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Abstract

In strongly correlated materials, quantum fluctuations taking place at the level of atomic sites play a central
role. These local processes are captured nonperturbatively in dynamical mean field theory (DMFT). Nonlocal
mechanisms, however, are also suspected to be essential for the proper description of some of these materials,
including the well-known high-temperature cuprate superconductors and the more exotic systems of atoms
adsorbed on semiconducting surfaces.

In this thesis, the effect of nonlocal, potentially long-range fluctuations beyond the DMFT framework is
investigated from two angles.

First, long-ranged interactions in adatom systems, computed from first principles within the constrained
random-phase approximation (cRPA), are treated within the extended DMFT (EDMFT) framework and its
combination with the diagrammatic GW method (GW+EDMFT). They are shown to explain some material
trends observed in these compounds. In addition, thanks to the spatial and temporal information delivered by
GW+EDMFT, they solve existing puzzles raised by different experimental conclusions drawn from different
probes.

Second, a new approach to the Hubbard model including nonlocal correlation effects is proposed. Formally
based on the local expansion of the triply-irreducible functional, this approach, dubbed TRILEX, approxi-
mates the renormalized three-leg electron-boson vertex by a local but frequency-dependent vertex computed
from an impurity model with retarded density-density and spin-spin interactions. This local vertex is used
to construct frequency- and momentum-dependent self-energies capturing nonlocal correlation effects. By
construction, this method reconciles two theoretical pictures of cuprate superconductors, namely the spin
fluctuation theory at weak interaction strengths and the doped-Mott-insulator picture at strong coupling.

This novel approach is applied to the single-band Hubbard model. It is shown to reduce to DMFT at strong
coupling and high temperatures, and to fluctuation-exchange theories at weak coupling, while substantial de-
viations from both limits are observed at intermediate coupling. There, upon doping, antiferromagnetic spin
fluctuations are observed to lead to a momentum-differentiated spectral intensity on the Fermi surface, which
is reminiscent of the formation of Fermi arcs in photoemission measurements on cuprate superconductors.

These two methodological developments are intrinsically linked to algorithmic aspects which are reviewed in
the last part of this work. In particular, an open-source library dedicated to massively parallel computations
in the field of quantum many-body physics, TRIQS, is presented, with a focus on error estimation through
the binning and jackknife methods. The hybridization-expansion continuous-time quantum Monte-Carlo al-
gorithm in the segment picture – central to the TRILEX method – and its state-of-the-art implementation
are explained. Finally, as a further illustration, a new lightweight method relying on this algorithm and de-
signed for realistic systems, the combined screened-exchange and dynamical DMFT method (SEx+DDMFT),
is presented together with an application to the BaCo2As2 compound.
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Résumé

Dans les matériaux à fortes corrélations électroniques, un rôle central est joué par les fluctuations quantiques
à l’échelle de l’atome. Ces processus locaux sont pris en compte de façon non perturbative dans la théorie du
champ moyen dynamique (DMFT). Cependant, les mécanismes non locaux sont supposés être essentiels pour
décrire de façon adéquate certains de ces matériaux, dont font partie les fameux supraconducteurs à haute
température critique mais aussi les moins connus systèmes d’atomes adsorbés sur surfaces semiconductrices.

Dans cette thèse, j’étudie l’effet des fluctuations non locales – éventuellement à longue portée – au-delà de
DMFT sous deux angles.

Pour commencer, je montre que dans les systèmes d’ad-atomes, les interactions à longue portée, calculées
à partir des premiers principles dans le cadre de la “constrained random phase approximation” (cRPA), et
traitées par la méthode de DMFT étendue (EDMFT) et sa combinaison avec la méthode GW (GW+EDMFT),
permettent d’établir une classification de certains systèmes d’ad-atomes, et aussi de résoudre, grâce aux infor-
mations tant spatiales que temporelles fournies parGW+EDMFT, des questions soulevées par des conclusions
expérimentales divergentes selon les techniques expérimentales utilisées pour caractériser ces matériaux.

Ensuite, je propose une nouvelle approche pour traiter le modèle de Hubbard incluant des effets de corréla-
tions non locales. Se fondant formellement sur l’expansion locale de la fonctionelle triplement irréductible,
cette approche, baptisée TRILEX, approxime le vertex d’interaction électron-boson renormalisé par un vertex
local, mais fonction de la fréquence, calculé à partir d’un modèle d’impureté avec des interactions retardées
entre charges et entre spins. Ce vertex local est utilisé pour calculer des self-énergies et polarisations fonc-
tions de la fréquence et de l’impulsion, et pouvant donc rendre compte d’effets de corrélations non locales.
Par contruction, cette méthode réconcilie deux visions théoriques des supraconducteurs à haute température
critique, à savoir la théorie de la fluctuation de spin en régime d’interactions faibles, et l’image de l’isolant de
Mott dopé en régime d’interactions fortes.

Cette nouvelle approche est appliquée au modèle de Hubbard à une bande. Je montre qu’elle se ramène à
DMFT à fort couplage et à haute température, et aux théories dites d’échange de fluctuations à bas couplage,
tandis que des déviations substantielles vis-à-vis de ces deux limites sont observées à couplage intermédiaire.
Dans ce régime de paramètres, sous dopage, les fluctuations antiferromagnétiques ont pour conséquence une
différenciation de l’intensité spectrale sur la surface de Fermi dans l’espace des impulsions. Ceci n’est pas
sans rappeler la formation d’arcs de Fermi dans les mesures de photoémission sur les matériaux cuprates
supraconducteurs.

Ces deux développements méthodologiques sont intrinsèquement liés à des aspects algorithmiques qui font
l’objet de la dernière partie de ce travail. En particulier, j’y présente une librairie “open-source” dédiée
au calcul massivement parallèle dans le domaine du problème à N corps quantique, avec une illustration
sur l’estimation d’erreurs par la méthode du “jackknife”. J’y décris également l’algorithme de Monte-Carlo
quantique en temps continu avec expansion de l’hybridation dans le cas spécial d’une représentation par
“segments”, indispensable à la méthode TRILEX, ainsi que son implémentation dans l’état de l’art. Enfin,
à titre d’illustration, une nouvelle méthode pour décrire les systèmes réalistes et également basée sur cet
algorithme, la méthode “SEx+DDMFT” (combined screened-exchanged and dynamical DMFT), est exposée
ainsi que son application au composé BaCo2As2.
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1
Introduction

1.1 Challenges

In a world where larger and larger swaths of the economy are said to have become “dematerialized”, materials
have never mattered so much.

The very computers and “smart” phones that convey the flow of this digital economy need to be constantly
improved; their electronic components need to be further miniaturized and more energy-efficient; their
screens more highly-resolved and soon flexible or even pliable; their batteries lighter while able to store
more energy. More and more “smart” objects need “smart” materials whose properties can be controlled by
an electronic device.

Materials design – the creation of materials with given specifications – is a challenging task. From the
large palette of chemical elements, finding the combination leading to a specific electronic property is an
incremental procedure: it first requires the precise understanding of existing materials, that is, the ability to
relate a given set of macroscopic electronic properties to the internal microscopic structure of the material
and to external parameters such as temperature, pressure or exposition to light. This implies the description
of the material by a “model” supposed to capture the properties at stake. Only with this understanding can
one then predict what properties a prospective new material, with a new chemical composition or microscopic
structure, will have.

The task of relating the microscopic structure to the macroscopic electronic properties is perhaps nowhere
so arduous as in strongly correlated materials. Conversely, perhaps no other materials display so many
transitions between exotic phases upon sometimes minute changes in the external parameters, an appealing
feature for potential applications. In these materials, the interactions between the electrons of partially filled
shells induce peculiar behaviors and collective phenomena giving rise to macroscopic effects such as high-
temperature superconductivity or metal-insulator transitions. These interactions, however, hamper simple
approaches describing electrons as independent particles or on the contrary as tightly bound to their atom.
What makes strongly-correlated materials interesting – the fact that they are always “on the verge” – is also
what calls for sophisticated theoretical approaches.

The main complexity of strongly-correlated materials originates from the intricate interplay of several degrees
of freedom: high-energy and low-energy, local and nonlocal, short and long-ranged, charge and spin. This
makes both the task of constructing a minimal model adequate for a given phenomenon, and the task of
understanding the mechanisms described by this model, a tall order.

Headway in the latter direction has been made in the last two decades thanks to the advent of dynamical
mean field theory (DMFT, Georges et al. (1996)). This approach to the strong correlations problem gives
prominence to the local degrees of freedom as the main ingredients to account for the transition between

10



Chapter 1. Introduction 11

a “normal” (quasi-non-interacting) metal and a “Mott” insulator, where electronic motion is jammed by
electronic interactions. This locality assumption is embodied by a local “impurity” problem describing one or
a few atoms embedded in a non-interacting environment, which DMFT uses as an effective description of the
solid.

DMFT has since been extended in several respects. One direction is its application to systems with long-
range interactions, as opposed to the local interactions which it has originally been developed for. Another
is the inclusion of nonlocal degrees of freedom beyond the size of the impurity problem, motivated by the
experimental observation of extended spin correlations in high-temperature cuprate superconductors.

Systems of adatoms adsorbed on semiconducting surfaces are an original example of competing phenom-
ena triggered by strong correlations in low dimensions. Depending on the nature of the adatom and of
the substrate, as well as on the temperature, the surface system can be metallic or insulating, ordered or
disordered. Even more intriguing, different experimental probes “see” different phases. While previous the-
oretical studies have focused on weak-coupling scenarios or mostly restricted attention to local physics, a
first-principles determination of the relevant low-energy model, including the range of its interactions, and
dedicated theoretical treatment thereof, are still lacking.

High-temperature cuprate superconductors pose a different challenge: while most researchers in the field
agree that interactions in cuprates are mostly of local character, and that spin fluctuations play an important
role in the superconducting mechanism, a unified method taking into account both strong short-range corre-
lations and long-range fluctuations in an unbiased way has so far been out of reach. The recently discovered
iron-based superconductors, pose different but no less difficult challenges: there, the combination of spin
density wave fluctuations with moderate correlations has to be handled in a multi-band context. Methods are
thus needed that are lightweight enough to be extended to such multiorbital situations.

1.2 Approach

In this work, the problem of strong correlations in solids will be approached from a dynamical mean field
perspective, that is, with a focus on the nonperturbative treatment of local correlations. This ensures that
Mott physics, in the relevant interaction regime, will be properly taken into account. The general purpose of
this work is to further take into account contributions from nonlocal degrees of freedom.

These contributions may come directly from nonlocal interactions between electrons – which will be shown
to be relevant to surface adatoms – or from nonlocal fluctuations induced by local correlations, as will be seen
in the case of cuprate superconductors. In either case, instead of resorting to the complex machinery of
parquet equations or approximations thereof such as ladder resummations, the nonlocal degrees of freedom
will be represented as bosonic fields corresponding to physical two-particle fluctuations directly accessible to
experiments.

The coupled system of the bosonic modes and the fermionic degrees of freedom will then be studied either
through an extension of the DMFT lens, extended DMFT (EDMFT, Sengupta and Georges (1995); Kajueter
(1996); Si and Smith (1996)), or through an extension of EDMFT to nonlocal self-energies and polarizations,
GW+EDMFT (Biermann et al. (2003); Sun and Kotliar (2004)). In the former method, nonlocal interactions
merely translate into retarded interactions in the DMFT impurity model. In the latter, they additionally lead
to momentum-dependent self-energy and polarization effects which can be studied in connection with e.g.
charge-ordering phenomena in systems of adatoms on surfaces.

The electron-boson system will also be studied from a brand new perspective. Instead of making a locality
assumption on the self-energy, as DMFT does, an approach will be developed that consists in approximating
the three-leg vertex by a local vertex. From the local diagrams generated by this approximation, less irre-
ducible diagrams with nonlocal contributions, including self-energies and polarizations, can be computed at
a far lower cost than solving an impurity model with multiple sites. Moreover, long-range fluctuations are
captured in this approach.
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1.3 Contributions

The contributions of this work are the following:

First, I present the first fully self-consistent implementation of the EDMFT and GW+EDMFT methods with
continuous-time quantum Monte-Carlo impurity solvers with retarded interactions, applied to the extended
Hubbard model on a square and cubic lattice with short-range interactions. The effect of vertex corrections in
the construction of self-energies (Ayral et al. (2012)), the detailed local-nonlocal interactions phase diagram,
with a characterization of the energy scales of the screened interaction (Ayral et al. (2013)), and the influence
of longer-range hoppings and doping (Huang et al. (2014)) are studied.

Second, this work gives new insights into systems of adatoms on silicon surfaces: it maps out the general
phase diagram as a function of local interaction and nonlocal interactions; using the constrained random-
phase approximation (cRPA), it places different compounds on this phase diagram, thus providing orien-
tation in the intriguing phenomena observed in these systems (Hansmann et al. (2013a)). It also resolves
long-standing questions elicited by apparently contradictory experimental conclusions coming from different
probes (Hansmann et al. (2014)).

Third, I present a novel method for unifying Mott physics and spin fluctuation physics (Ayral and Parcollet
(2015)). At the price of solving an impurity model with dynamical charge-charge and spin-spin interac-
tions, this method, called TRILEX, constructs nonlocal self-energies and polarizations from a local three-leg
electron-boson coupling vertex. Applied to the Hubbard model in two dimensions, this method captures, like
DMFT, the Fermi-liquid-to-Mott-insulator transition, but also long-ranged spin fluctuations physics. Away
from half-filling, it yields Fermi arcs similar to those observed in photoemission experiments on cuprates.

Fourth, this work puts an emphasis on algorithmic developments: through the contribution to an open-source
library for many-body computations, TRIQS (Parcollet et al. (2015)), and the implementation of state-of-the-
art continuous-time Monte-Carlo solvers with dynamical charge-charge and spin-spin interactions; besides
being needed in the TRILEX method, this solver is used in another new method for realistic materials, the
combined screened-exchange and dynamical DMFT method (van Roekeghem et al. (2014)).

1.4 Structure of this work

This work is structured as follows:

In part I, besides this Introduction, I introduce the dynamical mean field approach to Mott physics (chapter
2).

In part II, systems of adatoms on semiconducting surfaces are studied from first principles: after a general
introduction to theses systems and a review of the open puzzles (chapter 3), I present the derivation of the
low-energy effective model through the constrained random-phase approximation (chapter 4). Chapter 5 is
devoted to the theoretical framework for solving such a model – the EDMFT method and the GW+EDMFT
method. Finally, I apply this methodology to surface systems in chapter 6.

In part III, I give an experimental and theoretical overview of high-temperature cuprate superconductors in
chapter 7. Then, I present the formal derivation of TRILEX, a new method to approach this problem, in
chapter 8. Finally, chapter 9 summarizes the first results of this method applied to the single-band Hubbard
model.

In part IV, I touch on some computational aspects. Chapter 10 gives a glimpse of the TRIQS library and my
contributions to it. Chapter 11 is a detailed description of an extension of continuous-time quantum Monte-
Carlo algorithms to retarded spin-spin interactions, as well as the corresponding implementation notes. Fi-
nally, chapter 12 presents an example of usage of this algorithm for a recently developed method for realistic
calculations in strongly-correlated materials, the combined screened exchange and dynamical DMFT method.

Part V presents the conclusions of this work.
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This work has four main appendices. Part VI gathers the conventions used in the main text. Part VII presents
technical developments necessary for TRILEX. Part VIII is an appendix presenting general background mate-
rial for the field of strongly-correlated materials, with mainly a pedagogical purpose. Finally, part IX contains
details of some calculations.

The publications corresponding to this work are enclosed in part X.



2
Dynamical Mean-Field Theory: a local approach

to Mott physics

In a solid, about 1023 electrons interact with one another. To describe their motion and hence the electronic
properties of a solid, one should in principle solve 1023 coupled equations, an impossible task even for state-
of-the-art computers – and for any computer in the foreseeable future. Yet, in the same way as biologists
can study the human body without keeping track of every single protein, solid-state physicists can predict
the electronic properties of matter without monitoring every single electron. Instead of focusing on the
behavior of individual entities, the task of the physicist is to identify the relevant degrees of freedom of the
problem. Indeed, in the words of Anderson (1972), “more is different”: more particles give rise to new
states of matter – superconductivity, giant magnetoresistance, superfluidity, charge density waves... These
emergent macroscopic phenomena result from, but are not the simple addition of, the complex behaviors of
the microscopic entities. Physics (and science at large) consists in writing down the minimal equations that
account for the macroscopic behavior at a given scale.

A formal procedure for doing so is “renormalization group theory”, a theory developed in the 1970s. It
allows to write down an “effective” model describing the physics of a system at a given scale. As one goes
down in energy scale, the high-energy degrees of freedom “renormalize” the low-energy degrees of freedom.
The constrained random-phase approximation, which can be seen as a concrete way of performing this
renormalization procedure, will be described in a later part (section J.3). The renormalized model, albeit
much simpler than the original “high-energy” model, still requires some work.

Here, I will focus on such a low-energy model, the Hubbard model. As the minimal model describing the
competition of the localizing effect of Coulomb interactions and the itinerancy favored by the tunnel effect,
it has been widely studied since the 1960s. Here, I will restrict my attention to one class of methods –
dynamical mean field theory (DMFT) – that has been developed to handle it.

In this chapter, I describe dynamical mean field theory (DMFT) in its single-site version (section 2.1). The
“cluster” versions of DMFT will be introduced in section 7.2.2.2, while the application of DMFT to realistic
materials (as opposed to the “model” approach of this section) is briefly introduced in section J.2. Examples
of “weak-coupling” approaches to the Hubbard model such as spin fluctuation theory will be dealt with in
part III in the context of cuprate materials.

In this chapter, ~ = kB = 1. In case of doubt, the general notation conventions are summarized in appendix
VI.

14
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2.1 Mott insulators: a Coulombic thorn in Fermi liquid theory’s side

This section is a brief introduction to the Mott mechanism and to the Hubbard model, a minimal model to
describe the transition from a “normal metal” to a Mott insulator.

2.1.1 Fermi liquid theory and Mott physics: of the (surprising) robustness and (eventual)
failure of band theory

In the early twentieth century, the electronic structure of matter – namely the description of electron propa-
gation in solids – was described within the so-called “band theory”. One of the consequences of this theory,
which is based on the image of “quasi-free” electrons (non-interacting electrons in the periodic potential of
the crystal), is that solids with an odd number of electrons per unit cell cannot be insulating. Indeed, in this
case, the Fermi level falls inside of a continuum of allowed states – a “band” – and thus the excitation cost to
create an electrical current is small.

While band theory provided a good classification for many solids at the time, Verwey and de Boer (1936)
discovered that some materials with “unpaired electrons and incomplete outer shells” (understand: with an odd
number of electrons per unit cell and thus partially filled valence bands) such a nickel oxide (NiO), an oxide
with 3d valence electrons, were very poor conductors. This prompted Mott and Peierls (1937) to hypothesize
that in these materials, “the electrostatic interaction between the electrons prevents them from moving at all”,
explaining their insulating behavior. Mott’s paper was the opening remark of the field of strongly correlated
materials.

“Mott insulators”, as these special insulators have later been called, are characterized by a blocking of elec-
tronic conduction due to the Coulomb repulsion: electrons are deterred from tunneling or “hopping” from
site to site by a too large energetical cost. A simple-minded estimate of this cost – about 14 eV for electrons
distant of 1 in free space 1 – would indicate that this effect is huge in most solids – even in solids well
described by band theory: indeed, typical kinetic energies – the other important energy scale – are in the
range of a few electron volts.

2.1.1.1 Why band theory (suprisingly) works in many solids: Fermi liquid theory

Two additional factors must be taken into account to mitigate the previous argument and explain the surpris-
ing robustness of band theory against the effect of Coulomb repulsion.

The first is the screening of the Coulomb interaction. In the same way as in electrolytic solutions, the range
of the electrostatic potential of charge carriers is reduced to a characteristic length (called the Debye length)
due to the shielding or “screening” of this potential by other ions, in a solid, the interelectronic potential is
screened by the presence of the other electrons. As will be explained more quantitatively in section J.3.1, the
screened potential has both a shorter range (with a typical length scale called the Thomas-Fermi length) and
a reduced magnitude. This screening effect can be seen as one of the “renormalization” effects of high-energy
electrons that have been mentioned in the introduction of this part.

The second factor is the Pauli exclusion principle. It effectively reduces the phase space for the scattering
of an electron, or more precisely of a “quasi-electron” – an electron dressed with elementary excitations.
The existence of these “quasiparticles”, namely of well-defined excitations in momentum space which reduce
to the original electrons when the interactions are turned off, is the essence of Landau’s Fermi liquid (FL)
theory. Within this theory, interactions merely endow (quasi-)electronic excitations with a finite lifetime and
an enhanced mass (among others). The scattering rate at temperature T of a quasiparticle of energy ε with
respect to the Fermi energy is given by the expression:

ΓFL ∝ ε
2 + π2T 2 (2.1)

1V (r ) = e2
4πϵ0r

with r = 10−10 m, ϵ0 = 8.85 · 10−12F /m
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Thus, a quasiparticle on the Fermi surface (ε = 0) has an infinite lifetime at T = 0. The ε2 term is a direct
consequence of the Pauli principle, which restricts the possible scattering states for a given particle. A finite
temperature opens up the phase space of allowed transitions to a range kBT of the Fermi surface, whence the
second term. The details of this calculation can be found e.g. in Abrikosov et al. (1965) or in a more modern
form in section 7.7 of Coleman (2011). The renormalized mass of quasiparticles is denoted as m∗ > m: in
Fermi liquid theory, interelectronic interactions merely make electrons “heavier”.

2.1.1.2 Green’s functions and the self-energy: quantifying correlations

Both the finite lifetime effect and the mass enhancement effect can be described mathematically by a complex
function of momentum (k) and energy (ω), the self-energy Σ(k,ω) of the electron. It is defined by the
following relation:

Σ(k,ω) ≡ G−1
0 (k,ω) −G−1 (k,ω) (2.2)

where G (k,ω) is the “propagator” or “Green’s function” of the electron, defined in imaginary time as Gi j (τ ) ≡

−〈Tci (τ )c
†

j (0)〉: it characterizes the propagation of an electron from a site j (where it is created by c†j ) to a site
i (where it is annihilated by ci) between times 0 and τ . G0 is the propagator in the absence of interactions.
Thus, the self-energy Σ – which vanishes in the absence of interactions – measures the effect of correlations on
the propagation of an electron.

The physical content of the propagator itself is easily understood by looking at its expression in the non-
interacting case, G0 (k,ω) = (ω − ξk)

−1. In this formula, ξk ≡ εk − µ, where εk denotes the energy of a single
electron of momentum k (for instance, εk =

~2 |k |2
2m for a free electron), and µ is the chemical potential.

Thus the poles of G0, ωk = ξk, correspond to the single-particle energies. As shown in appendix H.1.4, the
imaginary part ofG (k,ω) (or the “spectral function”A(k,ω) ≡ − 1

π ImG (k,ω+iη), with η an infinitesimal positive
factor) is directly related to the signal that can be measured in angle-resolved photoemission (ARPES). In the
non-interacting case:

A0 (k,ω) = δ (ω − ξk) = lim
η→0

η/π

(ω − ξk)
2 + η2

The non-interacting Fermi surface corresponds the locus of the momenta kF such that ωkF = 0. The levels
observed in photoemission in this case are infinitely sharp (η → 0).

In the presence of interactions, the propagator becomes G−1 (k,ω) =
[
ω − ξk − ReΣ(k,ω)

]
− iImΣ(k,ω). Thus,

the new dispersion is given by the solutions ω̃k of ω̃k − ξk −ReΣ(k,ω̃k) = 0, while the interacting Fermi surface
corresponds to ω̃k̃F

= 0, i.e. −ξk̃F
− ReΣ(k̃,ω̃k̃F

) = 0. The corresponding spectral function is given by:

A(k,ω) =
−ImΣ(k,ω)/π[

ω − ξk − ReΣ(k,ω)
]2
+

[
ImΣ(k,ω)

]2
(2.3)

Roughly speaking (i.e. forgetting about the momentum- and energy-dependence of the self-energy), the real
part of the self-energy shifts the energy levels, while its imaginary part broadens them.

2.1.1.3 The self-energy in Fermi-liquid theory

The connection of Σ to the mass enhancement predicted by Fermi liquid theory is seen by making a Taylor
expansion the self-energy in the vicinity of the interacting Fermi surface, namely around ω ≈ ω̃k̃F

= 0 and

k ≈ k̃F, which yields ω−ξk−ReΣ(k,ω) = Z−1
k̃F

(
ω − ξ̃k

)
, where I have defined the so-called quasiparticle residue:

Zk̃F
≡

1

1 − ∂ωReΣ(k,ω)���FS

(2.4)

and the renormalized energy ξ̃k ≡ Zk̃F

(
k − k̃F

)
· ∇k

[
ξk + ReΣ(k,ω)

] ���FS
. The effective mass (tensor) is defined

as the curvature of the renormalized energy 1
m∗α β
= 1

~2 ∂kα ∂kβ ξ̃k
���FS

. If one neglects the momentum dependence
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of Σ and considers an isotropic ξk, then m∗/m = 1/Z : the effective mass of quasiparticles is directly given by
the inverse of Z . The smaller Z , the heavier the quasiparticles.

Following the previous reasoning, the spectral function of a Fermi liquid should in principle read:

AFL (k,ω) = Zk
ΓFL (ω)/π

[
ω − ξ̃k

]2
+ Γ2

FL (ω)

with the identification ΓFL = −ZkImΣFL (k,ω). The connection to the scattering rate computed within Fermi
liquid theory, Eq. (2.1), is made (at zero temperature) by setting: ImΣFL (k,ω) ∝ ω2.

At this point, one might think that the only effect of interactions as described by FL theory is to renormalize
the width of the bands (through Z) and give the electrons a finite lifetime τ ∝ 1/ΓFL. However, the energy
integral of AFL (k,ω) is Zk instead of the expected 1: only a fraction Zk of the spectrum is described by
quasiparticles (which explains the name given to Zk). The total spectrum is in fact A(k,ω) = AFL (k,ω) +
Ainc (k,ω) where the “incoherent” part Ainc (k,ω) describes the excitations which cannot be described in terms
of quasiparticles and are thence outside the realm of FL theory.

2.1.1.4 Mott insulators: solids are made up of atoms, after all

The kind of insulator envisioned by Mott corresponds to the extreme case2 Z → 0. In such a case, all the
spectral weight goes into Ainc (ω). In the previous section, all the “incoherent” excitations had conveniently
been lumped into this term, while the focus was on the coherent excitations, of weight Z . In Mott insulators,
since the Fermi-liquid quasiparticles do not exist anymore, the excitations hidden in Ainc (ω) can no longer be
glossed over: a change of paradigm is necessary.

Such a change can be easily operated when taking another viewpoint on solids. While band theory regards
electrons in solids essentially as free waves in the periodic potential of the ions, one may as well consider
a solid as a collection of atoms, with electrons sitting on their respective ionic site. Pushed to the extreme,
this vision leads to the neglect of tunnelling between neighboring ionic sites – the so-called atomic limit
approximation. In this limit and within a much simplified model of an atom (a single orbital), the self-energy
of an electron sitting on an atomic site is (see appendix E for a derivation):

Σat (ω) =
U

2
+
U 2

4ω
(2.5)

whereU parametrizes the cost of a double occupation of this atomic site (thisU will be more precisely defined
in the framework of the Hubbard model introduced in the next section). The form of this self-energy is very
different from the Fermi-liquid form studied in the previous section; in particular, the self-energy diverges at
low energy. The corresponding Green’s function is:

Gat (ω) =
1/2

ω −U /2
+

1/2
ω +U /2

i.e. the spectral function is composed of two peaks separated with an energy interval U . Each peak has a
weight 1/2, in contrast to the bands of band theory, which can accomodate two electrons each.

Note that while in the non-interacting limit, there is no correlation (in the statistical sense) between the
occupation of the up level and the occupation of the down level (〈n↑n↓〉0 = 〈n↑〉〈n↓〉 = 1/4 at half-filling), in
the atomic limit, the probability for double occupancy is given by

〈n↑n↓〉at =
1

2(1 + eU β/2)
≈

1
2
e−βU /2 � 1

2If the momentum-dependence of the self-energy is neglected, Z → 0 also corresponds to a diverging effective mass m∗ of Landau’s
quasiparticles, as first shown by Brinkman and Rice (1970) – which explains why conduction is impossible in a Mott insulator.
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2.1.1.5 Conclusion: how to interpolate between these pictures?

In the two previous sections, solids have been considered from two main vantage points: the non-interacting
limit, where interactions merely give a lifetime and an enhanced mass to electrons, and the atomic limit, in
which electrons simply occupy atomic levels. These two images, however, are but caricatures of strongly-
correlated solids, where interactions are strong enough that the transfer of spectral weight from AFL to Ainc

must be described more precisely than just with Fermi-liquid parameters, and the kinetic energy is not so
weak as to warrant a description of the solid solely in terms of isolated atoms.

Before I turn to dynamical mean field theory, a method designed to bridge this gap, I first introduce the
minimal model encapsulating the interplay of interaction energy and kinetic energy, the Hubbard model.

2.1.2 The Hubbard model: the spherical, yet challenging cow of strongly correlated
materials

Electrons in a solid-state environment are both (charged) particles and waves: as waves, they “like” to be
delocalized to minimize (by tunnelling) their kinetic energy; as charged particles, they repel one another and
thus try to be as localized as possible in order to avoid paying this potential energy price.

This essential “schizophrenia” of electrons is minimally captured by the Hubbard model, a model due to
Hubbard (1963), Kanamori (1963) and Gutzwiller (1963). It contains two terms: a kinetic energy term
favoring a wave-like behavior and a potential energy term favoring localization. In its single-band form, it
reads:

HHubbard = −t
∑
〈i j〉σ

(
c†iσc jσ + h.c

)
+U

∑
i

ni↑ni↓ (2.6)

i and j denote lattice sites, 〈ij〉 denote nearest-neighbor sites, c†iσ (ciσ ) creates (annihilates) an electron of
spin σ =↑,↓ at site Ri . t is the hopping (tunnelling) amplitude between two neighboring sites: it parametrizes
the kinetic energy of the electron. U parametrizes the inter-electronic Coulomb repulsion. In the Hubbard
model, this interaction is assumed to be purely local as a consequence of screening (see above, subsection
2.1.1.1, for a qualitative discussion).

The Hubbard model can be taken as the starting point of a calculation (with “knobs” t , U and the chemi-
cal potential µ in a grand canonic ensemble), or derived from first principles as described in the appendix
(chapter J.3). As will be seen later (chapter 7), this model is conjectured, following Anderson (1987), to
be a reasonable description of high-temperature superconductors. It may easily be extended to the case of
nonlocal interactions (see chapter 5), or to the multi-orbital case.

The ratio t/U controls the importance of the kinetic energy over the interaction energy:

• if t/U → ∞, the Hamiltonian can be diagonalized in momentum space, HHubbard (U = 0) =
∑

kσ ε (k)c
†

kσckσ ,
where c†kσ =

∑
i e

ik·Ric†iσ creates a wave-like state with (quasi) momentum k. The many-body ground
state is a Slater determinant made up of these modes of energy < εF propagating with the dispersion
relation ε (k) (for instance, ε (k) = −2t

[
cos (kx ) + cos

(
ky

)]
on a two-dimensional square lattice).

• if t/U = 0, HHubbard can be diagonalized in real space, its eigenstates being the many-body states
|ni=0
↑
,ni=0
↓

;ni=1
↑
,ni=1
↓

; . . . ;ni=N
↑
,ni=N
↓
〉 with nσ = 0,1. At half-filling, the ground state is a degenerate state

with one localized electron per site, with an energy gap U to the first excited state: it is a “Mott”
insulator.
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Thus, the Hubbard model encompasses both the non-interacting and atomic limits that have been introduced
in the previous section. As such, it contains the essential ingredients to study the transition between a Fermi
liquid and a Mott insulator.

Despite its apparent simplicity, the Hubbard model has been a challenge to theoreticians since its introduction.

A direct diagonalization of this model is limited to small system sizes: without using symmetries, it requires
diagonalizing matrices of size 4N (with N : number of atoms), and even with symmetries, the sizes that
can be reached are so small that finite-size effects prevent the extrapolation to the thermodynamic limit in
interesting regimes of parameters. Likewise, quantum Monte-Carlo methods are hampered by the negative
sign problem (see chapter 11) except for special cases like the half-filled case.

On the other hand, mean-field theories, which are valid in the thermodynamic limit, must be considered with
care. For instance, Hartree mean field theory, which consists in approximating the interaction term as

U
∑
i

ni↑ni↓ ≈ U
∑
i

ni↑〈ni↓〉 + ni↓〈ni↑〉 + const.

or equivalently the self-energy as
ΣH
σ (k,ω) = U 〈ni σ̄ 〉 (2.7)

is not valid in the atomic limit (compare to equation (2.5)), despite the fact that it can open an antiferromag-
netic gap of orderU on a bipartite sublattice: this happens under a certain critical temperatureTc ∼ e−1/U N (εF )

(N (ε ) is the noninteracting density of states), in which case 〈nA↑〉 = 〈nB↓〉 = 0 and 〈nA↓〉 = 〈nB↑〉 = 1 (where A

and B denote sites on different sublattices; this calculation is carried out in appendix I.6.2).

This failure highlights the special nature of the Mott gap: as first hinted at by Mott’s remark, it is intrinsically
a charge gap, associated to a freezing of the charge degrees of freedom. By contrast, the mechanism described
by static mean-field theory is based on the opening of a spin gap. One may also trace back this failure to a
wrong choice of mean field, as will be argued in the next section.

2.2 Dynamical Mean Field Theory: local physics to capture “Mottness”

2.2.1 Intuitive picture: a mean field theory, only dynamical

In the previous section, the static (Hartree) mean-field treatment of the Hubbard model has been discarded
on the basis that it could not capture the opening of a charge gap. Still, mean field theory (as introduced
by Weiss (1907)) has appealing features: after selecting the relevant variable (the mean field), it reduces a
complicated lattice problem to a simpler local problem which is then solved, if not exactly, at least taking
many-body effects into account.

The prototypical example for this is the mean-field solution of the Ising model, defined by the Hamiltonian:

HIsing = −J
∑
〈i j〉

sisj − h
∑
i

si (2.8)

which describes the ferromagnetic (J > 0) coupling of neighboring (〈ij〉) classical spins si = ±1 in a magnetic
field h. If one is interested in the possibility for magnetic ordering of the spin system, the relevant degree of
freedom or “order parameter” is the local magnetization

m = 〈si 〉 (2.9)

After decoupling the interaction term by neglecting fluctuations of the order parameter, one can write down
a local effective Hamiltonian, Heff[heff] = −heffs, with the “Weiss field” heff defined as heff[m] = Jzm+h. In this
simple model, the local model, Heff, can be solved exactly for 〈s〉eff: 〈s〉eff[heff] = tanh (β [heff]). This set of
two equations (with three unknowns 〈s〉eff, m and heff) is closed by imposing the self-consistency condition:

〈s〉eff =m (2.10)
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Solving form for a given inverse temperature β and field h, one obtains the final equationm = tanh (β [Jzm + h])
which, at zero field, has one “disordered” solution m = 0 for T > Jz/kB ≡ TMF

c , and two ordered solutions
|m | , 0 for T < TMF

c .

Dynamical mean field theory is based on a similar reasoning. The key difficulty, however, consists in identi-
fying the order parameter. The discussion of the previous sections has taught us that one possible observable
to describe both a non-interacting or weakly-interacting system and a Mott insulator is the one-particle local
spectral function A(ω) or, equivalently, the local Green’s function Gii (ω) defined as (in imaginary time):

Gii (τ ) = −〈Tci (τ )c
†

i (0)〉 (2.11)

This object is dynamical (it depends on imaginary time), as opposed to m which is static in the Ising case.
These dynamics describe electronic motion, and encompasses, in particular, Fermi liquid behavior (as in
AFL (ω)) as well as incoherent structures at high energies ω. From there, DMFT constructs the analog of heff,
the dynamical Weiss field “G (ω)”. Based on this Weiss field, one then solves for the propagator Gimp (ω) of a
local effective problem (the analog of Heff, called an impurity problem). The three unknowns Gii , Gimp and
G can be determined by imposing a self-consistency condition:

Gimp (ω) = Gii (ω) (2.12)

One can then solve for Gimp for a given inverse temperature β and interaction-to-kinetic energy ratio U /t . In
the next section, I specify the various building blocks of this calculation.

2.2.2 The cavity construction: impurity physics in the spotlight

Thus far, I have described the structure of a DMFT calculation based on an analogy with the mean-field
treatment of the Ising model. Here, I specify the effective model of DMFT (the analog of Heff) following
Georges et al. (1996).

2.2.2.1 Definition of the effective model of DMFT

The Hubbard model can be expressed in a path integral formalism (see e.g. Negele and Orland (1988)),
namely the partition function can be written as Z =

´
D[c̄c]e−SHubbard , where

SHubbard =

ˆ β

0
dτ




∑
i j,σ

c̄iστ
(
(∂τ − µ ) δi j + ti j

)
c jστ +U

∑
i

ni↑τni↓τ




(2.13)

c̄iστ and ciστ are conjugate Grassmann antiperiodic fields; ti j = −tδ〈i j〉 in the case of nearest-neighbor hop-
ping.

The local effective model of DMFT is found by singling out one site of the lattice in the above action, and
integrate out all the other sites. The local model obtained after integration of the other sites and a truncation
in the limit of infinite dimensions is a “renormalized” local model describing one site embedded in a host
which is described by a dynamical “mean field” G.

More precisely, let us focus on a given site (denoted by the index 0) and define the effective action Simp of
this single site – which is akin to an “impurity” atom hosted in a lattice – as:

1
Zimp

e−Simp[c̄0,c0] ≡
e−S0

Z

ˆ
Di,0[c̄i ,ci]e−(S

(0)+∆S )

I have split the action as SHubbard = S0 + S
(0) + ∆S, where S0 denotes the action of the site 0, S (0) the action of

the lattice with site 0 removed (the lattice with a “cavity” at site 0) and ∆S the remaining part. In the limit of
infinite dimensions, Simp simplifies to (Georges et al. (1996)):
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Simp =

¨ β

0
dτdτ ′c̄ (τ )

{
−G−1 (τ − τ ′)

}
c (τ ′) +

ˆ β

0
dτUn↑τn↓τ (2.14)

where the Weiss field is given by:

G−1 (iω) = G−1
ii (iω) + Σimp (iω) (2.15)

with

Gii (iω) =

ˆ ∞
−∞

dεN (ε )

iω + µ − ε − Σimp (iω)
(2.16)

N (ε ) is the non-interacting density of states, and Σimp (iω) the self-energy associated with Simp, defined as
Σimp (iω) ≡ G

−1 (iω) −G−1
imp (iω). In the limit of infinite dimensions, since the lattice self-energy becomes local

(Metzner and Vollhardt (1989); Müller-Hartmann (1989)), the lattice and the impurity self-energies are
equal.

This closes the set of DMFT equations: for a given self-energy Σimp (iω), obtained by solving the effective local
model Simp parametrized by G (iω), one can compute Gii using (2.16), and then find a new Weiss field G (iω)
(using (2.15)), until convergence.

2.2.2.2 Physical content of the local effective model

The physical content of the effective local problem, Eq. (2.14), is made clearer by defining a “hybridization”
function ∆(iω) as:

∆(iω) ≡ iω + µ − G−1 (iω)

Then, Eq. (2.14) reads:

Simp =

¨ β

0
dτdτ ′c̄ (τ )

{
(∂τ − µ ) δτ−τ ′ + ∆(τ − τ

′)
}
c (τ ′) +

ˆ β

0
dτUn↑τn↓τ (2.17)

This local action can be contrasted with the action describing the Hubbard model, Eq. (2.13): roughly
speaking, the nonlocal but static hopping term ti j has been traded for a local, yet dynamical hybridization
term ∆(τ − τ ′). Therefore, one can view Simp as an auxiliary model whose hybridization term ∆(τ − τ ′) is
adjusted in such a way that the impurity Green’s function Gimp reproduces the local lattice Green’s function
Gii . ∆(τ ) is thus supposed to mimic the incursions of electrons to and from the impurity site. This dynamical
process intrinsically depends on the strength of the interactions (U ) in the system.

The problem described by Simp can be cast in a Hamiltonian form as the coupling of an interacting fermionic
level (at energy −µ and with interactions U ) with a non-interacting fermionic bath described by the hy-
bridization function ∆(ω) (see appendix M.2 for more details). This is the so-called Anderson impurity model
(Anderson (1961)) which, among others, captures Kondo physics.

Contrary to static mean field theory, the effective local model of DMFT, Simp, albeit local, is a nontrivial many-
body problem. Its solution is the main technical hurdle of DMFT. As will be described in chapter 11, however,
the advent of continuous-time quantum Monte-Carlo solvers has made it easier to obtain an exact – up to
statistical noise – solution of Simp.

Let us emphasize that since DMFT is in general applied to finite-dimensional problems, the locality of the
self-energy, an exact property in infinite dimensions, becomes an approximation to the true self-energy in
finite dimensions.

In the next section, I give a more formal justification of the exactness of DMFT in infinite dimensions.
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2.2.3 Functional aspect: DMFT as a local approximation to the Luttinger-Ward functional

In this section, I give another interpretation of DMFT based on energy functionals. This derivation will be
performed in more details as part of a more general framework in chapter 8. Here, I merely recall the main
results.

Let us take the action for the Hubbard model, Eq. (2.13), as a starting point. Defining its free energy in the
presence of a bilinear source term Fiτ ,jτ ′c̄iτ c jτ ′ , Ω[F] = − lnZ[F], one can perform a Legendre transform of Ω
(which, as the generating functional of correlation functions, satisfies δΩ/δF = G) with respect to F , which
can be shown3 to be expressed as:

Γ[G] = −Tr log
[
G−1

]
+ Tr

[(
G−1 −G−1

0

)
G

]
+ Φ[G] (2.18)

Here, G0 is the non-interacting Green’s function, and Φ[G] is the so-called Luttinger-Ward functional (Lut-
tinger and Ward (1960)), which is the sum of all graphs constructed with Gi j (τ −τ

′) lines andUni↑ni↓ vertices
which do not fall apart if two G lines are cut. Such graphs are called two-particle irreducible (2PI) graphs.
Examples of graphs contributing (or not) to Φ[G] will be shown later (Fig. 8.3 in chapter 8).

DMFT can be regarded as a nonperturbative approximation to Φ[G]. One way to see this is to compare the
structure of the impurity action, Eq. (2.17), with that of the Hubbard action, Eq. (2.13): apart from the fact
that one is local and the other not, the diagrammatic content of both actions is the same, they will generate
diagrams with fermionic lines G and a local vertex Un↑n↓. Thus, the 2PI functional of the Hubbard model
Φexact

Hubbard[Gi j ,U ] and the 2PI functional of the impurity model Φexact
imp [G,U ] correspond to the same series,

except that the Hubbard functional contains diagrams with non local propagators Gi j (with i , j).

Thus, DMFT consists in constructing a 2PI functional where the internal lines of the exact 2PI functional are
replaced by local propagators:

ΦDMFT[G] =
∑

Ri ∈BL

Φexact[Gii] (2.19)

This approximation becomes exact in the limit of infinite dimensions since, due to the irreducibility property
of Φ, all contributions to Φ with nonlocal propagators vanish in this limit (Georges et al. (1996)).

The locality of the self-energy directly follows from the approximation of Φ (Eq. (2.19)). Indeed, setting the
sources F = δ Γ

δG to zero leads to 0 = G−1 −G−1
0 +

δΦ
δG . Comparing this relation to the definition of Σ, Eq. (2.2),

one sees that Σi j = δΦ
δG ji

. Thus, plugging the DMFT approximation of Φ, Eq. (2.19), one gets

ΣDMFT
i j =

δΦ

δGii
δi j

i.e. ΣDMFT is local.

2.2.4 Summary: set of DMFT equations

Based on the previous discussions, the self-consistent DMFT loop, illustrated in Fig. 2.1, consists in the
following steps:

3see section 8.3
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Simp[G(iω), U ]

Σ(k, iω) = Σimp(iω)

Dyson
equation

G−1 = G−1
loc +Σloc

Slatt[G0(k, iω), U ]

consistency
condition

self-

lattice
model

self-energy
approximation

impurity
model

impurity
self-energy

G(k, iω)[Σ]

Σimp

Figure 2.1: the DMFT loop

1. Start with an initial self-energy Σimp (iω) (for instance Σimp = 0)

2. Compute the local fermionic Green’s functions G using Dyson’s equations:

Gloc (iω) =
∑

k∈BZ

1
iω + µ − ε (k) − Σimp (iω)

(2.20)

3. Compute the fermionic “Weiss field” G (iω):

G (iω) =
[
Gloc (iω)

−1
+ Σimp (iω)

]−1
(2.21)

4. Solve the impurity model, Eq. (2.14), for Σimp (iω)

5. Go back to step 2 until convergence

2.2.5 Selected results, and limitations of single-site DMFT

This section is not intended to be an exhaustive review of DMFT results. I refer the reader to Georges et al.
(1996) for a detailed overview of the early results.

By construction, DMFT interpolates between the Mott insulator and the non-interacting limit. It can thus
capture the Mott transition, as illustrated in the left panel of Fig. 2.2, which shows a (T ,U ) phase diagram.
This phase diagram has been obtained on the Bethe lattice (where the density of states N (ε ) is semicircular,

namely N (ε ) = 2
πD

√
(
ε
D

)2 − 1). The impurity action is solved approximately using an iterated-perturbation-
theory (IPT) solver, which corresponds to a second-order approximation of the self-energy (with bare lines,
i.e. ΣIPT (τ ) = −U 2G (τ )G (τ )G (−τ )).
For small values of the interaction (U /D < 2.5), a metallic solution is found, while for large values a Mott
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Figure 2.2: Left: (U ,T ) phase diagram of single-site DMFT on the Bethe lattice with an IPT impurity solver.
Blue: small resistivity. Red: large resistivity (adapted from Vučičević et al. (2013)). Right: Temperature vs.
Pressure phase diagram of the organic salt κ−(BEDT − TTF)2Cu [N(CN)2] Cl (from Limelette et al. (2003)).
Hatched region: coexistence region. AF stands for “antiferromagnetic”. D denotes the half-bandwidth.

insulating solution is found, characterized by a Mott gap of order U , by a vanishing quasiparticle residue
Z , by a very small local double occupancy 〈n↑n↓〉 and large local susceptibility. The hatched region – the
“coexistence” region – is a region where a metallic and an insulating solution coexist: DMFT predicts the
Mott transition to be a first-order metal-to-insulator transition. The first-order line is terminated by a critical
point located, in this approximation, at Uc/D = 2.45 and Tc/D = 0.046. At higher temperatures, there is a
crossover between a bad metal and a bad insulator. The bad metal is characterized by an anomalous behavior
of the resistivity (which is no longer quadratic in T as is the case in a Fermi liquid).

In this calculation, spin ordering has not been allowed for: as any mean field approximation, DMFT can
restrict the search space; here, paramagnetism is enforced by symmetrizing the up and down components
of the impurity Green’s function or self-energy. If DMFT, however, is extended to the case of two distinct
sublattices (and hence spin differentiation is allowed), antiferromagnetism can be studied. This yields a Néel
temperature line (TDMFT

N ) which is higher than the exact Néel temperature computed in three dimensions4,
T 3D

N : DMFT overestimates the ordering temperature; indeed, it neglects spatial fluctuations of the order
parameter which can destabilize the ordered phase (in two dimensions, they even destroy the order down
to T = 0: this is the Mermin-Wagner theorem). The same caveat can be extended to the vicinity of the
Mott transition, where spatial fluctuations are expected to play an important role: is the value of the critical
interaction robust to the inclusion of spatial fluctuations? This and other issues related with short-range
spatial fluctuations is addressed by a first possible extension of DMFT, cluster DMFT, which will be reported
on in more detail in section 7.2.2.2 in the context of cuprate materials.

The somewhat “artificial” suppression of antiferromagnetism in “paramagnetic” DMFT calculations is how-
ever relevant to materials where frustration does suppress antiferromagnetism. This is the case in organic
salts, as shown in the right panel of Fig. 2.2. Pressure controls the ratio D/U : the larger P , the larger D/U .
There is a qualitative agreement with the single-site DMFT phase diagram.

The extension of single-site DMFT to multiorbital Hubbard models and more generally to realistic materials
(the “LDA+DMFT” method) is briefly described in section J.2.

2.3 Summary: successes and limitations of DMFT

As we have seen in the previous section, DMFT succeeds in unifying the Mott and the Fermi liquid viewpoints,
insofar as it smoothly connects those two exact limits. As any mean field theory, however, its validity is

4These lines are shown in Fig. 7.14 in chapter 7, where DMFT and its cluster extension are compared.



Chapter 2. Dynamical Mean-Field Theory: a local approach to Mott physics 25

questionable in regions of the phase space where fluctuations are expected to play an important role: close
to phase transitions and in low-dimensional systems, for instance.

One natural route to include spatial fluctuations is provided by “cluster extensions” of DMFT, which can be
seen as an extension of DMFT to “extended” impurity models, namely impurity models with a finite spatial
extent, contrary to the single-impurity model used in single-site DMFT. These extensions will be described in
section 7.2.2.2.

Single-site DMFT provides a unified description of spectral properties on either side of the Mott transition,
namely of the low-energy Fermi-liquid-like features and incoherent high-energy features like Hubbard bands
in the correlated metal – and of the Hubbard bands in the Mott insulator.
The local approximation of the self-energy, which becomes exact in the limit of infinite dimensions, is im-
proved by cluster extensions of DMFT which will be discussed in chapter 7.

In the next part, I show that DMFT can be extended to systems with nonlocal interactions such as systems of
adatoms on semiconducting surfaces.



Part II

Long-range interactions in surface systems:
insights from combined GW and Extended

Dynamical Mean Field Theory
Systems of adatoms on semiconducting surfaces are original systems where the interplay of strong local and
nonlocal interactions and low dimensionality leads to a mozaic of phases, insulating or metallic, ordered or
disordered, magnetic or paramagnetic. These complex behaviors pose many challenges to theory.

I will cover this topic in four chapters. In chapter 3, I give a basic description of these systems, an overview
of the main experimental findings and a summary of the theoretical questions that will be dealt with in
the following chapters. In chapter 4, I explain how to construct from first principles low-energy models for
the adatoms systems. In chapter 5, two methods of solution of these low-energy models – extended DMFT
(EDMFT) and its self-consistent combination with the GW method, GW+EDMFT – are presented as well as
their application to the extended Hubbard model. Finally, in chapter 6, I describe the application of these
methods to surface systems.
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3
Adatoms on semiconducting surfaces:

experiments and theoretical puzzles

Systems of adsorbed atoms (adatoms) on semiconducting surfaces (introduced in section 3.1) display a
rich phase diagram upon varying the adatom or substrate species, the temperature or the surface coverage.
Different experimental probes have pointed to metallic or insulating phases with various symmetries of the
electronic system under consideration (section 3.2). Theoretical accounts for these contrasted behaviors have
been put forth early on, but have left a number of open questions (section 3.3).

3.1 Surface systems: the basics of α -phases

Historically, systems of adsorbed metallic atoms on semiconducting surfaces have been studied because of
the critical role played by metal-semiconductor junctions in the semiconductor industry, for instance at the
junction between the (metallic) source or drain and the semiconductor in a transistor. This has spurred a
number of experiments consisting in first depositing various atomic species (which I shall generically call X in
the following) on top of a semiconducting sample (mainly Si or Ge) cleaved along a crystallographic axis (e.g.
(111) or (110) in Miller indices), and then characterizing the state of the surface in terms of conductivity,
symmetry, etc.

The cleaving of the sample leaves dangling bonds on the surface which form a two-dimensional Bravais lattice
(or net) with unit vectors a and b (see Fig.3.1). The adatoms in turn form a Bravais lattice on top of these
dangling bonds. This adatom Bravais lattice is conventionally denoted as Lx ×Ly −Rθ ° with unit vectors A and
B of respective length Lxa and Lyb and rotated with respect to (a,b) by an angle θ (this is Wood’s notation
(Wood (1964))). In practice, the angle is often dropped, which is what I shall do in the following. The full
notation is thus

X/X′(hkl )Lx × Ly

where X is the adatom species, X′ the semiconductor species, (hkl ) the cleaving plane in Miller indices, and
Lx and Ly the relative length with respect to the smaller unit cell. Examples for X/Si(111)

√
3 ×

√
3 and

Y/Si(111)3 × 3 are illustrated in Fig. 3.2. By definition, the dangling bonds form a 1 × 1 lattice. A letter
c in front of Lx × Ly means that there is an additional atom at the center of the adatom unit cell. More
terminological details can be found in Wood (1964).

In the following, I will focus on silicon (Si) and germanium (Ge) substrates cleft along the (111) direc-
tion. Both Si and Ge crystallize in the diamond structure, a face-centered cubic phase with two atoms per

27
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Figure 3.1: Sketch of the silicium orbitals and dangling bonds. Left: (111) surface of silicium. Right: Side
view (from Tosatti and Anderson (1974))
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a
a
√
3

3a
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3× 3

√
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√
3

Figure 3.2: Various reconstructions of the silicium surface. Small dots: Si atoms in a triangular lattice. Large
circles:

√
3 ×
√

3 adatoms of type X. Large squares: 3 × 3 adatoms of type Y.

face-centered unit cell; cleaving along the (111) plane leaves one dangling bond per surface Si/Ge atom
(as illustrated in Fig.3.1). A clean Si(111)1 × 1 surface is not stable, it reconstructs in a 7 × 7 pattern, a
reconstruction which has been observed in real space for the first time by Binnig et al (Binnig et al. (1983b))
as one proof of concept of scanning tunneling microscopy (STM, described in appendix H.1.3).

When depositing metallic atoms on top of the surface, a metallic surface state should appear in the absence
of reconstruction (X/Si(111)1 × 1 phase). However, in most cases, a reconstruction to larger unit cells is
more favorable energetically, leading to a more stable, passivated surface which does not lend itself to more
instabilities. Tetravalent atoms (of the group IV: C, Sn, Pb, ...) are a notable exception1. These so-called
“α -phases” reconstruct to the

√
3 ×
√

3 geometry (see Fig. 3.3); their band structure has a metallic band in
the band gap according to density functional theory (DFT) in the local density approximation (LDA), as will
be explained later in chapter 4, see Fig. 4.1. In the following, I shall restrict to these α -phases.

1In general, the state of the surface depends on the position of the adatom, the amount of coverage of the surface, and the valence
of the adatom.
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Figure 3.3: C/Si(111) system. Left: STM images with 7 × 7 and
√

3 ×
√

3 regions. Middle: zoom on the√
3 ×
√

3 region. Right: LEED pattern (from Pignedoli et al. (2004))
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Figure 3.4: Left: Brillouin zone of the
√

3 ×
√

3 phase. Middle and right: Color plot of the density patterns
ρ (r ) ∝ eiQ·r corresponding to Q = K (3 × 3, “honeycomb”) and Q = M (2

√
3 × 2

√
3, “Kagome”) symmetries,

respectively. The white dots denote adatoms. The dotted lines denote the unit cell.

I now turn to an overview of the relevant experimental literature.

3.2 Experiments on surfaces: a variety of puzzling phases

Surface systems have been probed using various experimental setups including scanning-tunnelling mi-
croscopy (STM), angle-resolved photoemission spectroscopy (ARPES), core-level spectroscopy, low-energy
electron diffraction (LEED) and electron energy loss spectroscopy (EELS). All of them are particularly suited
for α -phases as they are surface probes.

In appendix H.1, the reader will find a brief theoretical overview of these probes with a focus on what
observables they give access to.

A selection of experimental studies of the α -phases described in subsection 3.1 is summarized in Table 3.1.

Experiments on α -phases with a germanium substrate (Pb/Ge(111) and Sn/Ge(111)) all point to a transition
from a

√
3 ×
√

3 phase at high temperatures to a 3 × 3 phase at low temperatures, namely a commensurate
charge-density wave (CDW) order. Signatures of a 3 × 3 symmetry (illustrated in Fig. 3.4) include: a 3 × 3
density pattern (STM by Carpinelli et al. (1996, 1997)), Bragg peaks of the 3×3 symmetry (LEED by Carpinelli
et al. (1996); Uhrberg et al. (2000b)), two or three components in cPES spectra (Göthelid et al. (1995);
Uhrberg and Balasubramanian (1998); Avila et al. (1999); Uhrberg et al. (2000b)), surface-state bands and
band back-foldings at the Γ point (ARPES, Uhrberg and Balasubramanian (1998); Avila et al. (1999); Uhrberg
et al. (2000b)). There are also indications of a 3×3 symmetry at high temperatures based on PES, namely two
components in cPES spectra (Uhrberg and Balasubramanian (1998); Avila et al. (1999)), and indications for
surface-state bands in ARPES (Uhrberg and Balasubramanian (1998); Uhrberg et al. (2000b)). A significant
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System Reference Probe Main observations

Pb/Ge(111)
Carpinelli et al.

(1996)

LEED,
EELS,
STM

Transition between a metallic
√

3 ×
√

3 phase at high
temperature and a gapped phase with 3 × 3 geometry at

low temperature (T < 250K)

Sn/Ge(111)

Göthelid et al.
(1995)

cPES cPES: two components (room temperature).

Carpinelli et al.
(1997)

STM,
EELS

Transition between a metallic
√

3 ×
√

3 phase at high
temperature and a metallic phase with 3 × 3 geometry and

structural distortion at low temperature (T < 210K )
Uhrberg and
Balasubrama-

nian
(1998)

cPES,
ARPES

cPES: two components. ARPES: two surface bands at low
temperature (arguably also at high temperature); band

back-folding

Avila et al.
(1999)

cPES,
ARPES

cPES: two components. ARPES: Split surface band at low
temperature (T = 100K)

Uhrberg et al.
(2000b)

LEED,
cPES,

ARPES

cPES: three components (T = 70K). ARPES: Surface-state
peaks.

Pb/Si(111)

Horikoshi et al.
(1999)

RHEED Streaks of 3 × 3 symmetry appear in
√

3 ×
√

3 structures
upon cooling (and other symmetries)

Slezak et al.
(1999)

STM
Transition between 1 × 1 and c (5 ×

√
3) geometry upon

cooling, and the appearance of 3 × 3 islands within√
3 ×
√

3 portions of the surface
Custance et al.

(2001)
STM Coexistence of 1 × 1 and

√
3 ×
√

3 at high temperatures,
and of 3 × 3 and c (5 ×

√
3) at low temperatures

Sn/Si(111)

Göthelid et al.
(1995)

cPES cPES: two components (room temperature)

Uhrberg et al.
(2000a)

STM,
LEED
cPES,

ARPES

LEED:
√

3 ×
√

3 symmetry down to low temperature
(T = 70K). cPES: two major components. ARPES: two

surface bands.

Morikawa et al.
(2002)

RHEED,
STM

STM:
√

3 ×
√

3 phase down to T = 6K . RHEED: streaks of
3 × 3 symmetry at T = 120K .

Lobo et al.
(2003)

ARPES Band foldings at low temperature (3 × 3 symmetry)

Modesti et al.
(2007)

STM,
cPES,

ARPES

STM:
√

3 ×
√

3 down to T = 5K , and gapped phase at low
temperature. cPES: two components. ARPES: Band

back-folding.
Li et al. (2013) ARPES Band back-folding

C/Si(111)
Pignedoli et al.

(2004)
STM

√
3 ×
√

3 structure (see Fig. 3.3)

Table 3.1: Summary of experiments on α -phases
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difference between Pb/Ge(111) and Sn/Ge(111) at low temperature is that Pb/Ge(111) is gapped (EELS,
Carpinelli et al. (1996)), while Sn/Ge(111) is not (EELS, Carpinelli et al. (1997)).

The situation for α -phases with a silicon substrate is more diverse. While C/Si(111) remains in the
√

3 ×
√

3
symmetry all the way down to low temperatures (Pignedoli et al. (2004)), Pb/Si(111) shows clear tendencies
to 3 × 3 ordering at low temperatures (as seen by RHEED (Horikoshi et al. (1999)) and STM (Slezak et al.
(1999); Custance et al. (2001))). Sn/Si(111) is the most controversial compound, since STM experiments
all point to a

√
3 ×
√

3 symmetry (i.e. no CDW) down to very low temperatures (T = 5K , Morikawa et al.
(2002); Modesti et al. (2007)), LEED patterns do not reveal traces of 3×3 symmetry either (down toT = 70K ,
Uhrberg et al. (2000a)), whereas PES experiments show signs of 3 × 3 symmetry at low temperatures (in the
form of band back-foldings for ARPES (Uhrberg et al. (2000a); Lobo et al. (2003); Modesti et al. (2007); Li
et al. (2013)), and two components for cPES (Göthelid et al. (1995); Uhrberg et al. (2000a); Modesti et al.
(2007), see Fig.6.5) and even high temperatures in some cases.

3.3 Early theoretical attempts and open puzzles

I start this section by listing the most salient physical facts from a theoretical point of view (3.3.1). Then, I
give a short overview of the recent theoretical endeavors on surfaces, before concluding with a list of the yet
unanswered questions (3.3.2).

3.3.1 α -phases: important physical facts

As we have seen in the previous section, experiments on α -phases show evidence for metal/insulator transi-
tions as well as various orderings, most notably from the “homogeneous”

√
3×
√

3 phase to the ordered 3×3
phase. To theoretically account for these observations, one must bear in mind the following basic facts about
α -phases:

1. Narrow bandwidth and sizable local interaction: in α -phases (i.e. in a
√

3 ×
√

3 reconstruction),
adatoms are very far apart (7Å for germanium substrates), leading to weak hopping matrix elements:

ti j ≡

˚
V
drw∗Ri

(r)
(
−
~2

2m
∇

2 +Veff (r)
)
wRi (r ) (3.1)

and thus very narrow bandwidths, i.e. small kinetic energies. Here, wRi (r) denotes a wavefunction
localized at surface site Ri (a Wannier function, see appendix J.1.1 for an intuitive explanation), and
Veff (r) is an effective one-body potential, comprising the ionic potential and possibly the Kohn-Sham
potential (this is discussed at greater length in appendix 4). Nonetheless, if one were to take an atomic
wave function to approximate the Wannier function, one would get a much smaller bandwidth than
that computed from density functional theory (DFT), which is of order 0.5 eV. Indeed, the Wannier
functions at adatom sites extend quite deeply into the bulk (see Fig. 4.2 for an illustration) so that part
of the hopping is mediated by the bulk. Comparatively, the HubbardU computed from constrained RPA
(of the order of 1 eV, see section J.3) is quite large with respect with the bandwidth. This hints at the
importance of electron-electron interactions in α -phases.

2. Long-ranged interactions: the insulating character of the substrate leads to a dielectric screening of
the long-range tail of Coulomb interaction:

vCoul (r) ∝
1
ϵ |r|
→ vscreened (r) ∝

1
ϵsurf |r|

where ϵsurf is related to the bulk dielectric constant ϵ through ϵsurf =
ϵ+1

2 (screening by an infinite half-
place, I refer the reader to chapter 4 for more details about screening). Thus, contrary to a number
of systems where metallic screening leads to a very local (Yukawa-type v (r) ∝ 1

|r |e
−|r |/ξTF) interactions,

here the long-range tail of the Coulomb interaction should be taken into account.
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3. Low-dimensions: the two-dimensional character of surfaces is conducive to Fermi surface instabilities
whenever the Fermi surface displays nested portions. These instabilities can conspire with electron-
phonon interactions to create charge density waves (Peierls instability), or lead to spin density waves
in the presence of (even very weak) local interactions. These arguments are reviewed in appendix I.6.

3.3.2 Beyond the weak-correlation picture and towards realistic calculations

After the first experiments on Pb/Ge, Carpinelli et al. (1996) proposed that the observed transition to a low-
temperature charge-ordered phase could be accounted for by a weak-coupling charge-density wave (CDW)
scenario (this scenario is described in more details in appendix I.6). There is however no compelling evidence
that it can explain the variety of behaviors observed in α -phases. Carpinelli et al. (1996) already point to
electron-electron correlations as necessary ingredients to explain the discrepancies between the experimental
results and the predictions of the weak coupling CDW scenario.

A selection of recent theoretical works on α -phases is summarized in Table 3.2. While first-principles DFT
calculations investigating the weak-interaction regime have confirmed the existence of a surface band (in
Sn/Si, Profeta et al. (2000)) and possibility for 3 × 3 spin-ordering (in C/Si, Profeta and Tosatti (2007)), the
influence of local Hubbard interactions has been investigated early on using Hartree-Fock theory (Santoro
et al. (1998), see paragraph I.6.2.2 in the appendix) and more recently with LDA+U (Profeta and Tosatti
(2007), see subsection J.1.2.2 in the appendix) and many-body techniques beyond Hartree-Fock (Hellberg
and Erwin (1999); Schuwalow et al. (2010); Li et al. (2011, 2013)). In Sn/Si, at large U values, the most
stable state is claimed to be either 3×3 (Profeta and Tosatti (2007); Schuwalow et al. (2010); Li et al. (2013))
or 2

√
3 × 2

√
3 (Li et al. (2011)). Distorted (charge-ordered) 3 × 3 phases are obtained only within LDA+U

for weaker U values.

Santoro et al. (1998) have been the first to stress the relevance of nonlocal interactions (parametrized by V ).
On the basis of Hartree-Fock calculations (see paragraph I.6.2.2), they find that while no CDW phase can
be stabilized in the absence of U and V (except as a secondary instability of a spin-density wave (SDW) in
the presence of electron-phonon interactions), at moderate U and V values a variety of orders can be found.
In particular, for moderate U values (and small V values), SDWs can be stabilized. For moderate U and V

values, a CDW is found to be the most stable phase. Finally, in the large U limit, Mott physics (with spin
ordering on top) dominate.

3.3.3 Theoretical wish-list

The theoretical approaches summarized in the previous subsection call for further effort in two main direc-
tions:

• Ab initio determination of effective parameters: while the kinetic parameters have been quite accu-
rately determined using DFT-type methods, a proper derivation of the effective interaction parameters
(be it their strength or their range) from first principles, i.e. without fitting parameters, is essential in
view of the variety of phenomena observed in various α -phases.

• Appropriate treatment (strong) long-range interactions: so far, nonlocal interactions have been
treated only at the Hartree-Fock level, whereas local interactions U have been treated at the DMFT
level. A many-body treatment of nonlocal interactions is also possible, and potentially important.

In the next three chapers, I will present our work in both directions.
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Table 3.2: Theory summary

Reference System Low-energy
model

Method U /V Main findings

Santoro et al.
(1998)

α -phases single-band
extended

Hubbard model
+

electron-phonon

Hartree Fock +
strong-coupling

limit

whole
phase

diagram

V -driven CDW,
U -driven SDW,
Mott+magnetic
phase at large U

Hellberg and
Erwin (1999)

K/Si(111)-
B

Hubbard model Mean-field +
Finite-size

diagonalization

U = 1.2 eV
Uc ≈ 0.95

eV

Mott insulator

Profeta et al.
(2000)

Sn/Si “Kohn-Sham” DFT (LDA) - Surface (metallic)
band. Agreement of

calculated STM
profile with
experiment

Profeta and
Tosatti
(2005)

C/Si “Kohn-Sham” DFT (LSDA) with
various

symmetries

- Most stable: 3 × 3
phase with 3

inequivalent sites
(doubly, singly

occupied, and empty
site with AF order)

Profeta and
Tosatti
(2007)

Sn/Si and
Sn/Ge

“Kohn-Sham” DFT (LDA+U ) U ≈ 4 eV
(Uc ≈

2 eV)

Magnetic (3 × 3 AF ),
undistorted

insulators. Note:
Sn/Ge: 3 × 3

distortion for smaller
U values

Schuwalow
et al. (2010)

Sn/Si and
Sn/Ge

single and
multi-band

Hubbard model

DFT +
[(C)DMFT /
slave boson]

U DMFT
c (Sn/Si) ≈

0.6 eV
Weak-coupling: spin
ordering. Realistic
coupling: Mott AF

state

Li et al.
(2011)

Sn/Si single-band
Hubbard model

DFT + [DMFT /
dual-fermion /

VCA]

U DF
c ≈

0.65 eV
Increasing U : from
3 × 3 to 2

√
3 × 2

√
3

(stripe) AF order

Li et al.
(2013)

Sn/Si single-band
Hubbard model

DFT + CDMFT U ≈
0.66 eV

3 × 3 AF spiral order,
band backfoldings



4
Ab initio effective kinetic and interaction

parameters for α -phases

In the previous chapter, I have underlined the need for a parameter-free determination of the properties of
various surface systems. A first step towards this goal is the computation of effective kinetic and interaction
parameters for the low-energy model.

In this chapter, I will show how the effective kinetic and interaction parameters have been determined from
first principles for a family of surface systems, namely the X/Si(111) family, with X = Pb, Sn, Si, C.

I will use these results, obtained by Philipp Hansmann, in the next two chapters which are dedicated to the
solution of the low-energy models derived here.

4.1 How to describe materials in a realistic way?

The physics of electrons in a solid at equilibrium is determined, if the ionic cores are assumed to be fixed, by
the following Hamiltonian:

HES ≡

˚
V
drψ † (r)

(
−
~2∇2

2m
+Vext (r)

)
ψ (r) +

1
2

˚
V
dr
˚

V
dr′ψ † (r)ψ † (r′)vCoul (r − r′)ψ (r′)ψ (r) (4.1)

Vext (r) contains the ionic potential (specific to each material) and (optionally) external driving fields, m is
the electron mass, V denotes the solid’s volume, vCoul (r − r′) = e2

|r−r′ | is the (bare) Coulomb interaction, and
ψ † (r) and ψ (r) are fermionic field operators. r denotes the continuous real-space coordinate. As explained
in appendix J.1, if it were not for the second term, one could write HES as a sum of one-body Hamiltonians
describing independent electrons, and thus compute the many-body state of any solid (neglecting phonons)
from the mere knowledge of Vext.

When electron-electron interactions do not vanish, however, HES can no longer be directly diagonalized. The
quartic term (term with four fermionic fields) makes it non-separable.

Traditionally, there have been two strategies to deal with this problem:

• Keep all degrees of freedom and construct a “representative” one-body Hamiltonian heff that can
reproduce some properties of the many-body Hamiltonian HES. This is the essence of density functional
theory (DFT), whose basic principles are reminded in appendix J.1.

• “Integrate out” the high-energy degrees of freedom to get a low-energy many-body Hamiltonian
(such as the Hubbard model, which has been introduced in chapter 2) which, despite its many-body

34
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Figure 4.1: Left: Slab geometry. Middle: Low-energy band structure ε (k) for four adatom systems. Right:
shape of the Fermi surface (top) and tight-binding hopping parameters (bottom) (from Hansmann et al.
(2013b))

character, can still be solved in an approximate way by adequate techniques thanks to its reduced
number of degrees of freedom. In practice, in this second approach, the low-lying Hamiltonian is often
a clever educated guess whose parameters (e.g. the strength and range of interaction parameters) are
usually chosen with a certain degree of arbitrariness for lack of a controlled procedure to perform the
actual renormalization procedure, so that material specificities are lost in the process.

This apparent contradiction – density-functional theory vs. low-energy many-body theory – is currently being
challenged by the development of methods such as the constrained random-phase approximation (cRPA)
which aim at contructing low-energy models from the first principles, i.e. at deriving the low-energy many-
body Hamiltonian starting from the mere crystal structure of the solid, as encoded in HES. The low-energy
model – whose parameters are now material-specific – can then be dealt with using appropriate many-body
techniques. In the next section, I describe how to determine the kinetic parameters of this low-energy model.

4.2 Ab initio kinetic parameters from density-functional theory

Density functional theory is a powerful first-principles technique which is routinely used to compute the
ground-state energy of a wide class of materials (more details can be found in appendix J.1). Although it is
strictly speaking not designed to give spectral information, it can nevertheless be used as a starting point for
a low-energy many-body computation.

In this section, I present density-functional theory results for α -phases obtained by Philipp Hansmann and
published in Hansmann et al. (2013b,a). They are summarized in Fig. 4.1. The substrate-adatom system
has been represented by a silicon slab with three bilayers covered with adatoms at 1/3 monolayer coverage
in the

√
3 ×
√

3 geometry. All adatoms occupy the T4 sites, except carbon (C) adatoms which occupy the
subsurface site S5, as shown in the left panel of Fig. 4.1. The band structure obtained using the Vasp (for the
structural relaxation) and Wien2k (for the band structure itself) electronic structure packages is shown in the
middle panel. The Kohn-Sham bands εKS

n (k) consist in high-energy bands with mostly planar character (the
blue intensity is proportional to 〈ψkn |wk,planar〉, where wk,planar is a Wannier function with planar geometry),
and a well-separated, single, low-energy, metallic band with predominantly apical character (red intensity;
the corresponding Wannier function is shown in Fig. 4.2).

The dispersion of this band is well fitted by a tight-binding dispersion on a triangular lattice given by:
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Figure 4.2: Adatom Wannier function. The turquoise and grey spheres are substrate and ad atoms, respec-
tively. The blue and red volumes represent the negative and positive lobes of the Wannier function (from
Schuwalow et al. (2010)).

(meV) Pb Sn Si C
tnn 42 42 50 38
tnnn -20 -20 -23 -15
tnnnn 10 10 5 0.5

Table 4.1: Tight-binding parameters for the 4 adatom systems

ε (k) = 2tnn
(
cos (kx ) + 2 cos (kx/2) cos

(
ky
√

3/2
))

+ 2tnnn
(
cos

(
kx
√

3
)
+ 2 cos (3kx/2) cos

(
ky
√

3/2
))

+ 2tnnnn
(
cos (2kx ) + 2 cos (kx ) cos

(
ky
√

3
))

(4.2)

with tnn and tnnn defined in Fig. 4.1. This determines the kinetic parameters of the low-energy model, which
are summarized in Table 4.1 for the four compounds under study.

As we will see from quantitative estimates of the interactions in the next section, the low-lying band is
very narrow compared to the interaction value, so that correlation effects are expected to be strong and a
dedicated many-body treatment must be applied.

4.3 Constrained RPA (cRPA): Application to surfaces

4.3.1 cRPA in a nutshell

The constrained random-phase approximation (Aryasetiawan et al. (2004)), described in detail in appendix
J.3, consists in computing Hubbard’s U (or extended/multiorbital generalization thereof) by partially screen-
ing the long-ranged Coulomb interaction vCoul (r − r′). The partially screened interaction is defined as:

Wrest (r,r′,ω) ≡
˚

r̄
vCoul (r, r̄,ω)

{
1 −
ˆ

r′′
vCoul (r,r

′′)Prest (r′′,r′,ω)
}−1

r̄,r′
(4.3)

where Prest contains screening originating from high-energy pair-hole creation processes, illustrated in red in
the left panel of Figure 4.3: Prest is the random-phase approximation’s “bubble” where particle-hole processes
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w w w w

Figure 4.3: the cRPA method. From Hansmann et al. (2013b)

within a low-energy “target” space have been removed. Hubbard’s U is computed by taking matrix elements
ofWrest in a Wannier (localized) basis {wRa } (a is an orbital index and R a Wannier site index):

U
R1R2R3R4
abcd

(ω) = 〈wR1awR2b |Wrest (r,r
′,ω) |wR3cwR4d 〉

The resulting interaction U R1R2R3R4
abcd

(ω) is:

1. frequency dependent, i.e. it includes retardation effects coming from high-energy modes. This indi-
cates that generically, Hubbard’s U is dynamical. While it is the case in some materials (see for instance
the material studied in chapter 12), in the case of surface systems, this frequency dependence is weak
compared to the energy scales given by the kinetic and interaction parameters;

2. in general, shorter-ranged than vCoul (this can be understood intuitively within a simpler screening
model, see the discussion on the Thomas-Fermi approximation in subsection J.3.1 of the appendix). For
some systems, this an a posteriori justification for restraining the range of interactions in the correlated
subspace to local interactions (as done in the Hubbard model). In α -phases, however, while the value
of the local interaction is indeed reduced with respect to the bare Coulomb value, longer-range matrix
elements are not negligible.

4.3.2 cRPA in α -phases: the importance of long-range interactions

In α phases, the low-energy subspace contains only one band: the interaction matrix is of the formU R1R2R3R4 .
Only the density-density terms are non-negligible, so that I adopt the simplified notation:

vscreened (R,τ ) ≡ UR,0,0,R (τ ) (4.4)

Figure 4.4 presents the interaction parameters obtained for 4 adatom systems from cRPA (Hansmann et al.
(2013b,a)).

Going from lead to carbon, the local screened interactions (Hubbard’sU , red squares) increase from 0.9 eV to
1.4 eV, while the nearest-neighbor screened interactions (denoted by V , blue squares) are virtually constant,
V = 0.5 eV. Before interpreting this trend, let us note that (a) Hubbard’s U is very large compared to the
bandwidth (see Fig. 4.1) and (b) the nearest-neighbor interaction V is sizable compared to U : an extended
Hubbard modelling is required.

Interestingly, the image-charge estimate v · ϵSi+1
2 for the screened interaction yields the same results as cRPA

for nearest-neighbor interactions (pale blue squares), whereas it fails to reproduce the cRPA value for the
local interactions. This can be ascribed to the large intersite distance between adatom sites: since there is
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0.0
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6.0
e
V

Pb

cRPA

ǫsurf

local
n.n

Sn Si C

Sr

Figure 4.4: Left: Interaction parameters from cRPA. The red (blue) disks represent the bare onsite (nearest-
neighbor) interaction (local matrix elements of vCoul), while the red (blue) squares represent the screened
onsite (nearest-neighbor) interaction computed from cRPA. The pale squares represent the screened interac-
tion computed from a surface image charge estimate vscreened = vbare/ϵsurf, with ϵsurf = (ϵSi + 1) /2, ϵSi being
the relative dielectric permittivity of silicon ( ϵSi = 11.68). Right: sketch of the Gauss surface (see Eq.4.5).
The blue cone stands for the Wannier function (Fig. 4.2).

(eV) Pb Sn Si C
U 0.9 1.0 1.1 1.4
V 0.5 0.5 0.5 0.5

Table 4.2: Interaction parameters for the 4 adatom systems

almost no overlap between the Wannier functions of neighboring sites, one can apply Gauss’s theorem to
obtain the electrostatic potential at a distant site:

‹
Sr

E · dS =

˚
Vr

ρ (r)
ϵsurf

dr = −
e

ϵsurf
(4.5)

where Sr (r > rWannier) is a surface containing the whole charge of the Wannier function (see Fig.4.4, right
panel), so that E (r) = −e/

(
4πϵsurf |r|2

)
and hence

vscreened (r) =
e2

4πϵsurf |r|
=
v (r)
ϵsurf
, (r > rWannier) (4.6)

Since for r > rWannier, E (r) is an integrated quantity, it does not depend on the specific shape of the Wannier
functions. Conversely, the local Hubbard U depends on the details of the Wannier functions (see e.g. Eq.
J.34).

An important consequence of this remark is that one can use Eq. (4.6) to see that the (partially) screened
interaction is long-ranged, so that one can parametrize the full interaction as:

vscreened (R) = UXδR +VX
a

|R|
(1 − δR) (4.7)

with X = Pb, Sn, Si, C. In this study, we neglect the frequency-dependence of vscreened after checking that it is
relatively weak. The specific values for each adatom (illustrated in Fig. 4.4) are tabulated in Table 4.2.

4.4 Conclusion: an extended Hubbard model with long-range interactions

In the end, one is thus facing the following low-energy Hamiltonian, obtained from the first principles:
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HEHM =
∑
i j

ti jc
†

i c j +
1
2

∑
i j

vi jninj (4.8)

where latin indices denotes Bravais lattice (or Wannier) sites i ≡ Ri , c
†

i and ci create and annihilate electrons
with wavefunction wRi (r) (I drop the band index since I am dealing with the surface band of Fig. 4.1 only).
ti j is the tight-binding hopping matrix (whose Fourier transform is the bare dispersion ε (k) given in Eq.
4.2), and vi j is the partially screened interaction, which I have so far denoted as vscreened (Ri − Rj ). In the
following chapters, I shall drop the “screened” subscript because I shall henceforth work only the low-energy
correlated subspace, where vscreened plays the role of a bare interaction. The transcription of Eq. (4.7) in this
new notation is

vi j = Uδi j +V
a

|Ri − Rj |

(
1 − δi j

)
(4.9)

This Hamiltonian is called the extended Hubbard model. In the next chapter, I shall present two methods to
solve this Hamiltonian. These methods will then be applied to surface systems (chapter 6).



5
Nonlocal interactions: Extended Dynamical Mean

Field Theory and combined GW and Extended
Dynamical Mean Field Theory

In the previous chapter, we have seen that systems of adatoms on semiconducting surfaces cannot be de-
scribed only by local interactions. There, the repulsion between electrons located on distant sites cannot
be neglected, which is the source of interesting physical phenomena such as charge ordering. To solve the
corresponding low-energy model, the extended Hubbard model, new methods beyond dynamical mean field
theory must be used.

In this chapter, I briefly present two extensions of DMFT aimed at treating these nonlocal interactions, “ex-
tended DMFT” (EDMFT) (section 5.1) and the combination of GW with EDMFT, GW+EDMFT (section 5.2).
These methods are applied to the extended Hubbard model on the square lattice in section 5.3.

The corresponding results are published in Ayral et al. (2012, 2013); Huang et al. (2014) (included in chapter
O).

The application to α -phases will be the topic of the next chapter (chapter 6).

5.1 Extended Dynamical Mean Field Theory (EDMFT)

Extended DMFT (Sengupta and Georges (1995); Kajueter (1996); Si and Smith (1996)) applies to models
with “extended” interactions such as the extended Hubbard model,

HEHM =
∑
i j,σ

ti jc
†

iσc jσ +
1
2

∑
i j

vi jninj (5.1)

where ti j is the tight-binding hopping matrix (e.g. ti j = −tδ〈i j〉 for nearest-neighbor hopping only) and vi j is
the interaction matrix, containing possibly local and nonlocal interactions. In the case of local interactions
only, vi j = Uδi j , and one recovers the Hubbard model introduced in chapter 2 (Eq. (2.6)). If, furthermore,
there is a repulsion between electrons on neighboring sites, vi j = Uδi j +Vδ〈i j〉. On a square lattice, the Fourier
transform reads vq = U + 2V

(
cos(qx ) + cos(qy )

)
. In particular, this interaction is minimum at q = (π ,π ). True

long-ranged interactions can also be considered – this will be done in chapter 6.

To solve this problem, one encounters the same difficulties as for the Hubbard model, with the extra com-
plexity brought by the nonlocal interactions. A first straightforward step is to treat the nonlocal interactions
separately from the local ones, for instance at the Hartree level, and perform plain-vanilla DMFT calculations
on top. This is what is done for instance in Pietig et al. (1999).

40
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5.1.1 Introducing bosonic variables: the Hubbard-Stratonovich transformation

Another more sophisticated possibility is to consider the four-fermion interaction term 1
2vi jninj not as purely

fermionic, but as the exchange of an auxiliary boson between two pairs of fermions. Then, appropriate
approximations can be applied to this bosonic mode, with the hope that approximations made on the bosonic
mode will nonetheless lead to nontrivial effects on the remaining fermionic modes.

Mathematical substance is given to this intuition by the Hubbard-Stratonovich transformation (Hubbard
(1959)):

e
´ β

0 dτ
∑
i j

1
2vi jniτ njτ =

ˆ
D

[
ϕ
]
e−
´ β

0 dτ 1
2
∑
i j ϕiτ [−v−1]ϕjτ ±

´ β
0

∑
i ϕiτ niτ (5.2)

where ϕiτ is a real bosonic periodic field. Thus, one has traded a nonlocal interaction term (in the left-hand
side) for a propagating boson with bare propagator v coupled to the fermionic density by a local electron-
boson coupling term

´ β
0

∑
i ϕiτniτ (in the right-hand side).

In essence, extended DMFT (EDMFT, Sengupta and Georges (1995); Si and Smith (1996); Kajueter (1996))
consists in transposing the DMFT equations (section 2.2.4) to the bosonic operator, with the transpositions
G → W = −〈ϕϕ〉, G → U , and Σ → P . The bosonic “self-energy”, P , is called the polarization; it is related
to the charge susceptibility, χ (q,iω) (defined as the Fourier transform of χi j (τ ) ≡ 〈n(τ )n(0)〉conn), by the exact
equation (see appendix C)

P (q,iΩ) =
−χ (q,iΩ)

1 −v (q)χ (q,iΩ)

The same cavity construction that led to the impurity action Eq. (2.14) yields the following impurity model
(see e.g. Ayral et al. (2013)):

Simp =

¨ β

0
dτdτ ′c̄ (τ )

{
−G−1 (τ − τ ′)

}
c (τ ′) +

1
2

¨ β

0
dτdτ ′U (τ − τ ′)nτnτ ′ (5.3)

This describes an impurity with dynamical interactions U (τ − τ ′) which, like the fermionic Weiss field G,
are computed self-consistently. Note that the bosonic field ϕ has been integrated out. EDMFT thus consists
in transposing a problem with nonlocal spatial interactions to an effective problem with nonlocal temporal
interactions.

The impurity model with retarded interactions can be solved efficiently using continuous-time quantum
Monte-Carlo (CTQMC) algorithms as described in chapter 11.

5.1.2 Summary: set of EDMFT equations

The self-consistent EDMFT algorithm, illustrated in Fig. 5.1, consists in the following steps:

1. Start with an initial self-energy Σimp (iω) and polarization Pimp (iΩ) (iΩ denotes a bosonic Matsubara
frequency)

2. Compute the local fermionic and bosonic Green’s functions G andW using Dyson’s equations:

Gloc (iω) =
∑
k∈BZ

1
iω + µ − ε (k) − Σimp (iω)

(5.4)

Wloc (iΩ) =
∑

q∈BZ

v (q)
1 −v (q)Pimp (iΩ)

(5.5)

3. Compute the fermionic and bosonic “Weiss fields” G (iω) and U (iΩ):

G (iω) =
[
G−1

loc (iω) + Σimp (iω)
]−1

(5.6)

U (iΩ) =
[
W −1

loc (iΩ) + Pimp (iΩ)
]−1

(5.7)
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Simp[G(iω),Uch(iΩ)]
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Figure 5.1: The EDMFT loop. It contains, compared to the DMFT loop, presented in Fig. 2.1, an additional
self-consistency cycle on bosonic quantitiesW ch, U ch, Pch

imp.

4. Solve the impurity model, Eq. (5.3), for Σimp (iω) and Pimp (iΩ)

5. Go back to step 2 until convergence.

Pimp (iΩ), an observable written only in terms of the bosonic field ϕ, cannot be directly computed from the
impurity solver, since the impurity action Eq. (5.3) is written only in terms of fermionic operators. It is
computed from the connected charge-charge correlation function of the impurity χimp (τ ) = 〈n(τ )n(0)〉conn

imp
through the relation:

Pimp (iΩ) =
−χimp (iΩ)

1 −U (iΩ)χimp (iΩ)
(5.8)

If the interactions are local (vq = U ), the above equations reduce to the DMFT equations presented in section
2.2.4.

A variant to the above equations has been proposed in Sun and Kotliar (2002). Instead of defining v (q) as the
Fourier transform of the total bare interaction term, one can define ṽ (q) as the Fourier transform of nonlocal

interactions only, and define a screened interaction W̃loc (iΩ) as W̃loc (iΩ) =
∑

q ṽq

(

1 − ṽqP̃imp (iΩ)
)−1

. In this
case, W̃ contains the screening effects coming from the nonlocal part of interactions only. The retarded

interactions are then computed as Ũ (iΩ) ≡ U +
[
W̃ −1

loc (iΩ) + P̃imp (iΩ)
]−1

. In the following, I shall call this
variant “HS-V” (because it formally corresponds to a Hubbard-Stratonovich decoupling of the V -term only),
whereas in case of doubt, I shall call “HS-UV” the algorithm presented above.

5.2 Combined GW and Extended DMFT: GW+EDMFT

In DMFT and EDMFT, the self-energy – whether fermionic (Σ) or bosonic (P) – is local. The GW+EDMFT
method (Sun and Kotliar (2002, 2004); Biermann et al. (2003)) can be seen – in the context of the model
calculations presented in this part – as a way of restoring the spatial dependence of the self-energy by adding
to the impurity self-energy the first non-trivial nonlocal diagrammatic correction.



Chapter 5. Nonlocal interactions: Extended Dynamical Mean Field Theory and combined GW and Extended
Dynamical Mean Field Theory 43

The combination of GW with DMFT in the context of realistic calculations, as introduced in Biermann et al.
(2003), is more ambitious as it takes into account all electronic degrees of freedom; its explanation is deferred
to section 12.2.

5.2.1 Motivation: the GW approximation

After applying the Hubbard-Stratonovich transformation to the interaction term of the extended Hubbard
model (see subsection 5.1.1), one is facing an electron-boson coupling problem, with a fermionic propagator
called G and a bosonic propagator called W . W encodes the charge fluctuations of the system. If the system
is close to a charge instability, this should be reflected inW .

The simplest self-energy diagrams corresponding to this action are the following:

ΣGW
iτ ,jτ ′ = −Giτ ,jτ ′Wiτ ,jτ ′ (5.9a)

PGW
iτ ,jτ ′ = 2Giτ ,jτ ′G jτ ′,iτ (5.9b)

The form of Σ – which explains the name “GW approximation” (introduced by Hedin (1965)) – reflects the
coupling of the bosonic fluctuations to the fermionic modes. IfW has a sharp momentum structure, so should
Σ. P is given by the particle-hole excitation processes in the system. To zeroth order in the interaction, it
reduces to the charge response of free electrons, called the Lindhard function, χ0 = −2G0G0. The physical
content of the Lindhard function is explained in more detail in appendix I.6.1.1. For instance, if large portions
of the Fermi surface are parallel to each other (with a vector Q between them) or “nested”, χ0 (q,iΩ) will be
peaked at q = Q. Thus, through Eqs (5.9a-5.9b), fermionic instabilities feed back on bosonic modes, and vice
versa.

However appealing, this approximation to the self-energies turns out to be rather poor in the context of
strongly correlated materials. In this regime, “vertex corrections” become important, i.e. instead of the bare
electron-boson coupling λ = 1 implied by Eqs (5.9a-5.9b), the renormalized electron-boson coupling should
be inserted. As will be proven in section 5.3, this coupling largely departs from the bare coupling as the
strength of correlations is increased. In part III, this basic fact is taken as the starting point for a new method.

For the time being, a simple way of improving on this approximation is to combine it with EDMFT, namely
by adding the impurity self-energies to the GW self-energies (substracting the local part of the latter to avoid
double counting some terms).

5.2.2 Summary: set of GW+EDMFT equations

The self-consistent GW+EDMFT algorithm (applied in the context of the extended Hubbard model, Eq.
(5.1)), is illustrated in Fig. 5.2. It consists in the following steps:

1. Start with an initial self-energy Σ(k,iω) and polarization P (q,iΩ)

2. Compute the lattice fermionic and bosonic Green’s functions G andW using Dyson’s equations,

G (k,iω) =
1

iω + µ − ε (k) − Σ(k,iω)

W (q,iΩ) =
v (q)

1 −v (q)P (q,iΩ)

3. Compute the fermionic and bosonic “Weiss fields” G (iω) and U (iΩ)

G (iω) =
[
Gloc (iω)

−1 + Σloc (iω)
]−1

U (iΩ) =
[
Wloc (iΩ)−1 + Ploc (iΩ)

]−1
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Simp[G(iω),Uch(iΩ)]

Σ(k, iω) = Σimp(iω)

P ch(q, iΩ) = P ch
imp(iΩ)

Dyson
equation

G−1 = G−1
loc +Σloc

[Uch]−1 = [W ch
loc]

−1

+P ch
loc

Slatt[G0(k, iω), vq]

consistency
condition

self-

lattice
model

self-energy
approximation

impurity
model

+
[ ]

nonloc impurity
self-energies

G(k, iω)[Σ]

W ch(q, iΩ)[P ch]

Σimp, P
ch
imp

G

W ch+
[

]

nonloc

Figure 5.2: The GW+EDMFT loop.

4. Solve the impurity model, Eq. (5.3), for Σimp (iω) and Pimp (iΩ)

5. Compute the momentum dependent self-energies Σ(k,iω) and P (q,iΩ) as the following combination:

Σ(k,iω) = Σimp (iω) +

−
∑

q,iΩ

G (k + q,iω + iΩ)W (q,iΩ)

nonloc

(5.10)

P (q,iΩ) = Pimp (iΩ) +

2
∑

k,iω

G (k + q,iω + iΩ)G (k,iω)

nonloc

The suffix “nonloc” denotes, for any quantity X (k,iω), Xnonloc (k,iω) = X (k,iω) − Xloc (iω).

6. Go back to step 2 until convergence

The charge susceptibility is an interesting physical by-product of this calculation. It can be computed as (see
appendix C):

χ (q,iΩ) =
−P (q,iΩ)

1 −v (q)P (q,iΩ)
(5.11)

Contrary to EDMFT, GW+EDMFT does not boil down to DMFT in the case of local interactions v (q) = U .

In the “HS-V” scheme proposed by Sun and Kotliar (2002), since W̃ (q,iΩ) does not contain the local part of
the interaction, expression (5.10) is supplemented by the second order self-energy contribution with local
interactions only (−

[
U 2GGG

]
nonloc

).

5.3 Application to the extended Hubbard model on square lattice

In this section, EDMFT and GW+EDMFT are applied to the extended Hubbard model with short-range in-
teractions on the square and cubic lattice. The corresponding papers (Ayral et al. (2012), Ayral et al. (2013)
and Huang et al. (2014)) are included in chapter O at the end of this thesis.
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Figure 5.3: (U ,V ) phase diagram on the square lattice with nearest-neighbor hopping only (in units of the
half-bandwidth), βD = 100. Left: EDMFT phase diagram (HS-UV (red) and HS-V (green)). Inset: zoom on
the Mott transition region. Right: GW+EDMFT/HS-V phase diagram (solid blue line). GW+EDMFT/HS-UV
is on top of EDMFT/HS-UV within error bars.

Unless otherwise stated, all resuts are given for the square lattice at half-filling, without frustration, in units
of the half-bandwidth, D = |4t |. The temperature is kept fixed to βD = 100. U parametrizes the local Hubbard
repulsion, while V parametrizes the nearest-neighbor repulsion.

5.3.1 Phase diagram: charge ordering and effective local interactions

I start this section by giving the final phase diagram in the EDMFT as well as in the GW+EDMFT approxi-
mations. I will then explain how this diagram has been mapped out and what is the physical content of each
phase.

The (U ,V ) phase diagram is given in Fig. 5.3. Whether in EDMFT or in GW+EDMFT, one can observe three
phases:

• At weak values of the local and nearest-neighbor repulsion, one observes a Fermi-liquid (FL) phase
characterized by a Fermi-liquid behavior for the self-energy (see top part, panel (b) of Fig. 5.5; the
corresponding spectra will be described in the next subsection);

• At weak values of the nearest-neighbor repulsion V but large local interaction U , one observes a Mott
insulating (MI) phase driven by the localizing effect of Hubbard’s U ; this phase is characterized by a
very large low-energy self-energy (see bottom part, panel (b) of Fig. 5.5)

• At large values of the nearest-neighbor repulsion V , the system turns charge-ordered (CO), namely
there is a symmetry-breaking where one sublattice is doubly occupied and one sublattice is empty,
as depicted in Fig. 5.3. This checkerboard pattern minimizes the Coulomb repulsion stemming from
V . Since these calculations are performed in the disordered phases (without breaking the symmetry
explicitly), one cannot enter this phase. I will come back to the charge-ordering criterion.

The transition lines in EDMFT andGW+EDMFT are very similar, except for the variant HS-V where the FL-CO
transition line is much lower in GW+EDMFT than in EDMFT. This can be ascribed to the fact that in HS-V,
the contributions from the local and the nonlocal interactions to the nonlocal self-energy are not summed at
the same level: while nearest-neighbor interactions (V ) are summed up to infinite order, local interactions
(U ) are summed to second order only in the nonlocal contribution. In addition, the condition for charge-
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Figure 5.4: Evolution of (U − 4V ) Pimp (iΩ = 0) as a function of V (Vc (U = 2.0) = 0.65; Vc (U = 3.0) = 2.15).

ordering is different. The FL-MI phase transition is of first-order character. The order of the FL-CO and MI-CO
transitions cannot be decided from these calculations since they are limited to the disordered phases.

Charge ordering can in principle be detected by putting a staggered chemical potential or field h coupling
to the density on two sublattices, and by looking at the corresponding response dni/dhj = 〈ninj 〉 = χi j . In
EDMFT and GW+EDMFT, the static charge response χ (q,iΩ = 0) is given by Eq. (5.11). In a second-order
transition, ordering is signalled by a divergence of χ (q,iΩ = 0) at a given wavevector. In the square lattice,
checkerboard charge-ordering is signalled by a divergence at Q = (π ,π ). Thus, one can locate the phase
transition by looking at the point where the denominator of χ , 1 − vqP (q,iΩ = 0), vanishes, or equivalently
when vqP (q,iΩ = 0) = 1. In EDMFT and on the square lattice with nearest-neighbor repulsion only, this
condition reduces to

(U − 4V ) Pimp (iΩ = 0) = 1 (5.12)

This quantity is plotted in Fig. 5.4 for two selected values of U . The charge-ordering criterion is met for a
given value of V . Indeed, as one increases V , the impurity polarization Pimp becomes stronger (see panels (d)
in Fig. 5.5). Beyond Vc (and in the near vicinity of Vc), the divergence in the charge susceptibility precludes
convergence. The FL-CO and MI-CO transition lines shown in Fig. 5.3 are determined by extrapolating the
(U − 4V ) Pimp (iΩ = 0) curve to 1. While the convergence of (U − 4V ) Pimp (iΩ = 0) towards 1 as V is increased
is quite gradual in the metallic phase (U = 2), this quantity remains quite far from 1 until the close vicinity
of Vc in the insulating phase (U = 3).

The transition between the Fermi-liquid phase and the Mott insulating phase is of first-order nature as in
DMFT, namely there is a region where a metallic and an insulating solution coexist (between the dashed and
the solid line), at U ≈ 2.4 for V = 0 (see inset of the left panel in Fig. 5.3). As one increases V , the critical
value of the local interaction Uc (V ) increases, namely larger V s favor the Fermi-liquid phase over the Mott
insulating phase.

Both the transition to the charge-ordered phase and the Uc (V ) curve can be intuitively understood by look-
ing at the self-consistently determined dynamical interactions U (ω) shown in Fig. 5.6. While U (iΩ) (like
Pimp (iΩ) and Wloc (iΩ)) is a real function, U (ω) is a complex function whose real and imaginary part are
related by the Kramers-Kronig relations (see appendix I.1.2.4). Here, I have obtained U (ω) from U (iΩ) by
Padé analytical continuation (a technique which is described in appendix I.3.1). The real part, shown in
panel (a) for different values of V , displays a characteristic screening frequency (of the order of ω = 1.5 for
the curves shown) separating a high-energy part close to the bare value U = 2 and a low-energy, screened
value which strongly depends on V : as V increases, ReU (ω = 0) is more and more reduced. Thus, the effect
of nonlocal interactions at the local level is to reduce the effective cost of a double occupancy for processes
of energies lower than the screening frequency. The dependence of ReU (ω = 0) on V strongly differs in the
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Figure 5.5: Imaginary-frequency data in EDMFT at U = 2.2 (top) and U = 3.0 (bottom). (a) ImGloc (iω) (b)
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Figure 5.6: Dynamical interactions U (ω) in EDMFT on the square lattice. (a) and (b): real and imaginary
part (obtained by Padé analytical continuation). (c) Evolution of U (ω = 0) as a function of U . (d) Evolution
of the “screening strength” λU as a function of V . Inset: (dλU /dV )2 as a function of U .

FL and in the MI phase, as shown in panel (c) of Fig. 5.6: the dependence is much stronger in the FL phase.
Indeed, the compressibility of a Mott insulator is vanishing, hence screening (which is related to the charge
response) is much less efficient.

The strength of the screening can be quantified. Looking at panel (b) in Fig. 5.6, one sees that a measure of
the screening strength is given by the following energy scale:

λU ≡

√
���

ˆ ∞
0

ImU (ω)dω��� (5.13)

This is inspired by the simple case of the Holstein model (discussed in more details in subsection 11.1.4.2.2),
where Einstein phonons of energy ω0 coupled to fermions with strength λ give rise to retarded interactions
characterized by ImU (ω) = λ2 (δ (ω − ω0) − δ (ω + ω0)) for which λU = λ. In our case, λU is seen to be
proportional to V far enough from the CO phase transition (panel (d) of Fig. 5.6). The slope, shown in
the inset, strongly depends on the phase where it is considered. I shall come back to the dependence of the
screening frequency on U and V in subsection 5.3.3.

5.3.2 Spectra: self-consistent and one-shot schemes, the importance of local vertex
corrections

In this section, I give an overview of the spectra obtained in EDMFT and GW+EDMFT, as well as in various
implementations of the GW method. The goal of the latter comparison is to show the importance of local
vertex corrections absent in GW .
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Fig. 5.7 show spectra obtained at different points of the phase diagram for various self-consistent methods.
These spectra have been obtained by MaxEnt analytical continuation (explained in appendix I.3.2) with a
slight sophistication due to the dynamical kernel (discussed in Ayral et al. (2013)).

The GW method, summarized in section 5.2.1, always yields metallic spectra, namely spectra with a quasi-
particle peak at the Fermi level. The same holds for a variant of the GW method, the quasi-particle GW

method (“QPGW ”, Kotani et al. (2007)), which consists (in this simple model context) in expressing G (k,iω)
as

G (k,iω) =
[
iω + µ − Zk (εk − ReΣGW (k,iω))

]−1

with the quasiparticle weight Zk ≈
[
1 − ImΣGW (k,iω0)/ω0

]−1
.

The spectra from the EDMFT and GW+EDMFT methods, in contrast, have spectral weight transfers from
the quasiparticle peak to incoherent bands as U is increased, and eventually a Mott gap opens (see spectra
for U = 3.5). The GW+EDMFT spectra are in general slightly less coherent than EDMFT spectra (more
weight goes to the high-energy features, see e.g. U = 2). This trend is more pronounced when inspecting the
momentum-dependent spectral function, shown in panel (d) of Fig. 5.7. Another feature can be observed
in the spectra in the Mott phase for large values of V , namely when the coupling to the screening modes is
important: symmetric high-energy “bumps”, distinct from the Hubbard bands, can be observed at |ω | ≈ 3 for
U = 3.5, V = 3 (panel (c)). This is a direct consequence of the frequency-dependence of the interactions
U (ω). These features are most easily understood in the limit of zero bandwidth, where the impurity Green’s
function factorizes as (Florens (2003)):

Gimp (τ ) = Gimp (Ũ ,τ )e
−K (τ ) (5.14)

where Gimp (U ,τ ) is the Green’s function computed for static interactions U , and Ũ = U − 2K ′(0), the “dynam-
ical kernel” K (τ ) is defined as K ′′(τ ) = U (τ ) for τ ∈ [0+,β−] and K (0) = K (β ) = 0. In real frequencies, Gimp (ω)

(and hence A(ω)) is thus given by the convolution of the atomic-limit spectrum with a bosonic kernel with a
characteristic screening frequency. It should therefore display, in addition to the Hubbard bands, a series of
bosonic shakeoff peaks (Casula et al. (2012)). Here, only one of these replicae is visible.

Finally, Fig. 5.8 gives further insights in the failure of GW to capture incoherent spectral weight transfers to
Hubbard bands. Panels (a) and (b) show results obtained from various one-shot calculations, which usually
give better spectra in GW applied to realistic materials (see e.g. Aryasetiawan and Gunnarsson (1998) for
a discussion). In all cases, however, while the GW+EDMFT spectra have emergent Hubbard bands in the
correlated metal and full-fledged Hubbard bands in the Mott insulator, the GW spectra are metallic with a
very weak renormalization of the quasiparticle peak. The reason for this discrepancy can be traced back to
the lack of vertex corrections in GW .

In EDMFT, in contrast, the impurity self-energy, being computed exactly within statistical error in the CTQMC
algorithm, can be expressed as1:

Σimp (iω) = −
∑
iΩ

Gimp (iω + iΩ)Wimp (iΩ)Λimp (iω,iΩ)

where Λimp (iω,iΩ) is the renormalized electron-boson vertex which will be rigorously dealt with in chapter
8. For the time being, one can compute a rough estimate of the order of magnitude of this vertex by defining
W̃ (τ ) = Σimp (τ )/G (τ ) and then Λ̃(iΩ) = W̃ (iΩ)/Wimp (iΩ). The GW approximation consists in setting Λ̃ = 1.
The static component Λ̃(iΩ = 0) of this crude estimate is shown in Fig. 5.8, panel (c), for GW+EDMFT. As
one approaches the Mott transition, this estimate of the vertex is seen to grow substantially. GW misses this
trend.
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Figure 5.7: Panels (a), (b) and (c): local spectra Aloc (ω) for different points of the phase diagram obtained
within different self-consistent schemes. Panel (d): A(k,ω) for k = (π ,π ), k = (π ,0) and k = (π/2,π/2) at
U = 2, V = 0.4 in EDMFT (solid lines) and GW+EDMFT/HS-UV (dashed lines)

c

Figure 5.8: Panels (a) and (b): comparison of local spectra Aloc (ω) for one-shot schemes and self-consistent
schemes. Panel (c): estimate of the vertex Λ̃(iΩ = 0).
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loc in the (ω,U ) plane.

5.3.3 Screening properties

In this section, I further investigate the dependence of the screening frequency introduced in the previous
sections. This frequency is visible both in U (ω) and Wloc (ω). In this section, I focus on Wloc (ω). ImWloc (ω)

is very similar to ImU (ω). It is shown in panel (a) of 5.9. This panel already gives an indication that the
screening frequency is weakly dependent on V . One can quantify the screening frequency by defining:

〈ω〉≡

´ ∞
0 ImWloc (ω)ωdω´ ∞
0 ImWloc (ω)dω

(5.15)

Our intuition is confirmed by panel (b) which displays the dependence of 〈ω〉 on V for a wide range of
values of U : in all cases, 〈ω〉 is virtually independent of V . To understand the remaining dependence on U ,
one get an estimate of χimp (iΩ) (which is linked to Wloc by Wloc (iΩ) = U − U χimp (iΩ)U ) within the simple
“linearized-DMFT” scheme (Potthoff (2001)). The imaginary part of the function so obtained is plotted as
a color plot in panel (c). The first line of poles, starting from ω = 1 at U = 0, corresponds to transitions
within the quasiparticle peak (within linearized DMFT, this peak is mimicked by two levels; a more realistic
sketch is shown in panel (d), under the label “weak correlations”). As the correlation strength is cranked
up, incoherent bands appear at ±U /2, opening up the possibility for particle-hole processes between the
quasiparticle band and either Hubbard band (“correlated metal”), with a characteristic energy scale U /2.
Finally, in the Mott state, the only remaining particle-hole transitions are inter-Hubbard-band transitions
with energy scale U . This explains the trend observed in 〈ω〉 in EDMFT.

1This result will be derived rigorously in chapter 8.
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Figure 5.10: Top panels: (U ,V ) phase diagram with various interaction ranges in two (left) and three (right)
dimensions obtained within EDMFT (βD = 100) NN: nearest neighbor, NN+NNN: nearest and next-nearest-
neighbor; NN+NNN+3NN: nearest, next-nearest and third-nearest neighbors. Lower panels (V ,δµ = µ −U /2)
diagrams in two dimensions for U = 2.4 (left) and U = 3.6 (right).

5.3.4 Dimension, interaction range and doping

I end up the discussion on EDMFT and GW+EDMFT by investigating the robustness of the above results with
respect to dimension, range of the hopping parameters and doping.

The top left and top right panels of Fig. 5.10 show the phase diagrams in two and three dimensions for differ-
ent interaction ranges. In all cases, the qualitative picture, with three phases, is identical. The main effect of
more extended interactions in two dimensions is a small destabilization of the charge-ordered phase for small
U s (largerVc), and a small enhancement of the MI phase with respect to the CO phase for largeU s (lowerVc).
In three dimensions, the trend is similar for the MI-CO phase boundary, but the boundaries for NN+NNN
and NN+NNN+3N interactions (see the caption for a definition of these abbreviations) are reversed with
respect to the two-dimensional case. In the next chapter, the effect of truly long-ranged interactions (with a
1/r behavior) will be investigated in the case of surface systems.

In the lower panels of Fig. 5.10, the influence of doping is investigated in two dimensions starting from
the Fermi-liquid phase (left panel) and from the Mott insulating phase (right panel). In the former case,
doping slightly enhances the Fermi-liquid phase with respect to the charge-ordered phase. Interestingly, for
large dopings the low-energy part of the fully screened interaction Wloc (iΩ) becomes negative (see the black
dashed line): creating doublons in this region becomes energetically favorable. In the latter case (right
panel), the charge-ordering domain is enhanced by doping. While at low values of V , a transition to a Fermi
liquid phase occurs (when the chemical potential reaches the upper Hubbard band), for larger values of V
one runs into a charge-ordered phase.
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5.4 Conclusions

The EDMFT and GW+EDMFT approximations place bosonic fluctuations in the charge sector at the center of
the stage.
In particular, these methods capture charge-ordering phenomena at weak and strong coupling through
the introduction of a bosonic Weiss field, U (ω), which measures the impact of nonlocal screening effects
(caused by nonlocal interactions vq) on the local physics. In the next chapter, these methods will be applied
to systems of adatoms on semiconducting surfaces, systems where electrons interact through effective long-
ranged interactions.
A second appealing aspect of GW+EDMFT is the lightweight construction of a momentum-dependent self-
energy. Here, contrary to cluster DMFT, the range of accessible fluctuations is unlimited: the bosonic fluc-
tuations included in W can be long-ranged. This comes at the cost of a relative loss of control, as the choice
of GW diagrams to supplement the impurity self-energies is somewhat arbitrary and there is no well-defined
way of measuring the corresponding error.
Finally, let us note that EDMFT and GW+EDMFT can be straighforwardly extended to the spin channel,
where cluster DMFT sees most of the interesting deviations from single-site DMFT.



6
Local and long-range interactions in surface

systems: insights from combined GW and
Extended Dynamical Mean Field Theory

In chapter 4, I have explained how, starting from the Hamiltonian describing all the electrons in the solid,
one can derive a low-energy model whose kinetic parameters have been obtained by fitting the DFT (LDA)
low-energy band by a tight-binding dispersion (section 4.2), and whose interaction parameters have been
computed in the constrained RPA approximation (section J.3).

The Hamiltonian describing the low-energy physics of α -phases, the extended Hubbard model, combines the
physical ingredients which we had surmised in the introductory chapter (see section 3.3.1), to wit: narrow
bandwidths, strong local interactions U , sizable and long-ranged nonlocal interactions parametrized by V , in
two dimensions.

To handle these elements, and in particular the combination of strong local interactions and nonlocal interac-
tions, one method of choice is the EDMFT or GW+EDMFT methods, which have been explained and applied
to the square and cubic lattices the previous chapter (chapter 5).

In this chapter, EDMFT/GW+EDMFT are applied to the triangular lattice with long-ranged interactions. This
extension is discussed in section 6.1. Then, the family of compounds whose interactions have been computed
in chapter 4 are characterized with the help of a common phase diagram in terms of local and nonlocal
interactions, where each compound is placed according to its first-principles interaction parameters (section
6.2). Finally, in section 6.3, the emphasis is put on Sn/Si(111) and the long-standing puzzles concerning this
compound, which are solved by investigating the question of experimental timescales.

The results of section 6.2 have been published in Hansmann et al. (2013a), included in appendix P.1. The
results of section 6.3 are in preprint Hansmann et al. (2015), included in appendix P.2.

6.1 Incorporating long-ranged interactions in GW+EDMFT

The solution of the GW+EDMFT equations (summarized in section 5.2.2) in the context of surface systems
is very similar to the solution on the square and cubic lattice presented in the previous chapter. The only
notable difference is the lattice geometry and the range of interactions.

The bare dispersion ε (k) has been given in Eq. (4.2) and the tight-binding parameters for the four compounds
in Table 4.1 (chapter 4). These tightbinding parameters are quite similar for all four compounds.

54
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Figure 6.1: Decomposition of 1/x using the error function.

Because of the long-range character of the bare interaction v (Eq. (4.9), the numerical Fourier transform has
to be performed with special care:

v (q) =
∑

i

eiq·Rivi,0 = U +V
∑

i,0

1
|Ri |/a

eiq·Ri

︸              ︷︷              ︸
≡ṽ (q)

(6.1)

The contribution from the long-ranged tail, ṽ (q), cannot be directly summed numerically because of its slow
spatial decay. One possibility to handle this difficulty is to decompose the summand using the error function
and its complementary (erfc(x ) = 1 − erf(x )), with a parameter η controlling their range:

ṽ (q) =
∑

i,0

erf( |Ri |/η)
|Ri |/a

eiq·Ri

︸                     ︷︷                     ︸
≡vLR (q)

+

∑

i,0

erfc( |Ri |/η)
|Ri |/a

eiq·Ri

︸                      ︷︷                      ︸
≡vSR (q)

As illustrated in Fig. 6.1, erfc(x/η)/x , though singular at x = 0, is short-ranged (with a range η), so that the
numerical lattice sum to be performed to compute vSR (q) will be accurate provided the lattice sums extends
to neighbors within a range η, namely Na ? η, where N is the linear size of the lattice. On the other hand,
erf(x/η)/x , though long-ranged, is regular at x → 0 and very smooth, so that it can be approximated by its
continuum limit to high accuracy, viz.

∑

i

erf(Ri/η)
R/a

eiq·Ri ≈
¨

S

dρ
erf (aρ/η)

ρ
eiaq·ρ ≡ ṽcont

LR (q) (6.2)

As shown in appendix K, this continuum approximation is valid if

η ≫ a
√
N (6.3)

Then, using the identities
´ 2π

0 dxeia cos x
= 2π J0 (a) (J0 is the Bessel function of the first kind) and

´ ∞
0 erf(ax ) J0 (x )dx =

erfc( 1
2a ), one finds:

ṽcont
LR (q) =

ˆ ∞

0
ρdρ
ˆ 2π

0
dθ

erf (aρ/η)
ρ

eia |q |ρ cos θ
=

ˆ ∞

0
dρerf(aρ/η)2π J0 (a |q|ρ) =

2π
a |q| erfc

(

|q|η
2

)

(6.4)
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Figure 6.2: Phase diagram in the plane of onsite (U ) and intersite (V ) interactions (T = 116 K). The inset
sketches show the unit cell and occupation patterns in the Mott, stripe (2

√
3 × 2

√
3 symmetry) and 210

(3 × 3 geometry) phases. Lower row: momentum-resolved spectral function A(k,ω) along a high-symmetry
path obtained from MaxEnt analytical continuation.

Thus, ṽLR (q) =
∑

i
erf(Ri /η)
Ri /a

eiq·Ri − limR→0
erf(R/η)
R/a eiq·R = 2π

a |q | erfc
(
|q |η
2

)
− a

η
2√
π , and the final formula reads:

v (q) = U +V
*....
,

∑
R∈BL\{0}
|R |<Na

erfc( |R|/η)
|R|/a

eiq·R +
2π
a |q|

erfc
(
|q|η
2

)
−
a

η

2
√
π

+////
-

(6.5)

with η chosen such that:
√
N �

η

a
. N (6.6)

The last two terms do not depend on the Bravais lattice as they come from the continuum approximation
(6.2), but they govern the long wavelength (|q| → 0) behavior of v (q), v (q) ∼ 1/|q|, which in term stems
from the long-range character of the interaction v (R). A plot of the corresponding v (q) will be given in the
following (Fig. 6.10).

