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Black Holes and Bubbled Solutions in String Theory

Keywords: black holes, String Theory, smooth solutions, supergravity, microstates

Abstract

There exist many smooth solutions in String Theory characterized by a nontrivial topology

threaded by fluxes and no localized sources. In this thesis we analyze some of the most

important bubbled solutions along with the different purposes they are studied for.

Some smooth, eleven-dimensional solutions can be interpreted as BPS black hole mi-

crostates in the context of the Fuzzball proposal. One can promote these to be mi-

crostates for near-BPS black holes by placing probe supertubes at a metastable minimum

inside these solutions. We show that these minima can lower their energy when the bub-

bles move in certain directions in the moduli space, which implies that these near-BPS

microstates are in fact unstable. The decay of these solutions corresponds to Hawking

radiation and we compare the emission rate and frequency to those of the corresponding

black hole.

By modifying the asymptotic behavior of these microstates one could be able to construct

microstates for five-dimensional BPS black rings with no electric charge. To do so one

needs to find a new supergravity solution in five-dimensions whose Killing vector switches

from timelike to null in some open regions. We construct explicit examples where the

norm of the supersymmetric Killing vector is a real not-everywhere analytic function such

that all its derivatives vanish at a point where the Killing vector becomes null.

In the Lin-Lunin-Maldacena solution we find a supersymmetry-breaking mechanism simi-

lar to that used for near-BPS microstates. We analyze the potential energy of M2 probes

polarized into M5 brane shells. When the charges of the probe are parallel to those of

the solution we find stable configurations, while when the charges are opposite we find

metastable states that break supersymmetry and analyze the decay process to supersym-

metric configurations.

We analyze also the Klebanov-Strassler solution and construct its T-dual in Type IIA. This

is done by just reconstructing the solution expanded on a small region of the deformed

conifold, after a thorough analysis to choose the most suitable isometry. Our construction

is the first step in a program to test the stability of antibranes in Type IIA backgrounds.
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Trous Noirs et Solutions Régulières en Théorie des Cordes

Mots clés: trous noirs, Théorie des Cordes, solutions régulières, supergravité, microétats

Résumé

Il existe des nombreuses solutions lisses dans le domaine de la thèorie des cordes, car-

actérisées par une topologie non triviale (bulles) et sans sources localisées. Dans cette thèse

nous analysons quelques-unes parmi les solutions les plus importantes avec les différents

objectifs pour lesquels ils sont étudiées.

Des solutions lisses en onze dimensions peuvent être interprétées comme microétats BPS

de trou noir dans le cadre de la Fuzzball proposal. On peut promouvoir ces microétats

à être quasi-BPS en plaçant de supertubes dans un minimum métastable à l’intérieur de

ces solutions. Nous montrons que ces minima peuvent abaisser leur énergie lorsque les

bulles se déplacent dans certaines directions dans l’espace des modules, ce qui implique

que ces microétats quasi-BPS sont en fait instables. L’énergie dissipée par ces solutions

correspond au rayonnement Hawking et on compare le taux d’émission et la fréquence à

celles du trou noir correspondant.

En modifiant la géométrie asymptotique de ces microétats on pourrait construire des mi-

croétats pour des trous noirs BPS sans charge électrique en cinq dimensions. Il faut donc

trouver une nouvelle solution de supergravité en cinq dimensions dont la norme du vecteur

de Killing passe de positive à nulle dans certaines régions. Nous construisons des exem-

ples explicites où la norme du vecteur de Killing supersymétrique est une fonction réelle

non-analytique telle que tous ses dérivés sont nulles à un point où le vecteur de Killing

devient nul.

Dans la solution de Lin-Lunin-Maldacena on trouve un mécanisme pour briser la super-

symétrie similaire à celui utilisé pour les microétats quasi-BPS. Nous analysons l’énergie

potentielle des branes M2 polarisées en branes M5. Lorsque les charges des M2 sont par-

allèles à ceux de la solution, nous trouvons des configurations stables. Lorsque les charges

des M2 ne sont pas parallèles, nous trouvons des états métastables qui brisent la super-

symétrie et nous analysons le processus de rayonnement d’énergie.

Nous analysons aussi la solution de Klebanov-Strassler et construisons sa version T-duale

dans la supergravité de type IIA. Pour cela une analyse approfondie est nécessaire pour

choisir l’isométrie la plus appropriée. Notre construction est la première étape d’un pro-

gramme pour tester la stabilité des antibranes dans la supergravité de type IIA.
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Non fronda verde, ma di color fosco;

non rami schietti, ma nodosi e ’nvolti;

non pomi v’eran, ma stecchi con tòsco:

aaa

non han s̀ı aspri sterpi né s̀ı folti

quelle fiere selvagge che ’n odio hanno

tra Cecina e Corneto i luoghi cólti.

Inferno, XIII - vv. 4-9
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INTRODUCTION

String Theory is today the most promising theoretical framework to unify the four fun-

damental forces of the Universe, naturally comprising quantum gravity. String Theory

differs from other theories in Physics in that its building blocks are strings, namely one-

dimensional manifolds, instead of point particles. The implications of having fundamental

extended objects such as strings are enormous: on one side String Theory automatically

needs supersymmetry to be consistent, while on the other side it requires ten dimensions to

be coherently formulated. These two requirements seem hardly verifiable experimentally,

but are of primary importance for the consistence of the theory and while it is somehow

counter-intuitive they can lead to simple and beautiful physics.

Supersymmetry is a continuous symmetry that essentially consists in the exchang-

ing bosonic and fermionic particles while keeping the theory invariant. Supersymmetry

imposes strong constraints on the spectrum of the particles (there clearly has to be a one-

to-one correspondence between fermionic states and bosonic states), on their masses and

charges and on the possible interactions that can be considered in a lagrangian formulation

of a theory. To date there is no experimental observation of supersymmetry, even if the

last run at LHC has reached energies high enough to possibly reveal the existence of su-

persymmetric particles. However, within String Theory there exist numerous mechanisms

and examples of supersymmetry breaking, that are of vital importance for the theory to

make contact with the experimental results we have today. As we will see, supersymmetry

breaking is used in String Theory to possibly explain many of the paradoxes for non-

BPS black holes, or to create solutions that asymptote to de Sitter space and that hence

comprise a positive cosmological constant, making contact with the modern experimental

results.

The fact that String Theory lives in ten dimension is also not an issue. Even though

there are no experimental results that more than four dimensions exist, we expect particle

accelerators to be able to conduct viable experiments on extra dimensions in the next years.
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Introduction

It is important to stress that the energy needed to test the existence of extra dimensions

depends on the chosen model and consequently some models will be tested earlier than

others. Still, extra dimensions can be seen somehow as a mathematical requirement for

the consistency of String Theory. Indeed, a mechanism known as compactification is used

to reduce the ten-dimensional physics of String Theory to four dimensions (while often

five-dimensional or three-dimensional physics are studied). In the simplest example, this

operation is carried on by considering the extra dimensions as circles and by taking their

radii to go to zero. More generally, one can consider the extra dimensions as a compact

manifold that is shrinking to a point. While the physics of the compactification manifold

is not directly accessible to the four remaining dimensions, some traces remain of the

compactification process. Indeed, the moduli of the chosen manifold determine some of

the characteristics of the spectrum of the four-dimensional theory. The richness of the

physics arising from the compactification process explains why String Theory is able to

predict the existence of many different universes, or why it is possible to explain the

existence of black hole entropy.

There exists another mechanism for String Theory to make contact with the four-

dimensional world: the AdS-CFT conjecture. This is a duality between four-dimensional

conformal field theories and String Theory solutions that asymptote to an Anti de Sitter

space. This duality is most intriguing as it connects a ten-dimensional theory with gravity

to a four-dimensional well-known conformal field theory with no gravity. AdS-CFT con-

tributed to make incredible progress on both sides of the duality and to date is still most

used to give physical interpretation to the ten dimensional physics of String Theory. In

the thesis we will often relate our results to the corresponding gauge theory results, but

as AdS-CFT is never used explicitly and is not central for the proofs we will only refer to

the literature without reviewing the gauge/gravity duality in great detail.

There exist different formulations of String Theory, that are all ten-dimensional. This

means that the theory can be formulated in different theoretical frameworks, that are

all physically equivalent as they are related by duality operations. Consequently, each

physical configuration can be mapped from one framework to the other and one often

chooses the best framework given the specific configuration to describe. We will only

focus on Type IIA and Type IIB String Theory. More specifically, we will only consider

the low energy limit of these two theories, which are Type IIA and Type IIB supergravity.

While Supergravity was initially an independent field from String Theory, it soon turned

out that some supergravities are nothing but low energy limits of the latter.

A major breakthrough took place in 1995, where the different formulations of String

Theory were unified in a single eleven-dimensional theory, M-theory. While the full for-

mulation of the latter remains an unreached goal still today, its low-energy limit is the

well-known eleven-dimensional supergravity. In the thesis we will only work in eleven-

dimensional, Type IIA and Type IIB supergravity and we will explain in detail the duality
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transformation to pass from one frame to the other.

One of the most important characteristics of String Theory is that in the supergravity

regime there exist many smooth nontrivial solutions. These solutions have no localized

sources and are characterized by a nontrivial topology whose cycles are threaded by fluxes,

giving rise to the charges and momenta. The fact that these solutions have no singularities

and a rich topology makes them most intriguing and suitable to be used in all the main

areas of String Theory. In this thesis we will explore some of the most famous smooth

solutions in the different contexts of their applications. Our goal is hence two-fold: on

one side we want to analyze and make progress in the specific research line a smooth

solution is presently studied for, while on the other side we want to show the richness and

complexity of the field by proposing four different research lines that apparently are not

related to each other. We will hence analyze the Lin-Lunin-Maldacena (LLM) solution [1],

the eleven-dimensional, three-charge smooth microstates of [2, 3], the Klebanov-Strassler

(KS) solution [4] and a modification to the eleven-dimensional microstates.

The Lin-Lunin-Maldacena solution [1] is a family of smooth solutions originally found

in Type IIB supergravity. We will study more closely its eleven-dimensional formulation as

it represents the gravity dual of the M2 brane theory with a fermion mass turned on. In the

thesis we compute the potential energy of probe M2-M5 branes in the LLM solution. We

find two new results, depending on the charges of the probe. First of all, when the M2-M5

charges are parallel to those of the solution we find stable supersymmetric configurations

for the probe. This means that, despite there being no localized sources in the LLM

solution, it is as if this solution were sourced by branes identical to our probe, namely

M2-M5, i.e. that the fluxes threading the nontrivial LLM geometry carry mixed M2 and

M5 charges. Secondly, when the charges of the M2-M5 probe are opposite to those of

the solution we find metastable configurations for the probes that break supersymmetry.

Indeed, these minima have much more energy with respect to those of the first kind. We

then study in detail the possible decay mechanism that leads to supersymmetric final

configurations. Our findings hence suggest that metastable configurations that break

supersymmetry also exist in the dual gauge theory, namely the mass-deformed M2 brane

theory.

The smooth, eleven-dimensional, three charge microstates found in [2, 3] is the second

family of solutions that will be analyzed. The geometry of these solutions is that of a

long warped throat, that is capped-off at the end and has many different blown-up cycles

at the bottom. In addition, six of the eleven coordinates are merely spectators, meaning

that they do not play any role in the physics. Indeed, compactifying at no cost along

the six coordinates, these solutions become similar to well-known black hole solutions
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in five dimensions, but contrarily to the latter they are smooth and horizonless and are

hence black hole microstates. Microstate geometries are smooth horizonless solutions that

have the same charges and asymptotic behavior of that of a black hole. They are the

most important piece of the Fuzzball proposal, a program that intends to explain black

hole paradoxes interpreting solutions with a horizon as “thermodynamical” descriptions

in terms of ensembles of microstate geometries.

Although many microstates are known for different types of BPS black holes, the world of

near-BPS black holes remains quite unexplored. Recently, it has been found that one can

promote the class of microstates we will examine to near-BPS microstates by placing an

anti-supertube at a metastable location, using a similar mechanism to the one that breaks

supersymmetry in LLM. In the thesis we will construct such near-BPS microstates. We

will also show that they are in fact unstable once one considers all the degrees of freedom

of the system. Hence the introduction of a metastable supertube triggers a motion of the

bubbles at the bottom of the throat that induces radiation emission, so that the microstates

evolve towards extremality. We will claim that this corresponds to Hawking radiation, an

expected feature characterizing near-BPS microstates. We compute its energy rate and

its frequency and compare the results with the exact one known for the corresponding

black hole. Expecting the microstate to be part of a thermodynamical ensemble - the

fuzzball - we claim that the microstate we built is not typical in the ensemble, estimate

the departure from typicality and suggest possible explanations.

In this thesis it will also be shown that the microstates found in [2, 3] can be suitably

modified to possibly construct microstates for five-dimensional black holes with no electric

charge. One necessary step to construct electrically-neutral microstates is to have solutions

of five-dimensional supergravity where the Killing spinor passes from timelike to null.

While this is not a new phenomenon in general, solutions where this happens on open

sets of the spacetime manifold are yet unknown and would be of primary importance to

construct the new microstates. We find explicit examples that satisfy a condition that is

close to the desired one: we manage to have the Killing vector along with all its derivatives

vanish at a point. Our construction is based on the fact that the microstates of [2, 3] are

completely determined once one fixes the poles and residues of some harmonic functions.

One can then have the Killing vector to vanish at a point together with an arbitrary

number of its derivatives by suitably arranging a sufficient number of poles and tuning

the residues. Consequently, to set all the derivatives to zero one has to arrange an infinite

number of poles. We find many examples where the conserved charges become infinite in

the limit, but we also construct valid solutions where the charges remain finite and that

asymptote AdS3 × S2.

The last smooth solution we examine is the one found by Klebanov and Strassler

(KS) [4]. This has a D3 brane charge and dielectric D5 brane charge and the six-

dimensional external space is a deformed conifold. The importance of this solution relies
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on the fact that it is the gravity dual of confining vacua and that it is also a model for a

region of high warping inside a flux compactification. This is why KS is the most suitable

known solution to apply the KKLT uplift mechanism, that allows to find (meta)stable dS

vacua in String Theory, which hence makes contact with the cosmological observations

about the positivity of the cosmological constant. The core step of the KKLT mecha-

nism applied to KS is the insertion of metastable anti-D3 branes. Recently, it has been

observed that the backreaction of the antibranes might cause singularities in the KS solu-

tions, which might affect the effectiveness of the KKLT uplift mechanism. In this thesis

we construct the T-dual version of the KS solution, in view of testing the stability of

antibranes in the unexplored regime of parameters of Type IIA supergravity. To do so we

first identify a suitable isometry that would lead to a well-known brane configuration in

Type IIA. In particular, we require an NS5 brane to arise as a consequence of T-duality

and to wrap a specific holomorphic curve that is well-known in the literature. To avoid

clutter we then reconstruct only a small region of the T-dual solution, that corresponds

to the region where the anti-D3 branes are inserted in the original version. We perform

many consistency checks about our construction. Lastly, we construct the T-dual solution

of KS with backreacted D3 branes. This is made possible by reconstructing a small region

only, which avoids prohibitive computations for the backreacted branes.

This thesis is divided into two parts. Part I is a review of fundamental well-known

results in the literature that are necessary to understand Part II, which presents original

analysis about smooth solutions in String Theory.

Part I consists of two chapters. In Chapter 1 we introduce eleven-dimensional, Type

IIB and Type IIA supergravities along with dimensional reductions and T-duality, which

are the duality transformations that allow to switch among these theories. We also present

some standard solutions in eleven-dimensional supergravity and the standard D-brane

solution in ten dimensions. We introduce the probe brane action and perform two explicit

computations of probe potential. In Chapter 2 we explain how smooth bubbled solutions

arise in String Theory via geometric transitions. We then introduce the three main smooth

solutions that will be analyzed: the Lin-Lunin-Maldacena solution, the Klebanov-Strassler

solution and the eleven-dimensional, three charge microstates. Particular emphasis is given

to the computations of physically relevant parameters such as conserved charges and to

the description of the nontrivial cycles that support the fluxes.

Part II consists of four chapters, each of them dedicated to the analysis the four dif-

ferent research directions involving the smooth solutions mentioned above. The structure

of these chapters is similar: they start with a technical introduction to the research direc-

tion in question, then a detailed analysis of original results is presented and finally some
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possible developments are illustrated.

In Chapter 3 we show the existence of metastable vacua that break supersymmetry in

LLM and analyze their properties. Chapter 4 is dedicated to showing the instability of

near-BPS microstates and to analyzing their energy emission rate. Chapter 5 is devoted

to the construction of the T-dual solution to KS, along with the geometrical analysis

necessary to pick the right isometry and the numerous consistency checks that validate

our procedure. In Chapter 6 we describe the construction of solutions to five-dimensional

supergravity where the Killing vector vanishes at a point together with all its derivative.

To date, this is as close as we can get to constructing five-dimensional solutions with

timelike and null killing vector on open sets.

Additional details are presented in the Appendices. In particular, Appendix A presents

some complementary details and calculations about Chapter 3, while Appendix B gives

additional insight into the T-duality of Chapter 5. Finally, in Appendix C we present an

alternative construction to that described in Chapter 6.
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La théorie des cordes est aujourd’hui le cadre théorique le plus complet pour unifier les

quatre forces fondamentales de l’Univers, comprenant naturellement la gravité quantique.

La théorie des cordes se distingue des autres théories en physique parce que des cordes

jouent le rôle des particules élémentaires. Les conséquences d’avoir des cordes comme

objets fondamentaux sont énormes: la théorie des cordes d’un côté exige automatiquement

la supersymétrie pour être cohérent et de l’autre côté il peut être formulée seulement en

dix dimensions. Ces deux conditions ne semblent pas vérifiables expérimentalement, mais

sont essentiels pour la cohérence de la théorie et ils peuvent conduire à des modèles simples

et complexes au même temps.

La supersymétrie est une symétrie continue qui essentiellement échange bosons et

fermions tout en gardant la théorie inchangée. La supersymétrie impose des contraintes

fortes sur le spectre des particules (il doit y avoir une correspondance biunivoque entre

états fermioniques et états bosoniques), sur leurs masses et charges et sur les interactions

possibles qui peuvent être considérés dans le lagrangien de la théorie. à ce jour, il n’y

a pas d’observation expérimentale de la supersymétrie, même si la dernière expérience à

LHC a atteint des énergies suffisamment élevées pour révéler l’existence de particules su-

persymétriques. Cependant, dans la théorie des cordes il existe des nombreux mécanismes

et exemples où la supersymétrie est brisée, qui sont d’une importance vitale afin que la

théorie reproduise les résultats expérimentaux que nous avons aujourd’hui. Le fait que

la supersymétrie peut être brisée est utilisé dans la théorie des cordes pour expliquer

plusieurs paradoxes autour les trous noirs, ou pour créer des solutions dont la géométrie

asymptotique est un espace de type de Sitter, ce qui implique l’existence d’une constante

cosmologique positive en reproduisant tous les résultats expérimentaux modernes.

Le fait que la théorie des cordes est formulée en dix dimension n’est pas un problème.

Même si il n’y a pas des résultats expérimentaux qui confirment que plus de quatre

dimensions existent, dans les prochaines années il y aura des accélérateurs de partic-
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ules caractérisés par une énergie suffisamment haute pour vérifier l’existence de dimen-

sions supplémentaires. Pourtant, les dimensions supplémentaires peuvent être considérés

en quelque sorte comme une exigence mathématique pour la cohérence de la théorie

des cordes. En effet, un mécanisme connu sous le nom de compactification est utilisé

pour réduire la physique en dix dimensions de la théorie des cordes à quatre dimensions

(bien que la physique en cinq dimensions ou en trois dimensions soit souvent étudiée).

Dans l’exemple le plus simple, cette opération est réalisée en considérant les dimensions

supplémentaires comme des cercles et en prenant la limite des leur rayons à zéro. Plus

généralement, on peut considérer les dimensions supplémentaires comme une variété com-

pacte qui se rétrécit à un point. Alors que la physique de la variété de compactification ne

soit pas directement accessible aux quatre dimensions restantes, le processus de compact-

ification laisse certaines traces. En effet, les modules de la variété choisie déterminent les

caractéristiques du spectre de la théorie à quatre dimensions. La richesse de la physique

dérivant du processus de compactification explique pourquoi la théorie des cordes est ca-

pable de prédire l’existence de nombreux univers différents, ou pourquoi il est possible

d’associer une entropie aux trous noirs.

Il existe un autre mécanisme qui connecte la théorie des cordes au monde à quatre

dimensions: la conjecture AdS-CFT. Ceci est une dualité entre les théories conformes à

quatre dimensions et des solutions de la théorie des cordes qui asymptote à un espace

de Anti de Sitter. Cette dualité est la plus intrigante car elle relie une théorie de dix

dimensions avec gravité à une théorie de jauge conforme à quatre dimensions sans gravité.

La conjecture AdS-CFT a contribué à progresser de façon incroyable dans les deux côtés

de la dualité et à ce jour est encore utilisé pour donner une interprétation intuitive à la

physique à dix dimensions de la théorie des cordes. Dans la thèse, nous allons souvent

rapporter nos résultats à ceux de la théorie de jauge correspondante, mais comme la

conjecture AdS-CFT n’est jamais utilisée explicitement et n’est pas nécessaire pour les

démonstrations nous allons nous référer à la littérature sans examiner cette dualité en

détail.

Il existe plusieurs formulations de la théorie des cordes, qui demandent dix dimen-

sions. Cela signifie que la théorie peut être formulée dans différents cadres théoriques, qui

sont tous physiquement équivalents car ils sont liés par des opérations de dualité. Par

conséquence, chaque configuration physique peut être transformée d’un cadre à l’autre et

on choisit souvent le meilleur cadre pour décrire chaque configuration spécifique. Nous

allons seulement nous concentrer sur la théorie de type IIA et la théorie de type IIB. Plus

précisément, nous ne considérons que les limites de basse d’énergie de ces deux théories,

qui sont les supergravités de type IIA et IIB. Alors que la supergravité était initialement un

domaine indépendant de la théorie des cordes, il est vite apparu que certains supergravités

ne sont que des limites de baisse énergie de ce dernière.

Une révolution dans la physique théorique a eu lieu en 1995, où les différentes formu-
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lations de la théorie des cordes ont été unifiées en une seule théorie en onze dimensions, la

théorie M. Alors que la formulation complète de ce dernière reste un objectif encore non

atteint, sa limite de basse énergie est une supergravité à onze dimensions que est bien con-

nue. Dans la thèse, nous allons examiner seulement la supergravité à onze dimensions et

les supergravités de type IIA et IIB et nous allons expliquer en détail les transformations

de la dualité pour passer d’un cadre à l’autre.

Une parmi les caractéristiques les plus importantes de la théorie des cordes est le fait

que dans le régime supergravité il existe de nombreuses solutions régulières et non banales.

Ces solutions n’ont pas de sources localisées et sont caractérisées par une topologie non

triviale dont les cycles sont supportés par de flux qui est à la base des charges et moments

conservées. Le fait que ces solutions n’ont pas des singularités et présentent une topologie

riche les rend plus intrigantes et aptes à être utilisés dans tous les principaux domaines de la

théorie des cordes. Dans cette thèse, nous allons explorer trois parmi les solutions régulières

les plus célèbres dans les différents contextes de leurs applications. Notre objectif est donc

double: d’un côté, nous voulons analyser et expliquer notre progrès dans chaque domaine

de recherche spécifique dans lequel chaque solution régulière est actuellement étudié, tandis

que de l’autre côté nous voulons montrer la richesse et la complexité de la théorie des cordes

en proposant quatre domaines de recherche différents qui, apparemment, ne sont pas liés.

Nous allons donc analyser la solution de Lin-Lunin-Maldacena (LLM) [1], les microétats

correspondantes à des trous noirs avec trois charges en onze dimensions [2, 3], la solution

de Klebanov-Strassler (KS) [4] et une modification des microétats en onze dimensions.

La solution de Lin-Lunin-Maldacena [1] est en effet une famille de solutions régulières

trouvé en origine dans la supergravité de type IIB. Nous allons étudier en détail sa for-

mulation en onze dimensions, car elle représente la théorie duale avec gravité de celle qui

est supportée par des branes M2 en présence d’un flux transversal supplémentaire. Dans

la thèse, nous calculons l’énergie potentielle des branes M2-M5 dans la solution de LLM.

Nous trouvons deux nouveaux résultats, en fonction des charges des branes. Lorsque les

charges M2-M5 sont parallèles à celles de la solution, nous trouvons des configurations su-

persymétriques stables pour les branes. Cela signifie que, en absence de sources localisées

dans la solution de LLM, les flux de cette solution supportent des charges de type M2

et M5 . D’autre part, lorsque les charges M2-M5 sont opposées à celles de la solution,

nous trouvons des configurations métastables pour les branes qui brisent la supersymétrie.

En effet, ces minima ont beaucoup plus d’énergie par rapport à ceux du premier type.

Ensuite, nous étudions en détail un possible mécanisme de rayonnement qui conduit ces

minima métastables à des configurations finales supersymétriques. Nos résultats suggèrent

donc que les configurations métastables qui brisent la supersymétrie existent aussi dans la
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théorie de jauge duale, c’est à dire une théorie des branes M2 avec des flux supplémentaires.

Les microétats régulières avec trois charges trouvés en [2, 3] sont la deuxième famille

de solutions qui sera analysée. La géométrie de ces solutions est celle d’une longue gorge

AdS déformé, qui est plafonné à la fin et présente beaucoup de cycles non triviales. Six

des onze coordonnées ne sont que des spectateurs et ils ne jouent aucun rôle dans la

physique. En effet, on peut compactifier sans difficultés ces six cordonnées. Ces solutions

deviennent donc semblables à des solutions de trou noir bien connues en cinq dimensions,

mais contrairement à ces derniers, ils sont régulières et sans horizon et sont donc appelées

microétats de trou noir. Les microétats sont des solutions régulières qui ont les mêmes

charges et la même géométrie asymptotique de ceux d’un trou noir. Ils sont l’ingrédient

le plus important de la Fuzzball proposal, un programme qui a l’objectif d’expliquer les

paradoxes des trous noires en interprétant ces derniers comme le résultat effectif d’un en-

semble de microétats.

Bien que nombreux microétats sont connus pour différents types de trous noirs super-

symétriques, le monde des trous noirs quasi-BPS reste assez inexploré. Récemment, on a

trouvé qu’on peut promouvoir la famille de microétats que nous examinerons à des mi-

croétats quasi-BPS en plaçant un anti-supertube dans ces solutions, grâce à un mécanisme

similaire à celui qui brise la supersymétrie dans la solution LLM. Dans la thèse, nous al-

lons construire ces microétats quasi-BPS. Nous allons également montrer qu’ils sont en fait

instables une fois qu’on considère tous les degrés de liberté du système. Par conséquence,

l’introduction d’un anti-supertube métastable déclenche un mouvement des cycles au fond

de la gorge AdS qui induit un rayonnement d’énergie qui fait évoluer les microétats quasi-

BPS vers des états supersymétriques. Nous allons affirmer que cela correspond à un

rayonnement de Hawking, qui est une caractéristique des microétats quasi-BPS. Nous cal-

culons le taux d’émission d’énergie et la fréquence de ce rayonnements et comparons les

résultats avec ceux du trou noir correspondant. Enfin, le microstate que nous avons con-

struit n’est pas typique dans l’ensemble prévu dans la Fuzzball proposal, et nous suggérons

des explications possibles.

Dans cette thèse, il sera également démontré que les microétats trouvés en [2, 3] peu-

vent être convenablement modifiés pour construire des microétats pour des trous noirs en

cinq dimensions non chargés. Une étape nécessaire pour cela est d’avoir des solutions de

supergravité en cinq dimensions où le vecteur de Killing passe de type temps à type nul.

Bien que ce ne soit pas un phénomène nouveau en général, des solutions où cela se produit

sur des ensembles ouverts de la variété d’espace-temps sont encore inconnus et seraient

d’une importance vitale pour construire les nouveaux microétats. Nous trouvons des ex-

emples explicites qui satisfont une condition très proche de celle désirée: on construit des

solutions où le vecteur de Killing et tous son dérivés sont zéro à un point. Notre construc-

tion est basée sur le fait que les microétats de [2, 3] sont complètement déterminés une

fois que l’on fixe les pôles et les résidus de certaines fonctions harmoniques. On peut alors
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fixer à zéro le vecteur de Killing avec un nombre arbitraire de ses dérivés en disposant

convenablement un nombre suffisant de pôles et en réglant leur résidus. Par conséquence,

pour fixer tous les dérivés à zéro on doit disposer d’un nombre infini de pôles. Nous trou-

vons de nombreux exemples où les charges conservées deviennent infinies dans la limite,

mais nous construisons également des solutions valides où les charges restent finies et que

asymptote AdS3 × S2. Nos résultats sont une première étape vers la construction d’un

solution de supergravité en cinq dimensions avec un vecteur de Killing de type mixte sur

des ensembles ouverts de la variété d’espace-temps.

La dernière solution régulière que nous examinons est celle trouvée par Klebanov et

Strassler (KS) [4]. Cette solution de type IIB préserve une charge de type D3 et une

charge diélectrique de type D5 et l’espace extérieur de dimension six est une conifold

déformée. L’importance de cette solution se trouve dans le fait qu’il est le principal con-

texte d’application du mécanisme KKLT, qui permet de trouver de solutions (méta)stables

de type de Sitter en théorie des cordes, permettant à ce dernière de reproduire les résultats

des observations cosmologiques sur la positivité de la constante cosmologique. L’étape de

base du mécanisme KKLT appliqué à la solution KS est l’insertion de branes métastables

de type anti-D3 dans la géométrie. Récemment, il a été observé que la backreaction des

antibranes pourrait causer des singularités dans la solution KS, ce qui pourrait avoir une

incidence négative sur l’efficacité du mécanisme KKLT. Dans cette thèse, nous constru-

isons la version T-duale de la solution KS, en vue de tester la stabilité des antibranes dans

le régime de paramètres inexploré de la supergravité de type IIA. Nous identifions d’abord

une isométrie appropriée qui conduirait à une configuration des branes bien connue dans

la supergravité de type IIA. Dans la version de type IIA une nouvelle brane de type NS5

apparâıt en conséquence de la T-dualité: elle enveloppe une courbe holomorphe spécifique

qui est bien connue dans la littérature. Pour éviter des calculs très complexes nous recon-

struisons seulement une petite région de la solution T-duale, qui correspond à la région

où les branes anti-D3 sont insérés dans la version originale. Nous effectuons beaucoup de

vérifications sur notre construction. Enfin, nous construisons la solution T-duale de celle

de KS avec l’insertion de branes D3. Ceci est rendu possible grâce à la reconstruction

d’une petite région seulement, ce qui évite des calculs insolubles pour la backreaction.

Cette thèse est divisée en deux parties. Dans la Partie I on présente une description des

résultats fondamentaux bien connus dans la littérature qui sont nécessaires pour compren-

dre la Partie II, qui présente une analyse originale des solutions régulières dans la théorie

des cordes. La Partie I est composée par deux chapitres. Dans le Chapitre 1 nous intro-

duisons la supergravité en onze dimensions et les supergravités de Type IIA et IIB ainsi que

les transformations de réduction dimensionnelle et de T-dualité, qui permettent de passer
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d’une théorie à l’autre. Nous présentons également quelques solutions standard dans la

supergravité en onze dimensions et la solution standard de D-branes en dix dimensions.

L’action pour les branes est introduite et deux calculs explicites d’énergie potentielle sont

effectués. Dans le Chapitre 2 nous expliquons comment la théorie des cordes rend possible

l’existence des solutions régulières grâce au mécanisme de la transition géométrique. Nous

introduisons ensuite les trois principales solutions régulières qui seront analysés: celle de

Lin-Lunin-Maldacena, celle de Klebanov- Strassler et les microétats en onze dimensions

avec trois charges. Une importance particulière est accordée aux calculs des paramètres

physiques comme les charges conservés et à la description des cycles non triviales dans la

topologie.

La Partie II se compose de quatre chapitres, dédiés à l’analyse des quatre domaines

de recherche relatifs aux solutions régulières mentionnés ci-dessus. La structure de ces

chapitres est similaire: ils commencent par une introduction technique au domaine de

recherche en question, puis une analyse détaillée des résultats originaux est présentée et,

enfin, certains développements possibles sont illustrés. Dans le Chapitre 3, nous montrons

l’existence d’états métastables qui brisent la supersymétrie dans la solution LLM et nous

analysons leurs propriétés. Le Chapitre 4 est consacré à la démonstration de l’instabilité

des microétats quasi-BPS et à l’analyse de leur taux d’émission d’énergie. Le Chapitre 5

est consacré à la construction de la solution T-duale à celle de KS, ainsi qu’à l’analyse

géométrique nécessaire pour choisir l’isométrie et aux nombreux vérifications qui valident

notre procédure. Dans le Chapitre 6, nous décrivons la construction de solutions de

supergravité en cinq dimensions où le vecteur de Killing devient nul à un point avec

l’ensemble de son dérivé.

Des détails supplémentaires sont présentés dans les annexes. En particulier, l’Annexe A

présente quelques détails complémentaires et des calculs au sujet du Chapitre 3, tandis

que l’Annexe B donne des informations supplémentaires sur la T-dualité du Chapitre 5.

Enfin, dans l’Annexe C, nous présentons une construction alternative à celle décrite dans

le Chapitre 6.
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CHAPTER 1

ELEVEN-DIMENSIONAL, TYPE IIA AND TYPE IIB

SUPERGRAVITIES

1.1 Eleven-dimensional Supergravity

The so-called “Second Superstring Revolution” started in 1995 with a series of papers

regarding an eleven-dimensional theory that was supposed to unify all the different known

formulations of String Theory into a single coherent mathematical framework. This theory

was given the name of M-theory and opened many fascinating perspectives on the nature

of String Theory, Supersymmetry and Quantum Field Theories. Although large parts of

this unifying framework are still unknown, for the purposes of this thesis it is sufficient to

restrict to the low-energy limit of M-Theory, namely eleven-dimensional supergravity.

Eleven-dimensional supergravity [5] is a supersymmetric theory of gravity formulated in

eleven-dimensions. It contains extended objects such as M2 branes and M5 branes that

are interacting in a self-consistent fashion both electromagnetically and gravitationally.

The bosonic field content of eleven-dimensional supergravity is indeed extremely simple

and consists of:

• a metric gµν (µ, ν = 0, ...10), that can locally be expressed as a standard eleven-

dimensional minkowskian metric ηµν = diag(−1, 1...1). The metric tensor describes

the geometry of spacetime and the gravitational interaction.

• A three-form potential A3 that gives rise to a four-form field-strength:

G4 = dA3 (1.1)

In the following the geometric language will be employed as much as possible and
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the indexes of the forms will remain implicit. This allows to write more compact

formulas making the geometrical meaning clear. For instance, equation (1.1) can be

rewritten specifying all the indexes as

G4 ≡ Gµνρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ Gµνρσ = 4!∂[µAνρσ] (1.2)

where the square-brackets mean anti-symmetrization.

The three form potentialA3 and the associated field-strength are just a generalization

of the so-called vector potential Aµ and the related field strenght Fµν of the four-

dimensional theories. Indeed, A3 encodes the electric and magnetic fields suitably

generalized for an eleven-dimensional background.

The dynamics of the background in eleven-dimensional supergravity is specified by the

following action:

S11 =
1

2k2
11

(∫
d11x

√−gR−
∫

1

2
G4 ∧ ?G4 +

1

6
A3 ∧G4 ∧G4

)
(1.3)

where

2k2
11 = 16πG11 = (2π)8l9P (1.4)

and G11 is the Newton constant in eleven dimensions and lP is the Planck length. In (1.3)

g is the determinant of the metric gµν , R is the associated Ricci scalar and the Hodge star

maps a n-form Gn to a (11− n)-form G11−n whose components are given by:

? (G)j1...j11−n =
√−gGa1...anga1i1 · · · ganinεi1,...in,j1...j11−n (1.5)

where ε denotes the Levi-Civita tensor and the upper indexes for g denote the inverse

metric tensor.

It is straightforward to give a physical interpretation to the action (1.3). The first integral

is the well-known Einstein-Hilbert action that describes how the metric is specified by

eventual sources or fields. The second integral describes the dynamics of the electric and

magnetic fields interacting with gravity, while the third term in (1.3) is a Chern-Simons

term that is required in order to preserve supersymmetry.

The action (1.3) specifies the dynamics of the background fields in eleven-dimensional

supergravity. There exist only two fundamental (extended) objects in eleven-dimensional

supergravity: M2 branes and M5 branes.

• M2 branes are conventionally considered electric objects. They can be thought as a

sort of extension of the electron to eleven dimensional supergravity. Note that M2

branes are extended objects, indeed they are two-dimensional manifolds that sweep

a three-dimensional worldvolume if one takes time evolution into account. Similarly,

an electron is a point-like object that sweeps a one-dimensional worldline in four
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dimensions. By definition, M2 branes couple electrically to A3:

SM2 = QM2

∫
d3σÂ3 (1.6)

where Â3 is the pullback of A3 on the M2 brane worldvolume described by the

coordinates σ0, σ1, σ2 and Q2 is the M2 brane charge. The latter is measured by the

dual-field strength:

QM2 =

∫
S7

?G4 (1.7)

where S7 is a seven-sphere surrounding the brane in the eight-dimensional transversal

space. This is exactly as for the charge of an electron, which is defined as the integral

of the electric field across a two-sphere surrounding the electron.

• M5 branes are magnetic objects that can be thought as the generalization of a four-

dimensional magnetic monopole. M5 branes, as the name suggests, are 5-dimensional

manifolds that sweep a six-dimensional worldvolume. Their charge is measured by

QM5 =

∫
S4

G4 (1.8)

where S4 is a four-sphere surrounding the M5 in the six-dimensional transverse space.

M2 branes and M5 branes are BPS objects, meaning that in suitable units their mass is

equal to their charge. This is a requirement in order to obtain a supersymmetry-preserving

solution.

1.2 Standard solutions of eleven-dimensional supergravity

Varying the action (1.3) with respect to gµν and A3 one gets the equations of motion for

these fields. Notice that the equation for the metric is nothing but a generalization of the

famous Einstein’s equation to eleven dimensions.

A supergravity background is specified once one solves the equations of motion. This

section is dedicated to some of the simplest supergravity solutions in eleven-dimensions,

that arise from M2 and/or M5 branes at rest. While these solutions have a clear physical

interpretation it is fundamental to stress that all these solutions are singular, as they are

characterized by localized sources that are M2 and/or M5 branes. Note also that the

singularities are extended loci, as they coincide with the branes.

1.2.1 The standard M2 brane solution

This is one of the simplest solutions possible, where the metric and three-form potential

are sourced by N coinciding M2 branes extended along t, x1, x2 and localized at xi = 0,
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i = 3, ..., 10. Assuming that each M2 brane has unitary M2 charge and recalling that

M2 branes are BPS objects, N specifies both the total charge and the total mass. By

convention the coordinates wrapped by the branes, x0, x1, x2, span the external space, while

the remaining coordinates span the internal space or transverse space. This distinction is

also used for more complex solutions and will be heavily used in the following.

The solution generated by the N M2 branes is given by:

ds2
11 = H

−2/3
2 (−dt2 + dx2

1 + dx2
2) +H

1/3
2 ds2

8

At12 = (1−H−1
2 ) (1.9)

where ds2
8 is a standard euclidean metric on the eight-dimensional transverse space, and

H2 is a harmonic function usually called warp factor :

H2 = 1 +
32π2Nl611

r6
r2 =

8∑
i=1

x2
2+i (1.10)

with N the number of M2 branes.

As anticipated, the solution (1.9) presents localized M2 branes at r = 0.

1.2.2 The standard M5 brane solution

The solution “dual” to that in equation (1.9) is sourced by N M5 branes wrapping x0, ...x5

and localized at xi = 0 for i = 6, ...10. It is given by:

ds2
11 = H

−1/3
5 (−dt2 + dx2

1 + ...+ dx5
5) +H

2/3
5 ds2

5

Gα1...α4 =
1

2
εα1,...,α5∂α5H5 (1.11)

with the M5 brane warp factor H5 given by

H5 = 1 +
a

r3
r2 =

10∑
i=6

x2
i (1.12)

Comparing (1.11) with (1.9) it is possible to get some intuition about the form of standard

brane solutions and the connection between the analytic form of the metric and the physical

object they describe:

• Both solutions are characterized by a warpfactor of the form H ∼ r−α, where α = 6

for M2 branes and α = 3 for M5 branes (the constants represent a gauge choice that is

physically meaningless). The fact that the warpfactors decay at infinity with different

powers should not be surprising: indeed the warpfactor is computed by solving a

standard harmonic equation in the transverse space, and as the dimensionality of

this space changes between M2 and M5 branes so does α.

