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Résumé

N = 4 SYM a attiré beaucoup d’attantion au cour des deux dernière décennies en
raison des deux aspects : la correspondance AdS/CFT et intégrabilité. La correspondance
AdS/CFT est la première réalisation précise de la dualité jauge/gravité dont l’histoire
commence dans les années 60, quand la théorie des cordes a été considérée comme un
candidat pour décrire les interactions fortes.

En 1997 Maldacena a fait une proposition sur la dualité entre certaines théories
conformes des champs (CFT) et théories des cordes défini sur le produit de AdS espace et
une certaine veriété compacte, qui implique une correspondance entre les observables de
théorie des cordes et théorie de jauge. Jusqu’à maintenant la correspondance AdS/CFT
reste une conjecture. La dualité de N = 4 SYM et la théorie des cordes est un éxemple le
plus notable de correspondance AdS/CFT. Un des obstacles principaux à l’explorer est
le fait que le régime de couplage faible pour la théorie de jauge est le régime de couplage
fort pour la théories des cordes et vice versa. Par conséquent, aussi longtemps que les
méthodes perturbatives sont appliquées, on ne peut pas comparer les observables de deux
cotés de la correspondance directement en dehors de quelques cas particuliers. A ce stade,
l’énorme symétrie de N = 4 SYM joue un rôle important en permettant le calcul exact
des observables de la théorie au moins dans la limite planaire. Cette propriété de la théorie
est appelée intégrabilité.

Les observables de N = 4 SYM sont les boucles de Wilson et des fonctions de
corrélation construite des opérateurs invariants de jauge. La dépendance de l’espace-
temps des corrélateurs à deux et trois points est détérminée par la symétrie conforme
jusqu’à certains paramètres : les dimensions des opérateurs dans le cas de fonctions à
deux points et les dimensions des opérateurs et de constantes de structure dans le cas
des fonctions à trois points. Il est communément accepté de se référer à le problème de
trouver les dimensions des opérateurs comme le problème spectral. Au niveau classique, la
dimension de l’opérateur est égale à la somme des dimensions des champs fondamentaux
des quels l’opérateur est composé. Lorsque l’interaction et activée, la dimension conforme
obtient la correction quantique. Afin de calculer les fonctions à trois points on a besoin
calculer les constantes de structure. En CFT le calcul des correlateurs supériers peuvent
éventuellement être réduit au calcul de fonctions à deux et trois points au moyen de
l’expansion du produit de l’opérateur. Par conséquent, la connaissance des corrélateurs à
deux et à trois points permettent de construire tous les autres corrélateurs dans la théorie.

Cette thése est consacrée au calcul des fonctions à trois points et est composée de deux
parties. Dans la première partie nous considérons l’approche générale pour le calcul des
fonctions à trois points sur la base de soi-disant vertex de spin, qui est inspiré de la théorie
de champs des cordes. Dans la deuxième partie, nous considérons un type spécifique de
fonctions à trois points appelés lourd-lourd-léger, qui sont caractérisés par la propriété
que la longueur de l’un des opérateurs est beaucoup plus petite des longueurs de deux
autres. Il s’avère que ces fonctions de corrélations peuvent être identifiées à des facteurs
de forme diagonaux et ainsi on peux appliquer les résultats concernant les facteurs de
forme.



Abstract

N = 4 SYM theory has been drawing the attention of a lot of physicists during two
last decades mainly due to the two aspects: AdS/CFT correspondence and integrability.
AdS/CFT correspondence is the first precise realization of the gauge/string duality whose
history starts in the 60’s, when a string theory was considered as a candidate for describing
the strong interactions. In 1997 Maldacena made a proposal [1] about the duality between
certain conformal field theories (CFT) and string theories defined on the product of AdS
space and some compact manifold, which implies a one to one map between the observables
of the gauge and string counterparts. Up to now AdS/CFT correspondence still remains a
conjecture. The duality of N = 4 SYM and the appropriate string counterpart, type IIB
string theory on the AdS5 × S5 manifold, is the most notable example of the AdS/CFT
correspondence. One of the main obstructions to exploring it is the fact that weak coupling
regime for the gauge theory is the strong coupling regime for the string theory and vice
versa. Therefore as long as perturbative methods are applied, one can not compare the
observables of dual counterparts directly apart from some specific cases. At this point the
huge symmetry of N = 4 SYM plays an important role allowing exact computation of
the theory observables at least in the planar limit. This property of the theory is called
integrability.

The observables of the N = 4 SYM are Wilson loops and correlation functions built
out of gauge invariant operators. The space-time dependence of the two- and three-point
correlators is fixed by the conformal symmetry up to some parameters: dimensions of
the operators in the case of two-point functions and dimensions of the operators and
structure constants in the case of three-point functions. It’s commonly accepted to refer
to the problem of finding the dimensions of the operators as the spectral problem. On
the classical level the operator dimension is equal to the sum of the dimensions of the
fundamental fields out of which the operator is composed. When the interaction is turned
on, the conformal dimension gets quantum correction. In order to compute three-point
functions, apart from the conformal dimensions of corresponding operators one needs to
compute the structure constants. In CFT computation of the higher-point correlators
eventually can be reduced to computation of two- and three-point functions by means of
the operator product expansion. Therefore two- and three-point functions appear to be
building blocks of any correlator of the theory.

This thesis is devoted to computation of three-point functions and consists of two parts.
In the first part we consider the general approach for computing three-point functions
based on the so-called spin vertex, which is inspired from the string field theory. In
the second part we consider a specific kind of three-point functions called heavy-heavy-
light, which are characterized by the property that the length of one of the operators is
much smaller the lengthes of other two. It happens that this kind of correlators can be
considered as diagonal form factors which supposes that in this case one can apply the
results obtained in the form factor theory.
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3.1.6 The coefficients fO(ᾱ) . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.7 Matrix elements at one loop . . . . . . . . . . . . . . . . . . . . . . 65

3.2 HHL correlator at all loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.1 The hexagon program . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 One-magnon case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.4 Two-magnon case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.5 Coefficients f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Conclusion 88

A Large µ behavior of Neumann coefficients 90

B The elementary fields in oscillator representation 91

C Computing the propagators from the spin vertex 92

D The operator U 95

E Finite volume expansion 96

2



Chapter 1

Introduction

1.1 Gauge/string duality and AdS/CFT correspon-

dence

According to the concept of the modern physics there are four interactions in the
nature: electromagnetic, weak, strong and gravitational. On the quantum level first three
of these interactions are successfully described by quantum gauge field theories. On the
other hand, in spite of the numerous attempts of describing the gravitational force at the
quantum level, up to now none of them resulted in the theory of quantum gravity verified
by the experiments.

Another important problem of the modern physics is related to our understanding of
the physics of the strongly coupled fields. When a coupling constant becomes large, and
accordingly the corresponding interaction becomes strong in literal sense, the perturbation
theory, our main technique of computing the observables based on the expansion in a small
parameter, becomes useless. Due to this issue we are still not able to describe observables
of the quantum chromodynamics (QCD), a theory of the strong interactions, satisfactory
at low energies.

A phenomenon of the duality between gauge and string theories allows to shed some
light on both of these issues. The relation between strings and gauge theories originates
in the old idea (1960’s) of describing the strong interactions in terms of strings, when e.g.
quark and anti-quark are connected to each other by means of the gluon string and form a
meson. This model was even able to explain certain phenomena inherent to hadrons such
as linear dependence between the spin and the mass squared (Regge trajectory). However
the presence of tachyon in the spectrum, some other inconsistencies and then discovery
of QCD led to abandon this idea.

The next important evidence of the relation between gauge and string theories is due
to to Gerard ’t Hooft. In [2] he considered the generalization of QCD with arbitrary
number of colors N (for QCD N = 3). By analyzing Feynman diagrams in this case
he noticed that their expressions can be organized into a double series with respect to
the two parameters: ’t Hooft constant λ = g2

YMN and 1/N . Moreover he realized that
each diagram can be identified with an appropriate surface and that the power of the
color number N with which it appears in the expression for a given diagram, is defined
by the corresponding to the surface Euler characteristics χ = 2 − 2g, where g is the
genus of the surface. It means that when taking the limit N → ∞ (planar limit) only
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those diagrams survive which correspond to a sphere (planar diagrams). Discovering of
this double expansion brought new interest to the idea of the duality between gauge
and string theories, since the expansion with respect to 1/N clearly reminds the genus
expansion of the string theory.

However the first precise realization of the gauge/string duality was discovered much
later. This realization appeared in the framework of the AdS/CFT correspondence pro-
posed by Maldacena. In [1] he conjectured that there should exist a one-to-one correspon-
dence between observables of the string theory defined on the product of AdS space with
some compact manifold and the conformal field theory (CFT) defined on the boundary
of the AdS space. At that, the following identification between the theory parameters is
implied

λ = 4π2T 2,
1

N
=

gs
4π2T 2

, (1.1)

where T and gs are the string tension and string coupling constant correspondingly. Exis-
tence of such a correspondence is very interesting since, it relate two completely different
theories defined on a spaces with different dimensions.

At this moment AdS/CFT correspondence still remains a conjecture. One of the main
difficulties to exploring this phenomenon is that weak coupling regime of a string theory
corresponds to a strong coupling regime of a CFT and vice versa. Therefore one can not
directly compare the observables from both sides of the duality as long as perturbative
methods are applied. Nevertheless, due to the numerous evidences, some of which will be
mentioned below, nowadays the AdS/CFT correspondence is strongly believed to be true.
In this sense the difficulty mentioned above can be turned into an advantage. Because
accepting Maldacena’s conjecture to be valid allows us to study a string coupling regime
of the gauge theory by considering weak coupling regime of the corresponding string
theory, and also in an opposite way. This concept looks promising for understanding a
way to describe QCD at low energy level. On the other hand, a string theory allows to
unify all the interactions under the single concept including a graviton, two-spin particle
describing the excitations of the gravity field, and in this sense appears to be one of the
main candidate on the role of the theory describing quantum gravity. From this point of
view deep connection between gauge and string theories is very intriguing and deserves
to be thoroughly studied.

The most notable example of the AdS/CFT correspondence is the duality between
N = 4 SYM and type II B string theory defined on AdS5 × S5 space. N = 4 SYM is a
superconformal theory obtained by dimensional reduction of the N = 1 SYM in ten di-
mensions to four dimensions. Due to conformal symmetry all the excitations are massless
and the observables of the theory are presented by correlation functions of the gauge in-
variant operators and Wilson loops. All the gauge invariant operators can be diagonalized
with respect to the action of the dilatation operator. Each operator is characterized by
its eigenvalue, conformal dimension of the operator, which gets the corrections in terms
of the anomalous dimension, when the interaction is taken into account. The conformal
symmetry allows to fix the expression of the two-point correlation functions up to the
value of the conformal dimensions of the operators involved. On the other hand, and
again due to the conformal symmetry, the operator product expansion (OPE) becomes a
very powerful tool for computing the correlation functions. By subsequently applying it
to an n-point correlator, one can reduce its computation to the computation of the two-
point functions, under assumption that the structure constants are known. In its turn,
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the structure constants are encoded in the expressions of the three-point functions, which
should be computed separately. Therefore, all the informations about the observables of
N = 4 SYM is encoded in two- and three-point correlation functions.

As a consequence of the duality there is one-to-one correspondence between the op-
erators of the theory and the states of the string theory. The first identification between
string theory and gauge theory observables was performed for the so-called half-BPS op-
erators of N = 4 SYM. This terminology originates form the fact that these operators
are annihilated by the half of the supercharges of the theory. The half-BPS operators
are identified with the supergravity modes of the string theory. Then the energies of
the supergravity states are identified with conformal dimensions of appropriate half-BPS
operators. Due to the symmetry, the conformal dimensions of the half-BPS operators do
not get corrections when the interaction is turned on, and therefore coincide with their
classical values.

Another, less trivial case, is the BMN limit [3], which is characterized by the states with
large conformal dimensions carrying few low-lying excitations. From the point of view of
the string theory, the BMN limit corresponds to the point-like string moving with a speed
close to the speed of light along the equator of the S5 and sitting on the center of the AdS5

space. Such string states can be described by the so-called pp-wave background, which
can be obtained from the original string theory by taking a special kind of the Penrose
limit [4, 5]. The theory obtained has a great advantage compared to the string theory on
the AdS5 × S5 space, namely it can be quantized. Another useful property of the BMN
limit is that one can introduce there an effective coupling constant λ′ = λ/J2 (where J
scales as the length of the operator), which can be used as an expansion parameter at
weak coupling as well as at strong coupling. This allows to compare the data obtained
on both sides of the duality directly on the basis of perturbative methods! Finally, non-
planar corrections survive the BMN limit [6, 7] and thus can be identified with the genus
expansion of the string theory on pp-wave.

However the half-BPS sector and the BMN limit are restricted to very specific class of
operators and thus can not give us the whole picture illustrating the duality between N =
4 SYM and its string counterpart. The main feature drawing attention to these theories
and giving us a hope to understand the phenomenon of the AdS/CFT correspondence
better is their integrability, which simply means that it is possible to compute all the
observables of the theory exactly. Integrability is a quite a common phenomenon for the
two dimensional sigma-models. In this sense the integrability of the string counterpart
of the duality is not a big surprise. On the other hand, the reasoning for the fact that
N = 4 SYM should be integrable was not obvious at all until some explicit computations
was done. In this context the integrability of N = 4 SYM, which at the moment is well-
established only in the planar limit (N →∞), can be considered as one of the evidences
confirming that the conjecture about AdS/CFT correspondence is a true statement.

The first explicit computation indicating the integrability of the planar N = 4 SYM
was performed in [8], where the authors considered the anomalous dimension (the part of
the conformal dimension appearing when the interaction is turned on) of the operators
from the so-called scalar sector, which consist of the operators made just of the scalar
fields, at one loop. The action of the one loop dilatation operator is closed on the set
of such operators, therefore its action can diagonalized on these operators independently
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on the others. 1 By performing the explicit computation of the appropriate Feynman
diagrams the authors established that the action of the one-loop dilatation operator inside
the scalar sector exactly coincides with the action of the so(6) spin chain Hamiltonian in
periodic boundary condition.

The spin chains are the discrete models defined on the space consisting normally of
the finite number of sites and broadly used in statistical physics. The fields living on
each site of a spin chain form representation of the corresponding symmetry group. The
most known example of the spin chain system is XXX1/2 spin chain also referred to
as Heisenberg spin chain. XXX1/2 spin chain enjoys integrability and the solution of
its spectral problem is given by the famous technique of the Bethe ansatz, proposed by
Hans Bethe in [9]. Bethe-ansatz technique is broadly used now from condensed matter
and statistical physics to high energy theory and since then was significantly developed
and generalized. A great contribution at this point belongs to the Leningrad group in
mathematical physics (see e.g. [10]).

