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ABSTRACT

�e amount of data that is being gathered about cities is increasing in size and
speci�city. However, despite this wealth of information, we still have little un-
derstanding of what really drives the processes behind urbanisation. In this
thesis we apply some ideas from statistical physics to the study of cities.

We �rst present a stochastic, out-of-equilibrium model of city growth that
describes the structure of the mobility pattern of individuals. �e model ex-
plains the appearance of secondary subcenters as an e�ect of tra�c congestion.
We are also able to predict the sublinear increase of the number of centers with
population size, a prediction that is veri�ed on American and Spanish data.
Within the framework of this model, we are further able to give a prediction

for the scaling exponent of the total distance commuted daily, the total length
of the road network, the total delay due to congestion, the quantity of CO2

emitted, and the surface area with the population size of cities. Predictions
that agree with data gathered for U.S. cities.
In the third part, we focus on the quantitative description of the patterns of

residential segregation.We propose a unifying theoretical framework inwhich
segregation can be empirically characterised. We propose a measure of inter-
action between the di�erent categories. Building on the information about the
attraction and repulsion between categories, we are able to de�ne classes in
a quantitative, unambiguous way. �e framework also allows us to identify
the neighbourhoods where the di�erent classes concentrate, and characterise
their properties and spatial arrangement. Finally, we revisit the traditional di-
chotomy between poor city centers and rich suburbs; we provide a measure
that is adapted to anisotropic, polycentric cities.
In the fourth and last part, we present the most important results of our

studies on spatial networks. We �rst present an empirical study of 131 street
patterns across the world, and propose a method to classify the patterns based
on the geometrical shape of the blocks.We then present a cost-bene�t analysis
framework to understand the properties and growth of spatial networks. We
introduce an iterative model that can explain the emergence of a hierarchical
structure (‘hubs and spokes’) in growing spatial networks. Starting from the
cost-bene�t framework of this model, we �nally show that the length, number
of stations and ridership of subways and rail networks can be estimated know-
ing the area, population and wealth of the underlying region.

�roughout this thesis, we try to convey the idea that the complexity of cities
is – almost paradoxically – better comprehended through simple approaches.
Looking for structure in data, trying to isolate the most important processes,
building simple models and only keeping those which agree with data, consti-
tute a universal method that is also relevant to the study of urban systems.
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Part I

INTRODUCT ION

We begin this part with a general introduction that stresses the
ever growing importance of cities in the world, and highlights the
di�culties encountered when trying to reach a scienti�c under-
standing of these systems. We brie�y outline the history of the
quantitative tradition in the study of urban systems, and argue
that we may be witnessing a second quantitative revolution. We
then succintly present the methodology that we followed during
the past 3 years, and end this part with an outline of the content
presented in this thesis.





1
STUDY ING C IT I E S

Chaos was the law of nature;

Order was the dream of man.

—Henry Adams [10]

Cities appeared some 10, 000 years ago [18, 165] concomitantly with the
agriculture revolution, and really started to thrive a�er the industrial revolu-
tion [18]. In England �rst, where the revolution was born; London was the �rst
in the modern world to reach 1, 000, 000 inhabitants at the beginning of the
19th century.�e urban growth then slowly spread through the end of the 19th
and the 20th to the rest of the Western world. Now, while most western coun-
tries are already mostly urban (as of 2014, the United States’ population was
82%urban, Japan 93%, andmost countries in the EuropeanUnionwere around
the 80% mark), most of what has been dubbed the ’urban revolution’ is hap- Source:

UN Population

Division (2011)
pening in developing countries. A symbolic barrier was reached in 2005, when
it was estimated by the U.N. that more than 50% of the world total population
was living in cities. It is not di�cult to convince oneself that urbanisation is
not an accident in human history, and that cities’ in�uence and impact are not
going to stop growing any time soon.
In fact, the impact of cities is already tremendous. First, they have a dis-

proportionately large importance in the world’s economy. A 2012 report by
McKinsey noted that while cities represented respectively 79% and 19% of the
Unites States’ and India’s population, their share in the countries’ GDP was re-
spectively 85% and 39%. Data from the NASA indicate that urban areas cover
a total of 5% of the total land surface area in the world, roughly the equivalent
of the super�cy of the European Union. Yet, despite their little spatial fooprint,
cities have a great impact on the environment.�e United Nations indeed es-
timated in 2011 that cities were responsible for 70% percent of the world’s CO2

emissions.
We could multiply the statistics, but the few examples given above should

convince the reader of the importance to understand cities if we want to im-
prove the world we built for ourselves. �e dramatic growth of urban areas in
developing countries brings unprecendented challenges.�e cause, and the so-
lution of some of the world’smost pressing challenges �nd their origin in cities.
By improving the way cities work, we can hopefully make dramatic changes to
the way people live. To be able to do so however, we �rst need to understand
how they work.

3



4 studying cities

1.1 we need data

Walk a few steps in your favourite city, feel the streets bustling all around you.
�e sound of the cars, of people chatting, the pavement lined with homoge-
neously diverse buildings.�e sense of familiarity we feel when stepping back
in a city that was once our home, years later. And that smell you had forgotten
you knew. Maybe the hardest thing, when studying cities, is the impression
that we know them closely. �e belief that our impression of what they are,
the way we experience them, gives a true picture of what they really are, the
purpose they serve. �is familiarity is what makes the study of macroscopic,
human-made systems so di�cult compared to the study of natural systems.
�ere are indeed only so many ways we can get acquainted with, say, elec-

trons, and therefore just somany things we can say about them.�is, in a sense,
makes the study of electrons easy. �ink about cities now. All the memories,
habits, knowledge you have gathered over the years. As individuals, we know
toomany and too little things about them at the same time.We can have a very
detailed recollection of the city we have experienced. But this information is
not organised, and it is too local, too provincial. �erefore, we cannot infer
what cities are solely from our own experience. We are a single piece of a puz-
zle that counts hundreds of thousands, millions of them, all with a di�erent
opinion of what their environment is like. No, to understand cities, how they
work as a system, we need to be told these thousands of stories, we need to
analyse them and see how similar, or dissimilar they really are. To understand
cities, we need data.

1.2 cities as complex systems

1.2.1 A paradigmatic example

Cities are paradigmatic examples of complex systems [127]. First, they com-
prise thousands, millions of individuals that are moving and interacting con-
stantly. Cities are indeed more than the mere agglomeration of residences, fac-
tories and shops in the same region; they exist and thrive through the resulting
facilitated interaction between individuals [37, 208].
Second, cities are incredibly resilient systems.�ere are multiple examples

in History of cities that were completely destroyed – Dresden and Hiroshima,
for instance, completely burnt to ashes during WWII – but were later rebuilt
and thrived again.
Finally, cities exhibit very particular shapes and behaviours that make them

identi�able as patterns that stand out in their environment [65].�e road net-
work, for instance, is such that cities can be readily identi�ed when looking
at a map. �e high density of population, hence nighlights, also make urban
environments identi�able on satellite pictures. �ese are two obvious, visual
particularities of cities, but some of their regularities are more subtle. As amat-
ter of fact, we will be interested in some of these particular behaviours in this
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thesis.

1.2.2 An organised complexity

�e systems studied in Physics can be roughly divided in two categories [177]

• Simple systems with only a few variables. �eir dynamics is described

by deterministic equations. For instance, the motion of planets can be
described with high accuracy by General Relativity.

• Weakly, locally interacting systems, with a very large number of partic-
ules. �eir properties are described using probabilitistic language. For
instance, monoatomic gases in usual conditions of pressure and temper-
ature are well described by Statistical Mechanics.

Cities, however, do not �t in any of the above categories.�ey are clearly not
simple, deterministic systems, and cannot be described in their entirety with
only a few variables. On the other hand, the traditional approach of Statistical
Mechanics is also bound to fail. Although they can contain several million of
individuals, cities are not maximally disordered systems, and thus cannot be
described in the same way we describe gases. Cities, while being disorganised,
have structure.
At the individual level, interactions are weak: one individual is very unlikely

to radically change the system’s dynamics. But the multiplication of individ-
ual interactions can create robust and in�uent structures (the activity centers
discussed in Chapter ii, for instance). Interactions can occur locally – during
face-to-face meetings – but also non-locally – through the phone, or the use
of information systems. Furthermore, individuals are not aimless particles, but
usually have a purpose whenever they move. At the same time, the sheer num-
ber of individuals leaves room for unexpected situations and encounters. As a
result, cities are neither completely organised systems, nor are they completely
disorganised. �ey are thus very di�erent to the kind of systems natural sci-
ences have traditionally studied.

1.3 layers and scales

A �rst step in the identi�cation of order consists in identifying the di�erent
spatial and temporal scales involved in the dynamics within and of cities.�e
goal of any theory of how cities work would be to understand the phenomena
occuring at each scale, and to understand how scales interact with one another,
thereby establishing a hierarchy of mechanisms, as in natural sciences [211].

1.3.1 Layers

At the smallest scale, we have the individuals who live in urban systems.�ey
make decisions about where they live, where they work, etc. and interact con-
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stantly with one another. Individuals are, in a way, the building blocks of cities,
and it is therefore crucial to understand the way they interact with their envi-
ronment to understand the structure and behaviour of cities.
At a larger scale, cities can be considered as systems characterised by spe-

ci�c behaviours [38]. Besides, they do not evolve in isolation and belong to
larger scale structures. To quote the geographer B.J.L. Berry, ‘cities [are] sys-
tems within systems of cities’ [33], and their interactions—migrations, com-
modity and capital �ows—ought to constrain their evolution [186].
Finally, there is a great amount of evidence to show that systems of cities

also exhibit very particular behaviours: the rank-size plot of the population
of cities that belong to these systems is indeed strikingly regular (a regularity
known as ‘Zipf ’s law’), and breaks down for other geographical units or when
the chosen set of cities is not geographically and economically coherent [63].

Microscopic
Individuals

Mesoscopic
Cities

Macroscopic
Systems of cities

Figure 1: Interactions at di�erent spatial scales. Cities are the result of interactions
occuring at di�erent spatial scales. �e movement and interactions of indi-
viduals result in the properties of the city as a whole. But cities are not closed
systems, and interact with other cities in a system of cities.

Cities are therefore the result of interactions occuring at di�erent spatial
scales. Furthemore, they are not static: they evolve in time, through various
processes taking place at di�erent time scales.

1.3.2 Time scales

First we have time-scales of the order of a day, which span the daily commut-
ing of inhabitants. �is incessant movement of people has been traditionally
explored through surveys, but new data now allowmore thorough studies.�e
digital traces that are le� by people at all times (through their mobile phone,
metro pass or GPS device) indeed allow us to explore the structure of �ows
and the pace of life in cities at unprecedently �ne spatial and time resolutions.
�en, at the order of a year one can see the variation in terms of wealth,

population, etc. of cities, as recorded by statistics agencies. Data about demo-
graphic, social and economic aspects of urban systems allow us to characterise
more speci�cally the structure and behaviours of these systems.
Finally, at time scales of the order of ten years, we can see the city’s infrastruc-

ture as well as its spatial footprint evolve.�e study of the underlying processes
is made possible by various projects lead by the GIS community, historians
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and geographers which aim at digitizing historical maps of the road and rail
networks in di�erent regions of the world. Also, since the 1970s, many satel-
lites have been taking pictures of the Earth’s surface, and the remote sensing
community has been treating these data to get information about the spatial
extension of cities.�ese data should give us some insight about the processes
responsible for the long-term evolution of cities’s structure.

Mobility Socio-economic 
phenomena

Spatial footprint
Networks

Figure 2:Di�erent time scales.�e various data available about cities are associated
with di�erent time scales.

�ese time scales are summarised on Fig. 2.�e long-term goal of our stud-
ies is to understand exactly how cities and systems of cities behave, and how
interactions between these three layers lead to the behaviours we observe.





2
QUANT ITAT IVE REVOLUT ION ( S ) IN URBAN SC I ENCE

And the �rst one now

Will later be last

For the times, they are a-changin’

— Bob Dylan

It is di�cult to make a concise summary of what is known and not known
about urban systems.�e vast amount of knowledge that has been gathered so
far seems very little in comparison to the bewildering complexity of the object
being studied [26]. Everymap, every satellite view, every statistic, every step in

cities elicits a question yet to be answered. What do we have to answer them?
A surprisingly small array of empirical tools and models. A surprisingly small
amount of solid, undisputed empirical facts.
Having said that, previous contributions are by no mean negligible. �e

body of quantitative knowledge about cities has dramatically grown since the
quantitative revolution in Geography, that took place a�er the 1950s.
People have recently suggested that we may be witnessing the dawn of a

second quantitative revolution [27]. In the following Chapter, we will try to
get some perspective on this claim, and see to what extent it is justi�ed. We
will start with a (very) brief account of the �rst quantitative revolution and the
main themes around which it articulated knowledge (a more comprehensive
account can be found in [202]). We will then critically review the factors usu-
ally invoked to justify the use of the expression ’second quantitative revolution’.

2.1 the first quantitative revolution

Quantitative e�orts in the study of human activities �nd their origin in Von
�ünen’s model of agricultural land in 1826. More than a century later, in 1933,
the German geographer Walter Christaller published his Central Place �e-
ory [57], which aimed at explaining the size and location of settlements in a
system of cities. Needless to say, these early e�orts are theoretical in nature,
and the empirical aspect – studying things as they are – is le� out. Likely be-
cause of the lack of available data.

�e quantitative e�ort really starts to spread in the US in the 1950-1960 [35].
From the very beginning, the objective to make geography a science is clearly
stated. Starting with the introduction of Bunge’s seminal �eoretical Geogra-

phy, published in 1962 [51]. According to the author, geographers can and
should go beyond the mere accumulation of facts, and try to discover the laws
that rule the human and physical phenomena occuring on the Earth’s surface.

9



10 quantitative revolution(s) in urban science

Bunge proposed geometry as a tool to understand the observed patterns and
describe objectively the geographical space.�e range of tools used quickly ex-
panded [105, 55], spanning stastistical models [124, 50] – whose importance is
demonstrated by the publication in 1969 of Leslie King’s Statistical Analysis in
geography – and graph theory – as early as 1963 with the publication of Kan-
sky’s PhD thesis [120]. An early review of the use of graph theory in geography
can be found in Hagget and Chorley’s book [106].

�e research undertaken in the quantitative tradition can be – tentatively –
divided in three di�erent categories. First, the study of spatial di�erentiation
aims at characterising the spatial patterns that result from human activities.
For instance, the study of population or employment densities (see Part ii), the
local concentration of population categories (see Part iv), or the repartition of
cities inside a territory.
Second, the study of spatial interactions.�e progressive realisation that dis-

tance is a critical factor to understand the arrangement of di�erent spatial phe-
nomena led Tobler to state the First Law of Geography [222].

Everything is related to everything else. But near things are more
related than distant things.

Linked to the study of spatial interactions is the (in)famous gravity model,
which states that the �ow Fi j between two locations i and j is given by a func-
tion of the form

Fi j = C Pα
i P

β
j f (di j) (1)

where f is a decreasing function of distance. Although the analogy with
Newton’s gravitation law was used by Reilly in 1931 to �nd the retail market
boundaries between cities [194], the above formulation in terms of �ows was
formulated by Stewart in [216]. Note the competing existence of Stou�er’s the-
ory of intervening opportunities [218], according to which the �ow between i

and j is proportional to the number of opportunities at j and inversely propor-
tional to the number of opportunities between i and j. It was mathematically
formulated later by Simini et al. [209].
Finally, the study of infrastructure. Starting with Kansky in 1963 [120], the

study of the shape and growth of road networks, railway networks and other
infrastructure has witnessed a renewed interest thanks to the study of spatial
networks [22].

2.2 a second quantitative revolution?

People can be forgiven for believing that the present time bears any sort of
special character. But when we look closely enough, the change is perpetual,
andwhat is newnowwill be outdated tomorrow.During the past 3 years, I have
at many times overheard the fact that we were currently witnessing a ’second
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quantitative revolution’ in the study of geographical systems. But is it really the
case? What di�erences with past tools or methods could justify such a claim?
In the following, we explore the three following hypotheses

• �e quantitative revolution is due to the use of new methods coming
from interdisciplinary studies;

• �e quantitative revolution is due to the availability of ‘new data’;

• �e quantitative revolution is due to a technological convergence.

2.2.1 New methods

�e recent years have seen the application of new methods, mainly coming
from Physics or Computer Science, to the study of cities [72]. Either by geog-
raphers, or outsiders who established well-established methods from another
�eld [25]. �ese collaborations, or incursions, are however not new. For in-
stance, John Stewart, an american astrophysicists is famous for the �rst use of
allometric scaling in the study of cities [215], or for his work on the gravitation
model [216]. Another interesting example is given by the collaboration in 1971
betweenWaldo Tobler – a geographer – and LeonGlass – a chemist – who plot
the radial distribution function of Spanish cities, a method that is traditionally
used to study the property of liquids [100].
So, the application of well-established methods from other �elds to cities is

not new, and neither are the contributionsmade by outsiders. Yet, we can iden-
tify two qualitative changes: the number, and nature of these contributions. If
some authors have continued to import directly methods and models from
other disciplines (for instance, the use of di�usion-limited aggregation mod-
els, traditionally studied in physics, to explain the growth of cities [146]), this
type of theoretical contribution is becomingmarginal. Contributions aremore
and more empirical; and if theoretical, are not direct applications of another
domain’s theories. For instance, Rozenfeld and co-authors used percolation
on census tracts to de�ne cities [198] in an original way. Masucci et al. use
percolation on the road network for the same purpose [155], while Li et al.
use percolation to study the properties of congestion [138]. New approaches
to spatial network [22] have yielded new insights into the structure and evo-
lution of road, railway and subway networks [219, 24, 1, 4, 6]. Original out-
of-equilibrium models that are inspired by the studied system allow a better
understanding: Simini’s radiationmodel [209, 210] –which is nothing else that
the mathematical transposition of Stou�er’s intervening opportunities theory
– or our model to explain the polycentric transition of cities [141] are exam-
ples of such models. Not to forget the important literature on scaling relation-
ships [38, 37, 142, 16, 143], and other empirical analyses – such as the study of
residential segregation we present in Part iv.
At the same time, the number of contributions to the �eld from authors

who do not have a geography (or economics, urbanism, etc. for that matter)
a�liation has been increasing over the pas years. A�er all, I am a theoretical
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physicist by training, and this thesis is o�cialy a�eoretical Physics thesis. So,
if the contributions of outsiders are not new, they are changing in number and
nature. To the point where we can wonder whether some of these ‘outsiders’
should still be considered as such.

2.2.2 New data?

Besides the import of methods from other disciplines, it is o�en argued that
the in�ux of new data, thanks to the digitization of our lives, is a revolution in
itself.
�e most important new source of data come from the wide use of mobile

phones across the world [101, 83].�ey consist, for each individual, of a list of
antenna locations towhich the individual was the closest at a given time (either
when she used the phone, or when she switched from an antenna to another).
Naively, one could think that mobile phone data are better than census-based
data: they give a continuous information about the �ow of individuals within
the city (and are not limited to commuting), they cover a larger part of the
population (which is critical in developing countries, where censuses are not
widely used due to the costs involvedwhilemobile phones have a high penetra-
tion rate), and are more spatially precise than released census data in urban ar-
eas (see Figure 3 for a comparison between the smallest INSEE areal units, and
mobile phone antennas in Paris). But one needs to be careful. If mobile phone
data are �ne to monitor aggregate quantities (such as origin-destination com-
muting matrices [132], or to map population changes during the day [140], or
year [67]), one should be careful with the study of individual trajectories (such
as in the seminal [101, 212, 213]). Indeed, the fact that positions are recorded
every time a called is passed by the user – events with a powerlaw inter-event
time [212] and probably correlated with locations – is likely to introduce an
important biais in the obtained trajectories. Not mentioning the spatial sam-
pling introduced by the fact that positions are attached to a �nite number of
antennas. Unfortunately, no study has looked at the impact of these two types
of sampling on the properties of the observed trajectories yet. In themeantime,
one should refrain from using such data to study individual trajectories.
Mobile phone data are not the only ‘new’ source of data. Because mobile

phones carryGPS chips that are used by certain applications, applications such
as FourSquare [169] or Twitter [133]. Last, but not least, credit card companies
have recently started to release datasets regarding the spending of individu-
als [134].

So, new data (mainlymobile phone data) are now available and allow to give
a picture of the city that was not accessible before. �e contribution of these
new data is particularly useful for the mobility of people besides commuting
pattern [140], or for developping country where there are little census data
available [42]. Are they so overwhelmingly di�erent from previously available
data to deserve the title of ‘revolution’? Nothing is less certain: in this thesis, for
instance, I have only used traditional data sources, and we are still waiting for
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INSEE IRIS Cell phone antennas

Figure 3: (Le�) IRIS zones in Paris, the smallest statistical units de�ned by the national
statistics institute, INSEE. (Right) Voronoi tesselation built from the position
of antennas of a popular french mobile phone carrier. �ere are 40% more
antennas than there are IRIS, and they tend to bemore concentrated in zones
of high daily activity (8th and 9th arrondissements).

important results that ‘new data’ could teach us (and that we could not access
with more traditional data). Only time will tell, and the term ‘revolution’ is
certainly not warranted yet.

2.2.3 A technological convergence

Interdisciplinary collaborations already existed, data were already there. So
what is the qualitative di�erence between the state of the �eld say 20 years ago,
and the state of the �eld as it is now, if any? A factor that is o�en overlooked
is the recent technological leap in the treatment of information, including spa-
tial information.�anks to the development of GIS so�ware as well as spatial
databases and libraries, the treatment of geographical data has never been sim-

pler. Added to this are the emergence of powerful scripting languages, R and
Python, which allow to quickly implement complex data analysis work�ow or
simulations, and reduce dramatically the time spent writing code.
Internet is also progressively changing theway research is done. Census data

aremore andmore easily accessible available online. Open data repositories, al-
though far from perfect, are emerging. Online platforms such as www.github.
com allow to share and collaborate on code. All in all, the access and processing
of information is getting easier and easier.

Taken individually, the introduction of methods from other disciplines, the
increasing amount and speci�city of available data and the technological progress
in the treatment of information are probably not enough to justify the term
‘revolution’. Taken together, however, they could mark the beginning of a qual-
itative rupture in the way we understand cities.
It is too premature to conclude that the convergence of the aforementioned

will necessarily deeply change our understanding of cities. Only the future can
tell us whether new regularities, new laws are about to be discovered andmore
phenomena to be understood. But where there is data, there is hope. As long
as the correct methodology is followed.

www.github.com
www.github.com
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In the following Chapter, we will introduce the broad methodological prin-
ciples that we conformed to during this thesis.



3
METHODOLOGY

If it disagrees with experiment, it’s wrong.

In that simple statement is the key to Science.

—Richard Feynman [85]

�e success of natural sciences lies in their great emphasis on the role of
quanti�able data and their interplay with models. Data and models are both
necessary for the progress of our understanding: data generate stylized facts
and put constraints on models. Models on the other hand are essential to com-
prehend the processes at play and how the system works. If either is missing,
our understanding and explanation of a phenomenon are questionable. �is
issue is very general, and a�ects all scienti�c domains, including the study of
cities.

Until recently, the �eld of urban economics essentially consisted in untested
laws and theories, unjusti�ed concepts that supersede empirical evidence [43].
Without empirical validation, it is not clear what these models teach us about
cities. �e tide has turned in recent years, however: the availability of data is
increasing in size and speci�city, which has led to the discovery of new stylized
facts and opened the door to a new science of cities [27]. Yet, the situation is
not perfect: while the recent deluge of data have triggered the apparition of
many empirical analyses, in the absence of convincingmodels to explain these
regularities, it is not always clear what we learn about cities.
In this chapter, we will try to specify what we mean by model, and explain

with a concrete example why data analysis is not enough understand the be-
haviour of systems.

3.1 of models and theories

3.1.1 For what purpose?

As scienti�c sceptics o�en like to remind us, all models, all theories are wrong.
But surely, there must be some interest in models to make them deserve the
months, sometimes years of work that scientist devote to them.
Models’ two main functions are, broadly speaking, to understand, and to

predict. �e bene�ts linked with the ability to predict the behaviour of a sys-
tem need not be recounted. Understanding is a more complicated notion, and
a philosophical discussion of the concept lies far beyond the scope of this the-
sis. Roughly, to understand is to untangle the mechanisms involved so as to
have a simpli�ed, barebone description of the processes that shape the system.

15
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3.1.2 �eory, not analogy

Unfortunately, expressive words and metaphors are too o�en used as a substi-
tute for a real understanding of the system. But, however intellectually appeal-
ing they are, metaphors are not a theory. For instance, what do we understand
from the comparison of cities with biological systems? What new knowledge
do we gain?Metaphors do not provide interesting ideas that are ready to be ap-
plied to a speci�c �eld. Rather, they trigger very di�erent ideas into di�erent
people, which explains their recurrent success. Yet, what we need to highlight
are regularities, not similarities.

We also need to avoidmodels that are only loosely connected to reality, anal-
ogy or metaphor. �ere is a lot of confusion, and little understanding to be
gained that way. In the words of Einstein, Podolsky and Rosen

In a complete theory, there is an element corresponding to each
element of reality. [78]

In this thesis, we tried to make sure that most – if not all – elements (vari-
ables) of our models are related to a quantity that is measurable. We also paid
a special attention to the rigour in the language used. We qualify suggestions,
by presenting them as such. �is kind of work may be less suggestive, the vo-
cabulary used less expressive, but it is a necessary step towards a science of
cities. We need to clear the language of unfruitful metaphors and �ll the gap
with mechanisms.

3.2 quantitative stands for ’data ’

Richard Feynman’s statement used as an epigraph in this chapter might be an
oversimpli�ed, narrow view of what Science is and how it proceeds. It never-
theless hits the nail right in the head, by isolating the core component of what
Science is: a tight relation with empirical analysis. Data are needed, at �rst, to
give us ideas about how the system works: stylized facts. We then usually try
to build a simpli�ed version of the system, a model, that is able to reproduce
the stylized facts. Because of the simpli�cation entailed, the model highlights
the most important features of the phenomenon and allows us to understand
the behaviour of the system. Finally, we use data again to test the predictions
of the model and assess their validity and/or limitations.
In this thesis, we adopt a quantitative approach to the the study of cities.

In other words, we extract information about urban systems using measured
quanti�able, measured quantities: data. As we will argue in the next section,
however, data are not enough.

3.2.1 Against data

In ‘Againt Method’, the philosopher of science Paul Feyerabend argued against
the idea that Science proceeds through the application of a single, monolithic
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method; what people usually call ‘�e Scienti�cMethod’ [84].�e reference is
not innocent, and Iwill argue here that, although empirical analysis constitutes
the alpha and the omega of our enquiry for knowledge, data are not enough.
�ere is common confusion, o�en innocent, that because data are at the core
of scienti�c enquiry, one only needs data analysis to understand how a system
works and predict its behaviour – especially so when we have a lot of data. An
very extreme view of this statement has recently been put forth by Big Data
supporters. An article in the magazine ‘Wired’ [14] recently argued that the
current deluge of data marked the end of Science as we know it.�at models
were not necessary anymore, that they were to be replace with the extensive
correlation analysis that a vast amount of data allow. �is view is completely
misguided.

For one, pure data analysis is, at best, a myth: as Pierre Duhem argued in
1906 [70], all empirical observations are theory-laden.�at is, they are neces-
sarily a�ected by the theoretical presuppositions held by whoever is making
the observation. Measuring the population of a city, for instance, presupposes
that there are such objects as cities, and that we can delineate them. A deluge of
data does not relieve the investigator from de�ning the objects she is studying,
from implicitely thinking about the relation between the di�erent elements in
the system.
�en, correlations are science, indeed. But they are rudimentary science,

and there is nothing new about them. Arguably, the reason why we are able
to function at all as individuals is because our brain is capable of computing
correlations all the time. Take chairs. Chairs are fairly simple objects. Yet, they
come in all kind of colors, material and shapes. And despite this potentially in-
�nite diversity, we are able to recognise a chair when we see one. We also have
a notion of what a chair is to be used for. Although we do not ackowledge it of-
ten, we are capable of surprisingly high levels of abstraction and generalisation.
Because our brains correlate, all the time. Science starts with the observation
of these regularities. For instance, that the sun always appears at the same place
and disappears in the opposite directions.�at seasons come and go regularly.
�at a�er the night always comes the day. Are pure correlations useful? Yes,
for limited applications. Do they constitute science? No. Science is when one
goes beyond the simple observation of correlations, and tries to understand
the mechanisms responsible for the correlations we observe.

In short, data is not enough: we must build models, theories.

3.2.2 An example: �e law of metropolises

3.2.2.1 Statement

�e above discourse may seem a bit abstract, so let us observe the shortcom-
ings of pure data analysis on a simple example, related to cities.
Using the GEOPOLIS database, Moriconi-Ebrard and Pumain derived a

general transversal rule about systemof cities, that they called law ofmetropolises [188].



18 methodology

104 105 106 107 108 109

PU

104

105

106

107

108

P
1

Data

P1 =P
0.839±0.022
U (R2 =0.98)

Figure 4:�e law ofmetropolises. Population of the largest city of systems of cities P1
versus the total urban population Pu in that system.�e dashed line shows
the result of a powerlaw �t, whose exponent agrees well with the one found
in [188]. Data for the total urban population and the population of the largest
city of countries in the year 2000 were obtained from the World Bank.

If we note PU the urban population of systems of cities, and P1 the size of their
largest city , we can plot P1 versus PU for all systems of cities and obtain the�e original

regularity was

observed for what the

author calls

’metropolises’, which

are roughly

equivalent to the

largest city in terms

of population.

plot on Figure 4.
Assuming a powerlaw relationship between the two quantities, one �nds

P1 ∼ P 0.84
U (r2 = 0.98) (2)

which agrees very well with the empirical data (for all years where data are
available). It is tempting, at �rst, to consider this as yet-another emprical regu-
larity exhibited by urban systems, and try to �nd a coherent interpretation in
geographical terms. However, as we will show, if we assume that the Auerbach-
Zipf law [17, 235] holds for each system of cities individually

1. We can derive a relation that �ts the data as well as Eq. 2;

2. �e relation is not a powerlaw.

3.2.2.2 Deriving the ‘law of metropolises’

Let us consider a system of cities comprised of N cities, with total population
PU . �e size of the largest city is noted P1. We assume that the distribution
of city sizes follows the Auerbach-Zipf law, so that the city of rank r (the rth
largest city) has a population

Pr = P1 r−µ



3.2 quantitative stands for ’data’ 19

So the total population in the system of cities can be written

PU =
N

∑
r=1

Pr = P1
N

∑
r=1

1

rµ
(3)

If we assume that µ = 1, PU is given by the harmonic series, and thus

PU = P1 [ln(N) + γ +O ( 1
N
)] (4)

where γ ≈ 2.58 is Euler’s constant. �is gives us a �rst relation between P1,
PU and N .

Still using the assumption that the distribution of city size follows theAuerbach-
Zipf law with µ = 1, we can show (using extremal value theory) [59] that on
average the size of the largest city is proportional to the total number of cities ’Average’ as in

ensemble average

P1 ∝ N

�us, when the number of cities in the system is large, N ≫ 1 the following
relation holds

P1 ln(P1) = PU (5)

As one can see on Figure5, the formula given by Eq. 5 �t the data as well as
the previous one.
It is therefore impossible to determine which of Eq. ?? of Eq. 5 describes the

‘true’ relation between P1 and PU based ondata analysis alone.Nevertheless, the
later �nds a very simple explanation in the fact that cities in systems of cities
follow the Zipf-Auerbach law up to a good approximation. In the absence of
any theoretical explanation for the powerlaw relationship and given the empir-
ical equivalence of both forms, it least-assuming to consider P1 ln P1 ∼ Pu.

3.2.2.3 Lessons learned

So, not only is the law ofmetropolisesnot a fundamental relation, it is rigorously
wrong.�is teaches us that, given the range of variations of themeasured quan-
tities, it is very di�cult to distinguish empirically a powerlaw relationship from
something qualitatively di�erent such as Y lnY ∼ P. One should therefore
be wary of interpreting empirical relationships, like the one originally found
in [188], unless a mechanistic explanation of the �tted relationship is provided.
As amatter of fact, what was thought as a fundamental lawmight end up being
trivial and without great interest.
We will further discuss the limitations of data analysis in Chapter ??, a�er

having studied scaling relationships.
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Figure 5:�e law of metropolises revisited. P1 ln(P1) versus the total urban popula-
tion Pu in that system.�e dashed line shows the result of a linear �t, which
agrees as well with the data as does the powerlaw relation assumed in [188].
Data for the total urban population and the population of the largest city of
countries in the year 2000 were obtained from the World Bank.



4
ABOUT TH I S THES I S

Anybody can plan weird, that’s easy.

—Charles Mingus

�e following thesis might surprise the reader used to the monographs usu-
ally produced by PhD students in Social Sciences, articulated around a single,
general question. �e outline of this thesis re�ects more the line of thoughts
and of research that has been undertaken than the answer to a single question
that would have been asked a priori and answered during the last three years.
For that reason, the four Parts of this thesis are mostly independent. �ere is
not single thread holding them together. But rather multiple wires; common
themes and similar ideas.

4.1 outline

Part ii tackles the problem of measuring and understanding urban form, an
issue that has been running through the 3 years of my PhD. In this Part, we
�rst (Chapter 5) present a brief historical overview of the monocentric and
polycentric representation of the city, before enumerating the methods that
are used in the literature to count the number of activity centers. We end with
the observation that the number of activity centers increases in a regular way
with population size. �e following chapter (Chapter 6) is devoted to an out-
of-equilibrium model that we built in order to explain the previous empirical
regularity. �e model is able to predict the sublinear increase of the number
of centers that we observe on American and Spanish data. In the last chapter
(Chapter 7), we question the assumptions of the model and the current empir-
ical methods to quantify urban form.