6.2 A materials trend: from Mott physics to charge-ordering...

In this section, the GW+EDMFT formalism is applied to the extended Hubbard mode with long-range inter-
actions. The kinetic parameters for each adatom species are summarized in Table 4.1.
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ω

Figure 6.3: Temperature dependence of Aloc (ω).

6.2.1 A phase diagram to classify α -phases

For each adatom species, namely for each set of kinetic parameters, the (U ,V ) phase diagram is sketched
out in the same way as in the previous chapter for the extended Hubbard model on the square lattice with
short-range interactions. Due to the similarity of the kinetic parameters of each adatom, the boundary lines
are analogous for the four adatoms. Thus, one can gather all adatoms on the same (U ,V ) phase diagram, as
shown in Fig. 6.2. The blurring in the final phase boundaries means that they in fact correspond to several
slightly different curves, each one corresponding to a different set of kinetic parameters.

As in the square lattice, the metal-to-Mott transition is of first-order character with a coexistence region
between a metallic and an insulating phase. The three phases one observes are the following:

• A metallic, Fermi-liquid phase at low onsite and intersite interactions, reflecting the low-energy band
structure: a half-filled metallic band at the Fermi level.

• A Mott phase at large onsite interactions, with a critical Uc of the order of the bandwidth (roughly 0.5
eV) in the absence of intersite interactions.

• A charge-ordered phase at large intersite interactions. In a triangular lattice at half-filling, there
are two possible charge orders illustrated in the upper-left cartoons, the “stripe” order, corresponding
to a 2

√
3 × 2

√
3 symmetry (or the M point, see Fig. 3.4), and the “210” order, corresponding to a

3 × 3 symmetry (or the K point). The nature of the ordered phase as predicted from our GW+EDMFT
calculations in the unordered phase is discussed in the next subsection (6.2.2).

Once this phase diagram is established, one can place the compounds according to the interaction parameters
computed in constrained RPA (see Fig. 4.4 in chapter 4). One thus observes a clear material trend: while
C/Si(111) is predicted to be a bona fide Mott insulator owing to its large onsite-to-intersite interaction ratio,
the lead and tin compounds sit quite close to the metallic phase (within GW+EDMFT, Pb/Si is even found
to be in the metal-insulator first-order coexistence region), and most importantly to charge order – in close
agreement with experimental findings, with 3 × 3 patches observed in Pb/Si, band back-foldings and core-
level structures for Sn/Si (see Table 3.1).

In the bottom row of Fig. 6.2, I show the momentum-resolved spectral function A(k,ω) obtained by MaxEnt
analytical continuation of the imaginary-frequency data (a method briefly explained in appendix I.3.2). As
the onsite-to-intersite interaction ratio decreases, so does the Mott gap decrease (from C to Pb). For the
metallic solution of Pb/Si, one sees a very narrow quasi-particle peak.

Fig. 6.3 shows the temperature evolution of the momentum-integrated spectrum. The temperature evolution
for the insulating solutions is typical of the gradual filling of a gap by thermal excitations, and, as we will
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Figure 6.4: Left panel: effective local interactions, U (ω). Right panel: charge susceptibility, χ (k,ω = 0).

discuss in greater detail in the next nextion, agrees with experimental data available for Sn/Si (see also the
first arXiv version of Li et al. (2013)).

6.2.2 Screened interactions and nature of the charge-ordered phase

In this subsection, I give an interpretation of the phase diagram by relating the onsite-to-intersite interaction
ratio to the shape of the self-consistently computed effective dynamical local interaction U (ω), displayed in
the left panel of Fig. 6.4.

U (ω) reflects the effect of nonlocal interactions at the local level. It can be viewed as the partially screened
interaction, with screening processes coming only from the nonlocal interactions. When nonlocal interactions
are comparatively weak (as in the carbon compound, black curve), U (ω) is almost static and equal to the
bare onsite interaction, U . As the relative strength of nonlocal interactions increases, U (ω) is screened at
energies below a characteristic screening frequency which can be related to the gap width in an insulating
phase, or to the bandwidth in a metallic phase, as we have seen in the previous chapter (Fig 5.9). As an
interesting consequence, the screened value U (ω = 0) depends on the phase of the system, i.e. if the bare
U and V are such that the compound is in a coexistence region (like lead), there are two different U (ω = 0)
depending on which solution is considered (red curves). As expected, U (ω = 0) is lower for the metallic
solution, where screening is more efficient due to the absence of a finite energy gap in the spectrum.

Physically, one can interpret this screening mechanism by saying that larger intersite interactions make the
creation of doubly-occupied sites comparatively more energetically favorable than in the absence of intersite
repulsion, thus lowering the effective Hubbard repulsion. When intersite interactions grow, U (ω = 0) can
even reach a threshold where it becomes more favorable to go into a phase with static double occupations,
namely a charge-ordered phase.

In the case of the square lattice with nearest-neighbor repulsion studied in the previous chapter, there was
no ambiguity as to which charge-ordering pattern was favored by the nonlocal interactions (in that case,
it was a checkerboard pattern). On the triangular lattice, the situation is not so clear-cut. First, several
ordering patterns, presented in the introductory chapter (see Fig. 3.4), are possible. Second, the long-ranged
character of the interactions causes many possible ordering possibilities to become entangled; in a way, it
“frustrates” patterns corresponding to high-symmetry points.

Despite being limited to the phase without order, our GW+EDMFT computations give further information
about the nature of the ordered-phase thanks to the charge susceptibility χ (q,iΩ), computed from P (q,iΩ)

and v (q) by Eq. (5.11). Its momentum-resolved static value (shown in the right panel of Fig. 6.4) gives the
relative contribution to the various charge-ordering symmetries to the instability. Hence, one can infer from
these calculaitons that in all compounds, the M and K geometries are both relevant, with a slight preference
for K (3 × 3 or “210” phase) in the case of lead, as seen in experiment.
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6.2.3 Conclusions and open questions

In conclusion, this study shows that

• the C/Si(111) compound is a Mott insulator (
√

3 ×
√

3 symmetry),

• the Pb/Si(111) compound is the closest to charge-ordering (3 × 3 symmetry, in agreement with experi-
ments)

• the Sn/Si(111) case is less clear-cut, being less close to charge-ordering than Pb/Si(111), but much
more so that C/Si(111). This situation is also in agreement with experiments, which show apparently
conflicting evidence of

√
3 ×

√
3 and 3 × 3 symmetries. In the next section, we propose a simple

explanation to this remaining puzzle.

6.3 Experimental timescales: a solution to the Sn/Si puzzle

As seen in section 3.2, the Sn/Si(111) compound is subject to experimental controversies: while scanning
tunneling microscopy sees no trace of charge ordering in this compound (Uhrberg et al. (2000a); Morikawa
et al. (2002); Modesti et al. (2007); Li et al. (2013)), photoemission spectroscopies such as ARPES and core-
level spectroscopy (cPES) see clear signs of the symmetries associated with the ordered phase (Göthelid et al.
(1995); Uhrberg et al. (2000a); Lobo et al. (2003); Modesti et al. (2007)). In this section, I explain that this
puzzle can be solved by examining the temporally and spatially resolved susceptibility computed within the
GW+EDMFT approximation.

These results can be found in preprint Hansmann et al. (2015), included in section P.2.

6.3.1 Two snapshot-like probes: core-level spectroscopy and ARPES

Photoemission spectroscopies are fast experimental probes. In this section, I show that these probes can only
be understood if incorporating symmetry-breaking contributions (2

√
3×2

√
3 and 3×3) to the total spectrum.

6.3.1.1 Inequivalent adatoms from core-level spectroscopy

Core-level photoemission experiments have led to the identification of several components in the cPES spectra
(see the discussion in section 3.2 and the experimental data, grey and black dots in Fig. 6.5), a sign that
4d core electrons with different valence environments are present in the compound. This observation can
be quantified by performing configuration-interaction (CI) simulations of the excitation of a 4d core electron
in three valence configurations, namely an empty surface orbital, a half-filled surface orbital or a doubly
occupied surface orbital (see left panel in Fig. 6.5). The spectra corresponding to the three environments are
shown in the central panel in the form of red, blue and green narrow peaks.

To compute the total spectrum, one must estimate the relative weight of each environment in our system. In
the Mott phase, all tin sites are in a singly-occupied environment. In the CO phase, we perform a 6-site exact
diagonalization (ED) calculation where we project the ground-state wavefunction on the 3 states of interest,
namely

√
3 ×
√

3, 3 × 3 and 2
√

3 × 2
√

3. The projection is shown in the lower right panel. One can see that
the relative contributions of the three states are of η √3×

√
3 = 13 %, η3×3 = 56 % and η2

√
3×2
√

3 = 31 % (note
that there are other states which we neglect here), which corresponds to 32% half-filled sites and 68% of
empty/doubly-occupied sites.

Using these proportions, one can compute the cPES spectrum separately for the Mott phase (AcPES
Mott (ω)) and

for the CO phase (AcPES
CO (ω)). The total spectrum is then AcPES

tot (ω) = αAcPES
Mott (ω) + (1 − α )AcPES

CO (ω), where α is
the proportion of Mott domains and 1 − α the proportion of charge-ordered domains in the sample, if one
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V

Figure 6.5: cPES of the Sn adatom 2p-shell. Left: Cartoon of the Sn 4d core electron emission process.
Middle: comparison between experimentally obtained spectra (black solid line) and theoretical simulations
with full multiplet cluster calculations (upper panel T=140 K; lower panel T= 9 K): The red dashed curve
is the sum of the three specifically weighted contributions (corresponding to the three axial surface orbital
configurations) with an overall Gaussian broadening of 0.37 eV (T= 9 K) and0.41 eV (T= 140 K). Right:
projection of the exact ground-state of a finite 6×6 cluster on the

√
3×
√

3, 3×3 and 2
√

3×2
√

3 states (The
CI and ED computations have been performed by Philipp Hansmann.).

Figure 6.6: Left panels: tight-binding bands in the three symmetries for Sn/Si(111) (with the parameters of
Table 4.1). Right panel: non-interacting density of states. Inset: reminder of the high-symmetry points.

assumes that Sn/Si is in the vicinity of a first-order phase transition (which we suspect due to our previous
work on the phase diagram, Fig. 6.2, and ongoing calculations in the ordered phase). We estimate these
proportions by using the available experimental spectra (middle panel). The outcome is α = 30 %. The
blue and yellow dashed curves correspond to αAcPES

Mott (ω) and (1 − α )AcPES
CO (ω), respectively (with a broadening

factor); the solid black curve is the total theoretical spectrum AcPES
tot (ω). The agreement with the experimental

spectra is very good.

6.3.1.2 Traces of ordered phase: band backfoldings in ARPES

Based on the cPES study, we have quantified the relative importance of the three phases. We can use this
information to compute the ARPES spectrum.

The effect of symmetry-breaking from the
√

3 ×
√

3 unit cell to the 2
√

3 × 2
√

3 and 3 × 3 unit cells can be
understood in a simple way by looking at the tight-binding bands for the three phases. These are shown in
Fig. 6.6. While in the

√
3 ×
√

3 symmetry (red curve), the band goes down when going to point K and up
going to point Γ, the trend in more complex due to the backfoldings in the 2

√
3×2

√
3 and 3×3 symmetries.
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Figure 6.7: GW+EDMFT self-energy for Sn/Si(111) at T = 116K. Left: ReΣ(k,iω0). Right: ImΣ(k,iω0).

In particular, in the 3× 3 symmetry (green curves) a band goes down to Γ. This observation is reminiscent of
the measured ARPES data, shown in the bottom right panel of Fig. 6.9: there, while the band goes down do
K , one also sees a shoulder when going from K to Γ, an indication that the band is going down to Γ. In any
case, this shoulder would not be present in the experimental spectrum if the system were containing only the
√

3 ×
√

3 symmetry.

Since ARPES is an extended probe (the ARPES signal integrates over several unit cells), it contains contribu-
tions both from MI domains (in proportion α) and from CO domains (in proportion 1 − α). The composition
of the latter has been determined thanks to the analysis of the cPES spectrum. Thus, one can compute the
total ARPES spectrum as the following sum:

AARPES
tot (k,ω) = αAARPES

√
3×
√

3
(k,ω) + (1 − α )

[
η √3×

√
3A

ARPES
√

3×
√

3
(k,ω) + η3×3A

ARPES
3×3 (k,ω) + η2

√
3×2
√

3A
ARPES
2
√

3×2
√

3
(k,ω)

]

(6.7)

where AARPES
φ (k,ω) is the spectrum corresponding to the phase φ, i.e. AARPES

φ (k,ω) ≡ − 1
πNφ

ImTrGφ (k,ω + iη),
with Nφ the number of electrons per unit cell in phase φ, and as usual,

Gφ (k,ω) =
[
(ω − µ ) 1 − εφ (k) − Σφ (k,ω)

]−1

The tighbinding dispersions εφ (k) are those depicted in Fig. 6.6.

In principle, this expression requires the computation of Σφ (ω) for each of the three phases. For the
√

3 ×
√

3 phase, the GW+EDMFT and the EDMFT self-energy are very close to each other, namely the nonlocal
contributions to Σ(k,iω) are rather small, especially for the imaginary part. This is shown in Fig. 6.7. There
are some nonlocal deviations in the real part of the GW+EDMFT self-energies, but they do not induce large
changes in the local observables. Thus, we decide to work with the EDMFT result Σimp (iω). We note that
this self-energy is close to the atomic limit self-energy, but not identical, as shown in the inset of Fig. 6.8.
The main panel of this figure shows the same self-energy on the real-frequency axis after Padé analytical
continuation.

For the 2
√

3× 2
√

3 and 3× 3 phases, computing Σ(k,ω) would require performing GW+EDMFT calculations
in the ordered phase. While this is feasible, we resort instead to a simpler estimate of the self-energy in those
phases. For the empty or full bands (corresponding to empty and doubly-occupied sites), where correlations
are expected to be negligible, we approximate the self-energy by the Hartree estimate computed for a model
with nearest-neighbor interactions only. For the half-filled site of the 3×3 site, we use the EDMFT self-energy
Σimp (iω) computed in the

√
3 ×
√

3 phase.

The Hartree estimates read:
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Figure 6.8: Self-energy Σimp (ω) after Padé analytical continuation. Solid lines: real part; dashed lines:
imaginary part. Inset: imaginary-frequency self-energy. Gray curves: atomic-limit self-energy Σat (iω) =
U 2

4iω +
U
2 .

Σ̃
Hartree
σ ,3×3 =

*..,
U
2 − 3V

0
−U2 + 3V

+//-
(6.8)

Σ̃
Hartree
σ ,stripe =

(
U
2 − 2V

−U2 + 2V

)

(6.9)

Here, the chemical potential is absorbed in Σ̃ (Σ̃ ≡ Σ − µ). The final approximate form of the self-energies is
taken to be:

Σ̃
σ ,
√

3×
√

3 (iω) = Σ̃imp (iω) (6.10)

Σ̃σ ,3×3 (iω) =
*..,

U
2 − 3V

Σ̃imp (iω)

−U2 + 3V

+//-
(6.11)

Σ̃σ ,stripe (iω) =

(
U
2 − 2V

−U2 + 2V

)

(6.12)

These expressions for Σ̃ are analytically continued and plugged in Dyson’s equation to compute the spectrum.
The corresponding plots are shown in Fig. 6.9.

As expected from the above discussion of the tight-binding band back-foldings, the contribution from the
2
√

3 × 2
√

3 and 3 × 3 phases lead to a shoulder in the path from K to Γ in the combined spectrum (middle
right panel). The agreement with the experimental spectra (bottom right panel) is good.

6.3.2 Time and space-dependent susceptibilities, or why STM sees the
√

3 ×
√

3 symmetry

only

I now turn to the missing piece: why does STM not sense the ordered phases observed in cPES and ARPES?
The answer lies in the discrepancies between the experimental timescales. While ARPES and cPES are fast
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Figure 6.9: ARPES spectra from experiment and theory (εF = 0.0). Upper panels: Experiment (left); Broad-
ened electron removal part of the full GW+DMFT spectral function A(k,ω) in the experimentally measured
k-space window (right). Middle panels: high resolution full spectral function A(k,ω) of GW+DMFT along the
complete Γ → M → K → Γ path (left); Contribution of the Mott (

√
3×
√

3)-phase to the full spectral function
(right). Lower panels: Contribution of the (3 × 3)-phase to the full spectral function (right); Contribution of
the stripe-type (2

√
3 × 2

√
3)-phase to the full spectral function (right). For sketches of the respective unit

cells see Fig.6.5.

K

MΓ

Figure 6.10: Momentum-dependence of P (q,ω = 0) (left) and v (q) (right) in SnSi.

probes, STM is a time-integrated, i.e. slow, probe. This discrepancy is visible in the imaginary-time charge-
charge correlation function computed in GW+DMFT by Eq. (5.11).

In GW+EDMFT, the q-dependence of χ (q,iΩ) comes both from P (q,iΩ) and v (q) (through Eq. (5.11)). Both
are plotted in Fig. 6.10. P (q,ω = 0) is largest (in absolute value) in the region of M and K , without a relevant
difference in magnitude between both points. v (q) is peaked at q = 0 owing to its long-ranged character.

Next, let us discuss the behavior of χ (R,τ ), computed from χ (q,iΩ) by first computing the charge-charge
correlation function χ (q,iΩ) and then Fourier transforming to R,τ coordinates. Indeed, the imaginary-time
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Figure 6.11: Charge correlation function χ (R,τ ) plotted on the surface lattice x- y- plane for four different
values of τ . At τ = 0.0, we find large charge fluctuations of correlation lengths ξ exceeding 3.5 lattice units
(l.u.) which are picked up by core-level and photoemission spectroscopies. Due to decay on a fs time-scale
(see evolution with τ ) they are invisible to slow probes like STM. On the bottom of the figure we show how
such fluctuations can be decomposed into two contributions related to 3×3 (“210”) and 2

√
3×2

√
3 (stripes)

symmetry.

dependence of χ (R,τ ) contains different pieces of information: while χ (q,τ = 0) corresponds to instantaneous
probes (cPES and ARPES), χ (q,τ = β/2) roughly corresponds to the time-integrated response. To see this, let
us use the Kramers-Kronig relations (see appendix I.1.2.4). This yields:
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Hence:
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The approximation of the second line is valid only if βω � 1, which is the case if most of the spectral weight
of χ ′′q (ω) is concentrated at small frequencies compared to the temperature. This is not really verified in
our system (the poles of χ

′′

q are roughly at ±U ), but we nevertheless keep in mind this simple estimate to
understand the meaning of χq (τ = β/2).

The evolution of χ (R,τ ) is shown in Fig. 6.11: while instantaneous probes “see” strong charge modulations
corresponding to a mixture of the 3×3 and 2

√
3×2

√
3 phases (left panels), slow probes see a uniform charge

density corresponding to the homogenenous
√

3 ×
√

3 phase (right panels). From χ (R,τ ) one extracts a
typical correlation length “seen” by each experimental probe. This is done by fitting χ (R,τ ) to the expression
e−|R |/ξ (τ )

√
ξ (τ )/|R| (the large |R| limit of the 2D Fourier transform of the Ornstein-Zernike form χ (q,τ ) ∝

1/(q2 + ξ (τ )−2)). While “snapshot probes”, such as ARPES and core-level PES, see correlation lengths of
several lattice units (3.7 l.u for τ = 0), STM (corresponding to long imaginary times) sees virtually no
charge-charge correlations.



Part III

Nonlocal correlations in cuprates: unifying spin
fluctuation and Mott physics with TRILEX

The field of strong correlations owes much to the discovery – in the mid 1980s – of copper-oxide (or
“cuprate”) superconductors with a critical temperature above the boiling point of liquid nitrogen. In con-
trast with the “conventional” superconductors discovered by Onnes (1911), which need to be cooled down
to a few Kelvin to superconduct, and are in general bona fide metals at room temperature, the new high-
temperature superconductors are characterized by strong interelectronic correlations.

How can superconductivity – a state of matter where the electric current can flow seamlessly through the
material – coexist with strong Coulomb repulsion between electrons? How can correlations – in general
regarded as a hindrance to the flow of electrons – turn into a blessing? These fundamental puzzles have
spawned an exciting field of research.

In chapter 7, I give a glimpse of the main experimental body of knowledge on cuprates, followed by an
overview of the theoretical landscape after almost three decades of research. Based on these introductory
elements, I then introduce, in chapter 8, a new method – dubbed TRILEX – which, drawing inspiration from
the emphasis on locality of dynamical mean field theory, unifies the two main theoretical views on cuprates.
Finally, chapter 9 presents a first application of TRILEX to the two-dimensional Hubbard model, the simplest
model to describe cuprates.
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7
Introduction to high-temperature

superconductors

In this chapter, I give a general overview of copper-oxide materials from an experimental (section 7.1) and
theoretical (sections 7.2.1 and 7.2.2) point of view. Far from being exhaustive, this introduction intends to
give the necessary background to understand the open challenges in the field.

There is a vast literature on the subject. For instance, a recent textbook by Plakida (2010) gives a pedagogical,
yet detailed general introduction to the subject. On the theory side, Manske (2004) is one reference among
others.

7.1 Experiments: strong correlations and nonlocal effects

In this section, some important experimental findings on cuprate materials are summarized. I first give a short
description of the cuprate compounds from a structural and electronic point of view for orientation (section
7.1.1). Then, I review the main experimental findings (section 7.1.2), with a focus on nuclear magnetic
resonance (NMR), neutron scattering, optics and angle-resolved photoemission (ARPES) experiments. This
selection underlines the importance of strong correlations and of nonlocal effects in cuprate materials.

A theoretical description of the experimental probes mentioned in the text can be found in the appendix,
chapter H.

7.1.1 A brief description of cuprate materials

In 1986, Bednorz and Muller (1986), who were seeking after materials with a strong electron-phonon cou-
pling1 “λ”, discovered that the BaxLa5−xCu5O5(3−y ) compound becomes superconducting at 30 Kelvin. A
few months later, Wu et al. (1987) found a critical temperature of 90 K in the ceramic YBa2Cu3O7−δ , above
the boiling point of liquid nitrogen, 77 K. These critical temperatures were far above other “conventional”
superconductors, well described by BCS theory (in fact magnesium diboride, well described by BCS theory,
surpasses BaLaCuO with a Tc of 39 K – but it was discovered only in 2001). Fig. 7.1 gives a graphical illus-
tration this breakthrough. As one can see, the commonality of these materials is the presence of copper and
oxygen atoms. On this figure, a representative of the more recently discovered iron-based superconductors,
FeAs, is also shown.

1Their goal was to reach higher critical temperatures based on the theory of conventional superconductors, the Bardeen-Cooper-
Schrieffer (BCS) theory, which stipulates that the critical temperature is given by Tc ∝ e−1/λN (εF ) , see Eq. (I.51b) in appendix I.6.
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Figure 7.1: Critical temperature in conventional and unconventional superconductors: timeline (from
Wikipedia). Cuprate superconductors are represented as diamonds. FeAs (on the right) belongs to the
family of iron-based superconductors.

All cuprate materials contain two-dimensional copper-oxygen planes, the remaining atoms forming other
planes or “blocks” acting as charge reservoirs whose chemical composition can be changed to adjust the
doping level (usually denoted as x or δ) of the copper-oxygen planes. The crystal structure of one typical
cuprate, “LSCO” (for La2−xSrxCuO4), is shown in Fig. 7.2. The copper atoms are located inside oxygen
octahedra (which may be distorted); the material itself is made up of alternating layers of copper-oxide
planes and La/Sr-O planes/blocks. In the case of LSCO, there is one copper-oxide plane between the blocks,
LSCO is called a monolayer compound (like BiSCO). The first compound with a critical temperature above
77 K, “YBCO” (for YBa2Cu3O7−δ ), is a bilayer compound, for instance. In general, the critical temperature
increases with the number of CuO layers (with a maximum for three layers).

The experimental phase diagram of LSCO, a hole-doped material2 , is shown in Fig. 7.2. For very low
dopings x (i.e. for close to one electron per copper site on average), the system is antiferromagnetically

(AF) ordered (green region). At low temperatures, one finds a superconducting dome centered at a so-
called optimal doping of x ≈ 15 %. The region left of the dome, on the underdoped side, is the pseudo-gap

phase. Above and right of this phase, the system is said to be in a “strange metal” state in the sense that the
resistivity in this region (among others) has an anomalous behavior. On the far right, it becomes a “normal”
metal again. Furthermore, there are small regions of spin density wave (SDW) order at the junction of the
antiferromagnetic region with the superconducting dome. Finally, a charge-density wave (CDW) phase is
seen at x ≈ 1/8 = 12 % doping.

The charge-density-wave phase has recently been under intense scrutiny both experimentally (Tranquada
et al. (1995); Hoffman et al. (2002); Doiron-Leyraud et al. (2007); LeBoeuf et al. (2012); Ghiringhelli et al.
(2012); Wu et al. (2013); Fujita et al. (2014); Cyr-Choinière et al. (2015)...) and theoretically (Nie et al.
(2014); Efetov et al. (2013); De Carvalho and Freire (2014); Atkinson et al. (2014); Allais et al. (2014);
Chowdhury and Sachdev (2014); Corboz et al. (2014); Wang et al. (2015)...). The experimental meaning of
the pseudogap phase will be explained later.

The diversity of phases observed in cuprates – ranging from spin-ordered phases (AF) and superconducting
phases (SC) to CDW and SDW phases over the intriguing “pseudo-gap” phase – already raises several issues:

2I will not deal with electron-doped materials for the sake of simplicity.
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Figure 7.2: LSCO compound. Left: crystal structure (from Damascelli et al. (2003)). Right: experimental
phase diagram (from Croft et al. (2014)). The T ∗ line is the crossover temperature to the pseudogap phase,
determined as the upturn of the Nernst coefficient; TCDW is the onset temperature of a CDW phase, deter-
mined by X-ray diffraction; TSDW is determined by neutron scattering, nuclear magnetic resonance (NMR)
and muon spin resonance (µSR).

• What is the mechanism responsible for each individual phase and in particular for superconductivity:
phonons like in BCS theory? Fermi-surface instabilities (like nesting)? Electronic correlations? Spin or
charge dynamics?

• Are the various phases competing or collaborating with each other, is one the precursor of the other?

I now briefly outline the electronic structure of cuprates. The top left panel of Fig. 7.3 is a sketch of the
level structure of LSCO (which I take as a prototypical example): the valence configuration is Cu 3d9 and O
2p6. In the cubic environment of the oxygen atoms, the degeneracy of the d level is lifted into eд (x2 − y2

and 3z2 − r2) and t2д (xy, yz, zx) levels, which are further split by a tetragonal distortion (the octahedron is
elongated along the c axis, this is the Jahn-Teller effect) into 4 distinct levels (yz and zx are still degenerate).
The tetragonal distortion also splits the oxygen 2p orbitals into σ and π levels. By symmetry, only the in-plane
x2 − y2 and σ orbitals strongly hybridize, yielding a low-lying bonding band and an antibonding band at the
Fermi-level. Counting the electrons, this latter band turns out to be half-filled. The rest of the states do not
really hybridize and form non-bonding bands in-between the bonding and antibonding bands.

This justifies the use of a model with three bands – the in-plane x2 − y2 orbital and the two σ orbitals – to
describe the physics of cuprates. The spatial arrangement of these orbitals is illustrated in the top-right panel
of Fig. 7.3, and the wavefunction overlaps are parametrized by the tight-binding hopping terms tpd and tpp

(with a different sign depending on which lobes overlap). Here, I take values that reproduce well density
functional theory (within the local density approximation) calculations (see caption), and obtain the tight-
binding bands shown in the bottom left panel. There is a dispersionless nonbonding (N) band at ε = εp and a
pair of bonding (B) and antibonding (AB) bands, the antibonding band being half-filled. The corresponding
density of states is shown under label (a): there are two deep-lying bands (N and B) and one isolated band
at the Fermi level3. This band is used as the starting point for a description in terms of a single-band model.

As will be seen later, the role of Coulomb interactions in cuprates has been surmised early on. However,
even supposing there is a sizable Hubbard U interaction, one should be careful in writing down a single-band

3There are many other bands between -5 and 2 eVs; only they are not relevant for the problem at stake.
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Figure 7.3: Electronic structure of cuprates: basics. Top left: Level structure of LSCO (from Fink et al. (1994);
Damascelli et al. (2003)). Top right: CuO2 plane: tight-binding parametrization in the (xy) plane. Bottom
left: tight-binding dispersion for a three-band model (solid black curves; tpd = 1.3 eV, tpp = 0, εp = −4.9 eV,
εd = −1.3 eV). Dashed curve: one-band tight-binding dispersion (tdd,eff = −0.325 eV). Bottom right: various
scenarios (UHB: Upper Hubbard Band; LHB: Lower Hubbard Band; ZRS: Zhang-Rice Singlet band; T: Triplet
band; U is Hubbard’s U , ∆ is the charge-transfer energy) (adapted from Fink et al. (1994); Damascelli et al.
(2003)).
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model (Zhang and Rice (1988)). Let us call U the d − d local interaction and ∆ the charge-transfer energy
(∆ ∼ εd − εp). Then:

• If U � ∆ (case (b) in Fig. 7.3), then the nonbonding and bonding bands can be considered as inert
and one can readily write down a single-band model with the antibonding band and an interaction U

(I have plotted a corresponding band with an effective tightbinding hopping, see the red dashed line).
This situation is not realized in cuprate materials which are in fact charge-transfer insulators (Zaanen
et al. (1985)) (the situation U � ∆ rather corresponds to early transition metal oxides, e.g. vanadates
and titanates; see Imada et al. (1998) for an in-depth review).

• If, however, U and ∆ are comparable in strength or if U � ∆ (cases (c) and (d)) – which is the case
in cuprate (and also nickelate) materials, then the N and B bands have to be taken into account, at
least in an effective way by taking the correct “U ” parameter in a single-band model, or with a proper
three-band model if one suspects the oxygen degrees of freedom to be important. For completeness, let
us note that as shown under label (c), the spin of the hole in the upper Hubbard band and the one of
the electron on the bonding band interact and lead to the formation of an additional triplet band (T)
and so-called Zhang-Rice singlet band (ZRS, Zhang and Rice (1988)).

As a bottom line of this discussion, one can remember that the single-band Hubbard model comes out as
a natural low-energy model for cuprates, with the following caveats: (a) its effective parameters are not
straightforward and (b) effects beyond the single band are not ruled out.

7.1.2 Experiments on cuprates: the importance of momentum dependence

In this section, I give a short overview of some experimental facts with a focus on the momentum dependence
of the spin susceptibility and of the spectral function. I also show conductivity data which have been used to
support important theoretical scenarios.

The relevant probes, with a focus on the observables they give access to, are briefly discussed in appendix
H.2.

7.1.2.1 Antiferromagnetic spin fluctuations and pseudo gap from neutron scattering and nuclear
magnetic resonance

Figure (7.4) gives an overview of experimental insights on the magnetic properties of cuprates as seen by
neutron scattering. Neutron scattering has provided the early indication that the undoped compounds are
antiferromagnetic at low temperatures: a peak at the AF wavevector (an angle θ ≈ 26°/2 corresponds to
q ≈ π/a for λneutron = 2.37 and aLSCO = 3.79 ) appears at low temperatures in the static scattering intensity
(panels (a) and (b) from Vaknin et al. (1987); in fact, the ordering wavevector is slightly canted, see panel
(c) (Yamada et al. (1989))). In the Néel phase, the spin-wave dispersion ω̃ (q) can be obtained by using “hot”
neutrons; at long wavelengths, the slope c of ω̃ (q) ≈ cq gives access to the antiferromagnetic exchange scale
J , related to c by the relation4: c ≡

√
2zS Ja ·1.158. In Aeppli et al. (1989), c = 0.85 eV, leading to J = 160meV

(S = 1/2, z = 4).

Furthermore, neutrons reveal dynamical spin fluctuations, as illustrated in panel (d) (from Bourges et al.
(1996)), which shows that χ ′′spin (q,ω = 39 meV) features AF fluctuations that are enhanced at low tempera-
tures. Such curves can be fitted by a Lorentzian or Ornstein-Zernicke form

Γ(q,ω) =
Γ(q = 0,ω)

ξ 2 (q −QAF)
2 + 1

(7.1)

4This relation can be obtained by starting from the Heisenberg model and performing a 1/S expansion or using Schwinger bosons.
See e.g. Chap. 8 of Auerbach (1994).



Chapter 7. Introduction to high-temperature superconductors 71

(d)

(e)

LaCuO4-y
(c)

(f)

Figure 7.4: Neutron scattering: early experiments. (a) (from Vaknin et al. (1987)): Dependence of the
(static) scattering intensity (∼ Γ1 (q,ω = 0)) as a function of the scattering angle 2θ [q = 4π

λneutron
sin(θ/2)] in

the 100 direction. (b) Temperature dependence of the same intensity. (c) (from Yamada et al. (1989)) AF
spin order in LSCO [note: the definition of a,b, and c is different from my conventions] (d) (from Bourges
et al. (1996)): scattering intensity as a function of wavevector q at ω = 39 meV (∼ Γ2 (q,ω)). (e) (from
Keimer et al. (1992)): inverse correlation length extracted from spin correlation function vs. T . (f) (from
Rossat-Mignod et al. (1991)): Imχspin (q,ω) ∝ Γ2 (q,ω) for different temperatures.

Here Γ(q,ω) denotes the neutron scattering rate (∝ Imχsp,⊥ (q,ω), see appendix H.2.1), ξ is the AF correlation
length and QAF = (π ,π ). The result of such a fit for YBCO is shown in panel (e) for a range of dopings: while
diverging at half-filling upon cooling the system, signalling the onset of long-range AF order, the correlation
length remains finite for the doped system until zero temperature, with correlation lengths of the order of 50
: albeit far-reaching, the spin correlations away from half-filling are too short-ranged to induce an ordered
phase (see the phase diagram, Fig. 7.2). Panel (f) shows the energy dependence of Γ(q,ω) at fixed momentum
in the same region of the phase diagram: upon cooling, a “soft” gap in the spin spectrum appears well above
the superconducting critical temperature (Tc = 59 K). This spin gap is called a “pseudogap”.

This depletion of the spin susceptibility at low energy upon cooling was first observed in early NMR mea-
surements reproduced in Fig. 7.5. While the Knight shift of a normal metal is supposed to be constant and
proportional to the density of states at the Fermi level (see Eqs. (H.38-H.39) in appendix H.2.2) – which is
roughly what is observed at half-filling (x = 1), the Knight shift, and hence χspin (q = 0,ω = 0), of doped com-
pounds decreases for decreasing temperature; the same phenomenon is seen for the spin-lattice relaxation
rate 1/T1 (right panel). This suppression of spectral weight at low energies is in agreement with the above
neutron experiments.

7.1.2.2 Conductivity: the puzzle of the mid-infrared peak

While the importance of spin fluctuations and the opening of a pseudogap has been stressed by neutron
and NMR measurements, conductivity measurements, such as those shown in Fig. 7.6 for LSCO at various
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Figure 7.5: NMR: early experiments on YBa2Cu3O6+x (from Alloul et al. (1989)). Left: Knight shift as
a function of temperature for several dopings. Right: Spin-lattice relaxation rate 1/T1T as a function of
temperature for several dopings.

Figure 7.6: Optical conductivity σ (ω) of LSCO for various dopings at room temperature (from Uchida et al.
(1991))

dopings, have brought up new questions. The optical spectrum at half-filling (x = 0) displays a gap with an
“edge” at about 2 eV, which roughly corresponds to the charge-transfer energy ∆ and can be explained by
the opening of a Mott gap in the antibonding x2 − y2 band (with U � ∆) (see the band structure arguments
presented above, section 7.1.1). This corroborates the importance of correlations as touched on in section
7.1.1.

Upon doping, however, the situation is less clear-cut. At intermediate dopings (see e.g. x = 0.02 − 0.06), a
peak at > 0.5 eV appears (the “mid-infrared peak”, whose origin is still subject to discussion), and for large
doping a Drude peak at ω = 0 appears, albeit with an unconventional 1/ω dependence (instead of 1/ω2, see
Eq. (H.50)).

7.1.2.3 Angle-resolved photoemission: momentum differentiation on the Fermi surface

Contrary to NMR, neutron scattering and optics, which measure two-particle correlation functions, ARPES
probes the one-particle spectral function A(k,ω), as is shown in appendix H.1.4. Hence, one can look into
ARPES spectra for signs or signatures of the two-particle correlations. Indeed, collective modes seen in two-
particle probes can have consequences on the propagation of electrons in the solid; these effects are encoded
in the self-energy Σ(k,ω). Let us remember that Σ(k,ω) enters A(k,ω) in the following way (for a one-band
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Figure 7.7: ARPES on Ca2−xNaxCuO2Cl2 at T = 15K, from Shen et al. (2005): Left: EDCs from k = (π ,0)
(antinode, bottom) to k = (π/2,π/2) (node, top). Right: MDCs at εF for three dopings 5, 10 and 12% (with
Tc = 13 K and 22 K for the latter two)

model with bare dispersion ε (k)):

A(k,ω) = −
1
π

ImΣ(k,ω)

(ω − εk − ReΣ(k,ω))2 + ImΣ(k,ω)2
(7.2)

In particular, the spectral weight on the Fermi surface is given by:

A(kF,ω = 0) = −
1
π

1
ImΣ(kF,ω = 0)

Thus, momentum distribution curves (MDCs) at ω = 0 can be directly related to the imaginary part of the
self-energy. Such curves for “CCOC” (Ca2−xNaxCuO2Cl2) for different dopings are shown in Fig. 7.7. As the
doping is decreased from close to optimal doping (x = 0.12) to close to half-filling (x = 0.05), the spectral
intensity on the Fermi surface becomes weaker and weaker in the “antinode” region (around the (π ,0) and
(0,π ) points) (right panels, MDCs). The energy dispersion curves (EDCs, on the left) show that while there
is a sharp Fermi surface at the node (k = (π/2,π/2) region), a soft gap opens at the antinode for the lower
dopings. This phenomenon was first observed in bismuth samples (BiSCO) in the mid 1990s (Marshall et al.
(1995, 1996); Ding et al. (1996); Loeser et al. (1996)).

7.1.2.4 The generic cuprate phase diagram

Let us conclude this short experimental overview by a description of the generic phase diagram of the CuO2

planes on the hole-doped side, shown in Fig. 7.8. The AF and pseudogap phases have been explained in the
previous sections. They cover the undoped and underdoped portions of the phase diagram. The temperature
T ∗ is the crossover temperature to the pseudogap phase. Above the superconducting dome, the “strange
metal” phase is characterized by anomalous behaviors in several observables such as the resistivity and the
conductivity. In the overdoped phase, Fermi-liquid behavior is recovered. The superconducting phase is
characterized with a gap of d-wave symmetry, to be contrasted with the s-wave (spherical) symmetry of the
BCS gap. At 12% or one eighth doping, a charge-density wave is seen in many experiments and has been the
subject of much interest in recent years, although incommensurate stripe order in LBCO and LSCO has been
observed as early as 1995 by Tranquada et al. (1995).
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Figure 7.8: Generic cuprates phase diagram. Adapted from Le Tacon (2015).

7.1.3 Summary

The experiments reviewed in the previous section point to a number of facts:

• strong correlations have to be reckoned with: the parent compounds are Mott/charge-transfer insula-
tors;

• spin fluctuations are strong in the underdoped regime;

• there are sizable nonlocal correlations at the two-particle level (spin correlations) and the one-particle
level (as seen in the momentum-resolved spectral function);

• the BCS theory with electron-phonon coupling as the “pairing glue” does not account for the experi-

mental findings (see e.g. Perfetti et al. (2007))

7.2 Theory: two viewpoints on high-temperature superconductivity

To account for the experimental evidence, two main classes of theories have been put forward from the
early days. The starting point of both families is the antiferromagnetic Mott insulator, albeit with a different
emphasis:

• According to a first class of theories, the essential point is that the parent compound is an antifer-

romagnet. The key observation is that there is a T = 0 transition between an ordered phase and a
disordered (Fermi-liquid) phase at a critical doping xc . This is a quantum critical point. Strong (spin)
fluctuations – paramagnons – emanate from the quantum critical point at finite temperatures. These
critical, long-ranged spin fluctuations act as the pairing glue between electrons. At low temperature,
around this critical point, the fluctuations are so strong that the electrons form pairs, leading to a super-
conducting dome. This – essentially weak-coupling – approach was first proposed by Monthoux et al.
(1991); it is illustrated by the left panel of Fig. 7.9 and will be elaborated on in section 7.2.1.
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Figure 7.9: Two scenarios for cuprates (right panel adapted from Norman and Pépin (2003))

• According to a second class of theories, the Mott character of the parent compound is essential for
superconductivity. Strong correlations open a charge gap and cause the particles to localize. These
localized moments (only) then order antiferromagnetically at low temperatures. Upon doping, the main
quasiparticles are claimed to be spin singlets of these localized moments (“spinons”) and propagating
holes (“holons”). This “spin liquid” undergoes ordering at low enough temperatures because spinons
induce attractive interactions between holons. This theory – called “Resonating Valence Bonds” (RVB)
was put forward by Anderson (1987). It is illustrated in the right panel of Fig. 7.9 and will be developed
in section 7.2.2.

Other theories have been proposed, such as the concept of “marginal Fermi liquid” by Varma et al. (1989) or
“loop current phases” (Varma (1999), consistent with neutron experiments by e.g. Fauqué et al. (2006)), but
I will restrict to the two above classes.

7.2.1 Spin fluctuation theory: The importance of long-range fluctuations (weak coupling)

The observation of strong and rather long-ranged spin fluctuations in neutron scattering experiments has
prompted many authors to devise methods incorporating a coupling of spin fluctuations to the fermionic
degrees of freedom, either phenomenologically – by choosing a form for the spin susceptibility fitting the
available experimental data – or starting from low-energy models such as the Hubbard model.

The more phenomenological works, initiated by Monthoux et al. (1991), were spurred by pre-cuprates works
showing than in low dimensions, spin fluctuations stemming from Fermi surface instabilities – a weak-
coupling mechanism – can act as a pairing glue (Scalapino et al. (1986, 1987)), leading to d-wave super-
conductivity. An alternative weak-coupling approach also based on spin fluctuations has been proposed by
Schrieffer et al. (1989): in this work, the authors show that in a spin-density wave (SDW) background, quasi-
particles called “spin bags”, consisting of a hole surrounded by spins excitations depressing the local SDW
order (a sort of polaron), experience an attractive force to one another, leading to an s-wave superconducting
instability. This scenario is quite different from the “spin fluctuation” scenario which will be presented in the
next section, where there are strong spin fluctuations, however not in a SDW background.

Other approaches such as the fluctuation exchange approximation (FLEX) and the two-particle self-consistent
theory (TPSC) also emphasize two-particle fluctuations in the spin and charge channels (and also super-
conducting singlet channel for FLEX). As weak-coupling diagrammatic approaches, they are limited to the
weak-interaction regime. They are described in more details in appendices G.2 and G.3.

7.2.1.1 The spin-fermion model

After the early NMR experiments, Millis et al. (1990) have shown that the NMR experiments are well de-
scribed by the following phenomenological form of the spin susceptibility:
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χOZ
sp (q,ω) =

χ0

1 + ξ 2 (q −Q)2 − i ωωsf

(7.3)

In this work, the parameters χ0, ξ and ωsf are fitted to the available experimental data, with Q = (π ,π ) de-
noting the antiferromagnetic wavevector. ξ is the magnetic correlation length, ωsf the typical spin fluctuation
energy, as illustrated in Fig.7.10. This form, traditionally called the “Ornstein-Zernicke” form, can be ob-
tained from the susceptibility in the RPA approximation in the limit q→ Q and ω → 0 (see appendix I.4.2.2,
with χ0 =

1
Usp

ξ 2/ξ 2
0 and ωsf =

D
ξ 2 ).

What the NMR and inelastic neutron scattering experiments were indicating is that the spin degrees of
freedom, governed by the correlator χOZ

sp (q,ω), are “relevant” (in the renormalization group sense) low-
energy degrees of freedom in the underdoped region of the phase diagram. This prompted Monthoux et al.
(1991) to propose a superconducting pairing scenario based on the spin degrees of freedom. Spin fluctuation
theory (see Schmalian et al. (1998) for a review) revolves around this idea.

It consists in an effective phenomenological low-energy model where the fermionic degrees of freedom are
coupled to their own spin fluctuations (the so-called “spin-fermion model”):

Ssf =
∑
kσ

c̄kσ
[
−G−1

0

]
ckσ +

1
2

∑
q

[
χOZ

sp (q)
]−1 ~ϕq · ~ϕ−q +

∑
k ′
λk′−k

~ϕk ′−k ·



∑
σσ ′

c̄k ′σ~σσσ ′ckσ ′



(7.4)

Here, k ≡ (k,iω), c̄k and ck are conjugate Grassmann antiperiodic fields describing the fermionic degrees of
freedom (with spin σ =↑,↓ and non-interacting propagator G−1

0 (k ) ≡ iω − ξk); ~ϕq is a vector bosonic field
(with three components I = x , y, z) describing the spin fluctuations degrees of freedom5, λq is the coupling
constant between the fermions and the bosonic fields, and ~σ = (σx ,σy ,σ z ) is the vector of Pauli matrices. One
can check that in the absence of coupling (λ = 0), 〈ϕI (q)ϕI (−q)〉 = χOZ

sp (q).

In the 1990s, this model was introduced as a phenomenological model based on NMR and INS evidence.
It can also be thought of as having been formally derived from a weak-coupling renormalization procedure
starting from the Hubbard model (see e.g. Rech et al. (2006); Chubukov et al. (2002) for a discussion).
Indeed, functional renormalization group (fRG) studies (see Metzner et al. (2012) for a review) have shown
that, at least at weak coupling, the low-energy effective action is close to (7.4), giving an a posteriori justifi-
cation at weak coupling.

5ϕ I has bosonic commutation rules, not spin commutation rules, despite what is conveyed by the usual notation in terms of spin
variables “s”.
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Figure 7.11: The self-energy in the spin fluctuation approximation.

7.2.1.2 d-wave superconductivity in the spin-fermion model

In this section, I briefly show that d-wave superconductivity can emerge from the spin-fermion model, using
a few crude approximations. A more detailed discussion can be found e.g. in Chubukov et al. (2002).

The emergence of d-wave superconductivity in the spin-fermion model defined by Eq. (7.4) was predicted
before the discovery of cuprate superconductors (Kohn and Luttinger (1965) had argued that the Friedel
oscillations in the susceptibility due to the singularity of χ0 (q,ω = 0) at 2kF could lead to a d-wave attraction;
Béal-Monod et al. (1986); Scalapino et al. (1986, 1987) had examined the possibility of superconductivity
mediated by antiferromagnetic fluctuations or paramagnons).

This attraction can be proven in a similar way as I have derived the CDW instability in two dimensions
in appendix I.6.1.3, namely by directly assuming that the boson mode ϕ condenses and then writing the
corresponding self-consistent equations. Here, I give a slightly different derivation based on Nambu-Gor’kov
Green’s functions (Nambu (1960)), inspired from one derivation of generalized Eliashberg equations (an
extension of BCS theory taking into account the full energy dependence of the gap function and self-energy
effects, however without vertex corrections (Migdal (1958); Eliashberg (1960))). Instead of the spinor Ψ†kσ ≡[
c̄k+Q,σ , c̄k,σ

]
which I have used for the CDW instability, I define the spinor Ψ†k ≡

[
c̄k↑, c−k↓

]
to rewrite

Eq. (7.4) as:

SNambu
sf =

∑
k∈BZ,iω

Ψ†k

[
−G−1

0

]
Ψk +

1
2

∑
q

[
χOZ

sp (q)
]−1

ϕzq · ϕ
z
−q +

∑
k ′
ϕzk ′−kΨ

†

k ′ [λk′−k1]Ψk (7.5)

Here, bold symbols act in the 2 × 2 spin space. In particular, G−1
0 (k ) =

[
G−1

0 (k ) 0
0 −G−1

0 (−k )

]
. In going

from Eq. (7.4) to (7.5), I have assumed that the Brillouin zone is invariant under the inversion k → −k
and considered the simplified case of longitudinal fluctuations ϕz only. Defining the Nambu-Gor’kov Greens

function G (k ) ≡ −〈Ψ(k )Ψ† (−k )〉 and the self-energy Σ(k ) = G−1
0 (k ) −G−1 (k ) ≡

[
Σ(k ) S (k )

S∗ (k ) −Σ(−k )

]
(Σ/S is the

normal/anomalous self-energy), one gets:

G (k ) =
1(

G−1
0 (k ) − Σ(k )

) (
−G−1

0 (−k ) + Σ(−k )
)
− |S (k ) |2

[
−G−1

0 (−k ) + Σ(−k ) S (k )

S∗ (k ) G−1
0 (k ) − Σ(k )

]
(7.6)

To lowest order in the electron-boson coupling λ (i.e. neglecting vertex corrections), the self-energy reads:

Σ(k ) = −
∑
q

λqG (k + q)
[
−χOZ

sp (q)
]
λ−q (7.7)

or equivalenty Σ(k ) = −
∑

k ′ λk ′−kG (k ′)
[
−χOZ

sp (k ′ − k )
]
λk−k ′ . This diagram is illustrated in Fig. 7.11. Com-

bining Eq. (7.6) and (7.7), one finds that the anomalous self-energy S (k ), which is proportional to the
superconducting gap, obeys the equation:

S (k ) =
∑
k ′

���λk ′−k
���
2
χOZ

sp (k ′ − k )S (k ′)(
G−1

0 (k ′) − Σ(k ′)
) (
−G−1

0 (−k ′) + Σ(−k ′)
)
− |S (k ′) |2

=
∑
k ′

���λk ′−k
���
2
χOZ

sp (k ′ − k )S (k ′)

(iω ′ − ξk′ − Σ(k ′)) (iω ′ + ξ−k′ + Σ(−k ′)) − |S (k ′) |2
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For now, I suppose that the normal self-energy Σ(k,iω) is vanishing or constant (absorbed in the chemical
potential); furthermore, supposing that ξk ′ = ξ−k ′ , looking for a static solution S (k,iω) = S (k), and linearizing
for small S (k ′) (i.e. T ≈ Tc), I obtain:

S (k) = −
∑

k′,iω′

���λk′−k
���
2
χOZ

sp (k′ − k,iω ′)

ω ′2 + ξ 2
k′

S (k′) (7.8)

Let us now examine the possible solutions for this equation. If, as in BCS theory, one chooses a constant
S (k) = S, one sees that since χOZ

sp > 0, the left-hand side and the right-hand side have opposite signs, so that
such a s-wave solution is forbidden. Since χOZ

sp is sharply peaked at k′ − k = Q = (π ,π ) (see Eq. (7.3)), if
one considers k = (π ,0) on the left-hand side, then the most important contribution to the integral will be for
k′ = (0,π ). Hence, a gap function S (k) such that S (k = (π ,0)) and S (k = (0,π )) have opposite signs – i.e. a
solution with d-wave symmetry – can be a solution to this equation. 6

7.2.1.3 Spin-fluctuation theory, hot and cold spots: main results

The phenomenological susceptibility introduced in Eq. (7.3) can be tuned via ξ to approach the quantum
critical point (corresponding to ξ → ∞ at T = 0; see right panel of Fig. 7.9). The computations in the
resulting critical region account for a number of experimental results such as the temperature dependence
of the NMR data (Onufrieva et al. (1998)) (and hence the dependence of T ∗ on doping), the opening of a
pseudogap (Onufrieva and Pfeuty (1999)), STM data (Onufrieva and Pfeuty (2012)), kinks in the ARPES
dispersions (Dahm et al. (2008)). Indeed, the normal self-energy in this approximation (computed from Eq.
(7.7) and continued analytically, see Eq. (I.36) in appendix I.5) is given by:

Σ(k,ω) = −
∑
q,±

���λq
���
2
ˆ ∞

0

dω̄

π
ImχOZ

sp (q,ω̄)
nB (ω̄) + nF (±ϵk+q)

ω − iη ± ω̄ − ϵk+q

Since ImχOZ
sp (q,ω̄) is peaked at ω̄ = ωsf and q = Q, this can be approximated as:

Σ(k,ω) ≈ −
∑
±

nB (ωsf) + nF (±ϵk+Q)

ω − iη ± ωsf − ϵk+Q
(7.10)

The scattering on the Fermi surface is defined as γkF = Σ′′(kF,ω = 0) =
∑
±

{
nB (ωsf )+nF (±ϵkF+Q )

}
η(

±ωsf−ϵkF+Q

)2
+η2

. It is large for

momenta kF such that εkF+Q = ωsf. In the limit ξ → ∞, ωsf → 0, i.e. γkF is large if and only if εkF+Q ≈ 0,
i.e. if kF + Q lies on the Fermi surface. For the Fermi surface of cuprates, there are two such points in the
upper quadrant of the Brillouin zone, at the intersection of the non-interacting Fermi surface and of the
antiferromagnetic Brillouin zone boundary. At these points, the quasi-particles have a short lifetime because

6The sign of the bosonic propagator is crucial here. In the case of the electron-phonon interaction, the phononic propagator D0 is
negative and hence the gap of d -wave symmetry: had one started from the Fröhlich action, Eq. (I.38) in appendix I.6, one would have
gotten:

SNambu
eb =

∑
k∈BZ,iω

Ψ†k

[
−G−1

0

]
Ψk +

1
2

∑
q

[
−D0 (q )−1

]−1
ϕqϕ−q +

∑
k′
ϕk′−kΨ

†

k′
[
λk′−kσ

z ] Ψk
where D0 (q ) is now the phonon propagator (note the σ z matrix). When performing a similar computation as above for this action,

the minus sign in front of D0 and the σ z matrix instead of 1 lead to a cancellation of minus signs and one gets the Matsubara-frequency
version of the BCS gap equation:

S (k) = −
∑

k′,iω′

���λk′−k
���
2
D0 (k′ − k, iω′)

ω′2 + ξ 2
k′

S (k′) (7.9)

with the important difference that D0 is negative at low frequencies. Hence, this equation accepts a uniform – s-wave – solution
S (k) = S, the BCS gap.
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Figure 7.12: Kinks and hot regions in spin fluctuation theory computed from Eq. (7.10). Left: renormalized
dispersion (computed keeping only the real part of Σ). The white dashed line is the bare dispersion (t =
−0.25, t ′ = −0.3 · t). Right: MDC at ω = εF in the upper quadrant of the Brillouin zone. The white dashed
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they are scattered by spin fluctuations. These points are called “hot spots”. The real part of the above self-
energy deforms the bands with a characteristic energy scale ωsf; this results in a kink in the nodal direction.
Fig. 7.12 illustrates these features. A more detailed discussion of the doping dependence of ωsf and of the
resulting kink can be found in Manske et al. (2002).

The main advantage of spin fluctuation theory lies in the fact that it captures the momentum dependence of
the spin susceptibility and of the self-energy; a phenomenological approach, it agrees well with experiments.
However, this interesting feature is offset by the lack of control inherent to the choice of the phenomenological
form of the spin susceptibility and more generally of the low-energy model (7.4). Secondly, even within this
model, the neglect of vertex corrections implied by the form of the self-energy (Eq. (7.7)) is not justified:
contrary to the phononic case, where the vertex correction scales as

√
me/M (ratio of the electronic to the

ionic mass), for the spin-fermion coupling, there is no such Migdal theorem. While this could be seen as a
blessing to attain high critical temperatures, this has to be taken into account when computing the self-energy.

7.2.2 Another viewpoint: The importance of Mottness

The approaches presented above are valid when Mott physics do not play an important role compared to
long-ranged spin fluctuations. Another class of approaches takes a fundamentally different point of view by
asserting that the Mott phenomenon is key to understanding cuprate physics.

7.2.2.1 Resonating valence bonds (RVB): the strong-coupling scenario of high-temperature

superconductivity

The standard-bearer of this class of approaches is Anderson (1987), who has proposed that cuprate materials
should be regarded primarily as doped Mott insulators. Doping the Mott insulator frustrates the antiferro-
magnetic order, causing the electron spins to form disordered singlet pairs, or “resonating valence bonds”
(RVB, as they were called in the original paper (Anderson (1973)); see Fig. 7.13 for an illustration). In this
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“spin liquid”, the holes have a certain mobility. This pairing of localized spins in singlets explains the pseu-
dogap temperature T ∗. Above T ∗ (in the “strange” metal phase), the singlet pairs disappear. At large enough
doping and low enough temperatures, the motion of the holes becomes coherent, leading to a d-wave super-
conducting state. A central point in this approach is the realization that the antiferromagnetism of cuprates
is of Heisenberg type, namely it involves localized spins as opposed to weak-coupling itinerant antiferromag-
netism, whose main mechanism is a minimization of the kinetic energy by a halving of the Brillouin zone
(this “Slater” mechanism is discussed in appendix I.6.2.3).

The road to superconductivity can be studied by taking the U → ∞ limit of the Hubbard model, which leads
to the t − J model (see e.g. Auerbach (1994) for more details):

Ht−J = −t
∑

〈i j〉

[
c̃†iσ c̃ jσ + h.c

]
+ J

∑

i j

[
~si · ~sj −

1
4
ninj

]
(7.11)

where
∑

〈i j〉 denotes a sum over all nearest-neighbor bonds, c̃†iσ is a modified creation operator which projects

out double occupancies: c̃†iσ ≡ c
†
iσ (1−ni σ̄ ), and~si ≡ c̃†iσ~sσσ ′c̃iσ ′ (~σ is the vector of Pauli matrices), and J = 4t2

U
is

an antiferromagnetic superexchange coupling. Noting the formal similarity between this Hamiltonian and the
spin fermion action Eq. (7.5) upon integration of the ϕ fields (with the replacement J

(

cos(qx ) + cos(qy )
)

↔
1
2λ

2χOZ
sp (q,iΩ)), one can directly write the gap equation:

S (k) = −3
∑

k′,iω′

J (k′ − k)

ω ′2 + ξ 2
k′

S (k′) (7.12)

which has a d-wave solution for the same reason as the one discussed for the spin-fermion model (the
factor of 3 comes from the three spin components). The notable difference is that at this simple mean-field
level, the effective interaction is instantaneous (which has lead Anderson (2007) to question the use of the
word “pairing glue” for cuprate superconductors; the issue is however more subtle, since a more detailed
analysis of the full pairing vertex by Maier et al. (2008) stresses the importance of retarded contributions).
Other approaches such as the Gutzwiller method (Zhang et al. (1988)) have been implemented to study
superconductivity in this model.

The RVB idea can also be implemented directly in the Hubbard model by decomposing the original fermionic
operators, which carry a spin 1/2 and a charge −e, in the following way:

c†iσ = f †iσbi (7.13)

where f †iσ creates a neutral spin 1/2 particle (akin to a “singlet” state, a spinon) and bi annihilates a boson
carrying charge e, a holon. At the cost of introducing a Lagrange multiplier to constrain the overall filling,
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one can then treat the resulting “slave-boson” Hamiltonian (Coleman (1984)) in a mean-field way. Among
others, one gets a d-wave instability (Kotliar and Liu (1988a); Kotliar (1988); Kotliar and Liu (1988b)).
Among the shortcomings of this approach, one may mention that it is intrinsically uncontrolled, and leads
to an overestimation of Tc and an underestimation of antiferromagnetic correlations, probably due to its
mean-field character.

A related approach is the “dimer model” approach which also consists in zeroing in on cleverly chosen states
of the Hilbert state and diagonalizing the corresponding Hamiltonian (see e.g. Punk et al. (2015) for a recent
work).

These approaches give valuable insights into the relevant physical degrees of freedom in the system. Yet, they
lack a control parameter to assess their reliability with respect to the exact solution of the Hubbard model.

7.2.2.2 Cluster DMFT, or the importance of local physics and short-range spin correlations

As discussed in part 2, dynamical mean field theory places local physics at the center of the stage. In single-
site DMFT (section 2.1), the Hubbard problem is dealt with by replacing the space-dependent lattice problem
by a time-dependent or dynamical local problem. This problem describes an impurity embedded in a nonin-
teracting bath mimicking the lattice degrees of freedom; the coupling of this bath to the impurity is described
by a dynamical mean-field ∆(ω). This much simpler problem is solved exactly by powerful continuous-time
Quantum Monte-Carlo techniques (see chapter 11 for details). The mean-field ∆(ω) is adjusted in such a way
that at the end of the calculation, the impurity Green’s function coincides with the local component of the
lattice’s Green’s function. The sole – if drastic – approximation involved in the process is the assumption that
the self-energy is local, Σ(k,iω) ≈ Σ(iω). Nevertheless, keeping frequency-dependence of the self-energy and
of the mean-field ∆(ω) (at variance with “static” mean field theories) allows DMFT to interpolate between a
Fermi liquid at weak interactions and a Mott insulator in the atomic limit (including the transition between
the two phases).

However, as we have just seen, experiments on cuprates show direct evidence of the nonlocality of the self-
energy.

7.2.2.2.1 Basic description: DCA and CDMFT To improve on the aforementioned limitation, a cluster
version of DMFT has been introduced which replaces the lattice problem by a finite-size cluster of impurities.

There are many ways of reinstating spatial dependence in the impurity model. One, called cellular DMFT
(CDMFT, Lichtenstein and Katsnelson (2000); Kotliar et al. (2001)) is based on a real-space picture: it
replaces the single-site impurity problem with an impurity model with several (Nc) impurities. The self-
energy computed from this model has thus e.g. intersite components, instead of only local components. This
first method breaks translation invariance within the cluster. A second variant, called the dynamical cluster
approximation (DCA, Hettler et al. (1998, 1999)), is based on a momentum-space picture, namely on a coarse
graining of the Brillouin zone into Nc patches. Examples of such patches are shown in Fig. 7.14(d). The
self-energy computed in the impurity model is thence a piecewise constant function on these patches. DCA
can also be understood in real space by considering a real-space cluster of impurities with periodic boundary
conditions.

Thus, in cluster DMFT, short-range correlations within the cluster are taken into account and the self-energy
is now approximated by the coarse-grained self-energy of the finite-size cluster.

An extended review of cluster DMFT and of DCA results can be found in Maier et al. (2005a).

7.2.2.2.2 Insights in cuprate physics Cluster DMFT methods have been applied to the 2D Hubbard
model with tight-binding parameters relevant for cuprate materials.

Numerous studies have demonstrated that cluster DMFT captures a large part of the physics of cuprate
superconductors. This includes momentum-differentiation and in particular the pseudo gap phase or Fermi
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Figure 7.14: Cluster DMFT (DCA) results in two dimensions (energies expressed in units of the half-
bandwidth D). (a) (T ,U ) phase diagram. Left of the CDMFT region: metallic solution; right: Mott insulating
solution (from Schäfer et al. (2015a)) (b) Double occupancy vs. temperature for various cluster sizes Nc and
U ’s (from Moukouri and Jarrell (2001)) (c) Inverse static AF susceptibility vs. temperature for various cluster
sizes. Inset: TNéel as a function of Nc (from Jarrell et al. (2001)) (d) Various DCA Brillouin zone tilings (from
Gull et al. (2010))

arcs (Maier et al. (2000); Huscroft et al. (2001); Parcollet et al. (2004); Civelli et al. (2005); Kyung et al.
(2006); Ferrero et al. (2008); Kancharla et al. (2008); Werner et al. (2009); Ferrero et al. (2009); Gull et al.
(2009, 2010, 2013)), and d-wave superconductivity (Maier et al. (2004, 2005b); Capone and Kotliar (2006);
Maier et al. (2006); Civelli et al. (2008); Kancharla et al. (2008); Civelli (2009); Kyung et al. (2009); Gull
et al. (2013)). These results have been studied with cluster sizes up to Nc = 16 in the superconducting region
(Gull et al. (2013)); a minimal cluster of two sites only (Nc = 2), however, already captures the formation of
Fermi arcs (Ferrero et al. (2008)), underlining the importance of singlet physics. The values of U reached by
cluster DMFT are out of the reach of the weak-coupling methods discussed above.

Thus, cluster DMFT arguably captures the “big picture” of cuprate physics. Two elements are however miss-
ing: long-range antiferromagnetic fluctuations, and convergence with respect to the number of cluster sites
or momentum patches Nc .

7.2.2.2.3 Dependence on Nc In this section, I focus on the influence of the number of patches Nc .

The cluster size Nc (be it the number of impurity sites or the number of patches) provides a control param-
eter to dynamical mean field theory. In the same way as finite-site methods such as exact diagonalization
or quantum Monte-Carlo methods can be analyzed by studying the dependence of their observables on the
system size, the reliability of cluster DMFT can be quantified by looking at the Nc dependence of its observ-
ables. Contrary to finite-size methods, however, cluster DMFT, as a mean field theory, is formulated in the
thermodynamic limit.

Fig. 7.14 illustrates the dependence on Nc of selected observables.
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In panel (b), the double occupancy 〈n↑n↓〉 can be seen to be independent of cluster size at high temperatures
(and even equal to the single-site result): this illustrates the fact that single-site DMFT provides a good
description at high and intermediate temperatures. In general, cluster DMFT converges fast with respect to Nc

for local thermodynamic quantities (Capone et al. (2004)). At lower temperatures, however, 〈n↑n↓〉 becomes
strongly dependent on Nc : for the largest cluster sizes, one even sees a downturn of the double occupancy,
indicating an onset of insulating behavior at very low temperatures. This observation is corroborated by
another method, the dynamical vertex approximation (explained in section G.4 of the appendix).

In panel (c), one sees that the AF spin susceptibility also depends on Nc at low temperatures and that, as
shown in the inset, the extrapolated Néel temperature – which should vanish as a result of the Mermin-
Wagner theorem, converges very slowly as a function of Nc . This indicates that the fluctuations responsible
for the destruction of long-range AF order in two dimensions are essentially long-range spin fluctuations, not
captured by cluster DMFT unless the cluster is very large.

The short-range fluctuations included by cluster DMFT, however, strongly modify the single-site picture. They
quantitatively change the value of the critical interaction for the metal-to-Mott insulator transition (panel
(a)): Uc is decreased from U

single−site
c /D ≈ 2.5 to U cluster

c /D ≈ 1.5.

In Gull et al. (2010), the influence of the momentum-space coarse graining on the momentum-selective Mott
transition is studied systematically. While the maximal resolution obtained in this method (Nc = 16, see
rightmost sketch of panel (d) in Fig. 7.14) allows to differentiate important regions such as the antinodal
and the nodal region, the resolution is still quite coarse, and one is still far from convergence with respect to
Nc .

7.2.2.2.4 Conclusions Cluster DMFT yields interesting and precise insights intro cuprate physics: it has
a control parameter, namely the cluster size Nc which can in principle be used to quantify the error made at
one cluster size with respect to the next.

The exponential complexity of the Hubbard model, however, comes back in the form of the Monte-Carlo sign
problem which becomes more and more acute as Nc grows. This effectively precludes the convergence of
cluster DMFT with respect to Nc at low temperatures. The situation is even worse for more realistic systems
such as multiorbital models, which are currently simply out of reach for cluster DMFT.

Thus, new methods must be devised to overcome this limitation.

7.2.3 Open questions: short-range vs. long-range fluctuations

The class of approaches reviewed in the previous two sections share commonalities: among others, they can
describe d-wave superconductivity, the opening of a pseudogap, the ordering to an antiferromagnetic phase
at low doping. In either case, however, the mechanisms behind the phenomena are poles apart: the AF gap
described by spin fluctuation theory is essentially a Slater gap of itinerant antiferromagnetism, while the AF
strong-coupling is a Heisenberg gap; the pseudogap is driven in one case by long-range spin fluctuations, in
the other by short-range fluctuations of localized moments.
The experimental evidence, however, yields clear-cut conclusions: to describe cuprates, one should incorpo-
rate at least two ingredients: (very) strong correlations (absent in spin-fluctuation theories and the likes,
but captured by CDMFT) and (quite) large antiferromagnetic correlation lengths, out of cluster DMFT’s
reach but described by spin fluctuation theory.

Recently, extensions of DMFT such as dual fermion and dual boson methods (Rubtsov et al. (2008, 2012))
or the dynamical vertex approximation (DΓA, presented in appendix G.4) have been developed to bridge the
gap between both worlds. They are however saddled with issues of their own – related to the complexity of
grappling with (or circumventing) parquet equations.
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In the next chapter, I describe a method that overcomes these difficulties by placing the focus on bosonic
fluctuations – as in spin fluctuation theory – while still capturing local physics, without having to deal with
the parquet equations. Its starting point is the local approximation of a three-leg vertex which is easier to
manipulate than the four-leg vertices of DΓA.



8
A local approximation to the three-leg vertex,

TRILEX

In the previous chapter, I have shown that the properties of cuprate materials can be approached from
two main vantage points: one – the family of “fluctuation theories” – places the emphasis on long-range
two-particle fluctuations with a more or less phenomenological underpinning; the other – the family of
“doped Mott insulator theories” – stresses instead “Mottness” as the indispensable beachhead to enter cuprate
territory.

Both schools of thought contain appealing ingredients towards the understanding of cuprate materials. While
endeavors to capture both long-range fluctuations and strong-interaction physics such as the dual fermion and
dual boson methods or the dynamical vertex approximation (DΓA) have been proposed, they are stalemated
by the formidable complexity of parquet equations.

In this chapter, I describe a method aimed at solving this conundrum. The focus is on the Hubbard model,
but the arguments also hold for more general strongly-correlated models.

8.1 Motivations

In this section, I summarize the teachings of the previous chapter by establishing a theoretical wish-list of the
indispensable ingredients of a method designed to describe strongly-correlated materials.

8.1.1 Strong-coupling physics

We want to capture Mott physics.

For this, the mechanism of local Coulomb repulsion between electrons must be captured in a dedicated way,
beyond mean-field theory. Dynamical mean-field theory (chapter 2.1) is a tool of choice to achieve this
goal, since its guiding principle is the many-body description of local physics through the solution of a local
impurity model.

This impurity model is used to approximate the lattice self-energy by the impurity self-energy, a local or (in
the cluster case) short-range quantity. This way, local correlations are treated in a nonperturbative way, and
the Mott transition with the accompanying short-range fluctuations (in cluster DMFT) is captured. Long-
range correlations are out of reach because of the large complexity of solving an extended impurity problem.

In the dynamical vertex approximation (DΓA, Toschi et al. (2007), explained in appendix G.4) and dual
methods (Rubtsov et al. (2008, 2012)), the focus is shifted from the one-particle impurity self-energy to the
two-particle impurity vertex function. In DΓA, the irreducible vertex is approximated by a local vertex. This
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approximation is based on the insight that the more “irreducible” objects are, the more local they become.
This vertex is then used to approximate the lattice vertex function (F) and from it construct a momentum-
dependent lattice self-energy Σ(k,ω). Since parquet or Bethe-Salpether equations are solved to compute F

and then Σ, the latter contains information about some long-range fluctuations.

8.1.2 Nonlocal fluctuations and correlations

We want long-range fluctuations in the right channel (mainly spin) to be properly taken into account.

For this, bosonic fluctuations must be treated in a dedicated way. In particular, their momentum dependence
is crucial. Moreover, they should have a feedback effect of the self-energy. This is what is done in spin
fluctuation theory (section 7.2.1), the fluctuation-exchange approximation (FLEX, appendix G.2) or two-
particle self-consistent theory (TPSC, appendix G.3), where the self-energy is constructed as the product of
the fermionic propagator with the relevant bosonic fluctuations (see Eqs.7.10-G.13-G.17). Thus, the self-
energy acquires a nontrivial momentum dependence due to the fluctuations of the system.

8.1.3 Simplicity

We want a method than can be extended to models beyond the single-band Hubbard model.

The dynamical vertex approximation and dual methods correct for the main shortcoming of DMFT – namely
the locality of the self-energy – but are computationally very demanding. For instance, the dynamical vertex
approximation in its full implementation has been applied only to an eight-site Hubbard molecule (Valli et al.
(2015)), and one would be hard pressed to extend even its ladder version to cluster impurity models, let
alone multiorbitals models. On the other hand, dual methods resort to dual fields which are difficult to trace
back to physical fluctuations, and also require the choice of certain classes of nonlocal diagrams.

8.1.4 Control

We want a method where the approximation to the exact solution can be systemically controlled.

The only well-defined control parameter is the “size” Nc of the cluster impurity model of cluster DMFT, which
corresponds to the number of sites in cellular DMFT (CDMFT) or to the number of momentum patches in the
dynamical cluster approximation (DCA). For given observable Ô (Nc), one can perform a finite-size analysis,
namely one can in principle check that Ô (Nc) converges to a certain value for 1/Nc → 0.

The big catch in cluster DMFT methods is that in interesting parameter regimes, one cannot reach large
enough Nc to perform this extrapolation.

8.1.5 Conclusion: A combination of all this?

The method we propose to meet the above requirements is based on the following ideas:

1. Since bosonic modes are important, they should appear explicitly in the action. This is achieved by
decoupling the Hubbard interaction with a Hubbard-Stratonovich field.

2. Since local physics must be treated nonperturbatively, an effective many-body impurity model is used
to represent the lattice problem and solved nonperturbatively.

3. Since nonlocal correlation effects should be retained, what is extracted from the impurity model is not
the one-particle self-energy, but a more sophisticated correlator.

4. Since the method must be simple enough, not a four-leg impurity vertex, but the three-leg electron-
boson impurity vertex, is used to approximate the corresponding lattice vertex. From this vertex,
momentum-dependent self-energies are constructed.
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G(q+ k, iω + iΩ)

G(k, iω)

W η(q, iΩ)

G(q+ k, iω + iΩ)

Λη
imp(iω, iΩ)

Σ(k, iω) ≈

P η(q, iΩ) ≈

(a)

(b)

Σ
η

Figure 8.1: Lattice self-energy Σ and polarization Pη in the TRILEX approximation. η denotes the channel. G
(W η) is the fermionic (bosonic) propagator. Ληimp (iω,iΩ) is the impurity vertex in channel η.

5. Finally, our method lends itself to a cluster extension: we thus have a control parameter Nc. The
conjecture is that for a given observable Ô, the series Ô (Nc) converges faster than in cluster DMFT
schemes thanks to the inclusion of long-range physics.

8.2 An intuitive picture

In the “fluctuation-exchange” approaches to the cuprates, correlations are described by a self-energy com-
puted as the product of the electronic propagator G with the relevant fluctuation propagators which I shall
callW η (η denoting “spin” or “charge”, for instance):

Σfluctuation (k,iω) ∼ −
∑

q,iΩ,η

λ
η
qGk+q (iω + iΩ)W

η
q (iΩ)λ

η
q (8.1)

The fluctuations are bosonic fields ϕη obtained by decoupling the interaction term via a Hubbard-Stratonovich
transformation. W η is their propagator W η

= −〈ϕηϕη〉. λη is the bare coupling between the fermionic fields
and the bosonic Hubbard-Stratonovich fields ϕη .

On the other hand, DMFT approximates the self-energy by a local impurity self-energy:

ΣDMFT (k,iω) = Σimp (iω) (8.2)

The connection between these two approximations is given by the exact expression of the self-energy in a
problem describing the coupling of electrons with fluctuating fields ϕη :

Σexact (k,iω) = −
∑

q,iΩ,η

λ
η
qGk+q (iω + iΩ)W

η
q (iΩ)Λη (k,q; iω,iΩ) (8.3)

Here, the central quantity is the renormalized electron-boson coupling vertex1 Λη (k,q,iω,iΩ), which encodes
the effect of correlations on the bare vertex λ

η
q . Diagrammatically, it amounts to the connected three-point

correlation function 〈cc†ϕη〉 stripped of its “legs” (hence represented as a triangle).

The fluctuation exchange form of Eq. (8.1) comes from neglecting the vertex corrections to λη , namely by
approximating Λη ≈ λη . While this approximation is justified by Migdal’s theorem in the case of the coupling

1It must not be confounded with the fully irreducible, four-leg vertex of DΓA.
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of electrons to phonons (in this case Λ−λ ∼
√
me/M, where M is the ionic mass), for the spin-fermion problem

or more general actions, there is no a priori reason to neglect vertex corrections.

The DMFT approximation to the self-energy is a good example where local vertex corrections are crucial.
Indeed, Eq. (8.2) can be cast in the form of Eq. (8.3):

Σimp (iω) = −
∑
iΩ,η

ληGimp (iω + iΩ)W
η
imp (iΩ)Λ

η
imp (iω,iΩ) (8.4)

Here, the momentum dependence of G,W and Λ is neglected but their full frequency dependence is retained.
By construction, this formula gives the exact impurity self-energy. At half-filling, in the strong-correlation
limit, where Σimp is insulating (it is diverging at low frequencies), replacing Λ

η
imp (iω,iΩ) by the bare value

λη yields a metallic self-energy, even if an insulating propagator Gimp (iω) is used (for more details, see the
discussion in section 5.3.2, or Ayral et al. (2012), included in chapter O.1). This indicates that the Mott
mechanism is intrinsically linked to the frequency structure of the vertex. Still, the DMFT self-energy given
by Eq.(8.4) is local.

The idea of our method is to use the exact form Eq. (8.3) to construct a momentum-dependent self-energy
(as in fluctuation theories) which can still describe Mott physics (as in DMFT).

This is achieved by replacing the momentum-dependent electron-boson coupling vertex Λη (k,q,iω,iΩ) by a
local vertex computed from an impurity model:

Λη (k,q,iω,iΩ) ≈ Λ
η
imp (iω,iΩ)

The resulting self-energy is illustrated in panel (b) of Fig. 8.1. While the local vertex captures strong-
correlation physics (as in DMFT), the momentum-dependence of the self-energy comes from the momentum-
dependence of G and more importantly W (as in fluctuation theories). In the U → 0 limit, Λimp naturally
becomes the bare vertex λ, so that one recovers fluctuations theories, while in the t → 0 limit, all propagators
become local and the vertex reduces to the atomic-limit vertex, by construction: thus, one recovers DMFT at
strong-coupling.

In the following section, I give a formal derivation of this method. In particular, I address the following
issues:

• how can one go from a fermion-only model to a fermion-boson coupling problem?

• how can one cast this approximation as the approximation of a functional?

• what impurity model has to be solved? what are the dynamical mean fields?

8.3 Functional derivation

In this section, I derive the main equations of the method with a focus on energy functionals.

8.3.1 From the Hubbard model to an electron-boson coupling problem

The starting point is the single-band Hubbard model. To establish notation, I recall its Hamiltonian form:

HHubbard =
∑
RR′σ

tRR′c
†

RσcR′σ +U
∑
R

nR↑nR↓ (8.5)

R denotes a point of the Bravais lattice, σ =↑,↓, tRR′ is the tight-binding hopping matrix (its Fourier transform
is ε (k)), U is the local Hubbard repulsion, c†Rσ and cRσ create and annihilate electrons in a state localized
around site R, n ≡ n↑ + n↓, with nσ ≡ c†σcσ . The action corresponding to this model reads:
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See = c̄u
[
−G−1

0

]
uv

cv +
1
2
UnR↑τnR↓τ (8.6)

Latin indices u, v, w . . . gather space (R ∈ BL), imaginary time (τ ∈ [0,β[) and spin: u ≡ (R,τ ,σ ). Repeated
indices are summed over (Einstein convention); summation may mean continuous integration or discrete
summation, namely

∑
u =

∑
R∈BL
´ β

0 dτ
∑
σ=↑,↓. c̄Rτ σ and cRτ σ are conjugate β-antiperiodic Grassmann fields,

while G0,uv is the non-interacting fermionic propagator: G−1
0,σ (k,iω) = iω + µ − ε (k), iω denoting fermionic

Matsubara frequencies and µ the chemical potential.

8.3.1.1 Rewriting in terms of density and spin operators

Let us for the time being focus on the interaction term:

Sint =
1
2
UnR↑τnR↓τ (8.7)

From the original fermionic operators, let us define the following operators, for I = 0,x ,y,z:

nRτ ,I ≡
∑
σσ ′

c̄Rστσ
I
σσ ′cRσ ′τ (8.8)

where σ0 is the identity matrix and σx/y/z are the Pauli matrices. Hence, n0 = n↑ + n↓, nz = sz , nx = sx etc. I
now proceed to show that the Hubbard interaction term, Eq. (8.7), can be written in terms of these operators
up to a constant shift of the chemical potential.

There are several ways of performing this rewriting. If one sums over all possible I indices and define the
numbers U 0 ≡ U ch, U x = U y = U z ≡ U sp, one gets, using the properties of the Pauli matrices (I = 0,x ,y,z) :

1
2

∑
I

U InInI =
1
2
c̄ucv c̄wclσ I

uvσ
I
wlU

I

=
1
2
c̄ucv c̄wclδuvδwlU

ch +
1
2
c̄ucv c̄wcl (2δulδvw − δuvδwl )U

sp

=
1
2
c̄ucu c̄vcvU ch +

1
2
(2c̄ucv c̄vcu − c̄ucu c̄vcv )U sp

=
1
2

(
2n↑n↓ + n↑n↑ + n↓n↓

)
(U ch − 3U sp)

Using nσnσ = nσ (which is nothing but the Pauli principle), one obtains, up to a density term which can be
absorbed in the chemical potential, 1

2
∑

I U
InInI = Un↑n↓, provided

U = U ch − 3U sp (8.9)

Since the Hubbard interaction is now written in terms of a density-density term and a term of the form ~s · ~s,
we call this rewriting a “Heisenberg” rewriting. Similarly, if one decides to sum only on the I = 0 and I = z

indices, one gets:

1
2

(
U chnn +U spszsz

)
=

1
2
U ch (

n↑ + n↓
)2
+

1
2
U sp (

n↑ − n↓
)2
=

(
n↑n↓ +

n

2

)
(U ch −U sp)

so that the Hubbard term is recovered up to a chemical potential term provided

U = U ch −U sp (8.10)

This rewriting is called “Ising” rewriting in analogy with the form of the interaction term of the Ising model.
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8.3.1.2 Channel decomposition and Hubbard-Stratonovich transformation

Both above rewritings can be gathered in a unified notation, namely the interaction term can be rewritten,
up to a density term which can be absorbed in the chemical potential:

Sint =
1
2
Uα βnαnβ (8.11)

where Greek indices denote α ≡ (R,τ , I ) (where I runs over a subset of {0,x ,y,z} which depends on the
rewriting, Heisenberg or Ising), and nα ≡ c̄uλuvαcv . One recovers the Hubbard model by specifying (I recall:
u = (R,τ ,σ ), v = (R′,τ ′,σ ′), α = (R′′,τ ′′, I )...):

λuvα ≡ σ I
σσ ′δR−R′δR′−R′′δτ−τ ′δτ ′−τ ′′ (8.12)

Uα β ≡ U IδI JδR−R′δτ−τ ′ (8.13)

but I will keep the generic form (8.11) for the rest of the derivation, as it encompasses a large spectrum of
interaction terms, including nonlocal and multiorbital interactions. I now decouple the interaction (8.11)
with a real bosonic Hubbard-Stratonovich field ϕα :

e−
1
2Uα β (c̄uλuvα cv )(c̄w λwxβ cx ) =

ˆ
D

[
ϕ
]
e
− 1

2ϕα [−U −1]α βϕα±λuvαϕα c̄ucv (8.14)

In principle, the interaction kernel
[
−U −1

]
α β

should be positive definite for this integral to be convergent.

Should it be negative definite, positive definiteness can be restored by redefining ϕ → iϕ and λ → iλ, which
leaves the final equations unchanged. After this transformation, the electron-electron action (8.6) becomes a
mixed electron-boson action with a Yukawa-type coupling between the bosonic and the fermionic field:

Seb = c̄u
[
−G−1

0

]
uv

cv +
1
2
ϕα

[
−U −1

]
α β

ϕβ + λuvα c̄ucvϕα (8.15)

Here, I have chosen the minus sign for the Yukawa coupling in Eq. (8.14). This action will be the starting
point of the derivation.

At this point, one can notice the analogy between out starting point Eq. (8.15) and the spin-fermion and
Fröhlich actions, Eqs (7.4) and (I.38) (in appendix I.6), respectively. Indeed, this action captures the very
general coupling of a fermionic field c̄, c with bosonic degrees of freedom ϕα . These degrees of freedom may
be physical (as is the case for the Fröhlich action) or auxiliary, as in the spin-fluctuation case or when the ϕ
field stems from the Hubbard-Stratonovich decoupling of a quartic fermionic interaction term. In the latter
case, there is an infinity of Hubbard-Stratonovich fields for a set interaction term. This well-known ambiguity
– which is present, among others, in any static mean field theory – is discussed in the next subsection.

8.3.1.3 The Fierz ambiguity

Before carrying on with the derivation, let us discuss the subleties associated with the decoupling and the
subsequent introduction of ϕI . Due to the freedom in rewriting the interaction term, there are several possible
Hubbard-Stratonovich decoupling fields. Since the reshuffling is exact, an exact treatment of the mixed
fermion-boson action Seb would lead to exact results. However, approximations to the electron-boson action
will lead to a priori different results depending on the choice of the decoupling.

This ambiguity – called the Fierz ambiguity – has been thoroughly investigated in “functional integral” liter-
ature in the past (Castellani and Castro (1979); Cornwall et al. (1974); Gomes and Lederer (1977); Hamann
(1969); Hassing and Esterling (1973); Macêdo et al. (1982); Macêdo and Coutinho-Filho (1991); Schulz
(1990); Schumann and Heiner (1988)) and in more recent years (Baier et al. (2004); Bartosch et al. (2009);
Borejsza and Dupuis (2003, 2004); Dupuis (2002)) in the context of “partial bosonization” within the func-
tional renormalization group (fRG) framework. There is no a priori heuristics to find an optimal decoupling
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Guv
Wαβ

u v α β Λuvα

α

u v

χuvα

α
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Figure 8.2: Graphical representation of the diagrammatic objects of the electron-boson model (Eq. 8.15): the
fermionic propagatorGuv (Eq. (8.17c)), the bosonic propagatorWα β (Eq. (8.23)), the three-point correlation
function χuvα (Eq. (8.28)) and the three-leg vertex Λuvα (Eq. (8.29)) . Note that the first index, u, of χuvα
corresponds to an outgoing leg, while it is an ingoing leg in Λuvα .

without previous knowledge of the physically relevant instabilities of the system, except when it comes to
symmetries. At least, one may require the decoupling to preserve the symmetry of the original Hamiltonian,
for instance spin-rotational symmetry. Apart from these symmetry reasons, in most cases of physical interest,
where several degrees of freedom – charge, spin, superconducting fluctuations... – are competing with one
another, the conventional wisdom is that many decoupling channels should be taken into account. This am-
biguity can only be dispelled by an a posteriori control of the error with respect to the exact solution. As we
will see in a later section, our method comes with such a control parameter, the cluster size Nc.

8.3.2 Three-particle irreducible formalism

In this subsection, I construct K [G,W ,Λ], the three-particle irreducible (3PI) functional. This construction
has first been described in the pioneering works of de Dominicis and Martin (1964a,b). It consists in succes-
sive Legendre transformations of the free energy of the interacting system.

Let us first define the free energy of the system in the presence of linear (hα ), bilinear (Bα β , Fuv) and trilinear
sources (λuvα , which are already present by construction) coupled to the bosonic and fermionic operators,

Ω[h,B,F ,λ] ≡ − log
ˆ

D[c̄,c,ϕ]e−Seb+hαϕα− 1
2ϕα Bα βϕβ−c̄u Fuv cv (8.16)

Ω[h,B,F ,λ] is the generating functional of correlation functions, viz.:

φα ≡ 〈ϕα 〉 = −
∂Ω

∂hα
(8.17a)

W nc
α β ≡ −〈ϕαϕβ 〉 = −2

∂Ω

∂Bβα
(8.17b)

Guv ≡ −〈cu c̄v 〉 =
∂Ω

∂Fvu
(8.17c)

The above correlators contain disconnected terms, as indicated by the superscript “nc” (for “non-connected”).
The graphical representations of the main diagrammatic objects are shown in Fig. 8.2. Wα β/W nc

α β
is depicted

by an unoriented line since it is the correlator of real fields (Wα β =Wβα ). If the legs of an object fi j have a
certain direction, then the legs of ∂/∂ fi j have the opposite direction.

8.3.2.1 First Legendre transform: renormalization of propagators

I now define a first Legendre transform with respect to the sources h, B and F :

Γ2[φ,G,W nc,λ] ≡ Ω[h,F ,B,λ] − Tr (FG ) +
1
2

Tr
(

BW nc)
+ Tr (hφ) (8.18)
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The trace operator is defined as TrAB = AuvBvu for two-leg quantities, and TrAB = AuBu for one-leg quantities.
By construction, the sources are related to the derivatives of Γ2 through the reciprocal relations:

∂Γ2

∂Gvu
= −Fuv (8.19a)

∂Γ2

∂W nc
βα
=

1
2
Bα β (8.19b)

∂Γ2

∂hα
= φα (8.19c)

In a fermion-only context, Γ2 is often called the Baym-Kadanoff functional (Baym and Kadanoff (1961); Baym
(1962)) or effective action. One can decompose it in the following way:

Γ2[φ,G,W nc,λ] = Γ2,0 + Ψ[φ,G,W nc,λ] (8.20)

Γ2,0 ≡ Γ2[φ,G,W nc,λ = 0] is the non-interacting contribution, while Ψ is defined as:

Ψ[φ,G,W nc,λ] ≡
ˆ 1

0
dx
∂Γ2[φ,G,W nc,xλ]

∂x
(8.21)

The computation of Γ2[φ,G,W ,λ = 0] is straightforward since in this case relations (8.17c-8.17b-8.27) are
easily invertible (as shown in appendix L.1), yielding:

Γ2[φ,G,W ,λ] = −Tr log
[
G−1

]
+ Tr

[(
G−1 −G−1

0

)
G

]

+
1
2

Tr log
[
W −1

]
+

1
2

Tr
[(
W − φ2

)
U −1

]

+Ψ[φ,G,W ,λ] (8.22)

where the connected correlation function has been defined as:

Wα β ≡ −〈(ϕα − φ)
(
ϕβ − φ

)
〉 =W nc

α β + φ
2 (8.23)

The physical Green’s functions (obtained by setting F = B = 0 in Eqs. (8.19a-8.19b)) obey Dyson equations:

Σuv =
[
G−1

0

]
uv
−

[
G−1

]
uv

(8.24a)

Pα β =
[
U −1

]
α β
−

[
W −1

]
α β

(8.24b)

where the fermionic and bosonic self-energies have been defined as functional derivatives of Ψ with respect
to the propagators:

Σuv ≡
∂Ψ

∂Gvu
(8.25a)

Pα β ≡ −2
∂Ψ

∂Wβα
(8.25b)

The two Dyson equations (8.24a-8.24b) and the functional derivative equations (8.25a-8.25b) form a closed
set of equations that can be solved self-consistently once the dependence of Ψ on G andW is specified.

The functional Ψ[φ,G,Wc,λ] is called the Almbladh functional (Almbladh et al. (1999)). It is the extension
of the Luttinger-Ward functional Φ[G] (Luttinger and Ward (1960); Baym (1962)), which is defined for
fermionic actions, to mixed electron-boson actions. While Φ[G] contains two-particle irreducible graphs with
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∈ Φ[G, v] ∈ Ψ[G,W, λ](a) (b)

Figure 8.3: Simplest contribution to 2PI functionals. (a) Luttinger-Ward functional Φ (b) Almbladh functional
Ψ. Solid (wiggly) lines stand for G (W ), while small dots stand for λ.

∈ K[G,W,Λ](a) /∈ K[G,W,Λ](b)

Figure 8.4: Examples of diagrams contributing (a) or not (b) to the 3PI functional K . Solid (wiggly) lines
stand for G (W ), while large dots stand for Λ.

fermionic linesG and bare interactionsU (see e.g. diagram (a) of Fig. 8.3), Ψ[φ,G,Wc,λ] contains two-particle
irreducible graphs with fermionic (G) and bosonic (W ) lines, and bare electron-boson interactions vertices λ
(see e.g. diagram (b) of Fig. 8.3).

Both Φ and Ψ can be approximated in various ways, which in turn leads to an approximate form for the
self-energies, through Eqs (8.25a-8.25b). Any such approximation, if performed self-consistently, will obey
global conservation rules (Baym and Kadanoff (1961)). A simple example is the GW approximation, which
consists in approximating Ψ by its most simple diagram (diagram (b) of Fig. 8.3)2:

ΨEDMFT[GR,R′ ,WR,R′ ,λRRR] =
1
2

∑
RR′

λRRRGRR′WRR′GR′RλR′R′R′

DMFT (chapter 2), EDMFT (explained in section 5.1) and GW+EDMFT (explained in section 5.2) are more
sophisticated examples, as discussed in Ayral et al. (2013): DMFT and EDMFT consist is approximating Φ

and Ψ by the sum over all lattice sites of the exact Φ and Ψ with local propagators, namely:

ΦDMFT[GR,R′] =
∑

R∈BL

Φexact[GRR]

ΨEDMFT[GR,R′ ,WR,R′ ,λRRR] =
∑

R∈BL

Ψexact[GRR,WRR,λRRR]

TheGW+EDMFT method, on the other hand, consists in adding nonlocal corrections to the EDMFT functional
in the form of GW diagrams:

ΨGW +EDMFT[GR,R′ ,WR,R′ ,λRRR] =
∑

R∈BL

Ψexact[GRR,WRR,λRRR] +
1
2

∑
RR′,R,R′

λRRRGRR′WRR′GR′RλR′R′R′

I now perform an additional Legendre transform to go one step further in terms of irreducibilty.

8.3.2.2 Second Legendre transform: renormalization of the three-leg vertex

I introduce the Legendre transform of Γ2 with respect to λ:

Γ3[φ,G,W , χnc] ≡ Γ2[φ,G,W ,λ] + Tr
(
λχnc) (8.26)

2The bare coupling stemming from a Hubbard-Stratononich transformation is local, hence the notation λRRR instead of the more
general λRR′R′′
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where the trace denotes: TrAB = AabαBabα and χnc
uvα is the three-point correlator:

χnc
uvα ≡ 〈cu c̄vϕα 〉 = −

∂Ω

∂λvuα
(8.27)

The connected three-point function χ and the three-leg vertex Λ are defined as:

χuvα ≡ 〈cu c̄v (ϕα − φα )〉 = χ
nc
uvα +Guvφα (8.28)

Λuvα ≡
[
G−1

]
xu

[
G−1

]
vw

[
W −1

]
α β

χwxβ (8.29)

Λ is the amputated, connected correlation function (depicted in Fig. 8.2). I now define the three-particle
irreducible functional K as:

K [φ,G,W ,Λ] ≡ Ψ[φ,G,W ,λ] + Tr
(
λχnc) − 1

2
ΛuxαGwxGuvWα βΛwvβ (8.30)

K is the three-particle irreducible (3PI) functional (it was first introduced in de Dominicis and Martin (1964b)
as K 3/2). A 3PI diagram is defined as follows: for any set of three lines whose cutting leads to a separation
of the diagram in two parts (“an articulation triplet”), one and only one of those parts is a simple three-
leg vertex (such articulation triplets are called “trivial”). For instance, diagram (b) of Fig 8.3 contains one
articulation triplet, but both disconnected parts are simple three-leg vertices. Conversely, one can check that
diagram (a) of Fig. 8.4 contains only trivial articulation triplets, it is 3-particle irreducible. Diagram (b) has
nontrivial articulation triplets, it is not 3PI.

Let us now show that Λ obeys the equivalent of Dyson’s equations at the 3PI level. Combining (8.30) and
(8.22) trivially leads to:

Γ3[φ,G,W ,Λ] = Γ2,0 +K [φ,G,W ,Λ] +
1
2
ΛuwβGuvGxwWβαΛxvα (8.31)

Furthermore, since λuvα =
∂Γ3

∂χuvα
=

∂Γ3
∂Λwxβ

∂Λwxβ
∂χuvα

, decomposing both factors using (8.31) and (8.29) yields:

λuvα =

(
∂K

∂Λwxβ
+GwsGrxWβγΛr sγ

) (
G−1
vwG

−1
xuW

−1
βα

)
= G−1

vwG
−1
xuW

−1
βα
∂K

∂Λwxβ
+ Λuvα

Hence, the three-leg vertex Λ is related to K by the relation:

Λuvα = λuvα + Kuvα (8.32)

where Kuvα , the generalization of the self-energy at the three-particle irreducible level, has been defined as:

Kuvα ≡ −
[
G−1

]
xu

[
G−1

]
vw

[
W −1

]
α β

∂K

∂Λwxβ
(8.33)

In the context of Hedin’s equations and the GW approximation (see e.g. Aryasetiawan and Gunnarsson
(1998)), K is often decomposed as K ∼ δΣ

δGGGΛ, where δK/δG is the irreducible (four-leg) vertex in one
channel (see Eq. (G.19) in appendix G.3). Here, however, all quantities – most importantly K – are func-
tionals of G,W and Λ only. The four-leg vertex does not play any role in this set of equations.

Similarly, one obtains relations between the one-particle self-energies and derivatives ofK (using Eq. (8.32)):

Σuv =
∂Ψ

∂Gvu
=
∂K

∂Gvu
+ λuvαφα + ΛwuαGwxWα βΛvxβ − 2λwuαGwxWα βΛvxβ (8.34a)

Pα β = −2
∂Ψ

∂Wβα
= −2

∂K

∂Wβα
− ΛwuαGvuGwxΛvxβ + 2λwuαGvuGwxΛvxβ (8.34b)
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At this point, one can notice the analogy between equations (8.25a) and (8.25b) and the two equations
above. Instead of being functional derivatives of the 2PI functional Ψ, the self-energies are now expressed as
the sum a functional derivative of the 3PI functional K and of some diagrams which should be reminiscent of
GW -type diagrams. Equations (8.33), (8.34a) and (8.34b) combined with the Dyson-like equations (8.24a),
(8.24b) and (8.32) and a given K form a closed set of equations which can be solved self-consistently for G,
W and Λ.

This system can be further simplified. Let us first rewrite Eqs (8.34a-8.34b) as (using 8.33):

Σuv = −λwuαGwxWα βΛvxβ + λuvαφα +

[
∂K

∂Gvu
+ KwuαGwxWα βΛvxβ

]

Pα β = λwuαGvuGwxΛvxβ −

[
2
∂K

∂Wβα
+ KwuαGvuGwxΛvxβ

]

Owing to its 3PI character, K is a functional of fuvα ≡ Gwudα βΛwvβ , where dα β is pictorially a “half bosonic
line”, i.e. Wα β = dαγdγ β . This causes the bracketed terms in the above equations to vanish. Indeed, using the
property: ∂dαδ

∂Wκη
= 1

2d
−1
ηδ δακ , one gets:

∂K

∂Gvu
=

∂K

∂ fpqγ

∂ fpqγ

∂Gvu
=
∂K

∂ fuqγ

(
dγ βΛvqβ

)
∂K

∂Wβα
=

∂K

∂ fpqγ

∂ fpqγ

∂dδκ

∂dδκ
∂Wβα

=
∂K

∂ fpqβ

(
GrpΛrqκ

) (
1
2
d−1
ακ

)
On the other hand:

Kwuα = −G−1
rwG

−1
uyW

−1
α β
∂K

∂ fprγ

(
Gypdγ β

)
= −G−1

rwd
−1
γ α
∂K

∂ furγ

Putting these relations together, one sees that the bracketed terms vanish. One thus gets the final equations:

Σuv = −λwuαGwxWα βΛvxβ + λvuαφα (8.36a)

Pα β = λwuαGwxGvuΛvxβ (8.36b)

These equations are the ones introduced in a simplified form in section 8.2. The second term in Σ is the
Hartree contribution. I remind that lattice indices denote u ≡ (R,τ ,σ ) and Greek indices α = (R,τ , I ) (σ =↑,↓
and I = 0,x ,y,z in the single-band case, but one could extend this to a,σ and a, I , where a in an orbital index).
These two equations encompass both paramagnetic and broken-symmetry phases. An alternative derivation
using equations of motion is given in appendix F.

8.3.2.3 Three-particle irreducible cycle

The equations discussed in the previous sections form a set of equations that can be solved self-consistently.

The central quantity in this cycle is the three-particle irreducible functional K [G,W ,Λ] or equivalently
K [G,W , χ] (where χuvα is the connected three-point function, χ ∼ ΛGGW ). Once its – most often ap-
proximate – dependence on G, W and Λ/χ is specified, the self-consistent cycle is closed, as illustrated in
Figure 8.5.

This cycle has first been proposed by Hedin (1965) for the charge channel in a somewhat different, but
equivalent form; the spin-dependent version of this cycle (which is contained in the present derivation) has
been derived in Aryasetiawan and Biermann (2008) using Schwinger functional derivatives.
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K
Σ, P

G,W

K

Λ

Hedin equations

Dyson equations

approximation to

functional derivative

”Dyson” equation

exact K

Figure 8.5: Self-consistent three-particle irreducible cycle

8.3.2.4 Phases without broken symmetry and spin rotational invariance

In the absence of symmetry breaking, Guv = Gi jδσσ
′
,Wα β =W

I
i jδ

I J , where i, j,k . . . indices now denote space-
time indices (without spin): i ≡ (R,τ ) (as opposed to u = (R,τ ,σ )). One defines W 0 ≡ W ch; spin rotational
invariance further implies W x

= W y
= W z ≡ W sp. Moreover, in the rotation-invariant case, the property

〈nIϕ J 〉 ∝ δI J is equivalent to Λuvα ∝ σ Iσσ ′ (see appendix L.3), i.e. one has Λuvα = Λ
η (I )

i jk
σ Iσσ ′ , with η(0) = ch,

and η(x/y/z) = sp. To fix Λ
η

i jk
, one can specify: Λi↑,j↑,k0 = Λch

i jk
σ0
↑↑ and Λi↑,j↑,kz = Λ

sp
i jk
σ z↑↑, i.e. Λch

i jk
and Λ

sp
i jk

can be computed from

Λch
i jk = Λi↑,j↑,k0 (8.37a)

Λ
sp
i jk
= Λi↑,j↑,kz (8.37b)

Hence, in the Heisenberg decoupling, Eqs (8.36a-8.36b) simplify to (as shown in appendix L.2.1):

Σi j = −GilW ch
in Λ

ch
jln − 3GilW

sp
in Λ

sp
jln
+ φ j,chδi j (8.38a)

P
η
mn = 2GmlG jmΛ

η

jln
(8.38b)

I recall that the latin indices i, j . . . stand for space-time indices here: i = (R,τ ). The factor of 3 in the self-
energy comes from the rotation invariance, while the factor of 2 in the polarization comes from the spin
degree of freedom. φch can be related to 〈n〉 via (see Eq. (C.1a)):

φch = U
ch〈n〉 (8.39)

As mentioned before, this is the Hartree term. In the following, I omit this term in the expressions for Σ as it
can be absorbed in the chemical potential.

8.3.2.5 Fluctuation-exchange approximations: K = 0

The approximation K = 0, which leads to K = 0 and hence to Λch
l jn
= Λ

sp

l jn
= δl jδ jn , leads to the “fluctuation-

exchange” forms of the self-energies and polarizations:

Σi j = −Gi jW ch
ji − 3Gi jW

sp
ji (8.40a)

P
ch/sp
i j = 2G jiGi j (8.40b)

This corresponds to the FLEX approximation restricted to the particle-hole sector. The GW approximation is
a restriction of the above to the charge channel, while spin fluctuation theory in its most simple form is a
restriction to the spin channel. I refer the reader to the previous chapter, section 7.2.1, for a more detailed
discussion of these approximations.
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8.3.3 A local approximation to the three-leg vertex

The functional derivation discussed in the previous section suggests a natural extension of the local approxi-
mations on the 2PI functionals Φ (DMFT) or Ψ (EDMFT) to the 3PI functional K .

Such an approximation reads, in the case when K is considered as functional of χuvα (instead of Λuvα ):

K TRILEX[G,W , χ] =
∑
R

K exact[GRR,WRR, χRRR] (8.41)

Like DMFT, this approximation becomes exact in the limit of infinite dimensions. The extension of the proof
to 3PI diagrams is trivial, since by definition, K ⊂ Ψ. An example of this is given by diagram (d) in Fig.8.4.
This shows that in the limit of infinite dimensions, the three-particle irreducible functional K becomes local.

In the same way as in the 2PI case, the local approximation of the 2PI functional leads to a local approxima-
tion to the self-energies, in the 3PI case considered here, the local approximation of the 3PI functional leads
to a local approximation of the 3PI analog of the self-energy, K . Indeed, noticing that ∂K /∂χvuα = Kvuα , Eq.
(8.41) leads to:

K (k,q,iω,iΩ) ≈ Kimp (iω,iΩ) (8.42)

with the prescriptions:

χ
η
loc (iω,iΩ) = χ

η
imp (iω,iΩ) (8.43a)

Gloc (iω) = Gimp (iω) (8.43b)

W
η
loc (iΩ) = W

η
imp (iΩ) (8.43c)

A direct consequence of Eq. (8.42) is the locality of the lattice vertex:

Λ(k,q,iω,iΩ) = λ + Kimp (iω,iΩ) (8.44)

8.3.3.1 Construction of impurity vertex

In practice, in order to construct this functional, or in other words, to resum the infinity of diagrams contained
in K exact[GRR,WRR, χRRR], one follows a procedure akin to that of DMFT by introducing a local effective
model.

Instead of being solved only for the local self-energy Σimp (iω) – a one-particle irreducible object – this model
is solved for the three-particle irreducible vertex K

η
imp (iω,iΩ). It is related to Λ

η
imp (iω,iΩ) through (see Eq.

(8.32)),
Λ
η
imp (iω,iΩ) = λ

η
imp (iω,iΩ) + K

η
imp (iω,iΩ) (8.45)

At this stage, the frequency-dependence of the impurity bare electron-boson vertex λimp (iω,iΩ) is unspecified.
Like G (iω) and U (iΩ), it must be determined self-consistently.

Using Eq. (8.43a), the left-hand side of Eq. (8.45), Λimp, is given by

Λ
η
imp (iω,iΩ) =

∑
kq χ

η (k,q,iω,iΩ)

Gimp (iω + iΩ)Gimp (iω)W
η
imp (iΩ)

χη (k,q,iω,iΩ) is given as function of Kη
imp (iω,iΩ) (after using Eqs. (8.32) and (8.42)), by

χη (k,q,iω,iΩ) = Gk+q,iω+iΩGk,iωW
η
q,iΩ

(
λη + K

η
imp (iω,iΩ)

)
where I recall that λ is the bare vertex on the lattice. Thus, ληimp (iω,iΩ) is found to be given, as a function of
K
η
imp, as:
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λ
η
imp (iω,iΩ) = λη + ζ η (iω,iΩ)

{
λη + K

η
imp (iω,iΩ)

}
(8.46)

with

ζ η (iω,iΩ) ≡

∑
kq G̃k+q,iω+iΩG̃k,iωW̃

η
q,iΩ

Gimp (iω + iΩ)Gimp (iω)W
η
imp (iΩ)

(8.47)

where for any X , X̃ (k,iω) ≡ X (k,iω)−Xloc (iω). Thus, making a local approximation to the 3PI functional leads
to a renormalization of the impurity bare vertex. The corresponding impurity model has a bare electron-boson
vertex which depends on two times:

Simp =

¨
τ τ ′

∑
σ

c̄σ (τ )
[
−G−1 (τ − τ ′)

]
cσ (τ

′)+
1
2

¨
τ τ ′

ϕI (τ )
[
−

[
U I

]−1
(τ − τ ′)

]
ϕI (τ

′)+

¨
τ τ ′

λIimp,σσ ′ (τ ,τ
′)ϕI (τ )c̄σ (τ )cσ ′ (τ )

(8.48)

The fermionic action obtained when integrating out the bosonic modes has an interaction term of the form:
1
2

ˇ
τ1τ2τ3τ4

∑
σ1σ2σ3σ3 Ũσ1σ2σ3σ3 (τ1,τ2,τ3,τ4)c̄τ1σ

I
σ1σ2

cτ2c̄τ3σ
J
σ3σ4cτ4 with the interaction function3:

Ũσ1σ2σ3σ3 (τ1,τ2,τ3,τ4) =
∑
I

¨
τ τ ′

λIimp,σ1σ2
(τ1 − τ2,τ − τ2)U

I (τ − τ ′)λIimp,σ3σ4
(τ3 − τ4,τ

′ − τ4) (8.49)

Solving an impurity model with such a complex interaction term is feasible with for instance a continuous-
time quantum Monte-Carlo solver in the interaction expansion (“CT-int”). However, the behavior of the sign
problem, among others, cannot be predicted a priori.

8.3.3.2 A further simplification: reduction to density-density and spin-spin terms

The form (8.46) of the bare impurity vertex suggests a further approximation as a preliminary step before
the full-fledged interaction term is taken into account, namely we take:

λ
η
imp (iω,iΩ) ≈ λη (8.50)

This approximation is justified when ζ η (iω,iΩ), defined in Eq. (8.47), is small. Let us already notice that ζ η

vanishes in the atomic limit (when t → 0, G̃ = W̃ = 0) and in the weak-coupling limit (thenW η → U η so that
W̃ η → 0).

A corrolary of this simplification is that (using (8.44)):

Λη (k,q,iω,iΩ) = Λ
η
imp (iω,iΩ) (8.51)

This approximation can be seen as the starting point of the TRILEX method. This simplified scheme is not a
local approximation of the 3PI functional yet. However, it possesses the properties that have been listed in
the introduction. In particular, it trivially interpolates between the spin fluctuation method at weak-coupling
(there, Ληimp reduces to the bare vertex), and the atomic limit at strong-coupling (there, Ληimp reduces to the
atomic limit vertex).

Within this scheme, integrating the bosonic modes leads to a fermionic impurity model with retarded density-
density and spin-spin interactions:

Simp =

¨
τ τ ′

∑
σ

c̄σ (τ )
[
−G−1 (τ − τ ′)

]
cσ (τ

′) +
1
2

¨
τ τ ′

∑
I

nI (τ )U (τ − τ ′)nI (τ
′) (8.52)

3In Ũσ1σ2σ3σ3 (τ1, τ2, τ3, τ4), only three times are independent.



Chapter 8. A local approximation to the three-leg vertex, TRILEX 99

The sum
∑

I runs on I = 0,z in the z-decoupling, and on I = 0,x ,y,z in the xyz-decoupling. I recall that
nx ≡ sx , ny ≡ sy and nz ≡ sz have spin commutation rules, that is, in the Heisenberg decoupling, the spin part
of the interactions explicitly reads Ssp

int =
1
2

˜
τ τ ′U

sp (τ − τ ′)~s (τ ) · ~s (τ ′).

The solution of this impurity action – an Anderson impurity model with retarded density-density and spin-
spin interactions – is much easier than that of the impurity action with general interactions of the form
given in Eq. (8.49). It can be solved by a continuous-time quantum Monte-Carlo algorithm with a double
expansion, in powers of hybridization and of the perpendicular component of the spin interactions (Otsuki
(2013)). The description of this solver and its implementation will be elaborated on in chapter 11.

Some bosonic correlators and mixed fermionic-bosonic correlators can be expressed as a function of fermionic
correlators. In particular, defining χ̃

η
imp (iω,iΩ) as χ̃ ch/sp

imp (iω,iΩ) = χ̃ ↑↑imp (iω,iΩ) ± χ̃ ↑↓imp (iω,iΩ), with:

χ̃σσ
′

imp (τ ,τ
′) ≡ 〈cσ (τ )c̄σ (0) (nσ ′ (τ ′) − 〈nσ ′〉)〉 (8.53)

one can show (see appendix C) that the three-point electron-boson correlation function χ
η
imp (iω,iΩ) (defined

in its general form in Eq. (8.28)) is related to χ̃
η
imp (iω,iΩ) by the relation:

χ
η
imp (iω,iΩ) = Uη (iΩ) χ̃

η
imp (iω,iΩ) (8.54)

8.3.3.3 Alternative self-consistency conditions

This choice of self-consistency conditions is not unique. In particular, inspired by the sum rules on the charge
and spin susceptibilities imposed in the two-particle self-consistent approximation (see section G.3 in the
appendix), one may replace Eq. (8.43c) by:

χ
η
loc (iΩ) = χ

η
imp (iΩ) (8.55)

where χ
η
i j denotes the (connected) susceptibility4 in channel η:

χ
η
i j ≡ 〈

(
n
η
i − 〈n

η
i 〉

) (
n
η
j − 〈n

η
j 〉

)
〉 (8.56)

This relation enforces sum rules on the double occupancy (among others) and has been shown to yield
good results in the TPSC context, namely excellent agreement with exact Monte-Carlo results as well as
the fulfillment of the Mermin Wagner theorem. In the following, however, I will concentrate on the self-
consistency condition Eq. (8.43c). I will also show that in the regimes we have explored, the self-consistency
withW does not violate the sum rules.

8.4 Algorithmic scheme

In this section, the TRILEX equations in their practical implementation are summarized. This scheme is
based on the local approximation to the three-leg vertex (Eq. (8.51)) introduced in subsection 8.3.3.2. The
full-fledged scheme, corresponding to the local approximation of the 3PI functional K , is left for future
investigations, as it requires the handling of a more complex interaction term.

8.4.1 The TRILEX loop

The self-consistent TRILEX loop consists in the following steps (illustrated by Fig. 8.6):

1. Initialization. The initialization consists in finding initial guesses for the self-energy and polarization.
Usually, converged EDMFT self-energies provide suitable starting points for Σ(k,iω) and Pη (q,iΩ).

4The symbol χ can denote a two-point (〈nn〉) or three-point function (〈cc̄ϕ〉).
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Simp[G(iω),Uη(iΩ)]

Σ(k, iω)

P η(q, iΩ)

G

W η

Dyson
equation

Λη
imp(iω, iΩ) η = charge, spin[x, y, z]

impurity
vertex

Slatt[G0(k, iω), U ]

consistency
condition
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Figure 8.6: The TRILEX loop.

2. Dyson equations. Compute lattice observables through Dyson equations:

G (k,iω) =
1

iω + µ − ε (k) − Σ(k,iω)
(8.57a)

W η (q,iω) =
U η

1 −U ηPη (q,iΩ)
(8.57b)

Eqs (8.57a-8.57b) are Fourier transforms of the generic equations (8.24a-8.24b). The relation between
the bare interaction value U η on the Hubbard U depends on the choice of decoupling, as mentioned in
section 8.3.1.3. This relation is specified in section 8.4.2.

3. Weiss fields. Update the Weiss fields:

G (iω) =
[
G−1

loc (iω) + Σloc (iω)
]−1

(8.58a)

Uη (iΩ) =

[ [
W

η

loc (iΩ)
]−1
+ P

η

loc (iΩ)

]−1
(8.58b)

The loc suffix denotes summation over the Brillouin zone.

4. Impurity model. Solve the impurity action (8.52) for Ληimp (iω,iΩ), Σimp (iω) and Pimp (iΩ). They are given

in terms of the correlators χ̃
η

imp (iω,iΩ) (defined above, see section 8.3.3.1), Gimp (iω) and χ
η

imp (iΩ) by
the relations:

Λ
η

imp (iω,iΩ) =
χ̃
η

imp (iω,iΩ)

Gimp (iω)Gimp (iω + iΩ)

{

1 −Uη (iΩ)χ
η

imp (iΩ)

} (8.59a)

Σimp (iω) = G−1 (iω) −G−1
imp (iω) (8.59b)

Pimp (iω) =
−χηimp (iΩ)

1 −Uη (iΩ)χ
η

imp (iΩ)
(8.59c)
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5. Momentum-dependent self-energy and polarization. Construct momentum-dependent lattice self-energies
as (see Fig. 8.1 and Eqs (8.38a-8.38b)):

Σk,iω = −
∑
η,q,iΩ

mηGk+q,iω+iΩW
η

q,iΩΛ
η
impiω,iΩ (8.60a)

Pηq,iΩ = 2
∑
k,iω

Gk+q,iω+iΩGk,iωΛ
η
impiω,iΩ (8.60b)

The factor mη depends on the decoupling. In the case of the Heisenberg decoupling, msp = 3 and
mch = 1, while in the Ising decoupling, msp =mch = 1. The practical implementation of these equations
is detailed in subsection 8.4.3.