30



1.2. Standard solutions of eleven-dimensional supergravity

• The powers of the warpfactors in the metric tell important information about what

coordinates the branes are wrapping and where they are localized. Indeed, as one

moves from infinity to a region close to the branes the external space gets contracted,

while the internal space gets infinitely redshifted. Consequently, in (1.9) and (1.11)

the coordinates wrapped by the branes appear in the metric multiplied by a warp-

factor with a negative power. Vice-versa, this power is positive for the external

space.

1.2.3 Intersecting branes

Combining the M2 brane solution (1.9) with the M5 brane solution (1.11) one can obtain

many different supersymmetric solution that contain M2 branes and M5 branes intersect-

ing in a supersymmetric fashion [6]. We present here some of these solutions, using the

two observations at the end of the previous section to determine the configuration and the

nature of the brane that sources these solution. For the sake of clarity, we will omit all the

physical quantities (such as the Planck length and Newton’s constant) in the potentials

and/or four-form field strength, reabsorbing them into proportionality constants.

The solution given by two different stacks of M2 branes, labelled by a and b, is given

by:

ds2
11 = H

−2/3
2,a H

−2/3
2,b (−dt2) +H

−2/3
2,a H

1/3
2,b (dx2

1 + dx2
2) +H

−2/3
2,b H

1/3
2,a (dx2

3 + dx2
4)

+H
1/3
2,a H

1/3
2,b (dx2

5 + ...+ dx2
10)

Gt12α =
1

2

∂αH2,a

H2
2,a

Gt34α =
1

2

∂αH2,b

H2
2,b

α = 5, ..., 10 (1.13)

where

H2,a = H2,a(x5, ..., x10) ∼ 1 +
ca
r4

r2 =

10∑
i=5

x2
i (1.14)

and an analogous equation holds for H2,b. The solution (1.13) is sourced by two stacks

of M2 branes, the a-stack wrapping t, x1, x2 and the b-stack wrapping t, x3, x4, as can

be deduced by the warpfactors with power −2/3. Both stacks are smeared in the two

directions that are wrapped by the other stack, so for instance branes of the stack a are

smeared along x3 and x4. This is required by supersymmetry and by the fundamental

request of getting a stable and static solution. The smearing process also explains why

the nontrivial part of the warpfactors goes as r−4, where r is the radius in the common

transverse space: as the branes are smeared it is as if one needed to integrate the original

warpfactor of (1.9) along two directions, getting a power of −4. Finally, we mention that

this solution preserves eight supercharges, exactly half of those preserved by (1.9).
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1. Eleven-dimensional, Type IIA and Type IIB supergravities

In the same spirit of (1.13) one can write the solution of three separate stacks of M2

branes, labelled by a, b, c:

ds2
11 = H

−2/3
2,a H

−2/3
2,b H

−2/3
2,c (−dt2) +H

−2/3
2,a H

1/3
2,b H

1/3
2,c (dx2

1 + dx2
2)

+H
−2/3
2,b H

1/3
2,a H

1/3
2,c (dx2

3 + dx2
4) +H

−2/3
2,c H

1/3
2,a H

1/3
2,b (dx2

5 + dx2
6)

+H
1/3
2,a H

1/3
2,b H

1/3
2,c (dx2

7 + ...+ dx2
10)

Gt12α =
1

2

∂αH2,a

H2
2,a

Gt34α =
1

2

∂αH2,b

H2
2,b

Gt56α =
1

2

∂αH2,c

H2
2,c

α = 7, ..., 10 (1.15)

Tracking the exponents in the metric (1.15) it is clear that the a-stack wraps t, x1, x2,

the b-stack wraps t, x3, x4 and the c-stack wraps t, x5, x6. The three stacks are smeared

along the directions of the other two stacks, so for instance the M2 branes of the a-stack

are smeared along x3, x4, x5, x6. The three warpfactors now only depend on the radius

defined on the common transverse space, spanned by x7, ..., x10. This solution preserves

four supercharges.

The solution sourced by a stack of M5 branes and a stack of M2 branes wrapping one

common direction is given by:

ds2
11 = H

−2/3
2 H

−1/3
5 (−dt2 + dx2

1) +H
−2/3
2 H

2/3
5 (dx2

2) +H
1/3
2 H

−1/3
5 (dx2

3 + ...+ dx2
6)

+H
1/3
2 H

2/3
5 (dx2

7 + ...+ dx2
10)

Gt12α =
1

2

∂αH2

H2
2

G6αβγ =
1

2
εαβγδ∂δH5 α, β, γ, δ = 7, ..., 10 (1.16)

The M2 branes wrap t, x1, x2, as emphasized by the fact that these coordinates are multi-

plied byH
−2/3
2 in the metric -compare with (1.9)- while the M5 branes wrap t, x1x3, x4, x5, x6,

as one can see tracking the coefficient H
−1/3
5 in the metric. Both stacks are smeared along

the direction wrapped by the other stack, so for instance the M2 branes are smeared along

x3, x4, x5, x6. The two warpfactors now depend on the radius defined on the common

transverse space x7, x8, x9, x10. Note also that the four-form is a sort of hybrid between

that of the M2 brane solution (1.9) and that of the M5 brane solution (1.11). This solution

preserves eight supercharges.

There are other possible solutions that belong to the class of intersecting branes, which

can be easily derived by suitably mixing the solutions above. For instance, one can have

a solution generated by two stacks of M5 branes having three directions in common, or a

solution sourced by two separated M2 brane stacks having each one direction in common
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1.3. Type IIA Supergravity via dimensional reduction

with an M5 brane stack.

The importance of eleven-dimensional solutions relies on the fact that thanks to dif-

ferent dualities they can be related to brane solutions in different types of supergravities,

namely Type IIA and Type IIB, which are ten-dimensional. Each of these supergravities

has is own field content and branes, but as the different solution are related by duality

transformations they are physically equivalent.

1.3 Type IIA Supergravity via dimensional reduction

Eleven-dimensional supergravity can be easily mapped to the ten-dimensional Type IIA

supergravity upon compactifying a coordinate on a circle and shrinking the radius of the

circle to zero [7, 8]. Type IIA Supergravity is the low-energy limit of Type IIA String

Theory, one of the frameworks in which Superstring Theory can be formulated. The field

content of Type IIA supergravity is presented in this section, together with the necessary

formulas for the dimensional reduction that relates Type IIA and 11D supergravity.

According to the boundary conditions for open/closed strings in ten dimensions it is pos-

sible to obtain fields of different nature in Type IIA. There exist three Neveu-Schwarz

Neveu-Schwarz fields (NS-NS) and four Ramond-Ramond (RR) fields.

The NS-NS sector consists of:

• the ten dimensional metric gµν ,

• an antisymmetric two-form field B2. This should be considered as a two form po-

tential and the physical field is its differential

H3 ≡ dB2

• A scalar field Φ, the dilaton.

The RR sector consists of:

• the potentials Cp, with p = 1, 3, 5, 7. These are not completely independent from

each other, as we will see in the following. The charges related to these potentials

are -as usual- measured by their field strengths. In the following, we will always deal

with the improved field strengths:

Fp+1 = dCp +H3 ∧ Cp−2 (1.17)

The improved field strengths are related to each other by

F8 = ?F2 F6 = ?F4 (1.18)

which physically implies that F8 (F6) is the magnetic dual of F2 (F4).
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1. Eleven-dimensional, Type IIA and Type IIB supergravities

There exist two categories of fundamental objects that source the fields of Type IIA. These

couple either electrically or magnetically to the potentials.

• The Neveu-Schwarz (NS) branes interact with the NS-NS fields. These consist of

the F1 string (a one-dimensional brane) that couples to B2 electrically and the NS5

brane that couples to B2 magnetically.

• The Dirichlet branes (D-branes) interact with the RR fields. These can be thought

of a suitable generalization of the electron to the ten-dimensional theory, exactly

as for M2 and M5 branes. Given the dimensions of the RR fields Cp, in Type IIA

theory there exist D-branes with D = 0, 2, 4, 6. For instance, the D2 brane couples

electrically to C3 as in (1.6), while it couples magnetically to C5. The situation is

reversed for the D4-brane, that couples electrically to C5 and magnetically to C2.

The object that couples electrically to C1 is the D0 brane, which is essentially a

point particle.

It was stated previously that the Type IIA theory with its fields and branes can be obtained

via dimensional reduction from the eleven-dimensional supergravity. This procedure con-

sists in compactifying one of the eleven coordinates on a circle considering the radius to be

parametrically small. To fix the conventions, take x10 to be the coordinate to compactify.

The eleven-dimensional metric is then rewritten as:

ds2
11 = e4Φ/3

[
(dx10 + Cµdx

µ)2 + e−2Φds2
10

]
, (1.19)

where ds2
10 defines the Type IIA metric and Cµdx

µ ≡ C1 defines the 1-form RR potential,

while Φ is the dilaton. The other Type IIA fields are specified after the dimensional

reduction of the eleven-dimensional potential A3:

(C3)ijk = (A3)ijk i, j, k 6= 10

(B2)ij = (A3)ij10 (1.20)

The compactification of an eleven-dimensional solutions also maps M2 branes and M5

branes to either D-branes or NS-branes in Type IIA according to the following rules:

• If the M2 brane is wrapping x10 it becomes an F1 string in Type IIA

• If the M2 brane is not wrapping x10 it becomes a D2 brane in Type IIA

• If the M5 brane is wrapping x10 it becomes a D4 brane in Type IIA

• If the M5 brane is not wrapping x10 it becomes a NS5 brane in Type IIA

Note that formulas (1.19) and (1.20) are valid both ways, meaning that one can equally

uplift type IIA supergravity to 11D supergravity. This is because the two theories are dual
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1.3. Type IIA Supergravity via dimensional reduction

to each other, which means that physically they describe the same phenomena, but in two

different theoretical framework. Indeed, our discussion here has ben limited to the low-

energy limits of M-theory and Type IIA string theory, i.e. 11D and type IIA supergravities

respectively. As M-theory unifies all the theoretical framework of string theory, its low-

energy limit and the low-energy limit of Type IIA are physically equivalent. Hence one can

choose the most convenient framework to perform calculations and the duality of the two

theories guarantees that every result is valid regardless to the chosen setup. In Chapter 3

this duality will become of utmost importance. Indeed all the results of Chapter 3 will be

derived in Type IIA supergravity, where the computations are much clearer, but thanks

to the duality they will be extended to eleven-dimensional supergravity.

1.3.1 Probe branes, Dirac-Born-Infeld action and brane polarization

Once a Type IIA solution has been specified is it necessary to understand the dynamics

of a brane in this background. According to the principles of general relativity, adding

a brane to the background modifies the background itself (backreaction), and hence the

dynamics of the brane is never independent from the dynamics of the metric and the

potentials. While finding a static background can already be a demanding task, solving

all the equations of motions for a brane interacting with the background becomes extremely

involved. Hence here and in the following we only study the dynamics of probe branes,

namely branes whose charge is much smaller than the background charges. As the mass

of our branes is equal to their charge, we can assume that the whole background is not

modified by the presence of our probe. We further assume that our probes stand in a fixed

position in spacetime, namely that they do not move. Hence their action is by definition

equivalent to their potential energy. We will see in subsequent chapters that the potential

of a probe brane can reveal fundamental pieces of information about the solution itself.

A Dp brane action is given by:

S = −|TDp|
∫
dp+1σe−Φ

√
−det(ĝ + B̂2 + F2)− TDp

∫
eB̂2+F2 ∧ ⊕nĈn (1.21)

where a hat above the fields denotes the pullback of a field over the brane worldvolume

spanned by σ0, ..., σp:

B̂ab ≡ Bµν
∂xµ

∂σa
∂xν

∂σb
(1.22)

The field F2 is a two-form defined on the worldvolume of the brane and hence does not

need pullbacks. The second integrand is intended to be the sum of all possible p+ 1-forms

obtained exponentiating (B̂2 + F2) and taking the wedge product with the available Cn

RR fields. In (1.21) TDp is the D-brane charge density. By convention this is positive for

D-branes and negative for anti-D-branes. As the mass of D-branes is equal to their charge,

TDp appears as a prefactor for both integrals.
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1. Eleven-dimensional, Type IIA and Type IIB supergravities

It is important to have some physical intuition about the action (1.21). The first integral

encodes the gravitational interaction felt by the brane. Indeed, it includes the integral

of the volume form on the brane (i.e. the pullback of the metric) which represents the

gravitational interaction as from General Relativity. It also includes the field F2 that,

being defined on the brane, interacts gravitationally, something that is again familiar

from General relativity.

The second integral in (1.21) represents the electromagnetic interactions of the brane, again

in the presence of gravity. Notice that also the field F interacts with the background.

A final explanation is needed for the field F2, which, contrarily to all the other quantities

in (1.21), is defined only on the brane worldvolume. The field F2 is a two-form and,

exactly as for B2, it couples to F1 strings in Type IIA. The only exception is that this

F1 string is contained in the brane we are considering. This can be seen as it is possible

to associate to this F1 string a conserved charge. Hence when F01 6= 0 the brane that is

embedded in the background is not exactly a pure brane, but really a higher dimensional

brane containing a F1 string. In addition, if Fij 6= 0, also other lower-dimensional branes

can be contained in the original probe.

1.3.2 An example: D2 probes in D2 brane backgrounds

This section is focused on a specific simple example: computing the potential for an M2

probe brane embedded in the M2 brane background (1.9).

The actions of the branes in 11D supergravity are usually quite involved and (1.21) is valid

in Type IIA (or Type IIB) only. Therefore, instead of trying to uplift (1.21) to 11D, we

use the results of Section (1.3) to dimensionally reduce the background (1.9) to type IIA.

Notice that the potential calculated in Type IIA is valid also in 11D supergravity as the

two theories are dual to each other.

Compactifying the standard M2 brane solution (1.9) along x10 one gets the D2 brane

solution in Type IIA:

ds2
10 = H−1/2(−dt2 + dx2

1 + dx2
2) +H1/2ds2

7

e2Φ = H1/2 Ct12 = (1−H−1) (1.23)

where the warpfactor now becomes:

H = 1 +
c2gsNl

5
p

r5
(1.24)

and in the equations above c2 is an unimportant intergation constant.

This solution is sourced by N D2 branes wrapped along x0, x1, x2. Given the Type IIA

background it is necessary to embed the probe D2 before determining the potential.

The D2 worldvolume is spanned by the coordinates σ0, σ1, σ2, while it is embedded in
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1.3. Type IIA Supergravity via dimensional reduction

spacetime via ten functions Xµ(σ). String Theory incorporates General Relativity and

hence all the equations are covariant under diffeomorphisms. This means that one can

parametrize the embedding of the D2 brane choosing the static gauge, so that:

X0(σ) = σ0 X1(σ) = σ1 X2(σ) = σ2 (1.25)

The probe approximation implies that the brane is placed in a particular position in

spacetime and is kept fixed in that position, without considering its backreaction. This is

mathematically expressed by:

∂Xj

∂σi
= 0 j = 3, ..., 9 i = 0, 1, 2 (1.26)

which enormously simplifies all the pullbacks (1.22).

Now we are ready to compute the potential felt by a probe D2 brane in the back-

ground (1.23), for the D2 probe embedded as in (1.25) with TD2 > 0:

V = −TD2H
−1 − TD2(1−H−1) = −TD2 (1.27)

The probe brane feels no force as the potential is constant. This result is not surprising

and can be easily explained in two (correlated) ways. Firs of all, the probe D2 is parallel

to the N branes that source the solution and has the same charge. Hence it is subject

to the attraction of the gravitational force and to the repulsion of the electromagnetic

interaction. As the two forces depend on the same power of the radius and as the D2 mass

in equal to its charge, the force has to be zero. Secondly, it is known that parallel branes

of the same kind do not break any supersymmetry and as a consequence their potential

has to be constant.

It is instructive to compute the potential for a probe brane embedded as in (1.25) but

with opposite charge −TD2 with respect to the background (i.e. and anti-D2):

V = −TD2H
−1 + TD2(1−H−1) = −2TD2H

−1 + const (1.28)

The electromagnetic force is now attractive and hence is summed up with the gravita-

tional interaction. The force is given by ∂rV and it points radially towards the origin, as

expected1.

As a final remark notice that choosing a different orientation than (1.25) only the gravi-

tational interaction would contribute to the potential and the force would be attractive.

Therefore, the only stable configuration for the probe is the one in (1.25), i.e. the one that

does not break supersymmetry.

1As the kinetic part in the action (1.21) is taken to be zero, what remains is by definition the potential
with an overall minus sign
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1.4 Type IIB supergravity via T-duality

Type IIB String Theory is often studied together with Type IIA String Theory. The two

theories are related by a duality operation that is called T-duality [7, 8]. The latter can

be heuristically explained as follows. One can expand the motion of a string wrapping a

compact direction in Fourier series. As a string is an extended object, one obtains winding

modes and momentum modes. If one performed the same operation for the motion of a

particle along a compact direction one would obtain momentum modes only, hence the

existence of winding modes are subject to the fact that strings are extended objects. T-

duality consists in changing the radius of the compact direction from R to 1/R, which

exchanges winding modes and momentum modes, performing a duality transformation

between Type IIA and Type IIB String Theory.

As Type IIA supergravity is the low-energy limit of Type IIA String Theory, a T-duality

maps it into the low-energy limit of Type IIB String Theory, i.e. Type IIB supergravity.

In the following we describe the field content of Type IIB supergravity along with the

branes that live in this theory, then we present the formulas for T-duality that relate these

two supergravities.

The field content of Type IIB supergravity consists of:

• Three NS-NS fields, namely the ten-dimensional metric, the two-form potential and

the dilaton, exactly as in Section 1.3

• Five RR potentials Cp with p = 0, 2, 4, 6, 8, that once differentiated are combined

with H3 = dB2 into the improved RR field strengths:

Fp+1 = dCp +H3 ∧ Cp−2 (1.29)

The brane content can be inferred from the dimension of the potentials:

• Two NS-branes, namely the F1 brane and the NS5 brane, that couple to the NS-NS

potential exactly as in Section 1.3

• Four Dp-branes, with p = 1, 3, 5, 7 that couple electrically with the Cp potential

(note that a D9-brane cannot exist as it would completely fill the space). Dp-branes

and potentials are related via electric-magnetic dualities in a similar fashion as in

Section 1.3. Indeed, one has Fp = ?F10−p and at the same time the Dp brane

that couples electrically to Fp is the magnetic dual of the D10−p brane that couples

electrically to Fp−10. In particular, note that the five-form field strength F5 is self-

dual as F5 = ?F5.
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We now turn to the formulas of T-duality that relate Type IIA and Type IIB super-

gravity, also known as Buscher’s rules. A fundamental ingredient to T-dualize a Type IIA

solution to a Type IIB solution (and vice-versa) is to find a compact isometry direction y.

Before performing the T-duality it is convenient to rewrite the fields as follows

ds2 = gyy(dy +Aidx
i)2 + ĝijdx

idxj

B2 = Biydx
i ∧ (dy +Aidx

i) + B̂2

Cp = Cyp−1 ∧ (dy +Biydx
i) + Ĉp (1.30)

The T-dual solution is then given by

ds̃2 = g−1
yy (dy +Biydx

i)2 + ĝijdx
idxj

e2Φ̃ = g−1
yy e

2Φ

B̃2 = Aidx
i ∧ dy + B̂2

C̃s = Ĉs−1 ∧ (dy +Biydx
i) + Ĉys (1.31)

If the RR potentials are not know it is possible to perform the T-duality directly on the

field strengths. These should first be rewritten as:

Fp = F yp−1 ∧ (dy +Aidx
i) + F̂p (1.32)

and then transformed into:

F̃s = F̂ ys−1 ∧ (dy +Biydx
i) + F ys (1.33)

Note that the formulas are valid in both ways, i.e. they can be used to map a Type IIA

solution to a Type IIB one and vice-versa.

It is fundamental to understand what happens to a Type IIA D-brane when a T-duality

is performed. There are two possible outcomes:

• If the isometry chosen for the T-duality is wrapped by the D-brane in Type IIA,

then this brane gives rise to a (D-1)-brane in Type IIB

• If the isometry chosen for the T-duality is not wrapped by the D-brane in Type IIA

then this brane generally has to be smeared along this direction (otherwise it would

not be an isometry for the Type IIA solution). Consequently, the smeared D-branes

in Type IIA give rise to a single (D+1)-brane in Type IIB

It is important to stress that the two outcomes stated above represent what happens most

of the times and it is clearly possible to find complicated isometries or brane configurations

where these rules do not apply. Notably, as T-duality perfectly works in both directions,
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i.e. from Type IIA to Type IIB and vice-versa, the two observations above also apply in

both ways.

1.4.1 The standard Dp-brane solution

After introducing Type IIA supergravity in Section 1.3 and TypeIIB supergravity in Sec-

tion 1.4 it is now possible to write down the standard Dp brane solution. This is the

general solution sourced by a single stack of Dp branes wrapping the time direction and

the first p coordinates. Although these solution have a very similar form, it is important to

stress that they live in Type IIA supergravity when p is even and in Type IIB supergravity

when p is odd. They can be related to each other by repeatedly applying T-duality as

introduced in Section 1.4 and all can be derived from the standard solutions of eleven-

dimensional supergravity of Sections 1.2.1 and 1.2.2 by applying dimensional reduction

and/or T-duality.

The standard Dp-brane solution is given by the following metric, dilaton and poten-

tial [9]:

ds2
10 = H−1/2

p (−dt2 + ...+ dx2
p) +H1/2

p (dx2
p+1 + ...+ dx2

9)

eφ = H(3−p)/4
p

C01...p ∼ 1−H−1
p (1.34)

The warpfactor Hp depends only on the radius defined on the transverse space:

Hp = 1 +
αp
r7−p (1.35)

where αp is a dimensionful constant that depends on the number of Dp branes. The

family of solutions (1.34) is the fundamental building block to construct more elaborate

brane models, involving branes of different species or stacks of branes wrapping different

directions.

1.4.2 T-duality in action: branes within branes

We now apply the formulas from T-duality (1.31) to pass from the Type IIA D2 brane

solution revised in (1.23) to a Type IIB solution. We will then probe the obtained solution

using the action (1.21), which remains essentially the same in Type IIB provided that one

suitably adjusts the indices compatibly with the field content of this theory.

In the D2 brane solution (1.23) the D2 branes wrap t, x1, x2. Therefore according to

the discussion of Section (1.4) one could T-dualize along x2, obtaining a D1 brane solution,

or along x3, obtaining a D3 brane solution. Here we want do do something more general.

We choose to T-dualize along an intermediate direction between x2 and x3. Suppose that

this direction x̃ forms an angle α with x2, so that one has x3 = x̃ sinα and x2 = x̃ cosα.
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Defining

c = cosα s = sinα (1.36)

it is possible to T-dualize the D2 brane solution (1.23) along x̃ and then rewrite the new

Type IIB solution using the old coordinates x2 and x3. The Type IIB solution is given by:

ds2 = H−
1
2 (−dx2

0 + dx2
1) +K−1(dx2

2 + dx3
3) +H

1
2 (dx2

4 + ...+ dx2
9)

eφ = K−
1
2H

1
4

B2 = −cs(H 1
2 −H− 1

2 )K−1dx2 ∧ dx3

C2 = c(H−1 − 1)dx0 ∧ dx1

C4 = s(H−1 − 1)H
1
2K−1dx0 ∧ dx1 ∧ dx2 ∧ dx3 (1.37)

where we have defined

K = c2H−
1
2 + s2H

1
2 (1.38)

In (1.37) we preferred to write the potentials B2, C2 and C4 as full forms instead of directly

writing their components for better clarity. The Type IIB solution (1.37) interpolates

between a standard D1 brane solution and a standard D3 brane solution. Indeed, taking

x̃ = x2 in Type IIA one can just substitute s = 0 and c = 1 in (1.37), ending up with a

standard D1 brane solution. This confirmed by the fact that the T-duality direciton x2

was wrapped by the D2 branes in Type IIA, that hence loose one dimension in Type IIB.

In addition, one ends up just with a nontrivial C2 potential, which is sourced precisely by

D1 branes. Vice versa, taking x̃ = x3 one has to substitute s = 1 and c = 0 in (1.37),

ending up with a nontrivial C4 potential only, which is sourced by D3 brane. The hybrid

solution (1.37) seems to be sourced by both D1 and D3 branes. To confirm this intuition

it is useful to perform a probe calculation.

To prove that the solution (1.37) is sourced by D1 and D3 branes we need to take a

mixed D1-D3 probe that is parallel to the sourced branes. We hence take a D3 probe

wrapping t, x1, x2, x3. To turn on a D1 charge inside the probe it is sufficient to turn on

a constant potential F2 on the probe worldvolume:

F2 = fdx2 ∧ dx3 (1.39)

where f is a constant. Using the action (1.21) it is possible to compute the potential

energy V for the probe:

V = −K− 1
2H−

3
4

√
1 +A2 + C0123 + C01(B01 + F01) (1.40)
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where

A = K(F01 +B01) = fK − cs(H 1
2 −H− 1

2 ) (1.41)

Now (1.41) can be rewritten as

A = H
1
2 s(fs− c) +H−

1
2 c(fc+ s)

and therefore setting the constant f in (1.39)

f =
c

s
(1.42)

one gets A = H−
1
2 c/s and 1 + A2 = H−

1
2K/s2. Substituting these expressions in (1.40)

and assuming s ≥ 0 one has

V =
1

s
(1.43)

Hence there is no force exerted by the D1-D3 background on the D1-D3 probe for f = c/s,

the potential being constant.

As our D1-D3 probe is in equilibrium everywhere in the geometry defined by (1.37)

and as the latter is a supersymmetric solution, one can safely conclude that this geometry

is precisely sourced by D1-D3 branes. Aside from the properties of T-duality, this example

also shows how powerful the probe computation is. Probes will be used extensively in the

next chapters to provide checks and relevant information about the examined solution.
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CHAPTER 2

BUBBLED SOLUTIONS

2.1 Geometric Transitions

The solutions presented explicitly in Chapter 1 are all singular. There exist different

types of singularities in Supergravity and a priori singular doesn’t mean physically mean-

ingless. As an example, a curvature singularity that is cloaked by an horizon gives rise

to a physically acceptable black-hole like solution. However one of the most prominent

characteristics of String Theory is that it gives rise to many completely smooth solu-

tions. Smooth solutions are particularly attractive for many reasons: for instance, they

are widely used to explain some of the black hole paradoxes and to construct cosmological

models that match modern observations within String Theory.

The mechanism that gives rise to smooth solutions as opposed to singular solutions

is known as geometric transition [10, 11]. Consider for instance some localized branes

wrapping a circle. At weak effective coupling these objects can be described by studying

open strings that live on them. One can also estimate their number by integrating a

suitable field strength over a cycle that is dual to the initial circle. Then, if one increases

the coupling, the branes start to backreact on the geometry and the circle they wrap

shrinks to zero size, as a consequence of the metric. The branes now have to be described

by means of closed strings. At the same time, the dual gaussian cycle blows up and

becomes topologically nontrivial. As the localized branes vanish, their charges remain

dissolved into the fluxes that thread these cycles. The solutions obtained through this

mechanism are smooth, where smoothness is obtained at the cost of a more complicated

topology.

There is a nice simple example where one can get a mathematically friendly solution

starting from an apparently simple one which is found in a domain as simple as classical
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physics. Think of a charged point-particle at the center of empty space: this apparently

trivial construction is mathematically extremely elaborate. Not only the potential is diver-

gent at the location of the particle, but important quantities such as the charge densities

are not even functions but distributions. If one “blows up ” the charged point particle

into a uniformly charged sphere the electric potential is now continuous (but not derivable

at the radius of the sphere) and all the other quantities are much friendlier. Smoothness

is hence added at the cost of blown-up cycles. This mechanism is somehow analogous

to what happens in String Theory, where all the sophistications insured by a rigorous

theoretical framework insure that the overall solution is smooth.

The rest of this chapter is dedicated to the presentation of some of the most famous

smooth solutions in String Theory. These solutions are used to investigate different areas of

String Theory and the following chapters will contribute to make progress in the different

directions these solutions are analyzed for:

• In § 2.2 we present the smooth solution found by Lin, Lunin and Maldacena (LLM)

in [1]. Chapter 3 is dedicated to further analyzing this solution and showing the

existence of metastable states that break supersymmetry within this solution [12].

• In § 2.3 we describe the smooth geometries first constructed in [2, 3] that are used

to construct three-charge, five-dimensional BPS black hole microstates. These ideas

together with the proof of instability for similarly constructed microstates for near-

BPS black holes are further discussed in Chapter 4, that illustrates the main results

of [13].

• In § 2.4 the Klebanov-Strassler solution [4] is introduced. This solution is a fun-

damental tool to test the KKLT uplift mechanism [14] that aims at constructing

stable dS spaces in String Theory, hence creating solutions with a positive cosmolog-

ical constant as experimental observations require. Recent investigations underlined

some possible issues to this construction and in Chapter 5 we present the T-dual

solution of the KS solution as a first step to further test these issues in a different

duality frame than the original [15].

• The smooth solutions of § 2.3 can have also other purposes than being black hole

microstates. Indeed, by suitably modifying these solutions in Chapter 6 and reducing

them to five dimensions they can be used to construct the first N = 1 supergravity

solution where the Killing spinor is timelike and spacelike in distinct open regions of

the space [16]. These solutions hence nicely interpolates between the two different

classes (timelike and spacelike) that were classified in [17].
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2.2. The Lin-Lunin-Maldacena solution

2.2 The Lin-Lunin-Maldacena solution

In this Section we present the first example of bubbled solution, found by Lin, Lunin and

Maldacena in [1] and that will be further explored in Chapter 3. Originally, this was found

as a Type IIB solution, while here we present it in the eleven-dimensional duality frame

obtained by applying a suitable T-duality and then uplifting - see § 1.4 and § 1.3. This

operation is carried on in preparation of the analysis conducted in Chapter 3. The original

Type IIB solution is presented in Appendix A.1.

The LLM solution essentially represents a smooth solution of M2 branes polarized into

M5 branes where the brane charges are dissolved into flux instead of being polarized.

As recalled in § 1.1 a solution in eleven-dimensional supergravity consists of an eleven-

dimensional metric and a four-form field strength. For the LLM solution these fields are

given by1:

ds2
11 = H−2/3(−dt2 + dω2

1 + dω2
2) +H1/3

[
h2(dy2 + dx2) + yeGdΩ2

3 + ye−GdΩ̃2
3

]
(2.1)

G4 = −d(H−1h−2V ) ∧ dt ∧ dω1 ∧ dω2

+
[
d(y2e2GV )− y3 ?2 dA

]
∧ dΩ3 +

[
d(y2e−2GV )− y3 ?2 dÃ

]
∧ dΩ̃3 (2.2)

where the warp factor H is given by

H = e−2Φ = h2 − V 2h−2 (2.3)

Comparing (2.1) with (1.9) one can see that the metric (2.1) describes a three-dimensional

external space corresponding to the M2 brane worldvolume directions warped on an eight-

dimensional transverse manifold that consists of a two-dimensional subspace spanned by

the coordinates (y, x) and two three-spheres S3 and S̃3. The Hodge star ?2 refers to the

flat space spanned by (y, x). The functions A, Ã, h,G, V are given by

A =
z + 1

2

y2
Ã =

z − 1
2

y2
(2.4)

h−2 = 2y coshG G = arctanh(2z) (2.5)

y∂yV = ∂xz y∂xV = −∂yz (2.6)

The full solution is determined in terms of a single master function z(x, y) that obeys a

linear equation:

∂2
xz + y∂y

(
∂yz

y

)
= 0 (2.7)

The coordinate y plays a special role since it is the product of the radii of the two three-

spheres. At y = 0 at least one of the two three-spheres shrinks to zero size. For the

1Note that the four-form field strength as given in (2.35) of [1] is incorrect.
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geometry to be smooth, the shrinking three-sphere and the radial direction should combine

to form R4. This requires the function z to have a special behavior. The geometry is non-

singular if the boundary values of equation (2.7) are z = ±1
2 on the y = 0 line spanned by

x. As long as y 6= 0 there are two non-vanishing three-spheres, S3 and S̃3. At the y = 0

line, S3 shrinks to zero in a non-singular fashion if z = −1
2 , while S̃3 shrinks smoothly if

z = 1
2 . Both spheres shrink at the boundary of these two regions where they combine to

form R8.

One way to pictorially represent the boundary behavior of z in the y = 0 line is by

drawing black and white strips according to the value of z = ±1
2 . We depict this black

and white partitioning of the real line x in Figure 2.1.

x

x(1)

x(2)
x(3)

Figure 2.1: A general LLM solution in eleven-dimensional supergravity is defined by the
boundary values of z on the y = 0 line spanned by x. The line is hence divided into
segments (that are possibly semi-infinite), which are colored in white if z = +1

2 and in
black if z = −1

2 . A different partition of this line corresponds to a different solution of the
LLM family.

2.2.1 The multi-strip solution

A general LLM smooth solution is determined by a superposition of solutions to (2.6) and

(2.7) with the boundary value of z being ±1/2:

z0(x, y) =
1

2

x√
x2 + y2

(2.8)

V0(x, y) = −1

2

1√
x2 + y2

(2.9)

For the metric (2.1) to asymptote to AdS4×S7, i.e. the standard M2 brane solution (1.9),

the multi-strip solution must have a semi-infinite black region at one side of the y = 0 line

and a semi-infinite white region on the other. The simplest non-trivial solution corresponds

to a pair of finite-size white and black strips with adjacent semi-infinite black and white

regions, represented in Figure 2.1. A general multi-strip solution is then obtained by
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2.2. The Lin-Lunin-Maldacena solution

superposition:

z(x, y) =

2s+1∑
i=1

(−1)i+1z0(x− x(i), y) (2.10)

V (x, y) =

2s+1∑
i=1

(−1)i+1V0(x− x(i), y) (2.11)

where x(i) is the position of the ith boundary and s denotes the number of pairs of white

and black strips. For odd i the boundary changes from black to white while for even i the

boundary changes from white to black. This will be the general form of a smooth solution

corresponding to dielectric vacua of the mass-deformed theory.

2.2.2 M2 and M5 charges

We now show that the metric (2.1) indeed asymptotes to the standard M2 brane solu-

tion (1.9) With the coordinate transformation

y =
R2

2
sinα x =

R2

2
cosα (2.12)

the two three-spheres combine with the angle α to form a seven-sphere. For large radius R

the warp factor H reduces to the warp factor of an M2 brane and we precisely recover (1.9).

In § 1.1 it was recalled that the number of M2 branes N can be measured as:

N =
1

(2πlp)6

∫
S7
∞

?11G4 (2.13)

where S7
∞ is a seven-sphere in the asymptotic region that surrounds the M2 branes. From

the expansion of the warp factor of the multi-strip solution introduced in the previous

section we get:

R6H = 8

s∑
i=1

[
(x(2i+1) − x(2i))

i∑
j=1

(x(2j) − x(2j−1))
]
≡ 8T (2.14)

from which we get that the M2 charge of the solution is related to the strip widths as:

N =
T

4π2l6p
(2.15)

As discussed in [1], a useful way to represent a LLM geometry is through the Young

diagram corresponding to the momentum basis of free fermions. It is easy to see that T

corresponds to the number of boxes of the Young diagram associated to the particular

configuration. For a general multi-strip solution, the black and white regions map to the
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vertical/horizontal edges of the Young diagram with the edge sizes corresponding to the

sizes of the respective strips (see Figure 2.2 for an illustration).

w1 b2b1 w2

(a)

w1

b1

b2
w2

(b)

Figure 2.2: Correspondance between the partition of the real line that defines a general
solution (a) and the Young diagram (b), illustrated for a two-strips solution.

However, even though the metric (2.1) asymptotes that of an M2 brane solution, the

LLM solution as a whole does not asymptote to the M2 solution. Indeed, G4 does not

tend to the standard harmonic solution (1.9) (i.e. with legs along the M2 worldvolume

only) as it also contains two additional transverse terms. These are the non-normalizable

modes associated to the mass perturbation in the dual M2 brane theory. These transverse

fluxes give rise to a M5 dipole charge:

M =
1

(2πlp)3

∫
S4

G4 (2.16)

There are various topological 4-cycles in the multi-strip solution. For example, we can

consider an S4 containing an S3, which is obtained by fibering the S3 on a curve ξw that

encloses a white strip and whose boundary ends at y = 0 on a region where z = −1/2, i.e.

where the S3 smoothly shrinks to zero size, as illustrated in Figure 2.3.

Figure 2.3: The M5 charge corresponding to a white (black) strip is obtained by integrating
the four-form flux over a four-cycle obtained by fibering the S3 (S̃3) over the curve ξw (ξb)
whose end points lie in a region where the S3 (S̃3) shrinks to zero size.

For definiteness, let us consider the first white strip of length w = x(2)−x(1). We then
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obtain, from (2.2):

(2πlp)
3Mw = 2π2

∫
ξw

[
d(y2e2GV )− y3 ?2 dA

]
(2.17)

The function y2e2GV is smooth and globally well-defined and so the first term in (2.17)

does not contribute to the integral via Stokes theorem. The second term in (2.17) satisfies

the Laplace equation d(y3 ?2 dA) = 0. Hence we obtain:

(2πlp)
3Mw = 4π2

∫ x(2)

x(1)
dx

(
z +

1

2

) ∣∣∣
z=1/2

= 4π2
(
x(2) − x(1)

)
= 4π2w (2.18)

We learn that the M5 charge corresponding to the four-form flux through the S4 is pro-

portional the size of the white strip w. Similarly, the M5 charge Mb, corresponding to

four-form flux through an S̃4 containing an S̃3, obtained by fibering the S̃3 on a curve ξb,

is proportional to the size of the black strip b:

(2πlp)
3Mb = 4π2b (2.19)

Clearly, the same result also applies for a general multi-strip solution, which contains

various 4-cycles. From charge quantization, this result also gives the quantization condition

for the length of the strips and it agrees with the result found in [18].

As a further check of our normalizations, we note that we can compute the M2 charge

of the solution (2.13) from the IR data, using the transverse fluxes. We can do this by

deforming the S7 to the IR region y ≈ 0, according to S7
∞ = D7 + ∂M8, where D7 is a

shrinking region with y ≈ 0 andM8 is spanned by (y, x) and the two three-spheres. Since

the geometry is smooth the integral over D7 vanishes and (2.13) reduces to

(2πlp)
6N = −1

2

∫
M8

G4 ∧G4 (2.20)

where we used the equation of motion d ?11 G4 = −1
2G4 ∧ G4. The integral on the right

hand side of (2.20) can be shown to factorize into products of M5 charges over the various

four-spheres of a general multi-strip solution, given in (2.18) and (2.19). By taking into

account the correct orientation of the fluxes, there are cancellations that lead precisely

to the result (2.15), expressing N in terms of the number of blocks of the corresponding

Young diagram. We note that for the solution corresponding to a single pair of finite-size

black and white strips of length respectively w and b, the M2 charge is simply given by

N =
wb

4π2l6p
(2.21)

which indeed corresponds to the number of boxes of a rectangular Young diagram after
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taking into account the normalization (2.18).

In Chapter 3 we carry on a probe computation similar to that of § 1.4.2 to show that

a mixed M2-M5 probe has a flat potential in the LLM solution. This shows that one

can think of the LLM solution as being sourced by mixed M2-M5 branes, even though

there are no localized sources and the whole solution is smooth. More interestingly, it

will be shown that for some specific configurations of the probes M2-M5, these present

metastable minima that break supersymmetry in the solution [12]. The study of this

supersymmetry breaking is particularly interesting as in principle it can be linked to new

black hole microstate geometries. In addition, the study of the metastable configuration

can be paralleled with an analysis of supersymmetry breaking in the dual gauge theory.

2.3 Eleven-dimensional Microstate Geometries

In this section we review the construction of smooth eleven-dimensional, three-charge BPS

microstate geometries. These are smooth eleven-dimensional solutions that once compact-

ified to five dimensions are very similar to a class of three-charge black hole solutions, but

contrarily to the latter they remain completely smooth. Therefore, these solutions have

exactly the same charges and asymptotically the same metric as black hole solutions, but

have no horizon and the would-be infinite black hole throat is capped-off to a finite length.