Part iii is concerned with scaling relationships.We �rst propose (Chapter 8)
a non-exhaustive overview of the dawn and surge of allometric scalings, from
Stewart’s 1949 to the recent wealth of studies. �en, using the model devel-
opped in the preceding part, we show in Chapter 9 how the structure of mobil-
ity patterns allow us to understand the qualitative and quantitative values of
the exponents related to urban form and mobility. We conclude this part with
a discussion on the interpretation of these scaling laws, and their important
shortcomings (Chapter 10).

Part iv departs from the preceding chapters and turns to the study of res-
idential segregation. Driven by the desire to extend the model presented in
Chapter 6, we soon realised there was a lack of robust empirical description of
patterns of segregation that could be reproduced by a model. In Chapter 11 we
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tackle the problemof de�ningwhat segregation is; we propose a brief review of
the existing literature, and subsequently de�ne a null model – the segregated
city. In the next Chapter (Chapter 12), we build on this null model to propose
a set of measures to quantify patterns of residential segregation.

Part v concerns the original topic of this thesis: spatial networks. Becausemy
interests have shi�ed towards the study of socio-economical phenomena over
the years, we only brie�y present the most important results in the present the-
sis.�e three chapters are, for the most part, reprints of articles that have been
previously published in peer-reviewed journals. We �rst (Chapter 13) present
an empirical study of 131 street patterns across the world where we propose a
method to classify the patterns based on the geometrical shape of the blocks.
In the following chapter (Chapter 14), we present a cost-bene�t analysis frame-
work to understand the properties and growth of spatial networks. We intro-
duce an iterative model that can explain the emergence of a hierarchical struc-
ture (‘hubs and spokes’) in growing spatial networks. Starting from the cost-
bene�t framework of this model, we show that the length, number of stations
and ridership of subways and rail networks can be estimated knowing the area,
population and wealth of the underlying region.

Finally, Part vi ties everything together, highlights the lessons learned and
concludes this thesis with some potentially interesting research avenues for the
years to come.

4.2 miscellaneous notes

4.2.1 Style

I will be using the pronoun ’we’ for most of the manuscript, to re�ect the fact
that the work presented here was, for the most part, done in the context of
collaboration with others. For the sake of clarity, the technical details of calcu-
lations have been omitted in this manuscript. Most of these calculations are
relatively simple anyway, and the interested reader can �nd them in the publi-
cations mentioned on page ?? of this manuscript.

4.2.2 Tools

Unless otherwise speci�ed, all �gures in this manuscript have been prepared
using Python 2.7 1 and the Matplotlib library [111]. Inkscape 2 was used to pre-
pare most diagrams. �is document was typeset using Vim and LATEX. �e
template used is the typographical look-and-feel classicthesis developed
by André Miede.3

1 Available at http://www.python.org
2 Available at https://inkscape.org/en/
3 Available at http://code.google.com/p/classicthesis/.

http://www.python.org
https://inkscape.org/en/
http://code.google.com/p/classicthesis/


Part II

POLYCENTR I -C I T Y

�e monocentric model of cities – where all activities are organ-
ised around a single activity center – has pervaded the literature
on urban systems for more than 4 decades. However, as it was
repeatedly demonstrated, the model is empirically inadequate.

�e contribution of this part is threefold. First, we recount the
history of ideas about urban form, from the monocentric hypoth-
esis and its origins, to the various methods proposed to identify
and count subcenters. We then demonstrate empirically the exis-
tence of a polycentric transition for cities, and that the number
of centers increases as a sublinear function of population size. Fi-
nally, we propose an out-of-equilibrium model that explains the
emergence of new subcenters as cities expand, and predicts the
sublinear increase of the number of centers with population size.





5
THE ( END OF THE ) MONOCENTR IC C IT Y

It may be a small irony that just as

the phenomenon of polycentricity

is getting considerable attention,

�e world is moving beyond it.

— Peter Gordon & Harry Richardson [102]

�e hypothesis that cities organise themselves around a single center of ac-
tivities – o�en called Central Business District (CBD) in the U.S. –may well be
one of the strongest hypotheses in urban studies. Although no one seriously be-
lieves in its validity anymore, its in�uence is still creeping, o�en unnoticed, in
many empirical and theoretical works. In order to deconstruct the monocen-
tric model, we �rst need to understand where it came from in the �rst place,
why it was introduced, and what evidence it was based on.

In this chapter, we present a historical perspective on the monocentric hy-
pothesis. First, the context in which it was introduced, how it was gradually
realised that cities had a decentralised structure, and the emergence of the no-
tion of center. We then present a brief review of the methods and tools de-
veloped to count their number. Finally, using American and Spanish data, we
show that larger cities are more polycentric. �is suggests the existence of a
transition from a monocentric to a polycentric structure when the population
of cities increases.

5.1 from monocentric to polycentric cities

Maybe the least assumingway to represent the density pro�les in cities is through
either cloroplethmaps, or 3-dimensional representations. On cloroplethmaps,
the x and y coordinates correspond to the original coordinates projected on
the plane. In the former case, the di�erent values of density are expressed by
the use of di�erent colors. �is approach can be traced back as far as 1898 in
Meuriot’s Des agglomérations urbaines dans l’Europe contemporaine [161] who
drew a large number of density maps of large Europen cities. He was later fol-
lowed by Je�erson in 1909 [116] who did the same for several cities in the US,
Europe and Australia.

3-dimensional representations, on the other hand, use the z coordinate to
the represent the density values. On Figure 6 we represent the density pro�les
of two metropolitan areas in the US: Minneapolis-St.Paul, MN and Houston,
TX. �ese two cities are enough to illustrate the di�culties associated with
studying density pro�les.
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Figure 6: 3D representations of densities. Residential and employment densities
in (Top) the Metropolitan Statistical Area (MSA) of Philadelphia, PA and
(Bottom) the MSA of Houston, TX. Employment and residential densities
are represented at the same scale. Employment densities are sensibly more
peaked than residential densities, suggesting that the notion of ‘center’ is
more relevant in the context of activies. Data were obtained from the 2000
US Census.
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What densities we are talking about? People are constantly moving through-
out the city during the day, and density pro�les can only be (approximate) snap-
shots of the city at di�erent instants. Traditionally, scholars have only consid-
ered residence densities (nightime city) and employment densities (daytime
city).�e recent availability of mobile phone data may however give us a more
precise, continuous picture of the densities during the day [140]. In this part,
we will be focusing on employment densities.

How can we makes sense of these density patterns?�e densities represented
on Figure 6 are indeed very complex, and we would like to isolate some par-
ticular structure. Arguably, the notion of center stems from this desire to �nd
some structure in the complex, messy empirical reality.

Realising that districts of large population tend to be central, and districts
of small population in the periphery, Clark proposes in 1951 [58] to write the
density ρ as a function of the distance d from the center

ρ = a e−d/b (6)

Where a is the density at the center, and b the typical distance over which
the density decreases. To justify his assumption, Clark plots the population
density of various cities as a function of the distance to the center [58]. Some
structure was found.�e monocentric hypothesis was born.

Looking at the density pro�les plotted by Clark in 1951 [58] for many cities
across the world, or on Figure 7 for the Minneapolis-St. Paul MSA, one can
be forgiven for thinking that cities have amonocentric structure. Such pro�les
indeed almost always exhibit a sharp decrease as we go farther from the city
center – de�ned here as the areal unit with the highest density.
However, density pro�les are not enough to prove the existence of a mono-

centric structure. Unless one other hypothesis is veri�ed: namely that the pat-
tern of employment densities is symmetric under rotations around the center.
�is is however never the case: cities are nowhere isotropic but in the imagi-
nation of modelers. To make this point clearer, we show on Figure 7 both the
density pro�le of the Minneapolis-St. Paul MSA and a map where we high-
light in black the tracts with an employment density greater than 10000km−2.
As one can see, two tracts (respectively the historical centers of Minneapolis,
and of St. Paul) are highlighted. However, the peak in density corresponding
to St. Paul is not distinguishable on the density pro�le. Indeed, it is averaged
out with smaller densities that are located at equidistance to Minneapolis.�e
decreasing exponential model, however appealing, is thus mispeci�ed.

So why did Clark’s methods and plots did not become a simple curiosity,
but were instead so widely adopted? Although it is sometimes di�cult to trace
back the reasons for the adoption of ideas, there is little doubt that the echo this
idea had in urban economics had something to do with it (besides the simplic-
ity of the hypothesis). Indeed, beginning as an implied assumption in Clark’s
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St. Paul

Figure 7:�e limitations of density pro�les. Employment density as a function of
distance to the center for the Minneapolis-St. Paul MSA in 2000.�e center
is de�ned here as the tract with the highest employment density, and corre-
sponds to the historical Central Business District of Minneapolis.�e curve
exhibits a very sharp decay, giving the illusion of a monocentric structure.
(Inset) �e census tracts of Minneapolis-St. Paul in 2000. In black, the cen-
sus tracts where the employment density reaches values above 10, 000km−2.
�e two tracts coincide with the historical centers of the Twin Cities, and
are distant from 14 km. �is fragmented structure cannot be infered from
the density pro�le (arrow on the curve).
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empirical analyis, the monocentric hypothesis �rst became clearly stated in
the theoretical work of economists.
�e Alonso-Muth-Mills model (inspired by Von�ünen’s land rent model)

might well be the reason for the long-lasting in�uence of the monocentric
model1. In 1964, Alonso introduced the bid-rent curve as a function of the
distance to the city center [12].�e assumption that all �rms in a city are con-
centrated in a single, �xed-size part of the city naturally followed. Later, in
1967 and 1969, Mills [163] and Muth [166] show how we can can obtain an ex-
ponentially decreasing function for the density as a function of the distance
from the center, using the monocentric hypothesis.�e monocentric Alonso-
Muth-Mills (AMM) model was born, and was seemingly backed by empirical
evidence.
One should not underestimate how the monocentric model in�uenced peo-

ple’s perception of what a city is. In the US, the name of Central Business Dis-
trict is casually used as a way to designate the principle activity center in a city.
Many, if not most, measures of the spatial variation of quantities inside cities
actually use the notion of ‘distance to the city center’. Many authors are relying
on the monocentric hypothesis for their empirical analysis – sometimes with-
out being aware of it. �is biais can still be found in the recent literature. For
instance, in a recent study by Glaeser, Kahn and Rappaport on the repartition
of income classes in cities [99], the authors comment on plots of the average
income as a function of the distance to the center.�is only makes sense, how-
ever, under the assumption of monocentricity.

�is persistence of the monocentric hypothesis is all the more surprising
that authors repeatedly suggested and showed that the hypothesis was not ade-
quate. In 1974,Kemper and Schmenner [123] explore industry and employment
density data, trying to �t a negative exponential function.�eir conclusion is
clear: “A declining exponential function fails to explain much of the spatial
variation of manufacturing density”. A few years later, Odland [170] explores
the possibility of polycentric cities on a theoretical basis. As explained in [103],
scholars subsequently started to explore the density patterns of cities by �tting
multi-center exponential functions of the form

ρi =
q

∑
j=1

A j e
−d i j/b j (7)

where ρi is the density at location i, q the number of centers, A j the local
maximum of density at j, b j the characteristic size of the center j, and di j the
distance between locations i and j.�e idea of polycentricity, originally as the
generalisation of the monocentric hypothesis, is progressively gaining ground.
Trying to �t equations like Eq. 7 is cumbersome, and requires some a-priori

knowledge of the density patterns. It requires to determine in advance which
parts of the cities are going to be subcenters , before attempting to �t the den- subcenter because

they are subsidiary to

the traditional CBD
sity pro�le. As noted in [97], authors used arbitrary de�nitions of subcenters,

1 A concise exposition of the AMMmodel can be found in [48, 89]
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either designating them based on their own intuition, or refering to the centers
de�ned by planning agencies.�e centers were thus determined exogeneously.

In this context, the �rst de�nitions of employment centers independent from
the exponential model start to emerge, and subcenters start an existence of
their own. By the 90s, the idea that cities can be polycentric is well-established,
andmore andmore empirical analyses con�rm the existence of several employ-
ment centers. For instance,McDonald [157] identi�es the employment subcen-
ters in the region of Chicago, IL; Giuliano and Small [97] in the region of Los
Angeles, CA; Dokmeci et al. [69] show that Istanbul’s employment is spread
across several centers, etc.
�e concept of subcenters is further expanded in 1991 [94], when Garreau

shows that secondary centers are not necessarily ‘subcenters’. Indeed, activi-
ties do not always accumulate in the traditional downtown. He introduces the
concept of ‘Edge cities’: the concentration of business, shopping and entertain-
ment at the outskirts of cities, in regions that were previously rural, or purely
residential.

5.2 how to count centers

�e methods designed to identify employment subcenters can be divided in

three categories. �e clustering methods, which appeared �rst, were progres-
sively abandonned for regression-based methods due to their reliance on arbi-
trary cut-o�s. Distribution-based methods have emerged recently, and leave

aside the spatial aspect of the density distribution.

5.2.0.1 Clustering methods

In 1987, McDonald [157] remarks that despite being mentionned in the em-
pirical and theoretical literature, the features that an employment subcenter
should have are nowhere discussed. For the �rst time, he proposes a method
to determine the number of subcenters empirically. Given a number T of areal
units, we will say that i with employment Ei , population Pi and surface area
Ai is an employment subcenter if:He also proposes a

de�nition based on

the employment-to-

population

ratio

�e gross employment density ρi = Ei/Ai is greater than that of
the contiguous units;

Giuliano and Small [97] acknowledge the necessity to consider employment
densities to de�ne subcenters put forward by McDonald [157]. However, they
deplore that the method does not allow for adjacent units with a high employ-
ment density to be centers – as only the larger one would be selected. �us,
they propose an alternate de�nition. Namely that a contiguous set of units S
is a subcenter if

• �e employment density ρ of every areal units in the set S is greater
than a threshold value D;
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• And the total employment E contained in S is greater than a threshold
E.

where the thresholds D and E are imposed arbitrarily. Using this de�nition,
all areal units with a high employment densities are part of a subcenter, unless
they are small (contain less than E employees) or isolated (i.e. they do not be-
long to a cluster containing at least E employees).

As mentioned by Anas et al. in [13], because density landscapes are highly
irregular at a small scale (see Figure 6 for instance), the subcenter boundaries
are very sensitive to the threshold values. Because there is no a priori reason
to choose a threshold rather than another, the obtained subcenter boundaries
are arbitrary and may vary from one author, one situation to another. Instead,
it would be preferable to have amethod based on �rst principles, that adapts to
the local speci�cities. In McMillen’s words, threshold methods lack a proper
consideration of how large is ‘large’ supposed to mean for the threshold val-

ues [159].
Another problem highlighted in [13] is that the number of centers depends

on the size of the areal unit, an issue that is tied to scale problem discussed in
the Modi�able Areal Unit Problem (MAUP) [174] literature. On the one hand,
small areal units will lead to several low employment density units in other-
wise very high density areas. On the other hand, large areal units are likely to
smooth over local employment peaks. �is begs the question of whether we
should use contiguity of units, or rather distance, as a measure of proximity.

5.2.0.2 Regression-based methods

In an attempt to address these concerns, McMillen [158] proposes a two stage
procedure. In the �rst allegedly non-parametric stage, he uses a geographically
weighted regression (GRW, see [50] for more details on the topic) to ‘smooth’
the employment density, using distance rather than contiguity as a measure of
proximity, thus partially solving the issue linkedwith the size of areal units.�e
units that have unusually high employment densities compared to the broad
spatial trends obtained with the GWR are designated as candidate subcenters.
If we note ρi the employment density at site i, ρ̂i the density estimated with
GWR and σ̂i the standard deviation around this estimate, i is said to be a can-
didate subcenter if

ρi − ρ̂i > 1.96 σ̂i

Candidate, because the GWR only identi�es �uctuations in the density pro-
�le with no consideration of whether these local �uctuations have a sensible
impact on the employment density. Identifying which of these candidates are
actually centers is the goal of the second, semi-parametric procedure.�is sec-
ond procedure uses somewhat arbitrary criteria (the �rst and second largest
candidates are omitted in the regression, candidates at less than 1 mile from
the CBD are omitted) to produce a second reference global trend, to which
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real values are compared to identify the ‘real’ centers among the candidates.

Redfearn critizes the �rst procedure [193], on the ground that candidate sub-
centers are de�ned as outliers with respect to an average that uses half of the
total points (in theGWR), thus losing the local information about employment
density.�e author proposes another non-parametric method that aims at cor-
recting the issues withMcMillen’s[193].�e estimation of the employment den-
sity is done locally in order to keep intact the local structure of the density pro-
�le. However, arbitrariness still lies in the choice of the span (the amount of
data that are considered to estimate the slopes at a given point) for the GRW.
In other words, regression-based methods are not truly non-parametric.

5.2.0.3 Distribution-based methods

�e approach that we originally took in this thesis is radically di�erent from
that of regression-basedmethods [141].We start with the remark that one does
not need to know the spatial arrangement of areal units with di�erent densities
in order to knowwhich ones aremost important. Indeed, the local �uctuations
that are registered as centers in the regression-basedmethods are very likely to
have a negligible contribution to the total employment. �ey can thus be le�
out in a �rst approximation. A good estimate of the number of centers should
thus be given by the shape of the employment density distribution alone. Be-
cause it does not require any spatial knowledge, it makes the extraction of cen-
ters fairly easy and quick to compute compared to the previous methods.

We start by building the rank plots of employment density ρ inside the areal
units (see Figure 8). �ese plots display a decay at least as fast as that of an
exponential. If they were an exact exponential, they could be modeled by a
function of the form

ρ(r) = ρ0 e
−r/rc (8)

where ρ(r) is the rth highest value of the density inside the city, ρ0 the max-
imum density value.�is exponential decrease implies that there exists a nat-
ural scale for the rank, rc , that we interpret here as the number of centers. In
order to get the number of centers, onewould either need to compute the slope
on a lin-log plot, of �nd the value of r∗ for which

ρ(r∗) =
ρ0
e

(9)

in which case r∗ = rc . However, empirical rank plots are not strictly expo-
nential, and we de�ne the number of centers using a threshold value α. We
de�ne ρm as

ρm =
ρ0
α

(10)
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Figure 8:�e rank-plot method. Rank plot of the employment density in the Zip
Code Tabulation Areas of Los Angeles, CA.

and the number of subcenters k is equal to the number of values ρc of the
density such that ρc ∈ [ρm, ρ0].
In the case where the rank plot would be strictly exponential, we would have

k = ρ0 ln α (11)

so that the number of centers is mainly determined by ρ0. Small variations
in α should not sensibly change the number k of centers obtained.
�e method however su�ers from two �aws. First, the use of an arbitrary

parameter, the threshold α to extract the number of centers. All the criticisms
listed earlier also apply: we are not sure to extract the ‘true’ number of centers.
Moreover, the method assumes a particular form for the density distribution,
which is likely to biais the estimation.

Louail andBarthelemy [140] propose a generalisation of the previousmethod
based on the Lorenz curve. Given the ordered set of densities ρ1 < ρ2 < ⋅ ⋅ ⋅ < ρT �e Lorentz curve is

o�en used in

Economics to

quantify income

inequality.

in the T units, we plot the proportion of cells Fi = i/T as a function of the cor-
responding proportion of employment density

Li =
∑i

n=1 ρn∑T
n=1 ρn

(12)

so that both Fi and Li take their values between 0 and 1 (see Figure 9). It is
easy to see that, in the case of a city with a uniform employment density, the
Lorentz curve is a straight line. In the general case, however, the curve has a
convex shape, with a more or less pronounced curvature. �e higher the cur-
vature of the Lorentz curve, the higher the inequality in terms of employment
density, and thus the smaller the number of potential centers.
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Figure 9: Lorentz curve and Loubar method. An example of realistic Lorentz curve
(solid black line), the curve that would be obtained in a city with uniformly
distributed density (dashed grey line), and the tangent at the point L(F) = 1
(blue line) used to determine the number of centers in the LouBar method.

Following this observation, the authors de�ne a new criterion to determine
the number of centers.�ey consider the intersection F∗ between the tangent
of the Lorentz curve at the point L(F) = 1 and the axis F = 0 (see Figure 9.
�e units that correspond to the values of F between F∗ and 1 are de�ned as
centers. �is de�nition has the merit to only depend on the distribution of
density inside the areal units; it is genuinely non-parametric, while being easily
tractable and understandable.

Of course, all the methods presented here have issues (that we discuss in
Chapter 7), and there is currently no consensus on what method should be
used to �nd the employment centers. More work is needed before we arrive
at a satisfactory description of urban form. Nevertheless, the results given by

these methods – although slightly di�erent – provide together a compelling
evidence for the polycentric structure of cities.

5.3 the polycentric transition

Occasionnallymentioned in the empirical literature [159, 193], and hinted at in
urban economicsmodels [90], the greater polycentricity of larger citieswas not
�rmly established before this thesis. Almost all cities (apart from the notable
exception of twin cities) start growing around a single center of activity. Yet,
as we will see, no large city adopts a strict monocentric structure. �erefore,
it seems that, as they grow and expand, urban systems develop a more and
more polycentric form. We call this phenomenon the ‘polycentric transition’
of cities.
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5.3.1 Empirical evidence

5.3.1.1 American cities (Census data)

Historical data over long periods of time, on a consistent set of areal units, are
very rare – if not impossible to �nd. However, we do, for one point in time,
have many cities with very di�erent population values. We can thus compute
and plot the number of centers as a function of population. Of course, as we
will discuss in more details in Part iii, there is a gap between time series and
transversal studies that is not completely obvious to bridge. Some cities can be,
for historical reasons, locked into a monocentric state when the average city
would not. For di�erent reasons, another city might as well have developped
a polycentric structure more prounounced than other cities of the same size
have.�e idea here is to look at a large number of cities and measure the aver-
age behaviour of this ensemble of cities, hoping that marginal cases are indeed
marginal.

5.3.1.2 American cities (census data)

During this thesis [141], we used data on the employment in the Zip Codes of
US cities every year between 1994 and 2010. We �rst extracted the number of
centers for every city, for every year between 1994 and 2010. Using the rank-
plot method described earlier. We then applied the following treatment to the
data:

• If there is only one Zip Code in the given city, k = 1;

• We perform aKolmogorov-Smirnov test [153] between the distributions
of a given city for consecutive years. If there is a signi�cant di�erence
(above a threshold pKS) between the distribution at t and t + 1, we keep
the point at t + 1. If there is no sensible di�erence, we discard it.

At the end of this process, we obtain points that can be understood as com-
ing from di�erent realisations of a city. We then plot the number of centers
computed for all these realisations as a function of the total population and
obtain the curve obtained on Figure 10.
A power-law �t on the average per population bin gives an exponent δ =

1.56± 0.15 (95%C.I.).�us, we �nd that on average, the number of centers in
U.S. cities scales with population size as

kUS ∼ P
0.64 (13)

5.3.1.3 Spanish cities (mobile phone data)

Using mobile phone data and the LouBar method to determine the number of
centers, Louail et al. [140] also computed the number of centers versus popu-
lation for Spanish cities.

k Spain ∼ P
0.64 (14)
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Figure 10: Centers in American cities. Scatter plot for the estimated number of cen-
ters versus the population for about 9000 cities (di�erent realisations) in
the US. �e red dots represent the average population for a given number
of subcenters. We �t this average assuming a power-law dependence giving
an exponent δ = 1.56 ± 0.15 (R2 = 0.87). Data were obtained from the U.S.
Census Bureau’s Zip Code Business Patterns for every year between 1994

and 2010.

105 106

P

101

102

k

Figure 11: Centers in Spanish cities. Scaling of the number of centers with population
for Spanish metropolitan areas. Assuming a powerlaw relationship, the au-
thors of [140] �nd an exponent β = 0.64 (r2 = 0.93). �e data were kindly

provided by�omas Louail.
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Strikingly, the exponent they found is very close (equal) to the one we found
on a di�erent system of city, using a di�erent method to count centers, and a
radically di�erent data collection method.

Taken together, the previous empirical analyses teach us that

• �e larger cities are, the more polycentric they tend to be;

• �e average behaviour iswell-approximated by a power-law relationship
between the number of centers and population;

• �e increase of the number of centers with population is sublinear.

�ese facts calls for a theoretical explanation. We will present a model to
that e�ect in the next chapter. But before concluding, let us review quickly the
reasons that are traditionally invoked for the polycentric transition.

5.3.2 Reasons invoked for the polycentric transition

�ere are numerous examples where polycentrism �nds its origin in the fu-
sion of two Metropolises, or the incorporation of satellite municipalities [130].
�e Twin Cities in the U.S., for instance: the cities of Minneapolis and St. Paul
have grown to such an extent that they now form a single metropolitan area.
�e region of the Ruhr in Germany, or the region of Tokyo in Japan are other
examples. However, in this thesis, we are only interested in an endogeneous
polycentrism, caused by the growth of a single city.

Already in 1972, Mills [164] suggests that congestion might be the cause of
decentralisation and suburbanisation in largemetropolitan areas.However, we
have to wait until 2003 for McMillen to propose a thorough empirical inves-
tigation [159]. �e author �nds a positive correlation between the number of
centers, population, and commuting cost. Commuting cost is estimated using
the peak travel time index index which is de�ned as the ratio between the av-
erage travel time at peak congestion time over the average travel time at any

other time of the day. E�ectively, the commuting cost is thus a measure of the
level of congestion in the city.
In other words, the conclusion of McMillen’s study is that congestion might

be the key factor to understand the polycentric transition of cities.

5.4 summary

In this chapter, we have presented a historical perspective on the monocentric
hypothesis, trying to show why it appeared, disappeared, and how it is still
hiding in some of the empirical literature. We then discussed the polycentric
hypothesis, how it was introduced, and the di�erent methods that have been
proposed to identify and count the subcenters.
We then showed on U.S. and Spanish data that the average number of activ-

ity centers increases sublinearly with population size.�is proves, we believe,



38 the (end of the) monocentric city

the existence of a polycentric transition of urban areas as their population in-
creases. A transition, we saw, that might be due to increased levels of conges-
tion in larger cities. In the next chapter, we will present a model to understand
this polycentric transition.



6
HOW CONGEST ION SHAPES C IT I E S

What is here required is a new kind of statistical mechanics,

in which we renounce exact knowledge not

of the state of the system but

of the nature of the system itself.

— Freeman J. Dyson [76]

We saw in chapter 5 that as cities grow and expand, they evolve from amono-
centric organisation where all the activities are concentrated in the same geo-
graphical area – usually the central business district – to a more distributed,
polycentric organisation. In this chapter, we will try to uncover the mecha-
nisms at play behind this transition. We begin with a brief introduction of the
model of Fujita and Ogawa in urban economics. We will highlight the issues
of this model, before presenting our model.�is model is a stochastic, out-of-
equilibriummodel and relies on the assumption that the polycentric structure
of large cities might �nd its origin in congestion, irrespective of the particu-
lar local economic details. We are able to reproduce many stylized facts, and –
most importantly – to derive a general relation between the number of activity
centers of a city and its population.

6.1 fujita and ogawa

In line with the tradition of economic geography [92], the model of Fujita and
Ogawa [90] is based on the concept of agglomeration economies—to explain
why economical activities tend to group—and the spatial distribution of wages
and rents across the urban space. �ey consider that cities are constituted of
two kinds of actors: the �rms, who tend to concentrate to maximise their pro-
duction, and the households, who try to minimise their rent and commuting
cost.

�emodel is static, in the sense that the numbers of �rms and individuals are
�xed. It is an equilibrium model, and considers that the city is the realisation
of a general optimum. �e original model is also one-dimensional, although
the hypothesis of one-dimensionality is not fundamental, and only necessary
to make the calculations easier. Because we do not try to solve the model, we
write equations in the more general two-dimensional case.

6.1.1 Households

Fujita and Ogawa assume that there is a �xed number N of households in the
city. �e households are considered identical, in the sense that they all have

39
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the same utility function and the same budget constraint.�e utility function
of each household is given by the function U = U(Z) where Z is the surplus
of money that is le� a�er budgetary constraints (expressed inmonetary units);
basically, the money one has le� at the end of the month, once the rent, bills
and petrol (or transportation card) have been paid.

�e utility is assumed to be an increasing function of Z so

∂U

∂Z
> 0 (15)

�e budget constraint on an household living at i (of coordinates x⃗) and
working at the �rm located at j (of coordinates y⃗) is given by the equation

Z =W ( j) −CR (i) −CT (i, j) (16)

where W ( j) is the wage earned at j, CR (i) the total rent paid at i and
CT (i, j) the cost of commuting between home andwork.�is equation is very
general, and will be our starting point for the model presented in the next sec-
tion.�e authors of [90] further specify the commuting cost

CT (i, j) = t dE(i, j) = t ∣ y⃗ − x⃗∣ (17)

where t represents the commuting cost per unit distance, and dE(i, j) =∣ y⃗ − x⃗∣ the euclidean distance between home and work. �e total rent cost is
further written as

CR (i) = R(i) Sh (18)

where R(i) is the rent per unit surface at i, and Sh the surface area used
by households, which becomes a parameter of the model.�e surplus Z thus
�nally reads

Z =W ( j) − R (i) Sh − t dE (i, j) (19)

6.1.2 Firms

�e second type of agents taken into consideration in the model are the �rms.
It is assumed that all �rms employ the same number of individuals, which
amounts to having a �xed numberM of �rms (once the number of households
is �xed). �e pro�t earned by a �rm located at j reads, in a general form

Π = G ( j) −CR ( j) −W ( j) L f (20)

whereG( j) is the total gain realised by the �rm selling its production,CR( j)
the rent paid by the �rm, and L f the total number of employees per �rm—a
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parameter of the model.

To take agglomeration economies into account, Fujita andOgawa de�ne the
locational potential F de�ned by

F ( j) = ∫
C
b(x⃗) e−α ∣ y⃗−x⃗∣ dx⃗ (21)

where b(x⃗) is the density of �rms at x⃗. �e integral runs over the entire
city’s spatial extent C. One can easily see that the higher the density of �rms
in a radius of 1/α around a �rm, the higher the locational potential is going to
be. Balanced by the constraint imposed by the rent, which prevents too many
�rms from agglomerating at the same location, the locational potential likely
is the term responsible for the existence of polycentric solutions in the model.
Indeed, the authors further write the total gain G as a multiple of F:

G( j) = β F( j) (22)

where β integrates both the productivity of the employees and the e�ect
of the locational potential. �e rent, as in the case of households, is written
CR( j) = R( j) S f where S f , the surface needed by �rms, is a parameter of the
model.�e pro�t of companies therefore reads

Π = β ∫
C
b(x⃗) e−α ∣ y⃗−x⃗∣ dx⃗ − R ( j) S f −W ( j) (23)

6.1.3 Equilibrium conditions and results

Once the budget constraints have been explicited, one needs to de�ne the equi-
librium conditions to be able to solve the model. First, the goal of each house-
hold is tomaximise their utility under the budget constraint.�at is, to choose
Z, S, x⃗ and y⃗ so that U(S, Z) is maximum.
Here, the maximisation of utility under budget constraints is equivalent to

chosing the residential location i and the job location j so as to maximise Z.
In other words, the maximisation of utility in this particular situation is equiv-
alent to performing a cost-bene�t analysis.

�e �rms have no utility function, and choose to be a the location j that
maximises their pro�t.

A further constraint is given by the bid-rent curve, and determines the spa-
tial interaction between households and �rms.�e authors de�ne two interme-
diate functions, Ψ(x⃗) and Φ(x⃗) which are respectively the bid rent function
of households and of �rms, de�ned as
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Ψ (x⃗) =max
x⃗
{ 1

Sh
[W(x⃗) − Z − t dE (x⃗ − y⃗)] ∣U(Z) = U} (24)

Φ (x⃗) = 1

S f
[β F( y⃗) −Π −W( y⃗)] (25)

Ψ(x⃗) represents the maximum rent that the households could pay to be
located at x⃗ while still having a utility valueU . Φ( y⃗) is the maximum rent that
�rms could pay to be located at y⃗. At equilibrium, it is assumed that whoever’s
bid rent function has the highest value at x⃗ will be located at x⃗.
Taken together, the equilibrium conditions determine the spatial distribu-

tion of households and �rms, of the wages and land prices.

�e results of this model, given its intricacy, are somewhat disappointing.
Unsurprisingly, the authors are not able to derive an analytical solution for
their model. What they do, however, is deriving the conditions on the parame-
ters for the existence ofmonocentric andpolycentric organisations of activities,
using numerical methods.

6.2 problems with the fujita and ogawa model

�e approach of Fujita & Ogawa fails at giving a satisfactory quantitative ac-
count of the polycentric transition of cities. A lot can be said about the details
of the model and its assumptions. But we choose to only discuss the issues that
we feel are the most important, and that we will try to address in our model.

it is an equilibrium model . In linewith the rest ofUrbanEconomics [92,
91], the authors describe a city as being in an equilibrium characterised by
static spatial distributions of households and business �rms.However, the equi-
librium assumption is unsupported as cities are out-of-equilibrium systems
and their dynamics is of particular interest for practical applications [26].

it is too complex . �e model integrates so many interactions and vari-
ables that it is di�cult to understand the hierarchy of processes governing the
evolution of cities: which ones are fundamental and which ones are irrelevant.
A model is however only interesting when it provides a simple structure to
understand empirical results, whether it reproduces them, or provides well-
understood limiting cases (‘null models’).

it does not make any prediction . Worse, due to its complexity, the
model is unsolvable, and does not make any prediction. At best it shows that
polycentric con�gurations are possible. Yet, there are possibly di�erent models
that would admit polycentric activity pro�les as a solution. �e constraint is
not strong enough, the model is unsupported by data.

We also note that the model does not take congestion into account in the
commuting cost (which is only a function of the distance). However, as we saw
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in Chapter 5, it is mentioned in the economics literature as being a possible
cause of the polycentric transition of cities [159].

