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Introduction

The best that most of us can hope to
achieve in physics is simply to
misunderstand at a deeper level.

Wolfgang Pauli

The Standard Model, elaborated over the last decades, is one of the most accurate
theories of nature ever built. It passed successfully a number of tests until the recent
discovery of a particle with all the expected properties of the Higgs boson, which closes
a chapter of particle physics. In spite of this, several issues remain, that point towards
new physics beyond the Standard Model. For instance, we know little about the nature
of the largest part of the energy content of the Universe, apart from the fact that it
cannot be made of known particles. The reason why the Higgs boson mass is so small
seems rather arbitrary. The origin of matter itself is a nontrivial question of both
particle physics and cosmology. However, no clear indication on the nature of the new
physics that could solve these issues has been uncovered so far.

The lepton sector may provide this missing piece of information. On one hand,
in spite of their ubiquity, neutrinos and their properties are still little known. The
origin of their mass and the question of their nature, Dirac or Majorana, could give
the first hint about new physics. Great effort is being deployed to test and measure
the properties of neutrinos, which gives encouraging prospects. On the other hand,
flavour violation in processes involving charged lepton could be a powerful tool to look
at deviations from the Standard Model with a great sensitivity.

The first part of this thesis is dedicated to an introduction to these topics. In
chapter 1, we give a quick review of the Standard Model, both historical and technical,
and at the same time introduce notations. We also discuss broadly the main challenges
of physics beyond the Standard Model. Chapter 2 focuses more precisely on the lepton
sector. In particular, we introduce the problem of neutrino masses and mention one
of the most promising solutions, the seesaw mechanism. We also discuss the topic
of flavour violation in the sector of charged lepton, and its potential links with new
physics.

Chapter 3 approaches the problem of the matter-antimatter asymmetry of the
Universe: the existence of the matter structures in our universe requires an asymmetry
between baryons and antibaryons. Baryogenesis through leptogenesis is an elegant
solution to this problem, that connects this issue with that of neutrino masses through
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2 Introduction

the seesaw mechanism, and provides therefore an interesting link between high energy
and low energy physics. After introducing the main ideas of leptogenesis, we discuss the
case of leptogenesis with a scalar triplet. We present a flavour-covariant formalism to
treat Boltzmann equations in the regime where lepton flavours are undistinguishable,
and show that flavour effects may have a significant impact. We apply this formalism
to a particular model, in which the lepton asymmetry is directly related to neutrino
parameters.

In the last part of this thesis, we are interested in some supersymmetric models.
Supersymmetry may be advocated for several different reasons. It is the most general
space-time symmetry that can be built, it provides a solution to the hierarchy problem,
and it leads to the unification of the gauge coupling constants with a troubling preci-
sion. In chapter 4, after introducing supersymmetry, we discuss a model in which the
fermionic partner of a pseudo-Goldstone boson plays the role of a sterile neutrino, that
could explain experimental anomalies in the neutrino sector. Finally, in chapter 5, we
study supersymmetry breaking and its mediation. If supersymmetry is indeed realized
in nature, it is necessarily broken, because otherwise it would have been discovered
long ago. Gauge mediated supersymmetry breaking is an elegant and predictive op-
tion but is in tension with the measured value of the Higgs boson mass. Extended
gauge mediation can overcome this issue and lead to an interesting phenomenology. In
particular, we study how the seesaw mechanism can fit in models of extended gauge
mediation and lead to predictions for flavour-changing observables.

The most technical points, such as the derivation of flavoured Boltzmann equations
through the closed time-path formalism will be displayed in the appendix.



Chapter 1
A review of the Standard Model

Qui serait assez insensé pour mourir
sans avoir fait au moins le tour de sa
prison ?

L’Œuvre au noir
Marguerite Yourcenar

More than eighty years separate the formulation of the Dirac equation, which gave
the first relativistic and quantum description of the electron and lead to the theoriza-
tion of the positron, from the discovery of the Higgs boson at the LHC, that was the
achievement of two decades of extensive searches. In between, our understanding of
particle physics has improved step by step, thanks to contributions of several gener-
ations of physicists, to form the picture that we know today, the Standard Model.
This justifies the words of Sheldon Glashow, for whom the Standard Model of particle
physics is “a tapestry made by many artisans working together”.

1.1 Historical overview

The early steps

In 1928, Paul Dirac achieved his goal of including special relativity in a quantum
mechanical equation describing the electron. The result was the Dirac equation [1]

iγµ∂
µψ −mψ = 0 . (1.1.1)

The solutions to this equation have four degrees of freedom, twice as many as expected
for a spin-1/2 particle like the electron. In particular, Dirac was puzzled by the pos-
sibility of negative-energy solutions, which he thought should not be simply ignored.
At first, he assumed that there was a “sea of negative energy states”, which had to be
completely filled in order to prevent an electron from jumping from a positive energy
to a negative energy state. Then, he raised the possibility of the proton being a hole
in the sea of negative-energy electrons [2], but this was not consistent with the proton
being about 2000 times as heavy as the electron. Finally, in 1931, Dirac predicted the
existence of a new particle, the positron, having the same mass as the electron but
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4 Chapter 1. A review of the Standard Model

with an opposite electric charge [3]. He also postulated that a positron and an electron
colliding would annihilate. After first experimental evidence observed by Dmitri Sko-
beltsyn and Chung-Yao Chao, the positron was formally discovered in 1932 by Carl
D. Anderson [4]. This was the first proof of the existence of antiparticles.

At the same time, the spectrum of the electron and the nucleus emitted in beta
decay had been firmly established to be continuous [5], which was inconsistent with
this phenomenon being a two-body decay of the form

A
ZX → A

Z+1X + e− , (1.1.2)

for which the center-of-mass energy of the final state particles should be uniquely
determined. Either the conservation of energy was violated in beta decay, or this
phenomenon was not fully understood. Another issue was the conservation of spin,
which is not satisfied by eq. (1.1.2). This lead Wolfgang Pauli to postulate the existence
of an invisible particle emitted along with the electron and the final nucleus in beta
decay, which should have spin 1/2. Such a particle restored the conservation of both
spin and energy. He exposed this idea in a letter to Lise Meitner, Hans Geiger and
other “radioactive people”, and named this hypothetical fermion “neutron”. In 1932,
when the neutron, as we know it today, was discovered by Chadwick, Pauli’s particle
was renamed “neutrino”. Despite Pauli’s pessimism regarding the detection of the
neutrino, it was finally observed in 1956 by Reines and Cowan [6].

In 1933, Enrico Fermi included the neutrino in the first theory aiming to describe
beta decay. In Fermi’s theory, the beta decay is the result of a four-fermion contact
interaction, of the form

LFermi = GF√
2

(p̄ γµ n) (ē γµ ν) , (1.1.3)

where p and n are respectively the proton and the neutron, and GF = 1,116637 GeV2

is known as the Fermi constant. Fermi’s paper was refused by Nature for being too
speculative, so that it was initially only issued in Italian and German [7, 8]. In addition
to beta decay, this theory also predicted scatterings such as

p+ e→ n+ ν , (1.1.4)

and gave remarkably precise results. However, the cross section of this process growing
like the center-of-mass energy squared raised doubt about the validity of Fermi’s theory
up to arbitrary energies.

In 1935, Hideki Yukawa built a theory of strong interactions, in which the cohesion
of protons and neutrons in atomic nuclei is ensured by the exchange of scalar particles,
the pions [9]. With this explanation for strong interactions, a full picture of particle
physics seemed at hand. In the late 40’s and the early 50’s, the pions were discovered,
confirming the prediction of Yukawa. Charged pions were discovered first in 1947
[10, 11], and the neutral pion three years later [12].

However, the unexpected discovery of the muon in 1937 [13, 14] raised new ques-
tions. This particle, with the same electric charge as the electron but 200 times heavier,
was first mistaken with one of Yukawa’s pions, until it was established that it did not
interact strongly. This new state, that was just a heavy copy of the electron, and whose
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existence was not required in our understanding of nature, seemed incongruous. It is
only in the 1960’s, with the electroweak unification, that the muon found naturally its
place, along with the electron and the associated neutrinos, in the lepton sector.

Quantum electrodynamics

The first completed piece in the formulation of what was going to be the Standard
Model of particle physics was Quantum Electrodynamics (QED). In the 1920’s, Dirac
had been the first to formulate a theory describing the interaction between radiation
and matter. He had also introduced annihilation and creation operators to deal with
particles. Progress was carried out in the following year, so that the formulation of
a complete theory describing electrons and photons seemed only a matter of time. A
major obstacle was however reported, first by Robert Oppenheimer in 1930 [15], then
by Felix Bloch and Arnold Nordsieck in 1937 [16] and by Victor Weisskopf in 1939
[17]. They showed that the computations performed were reliable only at first order
in perturbation theory, while at higher order, infinities appeared. What is now a well-
known feature of quantum field theories was thought to make no physical sense at the
time. This raised concern about a possible incompatibility of special relativity and
quantum mechanics.

A way out began to emerge in 1947, when Hans Bethe tried to compute the Lamb
shift of a hydrogen atom [18]. He was the first to apply the idea of renormalization,
suggested by Hans Kramers, to solve the problem. With his method, he obtained a
remarkable agreement with the measured shift of the levels of a hydrogen atom. His
computation was non-relativistic, but this new way of absorbing infinities was later
extended to a relativistic framework. The modern formulation of Quantum Electrody-
namics was elaborated in the late 1940’s by Sin-Itiro Tomonaga [19], Julian Schwinger
[20, 21], Freeman Dyson [22, 23] and Richard Feynman [24–26]. At the same time,
Feynman introduced a new powerful tool to deal with perturbation theory, the Feyn-
man diagrams.

The resulting theory is renown for its precision: QED gave extremely accurate
predictions of physical quantities. It also provided a blueprint for the elaboration of
every subsequent quantum field theory.

The electroweak unification

Some thirty years after Fermi’s first theory of weak interactions, a big step further was
accomplished in the 1960’s. In 1961, Glashow proposed the first model of electroweak
unification, based on the gauge group SU(2) × U(1) [27]. In 1964, Abdus Salam and
John Clive Ward [28] used the same symmetry group to build a model describing
electrons and muons. Unfortunately, gauge theories seemed to require massless vector
bosons, whereas the weak interaction is so short-ranged that it has to be carried by very
massive particles. The mechanism of spontaneous symmetry breaking, elaborated by
Robert Brout, François Englert [29], Peter Higgs [30], Gerald Guralnik, Carl Richard
Hagen, and Tom Kibble [31] brought the solution to this puzzle by explaining how
gauge bosons can become massive. In 1967, Salam [32] and Weinberg [33] had inde-
pendently the idea of incorporating this mechanism in Glashow’s model of electroweak
unification. Finally, Gerard ’t Hooft demonstrated in 1971 the renormalizability of
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a spontaneously broken gauge theory with operators of mass dimension four or less,
under the condition that the theory is anomaly-free [34]. This was the last step in
proving the theoretical consistency of this model.

The resulting theory of electroweak interactions contains a massless gauge boson
which is the photon, and three massive ones. Two of them,W+ andW−, are electrically
charged and allow to reformulate Fermi’s theory in terms of the exchange of a massive
particle. The Fermi constant is then understood as

GF =
√

2
8

g2

M2
W

, (1.1.5)

g being the true fundamental coupling of the theory and MW the mass of the charged
gauge bosons. The third one, Z0, is neutral and gives rise to a new interaction that was
not predicted by Fermi. The observation of neutral currents, followed by the formal
discovery of these gauge bosons in 1983 [35–38] confirmed further the validity of the
electroweak theory. Until recently, only one piece was missing to this theory, the Higgs
boson predicted by the mechanism of spontaneous symmetry breaking.

The quark sector

Before the discovery of pions, the only known hadrons were the proton and the neutron.
In the 1950’s, thanks to the invention of bubble chambers, an increasing number of
hadrons were observed. They were first classified by charge and isospin, then also
by strangeness when the first “strange” particles were detected. This classification
lead to an intriguing pattern, the eightfold way, highlighted by Murray Gell-Mann
[39] and Yuval Ne’eman [40]. They both discovered that the mesons and the spin-1/2
baryons could be arranged into octets while the spin-3/2 baryons could almost fit into
a decuplet to which one particle was missing. This lead Gell-Mann and Ne’eman to
predict the existence of a new spin-3/2 resonance. This new state, Ω−, was discovered
three years later and completed this picture.

In 1964, Gell-Mann [41] and George Zweig [42, 43] independently found that
hadrons could be thought of as made of smaller fermions with 3 flavours (up, down
and strange), related by a SU(3) flavour symmetry, which would explain this pattern.
Gell-Mann coined the term “quark”, found in James Joyce’s novel Finnegans Wake, to
label these particles, which he himself considered at first only as mathematical enti-
ties introduced for convenience, not as physical particles, in the sense that free quarks
could not be observed.

This raised a new problem, because some of the spin-3/2 baryons had to be com-
posed of three quarks of the same flavour with parallel spins, which should be forbid-
den by Pauli’s exclusion principle. In 1965, considering the Ω− hyperon composed of
three strange quarks, Nikolay Bogolyubov, Boris Struminsky and Albert Tavkhelidze
pointed out the necessity for an additional degree of freedom to solve this issue [44].
At the same time, considering a similar problem for the resonance ∆++, Moo-Young
Han with Yoichiro Nambu [45] and Oscar W. Greenberg [46] independently proposed
the existence of a new SU(3) gauge degree of freedom, called “color”. Consequently,
three kinds of quarks should interact with a color octet of gauge bosons called gluons.
Quarks and gluons were collectively labelled as partons.
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Because partons are confined inside hadrons, it was doubtful that strong interaction
could be described by a quantum field theory like QED. Instead, some physicists began
working on a different formulation, the S-matrix theory. However, James Bjorken
pointed out a characteristic feature of pointlike partons that could be revealed by deep
inelastic scatterings of electrons and muons on hadrons [47], and which was indeed
discovered in 1969 at SLAC [48, 49], entitling the quarks and gluons to the status of
physical particles. Consequently, the S-matrix theory was abandoned and a quantum
field theory of strong interaction, Quantum Chromodynamics (QCD), was developed.
In 1973, Gross and Wilczek [50] and Politzer [51] discovered a fundamental property
of Quantum Chromodynamics, asymptotic freedom, that makes it weakly coupled at
large momentum, and allows to perform perturbative calculations. This discovery was
a decisive argument in favour of the quantum field theory formulation.

At this point, only the up, down and strange quarks were known. However, a fourth
quark had been first predicted in 1964 by Bjorken and Glashow [52], and, in 1970,
Glashow, Iliopoulos and Maiani [53] proposed a mechanism to explain the suppression
of flavour-changing neutral currents in the quark sector, that required the existence
of this additional quark. The fourth quark, known as the charm, was discovered
in 1974 [54, 55]. In 1973, Makoto Kobayashi and Toshihide Maskawa proposed a
third generation of quarks because the observation of CP violation in kaon decay
was inconsistent with only two generations [56]. The discovery of the bottom quark
at Fermilab in 1977 [57] confirmed their intuition, and finally, the top quark was
discovered in 1995 [58, 59], completing the third fermion generation.

The end of the quest?

In 2012, the collaborations Atlas [60] and CMS [61] from the LHC announced the
discovery of a new particle that presents the expected properties of the Higgs boson,
with a mass

mh = 125.6± 0.3 GeV . (1.1.6)

Moreover, until now, no significant deviation from what is predicted by the Standard
Model has been observed. This particle was the last missing piece of the theory, and
its discovery puts an end to the construction of the Standard Model. However, some
remaining interrogations, which will be reviewed in section 1.3, motivate the search for
physics beyond the Standard Model.

1.2 The framework

1.2.1 The gauge theory

When studying the Standard Model, it is crucial to separate the right- and left-handed
components of the fermions, defined according to

ψR = 1
2 (1 + γ5)ψ = PR ψ , ψL = 1

2 (1− γ5)ψ = PL ψ , (1.2.1)
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and the Dirac field is given in terms of its chiral components by ψ = ψL + ψR. The
discrete symmetries C, P and T act on fermion fields in the following way. Charge
conjugation C exchanges particles and antiparticles of the same chirality, for instance

C ψL C−1 = ψcL , (1.2.2)

whereas parity flips the chirality of a field,

P ψL P−1 = ψR , (1.2.3)

and T reverses time. C, P and T can be broken, but the symmetry CPT is always
preserved. Since the Standard Model is a chiral theory with right- and left-handed
fields transforming under different representations of the gauge group, the most rele-
vant symmetry between particles and antiparticles is CP, which exchanges for instance
left-handed particles transforming under a given representation and right-handed an-
tiparticles transforming under the conjugate representation,

(CP)ψL (CP−1) = ψcR = (ψL)c . (1.2.4)

Note that for a gauge theory based on SU(2), a representation and its conjugate are
always identical, therefore CP-conjugate fermions transform under the same represen-
tation. A CP transformation can be represented by mean of the matrix C expressed
in terms of Dirac matrices by C = iγ0γ2,

ψcR = Cψ̄TL , ψcL = Cψ̄TR . (1.2.5)

The Standard Model is based on the gauge group SU(3)c×SU(2)L×U(1)Y . SU(3)c
describes the strong interactions, whereas SU(2)L×U(1)Y provides the framework for
the electroweak interaction. We will label the SU(3), SU(2) and U(1) field strengths
as Gaµν , W a

µν and Bµν respectively. The corresponding couplings are referred to as gs,
g and g′ respectively.

Fermions fall into irreducible representations of this group, and are divided in two
types. Quarks are SU(3) triplets and therefore sensitive to strong interactions, whereas
leptons are SU(3) singlets and interact only through electroweak interactions.

Another division occurs, based on chirality. Left-handed fermions are gathered in
SU(2) doublets, whereas right-handed fermions are singlets with respect to this group.
As announced previously, things are reversed when considering antiparticles, because
right-handed antiparticles belong to SU(2) doublets, like for instance

`c =
(
ecR
νcR

)
, (1.2.6)

while left-handed antiparticles are SU(2) singlets. Each fermion generation contains
a doublet of left-handed quarks including an up-type quark and a down-type quark, a
doublet of left-handed leptons including a charged lepton a neutrino, right-handed up-
and down-type quarks and a right-handed charged lepton. There is no right-handed
neutrino since it would be a gauge singlet without any interaction, and therefore its
presence is unnecessary at least as long as we neglect neutrino masses. This field
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Field SU(3)× SU(2)L × U(1)Y B L

Quarks Qi =
(
uLi
dLi

)
(3, 2, + 1/6) 1/3 0

uRi (3, 1, + 2/3) 1/3 0
dRi (3, 1, − 1/3) 1/3 0

Leptons `α =
(
νLα
eLα

)
(1, 2, − 1/2) 0 1

eRα (1, 1, − 1) 0 1

Table 1.1: Fermionic content of the Standard Model.

content is summarized in table 1.1.
Before the spontaneous breaking of the electroweak symmetry, the gauge-invariant

Lagrangian for the fermions and gauge fields is

Lfermions =
∑

i=1,2,3
i
(
Q̄i /DQi + ūRi /Dui + d̄Ri /DdRi

)
+

∑
α=e,µ,τ

i
(

¯̀
α /D`α + ēRα /DeRα

)
,

(1.2.7)

Lgauge = −1
4BµνB

µν − 1
4W

a
µνW

µν
a −

1
4G

a
µνG

µν
a , (1.2.8)

It does not contain any mass term, because gauge boson masses would break gauge
invariance, while for fermions, mass terms have the form

−L = mψ̄ψ = mψ̄RψL +mψ̄LψR . (1.2.9)

Since right- and left-handed fermions belong to different representations of SU(2), such
a mass term would also violate SU(2) gauge invariance. In the absence of fermion
mass terms, the Lagrangian possesses an additional global symmetry SU(3)5, which
corresponds to the transformations

fi → (Vf )ijfj , f = Q, uR, dR, `, eR . (1.2.10)

However, to be a viable theory of nature, the Standard Model must account for the
masses of the fermions and the gauge bosons of the weak interaction.

1.2.2 The Higgs mechanism and its consequences
This discrepancy is solved by the spontaneous breaking of SU(2)EW × U(1)Y to the
U(1)EM subgroup describing electromagnetism. This spontaneous breaking is trig-
gered by the Higgs field, which is an SU(2)EW doublet with hypercharge Y = +1/2,

H =
(
H+

H0

)
. (1.2.11)

The Higgs field participates in the Lagrangian through the following terms

LHiggs = (DµH)† (DµH)− V (H) (1.2.12)

LYukawa = −
∑
i,j

(
yuijQ̄iH̃ uRj + ydijQ̄iH dRj

)
−
∑
α,β

yeαβ
¯̀
αH eRβ + h.c. , (1.2.13)
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where we defined H̃ = iσ2H
∗. Up to this point, gauge invariance is preserved by every

term appearing in the Lagrangian.
The scalar potential responsible for the spontaneous breaking of SU(2)L × U(1)Y

is

V (H) = µ2H†H + λ
(
H†H

)2
. (1.2.14)

λ should be positive, otherwise the potential is unbounded from below, which means
that there is no stable vacuum. When µ2 is positive, there is a single minimum in
H = 0, and the gauge symmetry is unbroken. When µ2 is negative, the minima of the
potential are defined by

H†H = −µ
2

2λ . (1.2.15)

There is an infinite number of degenerated vacua, defined as minima of the scalar
potential. Therefore, the Higgs fields acquires a vacuum expectation value (v.e.v.),
which we can choose to be

〈H〉 =
(

0
v

)
, v = 〈H0〉 =

√
−µ2

2λ . (1.2.16)

Because H is charged under SU(2) × U(1), this vacuum expectation value breaks
spontaneously the electroweak symmetry and the kinetic term of the Higgs field gives
rise to the gauge boson masses. Using the explicit expression of the covariant derivative

DµH =
(
∂µ − igWµ

AτA − i
g′

2 B
µ
)
H (1.2.17)

and replacing H with its vacuum expectation value in the kinetic term of eq. (1.2.12)
yields

δLgauge = v2

4

[
g2
(
W 1
µW

1µ +W 2
µW

2µ
)

+
(
−gW 3

µ + g′Bµ
)2
]
. (1.2.18)

The physical states W+ and W− correspond to the combinations

W±µ =
W 1
µ ± iW 2

µ√
2

. (1.2.19)

Consequently, W+ and W− are conjugate fields with the squared mass

M2
W = g2v2

2 . (1.2.20)

The two electrically neutral gauge bosons W 3 and B mix through the squared mass
matrix (

W 3
µ Bµ

)( g2v2/4 −gg′v2/4
−gg′v2/4 g′2v2/4

)(
W 3
µ

Bµ

)
. (1.2.21)
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Diagonalizing this matrix, we get the massive gauge boson Z0 and its mass,

Z0
µ = cos θWW 3

µ − sin θWBµ , (1.2.22)

M2
Z = g2 + g′2

2 v2 , (1.2.23)

where we introduced the Weinberg angle, defined by

cos θW = g√
g2 + g′2

, sin θW = g′√
g2 + g′2

. (1.2.24)

The masses of the W and Z0 boson are therefore related by MW = MZ cos θW . The
fourth gauge boson, which we identify as the photon, corresponds to the unbroken
subgroup of electromagnetism U(1)EM . It remains massless, and is given in terms of
the original fields by

Aµ = sin θWW 3
µ + cos θWBµ . (1.2.25)

The charged bosons W+ and W− couple to left-handed fermions with a coupling
constant g, whereas the coupling of the photon to a field with weak isospin T3 and
hypercharge Y is (T3 + Y ) × gg′/

√
g2 + g′2, so we can identify the electromagnetic

coupling constant e and the electric charge Q of the field as respectively

e = gg′√
g2 + g′2

, Q = T3 + Y . (1.2.26)

Finally, the coupling of the neutral boson Z0 to a field with weak isospin T3 and
hypercharge Y is

g cos θWT3 − g′ sin θWY = g

cos θW

(
T3 − sin2 θWQ

)
. (1.2.27)

Electroweak interactions can be described as interactions of the W and Z0 bosons
and the photon with charged and neutral currents

Lweak = (Wµ j
µ
CC + h.c.) + Zµ j

µ
NC +Aµ j

µ
EM (1.2.28)

where the charged current involves only left-handed fields, so that interactions involving
the W± bosons violate maximally parity,

jµCC = − g√
2

{∑
i

ūLiγ
µdLi +

∑
α

ν̄Lαγ
µeLα

}
, (1.2.29)

whereas the neutral current coupling to the Z0 boson involves both left- and right-
handed fields, but still violates parity. The neutral current is given by1

jµNC = g

cos θ

{∑
i

(
ūi

1
2γ

µ (cuV − cuAγ5)ui + d̄i
1
2γ

µ
(
cdV − cdAγ5

)
di

)

+
∑
α

(
ēα

1
2γ

µ (ceV − ceAγ5) eα + ν̄Lαγ
µνLα

)}
. (1.2.30)
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Field cV cA
ui 1/2− 4/3 sin θ2

W 1/2
di −1/2 + 2/3 sin θ2

W −1/2
eα −1/2 + 2 sin θ2

W −1/2

Table 1.2: Axial and vector couplings of the Standard Model fermions.

The cV and cA coefficients are respectively the vector and axial couplings of the
fermions which are specified in table 1.2. The electromagnetic interaction preserves
parity because left- and right-handed components have the same electric charge, and
the associated current is

jµEM = e

{∑
i

(2
3 ūiγ

µui −
1
3 d̄iγ

µdi

)
−
∑
α

ēαγ
µeα

}
. (1.2.31)

The Yukawa couplings give rise to the fermion masses: after the electroweak sym-
metry breaking, replacing H with its vacuum expectation value in the Yukawa cou-
plings of eq. (1.2.13), we get the fermion mass terms

Lmass = −
∑

i,j=1,2,3

(
mu
ij ūLiuRj +md

ij d̄LidRj
)
−

∑
α,β=e,µ,τ

yeαβ ēLαeRβ + h.c. , (1.2.32)

with mf
ij = yfij v. If we want the charged currents of eq. (1.2.29) to keep a diagonal

form in flavour space, it is possible to diagonalize simultaneously the mass matrices of
the charged leptons and of one type of quark, for instance the up-type one. To achieve
this we perform the following rotations,

f → Vff , (1.2.33)

where the Vf are unitary matrices. Alternatively, we can choose to diagonalize simul-
taneously the three mass matrices. Then, in a basis where the three matrices mu, md

and me are diagonal, the charged current involving the quarks takes the form

jµCC, q = − g√
2
∑
i

ūLi
(
V †uVd

)
ij
γµdLj . (1.2.34)

V †uVd = VCKM is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [56]. It
governs the transitions between quarks of different generations, like for instance the
bottom quark decay

b→ c+W− , (1.2.35)

where the W− subsequently decays, for instance into an antineutrino and a charged
lepton. As long as neutrinos are supposed massless, there is no flavour-changing process
in the lepton sector. Things will change when we introduce neutrino masses, which

1 Here, unless specified otherwise, we refer to Dirac spinors including both left- and right-handed
components, for instance ui = uLi + uRi.
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will involve the equivalent of the CKM matrix for the lepton sector, the Pontecorvo-
Maki-Nakagawa-Sakato (PMNS) matrix.

The global symmetry SU(3)5 defined by eq. (1.2.10) is broken by the fermion mass
terms. What remains is an accidental symmetry U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ .
U(1)B corresponds to baryon number, and the U(1)Lα to the flavoured lepton numbers.
Quarks have a baryon number B = 1/3 (B = −1/3 for antiquark), while the leptons
of flavour α have a lepton number Lβ = δαβ (Lβ = −δαβ for antileptons of flavour
α). Neglecting neutrino masses, the Standard Model Lagrangian is invariant under the
transformations

(Qi, uRi, dRi)→ eiθB/3 (Qi, ui, di) , (1.2.36)
(`α, eRα)→ eiθLα (`α, eRα) . (1.2.37)

After the introduction of neutrino masses, the three lepton numbers are not conserved
anymore.

1.3 Unanswered questions
The Standard Model proved to be an incredibly accurate description of nature. How-
ever, a few issues remain, which are not resolved in this framework. Some of these
issues, such as Dark Matter and Dark Energy, are based on observation, and are there-
fore compelling evidence that the Standard Model cannot be the ultimate theory of
Nature. Some other, like the hierarchy problem, are rather unsatisfying features which
do not make the theory inconsistent but suggest to look for a bigger picture.

The invisible energy content of the Universe

In 1933, Fritz Zwicky was the first to notice a discrepancy between the motion of
galaxies in the Coma cluster and the visible amount of matter [62]. He suggested the
existence of Dark Matter to solve this inconsistency. Later, Vera Rubin observed a
similar effect when looking at the motion of stars in the Andromeda galaxy [63]. Her
measurement was the first conclusive evidence of the existence of Dark Matter. Further
evidence was provided by the Cosmic Microwave background. Indeed, anisotropies in
the CMB are due to acoustic oscillations of the primordial plasma, and the shape of
their spectrum can be related to the amount of dark matter [64]. This new, invisible
kind of matter should represent around 80% of the total amount of matter in the
Universe, but despite being the most widely accepted explanation, its nature remains
a mystery. Several hypotheses have already been excluded and today, the only certainty
is that Dark Matter is not made of Standard Model particles. Among the possibilities
which are still being explored, Dark Matter could be made of a new, heavy species
of sterile neutrinos, or of Weakly Interacting Massive Particles (WIMPS) [65], which
could for instance arise in supersymmetry.

Another puzzle concerning the energy content of the Universe was raised at the end
of the 90’s, when it was found that the expansion of the Universe is accelerating instead
of decelerating [66], as could be reasonably expected because of gravity attracting
the galaxies to one another. This discovery resurrected the cosmological constant
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introduced in 1917 by Einstein, who at the time wanted to model a static universe
[67]. However, the cosmological constant is a rather ad hoc solution. Instead, some
theories suggest that this acceleration is due to a new kind of field which behaves like
a fluid with negative pressure, called Dark Energy, which counterbalances the effect of
gravity.

Ordinary matter represents only about 5% of the energy content of the universe,
whereas Dark Matter represents around 25%, and Dark Energy nearly 70%. In the
end, more than 95% of the energy content of the Universe is not described by the
Standard Model.

The Hierarchy Problem

h h

h h

t

t

t̃

Figure 1.1: Quantum corrections to the Higgs mass coming from a top quark loop
(left), and from a stop loop in supersymmetry (right).

Another issue, which is essentially theoretical, is the hierarchy problem [68–72]. A
scalar field like the Higgs boson receives corrections to its squared mass coming from
diagrams like those displayed in fig. 1.1. Using cutoff regularization to compute these
corrections, they grow like Λ2, Λ being the cutoff of the theory. For instance in the
Standard Model, the main correction comes from the coupling with the top quark, and
is of the order

δm2
h ∼ −

y2
t

8π2 Λ2 . (1.3.1)

This can be a problem if the cutoff is very large. For instance, if it is the Planck scale
MP = 2.4× 1018 GeV, the squared mass of the Higgs boson receives huge corrections
(the abovementioned term is of the order of 1035 GeV2). In this case, the smallness of
the physical mass mh ' 126 GeV has to involve a miraculous cancellation between the
bare mass parameter appearing in the Lagrangian and the quantum corrections. Even
if one dismissed the physical meaning of cutoff regularization and used dimensional
regularization instead to get rid of the leading correction above, new physics at a heavy
scale would bring back the problem. For instance, any new scalar with a mass M that
couples to the Higgs boson with a coupling −λ(H†H)(S†S) generates a correction to
the Higgs squared mass given by

δm2
h ∼

λ

16π2M
2 log M

2

µ2 , (1.3.2)
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where µ is the renormalization scale. The leading correction goes now like M2 and
a fine tuning is again needed to recover the physical Higgs mass. To summarize, the
Higgs boson mass is very sensitive to the highest scale in the theory. As a consequence,
the hierarchy problem appears as soon as there is new physics beyond the Standard
Model, unless this new physics takes a very peculiar form.

There are essentially two type of solutions to the Hierarchy Problem. One solution
is to assume that the Higgs boson is not a fundamental scalar, but rather a composite
particle, just like the pion in QCD. Hence, the cutoff is lowered to the scale Λ at which
the fundamental components of the Higgs boson appear as free particles, which is
somehow the equivalent of the confinement scale ΛQCD in Quantum Chromodynamics.

Since a fermion loop gives a negative correction to the Higgs squared mass, and
a scalar loop a positive one, another possibility is to counterbalance the negative
contributions of the fermions with positive contributions coming from scalars. This is
possible if a new symmetry ensures that each fermion is associated to a boson that
couples to the Higgs field in the same way, and vice versa. This idea is realized by
supersymmetry, in which particles fit in supermultiplets, each one containing the same
number of bosonic and fermionic degrees of freedom, which ensures the cancellation
of all the divergent contributions to the Higgs boson mass. Supersymmetry will be
introduced in 4.1.

The strong CP problem

Another fine-tuning issue is the so-called Strong CP problem. It stems from the fact
that in principle, nothing forbids the following CP-violating term in the QCD La-
grangian,

L��CP = g2
sΘQCD

64π2 εµνρσGaµνG
a
ρσ . (1.3.3)

This term is a total derivative, but its contribution does not vanish because of instanton
field configurations which are characteristic of non-abelian Yang-Mills theories. If at
least one species of quark q was massless, it would be possible to render this CP
violation unphysical, by mean of the axial rotation

q → eiΘγ5q . (1.3.4)

The associated chiral current is defined as

jµ5 = q̄γ5γ
µq . (1.3.5)

Because of the chiral anomaly, this rotation modifies the Lagrangian by

δL = Θ∂µjµ5 = − g
2
sΘ

32π2 ε
µνρσGaµνG

a
ρσ , (1.3.6)

which makes it possible to bring the CP violation to zero without any physical con-
sequence, by simply choosing Θ = ΘQCD/2 in eq. (1.3.4). However, all quarks are
massive, and the chiral transformation (1.3.4) for a quark of mass m gives an addi-
tional shift to the Lagrangian

δL = ∂µj
µ
5 = − g

2
sΘ

32π2 ε
µνρσGaµνG

a
ρσ − 2iΘmq̄γ5q , (1.3.7)
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so that it is only possible to transfer the CP violation from the gauge Lagrangian to the
quark mass matrix or conversely. Thus, CP should be violated by strong interactions,
but it is not the case. More precisely, the experimental bound on ΘQCD is [73]

|ΘQCD| . 10−10 . (1.3.8)

The Standard Model does not give any reason why this angle is so small. Again, this
does not make the theory inconsistent, but is rather an inelegant feature.

A solution to this problem was proposed in 1977 by Roberto Peccei and Helen
Quinn [74, 75]. The idea is to replace the constant angle ΘQCD with a dynamical
field. This field has a potential which is minimal for ΘQCD = 0, which means that the
vacuum of the theory preserves CP. It requires the introduction of a new scalar particle
called the axion. Axions can also play the role of Dark Matter candidate, giving an
additional motivation to their search.

Nonzero neutrino masses

Among the remaining issues, the problem of neutrino masses comes from the fact that
the Standard Model does not contain right-handed neutrinos, since for a long time
they were not required to explain the phenomenology. This implies that neutrinos
are massless, but the phenomenon of neutrino oscillation proves the opposite. To this
day, neutrino masses are the only evidence for new physics that can be tested in lab
experiments. This issue and possible solutions will be discussed in section 2.1.

The matter-antimatter asymmetry

Finally, the fact that our Universe seems to contain only matter and no antimatter is a
nontrivial issue. If the discrete symmetry CP, that relates particles and antiparticles,
is exact, a universe with an equal amount of matter and antimatter would not contain
any structure such as stars and galaxies. This is because every particle would annihilate
with its antiparticle, leaving a much smaller amount of matter than what is observed,
and an equal amount of antimatter. At some point in the early universe, there must
have been an imbalance between particles and antiparticles, but the question remains
whether this asymmetry is just the result of the initial conditions or of a dynamical
physical process. Thus, the visible energy content of the universe is actually also an
issue. This will be addressed in more detail in chapter 3.



Chapter 2
The lepton sector

2.1 Neutrino masses

At this stage, one thing distinguishes neutrinos from the other fermions. Indeed, the
Standard Model does not contain right-handed neutrinos, therefore neutrinos should
be massless. However, the experimental observation of neutrino oscillations proves that
they have tiny masses. The existence of neutrino masses raises a new question: are
neutrinos Dirac particles, like the other fermions of the Standard Model, or Majorana
particles, with a mass term mixing neutrinos and antineutrinos?

2.1.1 Neutrino oscillations and their interpretation

First predicted by Bruno Pontecorvo in 1957 [76], neutrino oscillations have been
observed since then by several experiments looking for disappearance of neutrinos of
a given flavour, or for the appearance of a new flavour in a neutrino beam.

Principle

The explanation for oscillations rely on neutrinos being massive particles [77]. Neutri-
nos are produced in flavour eigenstates νe, νµ or ντ by weak interactions such as the
muon decay µ→ e+νe+ ν̄µ. If these flavour eigenstates do not coincide with the mass
eigenstates ν1, ν2 and ν3, the propagation will induce oscillations.

To introduce the phenomenon of oscillations, it is convenient to study a simplified
case where there are only two flavours, νe and νµ, related by a rotation(

νe
νµ

)
=
(

cos θ sin θ
− sin θ cos θ

)(
ν1
ν2

)
, (2.1.1)

Let us consider a neutrino of flavour e produced at a time t = 0

|νe(0)〉 = cos θ |ν1(0)〉+ sin θ |ν2(0)〉 (2.1.2)

For simplicity, we consider plane waves with momentum p. A correct description should
involve wave packets, but plane waves allow to grasp the main idea while being much

17
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simpler to study. The states ν1 and ν2 are energy eigenstates, therefore their evolution
over time is given by

|νi(t)〉 = e−iEit |νi(0)〉 , (2.1.3)

with Ei =
√
p2 +m2

i ' p + m2
i /(2p). At a distance L = ct from the source, the

probability of transition to the state νµ is

Peµ(L) = |〈νµ|νe(t)〉|2

=
∣∣∣(− sin θ 〈ν1|+ cos θ 〈ν2|) (cos θe−iE1t |ν1〉+ sin θe−iE2t |ν2〉)

∣∣∣2
= sin2 2θ sin2

(
∆m2

21L

4E

)

= sin2 2θ sin2
(
πL

L0

)
, (2.1.4)

where ∆m2
ij = m2

i −m2
j is the squared mass difference, E = p is the beam energy, and

the characteristic oscillation scale L0 is

L0 = 4πE
∆m2

21
. (2.1.5)

Thus, the observation of neutrino oscillations allows to determine the squared mass
splitting ∆m2

ij . Very far from the source (L � L0), the transition probability can be
averaged,

Peµ(L)→ 1
2 sin2 2θ . (2.1.6)

This result generalizes to any number n of flavours related by a unitary mixing
matrix U ,

|να〉 = U∗αi |νi〉 . (2.1.7)

Note that the relation between the operators is να = Uαi νi, but |να〉 is created by the
creation operator ν̄α = U∗αi ν̄i. The probability of transition from flavour α to flavour
β is

Pαβ(L) =
∣∣∣∣∣
n∑
i=1

UαiU
∗
βie
−iEit

∣∣∣∣∣
2

=
n∑

i, j=1
UαiU

∗
βiU

∗
αjUβje

−i∆m2
ijL/(2E) . (2.1.8)

Parametrization

Let us start with general considerations. The mass terms of n Dirac fermions ψα =
ψLα + ψRα appear in the Lagrangian as

LDirac = −ψ̄RαMαβψLβ + h.c. . (2.1.9)
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In the case of Majorana fermions, i.e. satisfying the Majorana condition ψi = Cψ̄Ti
[78], where C is the charge conjugation matrix, this turns into

LMajorana = −1
2ψ

T
LαCMαβψLβ + h.c. . (2.1.10)

We bring the mass matrix to a diagonal form by mean of a unitary transformation

ψα = Uαiψi , (2.1.11)

so that the mass terms can be rewritten as

LDirac = −ψ̄Rα UαiMiU
∗
βi ψLβ + h.c. , (2.1.12)

LMajorana = −1
2ψ

T
LαC U∗αiMiU

∗
βi ψLβ + h.c. . (2.1.13)

A n×n unitary matrix has generally n2 parameters, including n(n−1)/2 mixing angles
and n(n+ 1)/2 phases. However, in the case of Dirac fermions, 2n− 1 phases can be
eliminated in redefinitions of the fields,

{
ψLα → eiφLαψLα
ψRα → eiφRαψRα

. (2.1.14)

There are a priori 2n such possible rephasings, but we can see from eq. (2.1.12) that
choosing the same value for all the phases φLα and φRα has no effect, therefore only
2n − 1 phases can be eliminated. In the case of Majorana fermions, there are only n
possible rephasings, one for each ψLα, so n phases can be eliminated and there remains
n(n− 1)/2 physical phases.

Thus, if neutrinos are Dirac fermions. the PMNS matrix should include three
mixing angles and one phase. The standard parametrization is the following,

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

 , (2.1.15)

where cij = cos θij , sij = sin θij and δ is the CP-violating phase, referred to as the
Dirac phase to distinguish it from those arising when neutrinos are Majorana fermions.

When neutrinos are Majorana fermions, two new physical phases are present, which
can be parametrized by multiplying the previous matrix by a matrix of phases, for
instance

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

×
eiρ 0 0

0 1 0
0 0 eiσ

 .

(2.1.16)
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Experimental measurements

The mixing angles of the PMNS matrix1, as well as the squared mass differences, have
been measured by a wide range of experiments looking for appearance or disappearance
of flavours in neutrino beams coming from the Sun, the atmosphere or nuclear reactors.
A remaining uncertainty is the ordering of neutrino masses. The squared mass splitting
∆m2

21 is always positive, whereas ∆m2
31 can be positive or negative. A positive value

for ∆m2
31 gives the mass ordering mν1 < mν2 < mν3, also called Normal Hierarchy

(NH), whereas a negative value gives mν3 < mν1 < mν2, referred to as the Inverted
Hierarchy (IH). The solar and atmospheric mass mν sun and mνatm are often defined as

mν sun =
√

∆m2
21 , mνatm =

√∣∣∆m2
31
∣∣ . (2.1.17)

Let us review briefly some of the key experiments that measured the oscillation
parameters of neutrinos.

(i) The first evidence of neutrino oscillations was found in 1998 by Super-Kamiokande
[79]. The Super-Kamiokande experiment, looking for up-going atmospheric muon
neutrinos, found missing events in νµ → νµ. The survival probability in this con-
figuration can be approximated by

Pνµ→νµ ' sin2 2θ23 sin2
(

∆m2
32L

4E

)
. (2.1.18)

MINOS [80–84] also looked for the disappearance of muon neutrinos, but in a
beam produced by an accelerator. These two kinds of experiments are comple-
mentary, since atmospheric neutrino experiments give the most precise measure-
ment of the mixing angle θ23, whereas accelerator neutrino experiments allow to
measure the splitting ∆m2

32 with a greater precision.

(ii) The CHOOZ experiment [85], looking at a beam of antineutrinos produced by a
nuclear reactor, did not detect disappearance in ν̄e → ν̄e. For this experiment,
the probability of survival can be approximated by

Pνe→νe ' 1− sin2 2θ13 sin2
(

∆m2
31L

4E

)
, (2.1.19)

and therefore CHOOZ was able to set an upper bound on θ13. The angle θ13,
which until recently was thought to be very small, was finally measured by the
experiments Daya Bay [86] and Double Chooz [87]. The measured value differs
significantly enough from zero,

sin2 2θ13 ∼ 0.1 . (2.1.20)

(iii) For solar neutrino experiments, both vacuum and matter oscillations play a role.
Given that L � 4E/∆m2

21, the survival probability can be approximated by
1More precisely, the parameters measured are the sin2 2θij .
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Parameter Experimental value
∆m2

21 (7.59± 0.185)× 10−5 eV2

∆m2
31 (2.47± 0.07)× 10−3 eV2 for Normal Hierarchy (NH)

∆m2
32

(
−2.43 +0.042

−0.065

)
× 10−3 eV2 for Inverted Hierarchy (IH)

sin2 θ12 0.30± 0.013

sin2 θ23

(
0.41

+0.037
−0.025

)
for the first octant

0.59 ±0.022 for the second octant
sin2 θ13 0.023± 0.0023

δ

(
300

+66
−138

)◦
Table 2.1: Physical parameters responsible for neutrino oscillations. Values are taken
from ref. [95].

the following formula as long as the interaction of neutrinos with matter can be
neglected,

Pνe→νe ' 1− 1
2 sin2 2θ12 . (2.1.21)

In the opposite case (relevant for SNO [88] and Super-Kamiokande [89]), the
MSW effect describing oscillations of neutrinos in matter [90, 91] should be taken
into account, which gives

Pmatter
νe→νe ' sin2 θ12 . (2.1.22)

KamLAND [92–94] studied disappearance of electron antineutrinos produced in
surrounding nuclear reactors

Pν̄e→ν̄e ' c2
13

(
1− sin2 2θ12 sin2 ∆m2

21L

4E

)
(2.1.23)

Together, these experiments gave measurements of the mixing angle θ12 and the
square mass splitting ∆m2

21.

The measured values of the parameters are summarized in table 2.1. The Dirac
phase δ is still unknown, as is the absolute scale of neutrino masses, defined for in-
stance by the mass of the lightest neutrino, which cannot be determined by oscillation
experiments. Cosmology, on the other hand, gives an upper bound on the sum of
neutrino masses.

We should signal that one experimental observation could allow us to discriminate
between Dirac and Majorana neutrinos without any ambiguity. Some unstable nuclei
experience double beta decay. If neutrinos are Dirac fermions, double beta decay is
just a superposition of two simultaneous ordinary beta decays [96], i.e.

A
ZN → A

Z+2N + 2e− + 2ν̄e . (2.1.24)
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d

d

u

u

e−

e−
νi

Uei

Uei
W−

W−

Figure 2.1: Neutrinoless double beta decay. The cross denotes a Majorana mass inser-
tion.