At the bottom of the throat one can find the nontrivial topology that supports the flux

necessary to justify the asymptotic charges. Smooth solutions that simulate black hole

solutions are called black hole microstates. This notion will be further explained in Chap-

ter 4 and we will focus on the construction of eleven-dimensional, three-charge microstate

geometries in the meantime.

The solutions we are going to described were first found in [2, 3]. These preserve

N = 4 supercharges in 11D supergravity compactified on three tori. The metric and the

three-form potential are given by2:

ds2
11 = −(Z1Z2Z3)−

2
3 (dt+ k)2 + (Z1Z2Z3)

1
3ds2

4 + (Z1Z2Z3)
1
3

3∑
i=1

dx2
4+i + dx2

5+i

Zi

A(3) = A1 ∧ dx5 ∧ dx6 +A2 ∧ dx7 ∧ dx8 +A3 ∧ dx9 ∧ dx10 (2.22)

where k is the angular momentum vector, Zi are the three warp factors associated to the

electric conserved charges and dx2
4+i + dx2

5+i for i = 1, 2, 3 is the standard metric on a

torus. Note that the structure of (2.22) is very similar to the solution sourced by three

stacks of M2 branes (1.15), with the difference that (2.22) is completely smooth. Again,

this is achieved via a nontrivial topology. The metric of the base space of this solution,

2While in Chapter 1 we used H to denote warpfactor, we use here the symbol Z to make contact with
the notation that has become standard in the microstate literature. This notation will be maintained in
Chapter 4.
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ds2
4, is chosen to be a multi-center Gibbons-Hawking/Taub-NUT metric:

ds2
4 = V −1(dψ + ~A · d~y)2 + V (dy2

1 + dy2
2 + dy2

3) (2.23)

where

~∇× ~A = ~∇V (2.24)

and the Taub-NUT fiber ψ has period 4π. All the functions that appear in the solu-

tion (2.22) and in (2.23) depend on (y1, y2, y3), and the full solution is completely deter-

mined by specifying four harmonic functions:

V =
N∑
j=1

vj
rj

KI =

N∑
j=1

kIj
rj

I = 1, ...3 rj = |~y − ~gj | (2.25)

where N is the number of GH centers located at ~gi and (vj , k
I
j ) are parameters to specify.

Notice that one can potentially add some constants δV and δKI to the functions in (2.25)

so that the GH space asymptotes to R3 × S1 and the δKI generate some Wilson lines for

the three form in (2.22). As we want the GH space to asymptote R4 these constants are

taken to be zero.

Restricting to vj ∈ Z, the GH centers become benign orbifold singularities. The

geometry in (2.23) asymptotes to flat R4 if one also requires

N∑
j=1

vj = 1 (2.26)

The GH metric (2.23) is then ambipolar, meaning that its signature switches from (+,+,+,+)

to (−,−,−,−). However, as shown in [19], this is not a problem for the full solution (2.22),

which is everywhere smooth and has Lorentzian signature.

The warp factors ZI of the solution are

ZI = LI +
1

2
CIJK

KIKJ

V
(2.27)

where the LI are harmonic functions in the GH space. Requiring the ZI to be smooth at

the GH centers and fixing their asymptotic value to 1 imply that

LI = 1− 1

2
CIJK

N∑
j=1

kIj k
K
j

vj

1

rj
(2.28)

where CIJK ≡ |εIJK |. The BPS solution for the angular momentum vector k is written

as
~k = µ(dψ + ~A) + ~ω (2.29)
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where A is defined in (2.24) and µ is given by

µ =
CIJKK

IKJKK

6V 2
+
KILI

2V
+M (2.30)

with M another harmonic function. The vanishing of µ at the GH centers determines M

as

M = m0 +
1

12
CIJK

N∑
j=1

kIj k
J
j k

K
j

v2
j

1

rj
(2.31)

where m0 is a constant whose value is found requiring that k vanishes at infinity:

m0 = −1

2

N∑
j=1

∑
I

kIj (2.32)

The last form to define in (6.21) is ~ω, which is given by:

~ω =
1

24
CIJK

N∑
i,j=1

vivjΠ
I
ijΠ

J
ijΠ

K
ij ~ωij ΠI

ij ≡
kIj
vj
− kIi
vi

(2.33)

where, choosing a coordinate system with ~yi = (0, 0, a), ~yj = (0, 0, b) with a > b and

defining tanφ = y2/y1, one has:

~ωij = −y
2
2 + y2

1 + (y3 − a+ ri)(y3 − b− rj)
(a− b)rirj

dφ (2.34)

To avoid the existence of closed-timelike-curves (CTCs) it is necessary that

Z1Z2Z3V − µ2V 2 ≥ 0 (2.35)

holds everywhere in the GH space.

Furthermore, to avoid Dirac-Misner strings, the solution must satisfy the bubble equa-

tions that constrain the distances between the GH centers [20, 19, 3]:

N∑
j=1 j 6=i

Π
(1)
ij Π

(2)
ij Π

(3)
ij

vivj
rij

= −2

(
m0 vi +

1

2

3∑
I=1

kIi

)
(2.36)

whith ΠI
ij as in (2.33). Only N − 1 out of N bubble equations are independent: indeed

summing the LHS of (2.36) over i one gets zero as the ΠI
ij are anti-symmetric in ij. For

smooth microstate solutions this condition is equivalent to the vanishing of µ in (2.30) at

every GH center [21]. Finally the electric three-form in (2.22) is specified by

dAI = ΘI − d
(
dt+ k

ZI

)
(2.37)
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where ΘI are the dipole field strengths

ΘI = −
3∑

a=1

[∂a(V
−1KI)][(dψ +A) ∧ dya +

1

2
V εabc dy

b ∧ dyc] (2.38)

In the formula above A is the three form computed in (2.24). In the next section we give

a physical interpretation of some bubble solution and explain the role of the dipole field

strengths.

2.3.1 Conserved charges and bubbles

Expanding the warp factors ZI in (6.19) and the momentum vector of (6.21) it is possible

to read the three electric charges QI and the two angular momenta J1 and J2 preserved by

this solution. In particular, once the parameters (vj , k
I
j ) have been specified the charges

QI , and the sum of the angular momenta are:

QI = −2CIJK
N∑
j=1

v−1
j k̃Jj k̃

K
j

J1 + J2 =
4

3
CIJK

N∑
j=1

v−2
j k̃Ij k̃

J
j k̃

K
j (2.39)

where

k̃Ij ≡ kIj − vj
∑
s

kIs (2.40)

The expression for the difference of the angular momenta depends also on the positions,

~gi, of the GH centers [3]:

J1 − J2 = 8| ~D| ~D =
3∑
I=1

N∑
j=1

k̃Ij~gj (2.41)

The three electric charges QI and the two angular momenta J1 and J2 are the only

conserved charges of (2.22) and they can be seen from infinity. It is however useful to

understand where the bubbled cycles are in the solution (2.22) and what kind of flux

they are threaded by. Nontrivial cycles can be constructed by fibering the Gibbons-

Hawking coordinate ψ of (2.23) on a line connecting two GH centers gi and gj . As it

is clear from (2.23) the radius of the circle ψ vanishes at the location of a GH center

and therefore this fibration creates two-dimensional surfaces in the GH space that are

topologically equivalent to two-spheres S2. The dipole field strengths introduced in (2.38)

were introduced in the original construction of [2] precisely to measure the flux threading

53



2. Bubbled solutions

these bubbles. Denoting ∆ij the S2 stretched from gi to gj one finds:∫
∆ij

ΘI = ΠI
ij (2.42)

where the fluxes ΠI
ij are precisely those defined in (2.33). These fluxes prevent the various

two-cycles ∆ij from collapsing. Indeed, being threaded by fluxes, the various ∆ij should

collapse under the effect of gravity. At the same time the shrinking of these cycles is

opposed by a form of electrical repulsion and the balance between gravitational attrac-

tion and electrical repulsion is exactly what prevents these cycle from collapsing. The

fluxes (2.42) are not visible from infinity and they do not constitute conserved charges in

the rigorous sense, but they clearly contribute to the final conserved charges.

2.4 The Klebanov-Strassler Solution

The Klebanov-Strassler (KS) solution [4] is a Type IIB supergravity solution that preserves

four supercharges and is completely smooth, as there are no localized sources but only

fluxes threading a nontrivial topology. It can be thought of as the geometric transition of

the singular Klebanov-Tseytlin solution [22]. The latter is similar to a standard D3 brane

solution (1.34), where the six-dimensional external space is no longer euclidean, but is

substituted by a manifold called singular conifold. This is essentially a cone whose base is

topologically equivalent to an S2 × S3, that being Ricci-flat solves theType IIB equations

of motion. In the Klebanov-Tseytlin solution one further adds D5 branes parallel to the

D3 branes and wrapping the S2 within the singular conifold. As the S2 shrinks at the

tip of the cone so do the D5 branes, which hence cannot be seen from infinity and give

rise to a dipole charge rather than a conserved charge. This solution is clearly singular at

the location of the D3 branes and to make things even worse, this singularity cannot be

cloaked by an horizon, which compromises the overall physical validity of the solution.

The geometric transition in KS replaces the branes with fluxes and at the same time

puffs up some nontrivial cycles within the space transverse to the branes. Consequently,

the overall KS metric looks like the standard D3 brane solution (1.34), with a four-

dimensional warped Minkowski space and a (warped) six-dimensional internal space given

by a deformed conifold. The latter is still a cone over a base that is topologically equivalent

to an S2 × S3, but as a result of the geometric transition the S3 attains a finite radius at

the tip of the cone and is threaded by constant fluxes, while the S2 smoothly shrinks in

this region.

To write the full KS solution it is first necessary to parameterize the deformed conifold

and equip it with a Ricci-flat metric. In Chapter 5 we present three different coordinate

systems for this manifold, each of them suitable to show some of its specific properties.

Here it suffices to say that the base of the deformed conifold is a T 1,1 space, defined in [23]

54



2.4. The Klebanov-Strassler Solution

as the quotient manifold

T 1,1 =
SU(2)× SU(2)

U(1)
(2.43)

The T 1,1 space can be described by a combination of the Euler angles of the two SU(2),

consisting of two pairs of angles φi ∈ [0, 2π[ and θi ∈ [0, π[ with i = 1, 2 and a coordinate

ψ = ψ1 + ψ2 ∈ [0, 4π[ arising from the quotient. These, together with a coordinate τ ≥ 0

for the radius of the cone, will be referred to as the coset coordinates for the deformed

conifold. A standard basis of one-forms was found in [24]:

g1 =
e1 − e3

√
2

g2 =
e2 − e4

√
2

g3 =
e1 + e3

√
2

g4 =
e2 + e4

√
2

g5 = e5 (2.44)

where

e1 = − sin θ1 dφ1 e2 = dθ1 e3 = cosψ sin θ2 dφ2 − sinψ dθ2

e4 = sinψ sin θ2 dψ2 + cosψ dθ2 e5 = dψ + cos θ1 dφ1 + cos θ2 dφ2 (2.45)

Then the Ricci-flat Hyper-Kähler metric on the deformed conifold is [24]:

ds2
6 =

1

2
ε

4
3K(τ)

[
1

3K3(τ)
[dτ2 + (g5)2] + cosh2 τ

2
[(g3)2 + (g4)2] + sinh2 τ

2
[(g1)2 + (g2)2]

]
(2.46)

with

K(τ) =
(sinh 2τ − 2τ)

1
3

2
1
3 sinh τ

(2.47)

where ε is a deformation parameter. In particular, K(τ) is finite at the tip of the cone

τ = 0 and the metric (2.46) becomes the metric of a three-sphere whose radius depends

on ε, as will be shown in Chapter 5.

It is now possible to write the full Klebanov-Strassler solution. The metrics looks like

the standard D3 brane ansatz (1.34):

ds2
KS = h(τ)−

1
2 dxidxi + h(τ)

1
2ds2

6 (2.48)

where dxidxi is the standard four-dimensional Minkowski metric and ds2
6 is as in (2.46).

The warp factor h(τ) in (2.48) is given by:

h(τ) = (gsMα′)2ε−
8
3 2

2
3 I(τ) I(τ) =

∫ ∞
τ

dx
x cothx− 1

sinh2 x
(sinh 2x− 2x)

1
3 (2.49)

where I(τ) in (2.49) attains the value a0 ≈ 0.71805 for τ = 0 so that the whole space-

time (2.48) is smooth. The parameter M in (2.49) can be thought of as the quantized
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2. Bubbled solutions

number of D5 charge units preserved by this solution and measured by the three-form RR

field strength. The RR and NS-NS fields are written in the canonical basis of one-forms

on the deformed conifold (2.44):

B2 =
gsMα′

2
[f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4] (2.50)

F3 =
Mα′

2
{g5 ∧ g3 ∧ g4 + d[F (τ)(g1 ∧ g3 + g2 ∧ g4)]} (2.51)

F5 = F5 + ?F5 (2.52)

F5 = B2 ∧ F3 =
gsM

2(α′)2

4
`(τ) g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5

?F5 = 4gsM
2(α′)2ε−

8
3

`(τ)

K(τ)2h2 sinh2 τ
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ (2.53)

where the functions f, k, F, l are given by:

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) k(τ) =

τ coth τ − 1

2 sinh τ
(cosh τ + 1)

F (τ) =
sinh τ − τ
2 sinh τ

`(τ) =
τ coth τ − 1

4 sinh2 τ
(sinh 2τ − 2τ) (2.54)

The fields B2 in (2.50) and F3 in (2.51) are nonzero at the tip, while F5 smoothly vanishes

there. Away from the tip, F5 measures N = kM units of fluxes threading the T 1,1 space,

where k is an integer that jumps periodically with τ and is zero at the tip. Consequently,

if one relates the cone coordinate τ with the energy scale of the dual gauge theory, each

jump in the fluxes should represent a phase transition. Indeed, the KS solution is dual to

the four dimensional N = 1 SU(N +M)×SU(N) gauge theory. Each jump in the F5 flux

on the T 1,1 space corresponds to a Seiberg duality [25] between the SU(N +M)×SU(N)

and the SU(N +M)× SU(N + 2M) gauge theories. The puffing-up of the S3 at the tip

is due to the chiral symmetry breaking of the infrared physics of this gauge theory. These

concepts will become more clear in Chapter 5, where the KS solution will be T-dualized

to Type IIA following [15].
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Part II

Black holes and smooth solutions
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CHAPTER 3

METASTABILITY AND SUPERSYMMETRY BREAKING IN

THE LIN-LUNIN-MALDACENA SOLUTION

3.1 Outline: metastable supersymmetry breaking

In this chapter we analyze the metastable supersymmetry breaking in the context of the

LLM solution presented in Section 2.2. This is a smooth supergravity solution dual to the

mass-deformed M2 brane theory. This in turn is part of a class of gauge theory that can in

principle exhibit metastable supersymmetry breaking, namely that comprise metastable

states that break supersymmetry. This phenomenon is of primary importance to have

an insight into non-supersymmetric physics, possibly allowing to apply the technology of

String Theory beyond one of its natural theoretical limits that seem nowadays incompatible

with the real world, i.e. the fact that one is apparently constrained to study supersymmet-

ric physics only. It is fundamental to stress that these non-supersymmetric states are not

stable, but metastable. This means that they will decay to a stable supersymmetric state

in a finite (but possibly very long) amount of time. Indeed, stable non-supersymmetric

states cannot exist within a theory that is supersymmetric by construction. The fact that

one compromises to study only a metastable supersymmetry breaking is of utmost impor-

tance, as supersymmetry allows to exactly solve a much simplified version of the equations

of motion.

The existence of metastable non supersymmetric states in the mass-deformed M2 brane

theory was already shown in [26], where the potential energy of these states was analyzed

within the Polchinski - Strassler (PS) approximation [27]. In this chapter we will find the

analogous dual metastable states in the gravity-dual theory, namely the LLM solution [1].

We will also thoroughly explain and made use of the PS approximation.
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3. Metastability and Supersymmetry Breaking in the Lin-Lunin-Maldacena solution

In addition to this, it will also be shown that the LLM solution in the eleven-dimensional

duality frame consists of charges dissolved into flux of M2 branes polarized into M5 brane

shells, whose complete backreaction was already caught in [28], even though these solu-

tions are not smooth. This allows to give a better physical interpretation of the LLM

solution and its gauge theory dual, stronger connecting the main physical entities on both

sides of the gauge-gravity duality.

The strategy to show these results is to probe the LLM solution with M5 branes made of

polarized M2 branes with positive or negative charge, wrapping contractible three-cycles.

• When the M2 charges have the same orientation as the background charges, we find

that the M5 brane potential has global supersymmetric minima. These correspond

to the dielectric vacua of the mass-deformed theory, and we will see that they are

geometrized precisely by an LLM solution with an additional pair of black and white

strips.

• Allowing the M5 brane probes to have M2 charge opposite to the charge dissolved

in the background fluxes, we find that the M5 brane potential has a metastable

minimum close to the North Pole of one of the four-spheres (i.e. near an LLM

strip boundary), at least for some regime of parameters. This configuration decays

via non-perturbative bubble nucleation toward one of the supersymmetric dielectric

vacua corresponding to an LLM solution.

The polarized M2-M5 branes in question will be treated as probes, namely we do not take

into account their backreaction on the geometry. While for the BPS probes we can easily

identify the corresponding solution to be an LLM geometry with an additional strip, for

non-BPS probes the backreaction is much more challenging.

The M2-M5 probe action in eleven dimensional supergravity is quite involved and while

it is in principle possible to realize the program described above, the cumbersome formulas

might make the physical interpretation of the results highly nontrivial. To overcome this

trick it is much more convenient to work in the Type IIA duality frame by reducing the

LLM solution as written in Section 2.2 along the coordinate ω2 using then procedure

delineated in Section 1.3. In this duality frame one can use D4-F1 probes instead, using

the action (1.21) and computing the potential of the hybrid probe in a similar fashion

as in Section 1.4.2 As the two frames are related by a duality transformation the results

can be equivalently stated for the Type IIA frame with D4-F1 probes or for the eleven-

dimensional frame with M2-M5 probes. In the following we will always describe our results

talking about M2-M5 probes whenever no ambiguity is implied, even if the computations

are always carried on in the dimensionally-reduced frame.

This chapter is organized as follows. In § 3.2 we show the IIA reduction of the LLM

M-theory background and we use it to derive the Hamiltonian for a probe M5 brane with

dissolved M2 charge in the worldvolume, wrapping a contractible 3-cycle. We also derive
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3.2. The LLM solution in the Type IIA frame

a limit of the Hamiltonian describing a one-dimensional problem relevant to the study of

its minima. In § 3.4 we study supersymmetric global minima of the probe Hamiltonian.

We also show explicitly that such polarized supersymmetric probes are geometrized by an

LLM solution with additional strips. In § 3.5 we show that the probe Hamiltonian admits

metastable configurations and we obtain an analytic expression for the position of the min-

ima using a Polchinski-Strassler – type approximation. We then discuss the decay process

of these metastable probes to supersymmetric minima corresponding to dielectric vacua

of the mass-deformed M2 brane theory. We illustrate the discussion of supersymmetric

and metastable minima by plotting the Hamiltonian for a particular example in § 3.4 and

§ 3.5 respectively. We end with a discussion and a list of open problems in § 3.6. Some

additional technical details about the computations can be found in Appendix A.3, A.2

and A.4.

3.2 The LLM solution in the Type IIA frame

To compute the potential for M2 branes polarizing into M5 branes it is convenient to work

with the type IIA reduction of the M-theory solution (2.1)-(2.2) along ω2. We relegate

a detailed discussion of the type IIA solution to Appendix A.2 and summarize here the

result. The metric and fluxes are:

ds2
IIA = H−1(−dt2 + dω2

1) + h2(dy2 + dx2) + yeGdΩ2
3 + ye−GdΩ̃2

3 (3.1)

B2 = −H−1h−2V dt ∧ dω1 (3.2)

F4 =
[
d(y2e2GV )− y3 ?2 dA

]
∧ dΩ3 +

[
d(y2e−2GV )− y3 ?2 dÃ

]
∧ dΩ̃3 (3.3)

To compute the polarization potential in the next section we will also need the explicit

expressions for the RR gauge potentials C3 and C5. Since C1 = 0 we have F4 = dC3 and

?F4 = F6 = dC5 + H3 ∧ C3. In the multi-strip solution (2.10)-(2.11) we can solve these

equations analytically. For C3 with legs on the S3 we have

c3(x, y) =

2s+1∑
i=1

(−1)i+1 2(x− x(i))2 + y2

2
√

(x− x(i))2 + y2
+ x+ y2e2G(x,y)V (x, y) + c (3.4)

In the next section we will discuss in details the role of the constant c corresponding to a

gauge choice for c3. The RR five-form potential C5 for the multi-strip solution with legs

on the S3 is

c5(x, y) =
2y2

1− 2z(x, y)
− y2 +

c3(x, y)V (x, y)

H(x, y)h(x, y)2
(3.5)

Similar expressions are obtained for the RR forms with legs along S̃3 (see Appendix A.2).
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3. Metastability and Supersymmetry Breaking in the Lin-Lunin-Maldacena solution

3.3 The probe action

We are interested in the potential for M5 branes carrying M2 charge in the M-theory

solution discussed in § 2.2. The same potential is obtained from probe D4 branes carrying

F1 charge placed in the dimensionally reduced IIA solution discussed in § 3.2. Hence we

consider a D4 brane wrapped on a three-sphere of the internal space and which carries

dissolved F1 charge along ω1. The embedding is given by t = σ0, ω1 = σ1 and σ2, σ3, σ4

along the three-sphere. The probe D4 brane action is computed by means of (1.21):

SD4 = −µ4

∫
d5σe−Φ

[
− det

(
gab + 2πα′Fab +Bab

) ]1/2

+ µ4

∫ [
C5 + (2πα′F2 +B2) ∧ C3

]
(3.6)

where F2 is the induced worldvolume field strength on the brane

F2 = Edσ0 ∧ dσ1 (3.7)

and µ4 is the D4 brane tension

µ4 =
2π

gs(2πls)5
=

1

(2π)3µ1l3p
(3.8)

where for future use we expressed this quantity in terms of the F1 string tension µ1 = 2πα′

and the eleventh dimensional Planck length lp. In the background (3.1), with RR gauge

potentials given by (3.4) and (3.5), we obtain after integrating on the three-sphere S3:

SD4 =

∫
d2σL(E) (3.9)

with

L(E) = −µ4VS3

[
y3/2e3G/2H1/2

√
H−2 − (E +B2) + c5 + (E +B2)c3

]
(3.10)

where VS3 is the volume of the three-sphere spanned by σ2, σ3 and σ4 and we recall that

the warp factor H is given by H = h2 − V 2h−2. In order to compute the potential for

the D4 brane we need to express the Lagrangian in terms of the F1 charge, which is

proportional to the electric displacement [29, 30]:

n =
∂L(E)

∂E ≡ µ1VS3µ4 p (3.11)

The Hamiltonian is obtained from the Legendre transformation:

H = nE − L(E) (3.12)
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3.3. The probe action

This gives the potential for D4 branes with dissolved F1 charge or, equivalently, for M5

branes with dissolved M2 charge:

H = µ4VS3

[
H−1

√
Hy3e3G + (p− c3)2 − pB2 − c5

]
(3.13)

In the subsequent sections we will study the dynamics of M2 branes polarizing into M5

brane probes as described by this Hamiltonian. Note that we can also consider polarization

into multiple M5 branes. The Hamiltonian for m M5 branes is obtained multiplying (3.13)

by an overall factor m and exchanging p→ p/m.

While we will focus on M5 branes wrapping the S3 a similar analysis can be carried

out for M5 branes wrapping the S̃3. To obtain the Hamiltonian one just has to replace

G → −G and VS3 → VS̃3
in (3.13) and substitute c̃3 and c̃5 for the RR fields whose

expression is given in Appendix A.2.

To avoid clutter coming from the normalization (3.11), when normalizations are not

needed we will often simply use p for the M2 charge.

3.3.1 One-dimensional Hamiltonian

To study the minima of the potential (3.13) of a probe M5 brane wrapping the S3 of a

multi-strip solution we substitute c3 and c5 with (3.4)-(3.5). To avoid clutter we drop the

overall normalization factor in (3.13). It can be shown that the Hamiltonian minimizes on

the y = 0 axis, when either one or both of the three-spheres shrink to zero size. We can

thus reduce the problem to one dimension finding the explicit form of the Hamiltonian

on the y = 0 line. Since we are considering an M5 brane wrapping the background S3,

the interesting dynamics will happen inside white strips where S3 is of finite size. We will

thus focus on the y → 0 limit of the Hamiltonian in the region of the real line where the

master function z takes the value +1/2. When approaching a white strip, the function z

in (2.10) behaves as

z(x, y) =
1

2
− y2ζ2

+(x) +O(y4) (3.14)

which defines the function ζ2
+(x). For a multi-strip solution (see § 2.2.1), this function is

given by

ζ+(x) =
1

2

√√√√2s+1∑
i=1

(−1)i+1
|x− x(i)|

(x− x(i))3
(3.15)

The function V (x, y) then approaches V+(x):

V+(x) = −1

2

2s+1∑
i=1

(−1)i+1

|x− x(i)| (3.16)
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3. Metastability and Supersymmetry Breaking in the Lin-Lunin-Maldacena solution

The warp factor and the B-field can be expressed as follows:

H+(x) =
ζ2

+(x)− V 2
+(x)

ζ+(x)
B+(x) = − V+(x)

ζ2
+(x)− V 2

+(x)
(3.17)

The three-form gauge potential approaches

c+
3 (x) =

2s+1∑
i=1

(−1)i+1|x− x(i)|+ x+
V+(x)

ζ+(x)2
+ c (3.18)

and the five-form gauge potential approaches

c+
5 (x) =

1

ζ2
+(x)

− c+
3 (x)B+(x) (3.19)

We give the details of this derivation in Appendix A.3 and we will discuss in a moment

the gauge choice for c. The Hamiltonian for a probe M5 brane wrapping the S3 restricted

to white strips on the y = 0 line is then given by

H+(x) = H+(x)−1

√
H+(x)

ζ3
+(x)

+
[
p− c+

3 (x)
]2 −B+(x)

[
p− c+

3 (x)
]
− 1

ζ2
+(x)

(3.20)

In the following we study the global and local minima of this Hamiltonian for the multi-

strip solution of § 2.2.1. We are most interested in probe M5 branes carrying M2 charge

that polarize inside white strips at finite distance from the strip boundaries. This is

illustrated for the simplest bubbling solution in Figure 3.1.

Figure 3.1: The topology of a single pair of finite-size white and black strips that are
smoothly connected to a semi-infinite black strip on the left boundary and to a semi-
infinite white strip on the right boundary. We consider (in red) probe M5 branes with
dissolved M2 branes wrapping the S3 that remains of finite size in the white strip region.

We note that one can also consider the y → 0 limit of the Hamiltonian in the black

region where the S3 wrapped by the probe M5 brane shrinks to zero size. Naively one

would expect the potential to vanish inside this region since the M5 brane has shrunk to

zero size. Due to the non-trivial structure of supersymmetric M2 brane minima which we

will discuss in § 3.4.1 this is not the case in general and we will study what happens inside
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3.4. Analysis of the supersymmetric minima of the probe potential

black strips in § 3.4.5.

3.4 Analysis of the supersymmetric minima of the probe

potential

We now look for supersymmetric minima of the probe Hamiltonian (3.20) that describes

M5 branes wrapping the S3 and is restricted to the white strip regions of the real line

y = 0. To satisfy H+ = 0 we have to impose∣∣∣∣c+
3 (x)− V+(x)

ζ+(x)2
− p
∣∣∣∣ ζ+(x)−

(
c+

3 (x)− V+(x)

ζ+(x)2
− p
)
V+(x) = 0 (3.21)

As we will show, there are two different ways to solve (3.21). Correspondingly, there exist

two different kinds of minima: those where the probe M5 brane shrinks to an M2 brane,

and those where the M5 retains a finite-size. This second class of minima proves that the

building blocks of the LLM solution are indeed M5 branes with dissolved M2 branes, dual

to the dielectric vacua in the mass-deformed M2 brane theory and are the analogue of the

ones found in [26].

3.4.1 Degenerate minima

To satisfy (3.21) we observe that

lim
x→x(i)

V+(x)

ζ+(x)
= (−1)i (3.22)

which means that the probe Hamiltonian can have supersymmetric minima located at the

boundaries x(i) of the strips. This is as expected, since at these locations both S3 and S̃3

shrink to zero size, while our probe simply reduces to an M2 brane. As the background

is maximally supersymmetric and sourced by dielectric M2 branes, a probe M2 would feel

zero force if it preserves all the 16 supercharges, i.e. if it has the same orientation as the

M2 sources. To fully solve (3.21) for x = x(i) we notice that V+
ζ2+

= 0 at the boundaries.

Hence defining the effective M2 charge

peff+ (x(i)) = p− c+
3 (x(i)) (3.23)

we see that the Hamiltonian has a supersymmetric minimum at the boundary x(i) if

peff+ (x(i)) > 0 (i odd) peff+ (x(i)) < 0 (i even) (3.24)

The physical meaning of peff+ is clear: inserting the M5 probe in a white strip close to a

boundary x(i), part of its M2 charge p is screened by the value of the potential c+
3 (x(i)).
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3. Metastability and Supersymmetry Breaking in the Lin-Lunin-Maldacena solution

Indeed, from (3.20) we see that the effective M2 charge of the probe close to a boundary

is peff+ rather than p.

Eq. (3.21) shows that M2 branes are BPS at odd boundaries, while anti-M2 branes are

BPS at even boundaries. Another way to check this is to plot the potential for M2/anti-M2

probes which, using G4 = dA3, is given by

HM2/anti−M2 = H−1 ∓A012 = (h2 ∓ V )−1 (3.25)

This potential has indeed minima at the y = 0 line at odd or even boundaries respectively

for − or +. This is also confirmed by the analysis of the supersymmetry projector [18, 31].

3.4.2 Polarized minima and dielectric vacua

The second way to solve (3.21) is to require the expression inside the absolute value and

the brackets to vanish. This yields for the location of the supersymmetric minima:

xsusy =
1

2

(
p+ x(1) + Σl

b − Σr
b − c

)
(3.26)

where Σl
b and Σr

b are the total size of the black strips that are respectively to the left

and right of the white strip in which the probe M5 brane polarizes. In addition to the

degenerate minima, we see from (3.26) that the Hamiltonian has minima located at a

finite distance away from the boundaries. In the following, we will explicitly prove that

these are the minima that correspond to vacua of the mass-deformed M2 brane theory.

Depending on the value of the constant c in (3.26) such minima exist for positive as well

as negative induced M2 charge p. The value of this constant corresponds to the gauge

choice used to describe the physics at the supersymmetric minimum. We will come back

to this gauge choice in detail in § 3.5.3 where we need to understand the effect on the

probe brane when changing gauge. In the remainder of this section we will fix the gauge

suitably to avoid cumbersome notation.

We mention that a result similar to (3.26) applies as well for M5 branes wrapping the

S̃3 which is non vanishing inside black strips. There are thus two channels into which a

collection of (anti-) M2 branes can polarize: either into an M5 brane wrapping the S3 or

into an M5 brane wrapping the S̃3. These are the different polarization channels that arise

in the probe analysis [27, 26]. For simplicity, from now on we will focus on polarization

inside the white strips. Polarization inside the black strips will be however important in

§ 3.5.3 to describe the final supersymmetric configuration metastable branes can decay to.

As a final remark, we stress that (3.26) holds even for the Hamiltonian with m M5

probe charge, provided that one replaces p with p/m.
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The Polchinski-Strassler expansion

We now want to show that one can get the same result (3.26) expanding the Hamiltonian

using the Polchinski-Strassler approximation [27]. The latter is a two-step expansion of

the potential of a dielectric probe:

1. One first expands the potential for large distances from the sources and/or from the

bubbled cycles supporting fluxes

2. Then one expands the potential in power series of the ratio of the probe charges,

hence supposing that one charge is much smaller than the other

As explicitly shown in § 2.2, in this region the M-theory solution approaches the AdS4×
S7 background perturbed by the four-form fluxes transverse to the M2 brane worldvolume

directions, corresponding to the mass deformation in the dual M2 brane theory. The

minimum we will find momentarily expanding the Hamiltonian in the geometry containing

backreacted M5 branes is in agreement with the minimum found in [26] where the four-

form fluxes were treated as perturbation of AdS4×S7. Note that in [26] the M5 potential

was investigated directly using the Pasti-Sorokin-Tonin action [32], while here we are

recovering the same result using the type IIA reduction.

Starting from the full Hamiltonian (3.13) it is convenient to first perform the coordinate

change (2.12), expand the Hamiltonian at large R and then define

r2 = R2 cos
(α

2

)
r̃2 = R2 sin

(α
2

)
(3.27)

where r is the radius of S3 and r̃ is the radius of S̃3. These are related to the original x

and y coordinates as

y = rr̃ 2x = r2 − r̃2 (3.28)

In this way one can get an approximate expression for the Hamiltonian in the ultraviolet.

As the probe is wrapping S3, the Hamiltonian minimizes for r̃ = 0, i.e. for α→ 0, which

coincides with the y → 0 requirement of the previous section. Hence for r large and r̃ = 0

one has for the metric functions appearing in (3.13)

H−1 ∼ r6

N
+ r2 Hy3e3G ∼ N (3.29)

and for the form fields

B2 ∼
r6

N
+
r2

2
c3 ∼

2N

r2
c5 ∼ −r4 (3.30)

where N is related to the M2 charge of the background given by (2.20). Inserting these
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expansions into (3.13), the Hamiltonian reduces to:

H ∼
(
r6

N
+ r2

)√
N +

(
p− 2N

r2

)2

− pr6

N
− pr2

2
+ r4 (3.31)

In [26] the probe is taken to have a much larger M2 charge than M5 charge. This reduces

to the requirement p >>
√
N , which allows to Taylor expand the square root in (3.31) to

get the final result1

H ∼ pr2

2
− r4 +

r6

2p

=
r2

2p

(
r2 − p

)2
(3.32)

which is in perfect agreement with the result of [26]. Notice that the two higher order

terms ∼ pr6/N in (3.31) representing the M2 brane potential cancel out, andH is a perfect

square as expected because of supersymmetry. The Hamiltonian (3.32) has a minimum

for r2 = p, which is nothing but (3.26) in the ultraviolet.

Restoring the correct mass dimension µ that comes with the four-form flux perturba-

tion, one can check that the r4 term is linear in µ, while the r2 term has mass dimension

µ2 (see for example §4.2 of [33] for a simple review of the holographic origin of the po-

larization potential (3.32)). Note that this term cannot be explicitly computed in the

Polchinski-Strassler – type analysis performed in [26], since in that case the background

is computed only to first-order in the transverse flux perturbation and thus only at linear

order in µ. However, it can be correctly guessed from supersymmetry just completing the

square and our result confirms this rather explicitly.2

We can actually say much more. In the previous discussion we focused on the UV

region and so we neglected the widths of the LLM strips in the IR. However, our analysis

is not restricted to the asymptotic region. Firstly, the expression (3.32) also approximates

the Hamiltonian for small x, i.e. near a strip boundary x(i), if we identify 2(x−x(i)) ∼ r2

in (3.20). The location of the minimum is then in agreement with (3.26). The reason why

the probe potential is described by the same expression (3.32) inside finite-size strips is

easy to understand. The r6 term comes from the three-sphere the probe M5 is wrapping,

and so this term is the same for both types of white strips. For the r4 term things are

much less obvious and naively this term seems to depend on the details of the backgrounds.

However, by the magic noticed in [27, 26], this term only depends on the UV boundary

conditions, since it comes from an expansion of a form which is both closed and co-closed.

The r2 term then is fixed by supersymmetry and hence is again the same for both types

1One can also directly get this result by expanding the Hamiltonian (3.20) for large x setting 2x ∼ r2

and keeping only the leading terms in 1/p.
2In type IIB, the AdS5 × S5 background perturbed by three-form fluxes at second order has been

computed in [34, 35], reproducing the PS result.
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of strips. This is indeed the reason why one can safely compute the brane polarization by

putting all the M2 branes at the origin: when they are puffed-up the probe will still feel

the same potential. Again, since we are now probing the full geometry we can check this

rather explicitly.

3.4.3 Backreaction of a supersymmetric probe configuration

Consider an arbitrary LLM solution with strips located at boundaries x(1), . . . , x(2s+1),

and let us focus on the asymptotic region very far from the strips, i.e. x >> x(2s+1). The

analysis of the previous sections shows that a probe M5 brane with dipole charge m and

with large M2 charge n, will polarize in this region at

x ≈ n/m

2µ1µ4VS3

(3.33)

where we wrote p in terms of the probe charge by using (3.11). What is the supergravity

solution corresponding to this probe M5 brane? It is easy to show that this solution is

found by adding an additional black strip carrying M5 charge Mb = m , precisely at the

location (3.33). In fact, the M2 charge of such solutions is, using the relations (2.21), (2.19)

and (3.8):

N ≈ n/m

2µ1µ4VS3

× Mb

2πl3p
= n (3.34)

which nicely matches the M2 charge of the probe. Hence, this explicitly confirms that

the LLM solutions correctly geometrize the supersymmetric minimum found in the probe

limit. A similar, though more involved, correspondence between DBI and SUGRA was

studied for supertubes in bubbling backgrounds in [36, 37].

Repeating the same reasoning for the case of the supersymmetric minima (3.26) that

arise inside the white strips is straightforward but more tedious. The backreaction of the

probe sitting at those minima are again captured by an LLM solution with additional pair

of white and black strip.

We stress that a completely similar analysis can be carried out for supersymmetric

minima that arise for M5 brane probes wrapping the S̃3 which is non-vanishing inside the

black strips.

3.4.4 Example: LLM solution with a single pair of white and black strips

- part I

We now specialize the previous discussion to a simple example. We focus on the simplest

LLM geometry containing dielectric branes, namely the solution corresponding to a single

pair of finite-size white and black strips and we consider the dynamics of probe M5 branes

within the white strip, i.e. M5 branes wrapping three-cycles in the M-theory solution (2.1)-
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3. Metastability and Supersymmetry Breaking in the Lin-Lunin-Maldacena solution

(2.2). The white region of interest is smoothly connected to a semi-infinite black strip on

the left boundary and by a finite-size black strip on the right boundary which smoothly

connects to a semi-infinite white strip. We denote by w = x(2) − x(1) and b = x(3) − x(2),

respectively, the widths of the finite-size white and black strip (see Figure 3.1). Without

loss of generality we set x(1) = 0 and we fix the gauge so that c+
3 (0) = 0.

We first discuss degenerate supersymmetric minima that arise at the boundary of the

strips. On the left boundary of the white strip (x = 0) the Hamiltonian simplifies to

H+(0) = (|p| − p) w(w + b)

b
(3.35)

Hence for p ≥ 0 the Hamiltonian has a supersymmetric minimum at the left boundary,

where the S3 the M5 brane is wrapping shrinks to zero size. On the right boundary of the

white strip (x = w) the Hamiltonian simplifies to

H+(w) = [|2w − p| − (2w − p)] wb

(w + b)
(3.36)

and hence for p ≤ 2w the Hamiltonian has a supersymmetric minimum at the right

boundary. Note that c+
3 (0) = 0 and c+

3 (w) = 2w and so we have peff = p on the left

boundary and peff = p − 2w on the right boundary. Hence, the conditions on p to have

supersymmetric minima at the boundaries agree with the conditions that peff > 0 on the

left boundary and peff < 0 on right boundary as discussed in § 3.4.1.

As we discussed in the previous section, we expect that the M2 branes sitting at the

boundary of the white strip will polarize into BPS M5 branes, as illustrated in Figure 3.1.

The backreaction of those probe branes is captured by an LLM geometry with an addi-

tional black and white pair of strips. The general result (3.26) for the position of such

supersymmetric minima now simplifies to:

xsusy =


p

2
, finite size white strip

b+
p

2
, semi-infinite white strip

(3.37)

We show the minimum in the asymptotic region and the minimum inside the white strip

in Figure 3.2.

3.4.5 Wrapped Dirac strings

So far we have discussed the Hamiltonian of a probe M5 brane wrapping the S3, which

is of finite size inside white strips. The probe can polarize at a finite distance from a

boundary inside a white strip or has degenerate minima at the boundaries of the strip

where S3 shrinks to zero size. Inside black strips the probe reduces to M2 branes and the

Hamiltonian is thus determined by the dynamics of those M2 branes. In the following we
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Figure 3.2: Supersymmetric global minima of the probe potential, illustrated for a solution
with w = 10 and b = 3: (a) A minimum in the semi-infinite white strip; the minima in
this asymptotic region correspond to those found in [26]. (b) A minimum inside the white
strip.

explain what happens inside black strips.