6.3 modeling mobility patterns

In this section, we start from the model by Fujita & Ogawa to propose a dy-
namicalmodel of city growth. Following recent interdisciplinary e�orts to con-
struct a quantitative description of cities and their evolution [146, 234, 150, 38,
26], we deliberately omit certain details and focus instead on basic processes.
We thereby aim at building a minimal model which captures the complexity
of the system and is able to account for – qualitative as well as quantitive –
stylized facts.
�e model we propose is by essence dynamical and describes the evolution

of cities’ organisation as their population increases. We focus on car conges-
tion – mainly due to journey-to-work commutes – and its e�ect on the job
location choice for individuals.

6.3.1 Decoupling the choice of household location and job

�e time scales involved in the evolution of cities are usually such that the em-
ployment turnover rate is larger than the relocation rate of households. On a
short time scale, we can thus focus on the process of job-seeking alone, leaving
aside the problem of the choice of residence. In other words, we assume the
coupling between both processes to be negligible: we assume that each inhab-
itant newly added to the city has a random residence location and we concen-
trate on understanding how such an inhabitant chooses its job location.

As a result of this assumption, a worker living at i will choose to work at the
center j such that the quantity

Zi j =W( j) −CT(i, j) (26)

is maximum. Doing so, we give up any hope to describe the spatial struc-
ture of the rent distribution, or the alledged scaling between rent prices and
population size in cities [37].

6.3.2 Decoupling the behaviour of �rms and individuals

Another di�cultywith the Fujita-Ogawamodel is the strong coupling between
the behaviour of �rms and individuals.�e empirical literature on the behaviour
of �rms points to a tendency of similar industries to cluster geographically [73,
148], and a higher pro�t of industries located in Urban environments [160].
Although theoretical attempts at explaining these behaviours have been pro-
posed [74], themodels are yet to be developped in anout-of-equilibrium frame-
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work.

Here, we decide to simplify the problem by assuming that �rms indeed clus-
ter into speci�c locations, that we call activity centers. Each worker can then
choose among a pool of Nc potential activity centers (whose locations are ran-
domly distributed across the city). �e active subcenters are then de�ned as
the subset of potential centers which have a non zero incoming number of in-
dividuals. We thus assume that the existence of activity centers is de�ned by

the willingness of workers to work in the possible locations.

Let us now discuss the form of the wage W( j) and the commuting cost
CT(i, j) that are present in equation 26.

6.3.3 Determining the wage

�e problem of determining the (spatial) variations of the average wageW( j)
at location j is very reminiscent of some problems encountered in fundamen-
tal physics. Indeed, the wage depends on many di�erent factors, ranging from
the type of company, the education level of the inhabitant, the level of aglom-
eration, etc., and in this respect is not too di�erent from quantities that can be
measured in a large atom made of a large number of interacting particles. In
this situation, physicists �gured that although it is possible to write down the
corresponding equations, not only is it impossible to solve them, but also not
really useful. In fact they found out that a statistical description of these sys-
tems, relying on random matrices could lead to predictions which agree with
experimental results [76].

We wish to import in spatial economics this idea of replacing a complex
quantity such as wages – which depends on so many factors and interactions
– by a random one. �e problem is not so much that we cannot write down
the equations that determine the wage that an individual could get in a given
company. Even if we could (and we can’t), the sheer number of people living
in an urban area would prevent us from solving these equations. And even if
we could solve them, the resulting information would be too overwhelming to
really allow us to understand the behaviour of the system as a whole. We thus
need an e�ective description of the phenomemon.
We account for the interaction between activity centers and people by tak-

ing the wage in location j as proportional to a random variable η j ∈ [0, 1] such
thatW( j) = s η j where s de�nes the maximum attainable average wage in the
considered city.

We are aware that wages are not determined endogeneously but are instead
the result of thousands, millions of interactions between �rms and individuals.
In the same way that Dyson did not mean that the interactions between elec-
trons in large atoms are random, our assumptions does not mean that wages
are really randomly determined.What wemean, however, is that in the case of
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systems containing a large number of individuals, one may do as if they were

randomly determined. Althoughwe thereby abandon the possibility to describe
the dynamics of the wages and their spatial distribution, the resulting model
is analytically solvable and makes quantitative predictions.

6.3.4 Commuting cost and congestion

We choose the transportation cost CT(i, j) proportional to the commuting
time between i and j. In a typical situation where passenger transportation
is dominated by personal vehicles, this commuting time not only depends on
the distance between i and j, but also on the tra�c between the two places, the
vehicle capacity of the underlying network and its resilience to congestion.�e
Bureau of Public Road formula [46] proposes a simple form taking all these
ingredients into account. In our framework, it leads to the following expression
for the commuting costs

CT(i, j) = t di j [1+(Ti j

c
)µ] (27)

where Ti j the tra�c per unit of time between i and j and c is the typical capac-
ity of a road (taken constant here). �e quantity µ is a parameter quantifying
the resilience of the transportation network to congestion.We further simplify
the problem by assuming than the tra�c Ti j is only a function of the subcenter
j and therefore write Ti j = T( j) the total tra�c incoming in subcenter j.

6.3.5 Summary

In summary, our model is de�ned as follows. At each time step, we add a new
individual i located at random in the city, who will choose to work in the activ-
ity area j (among Nc possibilities located at random) such that the following
quantity

Zi j = η j − di j

ℓ
[1+(T( j)

c
)µ] (28)

is maximum (we omitted irrelevant multiplicative factors).�e quantity ℓ =
s/t is interpreted as the maximum e�ective commuting distance that people
can �nancially withstand. Interestingly, the presence of commuting costs en-
tails the existence of a second length scale ℓ in the system (the �rst one being
the typical size L of the city).

6.4 monocentric to polycentric transition

Depending on the relative importance of wages, distance and congestion, the
model predicts the existence of three di�erent regimes: themonocentric regime
(Top le�Figure 12), the distance-drivenpolycentric (Top right Figure 12) regime
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Figure 12:�e di�erent regimes. �e monocentric (top le�), distance-driven poly-
centric (top right) and attractivity-driven polycentric (bottom) regimes as

produced by our model. Each link represents a commuting journey to an
activity center.

and the attractivity-driven polycentric (Bottom Figure 12) regime.

�e existence of a monocentric regime depends on how ℓ – the maximum
commuting distance that people can a�ord – compares to the size of the city
L. Indeed, people located at a distance d > ℓ from the most attractive cen-
ter will not be able to a�ord commuting to this center, and will, according to
our model, choose to commute to a closer center. As a result, a monocentric
regime is only sustainable as long as people’s residence is drawn close to the
most attractive center. �us, in the limit where ℓ ≪ L, the attractiveness of a
center becomes irrelevant, and amonocentric regime cannot exist. In this case,
we end up in the situation shown on the top-right of Figure 12.

From now on, we will assume that ℓ is large enough so that a monocentric
state exists for small values of the population. In this regime, the value of η
prevails and the monocentric state evolves to an attractivity-driven polycen-
tric structure as the population increases. Starting from a small city with a
monocentric organisation, the tra�c is negligible and

Zi j ≈ η j

which implies that all individuals are going to choose the most attractive
center, with the largest value of η j, say η1. When the number P of individuals
increases, the tra�c will also increase and some initially less attractive centers
(with a smaller values of η) might become more attractive, leading to the ap-
pearance of a new subcenter. More speci�cally, a new subcenter j will appear
when for an individual i, we have

Zi j > Zi1
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Because we assumed we originally were in a monocentric state, the tra�c at
this point is such that T(1) = P and T( j) = 0 which leads to the equation

η j − di j

ℓ
> η1 − di1

ℓ
[1+ (P

c
)µ] (29)

We assume that there are no spatial correlations in the subcenter distribu-
tion, so that we can make the approximation di j ∼ di1 ∼ L.�e new subcenter
will thus be such that η1 − η j is minimum. It will thus be the potential subcen-
ter with the second largest value denoted by η j = η2.

According to order statistics, we have on average for a uniform distribution

η1 − η2 ≃ 1/Nc

hence a critical value for the population

P∗ = c ( ℓ

LNc
)1/µ (30)

Whatever the system considered, there will always be a critical value of
the population above which the city becomes polycentric. �e monocentric
regime is therefore fundamentally unstablewith regards to population increase,
which is in agreement with the fact that no major city in the world exhibits a
monocentric structure. We note that the smaller the value of µ (or larger the
value of the capacity c), the larger the critical population value P∗whichmeans
that cities with a good road system capable of absorbing large tra�c should dis-
play a monocentric structure for a longer period of time.

6.5 number of centers

We have so far established that, because of increased levels of congestion as
the population grows, all cities will eventually adopt a polycentric structure.
Although appealing and in agreement with common observations, the pre-
diction given by Eq. 30 is impossible to test with the currently available data.
�erefore, we would like to obtain a prediction for the variation of the number
of subcenters with population.

We compute the value of the population at which the kth center appears.
Still in the attractivity-driven regime, we assume that so far k − 1 centers have
emerged with

η1 ≥ η2 ≥ . . . ≥ ηk−1

with a number of commuters T(1),T(2), . . . ,T(k − 1), respectively. �e

next worker i will choose the center k if

Zik > max
j∈[1,k−1]

Zi j (31)



48 how congestion shapes cities

which reads

ηk − dik
ℓ
> max

j∈[1,k−1]
{η j − di j

ℓ
[1+(T( j)

c
)µ]} (32)

According to simulations of the model, we know that the distribution of
tra�c T( j) is narrow [141], andwe can assume that all the centers have roughly
the same number of commuters T( j) ∼ P/(k − 1). As above we also assume
that there are no spatial correlations in the position of employment centers so
that di j ∼ dik ∼ L. We can now write the previous expression as

L

ℓ
( P(k − 1) c)

µ > max
j∈[1,k−1]

(η j) − ηk (33)

Following our de�nitions, max j∈[1,k−1] (η j) = η1. According to order statis-
tics, if the η j are uniformly distributed, we have on average

η1 − ηk = (k − 1)/(Nc + 1)
It follows from these assumptions that (1) the kth center to appear is the kth

most attractive one (2) the average value of the population Pk at which the k
th

center appears is given by:

Pk = P
∗ (k − 1) µ+1µ (34)

Conversely, the number k of subcenters scales sublinearly with population
size as

k ∼ ( P

P∗
) µ

µ+1

(35)

For positive values of µ, we have µ
µ+1 < 1. we can thus conclude that the

number of activity subcenters in urban areas scales sublinearly with their pop-
ulation where the prefactor and the exponent depend on the properties of the
transportation network of the city under consideration. �is prediction is in
agreement with the scalings obtained for Spanish andAmerican cities in Chap-
ter 5.

6.6 conclusion

6.6.1 A predictive model

�e model we just presented, although not perfect, exhibits many of the desir-
able features of a model we listed in the introduction. First, it goes beyond the
standard models in urban economics by going beyond the explanation of sim-
ple, qualitative, stylized facts. As we saw earlier, one major problem with the
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model of Fujita and Ogawa is the absence of quantitative prediction. Instead
of providing a prediction that can be further con�rmed or refuted by empiri-
cal observation, the authors merely test the existence of polycentric solutions
in the framework of their model. �e link with reality is however very loose,
in the sense that there is a big intellectual leap between the actual prediction
of the model and reality. Even though the model proposed here is very sim-

ple, it is not di�cult to link it to reality. Once the notion of activity centers is
de�ned empirically, it is not di�cult to count the number of centers and look
at the dependence of this number on the population size of cities.�e model
can then be con�rmed, or refuted. Furthermore, as we will see in the following
section, the model serves as a basis to the understanding of some of the scal-
ing relationships in cities, linking the model even more strongly to empirical
reality.

6.6.2 Understanding the polycentric transition

Second, the model allows us to understand why the polycentric transition oc-
curs. Taking a step back on the assumptions that lead to the prediction of Eq. 35,
one can see that the transition in ourmodel is triggered by the congestion term
in Eq. 28.�e positions of households and �rms are indeed taken as random,
the wages are also taken at random.�erefore, we can conclude that ourmodel
explains the polycentric transition of cities through the increasing congestion
around employment centers as the population increase. Moremechanisms are
probably involved, but the model shows that congestion alone is enough to
lead to a polycentric situation.

If we assume that agglomeration economies is the basic process explaining
the existence of centers in the �rst place, the model provides evidence that this
centripetal force is balanced by the centrifugal e�ect of congestion that tears
city apart. Arguably, the non trivial spatial patterns observed in large cities can
be understood as a result of the interplay between these competing processes.

�e model we propose trades o� exhaustivity and complexity for simplicity
and explanatory power. Although some of the hypothesis we made are debat-
able, it is striking that we manage to make a prediction on the scaling of the
number of centers with population size. On the other hand, unlike simplistic
model, our model’s ontology is hard-wired into the reality we experience. For
this reason, its assumptions can be discussed, possibly changed. �e model
can be improved upon in many di�erent ways.





7
DI SCUS S ION

Our progress is narrow;

it takes a vast world unchallenged and for granted.

— J. Robert Oppenheimer [175]

As we stated in the introduction, all models are fundamentally wrong – at
least incomplete. Although is it able to reproduce key empirical regularities,
the model presented in Chapter 6 is no exception to this rule. In the following
chapter, we will enumerate some of its weaknesses, and propose possible ways
in which it could be extended.
Besides, because they are trying to make sense of a complex reality with a

limited number of tools, empirical analyses are not exempt of limitations either.
Before closing this chapter, we question the validity of the distribution-based
methods used to identify subcenters, and challenge the notion of polycentric-
ity itself.

7.1 questioning and extending the model

7.1.1 What the model does not say

�emodelmakesmany simplifying assumptionswhich allow for a better analayt-
ical tractability, but hide some interesting aspects of intra-urban dynamics.We
do not pretend to explain the complexity of urban dynamics in its entirety, but
rather some of its aspects.

A �rst feature, hidden in the assumptions of the model, is that we do not
explain the concentration of activities in particular areas of the cities. Rather,
we take the existence of centers for granted, and do not bother with the be-
haviour of �rms. Of course, this is a topic worthy of investigation, and should
be studied in more depth in order to have a comprehensive understanding of
the mechanisms that shape cities.
A second limitation lies in the fact that we ignore the process of residence

choice, and attribute households’ location at random in the city instead. We
therefore set aside the problem of competition for space between households,
and a theoretical description of the spatial distribution of housing prices (see [96]
for a model that explores this aspect).
Another limitation lies in the description of congestion. In a worry to sim-

plify the problem, we chose to adopt a macro-scale description of tra�c con-
gestion, given by Eq. 27. �e sensitivity of the road network to congestion is
taken into account through the exponent µ and the capacity C, which are as-
sumed to be the same across the entire city. In order to derive and compute
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these parameters, one would need to understand how local patterns of con-
gestion lead to macroscropic behaviours at the city scale. �is is, of course, a
di�cult entreprise: local particularities of the layout may have dramatic con-
sequences on the �uidity of tra�c, and congestions do propagate through the
network so that access to a given center can have an e�ect on the travel to
another center [138].

7.1.2 Possible avenues

Even without considering the di�cult problem of modeling the behaviour of
the �rms, and the way it is coupled to that of individuals, the model could be
improved in several ways. One �rst possible extension is to take the presence
of public transportation into account. Indeed, the model only considers indi-
vidual vehicles, prone to congestion, as a transportation mean. However, the
largest cities in the world are all served bymetro systems [197], and the share of
transports other than personal vehicles can attain 42% in cities like New-York.Number from the

2013 American

Community Survey
It is therefore far from being negligible, and should be taken into account in
the model. In its defense however, cars remain the dominant mode of trans-
portation in the US, as shown of Figure 13. �e use of alternative modes of
transportation is only notable inNew-York, which is already a polycentric city.
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Figure 13:Mode share in theUS. Importance of di�erent transportationmodes in US
Metropolitan Statistical Areas, as a function of the number of commuters.
Although the proportion of individuals using public transportation or other
modes (walking, cycling, working at home) increases with population size,
cars stay the dominant mode of transportation everywhere. Data are from
the 2013 American Community Survey.
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Another possible (but non-trivial) extension to the model is linked to the
second limitation stated above. Adding an income structure into the model
(and rules concerning the interaction of individuals) could allow us to explore
the spatial patterns of segregation, and see whether they can be understood
from basic economical choices alone [96]. We considered this avenue during
this thesis, and realised there was very little of the empirical knowledge on seg-
regation could be used to test a model.�is led us to working on the material
presented in Part iv of this thesis.

7.2 shadows in the empirical picture

7.2.1 Identifying and counting centers

Althoughnon-parametricmethods are an improvementover the previous para-
metric methods, we are yet to understand the exact meaning of the obtained
centers.
In particular, a problem that remains with non-parametric methods is that,

nomatter the distribution of employment, population, etc. into the areal units,
the method will output a number. For instance, let us consider the extreme
case of a city where employment is uniformly distributed in space, so that the
employment density is uniform. In this situation, the LouBar method would
tell us that the number of centers is equal to the number of areal units. Yet, can
we really talk about centers in this case? Most would (rightfully) object. But
on what ground?
�e di�culty resides in that we do not know what we mean exactly when

we talk about centers: do they re�ect an objective reality, or are they a mere
artifact of the way our brains process information? Can they be quantitatively
de�ned, based on their desired properties or are they merely ‘unusual’ �uctu-
ations in the distribution of activities? In the latter case, parametric methods
will do just �ne. In the former case means we need to understand what we talk
about when we talk about centers. It is somewhat ironical that, more than 15
years a�er the publication of McDonald’s seminal paper [157], we are still pon-
dering over the question he originally asked.

A further shortcoming of the most recent (distribution-based) methods is
that they do not consider the spatial arrangement of the areal units involved.
�is can be problematic, especially when themethod identi�es as centers areal
units that are contiguous.
We show an example of such a situation on Figure 14. We use the LouBar

method [140] to extract the employment hotspots in the Boston, MA MSA
using data from the 2000 Census. As one can see, several of the identi�ed
hotspots are contiguous. Should we still count them as separate hotspots? Or
should we consider that all contiguous hotspots are part of a larger hotspots
that encompasses them all?
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Figure 14: Subcenters and contiguity.�e census tracts of downtown Boston, MA in
the US. In light grey, the census tracts that are identi�ed as employment
hotspots by the LouBar method. Although the method designates all light
grey tracts as di�erent hotspots, many of them are contiguous.We can won-
der whether such contiguous hotspots are, in fact, part of a larger hotspot
that would include all of them.�is plot was generated using the 2000 Cen-
sus tract-to-tract commuting �ows and the 2000 Census tracts geometry.

�e results of themethods provided in the introduction should not be thrown
away altogether, though. �e number of centers they provide probably does
not re�ect the ‘real’ number of centers (if there is such a thing) in a particular
city. But, assuming that di�erent cities exhibit similar structures, they should
still provide values that are coherent across di�erent urban areas, and are thus
useful for comparison purposes.

7.2.2 Beyond polycentricity?

7.2.2.1 �e dispersed city

As we saw in Chapter 5, the concept of the monocentric city was progressively
replacedwith themore elaborate polycentric hypothesis. It is, however, not the
end of the story. Gordon and Richardson, in a provocative article [102], argue
that cities are dispersed more than they are polycentric. Indeed, studying the
employment density in LosAngeles, they found that the centers they identi�ed
only contained 17% of the total employment. Hardly a polycentric situation!
Of course, we can (and should) wonder whether Gordon and Richardson’s

results are an artefact of the choice of their case study –Los Angeles, famous
for its sprawl– or the particular method they used to compute the number of
centers. We thus plot on Figure 15 the ratio of the total number of individuals
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Figure 15: Concentration in subcenters. (Le�) Ratio of the total residential popula-
tion in U.S. MSAs that lives in the centers identi�ed by the LouBar method.
(Right) Ratio of the total number of employees in U.S. MSAs that work in
the centers identi�ed by the LouBar method. Overall, cities are very dis-

persed, with only a few cities having more than 50% of their workforce or
residential population living in centers, con�rming the results of Gordon
and Richardson [102]. Data are from the 2000 U.S. Census.

that is contained in the centers de�ned by the LouBar method.�e results are
striking: only a few, small metropolitan area reach the mark where 50% of in-
dividuals (employees or residents belong) to a designed center. Worse, cities
seem to be on average more dispersed as they are bigger.

�e lesson that should be learned from the article by Gordon and Richard-
son is that the notion of polycentricity is also an hypothesis on the spatial struc-
ture of densities. While it is arguably more involved than the monocentric hy-
pothesis, it does indeed implicitly impose some structure onto the data. �e
process itself of counting centers implies that these centers exist, that there is
an element of reality attached to what we call centers. A quick look on the 3D
plot shown on Figure 6 should convince the reader that the world is not as sim-
ple as the way we picture it. For intance, while employment densities indeed
exhibit strong peaks that are easily distinguishible (although that is arguable
for Houston), the same cannot be said for population densities.
�e point is not that themonocentric or the polycentric model are wrong al-

together.�e problem lies in the lack of appropriate tools to describe a density
spatial pro�le, in the fact that there is no ‘one size �ts all’ method of analysis. In-
deed, the exploratory tools presented above try to �t a certainmodel of the city
to the actual data, be it monocentric or polycentric. �e methods developed
to identify centers count the centers provided there are centers. We de�nitely
need more elaborate methods that are also able to tell us whether there are
centers. Or that go beyond the notion of center.
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7.2.2.2 Quantifying Urban form

�is problem is in fact very general, and pertains to the �eld of spatial anal-
ysis (including spatial statistics). Finding centers indeed amounts to �nding
the proper way to describe a density pro�le at a meso-scale level and to de-
vising proper methods to detect the salient feature of this spatial pattern.�e
collection of tools and methods to describe the structure of density patterns
in cities consitutes the sub-�eld of urban form [223, 207, 129, 130] and reaches
far beyond the determination of subcenters.
Finally, we have focused in this part on the morphological aspect of urban

form, as most of the preceding studies. We ackowledge however the existence
of a functional aspect (see [32]), which takes the attraction range of employ-
ment subcenters into account, in addition to the raw number of employees.
Mixing employment densities and the property of the �ows to the center may
indeed lead to a better understanding of what a center really is.

7.3 summary

In this part, we have presented an historical overview of the monocentric hy-
pothesis for the structure of cities, and how the view has progressively shi�ed
towards the picture of a more distributed, polycentric organisation. Starting
with indirect evidence for a polycentric picture, several methods were then
naturally proposed to directly measure the number of centers, from the �rst
parametric methods to the more recent non-parametric methods. Observing
evidence for an increased polycentricity with population size, we then won-
dered what were the possible explanations for this phenomenon.We proposed
an out-of-equilibrium model of city growth that predicts the necessary emer-
gence of secondary centers as populations grows, and a sublinear increase of
the number of subcenters with population—both veri�ed on empirical data,
across di�erent countries, for several city de�nitions.
In the next part, we will continue our journey with another, seemingly un-

related topic: scaling relationships. We will start with a historical perspective
on scaling, showing that scaling relationships did in fact precede Quantitative
Geography, and we will provide a non-exhaustive review of the empirical re-
sults. We will then be ready to show how, using the model exposed in the pre-
vious chapter, we can understand the value of the scaling exponents related
to individual mobility. We will then conclude on a re�ection of what scaling
relationships can and do tell us about cities, and highlight their shortcomings.



Part III

SCAL ING

�e past decade has witnessed a renewed interest for the scaling
of some of cities’ characteristics with population size – �rst dis-
covered more than 60 years ago.

�e contribution of this part is threefold. First, we review the ex-
isiting literature on allometric scalings, sorting the measured ex-
ponents by theme. We then propose a model to explain the scal-
ing exponent of several indicators related tomobility in cities, and
discuss the theoretical and practical consequences of these expo-
nents. Finally, we present some of the challenges posed by scaling
relationships: their interpretation, and the issues they reveal about
the de�nition of cities.





8
INTRODUCT ION

�e allometric law promises to become

an integral part of geography theory.

—David Harvey (1969) [107]

8.1 probing cities with scaling laws

8.1.1 Scaling laws

As discussed in the introduction of this thesis (Chapter 1), cities are paradig-
matic examples of complex systems. As systems, they can be of thought of as
‘black boxes’ with inputs (people, goods, money, information, etc.), a structure
(roads, buildings, electric cables, etc.) and outputs (Patents, CO2 emissions,
etc.). A simple way to explore the behaviour of such a system is to look at the
way it behaves when we change its size. �at is, how its structure and its out-
puts change when the inputs are altered. Formally speaking, we try to �nd the
function f such that the quantity Y – a measure of the output or the structure
– varies as

Y = f (S) (36)

where S is the size of the system.

What is to be considered as the size of the city? �e spatial footprint, the
total volume occupied by its building?�e answer adopted bymany before this
thesis [215, 38], is the total number of inhabitants.�e real reason is probably
pragmatic: “it works”. Although, in retrospect, the choice of population makes
complete sense.
Cities are indeed more than roads and buildings: cities are the people who

inhabit them. People are responsible for the changes in wealth, employment,
number of patents. People need new roads, and it is people who build them.
People need electricity, and again it is people who run electric cables between
buildings. Inhabitants in a city are the elements that interact constantly.�rough
their actions and interactions, they are reponsible for the collective mecha-
nisms that act on the city as a whole. In a sense, behind the use of the pop-
ulation P to measure the size of a city as a system hides the hypothesis that
cities are, �rst and foremost, the people that inhabit them.

As amatter of fact, whenwe try to plot quantities as a function of the popula-
tion size P of cities, we obtain allometric scaling relationships.�at is, a power-
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law relationship between various quantities Y and the population size P of
cities in a given system of cities

Y = Y0 P
β (37)

where the exponent β can be di�erent from 1. �is type of scaling relation,
used extensively in Biology [220] and in Physics [21], is a signature of the var-
ious processes governing the phenomenon under study, especially when the
exponent β is di�erent from what would be naively expected. �ree qualita-
tively di�erent regimes are usually distinguished for the exponent β [38]

superlinear when β > 1. In this situation, the Y per capita increases with
population size.�is is associated with the notion of increasing returns
with scale in economics.

linear when β = 1. In this situation, the Y per capita is constant. �is be-
haviour is characteristic of an extensive system, when the whole is equal
to the sum of its parts.

sublinear when β < 1. In this situation, the Y per capita decreases with
population size. When Y is the cost in infrastructure, this is characteris-
tic of economies of scale.

P

Y

Superlinear

Linear

Sublinear

P

Y
P

Figure 16: Sublinear, Linear and Superlinear scaling. (Le�) Example of a linear
(black), sublinear (blue) and superlinear (red) behaviour. (Right) Evolu-
tion of the correspondant per-capita quantities with population. A super-
linear behaviour means that per-capita quantity increase with population
size, while a sublinear behaviour means per-capita quantities decrease with
city size.

We note that the scaling exponent β is also directely related to the elasticity
de�ned in Economics. Indeed, the cities’ population elasticity of the quantity
Y is de�ned as

β =
dY/Y
dP/P (38)
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8.1.2 Underlying assumptions

Several assumptions, although rarely mentionned, hide behind every exhib-
ited scaling law relationships. �e �rst one, is that we are able to unambigu-
souly delineate cities as systems. While this is trivial in the case of animals (it
is fairly easy for us to isolate an elephant, or a cat from its environment before
measuring its mass and its metabolic rate), it is a much more di�cult task in
the case of cities. Indeed, cities do not have �xed boundaries, and their geo-
graphical limits evolve with time.�ey are also open system: people are born
and die, change residence and companies do the same.
Traditionnally, people have relied on the de�nition given by statistical agen-

cies of the respective countries they were studying – andwewill do the same in
the next chapter. We will however see, in the chapter concluding this part, that
the problem of delineating cities is a sensible issue and a�ects greatly scaling
analyses.

A second issue, rarely – if ever –mentionned in the literature, is the necessity
to de�ne the set of cities to study. Scaling laws are essentially cross-sectional
relationships, where we measure the quantity Y on a set of cities with di�erent
populations. But how is the set determined? For instance, would it make sense
to mix French cities, Ukrainian, Canadian and Korean, etc cities and plot, say,
their total GDP as a function of the population?Would we then observe a neat
scaling relationship?
Intuitively, this is very unlikely to happen, as di�erent countries have overall

di�erent levels of wealth, and this should be re�ected in the wealth of their
cities. �erefore, plotting cities from di�erent countries together is likely to
introduce important deviations to the pure scaling relations which are not due
to the fact that cities in di�erent countries donot follow the sameprocesses, but
rather because of systemic di�erences at the country level. As a matter of fact,
most studies limit themselves to a single country. But one should bear in mind
that this choice is arbitrary. And the problem of chosing the appropriate set
fromwhich to pick the cities is linked to the more general problem of de�ning
systems of cites.

8.1.3 An increasing importance

�e Chapter’s epigraph, fromHarvey’s 1969 Explanation in Geography, is some-
what prophetic. Allometric scaling relationships only concern 1 page out of the
500 pages that the book contains, a re�ection of the very few empirical results
that were available at the time. Looking at the extent of the literature on scal-
ing relationships almost 50 years a�er Harvey wrote this sentence, it is di�cult
to deny the accuracy of this prophecy.�anks to the wider availability of data
through statistical agencies, but also the availability of ’new data’ (such as mo-
bile phone data), empirical measurements of scaling laws havemultiplied, and
now concern quantities as diverse as the total surface area, the number of new
patents, the quantity of CO2 emitted, the number of phone contacts of individ-
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uals, etc.�e discovery of allometric scaling in cities is not recent [215], but it
has undoubtedly caused a stir in the literature about urban systems over the
last decade [38, 185, 37, 4, 143, 16].

In the next section, we will present a non exhaustive historical review of
the empirical results on scaling relationships.�is will lay the ground for our
contribution to the debate: a theoretical interpretation of the scalings related to
the mobility of people, and an estimate for the scaling exponent of the surface
area.

8.2 a brief history of allometric scaling and cities

Rather than an exposition that is linear in time,we deliberately chose to classify
the proposed studies according to the type of quantity.�at way, we emphasize
the variety of variables that have been studied. Incidentally, this order also
reveals the di�erent waves of interest scaling relationships have sparked o� in
the past 6 decades.

8.2.1 Surface area

�e spatial footprint of cities, as can be observed on satellite picture or onmaps,
is one of the properties that is easiest to measure. It is therefore not surprising
that the �rst occurence of the scaling relationships in cities was the scaling
of the surface area of cities with their population. In 1947, using data about
administrative cities obtained from the 1940 US Census, John Stewart showsIncidentally, the

author of the study,

John Stewart, was a

physicist.
A =

P 3/4

350
(39)

�e next occurence of this scaling can be found 9 years later in a study by
the same author [217], using UK census data. It isn’t long until the result per-
colates in Geography with Boyce in 1963 [45]. In 1965, Nordbeck’s paper [168]
also studies the scaling of surface area with population, and, for the �rst time,
explicitly refers to allometry in biology. Later, Tobler [221] uses some of the
�rst available satellite images to provide the �rst con�rmation using satellite
pictures. Satellite pictures were also used more recently by Guérois in [104]
(Table 1).

When applied to morphological de�nitions of cities, all studies (see [28])
give an exponent that varies in the range [0.70, 0.90]. However, di�erent re-
sults are obtained for functional de�nitions of cities [28], or when the set of
studied cities span several systems of cities [93]. �us, despite being the old-
est andmost trusted scaling relationship in the literature, the relation between
the surface area and population size of cities exhibits some of the issues we will
discuss in Chapter 10.
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Exponent City de�nition Year Study

0.75 Administrative (US) 1940 Stewart [215]

0.75 Administrative (UK) 1951 Stewart & Warntz [217]

0.86 Morphological (US) 1950 Boyce [45]

0.88 Administrative (US) 1950 Nordbeck [168]

0.88 Built-up (US) 1969 Tobler [221]

0.86 Built-up (Europe) 1990 Guérois [104]

0.73 Administrative (Europe) 1990 Guérois [104]

0.78 Morphological (US) 2010 Louf & Barthelemy [4]

1.48 Functional (US) 2005 Batty & Ferguson [28]

Table 1: Scaling of the surface area. Scaling exponent for the surface area of cities
found in the literature. �e scaling for administrative cities, built-up areas
or cities de�ned according to a morphological criterion are consistent with
one another – at least qualitatively. �e exponent for cities with a functional
de�nition is however qualitatively di�erent.

8.2.2 Economic diversity and employment

8.2.2.1 Employment diversity

�e economic diversity has been of interest to researchers very early on. In
1949, Zipf in Human behavior and the principle of least e�ort [235] plots the
number of service-business establishments, manufactures and retail stores per
city as a function of population (in log-log scale) using data from the 1940 US
Census. He �nds a linear relationship with population for the three types of
establishments, which agreed at the time with his model. He also plots the
scaling of the diversity, de�ned as the number of di�erent kinds of entreprises
present in the city being studied.
In his 1967 Geography of market centers and retail distribution [34] Berry,

hoping to demonstrate the hierarchical organisation of central places, plots
this time the population of cities as a function of the number of kinds of retail
and service businesses observed. Strangely enough, the data imply

D ∝ P β (40)

with β > 1, in contradiction with later results.Indeed, Bettencourt et al.[40]
showed that the professional diversity D, measured as the number of profes-
sions of di�erent kind in the city considered, could be �tted by the following
function

D(Ne) = d0 (
Ne

N0
)γ

1+ (Ne

N0
)γ (41)



64 introduction

where d0 is the size of the classi�cation used in the data, N0 is the typical
saturation size, and γ < 1 is an exponent expressing the extent to which new
activities ‘appear’ as the total employment increases. Far from the saturation
regime, when Ne ≪ N0 (the classi�cation is su�ciently �ne), we have

D(Ne) ∼ AN
γ
e (42)

8.2.2.2 Employment in di�erent activities

More recently, Pumain and coauthors [189], extending thework done byPaulus
in his PhD thesis [178], showed that the employment Ea in di�erent activities
a scaled as

Ea ∝ P β (43)

with di�erent exponents β for the di�erent activities (Table 2). �ey ob-
served, for the year 1999 in France, that the exponents could be classi�ed in
three categories

• β > 1 for innovative sectors: research and developpement, consultancy.