6. Go back to step 2 until convergence.

8.4.2 Bare interaction U η for various decouplings

Based on Eqs. (8.9-8.10), the ratio of the bare interaction in the charge and spin channels can be parametrized
by a parameter α . In the Heisenberg decoupling,

Ũ ch = (3α − 1)U (8.61a)

Ũ sp = (α − 2/3)U (8.61b)

In the Ising decoupling,

U ch = αU (8.62a)

U sp = (α − 1)U (8.62b)

The choice of an “optimal” α is not obvious. The influence of this parameter on the method in its single-site
version will be discussed in the next chapter.

A well-defined way to choose α is to measure the relative deviation between observables computed for
clusters of increasing size Nc for different α ’s. The “best” α is then the one minimizing the relative deviation.

8.4.3 A convenient decomposition of the bubbles

In practice, decomposing the calculation of the self-energies (8.60a-8.60b) (see appendix L.2.2) in the fol-
lowing way turns out to be more stable numerically:

Σ(k,iω) = Σnonloc (k,iω) + Σimp (iω) (8.63a)

Pη (q,iΩ) = Pη,nonloc (q,iΩ) + P
η
imp (iΩ) (8.63b)

with

Σnonloc
k,iω ≡ −

∑
η,q,iΩ

mηG̃k+q,iω+iΩW̃
η

q,iΩΛ
η
impiω,iΩ (8.64a)

Pηnonloc
q,iΩ ≡ 2

∑
k,iω

G̃k+q,iω+iΩG̃k,iωΛ
η
impiω,iΩ (8.64b)

and, for any X , X̃ (k,iω) ≡ X (k,iω) − Xloc (iω). One also performs a further decomposition at the level of the
vertex:

Λ
η,reg
imp (iω,iΩ) ≡ Λ

η
imp (iω,iΩ) − lη (iΩ) (8.65)

where lη (iΩ) ≡
1−Ũη (iΩ)χηimp (iΩ)

1−Uη (iΩ)χηimp (iΩ)
, and Ũη is computed with U η given by Eqs. (8.62a-8.62b) with α = 1/2. This

choice corresponds to a substraction from χ̃
3,η
imp (iω,iΩ) of its asymptotic behavior.
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The final expressions are:

Σ(k,iω) = −
∑
η,q,iΩ

mηG̃ k+q
iω+iΩ

[
W̃

η
q
iΩ
l
η
iΩ

]
−

∑
η,q,iΩ

mηG̃ k+q
iω+iΩ

W̃ η q
iΩ

[
Λ
η,reg
imp

]
iω
iΩ
+ Σimp (iω) (8.66)

Pη (q,iΩ) = 2


∑
k,iω

G̃ k+q
iω+iΩ

G̃ k
iω


l
η
iΩ + 2

∑
k,iω

G̃ k+q
iω+iΩ

G̃ k
iω

[
Λ
η,reg
imp

]
iω
iΩ
+ P

η
imp (iΩ) (8.67)

The first term of each expression is computed as a simple product in time and space instead of a convolution
in frequency and momentum. The second term, which contain factors which decay fast in frequencies (G̃, W̃ ,
Λ

reg
imp), is computed as a product in space and convolution in frequencies.

The spatial Fourier transforms are performed using Fast Fourier Transforms, so that the computational ex-
pense of such calculations scales as N 2

ωNk logNk , where Nω is the number of Matsubara frequencies and Nk

the number of discrete points in the Brillouin zone.

8.5 Around the three-leg vertex

In this section, I describe the most important properties of the three-leg vertex Λη (k,q,iω,iΩ). The derivations
can be found in the corresponding appendices.

8.5.1 Asymptotics

In the large iω, large iΩ limit, the three-point correlation function is equivalent to its lowest-order contribu-
tion (see appendix D.4):

χ (iω,iΩ)
iΩ→∞
iω→∞
∼ λG0 (iω + iΩ)G0 (iω)W0 (iΩ) ∼ λ

1
iω + iΩ

1
iω

where λ is the bare vertex. Thus, one can single out a “bare” contribution and a “regular” contribution to the
three-leg vertex:

Λreg (iω,iΩ) ≡ Λ(iω,iΩ) − 1 (8.68)

Thus, given the above asymptotic behavior, the regular part of the vertex, Λreg, vanishes for large iω and iΩ.

8.5.2 Symmetries

The vertex obeys the following symmetry relations (see Appendix D.2):

Λ(iω − iΩ,iΩ) = Λ(iω,−iΩ) (8.69a)

Λ∗ (iω,−iΩ) = Λ(−iω,iΩ) (8.69b)

A pictorial representation of these symmetries is given in Fig. 8.7.

8.5.3 Ward identity

Let us define the following correlation function:

χσσ
′I

k,q,k′ (τ1,τ2,τ3) ≡ 〈Tτ s
I
k′,q (τ1)c

†

σ ,k+q (τ2)cσ ′,k (τ3)〉 (8.70)

which becomes the three-point correlation function when summed over k′. This function obeys the following
sum rule (see appendix D.5):
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iΩ

Λ∗(−iω − iΩ, iΩ)

Λ(iω, iΩ)

Λ∗(−iω,−iΩ)

O

∆

Figure 8.7: Vertex symmetries in the (iω,iΩ) plane (iω: fermionic Matsubara frequency; iΩ: bosonic Matsub-
ara frequency).

∑

k′

[
iΩ −

(

εk′ − εk′−q

)]
χσσ

′I
k,q,k′ (iω,iΩ) = σ Iσ ′σ ′′Gσ ′′σ (k + q,iω + iΩ) − σ Iσ ′′σGσ ′σ ′′ (k,iω) (8.71)

This relation is useful in the atomic limit where the k dependence disappears (see next subsection). In the
normal phase, Gσσ ′ = Gσδσσ ′ .

8.5.4 Atomic limit

In the atomic limit (t → 0 in the Hubbard model), the three-leg vertex can be computed exactly (see Appendix
E). The result is:

Λat
η=ch/sp (iω,iΩ) =

1
1 −U η χη,connδiΩ

[
1 +

U 2/4
iω (iω + iΩ)

+

U β

4

{

1 − U 2

4 (iω)2

} {

tanh
(

βU

4

)

∓ 1
}

δiΩ

]
(8.72)

with χ
ch/sp
c =

β

4
e∓βU /4

cosh(βU /4) . Note that for iΩ , 0, one finds

Λch (iω,iΩ , 0) = Λsp (iω,iΩ , 0) =
U 2/4

iω (iω + iΩ)
+ 1

as stipulated by the Ward identity (see equation (8.71) in the previous subsection). As alluded to in the intu-
itive introduction of TRILEX (section 8.2), this vertex is very different from the bare vertex. Most importantly,
there is a very strong frequency dependence at low frequencies.

8.6 Discussion: relation to other methods

The TRILEX method has analogies with existing methods:

• EDMFT. TRILEX (in its full-fledged form) can be seen as the promotion of EDMFT from the two-particle
level to the three-particle level. Indeed, while EDMFT approximates the fermionic and bosonic self-
energies Σ and P – derivatives of the two-particle irreducible functional Ψ[G,W ,λ] – by a local ap-
proximation computed by an impurity model, TRILEX approximates the fermion-boson “self-energy”
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K (k,q,iω,iΩ) – the derivative of the three-particle irreducible functional K [G,W , χ] with respect to χ –
by the corresponding impurity three-leg “self-energy” Kimp (iω,iΩ).

• GW+EDMFT. The formulae (8.63a-8.63b) are reminiscent of the form of Σ and P in the GW+EDMFT
approximation (see chapter 5). The main difference is that in GW+EDMFT, (a) there is no local vertex
correction in (8.64a-8.64b), and (b) so far GW+EDMFT has been formulated for the charge channel
only.

• Fluctuation-exchange theories. By construction, in the weakly-correlated regime, the vertex Λimp be-
comes equal to the bare vertex, Λimp (iω,iΩ) ∼ 1. As a result, the fermionic and bosonic self-energies
become equal to the GW , spin fluctuation or FLEX self-energies depending on the decoupling channel,
namely: decoupling in the charge channel only leads to GW , decoupling in the spin channel leads to
spin fluctuation-like results, which simultaneously decoupling in the charge and spin channel leads to a
part of FLEX diagrams (FLEX also resums diagrams in the particle-particle channels). An important fea-
ture of spin fluctuation theory is that the form of the spin propagator is chosen on a phenomenological
basis, whereas in TRILEXW η is determined self-consistently.

• Two-particle self-consistent approximation (TPSC). TPSC, described in the appendix (section G.3), ap-
proximates vertex corrections in the charge and spin susceptibilities by a constant дη (η = ch, sp).
Instead of computing the vertex from an impurity model, in TPSC, its value is set by requiring the
fulfillment of sum rules on the susceptibility. Contrary to TRILEX, it takes bare propagators in the
expression of the polarization.

• Dynamical vertex approximation (DΓA). DΓA, described in the appendix (chapter G.4) approximates
four-leg vertices (the fully irreducible vertex in the parquet version of DΓA, the channel-wise irreducible
vertex in the ladder version), objects which are much more costly in terms of computation (at the
impurity model level) and storage. Second, the computation of Σ requires the solution of the parquet
equations or Bethe-Salpether equations on the lattice (in the latter, easier case, corrections must be
performed on the irreducible vertex to ensure numerical stability).



9
Application to the single-band Hubbard model

In the previous chapter, I have introduced the TRILEX formalism. In this chapter, this method is applied to
the single-band Hubbard model in two dimensions.

I shall show that TRILEX interpolates between “fluctuation-exchange” theories such as spin fluctuation theory
at low interaction strengthU and dynamical mean-field theory at large interaction strengthU , while deviating
from both limits in the intermediate coupling regime.

As in DMFT, the (U ,T ) phase diagram features a first-order Mott transition line if antiferromagnetic fluctua-
tions are suppressed by frustration. If the antiferromagnetic fluctuations are not suppressed, as in the square
lattice with nearest-neighbor hopping only, TRILEX converges well below the Néel temperature computed
within single-site DMFT. In this region, the self-energy and polarization have a sizable momentum depen-
dence, so that upon doping, the quasiparticle lifetime on the Fermi surface is momentum dependent in a way
which is reminiscent of the Fermi arcs observed in angle-resolved photoemission in cuprate materials.

These results are in the preprint Ayral and Parcollet (2015) included in chapter Q.1. Unless otherwise
specified, the hoppings are restricted to nearest-neighbors: tRR′ = −tδ〈RR′〉. All energies are given in units
of the half-bandwidth D = |4t |. The results have been obtained by discretizing the Brillouin zone on a 64×64
momentum mesh.

9.1 An interpolation between fluctuation-exchange theories and DMFT

By construction, TRILEX interpolates between Mott physics at large interaction strengths and fluctuation-
exchange theories at low interaction strengths. Here, I show that this is indeed the case in the explicit
solution of TRILEX for the two-dimensional Hubbard model on a square lattice, at half-filling, with nearest-
neighbor hopping only.

In the (U ,T ) diagram shown in Figure 9.1, the green squares stand for converged TRILEX calculations. The
hatched region is a region of instable solutions. The temperature T̄ xyz (U ) marking the boundary of this region
corresponds to the extrapolation of the high-temperature inverse static AF susceptibility, χ sp (q = (π ,π ),iΩ =

0)−1, to zero (see Fig. 9.7). For the temperatures below and slightly above this temperature, very small
denominators in W sp (q = (π ,π ),iΩ = 0) preclude convergence of the method. This issue will be further
discussed in section 9.4. For the time being, let us notice that TRILEX, which explicitly takes into account
spin fluctuations in its self-consistent loop (throughW sp (q,iΩ)), converges far below the Néel temperature of
single-site DMFT.

In the following, I will focus on three points in this phase diagram: A (U /D = 0.5, βD = 96) is a typical point
in the weak-interaction regime; B (U /D = 2, βD = 24) is a point in the intermediate regime; C (U /D = 4,
βD = 48) is a point in the strong-interaction regime. A and C are located far away from the single-site DMFT

105
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Figure 9.1: Phase diagram in the (T ,U ) plane at half-filling. The red dashed line is the Néel temperature
computed in single-site DMFT (from Kuneš (2011)). T̄ xyz is determined by extrapolating the inverse AF
static susceptibility, see Fig. 9.7. In the hatched region, vanishing denominators in W sp (q,iΩ = 0) preclude
convergence. The green squares denote converged TRILEX calculations. The A, B and C points are defined
as: A: U /D = 0.5, βD = 96; B: U /D = 2, βD = 24; C: U /D = 4, βD = 48.

estimate for the critical interaction strength for the metal to insulator transition (which is located at around
Uc/D ≈ 2.5).

Let us first discuss the behavior of local observables at the A, B and C points, shown in Fig. 9.2:

• at point A (U /D = 0.5), the impurity vertex Λ
η
imp (iω,iΩ) (left and middle column) is almost constant

and equal to the bare vertex, namely Λ
η
imp (iω,iΩ) ≈ 1. Deviations start to appear in the zeroth bosonic

Matsubara component of Λsp
imp. The local component of the TRILEX Σ(k,iω) is identical to the DMFT

impurity self-energy;

• at point C (U /D = 4), the impurity vertex Λ
η
imp (iω,iΩ) displays a strong frequency dependence. This

dependence is that of the atomic-limit vertex whose expression has been given in section 8.5.4 and
plotted in the bottom line with dashed lines. The numerical results are almost on top of the atomic-
limit vertex except for the lowest bosonic Matsubara component of Λsp

imp. The local component of the
TRILEX self-energy coincides with the DMFT self-energy;

• at point B (U /D = 2), the impurity vertex has a substantial frequency dependence which strongly
departs from the bare vertex. The location of the poles is similar to that of the atomic vertex. The
local component of the TRILEX self-energy deviates from the DMFT self-energy. In particular, it is more
coherent than the DMFT self-energy. This point will be discussed later.

As has been hinted at in the context of the GW+EDMFT method in section 5.3.2, Mott physics are encoded in
the enhancement of the impurity vertex Λimp (iω,iΩ). TRILEX allows to assess the precise frequency structure
of the vertex. Already at intermediate coupling strengths (U /D = 2), local vertex corrections should be taken
into account.
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Figure 9.2: Left and middle column: Impurity three-leg vertex Λch
imp (iω,iΩ) and Λ

sp
imp (iω,iΩ) plotted as function

of the fermionic Matsubara frequency iω for various bosonic frequencies iΩ. Full lines with crosses denote
the numerical data from CTQMC. Dashed line in the bottom line denote the atomic-limit vertex Λat (iω,iΩ)
(see section E). Right column: imaginary part of the impurity self-energy, ImΣloc (iω). Solid (dashed) lines
denote TRILEX (DMFT) results. The points A, B and C are defined in Fig. 9.1.

The local vertex, in TRILEX, is used to compute momentum-dependent self-energies and polarizations. The
lowest Matsubara components of Pch (q,iΩ), P sp (q,iΩ) and Σ(k,iω) are shown in Fig. 9.3:

• At point A (weak-coupling regime), the momentum dependence of the polarization and self-energy,
albeit weak in absolute value, is sizable in relative values. In particular, the charge and spin polar-
izations, which are very similar to each other, are peaked at the nesting vector q = (π ,π ): indeed, in
this limit both reduce to the bare Lindhard “bubble”, P0 = 2G0G0. As a consequence, the self-energy
is also strongly momentum-dependent (although the absolute magnitude of these variations is weak).
Scattering is maximal at k = (π ,0);

• At point C (strong-coupling regime), the momentum dependence of Pη and Σ is weak, as expected
in a Mott insulator. One may also note that the q-averaged charge polarization is very small (due to
the opening of a charge gap), while the spin polarization is quite large (corresponding to the Curie
susceptibility of isolated atoms). The self-energy, while large in magnitude, is very weakly momentum-
dependent;

• At point B, the momentum dependence of the polarizations and self-energy is weaker in relative terms
than in the weak-interaction regime, but still sizable.

From the width of the peaks at (π ,π ) in Pch and P sp, one can estimate the correlation length. These correlation
lengths, in the weak-coupling regime, are larger than those accessible to cluster schemes. Thus, TRILEX
allows to incorporate long-range physics at the cost of solving a single-site impurity problem.
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Figure 9.3: Momentum dependence of the self-energy and polarization (square lattice, half-filling, t ′ = 0).
Left: RePch (q,iΩ0). Middle: ReP sp (q,iΩ0). Right: ImΣ(k,iω0). The A, B and C points are defined in Fig. 9.1.

9.2 A first-order Mott transition

In the previous section, several points in the phase diagram have been studied. Due to extremely small
denominators in W sp (q,iΩ = 0), no stable solution could be obtained at low enough temperatures to go
below the temperature of the critical end point of the Mott transition line (TMott/D ≈ 0.045 on the Bethe
lattice, see Fig. 2.2 in the introduction to DMFT, chapter 2).

In this section, I turn to the triangular lattice in two dimensions and at half-filling. Here, geometrical frus-
tration mitigates the low-temperature instabilities, insofar as the inverse AF susceptibility is reduced with
respect to the square lattice.

In Fig. 9.4, the evolution of −β/π · Gimp (τ = β/2) is monitored for two temperatures as a function of U /D.
At low enough temperatures, −β/π · Gimp (τ = β/2) is an accurate estimate of Aimp (ω = 0) (as proven in
appendix I.1.2.5.1), and can thus be used to observe the transition between a Fermi liquid (Aimp (ω = 0) > 0)
and a Mott insulator (Aimp (ω = 0) ≈ 0). At low temperatures (βD = 64), both DMFT and TRILEX display
a hysteretic behavior, namely there is a coexistence region between a metallic and insulating solution. At a
higher temperature (βD = 32), the hysteretic region has shrunk. With these two estimates for Uc , one can
draw a rough sketch of the (T ,U ) phase diagram in the triangular lattice (see the inset).
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π-

TRILEX
DMFT

Figure 9.4: Evolution of −β/πGimp (τ = β/2) as a function of U /D on the triangular lattice (half-filling). Solid
lines: DMFT. Dashed lines: TRILEX. Red: βD = 32. Blue: βD = 64. Inset: sketch of the coexistence regions in
DMFT (grey) and TRILEX (green) in the (U ,T ) plane.
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Figure 9.5: From left to right: A(k,ω = 0), χ sp (q,iΩ = 0) and ImΣ(k,iω0) in the doped case (square lattice):
U /D = 1.8, t ′ = −0.4t , βD = 96, δ = 10%. A(k,ω = 0) is estimated from β/2G (k,τ = β/2).

The first conclusion is that TRILEX also features a first-order Mott transition. The second conclusion is that
in TRILEX, the critical interaction strength for the Mott transition, Uc , is slightly enhanced with respect to the
single-site DMFT value, consistently with the difference that has been observed between the local component
of the TRILEX self-energy and the single-site DMFT self-energy (middle right panel on Fig. 9.2).

This points to the importance of short-range fluctuations in the mechanism of the Mott transition. In cluster
DMFT, these short-range fluctuations are treated non-perturbatively in the extended impurity model, leading
to a substantial reduction of Uc with respect to the single-site value. It seems that single-site TRILEX misses
local singlet physics. This motivates the need for a cluster extension of TRILEX.
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9.3 Fermi arcs upon doping

The long-range fluctuations captured in TRILEX can have drastic effects on the lifetime of the quasiparticles
on the Fermi surface. In this section, TRILEX is applied to the Hubbard model on a square lattice away
from half-filling and with a nearest-neighbor hopping close to the one describing cuprate materials (t ′ =
−0.4t), and U /D = 1.8, a value which is slightly smaller than that believed to describe high-temperature
superconductors (U /D ≈ 2.25, Comanac et al. (2007)).

Fig. 9.5 shows the results for βD = 96 and a 10% doping level. The static AF susceptibility χ sp (q,iΩ = 0)
has a rather broad peak at (π ,π ) due to relatively short-range AF fluctuations. This results, via W sp (related
to χ sp through W sp = U sp −U spχ spU sp), in a momentum-dependent self-energy Σ(k,iω). ImΣ(k,iω0) is larger
at the antinodal points (π ,0) and (0,π ), so that the corresponding spectral function A(k,ω = 0) (left panel)
displays substantial intensity variations on the Fermi surface.

These variations, although less strong than those observed experimentally and e.g. in cluster DMFT (Ferrero
et al. (2008)), are reminiscent of the “Fermi arcs” seen in ARPES (Fig. 7.7 in chapter 7).

9.4 The question of antiferromagnetic ordering

In this section, I discuss the issue of the hatched region in the (U ,T ) phase diagram (Fig 9.1).

As previously mentioned, as the temperature is decreased, the strength of the antiferromagnetic fluctua-
tions grows, namely the product U spP sp (q,iΩ) approaches the “Stoner” criterion U spP sp (q,iΩ) = 1. This
is illustrated in Fig. 9.6, where the top panels show the evolution of the inverse static AF susceptibility,
χ sp (Q,iΩ = 0)−1, as a function of temperature for the unfrustrated case (t ′ = 0) and in the presence of
frustration (t ′ = −0.3t).

In the unfrustrated case, its evolution is linear for high temperatures. As temperature decreases, deviations to
this linear behavior seem to appear, but the error bars (computed as the mean deviation of the last converged
results divided by the square root of the number of samples) also become large. This is due to the fact that
as U spP sp (Q,iΩ = 0) approaches the “Stoner” criterion, a small variation in P sp (q,iΩ) (coming for instance
from the statistical noise in Λ

sp
imp (iω,iΩ)) can translate into large variations in W sp; in addition, to properly

integrate the corresponding peak in W sp in momentum space, one must in principle refine the momentum
mesh or equivalently increase the lattice size to accomodate for these longer correlation lengths. Thus, the
computation becomes heavier; in this first implementation, we have preferred to defer these refinements to
a later study and have instead extrapolated the linear behavior of the inverse susceptibility to compute the
temperature T̄ xyz under which we cannot safely perform the calculation.

To decide whether at low temperatures, the inverse AF susceptibility indeed intercepts the x-axis at a finite
TNéel, as the high-temperature behavior seems to indicate, or if it displays a bending (as observed in the
correlation length in experiments – see the trend extracted from neutron scattering experiments in Fig. 7.4 –
or in theory – see the results of the dynamical vertex approximation in appendix G.4), requires a more refined
study. The issue could also be settled by allowing for a symmetry breaking with two sublattices. This idea
is straightforward to implement, but requires another impurity solver, since in the AF phase the longitudinal
(z) and perpendicular (x ,y) spin components are no longer equivalent. In this phase, one has to measure the
perpendicular components Λx/y

imp of the vertex instead of Λz
imp only.

Moreover, one can expect that the low-temperature behavior of the single-site method will be affected by
using the full form of the interaction term, Eq. (8.49) in the previous chapter, which derives from a local
approximation of the 3PI functional K . In particular, the low-energy behavior of the retarded interactions
will probably be renormalized by the term ζ η (iω,iΩ) neglected in the present implementation. The solution
of these more general equations, however, requires different impurity solvers, such as the continuous-time
quantum Monte-Carlo solver in the interaction expansion (“CT-int”).
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Figure 9.6: Influence of t ′ on T̄ xyz (square lattice). Top panels: inverse static AF susceptibility as a function
of temperature for various U /D values. Left: t ′ = 0. Right: t ′ = −0.3t . Bottom panel: (U ,T ) phase diagram.
Squares (dark grey): t ′ = 0; diamonds (light grey): t ′ = −0.3t .

To further understand the behavior of the TRILEX equations, Fig. 9.6 also shows data for the frustrated case
(t ′ , 0). There, one sees that frustration does lead to a “bending” of the inverse static AF susceptibility curve
and that the “forbidden” region shrinks in the weak-interaction regime.

9.5 Influence of the decoupling choice

In this section, I discuss the practical implications of the way the Hubbard interaction term is decoupled in
terms of Hubbard-Stratonovich terms. The ambiguity associated with this choice has already been mentioned
in section 8.3.1.3.

Here, I will focus on two different levels of choice: the first is the rewriting of the Hubbard interaction in
terms of a density-density and “Ising” term szsz or of a density-density and “Heisenberg” term ~s ·~s. The second
level is the subsequent choice of the ratio between the interactions in the charge and spin channels. This ratio
is parametrized by the parameter α , introduced in section 8.4.2.

To compare the results of the rewriting in terms of Ising or Heisenberg spins (at fixed α), I show, in Fig. 9.7,
the evolution of the inverse static AF susceptibility as a function of temperature for both decouplings. The
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Figure 9.7: Inverse AF static susceptibility as a function of temperature (square lattice). Left: Ising or “z”
decoupling. Right: Heisenberg or “xyz” decoupling.

Figure 9.8: Phase diagram in the(T ,U ) plane at half-filling (square lattice, t ′ = 0). The dashed red line is
the Néel temperature computed in single-site DMFT (from Kuneš (2011)). Left: Heisenberg (T xyz

AF ) vs. Ising
(T z

AF) decoupling (squares: Heisenberg; diamonds: Ising). TAF is determined by extrapolating the inverse AF
static susceptibility, see Fig. 9.7. Right: influence of the charge to spin channel ratio α in the Heisenberg
decoupling. The points B∗ and C∗ are defined as B∗: U /D = 2.0, βD = 16; C∗: U /2 = 4, βD = 24.
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Figure 9.9: Influence of α on local observables and “sum rules”. Left: ImΣloc (iω) for three characteristic points
(defined in Fig. 9.8) and three values of α . Right: dependence of the susceptibility “sum rules” on α .

extrapolated T̄ (discussed in the previous section) strongly depends on the decoupling: the Ising decoupling
yields a higher T̄ than the Heisenberg decoupling. This can be understood in the following intuitive way: in
the Ising decoupling, the spin has fewer degrees of freedom to fluctuate than in the Heisenberg decoupling.
Thus, the propensity for ordering is higher in the Ising decoupling than in the Heisenberg decoupling. In
either case, T̄ is lower than the Néel temperature computed in single-site DMFT (except for a few points
in the Ising decoupling at weak coupling, but the difference is within the error bar (not shown)): TRILEX
contains spatial fluctuations beyond (dynamical) mean field theory. These results are summarized in the left
panel of Fig. 9.8.

In the right panel of Fig. 9.8, the dependence of T̄ xyz (within the Heisenberg decoupling) on α is investigated.
T̄ xyz depends on α : the larger |U sp |, the higher T̄ xyz , as one could have expected from the form of the Stoner
criterion (U spP sp (Q,iΩ = 0) = 1).

However, this dependence has substantial implications on physical observables only in the intermediate
regime of correlations, as shown in Fig. 9.9. At points A and C∗ (due to the proximity to the ordered
phase, we could not obtain converged results for all three values of α at points C and B), corresponding to
the weak and strong-coupling limit, respectively, α has no influence on the local component of the TRILEX
self-energy. Only at point B∗ does it lead to variations in this observable. This is another motivation for
extending TRILEX to its cluster version.

However, irrespective of the value of α , sum rules on the charge and spin susceptibilities are fullfilled, namely
the following identities are preserved:

∑
q

χ ch (q,τ = 0) = 〈n〉imp + 2〈n↑n↓〉imp − 〈n〉
2
imp = 2〈n↑n↓〉imp (9.1a)∑

q

χ sp (q,τ = 0) = 〈n〉imp − 2〈n↑n↓〉imp = 1 − 2〈n↑n↓〉imp (9.1b)

This is shown in the left panel of Fig. 9.9. These sum rules have been observed to be crucial for the
fullfillment of the Mermin-Wagner theorem within the two-particle self-consistent theory (TPSC, Vilk and
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Tremblay (1997)) or in the ladder version of the dynamical vertex approximation (Katanin et al. (2009)).
There is thus no obvious way to fix α .

9.6 Conclusions and perspectives

The TRILEX method in its single-site version has been applied, in this chapter, to the single-band Hubbard
model at and away from half-filling, on the square and on the triangular lattice.

As expected from the construction of the method, TRILEX interpolates between (a) the fluctuation-exchange
limit, where the self-energy is given by the one-loop diagram computed with the propagator associated
to long-range fluctuations in channel η, W η (q,iΩ), and (b) the dynamical mean field limit which approxi-
mates the self-energy by a local, but frequency-dependent impurity self-energy which reduces, in the strong-
coupling regime, to the atomic limit self-energy.

The central quantity of TRILEX, the impurity three-leg vertex Λimp (iω,iΩ), encodes the passage from both
limits, and can be used to construct momentum-dependent self-energies and polarizations at a reduced cost
compared to cluster DMFT and diagrammatic extensions of DMFT. This cost is the cost of solving a single-site
local impurity model with dynamical interactions. Contrary to spin fluctuation theory, the method covers
the full range of interactions. At intermediate coupling, upon doping, strong AF fluctuations cause a sizable
momentum differentiation of the Fermi surface, as observed in photoemission in cuprate materials.

This study opens up a number of questions and perspectives:

1. Low-temperature phase. The issue of the instabilities in the low-temperature regime, which is related to
the fullfilment or not of the Mermin-Wagner theorem and the associated Fierz ambiguity, deserve fur-
ther studies. This is all the more interesting as related methods such as TPSC and a variant of DΓA fullfill
the Mermin-Wagner theorem; understanding what are the minimal ingredients to enforce this property
is needed. In particular, the role of the simplification of the impurity vertex λimp (iω,iΩ), introduced in
subsection 8.3.3.2 and consisting in neglecting the quantity ζ η (iω,iΩ), ought to be investigated.

2. Extension to cluster schemes. As stated in the introduction of the TRILEX formalism, controllability is
paramount. In the TRILEX formalism, the extension to cluster versions similar to those of DMFT is
formally rather straightforward. In practice, the behavior of the multi-site impurity solvers (and most
importantly of the sign problem) in TRILEX cannot be predicted. However, all the technological tools
needed for this extension are already in the TRIQS toolbox (see chapter 10 and our paper Parcollet et al.
(2015)). One can hope that, in the physically relevant channel, cluster-TRILEX will converge faster than
cluster-DMFT with respect to the cluster size Nc due to the inclusion of long-range fluctuations.

3. Extension to multiorbital systems. Thanks to the simplicity of solving the single-site impurity model,
single-site TRILEX can be applied to multiorbital systems to study momentum-dependent self-energy
effects. Such an endeavor is currently out of the reach of cluster DMFT due to the sheer size of the
corresponding Hilbert space (3 bands times a 2 × 2 cluster is effectively a 12-site calculation, already
a large numerical effort in view of the poor momentum resolution obtained). Yet, this extension may
be crucial for multiorbital systems where long-range spin physics as well as correlations are thought to
play an important role. The recently discovered pnictide superconductors, where bosonic spin-density-
wave fluctuations are sizable but correlations effects are not so strong, are such an example. They may
prove an ideal playing ground for TRILEX.

4. Extension to “anomalous” phases. TRILEX can be straighforwardly extended to study charge-ordered
phases (as shown by its relation to GW+EDMFT). Moreover, its application to superconducting phases
is also possible: in this context, it interpolates between generalized Migdal-Eliashberg theory (or spin-
fermion superconductivity) and the superconducting version of DMFT. As such, it can capture d-wave
superconductivity at the cost of solving a single-site impurity problem (which is not possible in single-
site DMFT).



Part IV

Modern computational methods for the quantum
many-body problem

The methods I have presented in the previous parts of this thesis share a common feature: they are at the
same time based on analytical calculations – such as the construction of energy functionals and appropriate
approximations thereof, inspired by physical intuition and previous works – and they are nevertheless usually
not amenable to fully analytical resolutions. They can all, however, be formulated in various algorithmic
forms.

Beyond the effort that has been put into designing a method “on paper”, whether this method works or not
(and proving it) mainly depends on (a) how quickly the algorithm can be transcribed as computer code, (b)
how efficient the resulting program is and, most importantly, (c) how reliably it can be checked and tested.
Meeting all three conditions is a subtle art, especially as conventional wisdom has it that (a) and (b) are
mutually exclusive (a short syntax is often thought to be slow), and that the fulfillment of either (a) or (b)
usually jeopardizes condition (c) (“writing checks slows down the coding”, “an optimized code is hard to
read and thus to keep an overview of”).

The goal of this part is to give technical details about some of the computational methods touched on in
the previous parts, with an emphasis on the algorithmic thinking behind theses developments. This careful
process, and the tools that support it, aim at overcoming the above contradictions.

In chapter 10, I give a brief overview of the TRIQS library, a Toolbox for Research on Interacting Quantum
Systems, with a focus on one of my contributions to the library, namely error estimation through the binning
and jackknife methods. In chapter 11, I describe one family of continuous-time quantum Monte-Carlo solvers
on which relies, for instance, the TRILEX method presented in the previous chapters. Finally, as a further
example of the use of this CTQMC solver, I describe a new method designed for realistic materials, the
combined screened exchange and dynamical DMFT method (SEx+DDMFT) (chapter 12).

10 TRIQS: flexible yet fast codes for the quantum many-body problem
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10
TRIQS: flexible yet fast codes for the quantum

many-body problem

As alluded to in the introduction to this part, flexibility – the ease with which a new program is written and
modified – and speed – which measures the efficiency of a given code – are often thought to be mutually
exclusive. Furthermore, these two requirements are also sometimes put forward as arguments to justify the
lack of readability of some computer codes.

The TRIQS project (Toolbox for Research on Interacting Quantum Systems, http://ipht.cea.fr/triqs),
developed primarily by Olivier Parcollet and Michel Ferrero in Saclay (Institut de Physique Théorique) and
Palaiseau (Ecole Polytechnique), aims at reconciling all three requirements by providing basic building blocks
for many-body calculations. This goal is met by using modern programming techniques. This includes the
combined use of modern versions of the compiled C++ language – used for writing fast yet readable code
for critical parts such as Monte-Carlo algorithms – together with Python, an interactive high-level program-
ming language. The latter language makes data post-processing and the manipulation of many-body ob-
jects much easier than the widespread “output-to-text-file-plot-with-command-line-include-in-latex-output-
pdf-and-analyze-results” process. This combination is made possible and seamless by an automated genera-
tion of Python wrappers for C++ objects.

The TRIQS project also stresses the importance of collaborative efforts via a pedagogical documentation (see
http://ipht.cea.fr/triqs/1.2/documentation.html), version control using the git versioning system
(also essential for debugging), and the use of public or private code repositories (e.g. github.com or bit-
bucket.org). More details about the library can be found in our paper, Parcollet et al. (2015), included in
chapter R.1.

My contributions to the library are the implementation, maintenance and user support of a segment-picture
hybridization-expansion continuous-time quantum Monte Carlo code, presented in the next chapter. I have
also implemented a library for error estimation using the binning and jackknife methods, presented in section
10.3. Before coming to this, I briefly describe the structure of the TRIQS library (section 10.1) and give three
illustratory examples of uses of TRIQS in section 10.2.

10.1 Structure of the TRIQS library

The TRIQS project comprises a core library and “applications”, as illustrated in Fig. 10.1.

116

http://ipht.cea.fr/triqs
http://ipht.cea.fr/triqs/1.2/documentation.html
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Figure 10.1: Structure of the TRIQS project, with a C++ and Python layer (from Parcollet et al. (2015))

10.1.1 The core library

The core TRIQS library contains basic building blocks for quantum many-body calculations such as real and
imaginary time as well as real-frequency and Matsubara Green’s functions with one or several variables. Also
included are multidimensional arrays and an “expressions” library. A Monte-Carlo library provides a generic
Metropolis-Hastings algorithm for writing any code based on this method (such as continuous-time quantum
Monte-Carlo algorithms, described in the next chapter).

Most core objects are implemented at the C++ level and then automatically wrapped in Python using the
“c++2py” tool of TRIQS. They can then be directly manipulated at the Python level, for instance plotted in
an “ipython notebook”, a Mathematica-type browser-based interface to Python (see e.g. subsection 10.2.1 for
an example).

10.1.2 TRIQS applications

The objects of the core library can then be used in “applications”. This may refer to existing ones such as
“dft_tools” (http://ipht.cea.fr/triqs/1.2/applications/dft_tools/), an interface to density-functional
theory codes, or “cthyb” (http://ipht.cea.fr/triqs/1.2/applications/cthyb/), an implementation of
the continuous-time quantum Monte-Carlo solver in the hybridization expansion for general interactions (as
opposed to the “segment picture” solver presented in the next chapter, an optimization of the hybridization-
expansion solver for the case of density-density interactions). This may also simply be one’s own code,
written either in C++ or in Python, or in both. For instance, the segment solver code presented in the
chapter (chapter 11) is one such application. The TRILEX code is another.

The common core library of all applications make them interoperable and thus facilitates collaborative efforts.

10.2 Three illustratory examples of usage of the TRIQS library

In this short section, I give three examples to illustrate the use of TRIQS. The first one illustrates the high-
level usage of TRIQS. The second and third ones illustrate the implementation tools provided by TRIQS to
write one’s own code.

http://ipht.cea.fr/triqs/1.2/applications/dft_tools/
http://ipht.cea.fr/triqs/1.2/applications/cthyb/
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10.2.1 A DMFT calculation in one loop

Figure 10.2 illustrates the high-level use of TRIQS to write a DMFT loop in Python. This code implements
the DMFT equations (subsection 2.2.4) for the case of a semicircular density of states. In this specific case,
the new hybridization function ∆(τ ) is related to the impurity Green’s function by ∆(τ ) = (D/2)2Gimp (τ ) (D:
half-bandwidth). Here, an interaction-expansion solver (“CT-int”) is used as impurity solver. Plotted are
the imaginary parts of the impurity Green’s function ImGimp (iω) for increasing iteration index: the impurity
Green’s function gradually turns from non-interacting (see Im G0) to (Mott) insulating (see Im G20).

10.2.2 Efficient and short writing of complex expressions

TRIQS simplifies the writing of complex algebraic expressions in C++. Using TRIQS, the following compli-
cated expression:

χ0σσ ′
νν ′ω = β (д

0σ
ν д0σ ′

ν ′ δω − д
0σ
ν д0σ

ν+ωδνν ′δσσ ′ )

can be coded in C++, after having defined a three-frequency Green’s function χ0σσ ′
ν ,ν ′,ω , as simply as:

chi0 ( s_ , sp_ )( nu_ , nup_ , om_) <<
beta * ( g[ s_ ]( nu_) * g[ sp_ ]( nup_) * kronecker (om_))

− beta * ( g[ s_ ]( nu_) * g[ s_ ]( nu_ + om_)

* kronecker (nu_ , nup_) * kronecker ( s_ , sp_ ) ) ;

The five variables s_, sp_, nu_, nup_, and om_ are “placeholders”, namely the above expression is automat-
ically interpreted by the C++ compiler as a five-fold nested “for loop” traversing the respective domains of
definition of these variables, namely {↑,↓} for σ and σ ′ and Matsubara frequencies for ν , ν ′ and ω.

The syntax, while directly reflecting the mathematical formula, enhances possibilities of optimization by the
library and the compiler (for instance of the memory traversal).

10.2.3 The Monte-Carlo library

As a more complex example and as a preliminary to the next chapter, I explain in this section how TRIQS
simplifies the writing of Metropolis-Hastings algorithms.

The principle of the Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970)) is illustrated
in Fig. 10.3. A formal explanation is provided in section 11.1.3, but the sketch of Fig. 10.3 is self-contained:
it illustrates the transition process from a “configuration” x to a configuration y. After the initialization of
the simulation (with a given configuration x0), the current configuration x can be “updated” with several
updates. Each update x → y has a proposal probability P

prop
x,y and P

prop
y,x (probability to propose the update

from x to y and conversely) as well as an associated weight ratio p (y)/p (x ). These are combined into a
number Pacc

x,y . Under a certain condition on Pacc
x,y , the update is either accepted, in which case x becomes y, or

not, in which case x remains unchanged. In either case, observables on this configuration can be “measured”
at regular intervals.

This general algorithm subsumes simulations as different as the simulation of a Ising model (cf Eq. (2.8)
in chapter 2) or the sampling of Feynman diagrams in e.g. the interaction-expansion of the continuous-time
quantum Monte-Carlo algorithm (an implementation of which is given in Parcollet et al. (2015), included in
chapter R.1). Because of this generality, it need not be rewritten from scratch for each individual code: once
the generic algorithm is tested, simplified and optimized, it can be used in many codes.

The only work left to the physicist is the specification of the Metropolis updates (with the accompanying prob-
ability ratios) and measures on the configurations of the problem at hand. For instance, the parallelization
of the algorithm is already implemented in the generic library.
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Figure 10.2: A DMFT calculation on the Bethe lattice, in one page (from Parcollet et al. (2015))
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Figure 10.3: Metropolis-Hastings algorithm. x and y denote configurations (from http://ipht.cea.fr/

triqs/1.2/reference/montecarlo/loop.html)

A concrete example can be found on the following page: http://ipht.cea.fr/triqs/1.2/reference/

statistical_analysis/ising2d.html. The “segment solver” presented in the next chapter is a more com-
plex code making use of the Metropolis-Hastings library. An example of code corresponding to a Metropolis
update for this algorithm is given in Listing M.1 in appendix M.4.

10.3 Error analysis: Binning and Jackknife

This section presents one of my contributions to the TRIQS library, which can be used for instance to estimate
the error bars in Monte-Carlo simulations.

10.3.1 Statement of the problem

10.3.1.1 Failure of a simple-minded estimate of the error bar

Let us consider a simple case to establish notation. Let X denote a random variable with probability densities
P (X ). Suppose we want to obtain an estimate for its expectation value

f = 〈X 〉

where the expectation value is defined as

〈X 〉 ≡
ˆ

dX X P (X ) (10.1)

We also define the variance of X :
Var(X ) ≡ 〈(X − 〈X 〉)2〉 (10.2)

As will be seen in the following, if we have N samples of X , {xi }i=1...N , the estimate of f is straighforwardly
given by the “empirical” average of these samples:

fest = x̄

where the “empirical” average (or sample mean) is defined as

x̄ ≡ 1
N

N∑

i=1

xi (10.3)

http://ipht.cea.fr/triqs/1.2/reference/montecarlo/loop.html
http://ipht.cea.fr/triqs/1.2/reference/montecarlo/loop.html
http://ipht.cea.fr/triqs/1.2/reference/statistical_analysis/ising2d.html
http://ipht.cea.fr/triqs/1.2/reference/statistical_analysis/ising2d.html
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The estimation of the error bar on fest is also quite straighforward if the samples are independent. The square
of this error bar is defined as

∆f 2 ≡
〈[
fest − f

]2
〉

(10.4)

In the case of independent samples, the estimate of ∆f 2 is given by

∆f 2
est =

σ2
x

N

where σ2
x is the “empirical” variance (or sample variance):

σ2
x ≡

1
N

N∑
i=1

(xi − x̄ )
2 (10.5)

In this section, I shall address two issues:

• how to extend this error bar estimation to correlated samples? This question will be addressed by the
binning method;

• how to extend this error bar estimation to more complex observables? This question will be addressed
by the jackknife method, introduced by Quenouille (1949).

As a motivating example for the latter issue, let us consider, in addition to X , a second random variable Y ,
and let us estimate the error bar on the following quantity:

f =
〈X 〉

〈Y 〉

While the estimate of f is straightforwardly given by fest = x̄/ȳ, the estimate of the squared error bar is not
given by the simple-minded generalization of the one-variable case, namely it is not given by σ2

x/y/N , where

σ2
x/y =

1
N

∑N
i=1 (xi/yi − x̄/ȳ)

2.

Let us emphasize that ratios of the form given above are ubiquitous. In particular, in fermionic Monte-Carlo
algorithms, we shall see in the next chapter that the Monte-Carlo estimate of an observable O is expressed as

f =
〈O · sign〉
〈sign〉

where sign denotes the sign of the current Markov-chain configuration.

10.3.1.2 Algorithmic challenges and an example of the final code

As will be seen in the following, the formulae for the jackknife method are relatively simple. Here, the
challenge is to write a library which applies to any function f of an arbitrary number of observables X ,Y ,Z , . . .

To be more specific, we want to cover the following cases:

Random variable Observable f Function

X 〈X 〉 f (x ) = x

X 〈X 〉2 f (x ) = x2

X ,Y 〈X 〉/〈Y 〉 f (x ,y) = x/y

X ,Y 〈X/Y 〉 f (x ) = x

G (τ ),sign
〈
´ β

0 G (τ )G (−τ )dτ sign〉MC

〈sign〉MC
f (x ,y) = x/y with x =

´ β
0 G (τ )G (−τ )dτ · s and y = s

G (τ ), sign 〈G (τ )sign〉MC
〈sign〉MC

f (x ,y) = x/y with x = G (τ )s and y = s
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The last two examples are drawn from Monte-Carlo simulations. Note the difference between lines 3
(〈X 〉/〈Y 〉) and 4 (〈X/Y 〉).

In the final code, if X and Y denote “observables”, namely objects containing a number N of samples for the
random variables X and Y , the estimation of lines 1 to 3 of the above table will be done by the following lines
(see section 10.3.6 for a full example):

average_and_error_bar (X)
average_and_error_bar (X*X)
avarage_and_error_bar (X/Y)

This works for independent samples. The case of correlated samples will be elaborated on later.

10.3.1.3 Generic problem

Given an observable

O = f (〈X 〉,〈Y 〉,〈Z 〉, . . . )

with random variables X ,Y ,Z · · · = ~X and a function f (x ,y,z . . . ) = f (~x ), the goal is to measure an estimate
for the above observable as well as an estimate of the error on this estimate, given N samples

{xi ,yi ,zi , . . . }i=1...N

of the random variables. Two issues need to be distinguished:

• Autocorrelation: the samples {~xi }i=1...N may not be independent of each other, ie 〈xix j 〉i,j , 0. This
will be dealt with by the so-called binning method (section 10.3.3)

• Bias: the function f may not be linear (e .д f (x ,y) = x/y), causing simple-minded estimates of the
uncertainty on the observable to be wrong. This will be dealt with by the so-called jackknife method
(section 10.3.4)

In the following, I shall be looking for estimates which reduce to the exact quantity for large sample sizes
N in expectation value. Such estimates are called unbiased estimates. More specifically, a quantity A is an
unbiased estimate of another observable B if and only if

〈A〉 = B + O

(
1
N

)
I introduce the following notation to denote an unbiased estimate:

A � B

10.3.2 Basic results

In appendix N, I prove the following basic results which will be used in the derivations:

x̄ � 〈X 〉

f (x̄ ) � f (〈X 〉)

f (x ) � f (〈X 〉) (10.6)

For independent samples:
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Var(X )

N
� ∆〈X 〉2 (10.7)

σ2
x � Var(X ) (10.8)

For correlated samples:

Var(X )

N
(1 + 2τint) � ∆〈X 〉2 (10.9)

σ2
x � Var(X ) (1 + 2τint) (10.10)

where τint is the integrated autocorrelation time

τint ≡

∞∑
t=1

AI ,x (t ) (10.11)

and Af ,x (t ) the autocorrelation function:

Af ,X (t ) ≡
〈f (xi+t ) f (xi )〉 − 〈f (xi )〉

2

〈f (xi )2〉 − 〈f (xi )〉2
(10.12)

which is independent of i.

10.3.3 The binning method: autocorrelation suppression

The samples {xi }i=1...N of a random variable X may not always be statistically independent of each other.
The level of autocorrelation is measured by the autocorrelation time, which measures the minimal time τ for
which a sample xi+τ can be considered independent from a sample xi . Autocorrelation effects are particularly
relevant for Monte-Carlo sampling, especially in the vicinity of a phase transition, where the correlation time
between the samples increases. See for instance Krauth (2006) for more details.

The binning (or bunching) method consists in removing the correlations between the samples by defining a
new series {xB

i } from the original series {xi } through the relation

xB
i ≡

1
b

b (i+1)−1∑
j=bi

x j (10.13)

for i = 1 . . .Nb . b is the bin size and Nb ≡ N /b the number of bins or size of the binned series. Clearly,

xB � 〈X 〉

If b is larger than the autocorrelation time (cf Eq. (N.7)), the binned series contains independent samples.
One can thus use Eqs (10.7-10.8) to estimate the error on the estimate:

∆〈X 〉2 �
Var(X )

Nb
�
σ2

B

Nb
(10.14)

One can also use this to estimate the autocorrelation time: using (10.14) and (10.9), one obtains

τ B
int (b) �

1
2

*
,

bσ2
B

Var(X )
− 1+

-
(10.15)

This estimation is only possible if one knows the intrinsic variance. The latter is given by σ2 (Eq. (10.8))
only if the binned series becomes uncorrelated, namely for a bin size exceeding the autocorrelation time.
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10.3.4 The jackknife method: bias suppression

The jackknife method has been introduced by Quenouille (1949). A detailed discussion of the uses and
variants of jackknife methods can be found in e.g. Shao and Tu (1995). In this section, I will focus on the use
of jackknife for the computation of error bars of observables which are nonlinear expressions of averages.

10.3.4.1 Jackknife on a single variable

10.3.4.1.1 Case f = Id Given a series {xi }i=1...N , one defines the so-called jackknifed series {xJ
i }i=1...N by

the expression:

xJ
i ≡

1
N − 1

N∑
j=1,j,i

x j (10.16)

Clearly,
〈
xJ

〉
= 〈X 〉 = 〈x̄〉, namely:

x̄J � 〈X 〉

If the original series contains independent variables, then the error estimate can be computed as

∆〈X 〉2 � (N − 1)σ2
J (10.17)

where σ2
J is the empirical variance of the jackknifed series. Eq. (10.17) will be proven in the general case

below.

10.3.4.1.2 For a general f From the jackknifed series {xJ
i }i=1...N , one defines the series { f J

i }i=1...N with
f J
i ≡ f (xJ

i ) (this easily generalizes to the case f J
i ≡ f (xJ

i ,y
J
i ,z

J
i , . . . )). An estimate for f (〈X 〉) is then

f (〈X 〉) � f J (10.18)

This is to be contrasted with Eq. (10.6). The error estimate is

∆f 2
est � (N − 1) σ2

f J (10.19)

Let us now prove Eqs. (10.18) and (10.19). Let us first look at:

f J
i = f *.

,

1
N − 1

N∑
j=1,j,i

x j
+/
-
= f *.

,
〈X 〉 +

1
N − 1

N∑
j=1,j,i

(x j − 〈X 〉)
+/
-

= f (〈X 〉) +
1

N − 1

N∑
j=1,j,i

(x j − 〈X 〉) f
′(〈X 〉) + *.

,

1
N − 1

N∑
j=1,j,i

(x j − 〈X 〉)
+/
-

2
f ′′(〈X 〉)

2
+ . . .

Therefore

〈f J − f (〈X 〉)〉 =

〈
1
N

N∑
i=1

f *.
,

1
N − 1

N∑
j=1,j,i

x j
+/
-
− f (〈X 〉)

〉

=
1
N

1
(N − 1)2

N∑
i=1

〈
*.
,

N∑
j=1,j,i

(x j − 〈X 〉)
+/
-

2〉
f ′′(〈X 〉)

2
+ . . .

=
1

(N − 1)2

N−1∑
(j,k )=1

〈(
x j − 〈X 〉

)
(xk − 〈X 〉)

〉 f ′′(〈X 〉)

2
+ . . .

=
1

N − 1
Var(X )

f ′′(X )

2
+ . . .
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The last line holds only if the variables are independent. Otherwise, one has to replace Var(X ) by Var(X ) (1 + 2τint).
This proves (10.18).

Let us now turn to the uncertainty estimation. After a straighforward, but lengthy calculation (detailed in
appendix N.4), one finds that the right-hand side of (10.19) averages to:

(N − 1) 〈σ2
f J 〉 = f ′(〈X 〉)2〈(x̄ − 〈X 〉)2〉 + . . .

The left-hand side is given by:

∆f (〈X 〉)2 = 〈
[
f (x̄ ) − f (〈X 〉)

]2
〉 = f ′(〈X 〉)2〈(x̄ − 〈X 〉)2〉 + . . .

This proves (10.19).

The autocorrelation time can be obtained from a jackknife calculation by writing ∆〈X 〉2 � Nbσ
2
B,J =

Var(X )
N (1+

2τint) , so that

τ J
int (b) �

1
2

*
,

NNbσ
2
B,J

Var(X )
− 1+

-
(10.20)

This estimation is only possible if one knows the intrinsic variance.

10.3.5 Autocorrelation time estimation through binning

The autocorrelation time of a series can be estimated by examining the autocorrelation function Af ,X (t )

defined in section 10.3.2. As shown in appendix N.5, this estimation is accurate but too slow (it is a O (N 2)

calculation). In this section, I show how to compute the autocorrelation via the binning method.

For testing purposes, a correlated Gaussian series with autocorrelation time τc is artificially generated. This is
done by generating a first independent Gaussian series {yi } and defining a correlated series by the recursion
relation:




x0 = y0

xi+1 = ηxi +
√

1 − η2yi+1

where η ≡ e−1/τc .

Using Eq. (10.15) to estimate the autocorrelation time, one finds the results shown in Fig. 10.4b. Note that
the error bar depends on the correlation time (this is obvious from Eq. (N.8) and from Fig. 10.4a). Indeed,
a larger autocorrelation time means a smaller effective number of independent measurements, and thence a
larger error bar by virtue of Eq. (N.5). Most importantly, the estimated autocorrelation is independent of bin
size for large enough bin sizes. This property is used to compute the estimate of the autocorrelation time,
using (10.15), as:

τB =
1
ns

ns−nc∑
n>nc

1
2




2nσ2
B (2

n )

σ2
− 1



=

1
ns

ns−nc∑
n>nc

τ B
int (2

n ) (10.21)

The bin size is doubled from iteration to iteration, allowing one to reuse the binned series of the previous
step. The minimum bin size for computing τint, parametrized by nc , is chosen so that the asymptotic behavior
of τint is reached, i.e. τint (2nc )−τint (2nc −1 )

τint (2nc −1 )
� 1 (thus, beyond this point Var(X ) � σ2). In practice, a threshold of

10−5 is used. ns is chosen such that there are at least ns = 5 samples while ensuring that 2ns < N /10. This is
a robust and quick way of computing the autocorrelation time
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Figure 10.4: Binning analysis . (a) Dependence of the estimated error bar on the bin size. The error bar
estimate converges to (N.8) as the bin size increases. It converges faster for lower τc . (b) Dependence of the
estimated autocorrelation time on the bin and sample size (c) Estimated autocorrelation time: dependence
on the precision of the asymptote detection.

10.3.6 Implementation notes

The binning and jackknife methods are implemented in TRIQS and documented on the following page:
http://ipht.cea.fr/triqs/1.2/reference/statistical_analysis/contents.html.

While the basic formulae (see section 10.3.2) are easy to implement, the main jackknife result, Eq. (10.18),
deserves more attention. Indeed, it should work for any expression f of a variable number of arguments,
such as the examples presented in the introduction to this chapter. More precisely, for each argument of
f (x ,y,z, . . . ), the jackknifed series xJ, yJ, zJ,must be computed and the estimate of f (〈X 〉,〈Y 〉,〈Z 〉, . . . ) will be
f

(
xJ,yJ,zJ

)
(the error bar is the square root of σ2

f J given by Eq. (10.19)).

In our implementation, this is done by using the expression library of TRIQS (clef), while allows to “see”
f (〈X 〉,〈Y 〉,〈Z 〉, . . . ) as an expression tree. For instance, f (X ,Y ,Z ) = X

Y+Z is nothing but the expression tree
shown in Fig. 10.5 (a). The algorithm traverses the tree and replaces the leaves of this tree by the jackknife
series (Fig. 10.5 (b)).

Then, the jackknife average (variance) is computed by evaluating the expression tree with the empirical
average (variance) of the leaves. The series on the leaves can also optionally be binned if required by the

http://ipht.cea.fr/triqs/1.2/reference/statistical_analysis/contents.html
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X
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{yJi } {zJi }

(a) (b)

Figure 10.5: Expression trees

user.

An example of use is given below:

#inc lude <t r i q s / c l e f . hpp>
#inc lude <t r i q s / s t a t i s t i c s . hpp>
using namespace t r i q s : : s t a t i s t i c s ;
i n t main () {

observable<double> X ;
X << 1.0 ;
X << −1.0;
X << . 5 ;
X << . 0 ;
s td : : cout << average_and_error (X) << std : : endl ;
s td : : cout << average_and_error (X * X) << std : : endl ;
re turn 0;

}
−−−−−−−−−− Resu l t i s −−−−−−−
0.125 +/− 0.426956
0.0763889 +/− 0.174719

Listing 10.1: Example of error bar computation

The class observable can be filled with any object which has at least the following two public methods:
value_type operator[](int i) and int size(), where value_type is any type which belongs to an algebra,
namely has +, − and ∗ operations. Any expression made up of observables can be input to the function
average_and_error. If the series is known to be correlated, one can specify the bin size as a second argument
to be used for a binning step before the jackknife step.



11
Continuous-time quantum Monte Carlo solver in
the hybridization expansion with dynamical spin

spin interactions

In this chapter, I describe an algorithm to compute observables associated with a local action SAIM describing
a correlated level hybridized with a bath. In its most simple form, this action reads:

SAIM =

ˆ β

0
dτ
ˆ β

0
dτ ′

∑
σ

{
c̄σ (τ )

[(
∂τ + εf σ

)
δ (τ − τ ′) + ∆σ (τ − τ

′)
]
cσ (τ

′)
}
+

ˆ β

0
dτUn↑(τ )n↓(τ ) (11.1)

where εf is the energy of the correlated level, ∆σ (τ ) is the so-called hybridization function and U the inter-
action between electrons of opposite spin. c̄σ and cσ are conjugate Grassmann antiperiodic fields. Among
the most prominent observables, one is mainly interested in the one-particle Green’s function Gσ (τi − τj ) ≡

−〈cσ (τi )c̄σ (τj )〉. This Green’s function can formally be obtained by differentiating the partition function
Z =
´
D [c̄c] e−SAIM with respect to the hybridization function:

Gσ (τi ,τj ) =
1
Z

δZ

δ∆σ (τj ,τi )
(11.2)

The above expression shows that the central quantity for computingG is the partition function Z . Continuous-
time quantum Monte-Carlo (CTQMC) (Rubtsov et al. (2005); Werner et al. (2006); Gull (2008)) algorithms
for impurity solvers consist in first expanding the partition function in powers of one of the terms of action
(11.1) and then computing the resulting infinite summation using a Metropolis-Hastings algorithm.

Hereafter, I will be interested in a specific flavor of these CTQMC algorithms, the so-called hybridization-
expansion algorithm (CT-hyb, Werner et al. (2006); Gull et al. (2007)), which consists in expanding Z in
powers of the hybridization ∆. The algorithm presented below applies to a generalization of Eq. (11.1)
to time-dependent density-density and spin-spin interactions which are needed in the TRILEX method pre-
sented in part III. This requires, in addition to the hybridization expansion, an expansion in powers of the
perpendicular component of the spin-spin interactions.

For general review on the topic of CTQMC algorithms, I refer the reader to Gull et al. (2011).

In section 11.1, I derive the main results and describe the underlying principles of the CT-hyb algorithm. In
section 11.2, I describe how these general principles are implemented.

128
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11.1 Hybridization and J⊥ expansion: derivation

11.1.1 Definition and notations

Instead of the simple model introduced in Eq. (11.1), let us consider a more general local action describing
a correlated level with hybridization function ∆(τ ), static and dynamical (first implementation: Werner and
Millis (2007)) density-density interactions 1 U (τ ) and dynamical spin-spin interactions J (τ ) (first introduced
by Otsuki (2013)):

SAIM =

¨ β

0
dτdτ ′

∑
a,b

{
c̄aσ (τ )

(
(∂τ + εaσ ) δ

σσ ′
ab δτ−τ ′ + ∆

σσ ′
ab (τ − τ ′)

)
cbσ ′ (τ

′)
}
+

1
2

¨ β

0
dτdτ ′Uab (τ − τ

′)na (τ )nb (τ
′)(11.3)

+
1
2

¨ β

0
dτdτ ′

∑
a,ξ=x,y,z

s
ξ
a (τ )J

ξ
a (τ − τ ′)s

ξ
a (τ

′)

a denote orbital indices, σ spin indices (σ =↑,↓), na ≡
∑
σ=↑↓ naσ , sξa ≡ 1

2
∑
σσ ′ c̄aσσ

ξ
σσ ′caσ ′ and σ ξ are the Pauli

matrices2. c̄aσ (τ ) an caσ (τ ) are β-antiperiodic Grassmann fields. The hybridization term ∆σσ
′

ab (τ − τ ′) (resp.

interaction terms Uab (τ − τ
′) and J ξ

a (τ − τ ′)) of Eq. (11.3) may be seen as the result of the integration of a
bath of uncorrelated fermionic levels hybridized to the correlated level (resp. a bath of uncorrelated bosonic
levels coupled to the density and spin of the correlated level). This is shown in greater detail in appendix
M.2. Note that U (τ ) = U (−τ ) and J (τ ) = J (−τ )3.

Using the spin raising and lowering operators s+a ≡ sxa + is
y
a = c̄a↑ca↓ and s−a ≡ sxa − is

y
a = c̄a↓ca↑, the spin-spin

interaction term is rewritten as:

1
2

∑
ξ=x,y,z

s
ξ
a (τ )J

ξ
a (τ − τ ′)s

ξ
a (τ

′) =
1
2
sza (τ )J

z
a (τ − τ ′)sza (τ

′) +
1
2
J⊥a (τ − τ ′)

2
{
s+a (τ )s

−
a (τ

′) + s−a (τ )s
+
a (τ

′)
}

with J⊥ ≡ Jx = Jy . Let us decompose the action in three terms: S = Sloc + Shyb + S⊥ with

Shyb ≡
∑
uv

c̄u∆uvcv (11.4a)

Sloc ≡
∑
u

{c̄u (∂τ + εu ) cu } +
1
2

∑
uv

Uuvnunv (11.4b)

S⊥ ≡
1
2

∑
α β

J⊥α βs
+
αs
−
β (11.4c)

I have adopted a compact notation, u ≡ (a,σ ,τ ) and α ≡ (a,τ ). In particular,
∑
u ≡

∑
a
∑
σ
´ β

0 dτ . The S⊥ term
has been manipulated in the following way: due to the symmetry properties of J and commutativity of s+

and s− (this is a Grassmann integral):

Sa⊥ =
1
2

¨ β

0
dτdτ ′

[
J⊥a (τ − τ ′)

2
s+a (τ )s

−
a (τ

′) +
J⊥a (τ ′ − τ )

2
s+a (τ )s

−
a (τ

′)

]
=

1
2

¨ β

0
dτdτ ′J⊥a (τ − τ ′)s+a (τ )s

−
a (τ

′)

In Shyb, ∆uv = ∆σσ
′

ab (τ − τ ′), while in S⊥, J⊥α β = J
⊥
a (τ − τ ′)δab . The J z

a term has been absorbed in the Uuv

term:
Uuv ≡ Uab (τ − τ

′) + (−)σσ
′ 1
4
J z
a (τ )δab

In the following, I shall successively expand the partition function Z of this model in powers of Shyb and S⊥,
and show how to sample the terms of this expansion by a Monte-Carlo procedure.

1The Fourier transform U (iν ) of U (τ ) generally has a nonzero high-frequency limit U corresponding to static Hubbard interactions
2Hence: sx = 1

2

(
c̄↑c↓ + c̄↓c↑

)
, sy = i

2

(
−c̄↑c↓ + c̄↓c↓

)
, sz = 1

2

(
n↑ − n↓

)
. Note the factor of two compared to the definitions I have

used in the previous parts.
3This comes from the fact that the interactions are between real fields
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11.1.2 Hybridization and J⊥ expansion

The partition function Z is defined as:

Z ≡

ˆ
D [c̄ucu] e−Sloc−Shyb−S⊥ (11.5)

Expanding it in powers of Shyb and S⊥ yields:

Z = Zloc

∑
nk

(−)n+k

n!k!

∑
u1 ...un
v1 ...vn

∆u1v1 . . . ∆unvn

∑
α1 ...αk
β1 ...βk

J⊥α1β1

2
. . .
J⊥αk βk

2
〈c̄u1cv1 . . . c̄uncvns

+
α1
s−β1
. . . s+αk s

−
βk
〉loc

with 〈. . . 〉loc =
1

Zloc

´
D [c̄ucu] e−Sloc [. . . ]. Noticing that the sums are invariant by reshuffling the dummy

indices with permutations p and q yields:

Z = Zloc

∑
nk

(−)n+k

(n!)2 (k!)2
∑

u1 ...un
v1 ...vn

∑
p∈Sn

∆p (u1 )v1 . . . ∆p (un )vn

∑
α1 ...αk
β1 ...βk

∑
q∈Sk

J⊥q (α1 )β1

2
. . .
J⊥q (αk )βk

2
〈c̄p (u1 )cv1 . . . c̄p (un )cvns

+
q (α1 )

s−β1
. . . s+q (αk )s

−
βk
〉loc

Using the anticommutation (commutation) properties of the c̄, c (s+, s−) operators, the signature of the
permutation appears, and identifying the determinant of ∆ via Leibniz’s formula yields:

Z = Zloc

∑
nk

(−)n+k

(n!)2 (k!)2
∑

u1 ...un
v1 ...vn

∑
α1 ...αk
β1 ...βk

∑
q∈Sk

det∆
k∏
i=1

J⊥q (αi )βi

2
〈c̄u1cv1 . . . c̄uncvns

+
α1
s−β1
. . . s+αk s

−
βk
〉loc

with det∆ =
∑
p∈Sn sign(p)∆p (u1 )v1 . . . ∆p (un )vn . One could as well identify the permanent of J⊥α β , but there is

no fast update formula for the permanent, contrary to the determinant (see section 11.1.6.1). I now fix the
(lexicographical) ordering the labels and permute the c̄, c operators to cancel the (−)n factor, while absorbing
the (−)k factor in the J product:

Z = Zloc

∑
nk

∑
u1> · · ·>un
v1> · · ·>vn

∑
α1> · · ·>αk
β1> · · ·>βk

∑
q∈Sk




det∆
k∏
i=1


−
J⊥q (αi )βi

2


〈cv1c̄u1 . . . cvn c̄uns

+
α1
s−β1
. . . s+αk s

−
βk
〉loc




Finally, I expand the trace factor: 〈. . . 〉 = Z−1
loc

∑
ψ 〈ψ |e

−Sloc . . . |ψ 〉 (where the states |ψ 〉 form a basis of Sloc),
and get:

Z =
∑
n

∑
u1> · · ·>un
v1> · · ·>vn

∑
α1> · · ·>αk
β1> · · ·>βk

∑
q∈Sk

∑
ψ




det∆
k∏
i=1

[
−J⊥q (αi )βi

]
〈ψ ���e

−Sloccv1c̄u1 . . . cvn c̄uns
+
α1
s−β1
. . . s+αk s

−
βk

���ψ 〉loc




This multidimensional sum can be rewritten in a compact form:

Z =
∑
C∈Ω

wC (11.6)
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where C denotes a “configuration”
C ≡

{
u,v,α ,β ,q,ψ

}
(11.7)

of the whole phase space Ω (with u ≡ (u1, . . .un ) and so forth; q is a permutation of order k), and wC its
weight:

wC ≡ det∆
k∏
i=1


−
J⊥q (αi )βi

2


wloc (11.8)

I have singled out a “local” factor:

wloc ≡ 〈ψ
���e
−Sloccv1c̄u1 . . . cvn c̄uns

+
α1
s−β1
. . . s+αk s

−
βk

���ψ 〉 (11.9)

The configurations could have been defined otherwise. An important variant is the choice C̃ ≡
{
u,v,α ,β ,q

}
with the corresponding weight:

w C̃ ≡ Zlocdet∆
k∏
i=1


−
J⊥q (αi )βi

2


〈cv1c̄u1 . . . cvn c̄uns

+
α1
s−β1
. . . s+αk s

−
βk
〉loc (11.10)

11.1.3 Metropolis-Hastings algorithm

11.1.3.1 Basic description

The multidimensional sum of Eq. (11.6) is computed by stochastic sampling. Stochastic sampling of a random
variable C of (normalized and positive) probability distribution w (C) in a universe Ω consists in constructing
a transition matrix p (C → C′) in Ω that satisfies detailed balance:

w (Ci )p (Ci → Cf ) = w (Cf )p (Cf → Ci ) (11.11)

and ergodicity, namely the probability to transition from any given element C to any other element C′ in a
finite time is 1. Under these two conditions, the phase (or space) average of any observable O (C) is equal to
the time average of the configurations generated by this transition matrix:

〈O〉 ≡

´
C∈Ω D[C]O (C)w (C)´
C∈Ω D[C]w (C)

= lim
N→∞

1
N

N∑
i=0

O (Ci ) (11.12)

N denotes the number of sampled configurations. Stochastic sampling comes at a double price: the proba-
bility distribution w (C) may be hard to compute explicitly, and one may not be able to store or even write
down the full transition matrix explicitly.

The Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970)) provides a sufficient condition
for achieving detailed balance and ergodicity provided one can compute the ratio of the weights. It consists
in decomposing the transition probability into two parts:

p (Ci → Cf ) = pprop (Ci → Cf ) · pacc (Ci → Cf ) (11.13)

and following the procedure:

• from an initial configuration Ci , propose to transition to a final configuration Cf ; this update happens
with proposal probability pprop (Ci → Cf );

• draw a random number u between 0 and 1 and accept the proposed transition if pacc (Ci → Cf ) > u,
where the acceptance probability pacc is defined as

pacc (Ci → Cf ) ≡ min
(
1,
pprop (Cf → Ci )w (Cf )

pprop (Ci → Cf )w (Ci )

)
(11.14)
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One can check that the transition matrix defined by Eqs. (11.13) and (11.14) satisfies detailed balance
(11.11). Most importantly, only the ratio w (Cf )/w (Ci ) is needed to compute the so-called Metropolis ratio:

R (Ci → Cf ) ≡
pprop (Cf → Ci )w (Cf )

pprop (Ci → Cf )w (Ci )
(11.15)

A pedagogical introduction to Monte-Carlo algorithms can be found in Krauth (1996). An illustration of the
algorithm is shown in Fig. 11.1.3 in the previous chapter.

11.1.3.2 The Monte-Carlo fermionic sign problem

In practice, the weight of a configuration, w (C), is not necessarily positive. To implement a Metropolis
algorithm, one has to use |w (C) | instead and compensate this modification by computing observables as
follows:

〈O〉MC′ ≡

´
C∈Ω D[C]O (C)w (C)´
C∈Ω D[C]w (C)

=

´
c ∈Ω D[C]O (C) |w (C) |sign(C)´

c ∈Ω D[C]|w (C) |sign(C)
≈
〈Osign〉MC

〈sign〉MC
(11.16)

where I have defined:

〈O〉MC ≡
1
N

N∑
i=0

O (Ci ) (11.17)

From (11.16), one can see that if 〈sign〉 ≈ 0, the computation of 〈O〉 can become highly inaccurate. The sign
problem becomes worse for low-temperatures, since it is given by

〈sign〉 = e−β (F−Fb )

where F is the free-energy (F = −T logZ) associated with the model and Fb the free energy associated with
the same model with bosons instead of fermions (Gull et al. (2011)).

In the case of density-density interactions (static and dynamical), if [Hloc,naσ ] = 0, the sign of a configuration
can be proven to be always 1 by mapping the impurity action onto a Hamiltonian problem describing the
coupling of one impurity site with a one-dimensional chain of uncorrelated bath sites (Yoo et al. (2005)).
In the presence of retarded spin-spin interactions, if J⊥ (τ ) < 0 (“ferromagnetic” dynamical interactions),
the sign is also always 1. In the reverse case (J⊥ (τ ) > 0), a sign problem arises. Thus, in most cases, the
hybridization expansion solver in the “segment picture” (see next section) is free of the sign problem.

In the case when 〈sign〉 , 1, the fact that 〈O〉MC′ is expressed as a ratio of expectation values must not be
overlooked when computing the estimate of the error bar on 〈O〉. For this, a special treatment by e.g. the
jackknife method (presented above, see section 10.3) must be implemented.

11.1.4 Segment picture: local trace factor

Before showing how to compute correlators associated with action (11.3) using the Metropolis-Hastings
algorithm, let us examine the properties of the local trace factor defined in Eq. (11.9).

11.1.4.1 Static case

In the absence of dynamical interactions the local trace factor reads (remember that u ≡ (a,σ ,τ ) and α ≡

(ã,t )):

wloc ≡ 〈ψ ���Te
−βHloccv1c

†
u1
. . . cvnc

†
uns
+
α1
s−β1
. . . s+αk s

−
βk

���ψ 〉

= 〈ψ ���Te
−βHloccb1σ ′1

(τ ′1)c
†
a1σ1

(τ1) . . . cbnσ ′n (τ
′
n )c
†
anσn (τn )s

+
ã1
(t1)s

−

b̃1
(t ′1) . . . s

+
ãk
(tk )s

−

b̃k
(t ′k )

���ψ 〉
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Figure 11.1: Segment picture in the case of retarded spin-spin interactions

with Hloc =
∑

aσ εaσc
†
aσcaσ +

1
2
∑

aσ ,bσ ′Uaσ ,bσ ′naσnbσ ′ and ψ is a basis state for Hloc (I switched back to second-
quantized operators here).

In the absence of any special property, computing this expectation value involves (costly) matrix multiplica-
tions. Here, since [Hloc,naσ ] = 0, the exponential factors coming from the Heisenberg reprentation of the
operators (caσ (τ ) = eτHloccaσ e

−τHloc) merely keep track of the imaginary-time history between τ = 0 (right of
the trace) and τ = β (left) with Boltzmann factors. In particular, they do not change the states. Thus, the
configuration C can be represented in terms of imaginary-time “segments”: a segment in imaginary time on
line (aσ ) represents time intervals when the orbital a,σ is occupied. This is illustrated in Fig. 11.1 for the
case of a single orbital. Hence the name given to this specific flavor of the algorithm: the “segment picture”.

To perform the computation of the weight, one must first time-order all operators (they are so far sorted
in lexicographical order). This permutation pT generates as sign sT . This being done, the local trace factor
evaluates to:

wstatic
loc = e−

∑
i j,i,j Ui jOi j+

∑
i µi li sT 〈ψ

���
∏
i

Ai
���ψ 〉 (11.18)

where Oi j is the overlap between line i ≡ (aσ ) and j ≡ (bσ ′) and li the portion of line i which is occupied; Ai

denotes any operator (c†i , ci , s+a or s−a ); the operators are now all time-ordered. I will now call each line i a
“color”. Henceforth, µi = −εi .

The last factor in Eq. (11.18), 〈ψ ���
∏

i Ai
���ψ 〉, only contributes a sign to the weight. To determine this sign,

let us regroup the operators by color starting from the time-ordered configuration. This permutation pregroup

generates a sign sregroup:
wstatic

loc = sT sregroup︸     ︷︷     ︸
sconfig

e−
∑
i j,i,j Ui jOi j+

∑
i µi li︸                    ︷︷                    ︸

|w static
loc |

〈ψ |ψ 〉︸︷︷︸
1

(11.19)

The product pTpregroup is itself a permutation turning a product of pairs cc† grouped by color (≡ a,σ) to a
product of pairs cc† or c†c also grouped by color, as illustrated in Fig.11.2. Hence, the sign of this permuta-
tion, sconfig, is -1 if the number of “hybridized” antisegments is odd. By “hybridized”, I mean the operators
stemming from the expansion of the hybridization term (as opposed to those in the spin term, which do not
contribute to the sign). An antisegment is a segment “starting” with a creation operator (which I will loosely
call a ’dagger’), namely its left point is a dagger.

In the density-density case (and in the density-density case only4), due to the compulsory alternation of c
and c†, the sign is -1 if the number of lines starting with a creation operator and containing an odd number
of segments is odd.

The computation ofwstatic
loc is of order O (N 2), where N is the number of operators/segments. In the Metropolis-

Hastings algorithm, only the ratio of two such weights is needed; this ratio is computed with complexity
O (N ).

4In particular, this does not apply to when there are some composite operators
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Figure 11.2: Operator permutations to compute the sign of a configuration

11.1.4.2 Dynamical interactions

11.1.4.2.1 Computation of the trace factor In the case of dynamical interactions, Sloc = S
static
loc +

1
2

˜

τ τ ′
∑

i j Di j (τ−
τ ′)ni (τ )nj (τ ′) where Di j is the retarded part of the interactions. It is a β-periodic function, and symmetric
around β/2. One has to compute the following additional weight: wdyn = exp

[
−1

2
∑

i j

˜ β

0 dτdτ ′ni (τ )Di j (τ − τ ′)nj (τ ′)
]
.

In the segment picture, the density on a line i(≡ aσ) is a piecewise constant function:

ni (τ ) =
∑

ki

[
θ (τ − τki ) − θ (τ − τ

′

ki
)
]

(11.20)

so that lnwdyn = −1
2
∑

i j

∑

kikj

´ τ
′
ki

τki
dτ
´

τ
′
kj

τkj
dτ ′Di j (τ − τ ′). This integral can be evaluated in terms of the

“dynamical kernel” Ki j (τ ), defined as:

K ′′i j (τ ) ≡ Di j (τ ) (11.21a)

Ki j (τ = 0+) = Ki j (β−) = 0

After a few simple but tedious steps (detailed in appendix M.1), Eq. (11.19) is found to become, in the
presence of dynamical interactions:

w
dyn
loc (Ũi j , µ̃i ) = wstatic

loc (Ũi j , µ̃i ) · exp

∑

op. pairs
(α ,β )

sαsβKi (α )j (β ) (τ̃α − τ̃β )
 (11.22)

with sα = 1 for creation operators and −1 otherwise. The dynamical interactions renormalize the value of
the static interactions as:

Ũi j ≡ Ui j − 2K ′i j (0) (11.23a)

µ̃i ≡ µi + K
′
ii (0) (11.23b)

The additional exponential factor has a complexity O (N 2), where N is the number of operators. Therefore,
the ratio of two such factors (needed for evaluating the Metropolis ratio (Eq. (11.15)), evaluates as O (N ).
This is of the same order as the calculation of the static trace factor, which is itself much faster than the
computation of the updated (inverse) hybridization matrix, which is of order O (N 2).

11.1.4.2.2 Physical interpretation: polaron effect The renormalization of the static interaction and
chemical potential comes as no suprise: when fermions are coupled to bosonic modes, the position of the
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fermionic level as well as the effective interaction between electrons is renormalized. One observes this
when integrating out the bosonic modes e.g. in the Fröhlich model (section I.6 in the appendix): the effective

fermion-fermion interaction becomes U + λ2D0 (q,ω) = U +
2λ2ωq

ω2−ω2
q

(D0 is the bare bosonic propagator). In

particular, the effective low-energy interaction value is reduced by the coupling to bosons: U (ω = 0) = U − 2λ2

ωq
.

Another common way of understanding this is by performing a unitary transformation on the electron-boson
Hamiltonian to get rid of the electron-boson coupling at the cost of renormalizing some parameters as well as
redefining the operators. I illustrate this in the context of the Hubbard-Holstein model with a single fermionic
level. The Holstein model (Holstein (1959)) is the simplification of the Fröhlich model (Eq. (I.38)) to a single
phonon. Thus, the Hubbard-Holstein model reads:

HHH =
∑
σ

εc†σcσ +Un↑n↓ − µn + ω0b
†b + λn

(
b + b†

)
(11.24)

where b† and b respectively create and annihilate bosons (these fields are related to the ϕ field of the previous
sections by ϕ = b+b†). It describes the physics of polarons (see e.g. Ciuchi et al. (1997) for a discussion of this
problem in relation with DMFT). The last term in HHH makes the problem difficult to solve. One would like
to get rid of it by “rotating” the Hamiltonian. This is done via a unitary transformation, namely one defines
a new Hamiltonian H̃HH as:

H̃HH = eSHHHe
−S = HHH + [S ,HHH] +

1
2!

[S ,[S ,HHH]] + . . .

where S is an antihermitian operator (S† = −S) to keep H̃HH hermitian. Such transformations are widely
used; a prominent example is the Schrieffer-Wolff transformation (Schrieffer and Wolff (1966)) which was
introduced to reduce the Anderson model (Eq. (11.1)) to the Kondo Hamiltonian. Here, one is looking for a
S such that [S ,HHH] cancels the coupling term λn

(
b + b†

)
. One can check5 that

S ≡
λ

ω0

(
b† − b

)
n

fulfills this condition. This transformation has first been introduced by Lang and Firsov (1968). Under this
transformation, a few algebraic steps lead to

H̃HH =
∑
σ

εc̃†σ c̃σ + Ũ ñ↑ñ↓ − µ̃ñ + ω0b
†b + O (λ2) (11.25)

where the renormalized parameters read: Ũ = U − 2λ2

ω0
and µ̃ = µ + λ2

ω0
. The renormalized operators are

c̃σ ≡ e
− λ
ω0
(b†−b)cσ . They annihilate and create a new type of quasiparticles, (Holstein) polarons which can be

interpreted as electrons surrounded by a phononic cloud. These polarons interact with a reduced interaction
compared to the original electrons.

This physics is exactly included in the Monte-Carlo weight Eq. (11.22) and the corresponding renormalized
values (11.23a-11.23b). Indeed, retarded interactions of the Holstein form (λ2D0 (iΩ) = 2λ2ω0

(iΩ)2−ω2
0
) lead to a

dynamical kernel:

K (τ ) = −

(
λ

ω0

)2 cosh
(( β

2 − τ
)
ω0

)
− cosh

( βω0
2

)
sinh

( βω0
2

) (11.26)

Another effect of dynamical interactions is to renormalize the bandwidth of the original fermions, as shown
in Casula et al. (2012). This can be seen by projecting the problem on the space of zero bosonic modes (using

5Indeed, [S, HHH] = λ
ω0

[(
b† − b

)
n,ω0b†b + λn

(
b + b†

)]
= λn

[(
b† − b

)
, b†b

]
+ O (λ2) = −λn

(
b† + b

)
+ O (λ2)
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Figure 11.3: Monte-Carlo update: segment addition and removal. Empty (filled) circles denote annihilation
(creation) operators. Each horizontal line represents the imaginary-time evolution for a given spin. The blue
region emphasizes an overlap in occupation of the up and down line. The red dashed lines show the position
of spin operators (made up of two fermionic operators).

Baker-Campbell-Hausdorff’s formula):

〈0���be
− λ
ω0
(b†−b) ���0〉b = 〈0

���be
− λ
ω0

b† 1︸︷︷︸∑∞
n=0 |n〉b 〈n |b

e
− λ
ω0

b 1︸︷︷︸∑∞
n=0 |n〉b 〈n |b

e
− λ2

2ω2
0

���0〉b = e
− λ2

2ω2
0

Then, −〈Tc̃τ c̃
†

0〉nb=0 = ZB
[
−〈Tcτ c

†

0〉nb=0
]

with

ZB = e
− λ

2

ω2
0 (11.27)

Thus, the coupling to bosonic modes, within this approximation, reduces the bandwidth by a factor ZB.

11.1.5 Monte-Carlo updates

As shown in section 11.1.3, the Metropolis-Hastings algorithm consists in sampling the phase space Ω by
going from one configuration to the other. From a given configuration, the choice of the next configuration
(or how to “update” the current configuration) is totally free, as long as the set of all updates guarantees
ergodicity, and that the proposal probability associated with this update is computed correctly.

In our case, a configuration is given by a set of imaginary times located on various “lines” (and also of a
permutation of the J⊥ lines, q, and of the edge state ψ ). The basic moves consist in adding or removing
times (be they associated with c†-c or s+-s− segments), changing the permutation, changing the edge state
(in the case it is not already defined by the operators on the lines, namely when a line has no operators). An
illustration of such a move is shown in Fig. 11.3: from the left to the right configuration, a segment [τ ↑

′

1 ,τ
↑

1 ]
is removed.

Each update (or “move” in phase space) is characterized by a Metropolis ratio (Eq. (11.15)). A detailed
description of each move along with the corresponding Metropolis ratio will be given in the implementation
notes, section 11.2.

11.1.6 Determinant

11.1.6.1 Fast updates

The determinant term det∆ appearing in the weight of a configuration, Eq. (11.8), in principle requires a
O (N 3) computation (with N : number of segments). However, a critical speedup follows from the form of
∆(Cn ) and ∆(Cn+1), where Cn and Cn+1 are two successive configurations for “local moves”, i.e. moves that
do not imply “too large” changes of a given configuration.

For instance, if the Metropolis update consists in adding or removing imaginary-time segments [u,v] (as pic-
tured in Fig. 11.3), then the matrices ∆(Cn ) and ∆(Cn+1) differ only by one column and one line. In this case,
the so-called Sherman-Morrison formulae allow to compute ∆(Cn+1) from ∆(Cn ) in O (N 2) time. Likewise,
computing the ratio of the determinants is a O (N 2) operation. More details (including the formulae) can
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be found for instance in Bieder (2013). A dedicated library for the manipulation of such determinants in
included in TRIQS.

This crucial simplification explains the success of continuous-time Quantum Monte-Carlo algorithms. As
mentioned before, there is no equivalent of the Sherman-Morrison formulae in the bosonic case, i.e. to
compute the permanent of a matrix in an efficient way.

11.1.6.2 Diagonal vs. off-diagonal ∆

The determinant manipulation can be simplified is the hybridization matrix has a block structure, e.g

∆σσ
′

ab (τ ) =
*....
,

∆
1
(τ ) 0 0

0
. . . 0

0 0 ∆
m
(τ )

+////
-

(11.28)

The most common simplification is the simplification in spin space (m = σ). If there is no offdiagonal
hybridization in orbital space, then m = (a,σ ), i.e. there is one determinant per line or “color”. In either case,

det∆ =
m∏
i=1

det∆i (11.29)

with much smaller matrix sizes and thence much faster computations.

11.1.7 Measurements

In this section, I briefly show how various expectation values can be computed in the CTQMC algorithm.

11.1.7.1 One-particle Green’s function G

11.1.7.1.1 Time measurement From the functional-derivative form (11.2) of the Green’s function, and
making use of Eq (11.6), one sees that Guv =

1
Z

∑
C

δwC
δ∆vu

. The derivative is computed using δwC
δ∆vu

=
δ det∆
δ∆vu

wloc (C) and then, exponentiating the determinant:

δ det∆
δ∆vu

=
δ

δ∆vu

ˆ
D

[
ξ ∗ξ

]
e−ξ

∗
k∆kl ξl =

ˆ
D

[
ξ ∗ξ

] ∑
kl

δvkδul ξ
∗
kξle

−ξ ∗k∆kl ξl = det∆
∑
kl

δvkδulMkl(11.30)

where M ≡ ∆−1 . Finally, using the definition of the Monte-Carlo average (Eq. (11.17)):

Guv =
1
Z

∑
C

det∆(C)
∑
kl

δvkδulMkl (C)wloc (C) =
1
Z

∑
C

∑
kl

δvkδulMkl (C)w (C)

=

〈∑
kl

δvkδulMkl

〉
MC′

(11.31)

Using (11.12), G is more explicitly expressed as (i = (aσ )):

Gi j (τ ) =
〈∑
k,l

δ
[
τ ;τ jk −

(
τ ′

) i
l

]
Mji (τk ,τl )

〉
MC′

(11.32)

In practice, this measurement is done with the pseudo-code (if τi > τj and for one single color aσ):
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for i in annihilation_ops:
for j in creation_ops:

G(tau_i - tau_j) += sign * M_ij/beta

The complexity of the measurement is thus O (N 2) where N is the perturbation order in ∆ or number of
segments. This measurement is implemented in a class measure_gt.

11.1.7.1.2 Frequency measurement One can also measure the Fourier transform of Gi j (τ ), Gi j (iω) =´
τ e

iτωGi j (τ ) =
〈∑

k,l e
iω

(
τ jk−(τ

′)il

)
Mji (τk ,τl )

〉
MC′

, i.e, defining the function:

Mi j (iω) ≡
∑
k,l

eiω
(
τ ik−(τ

′) jl

)
Mi j (τk ,τl ) (11.33)

one obtains:

Gi j (iω) =
〈
Mji (iω)

〉
MC′

(11.34)

In practice, this measurement is done following the pseudo-code (for one line aσ):

for i in annihilation_ops:
for j in creation_ops:

for w in freq_mesh:
G(w) += sign * M_ij * exp((tau_i - tau_j)*w)

The complexity of the measurement is thus N 2nw where N is the perturbation order in ∆ and nw the number
of Matsubara frequencies. This measurement is implemented in a class measure_gw.

11.1.7.2 Density-density correlation function χ

The density-density correlation function is defined as χnc
aσ ,bσ ′ (τ ) = 〈Tnaσ (τ )nbσ ′ (0)〉 in the time domain,

χnc
aσ ,bσ ′ (iΩ) = 〈Tnaσ (iΩ)n∗bσ ′ (iΩ)〉 in the frequency domain. The latter correlator is easy to evaluate in the

segment picture, where the Fourier transform of n(τ ) (itself a piecewise constant function, given by Eq.
(11.20)), is:

ni (iΩ) =

ˆ β

0
dτeiΩτ

∑
ki

[
θ (τ − τki ) − θ (τ − τ

′

ki )
]
=

∑
ki

ˆ τ ′ki

τki

eiΩτ =
∑
ki

e
iΩτ ′ki − eiΩτki

iΩ
{1 − δiΩ} + liδiΩ (11.35)

Thus

χnc
i,j (iΩ) =

〈
ni (iΩ)n∗j (iΩ)

〉
MC′

(11.36)

More details can be found in Hafermann (2014). The measure is implemented in a class measure_nnw.

11.1.7.3 Three-point functions

The three-point function is defined as:

χ̃nc
i jk (iω,iΩ) =

ˆ β

0
dτ
ˆ β

0
dτ ′eiωτ eiΩτ

′

〈Tci (τ )c
†

j (0)nk (τ
′)〉 =

ˆ β

0
dτeiωτ 〈Tci (τ )c

†

j (0)nk (iΩ)〉
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where 〈cuc
†
vnk (iΩ)〉 = δ 〈nk (iΩ)〉

δ∆vu
= δ

δ∆vu

∑
C det∆nk (iΩ) (C)wloc (C). Performing the same steps as for the Green’s

function (Eq. (11.30)), one obtains:

〈cuc
†
vnk (iΩ)〉 =

∑
C

det∆
∑
ml

δvmδulMmlnk (iΩ) (C)wloc (C) =
〈∑
ml

δvmδulMmlnc (iΩ)
〉

MC

Or more explicitly: 〈ci (τ )c
†

j (0)nk (iΩ)〉 =
〈∑

ml δ (τm − τj )δ (τl − τ
′
i )Mi j (τm ,τ

′
l )nk (iΩ)

〉
MC

. Fourier transforming

yields:

χ̃nc
i jk (iω,iΩ) =

〈
Mi j (iω)nk (iΩ)

〉
MC′

(11.37)

where Mi j (iω) is defined in Eq. (11.33). More details can be found in Hafermann (2014). The measure
of nk (iΩ) is implemented in a class precompute_nw. The total measure is implemented in a class mea-
sure_g2w.

11.1.7.4 Improved estimator for Σ

Usually, the self-energy associated with the impurity action is computed using Dyson’s equation, Σ(iω) =

G−1 (iω) −G−1 (iω). Yet, the inversion of G required by this step and the subsequent cancellation of the terms
linear in iω leads to a blowing up of the high-frequency noise in Σ. This can lead to instabilities in the DMFT
loop as the high-frequency asymptotic behavior or “tails” of Σ are important for e.g. the adjustment of the
chemical potential.

An alternative to Dyson’s equation is provided to by the equation of motion of G (τ ), which leads to the result:

Σ(iω) = F (iω)G−1 (iω)

The general Faσ ,bσ ′ (τ ) is given by Eq. (11.38) in appendix F.3.3). In the normal phase (σ = σ ′), it becomes:

Faσ ,bσ ′ (τ ) = −

ˆ β

0
dτ̄

∑
I ,cd

U I
cd (τ − τ̄ )〈Tcaσ̄ (τ )σ

I
σ σ̄c

†

bσ ′ (0)n
I
d (τ̄ )〉 (11.38)

In the case without J⊥ interactions, the sum runs on I = 0,z with U0
ab =

(
Ua↑b↑ +Ua↑b↓

)
/2 and Uz

ab =(
Ua↑b↑ −Ua↑b↓

)
/2, leading to

Faσ ,bσ ′ (τ ) = −
∑
cd

ˆ
τ̄

Uc↑d↑ +Uc↑d↓

2
(τ − τ̄ )〈Tcaσ (τ )c

†

bσ ′ (0)
(
nd↑ + nd↓

)
(τ̄ )〉

−(±)
∑
cd

ˆ
τ̄

Uc↑d↑ −Uc↑d↓

2
〈Tcaσ (τ )c

†

bσ ′ (0)
(
nd↑ − nd↓

)
(τ̄ )〉

= −

ˆ β

0
dτ̄

∑
cd,σ̄

Ucσ ,dσ ′ (τ − τ̄ )〈Tcaσ (τ )c
†

bσ ′ (0)nd σ̄ (τ̄ )〉

Using the compound “line” index i = (a,σ ), this reads:

Fi j (τ ) = −

ˆ β

0
dτ̄

∑
k

Uik (τ − τ̄ )〈Tci (τ )c
†

j (0)nk (τ̄ )〉 = −
ˆ β

0
dτ̄

∑
k

Uik (τ − τ̄ )
〈∑
ml

δ jmδilMmlnk (τ̄ )
〉

MC

Finally:

Fi j (τ ) = −
〈∑
ml

δ jmδilMml Ii (τ )
〉

MC
(11.39)
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where I have defined: Ii (τ ) ≡
´ β

0 dτ̄
∑

k Uik (τ − τ̄ )nk (τ̄ ) =
∑

k Uiknk (τ ) +
∑

k
´ β

0 dτ̄Dik (τ − τ̄ )nk (τ̄ ). The second
term can be evaluated as a function of the dynamical kernel Ki j (τ ) (see Eq. (M.3) in the appendix):

ˆ β

0
dτ̄Dik (τ − τ̄ )nk (τ̄ ) =

Nk∑
pk=1

ˆ τ ′pk

τpk

dτ̄Dik (τ − τ̄ )

=

Nk∑
pk=1

−2K ′i j (0
+)

{
θ (τ − τkj ) − θ (τ − τ

′

kj )
}
+ K ′i j (τ − τkj ) − K

′
i j (τ − τ

′

kj )

which leads to:

Ii (τ ) =
∑
k

Uiknk (τ ) − 2
∑
k

K ′ik (0
+)nk (τ ) +

∑
opsα

sαK
′

ik (α ) (τ − τα )

=
∑
k

Ũiknk (τ ) −
∑
opsα

sαK
′

ik (α ) (τ − τα ) (11.40)

with sα = 1 for creation operators and −1 otherwise. If one splits the contributions from the charge and the
spin channel, Kaσ ,bσ ′ = K0

ab + (−)σσ
′

Kz
ab , this becomes

Ii (τ ) =
∑
k

Ũiknk (τ ) −
∑
opsα

sα
[
K0′
a (i )b (α ) (τ − τα ) + (−)σ (i )σ

′ (α ) Kz′
a (i )b (α ) (τ − τα )

]
(11.41)

In the presence of J⊥(we recall that J⊥ = J z), Eq. (11.41) is modified to

Ii (τ ) =
∑
k

{
Ũik − 2 · 2 (−)σ (i )σ

′ (k ) Kz′
a (i )b (k ) (0

+)
}
nk (τ ) −

∑
opsα

sα
[
K0′
a (i )b (α ) (τ − τα ) + 3 (−)σ (i )σ

′ (α ) Kz′
a (i )b (α ) (τ − τα )

]

At the cost of measuring an additional correlator (F (τ )), one obtains a smooth self-energy. This is why this
method of computing Σ is called the “improved estimator” method (Hafermann et al. (2012)). The measure
of Ii (τ ) is implemented in a class precompute_fprefactor.

The measure of F (τ ) is performed in measure_gt, while the measure of F (iω) is done in measure_gw.

11.1.7.5 Legendre measurements

Instead of using the Fourier basis to encode the Green’s function, one can use the basis of Legendre polynomi-
als. This is described in Boehnke et al. (2011). The advantage of this basis is that it is more compact than the
Fourier basis; it thus requires less storage. This becomes important for correlators with multiple arguments.
In the current, this is implemented only for the one-particle Green’s function.

11.2 Implementation notes

This section explains how the CTQMC algorithm described above is implemented. A first aim is to underline
the reasoning behind the implementation choices, which reflect the balance to be struck between efficiency
and clarity. A second aim is to provide a starting point for developers within the group. As a result, in the
following text, I will refer explicitly to the names of some classes of the actual code, which is not directly
useful for the general reader but is meant for potential developers of the code.

The corresponding code is not publicly available but its documentation is nonetheless available online at the
url http://ipht.cea.fr/triqs/1.2/applications/cthyb_segment/. The code can be run from Python or
from C++; the implementation is entirely in C++. The Python wrapper is generated automatically using

http://ipht.cea.fr/triqs/1.2/applications/cthyb_segment/
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the tool c++2py of the TRIQS library. The implementation makes use of the Monte-Carlo library available
in TRIQS (see above, section 10.2.3).

A Monte-Carlo code can be seen as a set of Monte-Carlo updates or “moves” together with a set of measures
(whose principles are described in the previous section) acting on a configuration. In the case of the “segment
solver”, as I will call the hybridization-expansion CTQMC solver in the segment picture, this configuration
contains a set of ordered times for fermionic as well as spin operators, the information on the edge state ψ ,
the information about which spin operator is “linked” to which other spin operator by a J⊥ line.

The main computational difficulty of the segment solver lies in the efficient computation of the overlaps
needed to compute the Metropolis ratios (see Eq. (11.18)) and in the manipulation of operators of different
types (orbital, spin...) on the imaginary timeline. More importantly, proposal probability ratios and accep-
tance ratios (and in particular limiting cases thereof) have to be computed with great care, as any error will
not necessarily be obvious to the naked eye. Mistakes in the detailed balance are difficult to spot and may
result in subtle biases or drifts. Worse, ergodicity issues – which are not intrinsically “bugs” – can only be
elucidated by adding more Monte-Carlo updates. For all these reasons, the implementation has to be as
simple and as readable as possible without compromises on the speed of the code. This section intends to
illustrate these challenges.

11.2.1 Description of a configuration

Monte-Carlo (MC) updates and measures perform operations on Monte-Carlo configurations, defined in Eq.
(11.7).

The internal implementation of MC configurations (by a class named configuration) reflects the structure of
the Monte-Carlo weight (Eq. (11.8)). A first worker called trace_c_ops performs all the operations associated
to the local trace factor wloc; a second worker called hybridization_dets takes care of the operators in the
hybridization determinant term; a third worker called bosonic_lines takes care of the spin operators and
of the attached bosonic lines. These workers manipulate the operators, which are described in the next
subsection.

11.2.1.1 Operators, fermionic and spin segments

The implementation of operators requires extra care. Indeed, one has to cope with the following three
difficulties:

1. for operations such as insertion/removal of a fermionic or spin segment on a given line, one needs to
be able to compute quickly the neighbors of this segment on the given line;

2. for the computation of overlaps, one wants to be able to compute quickly the neighbors of a given
operator irrespective of the line;

3. there are two types of segments: fermionic segments [c,c†] and spin segments [s+,s−]; a spin operator
consists in two fermionic operators.

To cope with these difficulties, each operator (characterized by the triplet (time, type [creation/annihilation],
color)) is stored in two hash tables (“std::map” in C++, with a log(N ) search time due to the implementation
of the hash table as a binary tree). The first hash table, named fullopmap, contains all the operators of all
colors. Iterating over all operators (with “const_iterators”) merely consists in traversing this map. This makes
it easy to compute the overlaps (provided the information about the occupation of the lines is stored, which is
done in a vector “right_occupations”), or to compute for instance the dynamical contribution to the trace, Eq.
(11.22), where a loop on all operators is required). Then, a vector of hash tables named ops_map stores hash
tables each containing the operators of a given color, or more precisely iterators (“colored_const_iterators”)
to the operators contained in fullopmap with can be easily “decolored” to become “const_operators”.
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ops map

fullopmap

colored const iterator

const iterator

decolor

cyclic left

cyclic left

tau

color

tau
color

right occupations

Figure 11.4: Graphical representation of the operator class, t_ordered_colored_c_ops. The colored lines
represent the different colors and the corresponding operators, stored in ops_map. The black line and
its operator represents fullopmap. The dashed vertical line represents the action of “decoloring” a col-
ored_const_iterator into a const_iterator.

As a result, for a given operator on a given line, finding the neighbors on the same line is easy (through
ops_map), and finding the “absolute” (irrespective of color) neighbors is easy (through fullopmap). These
hash tables as well as the low-lying operations thereon are contained in a class t_ordered_colored_operators.
This mechanism is illustrated in Fig. 11.4.

The imaginary time (“tau”) is not implemented as a double precision number (“double” in C++), but with
a dedicated class which deals with the imaginary time periodicity and does not suffer from rounding errors
inherent to double-precision numbers (each time is internally represented by an integer).

The information on which operator is “hybridized” (namely comes from the expansion of the hybridization
term) or is part of a spin segment (namely comes from the expansion of the J⊥ term) is contained in
the workers hybridization_dets and bosonic_lines, which respectively contain maps of the corresponding
colored_const_operators or vectors of “spin segments” (a small class containing two spin operators, each of
which is made up of two colored_const_iterators). Note that: a segment is a ordered couple (order matters)
(O (τl ),Or (τr )) where Ol and Or are two operators (either creation or annihilation) of the same color. A
spin segment is an unordered pair (order does not matter) {s+ (τ+),s− (τ−)} of a spin + operator and a spin -
operator.

A word on notation: in the following,

• τ = β− is placed on the left of τ = 0+. Thus, “left” means greater times (except when the operator is the
first on the line)

• the letter c will denote a “color” or “line” (see e.g. Fig. 11.1), namely a given orbital-spin (a,σ). nc
denotes the number of colors/lines

• at a given Monte-Carlo step, variables without prime refer to the state prior to the Monte-Carlo move
while primed variables refer to the state if the Monte-Carlo update is accepted.

• nops stands for the total number of creation and annihilation operators (a spin operator is made up of
two fermionic operators), nops (c ) stands for the number of operators on line c. nops,hyb refers to the
number of hybridized operators. l denotes the number of bosonic lines.

11.2.1.2 trace_c_ops

This worker performs all the operations related to the local trace factor, wloc. In particular, it computes the
contribution coming from wloc to the Metropolis ratio corresponding to the addition or removal of a segment
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Figure 11.5: Class hierarchy: who contains whom?

(Eq. (11.22)). It contains the overlap computations. It also stores the state ψ in a vector “full_lines”, as well
as the current signs of each line.

To increase speed, it also stores the current overlap matrix (Oi j of the previous section).

11.2.1.3 hybridization_dets

This worker performs all the operations related to the det∆ factor of the Monte-Carlo weight. In particular, it
computes the contribution coming from det∆ to the Metropolis ratio upon inserting or removing a segment.
It uses the TRIQS “det_manip” class to perform the low-lying operations on determinants (in particular, this
is where the Sherman-Morrison formulae are implemented).

11.2.1.4 bosonic_lines

This worker performs all the operations related to the
∏k

i=1

[
−J⊥

q (αi )βi

]
factor of the Monte-Carlo weight. In

particular, it computes the contribution coming from this factor to the Metropolis ratio upon inserting or
removing a spin segment.

11.2.1.5 Summary: dependencies

Figure 11.5 is a flow diagram showing which class contains which. The class qmc_parameters contains the
relevant physical parameters of the simulation.
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11.2.2 Monte-Carlo updates (or “moves”)

In this section, I describe each Monte-Carlo update. The proposal probability depends on the precise process
of each update (including the order of the steps).

11.2.2.1 Move “insert” and “remove segment”

This is the basic move. It is illustrated in Fig. 11.3. This move is implemented in a class move_insert_segment
and move_remove_segment. As a concrete example, the code of the insertion update is reproduced in ap-
pendix M.4.

11.2.2.1.1 Description of the insertion process The insertion of a segment consists in the following
steps:

1. Choose a random color c;

2. Choose a random time τ1 between 0 and β;

3. Determine the interval lmax between the opera-
tor on the left of τ1 on line c (time τl ) and the
one on the right of τ1 on c (time τr );

4. Choose a random time τ2 between and τl and
τr ;

5. Swap both times as dictated by the occupation
of line c if it already carries at least one seg-
ment. Otherwise (no operators before), τ1 is
the creation operator, τ2 the annihilation oper-
ator;

6. Insert the segment {O (τ1),O (τ2)}, i.e. change oc-
cupation state of line c from the left of τ1 to the
right of τ2 in trace_c_ops.

11.2.2.1.2 Description of the removal process The procedure is the following:

1. Choose a random color c;

2. Choose a operator Ol among nops,hyb (c ). Find
its right neighbor Or . Compute δl , the space
“around” the segment (i.e. to the neighboring

operators);

3. Remove segment {Ol , Or }, i.e. change occupa-
tion state of line c from the left ofOl to the right
of Or .

11.2.2.1.3 Proposition ratios Based on the insertion and removal processes, one finds the following
proposition ratios:

Insertion transition
probabilities (case

nops > 0)

Removal transition
probabilities (case

nops > 0)

Insertion transition
probabilities (case

nops = 0)

Removal transition
probabilities (case

nops = 0)

Pi→f =
2

ncβlmax

Pf→i =
1

ncn
′

ops,hyb (c )

P
prop
insertion =

βlmax

2n′ops,hyb (c )

Pi→f =
1

ncnops,hyb (c )

Pf→i =
2

ncβδl

P
prop
insertion =

2nops,hyb (c )

βδl

Pi→f =
1
β2

Pf→i =
1
2

P
prop
insertion =

β2

2

Pi→f =
1
2

Pf→i =
1
β2

P
prop
insertion =

2
β2

11.2.2.2 Move “move segment”

This move consists in taking a segment (seg1) on one line c1 and moving it on another line c2 at the same
position (Fig. 11.6). This move is important when spurious polarizations between identical lines appear (this
often happens in insulating regimes). This move is implemented in a class move_move_segment.



Chapter 11. Continuous-time quantum Monte Carlo solver in the hybridization expansion with dynamical
spin spin interactions 145

c1

c2

τleft τright

(a) initial state

c1

c2

τleft τright
(b) final state

Figure 11.6: Move move segment
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Figure 11.7: Move insert/remove spin segment

11.2.2.2.1 Description of the move The procedure is the following:

1. choose a color c1;

2. choose a color c2. If c2==c1, reject;

3. choose an operator on line c1. This determines

a segment seg1=(tau_left,tau_right);

4. if c2 is unoccupied from the right of tau_left to
the left of tau_right, propose the move to line
c2;

11.2.2.2.2 Proposition ratios The corresponding proposition ratios are:

Pi→f =
1
nc

1
nc

1
nops (c1)

Pf→i =
1
nc

1
nc

1
n′ops (c2)

P
prop
move =

nops (c1)
n′ops (c2)

11.2.2.2.3 Note In practice, the trace and determinant ratios are computed in the following way:

• Trace: seg1 is removed from the trace on c1 (completely) and try_add’ed to the trace on c2

• Determinant: in the diagonal-∆ case, seg1 is try_removed from the det on c1 and try_add’ed to the
determinant on c2 (in this case, both determinants are independent of each other).

11.2.2.3 Move “insert” and “remove spin segment”

This move consists in adding/remove a spin segment [s+,s−] to a configuration. It is illustrated in Fig. 11.7.
This move is implemented in a class move_insert_spin_segment and move_remove_spin_segment.

11.2.2.3.1 Description of insertion process The procedure is the following:
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Figure 11.8: Move swap bosonic lines

1. Choose a random time τ1 between 0 and β

2. Compute the interval lmax between the first op-
erator Ol on the left of τ1 (on line 0 or 1) and
the first operator Or on the right of τ1, (on line
0 or 1)

3. Choose a random time τ2 between Or and Ol

4. If nops > 0, swap τ1 and τ2 as dictated by the
state of both lines. Otherwise (nops = 0), do not
swap.

5. Insert spin segment {s (τ1),s (τ2)}

11.2.2.3.2 Description of removal process

1. Randomly choose a bosonic line among the nb lines.

2. If there are no operators between both spin operators, remove spin segment (ie modify occupation state
of both lines on the side where there are no operators). Otherwise, reject. If nops = 4 (i.e. there is only
one spin segment remaining), change occupation to the left of spin + with probability 1/2, to the right
of spin + with probability 1/2.

11.2.2.3.3 Proposition ratios The corresponding proposition ratios are:

Insertion transition
probabilities (case

nops > 0)

Removal transition
probabilities (case

nops > 0)

Insertion transition
probabilities (case

nops = 0)

Removal transition
probabilities (case

nops = 0)

Pi→f =
2

βlmax

Pf→i =
1

n′b (c )

P
prop
insertion =

βlmax

2n′b

Pi→f =
1
nb

Pf→i =
2
βδl

P
prop
insertion =

2nb
βδl

Pi→f =
1
β2

Pf→i =
1
2

P
prop
insertion =

β2

2

Pi→f =
1
2

Pf→i =
1
β2

P
prop
insertion =

2
β2

11.2.2.4 Move “swap bosonic lines”

This move is aimed at sampling the permanent. It consists in changing the permutation q or graphically
in swapping the bosonic lines between two spin segments. It is illustrated in Fig. 11.8. This move is
implemented in a class move_swap_bosonic_lines.

11.2.2.4.1 Description of the move

1. Choose a random bosonic line index i1

2. Choose a random bosonic line index i2
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O1 O2L1 R1 L2 R2

G1 G2

(a) initial state

G′
1 G′

2L1 R1 L2 R2

G1 G2

(b) final state

Figure 11.9: Regroup move.

3. If i1 = i2, reject. Else, remove a the bosonic lines (s+ (i1),s− (i1)) and (s+ (i2),s− (i2)) and add the bosonic
lines (s+ (i2),s− (i1)) and (s+ (i1),s− (i2))

11.2.2.5 Move group and split composite operators

This move consists in regrouping 4 fermionic operators into a spin segment, or conversely to split a spin
segment into 4 fermionic operators. This move is implemented in a class move_regroup_spin_segment and
move_split_spin_segment.

11.2.2.5.1 Regrouping four operators into a spin segment (Fig. 11.9) The procedure is the following:

1. choose a line c (1/l)

2. choose two operators O1 and O2 of opposite
type on this line (1/nops (c )

2)

3. find the left and right neighbors L1 and R1

(resp. L2 and R2) of O1 and O2 on the same
line

4. find a candidate Gi to be grouped with Oi on

the opposite line c ′, namely Gi is a left or right
neighbor of Oi of the opposite type and on the
opposite line and Li > Gi > Ri . If cannot find
canditate, reject.

5. if there are no operators betweenO1 andO2 and
between G1 and G2, reject;

6. otherwise, remove (O1,O2) and insert (G ′1,G
′
2)

on the line c. Insert a bosonic line.

11.2.2.5.2 Splitting a spin segment into four operators (Fig. 11.10) The procedure is the following:
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G′
1 G′

2L1 R1 L2 R2

G1 G2

(a) initial state

O1 O2L1 R1 L2 R2

G1 G2

(b) final state

Figure 11.10: Split move.

1. choose a bosonic line (1/l)

2. if there are no operators between the segment’s
ends, reject

3. if there are no operators between the end points
of either segment, choose the line where there
are intercalated operators. Otherwise, choose
either line (1/2), say c.

4. find the left and right neighbors L1 and R1

(resp. L2 and R2) of the end points G ′1 and G ′2
(check: R1 , L2) on c.

5. pick a time τi between Li and Ri
(1/lmax,11/lmax,2)

6. remove segment (G ′1,G
′
2) and add

segment_desc(O1 (τ1),O2 (τ2)) to c.

11.2.2.5.3 Proposition ratios The corresponding proposition ratios are:

Regroup move (general
case)

Split move (general
case)

Regroup move (special
case)

Split move (special case)

Pi→f =
1
nc

1
n2

ops,hyb (c )

Pf→i =
1
l ′

1
2

1
lmax,1lmax,2

P
regroup
prop =

ncn
2
ops,hyb (c )

2l ′ · lmax,1lmax,2
(11.42)
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1
2

1
lmax1

1
lmax2
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1
nc

1
(n′ops,hyb (c ))

2

P
split
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2l · lmax,1lmax,2

nc (nops,hyb (c ))2
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1
nc

1
n2

ops,hyb (c )

Pf→i =
1
l ′

1
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P
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ncn
2
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(11.43)
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12
Dynamical screening in solids: Combined
Screened Exchange and dynamical DMFT

The quantum Monte-Carlo code that I have described in the previous chapter has been used by Ambroise van
Roekeghem in the framework of electronic structure calculations.

In section 12.2, I give a brief overview of a new approach combining screened exchange and dynamical DMFT
(SEx+DDMFT) developed in van Roekeghem (2014) and its application to the cobalt pnictide BaCo2As2

published as van Roekeghem et al. (2014) and included in section R.2. To put this method in context, I
briefly describe one of the major methods used for the realistic description of correlated solids prior to this
work (section 12.1).

12.1 Density functional theory combined to DMFT: LDA+DMFT in a nutshell

Density functional theory (DFT1), the workhorse of ab initio electronic structure calculations, can be com-
bined to dynamical mean-field theory to extend the scope of the theory to excitations and finite temperatures.
The corresponding method, “LDA+DMFT” (Lichtenstein and Katsnelson (1997); Anisimov et al. (1997)), is
discussed at greater length in appendix J.2. Here, I merely summarize its main principles.

In systems with narrow bands near the Fermi level, LDA+DMFT focuses on the degrees of freedom located
in a low-energy window W assumed to contain all relevant physical processes. A set of Wannier orbitals
is contructed in this window. Then, the Kohn-Sham Hamiltonian – the main output of a DFT calculation,

1More details are given about the principles of DFT in appendix J.1.

ε

kεF

full Hilbert space

low-energy window

correlated subspace

H

W

C

Wannier construction
self-consistency condition

impurity solver

DFT computation

Figure 12.1: Definition of the various energy windows used in LDA+DMFT
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parametrizing the band structure of the materials – is projected in this basis, yielding a Hamiltonian εW
acting in W . Among the Wannier orbitals, some are very localized and thus expected to be affected by
correlation effects. For this subset, denoted C , of orbitals, one performs a self-consistent DMFT calculation
yielding a local self-energy Σmm′ (iω). The different energy windows are summarized in Fig. 12.1.

The LDA+DMFT self-consistency is similar to the single-site DMFT self-consistency condition, only it is per-
formed in matrix form. The matrix inversion is performed in the low-energy window W , but only the com-
ponents of Gloc (iω) belonging to the correlated subset C (whose basis set is parametrized by indices m,m′)
are used to compute the Weiss field, namely Gloc is given by the expression:

[Gloc (iω)]mm′ =
∑

k

[
(iω + µ ) 1 − εW (k) − ΣW (iω)

]−1
mm′ (12.1)

with

ΣW (k,iω) =

*......
,

0 0
∆Σm1m1 (iω) · · · ∆Σm1mNC

(iω)

0
...

. . .
...

∆ΣmNC
m1 (iω) · · · ∆ΣmNC

mNC
(iω)

+//////
-

∆Σm1m1 (iω) is the impurity self-energy corrected for the exchange and correlation effects already taken into
account at the DFT level:

∆Σmm′ = Σmm′ − Σdc
mm′

The estimation of Σdc is, however, problematic since the precise diagrammatic content of DFT is difficult to
assess; this is an important drawback of this method.

