Big Bang, lorsque

la température de l’univers est devenue suffisamment basse pour que les photons

puissent se propager librement. Les observations du CMB fournissent des estima-

tions extrêmement précises des paramètres cosmologiques, en particulier lorsqu’elles

sont combinées à d’autres données astrophysiques ([137]).

La théorie des perturbations cosmologiques appliquée au modèle standard de la

cosmologie donne des résultats en très bon accord avec la réalité. Cela est en fait

assez surprenant compte tenu de la simplicité du modèle et de la qualité des moyens

mis en œuvre pour explorer minutieusement l’univers observable. Par exemple, une

telle modélisation présuppose que la matière est distribuée de façon continue, ce qui

sous-entend l’existence d’une échelle de lissage, non précisée dans le modèle ([68]).

Cela est d’autant plus problématique que certaines observables cosmologiques sont

des sources quasi-ponctuelles (d’un point de vue cosmologique), dont les faisceaux

très étroits parcourent l’univers en sondant des échelles trop petites pour que le

principe cosmologique soit applicable et pour que l’hypothèse de continuité soit

valable. En particulier, l’échelle caractéristique associée à la largeur des faisceaux

2Baryonique signifie fait de baryons. En particulier la matière standard, faite d’atomes, est
baryonique.
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de SNIa est de l’ordre de l’unité astronomique3. L’utilisation non éclairée du principe

cosmologique pourrait donc conduire à des erreurs d’interprétation (voir [33], parmi

d’autres références). Ce genre de problématique est caractéristique de l’ère de la

cosmologie de précision.

Déjà dans les années soixante, le paradoxe entre la structure réelle de l’univers et

sa représentation lisse avait été mis en évidence. Des tentatives d’amélioration de la

modélisation avaient alors été proposées ([199, 50, 19, 83, 98, 144]). Plus récemment,

l’effet des fluctuations de densité sur les diagrammes de Hubble, qui sont des dia-

grammes construits principalement à partir de l’observation de SNIa et très utilisés

en cosmologie moderne, a été étudié attentivement ([99, 80, 191, 190, 192]). Des

approches reposant sur la théorie des perturbations cosmologiques ont également

été proposées ([92, 39, 54]), sans toutefois que l’hypothèse de continuité soit remise

en question. De tels modèles utilisent des échelles de lissage de l’ordre de la minute

d’arc4 alors que l’on s’attend à ce que l’essentiel de la dispersion induite par les

structures dans les diagrammes de Hubble provienne d’échelles inférieures (voir par

exemple [48]). De plus, il semble inapproprié de supposer que les fluctuations de

densité rencontrées par les faisceaux de SNIa soient représentatives des fluctuations

moyennes qui existent dans l’univers puisque, du fait de leur étroitesse, ces faisceaux

se propagent beaucoup plus longuement dans des régions sous-denses que dans des

régions sur-denses. Lorsqu’il s’agit d’interpréter les diagrammes de Hubble, il serait

donc utile de tenir compte d’effets de sélection. Ces difficultés sont discutées de

manière approfondie dans [33].

Les simulations numériques sont des alternatives aux modèles analytiques qui

permettent de travailler en milieu non homogène. Cependant, leur résolution n’est

pas infinie donc, même numériquement, la structure à petite échelle ne peut pas

être modélisée avec précision. Dans [33], la limite qui est donnée est de quelques

dizaines de kiloparsecs, ce qui est nettement supérieur à la largeur caractéristique

d’un faisceau de supernova.

La première étude présentée dans cette thèse est une modélisation analytique

de la propagation de la lumière dans un espace-temps de type Swiss cheese. Il s’agit

d’un espace-temps obtenu en enlevant des sphères de matière à un milieu initiale-

ment homogène et isotrope et en remplaçant celles-ci par des masses ponctuelles,

identiques aux masses enlevées (voir la figure 2 et les références [65, 158]).

3Une unité astronomique vaut environ 1.5× 1011 m.
4La minute d’arc est une unité de mesure angulaire correspondant à un soixantième de degré.
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Figure 2 – Illustration représentant un espace-temps de type Swiss cheese. Le fond
est homogène. Chaque sphère est vide sauf en son centre, où une masse ponctuelle
est présente. La masse ponctuelle est égale à la densité du fond multipliée par le
volume de la zone blanche qui l’entoure.

Notre modèle n’a pas pour vocation d’être réaliste mais de tester l’impact de

variations de densité discontinues sur la propagation de la lumière. D’un point de vue

théorique, il est autant justifié que la description standard car il s’agit d’une solution

exacte de la relativité générale qui a la même dynamique globale que la métrique de

Friedmann-Lemâıtre. Dans un premier temps, nous avons déterminé analytiquement

la manière dont la propagation de la lumière est affectée par la traversée d’un trou.