• β = 1 for common sectors: hotels, health and social services, education.

• β < 1 for ‘mature’ sectors such as the food industry

�is result was con�rmed recently by Youn et al. [232] (although they do
not refer to this previous work), who showed that the same behaviour was
observed for the number of business of a given type.

A particularly interesting result shown by Pumain et al. [189] is the evolu-
tion of the di�erent exponents with time, where we can see a clear increase of
the exponents for research and developpement, and a clear decrease of the ex-
ponents related to manufactures of di�erent kinds. We will come back to the
interpretation of this phenomenon in Chapter 10.

Exponent City De�nition Economic sector

1.67 Functional (France) Research and development

1 Functional (France) Hotels and restaurants

0.85 Functional (France) Manufacture of food products

Table 2: Scaling of employment in di�erent economic sectors. �e scaling be-
haviour of the number of employees in a given economic sector depends on
the economic sector.We give an example for each of the ‘innovative’ (superlin-
ear),‘common’ (linear) and ‘mature’ (sublinear) categories de�ned by Pumain
et al. [189].�e exponents were obtained from [189] and concern French 1999
‘Aires urbaines’.
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8.2.3 Wealth

�e notion of increasing returns with the size of the agglomeration is o�en
discussed in economics, although emprical proofs are hard to �nd.�e super-
linear scaling of the GDP of american cities as a function of their population
may be the most striking example of such increasing returns [38]. In the same
article, Bettencourt et al. showed that the number of patents (used as a proxy
for creativity), and wages also scaled superlinearly with population size in the
US (see Table 3).
Because larger cities create proportionally more wealth than smaller cities,

we canwonderwhether this supplement ofwealth allows to sustain proportion-
allymore jobs.�e answer, as shown in [40] for american cities, is negative: the
total employment of a city is on average proportional to its population.

Quantity Exponent City De�nition Study

GDP 1.13 Functional (US) Bettencourt [37]

New patents 1.27 Functional (US) Bettencourt et al. [38]

Total wages 1.12 Functional (US) Bettencourt et al. [38]

Employment 1.01 Functional (US) Bettencourt et al. [38]

Table 3: Economic vitality.�e scaling of quantities linked to cities’ economic vitality
and creativity scale superlinearly with population size. �is does not trans-
late however in larger employment rates, as the number of employees scales
linearly with population size.

8.2.4 Human interactions

At the heart of Bettencourt’s model [37] to explain the superlinear scaling of
quantities associated with wealth and creativity is the behaviour of the total
number of interactions between individuals with the size of the city. In an at-
tempt to test this hypothesis, Schläpfer et al. [205] looked at the scaling of the
cumulative number of contacts K that people had over the phone, using mo-
bile phone data in Portugal, and landlines in the UK.�ey also looked at the
cumulative call volume (total number of minutes called) and the cumulative
number of calls, and found that the three quantities scale superlinearly with
population size (see Table 4).
�ey further found that the number of non-returned calls showed a larger

exponents than the number of calls, meaning that the number of solicitations
an individual gets is greater in large cities.

8.2.5 Mobility of individuals, and environmental impact

Because cars are widely used (at least in the U.S.), and because peak travel
demand on the roads corresponds to journey-to-work trips, most of the infor-
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Quantity Exponent City De�nition

Cumulative phone contacts 1.12 Morphological (Portugal)

Cumulative phone contacts 1.13 Administrative (Portugal)

Cumulative call volume 1.11 Morphological (Portugal)

Cumulative call volume 1.15 Administrative (Portugal)

Cumulative number of calls 1.10 Morphological (Portugal)

Cumulative number of calls 1.13 Administrative (Portugal)

Table 4: Interactions over the phone. Scaling of the cumulative number of phone
contacts, phone calls and the cumulative call volume over 409 days in Por-
tugal. As for the scaling of the surface area, administrative and morphologi-
cally de�ned cities exhibit similar exponents.�e scaling for LUZ (european
functional de�nition) shows a behaviour compatible with a linear scaling, al-
though the number of points (9) is not large enough to conclude. �e data
were obtained from a mobile phone provider, and all quantities are rescaled
to take into account the variation of the operator’s coverage between cities.

mation available on the mobility of individuals concerns the commuting to
work, o�en by car.

Samaniego and Moses [201] showed that the total number of miles driven
in U.S. Urban Areas (morphological de�nition) rescaled by the total surface
area scales sublinearly with population size, with a non-trivial exponent (that
is, di�erent from 1/2. More details in the next chapter). We showed in a later
study [4] that the total distance driven scales linearly with population size in
Urban Areas. Also related to commuting, and the use of personal vehicles, is
the evolution of the total comsumption of gasoline with city size. Bettencourt
et al. showed that gasoline sales inMetropolitan Statistical Areas scaled sublin-
early with population size [38] (see Table 5 for values).
Hopefully, new data such as mobile phone data should be able to inform us

about other trips, which represent no less than 80% of all trips undertaken in
the United States! [203].

A diseconomy associated with the mobility of individuals is the quantity of
CO2 emitted due to transportation (and polluting substances). Using di�erent
city de�nitions, di�erent authors �nd very di�erent behaviours. �e authors
of [87] �nd that transport-related CO2 emissions in Metropolitan Statistical
Areas in the US scale sublinearly with population size, while the authors of
[142, 173] �nd that they scale superlinearly with population size for US Urban
Areas (morphological de�nition). We will come back to this in the next Chap-
ter.

8.2.6 Basic commodities

We can also wonder how the consumption of basic commodities (housing, wa-
ter, electricity) per capita changes with population size. By far the most ex-
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Quantity Exponent City De�nition Study

Distance driven 1 Morphological (US) Louf & Barthelemy [4]

Gasoline sales 0.79 Functional (US) Bettencourt et al. [38]

CO2 emissions 1.42 Morphological (US) Oliveira et al. [173]

CO2 emissions 1.37 Morphological (US) Louf & Barthelemy [143]

CO2 emissions 0.93 Functional (US) Fragkias et al. [87]

Table 5:Mobility. Scaling relationships linked to the individual mobility in cities.�e
three scaling exponents regarding the CO2 emissions due to transportation

were obtained using the Vulcan data (http://vulcan.project.asu.edu/)
which provide measurements of the CO2 emissions on a 10 km x 10 km grid.
�e di�erence between the three studies is in the method used to delineate
cities: Fragkias et al. [87] rely on the Metropolitan Statistical Areas de�ned
by the Census Bureau, Oliveira et al. [173] rely on the City Clustering Algo-
rithm [198] (morphological criterion) while we rely on the Urbans Areas de-
�ned by the Census Bureau.

pected result, Bettencourt et al. showed [38] that the total water consumption
(in China), the total electrical consumption (in China), and the total housing
(in the US) are proportional to the population (see Table 6).

Quantity Exponent City de�nition Study

Total housing 1.00 Functional (US) Bettencourt et al. [38]

Total electrical consumption 1.05 Administrative (China) Bettencourt et al. [38]

Total water consumption 1.01 Administrative (China) Bettencourt et al. [38]

Table 6: Basic commodities. Scaling of the total housing, electrical consumption and
water consumption with population size. All exponents are compatible with
a linear behaviour (within the 95% con�dence interval error bars).

8.2.7 Infrastructure

What about infrastructure, and the alledged economies of scale? Do we need
to build less roads, lay less cables for every individual in larger cities? �is
question can be answered by looking at the scaling of the length of roads, ca-
bles, etc. in cities: if the exponent is smaller than one, larger cities need less
infrastructure per capita.
Veregin and Tobler, using the 1980 U.S. Census DIME �les (a lot less conve-

nient to use than shape�les!) showed that the number of street segments–the
portion of road between two intersections–scaled sublinearly with the size of
urban areas [224] (see Table 7).
Arguably, the total length of the street network is more relevant to measure

costs in terms of infrastructure. In [4], we provide evidence for the sublinear
scaling of total street length with the population size of urban areas (Table 7).

http://vulcan.project.asu.edu/
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Finally, Bettencourt et al. showed that the length of electric cables in Ger-
man cities scaled sublinearly with population size [38]. So far, studies thus in-
dicate that cities indeed realise some economies of scale.

Quantity Exponent City de�nition Study

Street segments 0.83 Morphological (US) Veregin & Tobler [224]

Street length 0.86 Morphological (US) Louf & Barthelemy [4]

Electric cables length 0.87 Administrative (Germany) Bettencourt et al. [38]

Table 7: Infrastructure. Scaling of the total number of street segments, the total
length of roads and the total length of electrical cables of cities as a function
of population.�e three quantities exhibit a sublinear scaling behaviour, im-
plying that larger cities need less infrastructure per capita, thereby realising
economies of scale.

8.3 summary

�is brief review of the literature beggs several questions.
First, most of the scaling exponents that are found in the literature (all but

linear scalings) are highly non-trivial, in the sense that their value looks com-
pletely arbitrary. We argued at the beginning of this Chapter that these expo-
nents where the signature of the processes happening within cities. But it is
not clear what mechanisms can lead to these values. In the following Chapter,
we will provide a model that reproduces the exponents observed on quantities
that are relatd to the mobility of individuals.
A second issue has to do with the fact that studies �nd di�erent exponent

for the exact same quantities. �e problem does not lie so much with the nu-
merical di�erences, but in the qualitative di�erence: some quantities are found
to scale sublinearly in a context, and superlinearly in another. For instance,
the CO2 emissions scale di�erently with population size in di�erent studies.
While studies focusing on Urban Areas or equivalent (in the U.S.) �nd that
emissions scale superlinearly with population size [4, 173], studies interested
in Metropolitan Statistical Areas report a sublinear scaling [87].�is calls for
an explanation that we will sketch in Chapters 9 and 10.
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FROM MOB I L I T Y PAT TERNS TO SCAL ING

I remember my friend Johnny von Neumann used to say,

‘with four parameters I can �t an elephant

and with �ve I can make him wiggle his trunk’

— Enrico Fermi (quoted in [75])

A common trait shared by all complex systems – including cities – is the
existence of a large variety of processes occuring over a wide range of time
and spatial scales. �e main obstacle to the understanding of these systems
therefore resides in uncovering the hierarchy of processes and in singling out
the few ones which govern their dynamics. Albeit di�cult, the hierarchisation
of processes is of prime importance. A failure to do so leads to models which
are either too complex to give any real insight into the phenomenon, or too
simple and abstract to have any resemblance with reality. As a matter of fact,
despite numerous attempts [90, 146, 26, 88, 36, 37], a theoretical understand-
ing of many observed empirical regularities in cities is still missing.

Here we show that the spatial structure of the mobility pattern controls the
scaling behaviour of many quantities in urban systems. Indeed, cities are not
only de�ned by the spatial organisation of places ful�lling di�erent functions
– shops, places of residence, workplaces, etc. – but also by the way indivdu-
als move among them. Understanding where people live, where and how they
travel within the city thus appears as a necessary step towards a scienti�c the-
ory of cities.

9.1 a naive approach

Westart by presenting somenaive arguments to estimate the scaling exponents
for the area A, the total daily distance driven Ltot and the total lane miles LN .
Although these predictions turn out to be wrong, naive scalings are useful as
a �rst approach to the problem as they allow us understand how the di�erent
quantities relate to one another.

9.1.1 Surface area

We �rst would like to estimate the dependence of the area A of a city on its
population P – a long standing problem in the �eld [215, 28].

naive argument. A �rst crude approach is to assume that cities evolve
in such a way that their population density ρ = P/A remains constant. �is

69
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assumption immediately implies that the area should scale linearly with popu-
lation

A ∼ λ2 P (44)

where λ2 is the average surface occupied by each individual (the assumption
of a constant density is then equivalent to the one of a constant average surface
per capita).

reality. �e naive argument does not compare well with reality. We plot
the scaling of the surface area versus population for U.S. Urban Areas on Fig-
ure 17. A �t assuming a power-law dependence gives an exponentAll ± intervals are

95% con�dence

intervals.

βA = 0.85± 0.01 (r2 = 0.93) (45)

A result which agrees with previous measurements made on morphologi-
cally de�ned cities (see [28] or Chapter 8).�is means that the average surface
occupied by each individual decreases with city size. Or equivalently, that the
population density increases with city size.�e prediction given by the naive
model is therefore quantitatively – and worse, qualitatively – di�erent from
the behaviour observed empirically.

naiv
e m

odel

Figure 17: Spatial footprint. Scaling of the surface area of U.S. urban areas with pop-
ulation size, and what would be expected with a naive model (blue solid
line). A �t assuming a powerlaw dependence (dashed line) gives an expo-
nent βA = 0.85± 0.01 (r2 = 0.93).

9.1.2 Total length of road

naive model . Wewould now like to estimate the total length LN of all the
roads within a city. If we consider that the network formed by streets is such
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that all the nodes (intersections) are connected to their closest neighbour, the
typical length of a road segment is given by

ℓR ∼
√

A

N
(46)

where N is the number of intersections [23]. Previous studies of road net-
works in di�erent regions, and over extended time periods [219, 24], have
shown that the number of intersections is proportional to the population size.
�erefore, the typical length of a road segment (between two intersections)
varies with the population size P as

ℓR ∼
√

A

P
(47)

and the total length of the network LN ∼ PℓR should then scale as

LN√
A
∼ √P (48)

Using the naive scaling for the dependence of A on population size given
previously in Eq. 44 we �nally get

LN ∼ P (49)

reality. Again, the naive argument does not compare well with reality.
We �t the data for U.S. Urban Areas (see Figure 18) assuming a powerlaw de-
pendence and �nd an exponent

βR ∼ 0.765± 0.033 (r2 = 0.92) (50)

Note that the relation between the length and the number of nodes given by
Eq. 47, as well as the relation between number of intersections and population,
have been veri�ed independently in the literature. �e observed discrepancy

on the exponent of LN is therefore certainly due to the scaling of the surface
area.

9.1.3 Total commuting distance

�e total commuting distance Ltot is determined by two di�erent constraints.
First the individual constraint: individualsmake the decision aboutwhere they
are going to live andwork; they have their ownbehaviour and limitations.How-
ever, the individuals’ choices are also limited by the city structure itself, that is
by the respective distributions of jobs and residences across the city.
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Figure 18: Length of roads. Scaling of the total length of roads in U.S. Urban Areas
versu the total population. A �t assuming a powerlaw dependence (dashed
grey line) gives an exponent βR ∼ 0.765± 0.033 (r2 = 0.92). �e behaviour
is qualitatively di�erent from what would be expected with a naive mode
(solid blue line).

9.1.3.1 In�uence of the individual constraint

�e �rst constraint on the commuting distance comes from individuals’s limi-
tations and behaviour. We make here the simple assumption that individuals
choose their residence and work place such that their total commuting dis-
tance is �xed (or at least, is smaller than a certain value) and equal on average
to ℓC . In that case, we would simply have

Ltot
P
∼ constant = ℓc (51)

(by constant, wemean independent from the population size of the city). As
surprising as it may seem, the data show that Ltot/P can indeed be considered
independent from P (with a value of approximately 23 miles for the U.S., see
Figure 19), in agreement with the individual constraint assumption (Eq. 51).
�is �nding is also in agreement with the results drawn from census data in
Germany by [228]. �is does not mean, of course, that the distance driven is
the same for every city. As one can see on Figure 19, the �uctuations are quite
important between cities.

9.1.3.2 In�uence of the city structure

�e easiest way to understand the in�uence of the city constraints is to consider
two limiting cases: the totally centralised (monocentric) city where everyone
goes to work to a single center, and the totally decentralised city where every-
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Figure 19: Commuting distance & individual choice.Constant daily driven distance
per capita. (a) daily total driven distance per capita as a function of popula-
tion for 441 urbanised area in the U.S. in 2010. �e data shown in the plot
are compatible with a population-independent behaviour. (b) Histogram
of the daily total driven distance per capita for the same cities.�e average
daily driven distance is 23 miles, and the standard deviation 7 miles.

one goes to work to the nearest location (see Figure 20) [201].

Monocentric city Decentralised city

Figure 20: Limiting cases. Representation of the monocentric city (le�) and the to-
tally decentralised city (right), two extreme models for the shape of mobil-
ity patterns.

monocentric . If we �rst assume that the city is monocentric, individu-
als are all commuting to the same center and the typical commuting distance
ℓmc is controlled by the typical size of the city of order

√
A, so that

Lmtot√
A
∼ P (52)

decentralised. On the other hand, if we assume that the city is com-
pletely decentralised, the typical commuting distance is of order the nearest
neighbour distance

√
A/√P, and we obtain

Ldtot√
A
∼ √P (53)
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Figure 21: Commuting distance & city structure. Scaling of the total yearly com-
muted distance normalised by the city’s surface area with population size
for U.S. Urban Areas.�e blue lines show the behaviours that would be ex-
pected for a monocentric and a totally decentralised city. �e dashed line
represents the �t assuming a powerlaw dependence, which yields an expo-
nent β = 0.595± 0.026 (r2 = 0.90).

reality. �e scaling of the total driven distance for Urban Areas (mor-
phological de�nition) is shown on Figure 21, and the exponent sits between
the ones of the monocentric and decentralised cities

βL = 0.595± 0.026 (r2 = 0.90)
�is comes as another evidence – di�erent from that presented in Chapter 5

– that cities do not have a strictly monocentric structure.�is result cast some
further doubts about themodel by Bettencourt [37] which implicitely assumes
that cities are monocentric.

So far, so good. But how can we understand the non-trivial exponent that
is observed? �is is where the limiting case are helpful: if the exponent sits
between the ones that would be obtained in a monocentric or decentralised
city, surely, cities must adopt an intermediate structure.
One candidate stands out: the polycentric city (see Figure 22). Let us thus

consider a polycentric city with k employment centers. �e typical distance
commuted by individuals is then given by

ℓc ∼

√
A

k
(54)

So that

Ltot√
A
=

P√
k

(55)
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Polycentric city

Figure 22: Polycentric structure. City with a polycentric structure, intermediate be-
tween the monocentric and totally decentralised situations.

�erefore if, as we showed in the previous part, the number of centers in-
creases sublinearlywith population,wewould have a scalingof the form Ltot/√A ∼
P βL where βL ∈ [1/2, 1].�e previous expression is consistent with that ofA/λ2
and Ltot/P if

βL = 1− βA
2

(56)

which is indeedwhatwe observe empirically (up to error bars).We conclude
from this preliminary empirical analysis that, in order to compute the various
exponents, we need to better describe the structure of commuting patterns.
In other words, we need to �nd a description of cities that goes beyond the
naive monocentric or totally decentralized views, and which accounts for the
observed sub-linear scaling of the surface area A.

Quantity Naive exponent Measured value

A 1 0.85 (r2 = 0.93)
LN/√A 0.5 0.42 (r2 = 0.83)
LN 1 0.89 (r2 = 0.77)

Ltot/√A {0.5, 1} 0.60 (r2 = 0.90)
Ltot/P 1 0.03 (r2 = 0.04)

Table 8: Naive exponents and measured values. �is table displays the value of the
exponent governing the behavior with the population P obtained by naive
arguments and the value obtained from empirical data.�e discrepancies re-
veal the failure of the naive scaling arguments and the necessity to go further
and model mobility patterns.
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9.2 beyond naive scalings: modeling the mobility patterns

�e previous results, in particular the behaviour of the total commuting length
with population, hint at the necessity to better describe the structure of themo-
bility patterns (Table 8). �is is exactly what the model presented in the previ-
ous chapter does. Using the relation that we derived for the number of centers,
we will see how we can understand the values of the exponents presented ear-
lier in this chapter.We will also see how themodel allows us to understand the
scaling of other quantities, namely the total time spent in tra�c and the total
CO2 emissions due to transportation.

9.2.1 Area

According to the model introduced in Chapter 6, the number of centers is a
function of population and the area

k = F (A, P) (57)

and we need an additional equation in order to get a closed system. Here we
focus on the area and its evolution with the population size, which re�ects the
growth process of the city. In the following, we will investigate two di�erent
approaches. It is worth noting that both approaches give results in qualitative
agreement, showing that some stylized facts —such as super- or sublinearity—
are very robust.

fitting procedure . In the absence of knowledge of the processes re-
sponsible for urban sprawl, we can assume that the area behaves as

A ∼ P a (58)

where a is the exponent to be determined, through �ts on data.�e empir-
ical value for the exponent for the US data is a ≃ 0.85. Once this exponent is
given we can then compute the various exponent for the quantities of interest.
We get for the number of centers k

k ∼ P
µ+a/2
µ+1 (59)

which is sublinear as long as a < 2, in agreement with the empirical re-
sults for US cities. As we will see, this approach yields the same qualitative
behaviours as those predicted with the method of the next section. In other
words, even if the main mechanism behind urban sprawl is not congestion,
the conclusions of this paper are not a�ected as long as the area scales sublin-
early with population.
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coherent growth. Let us now assume that the scaling of A with pop-
ulation is determined by the number of activity centers and the constant com-
muting length of individuals. �is means that the growth of the area is con-
trolled by the appearance of new activity centers. if we assume that a city is or-
ganized around k activity centers and that the attraction basin of each of these
centers are spatially separated [141] (See on Figure 22), we then have A ∼ k A1

where A1 is the area of each subcenter’s attraction basin.�is area A1 is related
to the average individual commuting distance by

√
A1 ∼ Ltot/P, and we obtain

A ∼ k (Ltot
P
)2 = k ℓ2c (60)

�is leads to expression for the number of centers

k ∼ P
2µ

2µ+1 (61)

which is always smaller than 1, also in agreement with the empirical results
for US cities. We can now also compute the scaling of the surface area

A

ℓ2c
∼ (P

c
) 2µ

2µ+1

(62)

We further assume that Ltot/P is a fraction of the longest possible journey
ℓ individuals can a�ord, that is to say

ℓc ∼ ℓ (63)

It is important to note that if ℓc is independent from ℓ, the quantitative pre-
dictions of our model would still hold.
�e �nal expression for the area is then here given by

A

ℓ2
∼ (P

c
) 2 δ (64)

where δ = µ
2µ+1 . �e exponent δ is smaller than 1/2 whatever µ ≥ 0, which

implies that the density of cities increases sublinearlywith population. In other
words, the density of cities increases with population. �is prediction is veri-
�ed with data about land area of urbanized areas in the U.S. (Figure 17). We

�nd βA = 0.85 ± 0.01 which is not too far from the theoretical value 2δth =
0.64± 0.12, equal to α in this case.

Because the area of a city results from centuries of evolution, we do not a
priori expect ourmodel –where individual vehicles are assumed to be the only
vector of mobility – to give a prediction valid for all countries and all times.
Nevertheless, these results give us reasons to believe that the spatial structure
of the journey-to-work commuting should still be the dominant factor in the
dependence of land area on population. In the following, we will use the above
numerical value to compute other scaling exponents.
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9.2.2 Total commuting distance

Using Eq. 51 and Eq. 64 we are now able to compute Ltot/√A

Ltot√
A
= P (P

c
)−δ (65)

We plot Ltot/√A for urbanized areas in the U.S. on Figure 21, and one can
verify in Table 9 that the exponent predicted from the previously measured
value of α agrees well with the exponent measured on the data.

9.2.3 Total length of roads

If we use the previously derived expression for the area A, we �nd

LN ∼ ℓ
√
P (P

c
) δ (66)

�e quantity δ is less than 1/2, which implies that LN scales sublinearly with
the city’s population size. In other words, larger cities need less roads per capita
than smaller ones: we recover the fact that agglomeration of people in urban
centers involves economies of scale for infrastructures.

9.2.4 Total delay due to congestion

Unfortunately, the agglomeration of activities in cities does not only generate
economies. Congestion, for instance, is a major diseconomy associated with
the concentration of people in a given area. A simple way to quantify the im-
pairement caused by tra�c congestion is through the total delay it generates.
If we make the �rst order approximation that the average free-�ow speed v is
the same for everyone, the total delay due to congestion is given –according to
our model– by

δτ =
1

v
∑
i, j

di j (Tj

c
)µ (67)

If we assume that all the centers share the same number of commuters – a
reasonable assumption within the model presented in Chapter 6 [141] – we
obtain

δτ ∼
Ltot
v
(P
k
)µ (68)

which, using the expressions for Ltot and A given in Eq. 65 and Eq. 64 re-
spectively, gives

δτ ∼
ℓ P

v
(P
c
)δ (69)
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Figure 23: Congestion and delay. Scaling of the total delay due to congestion of US
urban areas with population size. A �t assuming a powerlaw dependence
of the total delay on population size yields an exponent βD = 1.270 ±
0.067 (r2 = 0.97).

�e total commuting time corresponding to the same distance but without
congestion scales as τ0 ∼ Ltot and thus less rapidly than the total delay which
scales super-linearly with population (even when polycentricity is taken into
account). �is means that, for the largest cities, delays due to congestion actu-
ally dominate the time spent in tra�c, and that economical losses per capita
due to the time lost in congestion –and the corresponding strain on people’s
life– increase with the size of the city.
�e prediction 1 + δ = 1.32 agrees well with the empirical measure (see Ta-

ble 9 and Figure 23)

βD = 1.270± 0.067 (r2 = 0.97) (70)

9.2.5 Transport related CO2 emission. Gasoline consumption

Another diseconomy associated with congestion is the quantity of CO2 emit-
ted by cars and the gasoline consumed bymotor vehicles.�is amount not only
depends on the distance that has been driven, but also on the tra�c during the
journey. It indeed turns out that for the same length driven, a car burns more
oil when the tra�c is heavy than when the road is clear.Within ourmodel, the
presence of tra�c is seen in the time spent to cover a given distance, and we
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write that the quantity of CO2 emitted by a vehicle is proportional to the total
time spent in tra�c, leading to

QCO2 = q∑
i, j

di j [1+(Tj

c
)µ] (71)

where q is the average quantity of CO2 produced per unit time. In the poly-
centric case with k = k(P) subcenters, the typical trip length di j is given by√
A/k and we obtain

QCO2 = q ℓ P [1+ (Pc )
δ] (72)

�e �rst term in brackets is a constant, and the quantity of CO2 is thus dom-
inated by congestion e�ects at large populations

QCO2 ∼ q ℓ P (P
c
)δ (73)

and the total daily transport-related CO2 emission per capita thus scales as

QCO2

P
∝ qℓ (P

c
)δ (74)

�e quantity of CO2 emitted per capita in cities thus increases with the size
of the city, a consequence of congestion.�is prediction agrees with the expo-
nent we measure (Figurere 24) on data gathered for US and OECD cities (see
Table 9)

βC = 1.262± 0.089 (r2 = 0.94) (75)

9.3 discussion

9.3.1 Travel-time budget and congestion

�e total commuting time T can be written as

T = τ0 + δτ (76)

where τ0 = Ltot/v ∼ P is the free-�ow commuting time and δτ ∼ P1+δ

the excess commuting time computed above. �e �rst thing we notice when
looking at the respective population dependence of both quantities, is that,
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Figure 24: Congestion and CO2 emissions. Variation of CO2 emissions due to trans-
port with city size. In blue, excess CO2 (in tons) due to congestion, as given
by the Urban Mobility Report (2010) for 101 metropolitan areas in the US.
In green, we show the estimated CO2 emissions (in tons) due to transports,
as given by the OECD for 268 metropolitan areas in 28 di�erent countries.
�e dashed yellow lines represent the least-square �t assuming a power-
law dependencywithmultiplicative noise, which gives respectivelyQCO2 ∼
P1.262±0.089(r2 = 0.94) for the US data and QCO2 ∼ P

1.212±0.098(r2 = 0.83)
for the OECD data.

in large cities, the total commuting time is dominated by the time spent in
congestion. Indeed, we have

T

δτ
ÐÐ→
P≫1

1 (77)

Which agrees with one’s (at least our) experience of driving in large cities.
�e second remark is linked to a long-standing belief in the study of urban

systems that individuals possess a constant travel-time budget [233]. We can
easily see, however, that this hypothesis is wrong. Indeed, in the limit of large
cities, the individual commuting time is given by

δτ
P
∼ P δ (78)

In other words, the individual commuting time increases with the size of the

city. Note that not only is this a consequence of the model, but also of the data
analysis (see Figure 23). �e constant travel-time budget hypothesis is thus
refuted.
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Figure 25: Newman & Kenworthy. Per capita CO2 emissions versus the population
density of cities belonging to OECD countries. �e cities also present in
the Newman & Kenworthy dataset are represented in red.�is curve casts
serious doubt on the fact that energy consumption are a simple funtion of
density.

9.3.2 Newman & Kenworthy

�e consumption of gasoline is proportional to the emission of CO2 and the
time spent driving. �e total daily gasoline consumption is thus given by

Qgas ∼ q ℓ P (P
c
)δ (79)

where q is the average quantity of gasoline needed per unit time. From this
expression, we see that the total daily gasoline consumption per capita scales
as

Qgas

P
∼ ℓ
√

P

ρ
= ℓ
√
A (80)

and is therefore not a simple function of the city density, in contrast with
what was suggested by the seminal paper of Newman and Kenworthy [167].
We plot on Figure 25, we plot the average individual CO2 emissions (used as a
proxy for gasoline consumption) as a function of the density for OECD cities.
�e points corresponding to cities that were in the original study [167] are
highlighted.�e relation is a lot less clear than that presented originally.
We then plot the same quantity as a function of

√
A, the prediction given

by Eq. 80, on Figure 26. As one can see, the prediction is far from perfectly fol-
lowed. If anything, this �gure, combined to Figure 25 show that the debate, in
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Figure 26: Newman&Kenworthy revisited. Per capita CO2 emissions versus
√
A for

cities of countries that belong to the OECD.�e dashed line represents the
obtained linear �t, as predicted by Eq. 80 (r2 = 0.55).�e agreement is poor,
which may be due to the fact that cities all belong to di�erent systems of
cities (and thus have a di�erent prefactor).

the absence of a clear-cut conclusion, is not over. At this stage, more data about
gasoline consumption – preferably for cities belonging to the same system of
cities – is needed to explore this prediction.

9.3.3 Monocentric versus polycentric

Although polycentricity emerges naturally from our model as a result of con-
gestion, many circumstances can prevent or foster the appearance of new ac-
tivity centers in a city. �ere are many debates as to whether policies should
favour polycentric or monocentric developpement of cities. Most of them are
based on ideologies and opinions about how cities should be, very few are
based on a quantitative understanding of the city as a complex system. Al-
though this only represents a small part of the debate, our model allows to
quantify the e�ect of polycentricity on the total delay due to congestion.
We can indeed compute the total delay due to congestion in the case of a

monocentric con�guration. In this situation, all the population commutes to
a single destination 1 and we have

δτmono =
1

v
∑
i

di1 (P
c
)µ = Ltot (P

c
)µ (81)

It follows, using the expression given above for Ltot

δτmono =
ℓ

v
P1+µ (82)
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From the fact that 1+ µ > 1+ µ
2µ+1 , we indeed �nd that the total delay due to

congestion is worse for monocentric cities than it is for polycentric cities with
the same population, which agrees with the usual intuition.More precisely the
ratio of delays is given by

δτmono

δτpol y
∼ (P

c
) β (83)

where the exponent is of order β ≈ 0.57 . �erefore, even though disec-
onomies associated with polycentric cities scale superlinearly with population,
it would be even worse if we did not let cities evolve from the monocentric
case.�e same reasoning applies to the consumption of gasoline and the CO2

emissions.
�is suggests that, everything else being equal, polycentricity should be favoured

for quality of life and environmental reasons.

Quantity �eoretical expression Predicted exponent Measured value

(δ = α/α + 1)
Ltot P 1 1.03± 0.03 (r2 = 0.95)
A/ℓ2 ( P

c
) 2 δ 2δ = 0.78± 0.20 0.853± 0.011 (r2 = 0.93)

LN/ℓ √
P ( Pc ) δ 1

2
+ δ = 0.89± 0.10 0.765± 0.033 (r2 = 0.92)

δτ/τ P ( Pc ) δ 1+ δ = 1.39± 0.10 1.270± 0.067 (r2 = 0.97)
Qgas,CO2/ℓ P ( Pc )δ 1+ δ = 1.39± 0.10 1.262± 0.089 (r2 = 0.94)

1.212± 0.098 (r2 = 0.83)
LN/√A

√
P 0.5 0.42± 0.02 (r2 = 0.83)

Ltot/√A P ( Pc )−δ 1− δ = 0.61± 0.10 0.595± 0.026 (r2 = 0.90)
Table 9: Summary of the scaling exponents. �is table displays the predicted theo-

retical behavior and the empirical observations versus the population size P
for di�erent quantities: Ltot is the daily total driven distance, A is the area of
the city, LN is the total length of the road network, δτ is the daily total de-
lay due to congestion, Qgas is the yearly total consumption of gasoline and
QCO2 is the total CO2 emissions emitted yearly due to transportation. In the
third column, we show the predicted values of the exponent of P using the
value of α measured on US employment data, and in the fourth column, the
value of the exponents directly measured on data about US and OECD cities.
�e measured values are in good agreement with the prediction. In particu-
lar, the exponents for LN and δτ are consistent with our prediction that their
di�erence should be 1/2.

9.3.4 Outlook

�e superlinear increase of congestion delay with population, and thereby of
gasoline consumption and of CO2 emissions, has terrible consequences on
the economy, the environment, health and well-being.�e outlook is nothing
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short of grim in our ever-urbanisingworld. As the proportion of humanbeings
living in cities dramatically increases – the UN expects the world population
to be 67% urban in 2050 – wages are likely to increase [38] but not enough to Estimates are given in

the United Nations’

2011 World Urban

Propects.

compensate for the negative e�ects of congestion. As a result, if the individual
car stays the dominant transportationmode, cities will put more strain on peo-
ple’s life, while acting as catalysts for the production of CO2 greenhouse gas,
responsible for an overall increase of the planet’s temperature [176].
It is currently believed that advantages associated with living in a large city

outweigh the costs. Our results reveal however the existence of very rapidly
growing problems such as congestion and CO2 emissions, which inevitably
begs the question of the sustainability of large cities. It might be time to cut
down considerably the use of individual vehicles, or to consider the possibility
of living in smaller or medium sized cities: the infrastructure costs (LN ) may
be larger, but the impact on the environment (CO2 emissions) and on the well-
being of people (delays in congestion) would be bene�cial.