The so(6) spin chain enjoys integrability as well and the eigenstates of its Hamiltonian
can be constructed by the nested algebraic Bethe ansatz (NABA). It means that the one
loop spectral problem in the scalar sector of N = 4 SYM is indeed integrable! Discovery
of this fact underlies the long, but exciting way of understanding the integrable structure
of N = 4 SYM.

A great simplification in analyzing the spectral problem and in understanding the
integrability of N = 4 SYM was achieved by analyzing the dilatation operator of the
theory. The systematic study of the dilatation operator was initiated in [11], where the
authors considered the action of the dilatation operator on the operators consisting of the
scalar fields up to two loops. Then in further works results were generalized to other type
of operators and for some specific sectors to higher loops. In [12] the author established the
complete one loop dilatation operator acting in the representation of the theory symmetry
group psu(2, 2|4). At the same time it was shown that the complete one loop dilatation
operator coincide with the Hamiltonian of the su(2, 2|4) spin chain [13], by that proving
the one loop integrability of the theory. Further on the basis of the symmetry analysis the
dilatation operator and its integrable structure were obtained for some particular sectors
at higher loops [14, 15]. Finally the results on the study of the dilatation operator were
systematized and summarized in [16].

An important progress was made by elaborating on the idea of the BMN limit. In
[17], the agreement between the string energy and gauge theory anomalous dimension
was obtained at two loop order. However, the prediction of [11] made from the gauge
theory side for the three loop anomalous dimension didn’t match with the corresponding
quantity obtained from the string theory computation [18] 2. On the other hand, in [19] the
authors proposed a way to identify some semi-classical highly excited strings states with
the corresponding gauge theory operators. This idea, further elaborated in [20, 21, 22, 23],
inspired the authors of [24], where they argued that the BMN scaling with the expansion
parameter λ′ should hold for the energies of the certain semi-classical states at weak
as well as at strong coupling, despite violation of the dilute gas approximation. The

1. We will discuss later that there is not just the scalar sector, but plenty of sectors, which can be
considered separately at one loop or even at all loop

2. It is worth mentioning here that the discrepancy between anomalous dimension and string energy
appears not in the strict BMN limit, but only when the finite size corrections in powers of 1/J are taken
into account
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corresponding semi-classical limit is normally referred to as Frolov-Tseytlin limit. Similar
to the BMN proposal, this statement got solid confirmation at one [25, 26] and two [27]
loops, but failed at three loop order [27, 28]. The possible resolution to this paradox was
proposed in [29], where the authors assumed that the reason of the three loop mismatch
can be caused by the non-commutativity of the limits, which one has to take according
to the BMN and Frolov-Tseytlin prescriptions. Indeed, when taking the BMN limit in
gauge theory, one has to first expand an observable in the ’t Hooft constant λ and then
put the length of the operator to be large. At strong coupling the procedure is opposite:
we first take the semi-classical limit, which implies the large angular momentum of the
string (equivalently large length of the corresponding operator), and only after we can do
expansion in λ′.

In the same paper [29] another very important proposal was made. Namely, the
authors could generalize the one loop Bethe ansatz, diagonalizing the dilatation operator
of the su(2) sector 3 to all loops in the asymptotic approximation by generalizing the
XXX1/2 spin chain to a special inhomogeneous long-range interacting spin chain. In this
context, the asymptotic approximation means that the result is supposed to be obtained
up to the order of O(λL), where L is the length of the gauge theory operator. As it is
mentioned in [29] (see also [30]), in order to obtain the exact result, one has to take into
account the so-called wrapping corrections. The point is that when going higher order
by order in perturbation theory the sites of the spin chain identified with the dilatation
operator become to interact on larger distances. Finally the range of the interaction
length reaches the length of the operator L, and at this point wrapping effects start to
contribute.

In the meantime another significant result concerning the identification of the gauge
theory operators and string theory states was obtained. As it has been mentioned above
a lot of semi-classical string solutions were constructed to be identified with the cor-
responding gauge theory operators. In addition to already mentioned papers one can
append [31, 32, 33, 34]. However the systematic approach was missing. In order to fill
this gap the authors of [35] proposed a way to relate the integrability of both sides of the
duality. They considered the reduction of the full world-sheet sigma model to the string
living on S3 ×R, that corresponds to the su(2) sector of N = 4 SYM. By exploiting the
finite gap method [36] they showed that the general semi-classical solution to the string
sigma-model in this case can be reduced to solving a curtain Riemann-Hilbert problem
of finding a function defined on some algebraic curve with known discontinuities. On the
other hand, they took the semi-classical limit of the two-loop Bethe equations, arising at
weak coupling. They showed that the problem of finding the solutions to these equations
can be reduced to exactly the same Riemann-Hilbert problem as the one obtained in
string theory and expanded up to two loops with a certain redefinitions of some parame-
ters. This achievement allowed to identify the gauge theory operators of su(2) sector with
the corresponding semi-classical string solution systematically and in a straightforward
way giving a solid justification of the AdS/CFT correspondence. Later it was developed
further in [37], where other kind of operator were considered belonging to so-called sl(2)
sector of N = 4 SYM.

The next important achievement to be mentioned is related to the extension of the
asymptotic Bethe ansatz proposed in [29]. In [38] the authors generalized the result of

3. The su(2) sector is formed by the operators consisting of the two scalar fields related by the su(2)
transformation
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[29] to rank-1 sectors of N = 4 SYM and then conjectured it for the whole theory. The
main component of their proposal was the expression for the all loop S-matrix which
they conjectured for the scattering of all the elementary fields. The confirmation of their
ansatz was obtained in [39], where by using the symmetry constrains the expression for
the all loop S-matrix was fixed up to a scalar factor (dressing phase). The study of
the dressing phase was initiated in [40]. Further from the assumption that the crossing
relation should exist for the string theory on AdS5 × S5 the functional equations for the
dressing phase were derived in [41]. The solution to this equation was found in [42].
Finally the expression for the dressing phase at weak coupling was conjectured in [43]
resulting in corrected asymptotic Bethe ansatz.

The asymptotic Bethe ansatz provided us with ability to compute the spectrum of
N = 4 SYM in the limit of large length of the operator, however the implementation of
the wrapping corrections still remained an outstanding problem. One of the steps in this
direction was undertaken in [44], where, by following the ideas of [45], the authors derived
the leading finite-size corrections (Luscher corrections) for the case of the giant magnon
at strong coupling. However a more efficient way to reach the wrapping corrections
turned out to be due to thermodynamic Bethe ansatz (TBA) [46]. By exploiting the
TBA approach the so-called Y -system, containing the information about exact anomalous
dimension of any local operator ofN = 4 SYM, was first conjectured [47] and then derived
in [48, 49, 50]. The obtained system got the confirmation from the explicit computations
[51, 52], which gave the same result as the one predicted by [53], where the Luscher
corrections for Konishi operator were computed up to five loops. Nevertheless due to the
complexity of the Y -system its applications were significantly restricted. Fortunately it
appeared to be possible to turn the infinite set of the integral non-linear equations of
Y -system into a finite system [54]. The final form of the equations allowing computation
of the exact anomalous dimension were presented in [55], in the form of non-linear system
of Riemann-Hilbert equations called the Pµ-system.

Apart from the great achievements in solving the spectral problem, the impressive
results were obtained in computing the planar scattering amplitudes, which inN = 4 SYM
coincide with the null polygon Wilson loops. In [56] the authors proposed to express the
planar scattering amplitudes in terms of some building blocks which they call the pentagon
transition and which can be computed exactly by means of the bootstrap procedure. The
similar approach was recently applied for the computation of the three-point functions.
In [57] the authors managed to express the three-point functions in terms of the objects
which they called hexagon. As well as pentagon transitions, the hexagons happened to be
computable exactly by means of integrability. In the section 1.4 of the chapter we will give
a historical overview on the achievements concerning the computation of the three-point
functions in more details.

The thesis is based on the following works.

1. Y. Jiang, I. Kostov, A. Petrovskii, and D. Serban, String Bits and the Spin Vertex,
Nucl. Phys. B897 (2015) 374404, [arXiv:1410.8860].

2. Y. Jiang and A. Petrovskii, From Spin Vertex to String Vertex, JHEP 06 (2015)
172, [arXiv:1412.2256].

3. L. Hollo, Y. Jiang, and A. Petrovskii, Diagonal Form Factors and Heavy-Heavy-
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Light Three-Point Functions at Weak Coupling, JHEP 09 (2015) 125, [arXiv:1504.0713]
4. Y. Jiang and A. Petrovskii, Diagonal form factors and hexagon form factors,

[arXiv:1511.0619].

1.2 N = 4 SYM

In this section we will review some basic information about the N = 4 SYM. The
N = 4 SYM is a maximally supersymmetric gauge theory defined on the four-dimensional
Mincowski space. The fields are presented by six scalars, four fermions and the gauge field:

φm, ψia, ψ̄ia, Aµ, (1.2)

and interacts through the lagrangian

L =
1

4
TrFµνFµν +

1

2
TrDµφmDµφm −

g2

4
Tr[φm, φn][φm, φn] + Trψ̄iaσ

ab
µ Dµψib−

− ig

2
Trψiaσ

ab
m ε

ij[φm, ψjb]−
ig

2
Trψ̄iaσ

ab
m ε

ij[φm, ψ̄bj].

(1.3)

All the fields live in the adjoint representation of the gauge group SU(N). The scalars
form six dimensional representation of the R-symmetry SU(4). The fermions form with
respect to one of the indexes the fundamental representations of the R-symmetry and
with respect to another the representation of the su(2)L (or su(2)R) copy of the Lorentz
group.

The bosonic symmetry of the theory is presented by the product of the conformal group
in four dimensions SO(4, 2) and the R-symmetry SU(4), which are formed by the following
generators: Lorentz generators Lij, L̄ij, shifts Pµ, special conformal transformations Kµ,
the dilatation operator D and fifteen R-symmetry generators Rij. The supersymmetric
transformations are given by 16 superchargesQia, Q̄ia, Sia, S̄ia. Together all the generators
form PSU(2, 2|4) group, the complete symmetry of the theory. All the symmetries still
hold at the quantum level including the conformal symmetry, due to the fact that β-
function is identically equal to zero.

Since the symmetry group is non-compact, the unitary representations, which a physi-
cist is interested in, are infinite-dimensional. The physical representations are defined
on the space spanned by the local gauge invariant operators (in other words, states) in
general presented by a product of the single-trace operators

O(x) = TrW1(x)...WL(x), (1.4)

where by Wi(x) we understand the fields transforming homogeneously under the gauge
group, such as Dkφ, Dkψ, Dkψ̄, DkFµν , k=0,1,2.... In what follows we will refer to the
fields Wi as elementary fields.

In order to form a highest weight representation we will define the primary statesO(x),
as those which are annihilated at the point x = 0 by the special conformal generators:

KµO(0) = 0. (1.5)

Then the full representation module can be formed by successive action of the lowering
operators on the highest weight state O(x). The operators which are not primaries are
called descendants with respect to the primary operator they are obtained from.
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Since the theory is conformal, the particles are massless and, in the conventional sense,
there is no spectral problem. However there is an analog of it, namely the dilatation
eigenvalue ∆ of a local operator O(x), or, in order words, its conformal dimension. On
the classical level it is given just by the sum of dimensions of all the fields the operator is
made of. When the interaction is switched on the conformal dimension gets the correction
γ which is called an anomalous dimension. We will refer to the problem of computing
the anomalous dimension of an operators as a spectral problem. As it has been already
mentioned we are going to work in the planar limit of N = 4 SYM, when the number of
color N is taken to be large, so we are interested only in the leading order in the expansion
of the observables in 1/N . In the planar limit the conformal dimension of the multi-trace
operator is given by the sum of its single-trace operators. Therefore one can consider just
single-trace operators.

Due to the conformal symmetry of the theory, the expression of the properly normal-
ized two-point correlator is completely defined by its conformal dimension. E.g. in the
case of the primary scalar operators the two-point correlation functions is given as follows

〈Oi(x)Oj(y)〉 =
δij

(x− y)2∆i
. (1.6)

Thus the spectral problem is equivalent to the problem of computing the two-point cor-
relation function of the corresponding operator.

A significant simplification in the spectral analysis can be achieved by noticing that the
action of the dilatation operator is closed on certain subsets of the states up to some loop
level or sometimes even exactly. These subsets are referred to as sectors (or subsectors)
of the theory. The simplest example is the su(2) sector consisting of the two elementary
fields related to each other by one of the su(2) transformations of the symmetry, e.g.
Z = 1√

2
(φ5 + iφ6) and X = 1√

2
(φ1 + iφ2). The su(2) sector is closed in all orders in

perturbation theory. At tree level the action of the dilatation operator on it coincides
with the Hamiltonian of the Heisenberg XXX1/2 spin chain.

Another example we will be considering in this thesis is so(6) sector, or scalar sector,
presented by all the scalar fields Z, Z̄, X, X̄,Y , Ȳ forming the fundamental representation
of so(6) group and given as follows

Z =
1√
2

(φ5 + iφ6), Z̄ =
1√
2

(φ5 − iφ6),

X =
1√
2

(φ1 + iφ2), X̄ =
1√
2

(φ1 − iφ2),

Y =
1√
2

(φ3 + iφ4), Ȳ =
1√
2

(φ3 − iφ4).

(1.7)

The scalar sector is closed with respect to the action of one loop dilatation operator.
Other observables of the theory appear to be the rest of n-point correlation functions.

Among them the three-point functions draws particular attention. The reason is that the
operator product expansion (OPE) appears to be an exact statement in conformal field
theory. The OPE states that when two operators taken within a correlation function are
defined on the close enough space-time points, their product can be replaced by a sum of
the local operators with the coefficients called the structure constants

〈O1(x)O2(x+ δx)...〉 = 〈
∑
k

C12ke12k(δx)Ok(x)...〉, (1.8)
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where e12k are the conformal partial waves defined by the operators involved. Therefore
by successively applying the OPE to an arbitrary n-point correlator, one can reduce it to
a sum of two-point functions. At the same time it is not hard to see that the structure
constants are given by the three-point functions. This means that all the information
about the observables of the theory is encoded in two- and three-point correlators.

The form of the three-point correlators is fixed by the conformal symmetry as well,
for scalar primary operators it is given as follows

〈O1(x)O2(y)O3(z)〉 =
C123

|x− y|∆1+∆2−∆3|x− z|∆1+∆3−∆2|y − z|∆2+∆3−∆1
, (1.9)

where C123 is a structure constant.

1.3 Basic tools of integrability

In this section we will review basic tools of integrability which we will be using in the
following.

1.3.1 XXX1/2 spin chain. Coordinate Bethe Ansatz

In this section we will describe the method of coordinate Bethe-ansatz allowing the
diagonalization of the XXX1/2 spin chain corresponding to the su(2) sector of N = 4
SYM. For a more detailed review we recommend to see [58].