Après avoir implémenté le résultat dans un programme Mathematica, nous avons

pu facilement prédire l’impact de la traversée d’un plus grand nombre de trous. Il a

alors été possible de construire des diagrammes de Hubble théoriques en imaginant

des faisceaux de supernovae se propageant dans un tel milieu. Pour y parvenir, nous

nous sommes inspirés de données réelles provenant du catalogue SNLS 3 (voir [38]).

Le fait de recourir à des modèles de type Swiss cheese pour tester les limites

du principe cosmologique n’est pas une idée nouvelle. La particularité de notre

approche est qu’il ne s’agit ni d’une solution moderne de type Lemâıtre-Tolman-

Bondi, dans laquelle les masses ponctuelles sont remplacées par des gradients de

densité continus (voir [31, 116, 24, 185, 32, 35, 183, 176, 74, 200, 72, 73, 143, 151,

150, 121, 40, 149, 70]), ni d’un retour aux anciens modèles de type Swiss cheese

([98] et [62]) car le modèle cosmologique que nous utilisons est totalement ancré

dans la cosmologie moderne.

Partant d’un observateur occupant une position quelconque de la partie non

vide du Swiss cheese, nous avons reconstruit pas à pas les trajectoires suivies

par les photons. La première étape consiste en l’identification des coordonnées de

l’événement correspondant à la sortie du dernier trou traversé. En pratique, cela

revient à résoudre l’équation des géodésiques du genre lumière dans la métrique de

Friedmann-Lemâıtre. À l’intérieur de ce trou, la géométrie n’est pas la même. Elle

est décrite par une métrique appelée métrique de Kottler. Nous avons donc ensuite
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résolu les équations du mouvement dans la métrique de Kottler, afin d’identifier

l’évenement correspondant à l’entrée du dernier trou traversé, puis sommes reve-

nus à la métrique de Friedmann-Lemâıtre. L’impact de la présence de trous sur

l’évolution de la largeur des faisceaux lumineux, et donc sur la luminosité finale-

ment reçue par l’observateur, a quant à lui été étudié en résolvant à chaque étape

l’équation de Sachs. Il s’agit d’une information cruciale car c’est cette luminosité

qui figure en ordonnée des diagrammes de Hubble. La procédure décrite ci-dessus

peut être renouvelée un nombre arbitraire de fois, jusqu’à ce que l’on décide que la

source a été atteinte. En abscisse des diagrammes de Hubble, on trouve le décalage

vers le rouge cosmologique associé à la source. Il a donc également été nécessaire de

décrire l’évolution du nombre d’onde afin de comparer les valeurs à l’émission et à

la réception et d’en déduire la valeur du décalage vers le rouge de chaque SNIa.

Dans un premier temps, nous avons traité nos diagrammes comme des données

observationnelles standard, c’est à dire que nous avons utilisé le modèle homogène

et isotrope pour déterminer (par le test du χ2) les valeurs des paramètres cosmolo-

giques à utiliser dans les équations pour reproduire au mieux ces données. Utilisant

des barres d’erreur réalistes (car semblables à celles du catalogue SNLS 3), nous

avons trouvé que l’estimation finale des paramètres cosmologiques peut être très

éloignée des valeurs réelles utilisées pour construire notre milieu de propagation.

Autrement dit, nous avons illustré la façon dont l’hypothèse d’homogénéité affecte

l’interprétation des données. Le fait que l’estimation des paramètres cosmologiques

dépende à ce point du modèle n’est pas anodin tant l’idée que l’on se fait de l’univers

en cosmologie moderne repose sur cette estimation.

Dans notre étude, nous avons également analysé de vraies observations en sup-

posant que l’univers réel avait une géométrie de type Swiss cheese. Nous avons

pour cela dû dériver une formule analytique reliant la luminosité des SNIa à leur

décalage vers le rouge cosmologique dans des espaces-temps de type Swiss cheese.

Là encore, pour un même catalogue de données, les résultats obtenus peuvent net-

tement différer de ce qu’ils sont lorsque l’on suppose que la géométrie de l’univers

est bien décrite par la métrique de Friedmann-Lemâıtre. Ce travail a donné lieu à

une publication dans Physical Review D en 2013, [77].

L’enjeu est important puisque les résultats parus en 2013 de la mission Planck,

[135], avaient révélé un désaccord entre l’estimation des paramètres h et Ωm à

l’aide d’observations du CMB et leur estimation à partir d’autres observables (en

particulier des SNIa). Dans une deuxième étude publiée dans Physical Review
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Letter en 2013, [76], nous démontrons que le modèle du Swiss cheese permet de

rendre compatibles les estimations du paramètre Ωm. Ceci est illustré sur la figure 3.

Par ailleurs, les résultats 2015 de la mission Planck, [137], montrent que l’estimation

de h par Planck est en fait compatible avec le catalogue récent de SNIa dont il est

question dans [20], qui se nomme Joint Light-curve Analysis.