If neutrinos are Majorana fermions, there is another possibility which is neutrinoless
double beta decay [97],

A
ZN → A

Z+2N + 2e− . (2.1.25)

The principle of this phenomenon is shown in fig. 2.1. Neutrinoless double beta decay
clearly violates lepton number by two units and is a characteristic signature of Majo-
rana neutrinos. More interestingly, its rate is related to the entry mνee of the neutrino
mass matrix, also called in this context mββ : the inverse half-life of the isotope is
proportional to |mνee|2, (

T 0ν
1/2

)−1
∝ Γ ∝ |mνee|2 . (2.1.26)

The observation of neutrinoless double beta decay would therefore be an unambiguous
proof that neutrinos are Majorana fermions, and would give us access to an entry of
the mass matrix which is related in some sense to the absolute neutrino mass scale
(although not in a simple way). The current best bound on the half-life, given by the
KamLAND-Zen experiment [98], is

T 0ν
1/2 > 3.4× 1025 years , (2.1.27)

which in turns gives the following upper bound on the matrix element

|mνee| < (120− 250)meV . (2.1.28)

Unfortunately, the opposite is not true. The non-observation of neutrinoless double
beta decay does not necessarily mean that neutrinos are Dirac fermions, they could
be instead Majorana fermions but with a vanishingly small matrix element |mνee|. In
fact, no experiment could tell us for sure that neutrinos are Dirac particles.

Anomalies

Some neutrino experiments reported results that are in tension with theoretical predic-
tions. These anomalies could point towards a more complex neutrino sector, including
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more than the three neutrinos of Standard Model. Indeed, one of the possible expla-
nations is the existence of additional species of neutrinos. If this is the case, these
new species cannot interact through weak interactions, because otherwise the Z boson
would have new decay channels of the kind Z0 → νν̄, and its width would be larger
than what is measured. Such light particles that do not interact weakly are referred
to as sterile neutrinos. Here is a short review of these anomalies.

(i) The LSND experiment looked for ν̄µ → ν̄e transitions [99], while MiniBooNE
looked for both ν̄µ → ν̄e and νµ → νe [100–103]. The results of LSND indicate
an excess of events that cannot be satisfactorily explained. The antineutrino data
from MiniBooNE is compatible with LSND, but the neutrino data do not exhibit
the same excess. If ν̄e appearance was due to a new oscillation, the new squared
mass splitting and mixing angle should satisfy ∆m2 . 1 eV2 and sin2 2θ ∼ 10−2

[104].

(ii) The GALLEX and SAGE experiments use gallium to detect solar neutrinos,
thanks to the following reaction,

νe +71 Ga→71 Ge + e− . (2.1.29)

These experiments were calibrated with radioactive sources. The results ob-
tained with these sources and the theoretical predictions are in disagreement:
the number of events is smaller than expected. For instance, the two GALLEX
experiments found the following ratio [105],

r = 0.882± 0.078 . (2.1.30)

This is known as the “Gallium anomaly” [106, 107]. This disappearance of ν̄e
could be explained by a new oscillation, with a squared mass splitting ∆m2 & 1
eV2. For instance, ref [107] gives a best-fit point at ∆m2 = 2.24 eV2.

(iii) After a recalculation of the ν̄e flux from reactors [108–110], it appears that all
short baseline experiments detecting reactor neutrinos seem to have measured
less events than expected. This is known as the “reactor anomaly”. Again, the
disappearance of ν̄e could be explained by a new oscillation, with a squared mass
splitting ∆m2 around 1 eV2. However, it was recently noticed that the shape of
the spectra measured at Daya Bay [86], RENO [111] and Double CHOOZ [87]
are not consistent with predictions [112]. This could be unrelated to the reactor
anomaly, but it could also mean that both inconsistencies are due to little-known
effects coming from reactor physics. Thus, new experiments would be needed to
conclude on the origin of the anomaly.

The interpretation of the LSND/MiniBooNE results in terms of sterile neutrinos
is in tension with other experimental data [104]. On the other hand, light sterile
neutrinos could still be an explanation for the Gallium and reactor anomalies. Such
particles would also play a role in cosmology, because if they were thermalized in the
early universe, they would contribute to the effective number of neutrinos Neff and to
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the sum of neutrino masses, which are constrained by the Planck experiment [113],

Neff = 3.15± 0.23 , (2.1.31)∑
mν < 0.23 eV . (2.1.32)

Such results are consistent with the existence of three neutrino family, and the expla-
nation of neutrino anomalies in terms of sterile neutrinos could be in tension with the
ΛCDM model of cosmology.

2.1.2 The theoretical puzzle

Until now, we have been reviewing the phenomenology of neutrino oscillations without
paying attention to the problems raised by nonzero neutrino masses. Indeed, neutrino
masses lead to two questions: how are they generated, and why are they so tiny in
comparison with the other fermions? Another issue, which is related to the previous
ones, is to know whether neutrinos are Dirac or Majorana particles.

Dirac or Majorana?

At first sight, it seems that it is possible to answer the first question without bringing
significant modifications to the Standard Model. Indeed, a first guess would be to
introduce precisely what is needed to write Dirac mass terms, i.e. three right-handed
neutrinos

LDirac = −mν
αβ ν̄RανLβ + h.c. . (2.1.33)

This mass term can be generated after the electroweak symmetry breaking just like
those of the other fermions. More fundamentally, it derives from the SU(2)-invariant
Yukawa coupling

LYukawa = −yναβ ν̄RαHT iσ2`β + h.c. , (2.1.34)

The neutrino mass matrix is related to the Yukawa coupling and the Higgs v.e.v. by

mν
αβ = yναβv . (2.1.35)

This solution appears clearly as the most simple choice, since it reproduces exactly
the same pattern as for the other fermions. Right-handed neutrinos being Standard
Model singlets, they are sterile and therefore their introduction does bring any new
phenomenology. However, this solution does not answer our second question. The
smallness of neutrino masses just follows from the smallness of the Yukawa coupling
yναβ, that has to be at least five order of magnitude smaller than for instance the electron
Yukawa ye, without further explanation. Moreover, since right-handed neutrinos are
Standard Model singlets, nothing forbids in principle the following Majorana mass
term,

LMajorana = −1
2mRαβ νR

T
αCνRβ + h.c. , (2.1.36)
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where C is the charge conjugation matrix and right-handed neutrinos satisfy the Majo-
rana condition νR = Cν̄TR . Contrary to the usual fermion mass terms in the Standard
Model, this one is in no way related to the electroweak symmetry breaking, which
means that it could be arbitrarily large. In particular, it could be much larger than
the electroweak symmetry breaking scale. Another feature of this mass term is that
it necessarily breaks lepton number: if we want the Yukawa couplings of neutrinos
to conserve lepton number, we should give a lepton number L = +1 to right-handed
neutrinos, but then the Majorana mass term has a lepton number L = +2, breaking
lepton number by two units. The seesaw mechanism of type I, imagined by Peter
Minkowski [114], exploits precisely this idea.

Alternatively, left-handed neutrinos being the only electrically neutral fermions in
the Standard Model, they could also be Majorana particles, satisfying the condition
νL = Cν̄TL . Their low-energy mass term would be

LMajorana = −1
2mναβ ν

T
LαCνLβ + h.c. . (2.1.37)

Again, this mass term clearly violates the global lepton number, but this is not a
problem since lepton number is only an accidental symmetry of the Standard Model.
However, since left-handed neutrinos belong to SU(2) doublets, this mass term is not
gauge-invariant, and therefore can only be valid in the low energy effective theory,
where the electroweak symmetry is broken. Trying to make it invariant at higher
energies, where the electroweak symmetry is restored, is a problem similar to explaining
for instance how the electron mass can be consistent with the fact that the left- and
right-handed electron belong to different representations. For the electron, this was
solved by the Higgs mechanism and the introduction of Yukawa couplings. However,
the solution is not so simple here, since it is impossible to write a Yukawa coupling able
to generate the Majorana mass of eq. (2.1.37). It turns out that the lowest-dimensional
operator involving only Standard Model fields that can give rise to this mass term is
the Weinberg operator [115],

LWeinberg = 1
2
καβ
Λ (`Tα iσ2H)C(HT iσ2`β) . (2.1.38)

This operator has dimension 5 and is suppressed by the scale Λ at which it should
be generated by new physics. This would explain why neutrino masses are so small,
namely because they scale like v2/Λ, with v � Λ. On the other hand, the origin of
this operator still requires an explanation.

Finally, focusing for the moment on the low energy theory, the most general mass
term for neutrinos, involving both the three Standard Model left-handed neutrinos and
n right-handed neutrinos, is

Lmix = −mD
iβ ν̄RiνLβ −

1
2m

L
αβ ν

T
LαCνLβ −

1
2m

R
ij ν

T
RiCνRj + h.c. , (2.1.39)

where the subscripts α and β run over the three flavours e, µ and τ , and the subscripts
i and j run over right-handed neutrinos. We can rewrite this as a single (3+n)×(3+n)
Majorana mass matrix

Lmix = −1
2mAB ν

′
A
T
Cν′B + h.c. , (2.1.40)
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where the indices A and B run from 1 to 3 + n and

ν ′A =



νe
νµ
ντ
ν̄T1
.
.
.

ν̄Tn


, mAB =

mL
(
mD

)T
mD mR

 . (2.1.41)

Let us review some limiting cases.

(i) If mL = mR = 0, we recover our first option, with purely Dirac neutrinos.

(ii) IfmD = 0, the Standard Model neutrinos are Majorana particles. In this case, the
presence of right-handed neutrinos, if they exist, is physically irrelevant because
they do not interact at all with the Standard Model, not even through their mass
term. If the Dirac mass term is small but non-vanishing, mass eigenstates are
mixtures of active and sterile neutrinos.

(iii) Finally, mL = 0 and mD � mR leads to the seesaw mechanism of type I.

The seesaw mechanism of type I

In this scenario, the smallness of neutrino masses is related to the magnitude of the
Majorana mass of right-handed neutrinos, without requiring a significant suppression
of the Yukawa coupling. From now on, we label the heavy Majorana neutrinos Ni to
distinguish them from the Standard Model neutrinos. There could be in principle an
arbitrary number of these particles, but, as we will see, at least two of them are needed
to match the observations on neutrino oscillations. Let us call n the number of Majo-
rana neutrinos. Assuming that their mass matrix is diagonal, i.e. M = diag(M1,...,Mn)
(it is always possible to perform a change of basis to recover this situation), the seesaw
Lagrangian reads

Lseesaw I = −yνiα N̄i`
T
α iσ2H −

1
2MiN

T
i CNi + h.c. , (2.1.42)

which, after the electroweak symmetry breaking, becomes

Lseesaw I = −mD
iα N̄iνα −

1
2MiN

T
i CNi + h.c. , (2.1.43)

where mD
iβ = yνiβ v. We recover the Lagrangian of eq. (2.1.39) in the situation mL = 0.

Again, it is possible to rewrite this as a single (3 + n)× (3 + n) Majorana mass

Lseesaw I = −1
2mAB ν

′
A
T
Cν′B + h.c. , (2.1.44)
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where

ν ′A =



νe
νµ
ντ
N̄T

1
.
.
.

N̄T
n


, mAB =

 0
(
mD

)T
mD M

 . (2.1.45)

Bringing this matrix to a block diagonal form, it turns out that there are n heavy
mass eigenstates, which are approximately the heavy neutrinos Ni with masses Mi,
and three light states corresponding to the three Standard Model neutrinos, with a
3× 3 Majorana mass matrix

mν '
(
mD

)T
M−1mD . (2.1.46)

Neutrino oscillation experiments prove that at least two of the Standard Model neutri-
nos are massive, which implies that the mass matrixmν should have at least rank 2, for
which at least two heavy neutrinos are required. In the most commonly studied case,
there are exactly three heavy neutrinos: this is the minimal content needed to give
nonzero masses to the three Standard Model neutrinos, and moreover, in some Grand
Unified Theories, there is a right-handed neutrino included in each fermion generation.

ℓα

H H

ℓβ

Ni

yνiα yνiβ

Figure 2.2: Diagram giving rise to the Weinberg operator in the type I seesaw. The
cross denotes a chirality flip due to a mass insertion.

Another way to look at the seesaw mechanism is to study the effective theory
obtained by integrating out the heavy right-handed neutrinos. First, let us consider
the diagram of fig. 2.2. At low energy, after integrating out the right-handed neutrinos,
this generates precisely the Weinberg operator

LWeinberg = 1
2
∑
i

yνiαy
ν
iβ

Mi
(`Tα iσ2H)C(HT iσ2`β) . (2.1.47)

This allows us to recover the result obtained by diagonalizing the (3 + n) × (3 + n)
mass matrix

mναβ =
∑
i

yνiαy
ν
iβ

Mi
v2 . (2.1.48)
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If we want the coupling yνiα to be of order 1, and for hierarchical neutrinos (mν1 �
mν2 ∼ msun, mν3 ∼ matm), the right-handed neutrinos should have masses of the
order of 1015 GeV, which is not very far from the GUT scale. This can be an additional
motivation for implementing this scenario in a grand unified framework. Of course, this
is not strictly required and, even with lighter right-handed neutrinos, we can recover
the right order of magnitude without extremely small values for yν .

ℓα

H H

ℓβ

Niyνiα yν∗iβ

Figure 2.3: Diagram giving rise to the dimension 6 operator in the type I seesaw.

In addition to the Weinberg operator, the type I seesaw gives rise to a unique
dimension 6 operator, which comes from the diagram displayed in fig. 2.3 [116],

Ld=6 =
∑
i

(yνiα)∗ yνiβ
M2
i

(¯̀
αiσ2H

∗) /∂(HT iσ2`β) , (2.1.49)

which, after the electroweak symmetry breaking, is nothing but a correction to the
kinetic term of the neutrinos, which becomes

Lν, kin = iν̄Lα
(
δαβ + εNαβ

)
/∂ νLβ , (2.1.50)

εNαβ = v2

2
∑
i

(yνiα)∗ yνiβ
M2
i

. (2.1.51)

To normalize canonically the kinetic term of neutrinos, we have to do the following
rescaling (given at the order M−2),

νLα −→ ν ′Lα '
(
δαβ + 1

2ε
N
αβ

)
νLβ (2.1.52)

Because of this, the charged current involving leptons becomes

jµCC, ` =
∑
α,β

ν̄Lα

(
δαβ −

1
2ε

N
αβ

)
γµeLβ =

∑
α, i

ν̄LiU
∗
αi

(
δαβ −

1
2ε

N
αβ

)
γµeLβ , (2.1.53)

which means that the PMNS matrix is replaced with a non-unitary mixing matrix,

N =
(

1− 1
2ε

N
)
U . (2.1.54)

Because of this non-unitarity (NN † = 1 − εN , N †N = 1 − U †εNU), there are now
flavour-changing neutral currents in the neutrino sector,

jµNC, ν =
∑
α

ν̄Li
(
N †N

)
ij
γµ νLj . (2.1.55)
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However, these effects are generally very suppressed because they arise only at the
order O(1/M2), therefore they lead to observable effects only for low-scale seesaw,
with right-handed neutrinos not too far from the TeV scale. Such a low scale for
right-handed neutrinos brings back the issue of explaining the smallness of neutrino
masses.

Type II seesaw

Pursuing the idea of Majorana neutrinos, another possible strategy is to look for models
able to generate the Weinberg operator. This is indeed the lowest-dimensional operator
that generates a coupling of neutrinos to the vacuum expectation value of the Higgs
field, and therefore the simplest way to give a Majorana mass to neutrinos. In addition
to the type I seesaw, two extensions of the Standard Model are able to generate this
operator at tree-level with a simple additional content. The type II seesaw [117–120]
relies on the introduction of a scalar electroweak triplet ∆ with hypercharge Y = 1.
Unless mentioned otherwise, we use the following parametrization for ∆,

∆ =
(

∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
. (2.1.56)

Besides its kinetic term, it gives the following contribution to the Lagrangian,

Lseesaw II = −1
2
(
fαβ`

T
αCiσ2∆`β + µHT iσ2∆†H + h.c.

)
− M2

∆ tr(∆†∆)− δV (∆, H) , (2.1.57)

where we separated the terms which are directly involved in the generation of neutrino
masses from the others, which are gathered in the additional scalar potential δV . δV
can in principle contain the following couplings,

δV (∆, H) = λ2
2
[
tr(∆†∆)

]2
+ λ3H

†H tr(∆†∆)

+
3∑
i=1

{
λ4
2
(
~∆†Ti~∆

)2
+ λ5

(
~∆†Ti~∆

) (
H†σiH

)}
, (2.1.58)

where the Ti are the dimension-3 representations of the SU(3) generators, and we used
the notation

~∆ =

∆1
∆2
∆3

 =

 (∆++ + ∆0)/
√

2
i(∆++ −∆0)/

√
2

∆+

 . (2.1.59)

In this framework, the Weinberg operator comes from the diagram of fig. 2.4. It
can be expressed in terms of the parameters as

LWeinberg = 1
4
µfαβ
M2

∆
(`Tα iσ2H)C(HT iσ2`β) , (2.1.60)
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ℓα

H H

ℓβ

∆

fαβ

µ

Figure 2.4: Diagram giving rise to the Weinberg operator in the type II seesaw.

giving for the neutrino mass matrix (after reabsorbing a minus sign with the phases)

mναβ = 1
2µfαβ

v2

M2
∆
. (2.1.61)

The simple proportionality relation between the neutrino mass matrix and the coupling
matrix f is a distinctive feature of this model, unlike in the type I seesaw where the
knowledge of the neutrino mass matrix would not give much information about the
Yukawa coupling.

Integrating out the triplet also gives rise to an effective dimension-4 operator that
generates a correction to the quartic Higgs coupling,

δLd=4 = |µ|2

4M2
∆

(H†H)2 , (2.1.62)

as well as three dimension-6 operators [121, 122], summarized in

Ld=6 = 1
4
fαβf

∗
γδ

M2
∆

(
`TαCiσ2~σ`β

)
.
(

¯̀
δ~σiσ2C ¯̀T

γ

)
− 2(λ3 + λ5) |µ|

2

M4
∆

(H†H)3

+ |µ|2

4M2
∆

(
H†~σH̃

) (←−
Dµ
−→
Dµ
) (
H̃†~σH

)
, (2.1.63)

with H̃ = iσ2H
∗. Contrary to the type I seesaw, there is no deviation from unitarity

in the lepton mixing matrix, but the first term in eq. (2.1.63) contributes to lepton
flavour violation in the charged sector.

Type III seesaw

The third way to generate the Weinberg operator at tree-level is to add fermionic
triplets Σi with hypercharge Y = 0, which are self-conjugate [123]. The type III
seesaw, as it is known, is by many aspects very similar to the type I. The Lagrangian
is

Lseesaw III = −yΣ
iα
~̄Σi.(H~σ`α)− 1

2Mi (~ΣT
i C).~Σi + h.c. , (2.1.64)



2.1. Neutrino masses 31

with ~Σi defined as

~Σi =

(Σ−i + Σ+
i )/
√

2
i(Σ+

i − Σ0
i )/
√

2
Σ0
i

 . (2.1.65)

Like for the type I seesaw, at least two fermionic triplets are needed to explain the
phenomenology of neutrino oscillations. The Weinberg operator is generated in a way

ℓα

H H

ℓβ

Σi

yΣiα yΣiβ

Figure 2.5: Diagram giving rise to the Weinberg operator in the type III seesaw.

which is very similar to the type I seesaw (see fig. 2.5), as is its expression in terms of
the parameters,

LWeinberg = 1
2
∑
i

yΣ
iαy

Σ
iβ

Mi
(`Tα iσ2H)C(HT iσ2`β) , (2.1.66)

while differences appear only in higher order corrections.
Like the type I seesaw, the type III gives rise to a unique dimension 6 operator,

which is again very similar to the one of eq. (2.1.49) [122],

Ld=6 =
∑
i

(yΣ
iα)∗ yΣ

iβ

M2
i

(¯̀
αiσ2H

∗) /D(HT iσ2`β) . (2.1.67)

The only difference is that this time, it involves a covariant derivative, which, after
the electroweak symmetry breaking, gives corrections to the kinetic terms of both
neutrinos and charged leptons,

L`, kin = iν̄Lα
(
δαβ + εΣαβ

)
/∂ νLβ + iēLα

(
δαβ + 2εΣαβ

)
/∂ eLβ , (2.1.68)

as well as to their couplings to the SU(2)L bosons,

L`W =
∑
α,β

{
g√
2

[
ν̄Lα

(
δαβ + 2εΣαβ

)
/W

+
eLβ + h.c.

]
− g

2 ēLα
(
δαβ + 4εΣαβ

)
/W

3
eLβ

}
+
∑
α

g

2 ν̄Lα
/W

3
νLα . (2.1.69)

Now, to normalize canonically the kinetic terms of left-handed leptons, we have to do
the following rescalings,

νLα −→ ν ′Lα '
(
δαβ + 1

2ε
Σ
αβ

)
νLβ , (2.1.70)

eLα −→ e′Lα '
(
δαβ + εΣαβ

)
eLβ (2.1.71)
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The main consequences of this are again the non-unitarity of the lepton mixing matrix,
which is now given in terms of the PMNS matrix by

N =
(

1 + 1
2ε

Σ
)
U , (2.1.72)

and the apparition of flavour-changing neutral currents for both neutrinos and charged
leptons,

jµNC, ` =
∑
i,j

ν̄Li

[(
N †N

)−1
]
ij
γµ νLj +

∑
α,β

ēLα

[(
NN †

)2
]
αβ
γµ eLβ . (2.1.73)

Again, these effects are generally too small to be observable, unless the fermionic triplet
are relatively light.

2.2 Charged lepton flavour violation

Because of nonzero neutrino masses and neutrino oscillations, the family lepton num-
bers are actually violated. However, this violation is undetectable in the Standard
Model minimally extended to accommodate neutrino masses. If they were observed,
flavour-violating processes involving charged leptons would therefore offer an unmis-
takable proof of the existence of new physics.

2.2.1 The Glashow-Iliopoulos-Maiani mechanism

The Glashow-Iliopoulos-Maiani (GIM) mechanism [53] was first introduced in 1970 to
explain the absence of flavour-changing neutral currents in the quark sector. At the
time, only the up, down and strange quarks had been discovered. With this particle
content, the charged current involving quarks reads

jµCC = − g√
2
ūLγ

µ (cos θCdL + sin θCsL) , (2.2.1)

where θC is the Cabibbo angle. Problems arise when trying to include these three
quarks in the gauge theory for the electroweak interaction based on SU(2) × U(1).
Gathering left-handed quarks in an SU(2) multiplet qTL = (uTL, dTL, sTL), the charged
current can be rewritten as2

jµCC = − g√
2
q̄Lγ

µT+qL , (2.2.2)

with

T+ =

0 cos θ sin θ
0 0 0
0 0 0

 . (2.2.3)

2We follow here the original reasoning as summarized in ref. [124].
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T+ can be interpreted as a raising operator for SU(2), while the corresponding lowering
operator is T− = (T+)†. These can also be expressed in terms of the SU(2) generators
as

T+ = T1 + iT2, T− = T1 − iT2 . (2.2.4)

Consequently, the third generator is given by

T3 = i

2 [T1, T2] = 1
2

1 0 0
0 − cos2 θ − cos θ sin θ
0 − cos θ sin θ − sin2 θ

 . (2.2.5)

The Z0 boson couples to a neutral current which is a combination of the (flavour-
conserving) electromagnetic current and the current associated to T3,

Jµ3 = − g√
2
q̄Lγ

µT3qL , (2.2.6)

and therefore its interactions should violate flavour at tree-level, in contradiction with
the experimental data. The solution was to introduce a fourth quark, the charm, that
couples to the orthogonal combination − sin θdL+cos θsL. On can enlarge the previous
reasoning to include the fourth quark, with qTL = (uTL, cTL dTL, sTL) and

T+ =


0 0 cos θ sin θ
0 0 − sin θ cos θ
0 0 0 0
0 0 0 0

 . (2.2.7)

This leads to

T3 =
(

12×2 02×2
02×2 −12×2

)
, (2.2.8)

so that there is no flavour-changing neutral current anymore.
The GIM mechanism can also be applied to the lepton sector. First, we consider

the minimal extension of the Standard Model with Dirac neutrinos. The leptonic part
of the charged current of eq. (1.2.29) can be written as

jµCC, ` =
∑
α

ν̄Lαγ
µeLα =

∑
α, i

ν̄LiU
∗
αiγ

µeLα , (2.2.9)

which means that the family lepton numbers are violated. The neutral current involv-
ing neutrinos remains diagonal

jµNC, ν =
∑
i, j, α

ν̄LiU
∗
αiUαjγ

µνLj =
∑
i

ν̄Liγ
µνLi , (2.2.10)

because the unitarity of the PMNS matrix implies that U∗αiUαj = δij , and so there is
no flavour-changing neutral current. This means that charged lepton flavour violation
can happen at higher order. Indeed, nothing forbids processes such as µ± → e±+ γ or
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Uei UeiUei U ∗
µi

µ µ µe e e

γ γ

γ

U ∗
µi

U ∗
µi

W W W

Figure 2.6: One-loop contributions to the radiative decay µ → eγ in the Standard
Model with Dirac neutrinos.

µ± → e± + e+ + e−. For instance, the former comes from the diagrams displayed in
fig. 2.6. However, the rate and branching ratio for this process are given by [125, 126]

Γ(µ→ eγ) =
G2
F m

5
µ

192π3

 3
32αEM

∣∣∣∣∣∑
i

U∗µiUei
mν

2
i

M2
W

∣∣∣∣∣
2
 , (2.2.11)

Br(µ→ eγ) = 3
32αEM

∣∣∣∣∣∑
i

U∗µiUei
mν

2
i

M2
W

∣∣∣∣∣
2

. (2.2.12)

Both are extremely suppressed due to the smallness of neutrino masses. More precisely,
the branching ratio for the muon decaying into an electron and a photon is of the order
of 10−54, and therefore far beyond the experimental reach, which makes this kind of
process very interesting in the quest for new physics. Indeed, its observation would be
a very clear indication of new physics.

This is true in general for flavour-violating processes involving charged leptons. In
the Standard Model plus massive Dirac neutrinos, since lepton flavour is only broken
by neutrino masses which are very small, these processes are effectively unobservable.
Some of the flavour-changing processes involving charged leptons (namely the radiative
decays and three-body decays) as well as the experimental bounds on their branching
ratios are listed in table 2.2.

2.2.2 New physics and charged lepton flavour violation

The seesaw mechanism

The heavy fields involved in type II and type III seesaw, which are charged, can
contribute to charged lepton flavour violation, under the condition that their mass
scale is low enough. On the other hand, type I seesaw does not bring any significant
contribution to these processes.

The type II seesaw mechanism gives a tree-level contribution to the 3-body decays
τ− → e−α e

−
β e

+
γ and µ→ e−e−e+, while the radiative decays such as µ− → eγ arise only

from loop-diagrams involving a charged scalar ∆− or ∆−−. These new contributions
to lepton-flavour violating processes, displayed in fig. 2.7, are in general suppressed
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Process Bound on Br at 90% CL [73]
τ → µγ 4.4× 10−8

τ → eγ 3.3× 10−8

µ→ eγ 5.7× 10−13

τ− → µ−µ−µ+ 2.1× 10−8

τ− → e−µ−µ+ 2.7× 10−8

τ− → µ−µ−e+ 1.7× 10−8

τ− → e−e−µ+ 1.5× 10−8

τ− → µ−e−e+ 1.8× 10−8

τ− → e−e−e+ 2.7× 10−8

µ→ e−e−e+ 1.0× 10−12

Table 2.2: Some flavour-changing processes involving charged leptons and the current
bounds on their branching ratios.

µ− µ−e+

e−

e−

e−

γ

∆−−

ν̄α/e
+
α

∆−/∆−−

fµe

f ∗
ee

fµα f ∗
eα

Figure 2.7: Diagrams contributing to µ− → e−e+e+ (left) and µ− → e−γ (right) in
the type II seesaw framework.

because of the very high scale of the triplet mass M∆, but can be sizeable for low-scale
seesaw.

We consider for instance the 3-body decay µ− → e−e−e+, which has one of the
most stringent bounds. Integrating out the triplet generates the effective four-fermion
operator,

L4F = 1
4
fαβf

∗
γδ

M2
∆

(
`TαC~σ`β

)
.
(

¯̀
δ~σC ¯̀T

γ

)
, (2.2.13)

which gives a direct contribution to this process. The corresponding decay width can
be expressed in terms of the coupling and the triplet mass,

Γ(µ− → e−e−e+) =
m5
µ

3072π5
|feµ|2 |fee|2

M4
∆

. (2.2.14)

Using Γµ ' Γ(µ− → e−νµν̄e), this gives for the corresponding branching ratio [122]

Br(µ− → e−e−e+) ' Γ(µ− → e−e−e+)
Γ(µ− → e−νµν̄e)

= 1
16M4

∆G
2
F

|feµ|2 |fee|2 . (2.2.15)



36 Chapter 2. The lepton sector

If the couplings fαβ are of order unity, the constraint on this branching ratio gives a
lower bound on the triplet mass,

M∆ & 150 TeV . (2.2.16)

Of course, this bound gets relaxed if the couplings are smaller. Notice that, in particu-
lar, the expression of the neutrino mass matrix (2.1.61) gives a constraint on the factor
fαβ × µ/M2

∆, which has to be small enough to reproduce the right order of magnitude
for mναβ. If the triplet is as light as 150 TeV and the couplings fαβ are of order unity,
the effective coupling µ/M∆ should be extremely suppressed, namely µ/M∆ . 10−9.

The radiative decay µ → eγ involves a loop with a triplet and is therefore sup-
pressed by an additional factor. The branching ratio for this process is [122]

Br(µ→ eγ) = α

48π ×
25
256 ×

1
M4

∆G
2
F

∣∣∣∑ fµαf
∗
eα

∣∣∣2 . (2.2.17)

Considering again couplings of order unity, this process gives a less stringent bound
on the triplet mass because of the loop suppression,

M∆ & 20 TeV . (2.2.18)

More precisely, the two previous processes allow to derive bounds on |fµe||fee|/M∆ or
|
∑
fµαf

∗
eα| /M∆. Considering other contributions of the triplet to the processes listed

in table 2.2, similar constraints can be derived for the other entries of the coupling
matrix f . This was done in ref. [122]. For the high-scale seesaw models that we will
consider in chapter 3, with M∆ & 109 GeV, those bounds are never reached.

The type III seesaw also gives contribution to lepton flavour-violating processes.
It generates flavour-changing neutral currents, as can be seen in eq. (2.1.73). As a
consequence, the decay of the Z0 boson into charged leptons can violate flavour [122],

Γ(Z0 → e−α e
+
β ) = GFM

3
Z

12
√

2π

[(
NN †NN †

)
αβ

]2
. (2.2.19)

For the same reason, 3-body decays such as µ− → e−e−e+ arise at tree-level from
the exchange of a Z0. Finally, the radiative decays still involve a loop but get new
contributions from the flavour-violating couplings to the W bosons of eq. (2.1.69).

Supersymmetry

In supersymmetric models, the main source of lepton flavour violation is the slepton
mixing. Indeed, the breaking of supersymmetry can induce squared mass matrices
for the superpartners of the left-handed lepton doublets, labelled ˜̀

α =
(
ν̃α, ẽLα

)
, and

those of the right-handed leptons, labelled ẽRα, as well as trilinear scalar couplings
between sleptons and the down-type Higgs, parametrized as follows,

L���SuSy ⊃ −(m2
˜̀)αβ ˜̀

α
˜̀†
β − (m2

ẽ)αβ ẽRαẽ
†
Rβ −A

e
αβ

˜̀
αẽ
c
RβHd . (2.2.20)

The last term generates a contribution to the mixing between right- and left-handed
charged sleptons proportional to the v.e.v. of the down-type Higgs vd,

(m2
LR)αβ = Aeαβvd (2.2.21)
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These squared mass matrices are not necessarily diagonal in the basis of charged lepton
mass eigenstates, and can therefore contribute to the processes listed previously (2.2).
However, one can generally use the following parametrization for α 6= β,

δLLαβ =
(m2

˜̀)αβ
m̄2

˜̀
, δRRαβ = (m2

ẽ)αβ
m̄2
ẽ

, δLRαβ =
Aeαβvd

m̄˜̀m̄ẽ
. (2.2.22)

where the m̄2
a are the average slepton masses, and the δXYαβ are small parameters.

eα eβ

γ

ẽ−βẽ−α

(
m2

ℓ̃

)
αβ

Figure 2.8: One of the contributions of (left-handed) sleptons to µ → eγ, with the
exchange of a photino γ̃ or a zino Z̃0. Right-handed sleptons give a similar contribution,
with the replacement m2

˜̀↔ m2
ẽ.

Radiative decays typically get contributions from diagrams such as the one of
fig. 2.8. There are other similar diagrams, that can be obtained from this one by
moving the photon vertex like in fig. 2.6. It is also possible to have sneutrinos in-
stead of charged sleptons ẽL in the loop. The exact expression for the branching ratio
Br(µ → eγ) and other similar processes is rather complicated, but a good under-
standing can be obtained from the so-called mass insertion approximation [127, 128]:
using the parameters defined above, the main contribution to the decay µ→ eγ gives
[129–133]

Br(µ→ eγ) ' α3

G2
F

|δLLeµ |2

m4
˜̀

tan2 β . (2.2.23)

where tan β = vu/vd is the ratio of the v.e.v.’s of the two Higgs doublets. Using
the bounds given in table 2.2, one can therefore constrain models of supersymmetry
breaking.
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Chapter 3
Leptogenesis

Au début, il n’y avait rien. Enfin, ni
plus ni moins de rien qu’ailleurs.

Proverbe Shadok

3.1 From baryogenesis to leptogenesis
The apparent symmetry between particles and antiparticles introduces a new puzzle,
which is the very existence of matter itself. If the discrete symmetry CP, that relates
particles and antiparticles, is exact, a universe containing initially an equal amount
of matter and antimatter would not contain any structure such as stars and galaxies.
This is because every particle would annihilate with its antiparticle, leaving essentially
radiation.

Thus, the simple existence of matter structures implies that the densities of particles
and antiparticles are not equal today. This imbalance is characterized by the Baryon
Asymmetry of the Universe, which is usually measured by the ratio of the density of
baryon number over the density of photons. Two independent estimations using CMB
data and Big Bang Nucleosynthesis agree on a value of the baryon-to-photon ratio
around 6× 10−10. The most recent value was given by the Planck experiment [113],

nB
nγ

= nb − nb̄
nγ

= (6.10± 0.06)× 10−10 (68% C.L.) , (3.1.1)

where nb and nb̄ are respectively the densities of baryons and antibaryons. We could
in principle define accordingly a Lepton Asymmetry of the Universe, but because
neutrinos and antineutrinos are very difficult to detect, this quantity could not be
measured.

To explain the origin of the Baryon Asymmetry, two possibilities come to mind. The
first one is to assume that this asymmetry was already part of the initial conditions of
the universe. This explanation is very simple but, besides being not fully satisfactory,
it is completely unverifiable. Moreover, if the universe underwent a phase of inflation
[134–136], for which there are strong motivations, it probably erased any pre-existing
asymmetry. Indeed, during this phase, the scale factor was multiplied by a huge

39
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number, typically e50, diluting dramatically any species of particles and therefore any
asymmetry.

The second possibility is that the Baryon Asymmetry was generated dynamically
after inflation, during a phase called baryogenesis. This possibility was first explored in
1967 by Andreï Sakharov, who derived the three necessary conditions for this scenario
[137].

1. The first condition is, for an obvious reason, the violation of baryon number: the
initial state of baryogenesis is fully symmetric, with nb = nb̄, so it has necessarily
a vanishing baryon number, unlike the final state.

2. The second condition is the violation of C and CP. If C (resp. CP) was an exact
symmetry, the rate of any process involving particles labelled a1, ..., an would
be equal to the rate of the equivalent process involving the corresponding C-
conjugate states (resp. CP-conjugate states), that carry opposite charges. Even
in presence of baryon number-violating processes, baryons would be created and
destroyed just as fast as antibaryons, thus no excess would ever be generated.

3. There must be a departure from thermal equilibrium because otherwise, CPT
imposes that processes increasing and decreasing baryon number compensate
each other. More formally, in equilibrium at the temperature T , the thermally
averaged baryon number satisfies

〈B〉T =
tr
[
Be−βH

]
tr [e−βH]

=
tr
[
(CPT )−1(CPT )Be−βH

]
tr [e−βH]

=
tr
[
(CPT )Be−βH(CPT )−1

]
tr [e−βH] . (3.1.2)

Since CPT is preserved, we should have [H, (CPT )−1] = 0, thus the previous
expression becomes

〈B〉T =
tr
[
(CPT )B(CPT )−1e−βH

]
tr [e−βH] , (3.1.3)

but, since CPT exchanges particles and antiparticles, CPT )B(CPT )−1 = −B,
an so

〈B〉T =
tr
[
−Be−βH

]
tr [e−βH] = −〈B〉T , (3.1.4)

which is necessarily vanishing. Thus, the emergence of a non-vanishing baryon
number can only happen out of equilibrium.
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3.1.1 Baryon number nonconservation in the Standard Model
At first, investigations were carried to check if Sakharov’s conditions can be satisfied
within the Standard Model. At least the second condition is satisfied in the Stan-
dard Model because CP is violated, as can be seen for instance in kaon mixing [138].
Baryon and lepton number are seemingly conserved, but they are only accidental sym-
metries. This conservation holds actually only at the perturbative level, while non-
perturbatively, baryon and lepton number are broken by the electroweak sphalerons
[139], in a way which is related to the anomalies of the associated currents.

Figure 3.1: Triangle diagram contributing to the anomaly, with leptons or quarks
circulating in the loop.

The B and L currents are defined respectively as

jµB = 1
3
∑

i=1,2,3

(
Q̄iγ

µQi + ūiγ
µui + d̄iγ

µdi
)
, (3.1.5)

jµL =
∑

α=e,µ,τ

(
¯̀
αγ

µ`α + ēαγ
µeα

)
. (3.1.6)

They are classically conserved, but at the quantum level, because of the triangle anoma-
lies shown in fig. 3.1, their divergence is given in terms of the field operators by

∂µjBµ = ∂µjLµ = Nf

32π2 ε
µνρσ

(
−g2W a

µνW
a
ρσ + g′2BµνBρσ

)
, (3.1.7)

where Nf is the number of fermion generations. Therefore baryon and lepton number
are not conserved, but instead

d

dt
(B − L) = 0 , (3.1.8)

dB

dt
= dL

dt
=
ˆ
d3x

Nf

32π2 ε
µνρσ

(
−g2W a

µνW
a
ρσ + g′2BµνBρσ

)
, (3.1.9)

The terms inside the parenthesis are total derivatives, but the integral does not vanish.
Indeed, for a non-abelian gauge theory, there are several different vacua corresponding
to different topological configurations of the gauge fields. These configurations are
indexed by an integer nCS , the Cherns-Simons number. For a transition between two
vacua [140],

∆B = ∆L = Nf

ˆ tf

ti

dt

ˆ
d3x

1
32π2 ε

µνρσ
(
−g2W a

µνW
a
ρσ

)
= Nf ∆nCS . (3.1.10)
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Since Nf = 3 in the Standard Model, each transition changes baryon and lepton
number by a multiple of three units, and more precisely satisfies ∆B/3 = ∆Le =
∆Lµ = ∆Lτ . This process can be formally represented by an effective operator

Oeff ∝
α=e,µ,τ∏
i=1,2,3

QiQiQi`α . (3.1.11)

At zero temperature, the rate of these processes is exponentially suppressed, namely

Γsphal ∝ e−4π/αEW = O
(
10−165

)
, (3.1.12)

and the probability of quantum tunneling is way too small to be of any relevance.
However, at nonzero temperature, because of thermal fluctuations, the energy barrier
can be crossed classically. More precisely, in a thermal bath at temperature T , the
space-time density of reaction is [141, 142]

γsphal ' 26α5
EWT

4 . (3.1.13)

Sphalerons come in thermodynamic equilibrium between the temperatures T ' 102

GeV and T ' 1012 GeV.
Sphalerons have two important implications for baryogenesis, as was shown by

Kuzmin, Rubakov and Shaposhnikov [143]. First, if B − L is conserved and zero, any
preexisting baryon asymmetry would have been erased by sphalerons when they were
in equilibrium. On the other hand, sphalerons could be themselves responsible for
the Baryon Asymmetry of the Universe, as it is the case in electroweak baryogenesis:
starting with a symmetric universe (B = L = 0), CP-violating sphalerons would
generate equal baryon and lepton numbers, giving B = L 6= 0 today. Of course,
because of Sakharov’s third condition, this could only happen at the electroweak phase
transition, when sphalerons go out of equilibrium. Moreover, in order to satisfy this
condition, the phase transition should be strongly first order.

However, it is unclear whether the amount of CP violation in the CKM matrix
is large enough to fully satisfy Sakharov’s second condition and anyway, the out-of-
equilibrium condition is not satisfied in the Standard Model. More precisely, with the
field content of the Standard Model, this condition would be fulfilled only if the Higgs
boson was lighter than about 45 GeV [144, 145], far from the 126 GeV of the particle
discovered at LHC.

Thus, baryogenesis requires new physics. The main options are the following.

(i) A possibility is to try to rehabilitate electroweak baryogenesis by introducing
new fields in order to bring the sphalerons out of equilibrium at the electroweak
phase transition [146–148]. This can happen for instance in the MSSM if one of
the stops is light enough (although the constraints on this scenario are becoming
stringent). Another possibility is the 2-Higgs-Doublet Model (2HDM).

(ii) In a class of models known as GUT baryogenesis [149–157], a baryon asymmetry
is generated at high temperature by the out-of-equilibrium decay of heavy bosons.
However, these models faced difficulties, such as the constraints on proton decay.
Moreover, in the simplest models, only B + L is violated, not B − L, therefore
the asymmetry is erased by electroweak sphalerons.
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(iii) Affleck-Dine baryogenesis [158, 159] takes place in a supersymmetric GUT. In
this scenario, scalar fields, which carry a non-vanishing baryon or lepton number
(e.g. squarks or sleptons), develop a vacuum expectation value in the early
universe, which breaks B − L. Later, the decay of the scalar fields generate a
nonzero B − L stored in quarks and leptons.

(iv) In a large variety of models, it is assumed that the dark matter density is also
due to an asymmetry between dark matter particles and antiparticles. It is then
natural to think that both the so-called asymmetric dark matter and the baryon
asymmetry are generated by a single mechanism, which can be related to other
models for generating an asymmetry [160–162]. In the end, the asymmetries in
the baryon sector and in the dark sector are comparable or even equal, which
explains simply why the energy densities of dark matter and ordinary matter are
of the same order of magnitude.

(v) In leptogenesis, a scenario imagined first by Masatake Fukugita and Tsutomu
Yanagida [163], the asymmetry is generated in the lepton sector before being
converted to a baryon asymmetry by the electroweak sphalerons. We are going
to investigate this last possibility in this chapter.

3.1.2 Neutrino masses and leptogenesis
In this class of scenarios, new physics at a high scale breaks B−L in the lepton sector,
generating a lepton asymmetry. After this new physics comes to a freeze-out, one is
left with a nonzero value of B−L, which will be conserved by any subsequent physical
process. Then, fast electroweak sphalerons transfer a part of this asymmetry to the
baryon sector. The equilibrium condition has been derived in ref. [164] and is defined
by

Csphal = 8Nf + 4(NH + 2)
22Nf + 13(NH + 2) , (3.1.14)

Nf being the number of generations and NH the number of Higgs doublets. The reason
why it is interesting to proceed through a violation of lepton number only in a first
place is because lepton number violation is at the root of the seesaw mechanism. Thus,
leptogenesis provides answers to two apparently unrelated issues, neutrino masses and
the Baryon Asymmetry of the Universe.

The general idea is simple: the seesaw mechanism requires the existence of a heavy
particle with couplings to lighter fields, which is therefore unstable. Moreover, one of
these couplings violates lepton number, so that the decay of the heavy particle is able
to generate a lepton asymmetry. Sakharov’s conditions are still required, but since
baryon number is automatically broken by sphalerons, the violation of baryon number
is replaced with a violation of lepton number.

3.1.3 The Standard scenario: leptogenesis with right-handed neutrinos
The “standard” leptogenesis scenario [163, 165] involves three heavy right-handed neu-
trinos, and relies on the Lagrangian of eq. (2.1.42). The Standard Model neutrinos
have a mass matrix which is given by the seesaw formula of eq. (2.1.48).
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A minimal realization

The right-handed neutrinos are assumed to be hierarchical, that is M1 is much smaller
than M2 and M3, so that N3 and N2 decay first, usually when the temperature of the
Universe is around T ∼ M3 and T ∼ M2 respectively, and when N1 decays around
T ∼M1, the two other species have already disappeared.

An interesting feature of right-handed neutrinos is that they are gauge singlets.
Contrary to other particles which are maintained close to thermodynamic equilibrium
by fast gauge interactions, their density is usually far from its equilibrium value, which
allows to satisfy Sakharov’s third condition. Besides, if there is no other interaction
that creates them have to be created and brought to their equilibrium density by
inverse decays like `H → N and `cHc → N . Because of this, and because of the
hierarchy between right-handed neutrinos, any asymmetry generated in the decay of
N3 and N2 would be erased to create N1. Thus, it is possible to focus on the decay
of the lightest right-handed neutrino N1 only, starting from a time at which the two
other species have already decayed and the lepton asymmetry is vanishing.

N1

yν∗iα

N1

ℓα ℓα

ℓαH H

H

yν1β
yν1β

N1

Ni
Ni

H

H

ℓβ
ℓβ

yν∗1α yν∗iαyν∗iβ

yν∗iβ

Figure 3.2: Diagrams involved in the violation of CP in the decay of N1 at one loop. At
lowest order, the CP asymmetry comes from the interference of the tree-level diagram
with one of the two other.