In an analogous way as for white strips we can take the y → 0 limit of the Hamiltonian

(3.13) for black strips, i.e. for regions where the master function z takes the value −1/2.

We refer to Appendix A.3.2 for details and state here the result:

H−(x) =
1

ζ−(x)2 − V−(x)2

[
ζ−|p− c−3 (x)|+ V−(x)(p− c−3 (x))

]
(3.38)

with V−(x) = V+(x) and ζ−(x) given by (A.34). The three-form potential reduces to

c−3 (x) =

2s+1∑
i=1

(−1)1+i|x− x(i)|+ x+ c = x(1) + 2Σw + Σb + c (3.39)

where s is the number of pairs of finite-size white and black strips of the configuration,

Σw is the total width of white strips to the left of the black strip in which we study

the Hamiltonian and Σb is the total width of black strips in the solution. Note that the

three-form potential is constant inside black strips.

The Hamiltonian (3.38) is considerably simpler than the Hamiltonian (3.20) because

the M5 brane is of zero size in black strips and, hence, the Hamiltonian is dictated by the

dynamics of the dissolved M2 branes. From (3.38) we see that the Hamiltonian vanishes

inside a black strip if the M2 charge of the probe equals the value of the three-form

potential inside that black strip. We can understand this as follows. The effective M2

charge peff− (x(i)) = p − c−3 (x(i)) corresponds to the M2 charge at the boundary x(i) of a

black strip. Hence if peff− (x(i)) = 0 there are no (anti-) M2 branes at the boundary x(i)

and the Hamiltonian (3.38) describing “nothing” vanishes everywhere inside that black

strip.

If the effective M2 charge inside the black strip is non-zero, the situation is more
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Figure 3.3: The Hamiltonian in black strips describing “nothing”. The Hamiltonian van-
ishes inside the semi-infinite black strip for p = 0 while it vanishes in the finite-size black
strip for p = 2w.

involved. Recall from the discussion of degenerate minima of the Hamiltonian in § 3.4.1

that the M2 brane probe potential (3.25) has minima at the y = 0 line at odd or even strip

boundaries depending on whether the effective M2 charge (3.23) is positive or negative.

Hence, for non-zero values of the M2 charge, the Hamiltonian (3.25) vanishes only at

one of the boundaries of the black strip. The Hamiltonian inside the black strip is then

determined by the potential felt by M2/anti-M2 branes:

VM2/anti−M2 = |peff− |HM2/anti−M2 (3.40)

One can indeed check that the Hamiltonian (3.38) coincides with the potential felt by M2

branes if peff− > 0 while it coincides with the potential felt by anti-M2 branes if peff− < 0.

We illustrate the flattening for the example of the single pair of white and black

strip introduced in § 3.4.2. The semi-infinite black strip and the finite-size black strip

are located respectively at −∞ < x < 0 and w < x < w + b on the y = 0 axis (see

Figure 3.1) where the three-form potential (3.39) takes the constant values b + c and

2w+ b+ c respectively. Choosing c = −b yields a gauge where c+
3 (0) = 0 and consequently

c+
3 (w) = 2w. The M5 brane Hamiltonian then vanishes inside the semi-infinite black strip

for peff (x(1)) = 0 which implies p = 0. The Hamiltonian vanishes inside the finite-size

black strip for peff (x(2)) = 0 corresponding to p = 2w. We illustrate this for w = 10 and

b = 3 in Figure 3.3.

3.5 Metastable supersymmetry-breaking minima

In this section we study local minima of the Hamiltonian (3.20) that are not supersym-

metric. We will focus on the white strip [x(2i−1), x(2i)]. As we will show, according to the

value of p in (3.20) there can be metastable minima close to the left boundary x(2i−1) or
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3.5. Metastable supersymmetry-breaking minima

close to the right boundary x(2i) of the strip. In order to avoid clutter we will fix the gauge

such that c+
3 = 0 at the boundary of the strip we are expanding around which implies

peff+ = p at that boundary. For definiteness, we will focus on metastable minima close

to x(i) with i odd and p negative, so that the probe is no longer BPS. We first derive

analytic expressions that approximate well the location of such local minima, by using a

Polchinski-Strassler–type of expansion. We then focus on the simple example of a single

pair of white and black strip and we study the full Hamiltonian numerically. We end with

a discussion of the decay process for the metastable probe.

3.5.1 Analytic results

In order to get analytic control over the M5 brane Hamiltonian, we would like to Taylor

expand it around the boundary x(i), with i odd and p negative. While this expansion can

be rather cumbersome, we should realize that for small enough |p|, many terms are actually

subleading. Hence, it is sensible to keep only those terms that are of the leading order in

p at the minimum. For x(i) < x < x(i) + |p| the Hamiltonian (3.20) is well approximated

by:

H+ ≈ −p
[
B+(x) +

1

H+(x)

]
+ c+

3 (x)

[
B+(x) +

1

H+(x)

]
− 1

ζ2
+(x)

− 1

p

1

2ζ3
+(x)

(3.41)

This is nothing but the familiar form of the potential for polarized branes [38]. The term

that is linear in p is the force felt by probe anti-M2 branes in the background geometry, the

term that is constant in p comes from the p-independent Wess-Zumino action and the p−1

term comes from the metric of the wrapped three-sphere. Starting from this expression,

one can Taylor expand around x(i), keeping in mind that it is enough to keep only the

leading terms. This can be easily achieved by noticing that

− 1

2ζ3
+(x)

= −4(x− x(i))3 +O
(

(x− x(i))5
)

(3.42)

and

−
[
B+(x) +

1

H+(x)

]
= a1 + a2(x− x(i)) +O

(
(x− x(i))2

)
(3.43)

where a1 and a2 are constants whose values depend on x(i):

a1 = 2

 2s+1∑
j=1,j 6=i

(−1)j

|x(i) − x(j)|

−1

(3.44)

a2 =
3

4

 2s+1∑
j=i+1

(−1)j

(x(i) − x(j))2
−

i−1∑
j=1

(−1)j

(x(i) − x(j))2

 (a1)2
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Writing 2(x−x(i)) ≈ r2, in terms of the radius r of the wrapped three-sphere S3, we finally

see that (3.20) is well-approximated for small r and small |p| by:

H+ ≈ p a1 + p
a2

2
r2 − 1

2p
r6 (3.45)

If a2 > 0 the Hamiltonian always has a metastable minimum at

r2 = |p|
√
a2

3
(3.46)

We can explicitly check that the terms of the potential (3.45) are detailed balanced, namely

at the minimum the last two terms scale with the same power of p. One can also check

that the omitted terms scale at the minimum with sub-leading power of |p|.

We would like to comment on an important difference between the metastable probe

potential (3.45) and the supersymmetric potential (3.32). In the latter case, the minimum

arise from a balance of r2, r4 and r6 terms which combine to give a perfect square. In

the present case, the r4 term of the potential is missing, and the polarization is caused

by the negative r2 term. This term comes from the imperfect cancelation of gravitational

attraction and electric repulsion that the anti-M2 probes feel in the background. In our

case the term is negative since anti-M2s are repelled from the left boundary x(i), thus

making the polarization more likely.

When |p| grows, the approximation (3.45) breaks down and we would need to keep

next-to-leading order pieces to study the behavior of the potential. While this can be

done, the general result is rather cumbersome, so we will postpone the discussion to a

particular example in the next section. We anticipate that by including the new terms,

or by studying the full potential numerically as we will do in § 3.5.2, one can see that

the metastable minimum will disappear above a critical value of the anti-M2 charge.

Above that value the potential shows a perturbative instability toward one of the globally

supersymmetric minima described in § 3.4, which are located at the right boundary of the

strip.

The discussion regarding local minima in white strips close to even boundaries x(2i) is

completely analogous but, as discussed in § 3.4.1, the role of M2 and anti-M2 branes are

exchanged so that at even boundaries anti-M2 branes are BPS and the supersymmetry

breaking polarized M5 brane contains M2 brane charge. One finds the same structure of

metastable minima as before but now for small positive p. To show this, one can start

with the analogue of (3.41), which is given by:

H+ ≈ −p
[
B+(x)− 1

H+(x)

]
+ c+

3 (x)

[
B+(x)− 1

H+(x)

]
− 1

ζ2
+(x)

+
1

p

1

2ζ3
+(x)

(3.47)
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Expanding in 2(x(i) − x) ∼ r2 one gets

H+ ≈ −p a1 + p
a2

2
r2 +

1

2p
r6 (3.48)

If a2 < 0 the above expression minimizes at r2 = p
√
−a2

3 and the discussion then proceeds

as before.

3.5.2 Example: LLM solution with a single pair of white and black strips

- part II

We now discuss the existence of metastable minima of the probe Hamiltonian in the

example of the single pair of white and black strips introduced in § 3.4. We consider a

probe M5 brane with induced anti-M2 charges close to the left boundary of the finite-size

white strip at x = 0 (see Figure 3.1) and we expand the Hamiltonian for small values of

x. The leading-order approximation (3.45) reduces to:

H+ ≈ |p|
2w(w + b)

b
− |p| 3(2w + b)

b
x+

4

|p| x
3 (3.49)

It is easy to see that this potential has a metastable minimum at

xmeta =
|p|
2

√
1 +

2w

b
(3.50)

where the approximated potential (3.49) is

H+(xmeta) ≈ |p|
2w(w + b)

b
− p2

(
1 +

2w

b

)3/2

(3.51)

We note that the terms in the potential (3.49) are detailed balanced: at the minimum

x ∼ |p| the last two terms scale like p2. This approximates well the potential for small p

and small x, as shown in Figure 3.4(a). When |p| increases, the approximation breaks down

and eventually the minimum disappears, see Figure 3.4(b). We also plot in Figure 3.5 the

full Hamiltonian (3.13) by keeping the dependence both on x and y; one can easily see

that the Hamiltonian indeed minimizes at y = 0.

To capture the transition from a metastable to an unstable configuration at the critical

value p? of the anti-M2 charge, one could include higher order terms in the expansion of

the Hamiltonian. These are all the terms that, at the minimum, scale with the same

next-to-leading power of p. We find however simpler to study directly the zeroes of the

derivative of the potential numerically. We find that for the example w = 10, b = 3, the

transition happens around p? ≈ −1.5. We studied numerically the dependence of p? on the

widths of the strips for various examples. One can easily show in this way that increasing

the width of the white strip in which the metastable M5 polarizes, i.e. increasing the
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Figure 3.4: (a) Metastable minimum for negative p. The dashed line is the leading order
approximation of the Hamiltonian as given in (3.49). Below we give a Contour plot of
(3.13) in the x−y plane which shows that the Hamiltonian indeed minimizes on the y = 0
axis. (b) For larger |p| the minimum disappears.
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Figure 3.5: Contour plots in the (x, y) plane of Figure 3.4. Darker colors mean lower
energy. (a) The metastable minimum (on the left) and the supersymmetric minimum (on
the right) are at y = 0. (b) The metastable minimum has disappeared and there is only
the supersymmetric minimum (on the right) at y = 0.

four-form flux Mw on the S4, |p?| grows and hence one can have a metastable M5 brane

with larger and larger number of anti-M2 branes dissolved in its worldvolume. This is

quite similar to the metastable configuration in [39, 30].

However, we remark that even if p < p?, one can always find a metastable probe

minimum just by considering polarization into multiple M5 branes, as discussed in § 3.3.

In fact, one can divide the |p| anti-M2 branes in m groups and make the single group

polarize. One obtain a configuration with m M5 branes on top of each other, polarized at

a radius proportional to p/m. Hence, we can bring p/m > p? by a suitable choice of m.
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3.5. Metastable supersymmetry-breaking minima

3.5.3 Decay of metastable branes

We have seen that for induced anti-M2 charge, the probe M5 brane has locally stable

minima at small but finite distance away from odd strip boundaries. These minima are

classically stable since there is a non-perturbative barrier toward the global supersymmet-

ric minimum close to the other strip boundary. Quantum mechanically, our probe will

decay via bubble nucleation to this supersymmetric minimum. We now briefly describe

how this process will take place. A similar mechanism was described in [39, 30], but in the

present case there is some additional subtlety due to the presence of Dirac strings that we

would like to clarify. While we will present the decay process for the example of the single

pair of white and black strips it should be understood that the discussion carries over to

the decay of metastable probes placed in any strip of a general multi-strip configuration.

The decay of the metastable M5 brane probe can be understood as brane-flux anni-

hilation of its induced anti-M2 charge against the M2 charge dissolved in the background

flux. Recall that the four-form flux through the four-sphere that stretches between the

left and right boundary of the white strip, and which contains the S3 the M5 brane is

wrapping, is given by (see § 2.2.2)

(2πlp)
3Mw =

∫ x(2)

x(1)
dc+

3 = c+
3 (x(2))− c+

3 (x(1)) (3.52)

The M5 brane couples magnetically to c+
3 and so, when it sweeps out the four-sphere

S4 from the North Pole to the South Pole, the amount of four-form flux through the

orthogonal four-sphere S̃4 changes by one unit. Since we need at least two patches (the

North Pole patch and the South Pole patch) to describe this process, we need to understand

what happens to the probe when we change patch.

So far, we worked in a gauge where the three-form potential vanishes at the boundary

of the strip that we are expanding around, which translates to fixing the constant c. This

ensures that we work in a patch with no Dirac strings at that boundary and is thus

the correct gauge in order to describe the physics of metastable minimum close to this

boundary. When the metastable M5 brane tunnels to the stable minimum close to the

other boundary, its quantized anti-M2 charge p stays the same, but its effective anti-M2

charge

peff+ (x(i)) = p− c+
3 (x(i)) (3.53)

changes. Without loss of generality we consider metastable probes close to the boundary

x(1) of the white strip and gauge fix c+
3 (x(1)) = 0. In this patch “1” we denote by

p1 ≡ p the quantized anti-M2 charge of the probe. The effective anti-M2 charge at

the left boundary is peff+ (x(1)) = p1 − c+
3 (x(1)) = p while after the decay we have at

right boundary peff (x(2)) = p − Mw. Once the probe M5 brane has tunneled to the

supersymmetric minimum close to the boundary x(2) we need to change patch in order
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to correctly describe the physics at that minimum. The gauge transformation parameter

when changing from patch “1” (no Dirac strings at x(1)) to patch “2” (no Dirac strings at

x(2)) is

γ12 = c+
3 (x(1))− c+

3 (x(2)) = −Mw (3.54)

When changing patch the effective anti-M2 charge (3.53) stays the same while the quan-

tized anti-M2 charge changes according to

p2 = p1 + γ12 = p−Mw (3.55)

where p2 denotes the quantized anti-M2 charge in the patch where there are no Dirac

strings at the boundary x(2). Hence after the decay there are |p2| = |peff (x(2))| = |p−Mw|
anti-branes at the right boundary.

To summarize, in order to describe the vacuum structure and the dynamics of the

probe one has to work in a fixed gauge and thus keep the quantized charges of the probe

fixed. To describe the physics of the probe in a minimum close to the left/right boundary

of a strip before and after the decay one has to work in a gauge where there are no Dirac

strings at that boundary (North/South Pole of the four-sphere).

In the decay process the quantized anti-M2 charge of the metastable probe changes

according to (3.55) by

∆p = p2 − p1 = −Mw (3.56)

Furthermore, as we have explained above, when the probe sweeps out the four-sphere

between the boundaries x(1) and x(2) it changes the four-form flux through the orthogonal

four-sphere, given by Mb, by one unit. Hence, the initial M2 charge dissolved in the

background flux as given by N1 = MwMb differs from the final M2 charge precisely by the

amount (3.56). The final background M2 charge dissolved in flux is

N2 = Mw(Mb + 1) (3.57)

Note that the number of anti-branes actually increases during the decay and so does the

amount of background flux. It is thus probably more suitable to call this decay process

brane-flux creation.

One can easily check that this decay process conserves the total M2 charge of the

background as measured in the UV:

NUV = N IR +Nflux (3.58)

where N IR denotes the the M2 charge due to the presence of the probe brane and Nflux

denotes the M2 charge dissolved in the background fluxes. Before the decay NUV
1 =

p+MwMb while after the decay NUV
2 = p−Mw +Mw(Mb + 1) = NUV

1 .
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When the metastable M5 brane probe close to the boundary x(1) decays to the de-

generate supersymmetric minimum at the boundary x(2), the initial |p| units of induced

anti-M2 charge become |p−Mw| anti-M2 branes located at x(2). At this boundary anti-M2

branes are supersymmetric. According to the discussion of § 3.4.2 the |p −Mw| anti-M2

branes can polarize into a supersymmetric minimum inside the black strip adjacent to the

boundary x(2). We can also consider the mirrored situation: probe M5 branes with small

positive induced M2 charge p which are metastable close to the boundary x(2) and decay

to the degenerate supersymmetric minimum at the boundary x(1). The p+Mw M2-branes

are supersymmetric at this boundary and can further polarize into a supersymmetric min-

imum inside the semi-infinite black strip.

While so far we have discussed polarization of multiple (anti-) M2 branes into a single

M5 brane we can also consider polarization into multiple M5 branes both for the initial

metastable as well as the final supersymmetric configuration. Polarizing |p| anti-M2 into

mb metastable M5 branes wrapping the S3 modifies the quantized anti-M2 charge after

the decay to p2 = p −mbMw. Likewise, the flux through the orthogonal sphere changes

not by one but by mb units so that the final M2 charged dissolved in the background flux is

N2 = Mw(Mb +mb). After the decay the |p−mbMw| anti-M2 branes can further polarize

into a single or multiple M5 branes. As discussed in § 3.4.2 polarization into mw M5 branes

wrapping the S̃3 shifts the location of the supersymmetric minimum (3.26); hence one can

always find a supersymmetric minimum inside the black strip by considering polarization

into multiple M5 branes. This guarantees that metastable M5 branes, after decaying in the

S3 channel to a degenerate minimum, can always polarize into a smooth supersymmetric

minimum in the S̃3 channel. The decay process thus corresponds to the tunneling of

metastable M5 branes carrying (anti-) M2 charge to a supersymmetric minimum dual to

a dielectric vacuum of the mass-deformed M2 brane theory.

3.6 Future developments

The most interesting future development of our analysis would be finding the backreacted

solution corresponding to the metastable M5 branes. Since the backgrounds we are probing

correspond themselves to the backreaction of M5 branes with M2 charge dissolved in flux,

we believe that it should be possible to extend some of the techniques recently used to

study anti-branes backreaction in flux compactifcations (see for example [40, 41, 42]) to

study the metastable M5 gravity solution. Only in this way we could explicitly check

if the gravity solution is smooth and indeed corresponds to spontaneous supersymmetry

breaking.

This would also be needed to understand the dynamics of the metastable M5 brane

once its full backreaction is taken into account, along the lines of [33]. In particular, it is

suggestive that in the probe approximation we detect a negative r2 term in the polarization
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potential. In a full backreacted regime, this implies that the throat created by the anti-

branes repels a fellow anti-brane, thus signaling a tachyonic direction. If this happens

for our metastable branes, this would point toward a more rich dynamics than the probe

non-perturbative bubble nucleation picture would indicate.

Furthermore, since our result is quite similar to the metastable supertube found in [43,

44] in the probe approximation, finding the backreaction of our metastable M5 brane

could give insight into the more challenging non-BPS supertube backreaction, and thus

into the construction of large classes of non-extremal black hole microstate geometries in

the context of the fuzzball proposal. In this context the study of the dynamics of non-

BPS probes in a fully backreacted background would be crucial to understand black hole

emission and to compare it with the semi-classical expectation.
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CHAPTER 4

INSTABILITY OF NEAR-BPS MICROSTATE GEOMETRIES

4.1 From the black hole entropy paradox to the Fuzzball

Proposal

4.1.1 The entropy puzzle for black holes

One of the most puzzling issues in modern theoretical physics concerns the information

paradox in black holes. Black holes arose in the theoretical framework of General Relativity

as early as 1916, when Schwarzschild found the first spherically-symmetric stationary

solution to Einstein’s equations. This solution exhibited new stunning and simple features:

a singularity at the center of the space (we assume one uses spherical coordinates in 4d)

screened by an event horizon at some fixed radius rS . The event horizon is a spherical

surface that separates spacetime in two distinct regions. In the inner region all causal

curves have to terminate on the singularity, which pictorially corresponds to the notion

that nothing can escape from a black hole. At the same time, the timelike Killing vector

associated to time translation invariance becomes null on the event horizon and spacelike

in the inner region. These new stunning features depend on core assumptions on general

relativity, and during the next fifty years more complex black hole solutions were found,

such as the Reissner-Nordström solution (an electrically charged black hole) in 1916-1918

and the Kerr solution (a spinning black hole) in 1963. The main features of these two

nontrivial solution were joined in the Kerr-Newman solution in 1965, which describes the

geometry of a rotating and electrically-charged black hole. Subsequently, many different

black hole solutions were found in higher dimensions and lately in supersymmetric theories.

A major breakthrough in our understanding of black holes was made by Bekenstein

and Hawking in 1973, where field theory computations in the proximity of a black hole
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4. Instability of near-BPS microstate geometries

event horizon led to the conclusion that an entropy can be associated to black holes, which

for a simple Schwarzschild black hole is given by:

SBH =
kA

4l2P
lP =

√
G~
c3

(4.1)

where k is the Boltzmann constant, A is the area of the event horizon and lP is the planck

length. Remarkably, the very same structure remains valid for charged and spinning black

holes (with some modifications for the expression of A) and in higher dimension (where one

just needs to adjust lP ). Aside from the notable fact that an object as stunning as a black

hole possesses an entropy, the importance of (4.1) relies on the quantities that determine it.

To date, the Bekenstein-Hawking formula remains the only rigorously derived formula that

involves the characteristic constants of the main branches of physics: thermodynamics (via

the Boltzmann constant), gravity (via the Newton constant G), relativity (via the speed

of light constant c) and quantum mechanics (via ~). Therefore, the study of black holes

can really connect these fundamental branches of modern physics and shed some light on

their connections.

As the study of black holes progressed, many theorems were established in the sixties

and seventies that constrained the form of a black hole solution. Most notably, it was

proved that a black hole solution in General Relativity is uniquely determined by the

conserved charges of the black hole. At the same time, the fact that an entropy of the

form (4.1) can be associated to a black hole, led to the conclusion that black hole are

perfectly valid thermodynamic systems, that are prone to be studied by a statistical ap-

proach. Hence, given the entropy SBH for a black hole, thermodynamics establishes that

this system is composed by a number of states proportional to eSBH . However, it is not

clear what these states are and where they come from, since given the conserved charges

only one solution exists to Einstein’s equations. Clearly the theorem about black hole

solutions and the thermodynamical interpretation of black holes cannot coexist together.

A possible resolution of the tension between General Relativity and thermodynamics

was searched in the fundamental principles these two branches are constructed on. On

one side, the validity and generality of thermodynamics was not to be questioned, as its

results were proven and established since the late nineteenth century. On the other side,

the experimental results of General Relativity confirmed the scientific value of this theory

precisely while the black hole entropy mystery was discovered.

For quite some time people tried to explicitly construct the black hole microstates

to match the expectations from SBH by inserting additional structures in the region of

black hole horizons. However, this strategy proved to be unsuccessful, as any structure

added in the proximity of the horizon is unstable by definition (which is also the physical

explanation of the theorem that states that black hole solutions are uniquely determined

by the conserved charges of the system).
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It was not until 1996 that a possible explanation about the mysterious black hole

entropy was found, thanks to String Theory.

4.1.2 The fuzzball proposal

In 1996 Strominger and Vafa [45] studied a BPS brane system that upon compactification

leads to a black hole solution. While in ten dimensions many systems of the same kind

can be constructed, these all lead to the same black hole once one reduces to five dimen-

sions. Strominger and Vafa managed to count the number of possible different states in

ten dimensions, which matched exactly the expectations from the Bekenstein - Hawking

formula. The computation was carried on in a regime of parameters where gravity was

completed turned off, and it was subsequently possible to extend this result to every pos-

sible regime of parameters thanks to supersymmetry. String Theory made it possible to

shed light onto a paradox that remained completely unsolved for more twenty years.

To date, one of the most promising theoretical frameworks that aims at solving black

hole paradoxes in the contest of String Theory is the Fuzzball Proposal [46, 47], which we

are going to briefly summarize. We stress that this is still a conjecture and some work is

still to be done to prove its full validity.

According to the Fuzzball proposal, General Relativity is a valid description for a black

hole only up to the horizon scale. Beyond the horizon the notions of space and time break

down and General Relativity loses its physical meaning. The inner region beyond the event

horizon is to be replaced by a quantum superposition of black hole microstates, namely

geometries that are similar to the would-be black hole, each of them being smooth. At

the same time, the event horizon only becomes a length scale that marks the transition

from the General Relativity description to the Fuzzball description. Each microstate is

inaccessible from far away, meaning that from the point of view of General Relativity one

cannot distinguish among them, but if one could zoom in one would be able to see that

microstates are all slightly different from one another. The number of microstates that are

superimposed quantum mechanically should match the predictions from the Bekenstein-

Hawking entropy (4.1).

Given a specific black hole solution in General Relativity, it is fundamental to un-

derstand what a microstate looks like. It turns out that a microstate is a solution of

Einstein’s equations that simulates a black hole far away from the would-be singularity,

but contrarily to the latter has a very long throat which is capped off at the end (while

the throat has in general infinite length for BPS black holes). It is also constrained to

have the same charges of the would-be black hole. It is precisely at the bottom of the long

throat that microstates can differ. As microstates are smooth solutions in Supergravity,

they must have no localized sources and hence microstates fall in the class of supergravity

solutions that arise from the phenomenon of geometric transition discussed in Chapter 2.

The charges of a microstates derive by flux supported by nontrivial topological cycles at
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the bottom of the microstate throat. The number and orientation of these bubble is al-

lowed to vary while keeping the overall charges constant. In the fuzzball proposal, once

an infalling object falls through the horizon scale it starts bouncing from microstate to

microstate, hence making it extremely improbable for it to exit from the fuzzball. This

simulates the fact that once something falls into the black hole horizon in General Rela-

tivity it will never come out again. Note that while this is physically impossible from the

point of view of General Relativity, it is just extremely improbable from the point of view

of the fuzzball.

Note that as the fuzzball proposal can be consistently formulated only in the context

of String Theory, it offers a possible explanation of the entropy mystery only for specific

classes of BPS black holes.

4.1.3 Instability of near-BPS microstates

Despite the success in constructing microstates for BPS black holes, the world of non-BPS

non-extremal microstates remains quite unexplored. The few known exact solutions in the

JMaRT class [48, 49, 50, 51, 52] and the Running-Bolt class [53, 54], though horizonless,

do not have the right charges to correspond to a black hole with a classically-large horizon

area.

In parallel to these efforts, it was argued in [44] that one can systematically obtain

very large classes of microstate geometries for non-extremal black holes by placing a su-

pertube [55] at metastable minimum inside the known BPS microstate geometries. The

energy ∆M of this supertube then gives the mass above extremality of the solution. Al-

though no exact solutions in this class are known, one can argue that the supertubes

should backreact into a smooth solution1, and hence one expects that there should ex-

ist a very large number of bubbled microstate geometries corresponding to near-extremal

black holes. Since supertubes have charges opposite to those of the black hole, these

bubbled geometries would have cycles that are wrapped both by positive and by negative

fluxes, and this is exactly the structure that Gibbons and Warner have proven to be nec-

essary if one is to replace non-extremal black holes by stationary horizonless black hole

solitons [56, 57, 58].

Furthermore, since these microstate geometries have neither inner nor outer horizon,

they should be thought of as resolving the singularity of the non-extremal black hole

all the way to the outer horizon, which is backwards in time from the location of the

singularity. This pattern of singularity resolution is rather extraordinary and, if confirmed

by the construction of fully backreacted non-extremal microstate geometries, it would have

important implications not only for black hole singularities but also for cosmological ones.

1For supersymmetric solutions it was shown that the Born-Infeld equations governing the supertube
are equivalent to those ensuring smoothness and absence of closed timelike curves in the fully-backreacted
solution [36].
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There is another important difference between the non-extremal microstate geometries

in the JMaRT and Running Bolt classes, and the near-extremal microstates constructed

using anti-supertubes. The JMaRT geometry is unstable [59] (and so is the Runnning

Bolt one [60]) and this instability, which comes from the existence of an ergoregion, can

be matched precisely to the fact that the D1-D5-P CFT state dual to the JMaRT geometry

is also unstable [61, 62, 63]. Furthermore, it has been argued that a similar ergoregion

instability should be present in all non-extremal microstate geometries [64].

On the other hand, the near-extremal microstate geometries of [44] are obtained by

placing probe anti-supertubes inside extremal bubbling geometries at metastable minima

of their Hamiltonian, and hence these configurations could in principle be much longer

lived than one expects for a typical near-extremal microstate by studying the D1-D5 CFT.

Indeed, the near-extremal CFT states consist of a very large number of (supersymmetric)

left-mover momentum modes and a much smaller number of supersymmetry-breaking right

movers, and it seems very difficult to prepare states where the annihilation of these modes

is suppressed such that the decay takes place over very long time scales.

In this chapter we resolve this tension by showing that the near-BPS microstate ge-

ometries that one obtains by placing metastable anti-supertubes inside long scaling solu-

tions [44] can in fact lower their energy when the bubbles of the scaling solution move

relative to each other. Hence, what appears to be a metastable configuration from the

point of view of the action of a probe brane is in fact an unstable one if one takes into

account the degrees of freedom corresponding to the motion of the bubbles.

We study a scaling microstate geometry that is constructed using seven collinear

Gibbons-Hawking centers [21] as well as an anti-supertube probe. If one keeps the GH cen-

ters collinear, the supertube Hamiltonian will have both supersymmetric and metastable

minima [43], corresponding respectively to microstate geometries for supersymmetric and

non-extremal black holes. For the latter, the mass above extremality of the black hole,

∆M , is simply equal to the value of the Hamiltonian in the metastable minimum.

However, it is well known that supersymmetric solutions that are constructed using

N GH centers have a 2N − 2-dimensional moduli space, that is parameterized by the

solutions of the N − 1 bubble (or integrability) equations that govern the inter-center

distances [20, 19, 3]. Hence, the mass above extremality, ∆M , is in fact a function of

the position in the moduli space. Thus, if one is to prove that the supertube minimum

corresponds to a metastable black hole microstate, one must also show that ∆M has a

minimum when the GH points are collinear, and does not decrease as one moves around

the moduli space2. We show that it does.

2Things are even a bit more complicated: as the GH points move in the 2N − 2-dimensional space of
solutions to the bubble equations the SU(2) angular momentum of the BPS solution, JL, changes and
hence the solutions do not correspond to the same black hole. For fixed values of the charges and angular
momenta the moduli space of microstates of the corresponding black hole is a constant-JL slice of the
2N − 2 space of solutions to the bubble equations, and has therefore dimension 2N − 5.
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Indeed, if one examines ∆M as a function of certain moduli space directions one finds

that the collinear GH configuration corresponds to a saddle point, and ∆M can in fact

decrease as some of the centers move off the axis. Our result implies that the instability

is triggered by the motion of the bubbles threaded by flux. As the configuration moves

away from the saddle point, the kinetic energy of the bubbles increases, and we expect this

to result in gravitational radiation that will relax the system towards a supersymmetric

minimum.

One can also estimate the time-scale characteristic to this instability, as well as the

energy emission rate, as a function of the charges and mass of the solution as well as of

the other parameters of the non-extremal microstate geometry. To compute the time-scale

we estimate the energy of the configuration as a function of the tachyonic rotation angle

in the GH base space of the solution, as well as the kinetic term corresponding to the

motion in the moduli space. The latter calculation is performed by formally interpreting

our solution as a multi-center four-dimensional solution whose constant in the Taub-NUT

(D6 brane) harmonic function has been set to zero. We then argue that the kinetic term

corresponding to the angular motion we consider is the same as the one obtained by

replacing some of the centers of the bubbling solution with the corresponding black hole

and black ring. This allows us to compute this term and to find its scaling with the length

of the black hole microstate throat.

We also check whether the microstate decay channel we study is similar to the decay

channel one expects for a typical microstate of a D1-D5-P near-extremal black hole, which

was computed in [65] and nicely follows from Stephen’s law in five dimensions. There are

three quantities that one can compare: the emission rate, the frequency peak energy and

the typical radius of the microstate [66]. By changing the parameters of the microstate

solutions we scan over, we can get any two of these parameters to agree, but not the

third. This indicates that the particular non-extremal microstate geometries that we are

considering are not typical.

This is not at all unexpected: of all the microstates of the BPS black hole we have

chosen to uplift to a non-BPS one only a particular one, corresponding to seven collinear

GH centers with certain fluxes on them. Furthermore, the starting configuration is clearly

not a typical representative of the microstate geometries of the BPS black hole - one can

find even more complicated solutions with a GH base where the centers are not aligned,

and we expect from [67] that the typical states that contribute to the entropy of this

black hole come from superstrata excitations of solutions with a GH base, that depend on

arbitrary functions of two variables. Hence, it is hard to expect generically that the uplift

of the non-typical seven-center BPS microstate geometry will give us a typical non-BPS

microstate geometry whose decay rate will match that of the black hole.

Our investigation has two important conclusions:

• Microstate geometries of non-extremal black holes are unstable, and therefore the
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dynamics of these black holes should correspond to a chaotic motion of mutually-

non-supersymmetric centers at a bottom of a black-hole like throat.

• There exists a new decay channel for antibranes in solutions with charge dissolved

in fluxes. Normally one studies these antibranes by considering them as probes

in a solution and examining their action while assuming that the solution remains

unchanged. Our investigation shows that this approach can give misleading results,

and in order to determine whether an antibrane is metastable or unstable one should

examine its full interactions with the moduli of the underlying solution.

This chapter is organized as follows. In § 4.2 we review the construction of the near-BPS

microstates found in [44] and give some physical interpretation. In § 4.3 we explicitly show

that these near-BPS microstates are unstable along a direction in the moduli space. Then

in § 4.4 we compute the energy emission rate for a decay along the channel corresponding

to this direction. We then study how the emission rate and other quantities scale with

the length of the throat and the charges of the solution. We also compare the microstate

emission rate, emission frequency and radius to those corresponding to the typical states

in the black hole thermodynamic ensemble. We present some future directions in § 4.5.

4.2 Near-extremal three-charge black hole microstates

4.2.1 Microstate geometries for BPS black holes with large horizon area

The smooth horizonless microstate geometry that has the same charges and supersymme-

tries of a five-dimensional three-charge BPS black hole and has a Gibbons-Hawking (GH)

base space was presented in § 2.3 in the context of bubbled solution. Its metric is given

by:

ds2
11 = −(Z1Z2Z3)−

2
3 (dt+ k)2 + (Z1Z2Z3)

1
3ds2

4 + (Z1Z2Z3)
1
3

3∑
I=1

dx2
3+2I + dx2

4+2I

ZI
(4.2)

where the ZI are the warp factors corresponding to the three charges, k is the angular-

momentum 1-form and ds2
4 is the metric of the GH base:

ds2
4 = V −1(dψ +A)2 + V (dy2

1 + dy2
2 + dy2

3) (4.3)

All the quantities appearing in (4.2) and (4.3) are defined following the standard proce-

dure [2, 3] detailed in § 2.3, so that:

• The microstate solution is completely smooth

• The five-dimensional subspace spanned by time and the GH space asymptotically

becomes flat and minkowskian
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The whole background is determined once one fixes the number N of GH centers, as well

as the residues of the four harmonic functions V and KI at these centers:

V =

N∑
i=1

vi
ri

KI =

N∑
i=1

kIi
ri

ri = |~y − ~gi| (4.4)

where ~y = (y1, y2, y3) and ~gi is the position of the i-th pole in the same subspace. The

particular BPS microstate geometry we will study in this chapter has N = 7 GH centers,

whose (vi, k
I
i ) parameters are symmetric with respect to the GH center in the middle3:

v1 = 20 v2 = −20 v3 = −12 v4 = 25

k1
i =

5

2
|vi| k2

i = k̂|vi| k3
i =

1

3
|vi| i = 3, 4

k1
1 = 1375 k2

1 = −1835/2 + 980k̂ k3
1 = −8260/3

k1
2 = 1325 k2

2 = −1965/2− 980k̂ k3
2 = 8380/3

v8−i = vi kI8−i = kIi i = 1, 2, 3 (4.5)

where the meaning of k̂ will become clear in a moment.

As explained in § 2.3, the distances rij between the GH centers are subject to N−1 bubble

equations that need to be satisfied to prevent the existence of closed timelike curves:

N∑
j=1 j 6=i

Π
(1)
ij Π

(2)
ij Π

(3)
ij

vivj
rij

= −vi
3∑
I=1

N∑
s=1

kIs +

3∑
I=1

kIi with ΠI
ij ≡

(
kIj
vj
− kIi
vi

)
(4.6)

To solve (4.6) with the parameters (4.5) we first constrain all the GH centers to lie on the

same axis. Given that the parameters in (4.5) are invariant under i→ 8− i for i = 1, ...4,

the solution of (4.6) will give rise to a collinear configuration, shown in Figure 4.1, with

rij = r(8−i)(8−j) (4.7)

Hence, the collinear solution is determined completely by r12, r23, r34.

g1 g2 g3 g4 g5 g6 g7

Figure 4.1: The collinear configuration of GH centers that we start from. Note that the
distances between the satellites and the central blob are not on scale

3The value of k31 given in [44] differs from the one we give here and in [66] because of a typo.
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The family of collinear microstate geometries we consider is parameterized by k̂, which

controls the depth of our microstate. There is a critical value k̂0 at which the solution is

singular4, and changing k̂ around this value gives rise to scaling solutions that have very

small rij and hence a very long throat:

k̂ = k̂0 + ε rij = εrij +O(ε2) (4.8)

where the rij are determined by the fluxes on the two-cycles between the centers. As

expected, in the scaling limit the ratios between the distances are fixed [20], and the

physical distances between the GH centers become independent of the distance between

these points in the GH base [21]. However, as ε approaches zero the length of the throat

of the microstate geometry diverges as ε−1.

We choose to work with a throat that is long-enough to describe the typical sector of

the D1-D5-P black hole but not infinite, and we will fix the length of the throat for now

by setting k̂ = 3.1667. In § 4.4.3 we will relax this condition and examine how the physics

we find changes as k̂ moves towards the critical value. We then use (4.5) to solve (4.6)

and find

r12 = 3.58 · 10−3 r23 = 23.84 r34 = 5.78 · 10−3 (4.9)

and the ratios

r23

r12
∼ 6.7 · 103 r23

r34
∼ 4.1 · 103 (4.10)

We discuss in § 4.2.2 the physical interpretation of these very large ratios.

The three electric charges of the solution and its SU(2) angular momenta are (2.39):

Q1 = 1.48 · 105 Q2 = 1.20 · 105 Q3 = 1.76 · 105 JR = 1.018 · 108 JL = 0 (4.11)

As one can see from equation (2.41), JL vanishes because of the Z2 symmetry of our

configuration (4.7). This solution represents a supersymmetric horizonless microstate of

a BMPV black hole [68] with a classically large horizon area (and hence nonzero en-

tropy) [21]. In the next section we illustrate some physical arguments that explain this

conclusion.

4.2.2 Some physical properties of bubbled solutions

In [69] a smooth microstate was built for a maximally-spinning extremal horizonless BMPV

black hole by taking a blob of GH centers ensuring that the (vi, k
I
i ) parameters are roughly

of the same order. In the same paper it was shown that if one takes a huge number of

4For the curious, k̂0 ≈ 3.17975.
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centers and randomly assigns the (vi, k
I
i ) one inevitably ends up with a microstate of a

maximally-spinning black hole.

On the other hand, in [19] it was shown that to build a bubbled solution for a

maximally-spinning (zero-entropy) black ring it suffices to take a blob of GH centers (at

least two) with zero total v-charge and a far-away GH center with v = 1. Such a solution

can be obtained by choosing vj approximatively of the same order, while taking kIj ∼ a

for j = 1, ...N − 1 and kIj << a for j = N1.

A crucial difference between these microstate solutions and the corresponding black

holes and black rings is that the latter have an infinite AdS throat, while microstates have

a finite throat that ends in smooth cap. There exists furthermore a limit in which the

length of the throat can become infinite, and this scaling behavior (4.8) can be achieved

for collinear solutions by tuning the vj and the kIj [21], and for non-collinear solutions by

changing the angles between the GH centers [66, 20].