The XXX1/2 spin chain model is defined on the Hilbert space H:

H = h1 ⊗ ...⊗ hL (1.10)

where hk = C2, and has the following Hamiltonian:

H =
∑
α,k

(1− σαkσαk+1). (1.11)

Here σαk are Pauli matrices and the periodicity condition is implied: σαL+1 = σα1 .

Figure 1.1 – The spin chain.
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We will refer to a subspace hk as the k-th site of the spin chain. For the basis of a
one-site space hk we choose

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
. (1.12)

The full space is spanned by the states of the form

| ↑↓↓↓↑↑ ..... ↓↑↑〉, (1.13)

with the possibility for each site to have either spin up or down. We define the vacuum
to be

|Ω〉 = | ↑ ... ↑〉. (1.14)

It is not hard to see that it is an eigenstate of the Hamiltonian (1.11). We will denote the
excited states with N spins down at positions n1, ..., nN as

|n1, ..., nN〉. (1.15)

The spin operators Sα = 1
2

∑L
k=1 σ

α
k commutes with the Hamiltonian, thus these op-

erators can be diagonalized simultaneously. Accordingly the ansatz for the Hamiltonian
eigenstates with the total spin S = L−2N

2
should have the form

|ψN〉 =
∑

1≤n1...≤nN≤L

f(n1, ..., nN)|n1, ..., nN〉, (1.16)

where f(n1, ..., nN) is a factor to be defined. The solution to this problem is given by the
coordinate Bethe ansatz [9] given as follows

|ψN〉 =
∑

1≤n1...≤nN≤L

(
eip1n1+ip2n2+ip3n3+...+ipNnN + S(p2, p1)eip2n1+ip1n2+ip3n3+...+ipNnN+

S(p2, p1)S(p3, p1)eip2n1+ip3n2+ip1n3+...+ipNnN + ...
)
|n1, ..., nN〉,

(1.17)

with p1, ..., pN satisfying the condition (Bethe equations):

eipkL =
∏
j 6=k

S(pk, pj), (1.18)

where

S(pk, pj) = −e
i(pk+pj) − 2eipk + 1

ei(pk+pj) − 2eipj + 1
. (1.19)

The eigenstates (1.17) are conventionally called Bethe-states. The ansatz (1.17) allows the
following simple physical interpretation. In analogy with a plane wave we associate the
state eipn|n〉, to which we shall refer as to one magnon state, with a free particle moving
around the circle with a momentum p. Further the scattering is diagonal and absolutely
elastic which gives that the wave function should be given by a superposition of the
states of all possible permutations of the particles times a phase factor composed of the
product of the corresponding set of the S-matrices S(p, q). Since the system is defined in
finite space, the momenta should be quantized, which is expressed by the Bethe equations
(1.18).
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1.3.2 XXX1/2 spin chain. Algebraic Bethe Ansatz

In this section we will describe the algebraic Bethe-ansatz [10] serving as an alternative
way for diagonalizing spin chain Hamiltonians. The idea of the algebraic Bethe-ansatz
is based on introducing a connection along the spin chain, which we shall conventionally
call Lax operator. The Lax operator is defined on the product of one-site quantum space
h and an auxiliary space A isomorphic to a quantum space (A = C2) and has the form

Lk,a(u) = (u− θk)Ik ⊗ Ia + i
∑
α

Sαk ⊗ σαa , (1.20)

or

Lk,a(u) =

(
u− θk + iS3

k iS−k
iS+

k u− θk − iS3
k

)
, (1.21)

where Si = σi

2
, u is a complex variable and θ’s are the so-called inhomogeneities. In order

to get the homogeneous XXX1/2 spin chain corresponding to the one loop dilatation
operator of the su(2) sector we need to put the inhomogeneities to zero. The Lax-operator
also can be rewritten in terms of the permutation operator Pa,b φ

i
a ⊗ φ

j
b = φja ⊗ φib as

Lk,a(u) = (u− θk −
i

2
)Ik,a + iPk,a, (1.22)

Pa,b =
1

2

(
Ia ⊗ Ib +

∑
α

σαa ⊗ σαb ). (1.23)

It is not hard to see that the Lax operator satisfies Yang-Baxter equation:

Ra,b(u− v)Lk,a(u)Lk,b(v) = Lk,b(v)Lk,a(u)Ra,b(u− v), (1.24)

where Ra,b is called R-matrix and given as follows

Ra,b(u) = (u− θk)Ia,b + iPa,b. (1.25)

We then construct the monodromy matrix T (u) as follows:

T (u) =

(
A(u) B(u)
C(u) D(u)

)
= L1,a(u)L2,a(u)...LL,a(u). (1.26)

From the Yang-Baxter equation (1.24) and from the property [Lk1,a(u), Lk2,b] = 0 (k1 6= k2,
a 6= b) one can derive the so-called RTT relation

Ra,b(u− v)Tk,a(u)Tk,b(v) = Tk,b(v)Tk,a(u)Ra,b(u− v). (1.27)
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It can be written elementwise as follows

A(v)B(u) = f(u− v)B(u)A(v) + g(v − u)B(v)A(u),

B(v)A(u) = f(u− v)A(u)B(v) + g(v − u)A(v)B(u),

D(v)B(u) = f(v − u)B(u)D(v) + g(u− v)B(v)D(u),

B(v)D(u) = f(v − u)D(u)B(v) + g(u− v)D(v)B(u),

C(v)A(u) = f(v − u)A(u)C(v) + g(u− v)A(v)C(u),

A(v)C(u) = f(v − u)C(u)A(v) + g(u− v)C(v)A(u),

C(v)D(u) = f(u− v)D(u)C(v) + g(v − u)D(v)C(u),

D(v)C(u) = f(u− v)C(u)D(v) + g(v − u)C(v)D(u),

[C(v), B(u)] = g(u− v) [A(v)D(u)− A(u)D(v)] = g(u− v) [D(u)A(v)−D(v)A(u)] ,

[D(v), A(u)] = g(u− v) [B(v)C(u)−B(u)C(v)] = g(u− v) [C(u)B(v)− C(v)B(u)] ,

[A(u), A(v)] = [B(u), B(v)] = [C(u), C(v)] = [D(u), D(v)] = 0,

(1.28)

where f(u) = 1 + i
u
, g(u) = i

u
. From the RRT relation we immediately get that

[T (u), T (v)] = 0, (1.29)

where T (u) is the transfer matrix defined as the trace of the monodromy matrix over the
auxiliary space T (u) = TraT (u). By performing some manipulations with the permuta-
tion operator Pa,b, it is not hard to express the Hamiltonian as follows

H = L+ i
dT (u)

du
T (u)−1|u=i/2, (1.30)

Hence
[H, T (u)] = 0. (1.31)

Thus we can see that by expanding the transfer matrix as a polynomial of u, we get L
conserved charges, which coincide with number of degrees of freedom, giving rise to the
integrable structure of the XXX1/2 spin chain.

The main insight of the algebraic Bethe ansatz is that the construction of the Hamil-
tonian eigenstates (Bethe-states) is performed by successive action of the element B(u)
of the monodromy matrix on the ferromagnetic vacuum (1.14) :

|u1, ..., uN〉 = B(u1)...B(uN)|Ω〉. (1.32)

The values u1, ..., uN are called rapidities. In case of the XXX1/2 spin chain they are
connected to the particles momenta by the expression

eip =
u+ i/2

u− i/2
. (1.33)

The rapidities satisfy the Bethe equations:

a(uk)

d(uk)
=

N∏
j 6=k

uk − uj + i

uk − uj − i
, (1.34)
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In the following we will be using the expressions of how the monodromy matrix ele-
ments act on the eigenstates of the Hamiltonian. They can be derived from the algebra
(1.28):

A(v)|u〉 = a(v)
Qu(v − i)
Qu(v)

|u〉+
N∑
n=1

Mn(v) |{u, v} \ {un}〉,

D(v)|u〉 = d(v)
Qu(v + i)

Qu(v)
|u〉+

N∑
n=1

Nn(v) |{u, v} \ {un}〉,

C(v)|u〉 =
N∑
n=1

Kn |{u} \ {un}〉+
∑
k>n

Kkn |{u, v} \ {uk, un}〉,

(1.35)

where Qu(u) =
N∏
k=1

(u− uk), a(u) =
L∏
k=1

(u− θk + i/2), d(u) =
L∏
k=1

(u− θk − i/2) and

Mn(v) =
ia(un)

v − un

N∏
j 6=n

un − uj − i
un − uj

, (1.36)

Nn(v) =
id(un)

un − v

N∏
j 6=n

un − uj + i

un − uj
.

Kn =
ia(v)d(un)

un − v

N∏
j 6=n

uj − un − i
uj − un

· uj − v + i

uj − v
+

ia(un)d(v)

v − un

N∏
j 6=n

uj − un + i

uj − un
· uj − v − i

uj − v

Kkn =
d(uk)a(un)

(uk − v)(un − v)

uk − un + i

uk − un

∏
j 6=k,n

uj − uk − i
uj − uk

· uj − un + i

uj − un
+

d(un)a(uk)

(un − v)(uk − v)

uk − un − i
uk − un

∏
j 6=k,n

uj − uk + i

uj − uk
· uj − un − i

uj − un
.

By writing the state |u \ {ui1 , ..., uik}〉 we mean that the rapidities ui1 , ..., uik should be
removed from the list u.

Finally from (1.35) it is not hard to derive the expression for the transfer matrix
eigenvalue:

T (u)|u1, ..., uN〉 = (A(u) +D(u))|u1, ..., uN〉 = tu(u)|u1, ..., uN〉, (1.37)

tu(u) = a(u)
Qu(u− i)
Qu(u)

+ d(u)
Qu(u+ i)

Qu(u)
. (1.38)

1.3.3 The gauge theory operators and the spin chains

In order to apply the integrability technique of the spin chains to N = 4 SYM one
makes identification between the gauge invariant operators of the field theory with the

15



spin chains. For example in the case of su(2) sector the operators consist of the two fields
connected by the su(2) transformation, let’s say Z and X. Then we identify the spin up
site of the spin chain with the field Z, and spin down site with the field X:

↑→ Z, ↓→ X. (1.39)

The state Tr(ZL) then is considered as a vacuum state, and the impurities X as excitations
put on top of it. Under the following identification the action of the one loop dilatation
operator on the operators from su(2) sector coincide with the Hamiltonian of the XXX1/2

spin chain (1.11). So we can construct an eigenstate of the dilatation operator by use of
the Bethe ansatz discussed above. It is worth mentioning that besides the Bethe equations
(1.18), the momenta pi parameterizing the Bethe states should satisfy the so-called zero
momentum condition coming from the cyclicity of the trace:

ei(p1+...+pN ) = 1. (1.40)

1.3.4 Scalar product of the Bethe-states

In this section we will briefly review the issue of a scalar product of two Bethe-states,
which is extensively used in the computation of the three-point functions. In what follows
we will refer to the states of the form (1.32) as to the Bethe-states, among which we will
distinguish on-shell Bethe-states (with rapidities u1, ..., uN satisfying the Bethe equations
(1.34)) and off-shell Bethe-states (with rapidities being an arbitrary set of the complex
numbers).

Due to the property
B(u)† = −C(u∗), (1.41)

for every Bethe-state B(u1)...B(uN)|Ω〉 one can define a dual Bethe-state by

〈u1, ..., uN | = (−1)N〈Ω|C(u∗1)...C(u∗N), (1.42)

where we have used the fact that C(u)’s commute with each other. The set of the
Bethe roots u possess the property to turn into itself under the action of the complex
conjugation: u∗ = u. It means that the definition of the dual states the signs of the
complex conjugation can be omitted:

〈u1, ..., uN | = (−1)N〈Ω|C(u1)...C(uN). (1.43)

Now we can define a scalar product between two Bethe-states as 〈u|v〉. In this thesis
we will be interested in the absolute value of the scalar product meaning that the factor
of (−1)N can be dropped out:

〈u|v〉 = 〈Ω|
N∏
j=1

C(uj)
N∏
k=1

B(vk)|Ω〉. (1.44)

The simplest case of the scalar product (1.44) correspond to the option when the sets
u and v coincide. Then the scalar product reduces to the computation of the Bethe-state
norm:

〈u|u〉 = 〈Ω|
N∏
j=1

C(uj)
N∏
k=1

B(uk)|Ω〉. (1.45)
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The compact expression of the norm for the on-shell Bethe-states was obtained by Gaudin
in [59]:

〈u|u〉 =

(
N∏
j=1

a(uj)d(uj)
N∏
j<k

1 + (uj − uk)2

(uj − uk)2

)
ρN({1, ..., N}), (1.46)

with

ρN({1, ..., N}) =

∣∣∣∣∂Φk(u)

∂uj

∣∣∣∣ , (1.47)

where

Φk(u) = p(uk)L− i
N∑
j 6=k

logS(uj, uk). (1.48)

Here p(u) and S(u, v) are the particle momentum and S-matrix correspondingly.
Another case we are interested in is when one of the states is an on-shell and another is

off-shell Bethe-states. Then the corresponding expression is given by Slavnov determinant
[60]:

〈u|v〉 =
N∏
j=1

a(vj)d(uj)Su,v, (1.49)

where

Su,v =
detjk Ω(uj, vk)

detjk
1

uj−vk+i

(1.50)

The matrix element Ω(uj, vk) is given by

Ω(uj, vk) = t(uj − vk)− e2ipu(vk)t(vk − uj) (1.51)

= i
(uj − vk − i)− (uj − vk + i)e2ipu(vk)

(uj − vk)[(uj − vk)2 + 1]

where pu(v) is the so-called pseudomomentum

e2ipu(u) ≡ d(u)

a(u)

Qu(u+ i)

Qu(u− i)
. (1.52)

and t(u) is

t(u) =
1

u
− 1

u+ i
. (1.53)

1.3.5 Quantum inverse scattering problem

An important issue for computing the form factors of local spin operators, which is
relevant to our thesis and will be considered in the chapter 3 is to establish the relation
between the local spin operators σi and the elements of the monodromy matrix A,B,C,D,
which action on the Bethe-states are given by the known expressions listed in the previous
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section. This problem is referred to as Quantum Inverse Scattering Problem (QISP) which
solution we will review in this section.

For the convenience we will define the operators in the quantum space h = C2

Eab
ij = δai δ

b
j . (1.54)

Then the solution to QISP can be written as follows

Eab
n =

{
n−1∏
k=1

T (θk + i/2)

}
T ab(θn + i/2)

{
n∏
k=1

T (θk + i/2)

}−1

(1.55)

where

T 11(u) = A(u), T 12(u) = B(u), T 21(u) = C(u), T 22(u) = D(u), (1.56)

and the indexes k, n stand for the site numbers.

1.4 Three-point functions and integrability

In this section we will briefly review some results on the three-point functions in N = 4
SYM.

The first computations of the three-point functions was restricted by the simplest
configurations involving just half-BPS operators, which don’t receive any quantum cor-
rections [61, 62, 63, 64]. As it was expected the precise matching between string and
gauge theory sides was obtained.