The decay of N1 violates CP at the order of one loop, because of interferences
between the diagrams displayed in fig. 3.2. The CP asymmetry is defined as

εN1 = Γ(N1 → `H)− Γ(N1 → `cHc)
ΓN1

. (3.1.15)

The computation gives

εN1 = 1
8π

∑
i=2,3

=
[
(yνyν†)2

1i

]
(yνyν†)11

[
FS

(
Mi

M1

)
+ F V

(
Mi

M1

)]
, (3.1.16)

where FS and F V are kinematic functions coming from the self-energy correction and
the vertex correction respectively. For very hierarchical right-handed neutrinos with
M1 �M2 �M3, this can be simplified,

εN1 ' −
3

16π
∑
i=2,3

=
[
(yνyν†)2

1i

]
(yνyν†)11

M1
Mi

. (3.1.17)
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The two first Sakharov conditions are satisfied, so that the success of leptogenesis
depends on the dynamics of the creation of the lepton asymmetry in the early Universe.
More precisely, we need to solve Boltzmann equations describing the evolution of the
density of right-handed neutrinos YN1 and the lepton asymmetry ∆` = Y` − Y`c . We
do not take care for the moment of spectator processes redistributing the asymmetry
in right-handed leptons and baryons, they will be mentioned in section 3.2.3. The
evolution is described by the following system of Boltzmann equations [165],

sHz
dYN1

dz
= −

(
YN1

Y eq
N1

− 1
)
γN1
D − S , (3.1.18)

sHz
d∆`

dz
= εN1

(
YN1

Y eq
N1

− 1
)
γN1
D −W , (3.1.19)

where S represents scatterings consuming right-handed neutrinos, like N1` → Q3t
c
R,

and W is the washout of the lepton asymmetry due to inverse decays `H → N1, and
scatterings like for instance `H → `cHc.

This system relies on the so-called single flavour approximation, that is the com-
putation is performed as if there existed only one lepton flavour. At very high tem-
perature, this treatment is justified. Indeed, in the Standard Model, the three lepton
generations are distinguished only by their Yukawa couplings, as can be seen from eqs.
(1.2.7) and (1.2.13). When the temperature of the Universe is above 1012 GeV, ev-
ery interaction mediated by the lepton Yukawa couplings is out of equilibrium, which
means that the three lepton doublets are effectively undistinguishable. In the present
model, because of the hierarchy between the right-handed neutrinos, one can integrate
N2 and N3 out of the Lagrangian, and rewrite the couplings involving N1,

−yν1α N̄1`
T
α iσ2H + h.c.→ −yν0 N̄1H.`0 + h.c. , (3.1.20)

where we defined

`0 =
∑
α

yν1α`α
yν0

, yν0 =
√∑

α

|yν1α|2 . (3.1.21)

It appears clearly that, at tree-level at least, N1 decays only to the final state `0H (and
its CP-conjugate). This ensures that, at the order we are considering, no asymmetry
is generated in the two lepton combinations `⊥1 and `⊥2 orthogonal to `01. Thus, it
is enough to solve only one Boltzmann equation describing the asymmetry stored in
the flavour `0. When the temperature decreases, interactions mediated by the lepton
Yukawa couplings become faster and reach equilibrium, which means that we should
distinguish the asymmetries stored in the various flavours and therefore write several
Boltzmann equations to describe the evolution of the lepton asymmetries ∆`α .

This dynamics generates an asymmetry which is stored in lepton doublets, then
transferred to the baryon sector by electroweak sphalerons. In the simplified case where
leptogenesis is over when sphalerons proceed, the final baryon asymmetry is

nB
nγ
' −12

37 × 7.04×∆f
` , (3.1.22)

1 To be exact, this is only true as long as one can neglect the scatterings mediated by N2 and N3



46 Chapter 3. Leptogenesis

where ∆f
` is the lepton asymmetry left by the decay of N1. The factor 12/37 is the

conversion factor due to sphalerons, and the factor 7.04 takes care of the fact that the
quantity on the left-hand side is normalized over the density of photon, whereas the
quantity on the left is normalized over the entropy density.

A difficulty when studying this scenario is that the Yukawa coupling matrix yν can-
not be expressed in a simple way in terms of the neutrino mass matrix. Moreover, the
combinations of Yukawa couplings that appear in the expression of the neutrino mass
matrix (2.1.48) and the CP asymmetry (3.1.16) are different. Thus, there is in general
a lot of arbitrariness in the parametrization, even though in some specific scenarios
[166–171], it is possible to relate the CP asymmetry to lepton flavour observables or
to parameters of the PMNS matrix. In the general case, for hierarchical right-handed
neutrinos, it is possible to estimate the minimal value of the mass of N1 that is needed
for a successful leptogenesis. Using the Casas-Ibarra parametrization [172],

yνiα = 1
v

(
D

1/2
M RD1/2

mν U
†
)
iα

, (3.1.23)

where DM = diag (M1, M2, M3), Dmν = diag (mν1, mν2, mν3) and R is an orthogonal
matrix RRT = RTR = 1, the CP asymmetry can be rewritten as

εN1 = − 3
16π

M1
v2

∑
i=
(
R2

1i
)
m2
νi∑

k |R1k|2mνk
. (3.1.24)

This, in turn, gives the Davidson-Ibarra bound [173].

|εN1 | < εDI = 3
16π

M1
v2

m2
νatm

mν1 +mν3
. (3.1.25)

Since the maximal lepton asymmetry that can be generated in the decay of N1 is
∆max
` ∼ εN1Y

eq0
N1

, where Y eq0
N1

is the equilibrium density of N1 before its decay, this
imposes that

12
37 × 7.04× εDI × Y eq0

N1
&
nB
nγ

. (3.1.26)

In order for this condition to be satisfied, N1 should have a mass greater than 10−9 GeV
approximately. When the right-handed neutrinos are not hierarchical, this bound can
be relaxed [174]. In particular when N1 and N2 have very close masses, it is possible to
realize resonant leptogenesis [175, 176] which can give the correct baryon asymmetry
at a much lower scale. Alternative possibilities to lower the scale of leptogenesis were
investigated in ref. [177].

Beyond the single-flavour approximation

Let us now explore the flavour issue [178–182] in more details. Regarding flavour, there
are several temperature regimes, depending of Yukawa-mediated scatterings being in
equilibrium or not, as explained in section 3.1.3. When these scatterings are much
slower than the expansion of the Universe, they are out of equilibrium and can be
neglected.
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When the temperature of the Universe is above 1012 GeV, every interaction me-
diated by the lepton Yukawa couplings is out of equilibrium, which means that the
three lepton doublets are effectively undistinguishable. As we explained previously, the
problem in this temperature range is generally studied in the single-flavour approxima-
tion. However, there are several situations in which it does not hold. This is the case
for instance close to the transition, when the tau Yukawa-mediated scatterings begin
to be fast but not enough to completely destroy the coherence of the combination `0.
It is also the case when more than one right-handed neutrino is taken into account,
and in particular in resonant leptogenesis: unless the couplings of the two neutrinos
N1 and N2 are aligned, it is not possible to define a single linear combination `0 that
couples to both.

The consistent way to describe quantum undistinguishable particles in a general
way is the density matrix, which is simply a generalization of the ordinary particle
asymmetry given in terms of the field operator by

∆nf = nf − nfc = 〈: f †f :〉 . (3.1.27)

This applies to leptogenesis in the following way. If it is not possible to perform the
same trick as in eq. (3.1.20), the lepton asymmetry should be described by a 3 × 3
density matrix in flavour space

(∆n`)αβ = 〈: `†α`β :〉 , α, β ∈ {e, µ, τ} . (3.1.28)

The diagonal elements have the same physical interpretation as before, i.e.

(∆n`)αα = n`α − n`cα , (3.1.29)

whereas the off-diagonal elements have no classical equivalent: they represent purely
quantum correlations between the various flavours. Since we work with densities nor-
malized over the entropy density, we define

(∆`)αβ = 1
s
〈: `†α`β :〉 . (3.1.30)

Under a unitary rotation in flavour space `α → `′i = V ∗iα`α, this object transforms
covariantly as

(∆`)αβ → (∆′`)ij =
(
V∆`V

†
)
ij
. (3.1.31)

In particular, the trace of the matrix, which describes the total asymmetry stored in
the lepton doublets, is unaffected by this change of basis. In fact, the single flavour ap-
proximation could be rephrased in the density matrix formalism: the basis (`0, `⊥1 , `⊥2 )
is the one in which, because of the structure of the interactions, the entries (∆`)ij ,
for i, j 6= 0, remain zero. The off-diagonal entries (∆`)0i, (∆`)i0 are actually nonzero
but do not participate in the equation for (∆`)00, therefore it is sufficient to solve the
latter to obtain the total lepton asymmetry. In another basis, this would no longer be
true, but the final result of the computation performed in the density matrix formalism
would be the same. In fact, picking the basis (`0, `⊥1 , `⊥2 ) is just a convenient choice to
carry out the computation.
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The derivation of the flavour-covariant transport equation for the density matrix
is not as straightforward as that of usual Boltzmann equations. In the context of
leptogenesis with right-handed neutrinos, it was performed in ref. [180] in a semi-
classical approach, and a quantum treatment of the density matrix formalism was
introduced in refs. [183, 184]. This formalism was also applied to resonant leptogenesis,
where it can also be used to describe the oscillation of quasi-degenerate right-handed
neutrinos [185, 186]. In section 3.2.3, we will apply this formalism to scalar triplet
leptogenesis.

As the temperature drops, Yukawa-mediated interactions become faster. Below
1012 GeV, the interactions mediated by the tau Yukawa coupling become fast enough
to reach thermodynamic equilibrium, which allows to distinguish the tau doublets from
the two others. In this case, a general description should involve a 2×2 density matrix
and a separate tau asymmetry ∆`τ .

Finally, when the temperature reaches 109 GeV, interactions mediated by the muon
Yukawa coupling reach equilibrium as well. From this moment, the three lepton flavour
become distinguishable, even though the electron Yukawa-mediated interactions do not
reach equilibrium until the temperature drops below 105 GeV.

Towards an exhaustive treatment

In addition to lepton flavour, an exhaustive study of thermal leptogenesis would require
to take into account several effects, which have generally been studied apart from one
another in the context of leptogenesis with right-handed neutrinos.
(i) The fact that leptogenesis takes place at a temperature T ∼ M1 means that

quantities computed in zero-temperature quantum field theory should in principle
be corrected by including finite-temperature effects [187]. They are for instance
corrections to the couplings, to the propagator of massless fields and to the CP
asymmetry. Altogether, these effects can affect the result by O(1) corrections. To
a good approximation, corrections to the couplings are given by zero-temperature
renormalization at the scale Λ ∼ 2πT , which we took into account in our study
of leptogenesis with a scalar triplet.

(ii) Several Standard Model processes can affect the creation of the baryon asym-
metry. They include scatterings mediated by the Yukawa couplings of quarks
and leptons, electroweak sphalerons which redistribute the asymmetry between
leptons and quarks and QCD sphalerons. They are generally referred to as spec-
tator processes, because they do not directly modify B − L. Nevertheless, they
intervene indirectly in the dynamics and can modify the results substantially.
These processes were investigated in refs. [188–190]. We incorporated them in
leptogenesis with a scalar triplet by the mean of chemical equilibriums.

(iii) A new approach, based on Kadanoff-Baym equations in the closed time-path
formalism, allows to derive a quantum formulation of leptogenesis. This features
novelties such as non-markovian memory effects [191–194] and finite densities
effects [195, 196]. It also allows to derive flavour-covariant equations for the
density matrix in a natural way [183–186]. However a fully quantum treatment
of leptogenesis with right-handed neutrinos is still work in progress [197, 198].
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3.2 Leptogenesis with a scalar triplet: a general approach

The type II seesaw is one possible alternative to generate neutrino masses. Like the
type I seesaw, it allows to implement leptogenesis [199–204]. Indeed, the decay of the
scalar triplet violates lepton number by two units, which matches at least the second
Sakharov’s condition. In this section, we study a general scenario of leptogenesis with
a scalar triplet, before turning to a more specific model in the next one.

3.2.1 The setup

The present scenario is described by the Lagrangian of eq. (2.1.57). The scalar triplet
∆ has two decay channels: ∆→ `c`c and ∆→ HH. To simplify notations, we define
the effective couplings λ` =

√
tr(ff †) and λH = |µ|/M∆. The tree-level width and

branching ratios of ∆ are given by

Γ∆ = M∆
32π

(
λ2
` + λ2

H

)
, (3.2.1)

B` = λ2
`

λ2
` + λ2

H

, (3.2.2)

BH = λ2
H

λ2
` + λ2

H

. (3.2.3)

Unfortunately, CP is not violated by these decays, or at least not at a sufficiently
low order [205, 199]. Solving this problem requires the introduction of new states
and interactions, which typically generate new contributions to neutrino masses. For
instance, the presence of right-handed neutrinos in addition to the scalar triplet may be
motivated by a left-right symmetry [120] or by a SO(10) grand unified theory [117, 118].
Thus, the simple proportionality relation between the neutrino mass matrix and the
coupling matrix f , highlighted in 2.1.2, breaks down. Nevertheless, it is still a viable
option. In order to keep this study as general as possible, we will simply assume that
the additional states, whatever they are, are much heavier than the scalar triplet, and
that their main contribution at the triplet mass scale is summarized by an effective
operator, which is nothing else than the Weinberg operator (2.1.38) [203],

Leff = −1
2
καβ
Λ (`Tα iσ2H)C(HT iσ2`β) . (3.2.4)

Like before, we define the effective coupling λκ =
√

tr(κκ†). As a consequence of this
new term, the neutrino mass matrix is the sum of two independent contributions,

mναβ = 1
2µfαβ

v2

M2
∆

+ 1
2καβ

v2

Λ . (3.2.5)

Before going on, it should also be noticed that another effective operator is possible,

Ladd = −1
4
ηαβγδ

Λ2

(
`TαCiσ2~σ`β

)
.
(

¯̀
γ~σiσ2C ¯̀T

δ

)
. (3.2.6)
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It appears at least if the additional heavy state is another scalar triplet (see eq. (2.1.63)
for instance). In this case, labelling M ′∆ and f ′αβ the mass and the coupling to leptons
of this heavier scalar, the new coupling reads explicitly

ηαβγδ
Λ2 =

f ′αβf
′∗
γδ

M ′2∆
. (3.2.7)

We will disregard this contribution because it is suppressed by an additional power of
the high scale, even though it could still be relevant for particular configurations of
the parameters2. If the additional heavy state is a heavy neutrino or a fermion triplet,
this contribution does not exist at this order so it can safely be disregarded.

∆ ∆

ℓα

ℓβ ℓα

ℓβ
H

H

fαβ
µ∗

καβ

Figure 3.3: Diagrams responsible for the violation of CP in the decay of ∆ at one loop.

Let us consider now the decay of ∆. At the 1-loop order, this decay violates CP
because of the interference between the two processes displayed in fig. 3.3. The overall
CP asymmetry is defined as

ε∆ = 2Γ(∆c → ``)− Γ(∆→ `c`c)
Γ∆c + Γ∆

, (3.2.8)

with a factor 2 accounting for the fact that each decay produces two leptons. Com-
puting this quantity, one obtains [203]

ε∆ = 1
8πΛ

=
[
µ∗tr(f †κ)

]
λ2
` + λ2

H

= M∆
4πv2

√
B`BH

=
[
tr(m†∆mκ)

]
m̄∆

, (3.2.9)

where m∆ and mκ are the two contributions to the neutrino mass matrix of eq. (3.2.5),

(m∆)αβ = 1
2µfαβ

v2

M2
∆
, (mκ)αβ = 1

2καβ
v2

Λ . (3.2.10)

and m̄∆ =
√

tr(m†∆m∆).

2For instance, if the coupling of the heavier scalar to the Higgs is very suppressed while its coupling
to leptons is sizeable, the dimension-6 operator will not be negligible in comparison with the dimension-
5 one.
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3.2.2 A simplified model
At this stage, it is instructive to write down a minimal set of Boltzmann equations, ne-
glecting all the subtleties such as flavour effects or spectator processes. In other words,
we study a toy model which contains scalar triplets, Higgs doublets and a single species
of leptons. Leaving aside for now the effect of sphalerons, these fields communicate
with the rest of the universe only through perturbative electroweak interactions.

First, like in leptogenesis with right-handed neutrinos, there is an equation describ-
ing the evolution of the total density of the triplets Σ∆ = Y∆ + Y∆c [203],

sHz
dΣ∆
dz

= −
(

Σ∆
Σeq

∆
− 1

)
γ∆
D − 2

(Σ∆
Σeq

∆

)2

− 1

γ∆
A . (3.2.11)

The novelty with respect to the scenario with right-handed neutrinos is that the triplets
are sensitive to electroweak interactions, which has an important consequence. Indeed,
their density is maintained closed to its equilibrium value by fast gauge interactions,
which may seem contradictory with Sakharov’s third condition. These gauge interac-
tions are described by the second term in the right-hand side of eq. (3.2.11) with

γ∆
A = γ(∆∆c →WW, BB, HHc, ff c) . (3.2.12)

In particular, this term describes the annihilation of the triplets, which is in competi-
tion with their decay.

Then, since the triplet is not a self-conjugate state, it also stores an asymmetry
∆∆ = Y∆−Y∆c . Thus, there should be a priori three Boltzmann equations, describing
the asymmetries stored in the leptons doublet ∆`, the Higgs doublet ∆H and the
triplets ∆∆. However, these equations are not independent because of the conservation
law

2∆∆ −∆` + ∆H = 0 . (3.2.13)

Using this relation, we can express one of the asymmetries as a function of the others,
for instance

∆H = CkH∆k , (3.2.14)

with

CkH =
(
1 −2

)
, ∆k =

(
∆`

∆∆

)
. (3.2.15)

Then, the two equations for ∆` and ∆∆ are given by [203],

sHz
d∆`

dz
= ε∆

(
Σ∆
Σeq

∆
− 1

)
γD − 2B`

(
∆`

Y eq
`

+ ∆∆
Σeq

∆

)
γ∆
D

− 2
(

∆`

Y eq
`

+ CkH∆k

Y eq
H

)(
2γ``HcHc + γ`H`cHc

)
, (3.2.16)

sHz
d∆∆
dz

=
(
−∆∆

Σeq
∆
−B`

∆`

Y eq
`

+BH
CkH∆k

Y eq
H

)
γ∆
D . (3.2.17)
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Let us review the main effects. Annihilations, which produce a symmetric final state,
are generally in thermodynamic equilibrium and compete with the decays, which create
the lepton asymmetry. If the triplets annihilate much faster than they decay, no
asymmetry can be generated. Thus, this model requires the decay rate γD to be at
least comparable to γA. Again, this seems to be in contradiction with Sakharov’s third
condition because these fast reactions will quickly reach thermodynamic equilibrium.
However, one of the decay channels of the triplet can still be out of equilibrium if
the corresponding branching ratio is small enough, allowing to produce a sizeable
asymmetry.

To illustrate how this can work, we study an extreme case, in which

γ∆
D � γ∆

A , (3.2.18)

whereas B` is small enough to ensure that the decay channel ∆ → `c`c is out of
equilibrium, which implies B` � BH ' 1. Because of eq. (3.2.18), the Boltzmann
equation for the triplet density can be approximated by.

sHz
dΣ∆
dz

= −
(

Σ∆
Σeq

∆
− 1

)
γ∆
D . (3.2.19)

Then, assuming that the scattering rates are small, which is generally the case if the
couplings are not too large, and because B` is tiny, the Boltzmann equation for the
lepton asymmetry can be approximated by

sHz
d∆`

dz
' ε∆

(
Σ∆
Σeq

∆
− 1

)
γ∆
D . (3.2.20)

Considering eqs. (3.2.19) and (3.2.20), the solution is simply

∆`(z) ' −ε∆
(
Σ∆(z)− Σ0

∆

)
, (3.2.21)

where Σ0
∆ is the triplet abundance before any asymmetry is generated. Since ∆ is

sensitive to gauge interactions, it is initially produced thermally, so that Σ0
∆ is simply

given by thermodynamics,

Σ0
∆ '

45ζ(3)
π2g∗

, (3.2.22)

where g∗ is the effective number of relativistic degrees of freedom in thermal equilib-
rium. Finally, at the end of leptogenesis the triplets have disappeared, which gives

∆` ' ε∆Σ0
∆ . (3.2.23)

The efficiency η is often defined as

η = ∆`

ε∆Σ0
∆
. (3.2.24)
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In the case we are considering, η ' 1, which is its maximal value given that triplets
are initially in thermal equilibrium. The resulting baryon asymmetry is

nB
nγ
' 12

37 × 7.04× ε∆Σ0
∆ . (3.2.25)

A maximal efficiency η ∼ 1 can similarly be obtained if BH � B`. Of course, this is
oversimplified. In particular, as can be seen from eq. (3.2.9), if one of the branching
ratios is negligible, the CP asymmetry becomes very small. In this minimal scenario,
successful leptogenesis requires an interplay between a large asymmetry, favoured by
B` ∼ BH , and a sufficient efficiency. As we will see, the situation improves when flavour
effects are included, because the increase of the number of decay channels makes it
easier to find one which is out of equilibrium, without the requirement B` � BH .

3.2.3 Introduction of flavour and spectator processes
Taking into account flavour effects and spectator processes – by spectator processes
we mean processes that do not directly affect B − L – requires us to split the prob-
lem in several temperature ranges and keep only the relevant processes in each one of
them, in order to simplify a problem otherwise tremendously difficult. For instance, we
consider spectator processes, which come from Standard Model physics, to be either
negligible or very fast, which is generally a good approximation except at transitions
between two temperature ranges. When they are very fast, their effect can be en-
coded in relations between chemical potentials, which can be translated in relations
between the asymmetries. Since the asymmetry stored in lepton doublets is affected
by both Yukawa-mediated interactions of the type `α + tR → eα +Q3 and electroweak
sphalerons, it is more convenient to study the evolution of the B − L density, which
is unaffected by every Standard Model process. Then, since the washout terms due
to new physics are still functions of the lepton doublet asymmetry ∆`, we need to
express the latter as a function of the asymmetry stored in B − L, or more precisely
as a function of the asymmetries stored in the charges B/3−Lα, just as we expressed
∆H as a function of ∆` and ∆∆ previously.

The impact of Flavour

The relevant temperature range regarding flavour have been discussed in section 3.1.3.
Flavour effects in scalar triplet leptogenesis have been first investigated in refs. [206,
207]. Those papers focused mainly on the low-temperature regimes where the tau
Yukawa at least is in equilibrium. In particular, ref. [207] provided the correct flavour
structure of Boltzmann equations for temperatures lower than 109 GeV where all lepton
flavours can be treated as distinguishable states. However, both references disregarded
flavour effects at higher temperatures by making the assumption that, like in leptoge-
nesis with right-handed neutrinos, the problem could be reduced to one single flavour
in the high-temperature regime (T > 1012 GeV), and two flavours in the intermediate
regime (1012 GeV > T > 109 GeV) where the tau Yukawa is in equilibrium. This
approach gives a qualitative understanding of leptogenesis with a scalar triplet and
is a good approximation in some regions of parameter space, but it is not completely
correct because, as mentioned in 3.1.3 in the case of resonant leptogenesis, it is not
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possible to consistently define a single flavour that couples to the heavy state. Let us
discuss in more details the flavour structure in the three temperature ranges.
(i) Above 1012 GeV, the three lepton flavours are undistinguishable, but, because of

the structure of the coupling ∆`` which is not linear in the lepton doublets, it
is in general not possible to find a basis (`0, `⊥1 , `⊥2 ) such that the triplet decays
only to `0, like it was done in 3.1.3 for the right-handed neutrino. This means
that the single flavour approximation is never accurate in this scenario, even
for temperatures larger than 1012 GeV. Instead, since the decay of the triplet
generates states which are mixtures of the three undistinguishable flavours, the
lepton asymmetry should be described by a 3× 3 density matrix (∆`)αβ.
In this high-temperature regime, it is convenient to define the B−L asymmetry
as a 3× 3 density matrix as well as follows,

∆αβ = δαβ
9

∑
i=1,2,3

(∆Qi + ∆ui + ∆di)− (∆`)αβ , α, β ∈ {e, µ, τ} , (3.2.26)

where ∆Qi , ∆ui and ∆di are the asymmetries stored in the quarks. The mo-
tivations for this choice are the following: the diagonal elements of this matrix
describe the asymmetries stored in the charges B/3−Lα, while the trace gives the
total density of B − L. Moreover, this is also flavour-covariant: under a flavour
rotation, it transforms as in eq. (3.1.31). The reason why we do not include the
right-handed lepton asymmetry in this definition is because, in this regime, this
asymmetry is always zero since no interaction able to create it is fast enough.

(ii) Between 1012 and 109 GeV, fast interactions mediated by the tau Yukawa come
in equilibrium. These interactions will typically project the states created in the
decay of ∆ on the tau direction or on the e−µ space. As a consequence, the off-
diagonal elements (∆`)ατ and (∆`)τα decay very quickly. Thus, the asymmetry
stored in the tau doublet can be described separately while the asymmetry stored
in the e−µ space is still described by a 2×2 density matrix. Another consequence
is that, because of interactions such as `τ+tR → τR+Q3, a part of the asymmetry
stored in the tau doublets will be transferred to the right-handed tau.
In this regime, we split the B − L asymmetry into a 2× 2 density matrix and a
separate asymmetry for B/3− Lτ ,

∆αβ = δαβ
9

∑
i=1,2,3

(∆Qi + ∆ui + ∆di)− (∆`)αβ , α, β ∈ {e, µ} , (3.2.27)

∆τ = 1
9
∑

i=1,2,3
(∆Qi + ∆ui + ∆di)−∆`τ −∆τR . (3.2.28)

(iii) Below 109 GeV, the situation is simpler to apprehend, because we do not have
to deal with undistinguishable states as before, therefore we recover a situation
which is easier to understand intuitively, with three lepton doublet asymmetries
∆`e , ∆`µ and ∆`τ , and the asymmetries in the B/3− Lα charges are given by

∆α = 1
9
∑

i=1,2,3
(∆Qi + ∆ui + ∆di)−∆`α −∆eα . (3.2.29)
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Note that in this regime, we could still in principle work with a 3 × 3 density
matrix, but it would be diagonal. In this regime, our approach and those of refs.
[206, 207] agree.

In the present work, for a given triplet mass, we fix the flavour structure once and
for all based on which Yukawa-mediated scatterings are in equilibrium at T = M∆.
Concretely, this means that we work with a 3× 3 density matrix for M∆ > 1012 GeV,
a 2 × 2 density matrix and a separate asymmetry for the tau for 109 < M∆ < 1012

GeV, and three number asymmetries for M∆ < 109 GeV. A fully rigorous approach
would be to include explicitly Yukawa-mediated scatterings in Boltzmann equations. In
particular, in the context of leptogenesis with right-handed neutrinos, it was pointed
out in ref. [208] that, even when these scatterings are in equilibrium, they do not
necessarily affect the flavour structure of Boltzmann equation as long as they are slower
than inverse decays `H → N1. Ref. [207] adapted this discussion to leptogenesis
with a scalar triplets. To summarize, the flavour structure is in reality determined
by whichever process is faster. The difficulty comes from the fact that this changes
over time: for instance, inverse decays can be faster around T = M∆, but at later
times, Yukawa-mediated scatterings always dominate. In 3.2.4, we will see how our
simplifying approximation affects the results.

Spectator processes

We also have to include the various spectator processes. As already said, in each
temperature range, the fast reactions in equilibrium impose relations between the
chemical potentials and therefore between the asymmetries. These relations take the
form of a linear system of equations. In the end, every asymmetry can be expressed
as a function of the B − L asymmetry and the triplet asymmetry. Then, to write
Boltzmann equations, we will only need the explicit expression of the ∆`’s and ∆H ,
which we will write formally as ∆a = Cka∆k.

The relevant processes for the computation of chemical potentials in the context
of scalar triplet leptogenesis were exhaustively discussed in ref. [207] in a non-flavour-
covariant framework (see previous discussion). We adapted the expressions presented
in this work to our flavour-covariant formalism: in our case, the coefficients Cka are
defined by the following relations.

(i) In the high-temperature range T > 1012 GeV, where both the lepton asymmetry
and the asymmetry in B − L are 3× 3 matrices,

(∆`)αβ = Cγδαβ∆γδ + C∆
αβ∆∆ ,

∆H = CγδH ∆γδ + C∆
H∆∆ . (3.2.30)

(ii) In the intermediate range 109 GeV < T < 1012 GeV, we define

(∆`)αβ = Cγδαβ∆γδ + Cταβ∆τ + C∆
αβ∆∆ , (α, β, γ, δ) ∈ {e, µ}

∆`τ = Cγδτ ∆γδ + Cττ ∆τ + C∆
τ ∆∆ ,

∆H = CγδH ∆γδ + CτH∆τ + C∆
H∆∆ . (3.2.31)
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(iii) Finally, in the low temperature range 109 GeV > T , this reduces to

∆`α = Cγα∆γ + C∆
α ∆∆ ,

∆H = CγH∆γ + C∆
H∆∆ . (3.2.32)

Let us review quickly the various effects which are relevant for the computation of
these coefficients. A reaction a1 + ... + an → b1 + ... + bn in equilibrium enforces the
equality on the chemical potentials of the ai’s and b′is

µa1 + ...+ µan − µb1 − ...− µbn = 0 . (3.2.33)

Using the relation between the chemical potential and the asymmetry

nf − nf̄ = gfT
3

6 µf for a fermion , (3.2.34)

nb − nb̄ = gbT
3

6 µb for a boson , (3.2.35)

where gf and gb are the numbers of degrees of freedom of each field, we can translate
eq. (3.2.33) in a condition on the asymmetries. First of all, the conservation of the
hypercharge is always valid and implies∑

i=1,2,3
(µqi + 2µui − µdi) −

∑
α=e,µ,τ

(µ`α + µeα) + 2µH + 6µ∆ = 0 . (3.2.36)

Then, the QCD and electroweak sphalerons, which come in equilibrium below 1013 and
1012 GeV respectively, enforce∑

i=1,2,3
(2µQi − µui − µdi) = 0 (QCD) , (3.2.37)

∑
i=1,2,3

3µQi +
∑

α=e,µ,τ
µ`α = 0 (EW) . (3.2.38)

The various Yukawa-mediated scatterings translate into

µQi − µui + µH = 0 (up-type quark) , (3.2.39)
µQi − µdi − µH = 0 (down-type quark) , (3.2.40)
µ`α − µeα − µH = 0 (charged lepton) . (3.2.41)

These reactions and the range in which they are relevant are summarized in table 3.1.
We can use all the previous constraints to compute the C coefficients.

Boltzmann equations

The Boltzmann equation for the triplet density Σ∆ is unaffected by these new effects,
therefore eq. (3.2.11) remains valid in any temperature range. The B − L density
is affected only by interactions contained in the Lagrangian of eq. (2.1.57), so that
deriving the Boltzmann equation for the matrix ∆αβ or for ∆α is not more difficult than
writing the Boltzmann equation for the lepton asymmetry when spectator processes
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Temperature range (GeV) SM reactions in equilibrium
T > 1015 None[
1013, 1015] yt[
1012, 1013] + QCD sphalerons[
109, 1012] + yb + yτ + yc + EW sphalerons[
105, 109] + yµ + ys
T < 105 + yu + yd + ye

Table 3.1: SM reactions in equilibrium depending on the temperature. ya stands for
scatterings mediated by the Yukawa coupling of particle a.

are neglected. The only subtlety is that only the part of the B − L density which
is stored in the lepton doublets is affected by the washout, so we should write the
right-hand side like before in terms of ∆` and then make the substitution ∆` → Ck` ∆k.
For temperatures larger than 1012 GeV, the Boltzmann equation for the B−L density
and the triplet asymmetry is given by

sHz
d∆αβ

dz
= −ε∆αβ

(
Σ∆
Σeq

∆
− 1

)
γ∆
D +W ID

αβ +W `H
αβ + w4`

αβ + w`∆αβ . (3.2.42)

sHz
d∆∆
dz

= −1
2 tr

[
W ID

]
−BH

(
∆∆
Σeq

∆
− CkH∆k

Y eq
H

)
γ∆
D . (3.2.43)

The termsW ID
αβ andW `H

αβ are washout terms respectively due to inverse decays ``→ ∆c

and lepton-Higgs scatterings ``→ HcHc and `H → `cHc. These terms where already
present in our simplified model eq. (3.2.16). The two last terms on the right-hand
side of eq. (3.2.42), labelled with a lower case w, are new, because they describe pure
flavour effects such as `α`β → `γ`δ, which do not modify the total lepton number,
and therefore satisfy tr[w] = 0. The source and washout terms come with opposite
sign with respect to eq. (3.2.16), because we consider now the evolution of the B − L
density.

The derivation of flavoured source and washout terms for the density matrix, using
the Closed Time-Path formalism (CTP), is described in Appendix A.4. For tempera-
tures larger than 1012 GeV, the 3× 3 matrix of CP asymmetry is

ε∆αβ = 1
8πi

M∆
v2

√
B`BH

(mκm
†
∆ −m∆m

†
κ)αβ

m̄∆
. (3.2.44)

For the clarity of notations, we write the washout terms as functions of ∆` and ∆H , but
it should be remembered that, in order to give a closed form to Boltzmann equations,
these quantities are to be expressed as Ck` ∆k and CkH∆k. The washout term due to
inverse decays is given in terms of ∆` by

W ID
αβ = 2B`

λ2
`

[
(ff †)αβ

∆∆
Σeq

∆
+ 1

4Y eq
`

(
2f∆T

` f
† + ff †∆` + ∆`ff

†
)
αβ

]
γ∆
D . (3.2.45)
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The term W `H
αβ , describing scatterings between lepton doublets and Higgs doublets, is

given by the somewhat cumbersome expression

W `H
αβ = 2

λ2
`

[
(ff †)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2f∆T

` f
† + ff †∆` + ∆`ff

†
)
αβ

]
γ∆
`H

+ 2
< [tr(fκ†)]

[
(fκ†)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2f∆T

` κ
† + fκ†∆` + ∆`fκ

†
)
αβ

]
γI`H

+ 2
< [tr(fκ†)]

[
(κf †)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2κ∆T

` f
† + κf †∆` + ∆`κf

†
)
αβ

]
γI`H

+ 2
λ2
κ

[
(κκ†)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2κ∆T

` κ
† + κκ†∆` + ∆`κκ

†
)
αβ

]
γκ`H , (3.2.46)

where γ∆
`H , γκ`H and γI`H are respectively the contributions of the triplet, the effective

operator of eq. (3.2.4) and the interference term to ``→ HcHc and `H → `cHc. More
precisely we define

γ`H = 2γ′``HcHc + γ`H`cHc , (3.2.47)

where the prime means that we subtracted the contribution of an on-shell intermediate
state, as it is explained in appendix A.2, and split γ`H into these three contributions

γ`H = γ∆
`H + 2γI`H + γκ`H . (3.2.48)

A way to check the consistency of these two first washout terms is to make sure
that when taking the single flavour approximation, we recover the washout terms of
eq. (3.2.16). The two purely flavoured washout terms are given by

w4`
αβ = 2

λ4
`

[
λ2
`

4Y eq
`

(
2f∆T

` f
† + ff †∆` + ∆`ff

†
)
αβ
− tr(∆`ff

†)
Y eq
`

(ff †)αβ

]
γ4` , (3.2.49)

w`∆αβ = 1
tr(ff †ff †)

[
1

2Y eq
`

(
ff †ff †∆` − 2ff †∆`ff

† + ∆`ff
†ff †

)
αβ

]
γ`∆ , (3.2.50)

where we defined

γ4` = 2γ′```` + γ``
c

``c , (3.2.51)
γ`∆ = γ`∆`∆ + γ′`∆

c

`∆c + γ``
c

∆∆c , (3.2.52)

the rates being summed over every flavour. Again, we can check that these two purely
flavoured washout processes vanish in the limit of a single flavour.

Another important check is that the equation obtained is covariant in flavour space,
as was explained in the introduction of 3.2.3. Under a unitary rotation `α → `′i = V ∗iα`α,
the density matrix and the couplings transform according to

∆αβ → ∆′ij = (V∆V †)ij , (∆`)αβ →
(
∆′`
)
ij = (V∆`V

†)ij ,

fαβ → f ′ij = (V fV T )ij , καβ → κ′ij = (V κV T )ij . (3.2.53)
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which ensures that all the source and washout term are flavour covariant, namely that
they transform like the density matrix3,

Sαβ → S′ij =
(
V SV †

)
ij
, Wαβ →W ′ij =

(
VWV †

)
ij
. (3.2.54)

When the temperature drops below 1012 GeV, Boltzmann equations for the 2 × 2
density matrix and the τ asymmetry can easily be deduced from the previous case
by performing the replacements ∆ατ → δατ∆τ and (∆`)ατ → δατ∆`τ . Formally, the
system to solve becomes

sHz
d∆αβ

dz
= −ε∆αβ

(
Σ∆
Σeq

∆
− 1

)
γ∆
D +W ID

αβ +W `H
αβ + w4`

αβ + w`∆αβ , α, β = e, µ ,

(3.2.55)

sHz
d∆τ

dz
= −εττ

(
Σ∆
Σeq

∆
− 1

)
γ∆
D +W ID

τ +W `H
τ + w4`

τ + w`∆τ , (3.2.56)

sHz
d∆∆
dz

= −1
2
(
W ID
ee +W ID

µµ +W ID
τ

)
−BH

(
∆∆
Σeq

∆
− CkH∆k

Y eq
H

)
γ∆
D , (3.2.57)

with, for instance,

W ID
αβ = 2B`

λ2
`

[
(ff †)αβ

∆∆
Σeq

∆

+ 1
4Y eq

`

(
2f(∆`)T|e, µf

† + ff †(∆`)|e, µ + (∆`)|e, µff †
)
αβ

+ 1
2Y eq

`

fατf
∗
βτ∆`τ

]
γ∆
D ,

(3.2.58)

where we used the notation (∆`)|e, µ to make clear that this is the 2×2 matrix describing
the e− µ subspace, and

W ID
τ = 2B`

λ2
`

[
(ff †)ττ

∆∆
Σeq

∆

+ 1
2Y eq

`

 ∑
α, β= e, µ

fατf
∗
βτ (∆`)βα +

(
(ff †)ττ + |fττ |2

)
∆`τ

γ∆
D . (3.2.59)

Finally, as the temperature drops below 109 GeV, Yukawa-mediated scatterings
bring all the off-diagonal elements to zero. Again the flavour structure Boltzmann
equations can be deduced from the high-temperature case by setting (∆`)αβ → δαβ∆`α .
Formally, the system describing the asymmetries now includes three equations for the

3 This can be checked explicitly for the various terms, for instance

f∆T
` f
† → f ′∆′`f ′† =

(
V fV T

) (
V ∗∆`V

T
) (
V ∗fV †

)
= V (f∆`f)V † .
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∆α’s with α = e, µ, τ and one for ∆∆,

sHz
d∆α

dz
= −εαα

(
Σ∆
Σeq

∆
− 1

)
γ∆
D +W ID

α +W `H
α + w4`

α + w`∆α , (3.2.60)

sHz
d∆∆
dz

= −1
2

∑
α=e,µ,τ

W ID
α −BH

(
∆∆
Σeq

∆
− CkH∆k

Y eq
H

)
γ∆
D . (3.2.61)

A qualitative word can be said before proceeding to the numerical computations.
When discussing about the simplified model in 3.2.2, we showed that the CP asymme-
try is efficiently converted into a lepton asymmetry when the washout is weak. This
remark remains true once flavour effects and spectator processes are included in the
computation: in particular, in the cases studied in our simplified model, with λ` � λH
or λH � λ`, the efficiency will also be large. For instance, we focus on the case
λ` � λH in the high-temperature regime T > 1012 GeV. The washout of the asymme-
try stored in lepton doublets, which is essentially governed by λ`, can be neglected in
first approximation (this holds as long as λκ/Λ is not too large). Then, the equation
for the B − L asymmetry can be approximated by

sHz
d∆αβ

dz
= −ε∆αβ

(
Σ∆
Σeq

∆
− 1

)
γ∆
D . (3.2.62)

Taking the trace, we recover the unflavoured equation

sHz
d∆B−L
dz

= −ε∆
(

Σ∆
Σeq

∆
− 1

)
γ∆
D , (3.2.63)

and therefore the result is the same. The same kind of reasoning applies if λH � λ`,
leading to a large efficiency in both the flavoured and the unflavoured computation.
However, for us, such situations are not the most interesting ones, because then, flavour
effects are of little relevance. The novelty here is that there can also be situations in
which, even though the total washout is strong, some flavours are weakly washed out,
so that the B−L asymmetry can grow anyway. Therefore, flavour is more likely to be
relevant for situations with BH ∼ B`, for which the unflavoured computation would
give a small efficiency. We expect flavour effects to play a particularly important role
when the asymmetry is stored mainly in flavours that are little washed out, because
such cases are overlooked by the unflavoured computation.

3.2.4 Numerical approach
Typical solutions of Boltzmann equations are displayed in fig. 3.4. These computa-
tions were performed in the high-temperature regime, using the 3 × 3 density matrix
formalism. However, the qualitative behaviour of the solutions displayed here is not a
characteristic feature of this flavour regime. For the parameters chosen here, the CP
asymmetry is pretty large, namely ε∆ = −3.30× 10−4.

The difference between the two plots of fig. 3.4 is the initial condition. For the
left plot, we chose for the initial triplet density the equilibrium value Σeq

∆ defined in
eq. (3.2.22), which seems a good choice for a gauge multiplet. In this case, the triplet
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Figure 3.4: Comoving number density of triplets and antitriplets Σ∆ and asymmetries
∆∆, ∆H and ∆B−L = tr(∆αβ) as a function of z = M∆/T , for M∆ = 5 × 1012 GeV,
λH = 0.1 and m∆ = imν . The initial triplet density at z = 10−2 is chosen to be the
equilibrium density Σeq

∆ (left) or zero (right). Also shown is the departure of Σ∆ from
its equilibrium value. Asymmetries are plotted in units of the total CP asymmetry in
triplet decays ε∆.

density remains always very close to equilibrium, but nevertheless a sizeable baryon
asymmetry can grow, leading to a baryon-to-photon ratio nB/nγ = 1.46×10−8. When
we assume instead a bit arbitrarily a vanishing initial abundance for the triplets (right
plot), it appears they are anyway quickly generated by gauge interactions and reach
soon their equilibrium density. After this first phase, we recover the same behavior as
in the previous case, and the final baryon-to-photon ratio is barely modified, nB/nγ =
1.45× 10−8. This justifies retrospectively the choice of an initial equilibrium density.

In what follows, we will always perform computations starting from zmin = 10−2,
with triplets initially in equilibrium Σ∆(zmin) = Σeq

∆ , knowing that this choice has
little influence on the final result, besides being better motivated. We will now present
more general results, obtained by exploring parameter space. The results summarized
here were presented in details in ref. [209]

Computations

In what follows we will compare our results, obtained by solving numerically the Boltz-
mann equations derived in section 3.2.3 with the relevant constraints coming from
chemical equilibriums, which for convenience we will refer to as the “full computa-
tion” – even though we cannot claim that it is exhaustive since, for instance, it is still
performed in the Boltzmann approximation – to those obtained when performing the
following approximations.

(i) In order to identify the effect of spectator processes alone, we perform the ap-
proximation of including flavour but neglecting completely spectator processes.
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More precisely, we solve the Boltzmann equation for the 3 × 3 density matrix
(3.2.42) and we use the relations

(∆`)αβ = −∆αβ , (3.2.64)
∆H = − tr [∆]− 2∆∆ , (3.2.65)

that apply when no spectator process is in equilibrium, to express ∆` and ∆H

whatever the temperature range. In other words, we use in every range a Boltz-
mann equation that, strictly speaking, is valid only above 1015 GeV. We will refer
to this computation as FC (Flavour-Covariant)

(ii) Conversely, in order to identify the effect of flavour alone, and more precisely in
the high temperature regimes where the density matrix formalism should apply,
we perform a computation that does not use this formalism, but includes this
time spectator processes through the relations coming from the relevant chemical
equilibriums. More precisely, for T > 1012 GeV, we consider one single flavour
and use relations of the form

∆`0 = C0
0∆0 + C∆

0 ∆∆ , (3.2.66)
∆H = C0

H∆0 + C∆
H∆∆ . (3.2.67)

where ∆0 = ∆B−L is the total B−L asymmetry. For 109 GeV < T < 1012 GeV,
we consider two flavours (τ and a combination of e and µ that we call `0), and
the C coefficients are defined as

∆`0 = C0
0∆0 + Cτ0 ∆τ + C∆

0 ∆∆ , (3.2.68)
∆`τ = C0

τ∆0 + Cττ ∆τ + C∆
τ ∆∆ , (3.2.69)

∆H = C0
H∆0 + CτH∆τ + C∆

H∆∆ . (3.2.70)

We will refer to this computation as 1F+SP (1 Flavour + Spectator Processes)
or 2F+SP (2 Flavours + Spectator Processes) depending on the temperature
range.

(iii) Finally, we will compare the result with that obtained by solving the simplified
model described by eqs. (3.2.11), (3.2.16) and (3.2.17), that does not include
flavour nor spectator processes. We will refer to this approach as 1F.

The comparison between the full computation, involving flavour effects and specta-
tor processes, and this latter approximation shows the relevance of flavour even at high
temperatures, which is a new feature compared to the leptogenesis scenario presented
in 3.1.3.

Parametrization

The main difficuly in the numerical approach is related to the large number of free
parameters, just like in the model presented in 3.1.3. Indeed, we need to choose
numerically the entries of the two 3 × 3 coupling matrices, as well as the mass of
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the triplet M∆ and its coupling to the Higgs µ (or equivalently the effective coupling
λH). It is convenient to fix first M∆, λH and the unknown parameters of the neutrino
mass matrix mν , which are the Dirac phase δ, the two Majorana phases ρ and σ, the
hierarchy, and the mass of the lightest neutrino mν1 (NH) or mν3 (IH), and finally to
parametrize the two contributions to the neutrino mass matrix. Actually, eq. (3.2.5)
simplifies this task a little bit, because once the contribution of the triplet m∆ is
chosen, mκ is fully determined.

The main effect of the running of the neutrino mass matrix at the scale M∆ is to
multiply the eigenvalues by a common factor r(M∆)4 which varies between 1.2 and 1.4
as the triplet mass goes from 108 to 1014 GeV. We will take this into account simply
by rescaling the squared mass splittings ∆m2

ij by a factor r2. To fix things once and
for all in this sector, we consider a normal hierarchy with a lightest neutrino mass
mν1 = 10−3 eV at the scale M∆, and vanishing phases δ = ρ = σ = 0.