The Weiss field is given by the usual equation, in matrix form:
[
G−1 (iω)

]
mm′
=

[
G−1

loc (iω)
]
mm′
+ Σmm′ . The

(static) interaction matrix Um1m2m3m4 can be computed from first principles by the constrained RPA method
(see chapter J.3 for more details).

The corresponding multiorbital impurity problem is solved for Σmm′ (iω) as explained in the previous chapter,
and plugged into 12.1 until convergence.

12.2 Beyond LDA+DMFT combined with cRPA: GW+DMFT and SEx+DDMFT

The combination of LDA+DMFT with constrained RPA can be improved on. Indeed,

• the double-counting problem of LDA+DMFT is a real issue and can probably not be solved owing to the
different nature of the DFT approximation and many-body techniques. Realistic methods based only on
Green’s functions are needed;

• constrained RPA leads to a renormalization of the interactions via polarization effects coming from the
high-energy electrons, leading to an effective low-energy Hamiltonian with partially screened interac-
tions. However, self-energy effects coming from the high-energy electrons also in principle renormalize
the one-body part of the low-energy Hamiltonian. In these effects, the long-range Coulomb tail is
expected to play an important role.

12.2.1 GW+DMFT

The GW+(E)DMFT approximation as introduced by Biermann et al. (2003) aims at solving the above issues.
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The full-fledgedGW+DMFT scheme is performed – at least in principle – in the full Hilbert space H , namely:

defining the screened interaction and full Green’s function as W (q,iΩ) = vCoul
q

(
1 −vCoul

q P (q,iΩ)
)−1

and

G (k,iω) =
(
G−1

0 (k,iω) − Σ(k,iω)
)−1

(where bold symbols denote operators acting in H ), the authors then
define their local parts in the usual way (Wloc (iΩ) =

∑
qW (q,iΩ) and Gloc (iω) =

∑
kG (k,iω)), which allows

them to define the local “impurity” Weiss fields U and G as U−1 (iΩ) =W −1
loc (iΩ) + Pimp (iΩ) and G−1 (iω) =

G−1
loc (iω) + Σimp (iω). The corresponding “impurity” problem, defined as the generalization of Eq. (5.3) to

several orbitals, Simp [U ,G], is then in principle solved for Σimp (iω) and Pimp (iω), and the self-energy and
polarization computed as the (now familiar) combination:

Σ(k,iω) = Σimp (iω) +
[
ΣGW (k,iω)

]nonloc

P (q,iω) = Pimp (iω) +
[
PGW (q,iω)

]nonloc

with the GW self-energy and polarization:

ΣGW (r,r′,τ ) = −G (r,r′,τ )W (r′,r,−τ ) (12.2)

PGW (r,r′,τ ) = 2G (r,r′,τ )G (r′,r,−τ ) (12.3)

Σ and P are then plugged into G and P until convergence. Of course, this general formulation, where the
impurity problem describes all orbitals in the solid, cannot be implemented in practice; in fact, since U is
expected to be relevant only for a subspace of correlated orbitals (C ), the algorithm can be simplified in the
following way, as explained in Tomczak et al. (2014):

1. Start with given G andW (e.g. GLDA andW RPA);

2. Compute the self-energy and polarization in the GW approximation (Eqs (12.2-12.3)): ΣGW (k,iω) and
PGW (q,iΩ);

3. Compute U (ω) ∼ 〈ww |Wr (ω) |ww〉 (double-underlined quantities act in C ) (see Eq. (J.34)) from con-
strained RPA;

4. With G
loc

and W
loc

(computed with v → U (ω)), compute U and G , and then Σimp (iω) and P imp (iΩ)

from the impurity solver. Promote them to the full Hilbert space: Σimp and P imp(see paragraph J.2.1 for
more details about upfolding);

5. Combine Σimp and P imp with ΣGW (k,iω) and PGG (q,iΩ) (taking care of double-counting terms, which,
contrary to LDA, can be determined unambiguously) into Σ and P . Compute the new G and W . Go
back to step 2, until convergence.

This fully self-consistent scheme has to this date only been performed for one-particle quantities in Tomczak
et al. (2012a, 2014), i.e. two-particle quantities were kept fixed.

12.2.2 SEx+DDMFT

To make the computations lighter, a simplified scheme, dubbed “Screened Exchange + dynamical DMFT”
(SEx+DDMFT) has been introduced by van Roekeghem et al. (2014) (included in chapter R.2). It is based
on the observation that the k and ω dependences of Σ are separable (Tomczak et al. (2012b, 2014)).
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Simp[G(iω),

Σ(k, iω) = Σimp(iω)

Dyson
equation

G−1 = G−1

loc
+Σ

loc

consistency
condition

self-

self-energy
approximation

impurity
model

impurity
self-energy

G(k, iω)[Σ]

Σ
imp

GLDA

WTF[kTF]

U(ω)]+
[

]

nonloc

kTF

Figure 12.2: The SEx+DDMFT loop. Bold symbols operate in the full Hilbert space. Double-underlined
symbols operate in the correlated subspace.

12.2.2.1 Algorithm

The SEx+DDMFT algorithm consists in the following steps:

1. Start with GLDA and W TF (W TF is the fully screened interaction in the Thomas-Fermi approximation,
namelyW TF ∼ e2/ϵ0/

(

q2
+ k2

TF

)

, with k2
TF = e

2N (εF)/ϵ0, see subsection J.3.1 for an intuitive picture; kTF

is computed within LDA);

2. ComputeU (ω) = 〈ww |Wrest (ω) |ww〉 (see Eq. (J.34)) from constrained RPA (Wrest = vCoul/(1−vCoulPrest));

3. Compute the self-energy in the screened Hartree-Fock approximation: ΣSEx (k) = −GLDAW TF[kTF];

4. Perform a self-consistent “dynamical” DMFT computation (namely, with an impurity problem with dy-
namical interactions U (ω)); at each step, instead of approximating the lattice self-energy by Σimp (iω),

upfold it to full Hilbert space (Σimp (iω)) and combine it to Σ
SEx (k) (with an updated kTF, and taking

care of double-counting terms) before recomputing Gloc. This step is illustrated in Fig. 12.2. Blue
observables are kept fixed (in principle, GLDA in Σ

SEx and U (ω) could be updated self-consistently but
this has not been implemented so far)

The double-counting term (signalled by the subscript “nonloc” in Fig. 12.2) is computed as the mean-field
Hartree contribution from the Hubbard model. More details can be found in van Roekeghem (2014).

The impurity model to be solved at step 4 is a multiorbital impurity model with dynamical interactions. This
model is solved exactly, up to statistical noise, by the CTQMC algorithm described in the previous chapter.

12.2.2.2 Results

In van Roekeghem et al. (2014) (included in chapter R.2), this new method is applied to the BaCo2As2

compound, which is isostructural to BaFe2As2, one of the recently discovered iron-based superconductors.

The effect of each contribution is, roughly speaking, the following:
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1. the screened Hartree-Fock contribution, ΣSEx (k), increases the overall bandwidth compared to LDA

2. dynamical local correlations (encoded in U (ω) and then, after solving the impurity model, Σimp (ω))
reduce the bandwidth

The second effect, namely the renormalization of the bandwidth due to dynamical interactions, can be un-
derstood intuitively by considering the dynamical interactions as stemming from the coupling to bosonic
modes. The quasiparticles corresponding to the fermionic modes coupled to bosonic modes are “polarons”,
whose effective mass is enhanced with respect to the original electrons (see paragraph 11.1.4.2.2 for a more
rigorous derivation). The renormalization factor can be approximated by2

ZB = exp
[
−

ˆ ∞
0

dω

π

ImU (ω)

ω2

]
(12.4)

Both contributions to the total self-energy are important. The dynamical nature of Hubbard’s U computed
from cRPA comes from high-energy electrons interacting via long-ranged Coulomb interactions. If the contri-
bution of these electrons is taken into account at the level of interactions (in U (ω)), it should also be taken
into account at the self-energy level. Here, this is done in an approximate way via ΣSEx (k).

If only Σimp (ω) is included (in a “LDA + dynamical DMFT” calculation), the bandwidth reduction is overes-
timated. Conversely, only including the static and nonlocal self-energy ΣSEx (k) leads to an overestimation of
the bandwidth.

Interestingly, the bandwidth found in SEx+DDMFT and LDA + (static) DMFT are similar: LDA+DMFT throws
away the dynamical part ofU (ω) (arising from high-energy electrons) and does not take into account nonlocal
contribution of high-energy electrons to the self-energy. In the light of the previous discussion, these two sim-
plifications are consistent with each other. Thus, SEx+DDMFT explains why the LDA+DMFT method suitably
describes the overall bandwidth reduction of correlated materials. Compared to LDA+DMFT, SEx+DDMFT
better captures finer details such as Fermi surface topology or the low-energy spectral function.

More importantly, SEx+DDMFT is much more lightweight than a full GW+DMFT computation. It has
been recently applied to transition metal oxides (van Roekeghem and Biermann (2014)) and CaFe2As2 (van
Roekeghem et al. (2015)).

The agreement of the spectrum obtained with SEx+DDMFT with ARPES in BaCo2As2 is illustrated in Fig.
12.3.

2This formula is the generalization of Eq. (11.27), valid for ImU (ω ) = λ2 (δ (ω − ω0) − δ (ω +ω0), to a continuum of bosonic modes.
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Figure 12.3: BaCo2As2 within screened exchange + DDMFT: (a) spectral function and (b) bands extracted
from the maxima of panel (a) and superimposed on ARPES data.



Part V

Conclusions and perspectives

In this work, I have addressed several aspects of nonlocal correlations in solids.

First, the effect of nonlocal and even long-ranged interactions has been studied in the context of systems
of atoms adsorbed on semiconducting surfaces. There, using the self-consistent combination of extended
dynamical mean field theory with the diagrammatic GW method (GW+EDMFT), a materials trend has been
proposed based on the first-principles determination of the interaction parameters of a family of compounds.
In the Sn/Si compound, both the spatial and temporal information provided by GW+EDMFT has been used
to elucidate apparent contradictions from different experimental probes, based on the different timescales of
each experiment.

Second, a novel approach to the description of nonlocal self-energy and polarization effects in strongly-
correlated systems has been proposed. This method, called TRILEX, unifies two important points of view
on high-temperature superconductors, the “doped Mott insulator” and the “spin fluctuation” viewpoints. In
the spirit of dynamical mean field theory, it relies on a local approximation which reduces the description of
the extended solid to a local effective description in terms of an impurity problem. In this method, however,
not the self-energy, but the three-leg vertex, describing the interaction between the physical fermions and
their bosonic fluctuations, is approximated by a local vertex. This vertex is computed by solving a single-site
impurity problem with dynamical charge-charge and spin-spin interactions, and used to construct frequency-
and momentum-dependent self-energies and polarizations that can capture the momentum differentiation
effects observed in various experiments on cuprate materials.

Applied to the single-band Hubbard model in two dimensions, this method has been shown to reduce to
the spin fluctuation approximation in the weak-interaction regime, and to describe isolated atoms in the
strong-interaction regime. While featuring a first-order metal-to-Mott insulator transition at half-filling like
DMFT and a strong momentum differentiation in the self-energy and polarizations at weak coupling like
in spin fluctuation theory, it displays significant departures from either limit in the intermediate interaction
regime. This is controlled by the frequency dependence of the central quantity of the approximation, the
local three-leg vertex.

This new method, as well as the GW+EDMFT method, relies on the development of recent algorithms such
as the continuous-time quantum Monte-Carlo method in the hybridization expansion, whose generalization
to retarded charge-charge and spin-spin interactions is also elaborated on in this work.

A lightweight method, TRILEX can be used to investigate many complex problems, like superconducting
phases or multiorbital problems that are relevant, for instance, for the iron-based superconductors. Further-
more, many interesting aspects of TRILEX for single-band problems require further work, like the understand-
ing of its low-temperature behavior or its cluster extension. The extension of TRILEX to study charge ordering
phenomena – recently a subject of intense interest in the field of cuprate compounds – is also promising.
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A
Notations

Unless otherwise stated, throughout the text,

• ≡ denotes a definition

A.1 Time and frequencies

• τ denotes the imaginary time variable, t the real time variable

• β denotes the inverse temperature

• T denotes the imaginary time ordering operator

•
´

dτ denotes
´ β

0 dτ

• ω denotes the real-axis frequency variable, iω and iν fermionic Matsubara frequencies and iΩ bosonic
Matsubara frequencies.

•
∑

iω д(iω) denotes 1
β
∑∞

n=−∞ д(iωn )

A.2 Space and momentum

• k and q denote a (quasi) momentum variable

•
∑

k f (k) denotes 1
Nk

∑Nk
n=1 f (kn )

A.3 Operators

• c† denotes a second-quantized creation operator, c an annihilation operator

• c̄ and c denote conjugate Grassmann variables

• H denotes a many-body Hamiltonian

• h denotes a one-body Hamiltonian

• S denotes an action

• Z denotes a partition function
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• Ω denotes the free energy − logZ

• Ψ denotes a many-body state

• ψ denotes a one-body state

• 〈. . . 〉 denotes the thermal and quantal average 1
Z

∑
i e
−βEi 〈Ψi

��� . . .
���Ψi 〉 where (Ψi ,Ei ) are the eigenele-

ments of H .

A.4 Indices

• σ denotes a spin ↑ or ↓

• i denotes a Wannier site Ri

A.5 Pauli matrices

The Pauli matrices are defined as: σx =

(
1

1

)
, σy =

(
0 −i

i 0

)
, σ z =

(
1
−1

)
. Sometimes, I will

denote the 2 × 2 identity matrix as σ0.



B
Fourier conventions

B.1 Fourier transforms in the imaginary time-frequency domain

B.1.1 Two-point functions

For any imaginary-time β-periodic or β-antiperiodic function f (τ ), the direct and inverse Fourier transforms
are defined as follows:

f (iω) =

ˆ β

0
dτ f (τ )eiτω

f (τ ) =
∑
iω

e−iωτ f (iω)

B.1.2 Three-point functions

I follow the following Fourier conventions, depending on whether I want to work with a fermionic and a
bosonic Matsubara frequency iω and iΩ, or two fermionic frequencies iω1 and iω2:

χα βγ (iω,iΩ) ≡

¨ β

0
dτdτ ′eiωτ+iΩτ

′

χα βγ (τ ,0,τ ′) (B.1a)

χ̂α βγ (iω1,iω2) ≡

¨ β

0
dτdτ ′eiω1τ+iω2τ ′ χα βγ (τ ,τ

′,0) (B.1b)

for any three-point function Aα βγ (τ1,τ2,τ3), e .д

χα βγ (τ1,τ2,τ3) ≡ 〈Tcα (τ1)c
†

β (τ2)ϕγ (τ3)〉 (B.2)

Both functions are related:

χα βγ (iω,iΩ) = χ̂α βγ (iω,−iω − iΩ) (B.3)

In the main text, I only use the first form χα βγ (iω,iΩ) but the form χα βγ (iω1,iω2) is useful to derive certain
results. These Fourier conventions are based on symmetry properties of three-point correlation functions
such as χα βγ (τ1,τ2,τ3). These properties are examined at greater length in appendix D.1.

The reciprocal transform reads:

χα βγ (τ ,0,τ ′) =
∑
iω

∑
iΩ

e−iωτ−iΩτ
′

χα βγ (iω,iΩ)
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B.2 Fourier transform in the space-momentum domain

For any function f (R) defined on a Bravais latttice “BL”, the direct and inverse Fourier transforms are defined
as follows:

f (k) =
∑

R∈BL

e−ik·R f (R) (B.4)

f (R) =
∑
k∈BZ

eik·R f (k) (B.5)
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C
Bosonic and fermionic correlation functions:

relations

In this subsection, we prove the following relations between observables of the mixed fermion-boson action
(8.15) and observables of the fermionic action:

φη = U η · 〈nη〉 (C.1a)

W η,nc = U η −U η · χη,nc ·U η (C.1b)

W η = U η −U η · χη ·U η (C.1c)

χ3,η = U η · χ̃3,η (C.1d)

W η , χη and χ3,η have been defined in Eqs (8.17b), (8.56) and (8.27), and

χuvγ ≡ 〈cu c̄vnγ 〉 (C.2)

respectively. Latin indices denote u ≡ (R,τ ,σ ,a . . . ), Greek indices α = (R,τ , I . . . ). The dot denotes multipli-
cation in frequency-momentum indices, convolution in time-space and Pauli indices, namely:

(A · B)α β = AαγBγ β (C.3)

Let us recall the definition of the partition function in the precence of sources

Z[h,F] ≡
ˆ
D[c̄,c,ϕ]e−Seb+hαϕα−Fuv c̄ucv− 1

2ϕα Bα βϕβ (C.4)

Integrating out the bosonic fields yields:

Z[h,F] = Det
[
Ū −1

]−1/2
×

ˆ
D[c̄,c]e−c̄u

{
−G−1

0,uv+Fuv
}
cv+ 1

2 Ūα β (hα−c̄uλuvα cv )
2

(C.5)

= e
1
2 Tr log[Ū ] ×

ˆ
D[c̄,c]e−c̄u

{
−G−1

0,uv+Fuv
}
cv+ 1

2 Ūα β (hα−c̄uλuvα cv )
2

with Ūα β =
[(
−U −1 + B

)−1
]

α β
. Hence

Ω =
1
2

Tr log
[
−U −1 + B

]
− log

ˆ
D[c̄,c]


e−c̄u

{
−G−1

0,uv+F
}
cv × e

1
2 Ūα β (hα−c̄uλuvα cv )(hβ−c̄uλuvβ cv )
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Relation (C.1a) follows from computing φα by successivly using (C.4) and (C.5):

φα =
1
Z

∂Z

∂hα
= Uα β 〈c̄uλuvβcv 〉

Similarly, one has:

W nc
α β = −2

∂Ω

∂Bα β

= −2
[
1
2

(
−Uα β

)]

−2

−

1
2

*
,

∂Ūγ δ

∂Bα β
+
-

(
hγ − c̄uλuvγ cv

)
(hδ − c̄uλuvδcv )


= Uα β −Uαδ 〈(c̄uλuvδcv )

(
c̄uλuvγ cv

)
〉Uγ β

= Uα β −Uαδ 〈nδnγ 〉Uγ β

which proves (C.1b-C.1c) and:

χnc
uvα =

1
Z

∂2Z

∂Fvu∂hα

�����h=0
=

1
Z

∂

∂Fvu

ˆ
D[c̄,c]

(
Uα β

(
nβ − hβ

))
e−S = Uα β 〈cu c̄vnβ 〉

which proves (C.1d).



D
Three-point correlation function: various

properties

D.1 Time-translation symmetries and Fourier properties

This section is aimed at justifying the definition of the Fourier transforms Eqs (B.1a) and (B.1b) based on the
symmetry properties of the three-leg correlation function.

D.1.1 Time-translation invariance and Fourier transform with three integration variables

Let us define a generic three-point function:

χi jk (τ1,τ2,τ3) ≡ 〈Tci (τ1)c
†

j (τ2)ϕk (τ3)〉

Using the definition of the Heisenberg representation and the cyclicity of the trace, one has:

χi jk (τ1,τ2,τ3) = 〈Tci (τ1 − τ3)c
†

j (τ2 − τ3)ϕk (0)〉 ≡ Ai jk (τ1 − τ3,τ2 − τ3) (D.1)

χi jk (τ1,τ2,τ3) = 〈Tci (τ1 − τ2)c
†

j (0)ϕk (τ3 − τ2)〉 ≡ Bi jk (τ1 − τ2,τ3 − τ2) (D.2)

As a result of the two time-translation invariances above, one can define the very general Fourier transforms:

Ai jk (iω1,iω2) =
1

3!β

ˆ β

0
dτ1

ˆ β

0
dτ2

ˆ β

0
dτ3e

iω1 (τ1−τ3 )+iω2 (τ2−τ3 )Ai jk (τ1 − τ3,τ2 − τ3)

Bi jk (iΩ1,iΩ2) =
1

3!β

ˆ β

0
dτ1

ˆ β

0
dτ2

ˆ β

0
dτ3e

iΩ1 (τ1−τ2 )+iω2 (τ3−τ2 )Bi jk (τ1 − τ2,τ3 − τ2)

From these definitions and the relation iΩ1 (τ1 − τ2) + iΩ2 (τ3 − τ2) = iΩ1 (τ1 − τ3) + (−iΩ1 − iΩ2) (τ2 − τ3), one
can already see that:

Bi jk (iΩ1,iΩ2) =
1

3!β

ˆ β

0
dτ1

ˆ β

0
dτ2

ˆ β

0
dτ3e

iΩ1 (τ1−τ3 )+(−iΩ1−iΩ2 ) (τ2−τ3 )Ai jk (τ1−τ3,τ2−τ3) = Ai jk (iΩ1,−iΩ1− iΩ2)

(D.3)

Note that iω1 and iω2 are fermionic frequencies, iΩ1 is a fermionic frequency, iΩ2 is a bosonic frequency. Let
us define the two changes of variables τ = τ1 − τ3, τ ′ = τ2 − τ3 and τ̃3 = τ3 for Ai jk and τ = τ1 − τ2, τ ′ = τ3 − τ2

and τ̃3 = τ3 for Bi jk . In both cases the Jacobian is 1. The integration domain for the transformed variables τ
and τ ′ is the union of all the orange and grey domains in Fig D.1. Since the integrand no longer depends on
τ3,
´ β

0 dτ3 just contributes a factor β . We now want to reduce the integration domain to the domains A and B

using the symmetry properties of Ai jk and Bi jk .
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A
B

C

D

E

F

τ ′

τ

−β

−β
β

β

Figure D.1: Integration domain

D.1.2 Periodicities of the three-point functions

D.1.2.1 A(τ ,τ ′)

Let us take (τ ,τ ′) ∈ C, i.e. 0 > τ ′ > τ > −β . Using the cyclicity of the trace and the properties of the
time-ordering operator, we get:

A(τ ,τ ′) = 〈Tci (τ )c†j (τ
′)ϕk (0)〉 = −〈ϕk (0)c†j (τ

′)ci (τ )〉

A(τ + β ,τ ′) = 〈Tci (τ + β )c†j (τ
′)ϕk (0)〉 = 〈ci (τ + β )ϕk (0)c†j (τ

′)〉 = 〈ϕk (0)c†j (τ
′)ci (τ )〉

A(τ + β ,τ ′ + β ) = 〈Tci (τ + β )c†j (τ
′
+ β )ϕk (0)〉 = −〈c†j (τ

′
+ β )ci (τ + β )ϕk (0)〉 = −〈ϕk (0)c†j (τ

′)ci (τ )〉

i.e

A(τ + β ,τ ′) = −A(τ ,τ ′)
A(τ + β ,τ ′ + β ) = A(τ ,τ ′)

Let us now take (τ ,τ ′) ∈ D, i.e. 0 > τ > τ ′ > −β . Similarly:

A(τ ,τ ′) = 〈Tci (τ )c†j (τ
′)ϕk (0)〉 = 〈ϕk (0)ci (τ )c†j (τ

′)〉

A(τ ,τ ′ + β ) = 〈Tci (τ )c†j (τ
′
+ β )ϕk (0)〉 = −〈c†j (τ

′
+ β )ϕk (0)ci (τ )〉 = −〈ϕk (0)ci (τ )c†j (τ

′)〉

A(τ + β ,τ ′ + β ) = 〈Tci (τ + β )c†j (τ
′
+ β )ϕk (0)〉 = 〈ci (τ + β )c†j (τ

′
+ β )ϕk (0)〉 = 〈ϕk (0)ci (τ )c†j (τ

′)〉

i.e

A(τ ,τ ′ + β ) = −A(τ ,τ ′)
A(τ + β ,τ ′ + β ) = A(τ ,τ ′)

D.1.2.2 B (τ ,τ ′)

Let us take (τ ,τ ′) ∈ C, i.e. 0 > τ ′ > τ > −β .

B (τ ,τ ′) = 〈Tci (τ )c†j (0)ϕk (τ
′)〉 = −〈c†j (0)ϕk (τ

′)ci (τ )〉

B (τ + β ,τ ′) = 〈Tci (τ + β )c†j (0)ϕk (τ
′)〉 = 〈ci (τ + β )c†j (0)ϕk (τ

′)〉 = 〈c†j (0)ϕk (τ
′)ci (τ )〉

B (τ + β ,τ ′ + β ) = 〈Tci (τ + β )c†j (0)ϕk (τ
′
+ β )〉 = 〈ϕk (τ ′ + β )ci (τ + β )c†j (0)〉 = 〈c

†
j (0)ϕk (τ

′)ci (τ )〉
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i.e

B (τ + β ,τ ′) = B (τ ,τ ′) (D.4)

B (τ + β ,τ ′ + β ) = B (τ ,τ ′) (D.5)

Note the absence of a minus sign. For (τ ,τ ′) ∈ D, i.e. 0 > τ > τ ′ > −β:

B (τ ,τ ′) = 〈Tci (τ )c
†

j (0)ϕk (τ
′)〉 = −〈c†j (0)ci (τ )ϕk (τ

′)〉

B (τ ,τ ′ + β ) = 〈Tci (τ )c
†

j (0)ϕk (τ
′ + β )〉 = −〈ϕk (τ

′ + β )c†j (0)ci (τ )〉

B (τ + β ,τ ′ + β ) = 〈Tci (τ + β )c
†

j (0)ϕk (τ
′ + β )〉 = 〈Tci (τ + β )ϕk (τ

′ + β )c†j (0)〉

i.e

B (τ ,τ ′ + β ) = B (τ ,τ ′) (D.6)

B (τ + β ,τ ′ + β ) = −B (τ ,τ ′) (D.7)

Note that in particular:
B (0−,0−) = −B (β−,β−)

Since, on the other hand,

Biik (0−,0−) = 〈Tci (0−)c
†

i (0)nk (0
−)〉 = −〈c†i (0)ci (0

−)nk (0−)〉 = −〈nink 〉

we obtain:
〈nink 〉 = −Biik (0−,0−) = Biik (β

−,β−) (D.8)

D.1.3 Fourier transform on the reduced domain

D.1.3.0.1 A(iω1,iω2) Once can write

Ai jk (iω1,iω2) =
1
3!

¨
ABCDEF

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

=
1
3!

¨
AB

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

1
3!

¨
CD

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

1
3!

¨
EF

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

The integration domains A, B, . . . are defined in Fig. D.1. One has:

¨
CD

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) =

¨
AB

dτdτ ′eiω1 (τ−β )+iω2 (τ ′−β )Ai jk (τ − β ,τ
′ − β )

= e−iω1β−iω2β
¨

AB
dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ

′)

and
¨

EF
dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ

′) =

¨
E

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

¨
F

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

=

¨
A

dτdτ ′eiω1τ+iω2 (τ ′−β )Ai jk (τ ,τ
′ − β ) +

¨
B

dτdτ ′eiω1 (τ−β )+iω2τ ′Ai jk (τ − β ,τ
′)

= −e−iω2β
¨

A
dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ

′) − e−iω1β
¨

B
dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ

′)
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so that:

Ai jk (iω1,iω2) =
1
3

¨
AB

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

1
3
e−iω1β−iω2β

¨
AB

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

−
1
3
e−iω2β

¨
A

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) −

1
3
e−iω1β

¨
B

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

=
1
3

¨
AB

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

+
1
3
(e−iω1β − 1)e−iω2β

¨
A

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

1
3
(e−iω2β − 1)e−iω1β

¨
B

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

=
1
3

¨
AB

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

2
3

¨
A

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′) +

2
3

¨
B

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

=

¨
AB

dτdτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ
′)

iω1 and iω2 being fermionic Matsubara frequencies,

Ai jk (iω1,iω2) =

ˆ β

0
dτ
ˆ β

0
dτ ′eiω1τ+iω2τ ′Ai jk (τ ,τ

′)

D.1.3.0.2 B (iΩ1,iΩ2) The same calculation as for A(iω1,iω2) carries over except for a few minus signs:

Bi jk (iω1,iω2) =
1
3

¨
AB

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′) −

1
3
e−iω1β−iω2β

¨
AB

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′)

+
1
3
e−iω2β

¨
A

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′) −

1
3
e−iω1β

¨
B

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′)

=
1
3

¨
AB

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′)

+
1
3
(−e−iω1β + 1)e−iω2β

¨
A

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′) +

1
3
(−e−iω2β − 1)e−iω1β

¨
B

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′)

=
1
3

¨
AB

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′) +

2
3

¨
A

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′) +

2
3

¨
B

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′)

=

¨
AB

dτdτ ′eiω1τ+iω2τ ′Bi jk (τ ,τ
′)

iω1 and iω2 being fermionic Matsubara frequencies,

Bi jk (iΩ1,iω2) =

ˆ β

0
dτ
ˆ β

0
dτ ′eiΩ1τ+iω2τ ′Bi jk (τ ,τ

′)

Defining χ̂i jk (iω1,iω2) = Ai jk (iω1,iω2) and χi jk (iω,iΩ) = Bi jk (iω,iΩ), one obtains the Fourier conventions of
section B.1.2.

D.2 Symmetries in the (iω,iΩ) plane

In this section, we derive the main symmetries of the three-point vertex for a simple limiting case. We
consider the most simple fermionic model, namely a single fermionic level, O1 = c†, O2 = c. O†1 = O2 (in the
notations of Section I.1.3.3). The Hilbert space consists in two states: |0〉 and |1〉 with respective energies 0
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and ϵ. Starting from I.13, we have:

ˆ̃χ (iω1,iω2) =
1
Z

∑
i jk

〈i |O1 |j〉〈j |O2 |k〉〈k |n |i〉f (ω1,ω2) +
∑
i jk

〈i |O2 |j〉〈j |O1 |k〉〈k |n |i〉f (ω2,ω1)︸                                         ︷︷                                         ︸
=0

=
1
Z
〈1|c† |0〉〈0|c |1〉〈1|n |1〉f (ω1,ω2) =

1
Z
f101 (ω1,ω2)

=
1
Z

1
iω2 − ϵ

(
1 + e−βϵ

iω1 + ϵ

)
+

1
Z

e−βϵ

iω2 − ϵ
δiω1+iω2

Hence,

χ̃ (iω,iΩ) ∝
1

−iω − iΩ − ϵ

1
iω + ϵ

+
1

−iω − ϵ
δiΩ ∝

1
iω + iΩ + ϵ

1
iω + ϵ

+
1

iω + ϵ
δiΩ

One can notice:

χ̃ (iω − iΩ,iΩ) ∝
1

iω + ϵ

1
iω − iΩ + ϵ

+
1

iω − iΩ + ϵ
δiΩ = χ (iω,−iΩ)

and:

χ̃ ∗ (iω,−iΩ) ∝

(
1

iω − iΩ + ϵ

1
iω + ϵ

+
1

iω + ϵ
δiΩ

)∗
=

1
−iω + ϵ

1
iΩ − iω + ϵ

+
1

−iω + ϵ
δiΩ = χ̃ (−iω,iΩ)

To summarize, we obtain the following symmetry relations:

χ̃ (iω − iΩ,iΩ) = χ̃ (iω,−iΩ) (D.9a)

χ̃ ∗ (iω,−iΩ) = χ̃ (−iω,iΩ) (D.9b)

One can check that these symmetry relations hold in the general case and carry over to the vertex Λ(iω,iΩ),
see Eqs (8.69a-8.69b).

D.3 Partial sum on Matsubara frequencies

The three-point correlation function is defined as χ (iω,iΩ) =
´ β

0 dτ
´ β

0 dτ ′eiωτ eiΩτ
′

〈Tcσ (τ )c
†
σ (0)nσ ′ (τ ′)〉.

D.3.1 Sum on bosonic frequencies

Let us compute

1
β

∑
iΩ

χσσ ′ (iω,iΩ) =

ˆ β

0
dτ
ˆ β

0
dτ ′eiωτ

1
β

∑
iΩ

eiΩτ
′

︸       ︷︷       ︸
δτ ′/2

〈Tcσ (τ )c
†
σ (0)nσ ′ (τ

′)〉

=
1
2

ˆ β

0
dτeiωτ 〈Tcσ (τ )c†σ (0)nσ ′ (0

+)〉

= −
1
2

ˆ β

0
dτeiωτ 〈Tcσ (τ )nσ ′ (0+)c†σ (0)〉

If σ = σ ′, nσc
†
σ = c

†
σ , i.e

1
β

∑
iΩ

χσσ (iω,iΩ) = −
1
2

ˆ β

0
dτeiωτ 〈Tcσ (τ )c†σ (0)〉 =

1
2
Gσ (iω) (D.10)
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D.3.2 Sum on fermionic frequencies

Now

1
β

∑
iω

χσσ ′ (iω,iΩ) =

ˆ β

0
dτ
ˆ β

0
dτ ′

1
β

∑
iω

eiωτ︸      ︷︷      ︸
δτ /2

eiΩτ
′

〈Tcσ (τ )c
†
σ (0)nσ ′ (τ

′)〉

=
1
2

ˆ β

0
dτ ′eiΩτ

′

〈Tcσ (0+)c†σ (0)nσ ′ (τ
′)〉

=
1
2

ˆ β

0
dτ ′eiΩτ

′

〈Tnσ ′ (τ
′)cσ (0+)c†σ (0)〉

=
1
2

ˆ β

0
dτ ′eiΩτ

′

〈nσ ′ (τ
′)cσ (0+)c†σ (0)〉

=
1
2

ˆ β

0
dτ ′eiΩτ

′

〈nσ ′ (τ
′) {1 − nσ }〉

=
1
2

ˆ β

0
dτ ′eiΩτ

′

〈nσ ′ (τ
′)〉 −

1
2

ˆ β

0
dτ ′eiΩτ

′

〈nσ ′ (τ
′)nσ 〉

=
1
2
〈nσ ′〉βδiΩ −

1
2
χσ ′σ (iΩ) (D.11)

D.4 High-frequency expansion of the three-point correlation function

Let us consider the correlation function:χ (τ1,τ2,τ3) = 〈Tc (τ1)c
† (τ2)ϕ (τ3)〉 and its Fourier transform χ (iω,iΩ).

We want to study the asymptotic behavior of χ (iω,iΩ) by counting the number of lines and vertices in the
diagrams at each order of the perturbation expansion.

Let us consider the perturbation expansion of χ :

χ (τ1,τ2,τ3) =
∞∑
n=0

(−)n

n!

ˆ β

0
dτ̄1 . . .

ˆ β

0
dτ̄nλ

n 〈Tc (τ1)c
† (τ2)ϕ (τ3)

{
c (τ̄1)c

† (τ̄1)ϕ (τ̄1) . . . c (τ̄n )c
† (τ̄n )ϕ (τ̄n )

}
〉0︸                                                                           ︷︷                                                                           ︸

An

where 〈. . . 〉0 corresponds to the average taken with the quadratic part of the action, the interacting part
being Sint = λ

´
dτc (τ )c† (τ )ϕ (τ ). The term denoted as An can be broken down in a product of non-interacting

propagators G0 (τ ) = −〈Tc (τ )c
† (0)〉0 and W0 (τ ) = −〈Tϕ (τ )ϕ (0)〉 via Wick’s theorem. Pictorially, the term of

order n contains n vertices λ. We are looking for the relation between the number of such vertices and the
number of lines. Note that when n is even the average value vanishes, so that only odd terms remain.

First of all, note that as a consequence of the form of the interactions, NG = 2NW where NG (resp. NW ) is
the number of G0 (resp. W0) propagators. Let us define N ≡ NG + NW . Let us already notice that for n = 1,
there are N1 = 3 lines. For n = 3, N3 = 6, etc. One can notice that adding two vertices to a diagram leads to
3 additional lines, so that Nn+2 = Nn + 3. This recurrence relation and the initial conditions lead to

Nn =
3
2
(n + 1) (D.12)

Let us now find the relation between the number of internal summations on Matsubara frequencies, I , and
the number of vertices n. We can notice that In=1 = 0, In=3 = 1, etc. Adding two vertices leads to one
additional internal summation, namely In+2 = In + 1, leading to

In =
1
2
(n − 1) (D.13)

Let us now determine the asymptotic behavior of one diagram by first noting that G0 lines behave as 1/iω
while W0 lines behave a constants, so that a given line behaves as 1/ω2/3 on average. If a given diagram
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behaves as 1/ωp we will call it of asymptotic order p. One line contributes 2/3 to the asymptotic order, while
one internal summation reduces the asymptotic order by 1: p = 2

3N − I . Combining (D.12) and (D.13) leads
to

p = n + 1 −
1
2
(n − 1) =

n + 3
2

(D.14)

One can thus see that as one could have expected, the dominant term at high Matsubara frequencies is the
n = 1 term,

lim
iΩ→∞
iω→∞

χ (iω,iΩ) = χn=1 (iω,iΩ) = λG0 (iω + iΩ)G0 (iω)W0 (iΩ) ∼ λ
1

iω + iΩ

1
iω

If we construct the vertex as Λ(iω,iΩ) ≡ χ (iω,iΩ)/G (iω + iΩ)G (iω)W (iΩ), we see that asymptotically,

Λ(iω,iΩ) → λ

which is the non-interacting value, the bare vertex. This dictactes the following definition for the “regular”
part of the vertex:

Λr eд (iω,iΩ) =
χ (iω,iΩ) − λG (iω + iΩ)G (iω)W (iΩ)

G (iω + iΩ)G (iω)W (iΩ)

which vanishes for high frequencies.

D.5 Equations of motion for the three-point function, and Ward identity

Let us define
χuv Ik,q,k ′ (τ1,τ2,τ3) ≡ 〈TτA(τ1)B (τ2)C (τ3)〉 (D.15)

with: A = s Ik ′,q = c
†

w,k ′−qσ
I
wlcl,k ′ , B = c

†

u,k+q and C = cv,k (u,v =↑,↓, I = 0,x ,y,z).

D.5.1 Equation of motion

Differentiating χ with respect to τ1, one gets (see D.5.2 for details):

∂τ1 χ
uv I (τ1,τ2,τ3) = 〈Tτ [H ,A] (τ1)B (τ2)C (τ3)〉 + δ (τ1 − τ2)〈Tτ [A,B](τ1)C (τ3)〉 + δ (τ1 − τ3)〈TτB (τ2)[A,C](τ1)〉(D.16)

Hence, reinstating the momenta, summing over k ′, and replacing by the commutators (see D.5.3 for details),
one gets:

∑
k ′
∂τ1 χ

uv I
k,q,k ′ (τ1,τ2,τ3) =

∑
k ′

(
εk ′−q − εk ′

)
〈Tτ

(
c†k ′−q (τ1)σ

I ck ′ (τ1)
)
c†u,k+q (τ2)cv,k (τ3)〉

+ δ (τ1 − τ2)σ
I
wuδk ′,k+q〈Tτ c

†

w,k ′−q (τ1)cv,k (τ3)〉

− δ (τ1 − τ3)σ
I
vlδk ′+q,k 〈Tτ c

†

u,k+q (τ2)cl,k ′ (τ1)〉

Replacing by the definition of G and rearranging terms:

∑
k ′

[
∂τ1 −

(
εk ′−q − εk ′

)]
χuv Ik,q,k ′ (τ1,τ2,τ3) = δ (τ1 − τ2)σ

I
wuGvw (k,τ3 − τ1) − δ (τ1 − τ3)σ

I
vlGlu (k + q,τ1 − τ2)(D.17)

Transforming to momentum/frequency space, one obtains Eq. (8.71) of the main text. In the zero-bandwidth
limit,
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iΩχuv I (iω,iΩ) = σ I
vu

[
Gat
u (iω + iΩ) −Gat

v (iω)
]

(D.18)

and the vertex reads (for iΩ , 0):

Λuv I (iω,iΩ) = σ I
vu

χuv I (iω,iΩ)

Gat
u (iω + iΩ)Gat

v (iω)
= σ I

vu
G−1
v (iω) −G−1

u (iω + iΩ)

iΩ
= 1+

Σat (iω) − Σat (iω + iΩ)

iΩ
= 1+

U 2

4
1

iω (iω + iΩ)

D.5.2 Differentiating the time-ordered product

Explicitly writing the time-ordering operator (dropping the momentum indices), one gets:

χuv I (τ1,τ2,τ3) = θ (τ1 > τ2 > τ3)〈A(τ1)B (τ2)C (τ3)〉

− θ (τ1 > τ3 > τ2)〈A(τ1)C (τ3)B (τ2)〉

+ θ (τ2 > τ1 > τ3)〈B (τ2)A(τ1)C (τ3)〉

+ θ (τ2 > τ3 > τ1)〈B (τ2)C (τ3)A(τ1)〉

− θ (τ3 > τ1 > τ2)〈C (τ3)A(τ1)B (τ2)〉

− θ (τ3 > τ2 > τ1)〈C (τ3)B (τ2)A(τ1)〉

The signs come from the fact that A commutes with B and C, B and C anticommute with each other. We note
that: θ (τi > τj > τk ) = θ (τi − τj )θ (τj − τk ). Differentiation with respect to τ1 yields:

∂τ1 χ
uv I (τ1,τ2,τ3) = 〈Tτ

[
∂τ1A(τ1)

]
B (τ2)C (τ3)〉

+ δ (τ1 − τ2)θ (τ2 − τ3)〈A(τ1)B (τ2)C (τ3)〉

− δ (τ1 − τ3)θ (τ3 − τ2)〈A(τ1)C (τ3)B (τ2)〉

+ (−)δ (τ2 − τ1)θ (τ1 − τ3)〈B (τ2)A(τ1)C (τ3)〉

+ θ (τ2 − τ1)δ (τ1 − τ3)〈B (τ2)A(τ1)C (τ3)〉

+ θ (τ2 − τ3) (−)δ (τ3 − τ1)〈B (τ2)C (τ3)A(τ1)〉

− (−)δ (τ3 − τ1)θ (τ1 − τ2)〈C (τ3)A(τ1)B (τ2)〉

− θ (τ3 − τ1)δ (τ1 − τ2)〈C (τ3)A(τ1)B (τ2)〉

− θ (τ3 − τ2) (−)δ (τ2 − τ1)〈C (τ3)B (τ2)A(τ1)〉

Regrouping terms:

∂τ1 χ
uv I (τ1,τ2,τ3) = 〈Tτ

[
∂τ1A(τ1)

]
B (τ2)C (τ3)〉

+ δ (τ1 − τ2)θ (τ2 − τ3)〈[A(τ1),B (τ2)]C (τ3)〉

− δ (τ1 − τ3)θ (τ3 − τ2)〈[A(τ1),C (τ3)]B (τ2)〉

+ θ (τ2 − τ1)δ (τ1 − τ3)〈B (τ2)[A(τ1),C (τ3)]〉

− θ (τ3 − τ1)δ (τ1 − τ2)〈C (τ3)[A(τ1),B (τ2)]〉

This yields (D.16).
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D.5.3 Computation of the commutators

D.5.3.1 Commutation rules

I recall

[c†a ,c
†

b] = c†ac
†

b − c
†

bc
†
a = c

†
ac
†

b + c
†
ac
†

b = 2c†ac
†

b

[c†a ,cb] = c†acb − cbc
†
a = c

†
acb −

(
δab − c

†
acb

)
= 2c†acb − δab

{c†a ,cb } = δab{
c†a ,c

†

b

}
= 0

D.5.3.2 [A,B] and [A,C]

Let us compute the anticommutators:

[A,B] = [c†w,k ′−qσ
I
wlcl,k ′ ,c

†

u,k+q]

= σ I
wl

(
c†w,k ′−q[cl,k ′ ,c

†

u,k+q] + [c†w,k ′−q ,c
†

u,k+q]cl,k ′
)

= σ I
wl

(
−2c†w,k ′−qc

†

u,k+qcl,k ′ + c
†

w,k ′−qδluδk ′,k+q + 2c†w,k ′+qc
†

u,k+qcl,k ′
)

= c†w,k ′−qσ
I
wuδk ′,k+q

and:

[A,C] = [c†w,k ′−qσ
I
wlcl,k ′ ,cv,k]

= σ I
wl (c

†

w,k ′−q[cl,k ′ ,cv,k] + [c†w,k ′−q ,cv,k]cl,k ′ )

= σ I
wl (c

†

w,k ′−q[2cl,k ′cv,k] + [2c†w,k ′−qcv,k − δwvδk ′−q,k]cl,k ′ )

= σ I
wl

*...
,

2c†w,k ′−qcl,k ′cv,k + 2c†w,k ′−qcl,k ′cv,k︸                                        ︷︷                                        ︸
=0

−δwvcl,k ′δk ′−q,k
+///
-

= −σ I
vlcl,k ′δk ′−q,k

D.5.4 [H ,s I ]

Let us define: H =
∑

kw εkc
†

w,kcw,k +
1
2U

I ∑
q′ n

I
q′n

I
−q′ ≡ Hkin + Hint. Let us compute:

[Hkin,s
I
k ′q] =

∑
kw

εk

[
c†w,kcw,k ,c

†

u,k ′−qσ
I
uvcv,k ′

]
=

∑
kw

εkσ
I
uv

[
c†w,kcw,k ,c

†

u,k ′−qcv,k ′
]
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with:
[
c†w,kcw,k ,c

†

u,k ′−qcv,k ′
]
= c†w,k

[
cw,k ,c

†

u,k ′−qcv,k ′
]
+

[
c†w,k ,c

†

u,k ′−qcv,k ′
]
cw,k

= c†w,kc
†

u,k ′−q
[
cw,k ,cv,k ′

]
+ c†u,k ′−q

[
c†w,k ,cv,k ′

]
cw,k

+c†w,k

[
cw,k ,c

†

u,k ′−q

]
cv,k ′ +

[
c†w,k ,c

†

u,k ′−q

]
cv,k ′cw,k

= c†u,k ′−q

[
2c†w,kcv,k ′ − δwvδkk ′

]
cw,k + c

†

w,k

[
2cw,kc

†

u,k ′−q − δwuδk,k ′−q

]
cv,k ′

+2c†w,kc
†

u,k ′−qcw,kcv,k ′ + 2c†w,kc
†

u,k ′−qcv,k ′cw,k︸                                                     ︷︷                                                     ︸
=0

= 2c†u,k ′−qc
†

w,kcv,k ′cw,k + 2c†w,kcw,kc
†

u,k ′−qcv,k ′ − δwvδkk ′c
†

u,k ′−qcw,k − δwuδk,k ′−qc
†

w,kcv,k ′

= 2c†u,k ′−qc
†

w,kcv,k ′cw,k + 2δwuδk,k ′−qc
†

w,kcv,k ′ − 2c†w,kc
†

u,k ′−qcw,kcv,k ′

−δwvδkk ′c
†

u,k ′−qcw,k − δwuδk,k ′−qc
†

w,kcv,k ′

= δwuδk,k ′−qc
†

w,kcv,k ′ − δwvδkk ′c
†

u,k ′−qcw,k

Hence:

[Hkin,s
I
k ′q] =

∑
kwuv

(
εkσ

I
uvδwuδk,k ′−qc

†

w,kcv,k ′ − εkσ
I
uvδwvδkk ′c

†

u,k ′−qcw,k

)
=

∑
uv

(
εk ′−qc

†

u,k ′−qσ
I
uvcv,k ′ − εk ′c

†

u,k ′−qσ
I
uvcv,k ′

)
=

(
εk ′−q − ϵk ′

) (
c†k ′−qσ

I ck ′
)

(D.19)

The commutator of Hint with s Ik ′,q is a priori non-vanishing:

[Hint,c
†

w,k ′−qσ
J
wlcl,k ′] =

1
2
U I

∑
q′

[
nIq′n

I
−q′ ,c

†

w,k ′−qσ
J
wlcl,k ′

]

︸                          ︷︷                          ︸
,0

But [Hint,n
J
q] is. Indeed:

[Hint,
∑
k ′

s Ik ′q] = [Hint,n
J
q] =

1
2

∑
q′I

U I
[
nIq′n

I
−q′ ,n

J
q

]
=

1
2

∑
q′I

U I
{
nIq′

[
nI−q′ ,n

J
q

]
+

[
nIq′ ,n

J
q

]
nI−q′

}

Using the properties:
[
nIq′ ,n

J
q

]
= 2iϵI JKnKq δq,q′ and

{
nIq′ ,n

J
q

}
= 2δI Jδq′,q , we get:

[Hint,n
J
q] =

1
2

∑
I

U I2iϵI JK
{
nI−qn

K
q + n

K
q n

I
−q

}
=

1
2

∑
I

U I2iϵI JK {2δIK } = 0

Thus [
H ,nIq

]
=

∑
k ′

(
εk ′−q − εk ′

) (
c†k ′−qσ

I ck ′
)

(D.20)



E
Atomic limit

In this chapter, I derive a few exact results in the “atomic limit”, namely the problem defined by the Hamilto-
nian

Hat = Un↑n↓ − µ
(
n↑ + n↓

)
(E.1)

The four eigenstates are the states ���0〉,
��� ↑〉,

��� ↓〉 and ��� ↑↓〉 with respective energies 0, −µ, −µ, U −2µ. Half-filling
corresponds to µ = U /2. We call ε = −µ the energy of a single electron on a level.

E.1 Simple observables: Z , 〈nσ 〉, χ (iΩ), G (iω), Σ(iω)

The partition function in the atomic limit is:

Z = 1 + 2eβ µ + e−β (U−2µ ) = 2
(
1 + eβU /2

)
(E.2)

The second equality holds for half-filling. The filling per spin is:

〈nσ 〉 =
1
Z

Tr
[
e−βHnσ

]
=

1
Z

(
0 + eβ µ + e−β (U−2µ )

)
=

1
2

The last equality holds for half-filling. Let us now turn to the density-density correlation function. The
up-down component (at half-filling) is given by χ↑↓(τ ) = 〈n↑(τ )n↓〉 =

1
Z Tr

[
e−βHn↑(τ )n↓

]
= 1

2(1+e−βϵ ) . The
connected component is thus, after Fourier transformation:

χ conn
↑↓

(iΩ) =

[
1

2(1 + eβU /2)
−

1
4

]
βδiΩ (E.3)

By convention, δiΩ should be understood as δn where n is the inex of the bosonic Matsubara frequency.
Similarly, χ↑↑(τ ) = 〈n↑(τ )n↑〉 = 1

Z

(
e−βϵ + 1

)
= 1

2 , and hence: χ conn
↑↑

(iΩ) =
[

1
2 −

1
4

]
βδiΩ, i.e:

χ conn
↑↑

(iΩ) =
β

4
δiΩ (E.4)

Transposing these results for the charge and spin channels, one gets χ conn
ch (iΩ) = 1

2
1

1+eβU /2 βδiΩ and χ conn
sp (iΩ) =[

1
2 −

1
2(1+eβU /2 )

]
βδiΩ =

1
2

eβU /2

1+eβU /2 βδiΩ and finally:

χ conn
ch (iΩ) =

β

4
e−βU /4

cosh(βU /4)
δiΩ

χ conn
sp (iΩ) =

β

4
eβU /4

cosh(βU /4)
δiΩ

175
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In the large-U limit, χ conn
ch (iΩ) vanishes exponentially (the charge sector is gapped), whereas χ conn

sp (iΩ) →
1

2T δiΩ becomes the Curie susceptibility of an isolated spin.

I now turn to the one-particle Green’s function. Starting from the Lehmann representation, one gets:

Gat
σ (iω) =

1
Z

∑
i j

|〈i |cσ |j〉|
2 e
−βϵi + e−βϵj

iω + ϵi − ϵj
=

1
Z

(
1 + eβ µ

iω + µ
+

eβ µ + e−β (U−2µ )

iω − µ −U + 2µ

)
=

1
Z

(
1 + eβU /2

iω +U /2
+
eβU /2 + 1
iω −U /2

)
Plugging in the expression for Z yields:

Gat
σ (iω) =

1
2

(
1

iω +U /2
+

1
iω −U /2

)
=

1

iω − U 2

4iω

(E.5)

Since the non-interacting function is Gat
0 (iω) = (iω + µ )−1, at half-filling, one gets:

Σat (iω) = U /2 +
U 2

4iω
(E.6)

E.2 Three-point correlation function χ̃ (iω,iΩ)

In this section, I derive the expression for the three-point correlation function in the atomic limit.

I proceed in two steps. First, I use the Lehmann representation of the three-point correlation function 〈cc̄n〉
in the case of a single atomic site to compute the expression for the three-point correlation function in the
atomic limit. I then amputate the legs to find the expression of the vertex function.

E.2.1 Full correlator χ̃

I use Lehmann’s representation (Eq (I.13)). If n3 is n or sz , then the matrix element 〈k |n3 |i〉 selects states with
the same occupation and same spin, so one can simplify the expression:

ˆ̃χσ1σ2σ3 (iω1,iω2) =
1
Z

∑
i j

∑
p

σ (p)〈i |Opσ1 |j〉〈j |Opσ2 |i〉〈i |nσ3 |i〉fi ji (ωp1,ωp2)

=
1
Z

∑
i j

〈i |cσ1 |j〉〈j |c
†
σ2
|i〉〈i |nσ3 |i〉fi ji (ω1,ω2) −

∑
i j

〈i |c†σ2
|j〉〈j |cσ1 |i〉〈i |nσ3 |i〉fi ji (ω2,ω1)

Furthermore,

fi ji (ω2,ω1) =
1

iω1 + ϵj − ϵi

e−βϵj + e−βϵi

iω2 + ϵi − ϵj
+ β

e−βϵi

iω1 + ϵj − ϵi
δiω1+iω2

fji j (ω1,ω2) =
1

iω2 + ϵi − ϵj

e−βϵj + e−βϵi

iω1 + ϵj − ϵi
+ β

e−βϵj

−iω1 + ϵi − ϵj
δiω1+iω2

i.e. the following relation holds:

fi ji (ω2,ω1) = fji j (ω1,ω2) + β
e−βϵi + e−βϵj

iω1 + ϵj − ϵi
δiω1+iω2

Using this identity and swapping the dummy indices in the second term, one gets:

ˆ̃χσ1σ2σ3 (iω1,iω2) =
1
Z

∑
i j

〈i |cσ1 |j〉〈j |c
†
σ2
|i〉

{
〈i |nσ3 |i〉 − 〈j |nσ3 |j〉

}
fi ji (ω1,ω2)

−β
∑
i j

〈j |c†σ2
|i〉〈i |cσ1 |j〉〈j |nσ3 |j〉

e−βϵi + e−βϵj

iω1 + ϵi − ϵj
δiω1+iω2
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Obviously, σ1 = σ2, and i = | ↑↓〉 and j = |0〉 do not contribute, i.e, after defining ˆ̃χσσ ′ ≡ ˆ̃χσσσ ’ and fi j ≡ fi ji =

f
r eд
i j + β

e−βϵi
iω2+ϵj−ϵi

δiω1+iω2 :

ˆ̃χσσ ′ (iω1,iω2) = ˆ̃χ1
σσ ′ (iω1,iω2) + ˆ̃χ2

σσ ′ (iω1,iω2)

with

ˆ̃χ1
σσ ′ (iω1,iω2) ≡

1
Z

∑
i= |0〉, |↑〉, |↓〉

∑
j= |↑〉, |↓〉, |↑↓〉

|〈i |cσ |j〉|
2 {〈i |nσ ′ |i〉 − 〈j |nσ ′ |j〉} fi j (ω1,ω2)

ˆ̃χ2
σσ ′ (iω1,iω2) ≡ −β

1
Z

∑
i j

|〈i |cσ |j〉|
2〈j |nσ ′ |j〉

e−βϵi + e−βϵj

iω1 + ϵi − ϵj
δiω1+iω2

One also sees that: ˆ̃χ↑↓ = ˆ̃χ↓↑ and ˆ̃χ↑↑ = ˆ̃χ↓↓. Out of the nine remaining terms, one can see that only the terms
where i and j are states with a difference of occupation of one electron are nonzero:

Z ˆ̃χ1
σσ ′ (iω1,iω2) = |〈0|cσ | ↑〉|2 {〈0|nσ ′ |0〉 − 〈↑ |nσ ′ | ↑〉} f0↑(ω1,ω2)

+ |〈0|cσ | ↓〉|2 {〈0|nσ ′ |0〉 − 〈↓ |nσ ′ | ↓〉} f0↓(ω1,ω2)

+ |〈↑ |cσ | ↑↓〉|
2 {〈↑ |nσ ′ | ↑〉 − 〈↑↓ |nσ ′ | ↑↓〉} f↑,↑↓(ω1,ω2)

+ |〈↓ |cσ | ↑↓〉|
2 {〈↓ |nσ ′ | ↓〉 − 〈↑↓ |nσ ′ | ↑↓〉} f↓,↑↓(ω1,ω2)

and (now specializing to the half-filled case)

Z ˆ̃χ2
σσ ′ (iω1,iω2) = −β |〈0|cσ | ↑〉|2〈↑ |nσ ′ | ↑〉

1 + e−βϵ

iω1 − ϵ
δiω1+iω2

− β |〈0|cσ | ↓〉|2〈↓ |nσ ′ | ↓〉
1 + e−βϵ

iω1 − ϵ
δiω1+iω2

− β |〈↑ |cσ | ↑↓〉|
2〈↑↓ |nσ ′ | ↑↓〉

1 + e−βϵ

iω1 + ϵ
δiω1+iω2

− β |〈↓ |cσ | ↑↓〉|
2〈↑↓ |nσ ′ | ↑↓〉

1 + e−βϵ

iω1 + ϵ
δiω1+iω2

Thus, for the opposite spin component:

Z ˆ̃χ1
↑↓
(iω1,iω2) = 0 (E.7)

Z ˆ̃χ2
↑↓
(iω1,iω2) = −β

(
1 + e−βϵ

)
δiω1+iω2

1
iω1 + ϵ

(E.8)

i.e., switching back from ˆ̃χ (iω1,iω2) to χ̃ (iω,iΩ) (see section B.1.2):

χ↑↓(iω,iΩ) = −β〈nσ 〉
1

iω −U /2
δiΩ (E.9)

For the same spin component:

Z ˆ̃χ1
↑↑
(iω1,iω2) = −f0↑(ω1,ω2) − f↓,↑↓(ω1,ω2)

= −
e−βϵ0 + e−βϵ↑(

iω1 + ϵ↑ − ϵ0
) (
iω2 + ϵ0 − ϵ↑

) − β 1
iω2 + ϵ

δiω1+iω2

−
e−βϵ↓ + e−βϵ↑↓(

iω1 + ϵ↑↓ − ϵ↓
) (
iω2 + ϵ↓ − ϵ↑↓

) − β e−βϵ

iω2 − ϵ
δiω1+iω2

= −
1 + eβU /2

(iω1 −U /2) (iω2 +U /2)
−

1 + eβU /2

(iω1 +U /2) (iω2 −U /2)︸                                                                     ︷︷                                                                     ︸
≡Z χ̃ 1,r eд

↑↑

−

[
1

iω2 + ϵ
+

e−βϵ

iω2 − ϵ

]
βδiω1+iω2
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i.e.

ˆ̃χ1r eд
↑↑

(iω1,iω2) = −
1
2
(iω1 +U /2) (iω2 −U /2) + (iω1 −U /2) (iω2 +U /2)(

(iω1)
2
−U 2/4

) (
(iω2)

2
−U 2/4

)
= −

iω1iω2 −U
2/4(

(iω1)
2
−U 2/4

) (
(iω2)

2
−U 2/4

)
and ˆ̃χ2

↑↑
(iω1,iω2) = −

β
2

(
1

iω1+U /2 +
1

iω1−U /2

)
δΩ. Thus, gathering both terms:

ˆ̃χ↑↑(iω1,iω2) = −
iω1iω2 −U

2/4(
(iω1)

2
− U 2

4

) (
(iω2)

2
− U 2

4

) − β

2

(
1

iω1 +U /2
+

1
iω1 −U /2

)
δΩ

+
1

2
(
1 + e−βϵ

) [
1

iω1 +U /2
+

e−βϵ

iω1 −U /2

]
βδiΩ

= −
iω1iω2 −U

2/4(
(iω1)

2
− U 2

4

) (
(iω2)

2
− U 2

4

) − β

2
(
1 + e−βϵ

) [
e−βϵ

iω1 +U /2
+

1
iω1 −U /2

]
δiΩ

Hence, using the expression of Gat:

ˆ̃χ↑↑(iω1,iω2) = −G
at (iω1)G

at (iω2) +
U 2/4(

(iω1)
2
− U 2

4

) (
(iω2)

2
− U 2

4

) − β

2
(
1 + e−βϵ

) 

e−βϵ

iω1 +
U
2

+
1

iω1 −
U
2


δiΩ

(E.10)

E.2.2 Connected part χ c
σσ ′

The connected part is defined as: χ̃ c
σσ ′ (τ ,τ

′) ≡ χ̃σσ ′ (τ ,τ
′) − 〈cσ (τ )c

†
σ (τ

′)〉〈nσ ′〉 = χ̃σσ ′ (τ ,τ
′) + Gat (τ − τ ′)〈nσ ′〉,

whence:

χ̃ c
σσ ′ (iω,iΩ) = χ̃σσ ′ (iω,iΩ) + βGat (iω)〈nσ ′〉δiΩ (E.11)

This yields:

χ̃ c
↑↓
(iω,iΩ) =

β

4

[
1

iω +U /2
−

1
iω −U /2

]
δiΩ (E.12a)

ˆ̃χ c
↑↑
(iω1,iω2) = −G

at (iω1)G
at (iω2) +

U 2/4{
(iω1)

2
− U 2

4

} {
(iω2)

2
− U 2

4

} +A(ω1)δiΩ (E.12b)

with:

A(ω1) ≡
β

2

{
Gat (iω1) −

1
1 + eβU /2

[
eβU /2

iω1 +U /2
+

1
iω1 −U /2

]}
=

β

2

{
1

iω1 −U /2

{
1
2
−

1
1 + eβU /2

}
+

1
iω1 +U /2

{
1
2
−

eβU /2

1 + eβU /2

}}
=

β

4
tanh (βU /4)

[
1

iω1 −U /2
−

1
iω1 +U /2

]

=
β

4
tanh (βU /4)

U

(iω1)
2
− U 2

4
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One can check expression (E.12a) and get some physical intuition by computing the self-energy from the
equation of motion for G (i.e. Eq. (F.6a) specialized for the atomic limit). For the χ̃↑↓ term, one can check
that:

Σat (iω)Gat (iω) = −U
∑
iΩ

χ̃at
↑↓
(iω,iΩ) (E.13)

Considering the contribution beyond Hartree, ΣbH (iω) ≡ −U
1
β
∑

Ω
χ̃↑↓ (ω,Ω)
G (iω ) −U 〈nσ 〉 = −U

1
β
∑

Ω

{
χ̃↑↓ (ω,Ω)+G (iω )〈nσ 〉βδΩ

G (iω )

}
,

i.e:
Σat

bH (iω)G
at (iω) = −U

∑
iΩ

χ̃ c,at
↑↓

(iω,iΩ) (E.14)

which is to be contrasted with (E.13). For the χ̃↑↑ term, in the non-interacting case, using Wick’s theorem,
one can write:

χU=0
↑↑,c (τ ,τ ′) = 〈Tc↑(τ )c

†

↑
(τ ′)

(
c†
↑
c↑ − 〈n↑〉

)
〉0 = 〈Tc↑(τ )c

†

↑
〉〈Tc↑c

†

↑
(τ ′)〉0 = G

at
0↑(τ )G

at
0↑(−τ

′)

Fourier-transformed, this becomes χ↑↑(iω,iΩ) = G0↑(iω)G0↑(iω + iΩ), to be compared to Eq (E.12b):

χ̃U=0
↑↑

(iω,iΩ) = −Gat
0 (iω)Gat

0 (−iω − iΩ)

E.2.3 Expressions in charge and spin channels

Let us now transform from the (↑,↓) space to the (ch,sp) space:

χ̃ ch,c (iω1,iω2) ≡ χ̃ c
↑↑
+ χ̃ c

↑↓

= −Gat (iω1)G
at (iω2) +

U 2/4{
(iω1)

2
− U 2

4

} {
(iω2)

2
− U 2

4

}

+
β

4




tanh (βU /4)


1
iω1 −

U
2

−
1

iω1 +
U
2


+



1
iω1 +

U
2

−
1

iω1 −
U
2





δiΩ

χ̃ sp,c (iω1,iω2) ≡ χ̃ c
↑↑
− χ̃ c

↑↓

= −Gat (iω1)G
at (iω2) +

U 2/4{
(iω1)

2
− U 2

4

} {
(iω2)

2
− U 2

4

}

+
β

4




tanh (βU /4)


1
iω1 −

U
2

−
1

iω1 +
U
2


−



1
iω1 +

U
2

−
1

iω1 −
U
2





δiΩ

Simplifying and transposing to iω,iΩ variables, one gets (using Gat (−iω) = −Gat (iω)):

χ̃ ch,c (iω,iΩ) = Gat (iω)Gat (iω + iΩ) +
U 2/4{

(iω)2 − U 2

4

} {
(iω + iΩ)2 − U 2

4

}

+
β

4
U

(iω)2 −U 2/4

{
tanh (βU /4) − 1

}
δiΩ (E.15a)

χ̃ sp,c (iω,iΩ) = Gat (iω)Gat (iω + iΩ) +
U 2/4{

(iω)2 − U 2

4

} {
(iω + iΩ)2 − U 2

4

}

+
β

4
U

(iω)2 −U 2/4

{
tanh (βU /4) + 1

}
δiΩ (E.15b)
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E.3 Three-leg vertex Λ(iω,iΩ)

The vertex is defined as the amputated connected correlation function (see Eq. 8.29). One can easily compute
the “legs” in the atomic limit:

Gat (iω)Gat (iω + iΩ)
(
1 −U chχ ch,conn (iΩ)

)
=

iω (iω + iΩ)(
(iω)2 −U 2/4

) (
(iω + iΩ)2 −U 2/4

) (
1 −U chχ ch,conn (iΩ)

)
Gat (iω)Gat (iω + iΩ)

(
1 −U spχ sp,conn (iΩ)

)
=

iω (iω + iΩ)(
(iω)2 −U 2/4

) (
(iω + iΩ)2 −U 2/4

) (
1 −U spχ sp,conn (iΩ)

)
Hence, for the charge channel:

Λch (iω,iΩ) =

U 2/4{
(iω )2−U 2/4

}{
(iω+iΩ)2−U 2/4

} + β
4

U
(iω )2−U 2/4

{
tanh

( βU
4

)
− 1

}
δiΩ

iω (iω+iΩ)

((iω )2−U 2/4) ((iω+iΩ)2−U 2/4)

(
1 −U chχ ch,conn (iΩ)

) +
1

1 −U chχ ch,conn (iΩ)

=
U 2/4

iω (iω + iΩ)
(
1 −U chχ ch,connδiΩ

) + β

4


(iω)2 −U 2/4

iω




2
U

(iω)2 −U 2/4

tanh
( βU

4

)
− 1(

1 −U chχ ch,conn
) δiΩ

+
1

1 −U chχ ch,connδiΩ

and a similar result for the spin channel. Simplifying, one finds the final result, Eq. (8.72).



F
Equations of motion

In this chapter, I present an alternative derivation of the TRILEX equations for the self-energy and polarization
in terms of the three-leg vertex.

F.1 Prerequisite: Schwinger-Dyson equations

F.1.1 Bosonic fields

For any bosonic field ϕα , matrix Uα β and function f , let us define:

A ≡

ˆ
D

[
ϕ
]
e

1
2ϕα [U −1]α βϕβ ∂ f [ϕ]

∂ϕγ

By integration by parts, one obtains

A = −

ˆ
D

[
ϕ
] ∂
∂ϕγ

e
1
2ϕα [U −1]α βϕβ f [ϕ] = −

[
U −1

]
γ β

ˆ
D

[
ϕ
]
ϕβe

1
2ϕα [U −1]α βϕβ f [ϕ]

and taking f [ϕ] ≡ h[ϕ]e−λuvδϕδ c̄ucv , one has:

A =

ˆ
D

[
ϕ
] 

e
1
2ϕα [U −1]α βϕβ

{
∂h[ϕ]
∂ϕγ

− λuvγ c̄ucvh[ϕ]
}
e−λuvδϕδ c̄ucv


= −

[
U −1

]
γ β

ˆ
D

[
ϕ
]
ϕβe

1
2ϕα [U −1]α βϕβh[ϕ]e−λuvδϕδ c̄ucv

i.e., for any function h: 〈
∂h[ϕ]
∂ϕγ

− λuvγ c̄ucvh[ϕ]
〉
= −

[
U −1

]
γ β

〈
ϕβh[ϕ]

〉
(F.1)

F.1.2 Fermionic fields

Similarly to the previous section, for any conjugate Grassmann fields ci and c̄i , matrix [G0]i j and function f ,
one can define:

A ≡

ˆ
D [c̄c] e c̄k[G−1

0 ]kl cl ∂ f [c̄c]
∂c̄i

Then, by integration by parts:

A = −

ˆ
D [c̄c]

∂

∂c̄i
e c̄k[G−1

0 ]kl cl f [c̄c] = −
[
G−1

]
il

ˆ
D [c̄c] cle c̄k[G−1

0 ]kl cl f [c̄c]

181
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For f [c̄c] ≡ h[c̄c]e−V :

A =

ˆ
D [c̄c] e c̄k[G−1

0 ]kl cl
(
∂h[c̄c]
∂c̄i

+
∂V

∂c̄i

)
e−V = −

[
G−1

0

]
il

ˆ
D [c̄c] cle c̄k[G−1

0 ]kl clh[c̄c]e−V

i.e. 〈
∂h[c̄c]
∂c̄i

+ h[c̄c]
∂V

∂c̄i

〉
= −

[
G−1

0

]
il
〈clh[c̄c]〉 (F.2)

F.2 Equations of motion for G and W

F.2.1 Fermionic propagator G

Specializing Eq (F.2) for h[c̄c] ≡ c̄p and V = 1
2nαUα βnβ =

1
2Uα β c̄uλuvαcv c̄wλwlβcl , and noting that:

∂V

∂c̄i
=

1
2
Uα βλivαcv c̄wλwlβcl +

1
2
Uα β c̄uλuvαcvλilβcl

= Uα βλivαλwlβcv c̄wcl

(I have used Uα β = Uβα ), one has:

−
[
G−1

0

]
il

〈
cl c̄p

〉
= δip +Uα βλivαλwlβ 〈c̄pcv c̄wcl 〉

i.e., multiplying by [G0]zxmi and using definitions (8.17c) and (C.2):

Gmp = [G0]mp − [G0]mi Uα βλivα χ̃vpβ (F.3)

Using (C.1d), we can rewrite this as:

Gmp = [G0]mp − [G0]mi λivα χvpα (F.4)

F.2.2 Bosonic propagator W

Specializing Eq. (F.1) for h[ϕ] ≡ ϕα , we find:

〈
δγ α − λuvγ c̄ucvϕα

〉
= −

[
U −1

]
γ β

〈
ϕβϕα

〉
whence:

−〈ϕδϕα 〉 = Uδα −Uδγ λuvγ 〈c̄ucvϕα 〉

i.e., using definitions (8.17b-8.27):

Wδα = Uδα +Uδγ λuvγ χvuα (F.5)

F.3 General formulae for the self-energy and polarization

Identifying Σ and P from the Dyson equations (8.24a-8.24b) and (F.4-F.5) yields:

Σi jG jp = −λivα χvpα (F.6a)

Pγ βWβα = λuvγ χvuα (F.6b)

whence:

Σik = −λivα χvpα
[
G−1

]
pk

(F.7a)

Pγ δ = λuvγ χvuα
[
W −1

]
αδ

(F.7b)

.
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= +

p v p v p v

uwuwuw

a b

cd

χvpuw Fbacd

Gvp

i k

ii k kv b

dcuw

α

β

α

β

u w

= +

Fbkcd

Σik

(a)

(b)

Figure F.1: (a) Generalized susceptibility: relation to the fully reducible vertex F . (b) Schwinger-Dyson
equation. The grey triangle is the bare vertex λi jα .

F.3.1 With a three-leg vertex

Using the definition of the three-leg vertex, Eq. (8.28), we find:

Σi j = −λikαGklWα βΛl j β

and similarly:

Pα β = λikαG jiGklΛl j β

which are the formulae (8.36a-8.36b) we derived using functionals in section 8.3.

F.3.2 With a four-leg vertex

Start from
Σi jG jp = −λivαUα β χ̃vpβ = −λivαλuwβUα β 〈cv c̄p c̄ucw 〉

Define the generalized susceptibility:
χvpuw = 〈cv c̄p c̄ucw 〉 (F.8)

As shown in panel (a) of Fig. F.1,

χvpuw = GvpGwu +GapGwdFbacdGvbGcu

Hence,
Σi jG jp = −λivαλuwβUα β

[
GvpGwu +GapGwdFbacdGvbGcu

]
Multiplying byG−1

pk
yields the general Schwinger-Dyson equation for the self-energy (illustrated in panel (b)):

Σik = −λikαλuwβUα β [Gwu +GwdFbkcdGvbGcu] (F.9)
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F.3.3 Transcription to simple cases

F.3.3.1 Product ΣG

F.3.3.1.1 Local version Let us rewrite Eq. (F.6a) in terms of χ̃ :

Σi jG jp = −λivαUα β χ̃vpβ

and then replace λ by λivα = σ I
σ σ̄δτ−τ ′δτ ′−τ̄δab , Uα β = U I

ab (τ − τ̄ )δI J , and Σi j = Σaσ ,c τ̄ (τ − τ̄ ). We get:

Faσ ,bσ ′ (τ ) ≡

ˆ
τ̄

∑
c

Σaσ ,c σ̄ (τ − τ̄ )Gc σ̄ ,bσ ′ (τ̄ ) = −
∑
I

ˆ β

0
dτ̄

∑
cd σ̄

U I
cd (τ − τ̄ )〈Tcaσ̄ (τ )σ

I
σ σ̄c

†

bσ ′ (0)n
I
d (τ̄ )〉 (F.10)

(a,b,c,d are orbital indices). In frequency, this becomes:

Faσ ,bσ ′ (iω) = −
∑
iΩ1

∑
iΩ2

∑
iω1

∑
I

∑
cd σ̄

ˆ β

0
dτ̄

ˆ β

0
dτeiωτ−iΩ1 (τ−τ̄ )−iΩ2τ̄−iω1τU I

cd (iΩ1)σ
I
σ σ̄ χaσ̄ ,bσ ,dI (iω1,iΩ2)

=
∑
iΩ

∑
cd σ̄

U I
cd (iΩ)σ I

σ σ̄ χaσ̄ ,bσ ,dI (iω − iΩ,iΩ)

=
∑
iΩ

∑
cd σ̄

U I
cd (iΩ)σ I

σ σ̄ χaσ̄ ,bσ ,dI (iω,−iΩ)

=
∑
iΩ

∑
cd σ̄

U I
cd (iΩ)σ I

σ σ̄ χaσ̄ ,bσ ,dI (iω,iΩ)

where I used U I (−iΩ) = U I (iΩ).

F.3.3.1.2 Nonlocal version In the homogeneous phase for a static U , Σi j = ΣRτR′τ ′σδσσ ′ ,

ΣRτ ,R′τ ′σGR′τ ′,R′′τ ′′σ = −σ
I
σσ ′U

I 〈cRτ σ ′c̄R′′τ ′′σn
I
Rτ 〉

For I = 0,z

ΣRτ ,R′τ ′σGR′τ ′,R′′τ ′′σ = −U 〈cRτ σ c̄R′′τ ′′σ c̄Rτ σ̄cRτ σ̄ 〉 (F.11)



G
A selection of many-body methods seen from a

“parquet” perspective

In this chapter, I present various approximate many-body methods which can be regarded as different ap-
proximations to the parquet equations. These methods can be compared to TRILEX. The relation is briefly
mentioned in the main text (section 8.6).

G.1 Prerequisite: four-leg observables and parquet equations

In this section, I summarize the so-called “parquet” formalism. I voluntarily use somewhat loose notations
for expressions (i.e. without frequency, momentum nor spin indices) to underline the structure of equations.

The starting point is the generalized susceptibility or four-leg correlator G2 (i, j,k,l ,τ1,τ2,τ3,τ4) (sometimes
denoted as χ when unambiguous) defined as:

G2 (i, j,k,l ,τ1,τ2,τ3,τ4) ≡ −〈Tc
†

i (τ1)c j (τ2)c
†

k (τ3)cl (τ4)〉

where i, j,k,l are combined site, spin and orbital indices, and τi denotes the imaginary-time variable. G2 can
be decomposed in the following way (for an illustration, see Fig. F.1 in the appendix):

G2 = −GG +GGFGG (G.1)

where F is the fully reducible vertex function (sometimes also denoted Γ). It contains all connected, four-leg
diagrams. F can be further decomposed in contributions defined by the topology of the Feynman graphs used
to represent them:

The irreducible vertex in channel r , Γr (sometimes also denoted Γr ,ir), contains all diagrams that cannot be
split in two by cutting:

• r = ph: two horizontal lines with opposite directions

• r = ph: two vertical lines with opposite directions

• r = pp: two lines with same directions

In the SU(2) symmetric case, the set of r and spin indices can be reduced to four indices, d (density), m
(magnetic), s (singlet) and t (triplet). One further defines Φr as the complementary set of diagrams with
respect to Γr in F , namely:

185
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F = Γr + Φr (G.2)

By definition, Φr is reducible in channel r , namely:

Φr = FGGΓr (G.3)

The fully irreducible function Λ (sometimes denoted Γfir) contains all diagrams that cannot be split in two
by cutting any two lines. Hence,

F = Λ +
∑
r

Φr (G.4)

Finally, by definition of Γr , the following relation holds:

Γr = Λ +
∑
r ′,r

Φr ′ (G.5)

G.1.1 Bethe-Salpether equation

Combining Eqs. (G.2) and (G.3), one gets the Bethe-Salpether equations (BSE):

F = Γr + FGGΓr (G.6)

I will note symbolically:
BSE

Γr 
 F

BSE−1
(G.7)

Both the direct and the inverse equations require matrix inversions, e.g. for the direct BSE:

F = (1 −GGΓr )−1 Γr (G.8)

G.1.2 Parquet (and inverse parquet) equations

Replacing F using (G.4) and Γr using (G.5) in (G.3), one gets the parquet equations:

Φr = *
,
Λ +

∑
r ′

Φr ′+
-
GG *

,
Λ +

∑
r ′,r

Φr ′+
-

(G.9)

They allow to go from Λ to Φr , and hence from Λ to F . They are very involved nonlinear equations coupling
the three channels. One names “parquet” the process of computing F from Λ:

Parquet
Λ → Φr → F

(G .9) (G .4)
(G.10)

Similarly, one calls “inverse parquet” (parquet−1) the process of computing Λ from F :

Parquet−1

F → Γr → Φr → Λ

(BSE−1) (G .2) (G .4)
(G.11)

Although it requires using BSE−1, the inverse parquet is much easier to solve than the parquet (there is no
coupling between the different channels).



Appendix G. A selection of many-body methods seen from a “parquet” perspective 187

F↑↓(kk
′q)

G(k′)

G(k′ + q)

G(k + q)

UΣ(k) =

Figure G.1: Schwinger Dyson equation for Σ

Vertex Approximation Name

U U = 0 Free electrons

F
F = 0 Self-consistent Hartree-Fock
F = U Self-consistent second-order

perturbation theory

Γr
Γph = U Self-consistent RPA
Γr = Ur Fluctuation-exchange

approximation (FLEX, see
section G.2)

Λ Λ = U Self-consistent parquet
approximation

Table G.1: Various approximation strategies for two-particle vertex functions

G.1.3 Relation between F and Σ: Schwinger-Dyson equation

The fully reducible vertex F (k,k′,q,iω,iν ,iΩ) and the self-energy (beyond Hartree-Fock) Σ(k,iω) are related
by Schwinger-Dyson’s equation (derived in Appendix F.3.2). For the Hubbard model, it reads:

Σ(k ) = U
∑

k ′,q

G (k ′ + q)G (k ′)G (k + q)F↑↓(k ,k
′,q) (G.12)

with k ≡ (k,iω) etc. The corresponding diagram is shown in Fig. G.1.

G.1.4 Approximation strategies of the parquet equations

If the exact Λ were known for a given system, and if one were able to solve the parquet equations, one
could in principle compute the exact self-energy. In practice, however, one has to perform approximations
on Λ or on the other vertices introduced in the previous subsections. In Table G.1, I summarize various
approximation strategies for the two-particle vertex functions. The “parquet approximation”, which consists
in approximating the fully irreducible vertex by the bare interaction U , is limited to very small cluster sizes
(4 × 4 Hubbard model, Yang et al. (2009); Tam et al. (2013)).

In the next subsection, I present various many-body approximation strategies which can be viewed as ap-
proximations to the full parquet equations.

G.2 The fluctuation-exchange (FLEX) approximation

The fluctuation-exchange (FLEX) approximation was introduced by Bickers and Scalapino (1989); Bickers
et al. (1989); Bickers and White (1991). In essence, it constructs the self-energy as a sum of contributions
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by all fluctuation channels, as if the fermionic variables of the Hubbard model were coupled to several
bosonic modes each representing a possible instability. If we denote the propagator of these bosonic modes
as −Ur χ̃r (q)Ur (r = ch, sp, singlet, triplet for “density” (charge), “magnetic” (spin), “singlet” and “triplet”
channels1), then the FLEX self-energy for the single-band Hubbard model is given by the expression:

ΣFLEX (k ) = −
∑
r

ηr
∑
q

G (±(k − q))
[
−Ur χ

RPA
r (q)Ur

]
+ Σ(2) (k ) (G.13)

where k ≡ (k,iω); the + sign is used for particle-hole channels (sp and ch), the − sign for the the particle-
particle channels (singlet and triplet). The prefactors are ηch = 1, ηsp = 3, ηsinglet = −1, ηtriplet = 0. Contrary
to the spin fluctuation approach, the susceptibilies used in FLEX are the RPA susceptibilies, made up of rings
of bubbles (particle-hole channels) or ladders (particle-particle channels):

χRPA
r (q) =

−Pr (q)

1 −UrPr (q)
(G.14)

with Pch (q) = Psp (q) = 2
∑

k G (k + q)G (k ) and Psinglet (q) = −
∑

k G (k + q)G (−k ). The interactions in the different
channels are: Uch = U /2, Usp = −U /2 and Usinglet = U . The term Σ(2) avoids double counting some second-
order terms. It is given by: Σ(2) (k ) = 1

2
∑
q G (k−q)U 2

chPch (q)+
3
2
∑
q G (k−q)U 2

spPsp (q)−
∑
q G (q−k )U 2

singletPsinglet (q).

For a given G, the self-energy ΣFLEX (k ) is plugged in Dyson’s equation to determine a new G, and so forth
until convergence. One can see that FLEX amounts to the self-consistent random-phase approximation gen-
eralized to all channels. Diagrammatically, the FLEX approximation to the self-energy corresponds to the
approximation

Γr (k,k
′,q) = Λr (k,k

′,q) = Ur (G.15)

of the parquet equations. 2

In some versions of FLEX, a pseudogap is observed (see e.g. Manske (2004)), but the parameter space where
it appears is different from the next method, TPSC, for instance.

FLEX can be regarded as improving on spin fluctuation theory insofar as all fluctuations are now treated on
the same footing, and their form is no longer phenomenological, thus removing a degree of arbitrariness.
Yet, as in spin fluctuation theory, the FLEX self-energy is computed at one-loop order, namely without vertex
corrections. The susceptibilities are infinite rings of “bubbles” or ladders with full propagators Ur in between,
namely there are no vertex corrections in the susceptibilities either. As such, FLEX is at the same time
analogous to spin fluctuation theory – in the sense that it stresses the importance of fluctuations in a weak-
coupling scenario – and quite different in spirit, since it does not have a knob to go far or close to the quantum
critical point.

G.3 The two-particle self-consistent theory (TPSC)

The two-particle self-consistent theory (TPSC) was introduced in Vilk et al. (1994); Vilk and Tremblay (1997).
It also stresses the importance of two-particle fluctuations which it computes in a similar way as FLEX, with

1The usual notation for these channels is r = d, m, s, t.
2Indeed, starting from the general definition of F , Eq. (G.4), one obtains, after a few reshufflings of integration variables and using

the crossing symmetry, in loose notation:

GGGF = −
1
2
G [GG]ph Λph −G [GG]ph Φph

+G [GG]pp Λpp −G [GG]pp Φpp

In the SU(2) case, one can rewrite this equation in the r = ch, sp, singlet, triplet channels, and use the BSE equation to write
Φr = Γr [1 − Γr [GG]r ]−1. Making the approximation Γr = Λr = Ur and plugging these relations into the Schwinger-Dyson equation
(Eq. (G.12)), yields Eq. (G.13). More details can be found e.g. in chapter 6 of Sénéchal et al. (2003).
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an additional degree of control given by the enforcement of sum rules. For a review, I refer the reader to
Tremblay (2011).

Like FLEX, TPSC can be derived from the parquet formalism. In the SU(2) invariant case, the fully re-
ducible four-leg vertex F↑↓ of the Schwinger-Dyson equation (Eq. G.12) can be written as: F↑↓(k,k

′,q) =
1
2

(
Fch (k,k

′,q) − Fsp (k,k
′,q)

)
= −Fsp (k,k + q,k ′ − k ), with k ≡ (k,iω). Using this property and reshuffling

integration variables in the Schwinger-Dyson equation, one can rewrite the self-energy as

Σα (k ) = U
∑
k ′,q

G (k ′ + q)G (k ′)G (k + q)

{
α

[
Fch (k,k

′,q) − Fsp (k,k
′,q)

2

]
+ (1 − α )

[
−Fsp (k,k

′,q)
]}

where α is an undetermined parameter. F can be obtained by solving the Bethe-Salpether equations (Eq.(G.6)):
Fr (kk

′q) = Γr (kk1q) (1 − ΓrGG )−1
kk ′q (where inversion is done in k,k ′ space). The TPSC approximation consists

in approximating the irreducible vertex in channel r , Γr , as Γr (kk
′q) ≈ Ur in the numerator, and

Γr (kk
′q) ≈ дrUr (G.16)

in the denominator of Fr . Due to the locality of Ur , Fr depends only on q, yielding:

ΣTPSC
α (k ) = −U

∑
q

Gq+k

(α
2
χTPSC

ch (q)Uch +

(α
2
− 1

)
χTPSC

sp (q)Usp

)
(G.17)

with:

χTPSC
r (q) =

−P0 (q)

1 − дrUrP0 (q)
(G.18)

with P0 (q) = 2
∑

k G0 (k + q)G0 (k ), Ud = U /2 and Um = −U /2. (I am using slightly different conventions from
the usual TPSC conventions: here Ur denotes the bare interaction in channel r = ch, sp, whereas in the TPSC
literature it denotes the interaction renormalized by дr ).

The number дr is akin to a local, static vertex correction; it is related to the double occupancy 〈n↑n↓〉. This
can be seen by using the definition of Γsp = Γ↑↑ − Γ↑↓, with

Γσσ ′ (i, j,k,l ) =
δΣσ (ij )

δGσ ′ (kl )
(G.19)

(with i ≡ (τ ,R)). One can decompose Σσ (ij ) = Σσ (im)Gσ (mn)G−1
σ (nj ), evaluate the product ΣG using the

equation of motion (Eq. (F.11) in Appendix F.3.3), and perform the following approximation: Σσ (ik )Gσ (kl ) =

−U 〈ciσ c̄lσ c̄i σ̄ci σ̄ 〉 ≈ U
〈niσ ni σ̄ 〉
〈niσ 〉〈ni σ̄ 〉

Gσ (il )Gσ̄ (ii
+). One can now define

дsp ≡
〈niσni σ̄ 〉

〈niσ 〉〈ni σ̄ 〉
(G.20)

Hence, Γσσ ′ =
∂[UдspGσ̄ (ii+ )δi j]

∂Gσ ′ (kl )
=

∂[Uдsp]
∂Gσ ′ (kl )

Gσ̄ (ii
+)δi j +Uдspδσ ′σ̄δi jδilδi j , so that finally, noticing that the first term

does not depend on the spin indices, we get Eq. (G.16) for r = sp. The equation for r = ch can be considered
as an ansatz for the form of Γch.

At this point, one still has two unknowns дsp and дch, the former being related to the double occupancy. They
are fixed using sum rules on the exact susceptibilities χr , namely χsp (τ = 0,i− j = 0) = 〈szsz〉conn = 〈n〉−2〈n↑n↓〉
and χch (τ = 0,i − j = 0) = 〈nn〉conn = 〈n〉 + 2〈n↑n↓〉 − 〈n〉2. In momentum-frequency space and in the
paramagnetic phase, these sum rules read, after eliminating 〈n↑n↓〉 using Eq. (G.20):∑

q

−P0 (q)

1 + дsp
U
2 P0 (q)

= 〈n〉 − 2дsp
〈n〉2

4
(G.21)

∑
q

−P0 (q)

1 − дch
U
2 P0 (q)

= 〈n〉 + 2дsp
〈n〉2

4
− 〈n〉2 (G.22)
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Figure G.2: Left: Evolution of дchUch and дspUsp as a function of U at half-filling. The dashed line denotes
the bare interaction U /2 (D: half-bandwidth) (adapted from Vilk and Tremblay (1997)). Right: Comparison
of the spectral function A(k,ω) obtained within TPSC and FLEX with determinantal QMC simulations at
U /D = 1, βD = 20 and half-filling on a 8 × 8 lattice (from Moukouri et al. (2000)).

For a given filling 〈n〉 and bare interactionU , one can thus solve these equations for дsp and дch, then compute
χTPSC
r (q) and eventually Σ(k ) and G (k ). This is shown on the left panel of Fig. G.2: at half-filling, the effective

irreducible interaction in the charge channel (дchUch) is larger than the bare interaction U /2 (red dashed
line), whereas the irreducible spin interaction is lower than the bare interaction. This can be understood as
a sign that the charge sector becomes gapped, while in the spin sector, the effective interaction is damped
to enforce the Mermin-Wagner theorem: the Néel temperature is signalled by the divergence of χsp, i.e.
when 1 + дsp

U
2 P0 (q) = 0. If the interaction is not renormalized, as in FLEX, this criterion is met for finite

temperatures, leading to a violation of the Mermin-Wagner theorem. In TPSC, the sum rules lead to a
preservation of the Mermin-Wagner theorem. This comes from the mere structure of Eq. (G.21): at fixed U

and G0 such that дsp
U
2 P0 (q) < 1, let us suppose that дsp increases. Then, the value of denominator decreases

and the left-hand side, as a result, increases. Eq. (G.21) can only be fulfilled in the right-hand side also
increases, which can only happen if дsp decreases. Thus the sumrule enforces a negative feedback on the
value of дsp.

Note that the value α with which the self-energy is computed is in principle arbitrary. In the original papers, α
was set to the value α = 1, but it was later argued (Moukouri et al. (2000)) that choosing a value preserving
SU(2) symmetry (α = 1/2) was better.

As shown by Fig. G.2, TPSC applied to the Hubbard model in two dimensions is in good agreement with
QMC simulations on a square lattice for quite moderate interactions. In particular, for the parameters under
considerations, a pseugap is visible in the TPSC spectrum, whereas it is absent in the FLEX spectrum. It
would be hard to pinpoint the precise reason of this discrepancy and to tell which approach is “better” than
the other.

The TPSC method – which can be viewed as a consisting in introducing local, static vertex corrections con-
trolled by sum rules on the susceptibilities – preserves the Mermin-Wagner theorem, describes the pseudogap
phenomenon and is in good agreement with exact QMC results at weak-coupling.

G.4 The dynamical vertex approximation: an example of strong-coupling approach

with long-range correlations

In the previous sections, I explained the need for methods taking into account long-range correlations while
capturing local physics nonperturbatively. In recent years, a few methods have been developed to achieve
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Simp[G(iω), U ]

Σ(k, iω) =

G−1 = G−1
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Figure G.3: The DΓA method. F denotes the (4-leg) fully reducible vertex, Λ the (4-leg) fully irreducible
vertex, Γr the irreducible vertex in channel r . Other variant (lower path): “ladder DΓA”.

this goal. The GW+EDMFT method, introduced in chapter 6, is one of them. “Dual methods” (dual fermions
(Rubtsov et al. (2008)) and dual bosons (Rubtsov et al. (2012))) and the very recent combination of func-
tional renormalization group with DMFT, DMF2RG (Taranto et al. (2014)), are other examples.

In this section, I have chosen to focus on the dynamical vertex approximation (DΓA), an approximation based
on the approximation of two-particle quantities, namely observables which can be pictorially represented
with four-leg diagrams. A pedagogical introduction to the two-particle formalism and DΓA can be found in
Held (2014); the interested reader will find more details in Rohringer et al. (2012).

G.4.1 DΓA: A local approximation to the fully irreducible vertex

The dynamical vertex approximation (DΓA, Toschi et al. (2007)) aims at constructing a momentum-dependent
self-energy from the fully reducible vertex F using Schwinger-Dyson’s equation, Eq. (G.12).

The fully reducible vertex F is computed from an impurity 4-leg vertex. In the original formulation (Toschi
et al. (2007)), called “parquet-DΓA”, Λ is approximated by the impurity irreducible vertex:

Λlatt (k,k
′,q,iω,iν ,iΩ) ≈ Λimp (iω,iν ,iΩ) (G.23)

This local approximation of Λ is directly inspired by the local approximation of the self-energy Σ performed in
DMFT. While exact in the limit of infinite dimensions, this local approximation of the fully irreducible vertex
is suspected to be valid also for low dimensions based on DCA calculations for the doped 2D Hubbard model
(U /D = 1, δ = 15%, Maier et al. (2006), Fig. 4 (b)).

From this local irreducible vertex Λ, the parquet equations (Eq. G.10) – if one overcomes the task of solving
them – yield a momentum-dependent F (k,k′,q,iω,iν ,iΩ) function, and hence a momentum-dependent self-
energy via (G.12). This is illustrated in Fig. G.3.

Due to the numerical complexity of solving the parquet equations, however:
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(a) (b)

(c)

(d)

Figure G.4: DΓA applied to the 2D Hubbard model. The energy unit is the half-bandwidth D = 4t . (a)
ImΣk (iω) at T = 0.025 and U /D = 0.5 (b) same as (a), T = 0.01 (c) Dependence of the inverse AF correlation
length ξ−1 on temperature (d) ln ξ−1 as a function of temperature. (from Schäfer et al. (2015a))

• the DΓA method has only been performed in a one-shot way up to now (Held (2014)); Σ(k,iω) could in
principle be fed back into G (k,iω) to compute a new Weiss field G (iω) and hence a new Λimp (iω,iν ,iΩ)

and so forth, but this has not been done ever since the original paper. Even if done in this way, it is
unclear whether self-consistent DΓA would be derivable from a functional.

• in this one-shot formulation, parquet-DΓA has been restricted to small-size systems, namely at most an
8-site Hubbard ring (Valli et al. (2015)).

• a variant of DΓA, coined “ladder-DΓA”, has been introduced to circumvent the parquet hurdle (Toschi
et al. (2007); Katanin et al. (2009)). I elaborate on this variant in the next subsection.

G.4.1.1 Ladder-DΓA: A local approximation to the channel-wise irreducible vertex

“Ladder-DΓA” has been introduced to avoid the daunting task of solving the parquet equations on the lattice
(Toschi et al. (2007); Katanin et al. (2009)). It consists in making a local approximation not of the fully
irreducible vertex Λ, but of the irreducible vertex in one given channel r , viz.

Γr ,latt (k,k
′,q,iω,iν ,iΩ) ≈ Γr ,imp (iω,iν ,iΩ) (G.24)

Directly resumming the ladders of the Bethe-Salpether equation (G.6) to get F leads to divergences during
the inversion process: the matrix GGΓr in Eq. (G.8) starts having eigenvalues which are larger than unity,
signalling instabilities in the given channel. Such instabilities are absent when solving the parquet equations
where all channels are coupled with one another. To remove this artefact and mimic the full parquet equations
in a less expensive way, a parameter λ is introduced and fixed by imposing the preservation of sum rules
similar to those of TPSC (Toschi et al. (2007); Katanin et al. (2009)).

G.4.1.2 Selected results: effect of long-range correlations on the Mott transition in two dimensions

Ladder-DΓA has been applied to the 2D Hubbard model (Schäfer et al. (2015a)) and the 3D Hubbard model
(Schäfer et al. (2015b)). In Fig. G.4, results for the 2D Hubbard model are shown. While for intermediate
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Figure G.5: Link between the three-leg vertex and the fully reducible four-leg vertex

(but low) temperatures, the self-energy is that of a correlated metal (panel (a), for lower temperatures DΓA
predicts the self-energy to acquire an insulating behavior at low energies (namely the insulating behavior is
restricted to the three lowest Matsubara frequencies, panel (b)). This phenomenon is interpreted as a con-
sequence of very large correlation lengths which would destroy coherence, as shown in panels (c) and (d).
Interestingly, the high-temperature behavior of the inverse AF correlation length is linear and if extrapolated,
would yield a finite Néel temperature, in violation of the Mermin-Wagner theorem. At very low tempera-
tures, however, this behavior drastically changes as the correlation length acquires an exponential behavior
approaching T = 0, in compliance with the Mermin-Wagner theorem. Thus, DΓA predicts the 2D Hubbard
model to be insulating all the way down to U = 0 for low temperatures as a consequence of long-ranged spin
fluctuations.

G.4.2 Link between the three-leg and the four-leg vertices

One can rewrite Eq. (G.12) in the following suggestive way:

Σ(k ) = −
∑

q

G (k + q)

∑

k ′
UG (k ′ + q)G (k ′)F↑↓(kk

′q)


Remembering the TRILEX form of the self-energy

Σ(k ) = −
∑

q

G (k + q)


∑

η

ληmηWη (q)Λη (kq)


leads to the identification:

∑

η

ληmηWη (q)Λη (kq) =
∑

k ′
UG (k ′ + q)G (k ′)F↑↓(kk

′q)

which is depicted in Fig. G.5.
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H
Experimental probes for condensed matter

physics: a brief theoretical overview

This part is devoted to experimental probes seen from a theoretical point of view. Its purpose is to understand
what observables are accessible from a given probe.

H.1 Surface probes: electron diffraction, electron energy loss spectroscopy,
photoemission

H.1.1 Low-energy electron diffraction and reflection high-energy electron diffraction (LEED
and RHEED)

Low-energy electron diffraction (LEED) consists in shining electrons with energies of 20 to 200 eV on the
surface of a solid, and then detecting the diffracted electrons, as illustrated in Fig. H.1a. The pattern
observed on the screen of the detector is an image of the reciprocal lattice of the surface of the sample.
Indeed, electrons have a very small penetration depth (as opposed to X-rays, which makes LEED better suited
to study surfaces than X-ray diffraction, which is used to study bulk symmetries). LEED can thus detect
changes in the symmetry of the surface.

Reflection high-energy electron diffraction (RHEED) is very similar to LEED, only the electrons are more
energetic and shot almost parallel to the surface, as shown in Fig. H.1b. This probe also yields a diffraction
pattern of the surface’s symmetry.

H.1.2 Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy (EELS) consists in focussing energetic electrons (in an energy range of
100-200 keV) on a sample and measuring the energy loss and momentum (scattering angle) of the trans-
mitted electrons in an electron spectrometer (see Fig. H.1c). This is usually done in a transmission-emission
microscope (TEM). Going through the material, the electron is scattered inelastically by various processes,
including phonons, inter and intraband transitions, plasmons, etc. EELS was developed as early as the mid
1940s by Hiller and Baker but only in the 1990s did various technological advances allow to reach precisions
of ∆E ∼ 0.4 eV nowadays. Compared to ARPES (explained later), EELS probes deeper states (∼1000 ). Yet, it
is limited to the investigation thin samples since it is a transmission probe and electrons, as charged particles,
couple quite strongly to matter (compared to neutrons for instance, see section H.2.1 on neutron scattering).
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Figure H.1: Various electron scattering probes

In the following, I give a succinct description of the physical observables that are to be found in an EELS
spectrum. More details about EELS in general can be found in Schnatterly (1979); Egerton (2008, 2011).
Early works on the link between particle scattering and the charge-charge correlation or inverse dielectric
function include van Hove (1954); Fano (1956); Nozières and Pines (1958).

H.1.2.1 Microscopic theory

As before, the sample is described by a Hamiltonian H with eigenstates Ψn (En). An electron beam with
energy Ein and momentum kin is focused on the sample. The spectrometer measures the outgoing electron
beam with energy Eout and momentum kout. I note ~ω ≡ Eout − Ein and q ≡ kout − kin. The electron interacts
with the electrons in the solid via the Coulomb interaction:

H
q,ω

probe (t ) = vCoul (q)nqe
−iωt (H.1)

with nq =
∑

k c
†
k+q

ck and vCoul (q) is the Fourier transform of the Coulomb interaction, vCoul (q) =
e2

ϵ0q2 . Note
that due to the high energy of the probing electrons, the Coulomb interaction is not screened. Since the
probing electrons are highly energetic, one can assume the sample-probe coupling to be weak enough, and
using the Golden Rule (derived in Appendix I.2.2, see Eq. (I.21) with Oq ≡ nq and д ≡ vq):

Γ(q,iω) = 2v2
Coul (q) (1 + nB (ω))χ

′′
ch (q,ω) (H.2)

where χch (q,ω) is the charge-charge correlation function The 1 + nB (ω) factor comes from the fluctuation-
dissipation theorem (see Appendix ). This scattering rate can be expressed as a function of the dielectric
function, defined as:

ϵ (q,ω) ≡ 1 −vCoul (q)Pch (q,ω) (H.3)
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Figure H.2: Kinetic energy and momentum carried by particles used in inelastic scattering experiments (from
Ament et al. (2011))

where the polarization Pch is related to χch (q,ω) via:

Pch (q,ω) =
−χch (q,ω)

1 −vCoul (q)χch (q,ω)

so that: ϵ−1
= 1 −vCoulχch, and hence −Imϵ−1 (q,ω) = vCoul (q)χ

′′

ch (q,ω). As a result,

ΓEELS (q,ω) = 2(1 + nB (ω))vCoul (q)
(

−Im
[
ϵ−1 (q,ω)

] )
(H.4)

H.1.2.2 Physical observables

As shown by Eq. (H.4),

EELS yields direct insights into the dielectric properties of a material, in particular collective modes in the
charge sector such as plasmons. Indeed, in the q → 0 limit, the free (Lindhard) polarization for the electron

gas is given by Pch (q → 0,ω) = n
m

q2

ω2 (see Appendix I.4.1.2). Using (H.3), the zeros of the dielectric function

are thus given by 0 = 1− e2

ϵ0q2
n
m

q2

ω2 i.e. ω =
√

ne2

ϵ0m
≡ ωP, the plasmon frequency. More generally, it gives access

to the charge correlation function (see Eq. (H.2)) and can thus be used to observe the opening of gaps.

EELS yields observables similar to inelastic X-ray scattering (RIXS/NIXS, see Ament et al. (2011) for a review),
a probe where photons are scattered by the material. The main different lies in the energy scales, momenta
and depths accessible by each method. This is summarized in Fig. H.2. Scattering with neutrons (inelastic
neutron scattering) is elaborated on in section H.2.1.

H.1.3 Scanning tunneling microscopy (STM)

Scanning tunneling microscopy (STM) has been introduced by Binnig and Rohrer in 1982 to study surface
states of CalrSn4(110), Au(110) and the 7 × 7 reconstruction of Si(111) (Binnig et al. (1982b,a, 1983a);
Binnig and Rohrer (1983); Binnig et al. (1983b)). It consists in approaching a metallic tip (typically tungsten
or platinum-iridium) to the surface of a sample, and measure the tunneling current flowing from the sample
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Figure H.3: A STM setup.

to the tip. Adjusting the tip-sample distance to keep the current fixed yields a topography of the surface with
atomic resolution. A basic theoretical framework has been laid out by Bardeen as early as 1961 (Bardeen
(1961)). Tersoff and Hamann (1985) proposed a more detailed description of the tip wavefunctions (in
terms of s-waves) and showed the current to be proportional to the local density of states (LDOS) on the
surface, while Chen (1990) extended the tip modelling to other orbital characters (especially d-waves, since
W and Pt-Ir are d-wave metals) . Since these approaches implicitly assume the sample to be described by
weakly-interacting electrons, I give below a more general derivation of the STM current where no assumption
is made on the Hamiltonian describing the sample.

H.1.3.1 Microscopic general derivation of the STM current

A schematic STM setup is shown in Fig. H.3. The tip, sample, and tip-sample interaction are modelled by the
following Hamiltonians:

Htip =

∑

α

εαd
†
αdα (H.5)

H =

∑

i j

εi jc
†
i c j + Hint (H.6)

Htunnel =
∑

αi

tαi
(

d†αci + h.c
)

(H.7)

Namely: the tip is described by a non-interacting or (for realistic calculations) Kohn-Sham Hamiltonian
(d†α creates e.g. a Bloch or Kohn-Sham state ψ tip

α=n,k,σ
(r)), the sample by an interacting Hamiltonian (with

annihilation and creation operators ci and c†i , i referring e.g. to a Wannier site Ri), while the coupling
between the tip and the sample is a simple hopping term, where the tunneling matrix element tαi is given by:

tαi ≡ 〈ϕtip
α |h(r) |ϕsample

i 〉 =
˚

V

dr
(

ϕ
tip
α

)∗
(r)

(

−~
2∆

2m
+Veff (r)

)

ϕ
sample
i (r) (H.8)

A bias voltage V > 0 induces a potential difference between the tip and the sample: nsample
F (ω) = n

tip
F (ω − eV ).

The current flowing from the tip to the sample as a result of the bias voltage is given by

JSTM ≡ e
d

dt
〈N̂tip (t )〉 (H.9)
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where Ntip ≡
∑
α d
†
αdα . N̂tip (t ) is written in the Heisenberg representation, so that J = ei

~ 〈[Htot,Ntip](t )〉. Since
[Htot,Ntip] =

[
Htunnel,Ntip

]
=

∑
α i tα i

(
c†i dα − d

†
αci

)
, one obtains:

JSTM =
e

~

∑
α i

tα i
(
G<
α i (t ,t ) −G

<
iα (t ,t )

)
where I used the definition: G<

iα ≡ i〈d†αci 〉. Expanding to first order in t , we get: Giα = GitiαGα , where G

denotes the Keldysh matrixG ≡
(
GR GK

0 GA

)
, GK ≡ G>+G< , and we have usedG<

i j ≡ G
<
i δi j andG<

α β ≡ G
<
α δα β .

Hence, G<
iα (ω) = GR

i (ω)tiαG
<
α (ω) + G<

i (ω)tiαG
A
α (ω) so that, using A(ω) = i (GR (ω) − GA (ω)) and G< (ω) =

inF (ω)A(ω):

G<
α i (ω) −G

<
iα (ω) = tiα

(
GR
α (ω)G

<
i (ω) +G

<
α (ω)G

A
i (ω) −G

R
i (ω)G

<
βα (ω) −G

<
i (ω)G

A
α (ω)

)
= tiα

(
G<
i (ω)

(
GR
α (ω) −G

A
α (ω)

)
+G<

α (ω)
(
GA
i (ω) −G

R
i (ω)

))
= tiα

(
in

sample
F (ω)A

sample
i (ω)

(
−iA

tip
α (ω)

)
+ in

tip
F (ω)A

tip
α (ω)

(
iA

sample
i (ω)

))
= tiα

(
n

sample
F (ω) − n

tip
F (ω)

)
A

sample
i (ω)A

tip
α (ω)

Finally, one gets the general expression for the STM current:

JSTM (V ) =
4e
~

ˆ ∞
−∞

dω


{nF (ω) − nF (ω − eV )}

∑
i,n,k

����tnk,i
����
2
A

sample
i (ω)A

tip
nk (ω)


(H.10)

The factor of 4 comes from the spin degree of freedom (note the double sum), and n
sample
F (ω) = nF (ω),

n
tip
F (ω) = nF (ω − eV ).

H.1.3.2 Expression in limiting cases and physical interpretation

Various approximations to the general result Eq.(H.10) can be made. At low bias voltage and low tempera-
ture, ntip

F (ω − eV ) ≈ n
tip
F (ω) − eVδ (ω − εF), whence:

JSTM = −
4e2V

~

∑
i,nk

����tnk,i
����
2
A

sample
i (εF)A

tip
nk (εF)

The current flows from right to left (JSTM < 0), as expected. Various approximations can be made to tα i ,
including those proposed in the conventional works of Bardeen (1961), Tersoff and Hamann (1985) and
Chen (1990). Here, I focus on the crudest approximation ,

tnki ∝ e−κzδRi−rtip (H.11)

where z is the tip-sample distance and δRi−rtip selects the sample region close to the tip. tnki amounts to the
tunneling amplitude of the tip wavefunction into the sample.

Furthermore, if the tip is non-interacting: A
tip
nk (ω) = δ (ω − εnk), and if we denote by N tip (ω) ≡ A

tip
loc (ω) =∑

nk δ (ω − εnk), we obtain the final simplified expression for the STM current:

JSTM ∝ −
4e2V

~
e−κzA

sample
loc,Rtip

(εF)N
tip (εF) (H.12)

Thus, STM measures the local spectral weight at the Fermi level in the vicinity of the tip, Asample
loc,Rtip

(εF), which

can be used to infer the insulating or metallic state of the sample. STM is of course used to measure the
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Figure H.4: Photoemission spectroscopy. Left: experimental setup. Right: sudden approximation

surface topography: keeping JSTM constant on a corrugated sample, the tip displacement z is a direct image
of the real-space landscape.

The differential conductance at low temperature gives direct access to the frequency-dependence ofAsample (ω):

GSTM (V ) ≡ d JSTM
dV
=

4e2

~

´ ∞
−∞ dω

*,
dnF
dω

������ω=eV
+-
∑

i,n,k

����tnk,i

����
2
A

sample
i (ω)A

tip
nk
(ω) and thus

GSTM (V ) ≈ −4e2

~

∑

i,n,k

����tnk,i

����
2
A

tip
nk
(eV )A

sample
i (eV ) (H.13)

H.1.4 Photoemission spectroscopy (PES): ARPES and cPES

Photoemission spectroscopy (PES) is based on the photoelectric effect (discovered by Hertz in 1887 and
explained by Einstein in 1905 by invoking the quantum nature of light), i.e. the photon-induced creation
of electrical currents. PES consists in shining monochromatic light on the surface of a sample and then
measuring the energy and momentum of the outgoing electrons in a detector, as illustrated in Fig. H.4.
Depending on the incident photon energy ~ν , one probes the core-level structure (100 eV < ~v < 1000 eV for
“soft X-rays” [SXPS, Soft X-ray Photoemission Spectroscopy], ~ν > 1000 eV for X-rays [XPS]) or the valence
structure (5 eV < ~ν < 100 eV, ultraviolet light [ARPES, Angle-Resolved PES]) of the material. Thus, the
typical timescales range from the femtosecond for ARPES to attoseconds for XPS. Since the escape depth
of electrons from the solid is small (a few Angstroms), ARPES is a surface-sensitive probe (ARPES typically
probes states with a maximum depth of 5-10 ). It must be carried out in ultra-high vacuum conditions to keep
the surface clean of adsorbed contaminants. Current experimental precisions for ARPES reach ∆E ∼ 5−10meV
and ∆θ ∼ 0.1°. XPS has a far coarser angle resolution.

H.1.4.1 Microscopic derivation of the photocurrent

In the following, I sketch a simplified microscopic theory of PES based on the Keldysh formalism to put the
link between PES and the (interacting) spectral function A(k,iω) (introduced in Section 2.1) on a firm basis. I
drew inspiration from recent works on pump-probe ARPES experiments (Freericks et al. (2009); Braun et al.
(2015)). A similar derivation can also be found in Berthod (2012). More conventional ways of deriving the
photocurrent as well as a general introduction on ARPES can be found e.g. in Hüfner (1995); Damascelli
et al. (2003).

We model the sample and the probing field by the following Hamiltonians:
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H =
∑
n,k‖

εn,k‖c
†

n,k‖
cn,k‖ + Hint (H.14)

Hprobe,τ =
∑
nmk‖

Mn,m,k‖c
†

m,k′
‖

cn,k‖aqe
−iωqτ + h.c (H.15)

The first term in H , which we will call H0, denotes the non-interacting (or Kohn-Sham) Hamiltonian. c†n,k‖
creates a Bloch (or Kohn-Sham) state ϕk‖n (r) in band n with momentum k‖ (since ARPES is a surface probe,
only parallel momenta k‖ are concerned). The many-body eigenstates (resp. eigenvalues) of H are denoted
as |Ψi 〉 (resp. Ei). Hprobe,τ describes the coupling of the photon field of energy ~νq with matter (time subscripts
denote intrinsic time dependence, as opposed to the Heisenberg picture defined later with hats): the pho-
ton field, described by the operator aq, photoexcites low-energy electrons (n,k‖) into high-energy electrons
(m,k′

‖
), with k′

‖
= k‖ + q ≈ k‖ . The matrix elements are given by:1

Mn,m,k‖ =

〈
ϕk‖m

���� −
e

mec
Aq · p

����ϕk‖n

〉
(H.16)

Aq is the electromagnetic potential associated with the optical radiation, while p is the momentum operator,
p ≡ −i~∇. The matrix elements entail selection rules depending on the symmetries of the Bloch states.

The photon beam is switched on at time t0 (which will be sent to −∞). Neglecting detection noise, the
detector measures the photocurrent of outgoing electrons, Jd. After turning on the probe, the states of H
evolve as |Ψi (t )〉 = U (t0,t ) |Ψi 〉, where the evolution operator is defined asU (t0,t ) ≡ T exp(− i

~

´ t
t0

dτ (H+Hprobe)τ
(see Appendix I.2). The average photocurrent after turning on the probe is given by

〈Jd (t )〉 =
∑
i

pi 〈Ψi (t ) |Jd |Ψi (t )〉 (H.17)

where pi ≡ e−Ei /kBT /Z are the Boltzmann weights associated with H and Z is the partition function. As-
suming that the probing optical field is a small perturbation, and noting that the first-order term will
not contribute since the photon field has a vanishing expectation value, we have (see Appendix I.2.1)
U (t0,t ) ≈ −

i
~

´ t
t0

dτUH (t0,τ )Hprobe,τUH (τ ,t ) where UH is the evolution operator associated with H . Hence,

〈Jd (t )〉 =
1
~2

¨ t

t0
dτ1dτ2〈Ĥ

†

probe (τ1)Ĵd (t )Ĥprobe (τ2)〉H (H.18)

where for any operator O, 〈O〉H ≡
∑

n pn〈Ψn |O |Ψn〉, and hatted operators are written in the Heisenberg repre-
sentation Ô (t ) = UH (t0,t )OtUH (t ,t0).

If the energy of the excited electrons is higher than the work function of the solid, W 2 (namely if εm,k′
‖
− µ >

W ), they can acquire a z component, i.e. their wavevector becomes k′(m) = (k′
‖
,k ′z (m)) where kz is determined

by the energy conservation rule: εm,k′
‖
−µ = ~k ′2

2me
+W . Finally, these outgoing electrons form wave packets that

can in turn be detected by the detector. The wavepackets are described by the following creation operator:

c†keRd
=

∑
mk′

‖

ϕkeRd

(
k′(m)

)
c†mk′

‖

(H.19)

where ϕkeRd
(k′(m)) is the envelope of the wavepacket, peaked around ke . The photocurrent is given by

Jd = vec
†

keRd
ckeRd

(H.20)

1This comes from the replacement h0 =
p2

2me
by h0 (A) = 1

2me

(
p − e

c A
)2

in the presence of a magnetic field B such that ∇ × A = B.
Neglecting bi-photon processes, one obtains δh0 = −

e
me c A · p.