As in the case with the spectral problem, a lot of attention was drawn by the BMN
limit. The comparison between gauge and string sides of the duality became possible after
starting from [65] the string vertex describing the interactions between the strings in the
pp-wave background was built. The comparison with weak coupling gave precise match
at the leading order in the BMN limit (see e.g. [66]). We will talk in more details about
the string vertex in pp-wave string theory in the chapter 2.

A systematic approach to the computation of the three-point functions from integrabil-
ity at weak coupling was initiated in [67], where the authors considered the non-extremal 4

three-point functions with the operators each of which belongs to one of the su(2) sectors
of N = 4 SYM at tree level. Here it is worth mentioning that due to the trivial action
of the tree level dilatation operator leading to high degeneracy of the spectrum, in order
to compute a structure constant at tree level, one has to consider the eigenstates of the
one loop dilatation operator. The main result which the authors of [67] obtained was
to reduce the computation of the structure constant to the computation of the scalar
products between off-shell Bethe states. It was achieved in two steps. The first, cut-
ting, is the representation of the on-shell Bethe states, corresponding to the gauge theory
operators, as a sum of products of two off-shell Bethe states. The second, sewing, per-
forming the contractions between the operators by means of the scalar product between
the corresponding off-shell Bethe states. Unlike to the case of the on-shell/off-shell scalar
products, discussed in the section (1.3.4), off-shell/off-shell scalar products can not be

4. Non-extremal three-point functions correspond to the case when each operator is contracted with
other two. When two of the operators are not contracted the three-point correlator is called extremal
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presented in the compact determinant-like form. Nevertheless the authors proposed some
recursive way of computing the off-shell/off-shell scalar products quite efficiently.

The result of [67] was improved in [68], where the author managed to obtain a compact
determinant-like form for the structure constant by exploiting some tricks based on the
analogy of the problem to the computation of the partition function of the six vertex
model.

Further these results were extended to one loop in [69], where the authors used the
results of the explicit computations of the Feynman diagrams for the case of the operators
from the scalar sector so(6) performed in [70, 71]. The final expression for the one loop
structure constant again was presented in the determinant-like form, however much more
complicated then in tree level. Later an alternative way of computing one loop structure
constant allowing to get the semi-classical limit in a straightforward fashion was proposed
in [72].

Another way to extend the method of [67] was considered in [73], where the tree level
structure constant of the operators belonging to the su(3) sector was examined. In some
cases the authors was able to obtain the result in the determinant form. Further the
method was also generalized at one loop to the sl(2) sector 5 in [74] and su(1|1) sector in
[75].

A different approach to the three-point correlators was proposed in [76, 77]. In these
works the authors considered the so-called heavy-heavy-light (HHL) correlators. This
configuration assumes that the two of the operators (the heavy operators) are taken to be
very large compared to the third one (the light operator). In this sense HHL correlator
is close to the two-point function of the heavy operators, since the influence of the third
operator is small. By considering the third operator as supergravity modes emitted by
the classical string corresponding to the heavy operators the authors of [76, 77] computed
some HHL correlators at string theory side. The precise match of the string theory
computation for HHL configuration with the weak coupling computation in N = 4 SYM
was obtained in [78], where the authors approximated the heavy states in the classical
limit by the coherent states of the Landau-Lifshitz model (see [79, 80] for more details).
HHL correlators is one of the main interest of this thesis and will be discussed further in
the chapter 3.

A lot of works are devoted to the three-point functions in the semi-classical limit,
when all three of the operators are identified with some classical string solutions. At
weak coupling the three-point correlator in the classical limit was first considered in [81],
where two of the operators were taken to be half-BPS and the third to be non-BPS, all
from the su(2) sector. Further this result was generalized to the case with three non-BPS
operators in [82, 83]. In [72] this result was extended to one loop. The semi-classical limit
of the three-point correlators with operators belonging to the su(3) sector was considered
in [73]. The computation in the semi-classical limit is interesting in the first place due to
the possibility of comparison with the string theory computations, initiated in [84] and
then further developed in [85, 86, 87, 88], giving the desired match between both sides of
the duality [89, 90].

An alternative approach to the three-point functions in N = 4 SYM is due to the spin
vertex, which was inspired by the string field theory. The idea is to build an object for
computing the three-point correlators which would play the same role as the string vertex

5. The configuration considered in [74] was restricted to the case with only one operator being from
the sl(2) sector. Other two were taken to be half-BPS states from the su(2) sector
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in the string field theory approach. This kind of object was first constructed in [91] and
then developed in [92], where the Yangian invariance of the spin vertex was realized. The
second chapter of this thesis is devoted to the spin vertex approach.

Quite recently in [57] the authors proposed an all loop based on integrability approach
called the hexagon program for computing the non-extremal three-point functions suitable
in principle for any three-point correlator. We will describe this method in more details
in the chapter 3, where we apply it for the computation of the HHL correlators.

Finally what we would like to mention here is the separation of variables (SoV) ap-
proach due to Sklyanin [93, 94]. An interesting feature of this method is that in the basis
of the separated variables the wave functions of the dilatation operator eigenstates are
defined by the Q-functions, which appears to be the basic object in the quantum spectral
curve approach. In this sense the SoV can provide us with a link between quantum spec-
tral curve technique and three-point functions. Some progress in accommodating the SoV
technique for computing the three-point correlators was made in [95, 96, 97], however the
results are at the moment restricted to the tree level approximation.
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Chapter 2

The spin vertex

In this chapter we will consider an approach for computing the three-point functions
in N = 4 SYM inspired from the string field theory (SFT). We will review the string
field theory and application of these approach to the plane wave limit of the type IIB
string theory defined on the AdS5×S5 background. The object describing the interaction
between strings is called string vertex. We will construct its analog, which we call spin
vertex, in the BMN limit of the N = 4 SYM theory. Then we will show that the
computation of the tree level three-point functions in the BMN limit based on the spin
vertex gives precisely the same result as the computation on the string theory side. Then
we will construct the spin vertex at tree level of N = 4 SYM for any kind of the operators
and show that it is invariant with respect to an infinite number of the conserved charges.

2.1 Light-cone string field theory on pp-wave back-

ground

The SFT realizes the idea of describing the string interactions in the same way as
quantum field theory does for the particles. The light-cone string field theory is the first
SFT which appeared. It was introduced and developed in [98, 99, 100, 101, 102, 103]
and then generalized to superstrings in [104, 105, 106]. Due to an obvious drawback -
breakdown of the Lorentz invariance - the light-cone SFT was abandoned for some time in
favor of the covariant approach (see e.g. [107]). However the AdS/CFT correspondence
drew new attention to the subject after the discovery of the pp-wave background as
a special limit of AdS5 × S5 space [4]. The reason is the particular simplicity of the
string theory on the pp-wave background in the light-cone gauge. In this section we will
first briefly describe how to get the pp-wave background by taking the Penrose limit of
AdS5×S5 space and also the gauge theory operators in the BMN limit dual to the string
states defined on the pp-wave space. Further we will discuss the main concepts of the
light-cone SFT and in particular the light-cone SFT on the pp-wave space.
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2.1.1 PP-wave background and the BMN limit of the N = 4
SYM

The metric of AdS5 × S5 is given as follows

ds2

R2
= −dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2

3 + dψ2 cos2 θ + dθ2 + sin2 θdΩ′23 , (2.1)

where ρ = 0 is the center of the AdS5 and ρ =∞ is the boundary, and ψ is the coordinate
along the equator of the S5. The pp-wave background can be obtained by taking a
special kind of Penrose limit of the AdS5×S5 space [4, 5]. One can imagine this limit by
considering a particle in the vicinity of the center of AdS moving with a speed close to the
speed of light along the equator of the S5. In order to perform the limit it’s convenient
to rescale the coordinates as follows

x+ = x̃+, x− = R2x̃−, ρ =
r

R
, θ =

y

R
, (2.2)

where x̃± = 1
2
(t± ψ), and after to take the limit R →∞. Then the metric will take the

form
ds2 = −4dx+dx− − µ2x2(dx+)2 + dxIdx

I , (2.3)

where I = 1, ..., 8. The parameter µ can be eliminated by rescaling x± → x±µ±1.
The energy and the angular momentum in global coordinates of the string theory

background are given as E = i∂t, J = −i∂ψ respectively. In terms of CFT the energy
corresponds to the conformal dimension of the operator. The angular momentum will
correspond to one of the components of the R-charge. By choosing one of the components
we break the R-symmetry from SO(6) to SO(2)×SO(4), which on the string theory side
correspond to choosing the plane in which the particle is moving. The relation between
the string and gauge magnitudes is given as follows

2p− = −p+ = i∂x+ = i∂x̃+ = i(∂t + ∂ψ) = ∆− J

2p+ ≡ −p− = − p̃−
R2

=
1

R2
i∂x̃− =

1

R2
i(∂t − ∂ψ) =

∆ + J

R2
.

(2.4)

The states surviving in the Penrose limit should have the finite light-cone energy and the
light-cone momentum. The relation (2.4) means that the corresponding operators on the
gauge theory side should have finite value of ∆− J , and ∆ + J should be of order of R2,
where R is considered to be large. These conditions define the BMN operators [3].

In order to write the BMN operators explicitly, we have to first choose the vacuum
state which fixes the R-charge component of the BMN operator. Conventionally we choose
the vacuum state to be TrZJ , where Z = 1√

2
(φ5 + iφ6). This is a half-BPS state, which

has conformal dimension equal to its classical value ∆0 = J . In order to build the excited
states we insert some other fields between the vacuum fields Z, such as four scalars φi,
i = 1, ..., 4, fermions ψaα, ψ̄aα, derivatives Dµ, µ = 1, ..., 4 of the scalars and fermions, or
by considering the derivatives of the vacuum fields Z itself. So we get the operators of
the following form

Tr(ZZDkµφiZZ...ZDlνψaαZZ...Dmρ ZZZ). (2.5)

In order to keep the operator in the BMN regime we have to take the number of the
excitations much smaller then the number of the vacuum fields J ∼

√
N . This condition

is referred to as dilute gas approximation.
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Finally, in the BMN limit other expansion parameters appear

λ′ =
g2
YMN

J2
=

1

(µp+α′)2
,

J2

N
= 4πgs(µp

+α′)2, (2.6)

with α′ = 1
2πT

. From this we can see that in the BMN limit the we can have ’t Hooft
constant λ to be in principle of any value covering the range from weak to strong coupling
keeping at the same time λ′ to be small. This allows to compare the observables from the
both sides of the duality explicitly.

2.1.2 The concept of the SFT

The string field theory is the formulation of string theory where the main object is the
field operator Φ which creates and destroys strings. it has been formulated in light-cone
gauge for flat [104, 105, 106] and pp-wave [65, 108, 109, 110] backgrounds.

The field operator Φ acts in the Hilbert space H:

H = |vac〉 ⊕ H1 ⊕H2 ⊕ ..., Hn = H1 ⊗ ...⊗H1︸ ︷︷ ︸
n

Φ : Hn → Hn±1,

(2.7)

(H1 is a Hilbert space of one string) and can be expanded in the sum of creation/annihi-
lation operators as follows (the fermionic part is suppressed for the sake of simplicity):

Φ(p(σ)) ∼
∑
~N

A ~N(p+)
∞∏

n=−∞

ψNn(pn). (2.8)

Here A ~N(p+) is an operator which creates (p+ < 0) or annihilates (p+ > 0) string with the

set of excitations given by the occupation vector ~N (each component of ~N indicates the
excitation level of corresponding string mode) and ψNn(pn) is just a harmonic oscillator
wave-function in momentum representation with the excitation level Nn.

The Hamiltonian of SFT can be expanded in coupling constant gs:

H = H2 + gsH3 + g2
sH4 + ..., (2.9)

where H2 is a free Hamiltonian, which in terms of Φ, has the form:

H2 ∼
∫
p+dp+D8(p(σ))D8(λ(σ))Φ†hΦ, (2.10)

where p(σ) and λ(σ) are momentum densities for bosonic and fermionic sectors respec-
tively and h is the free string theory hamiltonian. The first correction H3 to the hamilto-
nian is the three-point string vertex (see the Fig. 2.1) describing the interactions between
the strings by means of the matrix element 〈3|H3|1〉|2〉. The main principle of getting the
expression for H3 is to require that the corrected generators should satisfy the supersym-
metry algebra of the theory. After turning on the interaction, the set of generators can be
divided in two groups: kinematical (those which symmetry are not affected by adding to
the action terms of higher orders in gs) and dynamical (those which has to be corrected
after taking into account the interaction). In this sense all the constrains appearing due
to the symmetry algebra can be divided in two groups: kinematical (commutation rela-
tions of dynamical generators with kinematical) and dynamical (commutation relations
of dynamical generators between each other).
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Figure 2.1

2.1.3 SFT in the pp-wave background

In the case of bosonic string the dynamical constrains are absent, since the only
generator which gets corrected is the Hamiltonian. The kinematical constraints then
reduce to requiring worldsheet continuity at interacting point, which can be realized by

imposing a delta functional ∆
(
X1(σ)−X2(σ)−X3(σ)

)
in the functional integral over all

possible configurations of three strings. The integral can be computed straightforwardly,
leading to the following form of the bosonic string vertex 1

|V 〉 = exp

(
− 1

2

∞∑
m,n=−∞

3∑
r,s=1

8∑
i=1

a(r)i†
m N rs

mna
(s)i†
n

)
|0〉〉. (2.11)

Here |0〉〉 denotes the vacuum of three-string Hilbert space |0〉〉 ≡ |0〉1 ⊗ |0〉2 ⊗ |0〉3. The
indices r and s denote the label of the strings, i denotes the polarization of the excitation
andm,n are the mode numbers of the excitations. The quantitiesN rs

mn are called Neumann
coefficients and characterize the interactions between excitations of different strings.