The contribution m∆ is a 3 × 3 complex matrix, so in full generality it contains
three masses, three mixing angles, and six phases. As explained in section 2.1.1, the
phases of the lepton fields have already been fixed in order to obtain the structure of
the PMNS matrix given in eq. (2.1.16). Thus, we do not have the freedom to eliminate
any phase from m∆ through rephasings of the lepton fields, so that its six phases are
physical. We parametrize m∆ as

m∆ = U∗ × V ∗ × diag (m∆1, m∆2, m∆3)× V † × U † , (3.2.71)

where U is the PMNS matrix. This parametrization makes explicit the rotation be-
tween the basis of neutrino mass eigenstates and the basis in which m∆ is diagonal,
which is encoded in the unitary matrix V . We adopt for V a parametrization similar
to that of the PMNS matrix, but with three additional phases, i.e.

V =

eiβ1 0 0
0 eiβ2 0
0 0 eiβ3

×R(φ23, φ13, φ12, γ)×

eiα1 0 0
0 1 0
0 0 eiα2

 , (3.2.72)

where R is defined as

R(φ23, φ13, φ12, γ) =

 c12c13 s12c13 s13e
−iγ

−s12c23 − c12s13s23e
iγ c12c23 − s12s13s23e

iγ c13s23
s12s23 − c12s13c23e

iγ −c12s23 − s12s13c23e
iγ c13c23

 ,

cij = cosφij , sij = sinφij . (3.2.73)

The choice φ12 = φ13 = φ23 = 0 gives Rkl = δkl, which corresponds to the particular
situation where the matrix m∆ is diagonal in the basis of neutrino mass eigenstates.

The matrix mκ is then simply defined by

mκ = mν −m∆ . (3.2.74)

4In principle, r also depends on the mass of the lightest neutrino, but this dependence is weak and
can be neglected in most cases. An exception to this occurs for quasi-degenerate neutrinos, which we
will not consider here.
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Thanks to this relation, we can conveniently rewrite the total CP asymmetry of
eq. (3.2.9) by noticing that

=
[
tr(m†∆mκ)

]
m̄∆

=
=
[
tr(m†∆mν)

]
m̄∆

. (3.2.75)

Since tr(m†∆mν) is a scalar product, according to Cauchy-Schwarz inequality, the total
CP asymmetry is maximal for the choice m∆ ∝ i×mν , which implies β1 = β2 = β3 =
π/4, α1 = α2 = γ = 0 and φ12 = φ13 = φ23 = 0. In this case, the other contribution
mκ is far from being negligible, namely mκ =

√
2e−iπ/4mν , and the CP asymmetry is

simply

ε∆ = M∆m̄ν

4πv2

√
B`BH , (3.2.76)

with m̄ν =
√

tr(m†νmν). This is the upper bound for given values of M∆ and λH .
However, since we want to study leptogenesis in a flavoured context, the choice that
makes the overall CP asymmetry maximal is not necessarily the one that gives the
largest baryon asymmetry in the end, because of the interplay between the various
decay channels of the triplet. More generally, inserting the expression of eq. (3.2.71)
in eq. (3.2.44), the flavoured CP asymmetry is

ε∆αβ = 1
8πi

M∆
v2

√
B`BH
m̄∆

∑
i,j,k

mνim∆k

[
U∗αiUβjVikVjk − U∗αjUβiV ∗ikV ∗jk

]
. (3.2.77)

In order to focus on the case where the contribution m∆ is of the same order of
magnitude asmν (so thatmκ is also of the same order of magnitude or smaller), we will
always take m̄∆ = m̄ν . Of course, it would be difficult to cover the whole parameter
space, but let us now consider a few interesting and simple ansätze.

Comparison of the various computations

The case of alignment is the most simple one. Indeed, when φ12 = φ13 = φ23 = 0, V
reduces to a diagonal matrix of phases. Moreover, in this case it is possible to absorb
the αk’s into redefinitions of the βk’s, so that V is simply

V = diag(eiβ1 , eiβ2 , eiβ3) . (3.2.78)

Then the explicit expression of the flavoured CP asymmetry is

ε∆αβ = M∆
4πv2

√
B`BH
m̄∆

∑
i

mνim∆i U
∗
αiUβi sin 2βi , (3.2.79)

and, taking the trace, the overall asymmetry is

ε∆ = M∆
4πv2

√
B`BH
m̄∆

∑
i

mνim∆i sin 2βi . (3.2.80)
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It is worth noticing that it is possible to be in a situation where the entries of the
matrix ε∆ are nonzero, but the trace vanishes because of a compensation between the
sin βi. In this case, leptogenesis could be successful due to flavour effects, even though
the overall CP asymmetry is zero. In the case where the two matrices m∆ and mν are
aligned, we considered the two following ansätze.

(i) In the special case already mentioned m∆ = imν , the overall CP asymmetry is
maximal, and the elements of the CP asymmetry matrix are

ε∆αβ = M∆
4πv2

√
B`BH
m̄ν

∑
i

mν
2
i U
∗
αiUβi . (3.2.81)

In this case, we do not expect flavour effects to be spectacular. For instance, in
the high-temperature regime T > 1012 GeV, because of flavour covariance, the
computation can be performed in the basis (`1, `2, `3) corresponding to neutrino
mass eigenstates, in which the CP asymmetry becomes simpler,

ε∆ij = M∆
4πv2

√
B`BH
m̄ν

mν
2
i δij . (3.2.82)

Then, it is easy to see that, because m̄ν ' mν3, the CP asymmetry matrix is
dominated by its (3, 3) entry,

ε∆ij ∼
M∆
4πv2

√
B`BH

0 0 0
0 0 0
0 0 m̄ν

 , (3.2.83)

so that the asymmetry will be essentially produced in `3, but since the washout
is governed by the couplings f and κ that have the same hierarchy,

fij = iλ` δij
mνi

m̄ν
∼ iλ`

0 0 0
0 0 0
0 0 1

 , (3.2.84)

κij = e−iπ/4λκ δij
mνi

m̄ν
∼ e−iπ/4λκ

0 0 0
0 0 0
0 0 1

 , (3.2.85)

it will also principally affect the flavour `3. In first approximation, it seems that
is is enough to consider only this flavour to get the dominant effects. Of course,
the discussion above is a bit oversimplified, since the hierarchy between neutrino
masses is not huge, and an asymmetry could also develop in the flavours `1 and
`2, but nevertheless, flavour effects will not change the order of magnitude of the
result.

(ii) We also studied the case where β1 = β2 = β3 = π/4, which optimizes the
asymmetry, but the eigenvalues of the two matrices mν and m∆ are different.
We will use the parametrization

m∆1 =
√

1− x2y m̄ν , m∆2 = x y m̄ν , m∆3 =
√

1− y2m̄ν , (3.2.86)
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Figure 3.5: Comparison of the final baryon asymmetries obtained via different com-
putations, for a triplet mass M∆ = 5 × 1012 GeV, as a function of λ`, for m∆ = imν

(left) and m∆ = mxy
∆ (x = 0.05, y = 0.95) (right). The equality B` = BH occurs for

λ` ' 0.148. The legend uses the notations defined at the beginning of section 3.2.4.

and study the evolution of the baryon asymmetry when x and y vary. We will
refer to this ansatz as mxy

∆ . Note that the previous case can be recovered through
the particular choice

x = mν2√
m2
ν1 +m2

ν2

, y =

√
m2
ν1 +m2

ν2

m̄ν
. (3.2.87)

More generally, this ansatz, by relaxing the condition that gives the maximal
overall CP asymmetry, allows to look for a possible enhancement of the efficiency
due to flavour effects, while giving a large overall CP asymmetry.
This ansatz gives significant flavour effects when λ` and λH are not too different.
In the opposite case, we recover a situation where the unflavoured computation
gives already a large efficiency, and the introduction of flavour does not modify
this result. For λ` ∼ λH , it appears that the choice x = 0.95, y = 0.05 is the one
that maximizes the final baryon asymmetry, even though it is quite far from the
situation m∆ = imν that maximizes the total CP asymmetry.

In figs. 3.5 and 3.6, we compared the results of the various computations for these
two ansätze. This confirms that flavour effects are not very large when m∆ = imν .
At best, they merely enhance the result by a factor 2 with respect to the unflavoured
computations. The ansatz mxy

ν , on the other hand, shows how relevant flavour effects
can be, with a final baryon asymmetry up to 10 times larger than in the unflavoured
approximations.

In the high-temperature regime (fig. 3.5), it appears that the flavour-covariant
computation that does not include spectator processes is a decent approximation to
the full computation. In comparison, the one-flavour approximations neglect the most
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Figure 3.6: Comparison of the final baryon asymmetries obtained via different com-
putations, for a triplet mass M∆ = 1011 GeV, as a function of λ`, for m∆ = imν

(left) and m∆ = mxy
∆ (x = 0.05, y = 0.95) (right). The equality B` = BH occurs for

λ` ' 2.08× 10−2.

important effect in this regime. When the tau Yukawa coupling is in equilibrium,
(fig. 3.6), the two-flavour computation that includes spectator processes is a much
better approximation. The reason for this is that, in this regime, one of the main
effects of the spectator processes is precisely to destroy the 3 × 3 flavour covariance.
However, there exists situations in which the two-flavour computation is not even a
good approximation in the regime where the tau Yukawa is in equilibrium, as we are
going to see in the next part.

The comparison of the two ansätze also shows that the choicem∆ = imν , that gives
the maximal overall CP asymmetry does not necessarily maximize the final baryon
asymmetry, once flavour effects are properly included.

Discussion on the temperature ranges (continued)

As explained in 3.2.3, in the present work, we choose the flavour structure depending
on the triplet mass only, even though leptogenesis could take place in two successive
regimes. This approximation may affect the result when the triplet mass is not too
far from the temperature at which Yukawa-mediated scatterings reach equilibrium:
indeed, if such is the case, the choice of a flavour structure rather than another may
seem a bit arbitrary.

In order to evaluate the error made with our approximation, we takeM∆ = 5×1011

GeV, which means that the tau Yukawa-mediated scatterings reach equilibrium during
the leptogenesis era. Three computations can then be performed.

• One that includes explicitly Yukawa-mediated scatterings in Boltzmann equa-
tions. Explicitly, we add the following washout term [180],

WYukawa
αβ = −

[
(∆`)ατδατ + (∆`)τβδβτ

2Y eq
`

− (∆`)ττδατδβτ
Y eq
`

]
γτ . (3.2.88)
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Figure 3.7: Comparison of the final baryon asymmetries obtained via different com-
putations, for a triplet mass M∆ = 5 × 1011 GeV, as a function of λ`, for m∆ = imν

(left) and m∆ = mxy
∆ (x = 0.05, y = 0.95) (right).

• Since the tau Yukawa is in equilibrium at T = M∆ (which is the criterium
used throughout this work), one can choose to perform the computation with a
2 × 2 density matrix and a separate tau asymmetry. This amounts to assume
that the decay of the off-diagonal elements ∆ατ and ∆τα is fast enough. This
is the approximation made in the rest of this work. We label this computation
“2× 2 + 1”.

• Since inverse decays are in general faster than Yukawa-mediated scatterings at
T = M∆, one could also choose to perform the computation with a 3 × 3 den-
sity matrix. In this case, one neglects completely the decay of the off-diagonal
elements ∆ατ and ∆τα. We label this approximation “3× 3”.

On fig. 3.7, we compare the results of these various computations. As could be
expected, the result of the computation that includes explicitly Yukawa-mediated scat-
terings is comprised between the results of the two approximations, which both give
errors within a few 10%. Sometimes the agreement is much better, in particular for
large and small values of λ`: this is no surprise because, as already discussed, flavour
effects are not very important in such situations, so that the results depend little on
the flavour structure. For m∆ = imν , the approximation “2× 2 + 1” is slightly better
(with an error of at most 25%, against 45% for the approximation “3× 3”), while for
m∆ = mxy

∆ (x = 0.05, y = 0.95), it is in good agreement with the computation that
includes explicitly Yukawa-mediated scatterings.

To conclude, the approximation that we use here is not completely accurate when
the triplet mass is close to the scale at which Yukawa-mediated scatterings reach
equilibrium. This is due to the fact that these scatterings are not really fast enough
to destroy completely off-diagonal elements of the density matrix. However, the error
remains within 25%, and decreases quickly when the triplet mass is further from the
transition scale.
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Figure 3.8: Left: isocurves of the final baryon asymmetry as a function of β1 and φ12
for the ansatz m∆ = mβφ

∆ , M∆ = 5×1011 GeV and λH = 0.1. Red dashed lines: result
of the full computation. Blue dotted lines: result of the 2-flavour computation with
spectator processes (2F+SP). The red region indicates values larger than the observed
baryon-to-photon ratio 3.1.1. Right: ratio of the results of the two computations
nfullB /n2F+SP

B . The thick red lines signal a vanishing baryon asymmetry from the 2F+SP
computation.

Maximal flavour effects

It is also interesting to study the case in which the two matrices m∆ and mν are
misaligned, that is when one of the φ angles at least is nonzero. We focus on the
situation where only the angle φ12 is nonzero, because it leads to interesting flavour
effects. We set the α phases to zero, and studied the case where β2 = β3 = 0, whereas
β1 and φ12 vary. In this case, the rotation matrix is

V =

c12e
iβ1 s12e

iβ1 0
−s12 c12 0

0 0 1

 . (3.2.89)

This ansatz highlights the role of flavour: considering again the high-temperature
regime which makes the qualitative discussion simpler, it appears that, in the basis
(`1, `2, `3) corresponding to neutrino mass eigenstates, the asymmetry will be essen-
tially generated in the two flavours `1 and `2, whereas the washout will essentially
affect `3. Thus, this ansatz gives a non-maximal CP asymmetry but allows for a large
enhancement of the final baryon asymmetry due to flavour effects. In the intermedi-
ate regime, this discussion is a bit more complicated. However, as we are going to
see, it appears from the numerical computation that the final baryon asymmetry is
hugely enhanced by flavour effects, and that the two-flavour computation is not a good
approximation.
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Figure 3.9: Isocurves of the final baryon asymmetry as a function of λ` and M∆,
for m∆ = imν (left) and m∆ = mxy

∆ (x = 0.05, y = 0.95). The black line indicates
the equality λ` = λH , whereas the region shaded in gray correspond to large (light
gray) or non-perturbative (dark gray) values of λH . The red and blue regions indicate
respectively where the full computation and the approximation 1F reproduce at least
the observed value of the baryon-to-photon ratio 3.1.1.

Fig. 3.8 shows the results obtained when performing the full computation and the
2-flavour approximation in the plane β1 − φ12 for the ansatz mβφ

∆ defined above. The
triplet mass is chosen to be M∆ = 5 × 1011 GeV, so that leptogenesis essentially
takes place in the regime where the tau Yukawa is in equilibrium. This time, taking
flavour effects into account in the e − µ subspace gives a spectacular enhancement of
the baryon asymmetry (namely up to a factor 102 − 103 compared to the 2-flavour
computation), In particular the observed value of the baryon-to-photon ratio, defined
in eq. (3.1.1), can be reached, which seems impossible when looking at the result of
the 2-flavour computation alone. These results can be understood from the fact that
this ansatz reveals a rich flavour structure in the e−µ subspace, that is overlooked by
the two-flavour computation.

Bound on the triplet mass

Finally, in order to study of the order of magnitude of the triplet mass needed to re-
produce the baryon-over-photon ratio, we computed the baryon asymmetry generated
as a function of M∆ and λ`, for m∆ = imν and m∆ = mxy

∆ (x = 0.05, y = 0.95),
which are the two ansätze which optimize the final result, if not the flavour effects. On
fig. 3.9, we compare the results obtained to that of the single flavour approximation
without spectator processes (1F), that was originally presented in [203]. The lowest
bound on the triplet mass is a little bit relaxed by the inclusion of flavour effects and
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spectator processes. For m∆ = imν , the lowest bound on the triplet mass are

Mmin
∆ = 1.3× 1011 GeV (approximation 1F) , (3.2.90)

Mmin
∆ = 5.0× 1010 GeV (full computation) . (3.2.91)

For the other ansatz the improvement is somewhat clearer, with a lowest bound that
decreases by a factor 8 approximately.

Mmin
∆ = 3.3× 1011 GeV (approximation 1F) , (3.2.92)

Mmin
∆ = 4.3× 1010 GeV (full computation) . (3.2.93)

These results can be compared to those shown in fig. 3.6. For m∆ = imν , we saw
on fig. 3.6 that, for a given triplet mass, the proper inclusion of flavour effects and
spectator processes increases the maximal baryon asymmetry by a factor 3. The same
effects allows to lower the bound on the triplet mass by a factor 2.6. On the other
hand, for the other ansatz, fig. 3.6 shows that for a given triplet mass the final baryon
asymmetry can be enhanced by a factor 10, which in turns allows to achieve successful
leptogenesis with a significantly lighter triplet. Consistently with fig. 3.6, one can see
that, in the latter case, the most favorable situation is when λ` is slightly smaller than
λH , because this gives both a nearly maximal CP asymmetry and a good efficiency
due to a weak washout in some of the leptonic decay channels.

Conclusion

To summarize, the inclusion of flavour effects and spectator processes in the compu-
tation of the baryon asymmetry increases the parameter space available for successful
leptogenesis. However, the lower bound on the triplet mass does not decrease signif-
icantly. This bound can be relaxed when the mass of the heavier state responsible
for the contribution mκ to neutrino masses is lowered. In this situation, the nature
of this heavier state should be specified, and the computation would become more
model-dependent. In particular, it is possible to perform resonant leptogenesis with
two scalar triplets that are close in mass, which could relax considerably the bound on
the triplet mass [210].

3.3 A more predictive scenario

As we observed, implementing leptogenesis in the type II seesaw framework requires to
give up the simple relation between the neutrino mass matrix and the coupling matrix
f . Thus, leptogenesis in this framework is not more predictive than in the general
type I case. However, a way out can be found in more elaborated frameworks. We
consider here a scenario motivated by a Grand Unified Theory based on the gauge
group SO(10) [211]. Theories based on SO(10) usually allow the implementation of
the type I seesaw mechanism, but this scenario contains all the ingredients for type II
seesaw and scalar triplet leptogenesis.
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3.3.1 The setup
The principle is the following. Instead of gathering all the Standard Model fermions of
a generation in a single multiplet, they are distributed in two different representations,
along with new heavy states. More precisely, the left-handed fermions of the Standard
Model fit in dimension 16 representations labelled 16i and dimension 10 representations
labelled 10i.

As in the “standard” SO(10) theory, the representation 16i contains the quark
doublet Qi, the up-type antiquark singlet uci and the antielectron singlet eci , along with
an antineutrino singlet νci . On the other hand, instead of the lepton doublet `i and the
down-type antiquark singlet dci , this representation contains two heavy fields labelled
Li and D̄i. Li has the same quantum number as `i with respect to the Standard Model,
so we call it a heavy lepton, while D̄i has the same quantum number as dci with respect
to the Standard Model so we call it a heavy antiquark.

The lepton doublet `i and the antiquark singlet dci fit in the 10i representation,
along with two other heavy fields labelled L̄i and Di. The former is a left-handed
electroweak doublet with hypercharge +1/2, which looks like an antilepton doublet,
except for its chirality: antilepton doublets of the Standard Model are right-handed
whereas this one is left-handed. After SO(10) is broken, Li and L̄i form a vectorlike
pair. Consequently, we give a lepton number L = −1 to L̄i. Similarly, Di is a left-
handed heavy quark singlet with hypercharge +1/3, that forms a vectorlike pair with
D̄i.

This choice of lepton number for the new states L and L̄ is justified by the existence
of the following coupling in the SO(10) theory,

L ⊃ −yuij16i16j10H + h.c. , (3.3.1)

which gives rise to both the up-type quark Yukawa coupling and to the following
operator,

−yuij ēiH̃ Lj + h.c. . (3.3.2)

With the choice made here, this interaction preserves B − L. Because of this cou-
pling, the main decay channel of heavy leptons is Lj → eiH, so that in leptogenesis,
any asymmetry stored in the heavy leptons will be transferred to the Standard Model
leptons before being processed by electroweak sphalerons (see ref. [211] for the super-
symmetric version of this discussion).

In addition to that, the scalar sector of the theory is extended to include a self-
conjugate dimension 54 representation. This representation contains, among other
things, an electroweak triplet ∆ with hypercharge +1 and its conjugate, a self-conjugate
electroweak triplet T (with hypercharge zero) and a self-conjugate Standard Model
singlet S. This field content is summarized in table 3.2. From now on, we restrict
ourselves to the fields which are involved in leptogenesis. They include the heavy
lepton doublets L and L̄, the three scalars ∆, S and T , in addition to Standard
Model fields.

We use the same representation as in eq. (2.1.56) for ∆, and we define similarly

T =
(
T 0/
√

2 T+

T− −T 0/
√

2

)
(3.3.3)
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Representation Field SU(3)× SU(2)L × U(1)Y B L

Qi (3, 2, + 1/6) +1/3 0
16i uci (3, 1, − 2/3) −1/3 0

eci (1, 1, + 1) 0 −1
Li (1, 2, − 1/2) 0 +1
D̄i (3, 1, + 1/3) −1/3 0
`i (1, 2, − 1/2) 0 +1

10i dci (3, 1, + 1/3) −1/3 0
L̄i (1, 2, + 1/2) 0 −1
Di (3, 1, − 1/3) +1/3 0
∆ (1, 3, + 1) 0 0

54 ∆c (1, 3, − 1) 0 0
T (1, 3, 0) 0 0
S (1, 1, 0) 0 0

Table 3.2: Field content of the model.

The Lagrangian contains the following interaction terms,

L = −M2
∆ tr

(
∆†∆

)
− 1

2M
2
T tr

(
T 2
)
− 1

2M
2
SS

2 −
∑

α=1,2,3

(
MαL̄αLα + h.c.

)
−
{1

2
(
fαβ`

T
αCiσ2∆`β + µHT iσ2∆†H

)
+ fαβ L̄TαC (cSS + cTT ) `β + h.c.

}
. (3.3.4)

cS =
√

3/10 and cT = 1 are nothing but Clebsch-Gordan coefficients determined by
the underlying theory. The neutrino mass matrix is given by eq. (2.1.61) with no
additional contribution.

Like before, the scalar triplet ∆ can decay to two antileptons and two Higgs dou-
blets. If it is kinematically allowed, it can also decay to two heavy antileptons L̄, with
the following partial width,

Γ(∆→ L̄ L̄) = 1
32πM∆

∑
α,β

|fαβ|2 F
(
Mα

M∆
,
Mβ

M∆

)
. (3.3.5)

The kinematic function F is given by

F (x, y) = θ (1− x− y)
(
1− x2 − y2

)√
1− (x+ y)2

√
1− (x− y)2 , (3.3.6)

where θ is the Heaviside function. Defining λ` and λH like before and

λ L̄ =
√√√√∑

α,β

|fαβ|2 F
(
Mα

M∆
,
Mβ

M∆

)
, (3.3.7)
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the total width of ∆ and its branching ratios are now given by

Γ∆ = 1
32π2M∆

(
λ2
` + λ2

H + λ2
L̄

)
, (3.3.8)

B` = λ2
`

λ2
` + λ2

H + λ2
L̄
, (3.3.9)

BH = λ2
H

λ2
` + λ2

H + λ2
L̄
, (3.3.10)

B L̄ =
λ2
L̄

λ2
` + λ2

H + λ2
L̄
. (3.3.11)

The two new scalar S and T decay into a Standard Model lepton and a heavy an-
tilepton L̄, or the CP-conjugate state. These decays preserve the total lepton number
as defined in table 3.2, and the corresponding widths are

ΓS = 1
4πc

2
SMSλ

2
S , (3.3.12)

ΓT = 1
8πc

2
TMTλ

2
T , (3.3.13)

λΦ =

√√√√∑
α

(ff †)αα

(
1− M2

α

M2
Φ

)
θ (MΦ −Mα) , Φ = S, T . (3.3.14)

∆ ∆

ℓα

ℓβ ℓα

ℓβ

Φ

L̄δ

L̄γ

fαβ
f ∗
γδ

cΦfδβ

cΦfγα

Figure 3.10: Diagrams contributing to the violation of CP in the decay of ∆ at one
loop. Φ denotes one of the two scalars S or T .

Only ∆ has couplings that violate the total lepton number, therefore it appears as
the best candidate for leptogenesis. Let us compute the CP asymmetry in its decay
into leptons, which is defined like in eq. (3.2.8). The diagrams involved are displayed
in fig. 3.10. Summing over flavour, we get

ε∆ = BL
4πλ2

`

∑
ρ,σ

=
[
fρσ(f †ff †)ρσ

] [
c2
SG

(
MS

M∆
,
Mρ

M∆
,
Mσ

M∆

)
+ c2

T

2 G
(
MT

M∆
,
Mρ

M∆
,
Mσ

M∆

)]
,

(3.3.15)
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whith

G(x, y, z) = θ (1− y − z)
[√

λ(1, y2, z2)

−x2 log
(

1 + 2x2 − y2 − z2 +
√
λ(1, y2, z2)

1 + 2x2 − y2 − z2 −
√
λ(1, y2, z2)

)]
, (3.3.16)

λ(a, b, c) = (a− b− c)2 − 4bc . (3.3.17)

In other words, only the pairs ( L̄ρ, L̄σ) such thatMρ+Mσ < M∆ contribute to the CP
asymmetry. Thus, we recover the fact that the violation of CP requires the existence
of an on-shell intermediate state. This implies that at least one species of heavy lepton
must be light enough. Moreover, since

lim
y, z→0

G(x, y, z) = 1− x2 log
(

1 + x2

x2

)
= G̃(x) , (3.3.18)

if all the heavy leptons have masses much smaller than M∆, the kinematic factors
in eq. (3.3.15) can be taken out of the sum and the asymmetry is proportional to
=
[
tr
(
ff †ff †

)]
, which is zero. For these reasons, we will consider the limiting case

where the lightest species L̄1 is much lighter than ∆, while the remaining two, L̄2
and L̄3, are so heavy that they decouple from the theory. This choice simplifies the
expression of the asymmetry, which becomes

ε∆ = BL
4πλ2

`

=
[
f11

(
f †ff †

)
11

] [
c2
SG̃

(
MS

M∆

)
+ c2

T

2 G̃
(
MT

M∆

)]
. (3.3.19)

In this scenario, the decay of ∆ to two Higgs doublets does not violate CP, but its
decay to two heavy leptons does

2Γ(∆c → L̄c L̄c)− Γ(∆→ L̄ L̄)
Γ∆c + Γ∆

= −2Γ(∆c → ``)− Γ(∆→ `c`c)
Γ∆c + Γ∆

. (3.3.20)

In order for ε∆ to be sizeable, S and T should not be too heavy compared to ∆, since
the function G̃ vanishes in this limit. We can assume that the masses of all the scalars
are comparable, which would be consistent with the SO(10) symmetry. To summarize
we have the following mass hierarchy,

M1 �M∆,MS ,MT �M2,M3 , (3.3.21)

which simplifies a lot the previous expressions. Now, the effective couplings reduce to

λ L̄ = |f11| , (3.3.22)

λS = λT =
√

(ff †)11 . (3.3.23)

As mentioned previously, the decay of S or T does not violate the total lepton
number, however it does violate lepton flavour, and this should be taken into account
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Figure 3.11: Diagrams contributing to the violation of CP in the decay of Φ = S or T
at one loop.

in our scenario. In particular, this decay also violates CP, and we define the associated
asymmetry as

εΦ = Γ(Φ→ ` L̄)− Γ(Φ→ `c L̄c)
ΓΦ

, Φ = S, T . (3.3.24)

This asymmetry arises at one loop as a consequence of the interference between the
two diagrams of fig. 3.11 , which look very similar to those of fig. 3.10. Summing again
over flavour, we get, in the general case,

εΦ = − dΦ
16πλ2

Φ
=
[
fρσ(f †ff †)ρσ

]
G′
(
M∆
MΦ

,
Mρ

MΦ
,
Mσ

MΦ

)
, (3.3.25)

where dS = 3 and dT = 1, and this time the kinematic factor is

G′(x, y, z) = θ(1− y − z)
{
x2(1− z2)− 1

1− y2 log
[
1 + x2(1− y2)(1− z2)

]}
,

(3.3.26)

but because of eq. (3.3.21), this reduces to

εΦ = − dΦ
16πλ2

Φ
=
[
f11(f †ff †)11

]
G̃

(
M∆
MΦ

)
. (3.3.27)

A nice feature of this model is that, since there is no other contribution to the
neutrino mass matrix, the coupling matrix f can be expressed in terms of neutrino
mass parameters up to a constant,

fαβ = λ`
m̄ν

mναβ , m̄ν =
√

tr(m†νmν) , (3.3.28)

which allows us to express the CP asymmetries as functions of these parameters thanks
to the following relation,

=
[
f11(f †ff †)11

]
= λ4

`

m̄4
ν

=
[
mν11(m†νmνm

†
ν)11

]
= λ4

`

m̄4
ν

∑
i,j

mνimν
3
j=
[
U∗2ei U

2
ej

]
. (3.3.29)
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Using the parametrization Ue. =
(
c12c13e

iρ s12c23 s13e
iσ
)
, where we absorbed δ in

the redefinition of σ with respect to eq. (2.1.16), this gives

=
[
f11(f †ff †)11

]
= λ4

`

m̄4
ν

(
−mν1mν2∆m2

21c
2
12c

4
13s

2
12 sin 2ρ

+mν1mν3∆m2
31c

2
12c

2
13s

2
13 sin 2(σ − ρ) +mν2mν3∆m2

32c
2
13s

2
12s

2
13 sin 2σ

)
.

(3.3.30)

3.3.2 Boltzmann equations

Because of the increase in the number of particles involved in leptogenesis, the system
of Boltzmann equations to solve becomes far more complex than before. In addition
to the equation for the density Σ∆ which remains unchanged, there are Boltzmann
equations describing the evolution of the densities of S and T . The equation for YT is
very similar to the equation for Σ∆, whereas the equation for YS is simpler because S
is a gauge singlet and therefore does not annihilate. The following equations, which
are not affected by considerations such as flavour or spectator processes, describe the
evolution of the scalar densities,

sHz
dΣ∆
dz

= −
(

Σ∆
Σeq

∆
− 1

)
γ∆
D − 2

(Σ∆
Σeq

∆

)2

− 1

γ∆
A , (3.3.31)

sHz
dYT
dz

= −
(
YT
Y eq
T

− 1
)
γTD − 2

( YT
Y eq
T

)2

− 1

γTA , (3.3.32)

sHz
dYS
dz

= −
(
YS
Y eq
S

− 1
)
γSD . (3.3.33)

A large number of reactions may affect directly the asymmetries. Scatterings in-
volving lepton doublets can be divided in two categories: reactions that change the
overall asymmetry ∆` stored in the Standard Model lepton doublets, and reactions
that only transfer the asymmetry from a flavour to another.

The first category includes scalar-mediated scatterings between Standard Model
leptons and Higgs doublets, Standard Model leptons and heavy leptons, and fermion-
mediated scatterings such as `∆ → L̄Φ. The second category comprises four-lepton
scatterings such as ``→ `` mediated by the exchange of a heavy scalar, and fermion-
mediated scatterings like `∆ → `∆. All these reactions are gathered in table 3.3. In
addition to that, scatterings between heavy leptons and Higgs like L̄L̄ → HH are also
possible, and modify the asymmetry stored in the heavy leptons

Our new heavy leptons are vector-like, i.e. left- and right-handed components
belong to the same Standard Model representation. As a consequence, they do not
participate in the triangle anomaly, and are not affected by the electroweak sphalerons.
More generally, the chemical equilibriums coming from Standard Model reactions are
not modified by the new fields, so the reactions relevant for each temperature range are
still those displayed in table 3.1, and eqs. (3.2.37) to (3.2.41) are sill valid. The only
novelty with respect to the previous scenario is that heavy leptons should be included
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Label Reaction Intermediate State (channel)
W `H ``←→ HcHc ∆ (s∗)

Scatterings changing `H ←→ `cHc ∆ (t)
the total ∆` W ` L̄ ``←→ L̄c L̄c ∆ (s∗), S, T (t)

` L̄ ←→ `c L̄c ∆ (t), S, T (s∗, u)
W ` L̄Φ∆ `∆←→ L̄Φ ` (s), L̄ (u∗)

`Φ←→ L̄∆c ` (u∗), L̄ (s)
` L̄c ←→ Φ∆c ` (t), L̄ (u)

w4` ``←→ `` ∆ (s∗)
Purely flavoured ``c ←→ ``c ∆ (t)

washout w` L̄ ` L̄ ←→ ` L̄ S, T (s∗)
` L̄c ←→ ` L̄c S, T (u)

w`∆ `∆←→ `∆ ` (s)
`∆c ←→ `∆c ` (u∗)
``c ←→ ∆∆c ` (t)

w`Φ `Φ←→ `Φ L̄ (s, u∗)
``c ←→ ΦΦ L̄ (t)

Table 3.3: Scatterings contributing to the washout of the asymmetry stored in lepton
doublets. Stars indicate the possibility for the intermediate state to be on-shell, in
which case the procedure described in appendix A.2 should apply.

in the hypercharge conservation relation. If we assume that no asymmetry is generated
in L̄2 and L̄3, which seems reasonable, eq. (3.2.36) is slightly modified,

∑
i=1,2,3

(µqi + 2µui − µdi) + 2µ L̄1
−

∑
α=e,µ,τ

(µ`α + µeα) + 2µH + 6µ∆ = 0 , (3.3.34)

where we used the fact that, because of the mass termM1L̄1L1, the chemical potentials
of the two fields should satisfy µL1 = −µ L̄1

.

Let us focus on the high temperature regime, with T > 1012 GeV. The asymmetries
∆` and ∆H should now be expressed as functions of the B − L asymmetry (in which
we do not include the contribution of the heavy leptons), the triplet asymmetry and
the asymmetry stored in L̄1,

(∆`)αβ = Cγδαβ∆γδ + C∆
αβ∆∆ + C L̄1

αβ ∆ L̄1
, (3.3.35)

∆H = CγδH ∆γδ + C∆
H∆∆ + C L̄1

H ∆ L̄1
. (3.3.36)

Once the chemical equilibriums are known, the system of Boltzmann equations for the
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asymmetries including all the relevant processes can be formally written as

sHz
d∆αβ

dz
= −Sαβ +W ID

αβ +W `H
αβ +W ` L̄

αβ +W ` L̄Φ∆
αβ

+ w`∆αβ + w4`
αβ + w` L̄αβ + w`Φαβ . (3.3.37)

sHz
d∆ L̄1

dz
= tr [S]−W ID

L̄ −W
L̄H − tr

[
W ` L̄

]
+ tr

[
W ` L̄Φ∆

]
. (3.3.38)

sHz
d∆∆
dz

= −1
2 tr

[
W ID

]
+ 1

2W
ID
L̄ + tr

[
W ` L̄Φ∆

]
− BH

(
∆∆
Σeq

∆
− CkH∆k

Y eq
H

)
γ∆
D . (3.3.39)

As in the previous section, lower case w’s label purely flavoured processes satisfying
tr[w] = 0. Again, the W ID’s represent the washout due to inverse decays `` → ∆c

and ` L̄ → S, T . W L̄H is the washout term due to the scatterings L̄ L̄ → HH and
L̄Hc → L̄cH, and the scatterings contributing to the other washout terms can be read
in table 3.3.

This system is pretty cumbersome, but in many cases, the couplings are not too
large and therefore most scattering terms are negligible in comparison with the washout
coming from inverse decays. If such is the case, in a good approximation, the system
can be simplified as follows,

sHz
d∆αβ

dz
= −Sαβ +W ID

αβ . (3.3.40)

sHz
d∆ L̄1

dz
= tr [S]−W ID

L̄ . (3.3.41)

sHz
d∆∆
dz

= −1
2 tr

[
W ID

]
+ 1

2W
ID
L̄ −BH

(
∆∆
Σeq

∆
− CkH∆k

Y eq
H

)
γ∆
D . (3.3.42)

The source term gets contributions from the CP-violating decays of the three scalars
∆, S and T ,

Sαβ = ε∆αβ

(
Σ∆
Σeq

∆
− 1

)
γ∆
D + εSαβ

(
YS
Y eq
S

− 1
)
γSD + εTαβ

(
YT
Y eq
T

− 1
)
γTD , (3.3.43)

where the expression of the flavoured CP asymmetries are obtained from eqs. (3.3.19)
and (3.3.27) as follows,

ε∆,S,Tαβ =
[f11fαγf

∗
1γf
∗
1β − f∗11f

∗
βγf1γf1α]

2 i= [f11(f †ff †)11] ε∆,S,T . (3.3.44)

The flavour-covariant washout term due to inverse decays ``→ ∆c and ` L̄ → S, T is

W ID
αβ = 2BL

λ2
`

[
(ff †)αβ

∆∆
Σeq

∆
+ 1

4Y eq
`

(2f∆T
` f
† + ff †∆` + ∆`ff

†)αβ

]
γ∆
D

+ 1
2λ2

Φ

[
1

2Y eq
`

(
f1α(f †∆`)1β + (f∆T

` )1αf
∗
1β

)
+

∆ L̄1

Y eq
L
f1αf

∗
1β

] (
γSD + γTD

)
,

(3.3.45)
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Figure 3.12: Comoving number densities of scalars Σ∆, YT and YS and asymmetries
∆∆, ∆H , ∆ L̄1

and ∆B−L = tr(∆αβ) as a function of z = M∆/T , for M∆ = 1013 GeV
and λH = 0.2. The asymmetries are displayed in units of ε = ε∆ + εS + εT .

where the factor 1/2 in front of the second term is due to the fact that both S and
T have two decay channels (without taking care of the different flavours), S, T → ` L̄
and S, T → `c L̄c, and each channel has a branching ratio 1/2. For heavy leptons, the
equivalent term is

W ID
L̄ = 2B L̄

(
∆ L̄1

Y L̄eq
− ∆∆

Σeq
∆

)
γ∆
D + 1

2λ2
Φ

[
1
Y eq
`

(f †∆`f)11 +
∆ L̄1

Y eq
L
λ2

Φ

] (
γSD + γTD

)
.

(3.3.46)

3.3.3 Numerical approach

As in 3.2.4, we show first a typical example of the behaviour of the solutions, before
turning to a more systematic approach. Fig. 3.12 shows the evolution of the various
densities and asymmetries for a common scalar mass M∆ = MS = MT = 1013 GeV,
and λH = 0.2. Motivated by the discussion of 3.2.4, we chose for the two SU(2) triplets
∆ and T an initial density in equilibrium. On the other hand, we chose a vanishing
initial abundance for the scalar singlet S, which is justified by the fact that it is not
produced by any fast interaction. The singlets are therefore produced by inverse decays
of Standard Model leptons and heavy leptons, before decaying. This explains a new
feature of the evolution of the asymmetries, which change sign around z = 2, a little
after the singlets have reached their equilibrium density and start to decay.

Parameter space

This scenario possesses much fewer free parameters than the general case studied in
section 3.2. Indeed, with the choice of eq. (3.3.21), once the masses of the scalars and
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the effective coupling λH are fixed, everything can be expressed in terms of neutrino
parameters thanks to the seesaw relation of eq. (2.1.57). The neutrino masses and
squared mass differences are known and summarized in table 2.1. The remaining free
parameters are low energy parameters: the yet undetermined Majorana phases ρ and σ,
the hierarchy and the mass of the lightest neutrinomν1 (NH) ormν3 (IH). In numerical
computations, in order to avoid numerical instabilities, we set M∆ = MS = MT .

In what follows, we choose values of ρ and σ that give a sizeable total CP asym-
metry. For Normal Hierarchy, we choose ρ = 0 and σ = −π/4. This is especially
favourable in the case of very hierarchical neutrinos with mν1 � mν3. Explicitly, the
numerical factor of eq. (3.3.30) becomes

=
[
f11(f †ff †)11

]
= − λ

4
`

m̄4
ν

(
mν1mν3∆m2

31c
2
12c

2
13s

2
13 +mν2mν3∆m2

32c
2
13s

2
12s

2
13

)
.

(3.3.47)

For Inverted Hierarchy, we set ρ = σ = π/4, which gives for this factor

=
[
f11(f †ff †)11

]
= λ4

`

m̄4
ν

(
−mν1mν2∆m2

21c
2
12c

4
13s

2
12 +mν2mν3∆m2

32c
2
13s

2
12s

2
13

)
,

(3.3.48)

with ∆m2
32 negative. Note that the sign of the final baryon asymmetry obtained is

irrelevant, because, as can be seen from eq. (3.3.30), it can be switched by changing
the sign of ρ and σ.

Because of the simple relation between the neutrino mass matrix and the coupling
matrix fαβ involved in leptogenesis, this scenario allows to study the dependence of
the final baryon asymmetry on low-energy parameters, some of which are in principle
measurable. However, a point should be mentioned here. Like in the previous case 3.2,
we took the effect of the renormalization group into account. The relevant parameters
for leptogenesis, for instance the masses appearing in eqs. (3.3.47) and (3.3.48), are
those renormalized at the scale M∆, but from a phenomenological point of view it is
more interesting to see how things depend on parameters that would be measured at
low energy. Thus, for the computations, we fixed the mass of the lightest neutrino at the
weak scale, then computed the running up to M∆ and performed computations using
the renormalized parameters. In the following figures, the neutrino masses appearing
are always the low-scale ones.

A few comments can be made before proceeding to numerical computations. Like
in the previous scenario, an efficient conversion of the CP asymmetries requires at
least one of the decay channels to be out of equilibrium. When flavour effects are
not taken into account, one always has Γ(∆ → L̄1L̄1) < Γ(∆ → `c`c), therefore the
channel Γ(∆ → L̄1L̄1) has to be out of equilibrium, as was noticed in ref. [211].
This in turns implies that the coupling |f11| must be small enough. This discussion is
not drastically modified by the inclusion of flavour, even though there are more decay
channels. Indeed, the washout rates are controlled by the entries of the coupling matrix
fαβ, which are all roughly of the same order of magnitude since they are proportional
to the mναβ. Thus, the condition that |f11| (and therefore |mνee|) must be small
enough is still valid. For the same reason, flavour effects are less important in this
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scenario than in the previous one. Indeed, the various channels are always washed out
with a comparable strength, unlike in the previous case where it was possible to choose
couplings such that the washout is much weaker in one channel, as was discussed in
3.2.4.

Normal hierarchy

We focus first on normal hierarchy. Fig. 3.13 displays the baryon asymmetry generated

Figure 3.13: Baryon asymmetry produced as a function of mν1 and M∆ (left) and
|mνee| and M∆ (right) for normal hierarchy, with λH = 0.2. The region colored in red
is where the baryon asymmetry is greater than the BAU. The region colored in gray
is where the coupling λ` is large (light gray) or nonperturbative (dark gray).

as a function of the scalar mass M∆ on one hand, and the lightest neutrino mass
mν1 (left) or the so-called effective Majorana mass |mνee| (right) on the other hand.
The dependence on the effective Majorana mass is interesting because this parameter
could be measured experimentally if neutrinoless double beta decay was observed, as
it appears from eq. (2.1.26). Interestingly, the success of leptogenesis in this scenario
imposes an upper bound on the parameters mν1 and |mνee|: the absolute upper bound
is of the order of 0.05 eV for both. However, if we want to accommodate lower values
for the triplet mass, they should rather satisfy

mν1, |mνee| . 0.01 eV . (3.3.49)

This means that this scenario is favoured by hierarchical neutrinos. It also imposes a
more stringent bound on the triplet mass than the previous scenario, namely

Mmin
∆ = 1.2× 1012 GeV . (3.3.50)

We also indicated on this plot the region where the effective coupling λ` is large or
nonperturbative. Note that, strictly speaking, the condition of perturbativity should
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be |fαβ| < 4π for all flavour indices α and β, which would enlarge a little bit the
region of parameter space available, but in practice it is not a too bad approximation
to define perturbativity from the condition λ` < 4π.

Figure 3.14: Baryon asymmetry produced as a function of mν1 and sin2 θ13, for normal
hierarchy, with a triplet mass M∆ = 2× 1012 GeV and λH = 0.2. The region colored
in red is where the baryon asymmetry is greater than the BAU.

Another interesting feature is the variation of the baryon asymmetry as a function
of the mixing angle θ13, which was measured in 2012 [86]. Fig. 3.14 shows how the
final baryon asymmetry depends on mν1 and θ13. It turns out that the measured
value sin2 θ13 = 0.023 is rather favourable to this scenario. A value closer to zero
would indeed increase the lower bound on the triplet mass, and therefore shrink the
region of parameter space available for successful leptogenesis. The reason for this is
simply that the CP asymmetry is proportional to s2

13, as can be seen from eq. (3.3.47).
Larger values of θ13, already ruled out by the CHOOZ experiment [85], would also be
unfavourable.

Inverted hierarchy

We turn now to the inverted hierarchy. The isocurves of the final baryon asymmetry
as a function of M∆ and mν3 or |mνee| are displayed in fig. 3.15. This case shows
important differences with respect to normal hierarchy. It appears that, even though
the observed value of the baryon-to-photon ratio can be reached, inverted hierarchy
is much less favourable to this scenario, because it leaves only a reduced portion of
parameter space available. In particular, it seems that the success of leptogenesis
requires a triplet heavier than 5×1013 GeV. However, in this region where the couplings
are large, the validity of our approximation of neglecting scatterings is more doubtful,
which means that, in reality, the baryon asymmetry is probably a bit smaller than
what is shown here due to a stronger washout.

Another way to see this shrinking of the available parameter space is to compute
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Figure 3.15: Baryon asymmetry produced as a function of mν3 and M∆ (left) and
|mνee| and M∆ (right) for inverted hierarchy, with λH = 0.2. The region colored in
red is where the baryon asymmetry is grater than the BAU. The region colored in gray
is where the coupling λ` is large (light gray) or nonperturbative (dark gray).

the baryon asymmetry as a function of λ` and λH , for a fixed mν3 = 10−3 eV. The
results are displayed in fig. 3.16. The observed value of the baryon-to-photon ratio is
never reached in this plane, which means that larger values of the effective couplings
λ` and λH are required, leading to the same problem as previously.