Scaling solutions have also proved to be necessary ingredient for building microstates

for BMPV black holes with large horizon area. This was done in [21] by merging a black

ring blob with a black hole blob at its center. After a suitable choice of the black hole and

black ring charges, this process can results in a microstate for a BMPV black hole with

large horizon area.

We are now able to give a complete physical interpretation of the microstate of § 4.2.

The parameters (4.5) are chosen so that centers g1 and g2 together with their counterparts

g6 and g7 via (4.7) are far away from the central blob (4.10). The central blob g3− g4− g5

has total GH charge one and hence represents a bubbled maximally-spinning black hole.

The two satellites have zero GH charge, and represent two symmetric bubbled black rings.

Because of the symmetry (4.7) the full solution has J1 = J2 = J , and furthermore one can

check that Q1Q2Q2 > J2. Hence the solution represented in Figure 4.1 can be interpreted

as a microstate of a BMPV black hole with a macroscopically large horizon area.

4.2.3 Adding Metastable Supertubes

To build a near-BPS microstate we add a supertube probe [55] to the BPS solution of

§ 4.2.1. If the supertube is at a supersymmetric minimum, the resulting microstate is still

BPS. However, supertubes can also have metastable minima [43], and these give rise to

microstate geometries of near-BPS black holes [44].

In the duality frame where the black hole has three M2 brane charges (4.2), a supertube

is a tubular configuration of branes that has two types of M2 brane charges, q1, q2, as

well as a dipole charge d3 corresponding to an M5 brane that wraps the fiber of the
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4.2. Near-extremal three-charge black hole microstates

Gibbons-Hawking space [19]. The potential energy of a supertube is [43]:

H =

√
Z1Z2Z3V −1

d3ρ2

√(
q̃2

1 + d2
3

ρ2

Z2
2

)(
q̃2

2 + d2
3

ρ2

Z2
1

)
+
µq̃1q̃2

d3ρ2
− q̃1

Z1
− q̃2

Z2
− d3µ

Z1Z2
+ q1 + q2

(4.12)

where

q̃1 ≡ q1 + d3(K2V −1 − µ/Z2), q̃2 ≡ q2 + d3(K1V −1 − µ/Z1) (4.13)

and ρ is proportional to the size of the GH fiber at the location of the supertube

ρ2 ≡ Z1Z2Z3V
−1 − µ2 (4.14)

The warp factors ZI and the angular momentum parameter µ are defined in § 2.3, and V

and KI are the harmonic functions defined in (4.4). When the supertube is at a metastable

point of the potential, H > q1 + q2, and supersymmetry is broken. The total charges of

the system are then given by the sum of the charges of the background and of the probe,

while the total mass is

Mtot = ∆M +
∑

Qbackground + qprobe (4.15)

where ∆M is the value of H− (q1 + q2) at the metastable point. Even if the backreacted

solution corresponding to this supertube has not been constructed explicitly, it is possible

to argue that the resulting background is globally smooth in the duality frame where the

charges of the black hole correspond to D1 branes, D5 branes and momentum.

As in [44], we consider a supertube whose charges are much smaller than those of the

background, and whose physics can therefore be captured by the probe approximation:

(q1, q2, d3) = (10,−50, 1) (4.16)

The fact that q2 and q1 have opposite signs does not automatically imply that super-

symmetry is broken [12]. A supertube with a given set of charges can have both BPS and

metastable minima, and the parameters whose positivity ensures that supersymmetry is

not broken are the q̃i.

Let y1 be the coordinate parameterizing the axis of Figure 4.1 centered in g4. Given

the symmetric arrangement of the GH points in § 4.2.1, H in (4.12) is invariant under

y1 → −y1. The probe potential has several Mexican-hat-type metastable minima, and we

focus on the one in the proximity of g6. The mass above extremality of this supertube is

∆M = H(23.812, 0, 0)− (q1 + q2) ∼ 0.04742 (4.17)
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4. Instability of near-BPS microstate geometries

It is important to stress that the existence of metastability does not depend on the

parameter ε controlling the depth of the scaling BPS microstate geometry, because when

the depth scales with ε as in (4.8) the probe potential (4.12) transforms as

H(r′ij)→ εH(rij) +O(ε2) (4.18)

4.3 The instability of near-extremal microstates

In this section we show that the nearly-BPS microstates built in § 4.2.3 by using probe

anti-supertubes are classically unstable.

We consider a microstate geometry with seven GH centers that have the vi and kIi
parameters as in (4.5). The location of the GH centers is constrained by the bubble

equations (4.6) and by the requirement that JL is zero, and hence the moduli space of

the solutions is six-dimensional. For simplicity we examine a subset of this moduli space

constrained by the symmetry (4.7), which automatically ensures that JL = 0 and reduces

the number of independent bubble equations from six to three. Furthermore, we will

focus our discussion only on configurations where all the centers lie on the same plane5.

The multicenter solutions that satisfy all these requirements can be parameterized by two

coordinates (α, β), that are the angles shown in Figure 4.2.

g1

β

g2

g3 g4 g5

g6

g7

β

α

α

Figure 4.2: The parameterization for planar symmetric configurations with seven centers

As one changes these angles (α, β) ∈ [0, 2π]× [0, π], the bubble equations (4.6) deter-

mining the inter-center distances are modified, and have to be solved again to determine

the new values of the distances. In principle this way of parameterizing the solutions of the

bubble equations can lead to singularities, as the bubbles can collapse for certain critical

values of the angles, but this does not happen for the particular solution we consider.

It is not hard to see first that as one changes α and β the action of a probe supertube

5We have also analyzed the configurations where the centers are not on the same plane, but all the
relevant physics is captured by the planar ones.
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4.3. The instability of near-extremal microstates

with charges (4.16) will continue having a metastable minimum in the vicinity of g6 (or

g2). However, the exact value of the energy of the probe, which gives the mass above

extremality, becomes a nontrivial function of the angles: ∆M(α, β).

We analyzed ∆M(α, β) numerically starting from the collinear configuration (α, β) =

0. We found that keeping α fixed ∆M is monotonically increasing with β ∈ [0, π] and this

behavior does not depend on the choice of k̂ for the scaling (4.8), as shown in Figure 4.3.
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Figure 4.3: Plots of 60 values for ∆M in the interval β ∈ [0, π] for α = 0 in two different
scaling regimes. The blue curve is obtained for k̂ = 3.1667, while the purple one is obtained
for k̂ = 3.175, which corresponds to ε = 0.36 in (4.8). For the sake of clarity, the values
of the purple curves have been multiplied by 0.98 times the ratio of the two ∆M for the
collinear configurations.

On the contrary, if one keeps β fixed and varies α, the mass of the anti-supertube

∆M(α, β) decreases as α starts increasing. This behavior is again independent on the

particular choice for k̂ in (4.5), as shown in Figure 4.4.

This proves that the collinear near-BPS microstate configuration obtained in § 4.2

is classically unstable. Indeed, the initial microstate corresponds to (α, β) = 0 for the

parametrization of Figure 4.2 and Figure 4.4 shows that ∆M decreases when β = 0 and

α starts increasing. The maximum relative difference in ∆M(α, 0) is

∆M(0, 0)−∆M(π/2, 0)

∆M(0, 0)
∼ 6.1· 10−4 (4.19)

and in the scaling regime (4.18) this does not depend on the choice of k̂.

Of course it is interesting to ask whether this configuration will settle into another

metastable minimum somewhere in the moduli space, or simply will keep decaying until

it reaches a BPS minimum. In the slice that we explored there appears to be a minimum
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Figure 4.4: Plot of 60 values for ∆M in the interval α ∈ [0, π] for β = 0 in two different
scaling regimes. The blue curve is obtained for k̂ = 3.1667, while the purple one is obtained
for k̂ = 3.175, which corresponds to ε = 0.36 in (4.8). The values of the purple curves have
been multiplied by 0.98 times the ratio of the two ∆M for the collinear configurations in
the two regimes.

when α = π/2 and β = 0, but this does not imply that this minimum will be metastable.

There could be other instability directions corresponding to other motions of the points

in the moduli space.

To prove that there will never be any metastable minimum one should investigate

the full 12-dimensional moduli space6, which seems computationally tricky to perform,

especially because not all solutions to the bubble equations are free of closed time-like

curves. Furthermore, if we eliminate the constraint that the total JL is zero, we can

explicitly find a direction on the moduli space that leads to a scaling behavior, and as the

configuration moves in that direction the energy of the anti-supertube approaches zero.

Hence, we believe there is good reason to assume that metastable points in the moduli

space are rare, if not altogether inexistent.

4.4 The emission rates of non-extremal microstates and their

typicality

Figure 4.4 shows that the collinear near-BPS solution is unstable in the six dimensional

moduli space of solutions to the bubble equations (4.6) with the symmetry (4.7). Classi-

cally, this instability would trigger a motion of the GH centers down the microstate throat

and, in particular, Figure 4.4 represents the potential energy that governs this motion.

6The moduli space of N centers subject to the bubble equations and subtracting the center of mass
motion is 2N − 2 dimensional.
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Quantum mechanically, this instability triggers a decay process towards extremality that

causes the emission of radiation. From the thermodynamical point of view this is expected:

a near-BPS black hole has a nonzero Hawking temperature and hence emits radiation ac-

cording to (the five dimensional version of) Stephen’s law. Our initial collinear near-BPS

microstate would then decay into a series of different near-BPS microstates closer to ex-

tremality. We can interpret the symmetrical rotation in α of Figure 4.2 as a possible initial

decay channel of the collinear microstate and using ∆M(α) shown in Figure 4.4 we want

to estimate the energy emitted per unit time Γ into this particular decay channel at the

beginning of the decay cascade.

We consider the initial decay process from the collinear microstate to the state given

by the configuration α = π/2, β = 0 of Figure 4.2, which represents the minimum energy

state in the slice considered in Figure 4.4. The emitted energy for this process is given by

δm ≡ ∆M(α = 0)−∆M(α = π/2) (4.20)

and is only a small fraction of the initial ∆M(0) - see (4.19). It is hence correct to say

that α = π/2 is only an intermediate state in the decay cascade that brings the microstate

towards extremality.

To define an emission rate we need to know how much time the system needs to emit the

energy δm. We suppose that this average time is of the same order of the characteristic

time scale τ that, classically, governs the motion for small α as seen from an observer

at infinity. Alternatively, τ can be seen as the necessary time to have a measurable

displacement from the collinear configuration seen from infinity.

In order to find τ we need to estimate the kinetic and the potential energies corre-

sponding to the classical motion of the GH centers in the moduli space of solutions to the

bubble equations (4.6). We continue focusing on Z2 symmetric solutions (4.7), and we

need to find the small-α expansion of the potential energy shown in Figure 4.4, as well as

the small velocity expansion of the kinetic energy of the bubbles, d
2E
dα̇2 .

For small α, the mass above extremality behaves as

∆M(α) = ∆M0

(
1− c2 α

2
)

(4.21)

where c2 is a coefficient that can be found numerically and whose dependence of the

charges of the solution and of the scaling parameters of the solution is discussed in detail

in § 4.4.3.

The strategy for computing the kinetic term is much more involved. The few obvious

guesses about how to do it, involving for example treating one of the GH centers as a probe

in the background sourced by the others, do not give sensible answers. The essential reason

is that the energy of a bubble does not come only from the GH centers but also from the

fluxes wrapping this bubble, and to compute the total energy brought about by the slow
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4. Instability of near-BPS microstate geometries

motion of the bubbles one has to compute the full energy of all the fluxes as well, and

integrate the result over the full highly-warped spacetime.

Our strategy is to rather use the fact that some bubbles are much smaller than others,

and therefore the collective motion of a certain small bubble has the same energy as the

motion of the black ring that undergoes a geometric transition to form the small bubble.

One can then “falsely compactify” the solution to a four-dimensional one, by adding a small

constant in the harmonic function describing the Gibbons-Hawking base, and compute the

kinetic energy corresponding to the motion of the black ring. The final result is clearly

independent on the small constant we are adding, and hence does not change when taking

this constant to zero and recovering the asymptotically 4+1 dimensional solution.

Hence, the strategy we use can be summarized in the following recipe:

1. We compactify the three-charge solution (4.2.1) to four dimensions along the fiber

ψ by adding a constant to the V harmonic function.

2. We compute a Lagrangian for the motion in the α-direction excising GH centers g1

and g2 from the background and replacing them with a singular black ring having

the same mass Mbr and charges at the same distance R ≡ r23 from the center, as

explained in the physical interpretation of our solution in Appendix 4.2.2. The black

ring in 4D is treated as a massive point particle that rotates in α in the background

sourced by the other centers and under the effect of the potential in (4.21) generated

by the anti-supertube probe closed to g6.

3. We assume that the four-dimensional metric is not affected by the slow rotation in

α, and hence that all the possible corrections to the background fields caused by

this motion are negligible. In addition, the electromagnetic interactions between the

black ring and the background can be neglected when the rotation is slow.

The first hypothesis helps to avoid useless computations as it allows to consider just

point particles instead of extended objects. The supergravity solution (4.2.1) is asymp-

totically five-dimensional. The further compactification along ψ requires some caution.

Indeed one needs to modify the asymptotic behavior of the GH space from R4 to R3 × S1

by introducing a constant δV in the function V in (4.4). The radius of the compactified

S1, r ∼ 1/δV 2, can be thought of as a modulus of the solutions. In addition, one is

also allowed to introduce constants δKI in the definitions of the harmonic functions KI

in (4.4), which modify the bubble equations (4.6) - see [70] for more details. While all

these moduli are completely arbitrary, they only specify the asymptotics of our solution

and do not affect the computation we are interested in. The phenomenon that we want

to study takes place deep into the black-hole-like throat and hence is not affected by the

details of the asymptotic fields of the background. Therefore we can compactify to four

dimensions with no risk of ambiguity.
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The second hypothesis is really the key point of our computation. We have verified that

taking away centers g1 and g2 from our system does not substantially modify the solution

to the bubble equations (4.6). Using a hat to denote quantities computed without g1 and

g2 we have r̂56 ' r56 = r23, r̂34 ' r34, up to corrections of order 0.1%. Most importantly,

we verified numerically that the probe anti-supertube still has a metastable point close to

g6 and the behavior under rotation is similar to that of the complete system:

∆M̂(α) = ∆M̂0(1− ĉ2α
2) ∆M̂0 ' ∆M0, ĉ2 '

c2

2
(4.22)

where c2 was introduced in (4.21)7. This means that we can excise the GH centers g1

and g2 from the whole solution and replace them by a BPS black ring whose charges are

determined by the sum of the residues in the K,L and M harmonic functions of the points

we excised. This is the inverse of the bubbling black ring transition described in [19], and

it is not hard to check that the distance of the black ring from the central blob given

by g3, g4 and g5 is essentially the same as the original distance between the blob and the

excised GH centers. Since the points g6 and g7 have not been excised, we can put the

anti-supertube probe with charges (4.16) at the metastable location close to g6.

Our strategy is to compute the kinetic term corresponding to the rotation of the black

ring center in α (described in Figure 4.2), by treating the black ring center as a probe in

the background sourced by the other GH centers.

Finally, the third hypothesis is reliable because α and its derivatives with respect to

time are small and hence modifications to the four dimensional metric become higher-

order corrections. Therefore we can safely use the four-dimensional metric generated by

the collinear solution to estimate the kinetic term. Note that since the background is kept

fixed to first order in α, the electromagnetic interactions between the point-like black ring

and the background are negligible.

4.4.1 The decay time and the emission rate

We compactify the eleven-dimensional supergravity solution (4.2) on T6 and ψ to a four-

dimensional solution whose metric is

ds2
4 = J

− 1
2

4 (dt+ ω)2 + J
1
2
4 [dr2 + r2(dα2 + sin2 αdφ2)]

J4 = Z1Z2Z3V − µ2V 2 (4.23)

7The factor in the relation between ĉ2 and c2 comes from the fact that the energy reduction caused
by the motion of the black ring alone is half of that caused by the movement of both the black ring and
the bubbling black ring given by the points g6 and g7. Similarly, the kinetic energy corresponding to the
motion of the black ring is half of that corresponding to the motion of both the black ring and the GH
points g6 and g7.
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and the four-dimensional dilaton is constant [3]. Note that the positivity of J4 is one of

the fundamental requirements for the construction of the solution [71], and comes from

the absence of closed time-like curves in the eleven-dimensional geometry.

The GH centers g1 and g2 have been excised from the background (4.23) and we denote

with a hat all the quantities computed using only the centers g3, ..., g7 with parameters as

in (4.5). The black ring corresponds to a point-like particle at a distance

R = r23 = r̂45 (4.24)

from g4 substituting g1 and g2 in Figure 4.1. Its mass Mbr corresponds to the mass

associated with g1 and g2 and is nothing but the mass of the black ring microstate that

these centers represent, as explained in Appendix 4.2.2. The latter was found in [21]

Mbr = Q1
br +Q2

br +Q3
br QIbr = CIJKdJfK (4.25)

where we have introduced the parameters

dI = 2
(
kI1 + kI2

)
f I = 6kI0 +

(
1 +

1

v1

)
kI1 +

(
1− 1

v2

)
kI2 kI0 =

1

3

(
kI3 + kI4 + kI5

)
(4.26)

If we then let the system rotate along α, the re-inserted point particle interacts with

the potential (4.22). To compute the full Lagrangian we need to find the kinetic term

corresponding to the slow motion of the black ring in the moduli space, and for this we

can use the classical GR action:

S = −Mbr

∫ √
−ĝµν

dxν

dt

dxµ

dt
= −Mbr

∫ √
J̃
− 1

2
4 − J̃

1
2
4 R

2α̇2 ∼
∫

1

2
MbrJ̃

3
4
4 R

2α̇2 + const

(4.27)

where we have used the time t measured by an observer at infinity to parameterize the

worldline. Note that a tilde above J4 means that this quantity is evaluated at the location

of the black ring, namely at a distance R from the center g4.

Thus, the full Lagrangian corresponding to the motion of the GH centers that triggers

the decay of the metastable supertube

L =
1

2
MbrJ̃

3
4
4 R

2α̇2 −∆M̂(α) (4.28)

and the associated equation of motion to first order in α is

MbrJ̃
3
4
4 R

2α̈− 2ĉ2∆M0α = 0 (4.29)

Equation (4.22) allows us to approximate 2ĉ2 ∼ c2 and hence the characteristic time scale
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of this differential equation is

τ =

√
MbrJ̃

3
4
4 R

2

∆M0c2
(4.30)

This equation is the main result of this chapter. Since ∆M0 parameterizes the initial

energy of this solution above the BPS bound we see that the closer our solution is to the

BPS bound the bigger τ is.

Using (4.20) and (4.30) following the arguments presented in § 4.4 we define the emis-

sion rate of our microstate in the α-channel to be

Γ =
δm

τ
(4.31)

In the next section we study how Γ scales under a scaling of the conserved charges QI

and of the distances in the R3 base of the Gibbons-Hawking space underlying the BPS

solution. These results will be used to check whether this particular kind of emission from

the initial collinear microstate is typical in the thermodynamical ensemble.

4.4.2 Scaling properties of the α-emission rate

In this section we study how Γ behaves under two different types of scaling of the back-

ground. The results of this section will be used in the next one to compare Γ with the

thermal emission rate found by the authors of [65] for a D1-D5-P non-extremal black

hole and thus gain information about the typicality of the α-decay channel studied in the

previous sections.

We are interested in two separate scalings that involve the parameters of our microstate.

The first one corresponds to the scaling of the depth of the throat of our microstate (4.8)

while keeping the charges and fluxes essentially fixed:

rij → ε rij (4.32)

The second one corresponds to scaling all the magnetic fluxes in (4.5)

k → ξk (4.33)

and modifies the charges and the mass as (2.39):

QI → ξ2QI M → ξ2M (4.34)

Note that δM0 is considered as a free parameter of the system and it does not scale.

This quantity is the energy (4.17) brought about by placing an anti-supertube probe at

metastable point close to g6 and can be kept fixed while performing the scalings above by

suitably tuning the anti-supertube charges (4.16). For the particular anti-supertube we are
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using, we only need to tune the probe charge q2 and keep q1 and d3 fixed as in (4.16). This

is because the charge q2 has opposite sign with respect to the corresponding background

charge and it is responsible for supersymmetry breaking and metastability.

To study how τ in (4.30) scales with ε in (4.32) one can use equations (4.18) and (4.21)

to deduce that c2 in (4.30) does not transform, which is also shown in Figure 4.4. Then

using the full construction of the solution presented in § 2.3 it is easy to determine that

J̃4 → ε−3J̃4, R2 → ε2R2 and hence

τ → ε−
1
2 τ (4.35)

As pointed out in [44], the physical importance of ε is to scale the (metric) length LMS of

the microstate throat as8

LMS → ε−1LMS (4.36)

Because of equations (4.35) and (4.36) we see that the decay time corresponding to the

rotation α becomes longer as the length of the throat becomes longer; thus, the closer to

BPS the configuration is the slower it decays.

To study how τ in (4.30) scales with ξ in (4.33) it is important to observe that after

the scaling the bubble equations (4.6) are exactly solved by rij → ξ2rij . Then it is easy

to verify that

Mbr → ξ2Mbr R2 → ξ4R2 J̃4 → ξ−2J̃4 (4.37)

Unlike for the ε-scaling, we could not evaluate analytically the scaling properties of c2

in (4.30). To infer them numerically one can start from a (ξ = 1) solution with charges

given in (4.11), and in order to keep ∆M0 in (4.17) fixed while varying ξ one needs to

change the q2 charge of the anti-supertube probe in (4.16):

ξ q2

1 −50

1.2 −63.522

2 −117.92

3 −186.355

4 −254.958

By repeating for each value of ξ the evaluation that leads to the potential shown in Fig.

4.4, one finds that

c2 → ξ−
1
2 c2 (4.38)

8The metric length of the microstate [44] is given by LMS =

∫ zneck

z7

V
1
2 (Z1Z2Z3)

1
6 dz, where zneck is a

suitable cutoff.
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and therefore the overall scaling of τ with ξ under (4.33) is:

τ → ξ
5
2 τ (4.39)

Finding the scaling properties of δm is much easier. This quantity does not scale with

ε. Indeed, the probe hamiltonian (4.12) does scale with ε, as described in equation (4.18),

but as we tune the probe charge to keep ∆M0 constant it turns out that δm also remains

constant. This does not happen for the ξ-scaling (4.33) and as there is no analytical

formula for δm it is necessary to perform another numerical interpolation. Tuning the

probe charge q2 as before we find

δm→ ξ−0.8δm (4.40)

Finally, using the definition (4.31) with (4.35), (4.39) and (4.40) one determines the

scaling properties of Γ under (4.32) and (4.33):

Γ→ ε
1
2 Γ Γ→ ξ−3.3Γ (4.41)

In the next section this result will be used to compare the emission rate Γ in the α-channel

with the emission rate of the thermodynamical ensemble to check whether this decay is

typical.

4.4.3 Typicality of the α-decay channel

In this section we want to compare the emission process of our microstate with the thermal

emission of a near-BPS five-dimensional Reissner-Nordström black hole. In particular, we

want to check whether the α channel emission has the features that one expects from

thermodynamics.

We have three fundamental pieces of data about the radiation emission of the ther-

modynamical ensemble coming from general relativity and brane technology. The first is

the computation [65] of the emission rate for a near-BPS three-charge five dimensional

black hole in the D1-D5-P frame, where a tiny amount NL of left-moving momentum is

inserted on a string of length N1N5 with NR >> NL right-moving momentum, so to break

supersymmetry. The energy emission rate for closed strings was found to be

Γth ∼
√
Q1Q2Q3T

5
H (4.42)

where TH is the Hawking temperature of a five-dimensional Reissner-Nordström black hole

computed from its surface gravity:

TH ∼
1

Re

√
∆M0

M
(4.43)
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Here Re and M are the horizon radius and mass of the black hole, and ∆M0 is the mass

above extremality, which is assumed to be much smaller than M . Given that the horizon

area for this class of black holes is proportional to A ∝ √Q1Q2Q3 we see that (4.42) is

simply Stephen’s law in five dimensions.

The second piece of data for the comparison of energy emission rates is Wien’s law,

which follows from the five-dimensional version of Planck’s law and has the same form in

four and five dimensions:

νmax,th ∼ TH (4.44)

where νmax,th is the peak-frequency of energy emission from the ensemble and TH is the

black hole temperature (4.43).

The third and final piece of data is the difference ∆L between the depth of the mi-

crostate throat Lms and the throat Lbh of the black hole corresponding to the microstate9.

Since supersymmetric black holes have infinite Lbh, this comparison is meaningful only

for non-supersymmetric black holes. In [44] it was shown that the for class of near-BPS

microstates we discuss one can arrange Lms to be arbitrarily larger or smaller than Lbh.

However, we expect that typical microstate geometries of the black hole will have Lms

comparable to Lbh, and hence ∆L ≈ 0. In [44] ∆L was found to be

∆L = Lbh − Lms = ρneck ln

(
2
ρms
ρbh

)
(4.45)

The parameter ρms in (4.45) is given by

ρms = 2
√
R (4.46)

where R is the distance of the outermost GH center (4.24), while ρbh is given by:

ρ2
bh =

√
8∆M

1
Q1

+ 1
Q2

+ 1
Q3

(4.47)

which is the horizon radius of the corresponding non-extremal black hole. The parameter

ρneck in (4.45) corresponds to a certain cutoff needed to measure the throat lengths, but

is irrelevant if when one imposes ∆L = 0, which implies

ρbh = 2ρms (4.48)

The scaling properties of ρms under (4.32) and (4.33) are easily found from the results

of § 4.4.2:

ρms → ε
1
2 ρms ρms → ξρms (4.49)

9This is a near-BPS five-dimensional Cvetič-Youm black hole [72].
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It is straightforward to determine how (4.42), (4.43) and (4.47) scale with ξ under (4.34):

TH → ξ−2TH , Γth → ξ−7Γth, ρbh → ξ
1
2 ρbh (4.50)

The thermal quantities do not scale with ε.

Given the three equations describing the thermal emission of the ensemble (4.42) and

the size of the microstate, (4.44) and (4.48), we can argue that a given decay process of a

microstate into a particular channel is typical if its Γ, νmax and ρms match those given by

these equations. The only missing information about our decay channel is νmax. We can

argue that the energy emitted during the decay of the nonextremal microstate geometry

is given by the difference between the highest and the lowest values of the mass above

extremality during the rotation in α:

νmax = δm (4.51)

Given the scaling properties of our solutions (4.32), (4.33),(4.35), (4.39) and (4.49)

we can start from the initial solution (with charges given in equation (4.11)) and check

whether there is any value of ε and ξ (or alternatively of Q′1, Q
′
2, Q

′
3 and ρ′ms) for which

the decay of our solutions matches the thermal decay:

Γ′th = Γ′ ν ′max,th = ν ′max ρ′bh = 2ρ′ms (4.52)

Unfortunately, this is not possible, which implies that the solution we started from

and the families of non-extremal microstate solutions obtained by scaling its depth and

fluxes via (4.32) and (4.33) are not typical. This is not surprising - after all, we started

from a very specific seven-center solution that has a lot of symmetry, and a very large

ratio between certain inter-center distances, and we examined a non-extremal microstate

geometry obtained by adding a certain type of anti-supertube to this solution. It would

have been in fact much more surprising if this decay process had been thermal-like.

It is also possible to parameterizes the departure of the non-extremal microstate we

consider from typicality by introducing a quantity, β, that can be thought of as modifying

the estimation of τ of § 4.410. If one multiplies τ by β in all the equations above, the

system (4.52) can always be solved for some ξth, εth, βth. Plugging in the numbers we find

that

βth ∼ 1.8· 105 (4.53)

10The choice of multiplying τ is not arbitrary: we fully trust the assumptions that enter in the com-
putation of τ of § 4.4, but given that we have not investigated the motion of the GH centers in the full
six-dimensional moduli space, we do not know whether other decay directions exist where the decay time
is faster or shorter. For example, if one would rather rotate the segment formed by the central points of
the solutions, g3, g4 and g5, the inertia momentum would be much smaller than the one corresponding to
rotating the black ring centers, and hence the decay time would be much faster.
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This therefore gives an estimate of the departure from typicality of the microstate we

have considered. The final result βth >> 1 has two possible implications that are not

mutually exclusive. On one hand, it can imply that a typical microstate should have a Γ

that is much smaller than the one of our emission process, or a much larger characteristic

decay time τ .

This could be for example realized by considering non-extremal microstates that have

more centers, and whose moment of inertia for the rotation in the direction that lowers

the energy of the microstate is much bigger than in our solution. On the other hand (4.53)

suggests also that the emitted energy δm should be much smaller than the one we found.

This is not helped at all by considering microstate geometries that have more centers,

because the potentials of these geometries will be generically less abrupt. Hence, to de-

crease the emitted energy one should rather consider creating non-extremal microstates by

adding supertubes to BPS microstates with simple topology (like the superstrata of [67]).

It would be interesting to investigate which of the two options is the best for producing

more typical non-extremal microstate geometries.

4.5 Future developments

Given the results of the previous section, it becomes paramount to construct non-extremal

microstate geometries that have a more typical decay. One way to do this is to build

near-BPS microstates with more that seven centers, or whose centers are more evenly

spaced as the ones in our solutions (which are at distances whose aspect ratio is of order

1000). Indeed, the seven-centers solution analyzed in this chapter represents somehow the

minimal interesting model that one can build [21]. Furthermore, the moment of inertia

corresponding to the motion that destabilizes our solution is very large as it corresponds

to moving an entire bubbled black ring that has about one third of the total mass of the

microstate. Finding a more sophisticated solution, though more involved, would allow us

to look for analogous decay patterns that have a parametrically smaller moment of inertia

or parametrically larger δm, such that and decay time that is fast-enough to be in the

typical range.

From a more general perspective, our result confirms the intuition of [64], that most

of the microstate solutions of non-extremal black holes should be unstable, and hence the

dynamics of these black holes will display a chaotic behavior, corresponding to microstates

being formed and immediately decaying into other microstates, which in their turn decay

very fast. It would be interesting to see if our solutions can be used to shed light on some

of the features of the chaotic behavior of non-extremal black holes discussed in [73].

It is also important to understand the physics of this instability in the decoupling

limit. The Callan-Maldacena emission rate goes to zero in this limit, but there are other

instabilities of supergravity solutions that do not [74, 75]. Our instability concerns the
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dynamics deep down the throat of scaling solutions, and hence it is always present if one

uses the time at the bottom of the throat. On the other hand, emission probabilities are

computed using the time coordinate that is good at the asymptotically-flat infinity and

in the scaling limit the relation between these two times becomes degenerate. Hence, in

the scaling limit our emission rate becomes zero. Therefore, from this perspective our

instability appears closer to the Callan-Maldacena one, and different from the ones in [74,

75], even though our instability would be set to zero by a qualitatively different process

than the Callan-Maldacena one. There is a subtlety concerning the possible decoupling

limits of our system: there are two of them. One is similar to the scaling limit, and

corresponds to throwing away the constants in all the harmonic functions corresponding

to the black hole charges, and obtaining a long throat that has an AdS2 × S3 × T 6 form

in 11D supergravity. There is another decoupling limit, that one can only take in the

duality frame where the charges of the black hole correspond to D1 branes, D5 branes

and momentum, and which corresponds to throwing away the constant in the D1 and D5

harmonic functions but keeping the constant in the harmonic function corresponding to

the momentum. This yields an asymptotically-AdS3 × S3 × T 4 geometry. We have not

worked out what happens in this limit, but we expect that solutions are not affected by it,

as happens for the instabilities of [74, 75]. A deeper analysis of the fate of our instability

in the decoupling limit is hence needed to fully understand its nature.

Besides its implications for black hole physics, our result may also have important

consequences for the program of uplifting AdS vacua obtained from generic flux compact-

ifications to obtain de Sitter space in string theory. This will be the topic of the next

chapter. There is a direct analogy between the uplift of AdS solutions to de Sitter by

adding antibranes [14, 39] and the uplifting of BPS microstate geometries to microstates

of non-BPS black holes by adding anti-supertubes [44]. In both constructions one used

the action of the probe antibranes to argue that they have metastable vacua. However,

our investigation reveals that the result of the probe calculation can be misleading, and

that the metastable supertube can be in fact destabilized by the motion in the moduli

space of the underlying geometry. However, unlike microstate geometries, flux compacti-

fications usually come with all the moduli stabilized. Nevertheless, it is possible that even

stabilized moduli can be destabilized, especially when their mass is very low. It would be

interesting to understand whether this happens when investigating antibranes [39, 76, 77]

in the Klebanov-Strassler warped deformed conifold solution [4].
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CHAPTER 5

THE T-DUAL KLEBANOV-STRASSLER SOLUTION

5.1 de Sitter vacua in String Theory and infrared singular-

ities

Recent observations together with theoretical developments in the field of cosmology in-

dicate that our universe has a positive cosmological constant and hence asymptotes a de

Sitter space. String Theory, the only known consistent theory of quantum gravity, has

numerous compactifications to four and five dimensional Anti de Sitter spaces, while no

straightforward compactification to de Sitter spaces has been realized. Finding compacti-

fications with a small positive cosmological constant is an essential task for String Theory

to be a predictable theory of Physics.

To date, the most well known procedure that uplifts AdS vacua to dS ones in String

Theory is the KKLT mechanism [14]. This prescribes the insertion of antibranes in long

warped throats of the compactification manifold, which ensures that the uplift of the

cosmological constant does not destabilize the moduli. The antibrane then completely

breaks supersymmetry and its presence allows to uplift the asymptotically AdS solution

to dS. Needless to say, the uplifted dS vacuum is (meta)stable only if the antibrane is

(meta)stable in the original flux compactification.

The most suitable framework where the KKLT uplift mechanism has been tested is

given by the Klebanov-Strassler (KS) solution [4] presented in § 2.4. We remind that this

is a smooth four-supercharge Type IIB solution with no brane sources and only fluxes

threading a nontrivial topology. In particular, the ten-dimensional spacetime is divided

into a warped four-dimensional Minkowski space and a six-dimensional internal space con-

stituted by a deformed conifold. This is a cone over a base that topologically is equivalent

107



5. The T-dual Klebanov-Strassler solution

to an S2×S3, where the S2 smoothly shrinks at the tip while the S3 attains a finite radius

and is threaded by constant fluxes. The KS solution is the model to study the validity of

the KKLT uplift mechanism due to the fact that anti-D3 probe branes at the bottom of

the KS throat have well-known metastable configurations [39].

However, recent investigations have shown that the fate of anti-D3 branes at the bottom

of the KS throat is unclear. In [41, 76, 78, 79] their backreaction was taken into account

and it was found that anti-D3 branes create a singularity in the solution. Furthermore,

this singularity cannot be cloaked by a horizon [80, 81], which makes it problematic [82].

Analogous results for antibranes in highly warped throats were found in more general

contexts [33, 83, 84, 85, 86], which might lead to the conclusion that the metastability of

anti-D3 branes in KS is an artifact of the probe approximation [39].

On the other hand, it has been recently pointed out [87] that an analysis of the ef-

fective field theories of these probe branes should confirm the validity of their metastable

configurations.

In this chapter we construct a consistent framework to test the stability of the an-

tibranes in warped throats for a regime of parameters that has remained unexplored so

far. Specifically, our aim is to construct the T-dual version of the KS solution, which is

unknown to date1. The T-duality (see § 1.4) maps the radius of an S1 isometry coordinate

to its inverse, exchanging winding and momentum modes and giving access to the physics

of a different region in the space of physical parameters. Such a new framework would

then help solving the tension around the fate of antibranes in warped throats and the

stability of the KKLT mechanism.

Two different pieces of information serve as guidance to construct the T-dual version

of KS. On one side, the KS solution is the gravity dual of the N = 1 cascading SU(N +

M)×SU(N) gauge theory2 and the corresponding Type IIA brane construction has been

widely discussed in the literature [91, 92, 93, 94, 95, 96]. This construction involves

N+M D4 branes wrapping the four-dimensional Minkowski space and a compact direction,

terminating on an NS5 brane. The latter also wraps a holomorphic curve [91].

On the other hand, the exact expression for the NS5 locus and its relation with the

geometry of the deformed conifold is the second and most important clue we have. Indeed,

it is general knowledge that a suitable T-duality of empty conifold geometries can give rise

to solutions where an NS5 brane wraps a holomorphic locus [97, 98]. Qualitatively this

happens when the U(1) isometry chosen for the T-duality is fibered nontrivially over a base

space and has a holomorphic locus of fixed points3. After a T-duality, this holomorphic

1Different T-dual versions are known [88, 89] for the Klebanov-Tseytlin singular theory [22], but none
of these seems to be easily generalizable to KS and the results of [90] lack the mathematical rigor required
for our purposes.

2Where N = kM and k is an integer.
3More specifically, the locus of fixed points should just be composed of holomorphic branches, as for

the singular conifold.
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locus will be wrapped by NS5 branes. Recently, these kinds of T-dualities have been

explicitly performed on the empty geometries of the singular [99], resolved and deformed

conifolds [100] in a rigorous mathematical framework. In particular, as these NS5 branes

arise from T-dualities of empty geometries, these techniques can still be applied to warped

conifold geometries with nontrivial fluxes.

We start our analysis by showing that the isometry used in [100] and anticipated in [98]

is not spoiled once one considers the full KS solution instead of the empty deformed conifold

geometry. Unfortunately, even if we are granted that this isometry reproduces the desired

components of the Type IIA brane engineering construction, the parameterization of this

U(1) in Type IIB is extremely involved. It is possible to have a clear picture of the isometry

circle only on the three-sphere at the tip of the deformed conifold and the coordinates used

to write the KS solution completely hide it.

To make progress we use the following strategy: As all the important physics to test

the stability of antibranes is encoded in a region at the bottom of the KS warped throat,

we focus on a small neighborhood of a particular point on the three-sphere at the tip,

which we can refer to without loss of generality as the North Pole (NP). We choose this to

be located on the fixed locus for our isometry. By introducing a small typical length we

expand the KS solution in this neighborhood to a fixed order of precision. This allows to

find a suitable set of coordinates that make the isometry of [100] manifest. At the same

time the coordinates we introduce are easily related to the global topology of the deformed

conifold. We explicitly check that by T-dualizing the empty geometry we reproduce the

results of [100] expanded and written in the new NP coordinates, including the NS5 brane

wrapping the desired holomorphic curve.

We then expand and T-dualize the full KS solution in the NP neighborhood. The

expansion of the fields is realized by evaluating their squares contracted with the local KS

metric. Since these scalar quantities are preserved under T-duality, this ensures no loss

of physically relevant information in Type IIA. As the NP is mapped on the NS5 locus

in type IIA we are able to reconstruct the physics close to this region, characterized by

a blowing-up dilaton and B2 NS-NS field. The same technique can be carried on at an

arbitrary order of precision for the expansions.

To have a deeper insight of the KS physics and to test the stability of the antibranes,

we then push our construction one step farther. We modify the KS solution by adding

backreacted D3 branes localized at the NP. As this location belongs to the fixed locus of

our isometry, the latter is not spoiled by the addition of the branes and thus we are able

to reconstruct the corresponding T-dual solution using the same techniques as before. In

particular, by expanding close to the NP, there is no need to solve the Laplace equation

on the deformed conifold for the D3’s, as we know that in our linearized metric the warp

factor sourced by the branes will essentially coincide with that of D3 branes in flat space.

In the resulting Type IIA solution we are able to see new interactions between the resulting
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“background” NS5 brane and the added D4 branes.

This chapter is organized as follows. In § 5.2 we review the geometry of the deformed

conifold and introduce three coordinate systems that are widely used in our analysis and

geometrically describe the tip of the deformed conifold. In § 5.3 we describe the brane

construction that one expects for the solution that is T-dual of KS, focusing on the NS5

locus and on the correct isometry for the T-duality. We then introduce the NP coordinates

in § 5.4 and T-dualize the local empty geometry reproducing the same results as in [100].

In § 5.5 we expand the full KS solution close to the NP and explicitly write down its Type

IIA T-dual solution. Some consistency tests are performed on the resulting solution. In

§ 5.6 we add backreacted D3 branes at the NP and apply the same procedure as before

to reconstruct the corresponding T-dual solution. § 5.7 is dedicated to the discussion and

outlook for our future work. In Appendix B we report some necessary computations to

expand the KS solution in the NP neighborhood.

5.2 The geometry of the deformed conifold

In this section we briefly review the main features of the deformed conifold and introduce

three coordinate systems that are of great importance for the subsequent analysis. We

remind the reader that the KS solution was presented in § 2.4 and that its smooth met-

ric (2.48) has a similar form to that of a standard D3 brane solution, having a deformed

conifold as six-dimensional transverse space. A Ricci-flat metric for this manifold was

already written in (2.46), together with a set of prime forms (2.44). Here the goal is to

give a rigorous definition of what the deformed conifold is and find suitable coordinate

sets to parameterize it.