Figure 3 – Comparaison des contraintes sur (Ωm, h) obtenues par Planck ([135])
et par le diagramme de Hubble construit à partir du catalogue SNLS 3 ([86]). f est
un paramètre indiquant la fraction du volume qui n’est pas sous forme de trous.
Par exemple, f = 1 correspond à une métrique de Friedmann-Lemâıtre.

Ces travaux illustrent les enjeux de la cosmologie de précision puisque c’est la

structure très fine de l’univers qui est étudiée. Le but n’est pas de proposer de nou-

veaux modèles mais plutôt d’ajouter un degré de précision aux modèles existants.

Dans le cas présent, la nouveauté serait d’adapter la représentation géométrique de

l’univers à l’échelle considérée au lieu d’utiliser des modèles homogènes et isotropes,

qui ne reflètent que l’univers lissé à grande échelle. On peut également développer

la cosmologie de précision en travaillant avec les grandes structures de l’univers.

Dans le cadre de la théorie des perturbations cosmologiques, l’effort est actuelle-

ment concentré sur le dépassement de la théorie linéaire et sur la prise en compte de

constituants de l’univers négligés jusqu’alors dans les modèles. Il s’agit précisément

du type d’activité entrepris pendant le reste de ma thèse.
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Une nouvelle façon d’étudier les neutrinos en cosmologie

En théorie des perturbations dite standard (voir la revue [13]), on modélise la

croissance des structures en décrivant l’effondrement gravitationnel de la matière

noire froide, traitée comme un fluide non relativiste sans pression. Dans ce contexte,

la physique newtonienne suffit. Un élément-clé de la description est l’hypothèse de

flot unique. En effet, l’agitation thermique est minime dans les fluides froids si bien

que l’on s’attend à ce que la dispersion en vitesse soit faible tant que les fluctuations

de densité n’induisent pas des gradients de vitesse trop importants. C’est seulement

à des stades plus avancés que la dispersion en vitesse devient conséquente. En effet,

la gravité guide les particules vers les puits de potentiels, et ce quelles que soient

leurs vitesses initiales, donc les particules sont amenées à se croiser au bout d’un

certain temps. Ce phénomène, appelé croisement de coquilles, est illustré sur la

figure 4.

Figure 4 – Illustration schématique de l’émergence de régions multi-flots (croi-
sement de coquilles) sous l’effet de la gravité. Les distances et les vitesses sont
représentées comme des quantités unidimensionnelles. Auteur : Bernardeau, [12].

C’est durant cette phase tardive de virialisation que les objets astrophysiques tels

que les galaxies commencent à se former (voir [22]). Malheureusement, dès lors que

le croisement de coquilles est amorcé, l’évolution du système devient très difficile à

modéliser analytiquement. Actuellement, les connaissances à ce sujet reposent donc

majoritairement sur des simulations numériques à N corps.

Au contraire, avant l’apparition de croisements de coquilles, le fait de négliger la

dispersion en vitesse dans les équations du mouvement rend possible de nombreux

développements analytiques. On parle d’hypothèse de flot unique. Elle implique

qu’à un instant et une position donnés, toutes les particules du fluide possèdent la

même vitesse.
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En cosmologie de précision, on cherche à décrire la croissance des grandes struc-

tures de la manière la plus rigoureuse possible. Afin de pouvoir modéliser analyti-

quement le rôle joué par des espèces autres que la matière noire froide, nous avons

cherché une astuce permettant d’étendre le champ d’application de l’hypothèse de

flot unique. L’idée que nous proposons est tout simplement de considérer chaque

espèce relativiste non pas comme un fluide à plusieurs flots mais comme un ensemble

de fluides à un flot. Plus précisément, à l’instant initial, nous considérons comme

un fluide à part entière chaque ensemble de particules dont la vitesse est identique

puis nous étudions séparément l’évolution des N flots correspondant aux N vitesses

initiales. La discrétisation de l’espace des phases est illustrée sur la figure 5 pour

N = 11. Les impulsions initiales sont caractérisées non seulement par une norme

mais aussi par un sens et, dans les espaces à plusieurs dimensions, par une direc-

tion. Dans le cas des neutrinos, une telle décomposition ne pose pas de problème

puisque, après leur découplage, les neutrinos n’interagissent plus entre-eux ou avec

les autres espèces. Par conséquent, si les conditions initiales sont choisies après le

découplage des neutrinos, aucune interaction non gravitationnelle n’a besoin d’être

prise en compte. Sur l’image, les variations d’épaisseur des traits représentent des

fluctuations de densité.

Figure 5 – Espace des phases discrétisé à l’instant initial pour un ensemble de
onze flots. Dans chaque flot, les impulsions sont initialement homogènes. Les varia-
tions d’épaisseur représentent des fluctuations de densité. Par souci de simplicité,
les impulsions et les positions ont été représentées comme des quantités unidimen-
sionnelles.