�e most striking fact about the above results is that despite the apparence
of complexity that is conveyed by cities, most of their structure can be ex-
plained by the very simple and universal desire for the best achievable balance
between income and commuting costs. Our model uni�es mobility patterns,
spatial structure of cities and allometric scalings in a framework that can be
built upon.
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INTERPRETAT IONS AND IMPL ICAT IONS OF SCAL ING

LAWS

�ere are no facts, only interpretations.

— Friedrich Nietzsche

Although allometric scaling relationships are a powerful tool to explore the
behaviour of cities, there are several continuing controversies in the literature.
First, about their interpretation: do these relationships say something about
cities and the processes they host, or cities as they relate to one another in a
system of cities? Second, recent studies [16, 142, 61] have shown that the mea-
sured exponents are very sensitive to the way cities are de�ned. What does it
imply for the study of these scalings and, more generally, cities?

10.1 what scaling laws tell us about cities

Scaling laws are, in essence, cross-sectionnal studies of cities. As opposed to dy-
namical studies where one would follow the evolution of individual cities over
time, scaling laws tells us about the behaviour of an ensemble of cities at a give
point in time.�roughout Chapters 8 and 9, we have implicitely assumed that
scaling laws are the signature of phenomena occuring at the intra-urban level.
�is assumption, we call evolution interpretation, is however not completely
obvious.
Maybe the easiest way to understand the issues posed by this interpreta-

tion is through the comparison with Biology, where allometric scaling laws
are also widely used. �e interpretation of allometric scaling laws in Biology
is straightforward, because the compared organisms are independent. Con-
sider, for instance, the scaling of the metabolic rate of animals with their body
mass [225, 20].�emass of a given elephant at a point in time t is not correlated
to the mass of any other living creature in the world.�erefore, the scaling re-
lationship can only be understood as resulting from the existence of similar
processes in the growth of these di�erent animals. Cities are di�erent. �ey
are part of a bigger system – the system of cities – and interact constantly with
one another. People change residence, companies relocate, goods are shipped
andmoney is transfered.�erefore, as argued by Denise Pumain [187], scaling
laws can also be construed as re�ecting the redistribution processes within this
system of cities. We call this the di�erentiation interpretation.

10.1.1 �e evolution interpretation

�e evolution interpretation (Figure 27) has beenwidely adopted in the scaling
literature [38, 37, 4] without ever being clearly stated, let alone justi�ed. It is

87
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based on two assumptions.�e �rst assumption is that cities in the dataset are
di�erent realisations of the same system.�us, as stated in Chapter 8, looking
at the scaling of various quantities with population size is a way to probe the
system’s internal processes.

Figure 27: Evolution interpretation. In this interpretation we consider that cities are
di�erent realisations of the same system. �e intra-urban processes – and
the way they respond to population changes – are responsible for the non-
linear scaling of the di�erent quantities.

�e second assumption has to do with the time scales over which the di�er-
ent processes occur. Indeed, if the processes responsible for the change in the
value of the quantity Y being studied occur on timescales signi�cantly larger
than the timescale over which the population size changes, we cannot be sure
the exponent value actually re�ects the internal processes at the time we mea-
sure it. For instance, an abrupt increase in population size is not likely to be
immediately re�ected in the length of streets, while the evolution of the total
commuted length will be almost instantaneous.
In practice, the rate of population change in cities is small enough for the

processes to follow, or the amplitude small enough for the induced error to be
insigni�cant. Hence the observed stability in the value of some exponents.

�e previous discussion has several important consequences. First, it hints
at the di�culty to intepret the values of the observed deviations to scaling
laws [39]. It is indeed di�cult to assess to what extent deviations account for a
real over- or under-performance of the city compared to the other cities, or for
the time it takes for the studied quantity to react to population changes.Worse,
the delayed adjustment to population changes introduces an irreducible un-
certainty in the numerical values of the exponents themselves. �us, the real
error on the measured value of the exponent is very likely larger than what
is usually indicated by the statistical error bars. Unfortunately, we cannot get
a better estimate of the error until we understand in details the mechanisms
responsible for the time evolution of the corresponding quantities. Until then,
we should focus on (1) trying to understand the qualitative behaviour, more
than the exact numerical value of the exponents (2) be wary of interpreting
exponent values that are close to 1 (typically between 0.90 and 1.10); in the ab-
sence of an alternative mechanistic explanation, the linear relationship has to
be favoured due to its simplicity.
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10.1.2 �e di�erentiation interpretation

As Denise Pumain judiciously claims [189, 187], the evolution interpretation
is not the only possible interpretation for scaling laws. In some cases and the
mechanisms responsible for scaling relationships should be sought a�er in the
hierarchical organisation of cities and their interactions.

Figure 28:Di�erentiation interpretation. In this interpretation, we consider that the
redistribution processes occuringwithin systems of cities are reponsible for
the non-linear scaling of quantities with city size in this system.

Webrie�ymentioned inChapter 9 that allometric scaling relationships could
only be obtained when considering cities that belong to the same system of
cities. �e fact that we observe scalings when taking a single country into ac-
count, and a cloud of points whenmixing two di�erent countries, is a signature
of the integration of cities into systems of cities. It is not clear at the moment
what mechanisms are reponsible for the coherence that permits the existence
of scaling at the system level. But clearly, the fact that cities are tightly con-
nected through the �ow of commodities, populations, information and funds
must be a key factor.

Now, the same connections may be responsible for the scaling relationships
themselves, and the value of the exponent. As an example, Pumain et al. [189]
study the scaling of the number of employees from di�erent economic sector
in France with population size (see also Chapter 8).�ey �nd that the number
of employees in innovative sectors (such as research and development) scales
superlinearly with population size, while the number of employees in mature
economic sector (such as themanufacture of food products) scales sublinearly
with population size. Using historical data, they further show that the scaling
behaviour of some activities has signi�cantly changed over time: the exponent
of manufacturing activities has continuously decreased since 1960, while that
of research and developement has continuously increased. �is could be ex-
plained, they claim, by the hierarchical di�usion of innovations in systems of
cities. Innovative activities �rst appear in large cities, entailing a larger propor-
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tion of the active population working in these sectors than in smaller cities,
thus a superlinear scaling. Over time, the innovations progressively di�use
through the system of cities, the proportions are equilibrated and the value
of the scaling exponent decreases.
Although the mechanism is plausible, the current issue with this interpreta-

tion is the lack of predictive model that explains the values of the exponent.

10.1.3 Cities, or systems of cities?

So, are scaling relationships properties of cities, or of systems of cities? Proba-
bly both.�e above discussion is very general, and the origin of scalings should
be evaluated on a case-by-case basis. �e scaling of some quantities, such as
the total quantity of CO2 emitted or the total length of roads are undoubtedly
due to intra-urban processes (at least as long as the explanation presented in
Chapter 9 holds). Others, such as the linear scaling of total income, are proba-
bly due to the interactions of cities within the same system of cities. However,
it is impossible to discriminate between both interpretations on a purely em-
pirical basis. Ultimately, we need models that are able to reproduce at least the
qualitative scaling behaviour. Plausible narratives are not enough.

10.2 what cities?

As we have argued up to this point, scaling relations are a signature of various
processes governing the phenomenon under study, especially when the expo-
nent β is not what is naively expected [21]. However, as more andmore scaling
relationships are being reported in the literature, it becomes less and less clear
what we really learn from these empirical �ndings. Mechanistic insights about
these scalings are usually nonexistent, o�en leading to misguided interpreta-
tions.
A striking example of the fallacies which hinder the interpretation and ap-

plication of scaling is given by di�erent studies on CO2 emissions due to trans-
portation [87, 98, 173, 199]. �e topic is particularly timely: pollution peaks
occur in large cities worldwide with a seemingly increasing frequency, and
are suspected to be the source of serious health problems [31]. Glaeser and
Kahn [98], Rybski et al [199], Fragkias et al [87], and Oliveira et al [173] are in-
terested inhowCO2 emissions scalewith the population size of cities.�e ques-
tion they ask is simple: Are larger cities greener—in the sense that there are
fewer emissions per capita for larger cities—or smoggier? Surprisingly, these
di�erent studies reach contradictory conclusions. We identify here two main
sources of error which originate in the lack of understanding of the mecha-
nisms governing the phenomenon.
�e �rst error concerns the estimation of the quantity QCO2 of CO2 emis-

sions due to transportation. In the absence of direct measures, Glaeser and
Kahn [98] have chosen to use estimations of QCO2 based on the total distance
traveled by commuters. �is is in fact incorrect, and in heavily congested ur-
ban areas the relevant quantity is the total time spent in tra�c [142]. Using
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Metropolitan Statistical Area
(functional)

Urban Area
(morphological)

Figure 29: City de�nitions in the US. �e Minneapolis Urban Area (in black) is de-
�ned by the Census Bureau as contiguous block groups with at least 1000
inhabitants per square mile.�e Minneapolis-St. Paul Metropolitan Statis-
tical Area (in grey) is de�ned as the counties containing the urban area as
well as any adjacent county that have a high degree of integration with the
core, as measured with commuting �ows.

distance leads to a serious underestimation of CO2 emissions: the e�ects of
congestion are indeed strongly nonlinear, and the time spent in tra�c jams
is not proportional to the traveled distance. As a matter of fact, commuting
distance and time scale di�erently with population size, and the time spent
commuting and CO2 emissions scale with the same exponent [142].
�e second, subtler, issue lies in the de�nition of the city itself, and over

which geographical area the quantitiesQCO2 and P should be aggregated.�ere
is currently great confusion in the literature about how cities should be de-
�ned, and scientists, let alone the various statistical agencies in the world, have
not yet reached a consensus. For instance, the U.S. Census Bureau de�nes two
types of cities for statistical purposes (see Figure 29 for an illustration on the
city of Minneapolis). First, the Urban Areas are de�ned as a set of contiguous
high-density areal units with a threshold on the total population (morpholog-
ical de�nition).�eMetropolitan Statistical Areas, on the other hand, include
core Urban Areas, and the areal units that sends more than a given percentage
of its working population to work in the core (functional de�nition).
�is is a crucial issue as scaling exponents are very sensitive to the way city

boundaries are delineated [16]. CO2 emissions are no exception: aggregating
over Urban Areas or Metropolitan Statistical Areas entails radically di�erent
behaviours (see Figure 30). For the U.S., using the de�nition of urban areas
provided by the Census Bureau (http://www.census.org), one �nds that

http://www.census.org
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CO2 emissions per capita sharply increase with population size, implying that
larger cities are less green. Using the de�nition ofmetropolitan statistical areas,
also provided by the Census Bureau, one �nds that CO2 emissions per capita
decrease slightly with population size, implying that larger cities are greener.

Figure 30: Are larger cities greener or smoggier? Scaling of transport-related CO2

emissionswith the population size forUS cities from the same dataset but at
di�erent aggregation levels. In red, the aggregation is done at the level of ur-
ban areas and in green for combined statistical areas.Depending on the de�-
nition of the city, the scaling exponents are qualitatively di�erent, leading to
two opposite conclusions. Data on CO2 emissions were obtained from the
Vulcan Project (http://vulcan.project.asu.ed) (see [87, 173]). Data
on the population of urban areas and metropolitan statistical areas were
obtained from the Census Bureau (http://www.census.org).

Facedwith these two opposite results, what should one conclude? Our point
is that, in the absence of a convincingmodel that accounts for these di�erences
and how they arise, nothing. Scaling relationships, and more generally data
analysis, have an important role to play in the rising new science of cities. But,
as the previous discussion illustrates (as well as the discussion in Chapter 4),
it is dangerous to interpret empirical results without any mechanistic insight.
Conclusions cannot safely be drawn from data analysis alone.

Does it mean that we should throw away scaling relationships altogether, as
suggested by Arcaute et al. [16]? No, this would be tackling the problem from
the wrong end. Scaling relationships are the signature of processes occuring
at the system (city or system of cities) level. �e issue encountered here is that
the system we study is not properly de�ned. We don’t really know what cities
we are talking about!

http:// vulcan.project.asu.ed
http://www.census.org
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Cities are doubtlessly a real pattern. Yet, the way we unveil this pattern with
empirical data is, at best, imprecise. It is not based on a theoretical understand-
ing of what cities are. As a result, we cannot fully make sense of the exponents
found in empirical data. We therefore believe that future research in this area
should focus on

• Understanding the basic object we are working on, cities. How they
should be de�ned, on what theoretical grounds.

• Accounting for the di�erent qualitative behaviours of scaling exponents
when di�erent de�nitions are used.

Indeed, as long as we do not know what system we should be probing, it is
not quite clear what our results mean. As long as we do not understand why
values of exponents are di�erent when the city de�nition changes, we cannot
draw reasonable conclusions.

�e last years have seen many scholars coming forward with policy advice
based on empirical scaling relationships. It should now be clear that, given
the current state of knowledge, it is a risky game. Indeed, let us consider the
above CO2 example: what should one do to curb CO2 emissions? Favour the
growth of large urban areas or the repartition of population in less populated
cities? Both can be argued by considering data analysis alone. It should there-
fore be obvious that, until they have a satisfactory understanding of the mech-
anisms responsible for the observed behaviours, scientists should refrain from
giving policy advice that might have unforeseen, disastrous consequences. If
they choose to do so anyway, policy makers should be wary about what is, at
best, a shot in the dark

10.3 conclusion and perspective

Scaling laws are useful tool to probe the internals of cities, but they are not
everything. �ey provide an extraordinarily easy way to explore the proper-
ties of urban systems: the amount of data required is minimal, the statistical
treatment trivial. Allometric scaling is thus useful to declutter the �eld of inves-
tigation, help clear a couple of paths, and establish a large-scale understanding
of the system. But this is done at the expense of an extensive coverage of the
underlying phenomena. Scalings can be seen as a gateway to the study of cities,
but they cannot be the study itself.
Furthermore, there are pressing issues that need to be solved if we want to

make sense of these empirical results. First, we need to question the de�ni-
tion of cities, and understand what systems exactly we are studying. Second,
measuring exponents is not enough, and we need to understand the main pro-
cesses that are responsible for the measured values.�is is what we have tried
to do in the previous Chapter.





Part IV

SEGREGAT ION

Residential segregation is a reality. A reality so rife that it has per-
vaded even our every day language though the expressions ’poor
neighbourhood’ or ’rich neighbouhood’. But despite its intuitive
appeal, segregation is di�cult to de�ne.
In this part, we propose to de�ne segregation as a deviation to the
unsegregated city, thereby providing a �rm theoretical basis for
any study of segregation patterns. We further propose a measure
of attraction/repulsion of the di�erent categories, which allows
us to de�ne unambiguously income classes from the original cat-
egories.We also study the properties of neighbourhoods in which
the di�erent classes concentrate, and revisit the traditional poor
center/rich suburb dichotomy.





11
WHAT SEGREGAT ION I S NOT

�e limits of my language

Mean the limits of my world.

— Ludwig Wittgenstein [229]

11.1 studying segregation

We cannot judge the spatial repartition of people.�ere is no criterion of ‘good’
or ‘bad’ for the way people arrange themselves, no moral values attached to
any spatial pattern. It is the processes that lead to such patterns, the intentions
behind people’s decisions that make segregation condemnable. It is the conse-
quences of segregation that may make undesirable, something worth �ghting
against.

As a matter of fact, social residential segregation has terrible consequences.
As shown in [152], residential segregation is the cause ofmajor economic disad-
vantages that a�ect the least a�uent segments of the population, through the
isolation from social networks, or the presence of de�cient public service in the
poorest areas. Worse, it has been shown that increased levels of segregation in
urban areas is associated with a higher mortality burden [139]. For all these
reasons, there is a somewhat urgent need to measure the extent of segregation,
especially its local component, and understand the underlying mechanisms.

In the literature, authors systematically design a single index of segregation
for territories that can be very large, up to thousands of square kilometers [15].
In order to mitigate segregation, a more local, spatial information is however
needed: local authorities need to locate where the poorest and richest concen-
trate if they want to design e�cient policies to curb, or compensate for, the
existing segregation. In other words, we need to provide a clear spatial infor-
mation on the pattern of segregation.Weneed to identify the areaswhere levels
of segregation are high.
Besides, if we want to design policy or incentives to reduce socio-spatial

strati�cation and its consequences, we need to understand the processes at
play. We need to understand why segregation patterns exist, and why they per-
sist.Withoutmechanistic insights, attempts at regulating segregationmayhave
unforeseen, possibly damaging consequences. �e processes behind segrega-
tion are however unclear. Schelling’s cellular automata model [204], although
intellectually stimulating, is very limited in terms of predictions. More sophis-
ticated models appeared recently [49, 99, 96], yet the link with the empirical
reality is too thin, and processes are yet to be validated.
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In fact, we believe that the lack of an appropriate model is likely due to the
lack of identi�cation of a clear structure, or clear behaviours in the data. In or-
der to identify the processes at play, we urgently need to properly describe the
spatial patterns of segregation; the dynamics of households (how they move,
how their characteristics evolve over time) and neighbourhoods (how their
population changes).

In the following, we will therefore focus on the empirical characterisation
of the patterns of segregation. But �rst, we need to de�ne what we mean when
we talk about residential segregation.

11.2 think first, measure later

As stated many times, and at di�erent periods in the sociology literature [71,
114, 151, 191], the study of segregation is cursed by its intuitive appeal. Pretty
much everyone has heard of segregation, and has an opinion about it.�is fa-
miliarity with the concept favours what Duncan and Duncan [71] called ‘naive
operationalism’: the tendency to force a sociological interpretation on mea-
sures that are at odds with the conceptual understanding of segregation. In
their own words

[Segregation] is a concept rich in theoretical suggestiveness and
of unquestionable heuristic value. Clearly we would not wish to
sacri�ce the capital of theoretization and observation already in-
vested in the concept. Yet this is what is involved in the solution of-
fered by naive operationalism, in more or less arbitrary matching
some convenient numerical procedure with the verbal concept of
segregation... (Duncan and Duncan, 1955 [71])

For all its intuitive appeal, segregation is however an intricate, compound
notion whose complexity only reveals itself through careful study. However
tempting it is to start writing measures of segregation that seem ‘reasonable’, it
is necessary to stop and think about the meaning of the notion �rst. We need
to think segregation to be able to provide usefulmeasures of segregation.

11.3 the dimensions of segregation

Segregation has been extensively studied in the Sociology and Geography liter-
ature.�e most important conceptual heritage of this literature is the distinc-
tion between residential segregation’s di�erent dimensions. Massey [151] �rst
proposed a list of 5 dimensions (and related existing measures), which was
recently reduced to 4 by Reardon [192].

evenness (and clustering in the continuous limit, as shownbyReardon [192])
is the extent to which populations are evenly spread in themetropolitan
area. Measures of evenness are a�ected by the fact that individuals are
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not spread uniformly across space in urban areas, disregarding of their
respective category;

exposure is the extent to which di�erent populations share the same res-
idential area. �is presupposes de�ning what is meant by ‘residential
area’;

concentration is the extent to which populations concentrate in their
residential area;

centralisation is the extent to which populations concentrate in the cen-
ter of the city. However, we have seen in Chapter 5 that the notion of
center was meaningless in large, polycentric urban areas;

We will discuss in details the shortcoming of the measures currently pro-
posed for each of these dimensions in Chapter 12.

11.4 the unsegregated city

�e fundamental issue with the picture given by these 4 dimensions lies in the
lack of a general theoretical framework in which all existing measures can be
interpreted. Instead, we have a patchwork of seemingly unrelated measures
that are labelled with either of the aforementioned dimensions. Already in
1986,MichaelWhite [227] regretted the fact that segregationwas never de�ned
in the literature, and always considered as a given. Eachmeasure proposed im-
plied a di�erent de�nition of segregation, which lead to endless debates about
the virtues of such or such measure (dubbed the ‘index war’). Unknowingly,
authors were trying to squeeze the social reality into existing measures. When,
in fact, one should start by de�ning the social reality, before attempting to
capture it with appropriate measures. As of today, no such de�nition of segre-
gation exists. We shall begin our study of segregation patterns by an attempt
at de�ning segregation. All proposed measures then naturally follow.

Segregationmanifests itself in di�erent ways, whichmake it very di�cult to
de�ne. It is however easy to de�ne what is not segregation: a spatial distribu-
tion of di�erent categories that is undistinguishable from a uniform random
situation [113].�erefore, we propose to de�ne segregation as the following

Segregation is any pattern in the spatial distribution of popula-
tions that signi�cantly deviates from a situation where individu-
als would have chosen their residence at random (densities and
overall category proportions being equal).

It is then easy to understand the di�erent dimensions of [151, 192]: each of
the dimensions correspond to a di�erent ways in which a multi-dimensional
pattern can deviate from its randomized counterpart. Our de�nition is per-
fectly agnostic with regards to the features of the population density pattern.
It is also not concerned with the overall inequality levels.
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In the context of residential segregation in urban areas, a natural null model
is therefore the unsegregated city. In the unsegregated city, all households are
distributed at randomwithin the urban space with the further constraints that

• �e total number Nα of people belonging to a category α is �xed and
equal to that found in the data;

• �e total number n(t) of households living in the areal unit t is �xed
and equal to that found in the data.

which also �xes the total number of individualsN in the city.�e problemof
�nding the numbers (nα(1), . . . , nα(T)) of individuals belonging to a certain
category α in the T areal units of an unsegregated city is reminiscent of the
traditionnal occupancy problem in combinatorics [82]. �eir distribution is
given by the multinomial distribution f (nα(1), . . . , nα(T)), and the number
of people of category α in the areal unit t by a binomial distribution.�erefore,
in an unsegregated city, we have

E [nα(t)] = Nα
n(t)
N

Var [nα(t)] = Nα
n(t)
N
(1− n(t)

N
) (84)

where N is the total number of households in the city. Inmetropolitan areas
Nα is larged compared to 1, and the distribution of the nα(t) can be approxi-
mated by a Gaussian with the same mean and variance.

Most studies exploring the question of spatial segregation de�ne measures
before comparing their value for di�erent cities. Knowing that two quantities
are di�erent is however not enough: we also have to know whether this dif-
ference is signi�cant. In order to assess the signi�cance of a result, we have to
compare it to what is obtained for a reasonable null model. As we will see in
Chapter 12, the unsegregated city model allows us to assess whether a given
pattern is the result of a segregation process or not.

In this chapter, we have discussed some of the improvements that could be
brought to the existing measures in the literature. In particular, we have em-

phasized the need for a local knowledge of the patterns of segregation.We have
also laid the theoretical foundation uponwhichwe are going to design new seg-
regation measures. In Chapter 12, we start from the above-de�ned null model
to propose a way to quantify the presence of various categories in areas of the
city.�is allows us to identify and delineate neighbourhoods, andmeasure the
interactions between the categories.
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PAT TERNS OF SEGREGAT ION

To understand is to perceive patterns.

— Isaiah Berlin [30]

12.1 introduction

12.1.1 Shortcomings in the current empirical picture

�ere are many di�erent ways in which a spatial pattern can deviate from its
randomised counterpart, and at least as many di�erent measures one could
perform. In this chapter, we will try to quantify these patterns in a way that
allows to understand the phenomenon of segregation.

Of course, segregation has been extensively studied in the literature. How-
ever, we identify several di�culties in the current empirical picture.
First, some issues are tied to the existence of several categories in the un-

derlying data. Historically, measurements of racial segregation were limited
to measures between 2 population groups. However, most measures gener-
alise poorly to a situation with many groups, and the others do not necessarily
have a clear interpretation [191]. Worse, in the case of groups based on a con-
tinuum (such as income), the thresholds chosen to de�ne classes are usually
arbitrary [115]. We propose to solve this issue by de�ning classes in a unam-
biguous and non-arbitrary way through their pattern of spatial interaction. Ap-
plied to the distribution of income categories in US cities, we �nd 3 emergent
categories, which are naturally intepreted as the lower-, middle- and higher-
income classes.
Second, most authors systematically design a single index of segregation for

territories that can be very large, up to thousands of square kilometers [15].
In order to mitigate segregation, a more local, spatial information is however
needed: local authorities need to locate where the poorest and richest concen-
trate if they want to design e�cient policies to curb, or compensate for, the
existing segregation. Furthermore, a local description of the repartition of the
di�erent categories is the �rst step towards the exploration of the mechanisms
responsible for segregation: it is necessary to gather hints, as well as empirical
regularities that are essential to build a reasonable model. In other words, we
need to provide a clear spatial information on the pattern of segregation.

�e lack of clear spatial characterization of the distribution of individuals
is not tied to the problem of segregation in particular, but pertains to the �eld
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of spatial statistics [195]. Many studies avoided this spatial problem by consid-
ering cities as monocentric and circular, and rely on either an arbitrary def-
inition of the city center boundaries, or on indices computed as a function
to the distance to the center (whatever this center may be, see Part ii). How-
ever, most if not all cities are anistropic, and the large ones, polycentric (see
Chapter 5), casting some doubt about the application of the monocentric city
picture. Many empirical studies and models in economics aim to explain the
di�erence between central cities and suburbs [99, 49]. Yet, the sole stylized fact
upon which they rely – city centers tend are allegedly poorer than suburbs (in
the U.S.) – lacks a solid empirical basis.

In the following, we propose to answer the following questions

• How can we quantify the presence of the di�erent categories in areal
units? Can we say whether they are overrepresented or normally repre-
sented? How can we de�ne neighbourhoods?

• How can we quantify interactions between the di�erent categories?

• How to de�ne meaningful classes from the original data?

• Do classes tend to leave in geographically coherent areas, or are they
scattered across the city?

• Is there a di�erence between the city center and the suburbs? How can
we quantify this adequately?

12.1.2 Notations

In the following, we will illustrate our measures using data from the 2000 U.S.
Census on the income of households per Census blockgroup. Data present
themselves as households sorted in di�erent categories, and in di�erent tracts.
�ere are N individuals and T tracts in the considered geographical area, and
we note Nα the number of individuals belonging to the category α. Finally, we
write n(t) the total number of individuals living in the tract t, and nα(t) the
total number of individuals who belong to category α living in the tract t.

12.2 presence of categories

In ordre to quantify segregation, we �rst need to measure the extent to which
categories are spread unevenly across space. �erefore, we start our analysis
with a discussion on how to quantify the presence of a category in areal units.
Several indicators exist, and one needs to be aware of theirmeaning, their qual-
ities and their shortcomings.
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12.2.1 Concentration

�e concentration measures the proportion of individuals from category α in
the areal unit t.

c(t) = nα(t)
Nα

(85)

�e concentration is composition-invariant: it does not depend on the rela-
tive proportion of category α in the geographical zone as a whole.
Nevertheless, its value strongly depends on the total population of the areal

unit we are studying: more populated areal units mechanically entail higher
values of the concentration. Segregation measures based on the concentration
(such as the dissimilarity index) will therefore be dominated by the values in
highly populated areal units.�is also makes values of concentration di�cult
to intepret: we don’t know whether large (repectively low) values of concentra-
tion are the result of a large (respective low) population, or of a local concen-
tration of the individuals in the area.

12.2.2 Proportion

Sometimes, we would prefer to know the proportion of individuals of a given
category in a unit. In our notations, the proportion is simply de�ned as

p(t) = nα(t)
n(t) (86)

Although the values of the proportion are easier to interpret (“x% of the
individuals living in this areal units belong to such category”), they are not a
good indicator of segregation.
Indeed, they strongly depend on the relative proportion of individuals of the

category in the geographical area being studied. For instance, in a city where
90% of the individuals belong to category A, the proportion of people belong-
ing to category A is very likely to be high in any tract in the city.�e measure
of proportion is therefore strongly tied to the overall inequality levels.

12.2.3 An unbiaised measure: representation

12.2.3.1 De�nition

�e representation solves the problems linked to both measures of concentra-
tion and proportion.�e idea behind themeasure of representation is that seg-
regation is, as we argued in Chapter 11) a departure from the situation where
households would be spatially distributed at random.�e properties of such a
‘random’, unsegregated city are well known, and the distribution of categories
in each areal unit is given by a binomial distribution.�e representation is thus
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de�ned as the number nα(t) divided by its expected value in an unsegregated

city, Nα
n(t)
N

rα(t) = nα(t)/n(t)
Nα/N (87)

Another way to understand the representation is to compare it to the above-
de�ned concentration and proportion. We can indeed write

rα(t) = c(t)
n(t)/N =

p(t)
Nα/N (88)

�e representation can thus be interpreted as the concentration normalised
by the local population concentration, or the proportion renormalised by the
proportion of the category at the city level, thereby addressing the aforemen-
tioned shortcomings.

12.2.3.2 Measuring signi�cant deviations

�e representation rα(t) takes values between 0 (when no individuals form
the category α are present in t) and N

Nα
(when all individuals in t belong to the

category α). In a city where individuals are distributed uniformly (see Chap-
ter 11), rα(t) = 1 in every tract t.

In the unsegregated situation, the values of the representation are likely to
be close to 1, but not necessarily strictly equal to 1. Furthermore, there is a non-
zero probability for any distribution to be obtained by chance. It is therefore
not obvious whether a given value of representation could have been obtained
in the unsegregated con�guration. However, to quantify segregation, we need
to know how likely it is that the present pattern is not the result of a random
repartition of individuals. In other words, we need to knowwhether areal units
depart signi�cantly from the unsegregated situation.
�e distribution of individuals in a tract t in the unsegregated city follows

a binomial distribution. We can therefore easily compute how likely it is that
the representation rα(t) we measure has been obtained by chance. To do that,
we �rst compute the variance of the representation in the unsegregated con�g-
uration:

Var [rα(t)] = σα(t)2 = 1

Nα
[ N

n(t) − 1] (89)

We say that the representation departs signi�cantly from the unsegregated
con�guration if we can be sure with 99% con�dence that the pattern has not
been obtained at random. It follows that

• α is overrepresented in t i� rα(t) > 1+ 2.57 σα(t)
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• α is underrepresented in t i� rα(t) < 1+ 2.57 σα(t)
Note that the expression of the representation (Eq. 87) is very similar to

the formula used in economics to compute comparative advantages [19], or to
the localisation quotient used in various contexts [15, 206]. To our knowledge,
however, this formula has never been justi�ed by a null model in the context
of residential location.
�e representation allows to assess the signi�cance of the deviation of popu-

lation distributions from the unsegregated city. As wewill show below, it is also
the building block for measuring the level of repulsion or attraction between
populations – allowing us to uncover the di�erent classes – and to identify
the neighbourhoods where the di�erent categories concentrate. Last, but not
least, the representation de�ned here does not depend on the class structure
at the city scale, but only on the spatial repartition on individuals belonging
to each class.�is is essential to be able to compare di�erent cities where the
group compositions – or inequality – might di�er. Inequality and segregation
are indeed two separate concepts, and the way they are measured should be
distinct from one another. In that sense, the representation is preferable to the
measures of concentration or representation as a basis to the quanti�cation of
segregation.

12.3 measuring the attraction and repulsion of categories

12.3.1 Exposure

If we want to uncover the mechanisms underlying segregated patterns, it is im-
portant to measure and understand the interactions between categories. How-
ever, existing measures do not allow to quantify to which extent di�erent pop-
ulations attract or repel one another.
�emeaure we de�ne is inspired by theM-value �rst introduced byMarcon

& Puech in the economics literature [148] and used as ameasure of interaction
in [117].�ese authors were interested in measuring the geographic concentra-
tion of di�erent type of industries. While previous measures (such as Ripley’s
K-value) allow to identify departures from a random (Poisson) distribution,
the M-value’s interest resides in the possibility to evaluate di�erent industries’
tendency to co-locate.

�e idea, in the context of segregation is simple.We consider two categories
α and β and we would like to measure to which extent they are co-located in
the same areal unit. Essentially, we measure the representation of the category
β as witnessed on average by the individuals in category α, and obtain the
following quantity Eαβ

Eαβ =
1

Nα

T∑
t=1

nα(t) rβ(t) (90)
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Although it is not obvious with this formulation, this measure is symmetric:
Eαβ = Eβα . E�ectively, the E-value is a measure of exposure, according to the
typology of segregation measures found in [151]. It is however di�erent form
the traditional measure of exposure found in the literature [29], as it allows to
distinguish the contexts in which categories attract or repel one another.

In the case of an unsegregated city, every household in α sees on average
rβ = 1 and we have Eαβ = 1. If populations α and β attract one another, that
is if they tend to be overrepresented in the same areal units, every household
α sees rβ > 1 and we have Eαβ > 1 at the city scale. On the other hand, is they
repel one another, every household α sees rβ < 1 and we have Eαβ < 1 at the
city scale.

12.3.2 Extreme values

�e minimum of the exposure for two classes α and β is obtained when these
two categories are never present together in the same areal unit and then

Emin
α β = 0 (91)

and the maximum is obtained when the two classes are alone in the system
and otherwise distributed at random

Emax
α β =

N2

4Nα Nβ
(92)

�ese extrema are useful when comparing the exposure values for di�erent
categories, and across di�erent cities.

12.3.3 Isolation

In the case α = β, the previous measure represents the ‘isolation’ de�ned as

Iα =
1

Nα

t∑
t=1

nα(t) rα(t) (93)

and measures to which extent individuals from the same category are ex-
posed to their kins. In the unsegregated city, where individuals are indi�erent
to others when choosing their residence, we have Imin

α = 1. On the other hand,
in the extreme situationwhere individuals belonging to the class α live isolated
from the others, the isolation reaches its maximum value

Imax
α =

N

Nα
(94)
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12.4 emergent social classes

12.4.1 De�ning classes

�e study of segregationmust be rooted in a particular de�nition of categories
(or classes).�ere is however no consensus in the literature about how to sepa-
rate households in di�erent classes according to their income, and studies gen-
erally rely on more or less arbitrary divisions. While in some particular cases
grouping the original categories in pre-de�ned categories is justi�ed, most au-
thors do so for mere convenience. However, as some sociologists have already
pointed out [79], imposing the existence of absolute, arti�cial entities is nec-
essarily going to skew our reading of the data. Entities such as social classes
do not have an existence of their own. Grouping the individuals into arbitrary
classes when studying segregation is problematic: it amounts to imposing a
class structure on the society before assessing the existence of this structure
(which manifests itself by the di�erentiated spatial repartition of individuals
with di�erent income, segregation). Furthemore, in the absence of recognized
standards, di�erent authors will likely have dissimilar de�nitions of classes,
making the comparisons between di�erent results in the literature di�cult.