The deformed conifold is a hypersurface in C4:

w2
1 + w2

2 + w2
3 + w2

4 = ε2 (5.1)

where wi ∈ C and we assume ε ∈ R>0 with no loss of generality. We call the wi ∈ C
subject to the constraint (5.1) the conifold coordinates.

The deformed conifold is a cone over a T 1,1 base space, which was defined in § 2.4 as the

coset:

T 1,1 :=
SU(2)× SU(2)

U(1)
(5.2)

The T 1,1 base is topologically equivalent to S2 × S3, where only the S2 shrinks at the tip

of the cone so that deformed conifold has no singularities. These observations are easily

proved in conifold coordinates. To study the base space of the deformed conifold one

intersects (5.1) with a sphere of radius r in C4 defined as

|w1|2 + |w2|2 + |w3|2 + |w4|2 = r2 (5.3)
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Writing each wi as wi = ai + ibi one then gets the three following conditions that define

the T 1,1 space in conifold coordinates:

4∑
i=1

a2
i =

r2 + ε2

2
(5.4)

4∑
i=1

b2i =
r2 − ε2

2
(5.5)

4∑
i=1

ai· bi = 0 (5.6)

which also require r2 ≥ ε2. Equation (5.4) defines a three sphere S3 that remains finite

for r = ε, i.e. at the tip of the deformed confold. Equation (5.5) describes a two sphere

S2 fibered over the three sphere, where the fibration is specified by (5.6). Notice that the

S2 shrinks at the tip of the conifold. In [23] it was proved that T 1,1 = S3 × S2, namely

that the fibration is trivial.

The most suitable coordinates to describe the brane content of the T-dual KS solution

will be called brane coordinates and can be defined using the conifold ones. We introduce

the matrix W:

W =
1√
2
wi σ

i (5.7)

where σi for i = 1, 2, 3 are the usual Pauli matrices and σ4 ≡ i1. The brane coordinates

(x, u, z1, z2) ∈ C4 are defined by the entries of W:

W =

(
z1 x

u z2

)
=

1√
2

(
w3 + iw4 w1 − iw2

w1 + iw2 −w3 + iw4

)
(5.8)

The definition of the deformed conifold (5.1) and the sphere in C4 (5.3) respectively

become:

detW = −ε
2

2
⇒ z1z2 − xu = −ε

2

2
(5.9)

Tr(W†W) = r2 ⇒ |x|2 + |u|2 + |z1|2 + |z2|2 = r2 (5.10)

We finally relate the brane coordinates to the coset coordinates that were used in § 2.4

to explicitly write the Klebanov-Strassler solution. This last set of coordinates is the

one that is always used for computational purposes. In [23] the T 1,1 base space for the

deformed conifold is defined as a coset manifold: Parameterizing each SU(2) in (5.2) via

Euler angles (φ1, θ1, ψ1) and (φ2, θ2, ψ2) as in [24] one can write a generic element in the

coset as

e
i
2
σ1φ1e

i
2
σ2θ1e

i
2
σ′1φ2e

i
2
σ′2φ2e

i
2

(σ3+σ′3)ψ (5.11)
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where ψ ≡ ψ1 + ψ2 and σi σ
′
i are two sets of Pauli matrices such that [σi, σ

′
j ] = 0. Given

the coset parameterization (5.11) an element of the U(1) quotient group is hence written

as e
i
2

(σ3+σ′3)(ψ1−ψ2). The radial coordinate τ is introduced via

r2 = ε2 cosh τ (5.12)

where r is defined in (5.3), and hence the tip of the conifold is defined by τ = 0. The

coset coordinates allow to find the Ricci-flat Kähler metric in (2.46). One hence can relate

brane coordinates to coset coordinates as follows [100]:

x =
ε√
2

(
cos

θ1

2
cos

θ2

2
e

1
2

(τ+iψ) − sin
θ1

2
sin

θ2

2
e−

1
2

(τ+iψ)

)
e
i
2

(φ1+φ2)

u =
ε√
2

(
− sin

θ1

2
sin

θ2

2
e

1
2

(τ+iψ) + cos
θ1

2
cos

θ2

2
e−

1
2

(τ+iψ)

)
e−

i
2

(φ1+φ2)

z1 = − ε√
2

(
cos

θ1

2
sin

θ2

2
e

1
2

(τ+iψ) + sin
θ1

2
cos

θ2

2
e−

1
2

(τ+iψ)

)
e
i
2

(φ1−φ2)

z2 =
ε√
2

(
sin

θ1

2
cos

θ2

2
e

1
2

(τ+iψ) + cos
θ1

2
sin

θ2

2
e−

1
2

(τ+iψ)

)
e
i
2

(−φ1+φ2) (5.13)

5.3 The right isometry to T-dualize the Klebanov - Strassler

solution

5.3.1 Brane content of a T-dualized KS solution

We would like to find an isometry in KS that, upon a T-duality, leads to a brane configu-

ration that can be easily handled, as the one that realizes the gauge dual to KS in Type

IIA supergravity [91]. To pursue this goal we hence apply an inverse-engineering process:

starting from the expected brane content in Type IIA after the T-duality we are able to

determine the main features of such isometry.

The Type IIA brane construction dual to the N = 1 SU(N + M) × SU(N) theory

consists of D4 branes wrapped on a circle and intersecting the two branches of an NS5

brane. The NS5 wraps a four-dimensional Minkowski space the holomorphic locus [101, 91]

z1z2 = −ε
2

2
(5.14)

where we have defined z1 = x4 + ix5 and z2 = x8 + ix9. Away from the origin, namely

for |z1|, |z2| >> 0, one can approximate ε ' 0 in (5.14) and hence consider the NS5

as two separate branes, the first one wrapping the directions x4 and x5 and located at

x8 = x9 = 0 and vice-versa for the other. The coordinate x6 parameterizes a circle

wrapped by N + M D4 branes, that also wrap the four-dimensional Minkowski space.

The two NS5’s intersect the compact direction x6 in two distinct points. Among the D4
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NS5′ NS5′′

N +M

N

x6

NS5′′NS5′

x6

N +M

N + 2M

Figure 5.1: Brane configuration in the Type IIA dual to the (ultraviolet of the) SU(N +
M) × SU(N) gauge theory. On the left there are N D4 branes wrapping the T-duality
circle x6 and M D4’s stretched between the two NS5’s for a fixed value of x7. On the right
the same configuration is represented for a higher value of x7, where NS5′′ has moved
with respect to NS5′ spanning a full loop around the circle and pulling the M D4 branes.
Now the dual theory has become SU(N + M) × SU(N + 2M) and the crossing of the
NS5’s corresponds to the phase transition of Seiberg duality.

branes, only N of them wrap the whole x6, while the remaining M wrap the same interval

on x6 delimited by the NS5 branes and terminate on them. This setup gives rise to a dual

N = 1 SU(N +M)×SU(N) gauge theory. Furthermore, the intersections of the two NS5

branches on the circle x6 depend on the remaining noncompact coordinate x7: indeed the

NS5 branches bend in this direction pulled by the D4. Therefore, while there are always

M D4’s between the two NS5’s, the number of D4’s wrapping the whole x6 depends on

how many times the NS5’s have spiraled around it and hence depends on x7. From the

point of view of the dual theory the spiraling of the NS5’s causes a cascade of Seiberg

dualities [92] and x7 qualitatively plays the role of the energy scale of the gauge theory.

This mechanism along with the Type IIA brane construction is represented in Figure 5.1.

While the picture described so far is accurate in the ultraviolet where |z1|, |z2| >> 1

in (5.14), this is not so in the infrared, namely close to the origin of the coordinates. The

chiral symmetry breaking that takes place in the infrared of the SU(N + M) × SU(N)

theory is paralleled in the gravity dual by the joining of the two NS5 branches into a single

holomorphic curve via the parameter ε. The smoothing of the brane locus due to quantum

infrared physics is reminiscent of the geometric transition from the Klebanov-Tseytlin to

the Klebanov-Strassler solution and as we will see this is not a coincidence.

The holomorphic locus expected for the NS5 (5.14) uniquely fixes the isometry that

one has to use to T-dualize the KS solution, which is a common feature for conifold

geometries. It is well known in the literature that only a suitable T-duality of empty

conifold geometries can lead to NS5 brane configurations [98, 97]. Schematically, this is
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5. The T-dual Klebanov-Strassler solution

made possible because the conifold geometries can be seen as nontrivial fibrations whose

base spaces contains smooth loci where the fiber degenerates. Thus, choosing a U(1)

isometry on the fiber, the T-duality circle smoothly shrinks at the degeneration locus

and hence blows up there in the T-dual solution, as is clear from Buscher’s rules - see

§ 1.4. The T-duality hence gives a metric, dilaton and B2 fields that blow up with the

appropriate power on these loci, and H3 = dB2 measures an integer NS5 charge. This

was rigorously shown for the empty singular conifold [99] and for the empty resolved and

deformed conifolds4 in [100]. In particular, the authors of [100] managed to get an NS5

wrapping precisely the locus (5.14), and the procedure makes use of the coordinates for

the deformed conifold introduced in § 5.2. In brane coordinates, the deformed conifold is

embedded in C4 via

z1z2 − xu = −ε
2

2
(5.15)

The choice for the notation of (5.15) will be related to that of (5.14) in a moment. The

brane coordinates describe the deformed conifold as a fibration, where the base space is a

C2 parametrized by z1, z2, while the fiber is parametrized by either x or u. Indeed, two

charts U1 = {x 6= 0} and U2 = {u 6= 0} are needed to cover the deformed conifold: in the

following we will always assume that x 6= 0. The whole discussion can be rewritten for the

other chart by simply replacing x ↔ u. The relationship between the brane coordinates

and the coset ones of § 2.4 is presented in (5.13). For the deformed conifold note the

existence of a U(1) on the fiber of (5.15) that acts as

x→ eiξx u→ e−iξu ξ ∈ R (5.16)

Equation (5.16) is a symmetry for the conifold as written in (5.15) and it was proved

in [100] that this an isometry for the conifold metric (2.46). The locus that is left invariant

by (5.16) coincides precisely with (5.14) an gets wrapped by an NS5 in the T-dual solution.

In [100] this was also confirmed by computing the integer NS5 brane charge with the NS-NS

three-form field strength that one gets in Type IIA.

Incidentally, note that taking ε = 0 in (5.15) one obtains the defining equation for the

singular conifold, which is the internal manifold of the Klebanov-Tseytlin solution [22].

Then T-dualizing along the same U(1) as in (5.16) one ends up with two NS5 branes

wrapping (5.14) with ε = 0. The Klebanov-Tseytlin and KS solutions essentially coincide

in the ultraviolet and this happens also for the NS5 brane loci that one gets from a T-

duality of their geometries. These two theories however differ in the infrared, where the

Klebanov-Tseytlin solution is singular and the related NS5 locus remains composed by two

separate branches. In KS, the chiral symmetry breaking is responsible for the puffing-up

4By empty deformed conifold here we mean a supergravity solution given by just the metric ds2 =
dxidxi + ds26 where ds26 is as in (2.46). This is a valid supergravity solution as the deformed conifold is
Ricci-flat.
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5.3. The right isometry to T-dualize the Klebanov - Strassler solution

of the S3 at the tip, which in the T-dual solution is paralleled by the joining of the two

NS5 branches into a single holomorphic curve.

The isometry (5.16) is the right one to obtain the NS5 configuration (5.14) expected

from the brane construction dual to the SU(N + M)× SU(N) theory, starting from the

empty deformed conifold. A priori it is not obvious that (5.16) remains an isometry for

the full KS solution, but if it is we already know that a T-duality along it would give

the NS5 configuration (5.14) that is required from the brane construction. The proof is

presented in the next section.

5.3.2 The isometry for the T-duality of KS

In this section we prove that the transformation (5.16) performed on the brane coordi-

nates (5.8) is an isometry for the KS solution of § 2.4, assuming that it is an isometry for

the metric on the deformed conifold (2.46), which was shown in [100].

To prove that (5.16) is an isometry for the full KS background one must show that it

leaves invariant all the other fields together with the warped metric. Observing that in the

KS solution F5 = B2 ∧ F3 and that F3 and H3 = dB2 are related by the supersymmetry

equations, one concludes that (5.16) is an isometry for the full KS solution if and only if

it leaves B2 in (2.50) and the warp factor h(τ) in (2.49) invariant.

From (5.8) only the conifold coordinates w1 and w2 depend on x and u and under (5.16)

these transform as

w1 =
x+ u√

2
−→ eiξx+ e−iξu√

2

w2 = −iu− x√
2

−→ −ie
−iξu+ eiξx√

2
(5.17)

this is equivalent to (
w1

w2

)
−→

(
cos ξ sin ξ

− sin ξ cos ξ

)(
w1

w2

)
(5.18)

This proves that w1, w2 are rotated by an angle ξ under (5.16) and hence this transforma-

tion belongs to the SO(4) group that leaves the conifold invariant, as is clear from (5.1).

Working in conifold coordinates it is then easy to see from (5.12) and (5.3) that τ is

invariant under (5.16). Consequently, all the functions in the KS solution (2.54) and the

warp factor (2.49) are invariant under this transformation. In addition, as shown in [102],

B2 in (2.50) can be rewritten in conifold coordinates in an SO(4)-invariant form:

B2 = g(τ)εijklw
iw̄j̄dwk ∧ dw̄l̄ g(τ) =

igsMα′

3ε4

τ coth τ − 1

sinh2 τ
(5.19)

and then a fortiori B2 is invariant under (5.16). In the formula above i, j, k = 1, 2, 3, 4 and
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5. The T-dual Klebanov-Strassler solution

τ is implicitly rewritten as a function of the wi. This completes the proof that (5.16) is

an isometry for the whole KS solution and as this is a U(1) transformation it can be used

to T-dualize this solution.

We have understood how to T-dualize the KS solution to a Type IIA one similar to

that depicted in Figure 5.1, expected from the dual gauge theory. To be precise, a T-

duality along (5.16) will result in a setup similar to that in Figure 5.1, but smeared along

the T-duality circle, the equivalent of x6 in the Figure. We will discuss in the next section

how to perform this T-duality.

5.4 The North Pole expansion

In the previous section we found the isometry that allows to T-dualize the KS solution

and obtain a similar brane configuration expected from the dual gauge theory, smeared

along the T-duality direction. However, putting in practice this strategy proves to be

most tricky. First of all, making the isometry (5.16) manifest in the KS solution requires

a laborious change of coordinates on the deformed conifold. The transformation (5.16)

can be identified with a shift in the complex phase of the brane coordinate x, when x 6= 0.

Equation (5.13) shows the relationship between the brane coordinates of (5.15) and the

coset coordinates used to write the KS solution in § 2.4. The phase of x written in coset

coordinates is a highly nontrivial and ill-defined function. This is because one also has

to deal with the x = 0 locus in (5.15), where the phase of u in (5.16) becomes the valid

coordinate for the isometry instead. Secondly, it is quite hard to visualize the isometry

circle (5.16) on the deformed conifold and we only have a clear picture of it on the S3 at

the tip - see Appendix 5.4.1. While the authors of [100] took care of these subtleties for

the empty deformed conifold, this ends up in untreatable formulas if performed on the full

KS solution that can hide the interesting physics encoded in Type IIA.

These difficulties are encountered if one attempts to T-dualize the KS solution as a

whole, but might well be avoided if one compromises to reconstruct the T-dual solution

of just a small region of the deformed conifold in the KS solution. This certainly does not

invalidate the possibility to check the antibrane stability in Type IIA. Indeed, the stability

of the antibrane should be checked close to the (image of the) tip of the deformed conifold

and hence it suffices to choose a small region there.

We intend to realize the program of § 5.3.1 in the following way. We focus on a small

region on the deformed conifold, requiring it to be a small neighborhood centered on a

point on the S3 at the tip that will be called the North Pole (NP). In the next section we

explicitly study the tip of the deformed conifold using brane and coset coordinates. Then

in the following section we will introduce a suitable coordinate set together with a typical

characteristic length. By T-dualizing the empty deformed conifold metric expanded in the

NP neighborhood using the isometry (5.16) we get an NS5 brane precisely wrapping the
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5.4. The North Pole expansion

(expansion of the) curve (5.14). Our local results are then compared with the globally-

valid ones of [100]. In the next sections we expand the KS solution in the NP neighborhood

and then T-dualize it to realize the program of § 5.3.1.

5.4.1 The tip of the deformed conifold

In order to understand what the NP coordinates should look like it is useful to analyze the

geometry of the tip of the conifold. In this section we provide a suitable parameterization

for the tip of the conifold, following [100]. The tip of the conifold is the τ = 0 locus in

coset coordinates, which corresponds to r2 = ε2 in (5.12). The metric (2.46) is finite as

K(τ)→
(

2
3

) 1
3 and the metric at the tip becomes:

dΩ2
3 =

ε
4
3

2

(
2

3

) 1
3
[

1

2
(g5)2 + (g3)2 + (g4)2

]
(5.20)

As expected from (5.4) this should be the round metric of the surviving S3. This is can

be proved defining as in [24]:

T = L1σ1L
†
2σ1 (5.21)

where L1 and L2 are matrices of the SU(2) groups in (5.2) parametrized via Euler angles

as in (5.11). One then has

Tr(dT †dT ) =
1

2
(g5)2 + (g3)2 + (g4)2 (5.22)

and as T itself is an SU(2) matrix the metric above represents the standard three-sphere

metric. Then from (5.20) one reads that the squared radius of the S3 at the tip is propor-

tional to ε
4
3 .

Note that the metric of the deformed conifold (2.46) is invariant under the Z2 symmetry

that exchanges φ1, θ1 and φ2, θ2. Indeed, the coset coordinates depict the T 1,1 base as a

symmetric S1 fibration over S2 × S2, where the fiber is parametrized by ψ, while (φi, θi)

parametrize the two S2. The coset coordinates are not suitable to describe this S3. The

matrix T introduced in (5.21) parameterizes precisely the SU(2) to which the T 1,1 base

degenerates at the tip of the conifold, which is symmetrically embedded in the coset (5.2).

We then introduce the Euler angles ζ ∈ [0, π[ and φw, φx ∈ [0, 2π[ to rewrite T as:

T =

(
cos ζ2e

iφx − sin ζ
2e
−iφw

sin ζ
2e
iφw cos ζ2e

−iφx

)
(5.23)
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and comparing with (5.21) one gets

cos2 ζ

2
=

1

2
[1 + cos θ1 cos θ2 − cosψ sin θ1 sin θ2]

φw = arctan

sin
(
θ1−θ2

2

)
sin
(
θ1+θ2

2

) tan
ψ

2

− 1

2
(φ1 − φ2)

φx = arctan

cos
(
θ1−θ2

2

)
cos
(
θ1+θ2

2

) tan
ψ

2

+
1

2
(φ1 + φ2) (5.24)

while the metric (5.22) is given by

dΩ2
3 =

dζ2

2
+ 2 sin2 ζ

2
dφ2

w + 2 cos2 ζ

2
dφ2

x (5.25)

The coordinates (ζ, φw, φx) see the three sphere as a circle fibration over a disc, where the

fiber is parameterized by φx and the base is parameterized by (ζ, φw). The fiber smoothly

shrinks at the boundary of the disc so to give a smooth S3.

The coordinates (5.24) allows to nicely parameterize the NS5 locus (5.14) at the tip of

the conifold. For τ = 0 the coordinate φx in (5.24) is the phase of the brane coordinate

x in (5.13) when rewritten as x = |x|eiφx . This means that it can be used to parametrize

the isometry (5.16), i.e. it can be used as T-duality coordinate. Indeed, the coordinate

β that we used for the T-duality around the NP basically coincides with φx plus a shift

-see (5.31). Using (5.13) it is possible to rewrite the NS5 locus (5.14) in coset coordinates:

2 + 2 cos θ1 cos θ2 − e−τ+iψ(1 + e2τ+2iψ) sin θ1 sin θ2 = 0 (5.26)

If one imposes τ = 0 in (5.26) and then uses (5.24) one gets

cos2 ζ

2
= 0 (5.27)

which means that the NS5 for τ = 0 wraps the boundary of the disc ζ = π in Type IIA.

Indeed, the component of the metric (5.25) for φx degenerates exactly on this locus in

Type IIB.

5.4.2 Definition of the NP neighborhood

To construct the NP neighborhood we introduce a small parameter δ that will be used to

linearize the KS background. We then define a new coordinate system suitable to both

linearize the metric (2.46) and to make the isometry (5.16) manifest, which is performed in

two steps. First of all, we redefine the coset coordinates of the deformed conifold in (2.46),
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constraining some combinations of them to be of order δ [77]:

α =
θ1 + θ2

2
β =

φ1 + φ2

2
τ̃ =

τ

2
δ

ω =
φ2 − φ1

2
δ ν =

(
θ1 − θ2

2
− π

2

)
δ µ =

π − ψ
2

δ (5.28)

The tilde from τ̃ will always be dropped, keeping in mind the rescaling of a factor of two.

Secondly, ω, ν, µ in (5.28) are replaced with the following combinations:

r =
√
µ2 cos2 α+ ν2

z = ω − µ sinα

σ = arctan

[ −ν
µ cosα

]
(5.29)

The coordinates τ, α, β, r, z, σ in (5.28) and (5.29) will be referred to as the NP coordi-

nates. Note that these are composed by three angular coordinates α, β, σ and three radial

coordinates of order δ, namely τ, r, z. The NP is located at τ = r = z = 0 and hence lies

on the S3 at the tip of the conifold. To avoid clutter, the parameter δ will be suppressed

in the formulas where it is not necessary, keeping in mind that only τ, r, z carry a power

of δ. In addition, the base one-forms dτ, dr, dz will be considered of order δ, meaning that

once one expresses these as functions of the coset coordinates they get multiplied by a

factor of δ.

The conifold metric (2.46) expanded to lowest order in the NP coordinates then be-

comes:

ds2
6 ' ε

4
3

(
2

3

) 1
3

[dτ2 + τ2(dα2 + cos2 αdβ2) + dr2 + dz2 + r2 (dσ + dβ)2] (5.30)

Note that while each term in (5.30) is of order δ2, the contraction of (5.30) with itself

gives a scalar of order one. The metric (5.30) is not quite the metric of an R6, which can

be recovered by adding β to the definition of σ in (5.29). The reason why it is necessary

to write the metric (5.30) keeping the cross-term dσ + dβ is related to the shape of the

NS5 locus in the NP neighborhood and will become clear in a moment.

The NP neighborhood is composed by two three-dimensional subspaces. The first

one (spanned by τ , α and β) is written in spherical coordinates, while the second one is

parameterized by cylindrical coordinates. These two subspaces have a direct connection

with the topology of the deformed conifold. The two sphere that shrinks at τ = 0 in (5.30)

is exactly the S2 that shrinks at the tip of the conifold, while the remaining subspace

parameterizes the portion of the NP neighborhood that lies on the S3.

The parameterization of the three-sphere (5.24) is useful also to justify the redefini-

tion (5.29) that completes the NP expansion. Indeed plugging (5.28) and (5.29) into (5.24)
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and expanding to lowest order in δ one gets

cos2 ζ

2
' r2 φw '

π

2
+ z φx = σ + β (5.31)

From (5.31) it is clear that the NP (τ = z = r = 0) lies on the boundary of the base

disc ξ = π of the fibration (5.25). Inserting (5.29) into (5.25) and (5.31) one obtains

the linearized flat metric in cylindrical coordinates of (5.30). Note that plugging (5.28)

and (5.29) in (5.26) and expanding to lowest order one gets precisely (5.33)

To show that the NP expansion makes it easier to realize the program of § 5.3.1 it is

useful to T-dualize the empty metric (5.30). Indeed (5.30) is the linearized metric on a

small neighborhood of the empty deformed conifold and one can compare the local physics

it exhibits with the globally-valid T-duality of [100]. The first step is to expand the brane

coordinates of (5.15) using the NP ones. Equation (5.13) reports the coordinate change

between brane and coset coordinate systems. Inserting (5.28) and (5.29) into (5.13) and

expanding to lowest order one gets:

x ' ε√
2

[r cosσ + i(τ cosα+ r sinσ)]eiβ

u ' ε√
2

[r cosσ + i(τ cosα− r sinσ)]e−iβ

z1 '
ε√
2

[z + i(1− τ sinα)]

z2 '
ε√
2

[−z + i(1 + τ sinα)] (5.32)

One can observe two crucial facts from (5.32). First of all, x and u in (5.32) are of order

δ, while z1 and z2 are of order one with corrections of order δ. The NP, that corresponds

to τ = r = z = 0, is precisely on the locus (5.14). Secondly, comparing (5.16) and (5.32)

it is clear that β becomes the coordinate that parameterizes the T-duality circle, as it is

a full angular coordinate in the definition (5.28).

We now rewrite the locus (5.14) in the NP coordinates. Note that inserting (5.32)

into (5.15) one no longer obtains an equality, as (5.32) was obtained expanding to highest

order in δ. Consequently, as (5.14) is satisfied at lowest order in the NP coordinates, to

find the brane locus one has to also impose x = u = 0 to hold at lowest order as well.

From (5.32) we get

x = u = 0 ⇐⇒ cosα = r = 0 (5.33)

which is the locus that gets wrapped by an NS5 in Type IIA. The neighborhood around

the NP parameterized by the coordinates used in (5.30) together with the NS5 locus is

represented in Figure 5.2.

The T-duality along β of the empty geometry (5.30) confirms that (5.33) gets wrapped

by an NS5 brane in Type IIA. Following Buscher’s rules recalled in § 1.4, the metric (5.30)
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z

β + σ

r⊗ατ

β

Figure 5.2: The NP neighborhood seen as a product of the collapsing S2 at τ = 0 and a
cylinder that entirely lies on the S3. The red dots represent the NP, while the blue lines
represent the NS5 brane locus (5.33)

should be rewritten as:

ds2
6 = ε

4
3

(
2

3

) 1
3

[
(τ2 cos2 α+ r2)

(
dβ +

r2

τ2 cos2 α+ r2
dσ

)2

+ dτ2 + τ2 dα2 + dr2 + dz2

+
r2τ2 cos2 α

τ2 cos2 α+ r2
dσ2

]
(5.34)

and we define the quantity:

Aσ dσ =
r2

τ2 cos2 α+ r2
dσ (5.35)

Then a T-duality along β maps the NP neighborhood to a region in Type IIA, where the

local metric is given by:

ds2
6, IIA = ε

4
3

(
2

3

) 1
3
(
dτ2 + τ2 dα2 + dr2 + dz2 +

r2τ2 cos2 α

τ2 cos2 α+ r2
dσ2

)
+ ε−

4
3

(
2

3

)− 1
3 dβ2

τ2 cos2 α+ r2
(5.36)

In addition, in Type IIA one gets a nontrivial dilaton:

e2Φ = ε−
4
3

(
2

3

)− 1
3 1

τ2 cos2 α+ r2
(5.37)

and a nontrivial B2 field:

B2 =
r2

τ2 cos2 α+ r2
dσ ∧ dβ (5.38)

The gββ component of (5.36), the dilaton (5.37) and B2 in (5.38) blow up precisely on the
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locus (5.33) as one would expect in a solution containing NS5 branes. We have also verified

that (5.36), (5.37) and (5.38) represent the NP expansion of the corresponding quantities

found in the analogous T-duality of the empty deformed conifold in [100]. In [100] it

was also shown that the flux of H3 = dB2 found in Type IIA measures an integer NS5

charge. Qualitatively, this is also confirmed by the fact that B2 in (5.38) does not contain

any factor of ε, which is the only physically relevant constant of the empty geometry. It

is important to stress that the shape of the NS5 brane in Type IIA is a feature of the

T-duality along the particular isometry we chose and the manifold we are working with.

Both these ingredients are still there in the KS solution and hence we expect also the same

NS5 to appear in the T-dual version of this solution.

If (5.30) had been written exactly as an R6 metric the situation would be radically

different. Indeed, a T-duality along β would not produce any B2 field, while gββ and the

dilaton in Type IIA would blow up on a locus that is different from (5.33), which verifies

u = x = 0 in NP coordinates. The reason why the NP metric should be written as in (5.30)

lies in the fact that the T-duality circle as defined in (5.16) wraps both the shrinking S2

at the tip and the blown up S3, as explained in § 5.4.1.

5.5 The Type IIA solution T-dual to KS

5.5.1 Expansion of the KS solution in the NP neighborhood

In this section we expand the KS solution reported in § 2.4 around the NP and rewrite it

in the formalism of Buscher’s rules of § 1.4 to ease the T-duality in β.

We expand the KS solution of § 2.4 starting from the metric (2.48). The deformed

conifold metric (2.46) becomes as in (5.30) and is of order δ2, while the Minkowski metric

dxidxi on the first four coordinates remains untouched. Requiring to keep corrections up

to order δ2 in the metric determines how to expand the warp factor (2.49). In particular,

one needs to truncate differently the expansions of h−
1
2 and h

1
2 , which are then denoted

with a hat:

ĥ−
1
2 =

ε
4
3

gsMα′2
1
3

 1√
a0
− a2τ

2

2a
3
2
0


ĥ

1
2 = gsMα′ε−

4
3 2

1
3
√
a0 (5.39)

where a0 ≈ 0.71805 was computed in [4] and a2 = −2
8
3 · 3− 4

3 is computed in Appendix B.

Note that in (5.39) ĥ−
1
2 was truncated at order δ2, while ĥ

1
2 was truncated at order one,

so that all the metric components contribute with terms up to order two. Indeed, the full

expanded KS metric becomes

ds2
KS = ĥ−

1
2dxidxi + ĥ

1
2ds2

6 (5.40)
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with ds2
6 as in (5.30) and the warp factor as in (5.39). To perform a T-duality along β one

rewrites ds2
6 in (5.40) exactly as in (5.34) and defines the same quantity Aσdσ as in (5.35).

Now that the metric has been expanded one can proceed with the expansion of the

KS RR and NS-NS field strengths. It is not possible to simply expand a field strength in

power series and then just truncate it at some fixed order in δ, as this might lead to a loss

of physically relevant information. To this purpose, we use a more reliable procedure that

consists of two steps. Given an n-form field strength Fµ1µ2...µn one computes its square

(Fn)2 defined as

(Fn)2 = Fµ1µ2...µng
µ1ν1gµ2ν2 · · · gµnνnFν1ν2...νn (5.41)

where in (5.41) one has to use the expanded metric (5.40). Then one first truncates the

power series expansion in δ of (Fn)2 at a fixed order. Secondly, one expands Fµ1µ2...µn in

power series and keeps only the terms that contribute to the truncation of (Fn)2. This

criterion is mathematically accurate, as it based on the expansion of (5.41), which is a

scalar. Most importantly, this criterion is also physically meaningful. The square of a field

strength (5.41) is of the same order as (the square of) the flux that the field is carrying and

this guarantees no loss of relevant information. Furthermore, the scalars built as in (5.41)

are preserved under a T-duality together with their power series expansions. This means

that if one expands the field strengths in Type IIB following the procedure described above

then in Type IIA one automatically reconstructs the field strengths expanded with the

very same criterion. Using this rule we can safely proceed to rewrite the KS fields in the

NP coordinates of § 5.4.2. We choose to keep all the terms in the expansions of the KS

field strengths that contribute to the lowest order term of the expansion of their square.

The expansion of the B2 KS field in (2.50) rewritten directly in the formalism of

Buscher’s rules is given by

B2 = Baβ dy
a ∧ (dβ +Aσ dσ) + B̂2 (5.42)

where Aσ dσ is as in (5.35) and

Baβ dy
a =

2

3
Mgsα

′τ(τ2 cosαdα− r sinαdr − r cosσ cosαdz) (5.43)

B̂2 =− 2

3
Mgsα

′τ(r cosα cosσdz ∧ dσ + cosα sinσdz ∧ dr + r sinαdr ∧ dσ)

−Baβdya ∧Aσ dσ (5.44)

It is useful to show how to count the factors of δ in B2 and its square. According to

the conventions of § 5.4.2, the coordinates τ, r, z along with dτ, dr, dz carry a factor of δ:

consequently, all the terms appearing in (5.44) are of order δ3. As B2 has legs only along

the deformed conifold, when one builds its square as in (5.41) one has to use the inverse

expanded metric along the deformed conifold, which is of order δ−2. Therefore (B2)2 is of
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5. The T-dual Klebanov-Strassler solution

order δ2, but the physically meaningful information is carried by H3 = dB2, whose square

is of order one. Indeed, taking the differential of B2 in (5.44) does not alter the order

of magnitude of the single terms, which remains δ3. Now H3 has one more leg along the

deformed conifold with respect to B2 and hence (H3)2 receives an additional factor δ−2

from the expansion of the inverse metric on the conifold. The fact that H3 is not irrelevant

at the NP is expected from the discussion of the KS solution in § 2.4: as the flux of H3

on the S3 remains finite even at the tip then this form should be of order one close to the

NP.

Using the conventions of Buscher’s rules in § 1.4 we rewrite the expansion of F3 in (2.51)

as

F3 = F3,β ∧ (dβ +Aσ dσ) + F̂3 (5.45)

where Aσdσ is as in (5.35). Then we find:

F3,β =Mα′
(
−1

3
rτ cosσdτ ∧ dα+

1

3
τ cosα cosσ sinαdτ ∧ dr +

1

3
τ cos2 αdτ ∧ dz

−1

3
rτ cosα sinα sinσdτ ∧ dσ +

2

3
τ2 cos2 α cosσdα ∧ dr

−2

3
τ2 cosα sinαdα ∧ dz − 2

3
rτ2 cos2 α sinσdα ∧ dσ + 2rdr ∧ dz

)
(5.46)

and

F̂3 =− 1

3
Mα′τ sinσdτ ∧ dα ∧ dr −Mα′

rτ cosα

3(r2 + τ2 cos2 α)

(
τ2 cosα cosσdτ ∧ dα ∧ dσ

+r cosσ sinαdτ ∧ dr ∧ dσ + r cosαdτ ∧ dz ∧ dσ + 2rτ cosα cosσdα ∧ dr ∧ dσ
+6rτ sinαdα ∧ dz ∧ dσ) (5.47)

The expansions of some wedge products among the base one-forms (2.44) are reported in

Appendix B. Each term of (5.46) and (5.47) carries a factor δ3, which implies that F 2
3

is of order one. This is again expected from the discussion at the end of § 2.4: as F3 is

constant and nonzero at the tip its square has to be of order one in the NP neighborhood.

The NP expansion of the self-dual RR five-form (2.52) is rewritten as

F5 = F5,β ∧ (dβ +Aσ dσ) + F̂5 (5.48)

where

F5,β = −gsM2(α′)2 16τ3r

9
cosαdα ∧ dr ∧ dz ∧ dσ

F̂5 =
ε

8
3

g3
sM

2(α′)2a2
0

4

3
4
3

τ dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ (5.49)

124



5.5. The Type IIA solution T-dual to KS

We stress that F̂5 is just the expansion of the original ?F5 in (2.52), as F5,β ∧ Aσ dσ = 0.

(F5)2 is of order δ2 and then its flux is small. This is also expected from the physics of the

KS solution: indeed the flux measured by F5 on the T 1,1 space depends on τ and smoothly

goes to zero at the tip.

5.5.2 The Type IIA solution dual to KS

The T-dual of the KS solution in the NP neighborhood is readily obtained from the results

of § 5.5.1. Using the expansions for the warp factor 5.39 the full Type IIA metric at the

NP is given by:

ds2
IIA =

ε
4
3

gsMα′2
1
3

 1√
a0
− a2τ

2

2a
3
2
0

 dxidxi +
3

1
3dβ2

gsMα′2
2
3
√
a0(τ2 cos2 α+ r2)

+
2

4
3 3

1
3 τ

3
√
a0(τ2 cos2 α+ r2)

dβ (τ2 cosαdα− r sinαdr − r cosσ cosαdz)

+ gsMα′
√
a0

2
2
3

3
1
3

(
dτ2 + τ2dα2 + dr2 + dz2 +

r2τ2 cos2 α

τ2 cos2 α+ r2
dσ2

)
(5.50)

while the Type IIA dilaton is nontrivial:

e2Φ =
3

1
3

gsMα′2
2
3
√
a0(τ2 cos2 α+ r2)

(5.51)

The first and third lines in (5.50) together with the dilaton (5.51) are similar to the

corresponding lines in (5.36) and the dilaton (5.37) that one gets by T-dualizing the

empty geometry expanded around the NP. The fact that now we are T-dualizing the KS

solution is signaled by the presence of the KS constants such as M and a0 and by the τ2-

correction in the metric on the Minkowski space. The second line of (5.50) is completely

new and contains cross-terms with β entirely coming from the nontrivial expansion of the

KS B2 field in (5.44). From (5.50) one can easily verify that gµνg
µν is still of order one,

as expected. Note how the gββ component in (5.50) and the dilaton (5.69) blow up on the

NS5 locus (5.33) with the appropriate power, as expected from § 5.5.1.

The same divergence appears for the Type IIA B2 field:

B2,IIA = Aσ dσ ∧ dβ + B̂2

=
r2

τ2 cos2 α+ r2
dσ ∧ dβ + B̂2 (5.52)

where B̂2 is as in (5.44). The first term in (5.52) is the same as in (5.38) and arises just

from the geometry. As in § (5.5.1) the square of H3 = dB2 is of order one.
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5. The T-dual Klebanov-Strassler solution

The RR two-form field strength F2 is:

F2 = F3,β (5.53)

where F3,β is as in (5.46). The square of this flux computed as in (5.41) using (5.50) is of

order δ2.

According to Buscher’s rules of § 1.4, the four-form field strength is given by:

F4 = F̂3 ∧ (dβ +Baβ dy
a) + F5,β (5.54)

where F̂3, Baβ dy
a and F5,β are defined in (5.47), (5.43) and (5.49) respectively. Using

the new metric (5.50) it turns out that (F̂3 ∧ dβ)2 is of order δ2, while (F̂3 ∧ Baβ dya)2

is of order δ4 as well as (F5,β)2. The lowest order component of F4 in (5.54) is hence

proportional to M , as one would expect for a four-form field-strength in the presence of

smeared D4 branes.

The Type IIA RR sector also contains a six-form and an eight-form field strengths,

that can be computed from the hodge duals of (5.54) and (5.53) respectively, keeping in

mind that the star operator is defined using (5.50). We report here only the component

of dC5 with legs along the directions 0, 1, 2, 3, τ, β, which is important for the purposes of

the next section:

dC5|0123τβ =
ε

8
3

g3
sM

2(α′)2a2
0

4

3
4
3

τ dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ ∧ dβ (5.55)

The square of (5.55) is of order δ4 and it is easy to verify that it comes from the hodge

dual of the F5,β component in (5.54), whose square is also of order δ4 as expected.

Check: a D4 probe brane feels zero force

In this section we show that a D4 probe brane wrapping t, x1, x2, x3 and β feels no force

in the Type IIA solution presented in § 5.5.2. This result is expected from the fact that a

probe D3 wrapping the first four coordinates in KS does not break any supersymmetries

and is hence in equilibrium regardless of its location on the deformed conifold. Our

D4 probe in the Type IIA dual KS solution interacts only with the metric (5.68), the

dilaton (5.69) and C5 in (5.55). Denoting pullbacks on the D4 worldvolume with a tilde

the probe action is (compare with (1.21)):

S = −
∫
d5 x̃ e−Φ̃

√
−det g̃µν +

∫
C̃5 (5.56)
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5.6. Adding D3 branes to KS

where the first integral is the Dirac - Born - Infeld action and the second one is the

Wess-Zumino term. The potential C̃5 can be easily reconstructed by intrgrating (5.55):

C̃5 =
ε

8
3

g3
sM

2(α′)2a2
0

2

3
4
3

τ̃2 dt̃ ∧ dx̃1 ∧ dx̃2 ∧ dx̃3 ∧ dβ̃ (5.57)

In the Dirac-Born-Infeld part of the action (5.56) the dilaton (5.69) cancels g̃ββ of (5.68)

appearing in the determinant, so that the whole action is finite without divergences. The

remaining of the integrand can be expanded in powers of δ up to highest corrections:√(
1− a2τ̃2

2a0

)4

' 1− a2τ̃
2

a0
(5.58)

A quick check shows that (5.58) and (5.57) are of the same order in δ, so a cancellation

in (5.56) is possible. Indeed, inserting (5.58) and (5.57) into (5.56) and restoring all the

constants from § 5.5.2 including a2 in (B.4) one has:

S = −
∫
d5x̃

ε
8
3

g3
sM

2(α′)2a02
2
3

(
1 +

2
2
3 τ̃2

3
4
3a0

)
+

∫
d5x̃

ε
8
3

g3
sM

2(α′)2a2
0

2

3
4
3

τ̃2 = const (5.59)

which shows that our D4 probe does not feel any force in Type IIA KS, as expeted.