Malgré l’homogénéité des champs de vitesses initiaux, la présence de fluctua-

tions de densité fait apparâıtre des gradients de vitesse. Pour une masse donnée,

les particules sont d’autant plus sensibles à ces fluctuations que la norme de leur

vitesse initiale est petite puisque, dans ce cas, elles tombent facilement dans les
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puits de potentiel. En particulier, le flot caractérisé par une impulsion initiale nulle

se comporte précisément comme le fluide de matière noire froide. Le développement

de fluctuations spatiales dans l’espace des impulsions est illustré sur la figure 6.

Comme pour la matière noire froide, on s’attend à ce que des régions multi-flots

finissent par apparâıtre. On voit clairement sur la figure 6 que cela se produira beau-

coup plus tôt dans les fluides caractérisés par une faible vitesse initiale. Avant ces

premiers croisements de coquilles, il est raisonnable de supposer que chaque fluide

peut être étudié dans l’hypothèse de flot unique. Remarquons par ailleurs qu’il est

probable que ces croisements surviennent uniquement lorsque les neutrinos seront

devenus suffisamment lents pour pouvoir être décrits comme des espèces froides.

Figure 6 – Développement de gradients d’impulsion dans l’espace des phases
discrétisé pour un ensemble de onze flots. Ce phénomène est généré par les fluc-
tuations de densité, représentées ici par des variations d’épaisseur des traits.

Dans une telle approche, le comportement global des neutrinos est retrouvé en

sommant les contributions des différents flots de la collection, à condition que le

nombre de flots soit suffisant pour que l’échantillon soit représentatif. Par exemple,

si on caractérise chaque flot par une vitesse initiale appelée ~τ , la fonction de distri-

bution globale de l’espace des phases s’obtiendra de la façon suivante,

f tot(η,x,p) =
∑

~τ

f~τ (η,x,p), (16)

ce qui donne dans la limite continue

f tot(η,x,p) =

∫
d3τf~τ (η,x,p), (17)

avec f~τ la fonction de distribution du fluide caractérisé par ~τ .

Symboliquement, le fait d’identifier les fluides par leurs vitesses initiales puis
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de dériver des équations du mouvement spécifiques à chacun est analogue au choix

d’adopter un point de vue lagrangien pour décrire l’évolution d’un fluide. La différence

est que, dans la description lagrangienne, c’est la position initiale qui est utilisée

comme label. Inversement, la description standard des neutrinos reposant sur l’étude

de f tot(η,x,p) se rapproche d’une description eulérienne.

Une fois les flots définis à l’instant initial, le nombre de particules contenues

dans chacun d’eux est constant. Mathématiquement, la conservation du nombre de

particules se traduit par une équation de continuité. En relativité générale, elle est

donnée par la conservation de la quantité Jµ, appelée quadri-courant,

Jµ;µ = 0. (18)

Le quadri-courant est l’analogue quadri-dimensionnel de la densité de courant de

la physique classique. Il s’agit donc d’un débit. Par conséquent, il peut s’exprimer

en termes d’une densité et d’une vitesse ou d’une impulsion. Les variables que nous

avons choisi d’utiliser sont les suivantes :

• la densité numérique comobile nc(η,x), définie comme le nombre de particules

par unité de volume comobile d3xi,

• le champ d’impulsion comobile Pi(η,x).

La densité numérique comobile peut facilement être reliée à la fonction de distribu-

tion dans l’espace des phases. En effet, par définition,

nc(η,x) =

∫
d3pi f(η, xi, pi) (19)

et Pi(η,x) est tout simplement la valeur moyenne des impulsions comobiles de

l’espace des phases,

Pi(η,x) =

∫
d3pi f(η, xi, pi)pi∫
d3pi f(η, xi, pi)

. (20)

Par ailleurs, le quadri-courant satisfait la relation (voir par exemple [18])

Jµ(η,x) = −
∫

d3pi(−g)−1/2 p
µ

p0
f(η, xi, pi), (21)

où g est le déterminant du tenseur métrique.

L’approximation de flot unique est particulièrement utile dans ce contexte. En

effet, à un instant η et une position x donnés, toutes les particules du fluides ont
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une impulsion Pi(η,x), d’où

f(η, xi, pi) = nc(η,x)δD(pi − Pi(η,x)). (22)

L’équation de continuité (18) impose alors

∂ηnc + ∂i

(
P i

P 0
nc

)
= 0. (23)

Dans l’hypothèse du flot unique, le tenseur énergie-impulsion vérifie (voir encore

[18])

Tµν = −PµJν . (24)