For superstrings, in addition to worldsheet continuity, one also needs to require that
supersymmetry is respected by the string vertex. This can be achieved by acting a new
operator P on the exponential part (2.11). This operator can be written as a quadratic

polynomial of creation operators a
(r)i
m (bosonic as well as fermionic, but since we consider

the bosonic sector, we will drop the fermionic part) and is called the prefactor. The string
vertex for superstring thus takes the following form

|H3〉 = P|V 〉. (2.12)

However, it turns out that supersymmetry is not restrictive enough to fix the prefactor
uniquely and there have been several proposals in the literature originating from different
motivations. We will use the prefactor proposal by Dobashi and Yoneya [111]. The

1. Note that we use different notations from the ones in [66]. Our creation operator a
(r)i†
m is denoted

by α
(r)i†
m in [66] and our Neumann coefficient Nrs

mn is denoted by Ñrs
mn in [66].
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reason is that their proposal has the virtue to work for both extremal and non-extremal 2

correlation functions [66]. Interestingly, the prefactor of Dobashi and Yoneya is a half
sum of the two prefactors P1 and P2 proposed in [65, 108, 109, 110] and [112] respectively

Ph =
1

2
P1 +

1

2
P2, (2.13)

more explicitly

Ph =
3∑
r=1

(
8∑
i=5

∞∑
m=0

ω
(r)
m

α(r)

a(r)i†
m a(r)i

m +
4∑
i=1

∞∑
m=0

ω
(r)
m

α(r)

a
i(r)†
−m a

(r)i
−m

)
, (2.14)

where ω
(r)
n =

√
n2 + µ2α2

(r) and α(r) = α′p+
(r). After one fixes the string vertex, the matrix

elements of H3 can be computed straightforwardly. According to [111], the holographic
relation between matrix element of the H3 and OPE coefficients in BMN limit is given by

C123 =

√
J1J2J3

N

G(∆1,∆2,∆3)

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|H3〉. (2.15)

Here C123 is the structure constant of the three-point correlation function

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x12|∆1+∆2−∆3|x13|∆1+∆3−∆2|x23|∆2+∆3−∆1
(2.16)

where xµij = xµi − x
µ
j , ∆i is the conformal dimension of the operator Oi and the function

G(∆1,∆2,∆3) reads

G(∆1,∆2,∆3) =

(
f
J2J3

J1

)−(∆2+∆3−∆1)/2

Γ

(
∆2 + ∆3 −∆1

2
+ 1

)
, (2.17)

where the function f is defined in [66]. Finally, we want to emphasis that the holo-
graphic relation between the matrix elements of H3 and the OPE coefficient in N = 4
is not completely understood. The holographic relation (2.15) works well at the leading
order [66, 113]. However, at higher loop order, the large µ expansion of the function
G(∆1,∆2,∆3) give rises to non-perturbative terms such as log µ, the interpretation of
which is still unclear.

2.2 The spin vertex in the BMN limit

In this section we will consider some aspects of the non-extremal three-point functions
in the BMN limit of the scalar sector of N = 4 SYM theory. The scalar sector means
that we will consider the gauge invariant operators constructed as a product of only the
scalar fields φi, i = 1, ..., 6, forming the fundamental representation of the so(6) group.
Namely we will construct the object, which maps any three operators of the considered
sector into a corresponding three-point correlator, in a way similar to the string vertex.
In this sense we will call this object spin vertex. We examine the BMN limit of the spin
vertex and show that it reproduces the string vertex of SFT (constructed in [111, 66]) at
the leading order of λ′ expansion. The presented material is based on [114].

2. According to the terminology of [66] the extremal and non-extremal correlation functions correspond
to the impurity preserving and impurity non-preserving processes respectively.
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2.2.1 The spin vertex

We will consider the following configuration:

O1 : {Z, φi}, O2 : {Z̄, φi}, O3 : {Z̄, φi}, i = 1, 2, 3, 4, (2.18)

where

Z =
1√
2

(φ5 + iφ6), Z̄ =
1√
2

(φ5 − iφ6). (2.19)

The corresponding diagram is represented on the Fig. (2.2). The field Z is a vacuum
for the first operator, and Z̄ for the second and the third operators. The excitations are
presented by four transverse fields φi, i = 1, ..., 4.

Figure 2.2 – The configuration for three-point functions. The black lines corre-
spond to the contractions of Z and Z̄ and the red dashed lines correspond to the
contractions of excitations φi, i = 1, 2, 3, 4.

In order to compute the three-point functions 3

〈O1(x1)O2(x2)O3(x3)〉 =

√
L1L2L3

N

c123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2|x23|∆2+∆3−∆1
. (2.20)

at tree level we introduce the following generating fields:

F1 = Tr

L1∏
k=1

(
Zk +

4∑
i=1

xikφ
i
k

)
(2.21)

F2 = Tr

L2∏
k=1

(
Z̄k +

4∑
i=1

yikφ
i
k

)

F3 = Tr

L3∏
k=1

(
Z̄k +

4∑
i=1

zikφ
i
k

)
.

3. Here we separated the symmetry factor
√
L1L2L3 (see e.g. [67]) from the structure constant in

order to accommodate our notations with notations of [115]
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Then any three operators can be obtained in the following way

O1 = Ψ1(∂x)F1|xi=0 , O2 = Ψ2(∂y)F2|yi=0 , O3 = Ψ3(∂z)F3|zi=0 , (2.22)

where Ψ1(∂x),Ψ2(∂y) and Ψ3(∂z) are three differential operators of the following form

Ψ(∂x) =
∑
n,I

cIn

L∏
k=1

(∂ikk )nk , ∂ikk ≡
∂

∂xikk
, nk = 0, 1 (2.23)

Here n = {n1, · · · , nL} and I is a collective index indicating the polarizations of the
excitations, and the set of the coefficients cIn define the corresponding eigenstate of the
dilatation operator. In order to compute the correlator between given operators O1, O2,
O3, we should compute the correlator of the generating functions F1, F2, F3, act on the
result with the differential operators Ψ1, Ψ2, Ψ3, and then put all the variables xik, y

i
k, z

i
k

to zero:

c123 = Ψ1(∂x)Ψ2(∂y)Ψ3(∂z)〈F1(x)F2(y)F3(z)〉|xi,yi,zi=0 (2.24)

= Ψ1(∂x)Ψ2(∂y)Ψ3(∂z)V3(x,y, z)|xi,yi,zi=0 ,

where

V3(xi,yi, zi) =

L12∏
k=1

(1 + yikx
i
L1−k+1)

L13∏
k=1

(1 + xikz
i
L3−k+1)

L23∏
k=1

ziky
i
L2−k+1, (2.25)

which we will call the spin vertex. Note that the commutation relations of ∂/∂x and x
are the same as commutation relations of bosonic creation and annihilation operators.
Therefore, we can map the auxiliary variables and the corresponding derivatives into
creation and annihilation operators

xik → α
(1)i†
k , yik → α

(2)i†
k , zik → α

(3)i†
k (2.26)

∂

∂xik
→ α

(1)i
k ,

∂

∂yik
→ α

(2)i
k ,

∂

∂zik
→ α

(3)i
k ,

and the spin vertex can be written as

|V3〉B ≡ V3

(
α

(1)i†
k , α

(2)i†
k , α

(3)i†
k

)
|0〉B. (2.27)

The new Fock vacuum is defined to be the state that is annihilated by all the bosonic
annihilation operators

α
(r)i
k |0〉B = 0. (2.28)

The corresponding states can be written as

〈1| ≡ 〈0|Ψ1

(
α

(1)i
k

)
, 〈2| ≡ 〈0|Ψ2

(
α

(2)i
k

)
, 〈3| ≡ 〈0|Ψ3

(
α

(3)i
k

)
, (2.29)

and the structure constant is given by

c123 = 〈1|〈2|〈3|V3〉B, (2.30)

where both the spin vertex and the states are now constructed by bosonic oscillators. The
formulation we described up to now is applicable to any three states in our set-up. In the
next section, we will take the BMN limit of (2.27) and show that it reproduces the string
vertex of SFT constructed in [111, 66].
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2.2.2 The BMN limit of the spin vertex

In this section we will take the BMN limit of the spin vertex constructed in the
previous section. As it has been already discussed before the BMN limit of the N = 4
SYM reduces to two approximations. The first says that the number of excitations should
be much smaller then the length of the operator. The second - that the momenta of the
excitations are small and scales like ∼ 1/L, where L is the length of the spin chain, which
is taken to be very large. The length of each spin chain is equal to the sum of the number
of the vacuum fields Z or Z̄ and the number of excitations. We denote the number of the
vacuum fields by Ji and the number of excitations by Ni so that the length of the i-th
spin chain Li is given by Li = Ji + Ni. In the BMN limit we have Ji � Ni, and hence
Li ' Ji. Due to the charge conservation, we have J1 = J2 + J3, thus we introduce the
following notations: J1 = J , J2 = rJ , J3 = (1 − r)J , where 0 < r < 1. The number of
contractions between different operators are approximately given by

L12 ' J2 = rJ, L13 ' J3 = (1− r)J, L23 = M =
1

2
(N2 +N3 −N1). (2.31)

In what follows, we use M to denote the number of contractions between the two ‘out-
going’ operators. By BMN assumption, M � J . The three-point functions for M = 0
are called impurity preserving, or extremal, while for M 6= 0 they are called impurity non-
preserving or non-extremal. For the extremal correlator, when diagonalizing anomalous
dimension matrix one have to deal with the mixing between single trace and double trace
operators [116]. On the contrary, for the non-extremal cases, the contribution from double
trace operators are 1/N -suppressed and can be neglected in the planar limit, which makes
the computation much simpler from gauge theory aspect. On the other hand, the earlier
proposals for string field theory and duality relations work only for the extremal cases. A
string field theory applicable to both extremal and non-extremal cases is the holographic
string field theory proposed by Dobashi and Yoneya [111, 66]. In this thesis we consider
only the non-extremal cases, so we always assume M 6= 0.

By (2.26), we map xik, y
i
k and zik to creation operators. In order to obtain creation op-

erators in the momentum space, we perform the mode expansion of the bosonic oscillator

α
(r)i†
k =

1√
Jr

Lr/2∑
n=−Lr/2

e
2πink
Jr a(r)i†

n , r = 1, 2, 3 (2.32)

Let us investigate the part of spin vertex corresponding to the contractions between
operators 1 and 2.

V12 =

L12∏
k=1

(1 + α
(1)i
L1−k+1α

(2)i
k ) ≈ exp

 1

J
√
r

∑
n

(1)
i ,n

(2)
i

J2∑
k=0

e
2πin

(2)
i

k

J2
−

2πin
(1)
i

k

J1 a
(1)i†
n

(1)
i

a
(2)i†
n

(2)
i

 (2.33)

= exp

− ∑
n

(1)
i ,n

(2)
i

N 12

n
(1)
i n

(2)
i

a
(1)i†
n

(1)
i

a
(2)i†
n

(2)
i

 .
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In the first line, the summation over k gives

J2∑
k=0

e
2πin

(2)
i

k

J2
−

2πin
(1)
i

k

J1 ' Je−πirn
(1)
i

sin πrn
(1)
i

π(n
(1)
i − n

(2)
i /r)

= J
√
r(−1)n

(1)
i +n

(2)
i e−πirn

(1)
i N12

n
(1)
i n

(2)
i

(2.34)

Therefore our Neumann coefficient from spin vertex is related to the Neumann coefficient
in SFT [117, 118] by a simple phase factor 4

N 12

n
(1)
i n

(2)
i

= (−1)n
(1)
i +n

(2)
i e−πirn

(1)
i N12

n
(1)
i n

(2)
i

. (2.35)

Similarly, for the contractions between operators 1 and 3, we have

V13 =

L13∏
k=1

(1 + α
(1)i†
k α

(3)i†
L3−k+1) ' exp

√1− r
J

∑
n

(1)
i ,n

(3)
i

J3∑
k=0

e
2πin

(1)
i

k

J1
−

2πin
(3)
i

k

J3 a
(1)i†
n

(1)
i

a
(3)i†
n

(3)
i


(2.36)

= exp

− ∑
n

(1)
i ,n

(3)
i

N 13

n
(1)
i n

(3)
i

a
(1)i†
n

(1)
i

a
(3)i†
n

(3)
i

 ,

where our Neumann coefficient is related to the SFT Neumann coefficient by

N 13

n
(1)
i n

(3)
i

= (−1)n
(1)
i e−iπrn

(1)
i N13

n
(1)
i n

(3)
i

. (2.37)

For the contractions between operators 2 and 3, we have

V23 =
M∏
k=1

α
(3)i†
k α

(2)i†
L2−k+1 =

M∏
k=1

1

J
√
r(1− r)

∑
n

(2)
i ,n

(3)
i

e
2πikn

(3)
i

J3
−

2πikn
(2)
i

J2 a
(2)i†
n

(2)
i

a
(3)i†
n

(3)
i

. (2.38)

Since M � Ji and n
(2)
i � J2, n

(3)
i � J3, the phase factor in (2.38) becomes trivial

e
2πikn

(3)
i

J3
−

2πikn
(2)
i

J2 ≈ 1 (2.39)

and V23 simplifies to

V23 =

 1

J
√
r(1− r)

∑
n

(2)
i ,n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i


M

=

(
J

4πµ|α(1)|

)−M − ∑
n

(2)
i ,n

(3)
i

N 23

n
(2)
i n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i


M

,

(2.40)

where our Neumann coefficient is given by

N 23

n
(2)
i n

(3)
i

= (−1)n
(2)
i N23

n
(2)
i n

(3)
i

. (2.41)

4. The explicit form of Neumann coefficient at the leading order of large µ expansion can be found in
appendix A
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Let us consider the following vertex

Ṽ23 = exp

− ∑
n

(2)
i ,n

(3)
i

N 23

n
(2)
i n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i

 , (2.42)

which can be expanded as

Ṽ23 =
∞∑

M=0

1

M !

− ∑
n

(2)
i ,n

(3)
i

N 23

n
(2)
i n

(3)
i

a
†(2)i

n
(2)
i

a
†(3)i

n
(3)
i


M

. (2.43)

For a given configuration, the numberM is fixed and the action of states will automatically
pick out the term in Ṽ23 with the corresponding M . Hence we can replace V23 by

V23 −→
(

J

4πµ|α(1)|

)−M
M ! · Ṽ23. (2.44)

Recalling that at the leading order

1

2
(∆2 + ∆3 −∆1) =

1

2
(L2 + L3 − L1) = M, (2.45)

and

f
J2J3

J1

=
J

4πµ|α(1)|
+O(

1

µ2
), (2.46)

we find that the factors in front of Ṽ23 at the leading order coincides with the expression
(2.17) obtained in [66](

J

4πµ|α(1)|

)−M
M ! '

(
f
J2J3

J1

)−(∆2+∆3−∆1)/2

Γ

(
∆2 + ∆3 −∆1

2
+ 1

)
(2.47)

From our derivation, it is clear that the function G(∆1,∆2,∆3) is intimately related to
the interaction between the two outgoing states. Therefore it is crucial for the matching
between SFT calculation and the non-extremal three-point functions.