The reason why this scenario does not work well in inverted hierarchy is related
to the previous discussion on the conditions for a large efficiency. As was mentioned,
a large efficiency is obtained when the coupling |f11|, which is proportional to |mνee|,
is small enough, but in inverted hierarchy, this quantity is bounded from below. As a
consequence, the washout is always strong and the conversion of the CP asymmetry is
inefficient.

Summary

This model shows how leptogenesis with a scalar triplet can be consistent with a
predictive type II seesaw scenario, in which the neutrino mass matrix is proportional
to a single coupling matrix. This has several consequences for the neutrino mass
parameters. For instance, the Majorana phases ρ and σ should provide a sufficient CP
violation. This was not the case in the model studied in 3.2, where the CP asymmetry
did not depend on the phases of the neutrino mass matrix, but only on the relative
phases between the two contributions m∆ and mκ.

This scenario is favoured by hierarchical neutrinos with a small effective Majorana
mass |mνee| < 3 − 4 × 10−2 eV, which is still well below the upper bound given by
experiments looking for neutrinoless double beta decay [98]. The corresponding upper
bound on the lightest neutrino mass is mν1 < 3− 4× 10−2 eV. Quasi-degenerate neu-
trinos would prevent successful leptogenesis through this mechanism, whereas inverted
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Figure 3.16: Baryon asymmetry produced as a function of λ` and λH for inverted
hierarchy and mν3 = 10−3 eV.

hierarchy would strongly diminish the probability of its realization. In both cases,
Sakharov’s third condition is not satisfied because all the washout rates are large. It
is not possible to overcome this by adjusting the couplings, because they are already
constrained by the neutrino mass matrix.

Since the CP asymmetry grows with sin2 θ13, a small value of θ13 could also have
disqualified this model, but it appears that the measured value is close to optimizing
the production of the baryon asymmetry.

This scenario requires the scalar triplet to be heavier than 1012 GeV, in agreement
with the estimation of ref. [211]. This is well above the bounds derived in 3.2 for the
general model of scalar triplet leptogenesis. This means that leptogenesis always takes
place in a regime where the lepton Yukawa are out of equilibrium. Consequently, the
computation has to be performed in the density matrix formalism to take flavour effects
into account, but their impact is much less important than in the general scenario
studied in 3.2: here, the couplings involved are to a large extent determined by the
neutrino mass matrix, and there is little freedom left to play with the couplings as was
done previously in order to maximize flavour effects.
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Chapter 4
Sterile neutrinos as pseudo-Goldstone
fermions

I have done a terrible thing, I have
postulated a particle that cannot be
detected.

Wolfgang Pauli

4.1 Introduction to Supersymmetry
Supersymmetry was first imagined in 1966 by Hironari Miyazawa as a symmetry be-
tween baryons and mesons [212]. Premises were developed in the following years [213–
216], and the first supersymmetric four-dimensional quantum field theory was then
written in 1973 by Julius Wess and Bruno Zumino [217].

In 1967, Coleman and Mandula had discovered a no-go theorem stating that the
symmetry group of any quantum field theory has to be the direct product of the
Poincaré group and the internal symmetry group [218]. This seemed to rule out any
attempt to extend the Poincaré algebra. There was however a loophole, due to the
fact that they only considered bosonic internal symmetries, that can change the spin of
particles by integer values only. Allowing for the possibility of fermionic symmetries,
that can exchange bosons and fermions, Haag, Lopuszanski and Sohnius discovered
that supersymmetry is the only way to extend non-trivially the Poincaré group [219].
This validated a posteriori the work of Wess and Zumino.

Supersymmetric extensions of the Standard Model were built in the late seventies
[220–223], leading to what is now known as the Minimal Supersymmetric Standard
Model (MSSM). A few years later, it was discovered that supersymmetry not only
provides a solution to the hierarchy problem [224–228], as mentioned in 1.3, but also
ensures the unification of gauge coupling constants to a very good precision [229].

4.1.1 Superspace and superfields
Here, as in the previous chapters of this thesis, we use the metric signature (+,−,−,−).
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Basic properties

The generators of supersymmetry are operators that change the spin of particles by
half-integer values. They must therefore have a spin 1/2, and transform as spinors un-
der the Poincaré group. They are labelled QIα, Q̄Jα̇, where α, α̇ = 1, 2 are spinor indices
and I, J = 1,..., N , N being the number of supersymmetries. The 2× 2 antisymmetric
tensor is used to raise, lower or contract spinor indices. From now on, N = 1 and
we drop the indices I and J . The generators satisfy the following anticommutation
relations [219],

{Qα, Q̄α̇} = 2σµαα̇Pµ , (4.1.1)
{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , (4.1.2)

where σµ = (1, σi) and we also define σ̄µ = (1, − σi). They also satisfy the following
commutation relations with generators of the Poincaré algebra,

[Pµ, Qα] = [Pµ, Q̄α̇] = 0 , (4.1.3)

[Mµν , Qα] = 1
2(σµν)αβQβ , (4.1.4)

[Mµν , Q̄
α̇] = 1

2(σ̄µν)α̇β̇Q̄
β̇ , (4.1.5)

with

σµν = i

2 (σµσ̄ν − σν σ̄µ) , σ̄µν = i

2 (σ̄µσν − σ̄νσµ) . (4.1.6)

These (anti-)commutation relations, together with those of the Poincaré algebra, define
the Super-Poincaré algebra.

A convenient representation of supersymmetry is given by superspace. Superspace
is defined by the introduction of fermionic coordinates in addition to the usual space-
time coordinates. These coordinates, labelled as θα, θ̄α̇, have mass dimension −1/2
and are anticommuting. We use the following shorthand notations,

θ2 = εαβθ
αθβ, θ̄2 = εα̇β̇ θ̄α̇θ̄β̇, θ4 = θ2θ̄2, (4.1.7)

A remarkable feature of fermionic coordinates is that integration and derivation with
respect to them give the same results,

∂

∂θα
θβ =

ˆ
dθα θ

β = δβα . (4.1.8)

Moreover, since the θ, θ̄ coordinates anticommute, any product of more than two θ or
two θ̄ is necessarily zero. As a consequence, any function of superspace coordinates
F(x, θ, θ̄), or superfield, can be expanded in a series that terminates at order θ4. The
most general superfield can therefore be parametrized as follows,

F(x, θ, θ̄) = a(x) + θψ(x) + θ̄χ̄(x) + θ2b(x) + θ̄2c(x) + θ̄σ̄µθvµ(x)
+ θ̄2θλ(x) + θ2θ̄η̄(x) + θ4d(x) , (4.1.9)
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where a, b, c and d are scalars, ψ, χ, λ and η are left-handed Weyl spinors and vµ
is a four-vector, so that the numbers of fermionic and bosonic degrees of freedom are
equal. This field can be fundamental, in which case it represents elementary particles
related by supersymmetry, or composite.

An explicit representation of supersymmetry generators is then given by

Qα = i
∂

∂θα
+ (σµθ̄)α∂µ , (4.1.10)

Q̄α̇ = i
∂

∂θ̄α̇
+ (σ̄µθ)α̇∂µ , (4.1.11)

and an infinitesimal supersymmetry transformation acting on a superfield can be writ-
ten as

δεF(x, θ, θ̄) = −i
(
εQ+ ε̄Q̄

)
F(x, θ, θ̄) , (4.1.12)

with a spinorial transformation parameter εα. This transformation is nothing but a
translation in superspace

(1 + δε)F(xµ, θ, θ̄) = F(xµ − iεσµθ̄ − iε̄σ̄µθ, θ + ε, θ̄ + ε̄) , (4.1.13)

Looking more precisely at the transformations of the various components, we can see
that this does indeed transform fermionic and bosonic degrees of freedom into one
another. For instance, the scalar a and the spinor ψ transform according to

δεa(x) = εψ(x) + ε̄χ̄(x) , (4.1.14)
δεψα(x) = 2εαb(x)− (σµε̄)α (vµ(x)− i∂µa(x)) . (4.1.15)

Chiral superfields

Chiral covariant derivatives are defined as

Dα = ∂

∂θα
+ i(σµθ̄)α∂µ , (4.1.16)

D̄α̇ = ∂

∂θ̄α̇
+ i(σ̄µθ)α̇∂µ . (4.1.17)

They are consistent with supersymmetry in the sense that they anticommute with
supersymmetry generators, so that

Dα

(
δεF(x,θ,θ̄)

)
= δε

(
DαF(x,θ,θ̄)

)
. (4.1.18)

These covariant derivatives also have the following anticommutation relations,

{Dα, D̄α̇} = −2iσµαα̇∂µ (4.1.19)
{Dα, Dβ} = {D̄α̇, D̄β̇} = 0 , (4.1.20)

which are identical to those of the supersymmetry generators Qα and Q̄α̇.
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A chiral superfield Φ is defined by the condition D̄α̇Φ = 0. Changing variables for
(y, θ, θ̄), with yµ = xµ + iθσµθ̄, the covariant derivative D̄α̇ takes a very simple form

D̄α̇ = ∂

∂θ̄α̇
, (4.1.21)

This makes it obvious that if Φ(y, θ, θ̄) is a chiral superfield, it should not depend on
θ̄. Thus, its general form is

Φ(y, θ, θ̄) = φ(y) +
√

2θψ(y) + θ2F (y) , (4.1.22)

where φ is a complex scalar and ψ a left-handed Weyl fermion, whereas F is an
auxiliary field that does not propagate. If this chiral superfield is fundamental, it has
mass dimension 1 in order to be consistent with the dimensionality of fundamental
scalars and fermions. The expression of Φ in the usual system of coordinates (x, θ, θ̄)
can be recovered from this,

Φ(x, θ, θ̄) = φ(x) + iθσµθ̄ ∂µφ(x)− 1
4θ

4∂µ∂
µφ(x) +

√
2 θψ(x)

+ i√
2
θ2θ̄σ̄µ∂µψ(x) + θ2F (x) , (4.1.23)

The conjugate superfield Φ† is antichiral and satisfies the condition DαΦ† = 0. Any
holomorphic function of chiral superfields is itself a chiral superfield.

Since the matter fields of the Standard Model are chiral fermions, in supersymmet-
ric extensions of the Standard Model, they should be embedded in chiral superfields.
More precisely the left-handed quarks and lepton doublets and the left-handed anti-
quark and antilepton singlets belong to chiral superfields, while their CP-conjugate
belong to antichiral superfields.

Vector superfields

A vector (or real) superfield V is defined by the condition V † = V , which gives

V (x, θ, θ̄) = a(x) + iθχ(x)− iθ̄χ̄(x) + iθ2b(x)− iθ̄2b†(x) + θ̄σ̄µθAµ(x)

− iθ̄2θ

(
λ(x)− i

2σ
µ∂µχ̄(x)

)
+ i θ2θ̄

(
λ̄(x)− i

2 σ̄
µ∂µχ(x)

)
+ θ4

(1
2D(x)− 1

4∂µ∂
µa(x)

)
. (4.1.24)

Vector superfields are used to represent gauge interactions, in which case Aµ is the
associated gauge boson. A fundamental vector superfield is therefore dimensionless.
The Weyl fermion λ is called a gaugino and D is an auxiliary field.

For an abelian gauge theory, the supersymmetric version of a gauge transformation
takes the form

V (x, θ, θ̄) −→ V (x, θ, θ̄) + i
(
Λ†(x, θ, θ̄)− Λ(x, θ, θ̄)

)
, (4.1.25)

where Λ is a chiral superfield. This transformation preserves the condition V = V †,
and it allows to get rid of the scalars a, b and the fermion χ, whereas the gaugino λ and
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the auxiliary field D remain unaffected. For the vector field, the gauge transformation
takes its usual form,

Aµ(x) −→ Aµ(x) + ∂µ
(
φ(x) + φ†(x)

)
. (4.1.26)

The gauge in which a, b and χ are absent is the Wess-Zumino gauge, in which the
vector superfield takes the following simple form,

VWZ(x, θ, θ̄) = θ̄σ̄µθAµ(x)− iθ̄2θλ(x) + i θ2θ̄λ̄(x) + 1
2θ

4D(x) . (4.1.27)

Restricting oneself to the Wess-Zumino gauge, one can still perform an ordinary gauge
transformation on Aµ alone by choosing for Λ a chiral superfield that reduces to its
scalar component.

This gauge transformation can be generalized to the non-abelian case. Using the
shorthand notations V = 2gVATA and Λ = 2gΛATA, where the TA are the generators
of the gauge group, a general gauge transformation is given by

eV → eiΛ
†
eVe−iΛ , (4.1.28)

where g is the coupling constant. Using the Baker-Campbell-Hausdorff formula to
expand the exponential, one can check that, at first order in (Φ, Φ†), this reduces to
eq. (4.1.25) in the case of an abelian gauge theory. In the general case, the gauge boson
and gaugino transform as

AµA(x) −→ AµA(x) + ∂µ
(
φA(x) + φ†A(x)

)
+ gfABCA

µ
B(x)

(
φC(x) + φ†C(x)

)
, (4.1.29)

λA(x) −→ λA(x) + gfABCλB(x)
(
φC(x) + φ†C(x)

)
, (4.1.30)

fABC being the structure constant defined by [TA, TB] = ifABCTC .

4.1.2 Supersymmetric theories

Supersymmetric Lagrangians

In a supersymmetric theory, the action should be invariant under supersymmetry trans-
formations. Since the θ4 component of a general superfield transforms as a total deriva-
tive, the integral of any superfield over superspace (which selects the highest degree
component) meets this requirement. Moreover, since the action must be real, this
superfield has to be real as well. The action can therefore get a contribution of the
following form,

S ⊃
ˆ
d4x

ˆ
d2θd2θ̄ V (x, θ, θ̄) , (4.1.31)

where V is a vector superfield. Equivalently, the Lagrangian receives a contribution of
the form

L ⊃ [V ]D =
ˆ
d2θd2θ̄ V (x, θ, θ̄) = 1

2D −
1
4∂µ∂

µa , (4.1.32)
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also called a D-term contribution. Another possibility is to consider the integral over
ordinary space-time coordinates and over d2θ only (resp. d2θ̄) of a chiral (resp. an-
tichiral) superfield. Indeed, under supersymmetry, this transforms asˆ

d2θδεΦ = 1
2
√

2
θ̄2ε∂µ∂

µψ + iθ̄σ̄µ∂µ [iσν ε̄∂νφ+ εF ]− i
√

2∂µψσµε̄ , (4.1.33)

which is a total derivative, ensuring that the action is invariant. This gives a so-
called F -term contribution to the Lagrangian, which should also contain its hermitian
conjugate to make sure that the action is real,

L ⊃ [Φ]F + h.c. =
ˆ
d2θΦ(x, θ, θ̄) +

ˆ
d2θ̄Φ†(x, θ, θ̄) = F + F †

+ total derivatives . (4.1.34)

One can equivalently define the F -term contribution as

L ⊃ [Φ]F + h.c. =
ˆ
d2θd2θ̄

[
δ(2)(θ̄)Φ(x, θ, θ̄) + δ(2)(θ)Φ†(x, θ, θ̄)

]
. (4.1.35)

Kähler potential

A way to construct a vector superfield with fundamental chiral superfields only is to
take the product Φ†Φ. The associated D-term contribution takes the explicit form[

Φ†Φ
]
D

= F †F + ∂µφ
†∂µφ− iψ̄σ̄µ∂µψ . (4.1.36)

This contains the kinetic term of the component fields. More generally, kinetic terms
can be described by the Kähler potential, which is a function of chiral superfields with
mass dimension 2. In a renormalizable supersymmetric theory, it takes the form

K = ZijΦ†iΦj , (4.1.37)

where Zij = Z∗ji is the wavefunction renormalization, which can be absorbed through
a rescaling of the fields to recover the canonical form,

K = Φ†iΦi . (4.1.38)

The Kähler potential could in principle contain holomorphic contributions of the form

Kholomorphic = HijΦiΦj , (4.1.39)

but, when integrated over d2θd2θ̄, what remains of this term is a total derivative, at
least as long as supersymmetry is unbroken. Therefore, it does not give any physical
contribution in a truly supersymmetric theory. However, such a term can play a role
when considering supersymmetry-breaking effects. In nonrenormalizable theories, the
Kähler potential can also contain higher order terms.

In a gauge theory, there should also be terms accounting for gauge interactions
of chiral superfields. This is done as in non-supersymmetric theories by requiring the
invariance of the Lagrangian under

Φia →
(
e2igΛAtA

)
a

b
Φib , Φ†ia → Φ†ib

(
e−2igΛ†AtA

)b
a

(4.1.40)
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where ΛA is a chiral superfield, the tA are the generators of the gauge group in the
representation containing Φi, a and b are gauge indices and g is the gauge coupling.
The kinetic terms have to be generalized as follows,[

Φ†ia
(
e2gtAVA

)ab
Φib

]
D
, (4.1.41)

where the vector superfields transform as in eq. (4.1.28). In the Wess-Zumino gauge,
every term of the gauge superfield contains at least one power of θ and θ̄, so the
expansion of the exponential terminates at second order in V . Thus, the contribution
to the Lagrangian is,[

Φ†ia
(
e2gtAVA

)ab
Φib

]
D

= F †iaF
ia +Dµφ

†
iaD

µφia − iψ̄iaσ̄µDµψia

+ i
√

2gφ†iat
ab
A ψibλA − i

√
2gλ̄Aψ̄iatabA φib + gφ†iat

ab
A φibDA .

(4.1.42)

The first line contains the ordinary kinetic terms, while the second one contains the
supersymmetric counterpart of gauge interactions.

Kinetic terms of gauge superfields

A gauge theory obviously requires kinetic terms for the gauge fields. For an abelian
gauge theory, one defines

Wα = −1
4D̄

2DαV . (4.1.43)

Wα is a chiral superfield, because, as can be seen from the anticommutation relation
of eq. (4.1.20), the product of more than two (anti)chiral derivatives is zero, so that
D̄β̇Wα = 0. In the Wess-Zumino gauge, Wα reads explicitly

Wα = −iλα + θαD + i

2(σµσ̄νθ)αFµν + θ2(σµ∂µλ̄)α . (4.1.44)

Fµν = ∂µAν − ∂νAµ is the (abelian) field strength tensor. Since Wα is a chiral super-
field, WαWα is also chiral and one obtains the corresponding Lagrangian density by
taking the F -term. For an abelian gauge theory, the kinetic terms for the components
of the gauge superfield are therefore

1
4[WαWα]F + h.c. = 1

2D
2 − iλσµ∂µλ̄−

1
4FµνF

µν . (4.1.45)

For a general gauge theory, one defines instead Wα in the following way,

Wα = −1
4D̄

2(e−VDαe
V) , W̄α̇ = 1

4D
2(e−VD̄α̇e

V) , (4.1.46)

where we use again V = 2gTAVA. Wα has a simpler form in the Wess-Zumino gauge,
where one can use the Baker-Hausdorff-Campbell formula together with the fact that
the product of more than two V’s vanishes to obtain

Wα = −1
4D̄

2DαV + 1
8D̄

2[V, DαV] . (4.1.47)
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One can see that, in the special case of an abelian gauge theory, the right-hand side of
eq. (4.1.47) would reduce to its first term, which is in agreement with eq. (4.1.43) up to
a factor of 2g. In the case of a non-abelian theory, the second term is needed to replace
the ordinary derivatives of eq. (4.1.45) with covariant derivatives. Defining now the
field strength tensor as FAµν = ∂µA

A
ν − ∂νAAµ + gfABCA

B
µA

C
ν , the F -term contribution

to the Lagrangian is the following,

tr[WαWα]F = 2g2DADA − 4ig2λAσ
µDµλ̄A − g2FAµνF

µν
A + ig2

2 εµνρσF
µν
A F ρσA .

(4.1.48)

The last term is a total derivative, but it can nevertheless play a physical role in a
non-abelian gauge theory where it accounts for CP violation, as already mentioned
in 1.3. As a consequence, in full generality, the gauge kinetic term of a non-abelian
theory is( 1

8g2 − i
Θ

64π2

)
tr[WαWα]F + h.c. = 1

2DADA − iλAσµDµλ̄A −
1
4F

A
µνF

µν
A

+ g2Θ
64π2 εµνρσF

µν
A F ρσA . (4.1.49)

Θ is the so-called vacuum angle, that measures the amount of CP violation. Together
with eq. (4.1.42), this allows to derive the equation of motion for the non-dynamical
auxiliary terms DA,

∂L
∂DA

= 0⇒ DA = −gφ†iat
ab
A φib . (4.1.50)

Superpotential

An F -term contribution to the Lagrangian can be built by considering an holomorphic
function of chiral superfields, which is therefore itself a chiral superfield, the superpo-
tential. In a renormalizable theory, the interactions in the superpotential must have
dimension 3 or less, so that the most general form that it can take is

W = LiΦi + 1
2MijΦiΦj + 1

6λijkΦiΦjΦk . (4.1.51)

The first term, which we will drop from now on, is allowed only if Φi is a gauge singlet.
Expanding W in powers of θ and integrating over fermionic coordinates, one finds the
following contribution to the Lagrangian,

[W ]F = WiFi −
1
2Wijψiψj , (4.1.52)

with

Wi = ∂W

∂Φi |Φi=φi
, Wij = ∂2W

∂Φi∂Φj |Φi=φi,Φj=φj
. (4.1.53)
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Together with the D-term contribution coming from the Kähler potential, this allows
to derive the equation of motion for the auxiliary field Fi, which is simply

∂L
∂Fi

= 0 = F †i +Wi ⇒ Fi = −W †i , (4.1.54)

so that the auxiliary fields can be eliminated. Finally, the contributions of the super-
potential to the Lagrangian are

[W ]F + h.c. = −1
2Mijψiψj −

1
2λijkφiψjψk + h.c.− V(φi) . (4.1.55)

The scalar potential V is obtained after replacing the auxiliary fields as indicated in
eq. (4.1.54)

V(φi) = F †i Fi = M∗imMmjφ
†
iφj + 1

2Mimλ
∗
mjkφiφ

†
jφ
†
k + 1

2M
∗
imλmjkφ

†
iφjφk

+ λijmλ
∗
mklφiφjφ

†
kφ
†
l . (4.1.56)

In a gauge theory, the scalar potential also receives contributions obtained after re-
placing the auxiliary field DA in eq. (4.1.42) with its expression (4.1.50), so that the
full scalar potential is

V(φi) = F †i Fi + 1
2DADA = M∗imMmjφ

†
iφj + 1

2Mimλ
∗
mjkφiφ

†
jφ
†
k + 1

2M
∗
imλmjkφ

†
iφjφk

+ λijmλ
∗
mklφiφjφ

†
kφ
†
l +

∑
A

g2

2

(∑
i

φ†iat
ab
A φib

)2

, (4.1.57)

where, except for the last term, we omitted gauge indices to simplify the notations.
A nonrenormalization theorem [230, 231] states that the parameters of the superpo-

tential are free from renormalization. As a consequence, divergences in loop diagrams
only come from wavefunction renormalization and are at most logarithmic. This prop-
erty is important, because it ensures that supersymmetry provides a solution to the
hierarchy problem by cancelling quadratic divergences. More precisely, keeping the
Kähler potential under a canonical form as in eq. (4.2.6) requires to rescale the fields
according to

Φi ⇒ VijΦj , (4.1.58)

with Z = V †V . In turn, this implies a rescaling of the superpotential parameters. As
a consequence, the renormalization group equations take the following form,

dVij
dt

= −γikVkj (4.1.59)

dMij

dt
= γimMmj + γjmMim (4.1.60)

dλijk
dt

= γimλmjk + γjmλimk + γkmλijm , (4.1.61)

where γ is the matrix of anomalous dimensions.
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Soft terms

As can be seen from eqs. (4.1.55) and (4.1.56), the squared mass matrix of the scalars
and the mass matrix of the chiral fermions can be diagonalized in the same basis. In
this basis, it is clear that the fermion and scalar of a given superfield have the same
mass. However, if such was the case in our universe, superpartners of Standard Model
fermions should have been discovered long ago. Supersymmetry must therefore be
broken to explain why the superpartners are (until now) out of experimental reach.

A solution would be to break spontaneously supersymmetry, as will be explained
in chapter 5. Alternatively, since it is not an easy task, one can simply use an effective
parametrization involving interactions that break explicitly supersymmetry. However,
these interactions should preserve an important feature of supersymmetry, which is
the cancellation of quadratic divergences in corrections to the Higgs squared mass. If
this condition is satisfied, supersymmetry breaking is said to be soft.

The list of possible soft couplings was established in ref. [232]. In particular,
soft couplings must have a strictly positive mass dimension. Soft terms include non-
holomorphic and holomorphic squared masses for the scalars, trilinear couplings be-
tween the scalars and Majorana masses for gauginos,

Lsoft ⊃ −(m2)ijφ†iφj −
(1

2Bijφiφj + 1
6Aijkφiφjφk + 1

2MAλAλA + h.c.
)
. (4.1.62)

One could also introduce mass terms for the chiral fermions m′ijψiψj , but this could
be eliminated through a redefinition of the supersymmetric mass Mij in eq. (4.1.51)
and of the first term of eq. (4.1.62).

If the theory contains a chiral superfield Φa in the adjoint representation of a non-
abelian gauge group, soft terms can also include a mixing between the corresponding
chiral fermions and the gauginos, which are then referred to as Dirac gauginos [233],

Lsoft ⊃ −Maλaψa + h.c. . (4.1.63)

Finally, another possibility is the non-holomorphic trilinear coupling,

Lsoft = −1
2Cijkφ

†
iφjφk + h.c. . (4.1.64)

This term is soft as long as the theory does not contain any chiral superfield that is a
gauge singlet. In the opposite case, it can lead to quadratically divergent tadpoles for
the singlets. However, this term is usually not generated by spontaneous symmetry
breaking, and we will not consider it.

4.1.3 The MSSM
To conclude this quick introduction to supersymmetry, the minimal supersymmetric
extension of the Standard Model (MSSM) can be built by embedding the fermions of
the Standard Model in chiral superfields and the gauge vectors in vector superfields
[220–223]. Two Higgs doublets with opposite hypercharges, Hu (Y = +1/2) and Hd

(Y = −1/2), which belong to chiral superfields, are needed for two different reasons.
First, any chiral fermion charged under SU(2) × U(1) contributes to the electroweak
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gauge anomalies. In the Standard Model, the contributions of the various fermions
cancel each other, but this cancellation is spoiled if one introduces just one new chiral
fermion, as it is the case if there is a single Higgs superfield. Thus, one should instead
introduce a vectorlike pair of new fermions, which should belong to two chiral superfield
with opposite hypercharges. Second, since the superpotential is holomorphic, it cannot
contain H†, so one cannot simply supersymmetrize the Lagrangian of eq. (1.2.13) by
promoting every field to a chiral superfield. Instead, one has to introduce an additional
Higgs doublet Hd with the same quantum numbers as H† to write all the Yukawa
couplings.

From now on, we use the same notation for chiral superfields as for their SM
components, while squarks, sleptons and gauginos are labelled with a tilde. Similarly,
we use the notation Hu and Hd both for the Higgs superfields and for their scalar
components, while their fermionic counterparts, the higgsinos, are labelled with a
tilde. The most general renormalizable and holomorphic superpotential that respects
the gauge symmetry is

W = yuijHuQiu
c
j + ydijHdQid

c
j + yeαβHd`αe

c
β + µHuHd

+ 1
2λαβγ`α`βe

c
γ + λ′αij`αQid

c
j + 1

2λ
′′
ijku

c
id
c
jd
c
k + µαHu`α . (4.1.65)

The terms in the first line give rise to the Yukawa couplings as well as to their super-
symmetric counterparts, and to the Higgs squared mass parameter. The terms in the
second line violate either lepton number or baryon number and give rise to severely
constrained processes such as proton decay. Thus, either these couplings are extremely
small in order to evade the experimental bounds, or they are forbidden by a symmetry.
The second option is often preferred, with a discrete Z2 symmetry. One can choose for
instance matter parity [234], defined as

Pm = (−1)3(B−L) . (4.1.66)

Since all the terms in the second line of eq. (4.1.65) have Pm = −1, they are forbid-
den. Imposing matter parity is equivalent to imposing the conservation of B − L, but
remarkably, it forbids all the perturbative interactions that violate baryon or lepton
number alone (nevertheless, they are still violated nonperturbatively by the electroweak
sphalerons). Another possibility is R-parity [222], which can be defined as

PR = (−1)3(B−L)+2s , (4.1.67)

where s is the spin of the particle. R-parity also forbids the couplings in the second line
of eq. (4.1.65), but has an additional interesting feature. It turns out that the Standard
Model fermions and gauge bosons as well as the Higgs scalars have a charge PR = +1,
whereas all their supersymmetric partners have PR = −1. The lightest particle with
PR = −1 is automatically stable, because its decay cannot simultaneously respect R-
parity and be kinematically allowed, so it could be a Dark Matter candidate. A last
possibility is to forbid only baryon or lepton number-violating couplings. In particular,
if only baryon number violation is forbidden, as will be the case in sec. 4.2, the lepton
number violation gives rise to Majorana masses for neutrinos [235, 236]. This solution
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to the problem of neutrino masses is distinct from those mentioned in 2.1 and peculiar
to supersymmetric theories.

In the MSSM, supersymmetry breaking is simply parametrized by the following
soft terms (assuming matter parity or R-parity),

Lsoft = −(m2
Q̃

)ijQ̃†i Q̃j − (m2
ũ)ij ũc†i ũ

c
j − (m2

d̃
)ij d̃c†i d̃

c
j − (m2

˜̀)αβ ˜̀†
α

˜̀
β

− (m2
ẽ)αβ ẽc†α ẽcβ −m2

Hd
H†dHd −m2

HuH
†
uHu

−M1B̃B̃ −M2W̃AW̃A −M3G̃AG̃A

−
(
AuijHuQ̃iũ

c
j +AdijHdQ̃id̃

c
j +AeαβHu

˜̀
αẽ
c
β +BµHuHd + h.c.

)
. (4.1.68)

The terms on the two first lines are the non-holomorphic squared masses of the scalars,
while the third line contains Majorana masses for the gauginos associated to the U(1),
SU(2) and SU(3) gauge group respectively. The only B-term allowed by the symme-
tries is the holomorphic squared mass BµHuHd, that plays an important role in the
electroweak symmetry breaking.

This parametrization of supersymmetry breaking leaves us with 105 new free pa-
rameters with respect to the Standard Model. However, as explained in 2.2.2, the
squared mass matrices of the squarks and sleptons as well as the A-terms generate
flavour-changing neutral currents, which are strongly constrained by experiments. In
order to satisfy these constraints, these soft terms should have a very peculiar flavour
structure. For instance, it is sometimes assumed that the squared mass matrices are
proportional to the identity matrix in flavour space, while the A-terms are proportional
to the Yukawa couplings, for instance

Auij = Au0y
u
ij . (4.1.69)

Of course, these assumptions are a bit arbitrary, and should be justified by explicit
models of supersymmetry breaking. Such models will be investigated in the next
chapter.

4.2 Pseudo-Goldstone fermion Lagrangian
As was said previously, a supersymmetric framework with broken R-parity can give
rise to nonzero neutrino masses. We consider here such a scenario, in which the masses
of neutrinos arise from their mixing with the fermionic partners of neutral bosons. As
was mentioned in 2.1.1, some anomalies in neutrino experiments may be explained by
the existence of a sterile neutrino with a mass around 1 eV. However, as we said in
2.1.2, a fermionic singlet could have an arbitrarily large Majorana mass, so that such
a small value should be justified. There are a few possibilities for this.

(i) For instance, in the singular seesaw mechanism [237, 238], there are three right-
handed neutrinos but their mass matrix has only rank 2 because of some sym-
metry, so that there is an additional light mass eigenstate.

(ii) In theories with more than four space-time dimensions, charged fields live on a
4-dimension brane, but since right-handed neutrinos are gauge singlets, they can
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live in the bulk. They can then be decomposed in an infinite tower of Kaluza-
Klein modes. Standard Model neutrinos get a Dirac mass mostly with zero
modes, while sterile neutrinos are mostly made of higher modes [239–241], with
masses proportional to 1/R ∼ 10−3 eV, R being the compactification radius of
the extra dimension. In their minimal realization, such models are now excluded
because they are in disagreement with the energy spectrum of solar neutrinos
measured by Super-Kamiokande [89].

(iii) In the context of superstring theories, the existence of neutral fields (moduli),
which are massless at the perturbative level, is expected. The fermionic compo-
nents of these fields get a small mass and mixing with neutrino from nonpertur-
bative effects in supergravity and play the role of sterile neutrinos [242, 243].

(iv) Here, similarly to what was proposed in refs. [244–246], the lightness of the new
state is justified by the fact that it is the supersymmetric partner of a pseudo-
Goldstone boson.

The motivations for these models were initially the following. Before the Super-
Kamiokande results, solar neutrinos oscillations could be explained by active-sterile os-
cillations, which was ruled out since then. Active-sterile oscillations were also thought
to be the best explanation for the LSND anomaly. Moreover, light sterile neutrinos
were also seen as candidates for hot dark matter, which is now excluded. On the other
hand, recent papers on the topic focus on phenomenological aspect: assuming the
existence of light sterile neutrinos, they study the experimental constraints on these
neutrinos or try to fit the anomalies (see for instance refs. [247, 248, 104]). Here,
we study a model that aims at explaining the origin of the sterile neutrino and the
active-sterile mixing in the light of recent experimental results.

In this scenario, a global U(1) symmetry spontaneously broken at a high scale f
gives rise to a Goldstone chiral superfield below f ,

A = s+ ia√
2

+
√

2θχ+ θ2F . (4.2.1)

The components of the superfield σ = f exp(A/f) are massless if both the global
symmetry and supersymmetry are unbroken. After the breaking of the global U(1), the
theory features a residual shift symmetryA→ A+iαf , or more precisely a→ a+

√
2αf .

a being a Goldstone boson, its interactions can only be derivative ones, which means
that A cannot appear in the superpotential, but only in the Kähler potential.

In our scenario, the symmetry U(1) is actually explicitly broken, which gives a
small nonzero mass to all components of the pseudo-Goldstone superfield A. After
supersymmetry breaking, the masses of the fermionic and scalar components are dif-
ferent. In particular we will assume mχ ∼ 1 eV � ms,ma. Ref. [249] explains in
detail how the fermion acquires a mass of the same order as the gravitino mass in a
context where A is the axion superfield invoked to solve the strong CP problem: in
supergravity, the following effective operator is generated

L ⊃
ˆ
d4θλ

X +X†

MP
(A+A†)2 , (4.2.2)
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where X is the field that breaks supersymmetry (see chapter 5 for more details), with
in particular 〈X〉 = MX+θ2FX . This gives the following mass to the pseudo-Goldstone
fermion,

mχ = 2λFX
MP

, (4.2.3)

to be compared to the gravitino mass,

m3/2 = FX√
3MP

. (4.2.4)

4.2.1 The framework
We assume that R-parity is broken, which means that nothing distinguishes the down-
type Higgs superfield from the lepton superfields, so they can mix. Accordingly, we
use the shorthand notation `a ≡ (Hd, `α) (a = 0, 1, 2, 3, α = e, µ, τ), with `0 = Hd.
We will also write generically νa = (H0

d , να) and eLa = (H−d , eLα). However, R-parity-
violating parameters should remain small in order to obtain a consistent neutrino
phenomenology. On the other hand, we assume that baryon number is conserved.
From these principles, the most general superpotential that we can write is

W = µaHu.`a + 1
2y

e
abγ`a`be

c
γ + ydaij`aQid

c
j + yuijHuQiu

c
j . (4.2.5)

This contains a generalized µ-term (with µ0 � µ1, µ2, µ3) and the ordinary Yukawa
couplings, as well as the lepton-number violating interaction terms `α`βecγ and `αQidcj ,
mentioned previously. Up to the order 1/f , the most general general R-parity violating
Kähler potential for the Higgs and lepton doublets and the Goldstone superfield reads:

K = A†A+H†uHu + `†a`a + CuH
†
uHu

A+A†

f

+ Cab`
†
a`b

A+A†

f
+
(
CuaHu.`a

A+A†

f
+ h.c.

)
+O

( 1
f2

)
. (4.2.6)

Supersymmetry breaking is parametrized by soft terms, which include in particular

−Lsoft ⊃ m2
ab

˜̀†
a
˜̀
b +m2

uH
†
uHu + 1

2m
2
aa

2 + 1
2m

2
ss

2 +
(
BaHu

˜̀
a + 1

2A
e
abγ

˜̀
a
˜̀
bẽ
c
γ

+Adaij
˜̀
aQ̃id̃

c
j +Auaij

˜̀
aQ̃iũ

c
j + h.c.

)
. (4.2.7)

As a consequence of the mixing between the leptons and the down-type Higgs, the sneu-
trinos can get a vacuum expectation value after the electroweak symmetry breaking.
In all generality, the minimization of the scalar potential gives

〈H0
u〉 = vu , 〈H0

d〉 = vd , 〈ν̃α〉 = vα , 〈s〉 = vs . (4.2.8)

Here, vs should be much smaller than the scale f of the U(1) symmetry breaking, so
that, generically, v/f will always be a small parameter.
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Then, we redefine fields in such a way that, once the scalar s gets a v.e.v., the
charged fields that appear in eq. (4.2.6) have canonical kinetic terms, whereas the
neutral fields να, H0

u and A mix. To achieve this we have to perform a rescaling of
the fields, that brings the Kähler potential for the Higgs and lepton superfields to the
following form,

K = A†A+ duH
†
uHu + dab`

†
a`b + CuH

†
uHu

A+A†

f

+ Cab`
†
a`b

A+A†

f
+
(
CuaHu.`a

A+A†

f
+ h.c.

)
+O

( 1
f2

)
, (4.2.9)

where the coefficients du and dab satisfy

du + 2vs
f
Cu = 1 , dab + 2vs

f
Cab = δab . (4.2.10)

After shifting the neutral fields A, H0
u and νa by the v.e.v. of their scalar component,

i.e. Φ0 → vφ + Φ̂0, the Kähler potential will become

K = Â†Â+ Ĥ†uĤu + ˆ̀†
a
ˆ̀
a +

(
zuAĤ

0†
u Â+ zaAν̂

†
aÂ+ h.c.

)
+ CuĤ

†
uĤu

Â+ Â†

f
+ Cab ˆ̀†a ˆ̀

b
Â+ Â†

f
+
(
CuaĤu.ˆ̀a

Â+ Â†

f
+ h.c.

)
, (4.2.11)

where we dropped the constants and the terms that give total derivatives after inte-
grating on d4θ. The mixing terms are

zuA = Cuvu − Cuava
f

, zaA = Cabvb − Cuavu
f

. (4.2.12)

The next step is to rescale neutral fields only in order to give them canonical kinetic
terms once the fields are shifted by their vacuum expectation value. This can be done
by the rescaling Φ0 → V Φ0, with Z = V 2. In the neutral sector, Z is defined by

Φ̂0ZΦ̂0 = (Ĥ0†
u , ν̂

†
a, Â

†)

 1 01×4 zuA
01×4 14×4 zaA
z∗uA z∗bA 1


Ĥ0

u

ν̂b
Â

 . (4.2.13)

so that, at order 1 in v/f ,

V =

 1 01×4 zuA/2
01×4 14×4 zaA/2
z∗uA/2 z∗bA/2 1

 . (4.2.14)

In this new basis, the relevant part of the Kähler potential becomes

K = Â†Â+ Ĥ†uĤu + ˆ̀†
a
ˆ̀
a + CuĤ

†
uĤu

Â+ Â†

f
+ Cab ˆ̀†a ˆ̀

b
Â+ Â†

f

+
(
CuaĤu.ˆ̀a

Â+ Â†

f
+ h.c.

)
+O

( 1
f2

)
. (4.2.15)
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The vacuum expectation values of neutral fields are modified by this redefinition, but at
this order, it does not affect the d and z coefficients defined in eq. (4.2.10) and (4.2.12).
The superpotential is also modified. We write it here in terms of the unhatted fields
(i.e. before performing the shift Φ0 → vφ+Φ̂0) because it makes its expression simpler.
It becomes

W →W + µa
2
(
zuAAνa + zaAAH

0
u

)
−
yeabγ

2 zaAAeLbe
c
Rγ

−
ydaij
2 zaAAQid

c
j −

yuij
2 zuAAQiu

c
j . (4.2.16)

Finally, the last step consists in a unitary transformation on the SU(2) doublets `a
such that, in the new basis, va = vdδa0, and yeαbγ(vb−zbAvs/2) = mαδαβ (as we will see
later, this last condition ensures that the mass matrix of charged leptons is diagonal).
This does not affect the structure of the Kähler potential and the superpotential, so
we can assume that the various coefficients µa, Cu, Cab and Cua are defined in this
basis.

4.2.2 Chargino and neutralino mass matrices
In the MSSM, because of the electroweak symmetry breaking, the higgsinos mix with
the gauginos of the SU(2) × U(1) gauge group. The mass eigenstates arising from
the mixing of charged fields H̃+

u , H̃
−
d , W̃

± are referred to as charginos, while those
coming from the mixing of neutral fields H̃0

u, H̃
0
d , W̃

3 and B̃ (or equivalently Z̃0 and
γ̃) are called neutralinos. In the present scenario, since R-parity is broken in the lepton
sector, charged leptons and neutrinos mix with charginos and neutralinos respectively.
In addition to that, the pseudo-Goldstone fermion χ also mixes with neutralinos. The
mass matrices of the fermions receive three different contributions at tree level. One-
loop corrections may also contribute to the final expression of the neutrino mass matrix
[235, 250–261]. However, we assume here that they are negligible, as it is the case if
R-parity-violating parameters are small enough. For instance, ref. [262] gives the
following estimation for the contribution to the neutrino mass matrix from the yeαβγ ,
assuming that all slepton masses are of the same order of magnitude m̃ and that the
mixing between left- and right-handed sleptons is roughly given by (m2

LR)αβ ' m̃yeαβvd,

δmν
1-loop
αβ ' 1

8π2

[
yeαττy

e
βττ

m2
τ

m̃
+
(
yeαµτy

e
βτµ + yeατµy

e
βµτ

) mτmµ

m̃
+ yeαµµy

e
βµµ

m2
µ

m̃

]
.

(4.2.17)

Assuming m̃ ∼ 1 TeV, we find an upper bound on the yeαβγ (α, β, γ = e, µ, τ) of ap-
proximately 5×10−5 in order to keep their contribution to the neutrino mass matrix at
one loop smaller than 10−4 eV. Fortunately, this constraint does not apply to couplings
that respect R-parity, such as ye0ττ ∼= yτ .

Superpotential and soft terms

Some of the mass terms can be read directly from the Lagrangian of the model. For
the chiral fermions, there is a contribution coming from the superpotential, which can
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be deduced from eq. (4.1.52),

MW
ij = 〈Wij〉 . (4.2.18)

In particular, the generalized µ-term mixes the up-type higgsinos with the leptons and
down-type higgsinos, whereas the Yukawa couplings give the ordinary lepton masses
as well as a mixing between right-handed leptons and the down-type higgsino,

MW
H̃+
u eLa

= µa , MW
H̃0
uνa

= −µa , MW
eLae

c
Rγ

=
∑
b

yeabγ

(
vb −

zbA
2 vs

)
. (4.2.19)

Additionally, because of the redefinition Φ0 → V Φ0, the neutrinos and neutral higgsi-
nos also mix with the pseudo-Goldstone fermion χ,

MW
H̃0
uχ

=
∑
a

zaA
2 µa , MW

νaχ = zuA
2 µa . (4.2.20)

The masses of the gauginos come from the soft supersymmetry-breaking Lagrangian
(4.2.7). In the basis of the physical gauge bosonsW±, Z0, γ, the charged gauginos W̃±
have simply a mass M2, while the mass matrix of the photino and zino is given, in the
basis (γ̃, Z̃0), by

M =
(
c2
WM1 + s2

WM2 cW sW (M2 −M1)
cW sW (M2 −M1) s2

WM1 + c2
WM2

)
=
(
M11 M12
M12 M22

)
. (4.2.21)

Contribution of the Kähler potential

There is a contribution to the fermion masses coming from the Kähler potential, due
to the fact that it contains higher-order nonrenormalizable terms. Indeed, performing
the integral of K over d4θ, one gets terms of the following form,[

Φ†lΦiΦj

]
D
⊃ −F †kψiψj . (4.2.22)

Here, the Kähler potential has the following structure,

K = Φ†iΦi + 1
2Ck̄ijΦ

†
kΦiΦi . (4.2.23)

Thus, if the F -terms have non-vanishing v.e.v.’s, fermion masses will receive the fol-
lowing contribution,

MK
ij = Ck̄ij〈F

†
k 〉 . (4.2.24)

Using the equations of motion to integrate out the F -terms and taking the v.e.v.
(here, since the Kähler potential contains nonrenormalizable operators, the equation
of motion for the F -term differs from eq. (4.1.54), but this does not affect the v.e.v.),
we get

〈F †k 〉 = 〈Wk〉 , (4.2.25)
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so that, finally, the contribution to the fermion mass matrix reads

MK
ij = −Ck̄ij〈Wk〉 . (4.2.26)

This term is nonzero only if Φk is a neutral field, because otherwise the v.e.v. would
break the electric charge. The various coefficients Ck̄ij can be read from eq. (4.2.11),

CūuA = Cu
f

, CābA = Cab
f

, CĀua = Cua
f

. (4.2.27)

In the end, at order 1 in v/f , this gives the following contributions to the mass matrix
of neutralinos.

MK
H̃0
uχ

= Cu
f

∑
b

µbvb , (4.2.28)

MK
ν̃aχ =

∑
b

Cba
f
µbvu . (4.2.29)

Other contributions are supressed by an additional power of v/f , so that we do not
take them into account.