Here, instead of imposing an arbitrary class structure , we let the class struc-
ture emerge from the data themselves. Our starting hypothesis is the following:
if there is such a thing as a social strati�cation based on income, it should be re-
�ected in the households’ behaviours. Households belonging to the same class
should tend to live together, while households belonging to di�erent classes
should tend to avoid one another. �e idea is thus to de�ne classes based on
the way they manifest themselves through the spatial repartition of the di�er-
ent categories. Of course, spatial proximity does not necessarily imply social
proximity. In particular, Chamboredon showed that in some big French hous-
ing projects, households belonging to di�erent social classes were arti�cially
brought in close proximity to one another while not interacting with one an-
other [53]. We thus assume here that the social class of housing tenants is not �e work of

Chamboredon was

kindly brought to my

attention by Yann

Renisio.

determined in a top-down fashion, so that the spatial repartition of di�erent
income classes re�ects the nature of the interaction between these classes.

12.4.2 Income classes in the U.S.

We choose as a starting point the �nest income subdivision given by the cen-
sus bureau (16 subdivisions) and compute the 16× 16 matrix of Eαβ values for
all cities. We then perform a hierarchical clustering on this matrix, succesively
aggregating the subdivisions with the highest Eαβ values. we stop the aggrega-
tion process when the only classes le� are indi�erent (Eαβ = 1 with 99% con�-
dence) or repel one another (Eαβ < 1 with 99% con�dence) [7]. We obtain the
dendrogram presented on Figure 31.
Strikingly, the outcome of this method is the emergence of 3 distinct classes:

the higher-income (47% of the US population) and the lower-income classes
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Figure 31: Emergent classes. (Le�) Alluvial diagram showing the successive aggrega-
tions of di�erent income categories in the clustering process, and the value
of the exposure at which the aggregation took place.�e aggregation stops
when there is no pair of category for which E > 1, that is when all classes
are at best indi�erent to one another. One can see on this diagram that the
highest income categories attract one another more (higher values of Eαβ)

than the lowest income categories. (Right)�e classes that emerge from our
analysis, and their respective exposure and isolation values.�e lower and
higher income classes repel one another, while themiddle income class is in-
di�erent to either other classes. �e higher-income class is more coherent
than the lower-income, which is more coherent than the middle-income
class, as re�ected by the isolation coe�cient I.

(42% of the US population) – which repel one another strongly while being re-
spectively very coherent – and a somewhat meagre middle-income class (11%
of the population) that is relatively indi�erent to the other classes.�is result
implies that there is some truth in the conventional way of dividing popula-
tions into 3 income classes, and that what we casually perceive as the social
strati�cation in our cities actually emerges from the spatial interaction of peo-
ple.
Our method has several advantages over a casual, arbitrary de�nition: it is

not arbitrary in the sense that it does not depend on a tunable parameter and
on who performs the analysis. Its origins are tractable, and can be argued on a
quantitative basis. Because it is quantitative, it allows comparison of the strati-
�cation over di�erent points in time, or between di�erent countries. It can also
be compared to other class divisions that would be obtained using a di�erent
medium for interaction, for instance mobile phone communications [77].
In the following, we will systematically use the classes obtained above in our

analyses.

12.5 larger cities are richer

At the scale of an entire country, segregation canmanifest itself in the unequal
representation of the di�erent income classes across the urban areas. We plot
on Figure 32 the ratio N>α(H)/N>(H) where N>(H) is the number of cities
of population greater than H, and N>α(H) the number of cities of population
greater than H for which the class α is overrepresented.
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Figure 32: Larger cities are richer. (Top) Gini coe�cient of the income distribution
of the 280MSA in 2000 versus the number of households in the city. As one
can see, there is no clear trend. (Bottom) Proportion of cities in which the
di�erent classes are overrepresented, as a function of the total population
of the city. One can clearly see that as cities get larger rich people will be
overrepresented and poor people underrepresented (compared to national
levels).

A decreasing curve indicates that the category α tends to be underrepre-
sented in larger urban areas, while an increasing curve shows that the cate-
gory α tends to be overrepresented in larger urban areas. �e representation
is measured with respect to the total population at the U.S. level.
�ere is a clear di�erentiation between cities: among the 276 MSA in our

dataset, no city exhibit a number of households of the three di�erent classes
that is representative from the US as a whole. Furthermore, the number of
cities where higher-income households are overrepresented increases with the
size of the cities, while the inverse trend is true for lower-income households.
�erefore, larger cities are not richer in the sense that rich households tend to
be overrepresented in large cities, and underrepresented in small ones.
Surprisingly, this e�ect is not visibleusing theGini coe�cient (see Figure 32).
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12.6 delineating neighbourhoods

12.6.1 De�ning neighbourhoods

Income segregation is a reality so rife that it has pervaded our everyday lan-
guage through the expressions “poor neighbourhood” or “rich neighbourhood”.
How can we delineate such neighbourhoods?
Considering a category α, we �rst look for the areal units where the category

is overrepresented. We then consider that two areal units in this set are part
of the same neighbourhood if they are contiguous. Of course, this approach
has limitations (some remarks that sprung in the discussion on the di�erent
methods to �nd activity centers in Chapter 5 are relevant in this context too),
but it gives us a reasonable de�nition of neighbourhoods to work with. Le us
now focus on the properties of these neighbourhoods.

12.6.2 Clustering

Intra-tract measures such as the exposure are not enough to quantify segre-
gation. Indeed, areal units where a given class is overrepresented can arrange
themselves in di�erent ways, without the intra-tract measures of seggregation
being a�ected [226]. In order to illustrate this, we consider the schematic cases
represented on Figure 34, and assume that they are obtained by reshu�ing the
various squares around. Obviously, the checkerboard on the le� depicts a very
di�erent segregation situation from the divided situation on the right while
intra-tract measures would give identical results.

A way to distinguish between di�erent spatial arrangements is then to mea-
sure how clustered the overrepresented areal units are. We �rst aggregate adja-
cent overrepresented areal units (for a given class) leading to consistent neigh-
bourhoods.�e ratio of the number Nn of neighborhoods (clusters) to the to-
tal number No of overrepresented areal units measures the level of clustering
and in

C =
No −Nn

No − 1 (95)

such that this quantity is C = 0 in a checkerboard-like situation, and C = 1
when all areal units form a unique neighbourhood. We show on Figure 35 the
distibution of C for the three classes over all cities in our dataset. As one could
infer from the maps on Figure 33, the rich and poor areal units are well clus-
tered, with a respective average clustering of C = 0.80 and C = 0.74.�e Mid-
dle class is on the other hand less coherent, with a average clustering C = 0.55.
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Figure 33: Neighbourhoods. �e neighbourhoods in Atlanta for the three di�erent
income category. In black, the tracts where the corresponding class is over-
represented, in white where it is underrepresented and in grey where its
value is undistinguishable from the random distribution. All MSA de�ned
for the 2000 Census exhibit a total exclusion between lower-income and
higher-income neighbourhoods: the pictures for lower- and higher-income
classes are the perfect negative of one another. In contrast, middle-income
households are scattered across the city and exhibit very little geographical
coherence.
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Figure 34: Spatial considerations. �ree situations that are identical for intra-areal
unit measures, but that represent di�erent segregation levels. (Le�) �e

checkerboard city popularised by White [226], corresponding to a cluster-
ing value (de�ned in Eq. 95) of C = 0 for the black squares. (Middle) An
intermediate situation between the checkerboard and the divided city, cor-
responding to C ≈ 0.86.(Right) �e divided city, corresponding to C = 1.
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Figure 35: Clustering coe�cient.Distribution of the value of the clustering coe�cient
for all cities in our dataset, for the 3 classes.�e higher income class exhibits
the highest level of clustering, with an average of C = 0.90, followed by the
lower income class with on average C = 0.87. �e Middle income class
households are signi�cantly less clustered than the previous two, with C =

0.56 on average.

12.6.3 Concentration in neighbourhoods

If a given class is overrepresented in a neighbourhood, it does not however
mean that most of the individuals belonging to this class live in this neigh-
bourhood. We compute the ratio of households of each income class that lives
in a neighbourhood over the total number of individuals in the income class
(for rich, poor, and middle class). Results (Figure 36) indicate that essentially
less than 50% of each class live in their neighbourhood, while the rest is dis-
patched over the rest of the city. �e average concentration decreases from
higher-income individuals (50%), to lower-income (48%) and middle-income
individuals (32%).
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Figure 36: Concentration in neighbourhoods. Distribution of the fraction of house-
holds belonging to a given class and that live in a neighborhood where it is
over-represented (Middle, Lower, or Higher).

12.6.4 One large neighbourhood, or several small ones?

Finally, large values of clustering can hide di�erent situations. We could have
on one hand a ‘giant’ neighbourhood and several isolated areal units, which
would essentially mean that each class concentrates in a unique neighbour-
hoods. Or on the other hand, several neighbourhoods of similar sizes, mean-
ing that the di�erent classes concentrate in several neighbourhoods across the
city. In order to distinguish between the two situations, we plot

P = HN
2 /HN

1 (96)

whereHN
1 is the population of the largest neighbourhood, andHN

2 the popu-
lation of the second largest neighbourhood.�e results are shown on Figure 37,
and again show a di�erent behaviour for the middle-income on one side, and
higher-income and lower-income on the other side. �e size of the middle-
income neighbourhoods are relatively balanced, with on average P = 0.62.

Higher- and lower-incomeneighbourhoods, on the other hand, are dominated
by one big neighbourhood, with respectively on average P = 0.22 and P = 0.26.

12.6.5 Scaling of the number of neighbourhoods

�eclustering values are high, indicating that the neighbourhoods occupied by
households of di�erent classes are very coherent.We can nowwonder whether
there is an e�ect of the city size on the number of neighbourhoods. We plot
on Figure 38 the number of neighbourhoods found for all three classes as a
function of population. For each class,�e curve is well-�tted by a powerlaw
function of the form
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Figure 37: Poly-neighbourhoods. Distribution of the ratio of the size of the largest
and second largest neighbourhoods for each class for all MSA in the US.
Higher- and lower-income househols tend to concentrate in single neigh-
bourhood, with a secondary center that is on average 22% and 26% the size
of the largest one, respectively. Middle-income households tend to be more
dispersed, with a secondary neighbourhood that is on average 62% of the
size of the largest.
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Figure 38: Number of neighbourhoods and city size. Number of neighbourhoods
for the three di�erent classes as a function of the size of the city.�ese plots
in loglog show that we have a behavior consistent with a power law with
exponent less than one (and with di�erent value for each class), with r2

values that range between 0.88 (higher-income) and 0.96 (middle-income).

Combined with the linear increase of the number of over-represented units
with the number of households, this sub-linear increase in the number of
neighbourhoods shows the tendency of classes to cluster more as cities get
larger.
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Figure 39: Number of overrepresented areal units and city size. Number of areal
units where each class is overrepresented as a function of the total num-
ber of households in the city. �e behaviour is consistent with a linear be-
haviour in the three cases.

Nn = b H
β (97)

where the exponent β is less than one and depends on the class, indicating
that there are proportionally less neighbourhoods in larger cities (the number
areal units scales proportionally with the population size). �e values of the
exponents are

βH = 0.80

βL = 0.87

βM = 0.90

One is tempted to conclude from these numbers that the di�erent classes be-
come more spatially coherent as the population increases. Yet, this conclusion
only holds if the number of areal units in which each class is overrepresented
does not itself vary sublinearly with population size.We plot on Figure 39 these
numbers as a function of the size of the city. We �nd that the behaviour of the
number of overrepresented units is consistent with a linear behaviour for all
three classes. Together with the exponents above, this shows that the tendency
of the classes to cluster is greater as the city size increases.
In otherwords, the di�erent classes aremore spatially isolated as the city size

increases, implying higher levels of spatial segregation. We note that the phe-
nonemenon is more important for higher-income households than for lower-
and middle-income households, justifying to an extent the existence of the ex-
pression ‘ghettos for the rich’.

12.7 poor centers , rich suburbs?

In many studies, the question of the spatial pattern of segregation is limited to
the study of the center versus suburb and is usually adressed in two di�erent
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ways. First, a central area is de�ned by arbitrary boundaries and measures are
performed at the scale of the so-called center and at the scale of the rest, la-
belled as ‘suburbs’.�e issue with this approach is that the conclusions depend
on the chosen boundaries and there is no unique unambiguous de�nition of
the city center: while some consider it to be the Central Business District [99],
others choose to de�ne the center as the urban core (urbanized area), where
the population density is higher.�e second approach, in an attempt to get rid
of arbitrary boundaries, consists in plotting indicators of wealth as a function
of distance to the center [99].�is approach, inspired by the monocentric and
isotropic city ofmany economic studies such as the Von�ünen or the Alonso-
Muth-Mills model [48], has however a serious �aw: cities are not isotropic and
are spread unevenly in space, leading to very irregular shapes [146]. Represent-
ing any quantity versus the distance to a center thus amounts to average over
very di�erent areas and is necessarily misleading in clear polycentric cases (as
it is the case for large cities [141]. See also Chapter 5). �e notion of distance
to the center is indeed meaningless in polycentric situations.

We propose here a di�erent approach that does not require the de�nition of
a distance to the center. Instead, we plot the average representation computed
over all areal units (census-blocks in this dataset) with a given density popula-
tion ρ, as a function of the density ρ. Indeed, what is usually meant by ‘center’
of a city are the areas with the highest residential (or employment) densities.
Our �ndings shed a new light on the di�erence of social composition be-

tween the high-density and low-density areas in cities. As shown on Figure 40,
we �nd that rich households are overrepresented in low-density regions on av-
erage. While this agrees well with the opinion people have of suburbian Amer-
ica, there is a more surprising result: higher income households are also over-
represented in areaswith very large densities (typically above 20, 000 inhabitant/km2).

In between, neighborhoudwith intermediate values of density (between 1, 000
and 20, 000 inhabitants/km2), are lower-income neighbourhoods.
Only few cities in the US have neighbourhoods that reach the threshold of

20, 000 inhabitants per km2, which can explain why we observe in most cases
poor centers and rich suburbs. We can wonder whether the di�erence usually
discussed betweenNorthAmerican andEuropean cities does not come, in fact,
from di�erences in terms of densities.

12.8 conclusion and perspective

Instead of attempting to de�ne segregation by enumerating its di�erent as-
pects, we took a radically di�erent – yet simpler – approach.We chose to de�ne
segregation through specifying what it is not. �is naturally lead to de�ning
the measure of representation, which is used in turn to delineate neighbour-
hoods. We further de�ned the exposure (still based on the representation),
which measures the extent to which di�erent categories attract, repel or are
indi�erent to one another.
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Figure 40: Representation and density. Average representation of the higher-,
middle- and lower-income classes over the 276 MSA as a function of the
local density of households. On average, we �nd that low-density (the sub-
urbs) are rich, while high density regions (the center) are poor, con�rming
empirically on a large dataset a stylized facts that had previously emerged
from local studies. Interestingly, we also �nd that very large density areas
(ρ > 20, 000/km2) are rich on average, suggesting that density may be one
relevant factor in explaining the di�erences between neighbourhoods [112].
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We then showed that we can de�ne classes in a non-parametric way and
3 main income classes emerged for the 2000 US Census data. �e middle-
income class corresponds to a smaller income range than what is usually ad-
mitted, a curiosity that certainly deserves further investigations. In terms of
spatial arrangement, although the fraction of the population that is contained
in neighbourhoods does not change with city size, the neighbourhoods are
geographically more coherent as cities get larger, which corresponds in e�ect
to an increased level of segregation as the size of the city increases. �e be-
haviors of di�erent categories are very coherent and we showed that we could
simplify the description of these complex systems by reducing the sometimes
large number of categories to a small number of classes. �is is an important
point which will simplify the description and modeling of strati�cation mech-
anisms.
Our results point to the intriguing fact that higher-income households are

on average overrepresented in very dense areas. Such high density areas are
relatively rare in the US, which might explain in part why authors have tradi-
tionally simpli�ed the picture, talking about poor centers and rich suburbs.
�is result echoes Jane Jacobs’ analysis [112] that neighbourhoods with the
highest dwelling densities usually are the ones exhibiting themost vitality, and
therefore the most attractive.Of course, high densities are not everything, and
some high-density neighbourhoods also are lower-income neighbourhoods.
Further investigations along these lines may provide quantitative insights into
the mechanisms leading to urban decline or urban regeneration.

In this Chapter, we have tried to highlight the spatial pattern of segregation.
We believe that the identi�cation of neighbourhoods that our method permits
will allow a �ner-scale investigation of these spatial patterns.�e fundamental
issue that runs beneath, however, is theneed for a useful, simpli�ed description
of spatial density. A problem yet to be solved, but that has a huge potential of
applications. We note that the problem is tightly linked, if not identical, to the
one we encountered while trying to describe the spatial distribution of density
in Chapter 7.
Before closing this Chapter, let us note that the most widely-used measure,

the dissimilarity [71] index, su�ers from two �aws. First, it is based on the con-
centration (Equation 85), and its usual interpretation in terms of proportion of
a given class that should relocate to obtain a uniformpattern, ismisguided. Fur-
thermore, as we saw on Figure 34, intra-tract measures cannot distinguish be-
tween di�erent spatial arrangements (hence di�erent patterns of segregation).
�e dissimilarity, an intra-tract measure, therefore falls short of expectations.
We therefore need to design a new index of segregation that addresses these
shortcomings in future work.



Part V

URBAN NETWORKS

People, energy, information and goods are carried through cities
(and across systems of cities) thanks to various networks. In this
part, we succintly present our work on these—spatial—networks.

We�rst propose a quantativemethod to classify cities that is based
on a new perspective on street patterns, and the use of the Open-
StreetMaps database. In the second chapter, we propose a model
for the growth of spatial networks based on cost-bene�t analy-
sis. �e resulting networks exhibit a crossover between the star
graph and theminimumspanning treewhen the ratio of costs and
bene�ts evolve. In the intermediate regime, the networks adopt
a hub-and-spoke hierarchical structure that has many interesting
properties.We conclude this part with a large-scale description of
subway and railway networks. Using the model presented in the
previous chapter, we are able to predict many of their properties
based on the characteristics of the underlying city or country.
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A TYPOLOGY OF STREET PAT TERNS

�e following chapter is a reprint of an article,A typology of street patterns, that
was previously published by the author of this thesis withMarc Barthelemy [6].

Street networks of cities can be thought as a simpli�ed schematic view of
cities, which however captures a large part of their structure and organization
[214]. Despite their apparent diversity, underlying universal mechanisms are
certainly at play in the formation and evolution of street networks and extract-
ing common patterns between cities is a way towards their identi�cation.�is
program is not new [106], but the recent dramatic increase of data availability
such as digitized maps, historical or contemporary [219, 24, 183] allows now to OpenStreetMap data

are freely available at

www.

openstreetmap.

org

test ideas and models on large scale cross-sectional and historical data.

Streets form a network which to a good approximation is planar (where
nodes are intersections and links are segment roads) and which is now fairly
well characterized [119, 196, 181, 182, 128, 64, 52, 230, 118, 154, 54, 62]. Due to
spatial constraints, the degree distribution is peaked, the clustering coe�cient
and assortativity are large, and most of the interesting information lies in the
spatial distribution of betweeenness centrality [22]. It is then tempting to use
this information to compare various cities with each other and to provide a
classi�cation.

�e problem, from a fundamental point of view is however di�cult: �nd-
ing a typology of street patterns amounts essentially to classify planar graphs,
a non trivial problem. For street networks, this problem has been addressed
by the space syntax community [109, 179] and a good account can be found
in the book by Marshall [149]. �ese works, although based on empirical ob-
servations, contain a large part of subjectivity and our goal is to eliminate this
subjective part to reach a non ambiguous, scienti�c classi�cation of these pat-
terns. An interesting direction was provided in the study of leaves and their
classi�cation according to their veination patterns [121, 162], but with a notable
di�erence which prevents us from a direct application to streets and which is
the existence of a hierarchy of veins governed by their diameter. From amathe-
matical point of view there exists an exact bijection between planar graphs and
trees [44] which provides an interesting direction. Using this bijection, classi-
fying planar graphs would amount to classify trees, which is a simpler problem.
However, this bijection does not take into account the geometrical shape of the
planar graph: indeed two street patterns can have the same topology but cells
could be of very di�erent areas, leading to patterns visually di�erent and to
cities of di�erent structure. It is thus important to take into account not only
the topology of the planar graph—as described by the adjacencymatrix—but
also the position of the nodes. In order to do that, we propose in this article, a
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Figure 41: From the street network to blocks. Example of a street pattern taken in
the neighbourhood of Shibuya in Tokyo (Japan) and the corresponding set
of blocks. Note that the block representation does not take into account
dead-ends.

method to characterize this complex object by extracting the ‘�ngerprint’ of a
street pattern.�ese �ngerprints allow us to de�ne a measure of the distance
between two graphs and to construct a classi�cation of cities.

13.1 streets versus blocks

A major shortcoming of existing classi�cations is that they are mostly based
on the street network. �is is however problematic, for two di�erent reasons.
First, there is no unambiguous, purely geometrical de�nition of what a street
is: we could de�ne it as the road segment between two intersections, as an
almost straight line (up to a certain angular tolerance, see [181]), or we could
also follow the actual street names.�ere is a certain degree of arbitrariness in
each of these de�nitions, and it is not clear how robust a classi�cation based
on streets would be. Second, it seems that what is perceived by the human eye
of a city map is not coming from streets but from the distribution of the shape,
area and disposition of blocks (see Fig. 41).
A natural idea when trying to classify cities is thus to focus on blocks (or

cells, or faces) rather than streets. A block can usually be de�ned without am-
biguity as being the smallest area delimited by roads (it has then to be distin-
guished from a parcel which is a tax related de�nition).While the information
contained in the blocks and the streets are equivalent (up to dead-ends), the
information related to the visual aspect of the street network seems to be eas-
ier to extract from blocks which are simple geometrical objects — polygons
— whose properties are easily measured. �e block seems then to be a good
candidate for attempting a classi�cation of city patterns.

13.2 characterizing blocks

Blocks are de�ned as the cells of the planar graph formed by streets, and it is
relatively easy to extract them from a map. We have gathered road networks
for 131 major cities accross the world, spanning all continents (but Antartica),
and their locations are represented on the map Fig. 42. �e street networks
have been obtained from the OpenStreetMap database, and restricted to the
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Africa & Middle East Asia & Oceania Europe North America South America

Figure 42: Location of the cities in our dataset and geographical repartition of the

di�erent groups. �e color of the dots indicates in which group the city
falls, as de�ned on Fig 43. On the bottom of the map, the pie charts display
the relative importance of the di�erent groups per continent for cities in our
dataset (Group 1: 0.8%, Group 2: 20.9%, Group 3: 77.5%, Group 4: 0.8%).We

see that the group 3, composed of cities with blocks of various shapes and
a slight predominance of larger areas is by far the most represented group
in the world.

city center using the Global Administrative Areas database (or databases pro-
vided by the countries administration).We extracted the blocks from the street
network and cleaned undesired features. We end up with a set of blocks, each
with a geographical position corresponding to their centroids.

Blocks are polygons and as such can be characterized by simple measures.
First, the surface area Aof a block gives a useful indication, and its distribution
is an important information about the block pattern. As in [128, 86], we �nd
that for di�erent cities the distributions have di�erent shapes for small areas,
but display fat tails decreasing as a power law

P(A) ∼ 1

Aτ
(98)

with an exponent of order τ ≈ 2 [128, 22, 219, 24]. Although this seemingly
universal behaviour gives a useful constraint on any model that attempts at
modeling the evolution of cities’ road networks, it does not allow to distinguish
cities from each other.
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Figure 43:�e four groups. (Le�) Average distribution of the shape factor Φ for each
group found by the clustering algorithm (Right) Typical street pattern for
each group (plotted at the same scale in order to observe di�erences both
in shape and areas). Group 1 (top le�): Buenos Aires | Group 2: Athens |
Group 3: New Orleans | Group 4: Mogadishu

A second characterization of a block is through its shape, with the form
(or shape) factor Φ, de�ned in the Geography literature in [105] as the ratio
between the area of the block and the area of the circumscribed circle C

Φ =
A

AC
(99)

�e quantity Φ is always smaller than one, and the smaller its value, the more
anisotropic the block is.�ere is not a unique correspondence between a par-
ticular shape and a value of Φ, but this measure gives a good indication about
the block’s shape in real-world data, where most blocks are relatively simple

polygons.�e distributions of Φ displays important di�erences from one city
to another, and a �rst naive idea would be to classify cities according to the
distribution of block shapes given by P(Φ). �e shape itself is however not
enough to account for visual similarities and dissimilarities between street pat-
terns. Indeed, we �nd for example that for cities such as New-York and Tokyo,
even if we observe similar distributions P(Φ) (see Fig. 44), the visual simi-
larity between both cities’s layout is not obvious at all. One reason for this is
that blocks can have a similar shape but very di�erent areas: if two cities have
blocks of the same shape in the same proportion but with totally di�erent ar-
eas, they will look di�erent. We thus need to combine the information about
both the shape and the area.
In order to construct a simple representation of cities which integrates both

area and shape, we rearrange the blocks according to their area (on the y-axis)
and display their Φ value on the x-axis (Fig. 44). We divide the range of areas
in (logarithmic) bins and the color of a block represents the area category to
which it belongs. We describe quantitatively this pattern by plotting the con-
ditional probability distribution P(Φ∣A) of shapes, given an area bin (Fig. 44,
right). �e colored curves represent the distribution of Φ in each area cate-
gory, and the curve delimited by the gray area is the sum of all the these curve



13.2 characterizing blocks 125

Figure 44:�e �ngerprints of Tokyo (top) and New-York, NY (bottom). (Le�) We

rearrange the blocks of a city according to their area (y-axis), and their Φ
value (x-axis). �e color of each block corresponds to the area category it
falls into. (Right) We quantify this pattern by plotting the distribution of
shapes, as measured by Φ for each area category, represented by coloured
curves. �e gray curve is the sum of all the coloured curve and represents

the distribution of Φ for all cells. As shown in the inset, we see that inter-
mediate area categories dominate the total number of cells, and are thus
enough for the clustering procedure.
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and is the distribution of Φ for all cells, which is simply the translation of the
well-known formula for probability conditional distribution

P(Φ) =∑
A

P(Φ∣A) P(A) (100)

�ese�gures give a ‘�ngerprint’ of the citywhich encodes information about
both the shape and the area of the blocks. In order to quantify the distribution
of blocks inside a city, and thus the visual aspect of the latter, we will then use
P(Φ∣A) for di�erent area bins.�e comparison between these quantities will
provide the basis for a classi�cation of street patterns that we propose here.

13.3 a typology of cities across the world

Two cities will display similar patterns if their blocks have both similar area
and shape. In other words, the shape distributions for each area bin should be
very close, and this simple idea allows us to propose a distance between street
patterns of di�erent cities. More precisely, as one can see on Fig. 44, the num-
ber of blocks of area in the range [103, 105] (in square meters) dominate the
total number of cells, and we will neglect very small blocks (of area < 103m2)

and very large ones (of area > 105m2). We thus sort the blocks according to
their area in two distinct bins

α1 = {cells ∣A ∈ [103, 104]}
α2 = {cells ∣A ∈ [104, 105]}

We denote by fα(Φ) the ratio of the number of cells with a form factor Φ
that lie in the bin α over the total number of cells for that city. We then de�ne
a distance dα between two cities a and b characterized by their respective f aα
and f bα

dα(a, b) = ∫ 1

0
∣ f aα (Φ)− f bα (Φ)∣ dΦ (101)

and we construct a global distance D between two cities by combining all
area bins α

D(a, b) =∑
α

dα(a, b) 2 (102)

At this point, we have a distance between two cities’ pattern andwemeasure
the distance matrix between all the 131 cities in our dataset, and perform a clas-
sical hierarchical clustering on this matrix [122]. We obtain the dendrogram
represented on Fig. 45 and at an intermediate level, we can identify 4 distinct
categories of cities, which are easily interpretable in terms of the abundance of



13.3 a typology of cities across the world 127

Figure 45:DendrogramWe represent the structure of the hierarchical clustering at a
given level. Interestingly, 68% of american cities are present in the second
largest sub-group of group 3 (fourth from the top). Also, all european cities
but Athens are in the largest subgroup of the group 3 (third from top).�is

result gives a �rst quantitative grounding to the feeling that European and
most American cities are laid out di�erently.

blocks with a given shape and with small or large area. On Fig. 43 we show the
average distribution of Φ for each category and show typical street patterns
associated with each of these groups.�e main features of each group are the
following.

• In the group 1 (comprising BuenosAires only)we essentiallyhave blocks
of medium size (in the bin α2) with shapes that are dominated by the
square shape and regular rectangles. Small areas (in bin α1) are almost
exclusively squares.

• Athens is a representative element of group 2, which comprises cities
with a dominant fraction of small blockswith shapes broadly distributed.

• �e group 3 (illustrated here by New Orleans) is similar to the group 2
in terms of the diversity of shapes but is more balanced in terms of areas,
with a slight predominance of medium size blocks.

• �e group 4 which contains for this dataset the interesting example of
Mogadishu (Somalia) displays essentially small, square-shaped blocks,
together with a small fraction of small rectangles.

�e proportion and location of cities belonging to each group is shown on
Fig. 42. Although one should be wary of sampling bias here, it seems that the
type of pattern characteristic of the group 3 (various shapes with larger areas)
largely dominates among cities in the world. Interestingly, all North Ameri-
can cities (except Vancouver, Canada) are part of the group 3, as well as all
European cities (except Athens, Greece). �e composition of the other conti-
nents is more balanced between the di�erent groups. Strikingly, we �nd that
at a smaller scale within the group 3 (Fig. 45), all European cities (but Athens)
in our sample belong to the same subgroup of the group 3 (the largest one,
third from the top on Fig. 45). Similarly, 15 American cities out of the 22 in
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our dataset belong to the same subgroup of the group 3 (the second largest
one, fourth from the top on Fig. 45. Exceptions are Indianapolis (IN), Portland
(OR), Pittsburgh (PA), Cincinnati (OH), Baltimore (MD), Washington (DC),

and Boston (MA), which are classi�ed with European cities, con�rming the
impression that these US cities have an european imprint.�ese results point
towards important di�erences betweenUS and European cities, and could con-
stitute the starting point for the quantitative characterization of these di�er-
ences [47].

13.4 a local analysis

Cities are complex objects, and it is unlikely that an object as simple as the �n-
gerprint can describe all its intricacies. Indeed, cities are usuallymade of di�er-
ent neighbourhoodwhich o�en exhibit di�erent street patterns. In Europe, the
division is usually clear between the historical center and the more recent sur-
burbs. A striking example of such di�erences is the Eixample neighbourhood
in Barcelona, very distinct from other areas of the city. In order to illustrate
this di�erence, and to show that they also can be captured with our method,
we isolate the di�erent Boroughs of New-York, NY: the Bronx, Brooklyn, Man-
hattan, Queens and Staten Island. We extract the �ngerprint of each Borough,
as represented on Fig. 46.�e �ngerprint of New-York (bottom Fig. 44) is in-
deed the combination of di�erent �ngerprints for each of the boroughs.While
Staten Island and the Bronx have very similar �ngerprints, the others are dif-
ferent. Manhattan exhibits two sharp peaks at Φ ≈ 0.3 and Φ ≈ 0.5 which
are the signature of a grid-like pattern with the predominance of two types of
rectangles. Brooklyn and the Queens exhibit a sharp peak at di�erent values
of Φ, also the signature of grid-like patterns with di�erent rectangles for basic
shapes.

13.5 discussion and perspectives

We have introduced a newway of representing cities’ road network that can be
seen as the equivalent of �ngerprints for cities. It seems reasonable to think that
the possibility of a classi�cation based on these �ngerprints hints at common
causes behind the shape of the networks of cities in the same categories. Of
course, the present study has limitations: even if the shape of the blocks alone
is good enough for the purpose of giving a rough classi�cation of cities, wemiss
some aspects of the patterns. Indeed, the way the blocks are arranged together
locally should also give some information about the visual aspect of the global
pattern. Indeed, many cities are made of neighbourhoods, built at di�erent
times, with di�erent street patterns.What is lacking at this point is a systematic,
quantitative way to identify and distinguish di�erent neighbourhoods, and to
describe their correlation. Indeed, the Boroughs taken as examples in the last
section are administrative, arbitrary de�nitions of a neighbourhood. Reality
is however more complex: similar patterns might span several administrative

regions, or a given administrative division might host very distinct neighbour-
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Figure 46: New-York, NY and its di�erent boroughs (Top) We represent New York
City and its 5 boroughs: the Bronx, Brooklyn, Manhattan, Queens, and
Staten Island. (Bottom) �e corresponding �ngerprints for each borough.
Only Staten Island and the Bronx have similar �ngerprints and the others
are di�erent. In particular, Manhattan exhibits two sharp peaks at Φ ≈ 0.3
and Φ ≈ 0.5 which are the signature of a grid-like pattern with the predom-
inance of two types of rectangles. Brooklyn and the Queens exhibit a sharp
peak at di�erent values of Φ, signalling the presence of grid-like patterns
made of di�erent basic rectangles.
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hoods. A further step in the classi�cation would thus be to �nd a method to
extract these neighbourhoods, and integrate the spatial correlations between
di�erent types of neighbourhoods.
Despite the simpli�cations that our method entail, we believe that the classi-

�cation we propose is an encouraging step towards a quantitative and system-

atic comparison of the street patterns of di�erent cities.�is, together with the
speci�c knowledge of architects, urbanists, etc. should lead to a better under-
standing of the shape of our cities. Further studies are indeed needed in order
to relate the various types that we observe to di�erent urban processes. For
example, in some cases, small blocks are obtained through a fragmentation
process, and their abundance could be related to the age of the city. A large
regularity of cell shapes could be related to planning such as in the case of
Manhattan for example, but we also know with the example of Paris [24] that
a large variety of shapes is also directly related to the e�ect of a urban modi�-
cation which does not respect the existing geometry.