2The work function is the minimal energy to remove an electron inside the solid to a position just outside the solid
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with the velocity given by: ve = ~ke/me . Substituting Eqs (H.15-H.20) into (H.18) yields:

〈Jd (t )〉 =
ve
~2

¨ t

t0
dτ1dτ2

∑
n1m1k‖1

∑
n2m2k‖2

M∗n1,m1,k‖1
Mn2,m2,k‖2

∑
mk′

‖

ϕkeRd

(
k′(m)

) ∑
mk‖

ϕ∗keRd

(
k(m′)

)
ei~νq (τ1−τ2 )〈c†n1,k‖1

(τ1)cm1,k′‖1
(τ1)c

†

mk′
‖

(t )cm′k‖ (t )c
†

m2,k′‖2
(τ2)cn2,k‖2 (τ2)〉H

where we have used: 〈a†q (τ1)aq (τ2)〉H = 1.

Now, one can notice that in the three-body correlator of the second line, only the indices n1 and n2 refer to
low-lying states, whereas all other indices (m) refer to high-energy states, the photoelectrons, which can be
regarded as free electrons governed by H0 (this is the “one-step” or “sudden” approximation first introduced
by Pendry (1976)). Hence, we can approximate this three-body correlator as the product of three one-body
correlators:

〈c†n1,k‖1
(τ1)cn2,k‖2 (τ2)〉H

{
〈cm1,k′‖1

(τ1)c
†

mk′
‖

(t )〉H0〈cm′k‖ (t )c
†

m2,k′‖2
(τ2)〉H0

}
= 〈c†n1,k‖1

(τ1)cn2,k‖2 (τ2)〉H

{
δk′
‖1,k

′
‖
δm1me

−i (εn′−µ ) (τ1−t )δk′
‖2,k‖

δm2m′e
−i (εn−µ ) (t−τ2 )

}
(H.21)

as illustrated in Fig.H.4 (right panel), so that we obtain:

〈Jd (t )〉 =
ve
~2

¨ t

t0
dτ1dτ2

∑
n1n2

∑
mk′

‖

∑
m′k‖

M∗n1,m,k′
‖

Mn2,m′,k‖ϕkeRd

(
k′(m)

)
ϕ∗keRd

(
k(m′)

)
〈c†n1,k‖

(τ1)cn2,k‖ (τ2)〉H
{
ei~νq (τ1−τ2 )−i (εm−µ ) (τ1−t )−i (εm′−µ ) (t−τ2 )

}

Then, we neglect the spread of the wavepacket (ϕ∗keRd
(k) ≈ δk,ke , and hence m =m′ ≡ ne), yielding:

〈Jd (t )〉 = −i
ve
~2

ˆ t

t0
dτ1

ˆ t

t0
dτ2

∑
n1n2

M∗n1,ne ,ke ‖
Mν2,ne ,ke ‖G

<
n2,k‖,n1,k‖

(τ2,τ1)
{
eiω (τ1−τ2 )

}

where we have defined: εne−µ ≡ ~νq−~ω and the lesser Green’s functionG<
n2,k‖,n1,k‖

(τ2,τ1) ≡ i〈c†n1,k‖
(τ1)cn2,k‖ (τ2)〉H .

At equilibrium, G< (τ1,τ2) depends only on τ1 − τ2, and defining I = limt→∞ limt0→−∞
|〈Jd〉 |

t−t0
, one recognizes the

Fourier transform of G< , namely

I (ke ,ω) =
ke
~me

∑
n1n2

M∗n1,ne ,ke ‖
Mn2,ne ,ke ‖Aν2,ke ‖,ν1,ke ‖ (ω)nF (ω) (H.22)

where we used the relation −iG< (ω) = A(ω)nF (ω). A(ω) is the spectral function associated with the many-

body Hamiltonian H , and nF (ω) =
(
1 + eω/kBT

)−1
is the Fermi-Dirac distribution. In the case of a single-band

Hamiltonian H , one obtains:

I (k,ω) =
|k|
~me

���Mne ,k‖
���
2
A(k,ω)nF (ω) (H.23)

Expression (H.22) is the well-known relation between the spectral function A and the photocurrent I (k,ω)
in the one-step approximation of ARPES at equilibrium. There are three main ways of representing the
ARPES current I (k,ω): one can show Ik (ω) for several k points (the corresponding curves are called Energy
Distribution Curves (EDC’s)); one can plot a Iω (k) with k in the Brillouin zone (and usually ω = εF to show
the shape of the Fermi surface; such plots are called Momentum Distribution Curves (MDC’s) – an example
can be seen in Fig. 7.7 in the context of cuprate materials); one may also show a color plot in the ω vs. k
plane where the k’s follow paths of high symmetry in thr Brillouin zone (see e.g. Fig. 6.9).
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H.1.4.2 Core-level spectroscopy (cPES)

Core-level spectroscopy is a form of PES corresponding to photons in the X-ray range. It probes the core
electronic levels. It is sensitive to the chemical bonding of the core electrons. As such, it yields information
about the local electronic environment of atoms. Two atoms of a same species with different chemical
environment will yield a different cPES spectrum. This will be illustrated in section 6.3.1.1.

H.2 Bulk probes: neutron scattering, nuclear magnetic resonance, optics

As I did for surface systems, I give a succinct theoretical description of a selection of experimental probes used
to investigate the cuprate materials. Angle-resolved photoemission spectroscopy (ARPES) has already been
dealt with in section H.1.4. In this section, I explain three additional important probes: neutron scattering,
nuclear magnetic resonance (NMR) and optical measurements, with a focus on the observables they give
access to. This is not intended to be an exhaustive review of experimental probes: probes such a Raman
spectroscopy, consisting in inelastic scattering of light, are left out.

H.2.1 Neutron scattering

A standard reference on the subject is Squires (1997).

Neutron scattering experiments consist in shining a neutron beam with energy Ein and momentum kin onto
the sample and measuring the energy Eout ≡ Ein + ~ω and momentum kout ≡ kin + q of the outgoing neutrons.
As neutral particles, neutrons interact weakly with matter. Therefore, they have a long mean-free path
and are thus well-suited to probe the bulk properties of matter. Their wavelength is of the order of the
lattice spacing, making neutrons apt at studying the crystal structure by diffraction (this is elastic neutron
scattering). Moreover, thanks to their magnetic moment (neutrons are spin 1/2 particles), neutrons “see”
unpaired electron spins. The energy ranges (0.1 to 10 meV for “cold” neutrons, 5-100 meV for “thermal”
neutrons and 100-500 eV for “hot” or “epithermal” neutrons) match those of low-energy excitations such as
phonons (for instance, ωD (Cu) ∼ 30 meV) and spin waves (typically, J ∼ 100 meV). These energies are far
larger than the characteristic NMR energies, but in general lower than those probed by ARPES. The main
disadvantage of neutrons is the weakness of neutron sources whose corollaries are a low signal, and hence
the need for large samples.

The interaction of neutrons with matter is twofold, namely

1. A contact interaction between the neutron and the ionic core:

Hprobe,1 = д

˚
V
drψ †N (r)ψN (r)ρion (r) (H.24)

where д is the interaction strength, ψN (r) the neutron field operator and ρion (r) the density of ion
cores/nuclei. Using the Golden Rule (appendix I.2.3), one obtains the scattering rate:

Γ1 (q,ω) = 2д2 (1 + nB (ω)) Imχion (q,ω) (H.25)

where χion (q,ω) is the analytical continuation of χion (q,iω), the Fourier transform of the correlation
function: χion (r,τ ) = 〈T ρion (r,τ )ρion (0,0)〉. Since ρion (r) ≡

∑
R∈BL ρ

0
ion,R (r) + uR (r), where uR (r ) is the

displacement on the ion at site R, and considering the relation of uR to the phononic field ϕ (see Eq.
(I.39) in the context of the Fröhlich Hamiltonian), we have:

Imχion (q,ω) ∝ S (q)δω + ImD (q,ω) ∼ S (q)δω + δ (ω − ω̃q) (H.26)

where S (q) is the static pair correlation function, with peaks at the reciprocal lattice sites K (such that
eiK·R = 1), and D (q,ω) is the renormalized phonon propagator (with ω̃q the renormalized phonon
frequency).
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2. A magnetic interaction between the neutron’s magnetic moment MN = γN
~
2σN (γN = −1.91γn is the

neutron’s gyromagnetic factor3) and the internal magnetic field B(r):

Hprobe,2 =

˚
V
drψ †N (r)

(
γN

~

2
σN

)
ψN (r) · B(r)

The magnetic field is induced by the electrons’ spin magnetic moment me (r) = ψ † (r)
(
γe

~
2σ

)
ψ (r) via4 :

B(r) =
˚

V
dr′V(r − r′)me (r′) (H.31)

with V(r−r′) = −∇×∇ µ0
4π |r−r′ |×. Fourier transformed, this is V(q) = µ0q̂×q̂×, i.e. Vuv (q) = µ0 (δuv − q̂uq̂v )

(with q̂u ≡ q · eu/|q|). The projection operator P⊥uv = δuv − q̂uq̂v removes the component of the dipole
moment parallel to the field, e.g. Bx (qex ) = 0, By (qex ) = µ0my (qex ), Bz (qex ) = µ0mz (qex ), so that we
can note B(q) = µ0P⊥ (q̂)me (q) = µ0m⊥e (q) and eventually:

Hprobe,2 =
γNγe~

2

4︸   ︷︷   ︸
дm

ˆ
dq sN (q) · P⊥ (q̂)se (q) (H.32)

Using again the Golden Rule (Appendix I.2.3), one gets:

Γ2 (q,ω) = 2д2
m (1 + nB (ω)) Imχsp,⊥ (q,ω) (H.33)

where χsp,⊥ is the transverse spin correlation function: χsp,⊥ (q,τ ) ≡ 〈Ts⊥e (q,τ )se (−q,0)〉, for unpolarized
neutrons (i.e. I have overaged over σ2

N ).
3Recall: the magnetic moment M and the spin S are related by the gyromagnetic ratio γ :

M = γS (H.27)

The gyromagnetic ratio is given by
γ = д

q
2m

(H.28)

where д in the д-factor (called Landé factor for the electron), m the mass of the particle and q its charge. For a spin 1/2, S is related
to the Pauli matrices by

S =
~

2
σ

In particular, for the electron, дe ≈ −2, ie:

M = дe
−e

2me

~

2
σ =

e~
2me

σ

2
= µBσ

where we have defined the Bohr magneton:

µB ≡
e~

2me
(H.29)

4From Maxwell-Ampère law ∇ × B = µ0j (in the absence of electric field) and with a vector potential defined by ∇ × A = B, we have
the analog of Poisson’s law, −∆A = µ0j, which gives the following expression for the vector potential induced by a magnetic dipole M
(represented by a current loop C centered in r′ = r0, of surface S and current I such that M = I S):

A(r) =
µ0

4π

˛
C

I
|r − r′ |

dl(r′)

Now, using
¸
C
λdl =

˜
S

dS × ∇λ, one gets A(r) = µ0
4π
˜
S
IdS × ∇ 1

|r−r′ | . One now invokes the dipole approximation ( |r | � |r′ |) to
neglect the variations around r0 and obtain

A(r) =
µ0

4π
M(r0) × ∇

1
|r − r0 |

with M(r0) = IS, so that the magnetic field B induced by a magnetic moment M is given by the expression:

B(r) = −
µ0

4π
∇ × ∇

1
|r − r0 |

×M(r0)

The generalization for several magnetic dipoles follows:

B(r) = −
µ0

4π

˚
V
∇ × ∇

1
|r − r′ |

×m(r′) (H.30)

where m(r′) is now the magnetic dipole density.
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IB0

B⊥(t)

ω

B0

B⊥(t)

ω

Ri

SiLi
Sj

→ Bhf(i) Ri

Rj

Figure H.5: Sketch of NMR. Left: single nucleus with magnetic moment I in a magnetic field B0+B⊥ (t ). Right:
solid in a magnetic field. Li is the orbital moment at site Ri , Si the spin moment at site Ri . This generates an
overall magnetic field Bhf (i )

Thus, neutron scattering gives information about:

• the crystal structure of the sample (elastic scattering, first term of Eq. (H.26))

• the phonon dispersions (inelasic scattering, second term of Eq. (H.26))

• the spin correlation function (inelastic magnetic scattering, Eq. (H.33))

H.2.2 Nuclear Magnetic Resonance (NMR)

In this section, I shortly present nuclear magnetic resonance (NMR) experiments from a theoretical point of
view. A pedagogical introduction can be found in Alloul (2014) or Weller (2008). Standard textbooks include
Abragam (1961) and Slichter (1989).

A single nuclear spin I couples to an external magnetic field B0 via a Zeeman interaction term hZeeman =

−γn~I ·B0, where γn is the gyromagnetic ratio of the species (here a nucleus) (see left panel of Fig. H.5). This
term lifts the degeneracy of the nuclear states |I ,m〉 (m = −I , . . . I); the energy levels are : εm = −γn~mB0. If
a perturbative perpendicular field B⊥ (t ) rotating at frequency ω (and coupling to I via a Zeeman term h⊥) is
switched on, the Golden Rule gives the transition rate as a function of ω:

Γ(ω) =
2π
~

∑

m

pm
���〈I ,m′���h⊥���I ,m〉���2δ (ω − (εm′ − εm ))

Since the perpendicular field acts as a spin raising or lowering operator, the matrix element yields the simple
selection rule m′ = m ± 1, i.e. Γ(ω) has peaks at |ω | = γn~B0 ≡ ωL, a frequency called the Larmor frequency.
Alternatively, by keeping the magnetic field frequency ω fixed, Γ(B0) will be peaked at B0 =

ω
γ ~

. This phe-
nomenon is called nuclear magnetic resonance (NMR). It was first described by Rabi et al. (1937) for LiCl
molecules and generalized to solids by Bloch (1946) and Purcell et al. (1946), who benefited from advances
in the generation of radio-frequency fields coming from radars. As different atomic species have different gy-
romagnetic ratios, the peak positions in the absorption rate Γ(ω) are signatures of the chemical composition
of a material. This is used in magnetic resonance imaging (MRI) to map out the concentration of 1H atoms
in human tissues.

Nuclear spins are surrounded by electronic clouds (as illustrated in the right panel of Fig. H.5). With their
spin and orbital degrees of freedom Si and Li , electrons generate a magnetic field Bhf which couples to the
spin through the so-called hyperfine Hamiltonian, hhf, given by the following expression:

hhf = −γn~Ii · Bhf (i )
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Neglecting quadrupolar fields, the effective hyperfine magnetic field Bhf (i ) is the sum of the following three
contributions (see the right panel of Fig. H.5):

Bc (i ) = Vc (i )Si (H.34)

Borb (i ) = Vorb (i )Li (H.35)

Btrans (i ) =
∑
j

Vtrans (i − j )Sj (H.36)

which denote, respectively, a contact interaction between the electron spin and the nuclear spin, a contact
interaction between the electron orbital momentum and the nuclear spin and dipole-dipole (or transfered
hyperfine) interaction between the neighboring spins (at sites Rj) and the nuclear spin (see Eq. (H.31) and
note 4 for a derivation of Vtrans).

H.2.2.1 Knight shift

hhf plays the role of a perturbation to hZeeman. In first-order perturbation theory, this induces a shift 〈Bhf〉 of
the Zeeman energy levels εm defined above. In turn, this shift induces a shift in the resonance frequency:
∆ω = γn~〈Bhf〉. This effect was first discovered by Knight (1949) upon comparing the resonance frequencies
of Cu and CuCl. The Knight shift is defined as the dimensionless ratio:

K ≡
∆ω

ωL
(H.37)

In paramagnetic phases, the average spin is related to the external field by the static, q = 0 spin susceptibility
(B0 being uniform in space): 〈S(i )〉 =

∑
q〈S(q)〉 =

∑
q χ

spin
q,ω=0B0δq = χ

spin
q=0,ω=0B0. Thus, restricting the hyperfine

interaction to Bc only,

Kpm. =
γn~

ωL
Vc (i )χ

spin
q=0,ω=0B0 (i ) = Vc (i )χ

spin
q=0,ω=0 (H.38)

Thus, the Knight shift gives access to the static local spin susceptibility. In a non-interacting metal, χ spin
q=0,ω=0 =

µ2
Bχ0 (q = 0,ω = 0) ≡ χPauli where χ0 (q,ω) is Lindhard’s function (Eq. (I.43)) 5 and χPauli is the Pauli

susceptibility (see Appendix I.4.1.1 for details):

χPauli = µ
2
BN (εF) (H.39)

Thus, in paramagnetic phases, the Knight shift directly measures the density of states at the Fermi level. Any
depletion of N (εF) should be seen by NMR.

In constrast, the behavior of K in magnetically-ordered species, where 〈S(i )〉 ≡ S , 0 even for vanishing B0,
is:

Kmag. =
1
B0

VcS (H.40)

H.2.2.2 Spin-lattice relaxation rate 1/T1

After switching off the rotating field B⊥ (t ), in the absence of any environment, the nuclear spin would end-
lessly precess around B0 at the Larmor frequency ωL. In the presence of the electronic environment (described
here by hhf), however, the nuclear spin relaxes to thermal equilibrium with a rate given by the Golden Rule:

1
T1
=

2π
~

∑
m

pm
���〈I ,m

′���hhf
���I ,m〉

���
2
δ (ω − (εm′ − εm ))

5the µB factor comes from the fact that χ0 is defined as the correlation functions of dimensionless spins σ whereas χ spin is the
correlation function of the magnetization, ms = γeS = дe −e2me

~
2σ ≈ µBσ since дe ≈ −2.
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Here, note that only the perpendicular (spin flip) component of Bhf (hence of the electronic spin Si via e.g. Eq.
(H.34)) contributes to this rate (the parallel component does not mix states), so that as before, εm′ − εm = ωL,
and therefore: 6 1

T1
= 2π

~ γ
2
n~

2 |I|2
∑

qV (q)2〈S+ (q)S− (−q)〉ω=ωL , where V (q) is the Fourier transform of V (i − j ) ≡

Vc (i ) +Vtrans (i − j ). The sum over q comes from the fact that we are dealing with local observables. Using the

fluctuation-dissipation theorem (Eq. (I.7)), this yields, remembering that βωL � 1:

1
T1T

= −4π |I|2γ 2
n~

2
∑

q

V (q)2
Imχ⊥ (q,ωL)

ωL
(H.41)

If we take χ⊥ (q,ω) ≈ µ2
B χ0 (q,ω) and V (q) ≈ V , we obtain, after a few steps (detailed in Appendix I.4.1.3):

∑
q

Imχ0 (q,ω)
ω

= 2π
ˆ ∞
−∞

dϵN (ϵ )2
[
∂nF

∂ϵ

]
(H.42)

and hence:

1
T1T

= 8π2 |I|2V 2µ2
BkBγ

2
n~

2
ˆ ∞
−∞

dϵN (ϵ )2
[
−
∂nF

∂ϵ

]
(H.43)

H.2.2.3 Korringa relation (and limitations)

In the low temperature regime, Eq. (H.43) becomes:

1
T1T

= 8π2 |I|2V 2µ2
BkBγ

2
n~

2N (εF)
2

Putting this result together with Eq. (H.38), we see that the product K2T1T is a constant (this is Korringa’s
relation):

K2T1T =

[
Vcµ

2
BN (εF)

]2

8π2 |I|2V 2µ2
BkBN (εF)2γ

2
n~2
=

µ2
B

8π2kB |I|2γ 2
n~2
= const. ≡ S (H.44)

This relation breaks down when going away from this simple limit. For instance:

• in unconventional superconductors with lines of nodes on the gap, N (ε ) ∝ ε (see e.g. section III.A.1 of
Sigrist and Ueda (1991)), so that using Eq. (H.43), we obtain

1
T1T

∝

ˆ ∞
−∞

dε ε2
[
−
∂nF

∂ε

]
∝ (kBT )

2

so that S ∝ T −2

• close to ferromagnetic instabilities, χ⊥ (q,ω = 0) is enhanced at q = 0, while
∑

q χ⊥ (q,ω = 0) is not, to
that K is more enhanced than 1/T1T : ∆S > 0

• close to antiferromagnetic instabilities, χ⊥ (q,ω = 0) is enhanced at q = qAF, so that
∑

q χ⊥ (q,ω = 0) is
more enhanced than χ⊥ (q = 0,ω = 0): ∆S < 0

• if transferred hyperfine fields (Btrans) are taken into account, namely if the q dependence of V is rein-
stated, new T -dependences appear in 1/T1T . For instance, this can lead to different 1/T1T ratios for the
copper and the oxygen in cuprate materials (see e.g. Mila and Rice (1989); Shastry (1989))

6I have (a) neglected the orbital field, (b) used the fact that βωL � 1 to simplify pm ≈ 1/Z : indeed e.g. ωL ≈ 80 MHz ≈ 60 mK for
63Cu at 7 Tesla, and (c) neglected the anisotropic, i.e. nondiagonal character of V .
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H.2.2.4 Summary

For all practical purposes, one can remember that

the Knight shift and the spin-lattice relaxation give access to the following observables:

K ∝ χ
sp
⊥ (q = 0,ω = 0) (H.45)

1
T1T

∝ lim
ω→0

∑
q

Imχ
sp
⊥ (q,ω)
ω

(H.46)

In the last equation, I have replaced ωL by limω→0 since Larmor frequencies are very small compared with
the other energy scales (for the 63Cu example above, ωL = 0.5 µeV). Thus, NMR essentially gives information
about the static (ω = 0) spin susceptibility, either uniform (or q → 0, in the Knight shift) or local (in the
spin-lattice relaxation rate).

H.2.3 Optical measurements

A pedagogical introduction to the optical response of correlated solids can be found in Millis (2004), or in
Chapter 9 of Avella and Mancini (2012), or in Tomczak (2007), with a focus on DMFT. A review on the topic
can be found in Basov and Timusk (2005) (cuprates) or Basov et al. (2011) (correlated electrons). A general
textbook is Dressel and Gruener (2002).

Optical experiments usually measure the reflection R (ω) and transmission T (ω) intensity of solids exposed to
light, a wave with energy ~ω and momentum q (some more sophisticated probes also measure the phases).
One can take the q→ 0 limit: the two relevant lengthscales – the optical wavelength λoptics (a few hundreds
of nanometers for visible light) and the penetration or skin depth (coming from the diffusion equation obeyed
by the electromagnetic field in the material7, δ ∝

√
1/(µ0σω), of the order of 100 nm for visible light (for

copper)) – are much larger than the lattice spacing a. The (complex) transverse8 dielectric function ϵ⊥ (ω)

and the transverse conductivity σ⊥ (ϵ⊥ = ϵ0+
i
ω σ⊥) are extracted from R (ω) or T (ω) (for instance, ϵ⊥ is related

to R by R =
����
√
ϵ⊥−1
√
ϵ⊥+1

����
2
). Thus, the main observable of optical probes is the conductivity.

The conductivity tensor σ (q,ω) gives the electrical current response je (r,t ) = −e〈j(r,t )〉 (j is the current of
electrons; je is formally defined as je = − c

V
δH
δA ) to an external electromagnetic field Eext (r,t ) = −∇ϕext (r,t ) −

∂tAext (r,t ) (this is Ohm’s law):
je (q,ω) = σ (q,ω)Eext (q,ω) (H.47)

Let us now compute σ . The perturbation corresponding to the electromagnetic field is given by the Hamil-
tonian Hprobe (t ) = −e

˝
V drρ (r)ϕext (r,t ) + e

˝
V drj(r) · Aext (r,t ). In a gauge where ϕext = 0, this simplifies

to:
Hprobe (ω) =

e

i~ω

˚
V
drj(r) · Eext (r,t )

One is interested in electron current response, δ〈j〉 to this perturbation. The current can be split in the
paramagnetic (≡ c

V
δH
δA

���A=0
) and diamagnetic terms (see e.g. Bruus and Flensberg (2004), chapter 1): j =

jp + e
me

Aext (r)ρ (r). Within linear response, one can drop high order terms in the perturbation term, yielding

7Using Maxwell equations and Ohm’s law (Eq. (H.47), one finds that the magnetic field obeys the diffusion equation D∆B = ∂tB,
with the diffusion coefficient D ≡ µ0σ . The characteristic diffusion lengthscale found by dimensional analysis is δ ∼ 1/

√
Dω .

8The electromagnetic field is transverse to the wave propagation, hence the optical response is given by the transverse conductivity:
j =

(
σ⊥P ⊥ + σ‖

(
1 − P ⊥

))
E = σ⊥E, with

[
P ⊥

]
uv ≡ δuv − q̂u q̂v ). In the limit of q→ 0, σ⊥ = σ‖ .
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Hprobe (ω) =
e

i~ω

˝
V drjp (r) · Eext (r,t ) +O (A2

ext). Thus,

je = −e〈j〉 = −e〈jp〉 −
e2

m
Aext (r)〈ρ (r)〉 = −eδ〈jp〉 −

e2n(r)
i~ωme

Eext (r) (H.48)

where n(r) ≡ 〈ρ (r)〉 and I used 〈jp〉 = δ〈jp〉 since there is no paramagnetic current in the absence of perturbing
field. Next, I use Kubo’s formula to compute δ〈jp〉 in response to Hext:

δ〈jp〉(ω) = χ
jpjp

(q = 0,ω)
{ e

i~ω
Eext (q = 0,ω)

}
with χ

α β
jpjp

(r,r′,t ,t ′) = −iθ (t − t ′)〈
[
jαp (r,t ), j

β
p (r′,t ′)

]
〉H . Putting this together with Eq. (H.48), one finds the

Ohm’s law (Eq. (H.47)) with

σα β (r,r′,ω) =
e2

~ω

ˆ ∞
0

dteiωt 〈
[
jαp (r,t ), j

β
p (r
′,t ′)

]
〉H︸                                           ︷︷                                           ︸

≡σ α βr

+
ie2n(r)
~ωme

δ (r − r′)δα β︸                    ︷︷                    ︸
≡σ α βd

, α ,β = x ,y,z (H.49)

Assuming that (a) due to scattering processes, j(q,t ) relaxes to equilibrium with the characteristic time τ

(jp (t ) ≈ jp (0)e−t/τ ), (b) q is small (j ≈
∑

i pi/me , with pi the momentum of particle i) and (c) the electrons are
free (pi =mevi = ~ki), one recovers the Drude formula from the “regular” contribution: 9

σDrude
r (ω) =

ne2τ

me

1
1 − iωτ

≡
e2D

γ − iω
(H.50)

where n is the density of electrons in the conduction band. In the second equality, I have defined the scattering
rate γ ≡ 1/τ and “Drude weight” D ≡ n/me . Both a suppression of carrier density and an enhancement of the
effective mass – two characteristics of the Mott transition – will be impact the Drude weight D. More general
parametrizations (extended Drude formulae) have been introduced to capture behaviors beyond the Drude
assumptions. I give here two often used notations:

σ gen. Drude (ω) =
e2D

γ (ω) − i [1 + λ(ω)]ω+
=

ω2
P

1/τ (ω) − iωm∗ (ω)

where λ(ω) is called “mass enhancement function”,m∗ (ω) the “optical mass”, γ (ω) the “optical scattering rate”
and τ (ω) the (generalized) scattering rate; ωP is the plasmon frequency). Indeed, the assumptions presiding
to the derivation of the Drude formula are not valid for correlated systems, where the optical spectrum has
additional structures. If the material is modelled by a single-band Hubbard model, the one-particle spectrum
A(ω) has incoherent features, the Hubbard bands, as illustrated in Fig. H.6. In the corresponding optical
conductivity Reσ (ω), three structures are visible: a Drude peak at low energies, a peak around U /2 (which
has been argued to correspond to the experimental “mid-infrared” (MIR) peaks owing to its energy scale)
corresponding to transitions between either Hubbard band and the quasiparticle peak, and a broad peak
around U (corresponding to inter-Hubbard band transitions). In the Mott insulator, only the latter peak
survives.

More generally, optical spectra are essentially made up of a Drude peak (for metals only) and peaks lo-
cated at interband transitions. In addition to the incoherent features coming e.g. from Hubbard bands,

9Indeed, under assumptions (a-b-c):

σr (ω ) =
e2

~ω

ˆ ∞
0

dte iωt−t /τ 〈j2〉H =
1

1 − iωτ
e2τ
me

Z−1 ∑
ikk′

���〈k |pi |k
′〉

���
2

~meω

where we used 〈j2〉H = 1
m2
e
Z−1 ∑

ikk′
���〈k |pi |k

′〉
���
2
= n

m2
e

(mv )2

2 = N
2 ~

2k2 and ~ω = ~2k2/2me . See e.g. Dressel and Gruener (2002)

for more details.
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(a) (b)

(c) (d)

Figure H.6: (a) Top panels: generic one-particle spectra ρ (ω) (or A(ω)) (left: correlated meta; right: Mott
insulator). Bottom: corresponding optical spectra σ (ω) (from Rozenberg et al. (1995)). (b) Characteristic
energy scales in high-Tc superconductors (from Basov and Timusk (2005)). (c) Optical spectrum for 3 values
of U within DMFT applied to the single-band Hubbard model (d) Same as (c) for dopings δ = 0.068 to 0.45
(solid lines δ < 0.25, dashed lines δ > 0.25) (from Basov et al. (2011))

the current-current correlation function has information about the collective modes in the solid. Indeed,
its structure is close to that of the charge-charge correlation function of the solid. This can be seen by
looking at its Lehmann representation, or by the following off-handed estimate for a single-band, tight-
binding model: there, via the so-called Peierls substitution, the current is given in terms of creation and
annihilation operators by: jα (τ ) = 1/2

∑

kσ v
α
k
c†

k,σ
(τ )ck,σ (τ ) (with vk the group velocity, vα

k
=

1
~

∂ε (k)
∂kα

), so that

〈T jαq (τ )j
β
−q (0)〉 = 1/4

∑

k,k′,σ ,σ ′ v
α
k
v
β

k′
〈c†

kσ
(τ )ckσ (τ )c

†
k′σ ′

(0)ck′σ ′ (0)〉. Hence, neglecting the momentum depen-

dence of vk, 〈T jαq (τ )j
β
−q (0)〉 ∝ vαvβ χcharge (q = 0,τ ). Thus, optical measurements will see plasmon excita-

tions10 – which is especially obvious by looking at the reflectivity R (ω), which, in simple metals, drops at the
plasmon frequency, explaining the color of aluminum or gold.

The phenomena accessible by optical probes are summarized in the right panel of Fig. H.6. As one can see,
optical probes cover a large range of energy scales, from the superconducting gap ∆BCS (in the THz range) to
the charge-transfer energy (in the visible/UV range).

10The relation between χcharge and the plasmon energy is discussed in Section H.1.2.2



I
Reminder on many-body theory

The purpose of this chapter is mainly pedagogical. It introduces most of the background elements needed to
understand the main text. Most of the material of this part can be found in scattered form in several good
textbooks or lecture notes such as Coleman (2011), Berthod (2012), or Bruus and Flensberg (2004), or the
references cited in the individual chapters.

I.1 Correlation functions: general properties

I.1.1 Linear response

I.1.1.1 Derivation in real time (Kubo formula)

For any operatorO, 〈B (t )〉H+Hprobe = 〈Ψ0
���U (t0t )BU (tt0)

���Ψ0〉. We expand the evolution operator using Eq. (I.17):

〈B (t )〉H+Hprobe = 〈Ψ0
���BH (t ) −

i

~

ˆ t0

t
dτUH (t0τ )Hprobe (τ )UH (τ t )BUH (tt0) −

i

~

ˆ t

t0
dτUH (t0t )B

[
U (tτ )Hprobe (τ )UH (τ t0)

] ���Ψ0〉

= 〈Ψ0
���BH (t ) +

i

~

ˆ t

t0
dτ UH (t0τ )Hprobe (τ )UH (τ t0)︸                           ︷︷                           ︸

Ĥprobe (τ )

UH (t0t )BU (tt0)︸              ︷︷              ︸
B̂ (t )

−
i

~

ˆ t0

t
dτ UH (t0t )BU (tt0)︸              ︷︷              ︸

B̂ (t )

U (t0τ )Hprobe (τ )UH (τ t0)︸                          ︷︷                          ︸
Ĥprobe (τ )

���Ψ0〉

= 〈B (t )〉H −
i

~

ˆ t

t0
〈[B̂ (t ),Ĥprobe (τ )]〉Hdτ︸                                  ︷︷                                  ︸

≡δ 〈B (t )〉

If, furthermore, one decomposes Hprobe as Hprobe (t ) = A(t )h(t ), then δ〈B (t )〉 = −
´ t
t0

i
~ 〈[B (t ),A(t

′)]〉Hh(t ′)dt ′, i.e

δ〈B (t )〉 =

ˆ t

t0
χBA (t ,t

′)h(t ′)e−η (t−t
′)dt ′ (I.1)

with

χBA (t ,t
′) = −

i

~
θ (t − t ′)〈[B (t ),A(t ′)]〉H (I.2)

χBA (t ,t
′) is called the (linear) response function. This formula is called the Kubo formula.
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I.1.1.2 Spectral representations

I.1.1.2.1 Response function χBA (ω) Introducing a complete set of states,

χBA (t ,t
′) = −

i

~
θ (t − t ′)Z−1

∑
i j

e−βEi
(
〈Ψi

���B (t )
���Ψj 〉〈Ψj

���A(t
′)���Ψj 〉 − 〈Ψi

���A(t
′)���Ψj 〉〈Ψj

���B (t )
���Ψj 〉

)
= −

i

~
θ (t − t ′)Z−1

∑
i j

(
e−βEi e−(t−t

′) (Ej−Ei )〈Ψi
���B

���Ψj 〉〈Ψj
���A

���Ψi 〉 − e
−βEi e−(t

′−t ) (Ej−Ei )〈Ψi
���A

���Ψj 〉〈Ψj
���B

���Ψj 〉
)

= −
i

~
Z−1

∑
i j

(
e−βEi − e−βEj

)
θ (t − t ′)e−(t−t

′) (Ej−Ei )〈Ψi
���B

���Ψj 〉〈Ψj
���A

���Ψi 〉

One can then notice χBA (t ,t
′) = χBA (t − t

′) and thus perform the Fourier transform:

χBA (ω) =

ˆ ∞
−∞

dtei (ω−iη)t χBA (t )

= −
1
~
Z−1

∑
i j

e−βEj − e−βEi

ω − iη −
(
Ej − Ei

) 〈Ψi ���B���Ψj 〉〈Ψj
���A

���Ψi 〉 (I.3)

We have used the identity:
´ ∞
−∞

ei (ω−iη)tθ (t ) = i
ω−iη . Now, Using Dirac’s relation Im 1

ω−iη = πδ (ω), we can
notice:

ImχBA (ω) = −
π

~
Z−1

∑
i j

(
e−βEj − e−βEi

)
δ

(
ω + iη −

(
Ej − Ei

))
〈Ψi

���B
���Ψj 〉〈Ψj

���A
���Ψi 〉

=
π

~
Z−1 (1 − e−βω )

∑
i j

e−βEiδ
(
ω + iη −

(
Ej − Ei

))
〈Ψi

���B
���Ψj 〉〈Ψj

���A
���Ψi 〉 (I.4)

I.1.1.2.2 Imaginary-time correlation function χBA (iω) (Lehmann representation) Let us define the
imaginary-time correlation function

χBA (τ ) ≡ −〈TB (τ )A(0)〉

Then χBA (τ ) = −
1
Z

∑
i j e
−βEi+τ Ei 〈Ψi

���B
���Ψj 〉e

−τ Ej 〈Ψj
���A

���Ψi 〉 and hence

χBA (iω) = −
1
Z

∑
i j

e−βEi
ˆ β

0
dτeτ (iω+Ei−Ej )〈Ψi

���B
���Ψj 〉〈Ψj

���A
���Ψi 〉

= −
1
Z

∑
i j

e−βEj − e−βEi

iω − (Ej − Ei )
〈Ψi

���B
���Ψj 〉〈Ψj

���A
���Ψi 〉 (I.5)

I.1.1.2.3 Analytical continuation χBA (z) Comparing Eq.(I.3) and (I.5), we introduce the analytical con-
tinuation of χBA (iω) to the complex plane, χBA (z):

χBA (z) ≡ −
1
Z

∑
i j

e−βEj − e−βEi

z − (Ej − Ei )
〈Ψi

���B
���Ψj 〉〈Ψj

���A
���Ψi 〉
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I.1.1.2.4 Correlation function SBA (ω) and fluctuation-dissipation theorem We define the correlation
function:

SBA (t ,t
′) ≡ 〈B (t )A(t ′)〉

= Z−1
∑
i j

e−βEi 〈Ψi
���B (t )

���Ψj 〉〈Ψj
���A(t

′)���Ψi 〉

= Z−1
∑
i j

e−βEi+(Ei−Ej ) (t−t
′)
〈Ψi

���B
���Ψj 〉〈Ψj

���A
���Ψi 〉

where Ψi denotes an eigenstate of H with energy Ei . The Fourier transform is, using
´ ∞
−∞

dt ei (ω−E )t = 2πδ (E −
ω),

SBA (ω) =

ˆ ∞
−∞

eiωtSBA (t − t
′)

= 2πZ−1
∑
i j

e−βEiδ (Ej − Ei − ω)〈Ψi
���B

���Ψj 〉〈Ψj
���A

���Ψi 〉 (I.6)

Comparing with (I.4), we obtain the relation:

SBA (ω) =
2~

1 − e−βω
ImχBA (ω) = 2~(1 + nB (ω))ImχBA (ω) (I.7)

It links the fluctuation SBA to the dissipation ImχBA. It is referred to as the fluctuation-dissipation theorem.

I.1.1.2.5 Frequency domain In the frequency domain, the time convolution (Eq.(I.1)) becomes a product
(with t → ∞ and t0 → −∞):

δ〈B (ω)〉 = χBA (ω)h(ω) (I.8)

I.1.2 Analyticity and causality: Kramers-Kronig relations and Matsubara sums

I.1.2.1 Cauchy’s residue theorem

For any meromorphic function f (z),

˛
C

dz

2πi
f (z) =

∑
polesα ∈C

Res( f ,α )γ (α ) (I.9)

where C is a closed contour in the complex plane, Res( f ,α ) is the residue of f at pole α , and γ (α ) the winding
number of the pole.

I.1.2.2 Equivalence between causality and analyticity in the upper half-plane

Let χ (z) be function analytical in the upper half plane, namely with no poles in the upper half plane. Cauchy’s
residue theorem (Eq. I.9) applied to χ (z)e−izt on a closed contour in the upper half plane, C+ (shown in Fig
I.1) implies:

IC+ ≡

ˆ
C+

dz

2πi
χ (z)e−izt = 0

C+ has two portions C+ = C+1 + C
+
2 , which we use to split the integral:

IC+ = IC+1 + IC
+
2

=

ˆ ∞
−∞

dω

2πi
χ (ω)e−iωt +

ˆ
C+2

dz

2πi
χ (z)e−izt
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C+

C+
1

C+
2

−∞ +∞

Figure I.1: Contours in the imaginary plane. The crosses denote poles.

If we suppose t < 0, since Im(z) > 0 on C+2 , the integrand of the first term decays quickly in absolute value:
|χ (z)e−izt | = |χ (z) |eIm(z )t −−−−−→

|z |→∞
0, which implies that IC+2 → 0 when we send to radius of C+2 to infinity. Thus,

ˆ ∞

−∞

dω

2π
χ (ω)e−iωt = 0 for t < 0

The left-hand side χ (t ), ie we have proven that analyticity in the upper half plane is equivalent to

∀t < 0, χ (t ) = 0

which is the definition of causality: for given perturbation at t = 0, the response function is non-zero only for
subsequent (ie positive) times.

I.1.2.3 Spectral representation

Let χ (z) denote a causal response function. Cauchy’s residue theorem allows us to write, for any z̄ in the
lower half plane:

JC+ ≡
ˆ

C+

dz

2πi
χ (z)

z − z̄ = 0

since χ (z )
z−z̄ has no pole in C+. The left-hand side can be decomposed on C+1 and C+2 ,

JC+ =
1

2πi

ˆ ∞

−∞
dω

χ (ω)

ω − z̄ +
ˆ

C+2

dz

2πi
χ (z)

z − z̄ ≡ JC
+

1
+ JC+2

For the same reasons as in the previous subsection, JC+2 vanishes when the radius of C+2 is sent to infinity.
Hence,

∀z̄ ∈ iR−, 0 =

1
2πi

ˆ ∞

−∞
dω

χ (ω)

ω − z̄
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I.1.2.4 Kramers-Kronig relations

We use the previous identity for a z̄ given by z̄ = ω − iη: 0 =
´ ∞
−∞

dω̄
χ (ω̄ )

ω̄−(ω−iη) and let η → 0, using

limη→0
1

ω−ω−iη = P
1

ω−ω + iπδ (ω − ω):

0 = P
ˆ ∞
−∞

dω̄
χ (ω̄)

ω̄ − ω
− iπ χ (ω)

i.e

χ (ω) =
1
iπ

ˆ ∞
−∞

dω̄
χ (ω̄)

ω̄ − ω

Identifying the real and imaginary parts yields the Kramers-Kronig relations:

χ ′(ω) = P

ˆ ∞
−∞

dω̄

π

χ ′′(ω̄)

ω̄ − ω

χ ′′(ω) = −P

ˆ ∞
−∞

dω̄

π

χ ′(ω̄)

ω̄ − ω
(I.10)

where P denotes the Cauchy principal value.

I.1.2.5 Matsubara sums

I.1.2.5.1 Fermionic sums

Derivation We want to compute
IF =

∑
n

ϕ (iωn )

where iωn is a fermionic Matsubara frequency.

Let us suppose that ϕ (z) decays faster than 1/|z | for Re(z) → +∞. In this case, let us define the function
д(z) ≡ nF (−z)ϕ (z). This function decays faster than 1/|z | both when Re(z) → +∞ and when Re(z) → −∞,
hence, if we use a circular contour around the origin and send its radius to infinity, appealing to Jordan’s
lemma yields: ˛

C

nF (−z)ϕ (z) = 0

Now, using Cauchy’s residue theorem, since nF (−z) has poles at iωn with residue γ= limϵ→0 ϵnF (iω + ϵ ) =
ϵ

−e−βϵ+1 = 1/β , we reexpress the right-hand side of the preceding equation:

∑
n

ϕ (iωn )
{
1/β

}
+

∑
polesα

Res(ϕ,α )nF (−α ) = 0

i.e. we have

1
β

∑
n

ϕ (iωn ) = −
∑

polesα
Res(ϕ,α )nF (−α )

If ϕ (z) decays faster than 1/|z | for Re(z) → −∞, we use д(z) ≡ nF (z)ϕ (z) and the fact that nF (z) has poles at
iωn with residue γ= limϵ→0 ϵnF (iω + ϵ ) =

ϵ
−eβϵ+1 = −1/β , to get:

1
β

∑
n

ϕ (iωn ) =
∑

polesα
Res(ϕ,α )nF (α )
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Application 1: filling Suppose we want to compute the filling of a Green’s function G (iω) = 1/(iω − ε ).
Then,

n = G (0−) =
1
β

∑
n

e−iωn0− 1
iω − ε

In this case, ϕ (z) = ezη
z−ϵ (with an infinitesimal η > 0) decays fast for negative z, hence

n = nF (ε )

Application 2: relation between A(ω) and G (τ ) Let us write the spectral representation of G (iω):

G (iω) =

ˆ ∞
−∞

dω
A(ω)

iω − ω

Hence, for τ > 0, Fourier transforming yields

G (τ ) =

ˆ ∞
−∞

dωA(ω)
1
β

∑
n

e−iωnτ

iωn − ω

In this case, ϕ (z) = e−zτ
z−ω decays fast for positive z, hence

G (τ ) = −

ˆ ∞
−∞

dωA(ω)
e−ωτ

e−βω + 1
(I.11)

One can rewrite this expression as

G (τ ) = −

ˆ ∞
−∞

dωA(ω)
e−

( β
2 −τ

)
ω

2 cosh
( βω

2

)
At τ = β/2, in the low-temperature limit, the term 1/ cosh (βω/2) selects frequencies around β/2 (

´ ∞
−∞

dx
π

1
cosh(x ) =

1 and hence, 1
π cosh(x ) ≈ δ (x )). Changing variables, one obtains G

(
τ =

β
2

)
= − πβ

´ ∞
−∞

dx
A(2x/β )
π cosh(x ) and finally:

−
β

π
G

(
τ =

β

2

)
≈ A(ω = 0) (β → ∞) (I.12)

I.1.3 Lehmann representations

I.1.3.1 Single-particle Green’s function

Defining
Gα β (τ ) ≡ −〈Tcα (τ )c

†

β (0)〉

One has:

Gα β (ω) = −
1
Z

∑
i j

(
e−βEi + e−βEj

)
〈Ψi

���cα |Ψj 〉〈Ψj
���c
†

β |Ψi 〉

Ej − Ei − ω
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I.1.3.2 Two-point correlation function

I.1.3.3 Three-point correlation

Using the identity
´ β

0

´ β
0 dt1dt2T f1 (t1) f2 (t2) =

´ β
0

´ t1
0 dt1dt2

∑
p∈S2 σ (p) fp1 (t1) fp2 (t2), we can write, using the

definition of χ̃ (Eq. C.2) and of its Fourier transform (Eq. B.1b)

ˆ̃χ123 (iω1,iω2) ≡
∑
p∈S2

ˆ β

0
dτ
ˆ τ

0
dτ ′σ (p)〈Op1 (τ )Op2 (τ

′)n3 (0)〉eiωp1τ eiωp2τ ′

=
1
Z

∑
i jk

∑
p∈S2

σ (p)〈i |Op1 |j〉〈j |Op2 |k〉〈k |n3 |i〉fi jk (ωp1,ωp2) (I.13)

with O1 = c
†

1 and O2 = c2, and:

fi jk (ω1,ω2)

= e−βϵi
ˆ β

0
dτeτ (iω1+ϵi−ϵj )

ˆ τ

0
dτ ′eτ

′ (iω2+ϵj−ϵk )

= e−βϵi
ˆ β

0
dτeτ (iω1+ϵi−ϵj ) e

τ (iω2+ϵj−ϵk ) − 1
iω2 + ϵj − ϵk

=
e−βϵi

iω2 + ϵj − ϵk

ˆ β

0
dτ

(
eτ (iω1+iω2+ϵi−ϵk ) − eτ (iω1+ϵi−ϵj )

)
=

e−βϵi

iω2 + ϵj − ϵk
*
,

eβ (iω1+iω2+ϵi−ϵk ) − 1
iω1 + iω2 + ϵi − ϵk

(1 − δik ) −
eβ (iω1+ϵi−ϵj ) − 1
iω1 + ϵi − ϵj

+
-
+

e−βϵi

iω2 + ϵj − ϵi
βδiω1+iω2δik

=
1

iω2 + ϵj − ϵk
*
,

e−βϵk − e−βϵi

iω1 + iω2 + ϵi − ϵk
(1 − δik ) +

e−βϵj + e−βϵi

iω1 + ϵi − ϵj
+
-
+

e−βϵi

iω2 + ϵj − ϵi
βδiω1+iω2δik

We have used the fact that both iω1 and iω2 are fermionic Matsubara frequencies (eβ iω1 = −1).

I.2 Time-dependent perturbation theory: the Golden Rule

This chapter is used to derive the results experimental probes in part H.

Let us consider a time-independent many-body Hamiltonian H with (orthonormal) eigenstates |Ψn〉 and
eigenvalues En , subject to a time-dependent perturbation Hprobe (t ) for times t > t0, i.e. the total Hamil-
tonian is

Htot = H + Hprobe (t ) (I.14)

The time evolution of wavefunctions is given by the expression

|Ψ(t )〉 = U (tt0) |Ψ(t0)〉

where the unitary time evolution operator is

U (tt0) ≡ T exp
(
−
i

~

ˆ t

t0
Htot (τ )dτ

)
(I.15)

whereT is the time-ordering operator. In particular, the unperturbed evolution operator simplifies toUH (tt0) =

e−iH (t−t0 )/~. We define the Heisenberg representation of operators as follows:

Ô (t ) ≡ UH (t0t )OtUH (tt0) = e
i
~H (t−t0 )Ote

− i~H (t−t0 ) (I.16)
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Figure I.2: Squared sinc function.

I.2.1 Evolution operator

Let us define S (tt0) ≡ UH (t0t )U (tt0). Then,

dS (tt0)

dt
=

(

UH (t0t )

[
+

i

~
H

])
U (tt0) +UH (t0t )

(

− i
~

(

H + Hprobe (t )
)

U (t0t )

)

= − i
~
UH (t0t )Hprobe (t )U (tt0)

Integrating yields S (tt0) = 1 − i
~

´ t

t0
UH (t0τ )Hprobe (τ )U (τt0)dτ and finally the exact result:

U (tt0) = UH (tt0)S (tt0) = UH (tt0) −
i

~

ˆ t

t0

U (tτ )Hprobe (τ )UH (τt0)dτ (I.17)

I.2.2 Fermi’s Golden Rule

Let us suppose that Hprobe is a monochromatic excitation, Hprobe (t ) = Hprobee
−iωt . Since the states evolve as

|Ψn (t )〉 = U (t0,t ) |Ψn (t0)〉, the probability of transition between a state m at time t0 and a state n at time t is
given by:

Pm→n (ω) = |〈Ψn (t ) |Ψm (t0)〉|2 =
����
〈

Ψn
����U (t0,t )

����Ψm
〉����

2

Approximating Eq. (I.17) to first order in Hprobe, we have:

〈

Ψn
����U (t0,t )

����Ψm
〉

= e−iEm (t−t0 )/~
〈

Ψn
����Ψm

〉

− i

~

ˆ t

t0

dτe−iEn (τ−t0 )/~−iωτ /−iEm (t−τ )/~〈Ψn
����Hprobe

����Ψm
〉

= − i
~
eiEn t0/~−iEm t/~

ˆ t

t0

dτe−iτ (En−Em+~ω )/~
〈

Ψn
����Hprobe

����Ψm
〉

Using
´ t

t0
e−iτ E/~dt = e−it0E/~−e−it E/~

iE/~
= −e−i E2~ (t+t0 ) (t − t0) sinc

[
t−t0
2~ E

]
, we obtain the transition rate between

statem and state n:

Γm→n (ω) ≡ lim
t→∞

Pm→n (ω)

t − t0
=

1
~2

������
〈

Ψn
����Hprobe

����Ψm
〉

������
2

(t − t0) sinc2
[
t − t0

2~
(En − Em + ~ω)

]

Using the property lima→∞
a
π
· sinc2 (ax ) = δ (x ) (see Fig. I.2), we obtain Fermi’s Golden Rule:

Γm→n (ω) =
2π
~

������
〈

Ψn
����Hprobe

����Ψm
〉

������
2

δ (En − Em + ~ω) (I.18)

This formula holds under the assumptions:

• long times (t → ∞)
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Figure I.3: Scattering diagrams. Left: Diagrammatic representation of Hprobe. Right: Simplest self-energy
diagram.

• weak perturbation (Hprobe � H)

The total transition rate is:

Γ(ω) = Z−1
∑
mn

e−βEn Γm→n (ω) =
2π
~

1
Z

∑
n

e−βEn
������

〈
Ψn

����Hprobe
����Ψm

〉������

2

δ (En − Em + ~ω)

Comparing this expression to the structure factor SBA (ω), one obtains:

Γ(ω) =
1
~
SHprobe,Hprobe (ω) = 2(1 + nB (ω))ImχHprobe,Hprobe (ω) (I.19)

The second equality comes from the fluctuation dissipation theorem (Eq. (I.7)).

I.2.3 Application: scattering

Hprobe (q) ≡ д
˚

V
drρext,q (r)O (r) (I.20)

where ρext (r) is the density of the scattering particle, and O (r) the observable to which it couples . Then,〈
Ψn

����Hprobe
����Ψm

〉
= д

˚
V
drρext,q (r)

〈
Ψn

���O (r)���Ψm
〉
= д

∑
k

˚
V
dre−ik·rρext,q (r)︸                      ︷︷                      ︸
≡ρext,q (k)

〈
Ψn

���O (k)���Ψm
〉

So that
����
〈
Ψn

����Hprobe
����Ψm

〉����
2
= д2

∑
k,k′

ρext,q (k)ρext,q (−k′)
〈
Ψn

���O (k)���Ψm
〉〈
Ψm

���O
† (−k′)���Ψn

〉
If the scattering particle is a plane wave with momentum q, ρext (r) ∝ eiq·r, ρext (k) ∝ δk,q, hence

����
〈
Ψn

����Hprobe
����Ψm

〉����
2
= д2

〈
Ψn

���O (q)���Ψm
〉〈
Ψm

���O
† (−q)���Ψn

〉
= д2����

〈
Ψn

���O (q)���Ψm
〉����

2

and hence, transposing Eq. (I.19), one gets:

Γ(q,ω) =
д2

~
SOq,O−q (ω) = 2д2 (1 + nB (ω))ImχOq,O−q (ω) (I.21)
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I.2.4 Diagrammatic variant

In this section, the goal is to recover the result of the previous section in a diagrammatic way. Hprobe is shown
diagrammatically in Fig. I.3. The simplest self-energy diagram reads:

Σ(r − r′,τ − τ ′) = д2〈O (rτ )O (r′τ ′)〉H 〈ψ (r′τ ′)ψ † (rτ )〉

Transforming to momentum-energy space,

Σ(k,iω) = д2
∑
q,iΩ

χOO (q,iΩ)Gext (k + q,iω + iΩ)

= д2
∑
q,iΩ

ˆ ∞
−∞

dν
χ
′′

OO (q,ν )
iΩ − ν

1
iω + iΩ − Ek+q

Performing the Matsubara sum:∑
iΩ

1
iΩ − ν

1
iω + iΩ − Ek+q

=
1

ν −
(
Ek+q − iω

) (
nB (ν ) − nB (Ek+q − iω)

)
=
nB (ν ) + nF (Ek+q)

ν −
(
Ek+q − iω

)
Hence, setting nF (Ek+q) = 1,

Σ(k,z) = д2
∑

q

ˆ ∞
−∞

dν
1

z + ν − Ek+q
χ
′′

OO (q,ν ) (nB (ν ) + 1) = д2
∑

q

ˆ ∞
−∞

dν
1

z + ν − Ek+q

SOO (q,ν )
2~

Γ = 2Σ′′(k,Ek + iη) =
д2

~

∑
q

ˆ ∞
−∞

dνδ (ν + Ek − Ek+q)SOO (q,ν ) =
д2

~
SOO (q,Ek+q − Ek) (I.22)

which is the same as Eq. (I.21).

I.3 Analytical continuation techniques

Analytically continuing G (iωn ) or G (τ ) from the imaginary to the real axis consists in the following task: One
starts from a set of data Ḡ (τ ) or Ḡ (iω) (the bar indicates that this data are themselves possibly noisy estimates
of G (τ )/G (iω)) and one wants to find A(ω). For this, one must invert the following equation (Eq. (I.11)):

Ḡ (τi ) = −

ˆ ∞
−∞

dω
e−τω

e−βω + 1
A(ω) =

Nω∑
j=0

Ki jA(ωj ) (I.23)

with Ki j ≡ −∆ω
e−τiωj

e−βωj +1
. Formally, one can write Aj =

∑
i

[
K−1

]
ji
Ḡi . The matrix K is, however, ill-conditioned.

I.3.1 Padé approximants

The Padé method consists in fitting the imaginary-frequency function f (iωn ) with a rational function, namely
a ratio of two polynomials (Padé (1892)). Equivalenty, this corresponds to fitting f (iωn ) with a continued
fraction:

f̃ (z) =
a1

1 + a2 (z−z1 )

1+ a3 (z−z2 )
1+. . .

The 2N coefficients ai and zi (i = 1 . . .N ) can be determined in a recursive way with the N conditions
f̃ (z = iωn ) = f (iωn ), n = 0 . . .N − 1 (Vidberg and Serene (1977)). An estimate of the analytical continuation
of f (iω) on the real axis is thus given by

f (ω) ≈ f̃ (ω)

This procedure is particularly suited to data devoid of numerical noise. For noisy data, the maximum entropy
method, presented in the next chapter, is in general better suited.
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I.3.2 Maximum Entropy

In this short section, I describe the conceptual idea behind the MaxEnt algorithm rather than the technical
implementation details of the algorithm. For details, I refer the reader to the standard reference on the topic,
Jarrell and Gubernatis (1996). The implementation used in this thesis is that of Bryan (1990).

A standard way to circumvent the badly-conditioned matrix inversion of Eq. (I.23) is to perform a least-
squares fit, namely to look for the “fit parameters” Aj minimizing the least squares distance between Ḡ and
KA, or “likelihood” function:

χ2[A] ≡
∑
i

∆τ

σi




Nω∑
j=0

Ki jA(ωj ) − Ḡ (τi )



(I.24)

Furthermore, it can be shown that:
P (Ḡ |A) ∝ e−χ

2/2

Thus, least squares fitting amounts to finding the A which maximizes the probability of the data Ḡ for a given
A, or in other words to find the most probable Ḡ for a given spectrum A. In practice, this often leads to an
overfitting of the noise in Ḡ.

Instead of this, one may want to look for the most probable A for a given data set Ḡ, or in other words to
maximize the probability of A for given data Ḡ and some information on the system, I. Appealing to Bayes’
theorem, one gets:

P (A|Ḡ,I) =
P (Ḡ |A,I)P (A|I)

P (Ḡ,I)

Here, P (Ḡ,I) is a normalization constant. It can be shown that P (A|I) is related to the entropy (or information
content) S of the spectrum A with respect to some prior knowledge on the system:

P (A|I) ∝ eαS

with I = (α ,M ), α being a given parameter and M a “default model” which contains prior information about
the system, and S the (Shannon) entropy:

S ≡
∑
i

Ai −Mi −Ai logAi/Mi

One can now find the spectrum Âα which maximizes P (A|Ḡ,I) = P (A|Ḡ,α ,M ) ∝ eQ , where Q ≡ αS − χ2/2 (it
is defined as Âα ≈

´
D [A]AP (A|Ḡ,α ,M )). This spectrum depends on the parameter α .

The final spectrum is given by: 〈A〉 =
´
dα
´
D [A] AP[A,α |Ḡ,M]. Since P[A,α |Ḡ,M] = P[A|Ḡ,α ,M]P[α |Ḡ],

one obtains the final formula:

〈A〉 =

ˆ
dαÂαP[α |Ḡ] (I.25)

In some MaxEnt approaches (referred to a “classic MaxEnt”), the above integral is approximated by 〈A〉 ≈
Âαmax where α is the parameter which maximizes P[α |Ḡ]. P[α |Ḡ] can be computed in the following way:
using Bayes formula, P (A,α |Ḡ ) = P[Aα∩Ḡ]

P[Ḡ]
=

P[Ḡ |Aα ]P[A |α ]P[α ]
P[Ḡ]

, and previous the relations (P[Ḡ] = Z), one
finds P (A,α |Ḡ ) = eQP[α]/Z and finally:

P[α |Ḡ] =
ˆ
D [A] P (A,α |Ḡ ) =

P[α]
Z

ˆ
D [A] eQ

P[α] is often chosen to be equal to 1/α . Thus, P[α |Ḡ] can be computed explicitly. The method introduced by
Bryan (1990) consists in computing P[α |Ḡ] and estimating A by 〈A〉 as given in Eq. I.25). Other approaches,
such as “stochastic MaxEnt” (Beach (2004)), have been proposed.
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I.4 Around the Lindhard function and the random-phase approximation

The Lindhard function is defined in Eq. (I.43).

I.4.1 Various limits of the Lindhard function

I.4.1.1 ω = 0, q→ 0 limit: Pauli suceptibility

In this limit, noting that ξk+q − ξk = q · ∇ξ ���ξk
and nF

(
ξk+q

)
− nF (ξk) =

∂nF
∂ξ q · ∇ξ ���ξk

, we obtain

lim
q→0

χ0 (q,ω = 0) = 2
∑

k

*.
,
−
∂nF

∂ξ

������ξ=ξk

+/
-
= 2
ˆ ∞
−∞

dεNσ (ε )

(
−
∂nF

∂ξ

)

which simplifies, for T → 0 and up to a factor µ2
B , to the Pauli susceptibility defined in Eq. (H.39) (the factor

2 is absorbed in the total DOS N (ε )).

I.4.1.2 q→ 0, finite ω limit: plasmon pole

Let us consider the case when q→ 0. Then

χ0 (q,ω) = −2
˚

d3k

(2π )3
q · ∇ξk

∂nF
∂ε

q · ∇ξk − ω

= −
2
ω

2π

(2π )3

ˆ
k2dk

δ (k − kF)

vF

ˆ π

0
sinθdθ

q cos (θ )vF

1 − q cos(θ )vF
ω︸                           ︷︷                           ︸

≡I

where I have used: ∂nF
∂ε = −δ (ξk − εF) = −

δ (k−kF )
vF

. I now evaluate the integral:

I =

ˆ 1

−1
dx

qxvF

1 − qxvF
ω

=
ω2

qvF

ˆ qvF/ω

−qvF/ω
dy

y

1 − y
≈
ω2

qvF

[
y2/2 + y3/3

]qvF/ω

−qvF/ω
=
ω2

qvF

2
3

(qvF

ω

)3
=

2
3
v2

Fq
2

ω

Hence

χ0 (q,ω) = −
1
ω

1
2π2

k2
F

vF



2
3
v2

Fq
2

ω


= −

v3
Fm

2

3π2

q2

ω2
= −

n

m

q2

ω2
(I.26)

where I have used 3π2n = k3
F =m

3v3
F . When plugged into the dielectric function, this expression yields zeros

at the plasmon energy (see section H.1.2.2).

I.4.1.3 q-integration

∑
q

Imχ0 (q,ω) = 2π
∑
q,k

[
nF (ξk+q) − nF (ξk)

]
δ

(
ω −

{
ξk+q − ξk

})
= 2π

ˆ ∞
−∞

dϵ
∑

k

Nk (ϵ )
[
nF (ϵ ) − nF (ξk)

]
δ (ω −

{
ϵ − ξk

}
)

with Nk (ϵ ) ≡
∑

q δ (ϵ − ξk+q). If one approximates Nk (ϵ ) ≈ N (ϵ ) (which is true for a periodic lattice),
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∑
q

Imχ0 (q,ω) = 2π
ˆ ∞
−∞

dϵ

ˆ ∞
−∞

dϵ̄N (ϵ )N (ϵ̄ ) [nF (ϵ ) − nF (ϵ̄ )]δ (ω − {ϵ − ϵ̄ })

= 2π
ˆ ∞
−∞

dϵN (ϵ + ω)N (ϵ ) [nF (ϵ + ω) − nF (ϵ )]

If furthermore, ϵ � ω (which is true since N (ϵ ) is concentrated around εF, which is � ω), we then obtain Eq.
(H.42).

I.4.2 Exact results within the Random-phase approximation

I.4.2.1 RPA susceptibilies: exactness up to second order

Our starting point is the bubble diagram of Eq. (I.42), which I rewrite here explicitly as (setting λq = 1):

P0 (q,iΩ) ≡ 2
∑
k,iω

G0 (k + q,iω + iΩ)G0 (k,iω) (I.27)

I want to show that χRPA
ch and χRPA

sp , defined by:

χRPA
ch =

−P0

1 − U
2 P0
= −P0

(
1 +

U

2
P0

)
= −P0 −

U

2
P2

0 +O (U 2)

χRPA
sp =

−P0

1 + U
2 P0
= −P0 +

U

2
P2

0 +O (U 2)

are equal up to second order in U to the charge and spin correlation functions, defined as:

χch = 〈Tn(τ )n(0)〉 = 2
(
χ↑↑ + χ↑↓

)
χsp = 〈Tnz (τ )nz (0)〉 = 2

(
χ↑↑ − χ↑↓

)
with χσσ ′ ≡ 〈Tnσ (τ )nσ ′ (0)〉. Let us expand χσσ ′ in powers of U :

〈Tnσ (τ )nσ ′ (0)〉 =
ˆ
D[c∗c]e

´
c∗G−1

0 c−
´
τ Un↑n↓nσ (τ )nσ ′ (0)

= 〈Tnσ (τ )nσ ′ (0)〉0 −U
ˆ
τ1

〈Tn↑(τ1)n↓(τ1)nσ (τ )nσ ′ (0)〉0 +O (U 3)

I now use Wick’s theorem:

〈n↑(τ )n↑(0)〉0 = 〈c∗
↑
(τ )c↑(τ )c

∗
↑
c↑〉0

= −〈c↑c
∗
↑
(τ )〉0〈c↑(τ )c

∗
↑
〉0

= −G0 (−τ )G0 (τ )

= −
1
2
P0 (τ )

Thus:

χ↑↑(τ ) = −P0 (τ )/2 +O (U 2)

χ↑↓(τ ) = −
U

4

ˆ
τ1

P0 (τ − τ1)P0 (τ1) +O (U 3)

χch (iΩ) = 2
(
−P0/2 −UP2

0/4 +O (U 2)
)
= −P0 −

U

2
P2

0 +O (U 2) (I.28)

χsp (iΩ) = 2
(
−P0/2 +UP2

0/4 +O (U 2)
)
= −P0 +

U

2
P2

0 +O (U 2) (I.29)

which ends the proof.
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I.4.2.2 Ornstein-Zernicke form of the susceptibility

Let us consider the spin susceptibility in the random-phase approximation:

χRPA
sp (q,ω) =

χ0 (q,ω)
1 −Uspχ0 (q,ω)

Let us take q and ω such that the denominator is vanishing, namely q ≈ Q and ω ≈ 0. Let us define

ξ 2
0 ≡ −

1
2χ0 (Q)

∂2χ0

∂q2

����q=Q
(I.30)

ξ 2
0

D
= −i

1
χ0 (Q)

∂χ0

∂ω

����ω=0
(I.31)

and expand the denominator:

χ0 (Q + q,ω) = χ0 (Q) − ξ 2
0q

2χ0 (Q) + iω
ξ 2

0

D
χ0 (Q) = χ0 (Q)


1 − ξ 2

0q
2 + iω

ξ 2
0

D



Hence: χRPA
sp (q +Q,ω) = χ0 (Q)

1−Usp χ0 (Q)

[
1−ξ 2

0 q
2+iω

ξ 2
0
D

] . Let us now define

δU ≡ χ0 (Q)−1 −Usp (I.32)

, i.e. 1 −Uspχ0 (Q) = δU χ0 (Q). Hence:

χRPA
sp (q +Q,ω) =

χ0 (Q)

δU χ0 (Q) +Uspχ0 (Q)
[
ξ 2

0q
2 − iω

ξ 2
0
D

] = 1
δU

1

1 + Usp
δU

[
ξ 2

0q
2 − iω

ξ 2
0
D

]

This expression prompts us to define

ξ 2 =
Usp

δU
ξ 2

0

so that one finally obtains:

χRPA
sp (q,ω) =

1
Usp

ξ 2/ξ 2
0

1 + ξ 2 (q −Q)2 − iω
ξ 2

D

(I.33)

I.5 GW self-energy on the real axis

We want to analytically continue the “one-loop” or GW self-energy:

Σ(k,iω) = −
1
β

∑
q,iΩm

W (q,iΩm )G (k − q,iω − iΩm )

I.5.1 General G and W

Let us consider the integral

Iqk,iω ≡

˛
C

Wq (z)Gk−q (iω − z)nB (z)
dz

2πi

for fixed q, k and iω. C is a circular contour with radius R. If we send R → ∞, Iqk,iω → 0. On the other hand,
given that

• nB (z) has poles iΩm of residue 1/β ,
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• Wq (z) has poles ω of residue − 1
πW

′′

q (ω) (using the spectral representation ofW ),

• Gk−q (iω − z) has poles iω − ω of residue 1
πG

′′

k−q (ω) (using the spectral representation of G),

Cauchy’s residue theorem states that:

Iqk,iω =
1
β

∑
m

Wq (iΩm )Gk−q (iω − iΩm ) +

ˆ ∞
−∞

dω

(
−

1
π
W
′′

q (ω)

)
Gk−q (iω − ω)nB (ω)

+

ˆ ∞
−∞

dωWq (iω − ω)

(
1
π
G
′′

k−q (ω)

)
nB (iω − ω)

Hence:

1
β

∑
m

Wq (iΩm )Gk−q (iω − iΩm ) = −

ˆ ∞
−∞

dω

(
−

1
π
W
′′

q (ω)

) 


ˆ ∞
−∞

−dω̃

π

G
′′

k−q (ω̃)

iω − ω − ω̃



nB (ω)

−

ˆ ∞
−∞

dω



ˆ ∞
−∞

−dω̃

π

W
′′

q (ω̃)

iω − ω − ω̃




(
1
π
G
′′

k−q (ω)

)
(−nF (−ω))

= −

ˆ ∞
−∞

ˆ ∞
−∞

dω

π

dω̃

π
*.
,

W
′′

q (ω)G
′′

k−q (ω̃) (nB (ω) + nF (−ω̃))

iω − ω − ω̃
+/
-

= −

ˆ ∞
−∞

ˆ ∞
−∞

dω

π

dω̃

π
*.
,

W
′′

q (ω)G
′′

k−q (ω̃) (nB (ω) + nF (ω̃))

iω + ω − ω̃
+/
-

where we have used nB (−Ω) = −1 − nB (Ω) and nF (−ω) = 1 − nF (ω). The final result is

Σ(k,iω) = −
∑

q

ˆ ∞
−∞

dΩ

π
W
′′

q (Ω)

ˆ ∞
−∞

dϵ

π
G
′′

k−q (ϵ )
nB (Ω) + nF (ϵ )

iω + Ω − ϵ
(I.34)

I.5.2 Special cases

I.5.2.1 Non-interacting case: G = G0

Let us now suppose that G
′′

k−q (ω) = G
′′
0 (k − q,ω) = −πδ

(
ω − εk−q

)
. Then:

Σ(k,iω) =
∑

q

ˆ ∞
−∞

dω
π
W
′′

q (ω)
nB (ω) + nF (εk−q)

iω + ω − εk−q
(I.35)

Eq (I.35) can be further simplified by noticing that: W
′′

q (−ω) = −W
′′

q (ω):

Σ(k,iω) =
∑

q

(ˆ 0

−∞

dω

π
W
′′

q (ω)
nB (ω) + nF (ϵk−q)

iω + ω − ϵk−q
+

ˆ ∞
0

dω

π
W
′′

q (ω)
nB (ω) + nF (ϵk−q)

iω + ω − ϵk−q

)

=
∑

q

(ˆ ∞
0

dω

π
W
′′

q (ω)

[
nB (ω) + nF (ϵk−q)

iω + ω − ϵk−q
−
nB (−ω) + nF (ϵk−q)

iω − ω − ϵk−q

])

=
∑

q

(ˆ ∞
0

dω

π
W
′′

q (ω)

[
nB (ω) + nF (ϵk−q)

iω + ω − ϵk−q
+
nB (ω) + nF (−ϵk−q)

iω − ω − ϵk−q

])

=
∑
q,±

ˆ ∞
0

dω

π
W
′′

q (ω)
nB (ω) + nF (±ϵk−q)

iω ± ω − ϵk−q
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Hence

Σ(k,ω) =
∑
q,±

ˆ ∞
0

dω̄

π
W
′′

q (ω̄)
nB (ω̄) + nF (±εk−q)

ω + iη ± ω̄ − εk−q
(I.36)

I.5.2.2 Single phonon mode ωq

SupposeW
′′

q (ω) = −π
(
δ (ω − ωq ) − δ (ω + ωq )

)
, then:

Σ(k,iω) = −
∑
q

nB (ωq ) + nF (ϵk−q )

iω + ωq − ϵk−q
−

∑
q

nB (ωq ) + nF (−ϵk−q )

iω − ωq − ϵk−q

Using the relation: nF (−ωq ) = 1 − nF (ωq ) again,

Σ(k,ω) = −
∑
q

[
nB (ωq ) + nF (ϵk−q )

ω + ωq − ϵk−q
+

1 + nB (ωq ) − nF (ϵk−q )

ω − ωq − ϵk−q

]
(I.37)

This result can be understood in the following way. From second-order perturbation theory the shift in energy
of state ϵk due to the emission or absorption of a phonon at energy ωq . The final state is in both cases ϵk−q .
The corresponding term is:

∆E2 (ϵk → ϵk−q ) =
∑
q

(
1 − nF (ϵk−q )

) (
1 + nB (ωq )

)(
ϵk−q + ωq

)
− ϵk︸                                 ︷︷                                 ︸

emission

+

(
1 − nF (ϵk−q )

) (
nB (ωq )

)
ϵk−q −

(
ϵk + ωq

)︸                            ︷︷                            ︸
absorption

To this term, one must substract the scattering possibilities from ϵk−q to ϵk (they are forbidden since ϵk is
occupied). Such a term is

∆E2 (ϵk−q → ϵk ) =
∑
q

nF (ϵk−q )
(
1 + nB (ωq )

)(
ϵk + ωq

)
− ϵk−q

+
nF (ϵk−q )

(
nB (ωq )

)
ϵk −

(
ϵk+q + ωq

)
Thus:

∆E (ϵk ) = ∆E2 (ϵk → ϵk−q ) − ∆E2 (ϵk → ϵk−q )

=
∑
q

(
1 − nF (ϵk−q )

) (
1 + nB (ωq )

)
+ nF (ϵk−q )

(
nB (ωq )

)(
ϵk−q + ωq

)
− ϵk

+

(
1 − nF (ϵk−q )

) (
nB (ωq )

)
+ nF (ϵk−q )

(
1 + nB (ωq )

)
ϵk−q −

(
ϵk + ωq

)
=

∑
q

1 − nF (ϵk−q ) + nB (ωq )(
ϵk−q + ωq

)
− ϵk

+
nB (ωq ) + nF (ϵk−q )

ϵk−q −
(
ϵk + ωq

)
ie

∆E (ω) = −
∑
q

1 + nB (ωq ) − nF (ϵk−q )

ω −
(
ϵk−q + ωq

) +
nB (ωq ) + nF (ϵk−q )

ω −
(
ϵk−q − ωq

)
Thus

Σ(ω) = ∆E (ω)

I.6 Weak-coupling charge and spin density wave scenarios

In this chapter, I give an overview of weak-coupling mean-field approaches to charge and spin density waves.
This focus is voluntarily on the coupling of the physical fermions with bosonic modes representing their
collective excitations, as this coupling is central to the main text.

A standard reference on this topic is ?; see also Tosatti and Anderson (1974) in the context of surface systems.



Appendix I. Reminder on many-body theory 227

I.6.1 Weak-interaction, phonon-driven charge density wave (CDW) theory

Our starting point is the Fröhlich action (Fröhlich (1950, 1952)) describing the coupling of phonons (denoted
by the field ϕq) with electrons (described by the fields c̄k and ck) :

Seb =
1
2

∑
q

ϕ∗q
[
−D0 (q)

−1
]
ϕq +

∑
kσ

c̄kσ
[
−G0 (k )

−1
]
ckσ +

∑
kqσ

λqϕqc̄k+q,σckσ (I.38)

with k ≡ (k,iω) and q ≡ (q,iΩ),
∑
q ≡

1
β
∑

q
∑

iΩ and D0 (q) and G0 (k ) denote the unperturbed phononic and
electronic propagators:

D0 (q) =
2ωq

(iΩ)2 − ω2
q

G0 (k ) =
1

iω − ξk

ωq is the bare phonon dispersion (e.g. ωq =
2c
a | sin(

qa
2 ) | for acoustic phonons in 1D [c is the sound velocity],

ωq = ω0 for Einstein/Holstein phonons), ξk is the electronic dispersion including the chemical potential, and
λq is the electron-phonon coupling constant. The phononic field ϕ is related to the ionic displacement u (Ri )

by the relation:

u (Ri ) =
∑
qs

eiq·RiLqsϵqsϕqs (I.39)

λqs ≡

˚
V
dr (−en(r)) (−u (Ri )∇Vion (r − Ri )) =

ie

V
Lqsϵqs · qVion (q) (I.40)

where Lqs ≡
√

~
2Mωqs

is the harmonic oscillator length (M is the ionic mass), ϵqs is the (unit) polarization

vector of the phonon branch s and Vion (r) is the ionic potential. In Eq. (I.38), we have restricted ourselves
to the case with a single phonon branch, dropping the branch index s for simplicity. We define the usual
imaginary-time correlators: Gi j (τ ) = −〈Tci (τ )c

†

j (0)〉 and Di j (τ ) = −〈Tϕi (τ )ϕj (0)〉 (where i and j denote lattice
sites Ri and Rj) and the fermionic and bosonic self-energies:

Σ(k ) ≡ G−1
0 (k ) −G−1 (k )

P (q) ≡ D−1
0 (q) − D−1 (q)

P (q) is also called the polarization.

I.6.1.1 Kohn anomaly, charge density wave and phonon softening: Lindhard function in the
triangular lattice

We are interested in the influence of the electronic system on the phonon dispersion ω̃q, given by the poles
of D (q,ω), i.e:

ω̃2
q = ω

2
q

(
1 −

2P (q,ω̃q)

ωq

)
(I.41)

To lowest order in λ, the phononic self-energy P (q) is given by the bubble diagram:

P0 (q) = λ2
q

∑
kσ

G0 (k + q)G0 (k ) (I.42)

One can perform the Matsubara summation and get P0 (q,iΩ) = −λ2
qχ0 (q,iΩ), where χ0 (q,iΩ) denotes the

Lindhard function (Lindhard (1954)):

χ0 (q,iΩ) = −2
∑
k∈BZ

nF
(
ξk+q

)
− nF (ξk)

ξk+q − ξk − iΩ
(I.43)
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χ0 is the lowest order contribution to the electronic charge-charge correlation function χi j (τ ) = 〈Tni (τ )nj (0)〉
(as proven in Appendix I.4.2.1, see Eq. (I.28)), which is measured for instance by EELS (see section H.1.2).

If the Fermi surface has large portions which can be joined by the same wavevector Q (“nested” Fermi
surface), then χ0 (Q,iΩ) will be large. This effect is particularly relevant in low dimensions (for instance,
nested portions in 2D correspond to infinite planes in 3D due to the integration along the z coordinate).
For the electron gas (ξk = ~

2k2/2m), where the Fermi surface is a sphere of radius kF , the enhancement of
χ0 (q,iΩ = 0) occurs at |Q| = 2kF .

The nesting at Q thus induces a large electronic response δ〈nq〉 at the Q wavevector. Indeed, in the presence
of a coupling term nqhqe

iωt , the Kubo formula (derived in Appendix I.1.1) gives:

δ〈nq〉 = χ0 (q,ω)hq

If χ0 (Q,ω = 0) diverges, then a static charge modulation (a charge density wave) δ〈nQ〉 will settle in even for
vanishing field hQ.

On a triangular lattice, there are several possible nesting vectors Q. In Fig. 3.4, we show the density
modulations δn(r) resulting from a charge response peaked at either the K or the M point. The K point
corresponds to a 3 × 3 unit cell (with 3 atoms per unit cell), while the M point corresponds to a 2

√
3 × 2

√
3

unit cell (4 atoms per unit cell).

Another consequence of a large χ0 (Q,ω) is the reduction and eventual vanishing of the phonon energy at q =Q
(Eq. (I.41)). This strong reduction is called the Kohn anomaly (Kohn (1959)). If ω̃Q eventually vanishes, the
phonon mode is said to become “soft” or to “freeze in”, signalling a finite static distortion of the lattice known
as the Peierls instability (Peierls (1955)): u (Ri ) decomes nonzero on average, Eq. (I.39). Peierls has predicted
the instability of any metallic phase in one dimension due to this instability. This instability is seen e.g.
by nuclear magnetic resonance (see section H.2.2 for an explanation of this probe) in the one-dimensional
compound K2Pt(CN)4Br0.3 (Niedoba et al. (1973) do not observe any Knight shift) or one-dimensional TTF-
TCNQ salts (see section 3.2 of Jérome and Schulz (1982)).

In the next section, we substantiate the link between phonon softening and a finite phononic field expectation
value.

I.6.1.2 Consequence of phonon softening: phonon condensation

Rewriting Eq. (I.38) as:

Seb =
1
2

∑
q

ϕ∗q
[
−D0 (q)

−1
]
ϕq +

∑
kk ′σ

c̄kσ [Mkk ′] ck ′σ

with Mkk ′ ≡ −G0 (k )
−1δk,k ′ + λk−k′ϕk−k ′ , and integrating out the fermionic variables, we obtain:

Z =

ˆ
D

[
ϕ
]

Det [M] e−
1
2
∑
q ϕ∗q[−D0 (q )−1]ϕq

Reexponentiating the determinant yields: log Det [M] = Tr log [M] = Tr log
[
−G−1

0 (1 +G0 (λϕ))
]
= Tr log

[
1 +G0 (λϕ)

]
+

const., with:
[
G−1

0

]
kk ′
= G−1

0 (k )δkk ′ and
[
λϕ

]
kk ′ = λk′′−k′ϕk ′′−k ′ . We expand the logarithm in powers of λ:

Tr log
[
1 +G0 (λϕ)

]
= Tr

[
G0 (λϕ)

]
+ 1

2Tr
[
G0 (λϕ)G0 (λϕ)

]
+O (λ3), and compute both terms:

Tr
[
G0 (λϕ)

]
=

∑
kk̄

G0 (k )δkk̄
(
λk̄−kϕk̄−k

)
=

∑
k

G0 (k )λ0ϕ0 = 0

and
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Tr
[
G0 (λϕ)G0 (λϕ)

]
=

∑
k

∑
k̄

G0 (k )λk−k̄ϕk−k̄G0 (k̄ )λk̄−kϕk̄−k =
∑
q

ϕ−q



∑
k

λ−qλqG0 (k )G0 (k + q)


ϕq

=
∑
q

ϕ−qP0 (q)ϕq

Hence, the effective bosonic action reads: Sb =
1
2
∑
q ϕ
∗
q

[
−D0 (q)

−1 + P0 (q)
]
ϕq + O (λ3). Let us define Ω[h] ≡

− log
´
D[c̄cϕ]e−Seb−hqϕq , so that:

〈ϕq〉 =
δΩ

δhq
(I.44)

(with hq = hq). Hence:

〈ϕq〉 = −
1
Z

δ

δhq

ˆ
D

[
ϕ
] 1

2
∑
q ϕ∗qD (q )−1ϕq−hqϕq = −

δ

δhq
〈e−

1
2D (q )h2

q 〉 = D (q,iΩ)hq

Recalling that D (q) =
2ωq

ω̃2
q

, we see that if a mode softens at q = Q (ω̃Q = 0), D (Q,iΩ = 0) becomes infinite,

and hence 〈ϕQ (iΩ = 0)〉 , 0 even for a vanishing probe field hq. This motivates us to adopt a mean-field
approach.

I.6.1.3 Mean-field theory: BCS-like gap equation

Inspired by the previous discussion, we define the mean field ∆Q ≡ λQ〈ϕQ (iΩ = 0)〉 and replace ϕq ≈

∆Qδq−QδiΩ to obtain the mean-field action:

Seb[∆Q] =
1

2β
∆∗Q

ω2
Q

2λ2
Q

∆Q +
∑
kσ

c̄kσ
[
−G0 (k )

−1
]
ckσ +

∑
kσ

∆Qc̄k+Q,iω,σck,iωσ

We now define the spinor: Ψ†kQ ≡
[
c̄k+Q,iω , c̄k,iω

]
. Hence,

Seb[∆Q] =
1

2β
∆∗Q

ω2
Q

2λ2
Q

∆Q +
∑

k∈RBZ,iω,σ

Ψ†kQ



−G0 (k +Q )−1 ∆Q

∆∗Q −G0 (k )
−1


ΨkQ

This Gaussian action makes for an easy determination of the Green’s function, defined as:

Gk ≡ −〈ΨkQΨ
†

kQ〉 =



−〈ck+Q,iωc
†

k+Q,iω 〉 −〈ck+Q,iωc
†

k,iω 〉

−〈ck,iωc
†

k+Q,iω 〉 −〈ck,iωc
†

k,iω 〉


i.e. we have:

Gk =
1

G0 (k +Q )−1G0 (k )−1 − |∆Q |
2



G0 (k )
−1 ∆Q

∆∗Q G0 (k +Q )−1


(I.45)

The anomalous components of this Green’s function are related to the expectation value of ϕ: 1

〈ϕq〉 = D0 (q)
∑
kσ

λkq〈c̄k+q,σckσ 〉 (I.46)

1Indeed, integrating out the phonon modes, and defining h̃q ≡ hq +
∑
kσ λkqc̄k+q,σ ckσ , we have:

S[h] =
∑
q

1
2
ϕ∗q

[
−D0 (q )−1

]
ϕq + ϕq h̃q =

∑
q
−

1
2D0 (q )

[
ϕ2
q − 2D0 (q )h̃q

]

=
∑
q
−

1
2D0 (q )

[(
ϕq − D0 (q )h̃q

)2
−

(
D0 (q )h̃q

)2
]
=

∑
q

{
−

1
2D0 (q )

[(
ϕ̃q

)2
]
+

1
2
D0 (q )h̃2

q

}

Hence, Ω[h] = − log
´
D[c̄c]e−

∑
kσ c̄kσ

[
−G0 (k )

−1
]
ckσ −

1
2

∑
q D0 (q )h̃

2
q , so that using Eq. (I.44) one obtains Eq. (I.46).
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The mean field ∆Q is thus related to the anomalous Green’s function by the relation:

∆Q = λ
2
QD0 (Q,iΩ = 0)

∑
kσ

〈c̄k+Q,iω,σck,iωσ 〉 =
2λ2

Q

ωQ

∑
kσ

〈ck,iωσ c̄k+Q,iω,σ 〉

Finally, using Eq. (I.45), and noticing that ∆Q = ∆∗Q, one obtains the mean-field gap equation:

−
ωQ

4λ2
Q

=
∑
k,iω

1(
iω − ξk+Q

)
(iω − ξk) − ∆Q

2
(I.47)

The similarity of the right-hand side with the bubble diagram (Eq. (I.42) will be elaborated on in paragraph
I.6.2.2. Using ξk+Q ≈ −ξk (which is valid for momenta k close to the Fermi surface), defining the effective
coupling constant д and the Bogoliubov or CDW dispersion Ek:

д ≡
2λ2

Q

ωQ
(I.48)

E2
k ≡ ξ 2

k + ∆
2
Q (I.49)

as well as the non-interacting DOS N (ε ) ≡
∑

k δ (ε − ξk), and performing the Matsubara sums, one obtains the
gap equation (which is analogous to the BCS gap equation):

1
д
= 2

∑
k,n

1
ω2
n + E

2
k

=
∑

k

1
Ek

tanh
(
βEk

2

)
=

ˆ ∞
−∞

dεN (ε )
1

√
ε2 + ∆2

tanh *
,

β
√
ε2 + ∆2

2
+
-

(I.50)

I now restrict the energy integral to the [−ωD,ωD] range, where ωD is the Debye frequency (ωD ∝ csoundn
1/3,

where csound =
√
K/ρ ∝ 1/

√
M , K: bulk modulus, ρ: massic density and M: atomic mass): at higher

energies, the electrons decouple from the phonons and behave like free electrons. I further assume that N (ϵ )

is a constant in the vicinity of the Fermi level, leading to

1
2дN (εF)

=

ˆ ωD

0
dε

tanh
(√

ε2 + ∆2/2T
)

√
ε2 + ∆2

Let us now find Tc and ∆(T = 0). When T → 0, the hyperbolic tangent term is close to unity, leading to
1

2дN (εF )
=
´ ωD/∆

0
dx√
x2+1

= arsinh
(
ωD
∆

)
. When T → Tc, by definition ∆ → 0, so that 1

2дN (εF )
=
´ ωD/2Tc

0 dx tanh(x )
x ≈

log
(

4
κ
ωD
2Tc

)
, with κ = πe−γ ≈ 1.76.2 Hence, one obtains the well-known mean-field results:

∆(T = 0) = ωD sinh (1/2дN (εF))
−1
≈ 2ωDe

− 1
2дN (εF ) (I.51a)

Tc =
2ωD

κ
e
− 1

2дN (εF ) (I.51b)

In particular the ratio of the gap to the critical temperature is constant:

2∆
kBTc

= 2κ ≈ 3.53 (I.52)

I.6.2 Spin density waves with Hubbard interactions at weak coupling

Our starting point is the Hubbard model written here in an action form:

SH =
∑
kσ

c̄kσ
[
−G0 (k )

−1
]
ckσ +

1
2
U ch

∑
q

nqn−q +
1
2
U sp

∑
q

szqs
z
−q (I.53)

2γ is the Euler constant
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Here, we rewrote the usual Hubbard term Hint = U
∑

i ni↑ni↓ with charge and spin operators and the corre-
sponding interactions U sp = −U /2 and U ch = U /2. This rewriting is exact and will be elaborated on later, in
Chapter 8.

As for the CDW case investigated in the previous section, the spin density change in response to an external
magnetic probe field is given by Kubo’s formula,

δ〈szq〉 = χ0 (q,ω)hq

where χ0 (q,ω) = 〈szqs
z
−q〉0 turns out to be the Lindhard function (defined in Eq. (I.43)) owing to the property

that the charge and spin correlation functions are equal to each other at lowest order (see Eqs. (I.28) and
(I.29) in Appendix I.4.2.1). Thus, the nesting features that enhance the charge response at wavevector Q,
can enhance the spin response at the same wavevector.

I.6.2.1 Analogy to electron-phonon problem via a Hubbard-Stratonovich decoupling

At this stage, we could use this piece of information and proceed with a direct mean-field decoupling of the
interaction term with the mean field

∆Q ∝ U
sp〈szQ〉 (I.54)

Yet, in order to underline the formal analogy with the electron-phonon coupling model (Eq.(I.38)), we instead
decouple the interaction term using a Hubbard-Stratonovich bosonic field ϕ using the identity:

e−
1
2U

sp ∑
q szqs

z
q =

ˆ
D

[
ϕ
]
e−

1
2
∑
q ϕq

[
−(U sp )−1

]
ϕq−

∑
q λqϕqszq (I.55)

provided λq = 1. Thus, Eq. (I.53) becomes:

SHϕ =
∑
kσ

c̄kσ
[
−G0 (k )

−1
]
ckσ +

1
2

∑
q

ϕq
[
−

(
U sp)−1

]
ϕq +

∑
q

λqϕqs
z
q (I.56)

Thus, we can identify the electron-phonon model described by Eq.(I.38) and the above equation provided

D−1
0 (q) =

(
U sp)−1

Thus, the whole mean-field analysis carried out in section I.6.1.3 carries over with a coupling constant

д = −D0 (Q,ω = 0)λQ = −U
sp (I.57)

and the mean-field results:

∆(T = 0) ≈ 2ωce
− 1

2дN (εF ) (I.58)

Tc ≈
2ωc

κ
e
− 1

2дN (εF ) (I.59)

Here, the cutoff frequency is no longer the Debye frequency ωD but a cutoff frequency of the order of the
spin-wave energy ωc ∼ J .

I.6.2.2 Link to the random-phase approximation (RPA): Stoner criteria

With the replacement (I.57), the gap equation Eq. (I.47) becomes, when ∆Q = 0:

1 = U spP0 (Q,iΩ = 0) (I.60)
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∆
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T<Tc

Figure I.4: Slater mechanism (1D case). BZ denotes the original Brillouin zone, BZ’ the Brillouin zone after
symmetry-breaking.

This is a Stoner criterion for the onset of antiferromagnetism (if Q is commensurate) or more generally spin-
density wave order. Indeed, the fullfillment of equation (I.60) signals the appearance of a pole in the spin
susceptibility computed in the random-phase approximation (RPA):

χ
sp
RPA (q,iΩ) ≡

−P0 (q,iΩ)

1 −U spP0 (q,iΩ)
(I.61)

This correspond to a infinite resummation of bubble diagrams. Viewing the gap equation in this light allows
for straightforward generalizations of the mean-field approach sketched above, namely by writing a general-
ized Stoner criterion 1 = U spP

sp
approx (Q,iΩ = 0), where P

sp
approx is an approximate spin polarization (for instance

computed with renormalized of “full” propagators: P sp
approx ∼ 2GG instead of 2G0G0...).

Moreover, the same criterion can be formulated for the charge channel: after adding nonlocal interactions (in
the form of a term 1

2
∑
q Vqnqn−q) to the Hubbard model (I.53) – which thus becomes the extended Hubbard

model (introduced in section 5.1), the RPA charge susceptiblity is

χ ch
RPA (q,iΩ) ≡

−P0 (q,iΩ)

1 −
(
U
2 +V (q)

)
P0 (q,iΩ)

(I.62)

Eqs (I.61-I.62), when generalized to the ordered phase (∆ , 0), correspond to the Hartree-Fock approxima-
tion used e.g. in Santoro et al. (1998) to study the influence of local and nonlocal interactions in surface
systems.
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I.6.2.3 Energetic conclusion: Slater mechanism vs. Mott mechanism

To conclude this subsection on the weak-interaction CDW and SDW scenarios, let us emphasize three impor-
tant points:

• the scenarios put forth above are driven by a lowering of the electronic kinetic energy due to the
symmetry breaking: the opening of the CDW or SDW gap ∆ at the boundaries of the new Brillouin
zone allows the electrons to lower their energy (see e.g. the red portion in Fig. I.4, to be compared to
the original dashed dispersion). Thus, the CDW and SDW transitions are kinetic-energy-driven metal-
insulator transitions, a simple mechanism first proposed by Slater (1951). This is in stark opposition
to the metal-insulator transition mechanism put forth by Mott, where electrons lower their potential
energy by becoming localized.

• these scenarios rely on nonzero but infinitesimally weak interactions (whether electron-electron in the
SDW case or electron-phonon in the CDW case), as one can see by looking at the analytical forms of
the gap or critical temperatures (see e.g. Eqs (I.51a) and (I.51b)). The charge-charge and spin-spin
correlation functions have been treated at zeroth order in the interaction strength.

• the nonlocal interactions, whose magnitude can be sizable in some systems (see e.g. section 3.3.1),
have been neglected altogether in the above mean-field treatment



J
Reminder: realistic calculations for correlated

materials

In this chapter, I give background information on realistic calculations for correlated materials.

J.1 Density functional theory

The physics of electrons in a solid at equilibrium is determined by the electronic-structure Hamiltonian HES,
written below in a second-quantized form in the Born-Oppenheimer approximation (the ionic cores are as-
sumed to be fixed due to their much larger mass):

HES ≡

˚
V
drψ † (r)

(
−
~2∇2

2m
+Vext (r)

)
ψ (r) +

1
2

˚
V
dr
˚

V
dr′ψ † (r)ψ † (r′)vCoul (r − r′)ψ (r′)ψ (r) (J.1)

Vext (r) contains the ionic potential and (optionally) external driving fields, m is the electron mass, V denotes
the solid’s volume, vCoul (r − r′) = e2

|r−r′ | is the (bare) Coulomb interaction, and ψ † (r) and ψ (r) are fermionic
field operators. r denotes the continuous real-space coordinate. From the knowledge of the many-body
eigenstates Ψν and eigenergies Eν of HES:

HESΨν (r1, . . . ,rN ) = EνΨν (r1, . . . ,rN ) (J.2)

where r1, . . . ,rN denotes the coordinates of the N electrons, one can in principle derive the electronic contri-
bution to the thermodynamic properties of the solid. For instance, the thermodynamic expectaction value of
any observable O can be computed as:

〈O〉 =

∑
ν e
−β (Eν−µN )〈Ψν (r1, . . . ,rN ) |O |Ψν (r1, . . . ,rN )〉∑

ν e−β (Eν−µN )

Of course, due to the huge number – N ∼ 1023 – of interacting electrons in a solid, this problem is in general
intractable. Conversely, in the absence of the second term of Eq. (J.1), solving Eq. (J.2) becomes rather easy.

J.1.1 Free electrons: Bloch and Wannier functions

Defining the one-particle Hamiltonian

h(r) ≡ −
~2∇2

2m
+Vext (r) (J.3)

we can solve it for its eigenvalues εi and (orthonormalized) eigenvectors ϕα (r) (α = 1 . . .N ):

h(r)ϕα (r) = εαϕα (r) (J.4)

234
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Figure J.1: Bloch (left) and Wannier (right) functions in 1D

In crystalline solids, ĥ(r) is invariant by any translation by a Bravais lattice vector R, and thus the eigenele-
ments can be labelled by a quasimomentum index k and a band index n, and can be decomposed as the
product of a plane-wave by an envelope function ukn (r) (see Fig.J.1), i.e. ϕkn (r) = ukn (r)eik·r where for any
Bravais lattice vector R, ukn (r +R) = ukn (r) (this is Bloch’s theorem (Bloch (1929)) – ϕkn (r) is called a “Bloch
wavefunction”). The associated Wannier function can be defined as (a more general definition will be given
in paragraph J.2.3):

wRn (r) ≡
∑

k

ϕkn (r)e
−ik·R =

∑
k

ukn (r)e
ik·(r−R) (J.5)

It is localized around r = R, as we can see from the following simple calculation in 1D. If ukn is a vanishing ev-

erywhere except for a range [k0−
∆k
2 ,k0+

∆k
2 ] where it equals 1, thenwRn (r) = ei (k0−

∆k
2 ) (r−R )M−1 ∑M

i=0

(
ei

∆k
M (r−R )

) i
=

eik0 (r−R )sinc
(
∆k
2 (r − R)

)
. As ∆k becomes larger, wRn (r) becomes more localized around R (see Fig. J.1). The

Wannier basis is thus best suited to describe localized states.

The previous discussion shows that the Bloch basis diagonalizes the Hamiltonian h describing free electrons in
a periodic potentialVext. Expanding the field operator in this eigenbasis: ψ (r) =

∑
kn ϕkn (r)ckn , the many-body

Hamiltonian HES becomes:
H0

ES =
∑
nk

εknc
†

knckn (J.6)

where εkn is the “bare dispersion”, εkn ≡
˝

V drϕ∗kn (r)ĥ(r)ϕkn (r).1 The eigenfunctions of a many-body Hamil-
tonian such as (J.6) are

Ψν=(n1 ...nN ) =
���n1,n2, . . . ,nN 〉 ≡

N∏
α=1

(
c†α

)nα ���0〉

with nα = 0,1. There are 2N of them. In terms of wavefunctions, if N =
∑N
α=1 nα , and if we reorder the α ’s so

that the first N one-body states are occupied, the many-body wavefunction is given by Slater determinants of
the one-body wavefunctions ϕnk (r), namely

Ψ(r1, . . . rN ) =
1
√
N !

∑
p∈SN

sign(p)
N∏
i=1

ϕp (αi ) (ri )

1Note that the same Hamiltonian can we written in the Wannier basis:

H 0
ES =

∑
nR

tnRR′c
†

nRcnR′

where tnRR′ is the tight-binding hopping integral, tnRR′ ≡
˝

V drϕ∗nR (r)ĥ (r)ϕnR′ (r).
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whereSN is the symmetric group of order N .

J.1.2 Density-functional theory (DFT) in a nutshell

A modern textbook on the topic is Martin (2004). There are also multiple reviews, see e.g. Jones and
Gunnarsson (1989) or Kohn (1999).

J.1.2.1 Basic principles

Let us define the electronic density

n(r) ≡ N

˚
V

N∏
i=2

dri
���Ψ(r,r2, . . . rN )

���
2

(J.7)

Hohenberg and Kohn (1964) have proven two important theorems about n(r):

1. The equation giving n(r) as a function of Ψ(r1,r2, . . . rN ), Eq. (J.7), can be formally inverted for the
ground-state Ψ0, namely Ψ0 is a functional of the ground-state density n0 (r):

Ψ0 = Ψ0[n0] (J.8)

Consequently, all ground-state observables are functionals of the density: O0 = 〈Ψ0[n0]���O
���Ψ0[n0]〉 =

O0[n0].

2. The total energy, E ≡ 〈Ψ���HES
���Ψ〉, is a universal functional of the density n(r) and obeys a variational

principle:
E = E[n] ≥ E0[n0] (J.9)

On the other hand, remembering the form of HES (Eq. J.1), the total energy can be split up as the sum
E = Ekin + Eext + ECoul, and defining the exchange and correlation energy as Exc ≡ ECoul − EHartree, where
EHartree ≡

˝
V dr′n(r)vCoul (r − r′)n(r′), we see, using (J.9), that Exc = E[n] − (Ekin[n] + Eext[n] + EHartree[n]) is

itself (at least formally) a functional of n, i.e. Exc = Exc[n].

The next step consists in finding a procedure to compute the ground state density n0. This procedure has
first been described by Kohn and Sham (1965). Following Eq. (J.9), one looks for the ground-state density
n0 by solving the equation δE[n]

δn
���n=n0

= 0, which can be rewritten as
´
δn(r)ĥKS (r) = 0, where the Kohn-Sham

Hamiltonian ĥKS (r) is defined as:

hKS (r) ≡ −
~2∇2

2m
+Vext (r)[n] +VHartree (r)[n] +Vxc (r)[n] (J.10)

with VHartree (r) ≡
δEHartree[n]

δn (r) and Vxc (r) ≡
δExc[n]
δn (r) . Note the analogy with the “Bloch” Hamiltonian, Eq. (J.3).

This minimization problem is solved by solving for the eigenelements of the Kohn-Sham Hamiltonian:

hKS (r)ϕKS
kα (r) = ε

KS
kαϕ

KS
kα (r) (J.11)

The ground-state density is then reconstructed as:

n0 (r) =
∑
kα ,

εKS
kα ≤εF

���ϕ
KS
kα (r)

���
2

(J.12)

Equations (J.10-J.11-J.12) can be solved self-consistently, provided one can specify the relation between n(r)
and Vxc (r).
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In practice, the eigenvalue problem Eq. (J.11) has to be solved on a finite basis set which we will denote
{|Bkα 〉}: k is the quasi-momentum (from Bloch’s theorem), and the other label α depends on the choice of
basis sets. There are three main classes of basis sets:

1. delocalized basis sets (such as plane waves, α ≡ G [with G a reciprocal lattice vector] or Bloch waves,
α ≡ n [the band index ];

2. localized basis sets (e.g. Gaussian wavefunctions or Linearized Muffin-Tin Orbitals [LMTO], α = L =

(u,l ,m) [u: label of atom in unit cell, l ,m: orbital angular momentum numbers];

3. mixed basis sets such as Linearized Augmented Plane Waves [LAPW]. More details can be found e.g. in
?;

4. numerical basis sets.

J.1.2.2 Approximating the exchange-correlation energy: the local-density approximation (LDA), and
its limitations

If the exact exchange-correlation potential were known, then the n0 (r) computed using the above procedure
would be the exact many-body ground-state density of the system. In practice, however, one has to resort to
approximate forms for Exc[n]. The earliest and most simple form is the so-called local density approximation
(LDA), where one approximates Exc as:

ELDA
xc [n] ≡

˚
V
drn(r)εxc (n(r)) (J.13)

where εxc (n) is the exact exchange-correlation energy density as a function of the electronic density for the
homogeneous electron gas. Despite the fact that DFT is rigorously defined only for ground-state observables,
the Kohn-Sham eigenvalues εKS

α of the auxiliary Kohn-Sham problem are nonetheless routinely interpreted as
the band structure of the material. LDA can readily be extended to magnetic materials by introducing the
spin-resolved density nσ (r) instead of n(r). This is called the local spin density approximation (LSDA).

Numerous more sophisticated functionals than LDA have been developed over time, including functionals
with gradient corrections to LDA (“GGA”, where εxc depends on n(r) and ∇n(r)), and “hybrid functionals”
which can be seen as combinations of the Hartree-Fock approximation and DFT.

Computationally, DFT is a lightweight method implemented in a number of well-optimized codes. Its main
limitation comes from its approximate treatment of exchange and correlation: since the many-body problem
is mapped onto a one-body problem where exchange and correlation effects are lumped into an effective
one-body potential, DFT is quite close in essence to mean-field theory (which corresponds to taking Vxc = 0).
Many-body effects in spectral properties are treated only in an average way.

This leads to limitations of LDA when applied to materials with localized electrons. We list here but a few
(more examples can be found in e.g. Aryasetiawan and Gunnarsson (1998) or section 5.1 of Georges (2008)):

• The unit cell volume of f -electron systems (such as δ -plutonium) is underestimated

• The Kohn-Sham spectra of many transition-metal oxides are metallic in DFT: this is the case for CoO,
which is seen to be magnetic and insulating experimentally. With an odd number of electrons in the
unit cell, is should be metallic in a simple paramagnetic band theory; with an antiferromagnetic unit
cell, a Slater gap could be opened (see section I.6.2.3), but LSDA still predicts it to be metallic. Another
well-known example is the La2CuO4 undoped cuprate, which is predicted to be metallic despite its
actual (Mott) insulating state. A more thorough discussion can be found in section 7.1.1 or in sections
VIII.A/B of Pickett (1989);

• The magnetic moment is systematically underestimated.
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Efforts to better incorporate the effects of local interactions (Hubbard’s U ) into DFT include the “LDA+U ”
approximation to Vxc (Anisimov et al. (1991); for a recent review, see Himmetoglu et al. (2014)). Within
LDA+U , the exchange-correlation potential is written:

V LDA+U
xc,σ = V LDA

xc,σ +
∑

R,m∈C

Um

(
1
2
− 〈nRmσ 〉

���wRm〉〈wRm
���

)
(J.14)

where C denotes a subset of correlated bands, wRm localized (Wannier-like) orbitals, and Um the Hubbard
interaction on this site. ���wRm〉〈wRm

��� merely projects states on the localized bands. This approximation corrects
the too small antiferromagnetic band gaps found in many transition-metal oxides. Yet, this method still
amounts to a Hartree-like treatment of U (as can be seen from the form of the last term of Eq. (J.14)): while
it can open “Slater” gaps with the right magnitude, it cannot open “Mott” gaps, i.e. gaps merely coming from
the freezing of the charge degree of freedom. It can lead to unphysical spin polarizations.

J.2 Density functional theory combined to many-body techniques: LDA+DMFT

This chapter gives background details to chapter 12 of the main text.

In the previous chapter, we have seen that DFT does not treat correlations in a satisfactory manner, even when
incorporating Hubbard’s U in the Kohn-Sham Hamiltonian for “correlated orbitals”. The idea of treating a
correlated subset of orbitals C with dynamical mean-field theory is implemented by the LDA+DMFT method,
introduced by Anisimov et al. (1997) and Lichtenstein and Katsnelson (1997). Here, we take inspiration from
a more recent formulation (Lechermann et al. (2006)).

The starting point is the (imaginary-time) one-body Green’s function associated with the field operators
introduced in Eq. (J.1):

G (r,r′,τ ) ≡ −〈Tψ (r,t )ψ † (r,0)〉 (J.15)

We use bold letters to denote operators acting on the full Hilbert space H and to emphasize the fact that G
is written irrespective of any basis. Its Fourier transform G (r,r′,iω) is related to the one-particle Hamiltonian
h(r) and self-energy Σ(r,r′,iω) by Dyson’s equation:

G (r,r′,iω) =
[
(iω + µ ) 1 − h(r) − Σ(r,r′,iω)

]−1
r,r′ (J.16)

Here, inversion refers is defined in continuous space, namely the inverse д(r,r′) of f (r,r′) is defined as:´
dr′ f (r,r′)д(r′,r′′) = δ (r − r′′). If working in the DFT context, this can be rewritten as

G (r,r′,iω) =
[
(iω + µ ) 1 − hKS (r) − ∆Σ(r,r′,iω)

]−1
r,r′ (J.17)

where ∆Σ(r,r′,iω) encodes self-energy effects beyond DFT.

J.2.1 DMFT treatment of a correlated subset of orbitals, C

The idea of LDA+DMFT consists in correcting DFT for only a subset of “correlated orbitals” C for which the
self-energy is computed in a self-consistent DMFT cycle. More specifically, if one identifies a set of correlated
orbitals ���χRm〉 and defines a projector on C : PR ≡

∑
m |χRm〉〈χRm |, the Green function operator of eq. (J.17)

can be projected onto the correlated subset by the following operation:

G
RR′

(iω) = PRG (r,r′,iω)PR′ (J.18)

Operators with double underbar act in the correlated subspace C (indices m, m′). The local component is, as
always, G

loc
(iω) = G

RR
(iω). Given a local self-energy Σimp (iω), one can then compute the Weiss field G (iω),

and solve the impurity model for a new Σimp (iω) and approximate

Σ
RR′

(iω) ≈ Σimp (iω)δRR′ (J.19)
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In the following, I keep the generic form Σ
RR′

(iω) for later purposes. One then removes contributions to Σ

that have already been taken into account in DFT, gathered in a double-counting term Σ
dc

:

∆Σ
RR′

(iω) = Σ
RR′

(iω) − Σ
dc

Evaluating the double-counting term is subject to intense debates because the self-energy contributions com-
ing from DFT are difficult to cast in a diagrammatic form. For a discussion of this issue, I refer the reader
to e.g. section 3.3 of van Roekeghem (2014). To compute the new Green’s function G (r,r′,iω), one then
promotes ∆Σ

RR
(iω) to the full Hilbert space H by “upfolding” it in the following way:

∆Σ(r,r′,iω) =
∑

mm′,RR′
∆Σmm′,RR′ (ω)

���χRm (r)〉〈χR′m′ (r′)
��� (J.20)

J.2.2 Specifying the basis set

The equations of the previous section are written independently of the basis set used at the DFT level, i.e.
for solving Eq. (J.11). One now writes Eqs (J.18) and (J.20) explicitly in terms of the two basis sets, namely
{|Bkα 〉} and

{
|χRm〉

}
:

Gmm′,RR′ (iω) =
∑
kαα ′
〈χRm |Bkα 〉〈Bkα ′ |χR′m′〉Gαα ′ (k,iω)

∆Σαα ′ (k,iω) =
∑

mm′,RR′
〈Bkα

���χRm〉〈χR′m′
���Bkα ′〉∆Σmm′,RR′ (iω)

Fourier transforming R↔ k, one obtains the more conventional formulae:

Gmm′ (k,iω) =
∑
αα ′
〈χkm |Bkα 〉〈Bkα ′ |χkm′〉Gαα ′ (k,iω) (J.21)

∆Σαα ′ (k,iω) =
∑
mm′
〈Bkα |χkm〉〈χkm′ |Bkα ′〉∆Σmm′ (k,iω) (J.22)

If ∆Σmm′ is approximated by the impurity self-energy (Eq. (J.19)), the k-dependence of the upfolded self-
energy stems only from the k-dependence of the matrix elements 〈Bkα |χkm〉. The Green’s function reads:

Gαα ′ (k,iω) =
[
(iω + µ ) δαα ′ − ε

KS
αα ′ (k) − ∆Σαα ′ (k,iω)

]−1

αα ′
(J.23)

I recall that m,m′ are indices referring to the correlated subspace C , while α ,α ′ refer to the full Hilbert space
H . The DMFT equation thus involves, in Eq. (J.23), the costly inversion of a large matrix for each k and iω.
A drastic simplification appears when carefully choosing the basis set Bkα and the correlated orbitals, χRm .

J.2.3 Using Wannier functions

In the following, I show that by using suitably defined Wannier functions wRL to specify the basis set Bkα

as well as the correlated orbitals χRm , one can reduce the computational cost of the matrix inversion. Let
us to this effect select the states within an energy window around the Fermi energy containing at least the
correlated bands C ; this defines a subspace W of the full Hilbert space H such that

C ⊆ W ⊆ H

This is illustrated in Fig.12.1. Given the Bloch or Kohn-Sham eigenfunctionsψkn (r), let us define the following
Wannier functions:

wRL (r) =
∑

k

e−ik·R
∑
n∈W

ULn (k)ψkn (r) (J.24)
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ULn (k) is a unitary matrix which can be optimized in various ways, a common choice being to choose it
such that wRL (r) is maximally localized around R. One further defines its Fourier transform, wkL (r) ≡∑

R∈BL e
ik·RwRL (r). One now performs two steps:

1. One defines the basis set as:

Bkα (r) =



ψkn (r) if n < W

wkL (r) if n ∈ W

In this basis (
{
ψk,1, . . .ψk,n ,wkL1 . . .wkLNW

}
), the Kohn-Sham Hamiltonian has the following form:

ĥKS (k) =



εKS
1 (k) 0

. . . 0
0 εKS

n (k)
εL1L1 (k) · · · εL1LNW

(k)

0
...

. . .
...

εLNW
L1 (k) · · · εLNW

LNW
(k)



(J.25)

(ĥKS acts on the full Hilbert space)

2. One selects a subset of wkL (r) which we define as the correlated subspace C , namely χkm = wkL.

With these two assumptions, Eq. (J.22) becomes:

∆ΣLL′ (k,iω) =



∆Σmm′ (k,iω) if (L,L′) ∈ C

0 otherwise

Since ∆ΣLL′ (k,iω) acts only in subspace C (and hence in W ), and since ĥKS (k) is block-diagonal (see Eq.
(J.25)), the matrix elements of G with do not belong to W are left invariant by changes in ∆ΣLL′ (k,iω).
Hence, one can concentrate only on the matrix elements within W . In this subspace, Eq. (J.21) becomes:

Gmm′ (k,iω) =



(iω + µ ) 1 −
*...
,

εL1L1 · · · εL1LNW

...
. . .

...

εLNW
α1 · · · εLNW

LNW

+///
-

(k) −

*......
,

0 0
∆Σm1m1 · · · ∆Σm1mNC

0
...

. . .
...

∆ΣmNC
m1 · · · ∆ΣmNC

mNC

+//////
-

(k,iω)



−1

mm′

(J.26)

Clearly, the states outside of C but within W contribute to Gmm′ (k,iω) despite the fact that ∆Σ only acts in
C . Note that the larger W , the more optimization space there is for the construction of the Wannier function
(J.24), the more localized the Wannier functions will be. On the other hand, the larger W , the more costly
the matrix inversion. Note that because of (J.19), ∆Σmm′ does not depend on k.

J.3 The constrained random-phase approximation (cRPA)

In this section, I explain the method used to compute effective interactions for the low energy subspace from
first principles. A more detailed introduction can be found in Vaugier (2011).

Integrating high-energy degrees of freedom to obtain effective interactions: downfolding
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J.3.1 Screening in a solid: heuristic derivation of RPA and simple screening models

In a solid, the bare Coulomb interactions between electrons are screened: to compute the effective repulsion
felt by two electrons, one must take into account the combined effect of the Coulomb interaction and of the
electric field induced by charges. Before giving a formal definition of the screened interaction – which will be
denoted asW – I give here a simple back-of-the-envelope estimate. Suppose we apply a probe field described
by Hprobe = V0 (r)eiωt (−en(r)), the Kubo formula (Eq. (I.8)) gives the response of the charge ρ (r) = −e〈n(r)〉:

δρ1 (q,ω) = e2P0 (q,ω)V0 (q) (J.27)

with P0 (r,r′,τ ) ≡ −〈n(rτ )n(r′0)〉0. This induced charge fluctuation leads to an induced potential via Poisson’s
equation (d

2V
dx2 = −

ρ
ϵ0

) written in Fourier space: V1 =
ρ1
ϵ0q2 , and so forth. Summing up all contributions, we

obtain for the total charge:

ρtot = ρ0 + e
2P0 (q,ω)V0 + e

2P0 (q,ω)V1 + . . .

= ρ0 + e
2P0 (q,ω)

(
1

ϵ0q2

)
ρ0 + e

2P0 (q,ω)

(
1

ϵ0q2

)
e2P0 (q,ω)

(
1

ϵ0q2

)
ρ0 + . . .