Contribution of the gauge interactions

Finally, because the scalars get vacuum expectation values, the matter fermions and
the gauginos mix. This contribution to the mass matrix reads

Mgauge
jA = −i

√
2g〈φ†i 〉tA

(
δij + Cījk〈φk〉

)
. (4.2.30)

Here, things are complicated by the fact that, after the redefinition of the fields, gauge
interactions of Hu, `a and A are modified. In particular, the new A has gauge inter-
actions inherited from its mixing with lepton and Higgs superfields. To see this, let us
go back a few steps. Before the shift Φ0 → vφ + Φ̂0 and the rescaling Φ0 → V Φ0, the
relevant gauge interaction terms read

Lgauge = i
√

2H†u
(
gW̃AτA + g′

2 B̃
)[(

du + Cu

√
2s
f

)
H̃u + CuHu

χ

f

]

+ i
√

2˜̀†
a

(
gW̃AτA −

g′

2 B̃
)[(

dab + Cab

√
2s
f

)
`b + Cab`b

χ

f

]
. (4.2.31)

After the rescaling Φ0 → V Φ0, this lagrangian is modified as follows,

Lgauge → Lgauge − i
z∗uA
2 (s− ia)

[
g√
2
W̃−H̃+

u + 1
2
(
−gW̃3 + g′B̃

)
H̃0
u

]
+ i√

2
H0†
u

(
−gW̃3 + g′B̃

) zuA
2 χ

− i
z∗aA
2 (s− ia)

[
g√
2
W̃+ ˜̀−

a + 1
2
(
−gW̃3 + g′B̃

)
νa

]
− i√

2
ν̃†a

(
−gW̃3 + g′B̃

) zaA
2 χ . (4.2.32)
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Finally, after shifting the fields by their v.e.v., at order 1 in v/f , the following mass
terms are generated for charginos,

Mgauge
H̃+
u W̃−

= −ig
(
vu −

z∗uA
2 vs

)
, Mgauge

eLaW̃+ = −ig
(
va −

z∗aA
2 vs

)
. (4.2.33)

while for neutralinos,

Mgauge
H̃0
uZ̃

= i
g√
2cW

(
vu −

z∗uA
2 vs

)
, Mgauge

νaZ̃
= −i g√

2cW

(
va −

z∗aA
2 vs

)
,

Mgauge
χZ̃

= −i g

2
√

2cW

∑
a,b

Cab
vavb
f
− Cu

v2
u

f

 . (4.2.34)

Summary

In the previous part, we dropped additional contributions to the νa − χ and H0
u − χ

mixings proportional to mχ, because mχ is already a small parameter, and these new
terms will feature an additional power of v/f so they can safely be neglected.

Putting this together, we can write the mass matrices of the fermions. Writing the
mass term for charginos as

(
−iW̃−, eLa

)
MC

−iW̃+

H̃+
u

ecRγ

 , (4.2.35)

the mass matrix reads

MC =

 M2 g

(
vu −

z∗uA
2 vs

)
01×3

g

(
va −

z∗aA
2 vs

)
µa yeabγ

(
vb −

zbA
2 vs

)
 . (4.2.36)

When writing the neutralino mass matrix, we can now distinguish the neutrinos
from the down-type higgsino. We will use the following notations,

Mu = −iMgauge
H̃0
uZ̃

, Md = iMgauge
H̃0
d
Z̃

, (4.2.37)

mZα = iMgauge
ναZ̃

, mZχ = iMgauge
χZ̃

, (4.2.38)

mαχ = MW
ναχ +MK

ναχ , mdχ = MW
H̃0
d
χ

+MK
H̃0
d
χ
, muχ = MW

H̃0
uχ

+MK
H̃0
uχ

. (4.2.39)

The neutralino mass matrix is defined by

ψ0TMNψ
0 =

(
−iγ̃, − iZ̃, H̃0

u, H̃
0
d , να, χ

)(M4×4 µ4×4
µT4×4 m4×4

)


−iγ̃
−iZ̃
H̃0
u

H̃0
d

νβ
χ


. (4.2.40)
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Remarkably, this turns out to have a seesaw structure, because there is a large hierarchy
between the upper-left block and the other ones. The 4× 4 block describing the heavy
fields γ̃, Z̃0, H̃0

u and H̃0
d is given by

M4×4 =


M11 M12 0 0
M12 M22 −Mu Md

0 −Mu 0 −µ0
0 Md −µ0 0

 , (4.2.41)

The coefficients of this block are functions of parameters related to supersymmetry
breaking (M1 and M2) or to the electroweak symmetry breaking (µ0, vu and vd), so
they should lie roughly between 102 and 103 GeV. The determinant of M is given by

detM = 2µ0M11MuMd − µ2
0(M11M22 −M2

12) . (4.2.42)

The block describing the light fields να and χ and the off-diagonal mixing block have
respectively the following structure,

m4×4 =
(

03×3 mβχ

mαχ mχ

)
, µ4×4 =


01×3 0
mZβ mZχ

−µβ muχ

0 mdχ

 . (4.2.43)

As expected, the parameters appearing in the blocks µ and m are much smaller than
those of the upper-left block M , allowing to perform a seesaw expansion. After this
step, the 8 × 8 matrix MN is block-diagonal, and the mass matrix mν of neutrinos,
defined as the four light eigenstates να and χ, is given by

mν = m− µTM−1µ . (4.2.44)

The final expression in terms of the original parameters is rather complicated. Defining
instead the following quantities,

Cγχ = µ0M12 (µ0mZχ +Mdmuχ −Mumdχ) , (4.2.45)
CZχ = −µ0M11 (µ0mZχ +Mdmuχ −Mumdχ) , (4.2.46)
Cuχ = −µ0M11MdmZχ −M11M

2
dmuχ + (µM1M2 −M11MuMd)mdχ, (4.2.47)

Cdχ = µ0M11MdmZχ −M11M
2
umdχ + (µM1M2 −M11MuMd)muχ , (4.2.48)

Dχχ = CZχmZχ + Cuχmuχ + Cdχmdχ , (4.2.49)

the neutrino mass matrix can be written as

mν =


M11

detM (Md µα − µ0mZα)(Md µβ − µ0mZβ) Cuχµα − CZχmZα

detM +mαχ

Cuχµβ − CZχmZβ

detM +mβχ − Dχχ

detM +mχ

 .

(4.2.50)

This expression is still quite involved, but what really matters here is the structure of
the matrix, that leads to interesting patterns when investigating the possible values of
neutrino mixing parameters.
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4.3 The neutrino mass matrix
In this section, we will focus on the 4 × 4 neutrino mass matrix. Here, the pseudo-
Goldstone fermion χ plays the role of a sterile neutrino. In particular, its mass and
mixing with the active neutrinos can be compared to present and future experimental
bounds.

4.3.1 Parametrization
For numerical purpose, it is more convenient to writemν under a modified form involv-
ing effective parameters, that retains the essential features of the expression displayed
in eq. (4.2.50)

mν =
(
Aεαεβ Bηα
Bηβ F

)
, (4.3.1)

where ~ε and ~η are unit vectors. A and B can both be chosen real. Then, through
rephasings of the four neutrinos, it is possible to eliminate for instance the phases of
~ε and F , so that, in full generality, there are three independent physical phases only.
The determinant of this matrix turns out to be zero, which means that the lightest
neutrino, ν1 in the normal hierarchy or ν3 in the inverted hierarchy, is necessarily
massless. This can be made explicit by a unitary transformation. For this, we define
~ζ as

~ζ = ~ε ∧ ~η
|~ε ∧ ~η|

. (4.3.2)

Extending ~ζ to a dimension 4 vector, we get the eigenvector associated to the eigenvalue
0, V =

(~ζ, 0
)
. In particular, we can see that ~ζ coincides with a column of the 3 × 3

PMNS matrix: in the normal hierarchy, mν1 = 0 and ζα = Uα1, whereas in the inverted
hierarchy, mν3 = 0 and ζα = Uα3.

Defining the following parameters,

c = (~ε )∗ .~η , (4.3.3)

s =
√

1− |c|2 , (4.3.4)

η′ = ~η − c~ε
s

, (4.3.5)

we can now build a unitary matrix that brings mν to a simpler form, namely

ÛTmνÛ =


0 0 0 0
0 0 0 Bs
0 0 A Bc
0 Bs Bc F

 , Û =


ζe η′∗e ε∗e 0
ζµ η′∗µ ε∗µ 0
ζτ η′∗τ ε∗τ 0
0 0 0 1

 . (4.3.6)

It is now explicit that one neutrino is massless, and that the nonzero 3 × 3 block
mixes the massive active neutrinos (ν2 and ν3 in the normal hierarchy, ν1 and ν2 in the
inverted one) with the sterile neutrino. In what follows, we will specialize ourselves to
the real case.
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4.3.2 Numerical search for solutions

In order to find authorized values of the parameters, as well as the associated predic-
tions for the sterile neutrino mass and active-sterile mixing angles, we performed a
random scan of parameter space. For each set of parameters {A,B, F, εα, ηβ}, we com-
puted and diagonalized the neutrino mass matrix, after what we imposed the following
constraints on the masses mi and on the mixing angles Uαi.

1. First of all, one should make sure that the model reproduces the known features
of the 3 × 3 mass matrix for active neutrinos only. Thus, the mass squared
differences ∆m2

ji, i, j = 1, 2, 3 and the PMNS matrix entries |Uαi| for α = e, µ, τ
and i = 1, 2, 3 should lie within the 3σ ranges quoted in ref. [263] for normal and
inverted ordering, respectively. In the following, all the points displayed satisfy
these constraints.

2. Then, the mass squared difference ∆m2
41 ' ∆m2

42 ' ∆m2
43 and the active-sterile

mixing parametrized by the Uα4’s (α = e, µ, τ) should satisfy the constraints
from negative searches for active-sterile neutrino oscillations.

(i) The effective mixing angle sin2 2θee ≡ sin2 2θ14 = 4|Ue4|2(1 − |Ue4|2) is
constrained by ν̄e disappearance experiments at nuclear reactors. We use
the 90% C.L. exclusion contours of Bugey-3 [264] and Daya Bay [265],
which provide the best constraints on sin2 2θee in the range explored here
(10−3 eV2 < ∆m2 < 2 eV2).

(ii) Regarding |Ue4|, we use the strongest bound, which, according to ref. [104],
comes from long baseline reactor experiments and is given by |Ue4|2 ≤ 0.055
at 95% C.L..

(iii) νµ and ν̄µ disappearance experiments are sensitive to the effective mixing
angle sin2 2θµµ ≡ 4|Uµ4|2(1− |Uµ4|2). Here, we use the combined 99% C.L.
constraint on |Uµ4|2 from ref. [104] in the range 0.05 eV2 ≤ ∆m2 ≤ 20 eV2,
while below ∆m2 = 0.05 eV2 we impose |Uµ4|2 ≤ 0.04.

(iv) Finally, |Uτ4| is constrained by MINOS and Super-Kamiokande. Ref. [104]
gives a 99% C.L. combined upper limit |Uτ4|2 ≤ (0.24 − 0.30) in the range
0.05 eV2 ≤ ∆m2 ≤ 20 eV2, while Super-Kamiokande gives |Uτ4|2 ≤ 0.23 at
99% C.L. for ∆m2 ≥ 0.1 eV2. In our numerical study, for simplicity, we
impose the constraint |Uτ4|2 ≤ 0.23 for all values of ∆m2

41.

In what follows, we will use the following conventions: points that do not satisfy
the constraints from negative searches for sterile neutrino oscillations will be
displayed in orange, those that do in green or blue. The points displayed in
green are furthermore compatible with the allowed regions at 95% CL for 3+1
oscillations that could explain the Gallium and reactor anomalies: more precisely,
we use the combined data from νe and νē disappearance experiments quoted in
ref. [104].
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Figure 4.1: Predicted values of sin2 2θee and ∆m2
41 in the case of normal hierarchy.

Left: Comparaison with the exclusions of Daya Bay and Bugey. Right: Comparaison
with the expected sensitivity of Sox and Stereo.

Normal hierarchy

In fig. 4.1, we compare the predictions of the model to the sensitivity of present and
future experiments in the plane sin2 2θee−∆m2

41, for the case of normal hierarchy. After
diagonalizing the neutrino mass matrix, the mixing angle θee ≡ θ14 is simply given by
sin θee = Ue4, while the squared mass difference ∆m2

41 reduces to mν
2
4 because, in our

scenario, the lightest neutrino is massless.
In fig. 4.1 left, we compare the values obtained to the exclusion limits of Bugey

[264] and Daya Bay [265]. This highlights how the constraints apply. For instance,
below ∆m2 ' 2 − 3 eV2, it is clear that the upper bound on the mixing sin2 2θee is
set by the exclusion limits of Bugey and Daya Bay, while for larger values of ∆m2,
sin2 2θee cannot be very large as a result of the various conditions imposed. One can
also see that, once all the constraints are taken into account, the new splitting cannot
be much smaller than ∆m2 ∼ 0.05 eV2.

Fig. 4.1 right shows how the predicted values for the new squared mass splitting
and the active-sterile mixing angle θee compare to the expected sensitivity of the future
experiments CeSOX [266], Stereo [267] and SoLid [267]. They would slightly improve
the constraints on the high mass splitting region, while for ∆m2 smaller than 1 eV2,
Bugey and Daya Bay would still provide better constraints. In this case of normal
hierarchy, the model provides a small number of points around 1 eV2 in the region
compatible with 3+1 oscillations from νe and ν̄e disapperance experiments, which are
all close to the present and future experimental limits.

Inverted hierarchy

We turn now to inverted hierarchy. Fig. 4.2 shows again the parameters predicted
by the model in the plane sin2 2θee − ∆m2

41 together with the experimental limits of
Bugey and Daya Bay (left) and the expected sensitivity of CeSOX, Stereo and SoLid
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(right). In the case of inverted hierarchy, there is a stronger lower bound on the sterile

Figure 4.2: Predicted values of sin2 2θee and ∆m2
41 in the case of inverted hierarchy.

Left: Comparaison with the exclusions of Daya Bay and Bugey. Right: Comparaison
with the expected sensitivity of Sox and Stereo.

neutrino mass than in the normal one. The constraints imposed by the 3 × 3 PMNS
matrix entries and the active neutrino squared mass splittings already impose a lower
bound of approximately 10−2 eV2 on ∆m2, and after all the experimental exclusions
from negative searches for sterile neutrinos are taken into account, we get

∆m2
41 > 1− 2× 10−1 eV2 . (4.3.7)

On the other hand, for large values of ∆m2
41, the mixing sin2 2θee appears to be less

constrained than in the normal hierarchy and can be as large as approximately 0.25.
Here, the new exclusion limits of CeSOX, SoLid and Stereo would provide inter-

esting informations on this high mass region, where the mixing is little constrained.
In particular, for the inverted hierarchy, this scenario gives a large number of points
compatible with the allowed region for 3+1 oscillations from νe and νē disappearance.
Most of these points are beyond the reach of Bugey but could be tested by the next
generation of experiments.

Conclusion

In this chapter, we studied a model which could explain the existence of a sterile
neutrino and its mixing with standard neutrinos. The sterile neutrino is (mostly)
the fermionic partner of a pseudo-Goldstone boson associated to a broken symmetry,
which is described by an effective theory. Because of R-parity-violating interactions
in the superpotential and in the non-canonical Kähler potential, active and sterile
neutrinos mix with the higgsinos and the neutral gauginos γ̃ and Z̃0. Consequently,
there are four heavy mass eigenstates with masses above the electroweak scale, and
four light eigenstates, which are the three standard neutrinos and the sterile neutrino.
Requiring the model to reproduce the solar and atmospheric masses as well as the
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mixings of active neutrinos, we studied the possible values for the third squared mass
splitting ∆m2

41 and active-sterile mixing. We compared our results with current ex-
perimental constraints and anomalies, which had been considered previously mostly in
phenomenological frameworks.

The number of parameters in the original theory makes it difficult to relate them
closely to the expression of neutrino parameters. However, the structure of the mass
matrix is enough to establish that the lightest neutrino has to be massless (or at least
much lighter than the others once the loop corrections are included in the neutrino
mass matrix). Furthermore, normal and inverted hierarchy lead to different predictions
for the active-sterile mixing. For instance, inverted hierarchy offers more room to a
sterile neutrino that would fit the gallium and reactor anomalies. The next generation
of experiments looking for sterile neutrinos will shed new light on these anomalies
and constrain further the parameter space of this model. Of course, an exhaustive
study should include the possibility of nonzero CP-violating phases. We are currently
working on this extension, and the first results seem to indicate that nonvanishing
phases do not significantly extend the allowed region in the plane sin2 2θee − ∆m2

41,
but only modify the local density of points, so that the main conclusions remain valid.
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Chapter 5
Supersymmetric seesaw and gauge
mediation

5.1 Introduction to Supersymmetry breaking
As explained in the previous chapter, supersymmetry has to be broken to be com-
patible with the non-observation of squarks, sleptons, higgsinos and gauginos. Soft
terms provide a simple and convenient parametrization of supersymmetry breaking,
but introduce a lot of arbitrariness. Thus, a self-consistent theory should include an
explicit mechanism to break supersymmetry. A way to ensure that the theory where
supersymmetry is broken is still free of quadratic divergences is to break supersym-
metry spontaneously: the Lagrangian of the theory is manifestly supersymmetric, but
the ground state is not. Remarkably, such models generate supersymmetry-breaking
terms which are indeed soft according to the definition of 4.1.2. However, difficulties
comes from the fact that it is not possible to achieve a satisfactory supersymmetry
breaking within the MSSM itself.

5.1.1 The vacuum of supersymmetric theories
Taking the trace over spinor indices of eq. (4.1.1) and using tr(σµ) = 2ηµ0, one gets

4P0 = 4H =
[
Q1Q̄1 + Q̄1Q1 +Q2Q̄2 + Q̄2Q2

]
, (5.1.1)

where H is the hamiltonian of the system. The vacuum energy can therefore be written
as

Evac = 〈0|H |0〉 = 1
4
[
‖Q̄1 |0〉 ‖2 + ‖Q1 |0〉 ‖2 + ‖Q̄2 |0〉 ‖2 + ‖Q2 |0〉 ‖2

]
, (5.1.2)

which is obviously always positive. As long as supersymmetry remains unbroken, the
vacuum energy should be zero. Indeed, in this case, the ground state |0〉SUSY has to
be invariant under supersymmetry transformations,

Qα |0〉SUSY = Q̄α̇ |0〉SUSY = |0〉SUSY ⇒ Evac = 0 . (5.1.3)

Conversely, a breaking of supersymmetry implies that the vacuum is not invariant, and
therefore has a strictly positive energy Evac > 0.

113
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Assuming that the other generators of the super-Poincaré algebra Pµ and Mµν

remain unbroken, only spin-0 fields can be non-vanishing in the vacuum. As a con-
sequence, the vacuum energy is determined by the scalar potential. Since it can be
written in terms of the auxiliary fields as follows,

V(φi) = F †i Fi + 1
2DADA , (5.1.4)

the breaking of supersymmetry requires at least one of the auxiliary fields to get a
nonzero vacuum expectation value.

5.1.2 Explicit Models of supersymmetry breaking
Historically, two classes of models have been proposed to generate a non-vanishing
expectation value for an auxiliary field.

In the Fayet-Iliopoulos model [268], a nonzero expectation value for a D-term is
generated by the introduction of the following contribution to the Lagrangian,

LFI = −[κV ]D = −
ˆ
D4θ κV (x, θ, θ̄) = −κD . (5.1.5)

Unlike in eq. (4.1.36), V is now a fundamental vector superfield, and κ has dimension
2. Gauge invariance implies that this vector superfield is associated to an abelian U(1)
gauge theory. The equation of motion for the D-term (4.1.50) is modified to become

∂L
∂D

= 0 = gqiφ
†
iφi − κ+D ⇒ D = κ− gqiφ†iφi , (5.1.6)

where qi is the charge of the chiral superfield Φi under the U(1) symmetry. A simple
version of this mechanism involves only a pair of chiral superfields (Φ+,Φ−) with a
supersymmetric mass term Wmass = MΦ+Φ−, so that they necessarily have opposite
charges. Through a rephasing of the fields, M can be chosen real and positive. The
scalar potential is then

V(φ+, φ−) = M2
(
|φ+|2 + |φ−|2

)
+ 1

2
[
κ+ gq

(
|φ−|2 − |φ+|2

)]2
. (5.1.7)

Since both terms are positive and cannot be simultaneously zero, the scalar potential
is always strictly positive. As explained previously, this implies that supersymmetry
is spontaneously broken in the vacuum.

In the O’Raiferteaigh model [269], supersymmetry is broken by the nonzero ex-
pectation value of an F -term. A minimal implementation of this mechanism involves
three chiral superfields, Φ1, Φ2 and Φ3, which are gauge singlets. The superpotential
is

W = λΦ1(Φ2
3 − µ2) +MΦ2Φ3 . (5.1.8)

λ, µ and M can be chosen real and positive through a rephasing of the superfields.
The scalar potential is

V(φ1, φ2, φ3) = F †1F1 + F †2F2 + F †3F3

= |2λφ1φ3 +Mφ2|2 +M2|φ3|2 + |λ(φ2
3 − µ2)|2 . (5.1.9)
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Again, it is not possible to cancel simultaneously the second and third term, so that
the scalar potential is strictly positive and supersymmetry is spontaneously broken.

Both models exhibit a sum rule, which generalizes to any scenario in which su-
persymmetry is broken at tree-level by renormalizable interactions. If one calls MJ

the mass matrix of particles with spin J , the squared mass matrices of the scalars,
fermions and gauge bosons satisfy [270]∑

J

(−1)2J(2J + 1)tr
(
M2
J

)
= tr

(
M2
S

)
− 2tr

(
M †FMF

)
+ 3tr

(
M2
V

)
= 0 . (5.1.10)

In other words, the supertrace of the total squared mass matrix of the theory vanishes.
To prove this, let us start with the mass matrix of the scalars, which can be obtained
from the scalar potential. By definition, the squared mass for φ†iφj1 is

(
M2
S

)
ij

=
〈
∂2V
∂φ†iφj

〉
. (5.1.11)

The scalar potential is given in eq. (4.1.57),

V = F †kFk + 1
2DADA = WkW

†
k + 1

2DADA , (5.1.12)

Using the fact that W is holomorphic so that ∂W/∂φ†i = ∂W †/∂φj = 0, the squared
mass matrix can be written as(

M2
S

)
ij

=
〈
W †ikWjk +DA

∂2DA

∂φ†i∂φj
+ ∂DA

∂φ†i

∂DA

∂φj

〉
, (5.1.13)

The derivatives of the auxiliary field are given by the following formulae,

∂DA

∂φ†i
= −g(tAφi) ,

∂DA

∂φj
= −g(φ†jtA) , ∂2DA

∂φ†i∂φj
= −tA , (5.1.14)

Using this, one can express the trace as

tr
(
M2
S

)
= 2

∑
i

〈W †ik〉 〈Wik〉+ 2g2∑
i

C(Φi)〈φi〉〈φ†i 〉 . (5.1.15)

C(Φi) is the Casimir of the representation containing φi, defined by (tAtA)ab = C(Φi)δab
Here, we used the fact that for a non-abelian gauge theory tr(tA) = 0 while for an
abelian gauge theory, tr(tA) is the sum of the charges of the chiral superfields, which
has to vanish to avoid the presence of an anomaly. As can be seen from eq. (4.1.55),
the mass matrix of the chiral fermions arises both from the supersymmetric mass terms
and from the Yukawa-like couplings if scalars get a v.e.v., so in the most general case
it is given by

(MF )ij = 〈Wij〉 . (5.1.16)
1Two scalars φī and φj belonging to conjugate representations can also have a mass term of the

form
(
M2
S

)
īj
φīφj . However, if one writes the total squared mass matrix in the basis (φi, φ†j), this type

of contribution appears as an off-diagonal term, so that it does not contribute to the trace.
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In full generality, there can also be mass terms mixing a chiral fermion ψia with a
gaugino λA. According to eq. (4.1.42), this take the form

(MF )iA = −i
√

2g (〈φi〉tA) (5.1.17)

As a consequence, in the basis (ψi, λA), the fermion mass matrix reads

MF =

 〈Wij〉 −i
√

2g (〈φi〉tB)

−i
√

2g (〈φj〉tA) 0

 , (5.1.18)

so that

tr
(
M †FMF

)
=
∑
i

〈W †ik〉〈Wik〉+ 4g2∑
i

C(Φi)〈φi〉〈φ†i 〉 . (5.1.19)

Finally, the squared masses of the vector bosons arise from the kinetic term of the
scalars in eq. (4.1.42), and are given by

(
M2
V

)
AB

= g2
〈∑

i

φ†i{tA, tB}φi

〉
, (5.1.20)

so that

tr
(
M2
V

)
AB

= 2g2∑
i

C(Φi)〈φ†i 〉〈φi〉 . (5.1.21)

From eq. (5.1.15), (5.1.19) and (5.1.21) we can check that indeed,

tr
(
M2
S

)
− 2tr

(
M †FMF

)
+ 3tr

(
M2
V

)
= 0 . (5.1.22)

This sum rule is a problem when it comes to generating a realistic spectrum for Stan-
dard Model fields and their superpartners, because it implies that some of the super-
partners of Standard Model fields should be light enough to be observable [234].

5.1.3 Supersymmetry broken in a separate sector

The models of the previous section provide explicit examples of supersymmetry break-
ing, but cannot work within the MSSM, because they are not able to reproduce a
realistic mass spectrum. Moreover, they do not generate Majorana masses for gaug-
inos. Thus, one has to introduce a hidden supersymmetry-breaking sector involving
new superfields, then find a way to communicate this breaking to the MSSM. Even
then, the sum rule of eq. (5.1.10) makes it difficult to obtain phenomenologically ac-
ceptable predictions as long as the supersymmetry-breaking effects are communicated
to the MSSM by tree-level renormalizable interactions. A way to overcome this issue
is to communicate the breaking to the MSSM radiatively or via nonrenormalizable
interactions.
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(i) In Planck-scale mediated or gravity mediated supersymmetry breaking [271–
275], the mediation is carried by nonrenormalizable interactions arising from
new physics at the Planck scale, including gravitational interactions and new
heavy states. These interactions appear in the superpotential and in the Kähler
potential and couple the supersymmetry-breaking sector directly to the MSSM
fields. If supersymmetry breaking arises from the v.e.v. of an F -term, the scale
of soft masses should be around 〈F 〉/MP (and therefore, for soft masses around
the TeV scale,

√
〈F 〉 should lie between 1010 and 1011 GeV). The main drawback

of this class of models is that the exact form of the new interactions is not known,
and therefore the results depend crucially on the assumptions made about the
structure of the soft terms at the Planck scale.

(ii) In gauge mediation [225, 226, 276–281], supersymmetry-breaking effects are com-
municated to the visible sector radiatively. One of the main appeals of this kind
of models is that they are very predictive, because every soft term can be com-
puted from renormalizable gauge interactions, and there are few free parameters.

(iii) Another possibility is extra-dimensional mediated supersymmetry breaking [282],
which relies on the universe having more than four spacetime dimensions (usually
five). For instance, the chiral superfields of the MSSM and the supersymmetry-
breaking sector can be confined in two parallel four-dimension branes. Then,
there are two different possibilities. If gauge superfields live in the bulk, they can
transmit supersymmetry-breaking effects to the MSSM [283–287]. Alternatively,
the gauge superfields can also be confined with the chiral superfields of the MSSM
in a four-dimensional brane and only supergravity mediates supersymmetry-
breaking effects [288, 289]. The latter scenario is referred to as anomaly me-
diation.

5.1.4 Minimal gauge mediation
We focus now on gauge mediation, and more precisely on its minimal realization, where
gauge interactions alone are responsible for mediating supersymmetry breaking. In the
next section, we will consider extensions in which additional interactions are involved,
leading to a richer phenomenology.

For simplicity, the hidden sector that breaks supersymmetry is parametrized by a
spurion X. The scalar and F -term components of the chiral superfield X get a v.e.v.,

〈X〉 = MX + θ2FX . (5.1.23)

X does not have any direct coupling to the MSSM, but to chiral superfields called
messengers. In minimal gauge mediation, direct couplings between messengers and
ordinary MSSM fields are forbidden by a symmetry called messenger parity [290], so
that the two sectors only communicate through gauge interactions. In order to give
a mass to the gauginos of the three subgroups U(1), SU(2) and SU(3), there should
be messengers charged under every one of them. A usual choice, motivated by the
will of preserving the unification of gauge couplings provided by supersymmetry, is to
take a pair of doublets (Φu,Φd) with the same quantum numbers as the Higgs doublets
(except for messenger parity) and a pair of color triplets (ΦT ,ΦT̄ ): ΦM = (Φu,ΦT ) and
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ΦM̄ = (Φd,ΦT̄ ) are a vectorlike pair of SU(5) 5-plets, and therefore their introduction
does not spoil the unification. There could be several pairs of messengers, but here
we restrict ourselves to the minimal case. Keeping the SU(5) notation, the coupling
between the spurion and the messengers is described by the following superpotential

WGM = XΦM̄ΦM . (5.1.24)

In components, the Lagrangian derived from this superpotential reads

LGM = −M2
X

(
|φM |2 + |φM̄ |

2
)
− (MXψM̄ψM + FXφM̄φM + h.c.) . (5.1.25)

The physical states are a four-component Dirac fermion (ψM , ψ†M̄ ) with massMX , and
two complex scalars,

φM± =
φM ± φ†M̄√

2
, M2

± = M2
X ± FX . (5.1.26)

The fact that the scalars and fermions are no more degenerate is a clear indication that
supersymmetry is indeed broken. One can also check that the sum rule of eq. (5.1.10)
is satisfied.

λA λB

F

M

φM φM̄

ψM ψM̄

√
2gtA

√
2gtB

Figure 5.1: One-loop contribution to gaugino masses in the spurion insertion approxi-
mation.

Gaugino Majorana masses are then generated at one loop. The exact computation
should be performed in the mass eigenstate basis for the scalars (φM+, φM−), but
as long as FX � M2

X , which is a good approximation if the messenger scale MX is
large enough, one can conveniently work in the original basis (φM , φM̄ ) and perform
a spurion insertion, as shown in fig. 5.1. One can check that this is equivalent to
expanding the propagator of φM+ and φM− at first order in FX/M2

X . Explicitly, for a
given gauge group, the computation gives

−iMAB = 2g2tr(tAtB)
ˆ
d4k

2π4
MX

k2 −M2
X + iε

FX
(k2 −M2

X + iε)2

= −i α4πS(ΦM )δABΛ , (5.1.27)
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where α = g2/(4π), Λ = FX/MX and S(ΦM ) is the Dynkin index of the representation
containing ΦM . From this, it appears that gaugino masses are roughly of the order of
msoft ∼ αΛ/(4π), which should be around a TeV. Thus, the assumption FX � M2

X

should hold as long as MX is much larger than 4πmsoft/α. On the other hand, gauge
bosons remain massless because their masses are forbidden by gauge symmetry. The
formula above is valid at a scale µ ' MX and is modified by the running of the
renormalization group.

F

F †
ℓ̃ ℓ̃

ℓ̃

W W

φM φM̄

Figure 5.2: Two-loop contribution to the slepton squared mass.

Squared masses for the scalars are generated at two loops only because the chi-
ral superfields have no direct coupling to the messengers. One example of diagram
contributing to the slepton squared mass is displayed in fig. 5.2. Summing the contri-
butions of the various diagrams involved leads to the following result for the squared
masses of the scalars [291],

m2
φ = 2|Λ|2

[
C3(φ)

(
αs
4π

)2
+ C2(φ)

(
αEW
4π

)2
+

3Y 2
φ

5

(
αY
4π

)2
]
. (5.1.28)

where C3(φ) = 4/3 if φ is a color triplets (Q̃, ũc or d̃c) and C3(φ) = 0 otherwise,
C2(φ) = 3/4 if φ is an electroweak doublet (Q̃, ˜̀, Hu or Hd) and C2(φ) = 0 otherwise,
and Yφ is the hypercharge. This is of the order ofm2

soft, so that the scalars and gauginos
masses are of the same order of magnitude. On the other hand, the A-terms, which
have mass dimension 1, are also generated at the two-loop order, so they scale roughly
like A ∼ Λ(α/4π)2, which is much smaller than msoft. They can therefore be neglected
in a first approximation. However, this is true only at the scale µ ∼MX and A-terms
are generated by the running. The chiral fermions do not receive any contribution
to their mass: the quarks and leptons remain massless and get their mass after the
electroweak symmetry breaking, like in the Standard Model.

An important feature of gauge mediation is that, because gauge interactions are
flavour blind, the squared masses of the squarks and sleptons are proportional to the
identity matrix in flavour space, for instance

(m˜̀)2
αβ = m2

˜̀δαβ , (5.1.29)
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which is precisely what is needed to avoid flavour-changing neutral currents that could
be in conflict with the experimental bounds quoted in table 2.2. Thus, contrary to
Planck scale mediated supersymmetry breaking, gauge mediation leads to suppressed
flavour-changing neutral currents without requiring any particular assumption on the
structure of soft terms.

5.2 Extended gauge mediation
From now on, we will focus on gauge mediation and its extensions. As already said,
minimal gauge mediation is predictive and naturally forbids flavour violation. However,
the measured mass of the Higgs boson turns out to be problematic, because it is a bit
too large to fit naturally in this framework. This stems from the fact that, if one
wants to restrict fine-tuning, a large mass for the Higgs boson requires large A-terms,
and this condition is not satisfied within minimal gauge mediation. Extended gauge
mediation, in which direct couplings between messengers and matter superfields are
allowed, is a way to overcome this issue.

5.2.1 The electroweak symmetry breaking in the MSSM
Compared to the Standard Model, the electroweak symmetry breaking in the MSSM is
slightly complicated by the fact that there are two Higgs, and therefore two expectation
values, already encountered in chapter 4,

〈H0
u〉 = vu , 〈H0

d〉 = vd . (5.2.1)

This generates the following masses for the Standard Model fermions,

mu
ij = yuijvu , md

ij = ydijvd , me
αβ = yeαβvd . (5.2.2)

The Z boson, on the other hand, couples to both Higgs doublets, and has therefore
the following squared mass,

M2
Z = g2 + g′2

2 (v2
u + v2

d) , (5.2.3)

which, together with eq. (1.2.23), gives the relation between vu, vd and the Standard
Model v.e.v. v = 174 GeV,

v2
u + v2

d = v2 . (5.2.4)

The parameter β is defined by tan β = vu/vd, so that

vu = v sin β , vd = v cosβ . (5.2.5)

In the MSSM, once supersymmetry is broken, the potential for neutral Higgs
scalars, that triggers the electroweak symmetry breaking, is given by

V (H0
u, H

0
d) =

(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2

−
(
BµH

0
uH

0
d + h.c.

)
+ 1

8
(
g2 + g′2

) (
|H0

u|2 − |H0
d |2
)
. (5.2.6)
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Through a rephasing of H0
u or H0

d , Bµ can be chosen real and positive. Then, at the
minimum of the potential, the product H0

uH
0
d should be positive. At this stage, one

still has the freedom to perform another rephasing to have them both real.
Here, contrary to the Standard Model, the quartic term of the Higgs potential,

which comes from integrating out the D terms, is entirely determined by the gauge
interactions.

The µ and µ−Bµ problems

The minimum of the potential is defined by the following equations,

∂V

∂H0
u

= 0⇒ 2
(
|µ|2 +m2

Hu

)
vu − 2Bµvd + 1

2
(
g2 + g′2

)
vu
(
v2
u − v2

d

)
= 0 , (5.2.7)

∂V

∂H0
d

= 0⇒ 2
(
|µ|2 +m2

Hd

)
vd − 2Bµvu −

1
2
(
g2 + g′2

)
vd
(
v2
u − v2

u

)
= 0 . (5.2.8)

Dividing the first equality by vu and the second one by vd (which are required to be
nonzero in order to break the electroweak symmetry and give mass to all the fermions),
one gets

2|µ|2 + 2m2
Hu − 2Bµ cotβ −M2

Z cos 2β = 0 , (5.2.9)
2|µ|2 + 2m2

Hd
− 2Bµ tan β +M2

Z cos 2β = 0 . (5.2.10)

From these equations, one can derive the following relations between the parameters
[292],

sin 2β = 2Bµ
m2
Hu

+m2
Hd

+ 2|µ2|
, (5.2.11)

M2
Z =

|m2
Hu
−m2

Hd
|√

1− sin2 2β
−m2

Hu −m
2
Hd
− 2|µ2| . (5.2.12)

This reveals the so-called µ problem of supersymmetric theories. Eq. (5.2.12) implies
that, unless there is a cancellation, all parameters should be roughly of the order of
magnitude of MZ . On one hand, the squared masses m2

Hu
, m2

Hd
and Bµ come from

supersymmetry breaking, so it means that the supersymmetry-breaking scale should
not be too far from the electroweak scale. On the other hand, µ is a fundamental
parameter of the supersymmetric theory, and there is a priori no reason why it should
be of the order of magnitude of MZ . A solution to this problem is provided by the
NMSSM, in which the µ-term is generated dynamically as the v.e.v. of a gauge singlet
[220, 293–296].

Another option is to forbid the µ-term in the superpotential by the mean of some
Peccei-Quinn symmetry. Then, both µ and Bµ are generated by effective operators
coupling the Higgs to the supersymmetry-breaking spurion [297]. However, in the
context of gauge mediation, this does not really solve the problem because µ and Bµ
are typically generated at the same loop order [298]. Therefore, they scale like

µ ∼
(
α

4π

)n
Λ , Bµ ∼

(
α

4π

)n
Λ2 , (5.2.13)
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where n is the loop order. This implies in particular Bµ ∼ µΛ. Since, as previously
said, Λ should be of the order of 4πmsoft/α ∼ 10 − 100 TeV, it seems that µ and
Bµ cannot have simultaneously the right order of magnitude which is approximately
O(1 TeV). This is the µ−Bµ problem, which is peculiar to gauge mediation.

The Higgs boson mass

Together, the two Higgs doublets contain eight real scalar degrees of freedom, which
can be parametrized as follows,(

H0
u

H0
d

)
=
(
vu
vd

)
+ 1√

2
RCP+

(
h0

H0

)
+ i√

2
RCP−

(
G0

A0

)
, (5.2.14)(

H+
u

H−†d

)
= 1√

2
R+

(
H+

G+

)
, (5.2.15)

where RCP+ , RCP− and R+ are 2 × 2 orthogonal matrices. G0, G+ and G− are the
Goldstone particles absorbed by the gauge bosons W+, W− and Z0, which makes
them massive. The remaining five degrees of freedom are two charged scalars H+ and
H−, two CP-even neutral scalars h0 and H0 and one CP-odd neutral scalar A0. By
convention, h0 is chosen to be the lightest CP-even scalar. At tree-level, its mass is
bounded from above [299, 300],

mh < MZ | cos 2β| . (5.2.16)

This is obviously in contradiction with the measured values of the Higgs and Z boson
masses. Of course, this relation only holds at tree-level, and should be modified by
loop corrections, that can in principle relax the upper bound on the Higgs mass up to
135 GeV [301–303].

Thus, large radiative corrections are needed in order to reproduce the measured
value mh = 125.6 ± 0.3 GeV. For this, either stops should be very heavy (with mt̃ &
10 TeV), or there should be a large mixing between the right-handed and left-handed
stops [304–307]. Unfortunately, the first option leads to a larger fine-tuning, which can
be seen by computing the Barbieri-Giudice measure [308],

∆ = max ∆a , ∆a = ∂ logM2
Z

∂ log a , (5.2.17)

where a are fundamental parameters of the theory. This is precisely what supersym-
metric theories aim to avoid. The second option requires a large A-term for the stop,
which seems to rule out gauge mediation. However, it is still possible to achieve large
A-terms by allowing direct couplings between messengers and matter which will con-
tribute to the mediation of supersymmetry breaking together with gauge interactions.

Before turning to models of extended gauge mediation, we will present the general
method used here to compute soft terms.

5.2.2 Soft terms from wavefunction renormalization
A convenient way to compute soft terms was introduced by Gian Francesco Giudice
and Riccardo Rattazzi in the context of minimal gauge mediation [309]. The principle
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is the following: one computes the wavefunction renormalization of chiral and gauge
superfields in the supersymmetric theory. The results obtained are functions of the
messenger mass MX , treated as a complex number. Then, one performs an analytic
continuation in superspace by replacing MX with 〈X〉 = MX + θ2FX .

Here, similarly, we extract soft terms from wavefunction renormalization. Let us
summarize this method in a general framework where, apart from the messenger sector,
the superpotential is

W = 1
2MijΦiΦj + 1

6λijkΦiΦjΦk , (5.2.18)

After computing the wavefunction renormalization, the kinetic terms for the gauge and
chiral superfields are the following

Lkin =
ˆ
d2θS(MX , µ)tr[WαWα] + h.c. +

ˆ
d4θZij(MX ,M

†
X , µ)Φ†iΦj , (5.2.19)

where µ is the renormalization scale. Replacing MX with 〈X〉 in the wavefunction
renormalization of the gauge superfield and performing the expansion gives

S(〈X〉, µ) = S(MX , µ) + θ2 ∂S

∂MX
FX . (5.2.20)

The kinetic term for the gauge superfield becomes
ˆ
d2θS(MX , µ)

[
1 + θ2 ∂ logS

∂ logMX
Λ
]
tr[WαWα] + h.c. . (5.2.21)

In order to recover a canonical form for the kinetic term, one performs the following
rescaling on the field strength, Wα → S(MX , µ)1/2Wα. Finally, the integration of the
term in θ2 gives

ˆ
d2θθ2 ∂ logS

∂ logMX
Λ tr[WαWα] = −1

4
∂ logS
∂ logMX

ΛλαAλAα , (5.2.22)

so that one can identify the gaugino mass,

M = 1
2
∂ logS
∂ logMX

Λ . (5.2.23)

Similarly, after expanding the wavefunction renormalization of the chiral super-
fields, the second term of eq. (5.2.19) reads

ˆ
d4θ

[
Zij|1 + θ2Zij|θ2 + θ̄2Z†ij|θ2

+ θ4Zij|θ4

]
Φ†iΦj , (5.2.24)

where we used the following notations

Zij|1 = Zij(MX ,MX , µ) , Zij|θ2 = ∂Zij
∂MX

FX , Zij|θ4 = ∂2Zij

∂MX∂M
†
X

|FX |2 . (5.2.25)
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The first term gives the ordinary kinetic terms, while the other ones will give rise to
A-terms, B-terms and squared masses for the scalars. Indeed, one has

ˆ
d4θ θ2Φ†iΦj = F †i φj , (5.2.26)

ˆ
d4θ θ4Φ†iΦj = φ†iφj . (5.2.27)

One should redefine the chiral superfields to recover a canonical form for the kinetic
terms. Using Z|1 = V †V , the suitable rescaling is

Φi → VijΦj . (5.2.28)

Once this is done, after integrating out the auxiliary F fields, one finds the following
A- and B-terms (using the same conventions as in eq. (4.1.62)),

Bij = V −1
i′i V

−1
j′j

[
Mki′

(
Z−1
|1 Z|θ2

)
kj′

+Mkj′

(
Z−1
|1 Z|θ2

)
ki′

]
, (5.2.29)

Aijk = V −1
i′i V

−1
j′j V

−1
k′k

[
λli′j′

(
Z−1
|1 Z|θ2

)
lk′

+ λlk′i′
(
Z−1
|1 Z|θ2

)
lj′

+ λlj′k′
(
Z−1
|1 Z|θ2

)
li′

]
,

(5.2.30)

as well as the following scalar squared masses,

(m2)ij = V −1∗
i′i V −1

j′j

[
−Zi′j′|θ4 + Z†i′k|θ2

Z−1
kl|1Zlj′|θ2

]
. (5.2.31)

Finally, if both the µ and Bµ-terms are to be generated by the supersymmetry
breaking, one should also mention the holomorphic wavefunction renormalization for
Higgs doublets, defined by the following term in the Kähler potential.

Kholomorphic = HudHuHd + h.c. (5.2.32)

In the previous chapter, we discarded this term because, in a supersymmetric theory,
the θ4 component of an holomorphic function of chiral superfields is a total derivative.
However, in the context of supersymmetry breaking, such considerations do not apply
anymore. In particular, in the present method, Hij is promoted to a superfield, so that

[HudHuHd]D = Hud|θ̄2
(
HuFHd +HdFHu − H̃uH̃d

)
+Hud|θ4HuHd . (5.2.33)

Thus, after integrating out the F -terms, one can identify the mass parameters µ and
Bµ,

µ = V −1
uu V

−1
dd Hud|θ̄2 , Bµ = −V −1

uu V
−1
dd Hud|θ4 . (5.2.34)

5.2.3 General matter-messenger mixing
In extended gauge mediation, the superpotential contains new couplings between mes-
sengers and matter fields [310–321]. This generates in particular A-terms at one loop,
needed to raise the upper bound on the Higgs mass. In models usually considered,
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messengers are the only heavy fields, while all other fields are light MSSM fields that
can be considered massless. Thus, there are two kinds of new couplings in the superpo-
tential, that can be referred to as messenger-light-light and messenger-messenger-light
[322]. In some particular models, such as the one considered in [323], the messengers
are also fields involved in the seesaw mechanism. Note that, in order to give masses to
gauginos at one loop, these fields should be involved in the type II or type III seesaw,
because the right-handed neutrinos involved in type I are gauge singlets.

We consider here a general scenario involving not only light MSSM fields and
messengers, but also heavy fields that are not messengers. In the following section, we
will consider the specific cases of the type I and type II seesaw. In the general case,
the superpotential reads

W = XΦM̄ΦM + 1
2MijΦiΦj + 1

6λijkΦiΦjΦk . (5.2.35)

We want to compute soft terms at the order of two-loop, so that the wavefunction
renormalization of chiral superfields can be expanded as

Zij = δij + Z
(1)
ij|1 + Z

(2)
ij|1 +

[
θ2
(
Z

(1)
ij|θ2

+ Z
(2)
ij|θ2

)
+ h.c.

]
+ θ4

(
Z

(1)
ij|θ4

+ Z
(2)
ij|θ4

)
.