We can define our spin vertex operator as

VBMN = G(∆1,∆2,∆3)V12V13Ṽ23. (2.48)

This is very close to the 3-point vertex from string theory including the correct G-factor,
except that our Neumann coefficients seem to be different from those of SFT by some
phase factors. We will show that these phase factors are trivial provided the physical
states satisfy the level matching conditions. When acting physical states on the spin
vertex, we obtain the product of Neumann coefficients of the following type

(−1)L12+L23+L13

∏
12

N 12

p
(1)
i p

(2)
i

∏
13

N 13

q
(1)
i q

(3)
i

∏
23

N 23

r
(2)
i r

(3)
i

(2.49)

= phase · (−1)L12+L23+L13

∏
12

N12

p
(1)
i p

(2)
i

∏
13

N13

q
(1)
i q

(3)
i

∏
23

N23

r
(2)
i r

(3)
i

.
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From (2.35),(2.37) and (2.41), the phase factor is

phase =
∏
12

(−1)p
(1)
i +p

(2)
i e−πirp

(1)
i

∏
13

(−1)q
(1)
i e−πirq

(1)
i

∏
23

(−1)r
(2)
i (2.50)

=(−1)
∑
i p

(1)
i +q

(1)
i (−1)

∑
i p

(2)
i +r

(2)
i e−

∑
i πi(p

(1)
i +q

(1)
i ) = 1,

where we have used the level matching conditions∑
i

p
(1)
i + q

(1)
i =

∑
i

p
(2)
i + r

(2)
i = 0. (2.51)

This means that if we consider the physical states, we can replace our Neumann coefficients
N rs
m,n by the Neumann coefficients of SFT Ñ rs

m,n, since the phase factor just cancels. To
sum up, from the spin vertex in the BMN limit, we obtain at the leading order the
following cubic vertex

|VBMN〉 = G(∆1,∆2,∆3) exp

−1

2

3∑
r,s=1
r 6=s

a(r)i†
m N rs

mna
(s)i†
n

 |0〉. (2.52)

Notice that in the exponent we impose the condition r 6= s, while in SFT the Neumann
coefficients Ñ rr

mn, which corresponds to interactions between the excitations of the same
string, are non-zero. However these Neumann coefficients will appear only at higher orders
in the large µ expansion. It is an interesting question whether we can obtain this kind
of Neumann coefficients from weak coupling at higher loops, which we leave for future
investigation. Therefore at the leading order, we have

|VBMN〉 = G(∆1,∆2,∆3)|V 〉. (2.53)

To complete our derivation, we also need to show that the eigenstates at weak coupling
in the BMN limit can be presented in the same form as the ones in SFT. In the BMN limit,
the scattering phases are zero which means there is no interaction between excitations.
Therefore, the wave functions of the spin chain states are simply given by plane waves.
In terms of bosonic oscillators, a BMN state at the leading order can be represented by

〈0|Ψ
(
αik
)

=
1√
LN

L∑
k1 6=···6=kN=1

〈0|αi1k1
· · ·αiNkN e

− 2πi
L

(n1k1+···+nNkN ) (2.54)

where L is the length of the spin chain, αik is the bosonic oscillator introduced in (2.26)
and creates an excitation at position k with polarization i. Here n1, · · · , nN are the mode
numbers of the excitations. By performing the same Fourrier transform as in (2.32), we
have simply

〈0|Ψ
(
αik
)

= 〈0|ai1n1
· · · aiNnN = 〈n1, · · · , nN |, (2.55)

which takes the form of a standard string theory state.
There is another difference between the spin vertex and string vertex. In SFT, one

has to take into account the non-trivial prefactor while we do not have similar prefactor
in the spin vertex formalism. However, as argued by Dobashi and Yoneya [66], at the
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leading order, the action of prefactor on the states gives rise to a simple factor, which
cancels neatly the holographic factor 1/µ(∆2 + ∆2 −∆1). Let us briefly review how this
works. The prefactor for scalar excitations at the leading order reads

Ph =µ(a
(2)i†
0 a

(2)i
0 + a

(3)i†
0 a

(3)i
0 − a(1)i†

0 a
(1)i
0 ) (2.56)

+
µ

2

∞∑
m=1

(a(2)i†
m a(2)i

m + a(3)i†
m a(3)

m − a(1)i†
m a(1)i

m + [m→ −m])

+
µ

2

∞∑
m=1

(a(2)i†
m a

(2)i
−m + a(3)i†

m a
(3)i
−m − a(1)i†

m a
(1)i
−m + [m→ −m])

The operators in the first two lines take the form of counting operators a†mam. On the
other hand, the operators in the third line a†ma−m changes the sign of mode numbers.
But due to the symmetry of the Neumann coefficients with respect to exchange of the
lower indexes: N rs

−n,m = N rs
n,−m, its action reduces to the counting operator as well. Hence

once acted on the physical states, the prefactor (2.57) just counts twice the difference
between the excitation numbers of the incoming state 1 and out-going states 2 and 3, and
its action reduces just to multiplication of the factor µ(N2 + N3 − N1) = 2µM . At the
leading order it can be written as

2µM = µ(∆2 + ∆3 −∆1). (2.57)

Therefore, we have

1

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|H3〉 =

1

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|Ph|V 〉 = 〈1|〈2|〈3|V 〉 (2.58)

Finally, gathering all the pieces, we get

C123 =

√
J1J2J3

N
〈1|〈2|〈3|VBMN〉 =

√
J1J2J3

N
G(∆1,∆2,∆3) 〈1|〈2|〈3|V 〉 = (2.59)

√
J1J2J3

N

G(∆1,∆2,∆3)

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|Ph|V 〉 =

G(∆1,∆2,∆3)

µ(∆2 + ∆3 −∆1)
〈1|〈2|〈3|

√
J1J2J3

N
|H3〉

where the first line is from the spin vertex while the last line is exactly the holographic
relation (2.15) proposal by Dobashi and Yoneya. Therefore we have shown that gauge
theory computation exactly reproduces SFT result at tree level.

2.3 The spin vertex for the full theory

In this section we will generalize the notion of the spin vertex to the full theory of N =
4 SYM. For this purpose we will be extensively using the so-called oscillator representation
of the symmetry algebra psu(2, 2|4). The procedure to build such a representation for
non-compact supergroups is well explained in [119]. In the oscillator representation the
generators of the algebra are formed as bilinears of bosonic and fermionic oscillators.
We will construct the full spin vertex at tree level in oscillator representation and show
that it satisfies a monodromy relation with appropriately constructed monodromy matrix.
A very similar to the full vertex object was constructed in [91], but the authors didn’t
realize its Yangian invariance. Finally we will show the relation between the spin vertex
(2.25) introduced in the previous chapter and the full spin vertex built in the oscillator
representation. The content of this section is based on [92].
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2.3.1 Oscillator representation and the free N = 4 SYM

In this section we will introduce the oscillator representation of the free N = 4 SYM
[120, 16] by and large following [91]. Let us first discuss the oscillator representation of
the compact version of psu(2, 2|4), psu(4|4). It uses four copies of bosonic oscillators,
ai, i = 1, . . . , 4 and four copies of fermionic oscillators, ck, k = 1, . . . , 4,

[ai, a
†
j] = δij , {ck, c†l} = δkl , i, j, k, l = 1, . . . , 4 . (2.60)

We organize the oscillators in a eight-dimensional vector

φ = ( ai ck ) (2.61)

such that the generators of u(4|4) can be written as

EAB
compact = φA†φB with EAB†

compact = EBA
compact . (2.62)

It is straightforward to check that they satisfy the commutation relations of the u(4|4)
algebra,

[EAB, ECD] = δBCEAD − (−1)(|A|+|B|)(|C|+|D|)δADECB , (2.63)

with [·, ·] meaning commutator or anti-commutator, depending on the grading of the
generators (|A| = 0, 1 for bosonic and fermionic indices respectively). The non-compact
form u(2, 2|4) can be obtained after a particle-hole transformation for two of the bosonic
oscillators:

bi = a†i+2 , b†i = −ai+2 i = 1, 2 . (2.64)

The commutation relations (2.63) are preserved by the particle-hole transformation, but
the Hermitian conjugate of the generators are now

EAB† = γ EBAγ , γ = diag(12,−12, 14) . (2.65)

Sometimes, for the sake of symmetry, it is convenient to perform also a particle-hole
transformation of the fermionic oscillators

di = c†i+2 , d†i = ci+2 i = 1, 2 . (2.66)

Unlike the bosonic particle-hole transformation, the fermionic one is unitary and therefore
it does not change the real form of the algebra. We will use alternatively the two notations.
The Lie-algebra generators are expressed in terms of these oscillators as

EAB = ψ̄AψB , (2.67)

with

ψ = ( ai −b†i ci d†i ), ψ̄ = ψ†γ = ( a†i bi c†i di ). (2.68)

The projective condition of psu(2, 2|4) is obtained by imposing the central charge of the
algebra,

∑
AE

AA = ψ̄ψ, to be zero,∑
A

EAA =
∑
i=1,2

(Nai −Nbi +Nci +Nci+2
− 1) =

∑
i=1,2

(Nai −Nbi +Nci −Ndi) = 0 ,

(2.69)
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where Na, Nb, Nc, Nd are the number of the respective types of bosons and fermions in
the two types of representations.

Let us now concentrate on the conformal subalgebra in four dimensions so(2, 4) '
su(2, 2). It consists of the Lorentz transformation Mµν (µ, ν = 0, ..., 3), translations Pµ,
special conformal transformations Kµ and dilatation D. Once the following identification
is implied

Mµ5 =
1

2
(Pµ −Kµ), Mµ6 =

1

2
(Pµ +Kµ), M56 = −D, (2.70)

the commutation relations can be written in the form

[MPQ,MRS] = i(ηQRMPS − ηPRMQS − ηQSMPR + ηPSMQR) , (2.71)

where, according to the notations from [91], P,Q,R, S = 0, 1, 2, 3, 5, 6 with time-like
directions 0, 6 and space-like directions 1, 2, 3, 5.

The conformal subgroup has a natural grading with respect to the maximal compact
subalgebra u(1)⊗ su(2)⊗ su(2). The grading is given by the value of the u(1) generator
E

[E,L±] = ±L± , [E,L0] = 0 ,

[L0, L±] = ±L± , [L+, L−] ∈ L0 ,

where

E = M06 = 1
2
(P0 +K0) . (2.72)

Thus, in order to build a unitary representation of the conformal subgroup we need to find
the state annihilated by all the generators L− and then to act on it with the generators
L+.

We can express the generators MAB in terms of the oscillators in the following way

M̂AB = φ̄bMABφb, (2.73)

φb = ( a1 a2 −b†1 −b†2 ), φ̄†b = φbγ0 = ( a†1 a†2 b1 b2 ), (2.74)

with
γ0 = diag(1, 1,−1,−1). (2.75)

The generators MAB form the four dimensional representation of so(2, 4) algebra and can
be expressed in terms of the Dirac γ matrices:

Mµν = − i
4

[γµ, γν ] , Mµ5 = − i
2
γµγ5,

Mµ6 =
1

2
γµ, M56 =

1

2
γ5.

(2.76)

Due to the properties

γ0MAB = M †
ABγ

0,
[
M̂AB, M̂CD

]
= ψ̄ [MAB,MCD]ψ, (2.77)

34



the generators M̂AB are Hermitian and satisfy the commutation relations (2.71), and thus
form the unitary representation of the conformal subgroup so(2, 4). From the identifica-
tion (2.73) we can get (we will be using these extensively in the following)

E = 1 + 1
2
(Na +Nb) = 1

2
(a†a+ bb†) , (2.78)

L+
µ = −a†σ̄µb† , L−µ = bσµa , (2.79)

where σµ = (−1, ~σ), and σ̄µ = (−1,−~σ) and summation over indices of the bosonic
operators is understood.

We will denote the unitary representation which is built by acting with L+’s on the
vacuum |0〉 such that L−|0〉 = 0 as H1.

On the other hand, when computing the correlation functions, we are interested in the
primary operators, those, which are annihilated by the special conformal transformations
Kµ. Then all the descendants are generated by acting on the primaries with momentum
generators Pµ. We will denote the representation obtained after such manipulations by
H2. In [91] the authors noticed that in order to go from the representation H1 to the
representation H2 one needs to perform the following transformation

U = exp−π
2
M05 = exp−π

4
(P0 −K0) , (2.80)

such that
|state〉2 = U |state〉1, J2 = UJ1U

−1, (2.81)

for states |state〉 and generators J . In particular

U−1KµU = L−µ , U−1PµU = L+
µ , U−1DU = iE . (2.82)

At tree level we can get the expression for the U operator in terms of the oscillators. From
(2.82) we have that

P0 −K0 = U(P0 −K0)U−1 = (L+
0 − L−0 ), (2.83)

so
U = exp−π

4
(a†b† + ab). (2.84)

For the later convenience we introduce the fermionic copy of U , which we denote as UF :

UF = exp−π
4

(c†d† + cd) , U †F = U−1
F . (2.85)

2.3.2 Correlation functions and the two-vertex

In this section we will show how to compute the correlation functions of gauge invariant
operators at tree level in terms of oscillator representation introduced above. For an
operator of length L we will need the Fock vacuum |0〉:

|0〉 = |0〉1 ⊗ ...⊗ |0〉L. (2.86)

Accordingly the action of the generators of the superconformal algebra on the state in the
Fock space will be defined as

EAB =
L∑
s=1

EAB
s , (2.87)
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where for each site s of the state we introduced a copy of the algebra generators EAB
s .

We will be interested in the states satisfying the condition:

L−µ |O〉 = 0, (2.88)

then the state U |O〉 will correspond to the primary operator O(0), since

KµU |O〉 = 0. (2.89)

Translating the operators to a different space-time point can be done with the help of
the momentum operator,

O(x) = eiPxO(0)e−iPx , (2.90)

with corresponding Fock space representative

eiPxU |O〉 . (2.91)

This mapping was used by the authors of [91] to write the two point function in terms of
the Fock space representation

〈Ō2(y)O1(x)〉 = 〈O2|U †eiP (x−y)U |O1〉 = 〈O2|U2eiL
+(x−y)|O1〉 , (2.92)

where we used (2.82) and that U = U †. The authors of [91] also verified that if O is any
elementary field, for example Z, the tree-level representation of the operators in the Fock
space gives the desired result of the Wick contraction

〈Z̄(x)Z(y)〉 = 〈Z|U2eiL
+(y−x)|Z〉 =

〈Z|Z〉
(x− y)2

=
1

(x− y)2
. (2.93)

In order to get the second equality one has to use the following identity

Ut = exp t(a†b† + ba) = exp(a†b† tan t) exp(−(a†a+ bb†) ln cos t) exp(ab tan t) , (2.94)

which can be proved by taking derivative of both sides of the equation and taking into
account that U0 = 1. Then after substituting Ut instead of U2 one can get that

〈Z̄(x)Z(y)〉 = lim
t→−π/2

1

cos2 t

1

1− 2(x0 − y0) tan t+ (x− y)2 tan2 t
=

1

(x− y)2
. (2.95)

(See [91] for more details). A similar representation can be used for the special case of
the extremal three point function 5, when the length of the first chain is equal to the sum
of the lengths of the second and the third, L1 = L2 + L3,

〈Ō2(y)Ō3(z)O1(x)〉ext = 〈Ō2| ⊗ 〈Ō3|U2U3 e
iP1xe−iP3ze−iP2yU1|O1〉ext , (2.96)

where the index on the operators shows now the space on which they act. At tree level
for the extremal correlator U1 = U2U3 and P1 = P2 + P3.