En combinant la conservation du quadri-courant à celle du tenseur énergie-impulsion,

on trouve finalement

Pµ;νJ
ν = 0, (25)

d’où notre seconde équation du mouvement

P ν∂νPi =
1

2
P σP ν∂igσν . (26)

Notre approche permet de suivre individuellement le comportement des différents

flots de neutrinos mais, ce qui est intéressant pour la cosmologie, c’est surtout leur

comportement global. Nous avons donc exprimé les premiers multipôles de la dis-

tribution globale d’énergie en fonction des variables individuelles que nous avions

choisies. De manière très générale, ces multipôles sont donnés par (dans l’espace

réciproque, voir [111]) :

ρν ≡ −T 0
0, (27)

(
ρ̄ν + P̄ν

)
θν ≡ ikiT 0

i, (28)

(
ρ̄ν + P̄ν

)
σν ≡ −

(
kikj

k2
− 1

3
δij

)(
T ij −

1

3
δijT

k
k

)
, (29)

où X̄ désigne la partie homogène de la quantité X et avec ([18])

Tµν(η,x) =

∫
d3pi(−g)−1/2 p

µpν

p0
f(η, xi, pi). (30)
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Dans notre approche, les intégrales sur les impulsions de l’espace des phases sont à

remplacer par des intégrales sur les différents flots, ou de manière équivalente sur

les impulsions initiales ~τ . D’après (17) et (22), on a

f tot(η, xi, pi) =

∫
d3τi nc(η,x;~τ)δD(pi − Pi(η,x;~τ)), (31)

d’où (pour toute fonction F des impulsions)

∫
d3pi f

tot(η, xi, pi) F(pi) =

∫
d3τi nc(η,x;~τ) F(Pi(η,x;~τ)). (32)

Cette formule nous a permis d’exprimer sans difficultés les multipôles en fonction

de nos variables. Habituellement, la seule manière de les calculer est d’intégrer la

hiérarchie de Boltzmann, obtenue en calculant les moments successifs de l’équation

de Boltzmann. En pratique, il est nécessaire de linéariser et de tronquer cette

hiérarchie pour qu’elle soit intégrable numériquement. Afin de tester la validité de

notre approche, nous avons donc calculé numériquement l’évolution temporelle de

nos multipôles dans le régime linéaire et comparé nos résultats aux résultats stan-

dard. Ces calculs ont été faits en imposant des conditions initiales adiabatiques,

choisies lorsque les neutrinos sont déjà découplés des autres espèces mais encore re-

lativistes. En effet, dans ce contexte, la fonction de distribution initiale des neutrinos

est connue et l’hypothèse de flot unique permet d’en déduire les valeurs initiales de

nos champs.

Les conclusions que nous avons tirées de ce test numérique sont les suivantes.

• À grande échelle, c’est la discrétisation des normes des impulsions qui est

déterminante pour que l’accord entre les deux méthodes soit satisfaisant. En

revanche, la discrétisation des directions initiales importe peu. Par exemple,

en prenant 12 directions différentes, en tronquant la hiérarchie de Boltzmann

à l’ordre 6 et en considérant des neutrinos de masse m = 0.05 eV, les erreurs

relatives moyennes passent de 10−2 à 10−4 quand le nombre de normes d’im-

pulsions (dans chaque approche) passe de 16 à 100 lorsque k = 0.002h/Mpc.

• Pour k & 0.01h/Mpc, l’intégration numérique est plus ardue car les équations

du mouvement des flots de la collection deviennent très différentes les unes

des autres (autrement dit, dépendent plus fortement des vitesses initiales). Il

faut par exemple utiliser 100 directions différentes pour obtenir une précision

de l’ordre du pourcent lorsque k = 0.1h/Mpc.
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• En choisissant des masses plus petites, il faut également affiner la discrétisation

puisque, dans ce cas, la dépendance des champs de vitesses et de densités vis-

à-vis de ~τ est plus grande.

• Aux temps longs, tous les flots se comportent comme la matière noire froide.

Les tests numériques montrent sans ambigüıté que les deux approches sont com-

patibles dans le régime linéaire. Par exemple, un accord avec une précision de 10−3

(obtenu pour k = 0.01h/Mpc et m = 0.3 eV) est présenté sur la figure 7, qui

compare les comportements des premiers multipôles énergétiques. L’inconvénient

majeur de notre méthode est que, pour que l’accord soit satisfaisant, le nombre

d’équations à résoudre doit généralement être plus important dans notre approche

que dans l’approche de Boltzmann. Toutefois, notre modèle analytique est valable

au-delà du régime linéaire, ce qui n’est pas le cas de l’approche de Boltzmann. De

plus, les grandes similitudes qui existent entre notre étude et celle de la matière noire

froide permettent d’espérer d’importants développements basés sur nos équations.

Cette étude à été publiée dans JCAP en 2014, [57].
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Figure 7 – Évolution temporelle du contraste de densité d’énergie (ligne continue),
de la divergence des vitesses (tirets) et de la pression anisotrope (points) des neu-
trinos. Dans la partie haute, les quantités sont calculées à partir de nos équations.
La partie basse montre les erreurs relatives entre les deux approches. L’intégration
numérique a été réalisée en utilisant 40 normes d’impulsions et 12 directions ini-
tiales. k est fixé à 0.01h/Mpc et m à 0.3 eV.