(5.2.36)

At the one-loop order, previous formulae (5.2.29), (5.2.30) and (5.2.31) give the fol-
lowing expressions,

B
(1)
ij = MkiZ

(1)
kj|θ2

+ (i↔ j) , (5.2.37)

A
(1)
ijk = λljkZ

(1)
li|θ2

+ (i↔ j) + (i↔ k) , (5.2.38)

(m2)(1)
ij = −Z(1)

ij|θ4
, (5.2.39)

while at two loops, the squared masses of scalars are

(m2)(2)
ij = −Z(2)

ij|θ4
+ Z

(1)†
ik|θ2

Z
(1)
kj|θ2

+ 1
2Z

(1)†
ik|1 Z

(1)
kj|θ4

+ 1
2Z

(1)†
ik|θ4

Z
(1)
kj|1 . (5.2.40)

At lowest order, the gaugino masses are given by the same formulae as in minimal
gauge mediation, but they may differ at two loops.

As explained previously, we will compute the wavefunction renormalization in the
fully supersymmetric theory, and only in the end extract the θ2 and θ4 components to
recover soft terms. More precisely, we will match the theory above MX , that contains
messengers, with the low-energy theory where they have been integrated out. At one
loop, this matching reads schematically∑

D(1) + iδZ(1) = iZ(1) +
∑
light

D(1) + iδZ
(1)
light , (5.2.41)

The left-hand side contains a sum of all one-loop diagrams D(1) of the high-energy
theory, plus a counterterm that cancel their divergences, while the right-hand side
contains the one-loop wavefunction renormalization of the low-energy theory, the sum
of one-loop diagrams involving light fields only (the heavy ones have been integrated
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out) and the counterterm δZ
(1)
light that cancels their divergences. The contributions

involving light fields only are the same in both the high-energy and the low-energy
theory, so that they cancel out. This gives for the one-loop wavefunction∑

heavy
D(1) + iδZ

(1)
heavy = iZ(1) , (5.2.42)

where, on the left-hand side, we keep only diagrams involving at least one heavy field.
At two loops, similarly, we get∑

heavy
D(2) +

∑
heavy

D
(1)
δZ + iδZ

(2)
heavy = iZ(2) +

∑
light

D
(1)
Z + iδZ̃

(1)
light , (5.2.43)

where the D(2) are two-loop diagrams, the D(1)
δZ are one-loop diagrams with a one-loop

counterterm, while the DZ are one-loop diagrams with a one-loop wavefunction inser-
tion, and δZ̃(1) is the conterterm that cancels their divergences. This is summarized
diagramatically in fig. 5.3.

+ + +

= + +

heavy heavy light

light

δZ(1)
δZ

(1)
heavy

δZ(2)

Z(2)

Z(1)
δZ̃(1)

Figure 5.3: Diagrammatic representation of the two-loop matching procedure. The
label “heavy” in the right-hand side means that at least one heavy field is involved in
the loop, while the label “light” means that all the fields in the loop are light. The
countertem δZ

(1)
heavy was defined in eq. (5.2.42).

In what follows, the indices i, j, k, ... will run over every fields, while greek indices
α, β, γ, ... will run over light fields only.

From now on, we work in a basis where the matrix Mij is diagonal, so that the
mass terms can be rewritten as

Wmass = MiΦīΦi , (5.2.44)

where Φi and Φī are chiral superfields belonging to conjugate representations of the
gauge group.

One-loop order

Superdiagrams contributing to the one-loop wavefunction renormalization of chiral su-
perfields are displayed in fig. 5.4. In ordinary gauge mediation, since there is no direct



5.2. Extended gauge mediation 127

Φj Φi

Φk

Φl

λjkl λ∗
ikl

Φj ΦigtA

VA

gtA

Figure 5.4: Superdiagrams contributing to the wavefunction renormalization at one
loop.

couplings between the messengers and the other chiral superfield, none of these dia-
grams can generate soft terms by itself. However, in the present scenario, the diagram
on the left can generate soft terms if at least one of the fields in the loop is a messen-
ger. Consistently with the results presented in 5.1.4, the diagram on the right does not
generate any soft term, but we should nevertheless compute it because the result will
be needed when performing two-loop computations. Although we are interested in the
soft terms for light fields only, we should compute the 1-loop wavefunction and coun-
terterm for every kind of field because these results will be needed when performing
two-loop calculations.

The left-hand diagram involves only interactions coming from the superpotential,
so we label it for short λ2. It gives the following contribution to the wavefunction
renormalization,

iZ
(1)
ij|λ2

= 1
2
∑
k,l

dkli λ
∗
iklλjkl

ˆ
ddk

(2π)d
1

(k −M2
k )(k −M2

l )
+ iδZ

(1)
ij|λ2

, (5.2.45)

where dkli is a gauge multiplicity factor. The computation of the integral in dimensional
reduction2 in d = 4− 2ε gives

ˆ
ddk

(2π)d
1

(k −M2
k )(k −M2

l )
= i

16π2

[1
ε

+ xkf1(xk, s)− xlf1(xl, s)
∆kl

+ ε
xkf1ε (xk, s)− xlf1ε(xl, s)

∆kl
+O(ε2)

]
, (5.2.46)

with xn = M2
n/M

2
X , ∆kl = xk−xl, s = µ2/M2

X (where µ is the renormalization scale),
and the loop functions f1 and f1ε are defined by

f1(x, s) = 1− log x
s
, (5.2.47)

f1ε(x, s) = 1
2

[
1 + π2

6 +
(

1− log x
s

)2
]
. (5.2.48)

2Here, dimensional reduction with DR is equivalent to dimensional regularization with MS.
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We can now identify the counterterm which, in the DR scheme, is

δZ
(1)
ij|λ2

= − 1
32π2ε

dkli λ
∗
iklλjkl , (5.2.49)

and extract the θ2 and θ4 components at order zero in ε by performing the following
replacement,

xM →
√
x†MxM = 1 + Λθ2 + Λ†θ̄2 + |Λ|2θ4 , (5.2.50)

(we recall here that ΦM and ΦM̄ are the messenger superfields). After this last step,
the xi can be treated as real variables in the expressions of Zij|θ2 and Zij|θ4 .

Z
(1)
ij|θ2

= − Λ
16π2

[
dkAi λ∗ikAλjkAg2(xk) + dABi λ∗iABλjAB

]
, (5.2.51)

Z
(1)
ij|θ4

= |Λ|2

16π2d
kA
i λ∗ikAλjkAg4(xk) , (5.2.52)

where uppercase indices A and B run over messengers only and the functions g2 and
g4 are given by

g2(x) = 1− x+ x log x
(1− x)2 , (5.2.53)

g4(x) = x (2− 2x+ (1 + x) log x)
(1− x)3 . (5.2.54)

The computation of the gauge superdiagram (right of fig. 5.4) gives

iZ
(1)
ij|g2

= −2g2C(Φi)δij
ˆ

ddk

(2π)d
1

k2(k2 −M2
i )

+ δZ
(1)
ij|g2

, (5.2.55)

The loop integral can be expressed in terms of the same functions f1 and f1ε as before,
ˆ

ddk

(2π)d
1

k2(k2 −M2
i )

= i

16π2

[1
ε

+ f1(xi, s) + εxif1ε (xi, s) +O(ε2)
]
. (5.2.56)

The counterterm of eq. (5.2.55) can be identified,

δZ
(1)
ij|g2

= g2

8π2 δijC(Φi)
1
ε
. (5.2.57)

As expected, if Φi is not a messenger, this contribution does not have any θ2 or θ4

component, and hence does not participate in soft terms.

Two-loop order

At two loops, in addition to the usual contribution of gauge interactions to the scalar
squared masses, already given in eq. (5.1.28), the wavefunction renormalization de-
pends on two kinds of superdiagram: diagrams involving only superpotential interac-
tions, and diagrams involving both superpotential and gauge interactions. The former
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A. A′.

B. B′.

C.

Φα Φα

Φα

Φα

Φα
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Φβ

Φl Φl

Φl

Φl

Φm Φm

Φm/Φ̄m Φm/Φ̄m

Φk Φk

Φ̄k/ΦkΦ̄k/Φk

Φn

Φn

Φp

Φp

δZ
(1)
km|λ2

δZ
(1)

k̄m̄|λ2

Φm/Φ̄m

Φ̄k/Φk

Φp

Φl

Φn

Figure 5.5: Superdiagrams involving superpotential interactions only contributing to
the wavefunction renormalization at two loop. Double arrows indicate mass insertions.
The diagrams labelled with a prime involve the one-loop counterterm from eq. (5.2.49).

will scale like λ4 and the latter like λ2g2. This time, we are only interested in the
wavefunction renormalization of light fields Φα, Φβ.

Let us focus on the first kind of contribution. As can be seen from fig. 5.5, there
exists five possible topologies, leading to the following contribution to the left-hand
side of eq. (5.2.43) (here, it is understood that at least one of the fields Φk, Φl, Φm,
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Φn or Φp has to be heavy),[∑
D

(2)
αβ + iδZ

(2)
αβ

]
|λ4

= i

1024π4d
kl
α d

np
k λ
∗
αklλβlmλ

∗
mnpλknp

[ 1
ε2
− 1
ε

]
+ i

512π4d
kl
α d

np
k λ
∗
αklλβlmλ

∗
mnpλknpfA(xk, xl, xm, xn, xp)

+ i

512π4d
kl
α d

np
k λ
∗
αklλβlmλm̄npλ

∗
k̄np

fB(xk, xl, xm, xn, xp)

+ i

256π4d
kl
α d

mn
β λ∗αklλβmnλ

∗
k̄np

λlm̄pfC(xk, xl, xm, xn, xp)

+ iδZ
(2)
αβ|λ4

. (5.2.58)

The expression of the loop functions fA, fB and fC is given in appendix B. This gives
the following two-loop counterterm,

δZ
(2)
αβ|λ4

= − 1
1024π4d

kl
α d

np
k λ
∗
αklλβlmλ

∗
mnpλknp

[ 1
ε2
− 1
ε

]
. (5.2.59)

The corresponding contribution to the right-hand side of eq. (5.2.43) is given byiZ(2)
αβ +

∑
light

(
D

(1)
Z

)
αβ

+ i
(
δZ̃

(1)
light

)
αβ


|λ4

= iZ
(2)
αβ|λ4

+ i

512π4d
γδ
α λ
∗
αγσλβγδλ

∗
δnpλσnpfA′(0, xn, xp)fA′(0, 0, 0) , (5.2.60)

where we recall that Φγ , Φδ and Φσ are light fields, and we defined

fA′(xi, xj , xk) = x2
i f1(xi,s)
∆ij∆ik

−
x2
jf1(xj ,s)
∆ij∆jk

+ x2
kf1(xk,s)
∆ik∆jk

. (5.2.61)

fA′ diverges when its three arguments go to zero, so in principle it should be reg-
ularized. As explained in appendix B, the loop functions fB and and fC have no
infrared divergence. On the other hand, fA diverges when xk = xl = xm = 0, but this
divergence is precisely cancelled by the one coming from fA′(0, 0, 0) in eq. (5.2.60).
Thus, when writing the expression of Z(2), we split the terms in fA and regroup the
infrared-divergent contributions, leading to the following expression for the two-loop
wavefunction renormalization,

Z
(2)
αβ|λ4

= 1
512π4d

γσ
α dnpγ λ

∗
αγσλβγδλ

∗
δnpλσnp [fA(0, 0, 0, xn, xp)− fA′(0, xn, xp)fA′(0, 0, 0)]

+ 1
512π4d

kl
α d

np
k λ
∗
αklλβlmλ

∗
mnpλknpfA(xk, xl, xm, xn, xp)

+ 1
512π4d

kl
α d

np
k λ
∗
αklλβlmλm̄npλ

∗
k̄np

fB(xk, xl, xm, xn, xp)

+ 1
256π4d

kl
α d

mn
β λ∗αklλβmnλ

∗
k̄np

λlm̄pfC(xk, xl, xm, xn, xp) . (5.2.62)

where, in the second line, at least one of the fields Φk, Φl and Φm is massive so that
this term is infrared-safe.
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Schematically, we extract the θ-components in the following way. If one of the
fields appearing in the loop function f is a messenger, for instance Φp ≡ ΦM , then we
obtain the θ2 and θ4 component as

f|θ2 (xk, xl, xm, xn) = Λ ∂

∂xM
f(xk, xl, xm, xn, xM )|xM=1 , (5.2.63)

f|θ4 (xk, xl, xm, xn) = Λ2 ∂2

∂x2
M

f(xk, xl, xm, xn, xM )|xM=1 . (5.2.64)

The second kind of contribution is summarized by the diagrams displayed in fig. 5.6.
There are now eight different topologies, but, as explained in appendix B.2, the di-
agrams F , G, F ′, G′ (obtained from the former by moving the gauge propagator to
the right) and H can be gathered as a result of gauge invariance, which reduces the
number of contributions. The remaining integrals can be expressed in terms of the
same functions fA and fB as those appearing in eq. (5.2.58),[∑

D
(2)
αβ + iδZ

(2)
αβ

]
|λ2g2

= − i

512π4d
kl
α λ
∗
αklλβklg

2 (2C(Φl)− C(Φa))
[ 1
ε2
− 1
ε

]
− i

128π4d
kl
α λ
∗
αklλβklg

2C(Φl)fA(xk, xl, xl, xl, 0)

− i

128π4d
kl
α λ
∗
αklλβklg

2C(Φl)fB(xk, xl, xl, xl, 0)

+ i

256π4d
kl
α λ
∗
αklλβklg

2C(Φα)fA(0, 0, 0, xk, xl)

+ iδZ
(2)
αβ|λ2g2

. (5.2.65)

We can now identify the counterterm,

δZ
(2)
αβ|λ2g2

= i

512π4d
kl
α λ
∗
αklλβklg

2 (2C(Φl)− C(Φa))
[ 1
ε2
− 1
ε

]
. (5.2.66)

The corresponding contribution to the right-hand side of eq. (5.2.43) is given byiZ(2)
αβ +

∑
light

(
D

(1)
Z

)
αβ

+ i
(
δZ̃

(1)
light

)
αβ


|λ2g2

= iZ
(2)
αβ|λ2g2

+ i

256π4d
kl
α λ
∗
αklλβklg

2C(Φa)fA′(0, xk, xl)fA′(0, 0, 0) . (5.2.67)

Again, the infrared divergences from eqs. (5.2.65) and (5.2.67) cancel, so that the
gauge-superpotential contribution to the two-loop wavefunction renormalization is

Z
(2)
αβ|λ2g2

= − 1
256π4d

kl
α λ
∗
αklλβklg

2

×
{

2C(Φl)
[
fA(xk, xl, xl, xl, 0) + fB(xk, xl, xl, xl, 0)

]
− C(Φa)

[
fA(0, 0, 0, xk, xl)− fA′(0, xk, xl)fA′(0, 0, 0)

]}
. (5.2.68)
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Figure 5.6: Superdiagrams involving superpotential and gauge interactions contribut-
ing to the wavefunction renormalization at two loop. Double arrows indicate mass
insertions. There are also two diagrams similar to F andG but with the gauge propaga-
tor on the right. The diagrams labelled with a prime involve the one-loop counterterm
from eq. (5.2.57), while the diagram I involves the counterterm from eq. (5.2.49).
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Holomorphic wavefunction
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Figure 5.7: One and two-loop contributions to the holomorphic wavefunction renor-
malization. Diagrams obtained from K and K ′ by mirror symmetry are also involved.

The contributions to the holomorphic wavefunction renormalization are displayed
in fig. 5.7. Since only the θ̄2 and θ4 components play a physical role, we do not compute
other possible contributions that have no θ dependence. We focus here on the leading
order, so we do not consider mixed gauge-superpotential contributions at two loops.
Indeed, they contribute to soft terms only if the one-loop wavefunction already does
so. At one loop, we find the following result,

iH(1)
αβ = dklα λαklλβk̄l̄M

†
kM

†
l

ˆ
ddk

(2π)d
1

k2(k −M2
k )(k −M2

l )
. (5.2.69)

This is both IR- and UV-convergent, so we can take d = 4 and compute the integral
straightforwardly. This gives the following result,

Hαβ = − 1
16π2d

kl
α λαklλβk̄l̄

√
x†kx

†
l

∆kl
log

(
xk
xl

)
. (5.2.70)
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If at least one of the fields running in the loop is a messenger, the θ components are

Hαβ|θ̄2 = − Λ
16π2

[
dkAα λαkAλβk̄Āh2(xk) + dABα λαABλβĀB̄

]
, (5.2.71)

Hαβ|θ4 = Λ
16π2

[
dkAα λαkAλβk̄B̄h4(xk) + 2

3d
AB
α λαABλβĀB̄

]
, (5.2.72)

where again, uppercase indices run over messenger fields only.

h2(x) =
√
x (−1 + x− x log x)

(1− x)2 , (5.2.73)

h4(x) =
√
x
(
1− x2 + 2x log x

)
(1− x)3 . (5.2.74)

Unfortunately, it turns out that the two functions h2 and h4 always have the same
order of magnitude. This illustrate the µ − Bµ problem: if both parameters µ and
Bµ are to be generated this way, it is impossible to overcome the relation Bµ ∼ µΛ.
Actually, this problem remains even if one introduces additional pairs of messengers
with different couplings to the spurion.

If there is no direct coupling between the fields Φa and Φb and the spurion, the
relevant contributions to the holomorphic wavefunction renormalization arises at two
loops at least. They lead to the following expression,

H(2)
αβ = 1

512π4d
kl
α d

np
k λαk̄l̄λβlmλknpλ

∗
mnp

√
x†l
xm

fB(xk, xl, xm, xn, xp)

+ 1
512π4d

kl
α d

np
k λαklλβl̄m̄λ

∗
knpλmnp

√
x†l
xk
fB(xk, xl, xm, xn, xp)

+ 1
256π4d

kl
α d

mn
β λαklλβmnλ

∗
knpλl̄m̄p

√
x†l
xk
fC(xk, xl, xm, xn, xp) . (5.2.75)

5.3 Application: the supersymmetric seesaw

5.3.1 Flavour violation
When considering specific models of extended gauge mediation, the new couplings be-
tween matter superfields and messengers should not generate flavour-changing neutral
currents that exceed the experimental bounds, otherwise one of the main assets of
gauge mediation would be lost. For instance, considering a messenger Φd with the
same quantum numbers as the down-type Higgs, one should in principle be able to
write the following term in the superpotential

Wnew = λeαβΦd`αe
c
β . (5.3.1)

If the new couplings are fully generic, this will typically generate squared mass matrices
for the slepton proportional to λe†λe. This in turn will give rise to flavour-changing
neutral currents in the charged lepton sector, in contradiction with the bounds quoted
in table 2.2, unless the new couplings are small enough or have a very peculiar structure.
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A solution to this problem was introduced in ref. [314]. Matter-messenger mixing is
initially forbidden by messenger parity. We call Φ̃u and H̃u the up-type messenger and
Higgs superfields that appear in this superpotential. Then, messenger parity is broken
by the expectation value of a field S such that the following interaction is allowed,

S

ΛS
XΦdH̃u . (5.3.2)

Once S gets a v.e.v. 〈S〉 6= 0, the superpotential contains the following contributions,

WGM = XΦd

(
Φ̃u + sH̃u

)
+XΦT Φ̄T , (5.3.3)

WMSSM = ỹuijH̃uQiu
c
j + ydijHdQid

c
j + yeαβHd`αe

c
β . (5.3.4)

Now, we redefine fields in such a way that only one vectorlike pair (Φu, Φd) couples to
the supersymmetry-breaking spurion. We define Θ such that tΘ = tan Θ = 〈S〉/ΛS ,
and

Φu = cΘΦ̃u + sΘH̃u (5.3.5)
Hu = −sΘΦ̃u + cΘH̃u . (5.3.6)

In the new basis, the previous contributions to the superpotential read

WGM = κXΦdΦu +XΦTΦT̄ , (5.3.7)
WMSSM = yuijHuQiu

c
j + ydijHdQid

c
j + yeαβHd`αe

c
β . (5.3.8)

with κ = 1/ cos Θ =
√

1 + s2 and yuij = cΘỹ
u
ij . The superpotential also contains the

following new term,

Wnew = λuijΦuQiu
c
j , (5.3.9)

with λuij = sΘỹ
u
ij = tΘy

u
ij . Because the coupling matrix λu is proportional to the

Yukawa coupling matrix yu, this model does not involve any new source of flavour
violation. In the next paragraphs, when considering the type I and type II seesaw, we
will find similarly that the new contributions to the slepton squared mass matrix can
be expressed in terms of the neutrino mass matrix.

The operator of eq. (5.3.9) is present in most models of extended gauge media-
tion. Using eqs. (5.2.38), (5.2.53) and (5.2.54), one can see that it gives the following
contribution to the one-loop A-terms of squarks,

Auij = − Λ
16π2

(
λuλu†yu + 2yuλu†λu

)
ij
' − 3Λ

16π2 t
2
Θy

3
t , (5.3.10)

Adij = − Λ
16π2

(
λuλu†yd

)
ij
' − Λ

16π2 t
2
Θy

2
t yb . (5.3.11)

Extracting soft terms from wavefunction renormalization, one finds vanishing contri-
butions to the squared masses of squarks at one loop. However, this method only gives
access to the leading order in FX/M2

X . There are actually nonzero one-loop contribu-
tions to the squared masses of squarks, but they are suppressed by additional powers
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of FX/M2
X , so that, unless the messenger scale is very low, they will be negligible

compared to two-loop contribution with no such suppression [314].
In addition to the flavour blind contributions from ordinary gauge mediation, the

2-loop squared masses of scalars include the following terms [314], where we keep only
the dominant entries of yu and yd like in eqs. (5.3.10) and (5.3.11),

∆m2
b̃
' − Λ

128π4 t
2
Θy

2
t y

2
b , (5.3.12)

∆m2
t̃ '

Λ
128π4 t

2
Θy

2
t

[
6y2
t

(
1 + t2Θ

)
+ y2

b −
(

13
15g

2
1 + 3g2

2 + 16g2
3

3

)]
, (5.3.13)

∆m2
Q̃3
' Λ

256π4 t
2
Θy

2
t

[
6y2
t

(
1 + t2Θ

)
−
(

13
15g

2
1 + 3g2

2 + 16g2
3

3

)]
, (5.3.14)

∆m2
Hu ' −

9Λ2

256π4 t
2
Θy

4
t , (5.3.15)

∆m2
Hd
' − 3Λ2

256π4 t
2
Θy

2
t y

2
b . (5.3.16)

When considering specific models, additional terms appear, including in particular
A-terms and one-loop squared masses for the sleptons.

5.3.2 Type I seesaw
We consider now the type I seesaw scenario. The mechanism does not differ much from
the non-supersymmetric case. Apart from the messenger sector, the superpotential is
given by

Wseesaw = 1
2MiNiNi + yνiαHuNi`α , (5.3.17)

and the neutrino mass matrix has the same expression as in the non-supersymmetric
case (apart from the substitution v → vu),

mναβ =
∑
i

yνiαy
ν
iβ

Mi
v2
u . (5.3.18)

Ref. [324] studied how integrating out right-handed neutrinos affects soft terms.
However, the mediation mechanism was not explicitly described, and instead an effec-
tive parametrization of soft terms at a high scale was chosen. In [325], right-handed
neutrinos played the role of messengers in addition to the usual charged messengers of
minimal gauge mediation: as was previously mentioned, right-handed neutrinos cannot
by themselves transmit supersymmetry-breaking to all MSSM fields because they are
gauge singlets. However, promoting them as messengers allows to generate an A-term
for the stops, because of the neutrino Yukawa yνiαHuNi`α which is a direct matter-
messenger coupling. Here, in contrast, we consider right-handed neutrinos that do not
couple directly to the spurion, while other matter-messenger couplings are allowed.
More precisely, the mechanism of section 5.3.1 gives rise to the following new terms,

Wnew = λνiαΦuNi`α + λuijΦuQiu
c
j , (5.3.19)
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with λνiα = tΘy
ν
iα. Because of this direct coupling with messengers, the sleptons receive

the following one-loop soft terms,

Aeαβ = − Λ
16π2 t

2
Θ
∑
i

yνiα

(
yν†ye

)
iβ
g2 (xi) , (5.3.20)

(∆m2
˜̀)αβ = − Λ2

16π2 t
2
Θ
∑
i

yν∗iαy
ν
iβg4 (xi) , (5.3.21)

with xi = M2
i /M

2
X and the functions g2 and g4 are defined in eqs. (5.2.53) and (5.2.54)

respectively.
At two loops, the squared masses of squarks, slepton and Higgs doublets receive new

contributions, while the slepton singlets get their mass only at this order. Regarding
the latter, in addition to the ordinary pure gauge contribution, the following term is
generated,

(∆m2
ẽ)αβ = Λ2

256π4 t
2
Θ
∑
i

ye∗γαy
e
σβy

ν
iγy

ν∗
iσ

×
[
∂2

5fA(0, 0, 0, xi, 1)− fA′(0, 0, 0)∂2
3fA′(0, xi, 1)

]
, (5.3.22)

where ∂nf means that we take the derivative of f with respect to its nth variable in
order to extract the θ components as in eqs. (5.2.63) and (5.2.64).

These results can be compared to those of ref. [325], where right-handed neutrinos
were messengers. The first difference is that, in this paper, soft terms depended only on
FX/MX , while in our scenario, they also depend on the mass ratios xi = M2

i /M
2
X , be-

cause right-handed neutrino masses are not related in any way to the supersymmetry-
breaking scale. The flavour structure of soft terms is also different, and in ref. [325],
slepton masses appeared only at two loop, while here a contribution already arises at
one loop. This is due to the fact that, according to eqs. (5.2.52) and (5.2.54), the θ4

component of the one-loop wavefunction is nonzero only if the fields running in the
loop are a messenger and a massive field, which are respectively Φu and Ni in the
present model.

In general, the supersymmetric type I seesaw gives rise to flavour violation in the
charged lepton sector, usually because neutrino Yukawa couplings contribute to the
running of slepton masses. Here, in addition to that, right-handed neutrinos contribute
directly to the generation of slepton masses and slepton A-terms from supersymmetry-
breaking. This is in contrast with the non-supersymmetric type I seesaw, which does
not give a significant contribution to such phenomena. The lepton flavour-violating
slepton masses depend on the same Yukawa couplings as neutrino masses but unfor-
tunately, as already mentioned in the context of leptogenesis, the coupling matrix yν
cannot be expressed in a simple way in terms of the neutrino mass matrix, so that the
relation between lepton flavour violation and neutrino masses is not straightforward.
In order to make more precise predictions on flavour-changing observables, one should
select a flavour model to parametrize the neutrino Yukawa couplings. The type II
seesaw is more predictive with respect to this matter.
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5.3.3 Type II seesaw
The supersymmetric type II seesaw differs from the non-supersymmetric case in the
fact that there must be two triplet superfields ∆ and ∆̄ for the same reason that there
are two Higgs doublet. Indeed, the scalar triplet comes with a fermionic superpartner,
that should be part of a vectorlike pair to avoid anomalies. Moreover, as can be seen
from eq. (2.1.57), in the non-supersymmetric case, the generation of neutrino masses
requires ∆ to couple to lepton doublets and ∆† to couple to Higgs doublets, but in
a supersymmetric theory, the superpotential is an holomorphic function of superfields
and therefore cannot depend on ∆†.

The most general type II seesaw scenario involves a pair of triplet superfields with
opposite hypercharges, and the following superpotential,

Wseesaw = M∆∆̄∆ + 1
2fαβ∆`α`β + 1

2λ
u
HH∆̄HuHu + 1

2λ
d
HH∆̄HdHd . (5.3.23)

The neutrino mass matrix of eq. (2.1.61) becomes

mναβ = 1
2λ

u
HHfαβ

v2
u

M∆
. (5.3.24)

Here, we consider a model that differs from this generic case. We assume that
the µ-term is forbidden by a Peccei-Quinn symmetry. The coupling, ∆̄HuHu should
be allowed in order to generate neutrino masses, but then the coupling ∆HdHd is
forbidden by the same symmetry as the µ-term. We also consider the mechanism
of 5.3.1 to avoid large flavour-changing neutral currents in the quark sector. Thus,
apart from the messenger and MSSM parts, the superpotential contains the following
contributions,

Wseesaw = 1
2fαβ∆`α`β + 1

2λHH∆̄HuHu , (5.3.25)

Wnew = λΦH∆̄HuΦu + 1
2λΦΦ∆̄ΦuΦu + λuijΦuQiu

c
j , (5.3.26)

with λΦH = tΘλHH , λΦΦ = t2ΘλHH .
At one loop, the new soft terms with respect to 5.3.1 are

∆Auij = − 3Λ
32π2λ

2
φHy

u
ijg2 (x∆) , (5.3.27)

∆m2
Hu = − 3Λ2

32π2λ
2
φHg4 (x∆) . (5.3.28)

No soft terms for sleptons are generated at this order, because there is no direct cou-
pling between lepton and messenger superfields. However, soft terms are generated at
two loops. In particular, in addition to the usual flavour blind contribution from min-
imal gauge mediation (5.1.28), the slepton squared mass matrix includes the following
term,

(∆m2
˜̀)αβ = Λ2

256π4

(
f †f

)
αβ

[
2λ2

φH∂
2
5fB (x∆, 0, x∆, 0, 1)

+λ2
φφ(∂4 + ∂5)2fB (x∆, 0, x∆, 1, 1)

]
. (5.3.29)
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This is particularly interesting, because it connects flavour violation to the neutrino
mass matrix. Indeed, as can be seen from eq. (2.2.22), the mass insertion parameter
δLLαβ (α 6= β) involved in flavour-violating processes is proportional to the contribution
(∆m2

˜̀)αβ displayed here, which, using eq. (5.3.24), can be expressed as

(∆m2
˜̀)αβ = Λ2

64π4
M2

∆
v4
u

(
m†νmν

)
αβ
f˜̀(tΘ, x∆) , (5.3.30)

with

f˜̀(x∆, tΘ) =
[
2t2Θ∂2

5fB (x∆, 0, x∆, 0, 1) + t4Θ(∂4 + ∂5)2fB (x∆, 0, x∆, 1, 1)
]
. (5.3.31)

This can be compared to the results obtained in ref. [323], where the scalar triplet
plays the role of a messenger. When the scalar triplet is a messenger, it gives sev-

10-3 10-2
10-1 1 10 102 103

0.0

0.2

0.4

0.6

0.8

1.0

xD

t Q

f
{
� H xD , t Q L

10
-3

10
-2

10
-1

1

Figure 5.8: Loop function f˜̀(tΘ, x∆) appearing in the expression of slepton masses.

eral more contributions to slepton masses. However, keeping only the dominant term
among these, the flavour structure is very similar to that of our scenario and can be
conveniently related to that of the neutrino mass matrix. The main novelty here comes
from the presence of two different mass scales. Indeed, one can play with the ratio
x∆ = M2

∆/M
2
X and use the variations of the function f˜̀(x∆, tΘ), displayed in fig. 5.8,

to control the size of flavour-changing rates in the lepton sector.

5.3.4 Additional comments

The µ−Bµ problem

In both scenarios above, the µ- and Bµ-term cannot be generated because of the
symmetry we imposed (or at least not with the minimal field content). We already
showed that, if they are to be generated at one loop, it is not possible to have them
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both with the right order of magnitude. In the type I and type II seesaw, a way to
generate µ and Bµ at two loop would be to introduce a new vectorlike pair of chiral
superfields (χ, χ̄), whose couplings break the Peccei-Quinn symmetry.

For instance, in the type I, one would add the following terms to the superpotential,

W��sym = yiχNiHuχ+ λiχNiφuχ+ yiχ̄NiHdχ̄+Mχχχ̄ , (5.3.32)

while, in the type II, one could introduce the following terms,

W��sym = λHχ∆̄Huχ+ λφχ∆̄φuχ+ λHχ̄∆χ̄Hd +Mχχχ̄ . (5.3.33)

In both case, using the results of the previous sections, the parameters µ and Bµ have
the following form,

µ = Λ
256π4

∑
Cihi2(xa, xχ) , a = Ni,∆ , (5.3.34)

Bµ = Λ2

256π4

∑
Cihi4(xa, xχ) , (5.3.35)

where Ci is a product of couplings. One could hope that, playing with the ratios of the
different mass scales, it would be possible to make Bµ small enough compared to µ2, in
contrast with models in which the messenger massMX is the only scale. Unfortunately,
this turns out not to work numerically: the functions hi2 and hi4 typically satisfy the
following relation, h2

i2(xa, xχ) . hi4(xa, xχ), so that unless we fine tune the couplings,
we get µ2 � Bµ.

Thus, it does not seem possible to use the results of this section to solve the µ−Bµ
problem in a minimal way, which would rely only on the presence of different mass
scales to adjust the Higgs mass parameters.

Leptogenesis

Leptogenesis can easily be implemented in the type I seesaw scenario, just as in its
non-supersymmetric version. It is also possible to play with the ratio of the different
right-handed neutrino masses to lower the scale of leptogenesis.

In the type II seesaw, supersymmetry breaking can mix the scalar components
of ∆ and ∆̄. This generates two nearly degenerate states, which could lead to soft
leptogenesis [326, 327]. However, this does not work within the present framework.
Then, the problem is the same as that already encountered in 3.2: leptogenesis requires
an additional source of CP-violation, typically a heavier pair of triplets or right-handed
neutrinos. One can fear that this would spoil the relation between the slepton squared
mass matrix and the neutrino mass matrix.

An exception occurs in the following case: if we introduce two pairs of triplets
(∆i, ∆̄i), i = 1, 2, with couplings labelled λ

(i)
HH (which can be chosen real) and f (i),

and with nearly degenerate masses M∆i
= M∆ ± δM∆, δM∆ � M∆, then their total

contribution to the slepton mass matrix, obtained through a strightforward general-
ization of eq. (5.3.29), reads

∆m̃2
` = Λ

256π4

[
f (1)†f (1)λ

(1) 2
HH + f (2)†f (2)λ

(2) 2
HH +

(
f (2)†f (1) + f (1)†f (2)

)
λ

(1)
HHλ

(2)
HH

]
×
[
f˜̀(tΘ, x∆) +O(δx∆)

]
. (5.3.36)
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This can be rewritten as

∆m̃2
` '

Λ2

256π4 f
′†f ′λ′

2
HHf˜̀(tΘ, x∆) , (5.3.37)

where we defined the following effective couplings,

λ′HH =
√
λ

(1) 2
HH + λ

(2) 2
HH , f ′αβ =

λ
(1)
HHf

(1)
αβ + λ

(2)
HHf

(2)
αβ√

λ
(1) 2
HH + λ

(2) 2
HH

. (5.3.38)

The same effective parameters can be used to express the neutrino mass matrix,

(mν)αβ =
[

1
2λ

(1)
HHf

(1)
αβ

v2
u

M∆
+ 1

2λ
(2)
HHf

(2)
αβ

v2
u

M∆

]
×
[
1 +O

(
δM∆
M∆

)]

' 1
2λ
′
HHf

′
αβ

v2
u

M∆
. (5.3.39)

Thus, the relation between the slepton and neutrino mass matrices is preserved, and
the presence of two quasi-degenerate triplets allows to achieve leptogenesis at a much
lower scale than what was observed in chapter 3. However, the drawback of this
scenario is that it seems difficult to justify the existence of two fields very close in mass
but with different couplings (in particular, f (1) and f (2) should have different phases
in order to have a non-vanishing CP violation).

5.3.5 Conclusion

In this chapter, we derived expressions for supersymmetry-breaking terms in a general
framework of extended gauge mediation. To achieve this, we used a method based on
that initially proposed in ref. [309]: first, we computed wavefunction renormalization
of superfields in the exactly supersymmetric theory, and then we extracted soft terms
by promoting the messenger mass parameter to a chiral superfield 〈X〉 = MX +FXθ

2.
This method allows to derive first order terms in FX/M2

X , which are dominant if the
supersymmetry-breaking scale is not too low. Finally, we applied these general results
to specific scenarios, which include both extended gauge mediation and the seesaw
mechanism.

The new ingredients here with respect to previous works on extended gauge me-
diation is the presence of heavy fields that are not messengers, and the existence of
direct couplings between messengers and these heavy fields. In particular, this case is
not covered by ref. [322] which gave very general methods to study extended gauge
mediation with several different kinds of couplings between messengers and matter
fields. Because of this, there are several different mass scales and soft terms therefore
depend on non-trivial kinematic functions.

The supersymmetric seesaw mechanism fits naturally in this framework, and allows
to describe in a common model gauge mediation, neutrino masses and leptogenesis.
Direct couplings between messengers and other fields generate A-terms at one-loop
and new contributions to scalar masses, which give rise to flavour violation that may
be in conflict with experimental bounds. Ref. [314] introduced a solution to this
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problem, that makes flavour violation minimal. Applying it in the context of the
seesaw mechanism, this generates soft terms for the leptons which can be expressed
in terms of the same couplings as the neutrino mass matrix. In the type I seesaw,
unfortunately, the combination of couplings appearing in the slepton and neutrino
mass matrices are different, and predictions on flavour violation depend strongly on
the flavour model used to describe neutrino Yukawa couplings. In the type II seesaw,
on the other hand, the flavour-violating contribution to the squared mass matrix of
sleptons is simply proportional to m†νmν .

However, in the type I and type II seesaw, the fact that the existence of several
different mass scales allow to adjust the magnitude of soft terms is not enough to solve
the µ/Bµ problem of gauge mediation in a minimal way. If µ and Bµ are generated
through this mechanism, Bµ is always too large compared to µ2. Thus, it seems that
the µ/Bµ problem needs a separate solution.



Conclusion

Ce n’est qu’en essayant
continuellement que l’on finit par
réussir. Autrement dit : plus ça rate,
plus on a de chances que ça marche.

Proverbe shadok

The Standard Model contains every elementary particle that has ever been seen
experimentally. With the discovery of the Higgs boson, the converse is now also true:
every particle predicted by the Standard Model has been discovered. However, a
complete theory of nature should, among other things, account for neutrino masses,
dark matter and dark energy and provide an explanation for the origin of the matter-
antimatter asymmetry of the Universe. Thus, the Standard Model has to be embedded
into a bigger picture. In the lepton sector, low energy phenomena could provide an
interesting probe of new physics. For instance, the observation of neutrinoless double
beta decay would be an unmistakable sign that neutrinos are Majorana particles, while
flavour violating processes in the sector of charged leptons are so much constrained in
the Standard Model that their observation would be a very clear signal of new physics.

A good example of the links that can exist between high energy and low energy
physics is leptogenesis, that provides a common origin for neutrino masses and the
matter-antimatter asymmetry of the Universe. Leptogenesis is in general difficult
to probe directly due to the large mass of particles involved, but it can be related
to properties of neutrinos: for instance, any indication that neutrinos are Majorana
fermions would strongly advocate for such scenarios. In chapter 3, we showed the
importance of flavour effects in the context of leptogenesis with a scalar triplet, even
in a temperature regime in which the Yukawa couplings of leptons do not allow to
distinguish them. With respect to that matter, leptogenesis with a scalar triplet differs
from scenarios involving hierarchical right-handed neutrinos. These flavour effects
significantly enlarge the parameter space available for successful leptogenesis. We also
studied a model in which the CP violation responsible for the lepton asymmetry can
be expressed straightforwardly in terms of neutrino parameters, which makes it very
predictive.

In chapter 4, we saw that supersymmetry with broken R-parity can account for
neutrino masses without resorting to new heavy states. In such a case, we showed how
the fermionic partner of a pseudo-Goldstone scalar plays the role of a sterile neutrino
that can explain the Gallium and reactor anomalies. Future neutrino experiments
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will shed new light on the anomalies and explore the parameter space allowed by this
model. This illustrates how supersymmetry, usually considered from the high energy
perspective, could manifest itself in the neutrino sector.

If supersymmetry is realized in nature, it has to be broken. Supersymmetry break-
ing in itself is not easy to model, but we know that it should happen in a separate sector,
and be transmitted to the visible sector by some mean. Gauge mediated supersym-
metry breaking is a very predictive scenario that allows to compute supersymmetry-
breaking term from a small number of new parameters, but it is in tension with the
measured Higgs boson mass, slightly larger than what minimal scenarios would predict.
In chapter 5, we studied models of extended gauge mediation, that provide a solution
to this problem. We derived formulae for the soft terms in a general framework in-
volving messengers with direct couplings to both light and heavy fields. The extension
of gauge mediation has a cost, because it requires to introduce new couplings, which
can induce uncontrolled flavour violation. However, it is possible to align the flavour
structure of the new couplings with that of the Standard Model Yukawa. The general
formulae can then be applied to seesaw scenarios, where they lead to prediction for
flavour-changing observables in the lepton sector. In particular, in the type II seesaw,
the squared mass matrix of sneutrino has the same flavour structure as the neutrino
mass matrix.

There is strong evidence of physical phenomena beyond the scope of the Standard
Model, but it is still unclear what the new physics is and where it will show up. In
particular, supersymmetric theories have interesting features but are more and more
constrained by the non-observation of the superpartners of Standard Model fields. The
next run of LHC at 14 TeV may unblock the situation if new sates are discovered. New
physics could also manifest itself at low energy and it is therefore of great importance
to distinguish the physical manifestations of the various possible scenarios. Precision
measurements could then provide valuable information, and especially if new states
are beyond the reach of colliders.



Appendix

A Boltzmann equations

A.1 Classical derivation
The equilibrium phase-space distribution function for a particle a is given by

ρa(~p) = 1
eβ(E−µa) ± 1

, (A.1)

in which the plus sign applies for bosons and the minus sign to fermions. The density
of particles a is related to their phase-space distribution (which does not necessarily
have its equilibrium form) through

na = ga

ˆ
d3p

(2π)3 ρa(~p) , (A.2)

where ga is the number of degrees of freedom. Then, the Boltzmann equation describing
the evolution of the density na stems from [328]

dna
dt

+ 3Hna =
∑
{γ(b1 . . . bn → a a1 . . . am)− γ(a a1 . . . an → b1 . . . bn)} , (A.3)

which describes homogeneously distributed particles in an expanding universe. The
first term on the right-hand side refers to reactions that create a particle a, and the
second one to their counterparts that destroy a particle a. Formally, the space-time
density of reaction for a process a1 . . . am → b1 . . . bn reads

γ(a1 . . . am → b1 . . . bn) =
ˆ m∏

i=1

d3pi
(2π)32ω~pi

ρai(~pi)
n∏
j=1

d3qj
(2π)32ω~qj

[
1± ρbj (~qj)

]
|M|2 (2π)4δ(4)(p1 + . . .+ pm − q1 − . . .− qn) , (A.4)

where |M|2 is the squared matrix element for this process, summed over the internal
degrees of freedom of the initial and final states. To obtain Boltzmann equations, some
approximations are performed. First, we neglect Bose enhancement and Pauli blocking
factors 1 ± ρbj (~qj) for the final states particles. Then, the Bose-Einstein and Fermi-
Dirac distributions (A.1) are approximated by the Maxwell-Boltzmann distribution,

ρa(~p) = e−β(E−µa) , (A.5)
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We define the thermal average of the space-time density of reaction, which, for the
abovementioned process, reads

γeq(a1 . . . am → b1 . . . bn) =
ˆ m∏

i=1

d3pi
(2π)32ω~pi

ρeqai (~pi)
n∏
j=1

d3qj
(2π)32ω~qj

|M|2 (2π)4δ(4)(p1 + . . .+ pm − q1 − . . .− qn) , (A.6)

where this time the ρeq’s are the equilibrium phase-space distribution function at zero
chemical potential,

ρeq(~p) = e−βE . (A.7)

Finally, we approximate eq. (A.3) by

dna
dt

+ 3Hna =
∑{

nb1
neqb1

. . .
nbn
neqbn

γeq(b1 . . . bn → a a1 . . . am)

− na
neqa

na1

neqa1
. . .

nam
neqam

γeq(a a1 . . . an → b1 . . . bn)
}
. (A.8)

From now on, we drop the superscript eq for the space-time densities of reactions, so
that γ(a1 . . . am → b1 . . . bn) will refer to the thermally averaged quantity defined in
eq. (A.6).

When considering small asymmetries, it is convenient to linearize the Boltzmann
equation for ∆na = na−nac . This is done as follows. The particles such as leptons and
Higgs doublets remain close to equilibrium, thanks to fast gauge interactions, which
ensure in particular µa = −µac . Then, performing the expansion of the density na in
µa, we get

na(T, µ) = ga
π2T

3


ζ(3) + µa

T
ζ(2) +O(µ2

a) for bosons ,

3
4ζ(3) + µa

T

ζ(2)
2 +O(µ2

a) for fermions ,
(A.9)

so that the sum of the densities of a and ac is then given by

na + nca = 2neqa +O
(
µ2
a

)
, (A.10)

where neqa is the equilibrium density for µa = 0, whereas the asymmetry is

∆na = na − nca = gaζ(2)
π2 µaT

2


1 +O(µ2

a) for bosons ,
1
2 +O(µ2

a) for fermions .
(A.11)

For a CP-conserving process, i.e. satisfying

γ(a1 . . . an → b1 . . . bn) = γ(ac1 . . . acn → bc1 . . . b
c
n)

= γ(b1 . . . bn → a1 . . . am)
= γa1...an

b1...bn
, (A.12)
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using eqs. (A.10) and (A.11), we see that at first order,
na1

neqa1
. . .

nan
neqan

γ(a1 . . . am → b1 . . . bn)−
nac1
neqa1

. . .
nacn
neqan

γ(ac1 . . . acm → bc1 . . . b
c
n)

=
(∆na1

neqa1
+ . . .+ ∆nan

neqan

)
γa1...am
b1...bn

. (A.13)

In leptogenesis, it is convenient to define the parameter z = M/T , where M is the
mass of the decaying particle, and to use densities and asymmetries normalized over
entropy, Ya = na/s and ∆a = Ya − Yac , so that the linearized Boltzmann equation for
∆a is the following,

sHz
d∆a

dz
= S��CP +

∑{(
∆b1

Y eq
b1

+ . . .+ ∆bn

Y eq
bn

− ∆a

Y eq
a
− ∆a1

Y eq
a1

. . .− ∆am

Y eq
am

)
γa a1...an
b1...bn

}
,

(A.14)

where S��CP refers to CP-violating source terms, which will be dealt with in A.3.

A.2 Decays and scattering rates
Before going further, we display the typical form of the space-time densities of reactions
appearing in Boltzmann equations.