5. This example is only illustrative since we are not computing an extremal correlation function even
at tree level, because of the mixing of single-trace and double-trace states [116].
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Here we would like to draw attention of the reader to the fact that the recipe for com-
puting the correlators presented above has some drawback. Namely, the recipe assumes
the following identification

Ō(x) ←→ 〈O|U †e−iPx . (2.97)

However, if we write the expression for Ō(x) explicitly in terms of the oscillators we
will see that this is not the case, since the conjugated elementary fields are described
with different sets of oscillators (the expressions of the elementary fields in terms of the
oscillators is presented in the App. B) and thus the scalar product (2.92) doesn’t really
correspond to Wick contraction. In order to avoid this problem, we would like to introduce
the object which would mimic the operation of Wick contraction. This object will be the
spin vertex. First we will introduce elementary two-vertex |V12〉 which we will define as
an object translating each elementary field |E〉 into its what we call ”flipped” version |Ē〉.
That is, it will translate scalars to its conjugated, like Z → Z̄, fermions to antifermions
ψiα → ψ̄iα, and Fαβ → F̄αβ. Thus the elementary two-vertex can be defined as a state
living in the product of two Fock spaces (1) and (2) and having the following form:

U2
F |V12〉 = |S̄(2)

n 〉|S(1)
n 〉+|S(2)

n 〉|S̄(1)
n 〉+|Ψ̄

(2)
ia 〉|Ψ

(1)
ia 〉+|Ψ

(2)
ia 〉|Ψ̄

(1)
ia 〉+|F̄

(2)
ij 〉|F

(1)
ij 〉+|F

(2)
ij 〉|F̄

(1)
ij 〉+...,
(2.98)

where |S〉 stands for the scalar and (1), (2) denotes the corresponding Fock space. So we
have

〈V12|E〉(2) = (1)〈Ē|. (2.99)

In case of the state |O〉 with the length L, we would like that the vertex also inverse the
order of the elementary fields:

〈V12|U−2
F ELEL−1...E1〉(2) = (1)〈ĒLĒL−1...Ē1|, (2.100)

or
(1)〈O| = 〈V12|σ(1) |Ō〉(2) , σ ≡ U−2

F . (2.101)

Now using vertex we can rewrite the expression (2.92) for the two-point function as the
following

〈Ō2(y)O1(x)〉 = 〈V12|U−2
F (1)|Ō2〉(2)|U2

(1) e
iL+

(1)
(x−y) |O1〉(1)

= 〈V12|U−2
F (1)U

2
(1) e

iL+
(1)

(x−y) |Ō2〉(2) ⊗ |O1〉(1)

= 〈V12|U†2(1) e
iL+

(1)
(x−y) |Ō2〉(2) ⊗ |O1〉(1)

= 〈V12| eiL
+
(1)

(x−y) |Ō2〉(2) ⊗ |O1〉(1)

= 〈V12| ei[L
+
(1)
x+L+

(2)
y] |Ō2〉(2) ⊗ |O1〉(1) ,

(2.102)

where in order to simplify the notations we introduced the operator U = UUF and another
vertex |V12〉 = U2

(1)|V12〉. In the following we will be using |V12〉 as well as |V12〉. In order

to get the last equality of (2.102) we used the property

〈V12|U†2(1) (L+
(1) + L+

(2)) ≡ 〈V12|(L+
(1) + L+

(2)) = 0 , (2.103)

which will be proved later in the section 2.3.3.
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In App. C we show that the two-vertex given by the expression (2.104) satisfies the
expansion (2.98) and gives right propagators for all the elementary fields.

|V12〉 ≡ U2
(1)|V12〉

= U2
(1) exp

( L∑
s=1

∑
i=1,2

(
b

(1)†
i,s a

(2)†
i,s − a

(1)†
i,s b

(2)†
i,s − d

(1)†
i,s c

(2)†
i,s − c

(1)†
i,s d

(2)†
i,s

))
|0〉(2) ⊗ |0〉(1)

= exp
(
−

L∑
s=1

∑
i=1,2

(
a

(1)
i,s a

(2)†
i,s − b

(1)
i,s b

(2)†
i,s + d

(1)
i,s d

(2)†
i,s − c

(1)
i,s c

(2)†
i,s

))
|0〉(2) ⊗ |0̄〉(1) ,

(2.104)

where the index s is related to the number of the corresponding Fock space (site number),
|0̄〉 = U2|0〉 and

|0〉(2) ⊗ |0〉(1) =
(
|0〉(2)

L ⊗ · · · ⊗ |0〉
(2)
1

)
⊗
(
|0〉(1)

1 ⊗ . . .⊗ |0〉
(1)
L

)
. (2.105)

Here the Fock vacua |0〉(2)
i are written in the reversed order intentionally in order to

show our convention of numbering the sites of the state (2), which is |O2〉 = |EL...E1〉.
This convention ensures that the property (2.100) holds. Finally, it is worth mentioning

Figure 2.3 – The two point correlation function and |V12〉

that the expansion of the vertex (2.104) apart from the ”right” terms, corresponding to
the expansion (2.98), gives rise to some other terms. But these terms do not satisfy the
condition of the zero central charge and as a consequence cancel when the vertex is applied
to the states.

2.3.3 The properties of the vertex

Here we will consider some properties of the vertex, which significantly simplify the
manipulations with it and which we use in the following. First we notice that the two-
vertex translates the oscillators from the one space to another in the following way:

(a
(1)†
i,s + b

(2)
i,s )|V12〉 = (b

(1)†
i,s − a

(2)
i,s )|V12〉 = (a

(1)
i,s + b

(2)†
i,s )|V12〉 = (b

(1)
i,s − a

(2)†
i,s )|V12〉 = 0 ,

(c
(1)
i,s + d

(2)†
i,s )|V12〉 = (d

(1)
i,s + c

(2)†
i,s )|V12〉 = (d

(1)†
i,s − c

(2)
i,s )|V12〉 = (c

(1)†
i,s − d

(2)
i,s )|V12〉 = 0 .

(2.106)

It is interesting that the operator U operator has the similar behavior (see the App. D).
Now let us look at the effect of the vertex on the generators of the psu(2, 2|4) algebra.
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In general, the vertex transforms generators acting in one of the Fock spaces, G(1), into

operators acting in the other space, G̃(2), by

G(1)|V12〉 ≡ −G̃(2)|V12〉 ,
G(1)H(1)|V12〉 = (−1)|G||H|H̃(2)G̃(2)|V12〉 , (2.107)

with |G| denoting the grading of the operator G, i.e. the number of fermions it contains
modulo 2. The transformation above is an anti-morphism, because it changes the order of
the operators. Let us consider the generators of the psu(2, 2|4) algebra (or rather u(2, 2|4),
since we prefer not to factor out the central element and the super identity) EAB

(1) which

obey the commutation relations (2.63). According to (2.107), they are transformed by
the vertex into another set of generators, ẼAB

(2) , also obeying the commutation relations 6

of psu(2, 2|4), and a priori different from EAB
(2) . We deduce that the vertex obeys the local

symmetry condition (
EAB
s,(1) + ẼAB

s,(2)

)
|V12〉 = 0 , s = 1, . . . L . (2.108)

The explicit form of ẼAB can be determined using (2.106) and (2.107). On the other
hand, by inspection one can show that

ẼAB = U2(EAB + (−1)|B|δAB)U−2 (2.109)

for all the generators, even and odd, with |B| = 0, 1 for bosonic and fermionic indices
respectively. We therefore conclude that the symmetry of the vertex |V12〉, at tree level,
can be expressed as(

EAB
s,(1) + EAB

s,(2) + (−1)|B|δAB
)
|V12〉 = 0 , s = 1, . . . L . (2.110)

The term (−1)|B|δAB is proportional to the identity in the oscillator space and it can be

incorporated into a shift of the Cartan generators, EAA → EAA + (−1)|A|

2
, which does not

affect the u(2, 2|4) commutation relations. We therefore conclude that the vertex possess
local u(2, 2|4) symmetry.

2.3.4 Three-point functions and the spin vertex

In this section we will generalize the notion of the vertex to the three-point functions.
The generalization to the case of extremal correlator straightforwardly follows from the
expression (2.96) in the same way as in the case with the two-point functions:

〈Ō2(y)Ō3(z)O1(x)〉ext = ext〈V123|U†2(1) e
i[L+

(1)
x+L+

(2)
y+L+

(3)
z]|Ō2〉 ⊗ |Ō3〉 ⊗ |O1〉 (2.111)

= ext〈V123| ei[L
+
(1)
x+L+

(2)
y+L+

(3)
z]|Ō2〉 ⊗ |Ō3〉 ⊗ |O1〉 ,

where the extremal vertex |V123〉ext is built from two pieces connecting each the operators
O2 and O3 with O1,

|V123〉ext = |V12〉 ⊗ |V13〉 . (2.112)

6. We have introduced the minus sign in the first line of (2.107) to get the right commutation relations
for ẼAB(2) .
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In this case, at tree level there are Wick contractions only between the operators 1 and 2
and 1 and 3 and there are no contractions between the operators 2 and 3. At this point
we are starting to see that in the vertex formulation the operators can be treated more
democratically,

〈O2(y)O3(z)O1(x)〉ext = ext〈V123| ei[L
+
(1)
x+L+

(2)
y+L+

(3)
z]|O2〉 ⊗ |O3〉 ⊗ |O1〉 . (2.113)

This helps to define the slightly more complicated case of a non-extremal three-point
function, where the operators O2 and O3 are also connected by Wick contractions. At
tree level, we can split any of the operators Oi into pieces Oij which are contracted to
pieces Oji of operator Oj. At the level of the states we have 7

|O1〉 = |O13〉 ⊗ |O12〉 , (2.114)

|O2〉 = |O21〉 ⊗ |O23〉 ,
|O3〉 = |O32〉 ⊗ |O31〉 .

The non-extremal three point function, at tree level, can be then written in the same way
as non-extremal

〈O2(y)O3(z)O1(x)〉 = 〈V123| ei[L
+
(1)
x+L+

(2)
y+L+

(3)
z]|O2〉 ⊗ |O3〉 ⊗ |O1〉 , (2.115)

but with the different vertex |V123〉 built out as

|V123〉 = |V12〉 ⊗ |V13〉 ⊗ |V32〉 = U2
(12)|V12〉 ⊗ U2

(13)|V13〉 ⊗ U2
(32)|V32〉 . (2.116)

Numbering of the sites for the states in (2.114) subjects to the same convention as for

Figure 2.4 – The three point correlation function and |V123〉

the case of the two-point correlators. Which means that if one uses the vertex |Vij〉, then
the state belonging to the i-th operator is numbered in the natural order while the state
belonging to the j-th state is numbered oppositely. Thus according to (2.116)

|O12〉 = |E1...EL12〉, |O13〉 = |E1...EL13〉,
|O21〉 = |EL12 ...E1〉, |O23〉 = |EL23 ...E1〉,
|O31〉 = |EL13 ...E1〉, |O32〉 = |E1...EL23〉.

(2.117)

7. The writing below does not imply that the state associated to the operator i is a product, just that
it belongs to the tensor product of the Fock spaces denoted by ij and ik.
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2.3.5 Tree level correlation function in the so(6) sector

In the scalar sector so(6) the operators are built only from the fermionic oscillators
and one can divide the vertex in bosonic and fermionic parts. The bosonic part would
give the right space-time dependence and the fermionic part, which we will denote by
〈v12| will play the role of the vertex reduced to the scalar sector:

〈O2(x)O1(y)〉 = 〈V12| ei[L
+
(1)
x+L+

(2)
y] |O2〉(2) ⊗ |O1〉(1) =

〈v12|O2〉(2) ⊗ |O1〉(1)

(x− y)2∆1
. (2.118)

The same is valid for the three point function at tree level,

〈O2(x2)O3(x3)O1(x1)〉 =

= 〈V123|U2
(13) U2

(12)U
2
(32) e

i[L+
(1)
x1+L+

(2)
x2+L+

(3)
x3]|O2〉 ⊗ |O3〉 ⊗ |O1〉

=
〈v123|O2〉 ⊗ |O3〉 ⊗ |O1〉
|x12|∆12|x13|∆13 |x23|∆23

, (2.119)

where ∆ij = ∆i + ∆j −∆k with {i, j, k} = {1, 2, 3}. So, the structure constant would be
given as

C123 = 〈v123|O2〉 ⊗ |O3〉 ⊗ |O1〉 , (2.120)

where we suppose that the states |Oi〉 are normalized, Ni = 〈Oi|Oi〉 = 1. If this is not
the case, one has to divide out

√
N1N2N3.

2.3.6 Tree level correlation function in the su(2) sector

In this section we will concentrate on the su(2) sector of N = 4 SYM. This sector
is investigated in the literature quite extensively and will show how to get the results
obtained previously in [67] using spin vertex approach and consider some other cases. For
this purpose we will have to translate the spin vertex formalism to the language of the
spin chains and algebraic Bethe-ansatz.

As it has been mentioned before, due to the large degeneracy of trace states at tree
level, one prefers to use a pre-diagonalization and use as basis of states the eigenstates of
the one-loop dilatation operator, which is conveniently given by (nested) algebraic Bethe
ansatz. Suppose that we have built the one-loop Lax matrix

Ls(u) = u− i/2− i(−1)|A|EAB
0 EBA

s . (2.121)

where the generators in the auxiliary space EAB
0,d belong to the defining (4|4 dimensional)

representation of psu(2, 2|4) and EAB
s are the generators in the actual physical represen-

tation, e.g. the oscillators representation. Using the property (2.110) of the vertex it is
straightforward to show that

L(1)(u)|V12〉 = −L(2)(−u)|V12〉 . (2.122)

The change of sign in the Lax matrix can be absorbed in the normalization, and we will
tacitly assume in the following that we have done so. Let us now consider the monodromy
matrices of the two chains

T (1)(u) = L
(1)
1 (u) . . . L

(1)
L (u) , T (2)(u) = L

(2)
L (u) . . . L

(2)
1 (u). (2.123)
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Now we act with T (1) on the spin vertex and then repeatedly apply the relation (2.122).
The result is

L
(1)
1 (u) . . . L

(1)
L (u)|V12〉 = L

(2)
1 (−u) . . . L

(2)
L (−u)|V12〉 . (2.124)

The right hand side is not exactly the monodromy matrix for the second chain T (2)(u),
because the Lax matrices are in reverse order. This mismatch can be cured by taking an
operation which reverses the order of the operators, like the (super) transposition t0 in
the auxiliary space. In so(4) ' su(2)L ⊗ su(2)R

8 sector one can correlate the change of
the signs of the supertraceless generators Eab with the transposition

Eab = −σEab,tσ−1 . (2.125)

where t denotes the (super) transposition in the quantum space and σ = σ−1 = −σ2,Lσ2,R =
U2
F . As one can check on (2.121), in any of the su(2) sectors we have

L(u) = Lt0,t(u) = −σLt0(−u)σ−1 = −σ0L
t0(−u)σ−1

0 , (2.126)

where σ0 = iσ2,0. The last equality sign comes from the invariance of the Lax matrix
[Ls(u), Eab

0 +Eab
s ] = 0. Substituting one of the last two equalities above into the r.h.s. of

in (2.124) we obtain 9

T (1)(u)|V12〉 = σ T (2),t0(u)σ−1|V12〉 = σ0T
(2),t0(u)σ−1

0 |V12〉 . (2.127)

or in matrix form(
A(u) B(u)
C(u) D(u)

)(1)

|V12〉 =

(
σA(u)σ−1 σC(u)σ−1

σB(u)σ−1 σD(u)σ−1

)(2)

|V12〉 =

(
D(u) −B(u)
−C(u) A(u)

)(2)

|V12〉 .