=
ρ0

1 −vCoul (q)P0 (q,ω)

with vCoul (q) ≡ e2

ϵ0q2 . Finally, the total effective electrostatic potential is: Vtot =
ρ tot
ϵq2 =

V0
1−vcoul (q)P0 (q,ω ) . We see

that the initial potential is screened by a term called the dielectric function ϵ (q), here written in the “RPA”
approximation:

ϵRPA (q,ω) ≡ 1 −vCoul (q)P0 (q,ω) (J.28)

Likewise, the Coulomb potential is screened:

W =
vCoul (q)
ϵ (q,ω)

(J.29)

Starting from this general equation, several approximations on the dielectric function ϵ (q,ω) can be devised:

• the Thomas-Fermi approximation consists in approximating the charge response (Eq. (J.27) by assuming
a slowly-varying V0 (r), so that it locally displaces the energy levels ε (k) → ε (k) − eV0 (r), i.e. δρ (r) ≈

−e
∑

k
{
nF (ε (k) − eV0 (r)) −

∑
k nF (ε (k))

}
= e2V0 (r)

∑
k

∂nF
∂ε

����ε=εk

= e2V0 (r)
´
dεN (ε ) ∂nF

∂ε ≡ e2V0 (r)
∂n0
∂ε , so that

ϵTF (q,ω) = 1 −vCoul (q)
∂n0

∂ε

At low temperature, εTF (q,ω) = 1 + vCoul (q)N (εF ) = 1 + e2

ϵ0q2 N (εF ) ≡ 1 +
k2

TF
k2 , so that WTF (q) =

e2/ϵ0/
(
q2 + k2

TF

)
, leading to the a short-range (Yukawa) screened potential:

WTF (r) ∝
1
|r|

e−|r |/ξTF , ξTF ∝ 1/kTF

• the Lindhard approximation consists in approximating ϵ (q,ω) by ϵRPA (q,ω) (Eq.(J.28)), i.e. by taking:

P0 (r,r′,τ ) = 2G0 (r,r′,t )G0 (r′,r,−t ) (J.30)

whereG0 is the non-interacting Green’s function or, in the DFT context,G0 (r,r′,iω) =
[
iω + µ − ĥKS (r)

]−1

r,r′
.
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J.3.2 More formally: introducing a bosonic Hubbard-Stratonovich field

The partition function associated with HES (Eq. (J.1)) is Z =
´
D

[
ψ̄ψ

]
e−S[ψ̄ψ], with

S
[
ψ̄ψ

]
= −

ˆ β

0
dτ
ˆ

drψ̄ (rτ )G−1
0 (r,τ ) (r)ψ (rτ ) +

1
2

ˆ β

0
dτ
ˆ ˆ

drdr′ψ̄ (rτ )ψ (rτ )vCoul (r − r′)ψ̄ (r′τ )ψ (r′τ )

The interactiong term can be decoupled by a Hubbard-Stratonovich transformation (we do not write inte-
gration symbols explicitly here): e−

1
2 ψ̄ (rτ )ψ (rτ )vCoul (r−r′)ψ̄ (r′τ )ψ (r′τ ) =

´
D

[
ϕ
]
e

1
2ϕ (rτ )

[
v−1

Coul

]
(r−r′)ϕ (r′τ )+λψ̄ (rτ )ψ (rτ )ϕ (rτ ),

with λ = 1. In this context, we define the screened interaction to be the correlator of this new field:

W (r,r′,τ ) ≡ −〈ϕ (rτ )ϕ (r′0)〉 (J.31)

In the absence of the fermionic term, one can check thatW0 (r,r′,τ ) = vCoul (r− r′). We define P as the bosonic
self-energy, P (r,r′,ω) ≡

[
v−1

Coul

]
r,r′
−

[
W −1

]
r,r′,ω

, so that after Fourier transformation, we have the familiar form
(see Eq. (J.29))

W (r,r′,ω) =
ˆ

r̄
vCoul (r, r̄,ω)

{
1 −
ˆ

r′′
vCoul (r,r

′′)P (r′′,r′,ω)
}−1

r̄,r′
(J.32)

With this construction, one sees that the random-phase approximation, Eq. (J.30), amounts to the zeroth
order approximation of P .

J.3.3 Partial screening: Constrained RPA

Screening in a solid is caused by polarization effects, as shown by Eq. (J.32). We have already encountered
the RPA polarization in the context of the single-band Fröhlich and Hubbard Hamiltonians, see paragraph
I.6.1.1. There, P0 (q,iω) (or χ0) was shown to consist in (intraband) transitions between occupied and unoc-
cupied states, with large contributions from momenta located on parallel portions of the Fermi surface. In
other words, the screening processes captured at the RPA level for a single band are the creation of particle-
hole pairs on the Fermi surface. Similarly, in a multiband context, RPA consists in approximating screening
by all intraband and interband particle-hole pair creation processes. In the same way as a correlated sub-
space C was introduced to deal with correlations beyond the DFT level, one can also distinguish between
particle-hole pair processes coming from a low-energy “target” window (e.g. the W defined in Fig. 12.1) –
they will contribute to a partial polarization Ptarget, and the rest (contributing to Prest ≡ P0 − Ptarget). If the
bare Coulomb interaction is screened only by Prest, the corresponding partially screened interaction merely
amounts to the effective interaction in the target subspace:

Wrest (r,r′,ω) ≡
ˆ

r̄
vCoul (r, r̄,ω)

{
1 −
ˆ

r′′
vCoul (r,r

′′)Prest (r′′,r′,ω)
}−1

r̄,r′
(J.33)

The screening coming from high-energy pair-hole creation processes are all taken into account into Prest. In
this sense, this way of computing the partially screened interaction, dubbed constrained RPA (Aryasetiawan
et al. (2004)), is akin to a Wilson renormalization group downfolding procedure where the integration of
high-energy degrees of freedom renormalizes the bare interaction parameters (vCoul) into screened interac-
tion parametersWrest. This is summarized in Fig.4.3.

Importantly, the resulting interactionWrest (r,r′,ω) is

1. frequency dependent, i.e. it includes retardation effects coming from high-energy modes;

2. in general, shorter-ranged than vCoul, see the discussion on the Thomas-Fermi approximation (subsec-
tion J.3.1).
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While the second point is an a posteriori justification for restraining the description of correlations in the
correlated subspace to local interactions (as done in the Hubbard model), the first one points to an intrinsic
limitation of the static Hubbard model. This indeed indicates that in a generic case, Hubbard’s U should be
dynamical.

Importantly, cRPA includes only particle-hole bubble diagrams to screen the bare Coulomb interaction. Sev-
eral recent works point to the importance of other classes of diagram (e.g. particle-particle diagrams) for the
determination of the low-energy effective interactions (Honerkamp (2012); Shinaoka et al. (2014); Kinza
and Honerkamp (2015)). These additional diagrams can be added in a functional renormalization group
framework, for instance.

J.3.4 How to compute U (and V ) in pratice

The above formulation of cRPA does not make any reference to a basis set. In practice, however, the DMFT
or LDA+DMFT equations are solved in the low-energy subspace C with a localized basis

{���wkm〉
}

(see e.g.
Eq. (J.26)). The connection of this basis set to the above discussion is made by expanding the field operators
of the interaction term:

SC
int ≡

1
2

¨ β

0
dτdτ ′

˚
V
dr
˚

V
dr′ψ̄ (rτ )ψ̄ (r′τ ′)Wrest (r,r′,τ − τ ′)ψ (r′τ ′)ψ (rτ )

on the localized basis: ψ (rτ ) =
∑

Rm wRm (r)cRm (τ ), yielding: SC
int =

1
2

˜ β
0 dτdτ ′

∑
m1m2m3m4 U

m1m2m3m4
R1R2R3R4

c̄R1m1c̄R2m2cR3m3cR4m4 ,
with

Um1m2m3m4
R1R2R3R4

(τ − τ ′) ≡ 〈wR1m1wR2m2
���Wrest (r,r′,τ − τ ′)

���wR3m3wR4m4〉 (J.34)

Using symmetries, these general matrix elements can be parametrized, in the case of a local interaction
(R1 = R2 = R3 = R4) by a small number of Slater integrals Fk (3 for a d-shell, 4 for an f -shell)(see e.g.
Vaugier et al. (2012)).

The approximation leading to the single-band, extended Hubbard model is, in this language:

UR1R2R3R4 (τ − τ
′) ≈

(
UδR1−R2δR2−R3δR3−R4 +VδR1−R4δR2−R3δ〈R1R2〉

)
δτ−τ ′

where δ〈RR′〉 vanishes except if R and R′ are nearest neighbors.



Part IX

Appendix: details of some derivations

In this part, the reader will find details of some derivations mentioned in the main text.
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Let f be a function, [a,b] a segment in R and Ri a set of discrete equally spaced points with spacing δR. Then:

∆ =

ˆ b

a
f (r )dr −

∑
i

f (Ri )δR

=

N∑
i=1

ˆ Ri+1

Ri

[
f (r ) − f (Ri )

]
dr

≈

N∑
i=1

ˆ Ri+1

Ri
(r − Ri ) f

′(Ri )dr

=

N∑
i=1

(Ri+1 − Ri )
2

2
f ′(Ri )

In going from the second to the third line, we have performed a Taylor expansion. Using the triangle equality,
we obtain

|∆| ≤
N∑
i=1

(δR)2

2
max
r
| f ′(r ) |

=
(a − b)δR

2
max
r
| f ′(r ) | (K.1)

Let us now quantify the error made in Eq. (6.2) for the one-dimensional case by defining

∆ =

ˆ Na

−Na
dr

erf(r/η)
r

eiqr −
∑
R∈BL

a
erf(R/η)

R
eiqR

This problem is the same as finding the error ∆ =
´ b
a f (r )dr −

∑
i f (Ri )δR with f (r ) =

erf(r/η)
r eiqr . We apply Eq.

(K.1) with a − b = 2Na, δR = a, and

max
�����
d f

dr

�����
= max

r



������

(
erf(r/η)

r

) ′
eiqr +

erf(r/η)
r

iq · eiqr
������



= max

max
r




(
erf(r/η)

r

) ′


; max
r

{
erf(r/η)

r
q

}

= max
[
0.42
η2

;
2
√
π

q

η

]
(K.2)
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Now, considering that the Fourier transform of f , expressed by ṽcont, is short-ranged of range 1/η, we need
only look at q . 1

η . Thus, max ���
df
dr

��� ∼
1
η2 ( 2√

π ≈ 1.12) and the error |∆| is bounded:

|∆| <
2Na · a

2
·

1
η2

This error is vanishing if Na2

η2 � 1, which proves (6.3).



L
Appendix to chapter 8

L.1 Non-interacting free energy

The non-interacting free energy in the presence of sources reads:

Ω[h,B,F ,λ = 0]

= − log
ˆ
D[c̄,c,ϕ]e−Seb−c̄u Fuv cv+hαϕα− 1

2ϕα Bα βϕβ

= − log
{
Det

(
−G−1

0 + F
)

Det
(
−U −1 + B

)−1/2
}

−
1
2

h2

−U −1 + B

= −Tr log
(
G−1

0 − F
)
+

1
2

Tr log
(
U −1 − B

)
+

1
2

h2

U −1 − B

Hence, applying Eqs (8.17a-8.17c-8.17b) in the case λ = 0 lead to

φ = −
h

U −1 − B

W nc =
(
U −1 − B

)−1
−

h2(
U −1 − B

)2

G =
(
G−1

0 − F
)−1

yielding the following inversion relations:

h = −φ
(
U −1 − B

)
F = G−1

0 −G
−1

B = U −1 −W −1

and the final expression:

Ω[h,B,F ,λ = 0] = −Tr log
[
G−1

]

+
1
2

Tr log
[
W −1

]
+

1
2
W −1φ2 (L.1)
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L.2 Simplifications in the homogeneous phase

L.2.1 Simplification of Σ and P in the homogeneous phase

Under the assumptions of subsection 8.3.2.4, Eqs (8.36a-8.36b) can be simplified, namely

Σuv = −
(
σ I
σσ1

δikδkm
) (
Gklδσ1σ2

)
W

η (I )
mn Λ

η (I )
l jn σ

I
σ2σ ′

+
(
σ I
σσ ′δi jδ jm

)
φmη (I )

= −
(
σ I
σσ1

σ I
σ1σ ′

)
GilW

η (I )
in Λ

η (I )
l jn + σ

I
σσ ′φ jη (I )δi j

= −
(
δσσ1δσ1σ ′

)
GilW

ch
in Λ

ch
l jn + δσσ ′φ j,chδi j

−
(
2δσσ ′δσ1σ1 − δσσ1δσ1σ ′

)
GilW

sp
in Λ

sp
l jn

+σ I
σσ ′φ j,spδi j

= Σi jδσσ ′

which yields Eq. (8.38a). Similarly:

P I Jmn = σ I
σσ1

δikδkmGklδσ1σ2G jiδσ ′σσ
J
σ2σ ′

Λ
η (I )
l jn

= tr
[(
σ I

)2
]
GmlG jmΛ

η (I )
l jn δI J

= P
η
mnδI J

which yields Eq. (8.38b).

L.2.2 Decomposition of Σ and P

Starting from (8.60a), one can rewrite:

Σ(k,iω) = −
∑
η

mη

∑
q,iΩ

(
G̃ (k + q,iω + iΩ) +Gloc (iω)

) (
W̃ η (q,iΩ) +W

η
loc (iΩ)

)
Λ
η
imp (iω,iΩ)

= −
∑
η

mη

∑
q,iΩ

G̃ (k + q,iω + iΩ)W̃ η (q,iΩ)Λ
η
imp (iω,iΩ) −

∑
η

mη

∑
iΩ

Gloc (iω + iΩ)W
η
loc (iΩ)Λ

η
imp (iω,iΩ)

= −
∑
η

mη

∑
q,iΩ

G̃ (k + q,iω + iΩ)W̃ η (q,iΩ)Λ
η
imp (iω,iΩ) + Σimp (iω)

This yields (8.63a). An analogous calculation yields (8.63b).

L.3 Spin rotation invariance: properties

All the following identities are equivalent:

〈nIϕ J 〉 ∝ δI J

σ I
wlσ

I
uv 〈c̄

ucvϕ J 〉 ∝ σ I
wlδI J

(2δwvδlu − δwlδuv ) 〈c̄
ucvϕ J 〉 ∝ σ Jwl(

2〈c̄lcwϕ J 〉 − 〈c̄vcvϕ J 〉δwl
)
∝ σ Jwl

〈c̄lcwϕ J 〉 ∝ σ Jwl

We have used the fact that under rotation invariance, 〈c̄vcvϕx 〉 = 〈nϕx 〉 = 0 = 〈nϕy〉 = 〈nϕz〉.



M
Appendix to chapter 11

In this appendix, I present details of calculations for the CTQMC solver presented in chapter 11.

M.1 Dynamical trace factor in CTQMC

Let us perform the integration of

f (τ ) ≡

ˆ τ
′

kj

τkj

dτ ′Di j (τ − τ
′) = −

ˆ τ−τ
′

kj

τ−τkj

dτ̄Di j (τ̄ ) (M.1)

One must now distinguish two cases: if τ ∈ [τkj ,τ
′

kj
], Di j (τ̄ ) is discontinuous in the interval [τ − τkj ,τ − τ

′

kj
],

forcing one to split the integral:

f (τ ) =

ˆ 0−

τ−τ ′kj

dτ̄Di j (τ̄ ) +

ˆ τ−τkj

0+
dτ̄Di j (τ̄ )

= K ′i j (0
−) − K ′i j (τ − τ

′

kj ) + K
′
i j (τ − τkj ) − K

′
i j (0

+)

= −2K ′i j (0
+) + K ′i j (τ − τkj ) − K

′
i j (τ − τ

′

kj ) (M.2)

K (τ ) is defined in Eq. (11.21a). Otherwise (if τ < [τkj ,τ
′

kj
]), one can directly integrate and get f (τ ) =

K ′i j (τ − τkj ) − K
′
i j (τ − τ

′

kj
). Both cases are taken into account by the expression:

f (τ ) = −2K ′i j (0
+)

{
θ (τ − τkj ) − θ (τ − τ

′

kj )
}
+ K ′i j (τ − τkj ) − K

′
i j (τ − τ

′

kj ) (M.3)

Then:

lnwdyn = −
1
2

∑
i j

∑
kikj

ˆ τ
′

ki

τki

dτ
[
−2K ′i j (0

+)
{
θ (τ − τkj ) − θ (τ − τ

′

kj )
}
+ K ′i j (τ − τkj ) − K

′
i j (τ − τ

′

kj )
]

= K ′i j (0
+)

∑
i j

∑
kikj

ˆ τ
′

ki

τki

dτ
{
θ (τ − τkj ) − θ (τ − τ

′

kj )
}
−

1
2

∑
i j

∑
kikj



ˆ τ
′

ki
−τkj

τki −τkj

K ′i j (τ̄ )dτ̄ −

ˆ τ
′

ki
−τ
′

kj

τki −τ
′

kj

K ′i j (τ̄ )dτ̄



= K ′i j (0
+)

∑
i j

∑
kikj

lkikj −
1
2

∑
i j

∑
kikj

[
Ki j (τ

′

ki − τkj ) − Ki j (τki − τkj ) − Ki j (τ
′

ki − τ
′

kj ) + Ki j (τki − τ
′

kj )
]
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lkikj denotes the overlap of segment ki with kj . Finally, one gets:

lnwdyn =
∑
i j

K ′i j (0
+)Oi j −

1
2

∑
i j

∑
kikj

[
Ki j (τ

′

ki − τkj ) − Ki j (τki − τkj ) − Ki j (τ
′

ki − τ
′

kj ) + Ki j (τki − τ
′

kj )
]

︸                                                                                                ︷︷                                                                                                ︸
≡A

where Oi j is the total overlap of line i with line j. I recall that τi (resp. τ ′i ) label creation (resp. annihilation)
operators. Splitting the sum (∑

kikj = 2
∑

ki<kj +
∑

ki=kj ), the second term can be rewritten

A =
∑
i j

∑
ki<kj

[
−Ki j (τ

′

ki − τkj ) − Ki j (τki − τ
′

kj ) + Ki j (τki − τkj ) + Ki j (τ
′

ki − τ
′

kj )
]
+

∑
i

∑
ki

[
−Ki j (τ

′

ki − τki ) + Ki j (0)
]

=
∑

pairs (α ,β )

sαsβKi (α )j (β ) (τ̃α − τ̃β ) + N
∑
α

Kαα (0)

where N is the total number of operators. Thus, A is given by a sum over distinct pairs of creation or
annihilation operators (denoted by indices α , β) of K (τ̃α − τ̃β ) times a factor which is 1 is it is a pair of distinct
operators, −1 if it is a pair of identical operators (i.e. sα = 1 for creation operators and −1 for annihilation
operators). Noticing that

∑
pairs (α ,β ) sαsβ =

1
2

∑
α β

sαsβ︸   ︷︷   ︸
0

−
∑
α s

2
α = −N , A simplifies to

A =
∑

pairs (α ,β )

sαsβ
[
Ki (α )j (β )

(
τ̃α − τ̃β

)
− Ki (α )j (β ) (0)

]
(M.4)

Thus:

lnwdyn =
∑

pairs (α ,β )

sαsβ
[
Ki (α )j (β ) (τ̃α − τ̃β ) − Ki (α )j (β ) (0)

]
+

∑
i

liK
′
ii (0) + 2

∑
i,j
i,j

K ′i j (0
+)Oi j (M.5)

One thus obtains Eq. (11.22).

M.2 Hamiltonian formulation the impurity model

The action of Eq (11.3) can be obtained from a Hamiltonian formulation describing the coupling of a corre-
lated fermionic level εaσ (with Hubbard interactions 1

2Ui jninj) with

• a free fermionic bath described by the operators d†α and dα ; the coupling strength is Vα i and the energy
levels ε̃α β ;

• a free bosonic bath described by the operators b†αξ and bαξ with three components ξ = x ,y,z; the
coupling strength is дaαξ ;

namely:

Himp =
∑
i

εini +
1
2

∑
i j

Ui jninj (M.6)

+
∑
α βσ

ε̃αd
†
αdα +

∑
α ,i

Vα i
{
d†αci + c

†

i dα
}

+
∑
αξ

ωαξb
†

αξbαξ +
∑
aαξ

д
ξ
aαs

ξ
a

∑
q

(
bαξ + b

†

αξ

)
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Here, i ≡ (a,σ ), where a is an orbital index. Greek indices denote the bath degrees of freedom.

Let us define the hybridization function ∆(iωn ) and the effective retarded spin-spin interaction J ξ ξ ′

ab (iνn ):

∆i j (iωn ) ≡
∑
α

Viα
1

iωn − ε̃α
Vα j

J
ξ ξ ′

ab (iνn ) ≡
∑
α

д
ξ
aα

2ωαξ
ν2
n + ω

2
αξ

д
ξ ′

αb

Integrating out d and ϕ fields yields:

Simp =

¨ β

0
dτdτ ′

∑
i j

{
c̄i (τ )

(
(∂τ + εi ) δi jδτ−τ ′ + ∆i j (τ − τ

′)
)
c j (τ

′)
}
+

ˆ β

0
dτ

1
2

∑
i j

Ui jni (τ )nj (τ ) (M.7)

+

¨ β

0
dτdτ ′

1
2

∑
ab

∑
ξ ξ ′

s
ξ
a (τ )J

ξ ξ ′

ab (τ − τ ′)s
ξ
′

b (τ ′)

M.3 Computation of K (τ ) from U (iν )

Let U (iνn ) denote the frequency-dependent interaction. In particular, limn→∞U (iνn ) = U∞. Let us define

D (iνn ) ≡ U (iνn ) −U∞

The dynamical kernel K (τ ) is partially defined in Eq. (??). To fully define K (τ ), one needs to define two
boundary conditions. Inspired by the form of the dynamical contribution to the weight (Eq. (??)), we choose
K (0) = K (β ) = 0.

By definition of the Fourier transform,1

D (τ ) =
D (iνn = 0)

β
+

2
β

∑
n>0

D (iνn ) cos(νnτ )

The cosine comes from the fact that D (iνn ) is real. Upon a double τ -integration, we get

K (τ ) =
D (iνn = 0)

β

τ 2

2
+

2
β

∑
n>0

D (iνn )
cos(νnτ )
−ν2

n
+Aτ + B

Using the initial conditions yields 0 = K (0) =
∑

n>0D (iνn )/
(
−ν2

n

)
+ B, and 0 = K (β ) = D (iνn=0)

β
β2

2 +

2
β
∑

n>0D (iνn )
1
−ν 2

n
+Aβ + B = D (iνn=0)

2 β +Aβ , i.e

A = −
D (iνn = 0)

2

B =
2
β

∑
n>0

D (iνn )

ν2
n

.

Thus

K (τ ) =
D (iνn = 0)

2
τ

(
τ

β
− 1

)
+

2
β

∑
n>0

D (iνn )

ν2
n

(1 − cos(νnτ )) (M.8)

K ′(0) = −
D (iνn = 0)

2
1f (iωn ) =

´
dτ e iτωn f (τ ) and f (τ ) = 1

β
∑∞
n=−∞ e−iτωn f (iωn )
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and:

K ′(τ ) = D (iνn = 0)
(

τ

β
− 1

2

)

+

2
β

∑

n>0

D (iνn )
sin(νnτ )

νn

Going back to the original interaction U (iνn ), this reads

K (τ ) =
U0 −U∞

2
τ

(

τ

β
− 1

)

+

2
β

∑

n>0

U (iνn ) −U∞
ν2
n

(1 − cos(νnτ ))

K ′(0) =
U∞ −U0

2

Using the Fourier transform of 1/(iνn )2,2 one finally finds the simplified formulae:

K (τ ) =
2
β

∑

n>0

U (iνn ) −U0

ν2
n

(1 − cos(νnτ )) (M.9)

K ′(τ ) = (U0 −U∞)
(

τ

β
− 1

2

)

+

2
β

∑

n>0

(U (iνn ) −U∞)
sin(νnτ )

νn
(M.10)

In particular, K ′(0) = U∞−U0
2 . Hence, the renormalized parameters Ũ and µ̃ are:

Ũ = U∞ − 2K ′(0) = U0

µ̃ = µ + K ′(0) = µ +
U∞ −U0

2

M.3.1 Holstein case

If D (iΩ) =
2д2ω0

(iΩ)2−ω2
0

then3

K (τ ) = −
(

д

ω0

)2 cosh
((

β

2 − τ
)

ω0

)

− cosh
(
βω0

2

)

sinh
(
βω0

2

)

M.4 A code example: the insert move

Here, I give a full working example of Monte-Carlo update as implemented in the code. While without the full
code, one cannot understand all the details, the general structure can be seen to directly follow the update
procedure described in paragraph 11.2.2.1.1.

#pragma once
#inc lude " . / co n f i gu ra t i o n . hpp "
#inc lude " . / qmc_parameters . hpp "
#inc lude <t r i q s / mc_tools / random_generator . hpp>
namespace t r i q s { namespace a p p l i c a t i o n s { namespace i mp u r i t y _ s o l v e r s { namespace ctqmc_seg {

c l a s s move_insert_segment {
const qmc_parameters * params ; co n f i gu ra t i o n * con f i g ;
mc_tools : : random_generator &RND; i n t co lo r ;
pub l i c :
move_insert_segment ( const qmc_parameters * params_ , co n f i gu ra t i o n * conf ig_ , mc_tools : :

random_generator &RND_) : params ( params_ ) , con f ig ( con f ig_ ) ,RND(RND_) {} ;

2

TF
[

1
(iνn )2

]
= − τ

2

2β
+

τ

2
− β

12

3Note: D (iΩ) < 0, D (τ ) < 0
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
double attempt () {

// −−−−−−−− S e l e c t i o n of the t imes and co lo r f o r the segment i n s e r t i o n −−−−−−−−−−−−
// p ick up co lo r and f i r s t time
co lo r = RND( params−>n_color ) ;
auto tau_1 = qmc_time_t : : random(RND, params−>beta , params−>beta ) ; // choose tau between 0 and beta
qmc_time_t lmax , tau_2 ; bool need_swap ;
// p ick up second time :
i f ( conf ig−>ops_map () . op_number ( co lo r )==0) { //no opera tor s
lmax = ( params−>beta ) ;
tau_2 = qmc_time_t : : random(RND, lmax , params−>beta ) ;
need_swap = ! ( conf ig−>t r a c e . f u l l _ l i n e s ( co lo r ) ) ; //by convention , i f empty/ f u l l l i n e : tau_1 i s

c rea t ion , tau_2 i s a n n i h i l a t i o n
}
e l s e {
auto R = conf ig−>ops_map () . r i gh t_ne ighbor ( tau_1 , co lo r ) ; // po int a t r i g h t of tau_1
a s s e r t ( conf ig−>ops_map () . c y c l i c _ l e f t (R)−>tau != R−>tau ) ;
lmax = ( conf ig−>ops_map () . c y c l i c _ l e f t (R)−>tau − R−>tau ) ;
tau_2 = qmc_time_t : : random (RND, lmax , params−>beta ) + R−>tau ;
need_swap = on_same_side ( tau_1 , tau_2 , R−>tau ) ? ! ( tau_1 > tau_2 ) : ( tau_1 > tau_2 ) ;

}
i f ( need_swap ) s td : : swap( tau_1 , tau_2 ) ;
auto sd = segment_desc { tau_1 , tau_2 , co lo r } ;
// −−−− compute r a t i o of t r a c e and det −−−−−−−−−−−−
segment seg ; double l n _ t r a c e _ r a t i o ;
t r y { s td : : t i e ( l n _ t r a c e _ r a t i o , seg ) = conf ig−>t r a c e . t r y_ in se r t_ segment ( sd ) ; }
catch ( i n s e r t i o n _ e r r o r const & e ) { s td : : c e r r << " i n s e r t e r ro r −− move i n s e r t "<< std : : endl ;

re turn 0;}
double t r a c e _ r a t i o = std : : exp ( l n _ t r a c e _ r a t i o ) ;
double d e t _ r a t i o = conf ig−>hyb_dets . try_add ( seg . l , seg . r ) ;
i n t n_ops_a f te r = 2* conf ig−>hyb_dets . seg_number ( co lo r ) ; // t r y _ i n s e r t updates hyb op map s i z e
// −−−− compute p ropos i t i on r a t i o −−−−−−−−−−−−
double prop_ra t io = conf ig−>ops_map () . seg_number ( co lo r )==1?

params−>beta *params−>beta / 2 .0 :
params−>beta *lmax / ( 2* n_ops_a f te r ) ; //compute proposa l p r o b a b i l i t y r a t i o

double s = ( d e t _ r a t i o > 0.0 ? 1.0 : −1.0 ) ;
double prod = t r a c e _ r a t i o * d e t _ r a t i o * prop_ra t io ;
re turn ( s td : : i s f i n i t e ( prod ) ? prod : s ) ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
double accept () {

conf ig−>id++; conf ig−>hyb_dets . complete_add () ;
double s i g n _ r a t i o = conf ig−>t r a c e . complete_ inser t_segment () ;
re turn s i g n _ r a t i o ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void r e j e c t () {

conf ig−>id++; conf ig−>hyb_dets . r e j e c t_add () ;
conf ig−>t r a c e . r e j e c t _ i n s e r t _ s e g m e n t () ;

}
} ;
}}}}

Listing M.1: Listing of the move "insert segment"
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Appendix to chapter 10

The mathematical definitions of the objects manipulated in this appendix are given in section 10.3.2.

N.1 Simple-minded estimates for f (〈X 〉)

In the limit N → ∞, one expects that
f (〈X 〉) ≈ f (x̄ ) (N.1)

In the simple case f (x ) = x . Eq. (N.1) is easy to prove since, by definition of the samples xi , 〈xi 〉 = 〈X 〉, and
hence:

〈x̄〉 = 〈X 〉

so that a good estimate for 〈X 〉 is x̄ .

N.1.1 Unbiased estimate f (x̄ )

f (x̄ ) is called an unbiased estimate since the expectation value 〈f (x̄ ) − f (〈X 〉)〉 vanishes for large sample sizes.
Indeed,

〈f (x̄ ) − f (〈X 〉)〉 = 〈f (x̄ − 〈X 〉) − f (〈X 〉)〉

= 〈
1
2
(x̄ − 〈X 〉)2 f ′′(〈X 〉)〉 + . . .

=
1
2
f ′′(〈X 〉)〈(x̄ − 〈X 〉)2〉 + . . .

=
1
2
f ′′(〈X 〉)

(
〈x̄2〉 − 〈x̄〉2

)
+ . . .

If the variables are independent,

〈x̄2〉 − 〈x̄〉2 =
1
N 2

∑
i j

〈xix j 〉 − 〈xi 〉〈x j 〉 =
1
N 2

∑
i

〈x2
i 〉 − 〈xi 〉

2 =
Var(X )

N

where Var(X ) ≡
〈
(X − 〈X 〉)2

〉
denotes the intrinsic variance of the random variable X . Finally,

〈f (x̄ ) − f (〈X 〉)〉 =
1

2N
f ′′(〈X 〉)Var(X ) +O

(
1
N 2

)
(N.2)
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The error vanishes for large N . This still holds for correlated samples (Var(X ) is just replaced by Var(X ) (1 + 2τc ),
see later). We have thus seen that to obtain an estimate for f (〈X 〉), one should compute f (x̄ ). Eq. (N.2) is
not surprising: this is what one would have guessed without calculation.

N.1.2 Biased estimate f (x )

Were one to use f (x ) instead of f (x̄ ), one would make, on average, the following error:

〈f (x ) − f (〈X 〉)〉 =
1
N

∑
i

〈f (xi )〉 − 〈f (〈X 〉)〉

= 〈f (x ) − f (〈X 〉)〉

=

ˆ
dxP (x ) ( f (x ) − f (〈X 〉))

=

ˆ
dxP (x )

[
(x − 〈X 〉) f ′(〈X 〉) +

(x − 〈X 〉)2

2
f ′′(〈X 〉) + . . .

]

=
1
2
f ′′(〈X 〉)Var(X ) + . . .

To go from the third to the fourth line, I have used the fact that x̄ is a good estimate for 〈X 〉, so that we can
make a Taylor expansion of f in powers of (x̄ − 〈X 〉).

This error remains finite in the limit of large N . This is called bias and is directly related to the non-linearity
of f . This generalizes to the multi-variable case, and holds for independent as well as for correlated samples.

The above results do not tell us, however, what the uncertainty on this estimate is. The next subsection will
address the issue of assessing this uncertainty.

N.2 Relationship between the error estimate and the intrinsic variance

In the following subsection, I first deal with the simplified case, f = 1, namely, I shall find an estimate for

∆〈X 〉2 ≡
〈
[x̄ − 〈X 〉]2

〉
(N.3)

One can write

∆〈X 〉2 =

〈
*
,

1
N

∑
i

xi − 〈X 〉+
-

2〉
=

〈
1
N 2

∑
i,j

xix j − 2
〈X 〉

N

∑
i

xi + 〈X 〉
2
〉

=
1
N 2

∑
i,j

〈xix j 〉 − 〈X 〉
2

=
1
N 2

∑
i

〈x2
i 〉 −

1
N
〈X 〉2 +

1
N 2

∑
i,j,i,j

〈xix j 〉 −

(
1 −

1
N

)
〈X 〉2

=
Var(X )

N
+

1
N 2

*.
,

∑
i,j,i,j

〈xix j 〉 − N (N − 1)〈X 〉2+/
-

(N.4)

N.2.1 Independent samples

If the samples are independent, 〈xix j 〉 = 〈xi 〉〈x j 〉 for i , j. Therefore, the second term vanishes in the limit
N → ∞. Therefore, an unbiased estimate for ∆〈X 〉2 is:

∆〈X 〉2 =
indep

Var(X )

N
(N.5)
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N.2.2 Correlated samples

If the samples are not independent, one can write∑
i,j,i,j

〈xix j 〉 = 2
∑
i<j

〈xix j 〉 = 2
N∑
i=1

N−i∑
t=1

〈xixi+t 〉

Noticing that
∑N

i=1
∑N−i

t=1 1 = N (N−1)
2 , one arrives at

1
N 2

*.
,

∑
i,j,i,j

〈xix j 〉 − N (N − 1)〈X 〉2+/
-
=

2
N 2

N∑
i=1

N−i∑
t=1

(
〈xixi+t 〉 − 〈X 〉

2
)

Hence, Eq. (N.4) becomes:

∆〈X 〉2 =
Var(X )

N
*.
,
1 +

2
N

∑N
i=1

∑N−i
t=1

(
〈xixi+t 〉 − 〈X 〉

2
)

Var (X )
+/
-

(N.6)

Defining an integrated autocorrelation time

τ int
X ≡

∑∞
t=1

(
〈xixi+t 〉 − 〈X 〉

2
)

Var(X )
=

∞∑
t=1

A(t ) (N.7)

The autocorrelation function A(t ) is defined in Eq. 10.12.

Taking the limit N → ∞ in the second summation of Eq. (N.6), one thus obtains:

∆〈X 〉2 =
Var(X )

N

(
1 + 2τ int

X

)
(N.8)

Eqs. (N.5) and N.8) give a relation between the error estimate and the intrinsic variance VarX of the random
variable X , which is in general unknown. We shall hereafter derive a relation between the sample mean
deviation and the true variance.

N.3 Relationship between empirical and intrinsic variance

The empirical variance is given by

σ2
x ≡

1
N

N∑
i=1

(xi − x̄i )
2 =

1
N

N∑
i=1

*.
,
xi −

1
N

∑
j

x j
+/
-

2

=
1
N

N∑
i=1

*.
,
x2
i −

2
N

∑
j

xix j +
1
N 2

∑
jk

x jxk
+/
-

Hence:

〈σ2
x 〉 = 〈X 2〉 +

1
N 2

N∑
i=1

*.
,
−2 *.

,
〈X 2〉 +

∑
j,i

〈xix j 〉
+/
-
+

1
N

∑
jk

〈x jxk 〉
+/
-

=

(
1 −

2
N

)
〈X 2〉 +

1
N 2

N∑
i=1

*.
,
−2

∑
j,i

〈xix j 〉 +
1
N

∑
jk

〈x jxk 〉
+/
-

=

(
1 −

2
N

)
〈X 2〉 +

1
N 2

N∑
i=1

*.
,
−2

∑
j,i

〈xix j 〉 +
1
N


N 〈X 2〉 +

∑
jk,j,k

〈x jxk 〉



+/
-

=

(
1 −

1
N

)
〈X 2〉 +

1
N 2

N∑
i=1

*.
,
−2

∑
j,i

〈xix j 〉 +
1
N

∑
jk,j,k

〈x jxk 〉
+/
-
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N.3.1 Independent samples

If the variables are independent,

〈σ2〉 =

(
1 −

1
N

)
〈X 2〉 +

1
N 2

N∑
i=1

*.
,
−2

∑
j,i

〈X 〉2 +
1
N

∑
jk,j,k

〈X 〉2+/
-

=

(
1 −

1
N

)
〈X 2〉 +

1
N 2

N

(
−2(N − 1)〈X 〉2 +

N (N − 1)
N

〈X 〉2
)

so that

〈σ2〉 =
indep

N − 1
N

Var(X ) (N.9)

The variance of the samples, in the limit of large sample size, is equal to the intrinsic variance. Thus, for
independent variables, one can extract the error estimate from the sample mean deviation via Eq. (??).

The uncertainty on the estimate decreases as the inverse of the sample size. Equation (N.9) only holds

• for independent samples and

• for f = 1

N.3.2 Correlated samples

For correlated variables, using (N.8), one finds

〈σ2〉 =
correl

N − 1
N

Var(X ) (1 + 2τint) (N.10)

N.4 Details for paragraph 10.3.4.1.2

We have:

(N − 1) 〈σ2
f J 〉 = (N − 1)

1
N

∑
i

〈(
f J
i − f J

)2〉

=
N − 1
N

∑
i

〈( 

1
N − 1

N∑
j=1,j,i

(x j − 〈X 〉) f
′(〈X 〉) + . . .



−
1
N

N∑
k=1



1
N − 1

N∑
j=1,j,k

(x j − 〈X 〉) f
′(〈X 〉) + . . .



2 )〉

=
f ′(〈X 〉)2

N (N − 1)

∑
i

〈
*.
,

N∑
j=1,j,i

(x j − 〈X 〉) −
1
N

N∑
k=1

N∑
j=1,j,k

(x j − 〈X 〉)
+/
-

2〉
+ . . .

=
f ′(〈X 〉)2

N (N − 1)

∑
i

〈
*
,
−(xi − 〈X 〉) +

1
N

N∑
k=1

(xk − 〈X 〉)+
-

2〉
+ . . .

=
f ′(〈X 〉)2

N (N − 1)

∑
i

〈
(xi − x )

2
〉
+ . . .

= f ′(〈X 〉)2
σ2

N − 1
+ . . .

= f ′(〈X 〉)2〈(x̄ − 〈X 〉)2〉 + . . .
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Figure N.1: Autocorrelation time estimation. (a) Autocorrelation function A(t ). It follows the law e−t/τc .
(b) Integrated autocorrelation time: influence of N on the autocorrelation time estimate. N has to be
large enough, and lmax neither too small nor too large. The rule of thumb is usually lmax = 6τint (lmax). (c)
Influence of the sample size N on the autocorrelation time estimate τint (lmax). For a given τc , the larger
N , the better the estimate. For a given N , the lower τc , the better the estimate. Indeed, the effective sample
size is Neff ≈ N /(1 + 2τc ). (d) Autocorrelation time estimation at fixed N = 100.000. The estimate is
reliable for low τc (as τc grows, Neff decreases). One needs at least N = 2000τc to get a reliable estimate.

To derive the last line, I used Eqs. (10.7-10.8).

N.5 Autocorrelation time estimation from the autocorrelation function

In Fig. N.1a, one can check that the autocorrelation function of {xi } (defined in Eq. (10.12)), verifies:

A(t ) ≈ e−t/τc (N.11)

The autocorrelation time can be estimated by computing the integrated autocorrelation time defined in Eq.
N.7). With this form, one has:

´ t
0 dt̄A(t̄ ) = τc

(
1 − e−t/τc

)
. This explains the definition of the autocorrelation

time Eq. (10.11). In practice, the series contains a finite number of samples, so that the integrated correlation
time estimate becomes:
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τint[tmax] =
tmax∑
t=1

A(t )

As one can see in Figure N.1b, the estimate of the autocorrelation time is correct only (i) for a large enough
sample size N and (ii) for a not too large tmax (compared to N ). One can self-consistently estimate τint by
choosing tmax such that the following rule of thumb is satisfied:

tmax = 6τint[tmax] (N.12)

which corresponds to a precision of 0.25% if the autocorrelation function were exactly modelled by a decay-
ing exponential (Eq.(N.11)). The corresponding estimate for the autocorrelation time, τint (tmax) is accurate
provided the sample size is large enough. This is illustrated by Figure N.1c.

Albeit a precise estimate of the autocorrelation time, this estimate is slow because the computation of τint is
a O (N 2) computation.
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We present a fully self-consistent combined GW and dynamical mean field (DMFT) study of the

extended two-dimensional Hubbard model. The inclusion of the local dynamical vertex stemming from

the DMFT self-energy and polarization is shown to cure the known problems of self-consistent GW. We

calculate momentum-resolved spectral functions, two-particle polarizations, and electron-loss spectra, as

well as the effective dynamical interaction induced by nonlocal screening. The momentum-dependence

introduced by GW into the extended DMFT description leads to a narrowing of the quasiparticle width

and more pronounced Hubbard bands in the metallic regime as one approaches the charge-ordering

transition. It further affects the shape of collective modes, giving rise to dispersive plasmon-like long-

wavelength and stripe modes.
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Modern spectroscopic techniques are able to measure

one- and two-particle spectra of condensed matter systems

with remarkable precision, characterizing not only quasi-

particle excitations but unveiling also satellite structures.

Examples include Hubbard bands in photoemission spec-

troscopy, stemming from the atomic-like behavior of the

electrons in partially filled narrow d or f shells [1], or

collective excitations such as plasmonic features.

Addressing such effects requires an accurate description

of one- and two-particle spectral functions within the

framework of many-body theory. The quantitative predic-

tion of satellite features has even been used as a quality

marker for many-body techniques. The failure of self-

consistent perturbation theory in the screened Coulomb

interaction, the self-consistent GW approximation, to

describe plasmon satellites in the electron gas, for example,

has provided arguments in favor of a non-self-consistent

(‘‘one-shot GW’’) treatment [2–4]. For real solids, few

fully self-consistent calculations are available [5,6], and

no consensus concerning the virtues of self-consistency has

been reached so far. A popular scheme, dubbed quasipar-

ticle self-consistent (QPSC) GW [7] yields reasonable

estimates both for total energies and spectra. Yet, most of

the calculations within this scheme were applied to semi-

conductors, and applications to correlated metals only start

to appear [8]. The inclusion of an appropriate vertex cor-

rection is expected to resolve the ambiguities around the

self-consistency question, and it has been in particular

proposed that a combined GW and dynamical mean field

scheme [9] would enable self-consistent calculations even

for spectral properties. Early pioneering calculations on a

three-dimensional extended Hubbard model [10,11] have

benchmarked several flavors of combined schemes along

these lines. However, the numerical difficulty of solving

the DMFT equations with frequency-dependent interac-

tions has until now prevented the direct investigation of

spectral properties.

Implementing the GW þ DMFT scheme in a fully self-

consistent manner for the two-dimensional extended

Hubbard model, we here demonstrate that this technique

indeed successfully overcomes the deficiencies of GW.

The implicit inclusion of a nonperturbative local vertex

enables fully self-consistent calculations for spectral prop-

erties. In the correlated metal regime, the GW þ DMFT
self-energy encodes both band renormalization effects and

Hubbard satellite features. The theory also describes the

Mott insulating state for strong local Coulomb interaction,

which is inaccessible in GW alone, as well as the charge-

ordered state driven by intersite interactions, absent

from standard DMFT. We calculate the effective local

interaction, containing the dynamical screening from

nonlocal processes, and demonstrate how these give

rise to plasmonic features in the local spectral function.

Close to the charge-ordering transition, the nonlocal

self-energy contributions stemming from GW lead to a

considerable enhancement of quasiparticle weights. We

analyze momentum-resolved two-particle spectra and

show that the self-consistent combination of GW and

extended dynamical mean field theory (EDMFT) strongly

affects the shape of collective modes, giving rise to dis-

persive plasmon-like long-wavelength modes and stripe

modes.

We consider the half-filled extended Hubbard model on

a two-dimensional square lattice,
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H ¼ �t
X

i�j;�

cyi�cj� þX

i

ðUni"ni# ��niÞ þ V

2

X

i�j

ninj;

where ci� and cyi� denote the annihilation and creation
operators of a particle of spin � ¼" , # at the lattice site i,
ni� ¼ cyi�ci�, and ni ¼ ni" þ ni#.

P
i�j is the sum over all

nearest-neighbor sites, t > 0 is the hopping amplitude
between two neighboring sites,� is the chemical potential,
U the on-site repulsion between electrons of opposite spin
and V the repulsion between two electrons on neighboring
sites. The Fourier-transformed bare interaction term thus
reads vk ¼ Uþ 2V½cosðkxÞ þ cosðkyÞ�. All energies are

given in units of the half-bandwidth D ¼ 4t. We show
results for inverse temperature �D ¼ 100, restricting our
study to the paramagnetic phase.

The GW þ DMFT approach is derivable from a free
energy functional [12]. The Legendre transform of the
free energy with respect to the Green’s function G and
the screened interaction W [13] can be expressed as a
sum of the Hartree-Fock part and a Luttinger-Ward-like
correlation functional �½G;W�, which sums up all
skeleton diagrams built from G and W [14]. The
GW þ DMFT scheme consists in approximating � as
� � �EDMFT½Gii;Wii� þ�GW

nonloc½Gij;Wij�, where the

first term is calculated from a (dynamical) impurity
problem as in EDMFT [15–17] and the second term
is the nonlocal (i � j) part of the GW functional
�GW

nonloc½Gij;Wij� ¼ �P
i; jGijWijGji þ

P
iGiiWiiGii.

The GW þ DMFT scheme self-consistently constructs
the Green’s function G and the screened interaction W
of the system as a stationary point of the free energy
functional. The self-energy � and polarization P are for-
mally obtained by functional differentiation of � with
respect to G and W, leading to the expressions �ðk; i!Þ ¼
�impði!nÞ þ�GW

nonlocðk; i!Þ and Pðk; i�nÞ ¼ Pimpði�nÞ þ
PGW
nonlocðk; i�nÞ (!n and �n are fermionic and bosonic

Matsubara frequencies, respectively). This endows
GW þ DMFT with conserving properties [18]. The
momentum-dependent G and W are then calculated from
the one- and two-particle Dyson equations and used as
inputs for a GW calculation, yielding �GW ¼ �G �W
and PGW ¼ 2G �G (the dot denotes a convolution in
frequency-momentum space and the factor 2 comes from
the spin degeneracy). Their local parts are extracted to
compute the local Weiss fields G and U: G�1ði!nÞ ¼
G�1

loc ði!nÞ þ �impði!nÞ and U�1ði�nÞ ¼ W�1
loc ði�nÞ þ

Pimpði�nÞ. These, in turn, are used as inputs to a dynamical
impurity model, which we solve using a continuous-time
Monte Carlo algorithm [19,20] to obtain updated local self-
energies. The whole scheme, summarized in Fig. 1, is
iterated until convergence. The calculations have been
performed on a 64� 64 momentum grid, while the ana-
lytical continuation of the imaginary-time data has been
performed using the maximum entropy method [21] in the
spirit of Ref. [22]. We monitor the following quantities:

(i) the local spectral function Alocð!Þ ¼ � 1
� ImGlocð!Þ,

(ii) the momentum-resolved spectral function, (iii) the
electron energy-loss spectrum (EELS) Im½��ðk;!Þ�1�
[where �ðk;!Þ ¼ 1� vkPðk;!Þ is the dielectric function],
and (iv) the effective dynamical interactionU, which takes
into account screening processes induced by V.
Within extended DMFT and GW þ DMFT, in the

absence of intersite repulsion, the Mott transition takes
place at Uc � 2:5. This value is slightly modified by
intersite repulsions V < Vc ¼ 0:8. At Vc a transition to a
charge-ordered phase occurs [23]. In the following we
study the local spectral properties in the metallic phase
with weak (U ¼ 0:5, V ¼ 0:1) and intermediate (U ¼ 2,
V ¼ 0:4) interactions, as well as in the Mott insulator at
U ¼ 3:5 and V ¼ 3. Figure 2 shows the local spectral
function Alocð!Þ obtained within (i) (self-consistent)
EDMFT, (ii) self-consistent GW þ DMFT (iii) self-
consistent GW, and (iv) QPSC GW. The latter scheme
was implemented by computing the lattice Green’s
function from the GW self-energy via Gðk; i!nÞ�1 ¼
i!n � Zk½�k � Re�GWðk; i!0Þ�, where Zk � ð1�
Im�GWðk; i!0Þ=!0Þ�1 is the quasiparticle weight as
estimated from the value of the self-energy at the first

FIG. 1 (color online). Flow chart of the GW þ DMFT scheme.

FIG. 2 (color online). Panels (a) to (c): spectral function
Alocð!Þ obtained within different self-consistent schemes (see
text). Panel (d): spectral function at selected k points (solid line:
EDMFT; dotted line: GW þ DMFT).
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Matsubara frequency. For small interactions [panel 2(a)],
correlation effects are negligible, and the four schemes
result in indistinguishable spectra within the numerical
accuracy. As the local interaction U becomes significant
[panel 2(b)], the width of the coherent central peak shrinks,
and the corresponding spectral weight is transferred to
higher energies. This (physically expected) behavior is
realized by the EDMFT and GW þ DMFT spectra, which
exhibit higher-energy structures at ! � �U=2. These
Hubbard bands gain spectral weight as U increases further.
The (integrated) quasiparticle weight Z goes from 0.44
(0.32) at U ¼ 1:5, V ¼ 0:4 for EDMFT (GW þ DMFT)
to 0.21 (0.12) at U ¼ 2, V ¼ 0:4. At U ¼ 3:5, a Mott gap
has opened, and the EDMFTandGW þ DMFT spectra are
similar [panel 2(c)]. In addition to the two Hubbard bands,
the EDMFT and GW þ DMFT spectra display two sym-
metric high-energy satellites, whose spectral weight
depends on the intersite interaction V. The QPSC GW
spectra display only a weak renormalization of the band-
width as U increases from the weak to the strong coupling
limit, and at all correlation levels the spectra remain
metallic. The same is true within the self-consistent
GW method (where the quasiparticle weight goes from
0.74 at U ¼ 1:5, V¼0:4 to 0.67 at U¼2, V¼0:4). Here,
with increasing correlations, some spectral weight is
shifted to higher frequencies, albeit in a featureless way.

These observations show that both self-consistent GW
approaches yield a correct result only in the weak-
correlation regime. As correlations increase, GW fails to
describe the shift of spectral weight to high-energy inco-
herent bands, present in DMFT. We note that in the local
GW þ DMFT spectra the Hubbard bands are enhanced
compared to the EDMFT or GW spectra. This effect can
be ascribed to the self-consistency, which allows the local
quantities to readjust to the nonlocal self-energies �GW

and PGW .
EDMFT and GW þ DMFT spectra exhibit high-energy

satellites in the Mott phase, which reflect the frequency
dependence of the local interaction Uð!Þ induced by the
nearest-neighbor repulsion term V. The real part of this
interaction is shown for the metallic phase in panel (c) of
Figure 3. A sharp pole in Uð!Þ (such as a plasmon pole)
leads to multiple satellites in the local spectral function
[22]. In our case, the Uð!Þ are characterized by a broad
continuum of poles centered at some energy !d, resulting
in only two symmetric satellites in the Mott spectra [see
Fig. 2(c)]. In the metallic phase, these satellites are present,
but they are broad and merged with the Hubbard bands,
making them hardly distinguishable.

The failure of both self-consistent GW schemes to cap-
ture Hubbard bands or high-energy satellites is consistent
with the well-known observation that self-consistency in
GW for the homogeneous electron gas results in a smear-
ing out and displacement of high energy satellite features
[3]. In light of this observation, most modern GW schemes

therefore adopt a ‘‘best-G–best-W’’ strategy, rather than
aiming at full self-consistency. Figure 3 illustrates the
virtues and limitations of this strategy by displaying the
spectra obtained in different one-shot GW schemes: (i) in
‘‘G0W,’’ the noninteracting Green’s function G0 and the
converged GW þ DMFT W are taken as inputs to a one-
shot GW calculation, (ii) ‘‘GW0’’ takes the converged
GW þ DMFT G and W0 ¼ vð1� vG0G0Þ�1 evaluated
within the random-phase approximation as inputs and
(iii) ‘‘best G, best W’’ takes the converged GW þ DMFT
G and W as inputs. At all correlation levels (U ¼ 1:5 to
U ¼ 3:5), these three GW schemes produce results very
similar to self-consistent GW. In particular, they remain
metallic [at U ¼ 0:5 (not shown), they are completely
identical]. In the Mott phase (U ¼ 3:5), even the ‘‘best
G, best W’’ scheme yields a metallic self-energy, despite
the Mott-like character of the input G and W. This phe-
nomenon is due to the lack of Hedin’s three-legged vertex
� in GW schemes, as shown in Fig. 3(d). There, an
estimate of the local part of � is computed from EDMFT
results at V ¼ 0. Remembering that, schematically, the
irreducible vertex function � appears in the self-energy
as � ¼ GW� [2], a rough estimate—neglecting the true
frequency structure—is computed as follows: one com-
putes an effectively vertex-corrected screened interaction
~Wð�Þ ¼ �impð�Þ=Gimpð�Þ from EDMFT, then Fourier

transforms it to ~Wði�nÞ; finally, the static vertex estimate
is obtained as �ð0Þ � ~Wði�0Þ=Wlocði�0Þ. Crude as it is
(the full vertex depends on two independent frequencies),
this estimate nonetheless clearly demonstrates the role
of vertex corrections for the Mott transition: from unity
in the weakly correlated regime, it increases with U until
it diverges at the Mott transition. This indicates that
within the language of Hedin’s equations, the divergence
of the local vertex is the driving force of the Mott

FIG. 3 (color online). Panels (a) and (b): Spectral function
Alocð!Þ obtained using 3 different one-shot GW schemes (see
text). Panel (c): ReUð!Þ obtained from EDMFT for different
values of V. Panel (d): vertex estimate �ð! ¼ 0Þ as a function
of U.
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phenomenon, making any vertexless approximation unfit
to capture it.

The effect of the nonlocalGW contributions on EDMFT
are illustrated by the momentum-resolved spectral func-
tions, displayed in Fig. 2(d). In the presence of a strong
intersite interaction, the nonlocal self-energy and polariza-
tion lead to a k-dependent modulation of the linewidth and
weights. Compared to EDMFT, the GW þ DMFT spectra
display a strong sharpening of the quasiparticle peak along
with an enhanced weight of the Hubbard bands. The
impact of the GW diagrams becomes very strong on the
brink of the charge-ordering transition.

We now turn to a study of two-particle quantities.
Figure 4 shows the momentum-resolved imaginary part
of the polarization and the electron energy-loss (EELS)
spectrum Im½���1ðk; !Þ� in the metallic regime. Within
EDMFT, the polarization displays a broad mode which
reflects the particle-hole excitations of the system. They
are centered at U=2, reflecting the emergence of the
Hubbard bands and the corresponding excitations between
Hubbard bands and the quasiparticle peak. In contrast, the
polarization spectrum within GW þ DMFT is dispersive.
While displaying sharper features close to the � � ð0; 0Þ
point, it captures particle-hole excitations due to Fermi-
surface nesting at wave vector (�, �), as well as the zero-
sound mode at long wavelengths and low energies. The
EELS spectrum contains the particle-hole excitations
(poles of the polarization) of the system and its collective
modes, which correspond to the solutions of RePðk;!Þ ¼
1=vk. These collective modes are damped out close to
particle-hole excitations [when ImPðk;!Þ is large]. This
analogue of the free-electron-gas Landau damping occurs
at the (�, �) point in EDMFTand GW þ DMFT. It can be
directly ascribed to the nearest-neighbor repulsion, which

induces scattering along this direction. The energy
and lifetime of this collective excitation differs from
EDMFT to GW þ DMFT. In GW þ DMFT it is lower in
energy, more dispersive and with a larger lifetime. In
GW þ DMFT, two modes are visible above the (�, 0)
point, indicating the existence of two stripe modes at
energies ! ¼ 1 and ! ¼ 2 corresponding to stripe-like
modulations, where the sign of the density fluctuation
varies from row to row in the x direction. For obvious
reasons, they are not captured by EDMFT. These two-
particle excitations are directly related to the screening in
the system as the screened interaction, W, is given by
Wðk;!Þ ¼ ��1ðk;!Þvk. In particular, they explain the
retardation effects in the local interactions Uð!Þ and the
corresponding satellites in the local spectra.
In conclusion, based on a fully self-consistent imple-

mentation of the combinedGW þ DMFT scheme, we have
analyzed one- and two-particle satellite features in corre-
lated materials. While we confirm the well-known ‘‘wash-
ing out’’ of satellite features in self-consistent GW
calculations, self-consistent GW þ DMFT does not suffer
from this deficiency. Plasma- and zero-sound-like oscilla-
tions involving itinerant carriers as in the electron gas
survive only in the regime of small local Coulomb inter-
actions, but are quickly suppressed in the correlated metal.
In this regime, excitations related to the creation of dou-
blons become dominant. The momentum-dependence self-
consistently introduced by the GW part becomes crucial
when assessing dispersions of two-particle spectral prop-
erties, differentiating in particular the nature of the collec-
tive modes in the (0, 0), (0,�), and (�,�) regions [24]. Our
findings have implications for the nature of satellite fea-
tures in correlated materials. In particular, it becomes
obvious that electron-gas-like plasmons in materials stem
dominantly from the charge contained in completely filled
shells (that is from multiorbital effects), while partially
filled shells give rise to doublon excitations of the
kind we describe. Concerning the long-term goal of
GW þ DMFT calculations for realistic systems, the impor-
tance of this study is to demonstrate the ability to calculate
the effective dynamical Coulomb interactions (rather than
assuming a Hubbard U parameter) fully from first prin-
ciples, in a self-consistent manner. Last but not least, the
interplay of local correlations and charge-ordering phe-
nomena and their intriguing wave-vector dependence that
we evidence in this simple but generic model may already
have been observed in two-dimensional materials: recent
experimental findings of charge ordering in cuprates [25],
cobaltates [26] or in systems of adatoms on surfaces [27]
are prominent examples.
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3Institut de Physique Théorique (IPhT), CEA, CNRS, URA 2306, 91191 Gif-sur-Yvette, France
4Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan

5Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

(Received 25 September 2012; published 29 March 2013)

We describe a recent implementation of the combined GW and dynamical mean field method (GW + DMFT)

for the two-dimensional Hubbard model with onsite and nearest-neighbor repulsion. We clarify the relation of the

GW + DMFT scheme to alternative approaches in the literature, and discuss the corresponding approximations

to the free-energy functional of the model. Furthermore, we describe a numerically exact technique for the

solution of the GW + DMFT equations, namely, the hybridization expansion continuous-time algorithm for

impurity models with retarded interactions. We compute the low-temperature phase diagram of the half-filled

extended Hubbard model, addressing the metal-insulator transition at small intersite interactions and the

transition to a charge-ordered state for stronger intersite repulsions. GW + DMFT introduces a nontrivial

momentum dependence into the many-body self-energy and polarization. We find that the charge fluctuations

included in the present approach have a larger impact on the latter than on the former. Finally, within the

GW + DMFT framework, as in extended DMFT, the intersite repulsion translates into a frequency dependence

of the local effective interaction. We analyze this dependence and show how it affects the local spectral

function.

DOI: 10.1103/PhysRevB.87.125149 PACS number(s): 71.10.Fd

I. INTRODUCTION

Understanding the effects of strong electronic correlations

in lattice systems remains a challenge in condensed matter

physics. The competition between the tendency of electrons

to delocalize due to the resulting gain in kinetic energy

and localization by the Coulomb interaction gives rise to a

panoply of interesting phenomena, ranging from simple mass

enhancements in the sense of Landau theory to charge-, spin-,

or orbital-ordering phenomena. To reduce the complexity of

the problem, while still keeping the main qualitative effects,

e.g., of the delocalization-localization transition, one resorts

to low-energy effective models such as the Hubbard or

Anderson lattice models. The two-dimensional single-band

Hubbard Hamiltonian with a static onsite repulsive interaction

U , for example, is believed to describe the physics of the

high-temperature superconducting cuprates.1 Charge-ordering

transitions can be captured when an additional intersite interac-

tion term, mimicking the longer-range Coulomb interactions,

is retained. This motivates the study of the extended Hubbard

model, where charge-ordering effects and screening of the

local interactions due to the nonlocal ones are included in

addition to the pure Hubbard model physics.

In the paramagnetic phase at half-filling, the Hubbard model

exhibits a Mott transition from a metal to a Mott insulator

whose spectral function is characterized by a gap at the

Fermi energy and Hubbard bands corresponding to atomic-

like excitations. This behavior is captured by computational

schemes such as the dynamical mean field theory (DMFT)

(see Refs. 2 and 3 for reviews) and its extensions [C-DMFT,4,5

dynamical cluster approximation (DCA),6 dual fermions,7

dual bosons,8 DŴA,9 DMFT + �k
10]. A formalism which

allows one to treat screening by nonlocal interactions is

extended DMFT (EDMFT).11–15 Its combination with the

ab initio GW approach16–18 introduces some momentum de-

pendence into the self-energy, thereby capturing the interplay

of screening and nonlocal correlations. This scheme allows

for a self-consistent computation of the effective “Hubbard

U” in a solid and in principle a fully parameter-free ab

initio simulation approach for correlated materials. The idea

is to take the local part of the self-energy from the EDMFT

calculation and supplement it by the nonlocal component of

the GW self-energy. A rigorous functional formulation, which

is detailed in Sec. II, puts this theory on the same level

of mathematical rigor as, e.g., the functional formulation of

Hohenberg-Kohn density functional theory.

Despite these promising perspectives, the technical difficul-

ties associated with the numerical treatment of the frequency-

dependent effective interaction have for a long time prevented

a self-consistent calculation of spectral properties within

GW + DMFT, even at the model level. Recent progress,

both within approximate schemes19 and numerically exact

Monte Carlo techniques,20,21 is currently giving a new impact

to the field.22–26 In particular, the development of efficient

continuous-time Monte Carlo techniques,27,28 generalized to

dynamical interactions in Refs. 20 and 21, now allows for the

fully self-consistent solution of the GW + DMFT equations,

with high enough accuracy to also extract spectral properties.

In this paper, we use these state-of-the-art techniques to

study an extended Hubbard model with onsite interaction U

and nearest-neighbor repulsive interaction V , and explore the

interplay of screening and nonlocal correlations. We show that

this model, if solved within the EDMFT framework, captures

dynamical screening effects related to the nonlocal interaction

V , high-energy satellite features in the one-particle spectra

125149-11098-0121/2013/87(12)/125149(21) ©2013 American Physical Society
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and, for large V , a transition to a charge-ordered state. We then

proceed to study how diagrammatic corrections to EDMFT in

the form of momentum-dependent GW contributions to the

self-energy modify this picture, and compare the results of

self-consistent and non-self-consistent implementations.

The paper is organized as follows: In Sec. II, we discuss

the model. In particular, we will show how the Hamiltonian

formulation of the problem can be recast into an action

or functional formulation. We will explicitly construct two

flavors of free-energy functionals whose stationary points

would give the exact solution of the model, the first one

due to Almbladh et al.29 (see also Ref. 30), the second one

constructed by Sun et al.14 In Sec. III, we present different

methods of solution: extended DMFT, GW , and combined

schemes. We argue that the GW + DMFT formalism can

be derived from the Almbladh free-energy functional, and

discuss the differences to the scheme proposed in Ref. 14.

The latter stems from another energy functional, which would

correspond to a “GD + SOPT + DMFT” method, where D is

the boson propagator associated with screening of the nonlocal

interaction only, used in a GW -like fashion, supplemented

by second-order perturbation theory (SOPT) for the nonlocal

effects of the local interaction and dynamical mean field theory

for the local ones. Numerical techniques for the solution of

the equations are described in Sec. IV and the computational

scheme used in this work is summarized in Sec. V. The results

of our study are presented in Sec. VI. Section VII contains

a summary of our most important findings, and provides

perspectives as to how our work inserts itself into the field.

II. MODEL

A. Hamiltonian formulation

We consider the single-band U -V Hubbard model on a

two-dimensional square lattice, defined by the grand-canonical

Hamiltonian

H = −t
∑

〈ij〉σ

(c
†
iσ cjσ + H.c.) − μ

∑

i

ni

+U
∑

i

ni↑ni↓ + V
∑

〈ij〉

ninj , (1)

where ciσ and c
†
iσ denote the annihilation and creation

operators of a particle of spin σ = ↑,↓ at the lattice site

i, niσ = c
†
iσ ciσ , and ni = ni↑ + ni↓.

∑

〈ij〉 denotes the sum

over nearest-neighbor bonds, t > 0 is the hopping integral

between two neighboring sites, μ is the chemical potential, U

the onsite interaction between electrons of opposite spin, and

V the interaction between two electrons on neighboring sites,

irrespective of their spin. The number of nearest neighbors is

z = 2d = 4, where d is the dimension.

With certain approximations, this model can be derived

from first principles, as discussed in Appendix A. The

limiting case V = 0 corresponds to the conventional Hubbard

model.31–33 In this study, we will limit ourselves to the

paramagnetic phase at half-filling with repulsive interactions

U > 0 and V > 0.

In the limit of large V , the extended Hubbard model

has been shown to display a transition to a charge-ordered

state characterized by a freezing of charge carriers and a

spatial modulation of the charge density [charge-density wave

(CDW)]. This can be explained by a simple energetical

argument34 in the strongly correlated regime (U ≫ t) at

half-filling: while for U much larger than V , electrons will

lower their energy by arranging themselves one per site to

minimize the onsite repulsion, for V much larger than U ,

electrons will minimize their off-site repulsion by choosing

an arrangement such that one sublattice is occupied by two

electrons per site while the other is empty, leading to a

commensurate charge order. In the metallic phase (U ≪ t), the

effect of V is more easily understood in terms of screening: the

charge fluctuations induced by the V term lead to a reduction

of the local effective interaction.

The U -V Hubbard model has been studied in a variety

of approximations. An early study in the zero-overlap limit

(U/t ≫ 1) has predicted a phase transition between a Mott

insulator and a charge-ordered (CO) insulator at Vc = U/z at

zero temperature,35 while weak-coupling mean field studies

have predicted a transition between antiferromagnetic order

(AFM, i.e., commensurate SDW) and charge order (i.e.,

commensurate CDW) at the same boundary.36,37 This has been

confirmed by Monte Carlo calculations in two dimensions.38

The Vc = U/z boundary has been shown to hold in the

U/V → 0 limit as well as in the U/V → ∞ limit by a study

at half-filling in the infinite-dimensional limit.39 Higher-order

corrections have been considered in Refs. 40 and 41, leading

to a renormalization of the critical temperature and order

parameter, as well as the prediction of phase separation in the

zero-temperature limit. More recently, variational cluster42 and

two-particle self-consistent approaches43 have been applied to

the U -V Hubbard model.

A first DMFT treatment described the opening of a “pseudo-

gap” and the reentrant behavior of the critical Vc as a function

of temperature.44 In this scheme, the V term only contributed

at the Hartree level by shifting the chemical potential since

in the limit of infinite dimensions, the contributions beyond

Hartree of nonlocal terms vanish, while fluctuations due to

local terms such as the onsite Hubbard U do not vanish under

rescaling.45,46 The screening effects contained in the V term

are not captured by standard single-site DMFT. Therefore,

an extended DMFT (EDMFT) scheme has been proposed

to remedy this shortcoming.11–15 Within this scheme, the

nonlocal interactions induce a frequency dependence of the

effective local interaction and lead to a sizable reduction of the

static value of U . In addition, Refs. 14 and 15 showed that one

of the consequences of adding a spatially nonlocal contribution

to the self-energy is to make the system more insulating.

In this work, we give a precise account of how U and

V affect the properties of the local frequency-dependent

interactions, and how the latter in turn modify the spectral

properties of the system, while systematically investigating the

effect of nonlocal GW contributions. We restrict ourselves to

the paramagnetic phase at half-filling and will give all energies

in units of the half-bandwidth (4t). The inverse temperature

will be denoted by β = 1/T (kB = 1).

B. Action formulation

The solution of model (1) amounts to computing the

Green’s functions and other correlation functions. For this

125149-2
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purpose, it is convenient to write the grand-canonical partition

function Z = Tre−βH as a coherent-state path integral47 Z =
∫

D[c∗
i ,ci]e

−S where

S[c∗,c] =
∫ β

0

dτ

{

∑

ijσ

c∗
iσ (τ )[(∂τ − μ)δij + tij ]cjσ (τ )

+U
∑

i

ni↑(τ )ni↓(τ ) +
1

2

∑

ij

vnl
ij ni(τ )nj (τ )

}

.

(2)

c∗
i and ci denote conjugate anticommuting Grassmann fields

for site i [ci(τ + β) = −ci(τ )], tij = −tδ〈ij〉, v
nl
ij = V δ〈ij〉, and

δ〈ij〉 = 1 if i and j are nearest neighbors and 0 otherwise. τ

is the imaginary-time variable. We will denote by ωn = (2n +
1)π/β (νn = 2nπ/β) the corresponding fermionic (bosonic)

Matsubara frequencies. The Fourier transforms of tij and vnl
ij

on the lattice are

ǫk = −2t[cos(kx) + cos(ky)], (3)

vnl
k = 2V [cos(kx) + cos(ky)]. (4)

Using the identity nini = 2ni↑ni↓ + ni , we can rewrite the

interaction terms of Eq. (2) as 1
2

∑

ij vijni(τ )nj (τ ) with vij =
Uδij + V δ〈ij〉, or

vk = U + vnl
k , (5)

provided that we shift the chemical potential μ → μ̃ = μ +
U/2. The action hence becomes

S[c∗,c] =
∫ β

0

dτ

{

∑

ijσ

c∗
iσ (τ )

[

(∂τ − μ̃) δij + tij
]

cjσ (τ )

+
1

2

∑

ij

vijni(τ )nj (τ )

}

. (6)

C. Functional formulation

The problem of finding the solution to the Hamiltonian

model (1) or calculating the Green’s function corresponding

to the action (6) can also be formulated in a functional

language. The familiar Luttinger-Ward or Baym-Kadanoff

functionals provide examples of such a construction. In the

present context, a formulation in terms of the free energy

written as a functional of both the Green’s function G and

the screened Coulomb interaction W is the method of choice

since the combined GW + DMFT method can naturally be

viewed as a specific approximation to such a functional.

Indeed, the GW + DMFT solution as formulated in Refs. 16

and 17 can be derived as a stationary point (G,W ) of the

free-energy functional introduced by Almbladh et al.,29 after

approximating the correlation part of this functional by a

combination of local and nonlocal terms stemming from

DMFT and GW , respectively. To draw an illustrative analogy,

GW + DMFT provides an approximation to the correlation

part of the Almbladh free-energy functional, on the same

footing as the local density approximation of density functional

theory48 is an approximation to the exchange-correlation part

of the Hohenberg-Kohn functional of the energy.

In the literature, several variants of functionals of G

and W have been discussed,14,17,30 and different derivations

given. Using a Hubbard-Stratonovich (HS) decoupling as in

Ref. 16, we discuss two flavors of free-energy functionals

which differ by the choice of the part of the interaction

that is decoupled by the HS transformation. The first one

reproduces the  functional introduced by Almbladh on which

the GW + DMFT construction of Ref. 16 is based. The second

one is a variant that was used in the study of the extended

Hubbard model in Ref. 14.

The Hubbard-Stratonovich transformation49 relies on the

following identity:

exp

(

1

2

∫ β

0

dτ bi(τ )Aijbj (τ )

)

=
∫ D[x1(τ ),x2(τ ), . . .]

√

(2π )N det A

× exp

(∫ β

0

dτ

{

−
1

2
xi(τ )[A−1]ijxj (τ ) ∓ xi(τ )bi(τ )

})

,

(7)

where A is a real symmetric positive-definite matrix, bi(τ )

is a periodic field [bi(τ + β) = bi(τ )], xi(τ ) a real periodic

field, and summation over repeated indices is assumed. In the

following, we will choose the upper sign for the last term.

Decoupling the whole (local and nonlocal) interaction
1
2

∑

ij vijni(τ )nj (τ ) by the HS transformation corresponds

to applying the above formula (7) to the interaction term in

Eq. (6), that is, to the choice bi ≡ ini , Aij ≡ vij , and xi ≡ φi .

This choice, denoted as HS-UV in the following, leads to the

construction of the  functional as in Almbladh et al.29 and the

formalism of Ref. 17. Within the approximation introduced in

the next section, this corresponds to the GW + DMFT scheme

as introduced in Ref. 16. This approach (which was also used

in Ref. 15) relies on the argument that the two terms, which

represent different matrix elements of the same interaction,

should be treated on the same footing.

In Ref. 14, on the other hand, the HS transform has been ap-

plied only to the nonlocal interaction term 1
2

∑

ij vnl
ij ni(τ )nj (τ )

in the action (2). This approach, dubbed HS-V in the following,

leads to a modified free-energy functional, which we denote

by V . It was motivated by the aforementioned fact that in

the limit of infinite dimensions, with the nonlocal interaction

rescaled as V → V/z, the nonlocal term results in a trivial shift

of the chemical potential, while the onsite interaction remains

nontrivial, justifying a separate treatment for the nonlocal

term.

We will first explicitly derive the two functionals  and

V and, in Sec. VI A, we will compare the results from

both decoupling strategies. The results in the reminder of the

section, finally, are based on the HS-UV decoupling, that is, on

the  functional and the GW + DMFT formalism of Ref. 16.

1. “UV decoupling”: The � functional

In the HS-UV decoupling scheme, the full interaction term

is decoupled via an auxiliary bosonic field φi . Choosing bi ≡
ini , Aij ≡ vij , and xi ≡ φi , the transformation (7) applied to
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the action (2) leads to

S[c∗,c,φ]

=
∫ β

0

dτ

{

−
∑

ijσ

c∗
iσ (τ )

[(

GH
0

)−1]

ij
cjσ (τ )

}

+
∫ β

0

dτ

×
{

1

2

∑

ij

φi(τ )[v−1]ijφj (τ ) + iα
∑

i

φi(τ )ni(τ )

}

,

(8)

where we introduced the fermionic lattice Hartree Green’s

function GH
0 defined by [GH−1

0 ]ij ≡ [(−∂τ + μ + U
2

)δij −
tij ]. For later use, we have moreover inserted a coupling

constant α in front of the fermion-boson coupling term. The

physically relevant case corresponds to α = 1.

The HS transformation replaces an electron-electron inter-

action by an electron-boson interaction, and introduces a new

variable: the auxiliary real boson field φ. This has an important

consequence: even a first-order diagram in this new interaction

contains diagrams of infinite order in the electron-electron

interaction. Making even simple approximations on the new

action can thus lead to nontrivial diagrams for the original

action. Moreover, the electron-boson vertex iφini is local.

This locality ensures that in the limit of infinite dimensions,

the interactions (and in particular V ) will contribute beyond

the Hartree level.

The generating functional of correlation functions is ob-

tained by introducing the bilinear sources Jf and Jb, coupling

to the fermionic and bosonic operators, respectively, so that

the action becomes S[c∗,c,φ] − S[Jf,Jb], with

S[Jf,Jb] =
∫ β

0

dτ dτ ′
∑

ij

{

Jf,ij (τ,τ ′)c∗
i (τ )cj (τ ′)

+
1

2
Jb,ij (τ,τ ′)φi(τ )φj (τ ′)

}

. (9)

The fermionic and bosonic Green’s functions for this action

are Gij (τ − τ ′) = −〈T ci(τ )c∗
j (τ ′)〉 = δ�/δJf,ij (τ,τ ′) and

Wij (τ − τ ′) = 〈T φi(τ )φj (τ ′)〉 = −2δ�/δJb,ij (τ,τ ′), where

we have defined

� ≡ − ln Z[Jf,Jb] = − ln Tre−S[c∗,c,φ]+S[Jf ,Jb]. (10)

The noninteracting Green’s functions (obtained by setting

iφini = 0) are, respectively, G|α=0=GH
0 and W (k,iνn)|α=0 =

[v−1
k ]−1 = vk . This gives a first hint as to the physical meaning

of W : without renormalization by the auxiliary bosons, it

corresponds to the bare interaction. Coupling to the bosons,

which represent density fluctuations of the system, introduces

screening into the physical description.

We next perform a Legendre transformation with respect to

the sources Jf and Jb,

Ŵ[G,W ] = �[Jf[G],Jb[W ]] − TrJfG + 1
2
TrJbW, (11)

with the reciprocity relations Jf = − δŴ
δG

and Jb = 2 δŴ
δW

. The

physical Green’s functions will be obtained by setting Jf = 0

and Jb = 0 or, equivalently, by requiring the stationarity of Ŵ

with respect to G and W .

The free-energy functional Ŵ can be written as

Ŵα=1 = Ŵα=0 + , (12)

where we have defined

 ≡
∫ 1

0

dα
dŴ

dα
. (13)

Ŵ is the well-known Baym-Kadanoff functional,50 while  is

the extension of the Luttinger-Ward functional �[G] to one-

and two-particle propagators.51

The noninteracting (α = 0) part of the Ŵ functional is

readily evaluated as

Ŵα=0 = Tr ln(−G) − Tr
(

G−1
0 − G−1

)

G

− 1
2
Tr ln W + 1

2
Tr(v−1 − W−1)W. (14)

Indeed, when α = 0, the action becomes Gaussian and

thus explicitly integrable, namely, �α=0 = − ln Det[−G−1
0 +

Jf] − ln(Det[v−1 − Jb])1/2. The above definition G = δ�/δJf

imposes (G−1
0 − Jf)G = 1 and similarly (v−1 − Jb)W = 1,

yielding Eq. (14). Finally, stationarity of the full Ŵ implies
δŴ
δG

= 0 = δŴα=0

δG
+ δ

δG
= G−1 − G−1

0 + δ
δG

for G and 0 =
− 1

2
(W−1 − v−1) + δ

δW
for W . Defining the self-energies as

� =
δ

δG
, � = −2

δ

δW
(15)

yields Dyson’s equations for G and W :

G−1 = G−1
0 − �, W−1 = v−1 − �. (16)

Being “ derivable,” these self-energies will obey global

conservation rules.52

The above formulation shows that, formally, solving the

lattice problem defined by Eq. (2) amounts to evaluating the

corresponding  functional, from which G and W can be

derived. In Sec. III, we will describe two complementary ways

of approximating this functional, EDMFT and GW , before

showing how to merge the two approaches, thus arriving at the

GW + DMFT free-energy functional.

2. “V decoupling”: The �V functional

In the HS-V scheme, proposed in Ref. 14, only the

nonlocal interaction term is decoupled via an auxiliary bosonic

field φi . Choosing bi ≡ ini , Aij ≡ vnl
ij , and xi ≡ φi , the

transformation (7) applied to the action (2) leads to

S[c∗,c,φ] =
∫ β

0

dτ

{

−
∑

ijσ

c∗
iσ (τ )

[

G−1
0

]

ij
cjσ (τ )

+αU
∑

i

ni↑(τ )ni↓(τ )

}

+
∫ β

0

dτ

{

1

2

∑

ij

φi(τ )[(vnl)−1]ijφj (τ )

+ iα
∑

i

φi(τ )ni(τ )

}

, (17)

where we used the noninteracting fermionic lattice Green’s

function G0 defined by [G−1
0 ]ij ≡ [(−∂τ + μ)δij − tij ].

Again, a coupling constant α was introduced, and the physical

case corresponds to α = 1. Now, however, the coupling

constant is not only a switch for turning on or off the
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fermion-boson coupling but at the same time also the local

Hubbard interaction.

In principle, the interaction should be a positive-definite

matrix in order for the Gaussian integrals invoked in the

HS transformation to converge. In contrast to the HS-UV

decoupling, where U and V are matrix elements of the

screened Coulomb interaction, which is positive definite, this is

not the case for the interaction of HS-V , vnl
ij . This issue can be

dealt with by adding an auxiliary identity matrix multiplied by

a large enough constant.14 In practice, however, the simulation

results are not affected by the value of this constant.

As before, the generating functional of correlation functions

is obtained by introducing source terms. The fermionic

Green’s function for this action is unchanged compared to

the UV -decoupling case: Gij (τ − τ ′) = −〈T ci(τ )c∗
j (τ ′)〉 =

δ�/δJf,ij (τ,τ ′). The bosonic propagator formally still reads

Dij (τ − τ ′) = 〈T φi(τ )φj (τ ′)〉 = −2δ�/δJb,ij (τ,τ ′). It does

not, however, correspond to the screened interaction, as in

the HS-UV scheme: in the case of vanishing fermion-boson

coupling, the bosonic propagator reduces by construction to

only the nonlocal part of the bare interaction.

The construction of the free-energy functional Ŵ proceeds

as before by Legendre transformation with respect to the

sources Jf and Jb,

ŴV [G,D] = �[Jf[G],Jb[D]] − TrJfG + 1
2
TrJbD, (18)

with the reciprocity relations Jf = − δŴV

δG
and Jb = 2 δŴV

δD
. The

physical Green’s functions will be obtained by setting Jf = 0

and Jb = 0 or, equivalently, by requiring the stationarity of ŴV

with respect to G and D. Thanks to the choice of the coupling

constant α in front of the interaction and boson-fermion

coupling terms α(U
∑

ni↑ni↓ + i
∑

i φini), ŴV acquires the

same form as before, ŴV,α=1 = ŴV,α=0 + V , with V ≡
∫ 1

0
dα dŴV

dα
, but it is now a functional of G and D.

The noninteracting (α = 0) part of the Ŵ functional reads

ŴV,α=0 = Tr ln(−G) − Tr
(

G−1
0 − G−1

)

G

− 1
2
Tr ln W + 1

2
Tr[(vnl)−1 − D−1]D. (19)

Finally, stationarity of the full ŴV reproduces the fermionic

Dyson equation for the Green’s function and self-energy.

For the bosonic part, however, we obtain 0 = − 1
2
[D−1 −

(vnl)−1] + δV

δD
for D. The bosonic self-energy

�V = −2
δV

δD
(20)

is thus not equal to the physical polarization of the system.

Again, solving the lattice problem defined by Eq. (2)

amounts to evaluating the corresponding V functional, from

which � and �V , and in turn G and D, can be derived.

Compared to the previous case of the  functional, however,

the subtlety of D being the screened nonlocal interaction (not

equal to the full W ) requires additional care in the construction

of a combined DMFT scheme.

III. METHODS OF SOLUTION

A. EDMFT

 is a functional of the fermionic and bosonic Green’s

functions Gij and Wij . EDMFT replaces this functional by a

functional of the local components of the Green’s function and

screened interaction only. The numerical procedure outlined

below thus corresponds to a numerically exact solution of

the purely local but otherwise exact �[Gii,Wii]. Similarly,

the HS-V approach constructs a functional of the local parts

of G and D, V [Gii,Dii]. The local Green’s functions can

be obtained by solving an auxiliary effective local problem

defined by the action

SEDMFT
eff,HS-UV = −

∫ β

0

dτ dτ ′
∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+
1

2

∫ β

0

dτ dτ ′φ(τ )U−1(τ − τ ′)φ(τ ′)

+ i

∫ β

0

dτφ(τ )n(τ ), (21)

SEDMFT
eff,HS-V = −

∫ β

0

dτ dτ ′
∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+
∫ β

0

dτ Un↑(τ )n↓(τ )

+
1

2

∫ β

0

dτ dτ ′φ(τ )D−1(τ − τ ′)φ(τ ′)

+ i

∫ β

0

dτ φ(τ )n(τ ). (22)

These actions are very similar to the lattice actions [Eqs. (8)

and (17)], with GH
0 and G0 replaced by an appropriately

defined dynamical G describing the excursions of an electron

in the lattice from a given site (the impurity) and back, and the

bare and instantaneous interaction v (or vnl in HS-V ) replaced

by the retarded interaction U (or D). The effective actions (21)

and (22) are obtained by integrating out all sites but one in the

lattice action and taking the infinite-dimensional limit. The

derivation of the action for the HS-UV scheme, as well as the

EDMFT loop sketched below, are presented in Appendix B.

Integrating out the φ field in Eqs. (21) and (22) yields the

impurity actions

SEDMFT
eff, HS-UV = −

∫ β

0

dτ dτ ′
∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+
1

2

∫ β

0

dτ dτ ′n(τ )U (τ − τ ′)n(τ ′) −
1

2
Tr lnU ,

(23)

SEDMFT
eff, HS-V = −

∫ β

0

dτ dτ ′
∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+
∫ β

0

dτ Un↑(τ )n↓(τ )

+
1

2

∫ β

0

dτ dτ ′n(τ )D(τ − τ ′)n(τ ′) −
1

2
Tr lnD,

(24)

which feature a retarded interaction U (τ − τ ′) (for HS-UV )

or D(τ − τ ′) (for HS-V ) between charges.

The solution of this impurity problem, described in detail

in Sec. IV, requires the calculation of the one-particle Green’s
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functions Gloc ≡ −〈T c(τ )c∗(0)〉 and Wloc ≡ 〈T φ(τ )φ(0)〉 (or

Dloc for HS-V ). From Gloc and Wloc, one computes the corre-

sponding self-energies �loc = G−1 − G−1
loc and �loc = U−1 −

W−1
loc [or (�V )loc = D−1 − D−1

loc ]. The EDMFT approximation

identifies the impurity self-energies with the lattice self-

energies: �(k,iωn) ≈ �loc(iωn), �(k,iνn) ≈ �loc(iνn) [or

(�V )loc(iνn)]. This allows one to evaluate (approximate)

lattice Green’s functions G(k,iωn) and W (k,iνn) [or D(k,iνn)]

through Dyson’s equation and estimates of the local lattice

Green’s functions by summation over k. Eventually, one

obtains updated G and U (or D) via

G−1 = G−1
loc[�loc] + �loc, (25)

U−1 = W−1
loc [�loc] + �loc, (26)

D−1 = D−1
loc [(�V )loc] + (�V )loc. (27)

B. GW approximation

While EDMFT can treat strong local correlations, it

completely neglects the nonlocal contributions to the self-

energy. A complementary approach, which treats spatial

fluctuations, but works reliably only in the weakly correlated

regime, is the GW method.53–55 The GW approximation

has been used extensively to investigate the properties of

weakly correlated materials, such as the band gaps of semi-

conductors and is nowadays implemented in several different

electronic structure codes (see, e.g., Refs. 56 and 57). In

these materials, GW correctly accounts for the screening

effects of the electrons at the random-phase approximation

(RPA) level. Schematically, for a general Coulomb interaction

v(r) ∼ 1/r , one-shot GW replaces the bare interaction v of

the Fock self-energy �F ∼ G0v by the screened interaction

W = v/ǫRPA, where ǫRPA = 1 − vP0 and P0 ∼ G0G0 is the

dynamical Lindhard function. In a self-consistent scheme,

G0 is replaced by the interacting Green’s function G.58 The

Fock self-energy thus becomes �GW ∼ GW, hence the name of

the approximation. Formally, the GW approximation can be

obtained by Hubbard-Stratonovich decoupling the Coulomb

interaction v via an auxiliary bosonic field φ characterized

by the propagator W ∼ 〈φφ〉. This amounts to replacing the

electron-electron interaction by the indirect interaction of two

electrons mediated by a boson described by φ. The first-order

self-energy diagram in the expansion of this electron-boson

interaction is � ∼ GW.

The standard derivation of the GW approximation relies

on a truncation of Hedin’s equations,53 where the three-

legged vertex � = 1 + δ�
δG

GG� is set to unity. In the

following, we will derive the GW approximation for our

lattice model in a diagrammatic way based on the four-

legged vertices of standard perturbation theory for both

free-energy functionals, that is, both choices of the HS

decoupling. In the HS-V approach, the lattice action of Eq. (8)

contains two interaction vertices: a local electron-electron

interaction Uni↑ni↓ and a local electron-boson interaction

iφini . Consequently, the perturbation expansion of the Green’s

function will contain two types of bare interaction ver-

tices, namely, Ŵ(0)
ee (τ1,τ2,τ3,τ4)ijkl = Uδijklδi↑δj↓δk↑δl↓δ(τ1 −

τ2)δ(τ3 − τ4)δ(τ2 − τ3) and Ŵ
(0)
eb (τ1,τ2,τ3)ijk = iδijkδ(τ1 −

= + + + . . .

FIG. 1. Diagrammatic expansion of the electron-electron vertex.

From left to right, top to bottom: Bare electron-electron interaction

vertex Ŵ(0)
ee . Fully boldified �ee. Expansion of the full electron-

electron vertex Ŵee.

τ2)δ(τ3 − τ2), which we will represent as shown in Figs. 1

and 2. We will suppose that we can perform the expansions

separately and then sum the two results (which is an approx-

imation since there could well be sequences of interactions

with alternating Ŵ(0)
ee and Ŵ

(0)
eb ). In the HS-UV approach, there

is only the electron-boson vertex Ŵ
(0)
eb .

The vertex Ŵ(0)
ee will lead to contributions that are not present

in the HS-UV decoupling scheme. The perturbation expansion

in powers of Ŵ(0)
ee yields a series of self-energy diagrams, the

lines of which are noninteracting Green’s functions G0. Since

some higher-order diagrams contain “self-energy insertions,”

the number of diagrams can be reduced by “boldifying” the

lines, namely, by replacing G0 by the interacting Green’s

function G. Subsequently, the number of diagrams can be

further reduced by regrouping the interaction vertices into a

“boldified” vertex Ŵee pictured in Fig. 1. Thus, the electron-

electron part of the self-energy (beyond the Hartree self-

energy) can be described (Fig. 1) by the exact expression60

�ee = −Ŵ(0)
ee GGGŴee, (28)

with bold propagators G and bold vertices Ŵee. Note that only

the right vertex is boldified to avoid double counting. This

= + + . . .

FIG. 2. Diagrammatic expansion of the electron-boson vertex.

From left to right, top to bottom: Bare electron-boson interaction

vertex Ŵ
(0)
eb . Fully boldified �eb. Fully boldified �. Expansion of the

full electron-boson vertex Ŵeb.

125149-6



SCREENING AND NONLOCAL CORRELATIONS IN THE . . . PHYSICAL REVIEW B 87, 125149 (2013)

vertex is also called the fully reducible vertex. We stress that

this electron-electron contribution to the electronic self-energy

is absent in the HS-UV approach since in this scheme there is

no longer any electron-electron interaction vertex after the HS

decoupling.

Similarly, the expansion of the partition function in powers

of Ŵ
(0)
eb can be simplified by boldifying the G0 and W0 (=v

or vnl) lines and the vertices, leading to graphs of the form

displayed in Fig. 2, corresponding to the expressions

�eb = Ŵ
(0)
eb GWŴeb, (29)

�eb = −2Ŵ
(0)
eb GGŴeb. (30)

The expansion for the bold electron-boson vertex Ŵeb is also

pictured in Fig. 2.

The usual GW approximation truncates the expansion of

the electron-boson vertex function Ŵeb after its first term,

namely, by taking Ŵeb ≈ Ŵ
(0)
eb = iδ. This simplification, which

amounts to neglecting the so-called vertex corrections, yields

the familiar expressions �GW
eb = −GW and �GW = 2GG.61

For the HS-UV decoupling, � = �eb and thus

�GW
HS-UV = −GW. (31)

For the HS-V decoupling, there is a second contribution

coming from the electron-electron vertex. If one approximates

Ŵee ≈ Ŵ(0)
ee (as in Ref. 14), one gets �GW

ee = −U 2GGG, and

hence

�GW
HS-V = −GD − U 2GGG. (32)

At this point, a few remarks are in order: the two

approximations (31) and (32) are not equivalent. Making the

lowest-order approximation on the electron-electron vertex is a

stronger assumption than truncating the electron-boson vertex.

In the HS-V approach, the series of diagrams corresponding

to Eq. (32) contains the ring of “bubbles” made up of G

and vnl
ij (which contains only the off-site repulsion V ), plus

a second-order diagram in U . In contrast, the diagrams in

�GW
HS-UV contain the ring of bubbles made up of G and

vij (which contains U and V ). Put differently, it not only

comprises the off-site interaction V to all orders (at the RPA

level), but also the onsite interaction U to all orders (at the

RPA level). We thus expect the HS-UV scheme to be better

poised to capture nonlocal effects arising from V and U , while

the HS-V scheme will probably give nontrivial contributions

only in parameter regimes where V plays the dominant

role. Therefore, while benchmarking both approaches in the

results section, we will focus on the formulation in terms of

the Almbladh functional in the following discussion of the

combined GW + DMFT scheme. A similar combination based

on the V functional is possible, leading to a combination of

the GD plus self-consistent second-order perturbation theory

expression of Eq. (32) with dynamical mean field theory, as

described in Ref. 14. We refer to this combination in the

following as “GD + SOPT + DMFT”.

C. GW + DMFT approach

As already hinted at before, EDMFT and GW are com-

plementary approximate schemes: EDMFT provides a good

description of local correlations, while GW captures longer-

range correlations and in particular long-range screening.

Therefore, combining both approximations appears promising.

The GW + DMFT approach16,17 makes an approximation on

[Gij ,Wij ] by decomposing it in the following way:

 ≈ EDMFT[Gii,Wii] + GW
nonloc[Gij ,Wij ], (33)

where GW
nonloc = GW − GW

loc .

While EDMFT will generate the series of local self-energy

diagrams up to infinite order, the nonlocal contributions to 

will be generated in a perturbative way by the nonlocal part of

the GW diagrams, thus avoiding double counting.

In the limit of infinite dimensions, nonlocal diagrams

vanish. Thus, the effect (if any) of the nonlocal contributions

is expected to manifest itself only as the dimension is lowered.

The proximity to a phase transition should also enhance

spatial fluctuations. In principle, the GW contribution should

nonetheless remain a correction to the DMFT part, which

justifies why nonloc[Gij ,Wij ] can be treated on a perturbative

level, while [Gii,Wii] is evaluated to all orders.

The approximate electronic self-energy will be given by

�ij = �loc
i δij + (1 − δij )�GW

ij . The 1 − δij factor ensures that

only the nonlocal part of the GW self-energy is added.

Analogous expressions hold for �ij . This approach is very

general. In the specific case of the extended Hubbard model,

one can expect the GW contribution to become significant

as one approaches an instability in the charge sector, namely,

close to the charge-ordering transition. The GW diagrams can

in principle be replaced by other perturbative diagrammatic

corrections, corresponding to a decoupling of the interaction

in other channels.

IV. NUMERICAL IMPLEMENTATION

A. Solution of the EDMFT impurity problem

The impurity models (23) and (24) can be solved efficiently

using the hybridization-expansion continuous-time quantum

Monte Carlo solver (CTQMC-hyb).27 The formalism has

been previously derived using a Hamiltonian representation

of the impurity model.20,21 Here, we discuss an alternative

derivation based on the effective action, focusing on the case of

action (23). A CTQMC-hyb simulation samples configurations

representing specific time sequences of “hybridization events,”

with weight proportional to the determinant of a matrix of

hybridization functions. The perturbation expansion of the

partition function Z and the summation of diagrams with

identical operator sequences leads to

Z =
∞

∑

{nσ }=0

∏

σ

[

1

(nσ !)2

∫ β

0

dτ σ
1

∫ β

0

dτ ′σ
1 . . .

×
∫ β

0

dτ σ
nσ

∫ β

0

dτ ′σ
nσ

Det�σ

] ∫

D[c∗,c]e−Sat T

×
∏

σ

c∗
σ

(

τ ′σ
1

)

cσ

(

τ σ
1

)

. . . c∗
σ

(

τ ′σ
nσ

)

cσ

(

τ σ
nσ

)

, (34)

where (�σ )ij = �σ (τi − τ ′
j ) is the hybridization function

evaluated for the time difference between annihilation operator
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overlap

U

D
U

K

0 β

l

FIG. 3. (Color online) Illustration of a Monte Carlo configuration

in the segment representation. The top figure corresponds to a

configuration with one spin-up and one spin-down segment, each

representing a time interval marked by a creation operator (empty

circle) and an annihilation operator (full circle). The overlap of

the segments, corresponding to the width of the hashed region,

yields the weight due to the instantaneous interaction U . The

retarded interaction D(τ − τ ′) is represented by the blue curved lines.

The bottom panel represents the weight of this configuration after

integration of the retarded interaction over the segments. The dashed

blue lines correspond to the interaction K(τ̃i − τ̃j ) between creation

and annihilation operators.

i and creation operator j and

Sat =
1

2

∑

σσ ′

∫ ∫

dτ dτ ′nσ (τ )Uσσ ′(τ − τ ′)nσ ′(τ ′)

+
∫

dτ
∑

σ

cσ (τ )∗ (∂τ − μ) cσ (τ ) (35)

represents the interaction and chemical potential contributions

of action (23). The interaction U can always be split into

a delta-function contribution and a nonsingular contribution

U (τ )σσ ′ = Uδ(τ )(1 − δσσ ′) + D(τ )σσ ′ . (In the HS-V scheme,

this separation is already explicit.) The last factor of Eq. (34)

can be easily evaluated since the time-evolution operators

are diagonal in the occupation-number basis. In the segment

representation,27 each imaginary-time interval with occupa-

tion nσ = 1 is marked by a segment, and the last factor

can (up to a permutation sign) be written as wμwUwD with

wμ = eμ(l↑+l↓) and wU = e−Uloverlap . Here, lσ stands for the

total length of segments of spin σ , while loverlap is the total

overlap between segments of opposite spin (see illustration of

a segment configuration in Fig. 3). The retarded interaction

contributes a factor

wD = e
− 1

2

∑

σ1σ2

∫ β

0
dτ1

∫ β

0
dτ2D(τ1−τ2)σ1σ2

nσ1
(τ1)nσ2

(τ2)

= exp

⎛

⎜

⎝
−

1

2

∑

σ1σ2

kσ1
kσ2

∫ τkσ1

τ ′
kσ1

dτ1

∫ τkσ2

τ ′
kσ2

dτ2D(τ1 − τ2)σ1σ2

⎞

⎟

⎠
,

(36)

where {kσ } represents the collection of segments of spin σ .

Let us now define a function K(τ ) such that K ′′(τ ) = D(τ )

for 0 < τ < β and K(0+) = K(β−) = 0. K is β periodic and

symmetric around τ = β/2. It has a slope discontinuity at

zero, so that the second derivative also gives a delta-function

contribution. In the interval [0,β],

K(τ ) =
1

β

∑

n�=0

D(iνn) − D(0)

(iνn)2
(eiτνn − 1). (37)

Carrying out the integral in Eq. (36) thus yields

ln wD = −
1

2

∑

σ1σ2

kσ1
kσ2

[

−K
(

τ ′
kσ1

− τ ′
kσ2

)

+ K
(

τkσ1
− τ ′

kσ2

)

+K
(

τ ′
kσ1

− τkσ2

)

− K
(

τkσ1
− τkσ2

)]

+K ′(0)(l↑ + l↓) + 2K ′(0)loverlap. (38)

Using the fact that K(τ ) is an even function, we can

write ln wD =
∑

i>j sisj [K(τ̃i − τ̃j ) − K(0)] + K ′(0)(l↑ +
l↓) + 2K ′(0)loverlap where the time arguments of the hybridiza-

tion events (creation and annihilation operators) are now

ordered as 0 < τ̃1 < τ̃2 < . . . < β and s is +1 for a creation

operator and −1 for an annihilation operator.

We conclude that the retarded part of the interaction,

D(τ − τ ′), results in a retarded “interaction” between all pairs

of impurity creation and annihilation operators, as well as a

shift of the instantaneous interaction U → Ũ = U − 2K ′(0)

and a shift of the chemical potential μ → μ̃ = μ + K ′(0). If

one writes the interaction term in terms of density fluctuations,
1
2

∫∫

n̄(τ )D(τ − τ ′)n̄(τ ′) with n̄ = n − 〈n〉, the only change

induced in the weight is yet another shift of the chemical

potential μ̃ = μ + K ′(0) − 2〈n〉K ′(0). The retarded interac-

tions can be evaluated at negligible computational cost since

the calculation of this contribution for a local update is O(n)

(where n is the number of operators), while the evaluation of

a determinant ratio is O(n2).

In practice, the local bosonic propagator Wloc =
〈T φ(τ )φ(0)〉 needed in Eq. (26) is deduced from the connected

charge-charge correlation function χloc = 〈T n̄(τ )n̄(0)〉 via the

relation

Wloc(iνn) = U (iνn) − U (iνn)χloc(iνn)U (iνn). (39)

Indeed, using Eq. (21), Wloc can be reexpressed as Wloc =
−2 δ ln Z

δU−1 . The chain rule δ ln Z
δU−1 = −U δ ln Z

δU U and Eq. (23) give
δ ln Z
δU = − 1

2
χloc + 1

2
U−1, and hence one arrives at Eq. (39). An

analogous expression holds for Dloc.

B. Self-consistency

The GW + EDMFT scheme is generally expected to work

well if the nonlocal GW contribution to the self-energy is a

relatively small correction to the local self-energy computed

by EDMFT. It thus makes sense to first obtain a reasonable

guess of the final solution by applying EDMFT only, and

then compute the nonlocal correction and study its effect

on the properties of the system. Following this observation,

we implemented the GW + EDMFT scheme as follows: for a

given U and V , we (i) obtain a converged EDMFT solution,

(ii) take the EDMFT solution as the starting point for a

125149-8



SCREENING AND NONLOCAL CORRELATIONS IN THE . . . PHYSICAL REVIEW B 87, 125149 (2013)

self-consistent GW + EDMFT calculation, and (iii) stop when

local and nonlocal observables have converged.

This is not the only possible combination of EDMFT with

GW , although the final result of the self-consistent scheme

should not depend on the starting point, provided the scheme

converges. For instance, one can choose to initialize the scheme

by computing �GW and �GW from the noninteracting propa-

gators G0(k,iωn) = [iωn + μ − ǫ(k)]−1 and W0(k,iνn) = vk .

Yet, these propagators yield a very large GW polarization

owing to their metallic character (they correspond to the

U = 0, V = 0 case). Especially for the regions of interest

here (V close to Vc and finite U ), this large polarization is

far from the expected solution. Indeed, one can observe that

when taking an insulating G and, e.g., W = v as inputs for

GW , the resulting polarization is small compared to the local

polarization �loc.

C. Analytical continuation

The nontrivial structures of the frequency-dependent in-

teraction result in additional features in the local spectral

function A(ω) = − 1
π

ImG(ω + iη). For example, the case

ImD(ω) = −λ2 [δ(ω − ω0) − δ(ω + ω0)], studied in Ref. 21,

corresponds to the Holstein-Hubbard model, for which the

local spectral function is expected to display plasmonic peaks

at multiples of the “plasmon” frequency ω0.19 However,

the commonly used maximum entropy (MaxEnt) analytical

continuation62 tends to smooth out high-energy features and

therefore a dedicated scheme must be implemented to recover

the sought-after features. A solution to this problem has been

proposed in Ref. 19, inspired from the exact expression of

the Green’s function in the atomic limit.63 We thus proceed as

follows: (a) From U (iνn) (or, equivalently, D), we compute the

bosonic function B(τ ) = exp[−K(τ )], its Fourier transform

B(iνn) and, using a Padé procedure,64 its spectral function

B(ω). (b) From G(τ ), we compute an auxiliary function

Gaux(τ ) = G(τ )/B(τ ) and use MaxEnt to obtain Aaux(ω). (c)

Finally, we compute the spectral function as the convolution

A(ω) =
∫ ∞

−∞
dǫ B(ǫ)

1 + e−βω

(1 + eβ(ǫ−ω))(1 − e−βǫ)
Aaux(ω − ǫ).

(40)

V. SUMMARY OF THE COMPUTATIONAL SCHEME

The computational scheme can be summarized as follows

for the HS-UV [resp. HS-V ] decoupling:

(1) Start with an initial guess for �(k,iω) and �(k,iν): for

instance, � = 0 and � = 0 (noninteracting limit).

(2) Lattice Green’s functions. Compute G(k,iω) and

W (k,iν) [resp. D(k,iν)] via Dyson’s equation with vk [resp.

vnl
k ] as the bare interaction.

(3) EDMFT self-consistency. Extract Gloc(iω) =
∑

k G(k,iω) and Wloc(iν) =
∑

k W (k,iν) [resp. Dloc]

and use Eqs. (25) and (26) to find G(iω) and U (iν) [resp.

D(iν)].

(4) Impurity solver. Compute Gloc(τ ) and χloc(τ ) [resp.

χV
loc(τ )], as well as Wloc = U − UχlocU [resp. Dloc = D −

DχV
locD]. From these, extract the self-energies �loc = G−1 −

G−1
loc and �loc = U−1 − W−1

loc [resp. (�V )loc = D−1 − D−1
loc ].

(5) GW + DMFT step (optional).

(a) Compute

�GW (k,τ ) = 2
∑

q

G(q,τ )G(q − k, − τ ),

�GW (k,τ ) = −
∑

q

G(q,τ )W c(k − q,τ )

+
∑

q

G(q,0)v(k − q),

where W c = W − v is the regular part of W .

Respectively, for HS-V ,

�GW (k,τ ) = −
∑

q

G(q,τ )D(k − q,τ ),

−U 2
∑

q

G(q,τ )�GW (q − k,τ ).

(b) Extract nonlocal parts from GW :

�GW
nonloc(k,iω) = �GW (k,iω) −

∑

k

�(k,iω),

�GW
nonloc(k,iν) = �GW (k,iν) −

∑

k

�(k,iν).

(c) Combine �loc(iω) and �GW
nonloc(k,iω) into �(k,iω),

as well as �loc(iν) and �GW
nonloc(k,iν) into �(k,iν).

(6) Go back to step 2 until convergence.

In a pure EDMFT scheme, steps 5(a)–(c) are skipped. Note

that the decomposition of W into W c and v in 5(a) is aimed

at suppressing the singular part of W , namely, in the limit

of infinite frequency, W goes to a finite value v, whereas

W c vanishes, making the Fourier transform of the latter well

defined. Figure 4 gives an overview of the implementation of

the GW + DMFT scheme.

VI. RESULTS

In this section, we present numerical results for the half-

filled U -V Hubbard model on a two-dimensional square

lattice using the different approximate formalisms discussed

in the previous sections. We solve the impurity problems

using the CTQMC-hyb method. Unless otherwise stated, the

computations are performed at inverse temperature β = 100

(we use the half-bandwidth 4t as the unit of energy). The k

sums are discretized in the irreducible Brillouin zone on a

80 × 80 grid, while the imaginary-time correlation functions

are measured on a grid of N = 1000 equally spaced points. Up

to 40 EDMFT steps are required to reach convergence close to

the Mott transition.

A. Phase diagram

Figure 5 shows the phase diagram in the space of the

parameters U and V for the two decoupling schemes HS-UV

and HS-V . The top panel shows the EDMFT result, the bottom

panel corresponds to GW + DMFT. There are three phases:

(i) a Fermi liquid (FL) metal at small U and small V , (ii) a

charge-ordered (CO) insulator at small U and large V , and (iii)

a Mott insulating (MI) phase at large U and small V .
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FIG. 4. Computational scheme (HS-UV decoupling).

The phase boundary to the charge-ordered phase has been

located by approaching the phase transition from below Vc.
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FIG. 5. (Color online) Phase diagram of the U -V Hubbard model

for HS-UV (red), and HS-V (green) decoupling at β = 100. The top

panel shows the EDMFT result, and the bottom panel compares the

GW + EDMFT result for the HS-V scheme to EDMFT.

The phase transition corresponds to a diverging charge suscep-

tibility, namely, to the formation of a pole in the Fourier trans-

form χ (k,ω) of χij (t − t ′) ≡ ∂〈ni(t)〉/∂hj (t ′), where hj (t) is

a probe field. Specifically, the charge-ordering transition will

be signaled by a divergence at Q = (π,π ) and ω = 0 since

the probe field for this phase is hi(t) = heiQRi . Using the

action (2), one can easily show that χij (t − t ′) = 〈n̄i(t)n̄j (t ′)〉.
Recalling that W = v − vχv, we find the exact relation

χ (k,ω) = −
�(k,ω)

1 − vk�(k,ω)
(41)

for the HS-UV scheme. Similarly, for the HS-V scheme,

χV can be computed from D = vnl − vnlχV vnl or

χV = −�V /(1 − vnl�V ). This shows that the transition

also corresponds to the appearance of a pole in the fully

screened interaction W (k,iνn), and provides a rigorous

definition of Vc for HS-UV and HS-V , respectively:

1 − (U − 4Vc)� [k = (π,π ),ω = 0] = 0, (42)

1 + 4Vc�V [k = (π,π ),ω = 0] = 0. (43)

On the other hand, the phase boundary between the metal

and the Mott insulator is signaled by a vanishing spectral

weight at the Fermi level, which is related to the imaginary-

time Green’s function by AT →0(ω = 0) = limβ→∞
β

2
G(

β

2
).

The curvature of the FL-MI phase boundary shows that

increasing the nearest-neighbor repulsion V makes the system

more metallic.

Within EDMFT, both decoupling schemes yield very simi-

lar phase diagrams. In the temperature range β ∈ [25,100], the

phase diagram also does not depend much on temperature. The

boundary of the charge-ordered phase is characterized by two

main regimes: for U < Uc ≈ 2.5, dVc/dU ≈ 1
4
, which is the

prediction of mean-field studies. For U > Uc, dVc/dU ≈ 2.

The transition between the two regimes is marked by a kink.

This kink also coincides with the point where the charge-

ordered critical line meets the Mott critical line Uc(V ). The

latter is only weakly dependent on V . The sudden change of
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FIG. 6. (Color online) Imaginary-frequency data for the EDMFT calculations at U = 2.2 and indicated values of V (HS-UV scheme). (a)

ImGloc(iωn). (b) Im�loc(iωn). (c) ReWloc(iνn). (d) Re�loc(iνn).

slope in the critical line can be ascribed to the very nature of the

two transitions at stake: one is a transition between a metal and

a charge-ordered insulator, the other takes place between an

incompressible Mott insulator and a charge-ordered insulator.

The slope change is accompanied by a discontinuity of the

Vc line at its junction with the Mott critical line: this is

due to the first-order character of the Mott transition within

DMFT. We note that the critical value Vc(U ) for U > Uc is

substantially larger than its naive mean field estimate. EDMFT

may, however, overestimate the effect of the local interaction,

so that the true value of Vc is lower.

The effect of the GW contribution to the phase diagram

depends on the decoupling scheme. For HS-UV , GW does

not have any influence on the phase boundaries, while in

HS-V , GW substantially lowers the FL-CO phase boundary.

This has the following origin: the HS-V scheme resums the

diagrammatic series for V and for U separately (and treats U

only to second order), whereas the HS-UV scheme resums

both terms simultaneously. HS-UV is thus better poised to

capture the competition between the localizing term U and the

delocalizing term V . That GW in this scheme does not alter

the phase boundaries should therefore come as no surprise: it

merely shows that the local (EDMFT) physics alone fixes the

critical value of the nonlocal interaction, and suggests that the

HS-V decoupling underestimates Vc. For this reason, we will

henceforth restrict most of our attention to the HS-UV scheme.

Figure 6 plots the results for ImGloc(iωn), ReWloc(iωn),

Im�loc(iωn), and Re�loc(iωn) corresponding to the EDMFT

simulation at U = 2.2 and various values of V . As V

grows, |ImG(iω0)| increases and |�loc(iω0)| decreases, which

indicates that the system becomes more metallic as a result of

screening by V . Indeed, the screening effect can be quantified

by the static values of the fully screened interaction W (0) ≡
Wloc(iν0) and of the partially screened interaction U (0) ≡
U (iν0), which are plotted in Fig. 9. The nearest-neighbor

repulsion V induces a screening of the onsite Hubbard U ,

which becomes U (0). When V increases, W (0) and U (0) get

smaller and smaller, resulting in a more metallic behavior. For

U close to Uc, the transition to the charge-ordered insulator

occurs close to the value of V for which the cost of doublon

formation vanishes, i.e., when W (0) = 0.

The last panel of Fig. 6 shows the polarization �loc(iνn)

(which is the local bosonic self-energy). |�loc(iν0)| gets larger

as one approaches the phase boundary.

B. Screening in EDMFT

1. Screened interaction

The off-site interactions translate into an effective retarded

interaction at the level of the impurity action, as made apparent

in Eq. (23). The frequency-dependent local interactions in the

HS-UV formalism are now described by U (ω) [or U + D(ω)

125149-11



THOMAS AYRAL, SILKE BIERMANN, AND PHILIPP WERNER PHYSICAL REVIEW B 87, 125149 (2013)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

U
(ω

 =
 0

)

U

V = 0
V = .2
V = .4
V = .6
V = .8
V = .9

FIG. 7. (Color online) Partially screened U(ω = 0) as a function

of U (HS-UV scheme).

in the HS-V decoupling scheme]. They differ from the fully

screened local interactions Wloc insofar as they only include

nonlocal screening effects, at least in EDMFT. In particular,

when the interactions become local (V = 0), U becomes static

and equal to the bare interaction U , and EDMFT becomes

exactly equivalent to the usual single-site DMFT. This is shown

in Fig. 7, where U (ω = 0) = U for V = 0, and explains the

location of the Mott transition for V = 0, which coincides with

that found within single-site DMFT applied to the Hubbard

model. Moreover, one should also emphasize that using a

partially screened interaction (i.e., screened only by nonlocal

processes) to solve the impurity model, one avoids double

counting of the local screening effects, which are taken into

account in the DMFT calculation.

In the following, we will focus more specifically on Wloc,

which we have analytically continued to real frequencies using

a Padé scheme.64 The shape of Wloc(ω) at U = 2.2 and various

V is displayed in Fig. 8. Wloc(ω) has the typical shape of a

screened interaction: the real part features two distinct energy

scales, a bare interaction W∞ = Wloc(ω → ∞) = U at high

energies and a screened interaction W (0) = Wloc(ω = 0) < U

at low energies, separated by a screening frequency ω0. Its

Kramers-Kronig-conjugated imaginary part has most of its

spectral weight concentrated around ω0. We note that U (ω)

has a very similar overall shape. Also noteworthy is the fact

that ReWloc(ω) can become negative at a nonzero frequency

before its static value vanishes, that is, before the phase

transition. This signals that charge-ordering fluctuations to

charge-ordered configurations are already enhanced in the

system before the phase transition occurs.

In order to characterize screening effects, we will mainly

focus on the following three parameters: (i) the value of the

local static screened interaction Wloc(0), (ii) the screening

frequency ω0, and (iii) the strength λ of this screening, which

we will define later.

Wloc(0) is the effective fully screened interaction between

two electrons on the same lattice site. Its evolution across the

U -V plane for the HS-UV scheme is illustrated in Fig. 9.

Wloc(0) decreases for increasing V , and drops to zero as

V approaches Vc. This is intuitively easy to understand:

the critical line corresponds to the locus where the cost

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6

R
e

 W
lo

c

ω

V = 0
V = .4
V = .6

V = .72

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6

Im
 W

lo
c

ω

V = 0
V = .4
V = .6

V = .72

FIG. 8. (Color online) Influence of V on the effective local

interaction for U = 2.2 (HS-UV scheme). Upper panel: ReWloc(ω).

Lower panel: ImWloc(ω).

Wloc(ω = 0) for the formation of doublons vanishes. The lower

panel of Fig. 9 shows that the screening of the local interaction

is much more efficient and gradual in the metallic phase than

in the Mott insulator. In the insulating phase, screening is

weak and weakly V dependent, all the way up to Vc. Let us

emphasize that there are screening effects even when V = 0 in

the metallic phase (middle panel, red curve with crosses). This

shows that in a EDMFT description of the simple Hubbard

model (V = 0), there is a screening of the static U by the local

polarization caused by U itself, provided one uses the HS-UV

decoupling scheme. In the HS-V method, the screening comes

only from V , as D originates from the HS decoupling of the

nearest-neighbor interaction only. The local static interactions

without polarization effects are shown in Fig. 9. As expected,

U (ω = 0) > W (0) since the local polarization further screens

the local interaction.