Vers une extension de la théorie des perturbations cos-

mologiques au régime relativiste

Par la suite, nous avons utilisé l’approche multi-fluides précédente pour généraliser

au cas relativiste certains résultats majeurs de la théorie des perturbations non

linéaires. Afin de rendre les équations du mouvement plus faciles à manipuler, nous

avons choisi d’éliminer les termes de couplage qui ne sont pas indispensables pour

décrire la formation des structures. Plus précisément, nous avons utilisé le rayon

de Hubble5 comme échelle caractéristique et nous nous sommes concentrés sur les

échelles subhorizon, c’est à dire les échelles inférieures au rayon de Hubble. En effet,

5Le rayon de Hubble donne l’ordre de grandeur du rayon de l’univers observable.
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la croissance non linéaire des structures est un processus récent dans l’histoire de

l’univers donc les termes qui deviennent petits aux échelles subhorizon ne sont a

priori pas déterminants dans ce contexte. Le premier résultat que nous avons pu

généraliser en travaillant dans la limite subhorizon est le fait que, à tout ordre de

la théorie des perturbations, la partie rotationnelle des champs d’impulsions est

négligeable. Cela signifie que ces variables sont entièrement caractérisées par leurs

divergences. Or cette propriété, également satisfaite par le champ de vitesses du

fluide de matière noire froide, est capitale dans la description standard newtonienne

(voir [12]). L’intérêt principal de notre approche est l’universalité des équations. En

effet, après le découplage, les seuls éléments permettant de distinguer les baryons,

la matière noire froide et les neutrinos sont leurs masses et vitesses initiales. En

introduisant un 2N -uplet

Ψb(k) = (δ~τ1(k),−θ~τ1(k), . . . , δ~τN (k),−θ~τN (k))T , (33)

où chaque δ est un contraste de densité et chaque θ une divergence de vitesse, on

peut donc encoder le comportement de tous les fluides cosmiques découplés dans

une équation unique (les expressions des matrices Ω c
b et γ cd

b sont données dans la

thèse) :

a(η)∂aΨb(k, η) + Ω c
b (k, η)Ψc(k, η) = γ cd

b (k1,k2, η)Ψc(k1, η)Ψd(k2, η). (34)

Cette équation est formellement identique à l’équation-clé sur laquelle repose la

théorie des perturbations standard dans le régime non linéaire. La différence capi-

tale est que tous les fluides, relativistes ou non, sont ici pris en compte alors que

l’équation standard ne modélise que l’évolution de la matière noire froide. Comme

expliqué dans la thèse, nous avons également mis en évidence des propriétés d’in-

variance de manière à généraliser certaines relations de consistance permettant de

relier des fonctions de corrélation d’ordre n à des fonctions de corrélation d’ordre

n+1. Ce travail prépare le terrain pour l’implémentation de techniques de resomma-

tion très utiles à la description de la croissance non linéaire des grandes structures

de l’univers (voir [45, 117, 133, 46, 177] pour la présentation de telles techniques).

Cela a débouché sur une publication dans JCAP en 2015, [58].

233



Une application concrète de la description multi-fluides

des neutrinos

En cosmologie, le spectre de puissance de la matière est une quantité cruciale per-

mettant de décrire la distribution statistique de la matière dans l’univers. On le

définit comme la fonction de corrélation à deux points des contrastes de densité de

matière. La modélisation analytique de l’effet des neutrinos sur ce spectre de puis-

sance dans le régime non linéaire est un travail de longue haleine. Pour atteindre cet

objectif, il est utile dans un premier temps d’identifier les échelles auxquelles il sera

pertinent de tenir compte des couplages non linéaires dans les équations du mouve-

ment impliquant les neutrinos. Dans ma thèse, j’ai utilisé l’approche multi-fluides

décrite ci-dessus dans ce but.

La forme de l’équation (34) permet l’implémentation de l’approximation ei-

konale, décrite dans [14] et [16] dans le cas non relativiste, qui consiste en la

décomposition du membre de droite de (34) en deux domaines appelés hard domain

et soft domain puis en l’élimination du hard domain. Le hard domain contient les

couplages entre modes de longueurs d’onde comparables tandis que le soft domain

décrit les couplages entre modes de grande et de petite longueurs d’onde. La cor-

rection apportée par le soft domain par rapport à l’équation linéarisée (c’est à dire

l’équation (34) dans laquelle le membre de droite est fixé à zéro) peut être vue

comme une perturbation du milieu. Généralement, cette perturbation est décrite

par un champ de déplacement, dont l’expression généralisée au régime relativiste est

explicitement donnée dans ma thèse. Cela découle directement des propriétés d’in-

variance que nous avons mises en évidence dans [58]. Comme expliqué dans [179] et

[17], lorsque les champs de déplacement ne sont pas les mêmes dans tous les fluides

(on parle alors de déplacements non adiabatiques), les perturbations de chacun ne

sont plus en phase les unes avec les autres. Cela ralentit la chute des espèces autres

que la matière noire froide dans les puits de potentiel, et donc finalement la crois-

sance des structures. Nous avons donc calculé les champs de déplacement relatifs

entre matière noire froide et neutrinos et tracé les résultats en fonction de k afin de

déterminer les échelles auxquelles l’amortissement du spectre de puissance dû aux

couplages entre modes de grande et de petite longueurs d’onde peut être conséquent.