Finally, we believe that important empirical progress could be made. A �rst
limitation of the current study is the amount of data that we have. Although 131
cities is a larger number than what is used inmost studies, the OpenStreetMap
database contains the street layout of many more cities. �e more cities we
have, the better the classi�cation. We should thus attempt to include more
cities.
�e second limitation is the use of the administrative de�nition of cities to

delineate the boundaries of the street network. Administrative de�nitions, be-
cause they are based on political criteria, are completely arbitrary and do not
re�ect any property of the contained networks. As a result, the chosen bound-
aries are likely to vary from one country to another, from one city to another.
�e measures we perform on each of the 131 street patterns are thus, strictly
speaking, not comparable. A possible solution would be to use the delineation
method proposed by Masucci et al. [155], which is parameter-free and based
only on the properties of the street network.



14
COST-BENEF IT CONS IDERAT IONS IN THE GROWTH

OF SPAT IAL NETWORKS

�e following chapter is a reprint of an article, Emergence of hierarchy in the

cost-driven growth of spatial networks, that was previously published by the au-
thor of this thesis with Pablo Jensen and Marc Barthelemy [1].

Our societies rely on various networks for the distribution of energy, infor-
mation and for transportation of individuals.�ese networks shape the spatial
organization of our societies and their understanding is a key step towards the
understanding of the characteristics and the evolution of our cities [27]. De-
spite their apparent diversity, these networks are all particular examples of a
broader class of networks –spatial networks– which are characterised by the
embedding of their nodes in space. As a consequence, there is usually a cost as-
sociated with a link, leading to particular structures which are now fairly well
understood [22], thanks to the recent availability of large sets of data. Neverthe-
less, the mechanisms underlying the formation and temporal evolution of spa-
tial networks have not been much studied. Di�erent kinds of models aiming
at explaining the static characteristics of spatial networks have been suggested
previously in quantitative geography, transportation economics, and physics
(for a review, see [231]). Concerning the time evolution of spatial networks,
a few models only exist to describe in particular the growth of road and rail
networks [137, 95, 23, 62], but a general framework is yet to be discovered.

�e earliest attempts can be traced back to the economic geography com-
munity in the 60s and 70s (A fairly comprehensive review of these studies can
be found in [106]). However, due to the lack of available data and computa-
tional power, most of the proposed models were based on intuitive, heuristic
rules and have not been studied thoroughly. Interestingly, [41] attempts to re-
produce railway networks with the same cost-bene�ts approach that will be
adopted in the following.
A more recent trend is that of the optimization models.�e common point

between all these models is that they try to reproduce the topological features
of existing networks, by considering the network as the realisation of the opti-
mum of given quantity (see section IV.E in [22] for an overview). For instance,
the hub-and-spokemodels [171] reproduce correctly with an optimization pro-
cedure the observed hierarchical organization of city pair relations. However,
the vast majority of the existing spatial networks do not seem to result from
a global optimization, but rather from the progressive addition of nodes and
segments resulting from a local optimization. By modeling (spatial) networks
as resulting from a global optimization, one overlooks the usually limited time
horizon of planners and the self-organization underlying their formation.

131
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Self-organization of transportation networks has already been studied in
transportation engineering [137, 231]. Using an agent-based model including
various economical ingredients, the authors of [137]modeled the emergence of
the networks properties as a degeneration process. Starting from an initial grid,
tra�cs are computed at each time step and each edge computes its costs and
bene�ts accordingly, using any excess to improve their speed. A�er several it-
erations, a hierarchy of roads emerges. Our approach is very di�erent: we start
from nodes and we do not specify any initial network. Also, and most impor-
tantly, we deliberately do not represent all the causal mechanisms at work in
the system. Indeed, the aim of ourmodel is to understand the basic ingredients
for emergence of patterns that can be observed in various systems and we thus
focus on a single, very general economical mechanism and its consequence on
the large-scale properties of the networks.
Concerning spatial networks, as it is the case for many spatial structure,

there is a strong path dependency. In other words, the properties of a network
at a certain time can be explained by the particular historical path leading to it.
It thus seems reasonable to model spatial networks in an iterative way. Some
iterative models, following ideas for understanding power laws in the Internet
[81] and describing the growth of transportation networks [95] can be found
in the literature. In these models, the graphs are constructed via an iterative

greedy optimization of geometrical quantities. However, we believe that the
topological and geometrical properties of networks are consequences of the
underlying processes at stake. At best, geometrical and topological quantities
can be a proxy for other –more fundamental– properties: for instance, it will
be clear in what follows that the length of an edge can be taken as a proxy for
the cost associated with the existence of that edge. Finding those underlying
processes is a key step towards a general framework within which the proper-
ties of networks can be understood and, hopefully, predicted.

In this respect, cost-bene�t analysis (CBA) provides a systematic method
to evaluate the economical soundness of a project. It allows one to appreciate
whether the costs of a decision will outweigh its bene�ts and therefore eval-
uate quantitatively its feasibility and/or suitability. Cost-bene�t analysis has
only been o�cially used to assess transport investments since 1960 [60]. How-
ever, the concept comes accross as so intuitive in our pro�t-driven economies
that it seems reasonable to wonder whether CBA is at the core of the emergent
features of our societies such as distribution and transportation systems. If the
temporal evolution of spatial networks is rarely studied, arguments mention-
ing the costs and bene�ts related to such networks are almost absent from the
physics litterature ([180] is a notable exception, although they do not consider
the time evolution of the network.). However, we �nd it intuitively appealing
that in an iterative model, the formation of a new link should –at least locally–
correspond to a cost-bene�t analysis. We therefore propose here a simple cost-
bene�t analysis framework for the formation and evolution of spatial networks.
Our main goal within this approach is to understand the basic processes be-
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hind the self-organization of spatial networks that lead to the emergence of
their large scale properties.

14.1 the model

14.1.1 �eoretical formulation

We consider here the simple case where all the nodes are distributed uniformly
in the plane (see Methods for detailed description of the algorithm). For a
rail network, the nodes would correspond to cities and the network grows by
adding edges between cities iteratively; the edges are added sequentially to the
graph –as a result of a cost-bene�t analysis– until all the nodes are connected.
For the sake of simplicity, we limit ourselves to the growth of trees which al-
lows to focus on the emergence of large-scale structures due to the cost-bene�t
ingredient alone. Furthermore, we consider that all the actors involved in the
building process are perfectly rational and therefore that the most pro�table
edge is built at each step. More precisely, at each time step we build the link
connecting a new node i to a node j which already belongs to the network,
such that the following quantity is maximum

Ri j = Bi j −Ci j (103)

�e quantity Bi j is the expected bene�t associated with the construction of
the edge between node i and node j andCi j is the expected cost associated with
such a construction. Eq. (103) de�nes the general framework of ourmodel and
we now discuss speci�c forms of Ri j. In the case of transportation networks,
the cost will essentially correspond to somemaintenance cost andwill typically
be proportional to the euclidean distance di j between i and j. We thus write

Ci j = κdi j (104)

where κ represents the cost of a line per unit of length per unit of time. Ben-
e�ts are more di�cult to assess. For rail networks, a simple yet reasonable as-
sumption is to write the bene�ts in terms of distance and expected tra�c Ti j

between cities i and j

Bi j = ηTi jdi j (105)

where η represents the bene�ts per passenger per unit of length. We have
to estimate the expected tra�c between two cities and for this we will follow
the common and simple assumption used in the transportation litterature, of
having the so-called gravity law [216, 80]

Ti j = k
Mi M j

da
i j

(106)
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where Mi( j) is the population of city i( j), and k is the rate associated with
the process. We will choose here a value of the exponent a > 1 (a < 1 would
correspond to an unrealistic situation where the bene�ts associated with pas-
senger tra�c would increase with the distance). �is parameter a determines

the range at which a given city attracts tra�c, regardless of the density of cities.
�e accuracy and relevance of this gravity law is still controversial and im-

provements have been recently proposed [209, 131]. But it has the advantage
of being simple and to capture the essence of the tra�c phenomenon: the de-
crease of the tra�c with distance and the increase with population. Within
these assumptions, the cost-bene�t budget R′i j = Ri j/η now reads

R′i j = k
MiM j

d a−1
i j

− βdi j (107)

where β = κ
η represents the relative importance of the cost with regards to the

bene�ts. We will assume that populations are power-law distributed with ex-
ponent µ (which for cities is approximatively µ ≈ 1.1, see Methods) and the
model thus depends essentially on the two parameters a, and β (for a detailed
description of parameter used in this paper, see the next section). In the fol-
lowing we will be working with �xed values of µ and a. �e exact values we
choose are however not important as the obtained graphs would have the same
qualitative properties.

14.1.2 Simulations

�e simulation starts by distributing nodes uniformly in a square. We then
attribute to each node a randompopulation distributed according to the power
law

PM(x) = µ

xµ+1
(108)

�e choice of this distribution is motivated by Zipf ’s empirical results on
city populations [235] (which motivates the choice µ = 1.1 in our simulations)
but also because we can go from a peaked to a broad distribution by tuning
the value of µ. Indeed, for µ > 2, both the �rst and the second moment of this
distribution exist and the distribution can be considered as peaked. In contrast
for 1 < µ < 2, only the �rst moment converges and the distribution is broad.
Once the set of nodes is generated, we choose a random node as the root

and add nodes recursively until all the nodes belong to the graph. At each time
step, the nodes belonging to the graph constitute the set of ‘inactive nodes’, and
the other -not yet connected - nodes the ‘active’ nodes. At each time step we
connect an active node to an inactive node such that their value of R de�ned
in Eq. 107 is maximum.
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14.2 crossover between star-graph and minimum spanning

tree

14.2.1 Typical scale

�e average population isM and the typical inter-city distance is given by ℓ1 ∼
1/√ρ where ρ = N/L2 denotes the city density (L is the typical size of the
whole system). �e two terms of Eq. 107 are thus of the same order for β = β∗

de�ned as

β∗ = kM
2
ρa/2 (109)

In the theoretical discussion that follows, we will take k = 1 for simplicity
(but it should not be forgotten in empirical discussions). Another way of in-
terpreting β∗ which makes it more practical to estimate from empirical data
(see section Discussion), is to say that it is of the order of the average tra�c

per unit time

β∗ =< T > (110)

FromEq. 109 we can guess the existence of two di�erent regimes depending
on the value of β:

• β ≪ β∗ the cost term is negligible compared to the bene�ts term. Each
connected city has its own in�uence zone depending on its population
and the new cities will tend to connect to the most in�uent city. In the
case where a ≈ 1, every city connects to themost populated cities andwe
obtain a star graph constituted of one single hub connected to all other
cities.

• β ≫ β∗ the bene�ts term is negligible compared to the cost term. All
new cities will connect sequentially to their closest neighbour. Our algo-
rithm is then equivalent to an implementation of Prim’s algorithm [184],
and the resulting graph is a minimum spanning tree (MST).

�e intermediate regime β ≃ β∗ however needs to be elucidated. In partic-
ular, we have to study if there is a transition or a crossover between the two
extreme network structures, and if we have a crossover what is the network
structure in the intermediate regime. In the following we answer these ques-
tions by simulating the growth of these spatial networks.

14.2.2 Evidence for the crossover

Fig. 47 shows three graphs obtained for the same set of cities for three di�erent
values of β/β∗ (a = 1.1, µ = 1.1) con�rming our discussion about the two
extreme regimes in the previous section. A visual inspection seems to show
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Figure 47: Simulated graphs.Graphs obtained with our algorithm for the same set of
cities (nodes) for three di�erent values of β∗ (a = 1.1, µ = 1.1, 400 cities).
On the le� panel, we have a star graph where the most populated node is
the hub and on the right panel, we recover the minimum spanning tree.

that for β ∼ β∗ a di�erent type of graph appears, which suggests the existence
of a crossover between the star-graph and the MST.�is graph is reminiscent
of the hub-and-spoke structure that has been used to describe the interactions
between city pairs [171, 172]. However, in contrast with the rest of the literature
about hub-and-spoke models, we show that this structure is not necessarily
the result of a global optimization: indeed, it emerges here as the result of the
auto-organization of the system.
�e MST is characterised by a peaked degree distribution while the star

graph’s degree distribution is bimodal, and we therefore choose to monitor
the crossover with the Gini coe�cient for the degrees de�ned as in [68]

Gk =
1

2N2 k̄

N∑
i, j=1

∣ki − k j∣ (111)

where k̄ is the average degree of the network.�e Gini coe�cient is in [0, 1]
and if all the degrees are equal, it is easy to see that G = 0. On the other hand,
if all nodes but one are of degree 1 (as in the star-graph), a simple calculation
shows thatG = 1/2. Fig. 48 displays the evolution of the Gini coe�cient versus
β/β∗ (for di�erent values of β∗ obtained by changing the value of a, µ and
N). �is plot shows a smooth variation of the Gini coe�cient pointing to a
crossover between a star graph and the MST, as one could expect from the
plots on Fig. 47 (also, we note that for given values of a, µ all the plots collapse
on the same curve, regardless of the numberN of nodes. However for di�erent
values of a or µ we obtain di�erent curves).

Another important di�erence between the star-graph and the MST lies in
how the total length of the graph scales with its number of nodes. Indeed, in
the case of the star-graph, all the nodes are connected to the same node and the
typical edge length is L, the typical size of the system the nodes are enclosed
in. We thus obtain

Ltot ∼ L N (112)



14.3 spatial hierarchy 137

0 5 10 15 20 25 30 35 40
β/β ∗

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
k

a=1.1/N=1000

a=2.1/N=1000

a=1.1/N=500

Figure 48: Gini on node degrees. Evolution of the Gini coe�cient with β/β∗ for dif-
ferent values of β∗. �e shaded area represents the standard deviation of
the Gini coe�cient. Values decrease from 0.5 in the star-graph regime to
below 0.20 in the MST regime.

On the other hand, for the MST each node is connected roughly to its near-
est neighbour at distance typically given by ℓ1 ∼ L/√N , leading to

Ltot ∼ L √N (113)

More generally, we expect a scaling of the form Ltot ∼ N τ and on Fig. 49 we
show the variation of the exponent τ versus β. For β = 0we have τ = 1.0 andwe
recover the behavior Ltot ∝ N typical of a star graph. In the limit β ≫ β∗ we
also recover the scaling Ltot ∝√N , typical of a MST. For intermediate values,
we observe an exponent which varies continuously in the range [0.5, 1.0].�is
rather surprising behavior is rooted in the heterogeneity of degrees and in the
following, we will show that we can understand this behaviour as resulting
from the hierarchical structure of the graphs in the intermediate regime.
It is interesting to note that a scaling with an exponent 1/2 < τ < 1 has been

observed [201, 22] for the total number ℓT of miles driven by the population
(of size P) of city scales as ℓT ∝ Pβ with β = 0.66. Understanding the origin
of those intermediate numbers might thus also give us insights into important
features of tra�c in urban areas and the structure of cities.
It thus seems that from the point of view of interesting quantities such as

the Gini coe�cient or the exponent τ, there is no sign of a critical value for β
and that we are in presence of a crossover and not a transition.

14.3 spatial hierarchy

�e graph corresponding to the intermediate regime β ≈ β∗ depicted onFig. 47
exhibits a particular structure corresponding to a hierarchical organization,
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Figure 49: Star graph to MST transition. Exponent τ versus β. For β ≪ β∗ we re-
cover the star-graph exponent τ = 1 and for the other extreme β ≫ β∗

we recover the MST exponent τ = 1/2. In the intermediate range, we ob-
serve a continuously varying exponent suggesting a non-trivial structure.
�e shaded area represents the standard deviation of τ.. (Inset) In order to
illustrate how we determined the value of τ, we represent Ltot versus N for
two di�erent values of β.�e power law �t of these curves gives τ.
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Figure 50: In�uence zones. Example of a graph where we represent the in�uence
zones for the �rst two hierarchical levels.

observed in many complex networks [200]. Inspired from the observation of
networks in the regime β/β∗ ∼ 1, we de�ne a particular type of hierarchy –
that we call spatial hierarchy– as follows. A network will be said to be spatially
hierarchical if:

1. We have a hierarchical network of hubs that connect to nodes less and
less far away as one goes down the hierarchy;

2. Hubs belonging to the same hierarchy level have their own in�uence
zone clearly separated from the others’. In addition, the in�uence zones
of a given level are included in the in�uence zones of the previous level.

�e relevance of this new concept of hierarchy in the present context can
be qualitatively assessed on Fig. 50 where we represent the in�uence zones
by colored circles, the colors corresponding to di�erent hierarchical levels. In
order to go beyond this simple, qualitative description of the structure, we
provide in the following a quantitative proof that networks in the regime β/β∗
exhibit spatial hierarchy.

14.3.1 Distance between hierarchical levels

Wepropose here a quantitative characterisation of the part (1) in the de�nition
of spatial hierarchy.�e �rst step is to identify the root of the network which
allows us to naturally characterize a hierarchical level by its topological dis-
tance to the root. We choose the most populated node as the root (which will
be the largest hub for β ≪ β∗) and we can nowmeasure various quantities as a
function of the level in the hierarchy. In Fig. 54, we plot the average euclidean
distance d between the di�erent hierarchical levels as a function of the topo-
logical distance from the root node (for the sake of clarity, we also draw next



140 cost-benefit considerations in the growth of spatial networks

to these plots the corresponding graphs). For reasonably small values of β/β∗
(i.e. when the graph is not far from being a star-graph), the average distance
between levels decreases as we go further away from the root node. �is con-
�rms the idea that the graphs for β/β∗ ≃ 1 exhibit a spatial hierarchy where
nodes from di�erent levels are getting closer and closer to each other as we go
down the hierachy. Eventually, as β/β∗ becomes larger than 1, the distance be-
tween consecutive levels just �uctuates around ℓ1 ∼ 1/√ρ the average distance
between nearest neighbours for a Poisson process, which indicates the absence
of hierarchy in the network.

14.3.2 Geographical separation of hubs zones

We now discuss the part (2) of the de�nition of spatial hierarchy, that is to say
how the hubs are located in space. Indeed, another property that we can expect
from spatially hierarchical graph is that of geographical separation.

14.3.2.1 Separation

We say that a graph is geographically separated if the in�uence zones of every
node of a given hierarchical level do not overlap and if they are included in the
in�uence zone of the nodes of the previous level in the hierarchy. Formally, if
we designate by I il the in�uence zone of the node i located at level l in the hi-
erarchy, Il = ∪i∈lI il the reunion of all the in�uence zones for nodes belonging
to the level n. We say that the graph is geographically separated if:

Il ⊂ Il+1 ∀l (114)

I il ∩I jl = Ø if j ≠ i,∀l (115)

�e degree of geographical separability of a graph strongly depends on the
de�nition of the in�uence zone of a node. For instance, if we take the in�uence
zone of a node i to be the surface of smallest area containing all the nodes con-
nected to i, it follows that all planar graph are totally separated. In the context
of transportation networks, we expect hubs to radiate up to a certain distance
around them, that is to say connect to all the nodes located in a convex shape.
We simply de�ne the in�uence zone of a node i as the circle centered on the
barycenter of i’s neighbours that belong to the next level, of radius the maxi-
mum distance between the barycenter and those points.
Figure 50 is intended to help the reader visualise these in�uence zones on

an example:�e green circle represent the in�uence zone of the root and the
red circles the in�uence zones of the hubs connected to it. One can see that the
graph is geographically separated up to a good approximation.
In order to quantify this notion of geographical separability, we de�ne the

separation index of the level l as the average over all the nodes belonging to l

of the separation function.�e separation function is equal to 1 if the distance
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Figure 51: In�uence zones. Illustration of the in�uence zones (dotted lines) around
several hubs. We have, according to the de�nition of the separation index,
S(i, j) = 0, 0 < S(a, b) < 1 and S(b, c) = 1.

d(i, j) between the centers of the in�uence zones of i and j is larger than their
respective radius (no overlap), and equal to

S(i, j) = 1− Area of the overlap between I il and I jl
min(Area of I i

l
, Area of I j

l
) (116)

One can see that the separation function is equal to 1 if the nodes’ in�uence
zones do not overlap at all and 0 if they perfectly overlap (all the in�uence
zones overlapping, like Russian dolls).�erefore, the separation index is equal
to 1 if the level s is perfectly separated and 0 if the in�uence zones are com-
pletely mixed. One can see on Fig. 51 an illustration expliciting the value of the
separation index for di�erent situations.

14.3.2.2 Geographical separation in the intermediate regime

We plot the separation index averaged over the all the graph’s levels for di�er-
ent values of β/β∗ on Fig. 52. One can observe on this graph that the separation
index reaches values above 0.90 when β/β∗ ≥ 1, which means that the corre-
sponding graphs indeed have a structure with hubs controlling geographically
well-separated regions.Obviously, the choice of the shape of the in�uence zone
(which is chosen here to be a disk) strongly impacts the results but the same
qualitative behavior will be obtained for any type of convex shapes.
In conclusion, the graphs produced by ourmodel in the regime β/β∗ satisfy

the two points of the de�nition.�ey exhibit a spatially hierarchical structure,
characterised by a distance ordering and geographical separation of hubs. We
saw earlier that in this regime we have speci�c, non trivial properties such
as Ltot scaling with an exponent depending continuously on β/β∗. Using a
simple toy model, we will now show that the spatial hierarchy can explain this
property.
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Figure 52: Separation index. Separation index averaged over all the graph’s level ver-
sus β/β∗.�e shaded area represents the standard deviation.

14.3.3 Understanding the scaling with a hierarchical model

�e exponents 1 and 0.5 for the scaling for Ltot with the total number of nodes
N is well-understood. However, it is not clear how we can obtain intermediate
values. In the following we show with a simpli�edmodel that spatial hierarchy
can indeed lead to scaling exponents in the range [0.5, 1]. We consider the toy
model de�ned by the fractal tree depicted on Fig. 53 for which the distance
between the levels n and n + 1 is given by

ℓn = ℓ0b
n (117)

where b ∈ [0, 1] is the scaling factor. Each node at the level n is connected
to z nodes at the level n + 1 which implies that

Nn = z
n (118)

where z > 0 is an integer. A simple calculation on this graph shows that in
the limit zg ≫ 1, the total length of the graph with g levels scales as

Ltot ∼ N
ln(b)
ln(z)
+1

(119)

where ln(b)
ln(z) + 1 ≤ 1 because b ≤ 1 and z > 1. �is simple model thus pro-

vides a simple mechanism accounting for continuous values of τ whose value
depends on the scaling factor b. It provides a simpli�ed picture of the graphs
in the intermediate regime β ≃ β∗ and exhibits the key features of the graphs
in this regime: the hub structure reminiscent of the star graph and where the
nodes connected to each hub form geographically distinct regions, organized
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Figure 53: Fractal toy model. A schematic representation of the hierarchical fractal
network used as a toy model.

in a hierarchical fashion. It is also interesting to note that the parameter z can
be easily determined from the average degree of the network, and that the
parameter b of the toy model can be related to our model by measuring the
decrease of the mean distance between di�erent levels of the hierarchy, as in
Fig. 54. By plotting these curves for di�erent values of β/β∗, we �nd that the
coe�cient of the exponential decays decreases linearly with β/β∗ and there-
fore that b ∼ eβ/β∗ (However, the comparison only makes sense in the regime
β ∼ β∗, as otherwise the graphs do not exhibit spatial hierarchy).
14.4 efficiency

Most transportation networks are not obtained by a global optimization but
result from the addition of various, successive layers. �e question of the ef-
�ciency of these self-organized systems is therefore not trivial and deserves

some investigation. �e model considered here allows us to test the e�ect of
various parameters and how e�cient a self-organized system can be. In par-
ticular, we would like to characterize the e�ciency of the system for various
values of β. For this, we can assume that the construction cost per unit length
is �xed (ie. the factor η in Eq. 104 is constant), and since β =

η
κ a change of

value for β is equivalent to a change in the bene�ts per passenger per unit of
length.
A �rst natural measure of how optimal the network is, is given by its total

cost proportional to the total length Ltot : the shorter a network is, the better
for the company in terms of building andmaintenance costs. In ourmodel, the
behaviour of the total cost is simple and expected: for small values of β/β∗, the
obtained networks correspond to a situation where the users are charged a lot
compared to themaintenance cost, and the network is very long (Ltot ∝ N). In
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Figure 54:Distance between hierarchy levels. Le� column: Average distance be-

tween the successive hierarchy levels for di�erent values of β/β∗, next to
the corresponding graphs (on the right column).�e most populated node
is taken as the root node.
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the opposite case, when β/β∗ ≫ 1 the main concern in building this network
is concentrated on construction cost and the network has the smallest total
length possible (for a given set of nodes).
�e cost is however not enough to determine how e�cient the network is

from the users’ point of view: a very low-cost network might indeed be very
ine�cient. A simple measure of e�ciency is then given by the amount of de-
tour needed to go from one point to another. In other words, a network is e�-
cient if the shortest path on the network for most pairs of nodes is very close
to a straight line. �e detour index for a pair of nodes (i, j) is conveniently
measured by D(i, j)/d(i, j)where D(i, j) is the length of the shortest path be-
tween i and j, and d(i, j) is the euclidean distance between i and j. In order to
have a detailed information about the network, we use the quantity introduced
in [11]

ϕ(d) = 1

N(d) ∑
i, j

d(i, j)=d

D(i, j)
d(i, j) (120)

where the normalisationN(d) is the number of pairs with d(i, j) = d. We
plot this ‘detour function’ for several values of β/β∗ on Fig. 55(A). For β/β∗ ≪
1, the function ϕ(d) takes high values for d small and low values for large
d, meaning that the corresponding networks are very ine�cient for relatively
close nodes while being very e�cient for distant nodes. On the other hand,
for β/β∗ ≫ 1 we see that the MST is very e�cient for neighboring nodes but
less e�cient than the star-graph for long distances. Surprisingly, the graphs
for β/β∗ ∼ 1 exhibit a non trivial behaviour: for small distances, the detour is
not as good as for the MST, but not as bad as for the star graph and for long
distances it is the opposite. In order to make this statement more precise we
compute the average of ϕ(d) over d (a quantity which has a clear meaning for
trees, see [11] for objections to the use of < ϕ(d) > as a good e�ciencymeasure
in general), and plot it as a function of β/β∗.�e results are shown in Fig. 55(B)
and con�rm this surprising behavior in the intermediate regime: we observe a
minimum for β/β∗ ∼ 1. In other words, there exists a non trivial value of β, i.e.
a value of the bene�ts per passenger per unit of length, for which the network
is optimal from the point of view of the users.
�e existence of such an optimum is far from obvious and in order to gain

more understanding about this phenomenon, we plot the Gini coe�cient Gl

relative to the length of the edges between nodes in Fig. 56.We observe that the
Gini coe�cient peaks around β/β∗ = 1, which means that in this regime, the
diversity in terms of edge length is the highest. �e large diversity of lengths
explains why the network is themost e�cient in this regime: indeed long links
are needed to cover large distances, while smaller links are needed to reach
e�ciently all the nodes. It is interesting to note that this argument is similar
to the one proposed by Kleinberg [125] in order to explain the existence of an
optimal delivery time in small-world networks.
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Figure 56: Gini on the length. Evolution of the Gini coe�cient for the length versus
β/β∗ (for di�erent values of β∗). �e shaded area represents the standard
deviation.



14.5 discussion 147

14.5 discussion

Wehave presented amodel of a growing spatial network based on a cost-bene�t
analysis. �is model allows us to discuss the e�ect of a local optimization on
the large-scale properties of these networks. First, we showed that the graphs
exhibit a crossover between the star-graph and the minimum spanning tree
when the relative importance of the cost increases.�is crossover is character-
ized by a continuously varying exponent which could give some hints about
other quantities observed in cities such as the total length travelled by the popu-
lation. Secondly, we showed that the model predicts the emergence of a spatial
hierarchical structure in the intermediate regime where costs and bene�ts are
of the same order of magnitude. We showed that this spatial hierarchy can ex-
plain the non trivial behaviour of the total length versus the number of nodes.
Finally, this model shows that in the intermediate regime the vast diversity of
links lengths entails a large e�ciency, an aspect which could of primary impor-
tance for practical applications.
An interesting playground for this model is given by railways and we can

estimate the value of β/β∗ for these systems. In some cases, we were able to
extract the data from various sources (in particular �nancial reports of rail-
way companies) and the results are shown in Table 1. We estimate for di�erent
real-world networks, including some of the oldest railway systems, β using its
de�nition (total maintenance costs per year divided by the total length and by
the average ticket price per km). In order to estimate β∗ we use Eq.110 in the
following way

β∗ ≃ Ttot
Ltot

(121)

where Ttot is the total travelled length (in passengers⋅kms/year) and Ltot
is the total length of the network under consideration. Remarquably, the com-
puted values for the ratio β/β∗ shown in Table 10. are all of the order of 1 (rang-
ing from 0.20 to 1.56). In the framework of this model, this result shows that
all these systems are in the regime where the networks possess the property of
spatial hierarchy, suggesting it is a crucial feature for real-world networks. We
note that in ourmodel, the value of β/β∗ is given exogeneously, and it would be
extremely interesting to understand how we could construct a model leading
to this value in an endogeneous way.
�ere are also several directions that seem interesting. First, various forms

of cost and bene�ts functions could be investigated in order to model speci�c
networks. In particular, there are several choices that can be taken for the ex-
pected tra�c. In this paper we limited ourselves to estimate the tra�c as a
direct tra�c from a node i to a node j, but it is likely that part of the tra�c
will come from other nodes. In order to take this into account, we think that
the following extensions are probably interesting:

1. A given city (denoted by 0with populationM0) plays a particular role in
the network (the capital city in a relatively small country, for example).
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Country Ttot Ltot Maintenance Ticket price β/β∗
(kms/year) (kms) (euros/year) euros

France 88.1 109 29, 901 2.10 109 0.12 0.20

Germany 79.2 109 37, 679 7.50 109 0.30 0.32

India 978.5 109 65, 000 3.00 109 0.01 0.31

Italy 40.6 109 24, 179 4.30 109 0.20 0.53

Spain 22.7 109 15, 064 3.16 109 0.11 1.26

Switzerland 18.0 109 5, 063 2.03 109 0.17 0.66

United Kingdom 62.7 109 16, 321 12 109 0.16 1.19

United States 17.2 109 226, 427 2.96 109 0.11 1.56

Table 10: Empirical estimates for β/β∗. Table giving the total ride distance (in km),

the total network length (in km), the total annual maintenance expenditure
(in euros per year) and the average ticket price (in euros per km). All the
given values correspond to the year 2011. From these data we compute the
experimental values of β, β∗ and their ratio (data obtained from various
sources such as �nancial reports of railway companies)

In that case it is bene�cial to be close to that city through the network
and we write

R
(1)
i j = (1− λ)MiM j

da−1
i j

+ λ MiM0

(D0 j + di j)a−1 − β di j (122)

where λ ∈ [0, 1] is a coe�cient weighing the relative importance of the
tra�c coming from the particular city.

2. �e most general case where all the network-induced tra�c are taken
into account. We then consider

R
(2)
i j =∑

k≠i

MiMk(Dk j + di j)a−1 − β di j (123)

Other ingredients such as the presence of di�erent rail companies, or the
di�erence between a state-planned network and a network built by private ac-
tors, etc, could easily be implemented and the corresponding models could
possibly lead to interesting results.
More importantly, we limited ourselves here to trees in order to focus on the

large-scale consequences of the cost-bene�t mechanism. Further studies are
needed in order to uncover the mechanisms of formation of loops in growing
spatial networks and we believe that themodel presented heremight represent
a suitable modeling framework.
Finally, it seemsplausible that the general cost-bene�t framework introduced

at the beginning of the article could be applied to the modelling of systems be-
sides transportation networks.We believe it captures the fundamental features
of spatial network while being versatile enough to model the growth of a great
diversity of systems shaped by space.
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SCAL ING IN TRANSPORTAT ION NETWORKS

�e following chapter is a reprint of an article, Scaling in transportation net-

works, that was previously published by the author of this thesis with Camille
Roth and Marc Barthelemy [4].