2. Screening frequency

A relevant question is in which parameter regime a model

with a static screened interaction provides a reasonable

approximation. A useful quantity to investigate in this context

is the screening frequency ω0, whose precise determination

is a somewhat tricky task owing to the Padé procedure’s

inaccuracy. Instead of measuring ω0 as the minimum of
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ImWloc(ω), we have found it more meaningful to determine
it from the first moment of ImWloc(ω): ω0 ≈ 〈ω〉 ≡∫ ∞

0 dω ω ImWloc(ω)/
∫ ∞

0 dω ImWloc(ω), whose dependence
on U and V in the HS-UV scheme is presented in the upper
panel of Fig. 10. This figure shows that the screening frequency
is only weakly dependent on the nearest-neighbor interaction
V . On the other hand, the larger the bare interaction U = U∞,
the larger the screening frequency.

The U dependence of 〈ω〉 (for V = 0) is discussed in
Appendix D, where we also provide an interpretation of the
two regimes, separated by a kink at U = Uc, based on the
so-called linearized DMFT.65

3. Electron-boson coupling

Motivated by the Hamiltonian representation of the im-
purity model with dynamically screened interaction (see
Appendix C), we define the strength of the screening by the

parameter λ ≡
√

| ∫ ∞
0 dω ImU(ω)|. It follows from Eq. (C5)

that λ ∝
√∑

p λ2
p, where λp is the coupling of the harmonic

oscillator with frequency ωp to the charge on the impurity.
Therefore, λ can be interpreted as the strength of the coupling
to the charge fluctuations. Its dependence on U and V is pre-
sented in the lower panel of Fig. 10. Except in the vicinity of the
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scheme). Inset: ( dλ
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)2 as a function of U .

phase transition to the charge-ordered phase, λ is proportional
to V . The square of the proportionality constant (see inset66)
decreases with increasing U , and exhibits two regimes sepa-
rated by a kink at U = Uc: for U � Uc, d

dU
[( dλ

dV
)2] ≈ −2.2,

otherwise d
dU

[( dλ
dV

)2] ≈ −0.34. Recalling that the effective
dynamical interaction is, schematically, λ2D, where D is the
propagator of the mediating boson (see Appendix C), one can
observe that [dλ/dV ]2 is directly proportional to the effective
interaction, since λ ≈ [dλ/dV ]V =0 · V . The inset of the upper
panel of Fig. 10 thus gives a direct indication of the strength of
dynamical effects. In particular, it indicates once again that
screening in the Mott insulator is radically different from
screening in the Fermi-liquid metal.

4. Influence of screening on spectral properties

The screening effects coming from U and V have some
impact on the local spectral function. In the weakly corre-
lated regime (U < Uc), the nonlocal interactions V tend to
smooth out the incoherent Hubbard bands and transfer some
spectral weight to the quasiparticle peak and into the gap
region between the quasiparticle peak and the Hubbard bands
(Fig. 11, upper panel). This behavior is consistent with the
imaginary-frequency data showing a more metallic behavior
as V increases. The effects are more dramatic in the strongly
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scheme).

correlated regime (U > Uc), where one observes new features

in the local spectral function, as shown in the lower panel

of Fig. 11. In addition to the two Hubbard bands located at

ω = ±U/2, the spectral function has two symmetric satellites

at ω = ±(U/2 + ω0), whose spectral weight grows with V .

The position of the peaks comes from the convolution in

Eq. (40) since Aaux contains spectral weight at ±U/2 and

B contains weight at ±ω0.

C. Momentum dependence in GW + DMFT

1. Nonlocal self-energy

Figure 12 displays �GW
nonlocal(k,iω0) and �GW

nonlocal(k,iν0) in

the metallic phase near the charge-ordering transition. These

quantities vanish in the limit of large dimensions and are thus

neglected in the EDMFT treatment. The GW contribution to

the imaginary part of the electronic self-energy � is negligible

with respect to the local self-energy [for instance, at U = 2

and V = 0.6, Im�loc(iω0) = −0.18, compared to a nonlocal

GW self-energy < 0.001]. This holds across the Fermi-liquid

phase and the Mott insulating phase. The real part of �GW
nonlocal is

relatively large away from the EDMFT Fermi surface, but does

not alter this Fermi surface. On the other hand, the nonlocal

polarization is comparable to its local counterpart [�loc(iν0) =
−0.39 for U = 2, V = 0.6].
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FIG. 12. (Color online) GW nonlocal contribution in the HS-

UV scheme. Top: Im�GW
nonloc(k,iωn=0). Middle: Re�GW

nonloc(k,iωn=0).

Bottom: Re�GW
nonloc(k,iνn=0).

This should have an impact on the phase diagram if one

recalls the criterion of Eq. (42). However, the local observables

are also modified in the self-consistent calculation, as will be

described in the next section, which prevents a direct prediction

of the effect of the nonlocal terms. As shown in Fig. 5, the effect

of GW depends on the decoupling scheme. For the HS-UV

scheme, the GW contribution has a negligible influence on the

phase diagram. For the HS-V scheme, the GW contribution

has a large effect on the phase boundary between the metallic

phase and the charge-ordered phase. The nonlocal polarization,

peaked at k = (π,π ), enhances nesting effects and leads to a

substantially lower Vc compared to EDMFT.

2. Nonlocal polarization

Two-particle quantities such as the charge-charge cor-

relation function or the electron energy-loss spectrum are

quite strongly affected by the nonlocal GW contribution

to the polarization, as discussed in Ref. 24. In particular,

GW + DMFT gives insights into the nature of the collective

modes in the homogeneous system, which EDMFT cannot

give due to the local nature of its polarization.

Figure 13 shows results for the polarization function. We

note that within single-site DMFT, one could in principle

obtain a nonlocal polarization function from the momentum-

dependent one-particle Green’s function G(k,ω) (evaluated
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FIG. 13. (Color online) Comparison of various polarizations for U = 1.5, V = 0.4 (HS-UV scheme).

with the local EDMFT self-energy) by computing the polariza-
tion bubble GG. While this approximation to the polarization
is momentum dependent, it nevertheless lacks any information
about the local vertex other than through G itself. However, as
was demonstrated in Ref. 24, the local vertex plays a major role
when the strength U of local correlations grows. In EDMFT,
on the other hand, the locality of the polarization function is
assumed [see Fig. 13(a)], but the nonperturbative local vertex is
taken into account since the local polarization is obtained from
the nonperturbative local charge-charge correlation function.
The GW + DMFT scheme allows one to overcome both
limitations by encompassing both the local vertex (through the
local part of the polarization) and the momentum dependence
(through the nonlocal part of the bubble). In other words,
conceptually, GW + DMFT contains more than just the bubble
(through the local part of the polarization) and still yields
a momentum-dependent polarization, which is more than
both single-site DMFT and extended DMFT can achieve. To
illustrate this point, we show in Fig. 13 the polarization bubble
computed from a converged EDMFT calculation in Fig. 13(c),
and the full, converged polarization of a GW + DMFT
calculation in Fig. 13(d) (for U = 1.5, V = 0.4).

Using the output of the converged EDMFT calculation,
namely, the local self-energy �imp and the polarization
Pimp, one could again construct a momentum-dependent
polarization in the following way: first, compute the
one-particle Green’s function G(k,ω) from �imp through
Dyson’s equation; second, compute the bubble GG; third,

combine it with Pimp to get the momentum-dependent
polarization: P (k,ω) = Pimp(ω) + (GG)nonloc(k,ω). This
approach is similar to the GW + DMFT method with the
important difference that it is not self-consistent, namely,
the computed momentum-dependent polarization is not in
turn used as an input to the next computational step. Even
if the momentum dependence is physically important, it
will not in this scheme have a consequence on the local
one-particle spectra, for example. In Fig. 13, we compare this
polarization [Fig. 13(b)] to the GW + DMFT polarization
[Fig. 13(d)]. While being quite similar in certain regions of
the Brillouin zone, the two functions are very different in
others [above the (π,0) point for instance]. In particular, one
notices that the structure of the polarization computed on top
of EDMFT, albeit momentum dependent, is very similar to the
local EDMFT polarization [Fig. 13(a)] away from the (0,0)
point, while the GW + DMFT polarization shows significant
deviations from it throughout the Brillouin zone.

D. Influence of the self-consistency on local observables

The self-consistency condition leads to an “adjustment” of
the local quantities to the nonlocal self-energies, as shown in
Fig. 14, which illustrates the convergence from EDMFT to
GW + DMFT: GW not only adds a nonlocal contribution to
the self-energy and polarization, it also induces a change in
the local observables (see also Fig. 15).
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The GW + DMFT local spectral function features more

pronounced Hubbard bands than the EDMFT spectrum.

This is a sign of increased local correlations. Inspection of

the imaginary frequency data corroborates this observation:

Wloc(ω = 0) is enhanced with respect to the EDMFT result,

indicating that the local interactions are stronger. Likewise,

|ImGloc(iω0)| is reduced in GW + DMFT.

These observations mean that the local quantities have be-

come more “insulating” in character as a result of the addition

of the nonlocal GW self-energy. This can be interpreted in

the following way: contrary to the EDMFT case, where all

the screening and correlation effects are absorbed into the

local self-energy, in GW + DMFT some of these effects are

now carried by the nonlocal components. Specifically, GW

nonlocal self-energies carry important screening effects owing

to the very nature of the GW approximation. This leads to

a redistribution of the screening between local and nonlocal

observables: local observables become less screened, and thus

more correlated.

We note that the convergence properties depend on the

observable. For example, after the first iteration, ImGloc looks

more metallic than the EDMFT result, while the converged

solution is more strongly correlated. In the case of ReWloc

already the first iteration leads to an increase in the interaction.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  0.5  1  1.5  2  2.5

Im
 G

lo
c

ωn

(a)

EDMFTsc
(EDMFT+GW)sc

GWsc

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10

R
e

 W
lo

c

νn

(b)

EDMFTsc
(EDMFT+GW)sc

GWsc

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-3 -2 -1  0  1  2  3

ω

(c)

EDFMT
GW+EDMFT

GW

FIG. 15. (Color online) Influence of the self-consistency for U =
2, V = 0.4 (HS-UV scheme). (a) ImGloc(iωn). (b) ReWloc(iνn). (c)

Aloc(ω) (obtained from MaxEnt continuation).

In both cases, the result is clearly not converged after one

iteration, which casts some doubt on the validity of “one-shot”

GW + DMFT schemes.

Figure 15 shows the converged ImGloc and ReWloc for the

three self-consistent schemes: EDMFT alone, GW + DMFT,

and GW alone (with the GW + DMFT result as a starting

point). As expected, GW is the most metallic in character and

the corresponding spectrum does not have Hubbard bands.

Interestingly, GW + DMFT is not a kind of “average” between
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TABLE I. Summary of the different schemes.

HS-V HS-UV

Single-site DMFT Accurate treatment of local interactions from weakly correlated limit to atomic limit. Cannot deal with long-range

interactions beyond Hartree level. Local description of correlations through a local self-energy. Captures Mott

transition.

EDMFT Accurately handles local interactions from weakly correlated limit to

atomic limit. Captures Mott transition and charge-ordering transition.

Deals with long-range interactions through dynamical interactions at

the local level. Describes local one-particle correlations through the

local self-energy. Captures local polarization processes.

Same as HS-V . Additionally, allows one to

compute a fully screened interaction Wloc(ω),

screened by a nontrivial local polarization,

even when V = 0.

GW Accurately handles local and nonlocal (including long-ranged)

interactions in the weakly correlated regime. Captures local and

nonlocal polarization processes, among which nesting effects. The

self-energy sums up the subset of local and nonlocal diagrams to

infinite order in V , to second order in U , possibly overestimating

nonlocal processes.

Same as HS-V , but treats both local and

nonlocal interaction terms at the same level

of approximation, i.e., to infinite order.

Hence, gives better account of competition

between local and nonlocal processes.

GW + DMFT Accurate treatment of local and nonlocal (including long-ranged)

interactions from weakly correlated regime to atomic limit. Captures

local and nonlocal polarization processes, among which nesting

effects. At a given iteration, the self-energy sums up all the local

diagrams to infinite order in U and V , as well as a (RPA) subset of

nonlocal diagrams to infinite order in V , to second order in U , thus

overestimating nonlocal processes; in particular, underestimates the

value of the critical V to the charge-ordered phase compared to

HS-UV . Intersite antiferromagnetic fluctuations are not included.

Same as HS-UV , but the nonlocal diagrams

treat U and V on the same footing, curing the

deficiency of HS-V ; in particular, gives

better estimate of critical V to the

charge-ordered phase.

GW and EDMFT. It exhibits stronger correlation effects than

both GW and EDMFT.

E. Summary

Table I gives a general overview of the results presented

above.

VII. CONCLUSIONS

We have implemented the EDMFT and GW + DMFT

methods and presented an application to the single-band ex-

tended Hubbard model. In a first step, the two formalisms have

been reviewed in detail: we have discussed the construction

of the free-energy functional, and compared two different

flavors of such functionals that have been proposed in the

literature, corresponding to two distinct decouplings of the in-

teraction term, and leading, respectively, to the GW + DMFT

(Refs. 16–18) and GD + SOPT + DMFT (Refs. 14 and 15)

approaches. We have presented the details of our implemen-

tation of a fully self-consistent GW + DMFT scheme based

on a numerically exact continuous-time quantum Monte Carlo

solver adapted for frequency-dependent local interactions. The

investigation of the frequency dependence of these interactions

for parameters ranging from weak to strong coupling shows

that the U dependence of the local screening frequency

reflects the form of the local one-particle spectrum. We have

investigated the spectral properties of the extended Hubbard

model within three self-consistent schemes, namely, EDMFT,

GW , and GW + DMFT. The nearest-neighbor repulsion V

leads, in the Mott insulator, to high-energy satellites in the

local spectra.

The GW + DMFT calculations demonstrate that the non-

local contributions to the self-energy coming from the GW

diagrams are quite small in the case of the extended Hubbard

model. In view of the strong momentum dependence observed

in self-energies obtained from cluster DMFT calculations for

the two-dimensional Hubbard model as one approaches the

Mott transition,67,68 our results confirm the importance of spin

fluctuations, suggesting that further nonlocal diagrams have to

be considered in order to capture the dominant fluctuations in

the extended Hubbard model.

The model calculations presented in this paper can be

straightforwardly extended to the multiorbital case and to

additional, longer-range matrix elements of the screened

interaction, paving the way for realistic first-principles material

calculations.26 It is worthwhile to note that the GW + DMFT

method and its variations are a computationally cheap way of

incorporating the leading vertex contribution, in the form of

the EDMFT self-energy, into the description of a solid, and

to introduce some spatial fluctuations through a perturbative

scheme. This contrasts with methods involving an explicit

computation of the vertex functions7,9,69 whose implemen-

tation for simple model systems is already a formidable

challenge.

In real materials, further degrees of freedom, stemming

for example from the multiband nature and ligand orbitals,

lead to a renormalization and/or frequency-dependence of the

parameters in the low-energy description. Relatively weak, but

nonlocal correlation effects are expected to play a dominant

role in the case of extended ligand or higher-lying empty states,

thus providing an additional motivation for a combination

of GW and DMFT. Indeed, GW provides an accurate
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and comparatively inexpensive description of the screening

from “uncorrelated” bands, making the application of the

GW + DMFT method to electronic-structure calculations for

realistic solids highly promising.
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APPENDIX A: EXTENDED HUBBARD MODELS FROM

FIRST PRINCIPLES

The Hamiltonian H of the extended Hubbard model is

supposed to describe the low-energy physics of correlated

materials. H can be regarded as an effective Hamiltonian

resulting from a “downfolding procedure,” based on some

localized Wannier basis. The downfolding procedure is akin to

a renormalization group transformation which, starting from

all the bands resulting from a LDA calculation, produces an

effective model for the bands in a low-energy window by

integrating out the remaining bands. In this process, the bare

Coulomb interaction v(r,r ′) = 4πe2/|r − r ′| is transformed

into a frequency-dependent partially screened interaction

Wr (r,r ′,ω),71–73 which acts in the low-energy subspace. In

principle, Wr is computed as Wr = v(1 − vPr )−1, where Pr is

the polarization obtained when transitions within the effective

model are removed. The matrix elements of this interaction in

the Wannier basis are

Vijkl(ω) =
∫

d3r d3r ′φ∗
i (r)φ∗

j (r ′)Wr (r,r ′,ω)φk(r)φl(r
′),

(A1)

where φi denotes a Wannier orbital centered at site i.

Model (1) involves three approximations on the above

matrix elements: (i) the frequency dependence of Vijkl(ω) is

neglected: Vijkl ≡ Vijkl(ω = 0), (ii) the interaction is restricted

to density-density terms Vijkl = Vij ijδikδj l ≡ Vij , and (iii)

only the onsite matrix element U ≡ Vii and the nearest-

neighbor matrix element V ≡ Vij (with i and j nearest

neighbors) are retained. The last assumption is valid only if

Wr (r − r ′,ω = 0) decays rapidly in space.74 The neglected

non-site-diagonal parts of the electron-electron interactions

such as, for instance, the bond-charge-bond-charge matrix

elements W ≡ Vijj i , are believed to be small in usual solids.75

We also mention that a “locally unscreened cRPA” approach

has been recently implemented.76,77 It is geared at a direct

construction of an impurity Hubbard interaction, akin to the

one resulting from GW + DMFT, but computed from a single-

shot RPA calculation.

APPENDIX B: DERIVATION OF THE SINGLE-SITE

EDMFT ACTION USING THE CAVITY METHOD

In the following, we use the cavity method2 to derive

the EDMFT action (22) and the EDMFT self-consistency

equations which fix G and U . To this end, let us focus on

a given site (denoted by the index 0) and split the lattice

action [Eq. (8)] into three parts: S = S0 + S(0) + �S where

S0 denotes the action of the site 0, S(0) the action of the lattice

with site 0 removed (the lattice with a “cavity” at site 0), and

�S the remaining part:

S0 =
∫ β

0

dτ

{

∑

σ

c∗
0σ (∂τ − μ) c0σ + iφ0n0

+
1

2
φ0[v−1]00φ0

}

, (B1)

�S =
∫ β

0

dτ

{

−
∑

i �=0,σ

ti0(c∗
0σ ciσ + c∗

iσ c0σ )

+
∑

i �=0

φi[v
−1]i0φ0

}

, (B2)

S(0) =
∫ β

0

dτ

{

∑

ij �=0,σ

c∗
iσ (∂τ − μ − tij )cjσ

+
1

2

∑

ij,�=0

φi[v
−1]ijφj + i

∑

i �=0

φini

}

. (B3)

Defining ηiσ ≡ ti0c0σ and ji ≡ [v−1]i0φ0, we can write �S =
∫ β

0
dτ {−

∑

i �=0,σ (η∗
i ciσ + c∗

iσηi) +
∑

i �=0 jiφi}, such that ηiσ

and ji can be regarded as sources of correlation functions for

the effective action of the site 0, defined by e−Seff[c
∗
0 ,c0,φ0]/Zeff ≡

∫

Di �=0[c∗
i ,ci,φi]e

−(S0+S(0)+�S)/Z. We can express the ac-

tion as Seff = S0 − �[η∗
i ,ηi,ji] + const, where �[η∗

i ,ηi,ji] ≡
ln

∫

Di �=0[c∗
i ,ci,φi]e

−(S(0)+�S) is the generating functional of

connected correlation functions of the cavity,47

G
(0)
i1...injn...j1

(τ1 . . . τn,τ
′
1 . . . τ ′

n)

= (−1)n
δ2n�

δη∗
i1

(τ1) . . . δη∗
in

(τn)δηjn
(τ ′

n) . . . δηj1
(τ ′

1)
, (B4)

W
(0)
i1...injn...j1

(τ1 . . . τn,τ
′
1 . . . τ ′

n)

=
δ2n�

δji1
(τ1) . . . δjin(τn)δjjn

(τ ′
n) . . . δjj1

(τ ′
1)

. (B5)

An explicit expression for � is thus

�[η∗
i ,ηi,ji] =

∞
∑

n=1

∑

i1...in,j1...jn

∫

dτ1 . . . dτ ′
nη

∗
i1

(τ1) . . . ηj1
(τ ′

n)

× (−1)nG
(0)
i1...injn...j1

(τ1 . . . τ ′
n)

+
∞

∑

n=1

∑

i1...in,j1...jn

∫

dτ1 . . . dτ ′
nji1

(τ1) . . . jjn
(τ ′

n)

×W
(0)
i1...injn...j1

(τ1 . . . τ ′
n). (B6)

The DMFT approximates � by its infinite-dimensional

limit. In this limit, the hopping t between sites must be

scaled as t/
√

z (with z = 2d) in order to keep a finite kinetic

energy, while V must be scaled as V/z in order to keep
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the Hartree energy corresponding to the nearest-neighbor

interaction finite.46 As a consequence of taking this limit,

all terms of order n > 1 in Eq. (B6) vanish, so that

�DMFT =
∫

dτ dτ ′c∗
0(τ )(−

∑

ij ti0tj0G
(0)
ij (τ − τ ′))c0(τ ′) +

∫

dτ dτ ′φ0 (τ ) (
∑

ij v−1
i0 v−1

j0 W
(0)
ij (τ − τ ′))φ0(τ ′). We thus

arrive at the DMFT effective action of Eq. (21) (where we

have dropped the index 0 in order to simplify the notation)

with

G−1(iωn) ≡ iωn + μ −
∑

ij

ti0tj0G
(0)
ij (iωn), (B7)

U−1(iνn) ≡ v−1
00 −

∑

ij

v−1
i0 v−1

j0 W
(0)
ij (iνn). (B8)

Furthermore, in the limit of infinite dimensions, the cavity

Green’s function is related to the lattice Green’s func-

tion through G
(0)
ij = Gij − Gi0G0j/G00 and W

(0)
ij = Wij −

Wi0W0j/W00, which is shown by considering the paths

contributing to Gij (Wij ) and not to G
(0)
ij (W

(0)
ij ) (see Ref. 2

for more details). This allows us to write
∑

ij ti0tj0G
(0)
ij , after

Fourier transformation, as

∑

k

ǫ2
kGk(iωn) −

(

∑

k

ǫkGk(iωn)

)2
/

∑

k

Gk(iωn). (B9)

At this point, a second approximation is made: the self-

energies are assumed to be k-independent, namely, �(k,iω) ≈
�loc(iω) and �(k,iν) ≈ �loc(iν). This also becomes exact

in the d → ∞ limit.78 As a consequence, we can define the

densities of states ρ(ǫ) =
∑

k δ(ǫ − ǫk) and ρ ′(ǫ) =
∑

k δ(ǫ −
v−1

k ), which allows us to rewrite (B9) as

∫

dǫ ρ(ǫ)ǫ2

ζ − ǫ
−

(∫

dǫ ρ(ǫ)ǫ

ζ − ǫ

)2 / ∫

dǫ ρ(ǫ)

ζ − ǫ
, (B10)

where ζ ≡ iωn + μ − �loc(iωn). The same expression holds

for the screened interaction, with ρ → ρ ′ and ζ → ζ ′ =
[v−1]00 − �loc(iνn) [as can be seen by comparing Eqs. (B7)

and (B8)].

Using the following identities for Hilbert transforms,
∫ ∞

−∞

dǫρ(ǫ)ǫ2

ζ − ǫ
= ζ

∫ ∞

−∞

dǫρ(ǫ)ǫ

ζ − ǫ
, (B11)

∫ ∞

−∞

dǫρ(ǫ)ǫ

ζ − ǫ
= −1 + ζ

∫ ∞

−∞

dǫρ(ǫ)

ζ − ǫ
, (B12)

we obtain the self-consistency relations (25) and (26).

Equations (21), (25), and (26) form a closed set of

equations: SDMFT
eff , once solved, yields �loc and �loc, which

gives updated G and U which can in turn be used to solve the

effective local problem again until convergence is reached.

APPENDIX C: HAMILTONIAN FORMULATION OF THE

IMPURITY PROBLEM

Some properties of action (24) are more easily understood

in terms of its Hamiltonian representation. The first two terms

correspond to an Anderson impurity model

HAIM =
∑

p

εpa†
pap +

∑

p

(

V σ
p a†

pσ cσ + H.c.
)

+Un↑n↓ − μn, (C1)

describing an impurity (c, c†) coupled to a bath of nonin-

teracting fermionic levels (ap, a
†
p, energy εp). Here, nσ =

c†σ cσ and n = n↑ + n↓. The connection between Eqs. (24)

and (C1) is given by G−1(iωm) = iωm + μ − �(iωm) and the

hybridization function �(iωm) =
∑

p

|V σ
p |2

iωm−εp
. On the other

hand, the retarded effective interaction can be generated by

coupling the impurity to a bath of bosonic modes described by

the Hamiltonian

Hboson =
∑

p

ωpb†pbp +
∑

p

λp√
2
n(bp + b†p)

=
∑

p

ωp

2

(

φ2
p + �2

p

)

+
∑

p

λpn0φp, (C2)

with φp ≡ 1√
2
(bp + b

†
p) and �p ≡ 1

i
√

2
(bp − b

†
p).

Using the identity �2
p(τ ) = −[∂τφp(τ )]2/ω2

p, this can be

written in an action formulation as

Sboson =
1

β

∑

m,p

φp(iνm)

(−(iνm)2 + ω2
p

2ωp

)

φp(−iνm)

+ λpφp(iνm)n(−iνm). (C3)

Integrating out the bosonic degrees of freedom leads to

Sboson =
1

β

∑

m

n(iνm)

{

−
∑

p

λ2
p

2ωp

(iνm)2 − ω2
p

}

n(−iνm).

(C4)

Defining D(iνm) =
∫

dω
π

ImD(ω) 2ω
(iνm)2−ω2 with

ImD(ω) ≡ −π
∑

p

λ2
pδ(ω − ωp) (C5)

and Fourier transformingD(iνn) yields the retarded interaction

in Eq. (24).

The retarded interaction may thus be regarded as stemming

from the coupling to a bath of harmonic oscillators labeled by

the index p, with frequency ωp and coupling strength λp (as

already emphasized in Ref. 11). The effective interaction medi-

ated by these auxiliary degrees of freedom is proportional to the

squared coupling strength λ2
p times the free-phonon Green’s

function79 D0
p(iνn) ≡ −

∫ β

0
dτeiτνn〈φp(τ )φp(0)〉 = 2ωp

(iνn)2−ω2
p
.

Note that in complete analogy to the fermionic hybridization

function �(ω), the frequency-dependent interaction D(ω) is

determined self-consistently.

APPENDIX D: SCREENING FREQUENCY FROM

LINEARIZED DMFT

The U -dependence of the screening frequency may be

traced back to the form of the one-particle local spectrum.

As can be seen from Eq. (39), for V = 0,80 the frequency

dependence of Wloc (and thus the value of ω0) is inherited

from the charge-charge correlation function χloc. An analytical

estimate for the poles of this function can be calculated by

means of a simple approximation named linearized DMFT.65

In this method, the impurity problem is approximated by the

coupling of the correlated impurity to a single uncorrelated

bath level describing the hybridization of the impurity to the
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FIG. 16. (Color online) Imχ l-DMFT
loc in the (ω,U ) plane for V = 0.

The poles have been artificially broadened by an imaginary factor

η = 0.01. Black line: EDMFT result for 〈ω〉 as a function of U (for

V = 0).

lattice degrees of freedom. This simplified version of the

impurity problem allows for the explicit calculation of the

local Green’s function81:

Gl-DMFT
loc (ω) =

2
∑

i=1

ai

{

1

ω − ǭi

+
1

ω + ǭi

}

(D1)

with

ǭ1,2 =
1

4

(

√

U 2 + 64V 2
hyb ∓

√

U 2 + 16V 2
hyb

)

, (D2)

a1 =
1

4

⎛

⎝1 −
U 2 − 32V 2

hyb
√

U 2 + 64V 2
hyb

√

U 2 + 16V 2
hyb

⎞

⎠ , (D3)

as well as a2 = 1
2

− a1. The hybridization strength’s depen-

dence on U is given by Vhyb = t
√

z
√

1 − U 2/U 2
c (see Ref. 65

for details). Uc denotes the critical U for the Mott transition.

In the estimate below, we will use the value computed within

EDMFT, Uc = 2.5.

-D 0 D

weak correlations

-U/2 -ZD 0 Z D U/2

correlated metal

-U/2 0 U/2

Mott insulator

FIG. 17. (Color online) Sketch of transitions in generic spectra

for the Hubbard model at various interaction strengths.

In the absence of vertex corrections, the corresponding

charge-charge correlation function can be computed as χloc =
−2GlocGloc, leading to the expression

χloc(ω) = −2

{

2a2
1ǫ1

ω2 − ǫ2
1

+
2a2

2ǫ2

ω2 − ǫ2
2

+
4a1a2ǫ3

ω2 − ǫ2
3

}

. (D4)

The six (3 × 2) poles are defined as ǫ1 = 2ǭ1, ǫ2 = 2ǭ2, and

ǫ3 = ǭ1 + ǭ2.

These poles, displayed in Fig. 16, correspond to the transi-

tions allowed in the various correlation regimes, namely, in the

low-correlation limit, only transitions within the quasiparticle

peak are possible (see Fig. 17). As correlations increase, the

appearance of Hubbard bands enable additional transitions

from the lower Hubbard band to the unoccupied states of

the quasiparticle peak, and from the occupied states of the

quasiparticle peak to the upper Hubbard band. In the strong

correlation regime, finally, the only possible transitions are

those between the lower and the upper Hubbard bands.
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Using extended dynamical mean-field theory and its combination with the GW approximation, we compute

the phase diagrams and local spectral functions of the single-band extended Hubbard model on the square and

simple cubic lattices, considering long-range interactions up to the third nearest neighbors. The longer-range

interactions shift the boundaries between the metallic, charge-ordered insulating, and Mott insulating phases, and

lead to characteristic changes in the screening modes and local spectral functions. Momentum-dependent self-

energy contributions enhance the correlation effects and thus compete with the additional screening effect from

longer-range Coulomb interactions. Our results suggest that the influence of longer-range intersite interactions

is significant, and that these effects deserve attention in realistic studies of correlated materials.
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I. INTRODUCTION

In condensed matter physics, electron-electron correlations

give rise to many intriguing phenomena ranging from simple

energy band renormalization to complex phase diagrams with

charge, spin, or orbital ordering [1]. The essential physics is the

competition between electron localization and itinerancy. The

Hubbard model is one of the simplest models which captures

this competition, and it is therefore often used to investigate

correlation effects in lattice systems [2,3]. For instance, it

is generally believed that the two-dimensional single-band

Hubbard model with static on-site Coulomb interaction U

can be used to explain some underlying physics of cuprate

high-temperature superconductors [4]. One widely accepted

assumption in these studies is that the electron-electron

interaction is local, i.e., that long-range intersite interactions

are fully screened or may be ignored. When additional intersite

Coulomb interactions are considered, the model becomes an

extended Hubbard model, which can be used for example to

explore charge-ordering and Wigner-Mott transitions [5]. This

model also describes the screening of local interactions by the

nonlocal interactions. Both the charge-ordering transition and

the screening effect in the extended Hubbard model have been

investigated in numerous theoretical studies [6–15].
The physical properties of the Hubbard model have been

studied extensively using the dynamical mean-field theory
(DMFT) [2,3]. This approximate scheme describes the generic
behavior of high-dimensional lattice systems. In particular,
at half-filling and low temperature, the DMFT solution
for the hypercubic lattice will be an antiferromagnetically
ordered insulator, whose character changes from a Slater-type
antiferromagnet at weak interactions, to a Heisenberg-type
antiferromagnet with local moments at large interaction. If
the calculations are restricted to the paramagnetic phase, the
DMFT method predicts a transition from a Fermi-liquid metal
to a Mott insulator at a temperature-dependent critical value
of the on-site interaction U (comparable to the bandwidth).
This paramagnetic Mott transition can be considered as
the generic physical situation in the magnetically frustrated
case. The extended Hubbard model with strong nonlocal
interactions (parametrized by V ) exhibits a transition to a

charge-ordered state characterized by a freezing of charge
carriers and a spatial modulation of the charge density [5].
To describe this transition, one may resort to the extended
dynamical mean-field theory (EDMFT) framework [7,16–
22]. The basic idea of EDMFT was originally developed
in studies of heavy-fermion systems and spin glasses with
nonlocal Coulomb interactions [16,17]. The physical effects
induced by the nonlocal interaction V , including a frequency
dependence of the effective local interaction and a sizable
reduction of the static value of U , are well captured by
the EDMFT scheme. Since EDMFT takes into account the
spatially nonlocal interactions beyond the Hartree level, it
is a sophisticated numerical tool for studying the extended
Hubbard model. However, EDMFT is still based on a local
approximation, i.e., it assumes a k-independent self-energy
function and polarization function. To further incorporate
spatially nonlocal contributions into these functions, one can
combine the EDMFT approach with the GW approximation
[6,7,14,15,22].

While the EDMFT and GW + EDMFT schemes have been

developed more than ten years ago, there has been a recent

revival in interest in these approaches, due to methodological

improvements which enable an efficient and accurate solution

of the self-consistency equations. In the previous studies, phase

diagrams in the space of on-site interaction U and the nearest-

neighbor interaction V , fully screened and retarded interac-

tions, and local spectral functions have been calculated for the

extended Hubbard model on square and simple cubic lattices

[7,14,15,20,22]. It has been found that the critical charge-

ordering lines Vc(U ) between the Mott insulator phase and the

charge-ordered insulator phase obtained by the EDMFT and

GW + EDMFT approaches are substantially steeper than the

naive mean-field estimate Vc = U/z, where z is the number of

nearest neighbors [15]. This may point to an overestimation

of the local interactions in the EDMFT and GW + EDMFT

schemes or a nontrivial screening effect. Further issues left

open in previous work concern the physical interpretation

of the dominant screening processes, and their dependence

on the parameters of the model. In Ref. [23], it was pro-

posed that the effective local interaction incorporating screen-

ing by neighboring lattice sites can be well approximated

1098-0121/2014/90(19)/195114(19) 195114-1 ©2014 American Physical Society
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by simple estimates in terms of on-site and intersite inter-

actions. The recent GW + EDMFT study of Ref. [15] was

consistent with this simple picture in the correlated metallic

case in two dimensions with nearest-neighbor interactions.

However, the usefulness and accuracy of these estimates in

the higher dimensional case or with longer-range interactions

remains an open question.

The early studies of the three-dimensional extended Hub-

bard model [7,22] used a modified Hirsch-Fye algorithm to

solve the effective impurity problem and could not reach

low temperatures. In these calculations, the fermionic part

of the impurity model was handled by a standard Hirsch-

Fye algorithm [2,3], while the statistical weight due to the

continuous bosonic fields was obtained directly by computing

the corresponding Boltzmann factor [24]. This algorithm is not

as efficient and accurate as the recently developed continuous

time quantum Monte Carlo (CT-QMC) solver [25–28], which

can treat systems with a frequency-dependent retarded inter-

action without any approximations. Thus it is worthwhile to

reinvestigate the model using the EDMFT and GW + EDMFT

approaches in combination with the state-of-the-art CT-QMC

quantum impurity solver. This was done in Refs. [14,15] for

the two-dimensional model with local and nearest-neighbor

interactions. Here, we extend the investigation to the three-

dimensional model and to interactions of longer range. Indeed,

recent constrained random phase approximation calculations

[29] and a recent GW + EDMFT study [30] of adatom systems

Si(111):X, with X = Sn, Si, C, Pb, suggest that taking into

account substantially longer-range interactions is mandatory

to understand experimentally observed trends from Mott

physics toward charge-ordering physics along this series. In

particular, it was shown that long-range interactions (for the

surface systems, the full Coulomb tail was considered) can

decrease the effective local interaction by up to a factor of

two. Similar conclusions were drawn in Ref. [23] for other

two-dimensional systems like graphene, silicene, and benzene.

Other studies suggest that the superconducting Tc is generally

suppressed in some pairing channels as the strength of longer-

range interactions increases [13]. It thus appears that longer-

range intersite interactions beyond the nearest neighbors may

be important, at least for low-dimensional systems. So, it is

worth investigating in a simple model context how longer-

range intersite interactions modify the phase diagrams and

various local and nonlocal observables.

The purpose of this paper is to gain qualitative and

quantitative insights into the role of screening from nonlocal

Coulomb interactions. For this, we study the extended Hubbard

model on the square (2D) and simple cubic (3D) lattices using

a modern EDMFT and GW + EDMFT implementation with a

numerically exact CT-QMC impurity solver. The calculations

are restricted to repulsive interactions U > 0 and V > 0, and

to the paramagnetic phase, so that we can investigate the par-

ticularly interesting screening effects in the correlated metal,

close to the Mott or charge ordered insulator phase boundaries.

In particular, we extract the dominant screening modes and

analyze the effects of longer-range intersite interactions on

local, but energy dependent observables, such as spectral

functions. At first, we will perform self-consistent EDMFT

calculations to map out the entire U -V phase diagram, and

then compare to GW + EDMFT results at some representative

points to gain insights into the effects of nonlocal self-energy

and polarization contributions.

The rest of this paper is organized as follows. Section II

defines the extended Hubbard model used in this study. The

flowcharts for the EDMFT and GW + EDMFT methods and

the computational details are also briefly summarized in

this section. Section III A shows the results obtained using

the EDMFT approach. The phase diagrams, fully screened

and retarded interactions induced by the V term, and local

spectral functions are presented and discussed in detail.

Especially, doping-dependent phase diagrams and related

bosonic spectral functions are also presented in this section.

Some representative results obtained with the GW + EDMFT

approach are discussed in Sec. III B. A brief summary and

outlook are given in Sec. IV. Appendix A describes the

long-range intersite interactions considered in the 2D and

3D extended Hubbard models, while Appendix B details the

maximum entropy based analytical continuation method used

to extract the spectral functions for the frequency-dependent

fully screened and retarded interactions.

II. MODEL AND METHODS

A. Extended Hubbard model

In the present study, we consider the single-band extended

Hubbard models on a two-dimensional square lattice and

a three-dimensional simple cubic lattice, respectively (see

schematic picture in Fig. 1). The grand-canonical Hamiltonian

can be written as

H = −
∑

(i,j ),σ

tij (c
†
iσ cjσ + H.c.) − μ

∑

i

ni

+U
∑

i

ni↑ni↓ +
∑

(i,j )

Vijninj , (1)

where i and j are site indices and (i,j ) denotes a pair of sites

i and j . ciσ and c
†
iσ are the annihilation and creation operators

of an electron of spin σ at the lattice site i. niσ is the orbital

FIG. 1. (Color online) Schematic picture of the one-band half-

filled extended Hubbard model in the charge-ordered state for the

square lattice (left) and simple cubic lattice (right). The full dots

represent doubly occupied sites and the open dots empty sites. The

red, green, and purple dots denote the NN, NNN, and 3NN sites of

the black dot, respectively.

195114-2



EXTENDED DYNAMICAL MEAN-FIELD STUDY OF THE . . . PHYSICAL REVIEW B 90, 195114 (2014)

occupation operator, and ni = ni↑ + ni↓. tij is the hopping

matrix element between two different sites, μ is the chemical

potential, U is the on-site interaction, and Vij is the intersite

interaction between sites i and j .

When i = j , both tij and Vij must be zero. Only the hopping

between the nearest-neighbor (NN) sites is allowed in this

study, namely, tij = t〈ij〉 = t > 0. However, for the nonlocal

repulsive interactions Vij we also consider the next nearest-

neighbor (NNN) and the third nearest-neighbor (3NN) sites.

Our definitions for the NN, NNN, and 3NN sites are shown

in Fig. 1. We further assume that Vij can be calculated by

scaling V with a/|�ri − �rj |, in other words, with the inverse

distance in units of the NN distance a. In this sense, V is not

only the NN interaction but also the parameter that determines

the strength of all the long-range Coulomb interactions. The

detailed formulas of the Fourier-transformed tij and Vij are

given in Appendix A.

B. EDMFT and GW + EDMFT

We solve the single-band extended Hubbard model [see

Eq. (1)] with fully self-consistent EDMFT and GW + EDMFT

calculations. The EDMFT approach with the “UV decou-

pling” scheme [15] formally treats the local interactions and

nonlocal intersite interactions on the same footing. It can

be used to describe the Mott transition and charge-ordering

transition in the extended Hubbard model [16,17,20,21]. The

idea of the combined GW + EDMFT [6] scheme is the

following: one takes the local part of the self-energy (or

polarization) from the EDMFT calculation and adds to it the

nonlocal component of the GW self-energy (or polarization).

Thus a momentum dependence is introduced into the self-

energy (or polarization), and the scheme captures the interplay

of screening and nonlocal correlations at least to some extent.

While the accuracy of the scheme has not been systematically

tested, self-consistent GW + EDMFT calculations can be

obtained in the whole interaction range from the weakly

correlated region to the atomic limit. A detailed derivation

of the GW + EDMFT formulation for the extended Hubbard

model can be found in Ref. [15].

The GW + EDMFT self-consistency loop involves the

following steps [7,15]. One starts with an initial guess for the

k-dependent fermionic self-energy �(k,iωn) and the bosonic

self-energy (or polarization) �(k,iνn), with Matsubara fre-

quencies ωn = (2n + 1)π/β and νn = 2nπ/β for integer n.

The initial �(k,iωn) and �(k,iνn) can be obtained from

previously calculated results, or chosen to be zero. Then

one calculates the lattice Green’s function G(k,iωn) and

fully screened interaction W (k,iνn) using the lattice Dyson

equations

G(k,iωn) = 1

iωn + μ − ǫk − �(k,iωn)
(2)

and

W (k,iνn) = 1

v−1
k − �(k,iνn)

. (3)

Here, ǫk is the band dispersion and vk is the bare interaction

in reciprocal space (see Appendix A for more details). Then

the local counterparts of G, W , �, and � are calculated by

averaging over the whole Brillouin zone, for instance (Nk is

the number of k points),

G(iωn) = 1

Nk

∑

k

G(k,iωn). (4)

Next, the local bath Green’s function G(iωn) and frequency

dependent retarded interaction U (iνn) are calculated through

the impurity Dyson equations, namely,

G−1(iωn) = G−1(iω) + �(iωn) (5)

and

U−1(iνn) = W−1(iνn) + �(iνn). (6)

Then the quantum impurity model defined by G(iωn) and

U (iνn) is solved numerically. The impurity solver directly

yields the new G(iωn). On the other hand, the calculation of the

new W (iνn) involves as an intermediate step, the calculation

of the connected charge-charge correlation function χ (τ ) =
〈T n̄(τ )n̄(0)〉 with n̄ = n − 〈n〉. From the Fourier-transformed

χ (iνn) and U (iνn), we finally obtain the new W (iνn) via

W (iνn) = U (iνn) − U (iνn)χ (iνn)U (iνn). (7)

Using these G(iωn) and W (iνn) as inputs, the new local

self-energy functions �(iωn) and �(iνn) are determined by

using Eqs. (5) and (6) again. Within the GW approximation,

one evaluates the momentum-dependent GW self-energy and

polarization functions as �GW = −GW and �GW = 2GG [6].

Here, the factor 2 comes from the contribution of the spin

degree of freedom. Finally, one has to separate the local and

nonlocal parts of these GW self-energies and polarizations:

�GW
loc (iωn) = 1

Nk

∑

k

�GW(k,iωn), (8)

�GW
loc (iνn) = 1

Nk

∑

k

�GW(k,iνn), (9)

�GW
nonloc(k,iωn) = �GW(k,iωn) − �GW

loc (iωn), (10)

�GW
nonloc(k,iνn) = �GW(k,iνn) − �GW

loc (iνn), (11)

and then combine the nonlocal parts with the local contribu-

tions obtained from the impurity calculations, i.e.,

�(k,iωn) = �GW
nonloc(k,iωn) + �(iωn) (12)

and

�(k,iνn) = �GW
nonloc(k,iνn) + �(iνn). (13)

The new self-energy and polarization functions, �(k,iωn) and

�(k,iνn), serve as the starting point of the next iteration. This

completes the self-consistent loop.

The EDMFT self-consistency loop can be viewed as a

simplification of the full GW + EDMFT iteration, where one

ignores the calculations of the GW self-energies �GW(k,iωn)

and polarizations �GW(k,iνn), and adopts the following local

approximations:

�(k,iωn) = �(iωn) (14)
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and

�(k,iνn) = �(iνn). (15)

In the following calculations, we consider half-filled single-

band extended Hubbard models on the square lattice and

simple cubic lattice (some results for the 2D model away

from half-filling can be found in Sec. III A). The k sums

are discretized in the irreducible Brillouin zone on 81 × 81

and 19 × 19 × 19 grid points, respectively. We used the

hybridization expansion quantum impurity solver to solve

the effective impurity problems [27,28]. The imaginary time

Green’s function G(τ ) and charge-charge correlation function

χ (τ ) are measured on N = 1024 equally spaced time points.

We used 4t as the unit of energy and performed calculations

at inverse temperature β = 100, restricting our study to the

paramagnetic phase. Up to 40 EDMFT and GW + EDMFT

iterations are required to reach convergence when the system

is close to the Mott or charge-ordering transition.

C. Analytical continuation

Since the self-consistency loop is implemented fully on

the imaginary time/frequency axis, we have to analytically

continue the converged G(τ ), U (iν), and W (iν) to obtain

meaningful information about single particle excitations and

screening modes. The frequency dependence of the retarded

interaction U (iν) affects the single particle spectral function

A(ω), and in particular induces satellites at energies which are

determined by the dominant screening frequencies [27,31,32].

However, the classical maximum entropy method [33], which

is commonly used to perform analytical continuations of G(τ ),

tends to smooth out these high-energy features. To overcome

this obstacle, we adopted the algorithm proposed by Casula

et al. [31] and proceed as follows. From the spectral function

ImU (ν) we calculate the bosonic function

B(τ ) = exp[K(0) − K(τ )], (16)

where [34]

K(τ ) =
∫ ∞

0

dν
ImU (ν)

ν2

cosh[ν(β/2 − τ )]

sinh(νβ/2)
(17)

and the corresponding spectral function AB(ν). We then

define the auxiliary fermionic Green’s function Gaux(τ ) =
G(τ )/B(τ ), which later is analytically continued using the

conventional maximum entropy method to yield Aaux(ω).

Finally, the spectral function for G(τ ) is obtained from the

convolution

A(ω) =
∫

dǫ
AB(ǫ)Aaux(ω − ǫ)(1 + e−βω)

(1 + eβ(ǫ−ω))(1 − e−βǫ)
. (18)

This procedure requires an accurate estimate of the spectral

function ImU (ν). In previous studies, the Padé approximation

was used [15]. However, we found that the Padé results are

very sensitive to the data quality of U (iν). Small fluctuations

in U (iν), which are almost unavoidable [see Eq. (6)], can lead

to drastic modifications in the Padé estimation of ImU (ν).

Thus a robust procedure with respect to the typical level of

numerical noise is crucial. The maximum entropy method is

superior in this respect, and we have adapted it to the problem

of analytically continuing the retarded interaction U (iν) and

fully screened interaction W (iν). The details of this procedure

are explained in Appendix B.

III. RESULTS AND DISCUSSION

A. EDMFT results

In this section, we present self-consistent EDMFT results

for the paramagnetic, half-filled single-band U -V Hubbard

model on the square lattice and simple cubic lattice. All results

are for inverse temperature β = 100.

1. U-V phase diagrams

Figure 2 shows the phase diagrams in the space of the

parameters U and V . In this figure, the left panel shows the

result for the square lattice, and the right panel corresponds

FIG. 2. (Color online) The paramagnetic U -V phase diagrams for the single-band half-filled extended Hubbard model determined by

EDMFT calculations. (a) Phase diagram for the 2D square lattice. (b) Phase diagram for the 3D simple cubic lattice. Here CO denotes a

charge-ordered insulating phase, FL the metallic state, and MI the Mott insulator. The dashed lines are extrapolated FL-MI phase boundaries.

The insets in (a) and (b) show the phase diagrams with axes rescaled by the bandwidth.
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to the simple cubic lattice. Both phase diagrams exhibit three

phases: a metallic Fermi-liquid (FL) phase in which the kinetic

energy dominates the interactions, the Mott insulating (MI)

phase with one particle per site, where U is dominant, and

the charge-ordered (CO) insulator with a charge density wave

(CDW) when V prevails. The insets plot the phase diagrams

with axes rescaled by the bandwidth (8t for the square

lattice and 12t for the simple cubic lattice), to emphasize the

similarities and differences between the 2D and 3D cases.

The paramagnetic phase diagram for the extended Hubbard

model with NN interactions on the square lattice is consistent

with the result by Ayral et al. [15]. The paramagnetic phase

diagram for the simple cubic lattice with NN interactions

has been calculated in the pioneering paper by Sun et al.

[7]. Their calculations however were performed at a much

higher temperature (β = 5), above the end-point of the FL-MI

transition. Also, the quantum impurity solver used in that

study was a modified Hirsch-Fye algorithm with Bose factor

approximation [24], which is not as accurate as the numerically

exact CT-QMC algorithm [27]. Taking into account these

differences, the phase diagram presented in Fig. 2(b) appears

to be qualitatively consistent with the previous result by Sun

et al. [7]. When the temperature is increased, the Vc(U ) line

shifts upwards, and the Uc(V ) line is shifted to the left. In

contrast to the paramagnetic MI, the CO insulator does not

have a large entropy of ln 2 per site (the phase boundary is

determined from the divergence in the charge susceptibility,

see Sec. III A 2 for further details).

In the previous calculations, only the NN intersite interac-

tions have been included. In the present work, we also consider

the effects of longer-range interactions, more specifically the

NNN and 3NN intersite interactions, as depicted in Fig. 1. In

a future study, it would be interesting to consider the effect of

an infinite range Coulomb 1/r-type tail. A proper treatment

of it requires an Ewald lattice summation, as discussed by

Hansmann et al. [30].

The modifications in the phase diagram for the square

lattice are shown in Fig. 2(a). When U is small, the Vc(U )

line is shifted upward if the NNN and 3NN interactions

are added, which means that these longer-range intersite

interactions destabilize the CO state. This is not surprising,

since the left panel of Fig. 1 shows that both the NN and

3NN interactions act between sites of the same sublattice, and

hence penalize the CDW. In the strongly correlated region,

the Vc(U ) line is shifted downward, which means that the

MI state is suppressed by longer-range intersite interactions,

which can be interpreted as the result of the enhanced screening

of the on-site interaction. For the same reason, the Uc(V )

line is slightly shifted to the right. Finally, if only the NN

intersite interaction is considered, the Vc(U ) line “jumps” in

the region where the Vc(U ) and Uc(V ) lines intersect, and this

jump is accompanied by a change of the slope. If longer-range

interactions are included, the metallic phase extends to larger

values of U , so that the transition between MI and CO phases

is no longer a direct one, at least for 2.5 � U � 3.0. As a

result of this intermediate metallic phase, the jump in the

Vc(U ) line disappears. We note that the shape of the metallic

phase with longer-range interactions is qualitatively similar

to the FL phase in the single-band Holstein-Hubbard model

with large phonon frequency [27]. One difference is that the

phase diagram for the Holstein-Hubbard model does not have

a sudden slope change in the phase boundary to the CO phase

in the vicinity of the Mott transition. This suggests that the

slope change in the extended Hubbard model originates from

changes in the screening processes near Uc. We will investigate

this issue in more detail in Sec. III A 3.

Next, let us turn to the simple cubic lattice case [see

Fig. 2(b)]. Here, for small U , the Vc(U ) phase boundary is

shifted upward when the NNN interaction is added, just as in

the 2D case, but the 3NN interaction has the opposite effect.

Therefore the shift is not monotonous any more. This can

be understood by looking at the right-hand panel of Fig. 1.

While the NNN interactions act between sites on the same

sublattice, and hence frustrate the CDW, the 3NN interactions

act between sites on different sub-lattices, and thus favor the

CO phase. Another difference to the 2D case is that the metallic

region between the MI and CO phases is larger, so that there

is no obvious “kink” or sudden “jump” in the Vc(U ) line

near the Mott transition. In fact, for the model with only the

NN interactions, the slope change in the Vc(U ) line happens

already quite a bit before the Mott transition (Uc ∼ 3.1) at

V = 0.

2. Charge-ordering and Mott metal-insulator transitions

The phase transition from the FL and MI phases to the

CO phase is signaled by a diverging charge susceptibility

χ (iν = 0) [7]. This divergence almost coincides with a sign

change in the fully screened interaction ReW (iν = 0) [see

Eq. (7)]. When V increases, ReW (iν = 0) gets smaller, and

when it reaches zero, the cost for the formation of doublons

vanishes [15]. In Fig. 3, the real parts of W (iν = 0) and

χ (iν = 0) are plotted against V for U = 2.5, which is still

in the metallic state for the square and simple cubic lattices.

The phase boundary to the CO state has been located by

approaching the phase transition from below Vc. Actually,

before Reχ (iν = 0) diverges or ReW (iν = 0) reaches zero,

we already encounter a numerical instability which prevents

the convergence of the EDMFT self-consistency loop. Thus

we extrapolate the curves using (V − Vc)−1, as shown by the

dashed lines in Fig. 3, to determine the critical Vc. While

the extrapolation procedure is somewhat arbitrary, the trend

is unambiguous; in the square lattice case, Vc increases as

we add longer-range interactions, even though for V � 0.9,

the trend is actually opposite (due to an increasing screening

effect). For the simple cubic lattice, the screening effect

leads to a reduction of ReW (iν = 0) with increasing range

of the interaction for V � 0.6, but then the drop to zero

occurs in a nonmonotonic way, for reasons related to lattice

geometry as discussed above. In the large-U region, close to

the Mott transition, the Vc(U ) phase boundary shifts down

with increasing range of the interaction, both for the square

and the simple cubic lattice. This indicates that the interaction

induced changes in the screening function should play the

dominant role there.

The phase boundary between metal and Mott insulator is

signaled by a vanishing spectral weight at the Fermi level. We

increased the on-site interaction U step by step to approach the

phase transition from the FL metallic side, so that our Uc values

indicate the stability region of the metallic phase (U < Uc).
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FIG. 3. (Color online) ReW (iν = 0) (left y axis) and Reχ (iν = 0) (right y axis) as a function of V . U = 2.5. (a) Results for the square

lattice. (b) Results for the simple cubic lattice. The dashed lines are used to determine Vc for the charge-ordering transition.

In our calculations, the Mott metal-insulator transition is

determined by computing the quasiparticle weight Z [2]

Z =
[

1 − Im�(iω0)

ω0

]−1

, (19)

where ω0 is the first Matsubara frequency ω0 = π/β. Strictly

speaking, this equation is only valid at zero temperature,

but our temperature is low enough (β = 100) that it can be

regarded as a good approximation. In Fig. 4, the calculated

quasiparticle weights Z for the square and simple cubic lattices

are plotted for selected V parameters. This figure shows that

longer-range intersite interactions lead to a larger Z and hence

to a larger Uc. The reason is again a larger screening effect.

3. Screened and retarded interactions

In the top panels of Fig. 5, we plot the real parts of W (iν)

and U (iν), and the imaginary parts of W (ν) and U (ν) for

the square lattice with selected U and V parameters. The

counterparts for the simple cubic lattice are shown in the

bottom panels of Fig. 5. We concentrate here on the FL region

for both the 2D and 3D lattices. When ν → ∞, both the

fully screened interactions ReW (iν) and partially screened

interactions ReU (iν) [see Figs. 5(a) and 5(b)] asymptotically

approach the bare interaction U . As the frequency ν is lowered,

ReW (iν) and ReU (iν) decrease monotonously. Longer-range

intersite interactions produce a stronger screening effect, and

lead to lower values of the static interactions ReW (iν = 0)

and ReU (iν = 0).

Let us take a closer look at the ImW (ν) and ImU (ν) spectra,

which we have obtained from a modified maximum entropy

procedure [33] (see Appendix B). To analyze the spectra, we fit

ImW (ν) with multiple Gaussians. Each peak can be regarded

as a screening mode (abbreviated as SM), and the position of

the peak corresponds to the screening frequency. Figures 5(c)

and 5(d) show that the ImW (ν) spectra feature two prominent

SMs, whose screening frequencies differ by about a factor of

two. The insets of Figs. 5(a) and 5(b) show the contributions

of these modes to the frequency dependence of ReW (iν). In

the ImU (ν) spectra, one can also distinguish two humps, and

the locations and weights of these screening modes are similar

to the ImW (ν) counterparts. In both cases, the weight of the

FIG. 4. (Color online) Quasiparticle weight Z as a function of U . (a) Results for the square lattice, V = 0.80. (b) Results for the simple

cubic lattice, V = 0.60. When Z goes to zero, the Mott-Hubbard metal-insulator transition occurs. The corresponding U is Uc. In (b), the

dashed lines are used to guide the eyes.
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FIG. 5. (Color online) Real part of the fully screened interactions ReW (iν) and partially screened interaction ReU(iν), imaginary part of

the real frequency fully screened interaction ImW (ν) and partially screened interactions ImU(ν) for the extended Hubbard model solved by

EDMFT. (a), (c), and (e) Results for the square lattice, U = 2.5 and V = 0.8. (b), (d), and (e) Results for the simple cubic lattice, U = 2.5 and

V = 0.6. In this figure, SM means screening mode. In the insets of (a) and (b), the SM-resolved ReW (iν), together with the full ReW (iν) are

shown for the NN case. In (c) and (d), ImW (ν) for the NN case is approximated by Gaussian-type functions. The fitted results are shown in

the insets. Each Gaussian peak denotes a SM. The insets in (e) and (f) show the ImU(ν)/ν2 functions. Here ImW (ν) and ImU(ν) are extracted

using a modified maximum entropy method. See Appendix B for more details.

high-energy screening mode depends on the range of the

intersite interaction. In the 3D case, the high-energy mode

also seems to shift in energy, as longer-range interactions are

included.
The physical interpretation of the two screening modes is

somewhat subtle. As we will see in the following section, the
spectral function in the metallic phase essentially exhibits a
three-peak structure consisting of two Hubbard bands and a
renormalized quasiparticle band. One can therefore distinguish
screening processes stemming from transitions between the
Hubbard bands, between the quasiparticle peak and one of
the Hubbard bands, and within the quasiparticle band [15]. It
is natural to associate the high-energy screening mode with
inter-Hubbard band transitions and the low-energy mode with
transitions from the quasiparticle peak to either Hubbard band.
Consistent with this interpretation is the fact that the energy
difference between the two modes is roughly a factor of two.
Even the energy values associated with the two modes are
in good agreement with the energy separation between the
two Hubbard bands and between the quasiparticle and the
Hubbard bands, respectively (see Fig. 8 below). One may,
however, wonder why the bosonic spectra do not exhibit a
low-energy mode related to transitions within the renormalized
quasiparticle band. There is in fact no necessity for this to
happen: even in the metallic phase, where Imχimp(ω) has a
Drude-like contribution παδ(ω) and hence, by the Kramers-
Kronig relation, Reχimp = α/ω, the polarization �imp does
not have a pole at ω = 0. Indeed, taking U = U for simplicity,
we have �imp = −χimp/(1 − Uχimp) = −α/(ω − αU ). As a
result, the screened interaction does not have a pole at ω = 0

either: Wloc = ∑

q vq/(1 − vq�imp) = ∑

q vq(ω − αU )/[ω −
α(U − vq)].

It is worth noting that the structures in the ImU (ν)/ν2

function, which are shown in the insets of Figs. 5(e) and

5(f), determine the most relevant screening modes and the

associated energies of satellites in the local spectral function

A(ω) [32]. Therefore, despite the smaller weight, the low-

energy mode is equally or even more important than the

high-energy mode. In order to quantify the evolution of the

screening modes by a single number, we define the effective

screening frequency ν0 as follows [34]:

ν0 =
∫ ∞

0

dννImU (ν)
/

∫ ∞

0

dνImU (ν). (20)

In Table I, the static retarded interaction ReU (ν = 0), fully

screened interaction ReW (ν = 0), and the effective screening

frequency ν0 are listed for some representative regions in the

phase diagrams (see Fig. 2). ReU (ν = 0) and ReW (ν = 0)

are two key quantities that can be used to quantify the

screening effect. They decrease for longer-range intersite

interactions, irrespective of the strength of the bare interaction

U , the strength of the intersite interaction V , and the lattice

dimension. This is to be expected, since a longer-ranged

interaction increases the number of sites which participate

in the screening process. In addition, ReW (ν = 0) is always

smaller than ReU (ν = 0), since the former incorporates the

screening effects not only from the nonlocal processes, but

also from the local processes. As is seen in Table I, the

effective screening frequency increases with increasing range

195114-7



HUANG, AYRAL, BIERMANN, AND WERNER PHYSICAL REVIEW B 90, 195114 (2014)

TABLE I. Summary of ReU(ν = 0), ReW (ν = 0) and effective screening frequency ν0 for U and V parameters in the metallic and Mott

insulating regime. The ν0 is defined by Eq. (20). The results in parentheses are from fully self-consistent GW + EDMFT calculations (see

Sec. III B for further details), while the others are from self-consistent EDMFT calculations.

Metallic state

Square lattice Simple cubic lattice

mode V U ReU(ν = 0) ReW (ν = 0) ν0 V U ReU(ν = 0) ReW (ν = 0) ν0

NN 0.80 2.50 2.14 (2.36) 1.51 (1.96) 1.61 (1.11) 0.60 2.50 1.68 (2.21) 0.73 (1.23) 1.44 (1.06)

NN + NNN 0.80 2.50 2.03 (2.31) 1.34 (1.91) 1.77 (1.12) 0.60 2.50 1.65 (2.06) 0.62 (1.15) 1.96 (1.12)

NN + NNN + 3NN 0.80 2.50 1.98 (2.28) 1.27 (1.86) 1.84 (1.10) 0.60 2.50 1.62 (2.03) 0.59 (1.14) 2.14 (1.16)

Mott insulating state

Square lattice Simple cubic lattice

mode V U ReU(ν = 0) ReW (ν = 0) ν0 V U ReU(ν = 0) ReW (ν = 0) ν0

NN 1.50 3.00 2.75 (2.82) 2.54 (2.61) 2.48 (1.75) 1.50 3.60 3.24 (3.33) 2.98 (3.08) 2.88 (2.16)

NN + NNN 1.50 3.00 2.63 (2.75) 2.40 (2.55) 2.52 (1.66) 1.50 3.60 2.81 (3.04) 2.50 (2.79) 2.84 (2.00)

NN + NNN + 3NN 1.50 3.00 2.56 (2.71) 2.34 (2.51) 2.54 (1.66) 1.50 3.60 2.56 (2.98) 2.27 (2.74) 2.87 (2.00)

of the intersite interaction in the metallic phase, while it is

almost independent of the range of the interaction in the Mott

insulating phase. The larger the bare interaction, the larger

the effective screening frequency, which is consistent with

previous EDMFT calculations [15].

It is instructive to look at the evolution of the SM along the

metallic side of the Vc(U ) phase boundary, especially in the

U region where this phase boundary exhibits a slope change.

The results for the two- and three-dimensional lattices with

the nearest-neighbor interactions are shown in Fig. 6. In the

case of the simple cubic lattice [Fig. 6(d)], the slope change

is smooth and occurs quite a bit before U reaches the V = 0

Mott transition value Uc. The slope change therefore occurs

within the metallic phase, and is not directly associated with

the Mott transition. Nevertheless, there is a sudden increase in

the effective screening frequency at U ≈ 2.9, originating from

a simultaneous shift in the energy of both screening modes.

In the square lattice case [Fig. 6(c)], where the slope change

occurs simultaneously with the Mott transition, the effective

screening frequency does not exhibit such a jump within

the metallic phase. These results, and the comparison with

the phase diagram of the Holstein-Hubbard model [27] show

that the slope change, which cannot be understood within a

simple mean-field picture, is related to correlation induced

changes in the effective screening frequency.

4. Effective static interaction

EDMFT provides an elegant means of constructing a model

with purely local—though dynamical—interactions incorpo-

rating the effects of the nonlocal interactions in an effective

manner. Furthermore, Ref. [34] demonstrated that—at least in

the antiadiabatic limit—a model with dynamical interactions

can to a first approximation be thought of as a model with static

interactions corresponding to the zero-frequency limit of the

dynamical ones and a renormalized one-body Hamiltonian.

These facts motivate a comparison of the zero-frequency

limit of the effective dynamical interaction with attempts in

the literature of constructing low-energy Hamiltonians with

effective local static interactions, incorporating some of the

screening effects stemming from longer-range interactions.

In Ref. [23], it was shown that the best Hubbard model

with purely local interactions mimicking the physics of a

model with long-range interactions is one with modified

local interactions. “Best” is here defined in the sense of the

Peierls-Feynman-Bogoliubov variational principle, leading to

a free energy closest to the one of the original system. The

result is an effective interaction where the bare interaction U

is modified by a weighted average of the nonlocal interaction

matrix elements Vij :

Ueff = U + 1

2

∑

i �=j,σ,σ ′

Vij

∂Ueff
〈niσ njσ ′〉

∑

l ∂Ueff
〈nl↑nl↓〉 . (21)

Here, the sums are over lattice sites and spins, and 〈niσ njσ ′〉
denotes the density-density correlator between sites i and j .

Assuming that a variation of U leads to a displacement of

charge only to the nearest-neighbor sites, charge conservation

leads to a further simplification. Eq. (21) then reduces to

Ueff = U − V01, (22)

that is, screening by nonlocal interactions results in a simple re-

duction of the on-site interaction by the nearest-neighbor one.

Numerical calculations for graphene, silicene, and benzene

in Ref. [23] indeed found values for the effective interactions

close to the simple estimate given by Eq. (22). Inspection of the

calculations of Ref. [15] for an extended Hubbard model in two

dimensions with NN interactions reveals another interesting

aspect: in these calculations screening was found to be strongly

dependent on the regime, with barely any screening in the Mott

phase (as expected) but a strong reduction of the effective local

interaction in the correlated metal. Interestingly, however, the

simple estimate of Eq. (22) was found to provide a lower

bound with Ueff coming closer to U − V01 or U depending on

the proximity to the metallic or Mott phase, respectively.

Here, we address the question of the generic character of

this observation. In Fig. 7, we plot the static part of the effective

local interaction obtained from EDMFT as a function of V . As

expected, this quantity is strongly reduced when approaching

the phase boundary to the CO phase where strong charge

195114-8



EXTENDED DYNAMICAL MEAN-FIELD STUDY OF THE . . . PHYSICAL REVIEW B 90, 195114 (2014)

FIG. 6. (Color online) Imaginary part of real frequency partially
screened interactions ImU(ν) for the extended Hubbard model with
the NN interactions solved by EDMFT. (a) Results for the square
lattice. (b) Results for the simple cubic lattice. The U and V

parameters are shown as color-filled circles in the insets. In (c) and
(d), the corresponding effective screening frequencies ν0 are shown.

fluctuations dominate. In the two-dimensional case with on-
site and NN interactions, the effective interaction remains
bounded by Eq. (22), while for longer-ranged interactions,
U(0) drops below this bound as one approaches the phase
boundary. In three dimensions, we find a drastic drop of the
effective interaction even for the NN case, invalidating any
simple estimate. Some of the differences between the 2D and
3D results are presumably due to the fact that the 2D system
is closer to the Mott transition.

5. Local spectral properties

We focus on three characteristic regions in the phase
diagrams: the FL metallic phase, the MI phase, and the metallic
region between the CO and MI phases [or “triangle zone” in
between the Vc(U ) and Uc(V ) lines]. We computed the local
spectral functions in these zones via analytical continuation of
the impurity Green’s function G(τ ). For the calculations, we
use the method described in Sec. II C, with the bosonic factor
B(τ ) obtained from the maximum entropy result for ImU(ν)
[31,33]. In the calculations of B(τ ), we introduced a cutoff
at small frequencies to prevent an unphysical divergence of
ImU(ν)/ν2 [see insets in Figs. 5(e) and 5(f)]. The spectral
functions A(ω) for the square lattice are displayed in the top
panels of Fig. 8, while those for the simple cubic lattice are
shown in the bottom panels.

We found that the screening effects resulting from long-
range intersite interactions affect the impurity spectral func-
tions in several ways. In the FL regime, the on-site interaction
is weak. The major effect of longer-range intersite interactions
is to transfer spectral weight from the Hubbard bands to
the quasiparticle peak, and to small satellites, which are
shifted from the Hubbard bands by roughly the effective
screening frequency ν0. In the triangle zone, where the on-site
interaction is moderate, the longer-range intersite interactions
can trigger an insulator-metal phase transition. Let us look
at Fig. 8(e), which illustrates the evolution of the spectral
functions across such a metal-insulator transition. For the NN
case, the system is an insulator with sharp Hubbard bands
and sizable gap. However, for the NN + NNN case, spectral
weight appears at the Fermi level, which indicates a strongly
renormalized metallic state. While the Hubbard bands are
smeared out, their position is almost unchanged. When the
3NN intersite interaction is added, the system turns into a
good metal with a large quasiparticle peak and the Hubbard
bands are shifted to higher energy. In the MI phase in which
the on-site interaction is strong, the spectral functions are less
affected by longer-range intersite interactions. It seems that the
longer-range intersite interactions do not significantly shrink
the gaps. The main effect is to redistribute the weight within
the Hubbard bands. At the beginning, the upper and lower
Hubbard bands are broad and smooth. When longer-range
intersite interactions are included, the Hubbard bands turn
sharper and thinner, and spectral weight is transferred to the
edges of the gap and high-frequency features [see Fig. 8(d)].

As mentioned before, the structures in ImU(ν)/ν2 produce
satellites in the local spectral functions A(ω). For example, the
screening modes displayed in Figs. 5(e) and 5(f) explain the
broad tails in the energy range |ω| � 2 in Figs. 8(a) and 8(b).

6. Away from half-filling

Having identified the dominant screening modes in the half-
filled system and interpreted them in terms of the spectral
function, it is interesting to look also at the evolution of these
quantities away from half-filling. In this section, we present
some results for the 2D and 3D lattices with on-site and NN
intersite interactions. First, we show the phase diagrams for
fixed U in the space of V and δμ = μ − U/2 (Fig. 9). In the
2D (3D) case, we choose U = 2.4 and 3.6 (U = 2.5 and 3.6).
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FIG. 7. (Color online) Comparison of the effective static interaction U(0) and the simple estimate U − V [see Eq. (22)]. (a) Results for the
2D model with U = 2.5. (b) Results for the 3D model with U = 2.5.

For the smaller on-site interaction, the system at half-filling
(δμ = 0) and small enough V is metallic, while for the larger
U it is Mott insulating. As the filling of the metallic system
is increased, the phase boundary to the CO phase shifts to
larger V , i.e., in the small-U regime, the CO instability is a
nesting-type phenomenon. We also plot, as dashed lines, the
location where the screened interaction W (0) changes sign.
We note that this W (0) = 0 line is very different from the
FL-CO phase boundary. In the heavily doped region, one can
still obtain a stable metallic solution even though W (0) < 0.

The situation is quite different for the larger U , where the
half-filled solution is either MI or CO. Here, the MI solution
is destabilized by doping. In the 3D case, one observes a

transition into a doped metal phase for V � 1.0, while in
the 2D system, a similar transition occurs for V � 2.0. We
note that these phase diagrams are qualitatively very similar to
those of the Holstein-Hubbard model [25].

Both the electron spectral function and the screened
interaction depend sensitively on δμ. Some representative
results are shown in Fig. 10. For δμ > 0, the electron spectral
function (left panels) becomes asymmetric. In the metallic
phase, the quasiparticle peak grows and shifts closer to the
upper Hubbard band, while in the insulating phase, the gap
shrinks due to a broadening of the lower Hubbard band. These
changes in the electron spectral function qualitatively explain
the changes in the bosonic spectra (right panels). In the metallic

FIG. 8. (Color online) Spectral functions at selected points for the single-band half-filled extended Hubbard model solved by EDMFT. (a),
(c), and (e) Results for the square lattice. (b), (d), and (e) Results for the simple cubic lattice. The parameters are as follows: (a) metallic region,
U = 2.5 and V = 0.8; (b) metallic region, U = 2.5 and V = 0.6; (c) Mott insulating region, U = 3.0 and V = 1.5; (d) Mott insulating region,
U = 3.6 and V = 1.5; (e) “triangle” zone, U = 2.7 and V = 1.0; (f) “triangle” zone, U = 3.2 and V = 0.8. The impurity spectral functions
are obtained using the analytical continuation method proposed in Ref. [31].
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FIG. 9. (Color online) Spectral functions for the Hubbard model with NN interactions away from half-filling. (a)–(f) Results for the square
lattice. (g)–(i) Results for the cubic lattice. In the left column, the impurity spectral functions A(ω) are shown. In the middle and right columns,
we show the screened interaction W (iν) and corresponding ImW (ν). The parameters are as follows: (a)–(c) U = 2.4, V = 0.2, 2D lattice.
(d)–(f) U = 3.6, V = 1.0, 2D lattice. (g)–(i) U = 2.5, V = 0.2, 3D lattice. (j)–(l) U = 3.6, V = 1.0, 3D lattice.

case, the main effect of increasing δμ is a growing low-energy
feature in ImW (ν). This can be explained by the larger number
of states in the quasiparticle band. In the Mott insulating case,
where the bosonic spectra for the half-filled system show a
single peak at an energy given by the gap, the shrinking of
the gap with increasing δμ leads to a broadening and shift
of this peak to lower energies. In the 3D case, where the gap

size for δμ = 0.6 is small and the electron spectral function
has a peak at the lower gap edge, we also find a low-energy
mode in ImW (ν), which is associated with transitions between
this peak and the upper Hubbard band. Since the low-energy
mode in ImW (ν) produces the largest screening effect, it is not
surprising that increasing δμ has a large effect on the screened
interaction (middle panels). As we saw in Fig. 9 (dashed line),
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FIG. 10. (Color online) V -μ phase diagrams for the single-band extended Hubbard model with NN interactions, determined by EDMFT
calculations. Here, δμ = μ − U/2. (a) and (c) show results for the 2D square lattice which at half-filling is in the FL or MI regime. (b) and (d)
show similar results for the 3D simple cubic lattice. The black dashed lines in (a) and (b) show the location of W (0) = 0, i.e., on the right side
of this boundary, the static screened interaction is negative.

in the metallic phase, doping quickly leads to an overscreening
of the local interaction.

B. GW + EDMFT results

In this section, we present the GW + EDMFT results. Since
the computational cost of fully self-consistent GW + EDMFT
calculations is much higher than in the case of EDMFT
calculations, we do not map out the whole U -V phase
diagram. Instead, we performed GW + EDMFT calculations
for selected U and V parameters. As a starting point for
the self-consistent GW + EDMFT calculation, we used the
converged EDMFT results.

1. Nonlocal and local self-energy and polarization

The GW + EDMFT method incorporates nonlocal cor-
relations by adding the nonlocal components of the GW

self-energy and polarization functions to the EDMFT result
[6,7,14,15]. Hence the GW + EDMFT self-energy and polar-
ization functions are not only frequency-dependent but also
momentum-dependent.

In Fig. 11, the nonlocal parts of the self-energy for the
lowest Matsubara frequency ω0 are shown. These data have
been obtained using Eq. (10). For the square lattice, we plot
�nonloc(k,iω0) for kx and ky ∈ [0,2π ]. In the case of the simple

cubic lattice, we show a cut of �nonloc(k,iω0) in the kz = 0
plane. Consistent with previous GW + EDMFT calculations
for the square lattice with NN interactions [15], we find that
the GW contribution to the imaginary part of the nonlocal
self-energy is negligible with respect to the local self-energy.
The real part of the nonlocal self-energy is relatively large
away from the EDMFT Fermi surface, but does not alter this
Fermi surface. Longer-range interactions do increase the k

dependence, but they do not significantly affect the conclusion
that the k dependence of the self-energy both for the 2D and 3D
lattice models is not very strong in the GW + EDMFT scheme.
Even in the vicinity of the Mott transition (for instance, U =
2.5 and V = 0.8 for the square lattice is very close to the Mott
transition, see Fig. 2), the momentum differentiation is weak.
This result is in contrast to the strong momentum dependence
observed in the self-energy functions obtained from dynamical
cluster approximation (DCA) [35,36] and cellular dynamical
mean-field theory (CDMFT) [37,38] calculations for the
two-dimensional Hubbard model as one approaches the Mott
transition. This discrepancy suggests that additional nonlo-
cal diagrams, such as ladder diagrams, should be included
to provide a better description of the momentum depen-
dence of the self-energy functions (and other k-dependent
quantities).
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FIG. 11. (Color online) �nonloc(k,iω0) for the extended Hubbard model from GW + EDMFT. (a)–(f) Results for the square lattice, U = 2.5,
V = 0.80. (g)–(l) Results for the simple cubic lattice, U = 2.5, V = 0.60. We only show the kz = 0 plane. (a)–(c) and (g)–(i) Re�nonloc(k,iω0).
(d)–(f) and (j)–(l) Im�nonloc(k,iω0). The green curves in (a)–(c) and (g)–(i) denote the EDMFT Fermi surface.

As for the nonlocal polarization function for the first
bosonic Matsubara frequency �nonloc(k,iν = 0) (not shown
in this figure), we observe a stronger momentum dependence,
especially when one approaches the charge-ordering transition
[15]. However, it seems that longer-range intersite interactions
do not enhance this k dependence prominently, which is
contrary to the trend found for the nonlocal self-energy.

Finally, we plot in Fig. 12 some typical local self-energies
in the FL phase. |Im�(iω0)| is considerably enhanced in
the GW + EDMFT calculations, compared to the EDMFT
result. These observations show that local correlations
become stronger if the k-dependent GW contributions are
added to the self-energy and polarization functions in the
self-consistency loop. More evidence for this change will
be presented in the following section. In Fig. 12, we also
compare the local self-energies for intersite interactions of
different range. The effect of the longer-ranged interactions
is to reduce the self-energy. In the calculations with
long-range interactions and nonlocal self-energies, we thus
have a competition between the additional screening from
long-range interactions, which leads to weaker correlation
effects, and the momentum dependence, which enhances local
correlations. The latter effect seems to be dominant.

2. Screened and retarded interactions

As we have seen in the previous subsection, the
GW + EDMFT scheme not only adds nonlocal contributions
to the self-energy �(k,iωn) and polarization �(k,iνn), but it
also affects the local quantities through the self-consistency
loop [15]. Figure 13 shows the fully screened local inter-
action ReW (iν) and partially screened interaction ReU(iν),
together with the corresponding spectral functions ImW (ν)
and ImU(ν), for the square lattice and simple cubic lattice
in the FL metallic state. The related EDMFT data have been
plotted in Fig. 5 and analyzed in Sec. III A. Again, our results
are consistent with available GW + EDMFT data for the 2D
and 3D extended Hubbard model [7,15].

Compared to the EDMFT result, both ReW (iν = 0) and
ReU(iν = 0) are greatly enhanced [see Figs. 13(a) and 13(b)],
while |ImG(iω0)| (not shown in these figures) is reduced.
This indicates that the local interactions are stronger in
GW + EDMFT than in EDMFT, i.e., that the screening effect
is weaker. This can be understood in the following way [15]:
in the EDMFT approach, all of the screening and correlation
effects are absorbed into the local self-energy. However, in the
framework of GW + EDMFT, some of these effects are carried

FIG. 12. (Color online) Imaginary part of the local self-energy function Im�(iω) for the extended Hubbard model solved with EDMFT
and GW + EDMFT. (a) Results for the square lattice, U = 2.5 and V = 0.8. (b) Results for the simple cubic lattice, U = 2.5 and V = 0.6.
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FIG. 13. (Color online) Real part of the fully screened interactions ReW (iν) and partially screened interaction ReU(iν), and imaginary

part of the real frequency fully screened interaction ImU(ν) and partially screened interactions ImU(ν) for the extended Hubbard model solved

by GW + EDMFT. (a), (c), and (e) Results for the square lattice, U = 2.5 and V = 0.8. (b), (d), and (e) Results for the simple cubic lattice,

U = 2.5 and V = 0.6. In this figure, SM means screening mode. In the insets of (a) and (b), the SM-resolved ReW (iν), together with the full

ReW (iν) are shown for the NN case. In (c) and (d), ImW (ν) for the NN case is approximated by Gaussian-type functions. The fitted results

are shown in the insets. Each Gaussian peak corresponds to a SM. The insets in (e) and (f) show the ImU(ν)/ν2 functions. Here, ImW (ν) and

ImU(ν) are extracted using a modified maximum entropy method. See Appendix B for more details.

by the nonlocal self-energy. In other words, the screening

between local and nonlocal quantities is redistributed in the

GW + EDMFT scheme, and the result of this is that the local

interaction becomes less screened. Let us also mention that

Nomura et al. [39] have shown that the nonlocal polarization

induces an antiscreening effect, which competes with the

screening effect caused by the long-range intersite interactions.

Our results confirm that the interplay between the local and

nonlocal self-energy and polarization in GW + EDMFT leads,

after self-consistency, to a weaker screening effect.
Another interesting observation is that the ImW (ν)

and ImU (ν) spectra extracted from the self-consistent
GW + EDMFT calculations [see Figs. 13(c)–13(f)] exhibit
a single-hump structure, whereas the corresponding EDMFT
results yield a two-hump structure [see Figs. 5(c)–5(f)]. Once
again, we have fitted ImW (ν) with multiple Gaussians to
extract the positions and weights of the dominant SMs. It seems
that the ImW (ν) spectra obtained from the GW + EDMFT
calculations feature only one medium-frequency SM (∼1.5
eV), while the low-frequency SMs (∼0.5 eV) are extremely
weak and the high-frequency SMs (2∼3 eV) previously
identified in the EDMFT results have disappeared. As for the
ImU (ν) spectra, analogous characteristics are observed. Since
the satellite structures of the local spectral function A(ω) are
determined by the function ImU (ν)/ν2 [32], we conclude that
the high-frequency features of A(ω) will be different in the
GW + EDMFT calculations, and more specifically that the
satellites will be at lower energy. Though we only present
results for the FL metallic phase in this figure, those for the
Mott phase and the strongly correlated metal phase between
the MI and CO states exhibit the same trend (see also Table I).

Next, we consider the influence of longer-range intersite

interactions on the static screened and retarded interactions

obtained with the GW + EDMFT scheme. Table I also shows

data collected from GW + EDMFT calculations. Once more,

we see that ReU (ν = 0) and ReW (ν = 0) are reduced, and

|ImG(iω0)| (not shown in the table) is enhanced if longer-range

intersite interactions are present. The effects of longer-range

interactions and nonlocal correlations compete with each

other; the longer-range intersite interaction tends to enhance

the screening and make the system less correlated, while

including the GW nonlocal self-energies and polarizations

has the opposite effect. The latter effect is dominant. From

Figs. 13(e) and 13(f), we can see that the weight of the

hump in the ImU (ν) spectra increases if longer-range intersite

interactions are added which means a larger screening effect.

However, interestingly, the effective screening frequency ν0 is

only little affected by the range of the interaction within the

GW + EDMFT approach, which is also seen in Table I.

3. Local spectral properties

The top panels of Fig. 14 show some typical spectral

functions for the square lattice obtained by GW + EDMFT.

Similar results for the simple cubic lattice are shown in the

bottom panels. Here, we consider the FL metallic state, MI

state, and the “triangle” zone in the U -V phase diagrams. Since

the parameter values are the same, one can directly compare

these spectra to the EDMFT results as shown in Fig. 8. Consis-

tent with the previous discussion, within the GW + EDMFT

scheme, the quasiparticle peak is greatly reduced, and the

upper and lower Hubbard bands become more pronounced.
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FIG. 14. (Color online) Spectral functions at selected points for the single-band half-filled extended Hubbard model solved by

GW + EDMFT. (a), (c), and (e) Results for the square lattice. (b), (d), and (e) Results for the simple cubic lattice. The parameters are

as follows: (a) metallic region, U = 2.5 and V = 0.8; (b) metallic region, U = 2.5 and V = 0.6; (c) Mott insulating region, U = 3.0 and

V = 1.5; (d) Mott insulating region, U = 3.6 and V = 1.5; (e) “triangle” zone, U = 2.7 and V = 1.0; (f) “triangle” zone, U = 3.2 and

V = 0.8. The impurity spectral functions are obtained using the analytical continuation method proposed in Ref. [31].

For instance, let us focus on the “triangle” zone for the square

lattice (parameters U = 2.7 and V = 1.0). The EDMFT local

spectral function shows considerable weight at the Fermi level,

i.e., the system is metallic [see Fig. 8(e), for the NN + NNN

case]. However, the corresponding GW + EDMFT spectral

function has almost no weight at ω = 0, which means that

it is close to or even in the MI phase [see Fig. 14(e), for

the NN + NNN case]. From this fact, we conclude that there

exists a small difference between the FL-MI phase boundaries

calculated with EDMFT and GW + EDMFT, respectively, and

that the MI region in the latter case should be larger.

The influence of longer-range intersite interactions on the

local spectral functions A(ω) is very similar to the EDMFT

case. Namely, longer-range intersite interactions enhance the

quasiparticle peak and shift spectral weight to high-energy

satellites. The local spectral function becomes more metallic

in character as a result of the additional screening. Consistent

with the lower energies of the SMs in the GW + EDMFT case,

the satellite features appear at lower energies. For example, in

Fig. 13(c) (with GW + EDMFT) the satellites are at energy

±3–3.5 eV, while in Fig. 5(c) (with EDMFT), they are at

ω ≈ ±4 eV.

IV. CONCLUSIONS

We studied the paramagnetic solutions of the single-band

half-filled extended Hubbard model on the square and simple

cubic lattices by means of the EDMFT method. Longer-range

intersite interactions introduce additional screening and lead

to smaller effective local interactions. In the weakly correlated

region, longer-range intersite interactions favor the metallic

phase, whereas in the strongly correlated region, they stabilize

the CO phase. The obvious “kink” in the Vc(U ) line near

the Mott transition point in the square lattice model with NN

intersite interaction becomes a smooth slope change if longer-

range interactions are included. At the same time, the metallic

region extends to larger U values, so that the transition between

MI and CO phases is via an intermediate metallic phase. We

showed that the slope change in the Vc(U ) line, which cannot

be explained by a simple mean-field picture, is associated with

a sudden increase in the effective screening frequency near the

critical Uc for the FL-MI transition.

Like DMFT, the EDMFT formalism is based on a local

approximation [7,20]. To incorporate spatial correlations, we

performed fully self-consistent GW + EDMFT calculations

for some selected U and V parameters. On the one hand,

longer-range intersite interactions enhance the screening ef-

fect, just as in the EDMFT case. The screened and retarded

interactions are strongly reduced. On the other hand, within

the GW approximation the screening effect is weakened,

which leads to a larger Uscr [≡ReU (iν = 0)] compared to

the EDMFT result. In other words, considering the nonlocal

GW self-energy and polarization makes the system more

correlated. As a consequence, the Uc(V ) line (MI-FL phase

boundary) will be modified slightly and shifted to smaller

U . The results obtained from the GW + EDMFT calculations

confirm that the nonlocal contributions to the self-energy

coming from the GW diagrams are quite small in the case

of the extended Hubbard model, which agrees with previous

GW + EDMFT studies [15], but is not consistent with DCA

[35,36] and CDMFT results [37,38]. The effect of longer-range

intersite interactions is to enhance the nonlocal self-energy and

polarization functions.

We have critically reexamined the possibility of find-

ing simple rules of thumb for local interaction parameters

incorporating screening by nonlocal interactions in an effective

manner. While in the 2D case with NN interactions only, a
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local interaction U reduced by the NN interaction V provides

a lower bound for such an effective interaction, in all other

cases the strong charge fluctuations in the proximity of the

charge-ordered phase invalidate any simple estimate. This

is consistent with a growing range of charge-charge corre-

lations close to the transition.

The single-band extended Hubbard model calculations

presented in this paper can be straightforwardly extended to

the general multiorbital case, paving the way for realistic

first-principles materials calculations. Low-dimensional sp-

electron systems like graphene [40], silicene [23], aromatic

molecules such as benzene [23], and systems of adatoms on

semiconductor surfaces such as Si(111):X [30] feature simul-

taneously strong local and nonlocal Coulomb interactions.

Obviously, these cannot be adequately addressed in the simple

DMFT framework, which cannot handle nonlocal intersite in-

teraction V beyond the Hartree level. The EDMFT and GW +
EDMFT approaches provide a relatively inexpensive treatment

of local and (short-range or long-range) nonlocal interactions,

making the application of them to electronic structure calcu-

lations of realistic materials worthwhile and promising.
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APPENDIX A: LONG-RANGE INTERSITE

INTERACTIONS FOR THE EXTENDED HUBBARD MODEL

The partition function of the single-band extended Hubbard

model [see Eq. (1)] is

Z = Tre−βH , (A1)

with inverse temperature β. It is more convenient to express it

in the path-integral form

Z =
∫

D[c∗
i ,ci]e

−S, (A2)

where the effective action S is

S[c∗,c] =
∫ β

0

dτ

{

∑

ij,σ

c∗
iσ (τ )[(∂τ−μ)δij−tij ]cjσ (τ )

+U
∑

i

ni↑(τ )ni↓(τ )+1

2

∑

ij

Vijni(τ )nj (τ )

}

. (A3)

Using the identity nini = (ni↑ + ni↓)2 = ni + 2ni↑ni↓, we

can rewrite the action as

S[c∗,c] =
∫ β

0

dτ

{

∑

ij,σ

c∗
iσ (τ )[(∂τ − μ̃)δij − tij ]cjσ (τ )

+ 1

2

∑

ij

vijni(τ )nj (τ )

}

, (A4)

where μ̃ = μ + U/2, and vij = Uδij + Vij . Thus, in recipro-

cal space, we have the equation: vk = U + Vk . Here, vk is the

k-dependent bare interaction, U is the static on-site interaction,

and Vk is the k-dependent intersite interaction.

Since both the band dispersion ǫk and the bare interaction

vk enter the lattice Dyson equations [see Eqs. (2) and (3)], we

will next give the explicit formulas for Vk . The formulas for ǫk

are identical, with the interaction parameter Vij replaced by the

hopping parameter −tij . Unless explicitly stated otherwise, in

the following the lattice constant a0 = 1. In the present work,

we only considered the following three cases (see Fig. 1).

(1) The nearest-neighbor (NN) case:

Vij = V0δ〈ij〉, (A5)

where δ〈ij〉 = 1 if i and j are the nearest neighbors and 0

otherwise. The Fourier transformation of Vij on the square

lattice is

Vk = 2V0[cos(kx) + cos(ky)]. (A6)

On the simple cubic lattice, we obtain

Vk = 2V0[cos(kx) + cos(ky) + cos(kz)]. (A7)

(2) The nearest-neighbor (NN) + the next nearest-neighbor

(NNN) case:

Vij = V0δ〈ij〉 + V1δ〈〈ij〉〉, (A8)

where δ〈〈ij〉〉 = 1 if i and j are next nearest neighbors and 0

otherwise. The Fourier transformation of Vij on the square

lattice is

Vk = +2V0[cos(kx) + cos(ky)]

+ 2V1[cos(kx + ky) + cos(kx − ky)]. (A9)

On the simple cubic lattice, we obtain

Vk = +2V0[cos(kx) + cos(ky) + cos(kz)]

+ 2V1[cos(kx + ky) + cos(kx − ky)]

+ 2V1[cos(ky + kz) + cos(ky − kz)]

+ 2V1[cos(kz + kx) + cos(kz − kx)]. (A10)

(3) The nearest-neighbor (NN) + the next nearest-neighbor

(NNN) + the third nearest-neighbor (3NN) case:

Vij = V0δ〈ij〉 + V1δ〈〈ij〉〉 + V2δ〈〈〈ij〉〉〉, (A11)

where δ〈〈〈ij〉〉〉 = 1 if i and j are third nearest neighbors and

0 otherwise. The Fourier transformation of Vij on the square

lattice is

Vk = +2V0[cos(kx) + cos(ky)]

+ 2V1[cos(kx + ky) + cos(kx − ky)]

+ 2V2[cos(2kx) + cos(2ky)]. (A12)

On the simple cubic lattice, we obtain

Vk = +2V0[cos(kx) + cos(ky) + cos(kz)]

+ 2V1[cos(kx + ky) + cos(kx − ky)]

+ 2V1[cos(ky + kz) + cos(ky − kz)]

+ 2V1[cos(kz + kx) + cos(kz − kx)]

+ 2V2[cos(kx + ky + kz)] + 2V2[cos(kx + ky − kz)]

195114-16



EXTENDED DYNAMICAL MEAN-FIELD STUDY OF THE . . . PHYSICAL REVIEW B 90, 195114 (2014)

+ 2V2[cos(kx + kz − ky)]

+ 2V2[cos(ky + kz − kx)]. (A13)

Now the remaining issue is how to choose reasonable t0, t1,

t2, V0, V1 and V2 parameters. For simplicity, we only retain the

hoppings between the nearest neighbours, in other words, we

set t0 = t , and t1 = t2 = 0. On the other hand, we assume that

the intersite interaction Vij fulfills the following relation:

Vij = V

|�ri − �rj |/a
, (A14)

where i �= j , V is an adjustable parameter which controls the

strength of nonlocal intersite interactions, and a is the shortest

distance between two neighbors. By applying this restriction,

we can easily determine V0, V1 and V2 for the square and

simple cubic lattices.

(1) The nearest-neighbor case: |�ri − �rj | = a, V0 = V .

(2) The next nearest-neighbor case: |�ri − �rj | =
√

2a, V1 =
V/

√
2.

(3) The third nearest-neighbor case: The V2 parameters for

2D and 3D lattices are different. For the square lattice, |�ri −
�rj | = 2a and V2 = V/2, while for the simple cubic lattice,

|�ri − �rj | =
√

3a and V2 = V/
√

3.

APPENDIX B: MAXIMUM ENTROPY METHOD FOR THE

RETARDED INTERACTION U (iν) AND FULLY SCREENED

INTERACTION W (iν)

In the self-consistent EDMFT and GW + EDMFT calcula-

tions, the frequency-dependent retarded interaction U (iν) can

be calculated via the local Dyson equation [see Eq. (6)]. In

order to determine the effective screening frequency ν0 and

reveal the high-energy plasmonic peaks in the local spectral

function A(ω), we need U (ν) [in fact, ImU (ν)]. However, the

analytical continuation of U (iν) is not a trivial task due to the

unavoidable numerical noise. In that case, the commonly used

Padé procedure [42] is questionable, and is not the first choice

any more. The maximum entropy method is widely used in the

Monte Carlo community to extract real frequency data from

imaginary time correlation functions [33]. In this appendix,

we will extend it to support the analytical continuation of the

retarded interaction U (iν).

First of all, the retarded interaction U (iν) obeys the

following relation [27,32]:

Uscr = U + 2

∫ ∞

0

dν

π

ImU (ν)

ν
, (B1)

with Uscr = ReU (iν = 0) and U the static on-site interaction.

This equation can be rewritten as
∫ ∞

0

Ũ (ν)dν = 1, (B2)

where

Ũ(ν) = − ImU (ν)

π

2

ν(U − Uscr)
. (B3)

Equations (B2) and (B3) can be viewed as the sum-rule for

U (ν), which is important for the maximum entropy algorithm.

On the other hand, the kernel equation for the maximum

entropy method is [33]

U (τ ) =
∫ ∞

0

dν
e−τν

1 − e−βν

[−ImU (ν)

π

]

. (B4)

Using Eq. (B3), it is easy to rewrite Eq. (B4) as

U (τ ) =
∫ ∞

0

dνK(ν,τ )Ũ (ν), (B5)

where K(ν,τ ) is the so-called bosonic Kernel function. The

explicit definition of K(ν,τ ) is

K(ν,τ ) = e−τν

1 − e−βν

ν(U − Uscr)

2
. (B6)

Note that the U − Uscr = U − ReU (iν = 0) parameter is

determined by the self-consistency equation [see Eq. (6)]. Now

we can apply the standard maximum entropy algorithm [33]

to solve Eqs. (B2), (B3), (B5), and (B6) to obtain the solutions

Ũ (ν) and ImU (ν).

Once we have determined ImU (ν), the following equation

can be used to verify its correctness [27,34]:

U (τ ) =
∫ ∞

0

dν

π
ImU (ν)B(ν,τ ), (B7)

with B(ν,τ ) = cosh[(τ − β

2
)ν]/sinh[

νβ

2
] for 0 � τ � β. Ad-

ditionally, with ImU (ν), the corresponding real part of the

retarded interaction ReU (ν) can be easily calculated via the

Kramers-Kronig relation

ReU (ν) = 1

π
P

∫ ∞

−∞

ImU (ν ′)

ν ′ − ν
dν ′, (B8)

where P denotes the Cauchy principal value.

In summary, the procedure to apply the maximum entropy

method for the analytical continuation of the retarded interac-

tion U (iν) is as follows.

(i) Calculate U (τ ) from U (iν) by using the inverse Fourier

transformation:

U (τ ) = 1

β

∞
∑

n=−∞
e−iνnτU (iνn). (B9)

(ii) Use the classic maximum entropy algorithm [33] to

solve Eq. (B5). The normalization condition is Eq. (B2). In

general, we have to specify the default model in the maximum

entropy algorithm. According to our experience, the flat default

model is sufficient.

(iii) With Ũ(ν), the ImU (ν) can be determined by using

Eq. (B3).

(iv) Apply Eq. (B7) to check the correctness of the spectral

function ImU (ν) if need.

(v) Apply Kramers-Kronig relation Eq. (B8) to evaluate

ReU (ν) if necessary.

Next, we will benchmark this modified maximum entropy

method. At first, we will generate some exact spectra with

a Gaussian distribution. Starting from an initial ImU (ν), we

calculate U (τ ) via Eq. (B7). Then, applying the maximum

entropy method as introduced above to it, we can obtain a new

estimate for ImU (ν). At last, we should verify whether the

new spectrum coincides with the exact one. Figure 15 shows

some representative results. It is apparent that the extended

195114-17



HUANG, AYRAL, BIERMANN, AND WERNER PHYSICAL REVIEW B 90, 195114 (2014)

FIG. 15. (Color online) Benchmarks for the maximum entropy

method for retarded interactionU(iν). The exact spectra for ImU(ν)/ν

are generated using classic Gaussian model. They are converted into

U(τ ), and then processed by the proposed maximum entropy method.

In the simulations, we assume β = 100 and U − Uscr = 2.0/π .

maximum entropy method works well, and allows to reproduce

the initial spectra accurately.

Finally, we will test the robustness of this maximum

entropy method, i.e., benchmark its stability and ability to

deal with the numerical noise contained in realistic U (iν)

data. Let’s start from an exact spectrum again. Here we

consider a more complicated two-hump spectrum. We first

convert it to U (τ ) and then calculate U (iν) by the Fourier

transformation

U (iνn) =
∫ β

0

dτeiνnτU (τ ). (B10)

Next, we use the following algorithm to introduce some

random noise to the real part of U (iν). The strength of the

numerical noise is controlled by a δ parameter:

U (iν) →
{

U (iν) + ξ1δ/2, ξ2 < 0.5,

U (iν) − ξ1δ/2, ξ2 � 0.5,
(B11)

where ξ1 and ξ2 are two random numbers in the interval [0,1].

Then we transform it back to U (τ ) again using Eq. (B9), and

apply the maximum entropy method to obtain the spectral

FIG. 16. (Color online) Benchmarks for the maximum entropy

method and Padé approximation against numerical noise. (a) Results

obtained by maximum entropy method. (b) Results obtained by Padé

approximation. In the calculations, we set β = 100 and α = 1.288.

The δ parameter is used to control the strength of data noise. Please

see the text for the details.

function ImU (ν). Through this benchmark, we can assess

the influence of numerical noise on the maximum entropy

method. The benchmark results are shown in Fig. 16(a).

In principle, the Padé approximation can also be used to

extract ImU (ν) from U (iν) directly [42]. The results from

the Padé analytical continuation are shown in Fig. 16(b), to

enable a direct comparison. We see that when δ is small, the

two-hump structure can be roughly reproduced by the Padé

approximation. But when δ is large, the Padé approximation

fails: it gives a wrong single-peak spectrum with a very

broad tail. On the other hand, it seems that the maximum

entropy method is not sensitive to this level of numerical

noise. The maximum entropy spectra agree well with the

exact spectra, irrespective of the details of the numerical

noise. For this reason, we believe that the maximum entropy

method is superior to the Padé approximation for the analytical

continuation of the retarded interaction computed within

EDMFT or GW + EDMFT schemes.

In this appendix, we have focused on the analytical contin-

uation of the retarded interaction U (iν). However, the method

is general and can be applied to the analytical continuation of

the fully screened interaction W (iν) as well. We merely need

to replace U with W in the above equations.
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Systems of adatoms on semiconductor surfaces display competing ground states and exotic spectral

properties typical of two-dimensional correlated electron materials which are dominated by a complex

interplay of spin and charge degrees of freedom. We report a fully ab initio derivation of low-energy

Hamiltonians for the adatom systems Sið111Þ : X, with X ¼ Sn, Si, C, Pb, that we solve within self-

consistently combined GW and dynamical mean-field theory. Calculated photoemission spectra are in

agreement with available experimental data. We rationalize experimentally observed trends from Mott

physics toward charge ordering along the series as resulting from substantial long-range interactions.
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Understanding the electronic properties of materials
with strong electronic Coulomb correlations remains one
of the biggest challenges of modern condensed matter
physics. The interplay of delocalization and interactions
is not only at the origin of exotic ground states, but also
determines the excitation spectra of correlated materials.
The ‘‘standard model’’ of correlated fermions, the Hubbard
model, in principle captures these phenomena. Yet relating
the model to the material on a microscopic footing remains
a challenge. Even more importantly, the approximation
of purely local Coulomb interactions can become severe
in realistic materials, where long-range interactions and
charge fluctuation physics cannot be neglected.

Systems of adatoms on semiconducting surfaces, such as
Sið111Þ:X with X ¼ Sn, C, Si, Pb, have been suggested [1]
to be good candidates for observing low-dimensional cor-
related physics. Commonly considered to be realizations of
the one-band Hubbard model and toy systems for inves-
tigating many-body physics on the triangular lattice, such
surfaces have been explored both experimentally [2–18]
and theoretically [19–31]. These so-called� phases show a
remarkable variety of interesting physics including com-
mensurate charge density wave states [5,6,9] and isostruc-
tural metal to insulator transitions [14]. However, while
specific systems and/or phenomena have been investigated
also theoretically, a comprehensive understanding includ-
ing materials trends is still lacking. A central goal of our
work is to present a unified picture that relates, within a
single framework, different materials (adatom systems),
placing them in a common phase diagram.

We derive low-energy effective Hamiltonians ab initio

from a combined density functional and constrained
random phase approximation (cRPA) scheme [32] in the
implementation of Ref. [33] (see also the extension to
surface systems in Ref. [34]). While the first surprise is

the relatively large value of the on-site interactions, which
we find to be of the order of the bandwidth (�1 eV), most
importantly we show that nonlocal interactions are large
(nearest-neighbor interaction of � 0:5 eV) and, hence, an
essential part of the resulting many-body Hamiltonians.
This result confirms previous speculations about the impor-
tance of nonlocal effects in these materials [21,29]. We
solve these low-energy Hamiltonians within fully self-
consistent combinedGW and dynamical mean-field theory
(GW þ DMFT) [35], calculating in particular (single-
particle) angular resolved photoemission spectra and the
(two-particle) charge susceptibility. We identify a clear-cut
materials trend starting fromSi(111):C deep in aMott phase
to Si(111):Pb which shows tendencies toward metallicity
and charge-ordered states driven by nonlocal interactions.
Comparing our results to available experimental data yields
encouraging insights: Without adjustable parameters we
reproduce the experimentally measured gap size of insulat-
ing Si(111):Sn and its transition to a ‘‘bad insulator’’ at
elevated temperatures. Moreover, based on the charge
susceptibility, we identify the electronic tendency of
Si(111):Pb toward charge ordering of the so-called 3� 3
symmetry,which is indeed seen experimentally by scanning
tunneling microscopy. Our work is the first one that
addresses the electronic properties of real materials
on the basis of fully self-consistent GW þ DMFT calcula-
tions [36] (for a non-self-consistent calculation, see
Ref. [37]; for self-consistent calculations for models, see
Refs. [38–40]) [41].
The single-particle part of the Hamiltonian is calculated

in the local density approximation of density functional
theory. In Fig. 1, we present local density approximation
band structures for the series Sið111Þ:fC; Si; Sn; Pbg. For
all considered systems, the surface state in the semicon-
ducting gap is indeed responsible for a well-separated,
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single band around the Fermi energy. The tight-binding
dispersion of the half-filled surface band can be well fitted
by using up to third-nearest-neighbor hopping (with t, t0,
and t00 from Table I):

"k ¼ 2t½cosðkxÞ þ 2 cosðkx=2Þ cosð
ffiffiffi

3
p

=2kyÞ�
þ 2t0½cosð

ffiffiffi

3
p

kyÞ þ 2 cosð3kx=2Þ cosð
ffiffiffi

3
p

=2kyÞ�
þ 2t00½cosð2kxÞ þ 2 cosðkxÞ cosð

ffiffiffi

3
p

kyÞ�: (1)

In order to determine the interaction parameters as par-
tially screened matrix elements of the Coulomb interaction
within the cRPA, we chose an energy window around the
Fermi energy encompassing the surface band. The bare
interaction parameters are calculated by means of explicit
evaluation of the radial (Slater) integrals of the Wannier
functions. The local and nonlocal Hubbard interaction
parameters are obtained as the corresponding matrix ele-
ments of the partially screened interaction within the cRPA
[34]. The cRPA scheme provides us with the full frequency
dependence of the interactions. Up to the energy scale of
the plasma frequency of silicon, however, this frequency
dependence is small and will be neglected in the following.
The resulting static effective interactions are summarized
in Table I.

The bare on-site interaction parameters (V0) vary
between 6.0 eV for Si(111):C and 4.3 eV for Si(111):Pb,
decreasing monotonically within the series. The on-site U0

is reduced roughly by a factor of 4–5 due to cRPA screen-
ing. At first glance the on-site U0 of the order of 1 eV—
about twice the size of the bandwidth—strongly points
toward Mott physics. This is, however, a premature con-
clusion due to the effect of nonlocal interactions. The first
nonlocal contribution (nearest-neighbor interaction) U1

(bare V1) is 0.5 eV (2.8 eV). Remarkably, the value is—
in contrast to U0 (V0)—almost the same for all materials.

The reason is that the intersite overlap of the orbitals is so
small that the Coulomb energy corresponds to the electro-
static energy of two point charges. With the virial theorem
hEtot:i ¼ 1=2hVi, we quantify this argument by a rescaled
hydrogen problem with effective Bohr radius of 12 a.u.
(� distance of adatom sites),

�

e2

rrel

�

¼ 1

12
jVH-atom

pot j ¼ 1

12
2jEH-atom

groundstatej ¼ 2:3 eV; (2)

which roughly matches the value of our bare intersite
interaction parameters. The second, likewise remarkable,
observation is that the screened values U1 are extremely
close to the value we get by assuming a static continuum
approximation on the surface of a dielectric medium:
V1="

surf
Si , where "surfSi ¼ 1

2
ð"Si þ 1Þ is the static dielectric

constant of silicon on the surface. The reason is straightfor-
ward: The adatom distance (6 Å) is already large enough
compared to the atomic structure of the silicon substrate

(�2 �A) so that local field effects (included in the cRPA)
are negligible. Following this reasoning, we can calculate
longer-range interaction terms by simply scaling U1 with
a=r, i.e., with the inverse distance in units of the nearest-

neighbor distance a, i.e., U2 ¼ U1=
ffiffiffi

3
p

and so on. In this
respect,U1 is not only the nearest-neighbor interaction, but
the parameter that quantifies the strength of nonlocal inter-
actions. The many-body Hamiltonian resulting from our
parameter-free downfolding procedure thus reads

H ¼
X

k;�

"kc
y
k;�ck;� þ

X

i

U0ni;"ni;# þ
X

i�j

Uji�jjninj; (3)

where "k is the dispersion relation (1), cy
k;� (ck;�) are

fermionic creation (annihilation) operators, ni;� is the

number operator counting electrons in the pz-like
Wannier orbital centered at adatom i, and ni ¼ ni;" þ ni;#.
To solve this Hamiltonian, we implement the combined

GW þ DMFT scheme [35,44] and calculate spectral

TABLE I. Values of the bare (effective) on-site V0 (U0) and
intersite V1 (U1) interactions. Also reported are the values of the
static component of the effective Uð! ¼ 0Þ calculated from

GW þ DMFT; see the text.

C Si Sn Pb

t (meV) 38.0 50.0 42.0 42.0

�t0 (meV) 15.0 23.0 20.0 20.0

t00 (meV) 0.5 5.0 10.0 10.0

U0 (eV) 1.4 1.1 1.0 0.9

U1 (eV) 0.5 0.5 0.5 0.5

Un U1=ra U1=ra U1=ra U1=ra
V0 (eV) 6.0 4.7 4.4 4.3

V1 (eV) 2.8 2.8 2.7 2.8

V1="
stat:
Sisurf: (eV) 0.47 0.47 0.45 0.47

Uð! ¼ 0Þ (eV) 1.3 0.94 0.84 0.67 (ins.)

0.54 (met.)

FIG. 1 (color online). Band structures of the �-
ffiffiffi

3
p

�
ffiffiffi

3
p

phases of Sið111Þ:X with X ¼ Sn, Si, C, Pb [53]. In red (gray)
we plot the contributions stemming from the pz orbital of the

adatom, while the blue (dark gray) color denotes px;y-like (i.e.,

planar) character. Even though the actual molecular orbital
composition might be complicated, the half-filled surface band
has a clear-cut ‘‘apical’’ (i.e., carrotlike) character. The black

dots represent the tight binding relation Eq. (1) with hopping
parameters from Table I. The quality of the fit supports the
picture of Wannier-like orbitals with a fast decaying real space

overlap on neighboring sites.
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properties and charge-charge response functions. Fully
self-consistent GW þ DMFT was applied to the extended
Hubbard model in the seminal work by Sun and Kotliar
[38,45], but only recently have numerical techniques for
the solution of dynamical impurity models [47–49] been
sufficiently advanced to extract real-frequency information
from such calculations [39,40]. We employ the techniques
of the latter two works (in particular, a continuous-time
quantumMonte Carlo impurity solver based on the hybrid-
ization expansion [47]) but implement them for the real-
istic Hamiltonian derived above. Moreover, we go beyond
the ‘‘standard’’ extended Hubbard model and do not re-
strict the range of the nonlocal interaction terms. Rather,
we include the entire 1=r tail by means of an Ewald-type
lattice sum. In Fig. 2, we show momentum-resolved spec-
tral functions from GW þ DMFT for all compounds in our
series: As expected from the large on-site interactions
compared to the bandwidth, we obtain insulating spectra
for all four compounds. Interestingly, however, for the Pb
compound, in contrast to the other three systems, we find,
depending on the initialization, two stable solutions at the
temperature of our study (T ¼ 116 K)—one metallic and
one insulating. This indicates that we are in a coexistence
region of a first-order phase transition similar to that seen
in the extended Hubbard model [40].

In all compounds, the upper and lower Hubbard bands
show a substantial dispersion following the bare band
structure, as would be expected from an atomic limit
estimate. The insulating gap decreases within the series,
and we can estimate from the center of mass of the

Hubbard band values of 1.3 (C), 0.8 (Si), 0.7 (Sn), and
0.5 eV (Pb). However, specifically for the Sið111Þ:fSn; Pbg
we find substantial spectral weight already at �� 0:2 eV.
Given this small gap, a sizable temperature dependence
can be expected. We have extracted the value of the local
(i.e., k-integrated) spectral function at the Fermi level [50]
(see Fig. 2, bottom left panel). While for Si(111):C the
spectral weight transfer to the Fermi energy with tempera-
ture is negligible as expected from the larger gap, specifi-
cally Si(111):Si and most of all Si(111):Sn display a
significant transfer of spectral weight on a temperature
scale from 50 K to room temperature 300 K.
Photoemission experiments for Si(111):Sn [10,18] (and,

possiblyRef. [51], for Si(111):Pb [11]) observe, indeed, such
a temperature dependence and agree well with our findings,
both concerning the gap size and temperature scale. Our
results—obtained without any adjustable parameters—also
provide theoretical predictions for more extensive studies
on Si(111):Pb and the (experimentally so far not studied)
Si(111):C compound. Next, we analyze the spectral func-
tions in view of the interaction strengths calculated by
cRPA (see Table I). The gap sizes no longer reflect the
energy scale of the on-site interaction U0 but are reduced
due to nonlocal interactions which screen the local inter-
action by nonlocal charge fluctuations. This physics is
naturally present in the GW þ DMFT scheme, where non-
local effects are incorporated into an effective retarded on-
site interaction Uð!Þ (plotted in the left panel of Fig. 3).
The dynamical character of this quantity results from
downfolding of nonlocal degrees of freedom and is not to
be confused with the frequency dependence of effective
interactions within cRPA [32] (neglected here—see
above). The latter results from downfolding higher energy
(orbital) degrees of freedom. The shape of the GW þ
DMFT Uð!Þ is reminiscent of the latter, but the energy
scales are drastically reduced.
At large frequencies, screening is not efficient and,

hence, Uð! ¼ 1Þ ¼ U0. On the other hand, the static
valueUð! ¼ 0Þ can be significantly reduced [up to nearly
a factor of 2 for Si(111):Pb]. The latter sets the energy scale
for the gaps we observe in the spectral function. The

FIG. 2 (color online). Momentum-resolved spectral function
at T ¼ 116 K of Sið111Þ:X with X ¼ Sn, Si, C, Pb obtained by
analytical continuation of GW þ DMFT imaginary-time data.
The Fermi energy is set to "F ¼ 0 and indicated by the white
dashed line. On the bottom left, we show the spectral weight at
the Fermi energy as a function of temperature.

FIG. 3 (color online). Left: frequency-dependent Uð!Þ
(calculated from GW þ DMFT) including both insulating and
metallic cases for the Pb system. Right: imaginary part of the
charge-charge susceptibility along the usual path in the Brillouin
zone.
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transition between unscreened high-frequency behavior
and the static value takes place at an energy scale !0

characteristic of charge fluctuations driven by nonlocal
interactions. The strikingly different behavior of the dy-
namical effective interactions Uð!Þ reflects the observed
materials trend: Si(111):C [Si(111):Si] is [nearly] unaf-
fected by nonlocal interaction terms, and there is barely
any screening. The remaining two compounds show,
however, large effects. The static values Uð! ¼ 0Þ are
reduced compared to the on-site interaction to 0.84 eV
for Si(111):Sn and to 0.67 eV (0.54 eV) for the insulating
(metallic) solution for Si(111):Pb, which leads to the
reduced gap sizes. Moreover, resonances at energies
between 0.6 and 0.8 eV stress the importance of nonlocal
interactions and charge fluctuations for these systems.

Besides leading to a retarded, frequency-dependent
interaction, the nonlocal charge fluctuations signal tenden-
cies toward a charge-ordered state. Analyzing the momen-
tum dependence of the imaginary part of the charge-charge
response function Im�ðk; ! ¼ 0Þ for the high-symmetry
points of the Brillouin zone, shown in Fig. 3, we find for the
different materials a very characteristic behavior. The local
double occupancy, which corresponds to the integral of the
plotted quantity over all momenta, becomes larger toward
the end of the series. Most interesting is the case of metallic
Si(111):Pb for which we find a distinct structure within the
Brillouin zone: The maximum of Im�ðk; ! ¼ 0Þ at the K
symmetry point indicates strong charge fluctuations of the
so-called 3� 3 symmetry, sketched in Fig. 4. This order
might eventually be frozen in to form a charge-ordered
ground state which is actually seen in scanning tunneling
microscopy for this material [8]. An insulating charge-
ordered ground state of 3� 3 symmetry is, in fact, also
found in Ge(111):Sn [52], where a concomitant structural
distortion (vertical displacement of adatoms) of the same
symmetry is seen. Our results show that the instability in
the correlated electronic response function may play a key
role in this physics.