L’estimation préliminaire que nous avons trouvée correspond aux échelles dont les

nombres d’ondes sont supérieurs (ou de l’ordre de) 0.2 à 0.5 h/Mpc pour des masses

de 0.3 eV. Cependant, une étude nettement plus approfondie est nécessaire pour
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pouvoir tirer des conclusions solides à ce sujet. Le but de notre travail était plutôt

d’attirer l’attention sur la possibilité de généralisation du lien entre approximation

eikonale, déplacements relatifs entre fluides cosmiques et amortissement du spectre

de la matière dans le régime non linéaire. Les résultats correspondants ont été pu-

bliés dans JCAP en 2015, [59].

Conclusions et perspectives

Cette thèse fournit des résultats innovants de plusieurs types. Leur point commun

est la quête de précision dans la description des phénomènes physiques à l’œuvre

dans l’univers.

D’abord, un modèle-jouet simulant la propagation de la lumière dans un espace-

temps non homogène est présenté. Dans cette étude, nous avons opté pour la tra-

ditionnelle représentation de type Swiss cheese. Souvent utilisée dans la littérature,

elle permet de travailler avec des solutions exactes de la relativité générale, qui

n’altèrent pas la dynamique globale de l’univers tout en le rendant fortement non

homogène. Nous avons illustré la façon dont les hypothèses de base, telles que le

principe cosmologique, peuvent affecter les conclusions scientifiques, telles que l’es-

timation des paramètres cosmologiques à partir des diagrammes de Hubble. En

général, le biais causé par le fait d’introduire des trous dans un espace homogène

et isotrope peut être grand en raison de la grande sensibilité de la luminosité des

sources vis-à-vis de la géométrie du milieu traversé. Nous avons montré que ce biais

décrôıt avec la constante cosmologique, ce qui est une chance puisque les observa-

tions penchent clairement vers un contenu de l’univers dominé par l’énergie noire

(et donc par la constante cosmologique dans le modèle standard). En raison de son

extrême simplicité, notre modèle (dont les fluctuations de densité sont exagérément

abruptes) surestime probablement le biais. En effet, les grandes structures, le gaz

intergalactique, la matière noire, etc. agissent comme des lisseurs dans l’univers

réel. Les effets de compensation entre régions de densités inférieure et supérieure à

la moyenne sont indéniables. Nous sommes toutefois convaincus que, en cosmologie

de précision, cela vaut la peine d’étudier minutieusement ce genre de problématique

plutôt que d’accepter qu’il y ait une incohérence entre les échelles auxquelles le prin-

cipe cosmologique est valide et celles sondées par les SNIa utilisées pour construire

les diagrammes de Hubble. N’oublions pas que les paramètres cosmologiques sur

lesquels repose la cosmologie moderne dépendent fortement des modèles utilisés
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donc le fait de les mesurer avec une très grande précision n’est pas suffisant pour

affirmer que leurs valeurs reflètent la réalité.

Cette thèse présente aussi une étude dans laquelle les résultats de la mission

Planck d’une part et les observations du catalogue de supernovae SNLS 3 d’autre

part sont interprétés en modélisant la géométrie de l’univers par un espace-temps

de type Swiss cheese. Nous avons montré que l’estimation du paramètre cosmo-

logique Ωm à partir des diagrammes de Hubble peut alors être très différente de

ce qu’elle est dans le modèle homogène et isotrope, allant jusqu’à une possible

réconciliation avec les résultats de la mission Planck. Évidemment, les espaces-

temps de type Swiss cheese ne sont pas des représentations réalistes de l’univers.

Ils permettent simplement de montrer que l’incompatibilité entre les différentes ob-

servables peut venir du fait qu’elles sondent l’univers à des échelles très différentes.

Avec l’amélioration de la précision de l’estimation des paramètres cosmologiques,

un travail sur la modélisation géométrique de l’espace-temps pourrait être judicieux,

voire nécessaire.