Almost 200 subway systems run through the largest agglomerations in the
world and o�er an e�cient alternative to congested road networks in urban ar-
eas. Previous studies have explored the topological and geometrical static prop-
erties of these transit systems [66, 136], as well as their evolution in time [197].
However, subways are notmere geometrical structures growing in empty space:
they are usually embedded in large, highly congested urban areas and it seems
plausible that some properties of these systems �nd their origin in the interac-
tion with the city they are in. Previous studies [135, 231] have shown that the
growth and properties of transportation networks are tightly linked to the char-
acteristics of urban environment. Levinson [135] for instance, showed that rail
development in London followed a logic of both ‘induced supply’ and ‘induced
demand’. In other words, while the development of rail systems within cities
answers a need for transportation between di�erent areas, this development
also has an impact on the organisation of the city.�erefore, while the growth
of transportation cannot be understood without considering the underlying
city, the development of the city cannot be understood without considering
the transportation networks that run through it. As a result, the subway system
and the city can be thought as two systems exhibiting a symbiotic behaviour.
Understanding this behaviour is crucial if we want to get a deeper understand-
ing of how the city grows and how the mobility patterns organise themselves
in urban environments.
At a di�erent scale, railway networks answer a need for fast transportation

between di�erent urban centers. We therefore expect their properties to be
linked to the characteristics of the underlying country. �e model of growth
presented in Chapter 14 relates the existence of a given line to the economical
and geographical features of the environment. An interesting question is thus
to know whether subways and railway networks behave in the same way, but
at di�erent scales. In other words, we are interested to know whether subways
are merely scaled down railway networks, or whether they are fundamentally
di�erent objects, following di�erent growth mechanisms.
In the spirit of themodel proposed in the previous Chapter, we propose here

a large-scale framework which relates structural and economical properties of
subway and railway networks. Althoughmany studies [120, 66, 136] explore the
interplay between regional characteristics and the structure of transportation
networks, a simple picture relating the network’s most basic quantities and
the region’s properties is still lacking. It has been found that several biological
and man-made systems exhibit allometric scaling relationships between the
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output of processes and size. �ese relationships are hints that very general

processes are at stake in the growth of these systems, and a �rst step towards
their understanding is to uncover these processes [20, 142]. In the spirit of what
has recently been done for cities [142], we try in the following to understand
the way subways and railway networks scale with some of the substrates’ most
basic attributes: population, surface area and wealth.
We believe this should lay the foundations for more speci�c and involved

discussions.
As a result, we are able to relate the total ridership, the number of stations,

the length of the network to socio-economical features of the environment.We
�nd that these relations are in good agreement with the data gathered for 138
subway systems and 58 railway networks accross the world. In particular, weData for 138 subways

accross the world

were collected on

Wikipedia, and

cross-referenced with

the operators’ data

when possible

show that even if the main mechanisms are the same, the di�erence of scale at
which both systems operate is responsible for their di�erent behavior.

15.1 framework

A transportation network is at least characterized by its total number of nodes
(which are here train or subway stations), its total length, and the total (yearly)
ridership. On the other hand, a city (or a country in the railway case) is char-
acterized by its area, its population and its GDP. Because transportation sys-
tems do not grow in empty space, but result from multiple interactions with
the substrate, an important question is how network characteristics and socio-
economical indicators relate to each other.Naturally, cost-bene�t analysis seems
to be the appropriate theoretical framework. While this approach has already
been developed in the context of the growth of railway networks [41, 1], these
studies considered an iterative growth: at each step an edge e is built such that
the cost function

Ze = Be −Ce (124)

is maximum. �e quantity Be is the expected bene�t and Ce the expected
cost of e. In the following, we consider networks a�er they have been built,
and we assume that they are in a ‘steady-state’ for which we can write a cost
function of the form

Z =∑
e

Ze = B −C (125)

where B is the total expected bene�ts and C the total expected costs, now
operating costs (mainly maintenance costs). We further assume that, during
this steady-state, operating costs are balanced by bene�ts. In other words

Z ≈ 0 (126)

Indeed, because lines and stations cost money to be maintained, we expect
the network to adapt to the way it is being used.�erefore we can reasonably
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expect that at �rst order the cost of operating the system is compensated by
the bene�ts gained from its use. In the following we will apply this general
framework to subway and railway networks in order to determine the behavior
of various quantities with respect to population and GDP.

15.2 subways

In the case of subways, the total bene�ts in the steady-state are simply con-
nected to the total ridership R and the ticket price f over a given period of
time. �e costs, on the other hand, are due to the maintenance costs of the
lines and stations, so that we can write (for a given period of time)

Zsub = R f − єLL − єSNs (127)

where L is the total length of the network, єL the maintenance cost of a line
per unit of length, NS the total number of stations and єS themaintenance cost
of a station (for a given period time).

It is usually di�cult to estimate the ridership of a system given its character-
istics and those of the underlying city. Due to the importance of such estimates
for planning purposes, the problem of estimating the number of boardings per
station given the properties of the area surrounding the stations has been the
subject of numerous studies [156, 126]. Here we are interested in the depen-
dence of global, average behaviours of the ridership on the network and the
underlying city. Very generally, we write that the number Ri of people using
the station i will be a function of the area Ci serviced by this station — the
‘coverage’ [66] — and of the population density ρ = P

A in the city

Ri = ξi Ci ρ (128)

where ξi is a random number of order one representing the ratio of people
covered who use the subway. �e main di�culty is in �nding the expression
of the coverage. It depends, a priori, on local particularities such as the accessi-
bility of the station, and should thus vary from one station to another. We take
here a simple approach and assume that on average

Ci ∼ π d
2
0 (129)

where d0 is the typical size of the attraction basin of a given station. If we
assume that it is constant, the total ridership can be written as

R =∑
i

Ri ∼ ξπd
2
0ρ Ns (130)

where ξ = 1
Ns
∑i ξi is of the order of 1.
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Figure 57: (Subway)�e relationship between ridership and coverage (Le�)Weplot
the total yearly ridership R as a function of ρ Ns . A linear �t on the 138 data
points gives R ≈ 800 ρNs (R

2 = 0.76) which leads to a typical e�ective
length of attraction d0 ≈ 500m per station. (Right) Map of Paris, France
with each subway station represented by a red circle of radius 500m.

We gathered the relevant data for 138metro systems across the world, which
we cross-veri�edwhenpossiblewith the data given bynetwork operators.While
the number of stations, the number of lines, total length of the networks and
ridership are relatively straightforward to de�ne, the choice of population and
city area ismore subtle. Indeed,most subway systems span an area greater than
the city core, and the relevant area therefore lies somewhere between the city
core’s area and the total urbanized area. We chose to use the population and
surface area data for urbanized areas provided by Demographia.
We plot the ridership R as function of Ns ρ on Fig. 57 and observe that the

data is consistent with a linear behavior. We measure a slope of 800km2/year
which gives an estimate for d0

d0 ≈ 500m (131)

We illustrate this result on Fig. 57 by representing the subway stations of
Paris each with a circle of radius 500m.
So far, the distance d0 appears here an intrinsic feature of user’s behaviors:

it is the maximal distance that an individual would walk to go to a subway
station.
�e average interstation distance ℓ1 is another distance characteristic of the

subway system. Rigorously, this distance depends on the average degree < k >
of the network so that ℓ1 =

2 L
Ns<k> . It has however been found that for the 13

largest subway systems in theworld, < k >∈ [2.1, 2.4], so that we can reasonably
take < k > /2 ≈ 1 and thus

ℓ1 ≃
L

Ns
(132)

�e interstation distance depends in general onmany technological and eco-
nomical parameters, but we expect that for a properly designed system it will
match human constraints. Indeed, if d0 ≪ ℓ1, the network is not dense enough
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Figure 58: (Subway) Relation between the length and the number of stations (Le�)
Length of 138 subway networks in the world as a function of the number
of stations. A linear �t gives L ∼ 1.13NS (R2 = 0.93) (Right) Empirical

distribution of the inter-station length.�e average interstation distance is
found to be ℓ1 ≈ 1.2 km and the relative standard deviation is approximately
440m

and in the opposite case d0 ≫ ℓ1, the system is not economically interesting.
We can thus reasonably expect that the interstation distance �uctuates slightly
around an average value given by twice the typical station attraction distance
d0

d0 =
ℓ1
2
=

L

2Ns
(133)

It follows from this assumption that the interstation distance is constant and
independent from the population size.Weplot onFig. 58 the total length of sub-
way networks as a function of the number of stations.�e data agrees well with
a linear �t L ∼ 1.13NS (r2 = 0.93). We also plot on Fig. 58 the histogram of the
inter-station length, showing that the interstation distance is indeed narrowly
distributed around an average value ℓ1 ≈ 1.2 km with a variance σ ≈ 400m,

consistently with the value found above for d0 ≈ 500m. �e outliers are San
Francisco, whose subway system is more of a suburban rail service and Dalian,
a very large city whose metro system is very young and still under develop-
ment.
As a result of the previous argument, we can express ℓ1 in terms of the sys-

tems characteristics. Indeed, the total ridership now reads

R ∼ ξπρ
L2

Ns
(134)

If we assume to be in the steady-state Zsub ≈ 0, using the results from
Eqs. (127,134), we �nd that the total length of the network and the number
of stations are linked at �rst order in єs/єL by

L ∼ ( 4єL
π ξ f ρ

+ єs

єL
)Ns (135)



154 scaling in transportation networks

and that the interstation distance reads

ℓ1 =
4єL

π ξ f ρ
+ єs

єL
(136)

�is relation implies that the interstation distance increaseswith an increased
stationmaintenance cost, and decreases with increased linemaintenance costs,
density and fare. We thus see that the adjustment of ℓ1 to match 2 d0 can be
made through the fare price (or subsidies by the local authorities or national
government). At this point, it would be interesting to get reliable data about
the maintenance costs and fare for subway systems in order to pursue in this
direction and test the accuracy of this prediction.

So far, we have a relation between the total length and the number of stations,
but we need another equation in order to compute their value. Intuitively, it is
clear that the number of stations — or equivalently the total length — of a
subway system is an increasing function of the wealth of the city. We assume
a simple, linear relation of the form

Ns = β
G

єs
(137)

where G is the city’s Gross Metropolitan Product, and β the fraction of the
city’s wealth invested in public transportation. On Fig. 59 (le�) we plot the�e cities’ GDP per

capita was retrieved

for 114 cities from
Brooking’s Global

MetroMonitor.

number of stations of di�erent metro systems around the world as a function
of the Gross Metropolitan Product of the city. A linear �t agrees relatively well
with the data (R2 = 0.73, dashed line), and gives єs

β ≈ 10
10 dollars/station. How-

ever, the dispersion around the linear average behaviour is important: more
speci�c data is needed in order to investigate whether di�erences in the con-
struction costs and investments (or the age of the system) can, alone, explain
the dispersion.
Finally, we now consider the number of di�erent lines with distinct tracks.

A natural question is how the number of lines Nl ines scales with the number
stations Ns, that is to say whether lines get propotionally smaller, larger or the
same with the size of the whole system. We plot the number of lines as a num-
ber of stations on Fig. 59 and �nd that the data agree with a linear relationship
between both quantities (R2 = 0.93, see the dashed black line). In other words,
the number of stations per line is distributed around a typical value of 19, what-
ever the size of the system.

15.3 railway networks

Data about ridership,

network length were

easily retrievable for

more than 100
countries from the

UIC Railisa 2011

database.

We start by discussing an important di�erence between railway and subway
networks. In the subway case, the interstation distance is such that it matches
human constraints: ℓ1 ∼ 2 d0 where d0 is the typical distance that one would
walk to reach a subway station. For the railway network, the logic is however
di�erent: while subways are built to allow people tomovewithin a dense urban
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Figure 59: (Subway) Size of the subway system and city’s wealth We plot the num-
ber of stations for the di�erent subway systems in the dataset as a function
of the Gross Metropolitan Product of the corresponding cities (obtained
for 106 subway systems). A linear �t (dashed line) gives Ns = 2.51 10

−10 G

(R2 = 0.73). (Subway) Number of lines and number of stations We plot
the number of metro lines N l ines as a function of the number of stations
Ns . A linear �t on the 138 data points gives N l ines ≈ 0.053Ns (R2 = 0.94),
or, in other words, metro lines contain on average 19 stations.

environment, the purpose of building a railway is to connect di�erent cities in
a country. In addition, due to the long distance and hence high costs, it seems
reasonable to assume that each station is connected to its closest neighbour.
In this respect, the railway network appears as a planar graph connecting ran-
domly distributed nodes in the plane in an economical way. If we assume that
a country has an area A and Ns train stations, the typical distance between
nearest stations will be

ℓN =

√
A

Ns
(138)

�e total length L ∼ Ns ℓN is then given by

L ∼
√
ANs (139)

In order to test this relation for di�erent countries, we plot the adimensional
quantity L√

A
as a function of the number of stations Ns on Fig. 60. A power �e number of

stations was more

di�cult to �nd. We

had to use various

data sources, mainly

scrapping the

operators’ ticket

booking websites.

law �t gives an exponent 0.50± 0.08 (R2 = 0.87), which is consistent with the
previous argument.
At this point, we have a relation between L and Ns, but we need to �nd

the expressions for the other quantities. �ere are other di�erences with the
subway system. First, due to the distances involved, the ticket price usually de-
pends on the distance travelled and we will denote by fL the ticket price per
unit distance.�e relevant quantity for bene�ts is therefore not the raw num-
ber of passengers–as in subways–, but rather the total distance travelled on the
network T . Also, again due to the long distances spanned by the network, the
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Figure 60: (Train) Total length and number of stations Total length of the railway
network L rescaled by the typical size of the country

√
A as a function of

the number of stations Ns .�e dashed line shows the best power-law �t on
the 50 data points with an exponent 0.50± 0.08 (R2 = 0.87).

costs of stations can be neglected as a �rst approximation, and we get for the
budget the following expression

Ztrain ≃ T fL − єL L (140)

In the steady-state regime Ztrain ≈ 0—or in other words, the revenue gener-
ated by the network use must be of the order of the total maintenance costs [1]
(see Chapter 14 — we �nd that

T ∼
єL

fL
L (141)

In addition, if we assume that the order of magnitude of a trip is given by

ℓN , the total travelled length is simply proportional to the ridership T ∼ ℓNR

leading to

R ∼
єLNs

fL
(142)

We thus plot the total daily ridership R as a function of the total number of
stations Ns (�gure 61), and despite the small number of available data points, a
linear relationship between these both quantities seems to agreewith empirical
data on average (R2 = 0.86).�is result should be taken with caution, however,
due to the important dispersion that is observed around the average behaviour,
and the small number of observations.
According to the previous result, the total length and the number of stations

are related to each other. We now would like to understand what property of
the underlying country determines the total length of the network.�at is to
say, why networks are longer in some countries than in others. As in subway
systems, economical reasons seem appealing. Indeed, the railway networks of
some large african countries such as Nigeria are way smaller than that of coun-
tries such as France or the UK of similar surface areas. A priori, when estimat-
ing the cost of a railway network, one should take into account both the costs
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Figure 61: (Train) Ridership and number of stations�e total yearly ridership R of
the railway networks as a function of the number of stations. A linear �t on
the 47 data points gives R ∼ 7.0 108 Ns (R

2 = 0.86)
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Figure 62: (Train) Total length of the network and wealth Total length of the rail-
way network L as a function of the country GDP G. �e dashed line
shows the best linear �t on the 138 data points which gives єL/α ≈
104 dollars.km−1 (R2 = 0.91).

of building lines and the stations. However, as stated above, considering the
distances involved, the cost of building a station is negligible compared to that
of building the actual lines. We thus can reasonably expect to have

L ∼
α G

єL
(143)

where G is here the country’s Gross Domestic Product (GDP) used as an
indicator of the country’s wealth, and α < 1 the ratio of the GDP invested
in railway transportation. We plot L as a function of G on Fig. 62 and the
data agree well (R2 = 0.91) with a linear dependence between L and G. Again, Data about the GDP

of di�erent countries

were obtained from

the World Bank.

the dispersion indicates that the linear trend should only be understood as an
average behaviour and that local particularities can have a strong impact on
the important deviations observed. For instance, the United Arab Emirates are
far from the average behaviour, with a 52 km network and a GDP of roughly
3 105 million dollars. Yet, the construction of a 1, 200km railway network has
been decided in 2010, which would bring the country closer to the average
behaviour.
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15.4 summary

We have proposed a general framework to connect the properties of railway
and subway systems (ridership, total length and number of stations) to the
socio-economic and spatial characteristics of the country or city they are built
in (population, area, GDP). Despite their simplicity, our arguments agree sat-
isfactorily with the data we gathered for more than 100 subway systems and 50
railway networks accross theworld. It should be noted that the noise associated
with these data (and sometimes their de�nition, see Material and Methods)
makes it di�cult to infer behaviours from the empirical analysis alone.�ere-
fore, the most appropriate way to proceed, we believe, is to make assumptions
about the systems and build a model whose predictions can then be tested
against data.
�is study suggests that the fundamental di�erence between railways and

subways comes from the determination of the interstation distance. While it
is imposed by human constraints in the subway case, the railway network has
to adapt to the spatial distribution of cities in a country.�is remark is at the
heart of the di�erent behaviors observed for railways and subways (see Table 11
for a summary of these di�erences).

Subway Train

L/Ns cste.
√

A
Ns

R P
A Ns Ns

G Ns L

Table 11: Summary of the di�erences between subways and railwaysWe summarize
the di�erence of behaviour between subways and railways.�e scaling of the
length L of the network with the number of stations Ns reveals the di�erent
logics behind the growth of these systems. Another di�erence lies in the total
ridership R: while it depends on the population density P/A for subways, it
only depends on the number of stations Ns for train networks. Finally, the
size of both types of network can be expressed as a function of the wealth of
the region, represented here by theGDPG. However, because the interstation
length is constant for subways, the size is better expressed in terms of the
number of stations Ns ; in the case of railway networks, the cost of stations
are negligible compared to the building cost of lines, and the size is better
expressed in terms of the total length L.

�e previous arguments are able to explain the average behaviour of various
quantities. Nevertheless, it would be interesting to identify deviations from
these behaviours, and see whether they correlate –for instance– with topolog-
ical properties of the system, as suggested in [66] or other properties of the
network and the region. We think that the relations presented here provide
nevertheless a simple framework within which local particularities can be dis-
cussed and understood. We also think that this framework could be used as
a useful null-model to quantify the e�ciency of individual transportation net-
works, and compare them to each other. �is would however require more
speci�c data than those that were available to us.
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While we have focused on an average, static description of metro systems,
we believe that our study provides a better understanding of how these sys-
tems interact with the region they serve. �is new insight is a necessary step
towards amodel for the growth of subway systems that takes the characteristics
of the city into account. Indeed, although models of network growth exist, the
length of networks and nodes at a given time is usually imposed exogeneously,
instead of being linked to the socio-economic properties of the substrate.�is
study provides a simple approach to these complex problems and could help
in building more realistic models, with less exogeneous parameters.
It would be interesting to gather data about the exact structure of all the

studied network, so as to study whether there is a relationship between the
topology (degree distribution, detour index, etc.) of these networks and prop-
erties of the substrate, as was done for the road network in [136].
Finally, gathering historical data should allow to address the problem of the

conditions for the appearance of a subway in a city. In particular, we observe
empirically that theGDPof the cities that have a subway system is always larger
than about 1010 dollars, a fact that calls for a theoretical explanation.
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16
CONCLUS ION

If people never did silly things

nothing intelligent would ever get done.

— Ludwig Wittgenstein [144]

In this thesis, we have adopted a ‘physicist’ approach to the study of a sys-
tem that traditionally belonged to the realm of social sciences: the city. We
have tried to show that simple approaches allow to better understand these
complex systems. Although simple models with a few variables cannot repro-
duce all the properties and behaviours of the observed phenomena, they allow
us to uncover the dominant mechanisms that are responsible for their most
salient features. Does it mean that our approach is the only valid approach?
Probably not. It is useful? Certainly, as it structures our knowledge and sets a
solid basis for future investigations.

In the �rst part, we have reviewed the evolution of the concept of polycen-
tricity in the literature, and themethods used to identify and count the number
of centers. Doing so, we provided evidence for the increasing number of activ-
ity centers with population size, a phenomenon we called ‘polycentric transi-
tion’. We then proposed an out-of-equibrium, stochastic model of city growth
that reproduces the empirical regularity, and explains the transition with the
increasing levels of congestion as cities get larger. �is model is a substantial
improvement over the models presented in the Economics literature: it makes
predictions that are supported by data, and allows to identify the phenomenon
responsible for the observed phenomenon.
In the second part, we further use the model to give a prediction for the

scaling exponent of the total distance commuted daily, the total length of the
road network, the total delay due to congestion, the quantity of CO2 emitted,
and the surface area with the population size of cities. We successfully test
these predictions with data gathered for U.S. urban areas.
In a third part, we focus on the quantitative description of the patterns of res-

idential segregation. For the �rst time in the quantitative literature, we propose
an explicit de�nition of segregation as a deviation from a random distribution
of individuals across the urban space.�is de�nition provides a unifying the-
oretical framework in which segregation can be empirically characterised. We
propose ameasure of interaction between the di�erent categories. Building on
the information about the attraction and repulsion between categories, we are
further able to propose a de�nition of classes that is quantitative and unam-
biguous.�e framework also allows us to identify the neighbourhoods where
the di�erent classes concentrate, and characterise their properties and spatial
arrangement. Finally, we revisit the traditional dichotomy between poor city
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centers and rich suburbs and provide a measure that is adapted to anisotropic,
polycentric cities.
In the fourth and last part, we brie�y reviewed the results we have obtained

in the study of spatial networks. We �rst presented a quantitative method to
classify cities based on their street patterns, which we applied to a set of 131
cities across the world.�en, we introduced an iterative model for the growth
of spatial networks that is based on cost-bene�t considerations.�e model ex-
hibits interesting features: a crossover between the Minimum Spanning Tree
and the star graph, with an intermediate regime characterised by the emer-
gence of spatial hierarchy. Finally, we proposed a general coarse-grained ap-
proach – based on a cost-bene�t analysis – that accounts for the scaling prop-
erties of the main quantities characterizing railway and subway networks (the
number of stations, the total length, and the ridership) with the substrate’s pop-
ulation, area and wealth. We showed that the length, number of stations and
ridership of subways and rail networks can be estimated knowing the area,
population and wealth of the underlying region.�ese predictions are in good
agreement with data gathered for about 140 subway systems andmore than 50
railway networks in the world.

�e �eld is still in its infancy compared to more mature sciences, but there
are very good reasons to hope for the convergence of knowledge and methods
into a new discipline. Into what we may call – following Michael Batty – a Sci-
ence of Cities. It is di�cult at this stage to say what this Science will look like,
and what kind of results it can pretend to achieve. Nevertheless, it is tempting
to compare the current state of the �eld to the study of planetary motions be-
fore Isaac Newton’s PhilosophiæNaturalis Principia Mathematica, or the study
of electromagnetism before James Clerk Maxwell’s A Dynamical �eory of the

Electromagnetic Field; a set of stylized facts and empirical laws that are yet to
be uni�ed in a coherent theory.
�is is not to say that one should look for a unifying set of equations, or

that laws about urban system will have the same permanence as those describ-
ing natural phenomena. No two theories are alike – even in Physics. But we
believe that the underlying methodological principles have a universal charac-
ter. Nothing can go fundamentally wrong if data are the ultimate judge of the
validity of the products of our theoretical endeavours.

16.1 lessons learned

�e last 3 years have taught me lessons that go beyond simple scienti�c knowl-
edge.

16.1.1 �inking the city

A �rst lesson, painstakingly learned during this thesis is that thinking the city
is as important as measuring the city, or modeling the city. Concepts guide us
and tell us what to measure, what to model. In the same way measures and
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model can tell us what to think. It would be very naive to believe that scienti�c
enquiries are fueled by the sole discussion between measures and models. In
fact, many studies are based upon an hypothesis, a pattern that the author has
seen and whose existence she is trying to prove on a quantitative basis.
It is also certainly true that the most di�cult and important problems are

conceptual in nature. It is impossible to de�ne a city quantitatively a city be-
fore you have formed—with words, possibly drawings—a conceptual picture
of what a city is. It is impossible to study segregation before you have logically
clari�ed what one means by segregation. However quantitative, an investiga-

tion built upon weak conceptual foundations is unlikely to go anywhere, or
to say anything substantial. On the other hand, when the thoughts have set-
tled and the question is clear, one can quickly make a substantial contribution.
In this sense, qualitative and quantitative investigations are not incompatible:
they are really two sides of the same coin.

16.1.2 Disciplinary borders

�e topics I had the chance to tackle during these 3 years of PhD were very
diverse. In retrospect, this was a real chance.�is pushed me to peruse a wide
literature that encompassed many di�erent disciplines. What I found striking
while perusing articles and books is the tendency of the di�erent communities
to ignore one another.
�e problem, however, is not to blame on individuals. While there may be

deliberate omissions here and there, authors are generally willing to cite the
appropriate literature when they are aware of its existence.�e issue, I believe,
is institutional. It stems from the academic organisation of Science, and the
existence of disciplinary borders.
But do disciplinary borders still mean anything? While there is an undeni-

able historical justi�cation to the existence of disciplines, do they still make
sense, scienti�cally speaking? Should the path-dependency in the evolution
of the man-made, academic classi�cation of sciences dictate what research av-
enues are worth being pursued today? At a time when some topics – including
cities – get an increasingly multi-disciplinary attention, these questions are
worth asking. Science is fueled by ignorance and questions, not knowledge. It
may therefore be time to organise communities around common questions,
rather than (overlapping) corpora of knowledge.

16.2 if i had to write a second thesis (future directions)

What would I write about – or at least try to – if I had to start my thesis all over
again?�is is another way of saying: what are the next steps? Many clues can
be found in the various parts of the thesis. Indeed, I have tried to explicit the
limitations of the empirical methods and models presented. In these remarks
lie many potential avenues for future research. In the following, I will present
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Figure 63: Intra-urban organisation. Cities are �rst and foremost de�ned by the con-
centration of populations and various activities. �e fact that residences
and activities have di�erent locations is responsible for the existence of
�ows of people, goods, etc. across the urban space. �ese �ows occur on
appropriate infrastructure.

some other ideas that sprung over the last 3 years.

I would probably start with the basics, with the single noun that was most
o�en printed in these pages: Cities 1. It is indeed uncomfortable – to say the
least – that our most fundamental object, the city, is ill-de�ned, and that most
empirical studies possibly rely on a de�nition that is not suited to the investiga-
tion they undertake.�is lack of serious de�nition compromises the compari-
son between cities of di�erent countries, or at di�erent points in time. I am, of
course, not the �rst person to acknowledge this empirical shortcoming. In fact,
it has been a long-time worry of geographers who have been trying to produce
harmonised database for a long time [190]. Yet, we still lack of an unambigu-
ous, theoretically grounded de�nition of what a city is. And this is problematic,
since statistical institutes’ results are based on what is believed to be the best
de�nition of the city at a time.Which in turns in�uences the research on cities.
If we want to exhibit robust empirical results, compare the results obtained in
di�erent countries, we therefore need to start worrying about the de�nition of
the system we are studying. We need to knowwhat cities we are talking about.

Once the boundaries are de�ned, we can start studying the way objects are
scattered within them. By objects, I mean buildings, roads, and �rst and fore-
most people.�e way we traditionally study the repartition of objects in space
is through the study of densities. But density pro�les are too complicated to
comprehend for our brains, especially when cities get large. So complicated,
that an entire sub-�eld is dedicated to their study: urban form [223, 207, 130].
Authors attempt to solve this problem by providing simple measures that ex-
tract a single number from the pro�le. A single number is however too sim-
ple to be able to describe accurately complex spatial distributions. What we
need is a meso-scale representation, somewhere between the micro-scale pic-
ture (the density pro�le itself) and the macro-scale picture (a single number
to summarize the density pro�le). Hopefully, because ‘centers’ are themselves
a mesoscopic structure, their de�nition should emerge naturally from such a

1 Not veri�ed on data.



16.2 if i had to write a second thesis (future directions) 167

representation.

Once one is able to provide an accurate description of density pro�les, the
possibilities start to diverge. An obvious worry, when one has a picture of the
city’s population at di�erent times of the day, is the way these pro�le transform
one into another.�is is linked to commuting –but not only, commuting repre-
senting only 20% of total travels in the US [203]– and the study of congestion
of networks.
We could �rst try to explicit the link between the urban form (typically the

residential and employment densities) and mobility patterns [145, 56]. For in-
stance, we could wonder: what proportion of commuting �ows is due to the
spatial mismatch between jobs and residences?
A futher worry linked to commuting is that of congestion: understanding

how tra�c jams are formed, how they propagate and devise strategies to miti-
gate them, either by in�uencing the transportation infrastructure, the spatial
repartition of residences and employment, or the behaviour of people them-
selves. �is is far from being a recent worry, but there is room for new ap-
proaches that leverage the knowledge we have about network and phase tran-
sition in physics. A �rst step in this direction has been made by the authors
of [138], but there is surely more to be understood and discovered.
Modeling congestion also implies understanding the individual behaviour

of people when they are moving from a point to another in cities. Altough
most research nowadays assume that people choose the shortest (time or dis-
tance) path, GPS data now provide overwhelming evidence that this is not the
case [147]. So, while there is a clear need to understand themesoscopic picture
(how congestion spread), there is also is a critical need to understand the mi-
croscopic picture (how people behave).

So far we have talked about the movement induced by the spatial mismatch
between residential areas and activity areas. One might also want to study the
characteristics of the spatial repartition of people. Inhabitants of cities are not
just a combination of a latitude and a longitude, a point on amap. Like you and
me, they are characterised by di�erent qualities, some ofwhich aremeasurable:
say their income, their education level, their ethnicity, etc. A natural question,
that has interested sociologist and geographers, is to wonder whether people’s
residence is independent of these characteristics, or whether these character-
istics have an in�uence on the spatial repartition of individuals.
In this thesis, we provided a rigorous method to study the patterns of segre-

gation in the presence of multiple income categories.�e method is far more
general, however. It could be used to study the concentration of any category
(be it ethnic categories, or certain business types, etc.) in certain regions of
the urban space, and quantify the resulting spatial pattern. As a matter of fact,
more work is needed to be able to identify the topology and geometry of these
distributions. �e problem is very close to the description of density pattern
described above.
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�e de�nition of neighbourhoods (again, a mesoscopic structure) is also
not completely satisfactory. O�en, it relies on non-overlapping census bound-
aries that were drawn tomaximise the intra-neighbourhood homogeneity and
maximise the inter-neighbourhoods heterogeneity. Although this may be use-
ful for political institutions to target the most segregated regions of the city,
this does not account for how segregation is witnessed by individuals, at an
individual level. �is has recently been questioned in the Sociology literature,
and there has recently been new attempts to de�ne neighbourhoods based on
social ties [110].

�ere are many more ideas that would deserve to be explored, many more
topics that are worthy of attention. I hope the years to come will give me the
opportunity to address some of them. But not now; this thesis has to stop some-
where.
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Rémi Louf 20 octobre 2015

Subject : Wandering in cities

A statistical physics approach to urban theory

Abstract : The amount of data that is being gathered about cities is increasing in size
and specificity. However, despite this wealth of information, we still have little understan-
ding of the processes that drive cities. In this thesis we apply some ideas from statistical
physics to the study of cities.

We first present a stochastic, out-of-equilibrium model of city growth that describes the
structure of the mobility pattern of individuals. The model explains the appearance of
secondary subcenters as an effect of traffic congestion. We are also able to predict the
sublinear increase of the number of centers with population size, a prediction that is verified
on American and Spanish data.

Within the framework of this model, we are further able to give a prediction for the scaling
exponent of the total distance commuted daily, the total length of the road network, the
total delay due to congestion, the quantity of CO2 emitted, and the surface area with the
population size of cities. Predictions that agree with data gathered for U.S. cities.

In the third part, we focus on the quantitative description of the patterns of residential
segregation. We propose a unifying theoretical framework in which segregation can be
empirically characterised. We propose a measure of interaction between the different cate-
gories. Building on the information about the attraction and repulsion between categories,
we are able to define classes in a quantitative, unambiguous way. Finally, we revisit the
traditional dichotomy between poor city centers and rich suburbs; we provide a measure
that is adapted to anisotropic, polycentric cities.

In the fourth and last part, we succinctly present the most important—theoretical and
empirical—results of our studies on spatial networks.

Throughout this thesis, we try to convey the idea that the complexity of cities is – almost
paradoxically – better comprehended through simple approaches. Looking for structure
in data, trying to isolate the most important processes, building simple models and only
keeping those which agree with data, constitute a universal method that is also relevant
to the study of urban systems.

Keywords : Statistical physics; Cities; Spatial networks; Scaling relationships; Geography;
Residential Segregation



Sujet : Théories urbaines

Une approche par la physique statistique.

Résumé : Les données disponibles au sujet des villes ne cessent de croître en quantité et
en précision. Cependant, malgré l’explosion de la quantité d’information disponible, notre
compréhension des processus qui régissent les villes et le phénomène d’urbanisation restent
mal compris. Dans cette thèse, nous nous proposons d’étudier les villes en adoptant une
démarche inspirée de la physique statistique.

Dans un premier temps, nous présentons un modèle stochastique et hors-équilibre de crois-
sance des villes qui décrit la structure du réseau de mobilité. Ce modèle conduit à une
prédiction sur la croissance du nombre de centres d’activités avec la population. Cette pré-
diction est vérifiée de façon indépendante sur des données concernant les villes américaines
et espagnoles.

Dans le cadre de ce modèle, nous sommes également capables de prédire la valeur de
l’exposant des lois d’échelle qui relient la longueur totale des navettes, la longueur totale
du réseau viaire, le retard total dû aux embouteillages, la quantité de dioxyde de carbone
émis, la surface totale des villes à leur population. Ces prédictions sont elles aussi vérifiées
sur des données concernant les villes américaines.

Dans une troisième partie distincte, nous nous intéressons à la ségrégation résidentielle.
En proposant une nouvelle définition de ce qu’est la ségrégation, nous dérivons naturelle-
ment une mesure d’attraction/répulsion entre les différentes catégories. Nous présentons
de surcroît une méthode qui permet de diviser de façon non-ambigue et reproductible la
distribution des revenus en un nombre discret de classes. Enfin, nous revisitons la dicho-
tomie traditionnelle entre centre-ville et banlieue en construisant une mesure adaptée aux
villes anisotropes et polycentriques.

Finalement, dans un quatrième temps, nous reproduisons succinctement les résultats que
nous avons obtenus dans le cadre de l’étude – empirique et théorique – des réseaux spatiaux.

Dans cette thèse, nous avons essayé de démontrer que la complexité des villes est – presque
paradoxalement – mieux comprise par des approches simples telles que l’on en trouve
en physique. Les méthodes qui sont propres à cette dernière, c’est-à-dire chercher de la
structure dans les données, essayer d’isoler les processus les plus importants, construire
des modèles simples et ne garder que ceux dont les prédictions sont en accord avec les
données, sont en effet pertinentes pour l’étude des systèmes urbains.

Mots clés : Physique statistique; Villes; Réseaux spatiaux; Lois d’échelle; Géographie;
Ségrégation résidentielle.
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