We can summarize our results by drawing a schematic
phase diagram as a function of the strength of local and
nonlocal interactions (represented by the value of U1); see
Fig. 4. For zero nonlocal interactions, our phase diagram
describes the Mott-Hubbard metal to insulator transition.
The adatom systems are placed at about 0.5 eVof nonlocal
interaction strength. However, due to the difference in the
on-site term U0 their respective position in the phase
diagram and, hence, their ground state character are differ-
ent: Si(111):C is deep in the Mott phase with a charge
localization with one electron per adatom site. The
Si(111):Si compound [53] is also of Mott type with only
small values for the double occupancy and little effect of
charge fluctuations. However, Si(111):Sn and, most dra-
matic, Si(111):Pb (which is actually already in a coexis-
tence region) are much closer to a phase boundary to a
metallic phase. Even more peculiar is the obvious tendency

of Si(111):Pb toward a charge-ordered phase of 3� 3
symmetry indicated by the white region in our phase
diagram.
In conclusion, we have set up a fully self-consistent

GW þ DMFT scheme for the realistic treatment of corre-
lated surface systems to address the electronic properties of
the � phases of adatoms on the Si(111) surface. We have
reported on the ab initio construction of the materials-
specific low-energy Hamiltonians and, most importantly,
on the respective interaction parameters including the
long-range Coulomb tail. From these, it becomes clear
that for the adatom systems, taking into account nonlocal
interaction effects is mandatory. We have solved the
derived many-body Hamiltonians and discussed our find-
ings for momentum-resolved spectral functions, to be
compared to angular resolved photoemission spectra.
Without adjustable parameters we have reproduced experi-
mental findings or, in cases where experiments are missing,
made predictions. Specifically, the angular resolved pho-
toemission spectra for the series, as well as the charge
order instabilities in the case of Si(111):Pb, are key con-
clusions which can provide guidance for further experi-
mental and theoretical studies of semiconductor adatom
structures.
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The result of a physical measurement depends

on the timescale of the experimental probe. In

solid-state systems, this simple quantum mechan-

ical principle has far-reaching consequences: the

interplay of several degrees of freedom close to

charge, spin or orbital instabilities combined with

the disparity of the time scales associated to

their fluctuations can lead to seemingly contradic-

tory experimental findings. A particularly strik-

ing example is provided by systems of adatoms

adsorbed on semiconductor surfaces where dif-

ferent experiments – angle-resolved photoemis-

sion, scanning tunneling microscopy and core-

level spectroscopy – suggest different ordering

phenomena. Using most recent first principles

many-body techniques, we develop a unified the-

oretical picture of these phenomena, based on an

analysis of the fluctuations associated to the dif-

ferent probes. These findings should have impli-

cations for the interpretation of ordering phenom-

ena and their fluctuations in a wide class of solid

state systems ranging from organic materials to

high-temperature superconducting cuprates.

Understanding the mechanisms of charge, spin or or-
bital ordering and the competition of different instabili-
ties is a leitmotiv of modern solid-state physics. Charge
ordering phenomena in (quasi-)two-dimensional transi-
tion metal oxides have recently attracted tremendous
attention [1–5] Indeed, competing ordering phenomena
might pave the way to superconductivity and could be
key to an understanding of the unusually high transition
temperatures observed in high Tc cuprate superconduc-
tors. The competition of different instabilities also leads
to surprisingly complex phase diagrams in a number of
other materials, ranging from low-dimensional organics
[6], heavy fermion materials [7] to even simple oxides
[8, 9], iridates [21] or tellurides [22]. Here, we study a ma-
terial that epitomizes this interplay of degrees of freedom,
the timescales associated to their fluctuations and the
subtleties involved when probing them experimentally.
1/3 of a monolayer of Sn atoms adsorbed on the Si(111)
surface – a representative of the so-called Si α-phases –
forms a two-dimensional triangular lattice, where three

of the four valence electrons of Sn are forming covalent
bonds with the silicon substrate while the remaining dan-
gling bond results in a narrow half-filled surface band.
While the electronic structure at the band theory level
is thus extremely simple, many-body Coulomb correla-
tions are a source for complex phase diagrams which
have been attracting considerable interest, both exper-
imentally [24–32, 34–37] and theoretically [23, 38–51].
Interestingly, despite the appealing single-orbital nature
of the physics of these compounds a simple model with
purely local Hubbard interactions falls short [51–53] of
describing the observed phase diagrams. In particular,
charge ordering instabilities are driven by nonlocal inter-
actions, and the closely related compounds Pb/Si(111)
or Sn/Ge(111) are found to be in the symmetry-broken
charge-ordered (CO) phase. For Sn/Si(111), experimen-
tal results seem contradictory: angle-resolved photoemis-
sion spectroscopy (ARPES) shows backfoldings of bands
associated to a 3x3 reconstruction of the unit cell[? ],
while scanning tunneling microscopy (STM) does not
yield any indication of static order.
In a recent study Li et al. [50] proposed a magnetically-

ordered state to be at the origin of these contradictions.
However, while the proposed spin order would indeed be
a natural candidate and has justly deserved attention,
no direct experimental evidence for such an order has
been found yet. Moreover, as shown below, only charge
fluctuations solve an equally important puzzle raised by
core-level spectroscopies of Sn. There, local excitations
of the Sn 4d core shell suggest that the ground state
of the Sn/Si(111) system is composed of more than one
Sn configuration (i.e. valence states). A similar contra-
diction between ARPES and low-energy electron diffrac-
tion (LEED) has led to speculations about inhomogenous
phases [55], with thermally fluctuating Sn-positions [13–
18].
A recent ab initio determination of the interaction pa-

rameters of the Si α-phases ( X/Si(111) with X=C, Sn,
and Pb) has found nonlocal interactions to be as large as
50% of the onsite ones and established a materials trend
with the Sn compound being “half-way” between Mott
insulating C/Si(111) and charge-ordered Pb/Si(111)[54].
Here, we will show that this intermediate position in the
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FIG. 1: Core-level photoemission spectroscopy of the Sn adatom 2p-shell. Left hand side (top): GW+DMFT Charge
susceptibility plotted allong the Γ −M −K − Γ path in the Brillouin zone (see inset). Left hand side (bottom): Cartoon of
the Sn 4d core electron emission process. Right hand side (top): Sketches of the three surface configurations (

√
3×
√

3)R30◦,
3 × 3, and (2

√
3 × 2

√
3)R30◦. Right hand side (bottom): comparison between experimentally obtained spectra (black and

gray dots) and theoretical simulations with full multiplet cluster calculations (dashed and solid lines): The black solid line is
the final theoretical result broadened by a Gaussian of width 0.37eV. It is the sum of the weighted contributions of the two
coexisting phases close to the Mott-CO insulator transition (blue and orange dashed lines). The solid narrow lines (narrow
peaks) resolve the contributions to the total spectrum by empty surface orbitals (red), singly occupied surface orbitals (blue)
and fully occupied surface orbitals (green) incorporating respective multiplet splittings.

phase diagram in direct vicinity of the phase transition
between a Mott insulating and a charge-ordered phase is
the key to elucidating the above puzzles. As an order to
order transition the first-order nature of this transition
leads to phase coexistence with short characteristic time
scales, which we extract from combined many-body per-
turbation theory and dynamical mean field calculations
to be of the order of femto seconds: STM is too “slow”
to detect such fluctuations, while ARPES and core-level
photoemission spectroscopy (cPES) capture them.

Results: Our starting point is the charge-charge cor-
relation function computed within combined many-body
perturbation theory and dynamical mean field theory
(GW+DMFT), see upper left-hand side of Fig. 1, refer-
ence [52], and the method section. This quantity suggests
the presence of three major dynamic charge-fluctuation
symmetries, which are represented in a cartoon-like fash-
ion in the upper right-hand side of Fig. 1): a 3×3 charge-

ordered state, where three inequivalent sites are respec-
tively doubly occupied, half-filled and empty (a “210”
charge distribution), a (2

√
3 × 2

√
3)R30◦ reconstructed

state where stripes of empty sites alternate with stripes
of doubly occupied sites, and the conventional Mott insu-
lating state where all sites are half-filled. Its structure (as
a function of time/frequency) indicates fluctuations be-
tween these configurations with a characteristic timescale
of the order of femto seconds, long enough for the cPES
process to capture the fluctuations in a “snapshot”-like
measurement.

With these insights, we now turn to a discussion of
the different observables measured in cPES, STM and
ARPES.

Core-level spectroscopy: The first probe we consider
is core electron emission from the Sn 4d-shell. Core-level
spectroscopy is a local Sn probe as sketched on the left-
hand side of Fig. 1 where a 4d core electron is emit-
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FIG. 2: Left hand side panels: Correlated A(k, ω) simulations plotted along the Γ→M → K → Γ path in the (
√

3×
√

3)R30◦-
Brillouin zone for the three relevant surface configurations (

√
3×
√

3)R30◦ (top), 3×3 (middle), and (2
√

3×2
√

3)R30◦ (bottom)
- note the backfoldings of the lower two spectral functions around the high-symmetry points of the corresponding Brillouin
zones marked by white vertical lines and blue labels (For sketches of the respective unit cells see top panel of Fig. 1). The
red dashed line marks the Fermi energy (εF = 0). Right hand side panels: Weighted sum of A(k, ω) of the contributions
shown on the left hand side (top). Electron removal part of the total spectral function with additional broadening (middle)
for comparison with experimental ARPES data (bottom). Note that our simulation has no information about k-dependent
matrix elements of the actual ARPES measurement so that relative intensities of theory and experiment are not expected to
be comparable.

ted out of the solid by an incoming photon. Due to
the Coulomb interaction of this 4d core hole with the
5p valence electrons (Ucv) the spectrum is sensitive to
the Sn valence configuration which consists of an either
empty, half-filled, or full surface orbital. It is therefore a
most efficient probe for charge-ordered states or charge-
fluctuations on timescales slower than the experimental
process. To arrive at a first principles description of the
core-level spectra we first determine the core-level emis-
sion spectra corresponding to the three different valence
configurations (blue, red and green curves in the central
panel of Fig. 1 corresponding to singly occupied, empty
and full surface orbital configurations respectively) from
cluster multiplet simulations (see methods section). The
main energy scale for each contribution is the spin or-
bit coupling of the core hole which splits each spectrum
into two main peaks associated to a core hole with to-

tal angular momentum Jch = 5/2 or Jch = 3/2. On
a smaller energy scale (below experimental resolution),
the core-valence interaction (Ucv) leads to multiplet split-
tings within each Jch subspace1.

If the system were homogeneously in the CO state de-
termined above the resulting core-level spectra would be
given by the superposition of the spectra determined for
the different valence states with contributions of ≈ 13%
of the (

√
3×
√

3)R30◦ phase, ≈ 56% of the 3× 3 phase,
and ≈ 31% of the (2

√
3 × 2

√
3)R30◦ phase. Translated

into Sn valence contributions this corresponds to ≈ 32%
half-filled and ≈ 68% empty/doubly-occupied sites. The
resulting spectrum is plotted as yellow-dashed line in

1 Note that for a filled valence shell (green) and its fully spherical
charge distribution such multiplet splittings cannot occur.
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FIG. 3: Upper panels: GW+DMFT charge susceptibility χ(R, τ) plotted on the real space surface lattice (in the xy-plane -
indicated by the black dots on the bottom of the respective plots) for four different values of τ . At τ = 0.0 we find large charge
fluctuations of correlation lengths ξ exceeding 3.5 lattice units (l.u.) which are picked up by core-level and photoemission
sepctroscopies. Due to decay on a fs timescale (see evolution with τ) they are invisible to slow probes like STM. Lower panels:
The charge fluctuations can be decomposed into two dominant contributions related to 3 × 3 (“210”) and (2

√
3 × 2

√
3)R30◦

(stripes) symmetry.

Fig. 1), and is found to give a bad description of the
experimental data (black[55] /gray[34] dots).

If on the other hand, the system were in a pure Mott
insulating state, our estimate of the core-level spectrum
would be given by the contribution of the half-filled sur-
face orbital only, broadened by the experimental resolu-
tion (blue dashed line in Fig. 1). Obviously, this assump-
tion does not hold either, confirming our analysis of the
charge-ordered state to contribute to the core-level spec-
trum.

Closer inspection of the spectra corresponding to the
two possible states and comparison to the experimental
spectra however shows that while neither the homoge-
neous CO state of the type determined above nor the
Mott state yield theoretical spectra in agreement with
experiment, the sum of the two (ab-initio calculated)
spectra with weights 0.7 for the CO state and 0.3 for
the Mott state, does. Such an incoherent superposition
can be interpreted as simulating a spatial averaging of
the two phases, that is, a state where phase separation
leads to a spatial coexistence of Mott-insulating and
charge-ordered patches with ratio 3/7. The obviously
good agreement with the experimental measurement
gives support to our interpretation of the sample being
in an inhomogeneous state where Mott insulating islands
are embedded into a dynamical CO background, and
the spatial averaging done by the core-level spectroscopy
results in a weighted average of the two contribu-
tions with weights 3:7. These results thus confirm –

from first principles – previous speculations about a
possible inhomogeneous state [55], albeit rather as a
superposition of the Mott state with the CO precursor
we have described as the one observed in Sn/Ge(111)
above the stabilization temperature of the COI state[16]
and locate Sn/Si(111) in the phase coexistence region
of a first-order phase transition between these two phases.

Comparison to the related compound Sn/Ge(111) [15–
17] yields further insight: experiments unambigously find
Sn/Ge(111) in a fully static charge-ordered phase of 3×3
symmetry. In this case the phase coexistence has disa-
peared and the CO-fluctuating patches have grown to
macroscopic lengthscales at temperatures below 60 K.
Moreover, for the static case the experimental timescale
is irrelevant and direct comparison of cPES and STM
is unproblematic. In Sn/Si(111), on the other hand,
such comparison can only be made by considering the
snapshot-like nature of cPES measuring the spatial av-
erage of coexisting phases. Before turning to a quanti-
tative discussion of the time and spatial extent of the
charge fluctuations, based on the charge-charge correla-
tion function χGW+DMFT as obtained from GW+DMFT
(see methods section) we revisit another experiment –
complementary to STM and cPES – of Sn/Si(111) that
has caused recent controversies.

Angle-resolved photoemission (ARPES): Just as in
core-level spectroscopy, the comparison of ARPES with
STM surface images (suggesting absence of any charge
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order) is not straightforward. More specifically, previous
interpretations of ARPES spectra assumed the breaking
of some kind of spin- [50] or charge- [33] symmetry of the
ground state in order to account for backfolded features
of the momentum-resolved spectral function. The origin
of such a symmetry breaking has however been unclear
so far, since there is no other experimental evidence for
it: a static charge-ordered state would contradict STM
results, and no experimental probe has found any direct
indication for spin-ordering. In the light of the previous
discussion on the core-level spectroscopy and by com-
parison of experimental ARPES spectra with theoretical
calculations, we will argue in the following that assuming
such symmetry breaking is unnecessary when taking into
account the typical timescale of the experiment: just like
core-level spectroscopy, ARPES can be understood as a
“snapshot” probe that spatially averages over the surface.
Hence, short-lived charge fluctuations of specific symme-
try and finite but sufficient spatial extension (see next
paragraph for details and quantification) will be picked
up by ARPES and incoherently averaged (such effect has
been recently shown for AF spin fluctuations and their
impact on ARPES experiments for the high Tc cuprates
[57]). For a quantitative comparison and reference spec-
tra, we have carried out theoretical calculations for the
spectral functions in the (

√
3×

√
3)R30◦-, the 3×3- , and

the (2
√
3×2

√
3)R30◦-phase. In Fig. 2 we show in the bot-

tom right panel the experimentally obtained ARPES sig-
nal along a specific path in the (

√
3×

√
3)R30◦ Brillouin

zone (BZ). If we now take the mixture (and subsequent
broadening) of the three theoretically calculated spectra
(left panels in in Fig. 2) with weights determined from
our cluster calculation and core-level study (upper and
central right panel in Fig. 2), the agreement between ex-
perimental spectra and theory becomes satisfactory. To
be precise, we can identify certain symmetry features,
i.e. backfoldings, to be related to a specific charge fluc-
tuation.

For this purpose, and as reference for future experi-
ments, we have plotted the theoretical spectral functions
(including also the electron addition part above the Fermi
energy εF = 0.0 in t) in the left hand side panels of Fig. 2
within the

√
3×

√
3 BZ.

The common feature of all shown spectra is their in-
sulating nature, i.e. a finite gap. In the (

√
3×

√
3)R30◦-

phase (upper left) the gap separates an upper and lower
Hubbard band of the Mott insulating state In the 3 × 3
phase (center left), we find (as expected from the 3×3 oc-
cupations) the combination of a band-insulating (empty
and doubly occupied sites) and Mott-insulating (singly
occupied sites) gap. Finally,the spectral function of the
(2
√
3× 2

√
3)R30◦-stripe phase (lower left) separates the

bands of the doubly occupied and empty lattice sites and,
hence, represents a band-insulating spectrum. While
the momentum-structure of the (

√
3×

√
3)R30◦ Hubbard

bands closely resembles the dispersion of a free electron

on the surface lattice, the CO phases display characteris-
tic backfolding features in the (

√
3×

√
3)R30◦ BZ. Partic-

ularly noteworthy are maxima of the spectral functions
along the K − Γ and M − Γ directions that were subject
to discussions in previous studies [33, 50].

Time and spatial resolution of the charge fluctua-
tions: In the previous two paragraphs we have seen
that spectroscopies such as core electron emission and
ARPES seem to suggest charge order and, hence, are
in contradiction to STM images of the Sn/Si(111)
surface. As alluded to before, this contradiction can
be resolved by considering the typical timescales of
the experiments: While the spectroscopies are spatially
averaged but quasi instantaneous snapshot probes, the
STM complementarily yields time-averaged but spatially
resolved information. We will now report on the details
of time and spatial resolution of the charge fluctua-
tions relevant to the phase coexistence. Indeed, the
discussion on the different experiments above and their
interpretation is based on a result from our theoretical
ab-initio treatment of Sn/Si(111) within self-consistent
GW+DMFT applied to a low energy Hamiltonian (see
Methods section and Supplementary material). The
most relevant quantity for the present discussion is
the charge-charge correlation function χ(q, ω) resolved
in momentum q and frequency ω and its respective
Fourier transforms. In our framework this quantity
is self-consistently obtained and can be employed as
a sensitive probe for charge-order instabilities. More
specifically, the vicinity to a transition into an ordered
phase of a specific symmetry would be signaled by the
behaviour of χ(q, ω = 0) at the corresponding q vector.
Intuitive insight can be obtained from the Fourier
transformed correlation function in real space and time
χ(R, τ) plotted in Fig. 3. With this quantity we can
find the typical correlation length ξ and timescale ∆τ0
of a charge fluctuation. Since the Mott to CO phase
transition is not a second order transition, χ(R, τ) does
not become continuously long range (i.e. χ(q, ω = 0)
does not diverge at a given q) but the correlation
length ξ → ∞ only increases up to a finite value of
the order of a few lattice constants before entering the
symmetry-broken phase.

In Fig. 3 we plot the calculated χGW+DMFT(R, τ) for
Sn/Si(111) on the z-axis at three different imaginary
time slices which correspond to averages over increas-
ingly large timescales. Four panels show the evolution
from instantaneous measurements to averages roughly
over some femtoseconds. x- and y- axes present the 2D
surface indicated also by the black dots at the respective
adatom sites. From these plots we can conclude that
the Mott phase coexists with short-lived finite size
lattice-commensurate charge fluctuations . To quantify
this claim we extract a correlation length at τ = 0 of
about 4 l.u. (enough for backfolded bands to be occu-
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pied in the ARPES experiment [57]). These numbers
immediately resolve the spectroscopy vs. microscopy
puzzle: Sn/Si(111) is found in close vicinity but not yet
in a charge-ordered phase (which can actually be reached
by substituting the Si substrate by a Ge one). However,
the ordered phase is preceded by quickly decaying charge
fluctuations that can be picked up by fast core-level and
photoemission spectroscopies but not by STM.

DISCUSSION

In this work, we have demonstrated that the appar-
ent contradictions between STM, ARPES and core-level
spectroscopy for two-dimensional systems of adatoms ad-
sorbed on semiconductor surfaces can be resolved by
considering that i) specific compounds like Sn/Si(111)
are located in the phase coexistence region of the first-
order phase transition from a Mott insulator to a charge-
ordered insulator, and ii) the timescales intrinsic to the
different experiments matter: quickly decaying charge
fluctuations (of specific symmetries) can be seen by
fast snapshot-like spectroscopies (core-level spectroscopy,
ARPES) while slow microscopy (STM) detects only a
time-averaged image in which the charge modulations
are averaged out. We have shed light on the history
of controversial interpretations of Sn/Si(111) by quanti-
fying these statements, based on first principles many-
body calculations using combined many-body pertur-
bation theory and extended dynamical mean-field the-
ory (GW+DMFT). In order to provide a direct theory-
experiment comparison, we have computed the observ-
ables of core-level spectroscopy and angular resolved
photoemission. Moreover, we have visualized and dis-
cussed the key observable for dynamically fluctuating
surface compounds: the charge susceptibility. Our anal-
ysis underlines the need for a very careful analysis of
experimental results in circumstances where characteris-
tic timescales of the material (i.e. fluctuations) and the
experimental probe coincide.

METHODS

Charge correlation function: The correlation function
in the charge channel χ(R, τ) displayed in Fig. 3 has been
obtained by spatial and temporal Fourier transforma-
tion of the charge correlation function χ(k, iω). The lat-
ter is computed from the polarization function P (k, iω)
through the relation:

χ(k, iω) =
−P (k, iω)

1− v(k)P (k, iω)

Here, v(k) is the Fourier transform of the interactions

v(Ri−Rj) = Uδij +V · a
|Ri−Rj| (a in the lattice constant

and Ri denotes a lattice site.). The polarization function
is computed in the GW+DMFT approximation [60–63],
namely as the sum of the impurity polarization Pimp(iω)
and of the nonlocal part of the bubble ∼ 2GG, more
specifically

P (k, iω) = Pimp(iω)+2





∑

q,iν

G(q+ k, iω + iν)G(q, iν)





nonloc

whereG(q, iν) is the fully self-consistent Green’s function
from a converged GW+DMFT calculation.
The factor of 2 stems from spin degeneracy. The values

of interaction parameters are calculated within the con-
strained random phase approximation [52, 53], namely
U = 1.0 eV and V = 0.5 eV.
Ground-state wave function of charge-ordered state

In order to determine the weight with which the “210”,
stripe and Mott configurations contribute to the ground-
state wave function in the charge-ordered state, we have
solved – by exact diagonalization – a six-site cluster with
periodic boundary conditions. Subsequent projection of
the ground state on the three relevant configurations of
interest results in the estimates for the coefficients shown
in Fig. 4 as a function of non-local interaction. The
qualitative behaviour of the curves shown here can be
understood as follows: For small non-local interaction
the Mott-like (

√
3×

√
3)R30◦ phase is dominant and un-

mixed with energetically high-lying configurations. How-
ever, upon increasing the nonlocal interactions some of
these high-lying configurations (in particular the 3×3 and
(2
√
3 × 2

√
3)R30◦ states) become lower in energy with

respect to the ground state and for nonlocal interactions
exceeding sim0.34 even replace the (

√
3×

√
3)R30◦ con-

figuration as the main contribution for the ground state
(note that mixing of the different configurations is driven
by the gain of kinetic energy, i.e. electron hopping).
According to the cRPA calculations, the physical val-

ues for the nonlocal interactions lead to a ground state
composed of the above three components with coeffi-
cients 0.13 ((

√
3 ×

√
3)R30◦), 0.56 (3 × 3), and 0.31

((2
√
3 × 2

√
3)R30◦) - normalized values extracted from

results shown in Fig. 4.

Multiplet cluster calculations: In order to simulate
the Sn 4d core-level spectra (shown in Fig. 1) we
employ full multiplet cluster calculations using the code
introduced in Ref. [58]. As common practice for such
cluster simulated spectra we estimated the strength
of the core hole spin-orbit coupling (SOC), and the
multipole part of the core-valence interaction from
atomic Hartree-Fock calculations[59]. For valence and
core SOC we use ζ5p = 0.40 eV, and ζ4d = 0.41 eV; for
the multipole moments of the core valence interaction
we use the Slater integrals F 1 = 0.46 eV, F 2 = 1.47
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FIG. 4: Projection of the many body ground state in a 6-site
cluster on its three most relevant contributions as function of
the non-local interaction. The red dashed line indicates the
cRPA value for Sn/Si(111).

eV, and F 3 = 0.42 eV. The monopole part of the
core-hole valence interaction is (in combination with
the onsite U of Sn) responsible for the relative shift of
the three spectra and fixed by the overall width of the
spectrum. The spectral functions are calculated with
exact diagonalization in the cluster limit and broadened
by convoluting with a Gaussian of width 0.37eV.

Theoretical ARPES spectra: The theoretical ARPES
spectrum (top-right and middle-left panels of Fig. 2)
is computed as a weighted average of the spectra

(Aα(k, ω) ≡ 1
Nα

el
Tr
[

− 1
π
ImĜα(k, ω + iη)

]

) for the 3 sym-

metries α = {
√
3×

√
3, 3× 3, 2

√
3× 2

√
3}:

A(k, ω) =
∑

α

λαA
α(k, ω)/

∑

α

λα

The relative weights λα are determined from the clus-
ter diagonalisation and the cPES spectra (see above).
Nα

el denote the number of electrons per unit cell for each

symmetry (respectively 1, 3, 2). In the top-right panel,
this spectrum is broadened with a Gaussian distribution
of mean deviation σ = 0.3 to account for ARPES uncer-
tainties. The individual spectra are shown in the remain-
ing three panels. The self-energy of the (

√
3 ×

√
3)R30◦

symmetry is obtained by MaxEnt analytical continu-
ation of the imaginary-frequency impurity self-energy
Σimp(iω) computed self-consistently through an EDMFT
scheme [52, 63]. We find this self-energy well reproduced
by an atomic self-energy with a renormalized interaction
given by the self-consistently computed effective impurity
interaction U(ω = 0) as obtained from GW+DMFT. For
the 3 × 3 symmetry, we take the atomic self-energy for
the half-filled band, while for the empty and full bands
we take the Hartree estimates for the self-energy:

Σ3×3(ω) =







U
2
− 3V 0 0

0 U2

4ω
0

0 0 −U
2
+ 3V







For the 2
√
3× 2

√
3 symmetry, we also take Hartree esti-

mates:

Σ2
√
3×2

√
3(ω) =

(

U
2
− 2V 0

0 −U
2
+ 2V

)
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We present a formalism for strongly correlated electron systems which consists in a local approximation of

the dynamical three-leg interaction vertex. This vertex is self-consistently computed using a quantum impurity

model with dynamical interactions in the charge and spin channels, similar to dynamical mean field theory

approaches. The electronic self-energy and the polarization are both frequency and momentum dependent. The

method interpolates between the spin-fluctuation or GW approximations at weak coupling and the atomic limit

at strong coupling. We apply the formalism to the Hubbard model on a two-dimensional square lattice and show

that as interactions are increased towards the Mott insulating state, the local vertex acquires a strong frequency

dependence, driving the system to a Mott transition, while at low enough temperatures the momentum dependence

of the self-energy is enhanced due to large spin fluctuations. Upon doping, we find a Fermi arc in the one-particle

spectral function, which is one signature of the pseudogap state.

DOI: 10.1103/PhysRevB.92.115109 PACS number(s): 71.10.Fd, 71.27.+a, 71.30.+h

Strongly correlated electronic systems such as high-

temperature cuprate superconductors are a major challenge

in condensed-matter physics. One theoretical approach to

cuprates emphasizes the effect of long-range bosonic fluc-

tuations on the electronic fluid, for example, long-range

antiferromagnetic (AF) fluctuations due to a quantum critical

point [1–6]. These bosonic fluctuations are also central to

approaches such as the two-particle self-consistent approxi-

mation (TPSC [7–11]), the GW approximation [12], and the

fluctuation-exchange approximation (FLEX [13]).

Another approach focuses, following Anderson [14], on

describing the Mott transition and the doped Mott insulator. In

recent years, dynamical mean field theory (DMFT) [15] and its

cluster extensions such as cellular DMFT (CDMFT) [16,17]

or the dynamical cluster approximation (DCA) [18–20] have

allowed for tremendous theoretical progress on the Mott tran-

sition both for models and realistic computations of strongly

correlated materials [21]. In particular, numerous works have

been devoted to the one-band Hubbard model, mapping out

its phase diagram, studying the d-wave superconducting order

and the pseudogap [22–45]. Cluster DMFT is one of the few

methods designed for the strong-interaction regime to have a

simple control parameter, namely, the size Nc of the cluster or

the momentum resolution of the electronic self-energy. It in-

terpolates between the DMFT solution (Nc = 1) and the exact

solution of the Hubbard model (Nc = ∞). Despite its success,

this method nonetheless suffers from severe limitations:

(i) It does not include the effect of long-range bosonic modes

of wavelengths larger than the cluster size; (ii) the negative

sign problem of continuous-time quantum Monte Carlo has

so far precluded the convergence of the cluster solutions

with respect to Nc in the most important regimes, such as

the pseudogap; and (iii) the k resolution of the self-energy

is still quite coarse in DCA (typically eight or 16 patches

in the Brillouin zone—see, e.g., Refs. [31,33,45,46]), or it

relies on uncontrolled a posteriori “periodization” techniques

in CDMFT [17].

*thomas.ayral@polytechnique.edu

Several directions beyond cluster DMFT methods are

currently under investigation to address these issues, such

as GW+DMFT [47–53], the combination of DMFT with

functional renormalization group methods [54], the dynamical

vertex approximation (DŴA) [55–58], and the dual fermion

(DF) or boson methods [59–61]. DŴA and DF require the

manipulation of four-leg vertices and, in their ladder version,

require the summation of selected classes of ladder diagrams.

Simpler yet controlled methods are needed: Except for one-

dimensional chains [62], neither DŴA nor DF has been applied

to multiorbital systems to date.

In this Rapid Communication, we discuss a simple for-

malism that unifies the two points of view mentioned above

while remaining comparatively lightweight. It is designed

to encompass both Mott physics in the manner of DMFT

and the effect of medium- and long-range bosonic modes.

It interpolates between the atomic and the “fluctuation-

exchange” limits upon going from strong to weak interactions.

It consists in decoupling the electron-electron interaction by

Hubbard-Stratonovich bosonic fields and making a local and

self-consistent approximation of the lattice’s electron-boson

one-particle irreducible three-leg vertex, using a quantum

impurity model similar to the one used in DMFT. Since this

method approximates three-leg objects with a local expansion,

we will call it TRILEX. Already at the single-site level, it

produces, in some parameter regimes, a momentum-dependent

self-energy and polarization, at a small computational cost,

similar to solving extended DMFT (EDMFT) [63–65]. In

the following, we introduce the method and then present

the solution of its single-site version for the two-dimensional

Hubbard model.

We focus on the Hubbard model defined by the following

Hamiltonian:

H =
∑

ij,σ

tijc
†
iσ cjσ + U

∑

i

ni↑ni↓. (1)

The indices i,j denote lattice sites, σ =↑ , ↓, c
†
iσ (ciσ ) is a

fermionic creation (annihilation) operator, and niσ ≡ c
†
iσ ciσ .

tij is the tight-binding hopping matrix [tij = t(t ′) for (next-)

1098-0121/2015/92(11)/115109(6) 115109-1 ©2015 American Physical Society
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nearest neighbors], while U is the on-site Coulomb interaction.

We rewrite the operators of the interaction term as

Uni↑ni↓ =
1

2

∑

I

U InI
i n

I
i , (2)

where U I is the bare interaction in channel I , and nI
i ≡

∑

σσ ′ c
∗
iσσ I

σσ ′ciσ ′ , where σ 0 = 1 and σ x,y,z are the Pauli

matrices. Here, we consider one possible decoupling1 which

preserves the rotation symmetry of the action: The index

I runs on 0,x,y,z, U x = U y = U z ≡ U sp, and U 0 ≡ U ch,

and U sp and U ch satisfy U = U ch − 3U sp. We have two

channels, denoted as η = ch,sp. We fix the ratio to U ch = U/2

and U sp = −U/6.2 We now decouple (2) using real bosonic

Hubbard-Stratonovich fields φI
i (τ ) in each channel and at each

lattice site, so that the action now describes a lattice problem

with a local electron-boson coupling:

Slatt =

∫ β

0

dτ
∑

ij

c∗
iσ τ {∂τ + tij }cjστ

+
∑

i,I

[

1

2
(−U I )−1φI

iτφ
I
iτ + λIφI

iτn
I
iτ

]

. (3)

c∗
iσ τ and ciσ τ are conjugate β-antiperiodic Grassmann

fields, and λI = 1. The lattice Green’s functions G(k,iω)

and W η(q,i�) (the Fourier transforms of −〈ciσ τ c
∗
jσ0〉 and

−〈φ
η

iστφ
η

jσ0〉, respectively) are given by Dyson equations,

G(k,iω) = [iω + μ − ε(k) − (k,iω)]−1, (4a)

W η(q,i�) = U η[1 − U ηP η(q,i�)]−1. (4b)

k and q are momentum variables, iω (i�) stands for a

fermionic (bosonic) Matsubara frequency, ε(k) is the Fourier

transform of tij , and μ is the chemical potential. The fermionic

and bosonic self-energies  and P η are given by the exact

expressions (in the paramagnetic, normal phase) (see, e.g.,

Ref. [67])

(k,iω) = −
∑

q,i�,

η=ch,sp

mηλ
ηG q+k,

iω+i�
W

η

q,i��
η

k,q,

iω,i�

, (5a)

P η(q,i�) = 2
∑

k,iω

ληG q+k,

iω+i�
Gk,iω�

η
k,q,

iω,i�

. (5b)

Here, mch = 1 and msp = 3. �η(k,q,iω,i�) is the exact one-

particle irreducible electron-boson coupling (or Hedin) vertex,

namely, the effective interaction between electrons and bosons

renormalized by electronic interactions.

The main point of this Rapid Communication consists

in approximating the vertex �η(k,q,iω,i�) by the local,

but two-frequency-dependent, �
η
imp(iω,i�) computed from a

1Other decouplings are possible, for instance, index I can run only

on 0,z (charge and longitudinal spin channel only). In this case, U ch

and U sp obey the relation U = U ch − U sp. This decoupling breaks

the rotation symmetry of the action.
2The influence of this choice is investigated in Supplemental

Material D [66].

self-consistent quantum impurity problem:

�η(k,q,iω,i�) ≈ �η
imp(iω,i�). (6)

This strategy differs radically from DMFT, EDMFT, and

GW+DMFT which approximate the self-energy  (and P ),

and DŴA, which approximates four-leg vertices, not �. It

implies that our  and P [computed from Eqs. (5a) and (5b)]

are, in some parameter regimes, strongly momentum dependent

while containing local vertex corrections essential to capture

the Mott physics [50].

The action of the impurity model reads

Simp = −

∫∫ β

0

dτdτ ′
∑

σ

c∗
στG−1(τ − τ ′)cστ ′

+
1

2

∑

I=0,x,y,z

∫∫ β

0

dτdτ ′nI
τU I (τ − τ ′)nI

τ ′ . (7)

This is an Anderson impurity with retarded charge-charge (I =

0) and spin-spin (I = x,y,z) interactions. The bosonic fields

φI have been integrated out to obtain a fermionic action with

retarded interactions amenable to numerical computations.

We compute the fermionic three-point correlation functions

to reconstruct the electron-boson vertex �
η
imp (as shown in

Supplemental Material B [66]). Finally, G and Uη derive from

the self-consistency conditions as follows,

G−1(iω) = G−1
loc(iω) + loc(iω), (8a)

[Uη]−1(i�) =
[

W
η

loc

]−1
(i�) + P

η

loc(i�), (8b)

where, for any X, Xloc(iω) ≡
∑

k X(k,iω). At convergence,

this ensures that Gloc = Gimp and W
η

loc = W
η
imp. W η and the

susceptibility χη are related by

W η(q,i�) = U η − U ηχη(q,i�)U η. (9)

The computational scheme is illustrated in Fig. 1. From

�
η
imp(iω,i�), we compute (k,iω) and P η(q,i�), which are

then used to computeG andUη for (7). We solve Eq. (7) exactly

by a continuous-time quantum Monte Carlo algorithm [69] in

the hybridization expansion [70] with retarded density-density

[71] and vector spin-spin interactions [72]. The computation of

the three-point functions is implemented following Ref. [73].

We iterate until convergence is reached. Our implementation

is based on the TRIQS library [74]. Equation (7) could also be

solved by an interaction-expansion solver.

This construction makes TRILEX exact in two limits: (i) At

small interaction strengths, the local vertex reduces to the bare,

frequency-independent vertex λη so that  is given by one-

loop diagrams, as in spin-fluctuation theory in its simplest form

(spin channel only), the GW approximation (charge channel

only), or in FLEX limited to particle-hole diagrams; similarly,

P η turns into the “bubble” diagram; (ii) in the atomic limit

(t = 0), the effective local action turns into an atomic problem,

�
η
imp into the atomic vertex �

η
at [Eq. (A1)], and  and P η

become local, atomic self-energies.

Let us now apply the TRILEX method to the Hubbard

model on a square lattice. All energies are given in units of

115109-2
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Simp[G(iω),Uη(iΩ)]

Σ(k, iω) =

P η(q, iΩ) =

G

W η

lattice quantities

Eq (8)

G(k, iω)

W η(q, iΩ)

Dyson
equations consistency

condition

self-

Eq (4)

Λη
imp(iω, iΩ)

impurity
vertex

G

G solve

self-energies
k-dependent

Eq (5,6) Eq (7)

impurity
model

quantum

FIG. 1. (Color online) The TRILEX self-consistency loop.

the half bandwidth D = 4|t |. The Brillouin zone is discretized
on a 64 × 64 momentum mesh.3 We restrict ourselves to the
paramagnetic normal phase.

3We have checked that the 64 × 64 discretization yields the same
results as the 32 × 32 discretization.

FIG. 2. (Color online) (T ,U ) phase diagram (half filling, t ′ = 0).
The green squares denote converged TRILEX solutions. A, B, and C
are defined as (A) βD = 96, U/D = 0.5, (B) βD = 24, U/D = 2,
and (C) βD = 48, U/D = 4. The red dotted line denotes T DMFT

Néel

for the square lattice (from Ref. [68]). The black squares denote T

(temperature below which one cannot obtain stable solutions, hatched
region); the black dashed line is a guide to the eye.

FIG. 3. (Color online) Left: Evolution of the local vertex
Re �η

imp(iωn,i�m) as a function of ωn (half filling, t ′ = 0). A, B,
and C are defined in Fig. 2. The dashed lines denote the atomic
vertex �

η
at [Eq. (A1)]. Right: Im loc(iωn) for TRILEX and DMFT

(paramagnetic phase).

In Fig. 2, we present the phase diagram in the (T ,U ) plane at
half filling. We obtain converged solutions until a temperature
T (see below). The evolution of the local vertex and self-energy
(respectively lattice self-energy and polarizations) is presented
in Fig. 3 (respectively Fig. 4) for the points A, B, and C of Fig.
2. At weak coupling (point A), the local vertex �

η
imp(iω,i�)

reduces to the bare vertex λ = 1 at large frequencies, up to
numerical noise [Fig. 3(a), upper panels]. The spin polarization

FIG. 4. (Color online) Momentum dependence of the self-energy
and polarization (half filling, t ′ = 0). A, B, and C are defined
in Fig. 2. Left: Re P ch(q,ω = 0). Middle: Re P sp(q,ω = 0). Right:
Im (k,iω0).
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FIG. 5. (Color online) From left to right: A(k,ω = 0), χ (q,i� =
0), and Im (k,iω0) in the doped case: U/D = 1.8, t ′ = −0.4t ,
βD = 96, δ = 10%.

[hence the spin susceptibility—see Eq. (9)] becomes sharply
peaked at the AF wave vector Q = (π,π ) (Fig. 4, upper
panels), reflecting the nesting features of the Fermi surface.
As a result, the self-energy acquires a strong k dependence
at (π,0) (Fig. 4), but its local part is the same as the
DMFT self-energy [Fig. 3(b)]. At strong coupling (point C),
the vertex becomes similar to the atomic vertex [Fig. 3(a),
lower panels]. Furthermore, the self-energy and polarization
are weakly momentum dependent (Fig. 4, lower panels), in
agreement with cluster DMFT calculations; the self-energy
of TRILEX is very close to the DMFT self-energy [Fig.
3(b)]. Finally, at intermediate coupling (point B), �η

imp(iω,i�)
acquires frequency structures which interpolate between A and
C [Fig. 3(a), middle panels], while  is strongly momentum
dependent and its local part departs from the DMFT self-
energy [Fig. 3(b), middle panels]. Interestingly, the TRILEX
self-energy is more coherent than the DMFT self-energy,
contrary to the trend observed in cluster DMFT [75]. This
may be due to the absence of short-range singlet physics
in TRILEX which may be investigated using a small cluster
extension.

Contrary to DMFT, the convergence of metastable param-
agnetic solutions below a long-range ordering temperature is
not possible, since the susceptibilities are not by-products of
the calculation, but directly feed back into the self-consistency
loop through Wη [see Eq. (9)]. We obtain stable paramagnetic
solutions at much lower temperatures compared to the Néel
temperature computed in DMFT [68] until T , as a result of
nonlocal fluctuations beyond DMFT. The temperature T is
determined by extrapolating the inverse static AF susceptibility
(see Fig. A1 in the Supplemental Material [66]). Below and
in the vicinity of T , we obtain unstable solutions because of
very small denominators in W sp. Whether we have, within
our approximate scheme, finite but very large correlation
lengths (as seen, e.g., in Ref. [57]) or an actual AF transition
(thus violating the Mermin-Wagner theorem), is left for future
studies.

Let us now turn to the effect of doping. In Fig. 5, we
present results for t ′ = −0.4t , βD = 96, and an intermediate
interaction strength (U = 1.8, close to point B). The spectral
function displays Fermi arcs (Fig. 5, left panel), as observed in
experiments [76] and in cluster DMFT [35,37,38,42–44,77].
Let us emphasize that this is obtained by solving a single-
site quantum impurity problem, a far easier task than solving
cluster impurities. The Fermi arc is a consequence of the large
static spin susceptibility at the AF wave vector (Fig. 5, middle
panel), which translates into a large imaginary part of the self-
energy (Fig. 5, right panel). The corresponding variation of the
spectral weight on the Fermi surface is rather mild compared to
the experimental results due to the moderate correlation length
(ξAF ∼ 2 unit spacings) for these parameters. This variation is
also smaller than cluster DMFT results, which may indicate
that improving the description of short-range correlations will
yield closer agreement to experiments.

Finally, we examine the influence of the ratio between the
interaction in the charge and the spin channel. We observe
that it does not impact either the fact that one can obtain
stable solutions much below the DMFT Néel temperature (T
mildly depends on the ratio), or the fulfillment of sum rules on
the charge and spin susceptibility (see Supplemental Material
D [66]). We have also tried alternative self-consistency
conditions, e.g., χ

η

loc = χ
η
imp instead of W

η

loc = W
η
imp. This,

however, leads to a positive U sp(τ ) and hence to a severe sign
problem in the quantum Monte Carlo at low temperatures.

In conclusion, we have presented the TRILEX formalism,
which encompasses long-range spin-fluctuation effects and
Mott physics. Because the competition between spin fluc-
tuations and Mott physics can be described already at the
single-site level, this computationally lightweight method may
be a good starting point for studying correlated multiorbital
systems where spin fluctuations play an important role, such
as pnictide superconductors. Future investigations will include
the extension to cluster schemes that interpolate between the
single-site approximation and the exact solution of the model.
With this extension, TRILEX will capture both long-range
and short-range fluctuations. Moreover, the convergence of
the method with cluster size may depend on the decoupling
channel and, when done in the physically relevant channel,
may be faster than cluster DMFT methods.
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a b s t r a c t

We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-
source, computational physics library providing a framework for the quick development of applications
in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems.
It supplies components to develop codes in a modern, concise and efficient way: e.g. Green’s function
containers, a genericMonte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that
can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-
of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces
between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed
along with it.

Program summary
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applicable to the studies of strongly-correlated electron systems.
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Solution method:
We present a C++/Python open-source computational library that provides high-level abstractions for
common objects and various tools in the field of quantummany-body physics, thus forming a framework
for developing applications.

Running time:
Tests take less than a minute. Otherwise it is highly problem dependent (from minutes to several days).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present the 1.2 release of the TRIQS project (Toolbox for Research in Interacting Quantum Systems), a free software
library written in Python and C++ for the implementation of algorithms in quantum many-body physics. TRIQS is distributed under the
GNU General Public License (GPLv3).

Strongly-correlated quantum systems are a central challenge for theoretical condensedmatter physicswith awide range of remarkable
phenomena such asmetal–insulator transitions, high-temperature superconductivity andmagnetism. In the last two decades, tremendous
progress has been made in the field of algorithms for the quantum many-body problem, both in refining existing techniques and in
developing new systematic approximations and algorithms. Methods to address the quantum many-body problem include dynamical
mean-field theory (DMFT) [1,2] and its cluster [3] or diagrammatic extensions [4,5] or the density matrix renormalisation group
(DMRG) [6]. DMFT methods can also now be combined with more traditional electronic structure methods such as density functional
theory (DFT) leading to ab initio realistic computational techniques for strongly-correlated materials [2]. Several collaborative software
development efforts have made some of these theoretical developments largely accessible, e.g. Refs. [7–9].

The purpose of the TRIQS project is to provide a modern framework of basic building blocks in C++ and Python. This is needed for the
rapid implementation of a broad spectrum of methods. Applications range from simple interactive phenomenological analysis in Python
to high-performance quantum impurity solvers in C++. At this stage, TRIQS focuses primarily on, but is not limited to, solid-state physics
computations, diagrammatic approximations andmethods of the DMFT family (DMFT, clusters and underlying quantum impurity solvers).

A particular emphasis is placed on the documentation, in particular in providing short code examples that can be reused immediately
(in Python and C++). Full documentation of the project is available online: http://ipht.cea.fr/triqs.

Several applications have already been built with the TRIQS library, and some of them are publicly distributed. Let us mention a state-
of-the-art implementation of the hybridisation-expansion quantum impurity solver cthyb (http://ipht.cea.fr/triqs/applications/cthyb/)
and the dft tools project which provides an interface between DMFT and DFT packages such as wien2k for realistic computations for
strongly-correlated materials (http://ipht.cea.fr/triqs/applications/dft_tools/). Since these applications are not part of the library itself and
involve a different set of authors, they will be presented in separate publications. However, they are distributed along with the TRIQS
library under GPL license and are available for download on GitHub (https://github.com/triqs).

The TRIQS project uses professional code developmentmethods to achieve the best possible quality for the library and the applications,
including: (i) version control using git; (ii) systematic code review by the main TRIQS developers; (iii) test-driven development: features
of the library are first designed with a series of test cases. When the implementation is completed, they become the non-regression tests
executed during the installation process.

This paper is organised as follows: we start in Section 2 with themainmotivations for the project. In Section 3, we outline the structure
of the TRIQS project. Section 4 summarises our citation policy. In Section 5, we discuss the prerequisites to efficient usage of TRIQS and
Section 6 describes the portability of the library. In Section 7, we provide two illustrating examples to give a flavour of the possibilities
offered by the library: we show that TRIQSmakes it possible to write a DMFT self-consistency loop in one page of Python, and, in another
example, how equations can be coded efficiently in C++. In Section 8 we review the most important library components. In the Appendix
we present the implementation of a fully working, MPI-parallelised, modern continuous-time quantum Monte Carlo algorithm (the so-
called CT-INT algorithm [10,11]) in about 200 lines. This example illustrates how TRIQS allows one to design a complex, yet short, readable
and extensible code.

2. Motivations

The implementation of modern algorithms for quantum many-body systems raises several practical challenges.
Complexity: Theoretical methods and algorithms are becoming increasingly complex (e.g. quantum Monte Carlo [10–13] and dual

boson [14] methods). They are hence more difficult to implement, debug and maintain. This is especially true for realistic computations
withmethods of the DMFT family, where one has to handle not only the complexity of themany-body problem but also the various aspects
(orbitals, lattices) of real materials, which usually require a well-organised team effort.

Versatility/Agility: Algorithms are changing and improving rapidly, sometimes by orders of magnitude for some problems [15]. This
can lead to a possibly quick obsolescence of a given implementation. To address new physics problems requires regular and substantial
modifications of existing implementations.Moreover, there are numerous possibilities for new algorithmswhich need to be tested quickly.

Performance: Modern algorithms are still quite demanding on resources, e.g. quantum Monte Carlo methods. Hence, the performance
of the codes is critical and a simple implementation in a high-level language is usually not sufficient in practice.

Reproducibility: The central role and the growing complexity of the algorithms in our field reinforces the need for reproducibility,
which is central to any scientific endeavour. Therefore, the results obtained by a numerical computation should in principle be published
systematically along with the code that produced them, in order to allow others to reproduce, falsify or improve on them. This requires
codes to be readable (i.e. written to be read by other people than their author) and relatively quick to produce.
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Fig. 1. Structure of the TRIQS project.

To address these challenges, one needs readable, clear and simple implementations with reusable components provided through high-
level abstractions. We emphasise that this is not in contradiction with the requirement of high performance. The combination of a higher
level of abstraction with high performance is achieved using modern programming techniques (e.g. generic programming). The purpose
of the TRIQS project is to find and efficiently implement the relevant abstractions, basic components and algorithms for our domain.

3. Structure

The TRIQS framework is depicted in Fig. 1: the core library is at the root (bottom) consisting of basic building blocks, which are used in
a series of applications (top). The applications can be in pure python (e.g. dft tools), in C++with a Python interface (e.g. cthyb), or even
in pure C++. The subject of this paper is the core library.

The components of the TRIQS library can be used both in Python and in C++: C++ brings the performance needed for applications
where speed is critical (like many-body solvers) and the type safety of a compiled language. On the other hand, Python is typically used
as a higher-level interface for data analysis, investigation of phenomenological approaches, and tasks related to reproducibility. Most
objects of the library are written in C++ and exposed to Python using a specially designed tool described in Section 8.8. As a result, TRIQS
can be used together with all the modern scientific tools of the Python community, in particular with IPython notebooks [16] which
are recommended for an optimal interactive usage of the library in Python.

4. Citation policy

We kindly request that the present paper be cited in any published work using the TRIQS library directly (e.g. for data analysis) or
indirectly (e.g. through TRIQS based applications). In the latter case, this citation should be added to the citations already requested by
the application. This helps the TRIQS developers to better keep track of projects using the library and provides them guidance for future
developments.

5. Programming requirements

TRIQS can be used at different levels of expertise, starting from basic Python interactive usage to development of cutting-edge mixed
Python/C++ high-performance and massively parallel codes, and in pure C++.

Most objects, in particular Green’s functions, have a rich Python interface, allowing one to easily plot and manipulate them. For
example, simple operations such as value assignment, inversion or output to and input from HDF5 files are all one-line operations, as
shown in the examples below.

At the C++ level, the required knowledge to make efficient use of the library is minimised. The systematic usage of modern C++
(C++11 and C++14) very often lead to simpler syntax than old C++. The library often favours a ‘‘functional style’’ programming and the
simplest possible constructions for the C++ user. To fully exploit the capabilities of the library, some understanding of the basic notions of
generic programming, such as concepts and templates, is helpful, but not required. More traditional object-oriented notions of C++ such
as inheritance or dynamical polymorphism (virtual functions) are not necessary to use the TRIQS library.

6. Portability

TRIQS is written in modern C++, i.e. using the C++11 ISO standard. The motivation for this choice is twofold: first, we encourage the
users of the library to benefit from the new features of C++, in particular those which produce much simpler code (e.g. auto, for auto
loop or lambdas). Second, it dramatically reduces the cost of implementing and maintaining the library itself, since many of the new
C++ features are designed to facilitate the use of the metaprogramming techniques needed to implement high-level, high-performance
libraries.

As a result, TRIQS requires aC++11 standard-compliant compiler. The documentation provides an updated list of tested compilers.When
it is available, we recommend using a C++14 compiler for development, in particular to get simpler error messages.

At the Python level, we use the 2.7 versions of Python. Support for Python 3 is planned for later releases. We use the binary
hierarchical data format (HDF5) to guarantee portability of user generated data in binary form.
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Fig. 2. Screenshot of an IPython notebook executing a DMFT loop using the CT-INT solver.

7. TRIQS in two examples

Here we illustrate the use of the library for two typical tasks encountered in many-body physics; this should give a flavour of the
possibilities offered by the library. The first example is a complete DMFT computation implemented in Python, using a continuous-
time quantum Monte Carlo solution of the impurity model (which is presented in the Appendix). The second example illustrates the
manipulation of Green’s functions in C++within TRIQS.

7.1. A DMFT computation in one page of IPython

This example requires the CT-INT tutorial application to be installed. The installation procedure is described in Section 9.2.

Fig. 2 shows a screenshot of an IPython notebook implementing a DMFT self-consistency loop. The essential steps are to load the
solver module, set parameters and an initial guess for Green’s function and to loop over the DMFT iterations. The solver module, for
which performance is critical, is written in C++ but used from Python. This notebook is available in the sources of the ctint_tutorial
application (in the examples subdirectory) along with the corresponding python script that is suitable for parallel execution.
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The Python framework is highly flexible. In this example, we exchange the random number generator in the final DMFT iteration to
consolidate the result. We could also turn on additional measurements, or implement more sophisticated stopping criteria for the loop.
Using the IPython notebook, results can be plotted and analysed interactively. As aminimal example, we load the HDF5 archive from the
disk and plot the imaginary part of Green’s functions in the second cell of the notebook. Parameters used in the calculation can easily be
saved to file and retrieved for data analysis. On a parallel machine, the first part of the script is executed in Python (without the notebook),
on multiple cores, while the analysis can still be done in the IPython notebook.

Within this framework, DMFT can readily be explored and practised by non-experts. The major part of the calculation is of course
performed by the solvermodule. In this example, we have used the interaction-expansion continuous-time quantumMonte Carlo (CT-INT)
solver. We can easily switch to a more sophisticated hybridisation-expansion continuous-time quantumMonte Carlo algorithm (CT-HYB)
solver by loading the appropriate solver module instead. The complete listing of the C++ implementation of the solver module is given
and explained in Appendix, as a more detailed illustration of the library’s features.

7.2. Easy manipulation of Green’s functions in C++

Here, we show how to compute in C++ a hybridisation function∆(τ ) in imaginary time given the bare dispersion of a two-dimensional
square lattice with nearest neighbour hopping, at chemical potential µ. This is a typical task which is usually performed at the beginning
of a DMFT calculation. The necessary steps are the following:

G0(iωn) =
1

N



k

1

iωn + µ − 2(cos kx + cos ky)
(1)

∆(iωn) = iωn + µ − G−1
0 (iωn) (2)

∆(τ ) =
1

β



n

∆(iωn)e
−iωnτ . (3)

The sum over k = (kx, ky) is taken over the Brillouin zone, ωn is a fermionic Matsubara frequency and β is the inverse temperature. Using
the library, these equations are implemented as follows:

Listing 1 Computing the hybridisation

1#include <triqs/gfs.hpp>
2using namespace triqs::gfs;
3using namespace triqs::lattice;
4int main() {
5
6double beta = 10, mu = 0;
7int n_freq = 100, n_pts = 100;
8
9// Green’s function on Matsubara frequencies , 1x1 matrix-valued.
10auto Delta_iw = gf<imfreq >{{beta, Fermion, n_freq}, {1, 1}};
11auto Gloc = gf<imfreq >{{beta, Fermion, n_freq}, {1, 1}};
12
13// Green’s function in imaginary time, 1x1 matrix-valued.
14auto Delta_tau = gf<imtime >{{beta, Fermion, 2 * n_freq + 1}, {1, 1}};
15
16auto bz = brillouin_zone{bravais_lattice{{ {1, 0}, {0, 1} }}};
17auto bz_mesh = regular_bz_mesh{bz, n_pts};
18
19triqs::clef::placeholder <1> k_;
20triqs::clef::placeholder <2> iw_;
21
22// The actual equations
23Gloc(iw_) << sum(1/(iw_ + mu - 2*(cos(k_[0]) + cos(k_[1]))), k_ = bz_mesh)
24/bz_mesh.size(); // (1)
25Delta_iw(iw_) << iw_ + mu - 1 / Gloc(iw_); // (2)
26Delta_tau() = inverse_fourier(Delta_iw); // (3)
27
28// Write the hybridization to an HDF5 archive
29auto file = triqs::h5::file("Delta.h5", H5F_ACC_TRUNC);
30h5_write(file, "Delta_tau", Delta_tau);
31h5_write(file, "Delta_iw", Delta_iw);
32}

In the implementation of Eqs. (1) and (2) (lines 23–25), we use a compact syntax for the assignment to Green’s function container
provided by the TRIQS library (the CLEF library, Section 8.5). By definition, this is equivalent to assigning the evaluation of the expression
on the right-hand side to the data points of ‘‘Green’s function’’1 Delta_iw on the left and for all Matsubara frequencies in its mesh. iw_
is a placeholder, i.e. a dummy variable standing for all points in Green’s function’s mesh.

1 Here we refer Green’s function containers and objects representing hybridisation functions or functions with the same signature simply as ‘‘Green’s functions’’.
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In line 23, the formal expression made of iw_ and k_ is summed over the values of k_, and assigned to the function for each iw_. Note
that no copy is made by this statement, the computation is inlined by the compiler, as if it was written manually. This technique is more
concise than writing a for-loop on each variable, reduces the risk of errors and simultaneously increases the readability. Moreover, such
techniques come with no performance penalty (as indicated by our tests on several standard compilers).

In line, we assign the inverse Fourier transform of ∆(ω) to ∆(τ ) [Eq. (3)]. Note that the high-frequency expansion is part of Green’s
function container and so is automatically computed in lines 23 and 25 (see Section 8.2 for details). It is used to properly treat the
discontinuity in the Fourier transformation in line 26.

Finally, Green’s functions are stored in an HDF5 file with a simple interface, in a portable manner. The storage conventions are detailed
in the reference documentation.

This example is interesting for two reasons: firstly, it shows that the TRIQS library performs a lot of low-lying operations. There is no
need to reimplement them and the user can concentrate on the physics; secondly, it shows that one can write quite complex operations
concisely, which is necessary in order to write readable codes.

8. Library components

In this section, we provide an overview of the TRIQS library components. We illustrate them either with small examples or in the
CT-INT impurity solver example presented in Appendix. The description is neither meant to be complete nor exhaustive; the online
reference documentation (http://ipht.cea.fr/triqs) will fill the gaps.

8.1. Multidimensional arrays (C++)

TRIQS provides its own multidimensional arrays, with an emphasis on flexibility, performance and the Python interface. It is a
fundamental building block for higher-level containers, such as Green’s functions. Listing 2 below illustrates some of their features.

Listing 2 Array / matrix example

#include <triqs/arrays.hpp>
using namespace triqs::arrays;
int main() {

auto a = matrix<double >(2, 2); // Declare a 2x2 matrix of double
auto b = array<double, 3>(5, 2, 2); // Declare a 5x2x2 array of double
auto c = array<double, 2> {{1,2,3}, {4,5,6}}; // 2x3 array, with initialization

triqs::clef::placeholder <0> i_;
triqs::clef::placeholder <1> j_;
triqs::clef::placeholder <2> k_;

// Assignment of values using CLEF
a(i_, j_) << i_ + j_;
b(i_, j_, k_) << i_ * a(k_, j_);

std::cout << "a = " << a << std::endl; // Printing

matrix<double> i = inverse(a); // Inverse using LAPACK
double d = determinant(a); // Determinant using LAPACK

auto ac = a; // Make a copy (the container is a regular type)
ac = a * a + 2 * ac; // Basic operations (uses BLAS for matrix product)
b(0, range(), range()) = ac; // Assign ac into partial view of b

// Writing the array into an HDF5 file.
auto f = triqs::h5::file("a_file.h5", H5F_ACC_TRUNC);
h5_write(f, "a", a);

auto m = max_element(abs(b)); // maximum of the absolute value of the array.

// A more "functional" example: compute the norm sum_{i,j} |A_{ij}|
auto lambda = [](double r, double x) { return r + std::abs(x); };
auto norm = fold(lambda)(a, 0);

}

The library provides three types of containers: array (for multidimensional arrays), matrix and vector with the following main
characteristics:

• Regular-type semantics: Just like std::vector, these containers have regular-type semantics.

• Views: Each container has a corresponding view type (e.g. array_view) to e.g. work on slices and partial views.

• CLEF: The containers are compatible with CLEF (Section 8.5 and Listing 2) for fast assignment techniques.

• Python interface: These containers can be easily converted to and from Python NumPy arrays.

• Interface to HDF5: See Section 8.6 and Listing 2.

• Arithmetics: Arithmetic operations are implemented using expression templates for optimal performance.

• BLAS/LAPACK: A BLAS/LAPACK interface for matrices and vectors is provided for the most common operations.

• STL compatible iterators: The containers and views can be traversed using such iterators, or with simple foreach constructs.

• Optionally, a (slower) debug mode checks for out-of-range operations.
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8.2. Green’s functions (C++ and Python)

The library provides a special set of containers that allowone to store andmanipulate the various Green’s functions used in the quantum
many-body problem and its algorithms. They are defined on meshes for various domains, they are tensor-, matrix-, or scalar-valued and
can be block-diagonal.

Domains currently implemented include real and imaginary frequencies, real and imaginary times, Legendre polynomials, and Brillouin
zones. Multiple variable Green’s functions are also part of the library, but are restricted to C++14 mode only and are of alpha quality in
release 1.2. We will not discuss them in this paper.

Green’s functions optionally include a description of their high-frequency behaviour in terms of theirmoments. Storing this information
is important for several operations (e.g. Fourier transformation, frequency summation) where the high-frequency behaviour needs to be
treated explicitly. Being part of the object, the singularity is consistently recomputed in all arithmetic operations so that the user need not
work out the high-frequency asymptotics. Listing 3 illustrates some basic usage of Green’s functions, while a Python example has been
given above (Fig. 2).

Listing 3 Green’s function example

#include <triqs/gfs.hpp>
using namespace triqs;
using namespace triqs::gfs;
using namespace triqs::lattice;
int main() {
double beta = 10;
int n_freq = 1000;

clef::placeholder <0> iw_;
clef::placeholder <1> k_;

// Construction of a 1x1 matrix-valued fermionic gf on Matsubara frequencies.
auto g_iw = gf<imfreq >{{beta, Fermion, n_freq}, {1, 1}};

// Automatic placeholder evaluation
g_iw(iw_) << 1 / (iw_ + 2);

// Inverse Fourier transform to imaginary time
auto g_tau = gf<imtime >{{beta, Fermion, 2 * n_freq + 1}, {1, 1}};
g_tau() = inverse_fourier(g_iw); // Fills a full view of g_tau with FFT result

// Create a block Green’s function composed of three blocks,
// labeled a,b,c and made of copies of the g_iw functions.
auto G_iw = make_block_gf({"a", "b", "c"}, {g_iw, g_iw, g_iw});

// A multivariable gf: G(k,omega)
auto bz = brillouin_zone{bravais_lattice{{{1, 0}, {0, 1}}}};
auto g_k_iw = gf<cartesian_product <brillouin_zone , imfreq>>{

{{bz, 100}, {beta, Fermion, n_freq}}, {1, 1}};

g_k_iw(k_, iw_) << 1 / (iw_ - 2 * (cos(k_(0)) + cos(k_(1))) - 1 / (iw_ + 2));

// Writing the Green’s functions into an HDF5 file.
auto f = h5::file("file_g_k_iw.h5", H5F_ACC_TRUNC);
h5_write(f, "g_k_iw", g_k_iw);
h5_write(f, "g_iw", g_iw);
h5_write(f, "g_tau", g_tau);
h5_write(f, "block_gf", G_iw);

}

The main characteristics of Green’s functions are:

• Arithmetics: Just like arrays, Green’s functions implement arithmetic operations using expression templates.

• Quick assignment: The class uses the CLEF component of the TRIQS library for quick assignment (see Section 8.5 and Listing 3).

• Python interface: Green’s functions are easily shared between Python and C++, see Section 8.8, and can thus be used in conjunction
with the Python visualisation tools.

• Fourier transforms: TRIQS provides a simple interface to fast Fourier transforms (FFTW). For Green’s functions the information about
the high-frequency behaviour is used to avoid numerical instabilities.

• Interface to HDF5.

8.3. Monte Carlo tools (C++)

The TRIQS library provides several classes for writing Metropolis-like (quantum) Monte Carlo algorithms. In addition to some basic
analysis tools, like binning or jackknife, the library mainly contains the mc_generic class that implements the Metropolis algorithm
(choose amove, try themove, computeMetropolis ratio, reject or accept, etc.) in terms of completely genericmoves (configuration updates)
andmeasurements.
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In practice, one just needs to implement the moves and measurements. The only requirement is that they must model their respective
concepts.2 For example, the concept of a move is given by Listing 4. Note in particular that they do not require inheritance or virtual
functions, which makes them particularly simple to use.

Listing 4 Concept of a Monte Carlo move

struct my_monte_carlo_move {

// propose a change in the configuration and return the Metropolis ratio
double attempt();

// the move has been accepted: modify configuration
double accept();

// the move has been rejected: undo configuration changes
void reject();

};

A concrete usage of the class is shown in the CT-INT solver example (Appendix). The class is particularly convenient for complexMonte
Carlo algorithms with several moves: the moves are isolated from the implementation of the Metropolis algorithm itself and each move
can be implemented independently.

The Monte Carlo is of course automatically MPI-enabled. Furthermore, random number generators can easily be changed dynamically
to ensure there is no subtle correlation effect.

Listing 5 illustrates a basic application of the tools for statistical analysis on a correlated random series. Let us assumewe have two long
vectors V1 and V2 storing (possibly correlated) samples of the random variables X and Y and that we wish to compute estimates of ⟨X⟩
and ⟨X⟩/⟨Y ⟩, together with the corresponding error bars. In both cases, the correlation between samples has to be removed using a binning
procedure. This being done, the first computation is quite straightforward, while the second one further requires a jackknife procedure to
remove the bias introduced by the nonlinearity. In TRIQS, all these operations are performed by the following code snippet, using a little
library similar to e.g. ALPS/alea [7]:

Listing 5 Statistics: error analysis

//fill observable with the series
observable <double> X, Y;
for(auto const & x : V1) X << x; //V1: a vector of statistical samples
for(auto const & y : V2) Y << y; //V2: a vector of statistical samples

std::cout << "<X> is approximately " << average_and_error(X) << std::endl;
std::cout << "<X>/<Y> is approx. " << average_and_error(X/Y) << std::endl;

X<<x fills the observable X (a stack of the samples) with the values x of V1. average_and_error(X) computes an estimate of ⟨X⟩ and
of the error ∆⟨X⟩, while average_and_error(X/Y) computes an estimate of ⟨X⟩/⟨Y ⟩ and of ∆⟨X⟩/⟨Y ⟩.

8.4. Determinant manipulations (C++)

The manipulation of determinants is central to many Monte Carlo approaches to fermionic problems, see e.g. [10–13]. Several cases
can be abstracted from the following mathematical problem. Let us consider a function F(x, y) taking real or complex values (the type of
the arguments x and y is arbitrary) and the square matrixM defined by

Mij = F(xi, yj), (4)

for two sets of parameters {xi} and {yj} of equal length. The problemconsists in quickly updatingM and its inverseM−1 following successive
insertions and removals of one or two lines (labelled by xi) and columns (labelled by yj) using the Sherman–Morrison and Woodbury
formulas [17,18].

This generic algorithm is implemented in the TRIQS det_manip class, using BLAS Level 2 [19,20] internally. The class provides a simple
API, in order to make these manipulations as straightforward and efficient as possible.

For optimal efficiency within a Monte Carlo framework, the modifications to the matrices can be done in two steps: a first step which
only returns the determinant ratio between thematrix before (M) and after themodification (M ′), i.e. ξ = detM ′/ detM (which is generally
used in the acceptance rate of a Metropolis move) and a second step which updates the matrix and its inverse. This computationally more
expensive step is usually done only if the Monte Carlo move is accepted. An example of this class employed is the CT-INT solver discussed
in the Appendix.

8.5. CLEF (C++)

CLEF (Compile-time Lazy Expressions and Functions) is a component of TRIQSwhich allows one to write expressions with placeholders
and functions, and to write quick assignments. For example, the following – quite involved – equation

χ0 σσ ′

νν′ω = β(g0 σ
ν g0 σ ′

ν′ δω − g0 σ
ν g0 σ

ν+ωδνν′δσσ ′) (5)

can be coded as quickly as (variables with underscores denote placeholders)

2 In the sense of C++ concepts.



406 O. Parcollet et al. / Computer Physics Communications 196 (2015) 398–415

chi0(s_, sp_)(nu_, nup_, om_) <<
beta * (g[s_](nu_) * g[sp_](nup_) * kronecker(om_))

- beta * (g[s_](nu_) * g[s_](nu_ + om_)
* kronecker(nu_, nup_) * kronecker(s_, sp_));

This writing is clearly much simpler and less error-prone than a more conventional five-fold nested for-loop. At the same time, these
expressions are inlined and optimised by the compiler, as if the code were written manually. The library also automatically optimises the
memory traversal (the order of for loops) for performance based on the actual memory layout of the container chi0.

The CLEF expressions are very similar to C++ lambdas, except that their variables are found by name (the placeholder) instead of a
positional argument (in calling a lambda). This is much more convenient for complex codes.

The precise definition of the automatic assignment is as follows. Any code of the form (e.g. with three placeholders):

A(i_,j_,x_) << expression;

where expression is an expression involving placeholders3 is rewritten by the compiler as follows:

triqs_auto_assign(
A, [](auto& i,auto& j,auto& x) {

return eval(expression , i_=i, j_=j, x_=x);
}

);

where triqs_auto_assign is a free function defined by the container A, which fills the container with the result of the evaluation
of the lambda, and eval evaluates the expression (eval is a function and is part of CLEF). The precise details of this operation, such as
the memory traversal order, are encoded in this function. The CLEF quick assignment mechanism can therefore easily and efficiently be
extended to any object of the library. The library provides adapters to allow standard mathematical functions such as cos or abs and
std::vector to be used in expressions. User-defined functions and class methods can conveniently be made compatible with the CLEF
quick assignment through macros.

8.6. HDF5 (C++ and Python)

HDF5 is a standard, portable and compact file format, see http://www.hdfgroup.org. Almost all objects in the TRIQS library (including
arrays or Green’s functions) can be stored in and retrieved fromHDF5 files, from C++ and/or Python, with a simple and uniform interface.
For example, in C++:

auto a = array<double, 2> {{1,2,3}, {4,5,6}}; // some data
{
auto f = h5::file("data.h5", ’w’); // open the file
h5_write(f, ’a’, a); // write to the file

} // closes the file

or, the corresponding code in Python:

a = numpy.array([[1,2,3],[4,5,6]])
with HDFArchive("data.h5", ’w’) as f:

f[’a’] = a

In Python, the HDFArchive behaves similarly as a dict. Therefore, one can reload a complex object (e.g. a block Green’s function) in
a single command in a script. An example can be seen in Listing 1.

An HDF5 file can be seen as a tree whose leaves are ‘‘basic’’ objects (multidimensional rectangular arrays, double, integer, strings, . . . ).
More complex objects are usually decomposed by the library into a subtree of smaller objects, which are stored in an HDF5 subgroup.
For example, a block diagonal Green’s function (of type BlockGf ) is stored with subgroups containing Green’s functions it is made of; a
Green’s function is stored as a subgroup containing the array of data, the mesh, and possibly the high frequency singularity. This format,
i.e. the precise conventions for the names and types of the small objects and the storage order of the data in the arrays, is described in the
reference documentation. The HDF5 files can be read without the TRIQS library from C, C++, Fortran, Python codes, the HDF5 command
line tools and with any tool supporting this format. This enables publishing data and facilitates sharing them across different groups and
platforms. The HDF5 format is indeed widely used, e.g. by the ALPS project [7].

Note also that the HDF5 files written from C++ or Python have exactly the same format. Hence one can straightforwardly load some
Green’s functions in Python that have been computed and written using a C++ code, or vice-versa.

8.7. Second-quantised operators (C++ and Python)

The theories of strongly-correlated electron systems often use a language of second-quantised operators to formulate the problems
under consideration. The model Hamiltonians as well as the observables of interest are routinely written as polynomials of fermionic
operators cĎ and c.

The TRIQS library implements a C++ template class many_body_operator, which abstracts the notion of a second-quantised
operator. The purpose of this class is to make expressions for second-quantised operators written in the C++ or Python code as close

3 For a precise list of what is allowed in expressions, the reader is referred to the reference documentation.
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Fig. 3. Using C++ directly within the IPython notebook.

as possible to their analytical counterparts. In order to pursue this goal, the class implements the standard operator algebra. The library
stores the expression in normal order, so it performs automatically basic simplications, for example when an expression vanishes. Any
operator can be constructed as a polynomial of the elementary operators carrying an arbitrary number of integer/string indices (defined
at compile time). The coefficients of the polynomials may be real, complex or of a user-defined numeric type in advanced use scenarios.

There is also a Python version of the same class (called Operator), specialised for the case with real coefficients and the fermionic
operators with two indices (this particular choice is made for compatibility with Green’s function component). Anyone writing a
TRIQS-based many-body solver may benefit from this class. For example, the user of the solver could define a model Hamiltonian in a
Python script and subsequently pass it to the solver:

from pytriqs.operators.operators import Operator , n, c_dag, c

# Spin operators
Sp = c_dag("up",0)*c("dn",0) # S_+
Sm = c_dag("dn",0)*c("up",0) # S_-
Sz = 0.5*(n("up",0) - n("dn",0)) # S_z
S2 = Sz*Sz + (Sp*Sm + Sm*Sp)/2 # S^2

# The Hamiltonian of a half-filled Hubbard atom: four equivalent forms
U = 1.0
H1 = -U/2*(n("up",0) + n("dn",0)) + U*n("up",0)*n("dn",0)
H2 = U*(n("up",0) - 0.5)*(n("dn",0) - 0.5) - U/4
H3 = -2.0*U*Sz*Sz
H4 = -2.0/3.0*U*S2
print H1, ’\n’, H2, ’\n’, H3, ’\n’, H4

# All four forms are indeed equivalent
print (H1-H2).is_zero() and (H2-H3).is_zero() and (H3-H4).is_zero()

8.8. C++/Python wrapping tool

The tool that glues together the C++ components to Python is a crucial piece of the TRIQS project. Indeed the C++/Python architecture
of the project is very demanding in this aspect: we need to expose diverse components from C++ to Python. These range from simple
functions to complex objects with methods, overloaded arithmetic operators, the interface to HDF5, and so on. The tool must be very
flexible, while being as simple as possible to use in the most common cases.

The TRIQS library proposes such a tool in version 1.2. From a simple Python-written description of the classes and functions to expose
to Python, it generates the necessary C wrapping code to build the Python module. Utilities are also included to actually compile and
setup the modules with cmake.

In most cases, the process can be fully automatised, using a second tool based on the Clang library, which parses the C++ code using
libClang and retrieves the description of the classes and functions along with their documentation. As an example, the automatically
produced description files for the CT-INT algorithm is provided in the Appendix.

In more complex cases, some information can be added manually to the class description, for example the fact that the object forms
an algebra over the doubles. In such a case, by adding a single line to the description file, the tool automatically generates all the necessary
operators for the algebra structure in Python by calling their C++ counterparts.

As a consequence, this tool also allows the TRIQS user to write C++ code directly within the IPython notebook and use it immediately,
using a so-called ‘‘magic cell command’’, in IPython terminology. This is illustrated in Fig. 3. In this case, the command %%triqs extracts
the prototype of the C++ hello() function, writes, compiles and loads the Python module to be used in the next cell. TRIQS objects,
along with STL containers (e.g. vector, tuple), can be used as function arguments or return values.

Using this feature one can tinker with C++ codes directly inside a Python environment, without having to set up a C++ project. It is
suitable for debugging, quick testing, or executing short C++ code. For longer codes, it is better to set up a Python/C++ project along the
lines shown for the CT-INT in the Appendix. Note that this feature is experimental in release 1.2 and currently limited to a single C++
function per cell (even though generalisation is quite straightforward).

9. Getting started

Detailed information on installation can be found on the TRIQS website and current issues and updates are available on GitHub.
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9.1. Obtaining TRIQS

The TRIQS source code is available publicly and can be obtained by cloning the repository on the GitHub website https://github.com/
TRIQS/triqs. As the TRIQS project is continuously evolving, we recommend that users always obtain TRIQS from GitHub. Fixes to possible
issues are also applied to the GitHub source.

9.2. Installation

Installing TRIQS is straightforward.We use the cmake tool to configure, build and test the library. Assuming that all dependencies have
been installed (refer to the online documentation), the library is simply installed by issuing the following commands at the shell prompt:
$ git clone https://github.com/TRIQS/triqs.git src
$ mkdir build_triqs && cd build_triqs
$ cmake ../src
$ make
$ make test
$ make install

By default, the installation directory INSTALL_DIR will be located inside the build directory. Further installation instructions and help
on installing the dependencies can be found in the online documentation.

9.3. Usage

There are different ways of using TRIQS. In the following, we assume that the location of the INSTALL_DIR/bin folder is in the
search path. We recommend starting with one of the interactive IPython notebook examples provided with this paper (see below). The
interactive IPython notebook is started using the command
$ ipytriqs_notebook

which will open the browser and allow one to open an existing or a new notebook. Providing a notebook name as an argument will open
the notebook directly.

The IPython example in Fig. 2 uses the CT-INT solver of Appendix, which is shipped as a separate application. Installing external
applications is straightforward. The CT-INT application, for example, is installed as follows:
$ git clone https://github.com/TRIQS/ctint_tutorial.git src_ctint
$ mkdir build_ctint && cd build_ctint
$ cmake -DTRIQS_PATH=INSTALL_DIR_ABSOLUTE_PATH ../src_ctint
$ make
$ make test
$ make install

where INSTALL_DIR_ABSOLUTE_PATH is the (absolute) path to the TRIQS installation directory. The application will be installed
into the applications subdirectory in this TRIQS installation directory. Assuming that INSTALL_DIR_ABSOLUTE_PATH/bin is in
the UNIX search path, one can then execute the example notebook in Fig. 2. To this end, navigate to the examples directory of the
ctint_tutorial application sources and issue the following command:
$ ipytriqs_notebook dmft_bethe.ipynb

This will load the notebook inside a browser. Individual cells can be executed by pressing [Shift+ENTER] (refer to the IPython notebook
documentation). The same directory contains a Python script to execute the same DMFT loop from the command line, which is another
mode to use TRIQS that is better suited for long computations on a parallel machine. It can be executed by typing
$ pytriqs dmft_bethe.py

or in parallel by running, e.g.,
$ mpirun -np 4 pytriqs dmft_bethe.py

These commands produce a file dmft_bethe.output.h5. To plot Green’s function from the final iteration, we can launch ipytriqs
and type:
$ ipytriqs
...
In [1]: from pytriqs.archive import *

In [2]: from pytriqs.gf.local import *

In [3]: from pytriqs.plot.mpl_interface import oplot, plt

In [4]: A = HDFArchive("dmft_bethe.output.h5","r")

In [5]: oplot(A["G20"].imag, "-o", name="Im G20")

In [6]: plt.show()
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As a starting point for developing an external application, we provide a minimal skeleton application called hello_world. It can be
installed in the same way as the CT-INT solver. The C++ examples of this paper, various IPython notebooks and the hello_world are
provided in a dedicated GitHub repository https://github.com/TRIQS/tutorials.git.

10. Contributing

TRIQS is an open source project and we encourage feedback and contributions from the user community to the library and the publi-
cation of applications based on it. Issues should be reported exclusively via the GitHub web site at https://github.com/TRIQS/triqs/issues.
For contributions, we recommend to use the pull request system on the GitHub web site. Before any major contribution, we recommend
to coordinate with the main TRIQS developers.

11. Summary

Wehave presented the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. This open-source computational physics
library provides a framework for the quick development of applications in the field of many-body quantum physics. Several applications
have been built on this library already. They are available at https://github.com/TRIQS and will be described in other publications.
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Appendix. A sample application: interaction expansion continuous-time quantumMonte Carlo algorithm

In this appendix, we present the implementation of a simple interaction expansion continuous-time quantum Monte Carlo algorithm
(CT-INT). We have used this solver in the DMFT IPython example in Fig. 2. We first briefly recall the formalism of the CT-INT algorithm
before discussing the code.

A.1. Formalism

We consider the following single-orbital impurity action

S = −


σ

 β

0

 β

0

dτdτ ′d̄σ (τ )G̃−1
0σ (τ − τ ′)dσ (τ ′) +

 β

0

dτHint(τ ), (A.1)

whose interaction term is a slightly modified Hubbard term
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with

αsσ =
1

2
+ (2δsσ − 1)δ. (A.3)

Here δ is a free small parameter which reduces the sign problem and δsσ is a Kronecker symbol. This rewriting of the interaction term

results in a shift of the chemical potential (absorbed in the bare Green’s function G̃0): µ̃ = µ − U
2
. The α’s only appear in the interaction

term.
The CT-INT algorithm consists in expanding the partition function Z =



D[d̄, d]e−S in powers of Hint . One obtains:

Z = Z0

∞


k=0

(−U)k

k!

 β

0

dτ1 . . . dτk
1

2k



s1...sk=↑,↓



Tτ (n↑(τ1) − αs1↑) · · · (n↑(τk) − αsk↑)(n↓(τ1) − αs1↓) · · · (n↓(τk) − αsk↓)


0
(A.4)

where Tτ is the time ordering operator. In the original CT-INT algorithmproposed in Ref. [10],α↑↑ = 1−α↑↓ = α andα↓↑ = α↓↓ = 0. This
choice can be shown to eliminate the sign problem for the half-filled single band Anderson model. Here we sum over the indices to make

the formulation slightly more symmetric. It has the advantage that the non-interacting Green’s function G̃ does not explicitly depend on
α’s. Note that in the case of all αsiσ being the same, the sum over si produces a factor 2

k, which cancels the 2k in the denominator. The non-
interacting Green’s function has no off-diagonal up/down terms, so that the average factorises into product of two correlation functions
for each spin. Let us furthermore introduce time ordering by replacing the integrals over the complete time intervals into a product of
time-ordered integrals,

 β

0

dτ1 · · · dτk



k


i=1



σ

(nσ (τi) − αsiσ )



0

= k!

 β

0

dτ1

 τ1

0

dτ2 · · ·

 τk−1

0

dτk

×


(n↑(τ1) − αs1↑) · · · (n↑(τk) − αsk↑)


0



(n↓(τ1) − αs1↓) · · · (n↓(τk) − αsk↓)


0
. (A.5)
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Using Wick’s theorem and the usual definition for Green’s function

Gσ
0 (τ ) = −


Tτdσ (τ )d̄σ (0)


0 , (A.6)

the averages can be represented by determinants. We hence arrive at

Z = Z0
∞
k=0


>

dτ1 . . . dτk

s1...sk

(−U)k

2k
detD↑

k detD↓

k . (A.7)

The determinants explicitly read

Dσ
k =


Ḡs1σ
0 (0−) Ḡs1σ

0 (τ1 − τ2) · · · Ḡs1σ
0 (τ1 − τk)

Ḡs2σ
0 (τ2 − τ1) Ḡs2σ

0 (0−) · · · Ḡs2σ
0 (τ2 − τk)

· · · · · · · · · · · ·

Ḡskσ
0 (τk − τ1) Ḡskσ

0 (τk − τ2) · · · Ḡskσ
0 (0−)

 , (A.8)

where we have defined Green’s function Ḡsσ
0 as

Ḡs1σ (τ1 − τ2) =


G̃σ
0 (0−) − αs1σ τ1 = τ2

G̃σ
0 (τ1 − τ2) τ1 ≠ τ2.

(A.9)

We can sample the partition function (A.7) by defining a Monte Carlo configuration as C := {{τ1, s1}, . . . , {τk, sk}} and the Monte Carlo
weight of a configuration according to ω(C) = |(−U/2)k detD↑

kD
↓

k |. The Metropolis acceptance rate for an insertion of a vertex is

Ax,y = min

1,

−βU
k + 1

detD↑

k+1D
↓

k+1

detD↑

kD
↓

k


, (A.10)

while for a removal, it is

Ax,y = min

1,

−k
βU

detD↑

k−1D
↓

k−1

detD↑

kD
↓

k


. (A.11)

Green’s function can be calculated as

Gσ (τ ) = −
1
β

δ ln Z
δ∆σ (−τ)

. (A.12)

Carrying out the functional derivative and Fourier transforming yields

Gσ (iωn) = G̃σ
0 (iωn) −

1
β

(G̃σ
0 (iωn))

2
MC
C


ij

[Dσ
k ]

−1
ij eiωn(τi−τj)sign[ω(C)]ω(C). (A.13)

Separating the Monte Carlo weight, we need to accumulate

Mσ (iωn) ≡ −
1
Zβ

MC
C


ij

[Dσ
k ]

−1
ij eiωn(τi−τj) × sign[ω(C)], (A.14)

Z =

MC
C

sign[ω(C)], (A.15)

FromM , we can compute Green’s function as follows [13]:

Gσ (iωn) = G̃σ
0 (iωn) + G̃σ

0 (iωn)Mσ (iωn)G̃σ
0 (iωn). (A.16)

A.2. Implementation

As an example of an application of the library, we discuss here the complete code listing of a fully working, parallelised implementation
of the weak-coupling CTQMC algorithm described above. How this code can be used in an actual computation is illustrated in the DMFT
example of Section 7.1. Through the use of the various components of the library, including gf, mc_tools, det_manip and CLEF, the full
implementation takes about 200 lines; it comes with a Python interface. Note that this simple implementation can easily be extended:
further measurements and moves may be added, or it may be generalised to multi-orbital case or to a retarded interaction.

We divide the code into several listings that we discuss briefly. The purpose is to give an illustration of the possibilities of the TRIQS
library without entering into all the details. We start with themain header file (Listing 6) of the code. It mainly defines and provides access
to Green’s functions that are used in the code, in particular in the main member function solve.
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Listing 6 CT-INT: the header file

1 #include <triqs/gfs.hpp>
2 #include <boost/mpi.hpp>
3
4 // ------------ The main class of the solver -----------------------
5
6 using namespace triqs::gfs;
7 enum spin {up, down};
8
9 class ctint_solver {

10
11 block_gf <imfreq> g0_iw, g0tilde_iw , g_iw, M_iw;
12 block_gf <imtime> g0tilde_tau;
13 double double_occ , percent_done_ , beta;
14 int n_matsubara , n_times_slices;
15
16 public:
17
18 // Accessors of the class
19 block_gf_view <imfreq> G0_iw() { return g0_iw; }
20 block_gf_view <imtime> G0_tau() { return g0tilde_tau; }
21 block_gf_view <imfreq> G_iw() { return g_iw; }
22
23 ctint_solver(double beta_, int n_iw = 1024, int n_tau = 100001);
24
25 // The method that runs the qmc
26 void solve(double U, double delta,
27 int n_cycles, int length_cycle = 50, int n_warmup_cycles = 5000,
28 std::string random_name = "",
29 int max_time = -1);
30
31 };

Listing 7 defines the Monte Carlo configurations through a simple vector of determinants (A.8) (instances of the det_manip class).
They contain all the necessary information to completely determine a configuration C := {{τ1, s1}, . . . , {τk, sk}}. The determinants are
constructed from a function object g0bar_tau, also declared in this listing, that is used to fill the elements of the matrix (A.8).

Listing 7 CT-INT: define the configurations

1 // --------------- The QMC configuration ----------------
2
3 // Argument type of g0bar
4 struct arg_t {
5 double tau; // The imaginary time
6 int s; // The auxiliary spin
7 };
8
9 // The function that appears in the calculation of the determinant

10 struct g0bar_tau {
11 gf<imtime> const &gt;
12 double beta, delta;
13 int s;
14
15 double operator()(arg_t const &x, arg_t const &y) const {
16 if ((x.tau == y.tau)) { // G_\sigma(0^-) - \alpha(\sigma s)
17 return 1.0 + gt[0](0, 0) - (0.5 + (2 * (s == x.s ? 1 : 0) - 1) * delta);
18 }
19 auto x_y = x.tau - y.tau;
20 bool b = (x_y >= 0);
21 if (!b) x_y += beta;
22 double res = gt[closest_mesh_pt(x_y)](0, 0);
23 return (b ? res : -res); // take into account antiperiodicity
24 }
25 };
26
27 // The Monte Carlo configuration
28 struct configuration {
29 // M-matrices for up and down
30 std::vector<triqs::det_manip::det_manip <g0bar_tau >> Mmatrices;
31
32 int perturbation_order() const { return Mmatrices[up].size(); }
33
34 configuration(block_gf<imtime> &g0tilde_tau , double beta, double delta) {



412 O. Parcollet et al. / Computer Physics Communications 196 (2015) 398–415

35 // Initialize the M-matrices. 100 is the initial matrix size
36 for (auto spin : {up, down})
37 Mmatrices.emplace_back(g0bar_tau{g0tilde_tau[spin], beta, delta, spin}, 100);
38 }
39 };

Now that the configuration is declared, the next step is to define the Monte Carlo moves that are going to act on this configuration. In
Listing 8, two moves are implemented: the insertion of an interaction vertex at a random imaginary time and the removal of a randomly
chosen vertex. They are described by classes that must model the concept of a Monte Carlo move. In other words theymust have the three
members attempt, accept, reject. The attemptmethod tries amodification of the configuration and returns aMetropolis acceptance
ratio (e.g. for the insertion this ratio is given by (A.10)). The Monte Carlo class will use this ratio to decide whether to accept or reject the
proposed configuration and then call accept or reject accordingly. Note that for efficiency reasons the update of the determinants is
done in two steps: in the attemptmethod only the ratio of the new to the old determinant is computed (via try_insert). The actual
update of the full inverse matrix is performed only if the move is accepted (see the complete_operation call in accept).

Listing 8 CT-INT: define the moves

1 // ------------ QMC move : inserting a vertex ------------------
2
3 struct move_insert {
4 configuration *config;
5 triqs::mc_tools::random_generator &rng;
6 double beta, U;
7
8 double attempt() { // Insert an interaction vertex at time tau with aux spin s
9 double tau = rng(beta);

10 int s = rng(2);
11 auto k = config->perturbation_order();
12 auto det_ratio = config->Mmatrices[up].try_insert(k, k, {tau, s}, {tau, s}) *
13 config->Mmatrices[down].try_insert(k, k, {tau, s}, {tau, s});
14 return -beta * U / (k + 1) * det_ratio; // The Metropolis ratio
15 }
16
17 double accept() {
18 for (auto &d : config->Mmatrices) d.complete_operation(); // Finish insertion
19 return 1.0;
20 }
21
22 void reject() {}
23 };
24
25 // ------------ QMC move : deleting a vertex ------------------
26
27 struct move_remove {
28 configuration *config;
29 triqs::mc_tools::random_generator &rng;
30 double beta, U;
31
32 double attempt() {
33 auto k = config->perturbation_order();
34 if (k <= 0) return 0; // Config is empty, trying to remove makes no sense
35 int p = rng(k); // Choose one of the operators for removal
36 auto det_ratio = config->Mmatrices[up].try_remove(p, p) *
37 config->Mmatrices[down].try_remove(p, p);
38 return -k / (beta * U) * det_ratio; // The Metropolis ratio
39 }
40
41 double accept() {
42 for (auto &d : config->Mmatrices) d.complete_operation();
43 return 1.0;
44 }
45
46 void reject() {} // Nothing to do
47 };

The measurement of Green’s function is shown in Listing 9. It is a simple transcription of Eq. (A.15). Again, the measurements are
described by classes that obey the concept of a Monte Carlo measurement: they have a method accumulate which is called during the
Monte Carlo chain and accumulates data, and a collect_results method that is called at the very end of the calculation. Typically
the collect_results MPI-reduces the results from several cores in a parallelised calculation. Note that std14::plus in lines 34
and 35 is the C++14 version of std::plus, which does not require a type, and which is provided by TRIQS for backward compatibility
to C++11.
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Listing 9 CT-INT: define the measures

1 // -------------- QMC measurement ----------------
2
3 struct measure_M {
4
5 configuration const *config; // Pointer to the MC configuration
6 block_gf <imfreq> &Mw; // reference to M-matrix
7 double beta, Z = 0;
8
9 measure_M(configuration const *config_, block_gf<imfreq> &Mw_, double beta_)

10 : config(config_), Mw(Mw_), beta(beta_) {
11 Mw() = 0;
12 }
13
14 void accumulate(double sign) {
15 Z += sign;
16
17 for (auto spin : {up, down}) {
18
19 // A lambda to measure the M-matrix in frequency
20 auto lambda = [this, spin, sign](arg_t const &x, arg_t const &y, double M) {
21 auto coeff = std::exp(-1_j * M_PI * (x.tau - y.tau) / beta);
22 auto fact = coeff * coeff;
23 for (auto const &om : this->Mw[spin].mesh()) {
24 this->Mw[spin][om](0, 0) += sign * M * coeff;
25 coeff *= fact;
26 }
27 };
28
29 foreach(config->Mmatrices[spin], lambda);
30 }
31 }
32
33 void collect_results(boost::mpi::communicator const &c) {
34 boost::mpi::all_reduce(c, Mw, Mw, std14::plus<>());
35 boost::mpi::all_reduce(c, Z, Z, std14::plus<>());
36 Mw = Mw / (-Z * beta);
37 }
38 };

The above components are put together in the main solver body shown in Listing 10. The first part is the constructor that only defines
the dimension of Green’s functions. The second part is the solvemethod that actually runs the Monte Carlo simulation. It first constructs

the Fourier transform G̃0(τ ) of the non-interacting Green’s function given by the user (it is stored ing0_iw). Then aMonte Carlo simulation
is created by adding the relevant moves and measures. This is done via the add_move and add_measure methods. Note that both the
moves and the measurements are constructed with a reference to the Monte Carlo configuration config. The simulation is launched
with start and final results are collected at the end of the simulation with collect_results. In line 50, we finally compute the actual
Green’s function through a compact CLEF expression that implements (A.15).

Listing 10 CT-INT: the main solver body

1 // ------------ The main class of the solver ------------------------
2
3 ctint_solver::ctint_solver(double beta_, int n_iw, int n_tau) : beta(beta_) {
4
5 g0_iw =
6 make_block_gf({"up", "down"}, gf<imfreq >{{beta, Fermion, n_iw}, {1, 1}});
7 g0tilde_tau =
8 make_block_gf({"up", "down"}, gf<imtime >{{beta, Fermion, n_tau}, {1, 1}});
9 g0tilde_iw = g0_iw;

10 g_iw = g0_iw;
11 M_iw = g0_iw;
12 }
13
14 // The method that runs the qmc
15 void ctint_solver::solve(double U, double delta, int n_cycles , int length_cycle ,
16 int n_warmup_cycles , std::string random_name ,
17 int max_time) {
18
19 boost::mpi::communicator world;
20 triqs::clef::placeholder <0> spin_;
21 triqs::clef::placeholder <1> om_;
22
23 for (auto spin : {up, down}) { // Apply shift to g0_iw and Fourier transform
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24 g0tilde_iw[spin](om_) << 1.0 / (1.0 / g0_iw[spin](om_) - U / 2);
25 g0tilde_tau()[spin] = triqs::gfs::inverse_fourier(g0tilde_iw[spin]);
26 }
27
28 // Rank-specific variables
29 int verbosity = (world.rank() == 0 ? 3 : 0);
30 int random_seed = 34788 + 928374 * world.rank();
31
32 // Construct a Monte Carlo loop
33 triqs::mc_tools::mc_generic <double> CTQMC(n_cycles, length_cycle ,
34 n_warmup_cycles , random_name ,
35 random_seed , verbosity);
36
37 // Prepare the configuration
38 auto config = configuration{g0tilde_tau , beta, delta};
39
40 // Register moves and measurements
41 CTQMC.add_move(move_insert{&config, CTQMC.rng(), beta, U}, "insertion");
42 CTQMC.add_move(move_remove{&config, CTQMC.rng(), beta, U}, "removal");
43 CTQMC.add_measure(measure_M{&config, M_iw, beta}, "M measurement");
44
45 // Run and collect results
46 CTQMC.start(1.0, triqs::utility::clock_callback(max_time));
47 CTQMC.collect_results(world);
48
49 // Compute the Green function from Mw
50 g_iw[spin_](om_) << g0tilde_iw[spin_](om_) + g0tilde_iw[spin_](om_) *
51 M_iw[spin_](om_) *
52 g0tilde_iw[spin_](om_);
53 }

The listings above give a complete implementation of the CT-INT algorithm in C++: the ctint_solver class is ready to be used from
within other C++ programs. It is however convenient to control calculations on the Python level. As discussed above, TRIQS provides a
tool to easily expose C++ to Python. Starting from a descriptor written in Python (shown in Listing 11), it automatically generates a C
wrapping code that constructs the Pythonmodules for the ctint_solver. The descriptor basically lists the C++ elements that need to
be exposed to Python. In most cases, this descriptor can be generated automatically by a small analysing tool provided with TRIQS. Here
the script 11 has been generated automatically using this tool.

Listing 11 CT-INT: Python wrapper descriptor

1 # Generated automatically using the command :
2 # c++2py.py ../c++/ctint.hpp -p -m pytriqs.applications.impurity_solvers.

ctint_tutorial -o ctint_tutorial
3 from wrap_generator import *
4
5 # The module
6 module = module_(full_name = "pytriqs.applications.impurity_solvers.

ctint_tutorial", doc = "")
7
8 # All the triqs C++/Python modules
9 module.use_module(’gf’)

10
11 # Add here all includes beyond what is automatically included by the triqs

modules
12 module.add_include("../c++/ctint.hpp")
13
14 # Add here anything to add in the C++ code at the start, e.g. namespace using
15 module.add_preamble("""
16 using namespace triqs::gfs;
17 """)
18
19 # The class ctint_solver
20 c = class_(
21 py_type = "CtintSolver", # name of the python class
22 c_type = "ctint_solver", # name of the C++ class
23 )
24
25 c.add_constructor("""(double beta_, int n_iw = 1024, int n_tau = 100001)""",
26 doc = """ """)
27
28 c.add_method("""void solve (double U, double delta, int n_cycles, int

length_cycle = 50, int n_warmup_cycles = 5000, std::string random_name = "",
int max_time = -1)""",

29 doc = """ """)
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30
31 c.add_property(name = "G0_iw",
32 getter = cfunction("block_gf_view <imfreq> G0_iw ()"),
33 doc = """ """)
34
35 c.add_property(name = "G0_tau",
36 getter = cfunction("block_gf_view <imtime> G0_tau ()"),
37 doc = """ """)
38
39 c.add_property(name = "G_iw",
40 getter = cfunction("block_gf_view <imfreq> G_iw ()"),
41 doc = """ """)
42
43 module.add_class(c)
44
45 module.generate_code()

After the code has been compiled and installed a new Python module is available in pytriqs.applications.impurity
_solvers.ctint_tutorial. The solver can then be used as illustrated in Fig. 2. As this example shows, C++ members like g0_iw
can directly be initialised from a Python script and the solve method is also accessible. Controlling the solver, or any other C++ code
directly from Python makes it very easy to change parameters, plot results, build flexible control structures around it, etc., without the
need to recompile the codes.
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Understanding the Fermi surface and low-energy excitations of iron or cobalt pnictides is crucial for

assessing electronic instabilities such as magnetic or superconducting states. Here, we propose and

implement a new approach to compute the low-energy properties of correlated electron materials, taking

into account both screened exchange beyond the local density approximation and local dynamical

correlations. The scheme allows us to resolve the puzzle of BaCo2As2, for which standard electronic

structure techniques predict a ferromagnetic instability not observed in nature.
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The discovery of unconventional superconductivity in

iron pnictides in 2008 has aroused strong interest in the

Fermi surfaces and low-energy excitations of transition

metal pnictides. Angle-resolved photoemission spectros-

copy (ARPES) has been used to systematically map out

quasiparticle dispersions, and to identify electron and hole

pockets potentially relevant for low-energy instabilities

[1–7]. Density functional theory (DFT) calculations have

complemented the picture, yielding information about

orbital characters [8], or the dependence of the topology

of the Fermi surface on structural parameters or element

substitution [9,10]. DFT within the local density approxi-

mation (LDA) or generalized gradient schemes has also

served as a starting point for refinedmany-body calculations

(see, e.g., Refs. [11–18]). Its combination with dynamical

mean field theory (LDAþ DMFT) [19–25] is nowadays the

state-of-the-art ab initiomany-body approach to low-energy

properties of transition metal pnictides. Despite tremendous

successes, however, limitations have also been pointed out,

e.g., in the description of the Fermi surfaces. Prominent ex-

amples include BaðFe;CoÞ
2
As2 [26,27] or LiFeAs [14,26].

Interestingly, many-body perturbation theory approximat-

ing the self-energy by its first order term in the screened

Coulomb interaction W (so-called “GW approximation”)

results in a substantially improved description: calculations

using the quasiparticle self-consistent (QS)GWmethod [28]

havepinpointed nonlocal self-energy corrections to theLDA

Fermi surfaces not captured in LDAþ DMFT as pivotal

[26]. Yet, as a perturbative method, the GW approximation

cannot describematerials away from theweak coupling limit

[29], and the description of incoherent regimes [13,17]

including coherence-incoherence crossovers [30], local

moment behavior [15], or the subtle effects of doping or

temperature changes [17] are still reserved for DMFT.

In this Letter, we propose and implement a new approach

to the spectral properties of correlated electron materials

taking into account screened exchange beyond the LDA

and correlations as described by DMFT with frequency-

dependent local Hubbard interactions. The approach can

be understood as a simplified and extremely efficient

version of the combined GW þ DMFT method [31], as

a nonperturbative dynamical generalization of the popular

“Coulomb-hole-screened-exchange” (“COHSEX”) scheme

[32], or as a combination of generalized Kohn-Sham

schemes [33,34] with DMFT. We demonstrate the validity

of our combined “screened exchange+dynamical DMFT”

(SEx+DDMFT) scheme by calculating the spectral func-

tion of BaCo2As2 for which detailed ARPES results are

available [35,36]. Finally, our work sheds new light on the

physical justifications of electronic structure techniques

that combine DFT with DMFT, by revealing a subtle error

cancellation between nonlocal exchange and dynamical

screening effects, both neglected in standard methods.

Our target compound BaCo2As2 is isostructural to the

prototypical compound of the so-called 122 iron-based

superconductors, BaFe2As2. Replacing Fe by Co, however,
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increases the filling to a nominal 3d7 configuration, with
drastic consequences: whereas compounds with filling
around the d6 configuration exhibit characteristic power
law deviations from Fermi liquid behavior above often
extremely low coherence temperatures [17], in BaCo2As2
ARPES identifies clearly defined long-lived quasiparticle
bands with relatively weak mass renormalizations [35].
Nevertheless, the electronic structure of this compound raises
puzzling questions concerning its paramagnetic behavior:
DFTcalculations predict a hugedensity of states (DOS) at the
Fermi level, which, given the large Stoner parameter of Co,
would be expected to trigger a ferromagnetic instability [37].
The DOS of the isoelectronic compound SrCo2As2 presents
the same features, but the maximum lies just below the
Fermi level [38]. Still, in SrCo2As2—also a paramagnet—
important antiferromagnetic fluctuations have been mea-
sured, possibly competing with ferromagnetic order
[38,39]. CaCo2As2, Ca0.9Sr0.1Co2As2, and CaCo1.86As2
exhibit magnetic phases with in-plane ferromagnetism at
low temperatures [40–42]. ARPES data of BaCo2As2 show
that there is indeed a flat band (dominantly of dx2−y2
character) close to the Fermi surface, albeit less filled
than predicted by LDA calculations [35,36], suggesting
BaCo2As2 to be on the verge of a transition [43]. This
compound is thus an ideal benchmark system, on which to
test new theoretical approaches.
We start our analysis by comparing results for the

spectral function calculated within standard LDAþ
DMFT and LDAþ DMFT with frequency-dependent
local Hubbard interactions UðωÞ to the ARPES spectral
function of Ref. [35] (Fig. 1). The latter scheme will be
abbreviated in the following as LDAþ DDMFT to stress
the doubly dynamical nature of the theory, which deter-
mines a frequency-dependent self-energy in the DMFT
spirit, extended, however, to frequency-dependent inter-
actions [17,44,45]. The effective local interactions used
in the DMFT calculations were obtained within the
constrained random phase approximation in the imple-
mentation of Ref. [53]. For LDAþ DDMFT, the full
frequency-dependence of the monopole term F0ðωÞ is
retained in the calculation. The effective local problem
with dynamical U is solved self-consistently by means of
a continuous-time Monte Carlo algorithm [54,55] that we
have implemented within the TRIQS toolbox [56].
Electronic bands in the energy window between the

Fermi level and −2 eV binding energy are states of
predominant Co-3d character, and undergo—even in this
quite moderately correlated compound—a non-negligible
band renormalization, as compared to the LDA band
structure [Fig. 1(a)]. Standard LDAþ DMFT [Fig. 1(b)]
captures this effect, leading to a reduced bandwidth in
good agreement with the ARPES results. When dynamical
screening effects are taken into account [Fig. 1(c)], addi-
tional renormalizations occur, corresponding to the elec-
tronic polaron effect discussed in Ref. [57], and the overall

bandwidth reduction appears to be overestimated.
However, one should not conclude from this analysis that
dynamical screening effects are absent. Rather, nonlocal
exchange—routinely neglected in DFT-based techniques—
reshapes and widens the quasiparticle band structure, and
the apparent success of LDAþ DMFT in obtaining the
correct quasiparticle bandwidth relies on an error cancel-
lation when both dynamical screening and nonlocal
exchange are neglected in the calculation of the spectral
function. We will now substantiate this claim by explicitly
including screened exchange, and performing a DMFT
calculation with dynamical Hubbard interactions based on
the following one-particle Hamiltonian: H0 ¼ HHartree þ
HSEx, where the first term denotes the Hamiltonian of
the system at the Hartree mean-field level, evaluated at the
self-consistent DFT-LDA density. HSEx is a screened
Fock exchange term, calculated from the Yukawa potential
e2expð−kTFjr − r0jÞ=jr − r0j with screening wavevector
kTF. This scheme can be understood as the next generation
after the recent LDAþ DDMFT scheme, by replacing the
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FIG. 1 (color online). BaCo2As2 photoemission spectra, replot-
ted from Ref. [35]. Superimposed are (a) the Kohn-Sham band
structure of the DFT LDA, (b) the spectral function of standard
LDAþ DMFT [only those parts that exceed 2 states=eV are
shown], (c) the spectral function within LDAþ DDMFT [same
representation as in (b)].
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local Kohn-Sham exchange-correlation potential of DFT by
a nonlocal screened Fock exchange term [58].
We first analyze the band structure corresponding to H0

alone, in comparison to the LDA band structure and the
one obtained from the QSGW method (in the implementa-
tion of Ref. [61]), see Fig. 2. As expected, the inclusion of
nonlocal exchange in H0 increases the delocalization of
electrons, and thus widens the bands as compared to the
LDA electronic structure. In the QSGW method, this effect
is overcompensated by correlation-induced band narrow-
ing, and the bandwidth of 3d-like bands is about 15%
smaller than in the LDA. These comparisons highlight the
fact that—taking the screened exchange band structure as a
reference—the effective exchange-correlation potential of
DFT not only incorporates exchange (in a local fashion),
but also mimics band renormalizations due to correlations
(yet without keeping track of the corresponding spectral
weight transfers).
We finally turn to the results of our new scheme:

Fig. 3 displays the spectral function within SExþ
DDMFT [panel (a)], superimposed on the ARPES data
[panel (b)]. The overall spectrum from SExþ DDMFT is
very close to the experiment: the bandwidth, Fermi surface,
and band renormalizations close to the Fermi level are
correctly predicted.
The orbital-resolved electron count obtained with SExþ

DDMFT is displayed in Table I and compared to the one
within the other schemes. The orbital polarization from the
LDA is reduced by correlations, and nearly suppressed
within LDAþ DDMFT. Conversely, screened exchange
increases the orbital polarization, and the final SExþ
DDMFT result still displays stronger orbital polarization
than the LDA. This trend can be related to the weakly
dispersive dx2−y2 states discussed above: as in the SEx band
dispersion of Fig. 2, the effect of screened exchange is to
push the flat dx2−y2-like band away from the Fermi level, to
the point of suppressing the electron pocket at the Γ point.
This does not correspond to the experimental spectrum, and
indeed it is corrected by including correlations. Figure 4
displays the low-energy spectra along the ΓM direction

comparing SExþ DDMFT and LDAþ DMFT overlaid
onto the second derivative of the ARPES data [62], together
with the QSGW band dispersion. The electron pocket at Γ
is recovered in SExþ DDMFT, and the fraction of dx2−y2
electrons increases. Within the LDA, the flat band is nearly
filled along the ΓM direction, and even more so when we
take into account correlations. According to ARPES, this
flat band should be occupied only in a small electron pocket
at Γ, containing about 0.18 e−. This result is consistent with
the absence of ferromagnetism. Indeed, this flat band lying
on the Fermi surface would imply a high density of states
at the Fermi level that could trigger a Stoner instability.
We extract from the SExþ DDMFT calculations a DOS at
the Fermi energy of 0.97 states=eV=Co=spin. Assuming a
Stoner parameter of ∼0.9 eV, this leaves us slightly below
the onset of Stoner ferromagnetism [63].
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FIG. 2 (color online). Comparison of band structures of
BaCo2As2 in the kz ¼ 0 plane calculated within the QS GW
(red), LDA (green), and screened-exchange (black) schemes.
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FIG. 3 (color online). BaCo2As2 within screened exchangeþ
DDMFT: (a) spectral function and (b) bands extracted from the
maxima of panel (a) and superimposed on ARPES data as in
Fig. 1.

TABLE I. Number of electrons in cobalt-d Wannier functions
within the LDA, SEx, SEx+DDMFT, LDAþ DMFT, and
LDAþ DDMFT schemes.

neLDA neSEx neSExþDDMFT neLDAþDMFT neLDAþDDMFT

dz2 1.64 1.66 1.63 1.61 1.62
dx2−y2 1.49 1.27 1.37 1.53 1.59
dxy 1.74 1.78 1.72 1.67 1.63
dxz=dyz 1.69 1.73 1.68 1.64 1.62
Total 8.24 8.16 8.08 8.09 8.09
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The QSGW scheme also provides an overall good
description, including the position of the dx2−y2 band, its
filling, and its related Fermi wave vector. Taking nonlocal
exchange into account is thus necessary to capture the
physics of BaCo2As2, and our SExþ DDMFT scheme
performs well for these subtle effects.
Finally, we put our new computational scheme in

perspective. As far as coarse features such as the bandwidth
are concerned, standard LDAþ DMFT and the new SExþ
DDMFT give comparable results, providing an a posteriori
explanation for the success of LDAþ DMFT calculations
with static interactions. For total energy calculations
within DFT, it is well known that there are subtle error
cancellations between the exchange and correlation con-
tributions in approximate density functionals. Here, we
evidence a similar behavior for spectral properties. The
effect of dynamical screening as incorporated in the high-
energy tail of the dynamical Hubbard interaction UðωÞ can
roughly be understood as a band narrowing by a factor
ZB ¼ exp ½− R∞

0 dωℑUðωÞ=ðπω2Þ� [64]. For BaCo2As2,
we find dynamical screening to be non-negligible, with
ZB ∼ 0.6. LDAþ DDMFT double counts this narrowing
effect, as the bandwidth has already been decreased by
correlations hidden in the exchange-correlation functional,
with respect to the Hartree-Fock or SEx band structure.
Thus, starting a many-body calculation from the LDA
raises not only the usual well-known double counting
questions related to the energetic position of correlated

versus itinerant states, but even more serious ones related
to the double counting of screening processes. SExþ
DDMFT avoids these issues, providing a more solid
foundation for the investigation of dynamical screening
effects. On a more pragmatic level, the similarity of the
LDAþ DMFT and SExþ DDMFT spectral functions
suggests that error cancellations between dynamical
screening and nonlocal exchange, both absent in LDAþ
DMFT, make this scheme suitable at least for questions
concerning the overall bandwidth reduction of correlated
electron systems. Finer details related to the very low
energy behavior or Fermi surface topologies, on the other
hand, might require explicit exchange corrections as
introduced in the present work.
In summary, we have shown that screened exchange

combined with dynamical correlations provides an excel-
lent description of the low-energy physics in BaCo2As2.
In contrast to perturbative schemes, it can be expected that
our nonperturbative method can be extended to regimes
with arbitrarily strong correlations, making it a promising
tool for probing the finite temperature normal state of iron
based superconductors. For BaCo2As2, we show that the
flat dx2−y2 band in the immediate vicinity of the Fermi level
is extremely sensitive to an accurate treatment of screened
exchange, and that this effect is key to the paramagnetic
nature of the compound. Pump-probe photoemission would
be useful to experimentally locate the flat band and guide
the search for new ways to tune its exact energetic position,
thus directly playing on possible Fermi surface instabilities.
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Appendix R. Computational developments 375

Abstract for the general public

This thesis deals with the description of the electronic properties of solids.

In materials where electronic Coulomb correlations are strong, exact methods are limited to small system
sizes. For large systems, dynamical mean field theory (DMFT) reduces the description of the extended solid
to a local problem. Applicable to models with local interactions, it captures the correlation-induced phase
transition from a metal to a Mott insulator, despite the neglect of nonlocal fluctuations.

In this work, the effects of nonlocal fluctuations coming from local or nonlocal interactions are investigated.

In systems of atoms adsorbed on semiconducting surfaces, nonlocal interactions are shown to be crucial to
explain experimental observations.

A new method is then introduced that captures nonlocal effects of local interactions on electronic propagation
at a reduced computational cost compared to previous DMFT extensions. The results are discussed in relation
to photoemission in cuprate materials.

Résumé “grand public”

Cette thèse porte sur la description des propriétés électroniques des solides.

Dans les matériaux où les corrélations de Coulomb sont fortes, les méthodes exactes sont limitées aux petits
systèmes. Une approche dénommée théorie du champ moyen dynamique (DMFT) ramène la description du
solide étendu à un problème local. Applicable à des modèles avec des interactions locales, elle rend compte
de la transition de phase métal-isolant de Mott, quoiqu’elle néglige les fluctuations nonlocales.

Dans ce travail, j’étudie les effets des fluctuations non locales provenant d’interactions locales et non locales.

Dans les systèmes d’atomes adsorbés sur des surfaces semiconductrices, je montre que les interactions non
locales sont nécessaires pour expliquer les résultats expérimentaux.

Ensuite, je présente une nouvelle méthode; elle tient compte des effets non locaux des interactions locales
sur la propagation des électrons et a un coût de calcul numérique réduit par rapport aux précédentes ex-
tensions de DMFT. Les résultats sont discutés en lien avec la photoémission dans les matériaux cuprates.