General formulae

When considering a 2-body decay such as a→ b1b2, eq. (A.6) reduces to

γab1b1 = sY eq
a

K1(z)
K2(z) Γ(a→ b1b2) . (A.15)

In the leptogenesis scenarios studied here, we modified slightly this definition when
considering the total space-time density of decays for the triplets ∆ and ∆c, namely

γ∆
D = sΣeq

∆
K1(z)
K2(z) Γ∆ , (A.16)

where Σ∆ ≡ (n∆ +n∆c)/s is the comoving number density of triplets and antitriplets,
K1,2(z) are modified Bessel functions of the second kind, z ≡ M∆/T and Γ∆ is the
triplet decay width.

For 2→ 2 scatterings, eq. (A.6) becomes

γ(a1 + a2 → b1 + b2) = T

64π4

ˆ ∞
smin

ds s1/2σ̂(s)K1

(√
s

T

)
, (A.17)

where the reduced cross section σ̂ is defined in terms of the usual dimensionful cross-
section as

σ̂(s) = 2s λ(1, m2
a1/s, m

2
a2/s)σ(s) , (A.18)

λ(a, b, c) = (a− b− c)2 − 4bc , (A.19)

and is summed over the internal degrees of freedom of initial and final particles.
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Substraction of on-shell intermediate states

A well-known problem is the possible redundancy due to the contribution of on-shell
intermediate states to scatterings [329]. For instance, an s-channel scattering such
as `` → HcHc involves a contribution with an on-shell intermediate triplet, which is
nothing but an inverse decay `` → ∆c followed by a decay ∆c → HcHc. Since these
are already taken into account in Boltzmann equations by terms describing decays and
inverse decays of the triplet, if we include scatterings without further care, they will
be counted twice.

Therefore, when computing 2→ 2 scattering rates, one must take care to properly
subtract the contribution of on-shell intermediate particles. When the resonance occurs
in the s-channel, one can compute the subtracted rate by taking away the resonant
part from the squared propagator in the narrow-width approximation [330]:

|D|2 → |D|2 − π

M3Γδ
(
s−M2

M2

)
, (A.20)

where M and Γ are the mass and width of the intermediate particle, and D is the
propagator of the intermediate state in the Breit-Wigner form,

D = 1
s−M2 + iMΓ . (A.21)

Similarly, when computing γ(`∆c → `∆c), which occurs in both scenarios presented
in 3.2 and 3.3, one has to subtract the contribution of real intermediate leptons in the
u-channel, corresponding to the two processes ∆c → `` and ``→ ∆c. Following [187],
we perform the subtraction in the following way:

|D|2 → |D|2 − π

E3Γth
δ

(
u

E

)
, (A.22)

where E is the energy of the intermediate lepton, Γth its thermal width due to the
interactions with the dense plasma, and the propagator of the intermediate lepton is

D = 1
u+ iEΓth

. (A.23)

As in [187], we use the following representation of δ(x) in numerical computations,

δ(x) = 2
π

ε3

(x2 + ε2)2 , (A.24)

where ε is a small number. In the limit of small width, which we assume to be valid,
one can simply set ε = Γ/M for a resonance in the s-channel with an intermediate
particle of mass M and width Γ, and EΓth = εM2

∆ for a resonance in the u-channel,
with any small value for ε. This amounts to perform the replacements

1
(s−M2)2 +M2Γ2

−→
(
s−M2)2 −M2Γ2[

(s−M2)2 +M2Γ2
]2 , (A.25)

1
u2 +M2Γ2

th
−→ u2 −M2Γ2

th[
u2 +M2Γ2

th
]2 . (A.26)

With this choice, we can compute the subtracted rates for the various 2→ 2 scatterings.



A. Boltzmann equations 149

A.3 CP violating terms
In A.1, we showed the derivation of CP-conserving collision terms in classical Boltz-
mann equations, but let aside the CP-violating source terms.

Let us consider the case of the general leptogenesis scenario involving scalar triplets
3.2. In this scenario, the CP asymmetry in the decay of ∆ is due to an interference
between the tree-level diagram and the diagram with a Higgs loop, displayed in fig. 3.3.
First, we derive explicitly a Boltzmann equation for a very simplified model including
only decays and inverse decays of the triplet. We neglect flavour effects and spectator
processes. Using CPT invariance, the relevant scattering rates satisfy

γ(∆c → ``) = γ(`c`c → ∆) = B`
2 γD + 1

4ε
∆γD , (A.27)

γ(∆→ `c`c) = γ(``→ ∆c) = B`
2 γD −

1
4ε

∆γD . (A.28)

the Boltzmann equation for the lepton asymmetry derives from

sHz
d∆`

dz
= 2

(
Y∆c

Y eq
∆

+ Y 2
`c

Y eq2
`

)(
B`
2 γD + 1

4ε
∆γD

)

− 2
(
Y∆
Y eq

∆
+ Y 2

`

Y eq2
`

)(
B`
2 γD −

1
4ε

∆γD

)
, (A.29)

which, after linearizing, gives for the source and washout terms

sHz
d∆`

dz
= ε∆

(
Σ∆
Σeq

∆
+ 1

)
γD − 2B`

(
∆∆
Σeq

∆
+ ∆`

Y eq
`

)
γD . (A.30)

This cannot possibly be correct, because it gives rise to an asymmetry even when the
system is completely in equilibrium, with Σ∆ = Σeq

∆ and ∆∆ = ∆` = 0, which is in
contradiction with Sakharov’s third condition.

This happens because we neglected a source of CP violation occurring at the same
order [331]. To understand the problem, we include now the scattering `` → HcHc.
In this scenario, it can be mediated by the exchange of a triplet in the s-channel, or
by the effective operator with coupling κ. We focus on the interference between the
two amplitudes in the effective cross-section, which reads

(
σ̂``HcHc

)I
= 3x

16π

<
[
µ∗ tr(f †κ)

]
Λ

1− x
(1− x)2 + ε2

+
=
[
µ∗tr(f †κ)

]
Λ

ε

(1− x)2 + ε2

 ,

(A.31)

where we defined the dimensionless parameter x = s/M2
∆, whereas, for the CP-

conjugate process `c`c → HH, this becomes

(
σ̂`

c`c

HH

)I
= 3x

16π

<
[
µ tr(fκ†)

]
Λ

1− x
(1− x)2 + ε2

−
=
[
µ∗tr(f †κ)

]
Λ

ε

(1− x)2 + ε2

 .

(A.32)
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The sign of the second term is different in the two cases, which means that this scat-
tering is actually another source of CP violation, which has to be included in the
Boltzmann equations. In terms of space-time densities of reaction,

γ′(``→ HcHc)− γ′(`c`c → HH)

= M4
∆

64π4z

ˆ
dx
√
xK1(z

√
x) [σ̂(``→ HcHc)− σ̂(`c`c → HH)] , (A.33)

where the prime means that we have subtracted the contribution with an on-shell
intermediate state `` → ∆ → HcHc, which is already accounted for in decays and
inverse decays, as mentioned in A.2. In the narrow-width approximation, we can
perform the following replacement,

ε

(1− x)2 + ε2
→ π δ(x− 1) , (A.34)

so that the previous term becomes

γ′(``→ HcHc)− γ′(`c`c → HH)

= M4
∆

64π4z

ˆ
dx x
√
x K1(z

√
x)× 2× 3x

16πM2
∆

=
[
µ∗tr(f †κ)

]
Λ × π δ(x− 1)

= 3M4
∆

512π4z
K1(z)

=
[
µ∗tr(f †κ)

]
Λ . (A.35)

We can compare this to the term accounting for the CP asymmetry in the decay of
the triplet, which reads

γ(∆c → ``)− γ(∆→ `c`c)

= 1
2ε

∆γD = 1
2 ×

1
8πΛ

=
[
µ∗tr(f †κ)

]
λ2
` + λ2

H

× 1
32π (λ2

` + λ2
H)M∆ × sΣeq

∆
K1(z)
K2(z) .

(A.36)

Using the explicit expression of the thermal distribution,

sΣeq
∆ = neq∆ + neq∆c = 3M3

∆
π2z

K2(z) , (A.37)

this becomes

γ(∆c → ``)− γ(∆→ `c`c) = 3M4
∆

512π4z
K1(z)

=
[
µ∗tr(f †κ)

]
Λ . (A.38)

Thus, γ′(``→ HcHc)−γ′(`c`c → HH) = ε∆γD, as can be seen by comparing eq. (A.35)
and eq. (A.38). Then, using again the CPT invariance, we can express the space-time
densities of scatterings as

γ′(``→ HcHc) = γ′(HH → `c`c) = γ′``HcHc + 1
2ε

∆γD , (A.39)

γ′(`c`c → HH) = γ′(HcHc → ``) = γ′``HcHc −
1
2ε

∆γD , (A.40)



A. Boltzmann equations 151

where we separated for each process the CP-conserving part and the CP-violating
part. Using this, we write down explicitly the derivation of the corresponding terms
appearing in Boltzmann equations,

sHz
d∆`

dz
= ε∆

(
Σ∆
Σeq

∆
+ 1

)
γD − 2B`

(
∆∆
Σeq

∆
+ ∆`

Y eq
`

)
γD

+ 2
[(

Y 2
Hc

Y eq2
H

+ Y 2
`c

Y eq2
`

)(
γ′``HcHc −

1
2ε

∆γD

)
−
(
Y 2
H

Y eq2
H

+ Y 2
`

Y eq2
`

)(
γ′``HcHc + 1

2ε
∆γD

)]
.

(A.41)

Again, this can be simplified by linearizing and using the fact that because of gauge
scatterings, the Higgs and lepton densities are maintained very close to equilibrium,

sHz
d∆`

dz
= ε∆

(
Σ∆
Σeq

∆
− 1

)
γD − 2B`

(
∆∆
Σeq

∆
+ ∆`

Y eq
`

)
γD − 4

(
∆H

Y eq
H

+ ∆`

Y eq
`

)
γ′``HcHc .

(A.42)

The previous problem is solved because the right-hand side contains precisely what is
needed to ensure that the asymmetry remains zero when everything is in equilibrium.
This means that even if the off-shell scattering rate γ′``HcHc is small enough to be
neglected, its CP-violating part should always be included in Boltzmann equation,
which is usually done implicitly.

This result is actually a consequence of CPT invariance and is more general than
this. At any order in perturbation theory, the sum of all processes creating a given
state must be CP-conserving, which implies for us∑

a

|M(a→ ``)|2 =
∑
a

|M(ac → `c`c)|2 , (A.43)

where a = ∆c, HcHc,... can be any multi-particle state.

A.4 The closed time-path formalism

To derive the the flavour-covariant Boltzmann equation for the density matrix, we used
the Closed Time-Path (CTP) formalism [332–335]. The CTP formalism is a powerful
tool that allows to describe out-of-equilibrium quantum phenomena. However, since
we worked in the Boltzmann approximation, we used it principally to read the flavour
structure of the source and washout terms, which we reported then in the classical
Boltzmann equation.

The framework

The CTP formalism relies on the introduction of an oriented closed time-path, C, that
goes from 0 to ∞ and back (fig. a). The upper branch, C+, is time-ordered, whereas
the lower branch, C−, is anti-time-ordered. We define Green’s functions G̃(x, y) that
are ordered following the contour. This means that, since both x0 and y0 can lie either
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t = 0 t = ∞

C+

C−

Figure a: Schematical representation of the time-path C.

on the upper branch or on the lower branch, there are four possible orderings. G̃(x, y)
can therefore be defined as a 2× 2 matrix

G̃(x, y) =
(
Gt(x, y) ±G<(x, y)
G>(x, y) −Gt̄(x, y)

)
, (A.44)

where the element G< comes with a plus sign for bosons and a minus sign for fermions.
This is known as the doubling of the degrees of freedoms [336]. Gt, that refers to the
case where both x0 and y0 lie on the upper branch, is the usual time-ordered Green’s
function, whereas Gt̄, that refers to the case where x0 and y0 lie on the lower branch, is
anti-time-ordered. The explicit expression of the various components of the left-handed
lepton doublet Green’s functions are the following,

G>αβ(x,y) = −i〈`α(x)¯̀
β(y)〉 , (A.45)

G<αβ(x,y) = i〈¯̀β(y)`α(x)〉 , (A.46)
Gtαβ(x,y) = θ(x0 − y0)G>αβ(x, y) + θ(y0 − x0)G<αβ(x, y) , (A.47)

Gt̄αβ(x,y) = θ(y0 − x0)G>αβ(x, y) + θ(x0 − y0)G<αβ(x, y) , (A.48)

where the brackets indicate that we take the average over all available states of the
system and α, β are lepton flavour indices, whereas for a scalar field φ(x) (representing
a Higgs doublet or a scalar triplet),

G>φ (x,y) = −i〈φ(x)φ†(y)〉 , (A.49)
G<φ (x,y) = −i〈φ†(y)φ(x)〉 , (A.50)
Gtφ(x,y) = θ(x0 − y0)G>φ (x, y) + θ(y0 − x0)G<φ (x, y) , (A.51)

Gt̄φ(x,y) = θ(y0 − x0)G>φ (x, y) + θ(x0 − y0)G<φ (x, y) . (A.52)

Explicit expression of the Green’s functions

In order to express the Green’s functions more explicitly, we write the Dirac field as

ψ(x) =
ˆ

d3~p

(2π)3√2ω~p

∑
s

(
u(p, s)b(~p, s)e−ip·x + v(p, s)d†(~p, s)eip·x

)
, (A.53)

where ω~p =
√
~p 2 +m2. The phase-space distribution functions of lepton and antilep-

ton doublets ραβ(~p) and ρ̄αβ(~p) are matrices in flavour space, defined by

〈b†α(~p)bβ(~p′)〉 = (2π)3δ(3)(~p− ~p′)ραβ(~p) , (A.54)

〈d†β(~p)dα(~p′)〉 = (2π)3δ(3)(~p− ~p′)ρ̄αβ(~p) . (A.55)
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The reversed order of the flavour indices α and β in the definition of ρ̄αβ(~p) ensures
that the distribution functions of lepton and antilepton doublets transform in the same
way under a rotation in flavour space, `→ V ∗`,

ρ → V ρV † , (A.56)
ρ̄ → V ρ̄ V † , (A.57)

which is essential for flavour covariance, since the density matrix of lepton asymmetry
(∆`)αβ will be expressed in terms of ραβ − ρ̄αβ. Similarly, the phase-space distribution
functions of a charged scalar φ and of its antiparticle are defined by

〈a†φ(~p)aφ(~p′)〉 = (2π)3δ(3)(~p− ~p′)ρφ(~p) , (A.58)

〈b†φ(~p)bφ(~p′)〉 = (2π)3δ(3)(~p− ~p′)ρ̄φ(~p) , (A.59)

where aφ(~p) and b†φ(~p) are the annihilation and creation operators appearing in the
definition of the free charged scalar field,

φ(x) =
ˆ

d3~p

(2π)3√2ω~p

(
aφ(~p)e−ip·x + b†φ(~p)eip·x

)
. (A.60)

With these definitions, the Green’s functions G> and G< for left-handed lepton dou-
blets can be written as (neglecting lepton masses)

iG>βα(x, y) = PL

ˆ
d3p

(2π)32ω~p
/p
{

[δαβ − ραβ(~p)] e−ip·(x−y) + ρ̄αβ(~p) eip·(x−y)
}
PR ,

(A.61)

iG<βα(x, y) = −PL
ˆ

d3p

(2π)32ω~p
/p
{
ραβ(~p) e−ip·(x−y) + [δαβ − ρ̄αβ(~p)] eip·(x−y)

}
PR .

(A.62)

The time-ordered Green’s function can be deduced from the previous expressions,

iGtβα(x, y) = δαβ PLS(x, y)PR

− PL
ˆ

d3p

(2π)32ω~p
/p
{
ραβ(~p) e−ip·(x−y) − ρ̄αβ(~p) eip·(x−y)

}
PR , (A.63)

as well as the anti-time-ordered one,

iGt̄βα(x, y) = −δαβ PLS(y, x)PR

+ PL

ˆ
d3p

(2π)32ω~p
/p
{

[δαβ − ραβ(~p)] e−ip·(x−y) − [δαβ − ρ̄αβ(~p)] eip·(x−y)
}
PR ,

(A.64)

where S(x, y) is nothing but the usual propagator of the (massless) Dirac field,

S(x, y) =
ˆ

d4p

(2π)4
i/p

p2 + iε
e−ip·(x−y) . (A.65)
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For the scalars, the various Green’s functions are given by the following expressions,

iG>φ (x, y) =
ˆ

d3p

(2π)32ω~p

{
[1 + ρφ(~p)] e−ip·(x−y) + ρ̄φ(~p) eip·(x−y)

}
, (A.66)

iG<φ (x, y) =
ˆ

d3p

(2π)32ω~p

{
ρφ(~p) e−ip·(x−y) + [1 + ρ̄φ(~p)] eip·(x−y)

}
, (A.67)

iGtφ(x, y) = D(x, y) +
ˆ

d3p

(2π)32ω~p

{
ρφ(~p) e−ip·(x−y) + ρ̄φ(~p) eip·(x−y)

}
, (A.68)

iGt̄φ(x, y) = −D(x, y) +
ˆ

d3p

(2π)32ω~p

{
[1 + ρφ(~p)] e−ip·(x−y) + [1 + ρ̄φ(~p)] eip·(x−y)

}
,

(A.69)

where D(x, y) is the Klein-Gordon propagator,

D(x, y) =
ˆ

d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y) . (A.70)

Notice that, under CP conjugation, considering for instance G>, the Green’s func-
tion for lepton doublets transforms as

(CP)G>βα (CP)−1 (x, y) = CG<Tαβ (y, x)C−1 = −G<αβ,RL(y, x) , (A.71)

where the subscript RL indicates that the order of the projectors PL and PR is reversed
with respect to eq. (A.61). For scalars, this transformation takes the following simple
form,

(CP)G>φ (CP)−1 (x, y) = G<φ (y, x) . (A.72)

From the Schwinger-Dyson equation to the Boltzmann equation

The Green’s function G̃ is a solution of the Schwinger-Dyson equation,

G̃(x, y) = G̃0(x, y) +
ˆ
C
d4z1

ˆ
C
d4z2 G̃

0(x, z1)Σ̃(z1, z2)G̃(z2, y) . (A.73)

Σ̃ is a 2× 2 matrix containing the self-energy functions Σ>, Σ<, Σt and Σt̄, defined in
an analogous way to the Green’s functions G>, G<, Gt and Gt̄,

Σ̃ =
(

Σt ±Σ<

Σ> −Σt̄

)
, (A.74)

where again, the plus sign in front of Σ< applies for bosons and the minus sign for
fermions, and G̃0 is the free 2-point correlation function. The Schwinger-Dyson equa-
tion can also be written as

G̃(x, y) = G̃0(x, y) +
ˆ
C
d4z1

ˆ
C
d4z2 G̃(x, z1)Σ̃(z1, z2)G̃0(z2, y) . (A.75)
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From now on, we focus on lepton doublets. Acting on eqs. (A.73) and (A.75) with the
operators i

−→
/∂ x and i

←−
/∂ y, respectively, gives the following equations of motion,

i
−→
/∂ xG̃βα(x, y) = δ(4)(x− y) δαβ Ĩ +

∑
γ

ˆ
C
d4z Σ̃βγ(x, z)G̃γα(z, y) , (A.76)

G̃βα(x, y) i
←−
/∂ y = − δ(4)(x− y) δαβ Ĩ +

∑
γ

ˆ
C
d4z G̃βγ(x, z)Σ̃γα(z, y) , (A.77)

where we used the fact that the free Green’s function for massless fermions satisfies, by
definition, i/∂xG̃0

αβ(x,y) = δ(4)(x − y) δαβ Ĩ, with Ĩ the identity matrix in both spinor
and CTP spaces. This is nothing but the Dirac equation for massless free fermions.

We will use the Schwinger-Dyson equation to derive a Boltzmann equation for the
density matrix. First of all, applying eq. (A.2) to lepton doublets gives

(n`)αβ = s× (Y`)αβ = 2
ˆ

d3p

(2π)3 ραβ(~p) , (A.78)

(n`c)αβ = s× (Y`c)αβ = 2
ˆ

d3p

(2π)3 ρ̄αβ(~p) , (A.79)

(∆n`)αβ = s× (∆`)αβ = 2
ˆ

d3p

(2π)3 [ραβ(~p)− ρ̄αβ(~p)] . (A.80)

Defining the current Jµαβ as

Jµαβ = : ¯̀
αγ

µ`β : , (A.81)

where the colons refer to the normal orderings of the operators, the expression of
eq. (A.80) can be seen as the expectation value of the zero component of this current,

(∆n`)αβ = 〈J0
αβ〉 = 〈: `†α`β :〉 . (A.82)

The divergence of this current (or more precisely of its expectation value) can be
conveniently expressed in terms of the Green’s function G>βα,

〈∂µJµαβ〉 =− tr
[
(i
−→
/∂ x + i

←−
/∂ y)G>βα(x,y)

]
y=x

, (A.83)

where the trace is taken over spinorial and SU(2)L indices. This is precisely what we
need, because we can use the Schwinger-Dyson, and more precisely the expressions
derived in eqs. (A.76) and (A.77), to express the right-hand side of eq. (A.83) in terms
of the self-energy functions Σ> and Σ<,

〈∂µJµαβ〉 = −
ˆ
C
d4z tr

[
Σ>
βγ(x,z)Gtγα(z,x)− Σt̄

βγ(x,z)G>γα(z,x)

−G>βγ(x,z)Σt
γα(z,x) +Gt̄βγ(x,z)Σ>

γα(z,x)
]

= −
ˆ
d3z

ˆ t

0
dtz tr

[
Σ>
βγ(x,z)G<γα(z,x)− Σ<

βγ(x,z)G>γα(z,x)

−G>βγ(x,z)Σ<
γα(z,x) +G<βγ(x,z)Σ>

γα(z,x)
]
. (A.84)
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fαρf ∗
βσ

(CP)G∆ (CP)−1

(CP)Gσρ (CP)−1

Figure b: One-loop contribution of the triplet to the self-energy Σβα of lepton doublets.

Since we consider a homogeneous and isotropic medium, the divergence of the current
is equal to its zero component ∂0J

0
αβ. Finally, we incorporate the expansion of the

universe by making the following replacement in the above equation,

〈∂0J
0
αβ〉 →

d∆nαβ
dt

+ 3H∆nαβ = sHz
d(∆`)αβ
dz

, (A.85)

which amounts to replacing the ordinary derivative by a covariant derivative in the
Friedmann–Lemaître–Robertson–Walker metric. We thus obtain the quantum Boltz-
mann equation for the density matrix (∆`)αβ,

sHz
d(∆`)αβ
dz

= −
ˆ
d3z

ˆ t

0
dtz tr

[
Σ>
βγ(x,z)G<γα(z,x)− Σ<

βγ(x,z)G>γα(z,x)

−G>βγ(x,z)Σ<
γα(z,x) +G<βγ(x,z)Σ>

γα(z,x)
]
. (A.86)

This expression is rather abstract, so we focus on a simple explicit example to illus-
trate the link between this equation and the Boltzmann equations previously written.
From now on, we focus on the general approach to leptogenesis with a scalar triplet
presented in sec 3.2. In order to simplify the discussion, we forget spectator processes in
this derivation. Fig. b shows the contribution of the triplet to the one-loop self-energy
for the lepton. This is the equivalent in the CTP formalism of the washout term due
to tree-level decays and inverse decays in ordinary Boltzmann equations. From this
figure, we can read for instance the first term on the right-hand side of eq. (A.86),

tr
[
Σ>
βγ(x, z)G<γα(z, x)

]
= (−if∗βσ)(−ifγρ) tr

[
iG<∆(z, x)(−i)G<σρ,RL(z, x)iG<γα(z, x)

]
= 3
ˆ

d3p

(2π)32ω~p

ˆ
d3k

(2π)32ω~k

ˆ
d3l

(2π)32ω~̀
f∗βσfγρ 2(k.l)

×
{
ρ∆(~p) e−ip·(z−x) +

[
1 + ρ̄∆(~p)

]
eip·(z−x)

}
×
{
ρσρ(~k) e−ik·(z−x) +

[
δσρ − ρ̄σρ(~k)

]
eik·(z−x)

}
×
{
ραγ(~l) e−il·(z−x) +

[
δαγ − ρ̄αγ(~l)

]
eil·(z−x)

}
, (A.87)

where the factor 3 comes from the trace over SU(2) indices (roughly speaking, it can
be understood from the fact that this is an interaction between two SU(2) triplets, ``
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and ∆). This expression begins to look like the collision term of eq. (A.4), which is
indeed what we are aiming for. However, the expression of eq. (A.87) (or rather its
integral over z) includes non-markovian memory effects that are not present in classical
Boltzmann equations.

Reporting this expression in the right-hand side of eq. (A.86), it is easy to get
rid of the integral over the spatial coordinates of z, which gives simply a momentum-
conserving delta function. The integral over tz is more subtle. The classical limit is
obtained by assuming that t is much smaller than the relaxation time of phase-space
distribution functions, which can therefore be factorized out of the integral, but much
larger than the typical duration of a collision, so that the time integral can be extended
to infinity. This is actually an assumption that is usually implicitly made when writing
Boltzmann equation. Indeed, Boltzmann equations rely on the fact that the successive
collisions affecting a particle are independent from one another, so that there are no
memory effects.

Concretely, this assumption amounts to replacing the integral of oscillating ex-
ponentials by energy-conserving delta functions, which are exactly what we need to
recover classical Boltzmann equations, plus terms proportional to the principal value
of 1/(ω~p ± ω~k ± ω~l), where p, k and l are the momenta of the scalar triplet and of the
two leptons, respectively. The latter terms, however, can be neglected because they
arise at second order in the CP asymmetry. Indeed, all terms involving a principal
value are proportional to ηρσ(~k)+ η̄ρσ(~k), where ηρσ(~k) (resp. η̄ρσ(~k)) parametrizes the
departure of the phase-space density ρρσ(~k) (resp. ρ̄ρσ(~k)) from its equilibrium value,

ρρσ(~k) = ρeq` (~k)
[
δρσ + ηρσ(~k)

]
, ρ̄ρσ(~k) = ρeq` (~k)

[
δρσ + η̄ρσ(~k)

]
. (A.88)

Since the imbalance between the lepton and antilepton densities is generated by the
asymmetries in triplet decays, which are small numbers of order ε, while the lepton
and antilepton populations are maintained close to equilibrium by fast electroweak
interactions, one has3

ηρσ(~k)− η̄σρ(~k) = O(ε) , (A.89)
ηρσ(~k) + η̄σρ(~k) = O(ε2) . (A.90)

After dropping these terms proportional to ηρσ + η̄ρσ, we are left with energy-
conserving delta functions only. These delta functions ensure that only terms which
are kinematically allowed for on-shell particles remain. In the case of eq. (A.87), the
remaining terms are precisely the ones describing the decay ∆ → `c`c and inverse
decay ``→ ∆c,
ˆ
d3z

ˆ t

0
dtz tr

[
Σ>
βγ(x, z)G<γα(z, x)

]
= −
ˆ

d3p

(2π)32ω~p

ˆ
d3k

(2π)32ω~k

ˆ
d3l

(2π)32ω~̀
3f∗βρfγσ(k.l) (2π)4δ(4)(p− k − l)

×
{
ρρσ(~k)ραγ(~̀)

[
1 + ρ̄∆(~p)

]
+ ρ∆(~p)

[
δσρ − ρ̄σρ(~k)

] [
δαγ − ρ̄αγ(~k)

]}
. (A.91)

3Eqs. (A.89) and (A.90) generalize the relations between the number densities derived in eqs. (A.10)
and (A.11).
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whereas the terms describing off-shell processes are eliminated. For instance, there is
a term proportional to

ρ∆(~p)× ρσρ(~k)×
[
δαγ − ρ̄αγ(~l)

]
δ(4)(p+ k − l) , (A.92)

describing an off-shell process of the type `∆→ `c, which disappears because the delta
function is always zero when k, l and p are on-shell.

Eq. (A.91) has exactly the same form as eq. (A.4), except that there is now a
nontrivial flavour structure. In particular, it is not possible to identify the factor
f∗βρfγσ(k.l) with the modulus squared of a matrix element. Computing the other
contributions from fig. b to the right-hand side of eq. (A.86), and making the same
approximations as in section A.1 when we derived Boltzmann equations4, we obtain
the washout term W ID

αβ associated with triplet decays and inverse decays:

W ID
αβ = 2B`

λ2
`

[
(ff †)αβ

∆∆
Σeq

∆
+ 1

4Y eq2
`

(
Y`fY

T
` f
† + fY T

` f
†Y` − (Y` ↔ Y`c)

)
αβ

]
γ∆
D

(A.93)

One can linearize this expression, using again the fact that flavour-blind gauge inter-
actions keep the lepton densities close to their equilibrium values, so that eqs. (A.10)
and (A.11) give

(Y`)αβ − (Y`c)αβ = (∆`)αβ ,

(Y`)αβ + (Y`c)αβ = 2Y eq
`

[
δαβ +O(ε2)

]
. (A.94)

Finally, the term which appears on the right-hand side of the Boltzmann equation for
the density matrix (∆`)αβ reads

W ID
αβ = 2B`

λ2
`

[
(ff †)αβ

∆∆
Σeq

∆
+ 1

4Y eq
`

(
2f∆T

` f
† + ff †∆` + ∆`ff

†
)
αβ

]
γ∆
D . (A.95)

A similar reasoning could be applied to derive other washout terms as well as
the flavour-covariant source terms, although things become more complicated when
dealing with scatterings and one-loop decays, because these expressions, which arise
typically at the order f4 or f2λ2

H , are described by two-loop self-energy diagrams in the
CTP formalism. However, since we know that the CTP formalism leads to (flavoured)
Boltzmann equations in the classical limit, it is possible to avoid such technicalities.
Working on an example, we show how here the effective method that can be used to
derive scattering terms.

We consider the triplet-mediated contribution to the lepton-Higgs scatterings, which,
in the CTP formalism, involves the 2-loop diagrams displayed in fig. c. The flavour
structure can be read directly on the diagram, using the following rules: a lepton prop-
agator going from α to β yields a factor (Y`)αβ/Y eq

` for an incoming lepton, and δαβ for
outgoing leptons, whereas a Higgs propagator yields a factor YH/Y eq

H for an incoming
Higgs and a factor 1 for an outgoing Higgs. Rules are similar for antiparticles.

4More explicitly, we neglect Bose enhancement and Fermi blocking factors, for instance[
δαβ − ραβ(~k)

]
→ δαβ , and we factorize the particle densities out of the integral.
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α βγρ ρσ σγ

ℓ ℓ

H H

H H

∆ ∆∆∆

f ∗
βσ

f ∗
γσfγρ

fαρ

Figure c: Two-loop contributions to ΣβγGγα (left) and GβγΣγα (right), that give
the flavour structure of the scalar-mediated lepton-Higgs scatterings `` ↔ HcHc and
`H ↔ `cHc (and their CP-conjugate) in the Boltzmann equation for (∆`)αβ.

Focusing on the s-channel scatterings ``↔ HcHc and `c`c ↔ HH, we see that the
flavoured scattering term will have a contribution proportional to

fγρf
∗
βσ

[
(Y`)αγ
Y eq
`

(Y`)σρ
Y eq
`

− Y 2
Hc

Y eq2
Hc

δαγδρσ −
(Y`c)αγ
Y eq
`

(Y`c)σρ
Y eq
`

+ Y 2
H

Y eq2
H

δαγδρβ

]

+ fαρf
∗
γσ

[
(Y`)σρ
Y eq
`

(Y`)γβ
Y eq
`

− Y 2
Hc

Y eq2
Hc

δβγδρσ −
(Y`c)σρ
Y eq
`

(Y`c)γβ
Y eq
`

+ Y 2
H

Y eq2
H

δβγδρσ

]

= 4(ff †)αβ
∆H

Y eq
H

+ 1
Y eq
`

(
2f∆T

` f
† + ff †∆` + ∆`ff

†
)
αβ

. (A.96)

This is only the contribution of s-channel scalar-mediated scatterings. Taking now into
account all the contributions to lepton-Higgs scatterings, and normalizing properly5,
the washout term accounting for lepton-Higgs scatterings in the Boltzmann equation
for (∆`)αβ reads

W `H
αβ = 2

λ2
`

[
(ff †)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2f∆T

` f
† + ff †∆` + ∆`ff

†
)
αβ

]
γ∆
`H

+ 2
< [tr(fκ†)]

[
(fκ†)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2f∆T

` κ
† + fκ†∆` + ∆`fκ

†
)
αβ

]
γI`H

+ 2
< [tr(fκ†)]

[
(κf †)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2κ∆T

` f
† + κf †∆` + ∆`κf

†
)
αβ

]
γI`H

+ 2
λ2
κ

[
(κκ†)αβ

∆H

Y eq
H

+ 1
4Y eq

`

(
2κ∆T

` κ
† + κκ†∆` + ∆`κκ

†
)
αβ

]
γκ`H . (A.97)

5 For this example, it can be done very simply by considering the single-flavour case, in which we

know that we should recover W `H = 2
(

∆`

Y eq
`

+ ∆H

Y eq
H

)(
2γ′``HcHc + γ`H`cHc

)
.
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B Loop integrals in wavefunction renormalization

In this section, we give the expression of the loop integrals involved in the computation
of the wavefunction renormalization in section 5.2.3.

B.1 Contribution of the superpotential

The λ4 contribution to the two-loop wavefunction renormalization, summarized in
fig. 5.5, can be written as

[∑
D

(2)
αβ + iδZ

(2)
αβ

]
|λ4

= dklα d
np
k λ
∗
αklλβlmλ

∗
mnpλknp

[
i

2I
klmnp
A + 1

32π2ε
IklmA′

]
+ dklα d

np
k λ
∗
αklλβlmλm̄npλ

∗
k̄np

[
i

2I
klmnp
B + 1

32π2ε
IklmB′

]
+ idklα d

mn
α λ∗αklλβmnλ

∗
k̄np

λlm̄pI
klmnp
C + iδZ

(2)
αβ|λ4

. (B.1)

The loop integrals are the following ones,

IklmnpA =
ˆ

ddp

(2π)d
ddk

(2π)d
p2

Dk(p)Dl(p)Dm(p)Dn(k)Dp(p+ k) , (B.2)

IklmnpB = MkM
†
m

ˆ
ddp

(2π)d
ddk

(2π)d
1

Dk(p)Dl(p)Dm(p)Dn(k)Dp(p+ k) , (B.3)

IklmnpC = MkM
†
m

ˆ
ddp

(2π)d
ddk

(2π)d
1

Dk(p)Dl(p)Dm(k)Dn(k)Dp(p+ k) , (B.4)

IklmA′ =
ˆ

ddp

(2π)d
p2

Dk(p)Dl(p)Dm(p) , (B.5)

IklmB′ = MkM
†
m

ˆ
ddp

(2π)d
1

Dk(p)Dl(p)Dm(p) . (B.6)

with Dx(q) = q2 −M2
x . It should be noticed that IB, IB′ and IC are free of infrared

divergences, because if Mk or Mm goes to zero these integrals simply vanish. IA, IB
and IC can be expressed in terms of a single two-loop integral as follows,

IklmnpA = M2
k

∆M2
kl∆M2

km

Iknp2-loop −
M2
l

∆M2
kl∆M2

lm

I lnp2-loop + M2
m

∆M2
km∆M2

lm

Imnp2-loop , (B.7)

IklmnpB = MkM
†
m

∆M2
kl∆M2

km

Iknp2-loop −
MkM

†
m

∆M2
kl∆M2

lm

I lnp2-loop + MkM
†
m

∆M2
km∆M2

lm

Imnp2-loop , (B.8)

IklmnpC = MkM
†
m

∆M2
kl∆M2

mn

[
Ikmp2-loop − I

lmp
2-loop − I

knp
2-loop + I lnp2-loop

]
, (B.9)

with ∆M2
xy = M2

x −M2
y and

Iijk2-loop =
ˆ

ddp

(2π)d
ddk

(2π)d
1

[p2 −M2
i ][k2 −M2

j ][(p+ k)2 −M2
k ]
. (B.10)
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This integral can be computed by using the methods presented in ref. [337]. The
expansion in powers of ε gives the following result,

Iijk2-loop = − M2
X

512π4ε2

∑
n=i,j,k

xn −
M2
X

256π4ε

∑
n=i,j,k

xn

[1
2 + f1(xn, s)

]

− M2
X

256π4

 ∑
n=i,j,k

xn

[1
2 + 2f1(xn, s) + f ε1ε(xn, s)

]
+ g(xi, xj , xk, s)


+ O(ε) . (B.11)

f1 and f1ε are the functions defined in eqs. (5.2.47) and (5.2.48), while the expression
of g depends on the region of parameter space. For λ(xi, xj , xk) > 0 and √xk >√
xi +√xj , g is given by

g(xi, xj , xk, s)

= (xi + xj − xk) log xi
s

log xj
s

+ (xi − xj + xk) log xi
s

log xk
s

+ (−xi + xj + xk) log xj
s

log xk
s

−
√
λ(xi, xj , xk)

log xi
xk

log xj
xk
− π2

3 + 2Li2

xi − xj + xk −
√
λ(xi, xj , xk)

2xk


+ 2Li2

−xi + xj + xk −
√
λ(xi, xj , xk)

2xk


− 2 log

xi − xj + xk −
√
λ(xi, xj , xk)

2xk


× log

−xi + xj + xk −
√
λ(xi, xj , xk)

2xk

 . (B.12)

The cases λ(xi, xj , xk) > 0 and √xi >
√
xj + √xk or √xj >

√
xi + √xk can be

recovered from this by permuting indices, while, in the case λ(xi, xj , xk) < 0 and√
xi +√xj >

√
xk, the function g becomes

g(xi, xj , xk, s)

= (xi + xj − xk) log xi
s

log xj
s

+ (xi − xj + xk) log xi
s

log xk
s

+ (−xi + xj + xk) log xj
s

log xk
s

− 2
√
−λ(xi, xj , xk)

{
Cl2

[
2 arccos

(
xi + xj − xk

2√xixj

)]

+Cl2

[
2 arccos

(
xi − xj + xk

2√xixk

)]
+ Cl2

[
2 arccos

(
−xi + xj + xk

2√xjxk

)]}
, (B.13)

Where Cl2 is the Clausen function of order 2. Again, the cases λ(xi, xj , xk) < 0 and√
xi +√xk >

√
xk or √xj +√xk >

√
xi can be recovered from this by permutation.
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The loop functions fA, fB and fC that appear in eq. (5.2.58) are defined by

IklmnpA − i

16π2ε
IklmA′ = i

512π4

[ 1
ε2
− 1
ε

]
+ 1

256π4 fA(xk, xl, xm, xn, xp) , (B.14)

IklmnpB − i

16π2ε
IklmB′ = 1

256π4 fB(xk, xl, xm, xn, xp) , (B.15)

IklmnpC = 1
256π4 fC(xk, xl, xm, xn, xp) . (B.16)

In full generality, they are given by

fA(xk, xl, xm, xn, xp, s)

=
[
−5

2 + 2
(
x2
k log(xk/s)
∆kl∆km

− x2
l log(xl/s)
∆kl∆lm

+ x2
m log(xm/s)
∆km∆lm

)

− 2
(
xk g(xk, xn, xp, s)

∆kl∆km
− xl g(xl, xn, xp, s)

∆kl∆lm
+ xm g(xm, xn, xp, s)

∆km∆lm

)]
, (B.17)

fB(xk, xl, xm, xn, xp, s)

=
√
xmx

†
k ×

[
2
(
xk log(xk/s)

∆kl∆km
− xl log(xl/s)

∆kl∆lm
+ xm log(xm/s)

∆km∆lm

)
− 2

(
g(xk, xn, xp, s)

∆kl∆km
− g(xl, xn, xp, s)

∆kl∆lm
+ g(xm, xn, xp, s)

∆km∆lm

)]
, (B.18)

fC(xk, xl, xm, xn, xp, s) = −

√
xkx

†
m

∆kl∆mn
[g(xk, xm, xp, s)− g(xl, xm, xp, s)

− g(xk, xn, xp, s) + g(xl, xn, xp, s)] . (B.19)

We also define fA′ through

IklmA′ = i

16π2ε
+ i

16π2 fA′(xk, xl, xm) +O(ε) , (B.20)

which gives, explicitly,

fA′(xi, xj , xk) = x2
i f1(xi,s)
∆ij∆ik

−
x2
jf1(xj ,s)
∆ij∆jk

+ x2
kf1(xk,s)
∆ik∆jk

= −x
2
i log(xi/s)
∆ij∆ik

+
x2
j log(xj/s)
∆ij∆jk

− x2
k log(xk/s)
∆ik∆jk

. (B.21)

In particular, the one-loop wavefunction renormalization Z(1)
|λ4

can be expressed as

Z
(1)
αβ|λ4

= 1
32π2d

kl
α λ
∗
αklλβklfA′(0, xk, xl) . (B.22)
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B.2 Mixed gauge-superpotential contribution
The mixed contribution from the superpotential and gauge interactions to the two-loop
wavefunction renormalization, summarized in fig. 5.6, reads[∑

D
(2)
αβ + iδZ

(2)
αβ

]
|λ2g2

= − 2dklα λ∗αklλβklg2C(Φl)
[
iIklD + 1

16π2ε
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]
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]
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+ idklα λ

∗
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2 [tA(Φl)tA(Φb) + tA(Φl)tA(Φa)] IklG
− idklα λ

∗
αklλβklg

2tA(Φa)tA(Φb)IklH

− 2dklα λ∗αklλβklg2C(Φa)
1

32π2ε
IabI + δZ

(2)
αβ|λ2g2

. (B.23)

The loop integrals appearing here are (IA′ and IB′ were defined previously)

IklD =
ˆ

ddp

(2π)d
ddk

(2π)d
p2

Dk(p)Dl(p)2Dl(k)D0(p+ k) , (B.24)

IklE = MlM
†
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ˆ
ddp

(2π)d
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(2π)d
p2

Dk(p)Dl(p)2Dl(k)D0(p+ k) , (B.25)

IklF =
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ddp

(2π)d
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(2π)d
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D0(p)2Dk(k)Dl(k)Dl(p+ k) , (B.26)

IklG = MlM
†
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ddp

(2π)d
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1
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IklH =
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IijI =
ˆ

ddp

(2π)d
1

Di(p)Dj(p)
, (B.29)

This gives a rather complicated expression. However, from gauge invariance, one can
simplify the result by reorganizing the terms involving IF , IG and IH ,

− idklα λ∗αklλβklg2 [tA(Φl)tA(Φβ) + tA(Φl)tA(Φα)] IklF
+ idklα λ

∗
αklλβklg
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= idklα λ
∗
αklλβklg

2C(Φα)IklH , (B.30)

so that eq. (B.23) reduces to[∑
D
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(2)
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. (B.31)
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Finally, the integrals appearing here can be computed by noticing that they are special
cases of the previous integrals IA, IA′ , IB and IB′ .

B.3 Holomorphic wavefunction
The two-loop contributions to the holomorphic wavefunction renormalization, summa-
rized in fig. 5.7, can be written as
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np
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l I
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with the following integrals,

IklmnpK =
ˆ

ddp

(2π)d
ddk

(2π)d
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Dk(p)Dl(p)Dm(p)Dn(k)Dp(p+ k) , (B.33)

IklmnpL =
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ˆ

ddp

(2π)d
1

Dk(p)Dl(p)Dm(p) . (B.35)

Again, it should be noticed that these integrals can be expressed in terms of the same
function as the integrals IB, IB′ , and IC .
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Sujet : Nouvelle physique dans le secteur des leptons

Résumé : Cette thèse aborde quelques scénarios de nouvelle physique, ainsi que leurs
manifestations dans le secteur des leptons.
Le fait que les neutrinos soient massifs est un des problèmes non élucidés par le Modèle
Standard. Une des solutions possibles est le mécanisme de seesaw, qui fait intervenir de
nouveaux états lourds dont la désintégration viole le nombre leptonique. À cause de ce
dernier point, ces états peuvent jouer un rôle clé dans la leptogenèse, un des scénarios
susceptibles d’expliquer l’origine de l’asymétrie observée entre matière et antimatière dans
l’univers. Nous étudions ici la leptogenèse avec un triplet scalaire et nous intéressons tout
particulièrement l’impact des effets de saveur.
Dans un second temps, nous considérons des théories supersymétriques. Nous étudions
un modèle où le partenaire fermionique d’un pseudo-boson de Goldstone joue le rôle d’un
neutrino stérile, qui pourrait expliquer certaines anomalies expérimentales. Enfin, pour
être viable, la supersymétrie doit être brisée dans un secteur caché, et cette brisure doit
ensuite être transmise aux champs de la théorie à basse énergie. Un des scénarios les plus
élégants pour cela est la médiation de jauge. Malheureusement, celle-ci peine à reproduire
la masse du boson de Higgs mesurée au LHC. Nous nous intéressons ici à des extensions
susceptibles de réhabiliter ce scénario tout en le reliant mécanisme de seesaw.

Mots clés : Nouvelle physique, neutrinos, mécanisme de seesaw, leptogenèse, super-
symétrie, médiation de jauge

Subject : New physics in the lepton sector

Résumé : This thesis addresses some scenarios of new physics as well as their consequences
on the lepton sector.
The fact that neutrinos are massive is one of the problems left unsolved by the Standard
Model. One of the possible solutions is the seesaw mechanism, that involves new heavy
states whose decay violates lepton number. Because of this, these states can participate in
leptogenesis, one of the scenarios to explain the origin of the asymmetry between matter
and antimatter in our universe. Here, we study leptogenesis with a scalar triplet and
consider especially the impact of flavour effects.
After that, we turn to supersymmetric theories. We study a scenario in which the fermionic
partner of a pseudo-Goldstone boson, associated to a symmetry broken at high energy,
plays the role of a sterile neutrino, that could explain some experimental anomalies. Finally,
to be viable, supersymmetry should be broken in a hidden sector, and this breaking should
be transmitted to the fields of the low energy theory. One of the most elegant scenarios for
this is gauge mediation. Unfortunately, it cannot easily reproduce the mass of the Higgs
boson measured at LHC. We consider here extensions that could rehabilitate this scenario
and relate it to the seesaw mechanism.

Keywords : New physics, neutrinos, seesaw mechanism, leptogenesis, supersymmetry,
gauge mediation
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