Moreover, the fact that the τ -dependent part in (5.58) exactly cancels against (5.57)

proves that the criterion used to expand the KS field strengths in § 5.5.1 is physically

consistent with the expansion of the metric and its warp factors in (5.40).

5.6 Adding D3 branes to KS

In this section we want to push the T-duality procedure described in § 5.4.2 and § 5.5.1

one step forward. We modify the KS solution in § 2.4 by adding C D3 branes at the NP

wrapping the Minkowski space of KS. These will backreact interacting with the KS fields

and causing a singularity at the NP, giving rise to what will be referred to as the KS+D3

solution. This solution is static because the C D3 branes are perfectly stable at the NP,

as shown for the T-dual solution in § 5.5.2. Applying the techniques described before we

want to reconstruct the new T-dual version of the NP neighborhood. This operation is

carried on to better understand the physics of the Type IIA dual solution to KS in view

of testing the stability of the antibranes.

To perform the same procedure as in § 5.3.1 it is necessary to check that (5.16) remains

an isometry after the backreaction of the C D3 branes at the NP. This is fundamental to

insure the existence of a new Type IIA solution with the same NS5 wrapping the holomor-

phic curve (5.14). As proved in § 5.4.2, the NP lies on the locus (5.14), which is precisely

the locus of fixed points on the deformed conifold under the isometry (5.16). Conse-
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5. The T-dual Klebanov-Strassler solution

quently, the backreaction of the D3 branes placed at the NP cannot spoil this isometry,

which is hence preserved globally. A new Type IIA KS+D4 background T-dualized along

ξ in (5.16) exists and hence it is perfectly legitimate to reconstruct the T-dual version of

only a small region, namely the NP neighborhood.

As the D3 branes at the NP do not break any supersymmetry it is easy to find an

ansatz to include their backreaction on the KS solution. The KS+D3 solution can be seen

as some kind of superposition between the KS solution and the solution that one would

get by placing the D3 branes at the NP on the empty deformed conifold. Indeed, the

metric ansatz is still as in (2.48), but the warp factor now becomes

h = hKS + hD3 (5.60)

where hKS is the KS warp factor (2.49) and hD3 is the warp factor that one would get

by placing only the D3 branes on the empty deformed conifold. In addition, the five-form

field strength becomes:

F5 = F5 + ?F5 F5 = d
(
h−1

)
∧ dt ∧ dx1 ∧ dx2 ∧ dx3 (5.61)

where the hodge star should be computed using (5.60). The rest of the solution is consti-

tuted by the remaining fields in KS, namely B2 in (2.50) and F3 in (2.51).

Finding hD3 in (5.60) is equivalent to solving the Laplace equation on the deformed

conifold [103]. Now that the right ansatz for the KS+D3 solution has been found it is

convenient to proceed to the next step, namely finding the expansion for hD3 around the

NP. The deformed conifold metric becomes as in (5.30) which is an (almost) R6 metric.

Therefore the lowest order expansion of hD3 in the NP just becomes the blowing up warp

factor that one gets by putting some D3 branes in flat empty space, and it will be of order

δ−4, as confirmed by the analysis of [103]. The next-to-lowest order corrections will start

at least from order one and originates from the fact that we are expanding the solution of

a Laplace equation on the deformed conifold, hence they can possibly be of the same order

as the terms in hKS in (5.39). We choose to ignore these higher order correction coming

from the D3 brane backreaction. On one side, we know that these corrections take care of

themselves and do not really add interesting physics to the problem as long as one captures

the D3 brane divergence. On the other side, the interaction between these corrections and

those of the same order coming from KS give rise to negligible terms, as we are primarily

interested in the interaction between the KS terms and the new D3 divergence. Hence,

our hD3 is truncated at highest order, becoming:

hD3 = ε−
8
3

(
3

2

) 2
3 C

R4
(5.62)
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where we have defined R =
√
τ2 + r2 + z2 and we have taken into account the overall

coefficient in (5.30). The KS+D3 warp factor (5.60) that we will consider is given by:

h = (gsMα′)2ε−
8
3 2

2
3 (a0 + a2τ

2) + ε−
8
3

(
3

2

) 2
3 C

R4
(5.63)

The contribution coming from the D3 branes in (5.63) dominates over the KS ones, which

can now be considered as corrections to the simple D3 brane solution. As in § 5.5.1, we

have to expand the powers of the warp factor (5.63) differently so that all the coordinates

contribute to the highest order in δ in the metric, taking into account that (5.30) is of

order δ2. We fix the highest order of expansion in the metric requiring it to comprise a

τ -dependent contribution from the KS in the warp factor (5.63), which was essential for

the stability of the D4 probes in § 5.5.2. This goal can be achieved if one expands h
1
2 and

h−
1
2 as follows:

ĥ
1
2 =

(
3

2

) 1
3

ε−
4
3

√
C

R2
+

(gsMα′)2

ε
4
3 3

1
3

a0R
2

√
C

+
(gsMα′)2

ε
4
3 3

1
3

a2τ
2R2

√
C

ĥ−
1
2 =

(
2

3

) 1
3

ε
4
3
R2

√
C
− 2

2
3 (gsMα′)2ε

4
3

3

a0R
6

C3/2
(5.64)

Then the expanded metric of the KS+D3 solution becomes

ds2
KS+D3 = ĥ−

1
2dxidxi + ĥ

1
2ds2

6 (5.65)

where ds2
6 is as in (5.30). From (5.64) we get terms of order δ2 and δ6 from the Minkowski

metric and terms of order 1, δ4 and δ6 from the expansion of the deformed conifold metric.

Now that we have expanded the KS+D3 metric we can proceed to the expansions of

the field strengths. The criterion used for this purpose is the same as in § 5.5.1: one first

expands the square of a field strength defined as in eq. (5.41) using (5.65) to highest order

and then truncates the expansion of the field strength itself keeping only the terms that

contribute to the square. As the metric we are dealing with now is different from that

in 5.40, the orders of magnitude of the squares change, as one would expect given the fact

that the D3 branes at the NP tend to hide the KS solution in the NP neighborhood.

The expansion of B2 is the same as in (5.44), but now both (B2)2 and (H3)2 are of

order δ6. This is because the leading terms in the transverse metric are now of order one.

Hence adding a leg to a form along a transverse direction does not change the order of

magnitude of its square, while the differential of a form preserves the orders of magnitude

of each term, as explained in § 5.5.1.

Similarly to B2, also F3 gets rewritten as (5.46) and (5.47), and its square is of order

δ6 as well. This is not the same for the expansion of F5 in (5.61), as (F5)2 is now of order

one. This is as expected, as F5 measures also the D3 brane charge on a sphere surrounding
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5. The T-dual Klebanov-Strassler solution

the NP, hence the flux of this form cannot be small. The component of (F5)2 that is of

order one arises precisely from hD3 in (5.60) and if one truncated to this order the KS

contribution to F5 would be completely lost. To keep some reminiscence of the KS solution

we expand F5 in (5.61) as follows:

F5 = d

[(
2

3

) 2
3

ε
8
3
R4

C
− 4

3
4
3

(gsMα′)2ε
8
3a0

R8

C2

]
∧ dt ∧ dx1 ∧ dx2 ∧ dx3

= FD3
5 + FKS+D3

5 (5.66)

where FD3
5 comes from the differential of the first term in the brackets and FD3+KS

5 comes

from the second one. FD3
5 is purely due to the D3 branes, while FKS+D3

5 comes from the

interaction between the KS solution and the branes. This can be qualitatively confirmed

from the presence in FKS+D3
5 of some constants inherited from the KS solution, such as

M or a0. In addition, (FD3
5 )2 is of order one, while the square of the second term is of

order δ8. In § 5.5.1 (F5)2 in (5.49) was of two orders higher than (B2)2 and (F3)2 and the

same happens here for (FKS+D3
5 )2 in (5.66). Even if the orders of magnitude of the fluxes

due to the KS solution have changed, the relative differences are preserved.

To complete the expansion of F5 we present the expression for ?F5:

?F5 = ε−
8
3

(
3

2

) 2
3 τ2 cos2 α+ 2r2

h4τ4 cos3 α
(∂τh dr ∧ dz − ∂rh dτ ∧ dz

− ∂zh dτ ∧ dr) ∧ dα ∧ dβ ∧ dσ (5.67)

where h in (5.60) should be properly truncated so to get terms of the same order as

in (5.66). For consistency, one should keep the two lowest order terms in the expansion

of (5.67), whose squares are of order one and δ8.

The T-duality in β of the new KS+D3 background is easily performed. The Type IIA

metric close to the NP is given by

ds2
IIA,KS+D3 = ĥ−

1
2

[
dxidxi + ε

4
3

(
2

3

) 1
3 dβ2

(τ2 cos2 α+ r2)

]

+ ĥ−
1
2 ε

4
3

(
2

3

) 1
3 Baβ dy

a

(τ2 cos2 α+ r2)
dβ

+ ĥ
1
2 ε

4
3

(
2

3

) 1
3
[
dτ2 + τ2dα2 + dr2 + dz2 +

r2τ2 cos2 α

τ2 cos2 α+ r2
dσ2

]
(5.68)

where the warp factors are expanded as in (5.64) and Baβ dy
a is as in (5.44). As in § 5.5.2

the third line of the metric comes from the T-dualization of the deformed conifold, while

the second line arises from the interaction between the KS B2 and the geometry. The
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Type IIA dilaton now becomes:

e2Φ = ε
4
3

(
2

3

) 1
3 ĥ−

1
2

(τ2 cos2 α+ r2)
(5.69)

which is clearly of order one. The NS-NS two-form B2 is exactly the same as in (5.52):

B2,IIA =
r2

τ2 cos2 α+ r2
dσ ∧ dβ + B̂2 (5.70)

with B̂2 given by (5.44). The first term in (5.70) arises from Aσ dσ ∧ dβ where Aσ dσ is

defined in (5.35) and is a geometric feature of our T-duality in β of the metric (5.30). The

square of this term with (5.68) is still of order one and the same applies metric structure

for its differential H3
5. This together with the fact that B2, the dilaton and the metric

blow up on (5.33) indicate that this locus gets wrapped by NS5 branes even in the KS+D3

solution.

The RR sector of the Type IIA version of the new KS+D3 background comprises a

two-form F2 which is exactly the same as in (5.53), with (F2)2 ∼ δ6. The four-form is now

given by

F4 = F̂3 ∧ (dβ +Baβ dy
a) + F5,β (5.71)

where F̂3 and Baβ dy
a are written in (5.47) and (5.43), while F5,β should be computed

from (5.67). The lowest order contribution to F4 is hidden in F5,β and its square is of

order one: this represent the four-form field strength that one gets placing D4 branes in

flat space. The next-to-lowest order contributions also come from F5,β and arise from the

interactions between the KS solution and the D3 branes in Type IIB and their square is

of order δ8.

Finally, the RR sector of this solution also includes a six-form field strength and an

eight-form field strength, which can be computed via the hodge duals of (5.71) and (5.53)

respectively. In particular, the component of dC5 with legs along the Minkowski space

and one among the τ , r, z coordinates on the conifold together with β is easily computed

from (5.66):

dC5|0123τβ = (FD3
5 + FKS+D3

5 ) ∧ dβ (5.72)

The Type IIA KS+D3 solution incorporates all the main features of the previous T-

duality of KS in § 5.5.2, including the structure of the metric (5.68) and the NS5 branes

wrapping the same locus. New features arise from the novel terms signaling the interaction

between the D4 branes and the T-dual KS solution. As a test, one could perform the

probe computation of § 5.5.2 using the metric (5.68) and the component of dC5 in (5.72).

However, the ansatz we used in (5.60) and (5.61) together with Buscher’s rules guarantee

5Notice that in (5.68) the highest order components of the metric along the NP coordinates are of order
one, hence even if H3 has one more leg than B2 their squares are of the same order.
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that the D4 probe action is trivial. The cancellation in the D4 action (5.56) for the KS+D3

solution takes place at two different levels. Indeed, FD3
5 ∧ dβ in (5.72) is canceled by the

lowest order term in the DBI action arising from hD3 in (5.60). These terms come from the

pure D3 brane background in Type IIB and their cancellation in Type IIA just states that

a D4 probe is in equilibrium in a D4 brane background. Then, the next-to-leading order

correction FKS+D3
5 ∧dβ in (5.72) is cancelled against the next-to-leading order term in the

DBI action coming from hKS in (5.60). This cancellation is physically more meaningful

than the previous one, as it is due to terms in Type IIA arising from the interaction

between the D3 localized branes and the KS solution.

5.7 Future developments

We reconstructed the Type IIA solution T-dual to the KS solution on a small region at

the tip of the deformed conifold, choosing the correct isometry to obtain an NS5 brane

wrapping a holomorphic curve in Type IIA. We discussed the choice of our isometry both

from the point of view of the dual cascading four-dimensional gauge theory and from

the geometric properties of the deformed conifold. This operation was made possible by

finding a suitable set of coordinates for the North Pole expansion. In § 5.6 the same

techniques were applied to T-dualize the solution constructed by adding D3 branes at the

North Pole of the three-sphere at the bottom of the deformed conifold. On one hand,

the North Pole expansion makes it easy to solve the Laplace equation for the D3’s on

the deformed conifold, as the leading order term in the expanded metric corresponds to

the solution to the Laplace equation for D3 branes in flat space. On the other hand,

the expansion makes it easy to identify the physics arising purely from the D4 branes in

Type IIA and that coming from the interactions between the Type IIA T-dual solution to

“empty” KS and the additional localized D4 branes.

The solutions dual to KS and KS+D3 constructed in this paper mark a first step

towards testing the stability of antibranes in Type IIA. Adding an anti-D4 brane in the

T-dual solution to KS of § 5.5.2 is the next step in this direction. It is difficult to find the

full backreaction of the anti-D4 on the T-dual KS solution because of the supersymmetry

breaking. However, we expect that the form of the T-dual solution to the KS+D3 one of

§ 5.6 could be used to get a better understanding about the backreaction of the anti-D4

and possibly to propose an ansatz. For instance, the backreaction of the anti-D4 should

preserve the relative difference between the order of magnitudes of the squares of the fields

arising from KS, as happens for a backreacted D4. In addition, the anti-D4 will not alter

the divergencies of the dilaton, metric and B2 near the Type IIA NS5 brane: as we have

seen in § 5.6, the squares of these divergent terms have the same order of magnitude as in

the T-dual solution of KS presented in § 5.5.2.

Another interesting possibility is to study the brane-antibrane interactions between
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the backreacted D4 branes of the solution in § 5.6 and a probe anti-D4 brane. Clearly,

the leading terms of the probe action would represent the attractive force exerted by the

backreacted branes. The interesting physics would then be hidden in the subleading terms

of this action. This would be the Type IIA correspondent of the interaction between the

fields of the KS solution and the backreacted D3 branes in Type IIB. If the force exerted

by the next-to-leading order terms were repulsive this would prove that anti-D4 branes at

the bottom of the solution T-dual to KS are unstable. In particular, we expect the fields

sourced by the NS5 brane in Type IIA to play a key role in the final results.
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CHAPTER 6

FIVE-DIMENSIONAL NULL AND TIMELIKE

SUPERSYMMETRIC GEOMETRIES

6.1 Review of five-dimensional supersymmetric solutions and

their classification

6.1.1 Looking for solutions with mixed Killing vectors

Supersymmetric solutions of minimal Supergravity in five dimensions play an essential role

in various areas of String Theory. For instance, they are fundamental to understand String

Theory compactifications as well as the microscopic properties of black hole solutions. In

addition, they are usually good toy models to understand the key properties and features

of more complicated higher dimensional solutions. In fact, five-dimensional, pure, N = 1

Supergravity is the perfect framework where to explore the geometry and topology of

M-theory supersymmetric solutions [104].

The supersymmetric solutions of five-dimensional, pure, N = 1 Supergravity were

classified in [17] up to local isometries, while the local classification in the complete,

matter-coupled, five-dimensional Supergravity was found in [105, 106, 107]. Locally, these

solutions can be divided into two classes according to the causal character of the super-

symmetric Killing vector field, namely the vector field given as a bilinear in terms of the

Killing spinor1. The time-like class is characterized by a time-like Killing vector, while the

null class is characterized by a null Killing vector2. In the time-like class, supersymmetry

constrains the metric in such a way that it can be formally written in terms of a local

1To save unnecessary words, we will refer to the supersymmetric Killing vector as simply the Killing
vector.

2It can be shown that the Killing vector cannot be spacelike.
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6. Five-dimensional null and timelike supersymmetric geometries

Hyper-Kähler four-dimensional base space.

It is well-known that in the time-like class the Killing vector can become null at some

loci of the four-dimensional Hyper-Kähler base manifold. Indeed, this is precisely what

happens at the horizon of a black hole solution, or in the smooth five-dimensional solutions

of [108] which will be considered in this chapter. A change in the causal character of the

Killing vector is paralleled by a change of the supersymmetry conditions that the spinor

satisfies. However, in all the solutions constructed so far this can happen only in some

regions of codimension at most one of the space-time manifold, that are typically surfaces.

Our goal in this chapter is to construct five-dimensional solutions in minimal Super-

gravity whose Killing vector, which is generically time-like, becomes null at a point of the

space-time manifold where all the derivatives of its norm vanish. The null condition is

a closed condition, so if the norm of the spinor is a continuous function then the spinor

can become null only on a closed subset of the manifold. Since all the derivatives of the

norm vanish at the point where the Killing vector field becomes null, we conclude that

the norm is not an analytic real function at this point, otherwise the Killing vector field

would vanish on an open set, contradicting the fact that the null condition on the norm

is a closed condition. Therefore, if we are able to construct a solution where the norm

of the Killing vector field and all its derivatives vanish at some locus, we will know that

the norm is not a real analytic function at those points. In either case, having a Killing

vector whose norm has an infinite number of derivatives vanishing at a point is the closest

scenario to having a null-spinor on an open set. These would be solutions that may mix, in

a non-trivial way, the local classification that distinguishes between the time-like and the

null classes. In this respect we consider smooth Supergravity solutions with a multi-center

Gibbons-Hawking (GH) base manifold that asymptote to AdS3×S2. These can be gener-

ated from the compactification of eleven-dimensional Supergravity solutions on three tori

with stabilized moduli and are essentially a modification of the three charge microstates

introduced in § 2.3. The conditions that ensure smoothness were found in [19, 3] as these

solutions represent microstate geometries for five-dimensional black holes. These solutions

are uniquely determined once one fixes the poles and the residues of two harmonic func-

tions V and K in the GH space. In particular, it is well known [108] that the related

Killing vector is time-like almost everywhere, except for the loci where V is zero.

It is easy to give a physical interpretation for this phenomenon in the eleven-dimensional

formalism: in the regions where the Killing vector is time-like the supersymmetry con-

ditions are compatible with those of M2 branes wrapping one of the three tori. At the

same time, on the surfaces where the Killing vector becomes null, the supersymmetry

conditions become those required by M5 branes wrapping two of the three tori and the

Gibbons-Hawking fiber (see § 2.3 for the detailed definitions). The transition between

M2 brane-like supersymmetry and the M5-brane one can be of utmost importance for the

construction of new microstate geometries for five-dimensional black holes that are not

136



6.1. Review of five-dimensional supersymmetric solutions and their classification

electrically charged. This can be achieved by means of a new class of physical objects, the

magnetubes, introduced in [108]. A magnetube has an M5 charge, which is magnetic in

five dimensions, together with positive and negative M2 charges. The M2 charge density

is allowed to smoothly vary along the M5-P common direction so that the net M2 charge

is zero. The supersymmetry conditions are those for M5 branes along this direction and

hence the positive and negative M2 charges do not interact and the whole magnetube is su-

persymmetric. This can lead to the construction of microstates for five-dimensional black

holes with zero electric charges [109], such as the Schwarzschild ones. Finding a solution

where the Killing vector becomes null at a point where its norm has an infinite number of

vanishing derivatives can be relevant in this respect. Indeed, this solution would allow to

construct new types of magnetubes, as the M5 brane charge is no longer constrained in

the standard way. In addition, one could add different types of magnetubes in the same

null region and study whether the counting of these types of configuration can partially

reproduce the expectations from the black hole entropy.

To reach our goal it is hence necessary to construct a five-dimensional solution that

asymptotes to AdS3×S2 where the harmonic function V vanishes at a point together with

all its derivatives. This operation is in general impossible, unless one allows the number of

poles to become infinite. We then adopt the following strategy. We arrange 2N poles on

the same line in the GH space so that the function V defined in § 2.3 and all its derivatives

up to order 2N − 2 vanish at the origin of the GH space. This constrains the residues of

V at the poles to be determined by the distances di’s between the poles and the origin.

In the limit where N becomes infinite V and all its derivatives vanish at the origin, where

the Killing vector becomes null.

The choice of the distances di’s of the poles from the origin is the only degree of freedom

left by our construction and the physical relevance of the solution given by the limit heavily

depends on this. Indeed, a general requirement to determine whether the solution in the

limit is physically meaningful is to demand it to asymptote to AdS3 × S2, so that it still

belongs to the original class of five-dimensional solutions. We give numerical evidence that

there exists a distance distribution for the poles so that this condition is satisfied. At the

same time, the residues of V remain finite in the limit, while all the poles collapse on two

different points. This result motivates a future analysis about the behavior of the metric

and the warp factor in the proximity of these two would-be essential singularities, that

in fact might not be singularities at all. Indeed, considering the full backreaction what

appears to be an essential singularity from the point of view of the three-dimensional base

of the GH space will in fact give rise to smooth solutions [21, 66].

This chapter is organized as follows. In § 6.1.2 we present a general review about the

supersymmetric structure ofN = 1 five-dimensional Supergravity solutions, with emphasis

on the distinction between time-like and null classes. In § 6.2 we recall the construction

of smooth five-dimensional solutions with a Gibbons-Hawking base that asymptote to
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AdS3 × S2 and prove that the associated Killing vector becomes null when V vanishes.

In § 6.3.1 we show that by suitably arranging 2N GH centers on a line it is possible to

have V as well as all its derivatives up to order 2N − 2 vanish at the origin. In § 6.3.2 we

consider the limit where N becomes infinite, so that all the derivatives of the norm of the

Killing vector vanish at the origin. In particular, we numerically show that it is possible to

arrange the distances between the GH centers so that the limit solution still asymptotes

to AdS3 × S2. In § 6.4 we underline the physical properties of the limit solution and

state some future work. Additional details are presented in the Appendix [GP: arrange

references]. In particular, in Appendix C.1 we prove that the residues of V attain a finite

value in the limit, while in Appendix C.2 we briefly describe an alternative construction

that does not lead to a physically relevant limit solution.

6.1.2 The supersymmetric solutions of N = 1 five-dimensional Super-

gravity

In this section we review the structure of the supersymmetric solutions of five-dimensional

N = 1 pure Supergravity. Although the theory under scrutiny here seems to be relatively

simple, the structure of its supersymmetric solutions is remarkably rich. This fact can

be traced back to the particular form of the Killing spinor equation, which is relatively

involved3 but also to the quaternionic structure of the spinor bundle of the solutions.

We will focus exclusively on bosonic solutions. The bosonic matter content of five-

dimensional, pure, N = 1 Supergravity consists of a Lorentzian, oriented, spin manifold

(M5, g5) together with a connection A on principal U(1)-bundle P → M5 over M5. The

bosonic part of the action is given by4:

S =

∫
M5

{
R− 1

4
|F |2 +

1

12
√

3
F ∧ F ∧A

}
(6.1)

The equations of motion of the theory are given by:

g(u, v) +
1

2

(
< F (u), F (v) > −1

4
g(u, v) < F,F >

)
= 0 u, v ∈ X(M5)

d ∗ F +
1

4
√

3
F ∧ F = 0 α ∈ R∗ (6.2)

where F is the curvature associated to A and < ·, · > denotes the inner product on forms

induced by g. A pair (g5, A) satisfying equations (6.2) is said to be a bosonic solution of

the theory.

3In particular, it is not the lift to the spin bundle of a metric connection.
4In this section we preferred to use the notation typical of the supergravity literature. This might slightly

differ from those used for instance in Chapter 1 and Chapter 4 as it tends to be more mathematically-
oriented. Despite the differences, we believe that the supergravity language should not be so mysterious and
on the other side think that translating this section into the microstate formalism would be inappropriate.
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Let Cl(M5, g5) denote the bundle of real Clifford algebras over (M5, g5), isomorphic

as a bundle of, unital, associative algebras to the Kähler-Atiyah bundle (ΛT ∗M5, �), see

references [110, 111, 112] for a detailed account of this formalism. Let us assume in

addition that there exists a bundle of real Clifford modules S over M5 with representation

homomorphism denoted by:

γ : (ΛT ∗M5, �)→ (End(S), ◦) (6.3)

where (End(S), ◦) denotes the unital, associative, algebra of endormophisms of S. In

Lorentzian signature in five dimensions, γ is neither surjective nor injective [112], and

S is a rank-eight bundle of real Clifford modules, which remains irreducible as a spinor

bundle for Spin(1, 4). The commutant subbundle Σ of the Kähler-Atiyah bundle inside the

endomorphisms of S is of quaternionic type. This implies that on every open set U ⊂M5

there exists a local triplet J i, i = 1, 2, 3, of almost complex structures satsfying the algebra

of the imaginary quaternions. Notice however that these almost-complex structures do not

exist globally and thus Σγ is in general not topologically trivial. This is already a hints that

the supersymmetric solutions of the theory may have very subtle non-trivial properties at

the global level.

Since Cl(M5, g5) is non-simple, there are two inequivalent Clifford modules S, distin-

guished by the value of the volume element γ(ν) inside End(S):

γ(ν) = sγ Id sγ ∈ {1,−1} (6.4)

We will take the sγ = 1 in the following. The bundle of Clifford modules S can be endowed

with a symmetric admissible bilinear B, that is of utmost importance in order to write

a spinor as a polyform. A bosonic solution (g5, A) is said to be supersymmetric if there

exists a globally defined spinor ε ∈ Γ(S) satisfying:

∇uε−
1

8
√

3
u[ ∧ F · ε+

1

2
√

3
ιu F · ε = 0 ∀u ∈ X(M5) (6.5)

A pair (g5, A) for which there exists a globally defined spinor ε ∈ Γ(S) satisfying (6.5) is

said to be a supersymmetric configuration. Using the results of references [112, 113], we

conclude that a spinor in five Lorentzian dimensions is equivalent a polyform:

E ∈ Ω•(M5) (6.6)

satisfying the generalized Fierz relations5. The polyform E can be written in terms of a

function Z, the supersymmetric Killing vector p and a triplet of two-forms Φs depending

only on the coordinates of the base space. In turn, these can be locally written in terms of

5These relations are not always equivalent to the standard Fierz relations appearing in the physics
literature. See reference [114] for more details.
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the admissible bilinear form B and the local triplet of almost-complex structures J i, local

sections of Σ which exist precisely because Σ is of quaternionic type. The local expressions

of Z, p and Φs in terms of a local frame are:

Z−1 = B0(ε, ε) pa = B0(ε, γaε) Φi
ab = B(ε, J i ◦ γabε) (6.7)

The Killing spinor equation (6.5) translates into a set of differential conditions for Z, p

and Φi. In reference [17] the most general local form of a supersymmetric solution of

five-dimensional pure, N = 1 Supergravity was obtained6. The supersymmetric solutions

can be divided in two classes: the time-like class is characterized by a time-like Killing

vector p, while the null class is characterized by a null Killing vector. Notice that this

classification is local and that the two classes can overlap. From the Fierz algebra one

gets:

g5(p, p) = −Z−2 (6.8)

and hence p cannot be space-like. The local form of the solution in each class is as follows:

• Null class. There exist local coordinates u, v, xs with s = 1, 2, 3 such that the

metric can be written as:

ds2 = −Z−1du(dv +H du+ ω) + Z2δrsdx
rdxs (6.9)

where Z, H are v-independent functions and ω is a v-independent one-form, all of

them satisfying particular differential equations on the transverse three-dimensional

space.

• Time-like class There exist local coordinates t, xi, i = 1, . . . , 4, such that the metric

can be written as:

ds2 = −Z−2(dt+ ω)2 + Z−1gijdx
idxj (6.10)

where Z is t-independent and ω is a t-independent one-form. The symbol gij denotes

a four-dimensional euclidean metric, which has to be Hyper-Kähler. In fact, it can be

shown that the triplet Φs of two forms is the corresponding Hyper-Kähler structure.

Therefore, time-like solutions are amenable to be locally written in terms of a four-

dimensional Riemannian manifold, making the problem of obtaining these solutions

a problem in Riemannian geometry and suggesting that the moduli-space problem

of time-like solutions is well-defined.

6See also reference [106] for the most general local form of the supersymmetric solutions of N = 1
five-dimensional Supergravity coupled to vectors and hypers.
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Once the local form of the solution has been found, in principle one can obtain the global

solution by a maximally analytic extension of the space-time, which is a very non-trivial

procedure that has to be done on a case by case basis. In the analytic extension, the fields

of the solution can potentially change some of their properties which were holding on the

original local set.

As an example of this global phenomenon, one can analyze the chirality of supersym-

metry spinor ε as one moves on the space-time manifold. There is no notion of chirality

in five dimensions, an it has to be imported from the four-dimensional language. Given

the structure of the time-like class of supersymmetric solutions, amenable to be written in

terms of a four-dimensional, transverse space, together with the fact that the spinor does

not depend on the time coordinate, one can study ε as a Clifford module in four euclidean

dimensions. Notice that ε remains irreducible as a Cl(4) module, but is not irreducible

anymore as a representation of Spin(4). The Clifford module is still of quaternionic type,

and seeing ε as a Clifford-module for Cl(4) it can be decomposed as follows:

ε = ε+ ⊕ ε− (6.11)

where ε± are Spin(4) spinors of positive and negative chirality, namely inequivalent irreps.

of Spin(4). Now, ε is parallel under a generalized connection on the spinor bundle S given

by the Killing spinor equation. In other words, the Killing spinor equation (6.5) can be

rewritten as:

Dvε = 0 , ∀ v ∈ X(M5) (6.12)

where D : Γ(S) → Γ(S) ⊗ Ω1(M5) is a connection on the spinor bundle. Therefore, if ε

is non-zero at one point it will be non-zero everywhere. However, this does not imply

that the individual components ε± must remain non-zero at every point: they can indeed

vanish at a locus in M5, as long as they do not vanish simultaneously.

On a similar vein, one can consider the global properties of the Killing vector field

p, which concern the main analysis of this chapter. Supersymmetric solutions of five-

dimensional, pure, N = 1 Supergravity are characterized in terms of a polyform E satis-

fying some differential equations that can be succinctly written as follows:

DAdE = 0 (6.13)

where DAd is the connection on the Kähler-Atiyah bundle induced by the supersymmetric

connection [110]:

Du ≡ ∇u −
1

8
√

3
u[ ∧ F +

1

2
√

3
ιu F ∀u ∈ X(M5) (6.14)

We then see that E is parallel under the connection DAd, and therefore if it is non-zero at
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one point (which holds by assumption), it will be non-zero everywhere. However, this does

not imply that the vector field p or its norm is parallel under any connection. Therefore,

it is in principle possible that the norm of p becomes null at some locus in M5.

Inspired then by these results, we want to explore if the following phenomenon may

happen in five-dimensional, pure N = 1 Supergravity: we want to check if there are

supersymmetric solutions of this theory having a Killing vector whose norm has an infinite

number of vanishing derivatives at its null locus in M5, and is generically time-like on its

complement. In the next sections we explicitly construct a family of these solutions.

6.2 Five-dimensional N = 1 smooth solutions asymptotic to

AdS3 × S2

6.2.1 Constructing the family of solutions

In this section we review the class of five-dimensional solutions in minimal Supergravity

we will be concerned with. These are nothing but the familiar microstate geometries

already studied in § 2.3 compactified on the three-tori so that they become five-dimensional

solutions. Although this compactification is quite a straightforward operation (the three

tori in (2.22) can be considered as “spectator” coordinates), some modifications are needed

to change the asymptotic behavior of these solutions. The microstates studied in § 2.3

and thoroughly analyzed in Chapter 4 asymptote flat space, while here we want them to

asymptote to AdS3×S2. It turns out that for this condition to hold it suffices to suitably

turn on constant terms in the harmonic functions that are the building blocks of this

family of solutions, as will explained below.

We want to work with smooth N = 1 solutions that asymptote to AdS3 × S2 and

have a Gibbons-Hawking (GH) space as four-dimensional Hyper-Kähler base. As we will

show at the end of this section, these solutions admit a Killing vector that is time-like

almost everywhere, except for some codimension one loci where it becomes null. This fact

is crucial for the construction described in the following sections that leads to a solution

where the norm of the Killing vector vanishes at a point of the GH space together with

an infinite number of derivatives.

The conditions that ensure the smoothness of the class of N = 1 five-dimensional

solutions we review here were first found in [2, 3], while we follow the conventions of [115,

116] to impose the solutions to asymptote to AdS3 × S2. As the Killing vector is time-

like almost everywhere the metric can be written in the standard form of the time-like

class (6.10):

ds2
5 = −Z−2(dt+ ω)2 + Z gijdx

idxj (6.15)

A = −Z−1(dt+ ω) + V −1K (dψ + ω0) + ξ (6.16)
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The solution above has been obtained from (2.22) by just eliminating the three tori and fix-

ing the parameters kIi = ki so that Z1 = Z2 = Z3 = Z in (2.22). Additional modifications

to adjust the asymptotic behavior will become clear in the following.

A in (6.16) is the potential one-form and gijdx
idxj is a Gibbons Hawking metric:

gijdx
idxj = V −1(dψ + ω0)2 + V δabdx

adxb (6.17)

with a, b = 1, 2, 3 and the GH fiber ψ has period 4π. The functions in (6.15), (6.16)

and (6.17) are defined on the three-dimensional space spanned by x = (x1, x2, x3) in the

GH space. In particular, V in (6.16) and (6.17) is a harmonic function

V =
N∑
i=1

vi
ri

ri = |x− gi| (6.18)

where gi is the location of the i-th pole (GH center). The one-form ω0 in (6.17) is related to

V via dω0 = ?dV , where the Hodge star is constructed using the euclidean R3 metric. By

imposing vi ∈ Z, the poles of V become orbifold singularities for the metric (6.17) (which

are benign in String Theory) of the form S3/Z|vi|. One has to impose also
∑

i vi = 0 so

that the metric asymptotes to AdS3 × S2
7.

The function Z in (6.15) and (6.16) is expressed as a combination of V together with

two additional harmonic functions K and L:

Z = L+
K2

V
(6.19)

Requiring Z to be smooth everywhere constrains K and L to have the same poles as V

in (6.18) and uniquely fixes the residues of L once those of K have been specified8 - see

§ 2.3:

K =

N∑
i=1

ki
ri

L = −
N∑
j=1

k2
j

vj

1

rj
(6.20)

The one-form ξ in (6.16) is then defined by dξ = − ? dK, where the Hodge star is again

defined using a flat R3 metric. The BPS solution for the angular momentum one-form ω

in (6.15) is written as9:

ω = S(dψ + ω0) + ζ (6.21)

7In [2, 3] these solutions are built to be microstates for a class of five-dimensional three-charge black
holes, and hence they asymptote to flat space. This is achieved by requiring

∑
i vi =1.

8In [2, 3] it was necessary to add a constant +1 to L so that Z is nicely behaved at infinity for an
asymptotically-flat metric. As our solutions are asymptotic to AdS3 × S2 there is no such requirement for
Z.

9Note that the momentum form is conventionally called ω in Supergravity language and k in microstate
language, which is employed in § 2.3 and Chapter 4.

143



6. Five-dimensional null and timelike supersymmetric geometries

with S given by10:

S =
K3

V 2
+

3KL

2V
+M (6.22)

where M is another harmonic function that has the same poles as V in (6.18). Its residues

are fixed by those of V and K so that S is finite and smooth everywhere:

M = m0 +
1

2

N∑
i=1

k3
i

v2
i

1

ri
(6.23)

The nonzero constant m0 in (6.23) determines the radius of the asymptotically AdS3×S2

metric (6.15). Finally, ζ in (6.21) is given given by

?dζ = V dM −MdV +
3

2
(KdL− LdK) (6.24)

Some constraints have to be satisfied to prevent the existence of closed time-like curves.

First of all, from (6.15) it easy to see that one has to require S in (6.22) to vanish at each

GH center. This imposes N − 1 independent conditions known as bubble equations that

involve the residues vi and ki together with the inter-center distances rij
11:

N∑
j=1
j 6=i

(
kj
vj
− ki
vi

)3 vivj
rij

+ vim0 = 0 i = 1, ..., N − 1 (6.25)

Secondly, to avoid closed time-like curves the following inequalities must hold everywhere

in the GH base space:

Z3V − S2V 2 > 0 ZV > 0 (6.26)

Therefore, to completely determine one of these solutions one has to fix m0 in (6.23) and

the number of GH centers N . Secondly, one specifies the residues vi, ki and the inter-

center distances rij so that (6.25) are satisfied. There is no general prescription known to

satisfy (6.26) and these two conditions have to be checked a posteriori.

It is useful to show that the metric (6.15) asymptotes to AdS3 × S2. We parameterize

the R3 base of the GH space with spherical coordinates r, θ, φ and define the following

quantities:

Q =
N∑
i=1

ki J =

∣∣∣∣∣
N∑
i=1

vi· gi
∣∣∣∣∣ P =

N∑
j=1

k2
j

vj
(6.27)

10We stress that S here is nothing but the function µ of § 2.3: however, as greek letters in this section
are reserved to define the AdS3 × S2 coordinates we preferred to redefine this quantity.

11The bubble equations (6.25) are slightly different from those in (2.36): this is due to the different
asymptotic behavior of the two solutions.
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By introducing the coordinates [115]:

η = Q log
r

Q
τ = t σ = 2m0ψ − t (6.28)

the metric (6.15) and potential (6.16) asymptotically become

ds2 ' dη2 +
1

4m0
e
η
Q (−dτ2 + dσ2) +Q2

(
dθ2 + sin2 θ(dφ+ ω̃0)2

)
(6.29)

A ' Q cos θ (dφ+ ω̃0) +− 3P

2Qm0
(dσ + dτ) (6.30)

where we have defined

ω̃0 =
J

2Q3
(dτ − dσ) (6.31)

Equation (6.29) shows that the metric of these solutions asymptotes to AdS3 × S2. In

addition, from (6.29) it is clear that one should impose Q in (6.27) to be positive.

Note that the asymptotic behavior of these solution (6.29) and (6.30) is uniquely

determined once the quantities in (6.27) have been fixed.

6.2.2 From time-like to null Killing vector

The N = 1 five-dimensional Supergravity solutions reviewed in § 6.2 have a Killing vector

p that is time-like almost everywhere and that in the coordinates of (6.15) is simply written

as ∂
∂t . As recalled in § 6.1.2, it is locally defined by the Killing spinor through a bilinear

form B, which for the metric (6.15) simply becomes:

pa = B0(ε, γaε) = ε̄ γaε (6.32)

while (6.26) allows to rewrite (6.8) as follows:

g5(p, p) = −Z−2 = −(ZV )−2 V 2 (6.33)

Therefore in our class of solutions the Killing vector is time-like everywhere except for

the V = 0 loci, where it becomes null. This peculiarity belongs to the class of solution

reviewed in § 6.2 and the reason why the time-like Killing vector can become null at some

loci lies in the fact that the GH metric (6.17) is ambipolar. Indeed, its signature can

pass from (−,−,−,−) to (+,+,+,+) and the surfaces V = 0 mark the borders between

the two signatures. This does not affect neither the physical validity of the Supergravity

solutions of § 6.2 nor their smoothness, as it can be shown [71] that the full metric (6.15)

has lorentzian signature everywhere.