Notre approche peut être améliorée de multiples façons. On pourrait notam-

ment introduire des trous de tailles différentes afin d’avoir davantage de libertés

concernant la proportion de régions vides. L’étude de données autres que les dia-

grammes de Hubble, obtenues en remplaçant les photons par d’autres particules,

constitue également une piste intéressante. Une modélisation plus réaliste de l’uni-

vers, basée sur une étude approfondie de la structure réelle de l’univers, pourrait

aussi être bénéfique. Toutefois, pendant ma thèse, je me suis spécialisée dans une

autre branche de la cosmologie, à savoir l’étude de la formation des grandes struc-

tures de l’univers à l’aide de la théorie des perturbations. Mon collaborateur Pierre

Fleury a quant à lui consacré une grande partie de sa thèse (soutenue également

cette année) à l’étude de la propagation de la lumière en milieu non homogène et/ou

non isotrope (voir notamment [78], [75]).

Le résultat majeur proposé dans cette thèse est une nouvelle façon de décrire

les neutrinos en cosmologie. L’idée est de décomposer les neutrinos en plusieurs

fluides à un flot de manière à se débarrasser de la dispersion en vitesse dans chacun

d’eux. Les équations du mouvement correspondantes, non linéaires, ont été dérivées

à partir de lois de conservation dans une métrique de Friedmann-Lemâıtre per-

turbée quelconque, tout comme les formules permettant de retrouver les grandeurs

physiques globales en sommant sur les différents flots. En utilisant ces formules

pour calculer la distribution multipolaire d’énergie, nous avons montré que notre

236



approche est totalement compatible avec l’intégration de la hiérarchie de Boltzmann

dans le régime linéaire. Nous pensons que notre approche fournit une base plus ap-

propriée à l’étude du comportement non linéaire des neutrinos que la hiérarchie de

Boltzmann. Elle fournit de plus une information supplémentaire puisque les flots

de neutrinos peuvent être examinés individuellement. Cette méthode peut être ap-

pliquée aux neutrinos et, plus généralement, à n’importe quelle espèce en chute

libre. Dans ce cadre, la matière noire froide apparâıt comme un simple fluide de la

collection, dont la seule particularité est d’avoir une vitesse initiale nulle. N’importe

quelle vitesse (relativiste ou non) et n’importe quelle masse peuvent être gérées par

ce formalisme.

Sur cette base, nous avons mené une étude dédiée à l’exploration de la struc-

ture de couplage de nos équations restreintes aux échelles subhorizon. L’intérêt de

cette hypothèse est de mettre en évidence des propriétés utiles sans éliminer les

termes qui sont pertinents pour décrire la croissance non linéaire des structures.

Nous avons ainsi pu résumer en une équation les processus en jeu dans l’évolution

des perturbations cosmologiques. L’avantage de cette équation est qu’elle est aussi

simple que l’équation de la théorie des perturbations standard tout en ayant un

champ d’application beaucoup plus large. C’est pourquoi on peut espérer que notre

approche constitue un pas de plus vers une généralisation relativiste de la théorie

des perturbations non linéaire. Nous avons délibérément travaillé dans une jauge

quelconque de manière à faciliter la mise en évidence de propriétés d’invariance, ce

qui nous a permis de dériver des relations de consistance et d’étudier les couplages

entre modes de grande et de petite longueurs d’onde à l’aide de l’approximation

eikonale.

L’un de nos articles a été entièrement dédié à l’implémentation de cette ap-

proximation dans nos équations du mouvement. Nous avons ainsi pu monter que,

pour des grands nombres d’ondes et des vitesses initiales importantes, les champs

caractérisant les neutrinos peuvent être déphasés par rapport à ceux de la matière

noire froide pendant une durée importante. Cela ralentit naturellement la croissance

des grandes structures de l’univers.

Les perspectives les plus évidentes offertes par ce point de vue multi-flots sont

les suivantes. Formellement, les techniques de resommation standard permettant de

calculer les corrections non linéaires du spectre de puissance de la matière pour-

raient être étendues à notre équation globale. Cependant, le formalisme en jeu est

très lourd donc le fait de remplacer brutalement les matrices 2× 2 par des matrices
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N ×N , qui possèdent de plus des parties imaginaires dépendantes d’échelle, serait

rédhibitoire. La suite exigera donc de trouver des arguments permettant de dimi-

nuer la complexité du problème. D’une part, il sera crucial d’identifier les échelles

auxquelles à la fois les non-linéarités et les corrections relativistes doivent être prises

en compte. La dernière étude présentée dans la thèse est un premier pas en ce sens.

En pratique, puisque les non-linéarités se développent tardivement tandis que les

plus grandes vitesses correspondent aux époques les plus anciennes, on peut s’at-

tendre à beaucoup de simplifications. D’autre part, la détermination du nombre de

flots nécessaire pour que la description soit acceptable (au sens de la cosmologie de

précision) sera essentielle. Avec Julien Lesgourgues, j’ai commencé à implémenter

les équations du mouvement dans son code CLASS ([28]). Les résultats que nous

obtiendrons devraient se révéler utiles pour tester efficacement le coût numérique

associé et envisager des simplifications bien contrôlées.
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