To better understand how these solutions can switch from the time-like class to the

null one it is useful to analyze what happens to the Killing spinor ε as one approaches the

145



6. Five-dimensional null and timelike supersymmetric geometries

V = 0 loci [108]. The standard frames for the metric (6.15) are given by:

e0 = Z−1(dt+ ω) e1 = (ZV )
1
2V −1(dψ + ω0) ei+1 = (ZV )

1
2dxi (6.34)

and it was shown in [17] that if e0 is written as in (6.34) then the Killing spinor satisfies

γ0ε = ε (6.35)

in the frame indices defined by (6.34). This is indeed the prototypical spinor equation

for time-like solutions. However, the frames e0 and e1 in (6.34) become singular as V

approaches zero and (6.35) does not hold in these regions. In particular, one can see

from (6.33) that

ε†ε = ε̄γ0ε = Z−1 = (ZV )−1V (6.36)

which shows that the norm of ε vanishes in the V = 0 loci. To understand what happens in

these regions one has to define a completely regular set of frames, which is made possible

by simply replacing e0 and e1 in (6.34) with:

ê0 =
1

2
(V + V −1) e0 +

1

2
(V − V −1) e1

ê1 =
1

2
(V − V −1) e0 +

1

2
(V + V −1) e1 (6.37)

Note that the regular set of frames is related to the original one (6.34) simply by a boost,

with boost parameter χ defined by

coshχ =
1

2
(|V |+ |V |−1) sinhχ =

1

2
(|V | − |V |−1) (6.38)

and clearly the boost parameter becomes infinite when V = 0. The Killing spinor in the

regular set of frames ε̂ is hence related to the original one ε by

ε̂ = e
χ
2
γ01ε =

1

2
|V | 12 (1 + γ01)ε+

1

2
|V |− 1

2 (1− γ01)ε (6.39)

where the frame indices are again defined by (6.34). From (6.36) one can see that the

magnitude of ε in the original frame vanishes as |V 1
2 | and then from (6.39) one concludes

that on the V = 0 loci the spinor ε satisfies

γ01ε = −ε (6.40)

which is nothing but the prototypical spinor equation for the null class of five-dimensional

solutions.

As V in (6.18) is a harmonic function, these loci are two-dimensional surfaces in the

GH space [108], hence the Killing vector cannot become null on an open set of the five-
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dimensional space-time manifold. The closest condition to having a null Killing vector on

an open set is to have it vanish at a point together with all its derivatives. This result

can be achieved if one compromises to consider a solution of the kind reviewed in § 6.2

with an infinite number of GH centers. Indeed, in the next section we show that by

suitably arranging a solution with 2N GH centers V and all its derivatives up to order

2N − 2 can be set to zero at a point. In the limit where N becomes infinite V and all its

derivatives vanish at a point of the GH space. Consequently, all derivatives of the norm

of the Killing vector of the limit solution vanish at the origin. Since the null condition

is a closed condition, we conclude that the norm of the Killing vector field is not a real

analytic function at the origin.

6.3 Five-dimensional null and timelike supersymmetric ge-

ometries

6.3.1 Our construction

In this section we show how to arrange a smooth solution of the class reviewed in § 6.2

with 2N GH centers so that all the derivatives of V up to order 2N − 2 vanish at a point,

which we fix to be the origin of the GH space.

We consider a solution with 2N GH centers located on the same axis, parameterized

by the coordinate x in the GH base space. The full solution (6.15) then has cylindrical

symmetry with respect to this axis and the angular coordinate can be ignored. Focusing

on a plane containing the axis, the orthogonal direction is parameterized with y. We

dispose N GH centers on the semi-axis x ≥ 0, labeled by i = 1, ...N , while the remaining

N centers are arranged on x < 0 and labeled by i = −1,−2, ...−N . Denoting the distance

of the i−th center from the origin with di, we constrain the residues vi’s and ki’s of (6.18),

(6.20) and the di’s to satisfy the following conditions:

v−i = −vi k−i = ki d−i = di i = 1, ...N (6.41)

In addition, for the semi-axis x > 0 we require the sign of the vi’s to be alternating:

vi = (−1)i+1|vi| i = 1, ...N (6.42)

As a consequence of (6.41) the quantity P defined in (6.27) is identically zero. In addition,

because of (6.41) and (6.42), only N equations (6.25) among the initial 2N − 1 remain

independent, as the equation for i is equivalent to that for −i.
This configuration ensures that V in (6.18) and some of its derivatives vanish at the
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origin x = y = 0. In particular, by introducing the notation

(m,n) ≡ ∂m+nV

∂xm∂yn

∣∣∣∣
x=y=0

(6.43)

one can observe the following simplifications:

• (2s, n) = 0 ∀s, n,

• (2s+ 1, 2p+ 1) = 0 ∀s, p,

• (m,n) and (s, p) are multiples of each other provided that m+ n = s+ p.

Therefore, after fixing the number of GH centers to be 2N and requiring (6.41) and (6.42)

to hold, one can annihilate the N − 1 nonzero derivatives at the origin of the form (1, 2s)

with s = 0, ...N − 2. Indeed, defining the ratios ξi = vi/v1 and δi = di/d1, these N − 1

constraints completely fix the N − 1 ξi’s as functions of the δi’s, so that all the derivatives

up to order 2N − 2 are zero at the origin. For instance, in a solution with 2N = 8 GH

centers one is free to assign the three ratios of the distances δi’s and then the three ξi’s

are determined to annihilate the nontrivial derivatives (1, 0), (1, 2) and (1, 4). As a result,

V and all its derivatives up to order six are zero at the origin.

Without loss of generality we fix

v1 = 1 d1 = 1 (6.44)

so that the vi’s can be directly expressed as functions of the di’s. There are two such

expressions, depending on whether the GH centers gi with |i| > 1 are added externally

with respect to g1 and g−1, namely choosing di > dj for i > j, or internally, satisfying

dj < di for j > i. We adopt this second convention, as the numerical investigations for

the limit N →∞ give evidence that this is the physically sensible option, presenting the

formula we get from the first option in Appendix C.2.

Therefore, after fixing N one arranges the first two centers g±1 on the line by means

of (6.44). The remaining centers are then progressively added in the intervals ]0, 1[ and

]− 1, 0[ according to (6.41) and (6.42). We are left free to assign the distances subject to

the requirement di < dj < 1 for i > j, while the vi’s remain fixed to annihilate all the

derivatives of V up to order 2N − 2 at the origin:

|vi| = d2N−2
i

N∏
j=2
j 6=i

1− d2
j

|d2
i − d2

j |
i = 1, ...N (6.45)

and their sign is determined according to (6.42).

To completely determine a five-dimensional solution of the class reviewed in § 6.2, also

N parameters ki’s for i = 1, ...N have to be determined. These parameters are fixed by
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numerically solving the N remaining independent equations (6.25) while requiring Q > 0

in (6.27).

To summarize, after fixing N , one disposes the centers symmetrically with respect

to the origin according to (6.41) and (6.42) and fixes the N distances di’s subject to

0 < di < dj < 1 for i > j. The vi’s are determined by (6.45) and the ki’s are determined

by solving the N independent bubble equations (6.25). Once the vi’s and ki’s have been

found, the whole five-dimensional solution can be written according to § 6.2.

The N bubble equations have to be solved numerically once m0 and the distances di’s

have been fixed. We studied the behavior of these solutions for many different distance

distributions di, progressively increasing N . Our numerical analysis indicates that among

the many possible real solutions for the ki’s, there is always one where the ki’s are all

positive. We observed that this is the only option to systematically satisfy V Z > 0

everywhere in (6.26), as we verified numerically that if some of the ki’s are negative the

function V Z can become negative close to some of the GH centers. This kind of analysis

was repeated for many different distance distributions di using (6.45) and also adding the

GH centers externally with respect to g±1 using (C.6) in Appendix C.2. As changing the

value of m0 in (6.25) just scales the values for the ki’s, we fix m0 = −1 in our numerical

analysis, keeping in mind that our results are valid for any nonzero m0.

We found that the second constraint in (6.26) is also satisfied if one requires the ki’s

to be positive for different distributions of distances and different N , although we lack a

rigorous generalization to arbitrary N .

6.3.2 Analysis of the solutions in the limit of infinite centers

In this section we analyze the limit N →∞ applied to the construction of § 6.3.1. In this

limit all the derivatives of V vanish at the origin. For finite N the construction of § 6.3.1

leads to valid, smooth Supergravity solutions of the class reviewed in § 6.2. However, the

situation is different for N →∞, as one gets a solution with an infinite numbers of poles.

Depending on the chosen distribution for the di’s, the GH centers can accumulate towards

single points or in finite intervals, but one cannot say a priori whether this invalidates the

smoothness of the solution in the limit without a thorough analysis of the metric (6.15)

in the limit N →∞.

Two more general issues can compromise the physical relevance of the limit solution for

N →∞. First of all, the constraint Z3V − S2V 2 > 0 should be checked for every N . We

verified that for a wide range of distributions of the di’s and for different values of N this

condition is valid and it seems reasonable to assume that it still holds in the infinite limit.

Secondly, it is natural to require that the limit solution still asymptotes to AdS3×S2, and

hence that its metric and potential can be rewritten as in (6.29) and (6.30) at infinity. In

particular, this means that J and Q in (6.27) have to remain finite for N →∞12. As the

12We remind the reader that because of (6.41) P in (6.27) is identically zero in our construction.
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sign of the vi’s is alternating according to (6.41) and (6.42) and as we are accumulating

the poles within finite intervals, it is easy to find a distance distribution for the poles such

that J in (6.27) goes to zero in the limit.

On the other hand, it is tricky to find a distribution for the di’s so that the parameter

Q in (6.27) does not grow indefinitely with N . As remarked at the end of § 6.3.1, for each

finite N the ki’s are determined by numerically solving N bubble equations (6.25) and

selecting the only solution where they all have the same sign. For this reason Q in (6.27)

can easily grow to become infinite with growing N .

For N large enough there seems to be a correlation between how the vi’s -determined

via (6.45)- and the ki’s behave with N . We observed that an exponential growth for the

vi’s is paralleled by an exponential growth of Q in (6.27), which we want to avoid.

We found a distribution for the di’s so that the vi’s attain a finite limit for N → ∞
that can lead to a finite Q as well. For fixed N we assign the distances di’s according to:

di = 1− (i− 1)α

Nβ
i = 1, ...N (6.46)

with 0 < α < β. In Appendix C.1 we show that for each fixed i, |vi| given by (6.45)

with (6.46) is finite in the limit provided that β > 1. Note that (6.46) satisfies 0 < di <

dj ≤ 1 for i > j and that in the limit N → ∞ all the GH centers collapse on the fixed

g1 and g−1 at unitary distance from the origin. This does not automatically imply that

the limit solution becomes singular without a thorough analysis of the full metric (6.15)

in the limit.

It is important to stress that with the distribution (6.46) the GH centers do not accu-

mulate at the origin and hence the function V in (6.18) becomes constant and in fact it

has an infinite number of vanishing derivatives in the limit. The configuration for the GH

centers obtained with a distance distribution of the kind (6.46) is represented in Figure 6.1.
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Figure 6.1: The configuration of GH centers obtained with the distance distribution (6.46).
The blue dots represent the centers g±1, whose position has been fixed in (6.44). The red
dots represent the other GH centers, whose positions and vi’s are determined by (6.41)
and (6.42).

We analyzed the behavior of Q and J in (6.27) as a function of N for different values

of α and β in (6.46), up to N = 30013. The quantity J in (6.27) rapidly goes to zero

13Note the solution obtained for N = 300 has 600 GH centers in total. The related value of Q is hence
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as N increases, while the behavior of Q is more subtle. We noted that for β − α > 1

in (6.46) the bigger β − α is the faster Q(N) goes to zero for N → ∞. For β − α < 1

we have not found a clear connection between this quantity and the behavior of Q(N) at

infinity. For instance, Q(N) goes to infinity for β = 2.05 and α = 1.9, while it goes to

zero for β = 2.05 and α = 2 - see Figure 6.2. This indicates that there exists some value α̃

with 1.99 < α̃ < 2 such that Q(N) asymptotes to a constant. The related solution hence

asymptotes to AdS3 × S2 and the norm of the Killing vector has an infinite number of

vanishing derivatives at the origin.
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Figure 6.2: Numerical analysis for Q(N) up to N = 300 for two different regimes. The
red dots were obtained choosing β = 2.05 and α = 1.99 in (6.46) and Q(N) is divergent.
The blue dots were obtained for β = 2.05 and α = 2 and Q(N) asymptotes to zero.

The asymptotic behavior of Q(N) for 150 ≤ N ≤ 300 for the two distance distributions

studied in Figure 6.2 is modeled by

Q(N) ∼ Na

cN b + d
(6.47)

where the parameters a, b, c, d can be estimated numerically. The fact that Q(N) for large

N behaves as in (6.47) is a general feature of the distance distribution (6.46). In particular,

for the values of α and β of Figure 6.2 we find the following values for a, b, c, d in (6.47):

a b c d a− b
α = 1.99 1.83 1.79 3.51 -724.011 0.04

α = 2 1.59 1.64 2.35 -44.12 -0.05

determined by numerically solving 300 bubble equations (6.25), each of them consisting of 600 terms.
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It is interesting to study how the vi’s determined by (6.45) with the distance distri-

bution (6.46) evolve with N . From Figure 6.3 we see that for fixed N the vi’s of the last

GH centers are small compared to the vi’s to the first one. In addition, each vi slowly

grows with N but remains finite in the limit, as proved in Appendix C.1 for the distance

distribution (6.46).

A similar analysis can be performed to study the trend of the ki’s, numerically deter-

mined by solving the bubble equations (6.25) - see Figure 6.4. For a given N the ki’s of

the last centers -namely the ones closest to the origin- are small compared to those of the

most external centers. Each ki decreases with N and limits to zero for N → ∞ so that

the conserved charge Q in (6.27) can remain finite in the limit.
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Figure 6.3: Numerical analysis for the vi’s determined with (6.46) and (6.45) for α = 1.99,
β = 2.05 (red) and for α = 2, β = 2.05 (blue). a) Representation of the vi’s for the
solutions with N = 300. b) Trend of |v2| as a function of N up to N = 300. The trends
of all the other vi’s for fixed i are similar. c) Trend of |vN | for the last-added GH center,
as a function of N up to N = 300.

6.4 Future developments

We have shown the existence of five-dimensional Supergravity solutions such that the

Killing vector together with an infinite number of derivatives vanish at a point in the

base space. Since the null condition is a closed condition, this implies that the norm

of the Killing vector is not a real analytic function at this point. This was achieved by

considering the infinite limit for the number of centers in a class of smooth solutions with a
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Figure 6.4: Numerical analysis for the ki’s determined by solving the bubble equa-
tions (6.25) computed with the distance distribution (6.46) for α = 1.99, β = 2.05 (red)
and for α = 2, β = 2.05 (blue). a) Representation of the ki’s for the solutions with
N = 300. b) Trend of |k2| as a function of N up to N = 300. The trends of all the other
ki’s for fixed i are similar. c) Trend of kN for the last-added GH center, as a function of
N up to N = 300.

Gibbons-Hawking base that asymptote to AdS3×S2. By suitably tuning the distances of

the poles before taking the limit, we gave evidence that the limit solution still asymptotes

to AdS3 × S2 and that its charges are finite.

It is important to stress that while our construction is valid in Supergravity, it is not

necessarily so in String Theory. Indeed, in § 6.3.1 we stressed that the residues of V should

be integers, so that the Gibbons-Hawking space looks like an S3/Z|vi| close to a center.

In addition, also the residues of K in (6.20) should be constrained to be integers. This is

because one can define numerous two-cycles by fibering the coordinate ψ in (6.17) between

two centers and the differential of A+Z−1(dt+ω) in (6.16) measures fluxes on these cycles

that depend on the ratios ki/vi. The usual quantization conditions require these fluxes

to be semi-integers. In the infinite limit analyzed in § 6.3.2 one a priori cannot say that

the vi’s and the ki’s are integers, although this does not seem impossible. It would be

interesting to study whether there exist other distance distributions different from (6.46)

so that also this requirement is satisfied.

It is also useful to analyze what happens in this class of solutions when the GH centers

collide, as for the infinite limit with the distance distribution (6.46). In [71] a physical

interpretation for this phenomenon was given seeing these five-dimensional solutions as

black hole microstates. Indeed, one can compute the metric distance between the most
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external GH center and a suitable cutoff far away in the Gibbons-Hawking space, which

can be seen as the length of the would-be black hole throat in this language. This quantity

is always finite for the solutions of § 6.2, but can grow indefinitely once one moves the GH

centers close together. As in the limit solution of § 6.3.2 all the centers collapse on two

points, this fact can be interpreted as the would-be black hole throat becoming infinite.

Finally, the collapse of all the centers to two points does not automatically give rise

to singularities in the metric. Indeed it was shown in [21, 66] that what appears to be an

essential singularity from the point of view of the three-dimensional base of the GH space

can in fact give rise to a smooth solution once the full backreaction is taken into account.

To verify the validity of this statement for our solutions it would be necessary to analyze

the behavior of the function Z in (6.15) close to g±1 in the infinite limit. This operation

is highly nontrivial and we suspect that it might also not be well defined, as the limit for

N →∞ might not commute with the limit r → g±1. We plan to carry a full mathematical

analysis of the properties of the limit solution in future work.
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APPENDIX A

ADDITIONAL DETAILS ON SUPERSYMMETRY BREAKING IN

THE LIN-LUNIN-MALDACENA SOLUTION

A.1 1/2 BPS geometries in type IIB supergravity

We present here the original form of the LLM solution. The LLM type IIB solutions [1]

correspond to states of N = 4 SYM theory on R×S3. They preserve 16 supercharges and

have an SO(4)× SO(4)×R bosonic symmetry, hence they contain two three-spheres S3,

S̃3 and a Killing vector. The metric and five-form flux compatible with such symmetries

are:

ds2 = gµνdx
µdxν + eH+GdΩ2

3 + eH−GdΩ̃2
3 (A.1)

F5 = Fµνdx
µ ∧ dxν ∧ dΩ2

3 + F̃µνdx
µ ∧ dxν ∧ dΩ̃2

3 (A.2)

where µ, ν = 0, ..., 3 and dΩ2
3, dΩ̃2

3 denote the metric on the three-spheres1. The dilaton

and axion are assumed to be constant and the three-form field strengths are set to zero.

Requiring that the above ansatz preserves the Killing spinor equations yields the following

solution for the metric:

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃2
3 (A.3)

1The LLM function H in (A.1) should not be confused with the warp factor H in (2.1).
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A. Additional details on supersymmetry breaking in the Lin-Lunin-Maldacena solution

where i = 1, 2 and the functions h,G, V are determined by a single function z:

h−2 = 2y coshG G = arctanh(2z) (A.4)

y∂yVi = εij∂jz y(∂iVj − ∂jVi) = εij∂yz (A.5)

The five form flux is given by the two forms F , F̃ as follows:

F = dBt ∧ (dt+ V ) +BtdV + dB̂

F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d ˆ̃B (A.6)

where we defined

Bt = −1

4
y2e2G dB̂ = −1

4
y3 ?3 dA A =

z + 1
2

y2
(A.7)

B̃t = −1

4
y2e−2G d ˆ̃B = −1

4
y3 ?3 dÃ Ã =

z − 1
2

y2
(A.8)

and the Hodge star ?3 is referred to the flat space spanned by y, x1, x2.

The full solution is determined in terms of a single master function z that obeys a

linear equation:

∂i∂iz + y∂y

(
∂yz

y

)
= 0 (A.9)

The geometry described by this background is similar to that discussed in § 2.2: y is the

product of the radii of the three-spheres S3 and S̃3. The geometry is smooth if z = ±1
2

on the y = 0 plane spanned by x1 and x2. On this plane S3 and S̃3 shrink to a point in

z = −1/2 and z = 1/2 regions respectively, while both of them shrink on the boundaries

of these regions. To represent a general solution one just needs to specify the black and

white regions on the y = 0 plane according to z = ±1/2: see Figure A.1 for an example.

x1

x2

Figure A.1: A general type IIB solution is defined by boundary values of z in the y = 0
plane spanned by (x1, x2), depicted as black and white droplets.
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A.2 Bubbling geometries in IIA supergravity

We now T-dualize the IIB solution (A.1) along x1. We assume that V2 = 0 and that V1

and z do not depend on x1. In the following we will drop the indices of V1 and x2 for

convenience and rename x1 = ω1. In the IIA frame the metric and the fluxes become2

ds2
IIA = H−1(−dt2 + dω2

1) + h2(dy2 + dx2) + yeGdΩ2
3 + ye−GdΩ̃2

3 (A.10)

B2 = −H−1h−2V dt ∧ dω1 (A.11)

F4 =
[
d(y2e2GV )− y3 ?2 dA

]
∧ dΩ3 +

[
d(y2e−2GV )− y3 ?2 dÃ

]
∧ dΩ̃3 (A.12)

where we defined the warp factor H as:

H = e−2Φ = h2 − V 2h−2 (A.13)

The six-form field strength F6 is given by F6 = ?F4
3. Explicitly we obtain:

?F4 = H−1e3Gdt ∧ dω1 ∧
[
?2 d(y2e−2GV ) + y3dÃ

]
∧ dΩ3

−H−1e−3Gdt ∧ dω1 ∧
[
?2 d(y2e2GV ) + y3dA

]
∧ dΩ̃3 (A.14)

It is useful to obtain explicit expressions for the RR gauge potentials C3 and C5. We

define

C3 = c3(x, y) dΩ3 + c̃3(x, y) dΩ̃3 (A.15)

C5 = dt ∧ dω1 ∧
[
c5(x, y) dΩ3 + c̃5(x, y) dΩ̃3

]
(A.16)

Since C1 = 0 we have F4 = dC3. It is useful to define γ3 = c3−x− y2e2GV + c, where c is

an integration constant that corresponds to the gauge choice for C3 discussed in § 3.4.5.

The equation for C3 along the S3 becomes

dγ3 = −
(
y3 ?2 dA+ dx

)
(A.17)

which in components reads:

∂yγ3 = y∂xz

∂xγ3 = 2z − y∂yz (A.18)

2Note that the solution for the four-form field strength (D.1) as given in [1] is incorrect. Consequently,
also the solution for the four-form flux G4 of the gravity dual of the mass-deformed M2 brane theory as
stated in (2.35) of [1] is incorrect. The correct form of G4 is given in (2.2). In both (2.2) and (A.12) we
dropped a factor 1/4 due to different conventions for the volume forms on the spheres with respect to [1].

3In our conventions ?F4 = F6 = dC5 +H3 ∧ C3.
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and a similar result holds for S̃3. We stress that the only condition to integrate the

potential C3 is to solve the linear system (A.18). With the explicit form for z and V in

the multi-strips solution (2.10)-(2.11) it is easy to find an analytic solution, whose general

form

γ3(x, y) =

2n+1∑
i=1

(−1)i+1γ0
3(x− x(i), y) (A.19)

is obtained by superpositions of the plane wave solution:

γ0
3(x, y) =

2x2 + y2

2
√
x2 + y2

(A.20)

To integrate c̃3 one can use a similar technique. Defining γ̃3 = c̃3 + x− y2e−2GV + c̃ it is

straightforward to verify that γ̃3 satisfies the differential equation (A.17) and hence apart

from irrelevant constants γ̃3 = γ3.

The equations for C5 are obtained from the gauge-invariant improved field strength

F6 = dC5 +H3 ∧C3. Defining γ5 = c5− c3H
−1h−2V the equation for the part of C5 along

S3 becomes

dγ5 = H−1
[
−h−2V

(
d(y2e2GV )− y3 ?2 dA

)
+ e3G

(
?2d(y2e−2GV ) + y3dÃ

)]
(A.21)

which remarkably can be solved in closed form:

γ5 =
2y2

1− 2z(x, y)
− y2 (A.22)

To find c̃5 one proceeds with a similar technique: defining γ̃5 = c̃5 − c̃3H
−1h−2V one can

integrate γ̃5:

γ̃5 =
2y2

1 + 2z(x, y)
− y2 (A.23)

We stress that the only condition to integrate the RR potentials is to solve the linear

equation (A.17).

A.3 Solution in the limit y → 0

In the following we report the formulas for the y → 0 limit, keeping in mind that the back-

ground (A.10)-(A.12) is not singular. While the limit has to be performed distinguishing

between white and black strips, it can be shown that V defined in (A.5) and γ3 defined

in (A.19) are well defined even for y = 0, regardless of the particular strip considered. The

Hamiltonian (3.13) for the M5 brane probe is continuous for y → 0 even at the boundaries

x(i) of the strips.
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A.3.1 White strips z = 1/2

On white strips S3 remains at a finite-size, while S̃3 shrinks to a point. Using the equa-

tion (A.4):

z =
1

2
tanhG (A.24)

one gets eG →∞ in this limit as well as the expansion

z ' 1/2− e−2G ' 1/2− y2ζ2
+(x) (A.25)

where ζ+(x) is given by

ζ+(x) = − lim
y→0

1√
2

∂yz√
1− 2z

(A.26)

ζ+(x) is the primary function that allows to compute all the other fields in this limit,

notice also that ζ+(x) is positive. Restricting to multi-strip solutions (2.10)-(2.11), ζ+(x)

is given by

ζ+(x) =
1

2

√√√√2s+1∑
i=1

(−1)i+1
|x− x(i)|

(x− x(i))3
(A.27)

All the fields in the white strip limit will be marked with + subscript. For the metric

functions and NS potential we get:

h+(x) =
√
ζ+(x) H+(x) = ζ+(x)− V 2

+(x)

ζ+(x)
B+(x) = − V+(x)

ζ2
+(x)− V 2

+(x)
(A.28)

The RR potentials on the finite S3 become

c+
3 (x) =

V+(x)

ζ2
+(x)

+ γ+
3 (x) + x+ c c+

5 (x) = −c+
3 (x)B+(x) +

1

ζ2
+(x)

(A.29)

where

γ+
3 (x) =

2s+1∑
i=1

(−1)i+1|x− x(i)| (A.30)

The RR potentials on the shrunk S̃3 become

c̃+
3 (x) = γ+

3 (x)− x+ c̃ c̃+
5 = −c̃+

3 B+(x) (A.31)

The Hamiltonian (3.13) for the probe wrapping S3 becomes:

H(x) = H−1
+ (x)

√
H+(x)

ζ3
+(x)

+
[
p− c+

3 (x)
]2 − pB+(x)− c+

5 (x) (A.32)
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A.3.2 Black strips z = −1/2

On black strips S3 shrinks to a point, while S̃3 keeps a finite radius. Proceeding as in the

previous section we now have the expansion

z ' −1/2 + e2G ' −1/2 + y2ζ2
−(x)

where ζ−(x) is positive and defined by

ζ−(x) = lim
y→0

1√
2

∂yz√
1 + 2z

(A.33)

Restricting to multi-strip solutions (2.10)-(2.11), ζ− is given by

ζ−(x) =
1

2

√√√√− 2s+1∑
i=1

(−1)i+1
|x− x(i)|

(x− x(i))3
(A.34)

As in the previous section all the fields can be rewritten in terms of V and ζ−. We use the

subscript − to indicate that these expressions are valid in the limit z → −1/2. We get for

the metric functions and NS potential

h−(x) =
√
ζ−(x) H−(x) = ζ−(x)− V 2

−(x)

ζ−(x)
B−(x) =

−V−(x)

ζ2
−(x)− V 2

−(x)
(A.35)

The RR potentials on the shrinking S3 become

c−3 (x) = γ−3 (x) + x+ c c−5 = −c−3 (x)B−(x) (A.36)

where γ−3 (x) = γ+
3 (x). c3−(x) turns out to be locally constant and given by twice the total

width of the finite-size white strips to the left of x.

The RR potentials on the finite S̃3 become

c̃−3 (x) =
V−(x)

ζ2
−(x)

+ γ−3 (x)− x+ c̃ c̃−5 (x) = −c̃−3 (x)B−(x) +
1

ζ2
−(x)

(A.37)

We have used the same notation even for V , but clearly V− = V+.

The Hamiltonian (3.13) for the probe wrapping the shrinking S3 is simplified to

H−(x) =
1

ζ2
−(x)− V 2

−(x)

[
ζ−(x)|p− c−3 (x)|+ V−(x)

[
p− c−3 (x)

]]
(A.38)

While the Hamiltonian (3.13) for a probe wrapping the finite S̃3 becomes

HS̃3(x)− = H−1
− (x)

√
H−(x)

ζ3
−(x)

[
p− c̃−3 (x)

]2 − pB−(x)− c̃−5 (x) (A.39)

162



A.4. Relation to the Bena-Warner solutions

A.4 Relation to the Bena-Warner solutions

In this section we provide a dictionary that relates the M-theory LLM solution presented

in § 2.2 to the solution of Bena and Warner (BW) in [28]. The BW metric is written as

ds2
11 = 16L4e2B0(−dt2 + dω2

1 + dω2
2) + e2B2−B0(du2 + dv2) +

1

4
e2B3−B0u2σiσi

+
1

4
e−2B3−B0v2τiτi (A.40)

where B0, B2, B3 are functions of u and v only and σi and τi are left-infariant 1-forms

that parameterize the two three-spheres. Identifying

1

4
σiσi = dΩ3

1

4
τiτi = dΩ̃3 (A.41)

and comparing (A.40) with (A.10) one gets:

4u2L2e2B3 = yeG (A.42)

4v2L2e−2B3 = ye−G

4uvL2 = y

2L2(u2 − v2) = x

1

64L6
e−3B0 = H

and hence

4L2u2 = x+
√
x2 + y2 4L2v2 = −x+

√
x2 + y2 (A.43)

In BW the background fields are determined once one fixes a master function g(u, v),

analogous to z(y, x) in our Type IIA background, which satisfies the linear equation

∂2g

∂u2
+
∂2g

∂v2
− 1

u

∂g

∂u
− 1

v

∂g

∂v
= 0 (A.44)

Using (A.43) it is possible to rewrite g in the (y, x) coordinates. Considering that

z =
1

2

e2G − 1

e2G + 1
(A.45)

and using (A.42) one gets:

z = −2∂xg + z0 (A.46)

where z0 = x

2
√
x2+y2

is the usual half-filled plane solution. One can indeed check that with

this identification equation (2.7) for z is equivalent to the master equation (A.44).

The background of [28] that preserves 16 supercharges also depends on the constant β.

The latter is related to the mass deformation on the dual M2 theory and for β → 0
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A. Additional details on supersymmetry breaking in the Lin-Lunin-Maldacena solution

the background reduces to the standard Coulomb Branch of M2 branes only. The IIA

background derived from [1] has a fixed value β = 1/4 and hence also the mass-deformation

is fixed.
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APPENDIX B

SOME EXPANSIONS IN THE NORTH POLE NEIGHBORHOOD

We report in this section some necessary computations to expand the KS solution in the

neighborhood of the NP. After rewriting the deformed conifold metric around the NP

in (5.30), it is necessary to expand the KS warp factor, defined as:

h(τ) = (gsMα′)2ε−
8
3 2

2
3 I(τ) I(τ) =

∫ ∞
τ

dx
x cothx− 1

sinh2 x
(sinh 2x− 2x)

1
3 (B.1)

The function I(τ) is even and close to the NP for τ of order δ it behaves as1:

I(τ) = a0 + a2τ
2 +O(τ4) (B.2)

with a0 ≈ 0.71805 was computed in [4]. To compute a2 one expands:

a2τ
2 ' I(τ)− I(0) ' −

∫ τ

0

2
2
3

3
4
3

x dx (B.3)

where the integrand of (B.1) has been expanded for x small. One then easily gets:

a2 = −2

(
2

9

) 2
3

(B.4)

1We are using here τ̃ of (5.28), dropping the twiddle and taking care of the factor of two
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B. Some expansions in the North Pole neighborhood

The expansion of the other functions of τ in (2.54) is much easier2:

f(τ) ' 2

3
τ3 k(τ) ' 2

3
τ

F (τ) ' τ2

3
`(τ) ' 8

9
τ3

K(τ) '
(

2

3

) 1
3 `(τ)

K2 sinh2 τ
'
(

2

3

) 1
3 τ

3
(B.5)

The next step is to expand the base one-forms of the deformed conifold (2.44) around the

NP using (5.28). The expansion is carried on up to order δ:

g1/
√

2 ' − cosαdβ + r
cosσ

cosα
dα

g2/
√

2 ' dα+ r cosσ dβ

g3/
√

2 ' cosαdz + sinα [cosσ dr − r sinσ(dβ + dσ)]

g4/
√

2 ' −r cosσ (dβ + dσ)− sinσ dr

g5 ' 2 sinαdz − 2 cosα [cosσ dr − r sinσ(dβ + dσ)] (B.6)

Note that only g1 and g2 are of order one in the δ-expansion, while all the other forms are

of order δ. Indeed, these two-forms are defined on the angles of the sphere (and cylinder)

in the coordinate system of (5.28).

Finally, to expand the RR and NS-NS fields around the NP one needs to expand the

wedge products of the base one-forms on the conifold. We report here some nontrivial

ones, that can be derived using (B.6):

g1 ∧ g3 ' 2 cosα (cosαdz + sinα cosσ dr − r sinα sinσdσ) ∧ dβ
g2 ∧ g4 ' −2[r cosσ(dβ + dσ) + sinσ dr] ∧ dα

g5 ∧ g3 ∧ g4 ' 4r [dr ∧ dz ∧ (dβ + dσ)]

g5 ∧ g1 ∧ g2 ' 4 cosα (sinαdz − cosα cosσ dr − r cosα sinσdσ) ∧ dα ∧ dβ (B.7)

The sign of a wedge product depends on the orientation chosen for the coordinates. Here

and in every NP expansion we have always used the following ordering: τ, α, β, r, z, σ.

2Here as before we are expanding substituting τ = 2τ̃ as prescribed in (5.28) and then we remove the
twiddle
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APPENDIX C

ADDITIONAL DETAILS ABOUT HYBRID TIMELIKE AND

SPACELIKE FIVE-DIMENSIONAL GEOMETRIES

C.1 Proof of convergence of the vi’s for N →∞

In this section we prove that each vi determined with (6.45) with distance distribution di

given by (6.46) with 0 < α < β is finite in the N →∞ limit, namely that

lim
N→∞

|vi| = lim
N→∞

d2N−2
i

N∏
j=2
j 6=i

1− d2
j

|d2
i − d2

j |
with ds = 1− (s− 1)α

Nβ
(C.1)

is finite for each fixed i.

As the logarithm is a monotonic bijection between R+ and R, the |vi|’s are finite if

and only if log |vi| remains finite, namely if

lim
N→∞

log |vi| = lim
N→∞

(2N − 2) log di +

N∑
j=2
j 6=i

log

(
1− d2

j

|d2
i − d2

j |

)
(C.2)

is finite. The first term on the rhs of (C.2) for sufficiently large N becomes:

(2N − 2) log di = (2N − 2) log

(
1− (i− 1)α

Nβ

)
∼ −2(i− 1)αN1−β (C.3)

and hence goes to zero provided that β > 1. The sum in (C.2) for large N can be rewritten
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6. Additional details about hybrid timelike and spacelike five-dimensional geometries

as:

N∑
j=2
j 6=i

log(j − 1)α − log |(j − 1)α − (i− 1)α| = −
N∑
j=2
j 6=i

log

∣∣∣∣1− (i− 1)α

(j − 1)α

∣∣∣∣ (C.4)

and then for j >> i the asymptotic part of this sum becomes

(i− 1)α
N∑

j>>i

(j − 1)−α ∼ (i− 1)α

α
N−α−1 + const (C.5)

which is finite provided that α > −1. Therefore the limit (C.1) with 0 < α < β is finite

for each fixed i provided that β > 1.

C.2 An alternative construction

The distance distribution (6.46) is the only one we have found that gives rise to a physically

sensible solution in the limit N →∞ for the construction of Section 6.3.1. As mentioned

in Section 6.3.1, after fixing the centers g±1 with (6.44) one can add the other centers

externally with respect to these two, namely choosing di > dj > 1 for i > j > 1. Then

arranging the 2N centers on a line imposing (6.41) and (6.42) and requiring the derivatives

of V up to order 2N − 2 to vanish at the origin uniquely fixes the vi’s as functions of the

di’s:

|vi| = (1 + di)
2N−2

N∏
j=1
j 6=i

dj(2 + dj)

|di(2 + di)− dj(2 + dj)|
(C.6)

and the sign of each vi is determined according to (6.42). We studied the solution in the

limit for N →∞ using different distance distributions di’s. For instance, one can arrange

the centers to be equally spaced on the axis, to accumulate close to a point or within an

interval or to reach infinite distance with different spacings. We always find that Q→∞
for N → ∞. The same happens inserting the GH centers internally using (6.45) with

distance distributions different from (6.46). We believe that the reason for this lies on

the fact that each |vi| grows exponentially when one adds more and more centers. The

distance distribution (6.46) with (6.45) is the only we have found that keeps the vi’s finite

in the limit, as shown in Figure 6.3.
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Trous Noirs et Solutions Régulières en Théorie des Cordes

Mots clés: trous noirs, Théorie des Cordes, solutions régulières, supergravité, microétats

Résumé
Il existe des nombreuses solutions lisses dans le domaine de la thèorie des cordes, caractérisées par une topologie non
triviale (bulles) et sans sources localisées. Dans cette thèse nous analysons quelques-unes parmi les solutions les plus
importantes avec les différents objectifs pour lesquels ils sont étudiées.
Des solutions lisses en onze dimensions peuvent être interprétées comme microétats BPS de trou noir dans le cadre de
la Fuzzball proposal. On peut promouvoir ces microétats à être quasi-BPS en plaçant de supertubes dans un minimum
métastable à l’intérieur de ces solutions. Nous montrons que ces minima peuvent abaisser leur énergie lorsque les bulles
se déplacent dans certaines directions dans l’espace des modules, ce qui implique que ces microétats quasi-BPS sont en
fait instables. L’énergie dissipée par ces solutions correspond au rayonnement Hawking et on compare le taux d’émission
et la fréquence à celles du trou noir correspondant.
En modifiant la géométrie asymptotique de ces microétats on pourrait construire des microétats pour des trous noirs BPS
sans charge électrique en cinq dimensions. Il faut donc trouver une nouvelle solution de supergravité en cinq dimensions
dont la norme du vecteur de Killing passe de positive à nulle dans certaines régions. Nous construisons des exemples
explicites où la norme du vecteur de Killing supersymétrique est une fonction réelle non-analytique telle que tous ses
dérivés sont nulles à un point où le vecteur de Killing devient nul.
Dans la solution de Lin-Lunin-Maldacena on trouve un mécanisme pour briser la supersymétrie similaire à celui utilisé
pour les microétats quasi-BPS. Nous analysons l’énergie potentielle des branes M2 polarisées en branes M5. Lorsque les
charges des M2 sont parallèles à ceux de la solution, nous trouvons des configurations stables. Lorsque les charges des M2
ne sont pas parallèles, nous trouvons des états métastables qui brisent la supersymétrie et nous analysons le processus de
rayonnement d’énergie.
Nous analysons aussi la solution de Klebanov-Strassler et construisons sa version T-duale dans la supergravité de type
IIA. Pour cela une analyse approfondie est nécessaire pour choisir l’isométrie la plus appropriée. Notre construction est
la première étape d’un programme pour tester la stabilité des antibranes dans la supergravité de type IIA.
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Abstract
There exist many smooth solutions in String Theory characterized by a nontrivial topology threaded by fluxes and no
localized sources. In this thesis we analyze some of the most important bubbled solutions along with the different purposes
they are studied for.
Some smooth, eleven-dimensional solutions can be interpreted as BPS black hole microstates in the context of the Fuzzball
proposal. One can promote these to be microstates for near-BPS black holes by placing probe supertubes at a metastable
minimum inside these solutions. We show that these minima can lower their energy when the bubbles move in certain
directions in the moduli space, which implies that these near-BPS microstates are in fact unstable. The decay of these
solutions corresponds to Hawking radiation and we compare the emission rate and frequency to those of the corresponding
black hole.
By modifying the asymptotic behavior of these microstates one could be able to construct microstates for five-dimensional
BPS black rings with no electric charge. To do so one needs to find a new supergravity solution in five-dimensions whose
Killing vector switches from timelike to null in some open regions. We construct explicit examples where the norm of
the supersymmetric Killing vector is a real not-everywhere analytic function such that all its derivatives vanish at a point
where the Killing vector becomes null.
In the Lin-Lunin-Maldacena solution we find a supersymmetry-breaking mechanism similar to that used for near-BPS
microstates. We analyze the potential energy of M2 probes polarized into M5 brane shells. When the charges of the probe
are parallel to those of the solution we find stable configurations, while when the charges are opposite we find metastable
states that break supersymmetry and analyze the decay process to supersymmetric configurations.
We analyze also the Klebanov-Strassler solution and construct its T-dual in Type IIA. This is done by just reconstructing
the solution expanded on a small region of the deformed conifold, after a thorough analysis to choose the most suitable
isometry. Our construction is the first step in a program to test the stability of antibranes in Type IIA backgrounds.
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