(2.128)

We will exemplify now the consequence of these relation in a given su(2) sub-sector. The
eigenvectors of the dilatation operator can be constructed by the action of the B operators
on the vacuum state |ZL〉 followed by an arbitrary so(6) rotation R in the quantum space,

|O〉 = R B(u1) . . . B(uM)|ZL〉 . (2.129)

Since we are working with operators which do not have components outside the so(6)
sector, we are going to use a version of the vertex 〈v12| truncated to so(6). By equation
(2.128) we obtain the rule which transfers the Bethe operators from one space to the other
through the vertex,

〈v12|[RB(u1) . . . B(uM)](1) = 〈v12|[B(uM) . . . B(u1)R−1](2)

= 〈v12|[σ C(uM) . . . C(u1)σR−1](2) . (2.130)

8. In conventional sense the so(4) sector doesn’t exist, because the action of the one-loop dilatation
operator is not closed on it. What we mean by so(4) sector is the case when any elementary fields of the
operators involved can be presented in the form a1Z + a2Z̄ + a3X + a4X̄, but at the same time each of
the operators corresponds to the su(2) spin chain, su(2)L or su(2)R. As an example one can consider
the configuration described in [67]

9. We neglect again an overall normalization.
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This relation is fundamental in exploiting the vertex, and it prescribes in particular how
to characterize the flipped states

(2)〈Ō| = 〈v12|O〉(1) = (2.131)

= 〈v12| [B(uM) . . . B(u1)R−1](2) |ZL〉(1) = (2)〈Z̄L| [B(uM) . . . B(u1)R−1](2)

= 〈v12| [σ C(uM) . . .C(u1)σR−1](2) |ZL〉(1) = (2)〈ZL| [C(uM) . . . C(u1)σR−1](2)

Using B(u)† = −C(u∗) and considering distributions of rapidities which are self-conjugate,
{u} = {u∗} we conclude that, up to an overall sign,

|Ō〉 = RC(u1) . . . C(uM) |Z̄L〉 = Rσ B(u1) . . . B(uM) |ZL〉 . (2.132)

Now we would like to consider some concrete configurations of the three-point correlators
from what we call so(4) sector with two su(2) orbits corresponding to (Z,X) (su(2)R)
and (Z, X̄) (su(2)L) rotations. As it has been mentioned above, although each of the
operators we are going to consider will belong to the su(2) sector (either right or left),
the spin vertex needed for the computation of the correlators should be composed of all
the elementary fields appearing in the operators. Thus from the spin vertex point of view
the sector of interest is the so(4) sector. According to our conventions

|Z〉 = |0〉 , |Z̄〉 = c†1d
†
1c
†
2d
†
2|0〉 , |X〉 = c†1d

†
1|0〉 , |X̄〉 = −c†2d

†
2|0〉 . (2.133)

Thus the L sector is generated by c1, d1 and the R sector by c2, d2. Obviously, the
generators in the two sectors commute, and the operators X, X̄, Z, Z̄ can be seen as basis
vectors in the bi-fundamental representation of su(2)R ⊗ su(2)L,

|Z〉 = |↑〉L ⊗ |↑〉R ≡ |↑↑〉 , |Z̄〉 = |↓〉L ⊗ |↓〉R ≡ |↓↓〉 , (2.134)

|X〉 = |↑〉L ⊗ |↓〉R ≡ |↑↓〉 , |X̄〉 = −|↓〉L ⊗ |↑〉R ≡ −|↓↑〉 .

Then the full vertex will take the form

|v12〉so(4) = |Z〉(2) ⊗ |Z̄〉(1) + |X〉(2) ⊗ |X̄〉(1) + |Z̄〉(2) ⊗ |Z〉(1) + |X̄〉(2) ⊗ |X〉(1)

= |v12〉su(2)L ⊗ |v12〉su(2)R ,
(2.135)

where

|v12〉su(2)L,R = |↑〉(2)
L,R ⊗ |↓〉

(1)
L,R − |↓〉

(2)
L,R ⊗ |↑〉

(1)
L,R . (2.136)

We can have two different cases (see [121] for more details):
i) The I − I − I case, when all the three operators are in the same sector, say R. In

this case, the three operators can be chosen as

|O1〉 = R1BR(u1) . . . BR(uM1) |ZL1〉 , (2.137)

|O2〉 = R2 σ BR(v1) . . . BR(vM2) |ZL2〉 ,
|O3〉 = R3 σ BR(w1) . . . BR(wM3) |ZL3〉 .

The convention is such that R1 = R2 = R3 = 1 reduces to the extremal case. Exploring
this case goes beyond the scope of this thesis. An interested reader is encouraged to look
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at [97], where the authors applied the separation of variables technique for computing the
I − I − I correlators.

ii) The I − I − II case, when two operators, say O1 and O2, are in the sector R(L)
and O3 is in another sector L(R). In this case we choose

|O1〉 = R1BR(u1) . . . BR(uM1) |ZL1〉 , (2.138)

|O2〉 = R2 σ BR(v1) . . . BR(vM2) |ZL2〉 ,
|O3〉 = R3BL(w1) . . . BL(wM3) |ZL3〉 .

Again, our choice is such that R1 = R2 = R3 = 1 is the case originally considered in [67].
In this case the left and right sector decouple

CEGSV
123 = so(4)〈v123| BL(w) |ZL3〉 ⊗ σ(2)BR(v) |ZL2〉 ⊗ BR(u) |ZL1〉 (2.139)

= so(4)〈v123| σ(32)BL(w) |ZL3〉 ⊗ σ(21)BR(v) |ZL2〉 ⊗ BR(u) |ZL1〉 .
= SIMPLE× INVOLVED (2.140)

The SIMPLE part is given by the contribution of the L sector (as before we don’t pay
attention to the signs):

SIMPLE = su(2)L〈v123| σ(32)LBL(w) | ↑L3〉⊗ σ(21)L | ↑L2〉 ⊗ | ↑L1〉
= 〈↓L3 |σ(32)LBL(w) | ↑L3〉 = 〈↓L31 |〈↑L32 |BL(w) | ↑L3〉, (2.141)

while INVOLVED is given by the contribution of the R sector

INVOLVED = su(2)R〈v123| σ(32)R | ↑L3〉 ⊗ σ(21)RBR(v) | ↑L2〉 ⊗BR(u) | ↑L1〉
= su(2)R〈v12| σ(21)R 〈 ↑L23 |BR(v) | ↑L2〉 ⊗ 〈 ↓L13 |BR(u) | ↑L1〉 =

= su(2)R〈ṽ12| 〈 ↑L23 |BR(v) | ↑L2〉 ⊗ 〈 ↓L13 |BR(u) | ↑L1〉, (2.142)

where 〈ṽ12| = (2)〈↑ | ⊗ (1)〈↑ | + (2)〈↓ | ⊗ (1)〈↓ |. This gives the known result of [67]
combined with the freezing trick from [68] (see [69] for comparison). The case when the
global rotations R1, R2, R3 are arbitrary is considered in [121].

2.3.7 Monodromy condition on the spin vertex

In this section we are going to show that the local symmetry condition (2.110) of the
spin vertex can be reformulated as an extended symmetry. This is the same Yangian
symmetry, satisfied by the tree-level amplitudes in N = 4 SYM [122].

The spin vertex is an invariant of the Yangian. We are going first to show this on the
two-vertex, and then extend it to the three-vertex which is needed for the computation of
the three point function. There are two types of monodromy matrices which are interest-
ing for us. The first is the monodromy matrix where the auxiliary space is in the defining,
4|4 dimensional, representation. This monodromy matrix is useful to build the Yangian
generators and the for the nested Bethe ansatz procedure. The second type of monodromy
matrix, useful for getting the local conserved quantities, contains the same physical repre-
sentation in the auxiliary and quantum spaces. Here we construct the monodromy matrix
with the auxiliary space in the defining representation. For the monodromy matrix with
the auxiliary space in the physical representation, the construction of the so(6) sector is
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Figure 2.5 – The basic monodromy relation
of the spin vertex.

relatively straightforward, however the construction in the sl(2) sector is more subtle and
we are not doing it here.

Let us take the psu(2, 2|4) R-matrix living in the tensor product of the defining and
the physical representations

R01(u) = u− iΠ01 , Π01 = (−1)|A|EAB
0 EBA

1 , (2.143)

where EAB
0 are 4|4× 4|4 super matrices, the generators in the quantum space are in the

oscillator representation EBA
1 = ψ̄AψB and the summation over the repeated indexes is

implied. When EBA
1 are also in the defining representation, Π01 is a super-permutation.

In the representation we are considering

Π2
01 = (−1)|A|+|C|EAB

0 EBA
1 ECD

0 EDC
1 = (−1)|A|+|B|+(|A|+|B|)(|B|+|D|)EAD

0 EBA
1 EDB

1 (2.144)

= (−1)|A|EAD
0 EDA

1 (EBB
1 − 1) + EBB

1 = Π01(EBB
1 − 1) + EBB

1 = −Π01 .

Here we have used the (anti)commutation relations [ψA, ψ̄B]± = δAB and that in the
physical representation the central charge should be zero (c = EBB

1 = ψ̄BψB = 0) 10

and in the auxiliary representation EBB
0 = 1. The R-matrix above satisfies the unitarity

condition

R01(u)R01(−i− u) = −u(i+ u) . (2.145)

For a representation with arbitrary central charge c, the unitarity condition would be

R01(u)R01(i(c− 1)− u) = −u(i(1− c) + u)− c . (2.146)

We are now going to build the monodromy condition for the two-site vertex |V12〉,

R01(u)R02(u)|V12〉 = −R01(u)R01(−i− u)|V12〉 = u(u+ i)|V12〉 . (2.147)

Here we have used that the R matrix is related to the Lax matrix defined in (2.121) by

R
(2)
01 (u) = L(2)(u+ i/2), and then used the property (2.122) of the vertex

R02(u)|V12〉 = −R01(−i− u)|V12〉. (2.148)

The property (2.147) can be nicely presented by drawing some kind of diagrams with the
R-matrix corresponding to the crossing of the solid lines, and the vertex presented by the
dashed line (see Fig. 2.5). By means of this diagrams it is easy to realize that (2.147) can
be lifted to the two-vertex with an arbitrary number of sites:

t(12)(u)|V12〉 = R
(1)
01 (u) . . . R

(1)
0L (u) R

(2)
0L (u) . . . R

(2)
01 (u) |V12〉 = (u(u+ i))L|V12〉 , (2.149)
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t(12)ab

Figure 2.6 – The two chain monodromy matrix
t(12)(u) and its action on the vertex |V12〉

Figure 2.7 – The three-point spin vertex and monodromy condition.

as depicted in Fig. 2.6. Finally the relation (2.147) can be generalized for the three-vertex
(Fig. 2.7) with the monodromy matrix T123.

T123(u) = t(12)(u)t(13)(u)t(31)(u)t(32)(u)t(23)(u)t(21)(u) , (2.150)

T123(u)|V123〉 = (u(u+ i))
L1+L2+L3

2 |V123〉. (2.151)

The subsectors:

The psu(2, 2|4) R matrix can be readily reduced to different subsectors, just by restricting
the sum in the definition of the central charge (2.69) to the corresponding subsector. As
a result, the central charge can take non-zero value c = EBB

1 .
– In the su(1|1), su(2|3) and su(2) sector, where the fields belong to the fundamental

representation, c = 1, so that the unitarity condition is slightly modified,

Π2
01 = 1 , R01(u)R01(−u) = −(u2 + 1) . (2.152)

The monodromy condition will be

R01(u)R02(u− i)|V12〉 = −R01(u)R01(−u)|V12〉 = (u2 + 1)|V12〉 . (2.153)

– In the sl(2) sector, c = 0, so the unitarity and monodromy conditions are the same
as for psu(2, 2|4).

10. The condition c = 0 should be understood as a constraint imposed on the states, which projects on
the irreducible representation we are interested in. This constraint can be implemented in the definition
of the spin vertex, but then the vertex will lose its nice exponential form.
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– In the so(6) sector we have c = 2, so that

Π2
01 = Π01 + 2 , R01(u)R01(i− u) = u(i− u)− 2 . (2.154)

The monodromy condition is then

R01(u)R02(u− 2i)|V12〉 = −R01(u)R01(i− u)|V12〉 = (u(u− i) + 2)|V12〉 . (2.155)

2.3.8 The relation between the full vertex |V123〉 and the poly-
nomial vertex (2.25)

In this section we will relate the full vertex |V123〉 with the polynomial vertex (2.25).
First of all we have to reduce the full vertex |V123〉 to the scalar sector, which means that
we will consider its shorter form |v123〉 with elementary one-site two-vertex given by 11

|vij〉 = |X〉(i) ⊗ |X̄〉(j) + |X̄〉(i) ⊗ |X〉(j) + |Y 〉(i) ⊗ |Ȳ 〉(j) + |Ȳ 〉(i) ⊗ |Y 〉(j)+
+ |Z〉(i) ⊗ |Z̄〉(j) + |Z̄〉(i) ⊗ |Z〉(j) + ...,

(2.156)

where the three dots as usual stand for the terms which don’t satisfy the condition that
the central charge should be zero. These terms cancel when computing the correlators
and we drop it in the following. Recalling that X = 1√

2
(φ1 + iφ2), Y = 1√

2
(φ3 + iφ4),

Z = 1√
2
(φ5 + iφ5), we rewrite the vertex as follows

|vij〉 = |Z〉(i) ⊗ |Z̄〉(j) + |Z̄〉(i) ⊗ |Z〉(j) +
4∑
i=1

|φi〉(i) ⊗ |φi〉(j). (2.157)

Then we the full three-vertex will take the form

|ṽ123〉 =

L12∏
k=1

(
|Z〉(1)

L1−k+1 ⊗ |Z̄〉
(2)
k + |Z̄〉(1)

L1−k+1 ⊗ |Z〉
(2)
k +

4∑
i=1

|φi〉(1)
L1−k+1 ⊗ |φi〉

(2)
k

)
⊗

(2.158)

L13∏
k=1

(
|Z〉(1)

k ⊗ |Z̄〉
(3)
L3−k+1 + |Z̄〉(1)

k ⊗ |Z〉
(3)
L3−k+1 +

4∑
i=1

|φi〉(1)
k ⊗ |φi〉

(3)
L3−k+1

)
⊗

L23∏
k=1

(
|Z〉(2)

L2−k+1 ⊗ |Z̄〉
(3)
k + |Z̄〉(2)

L2−k+1 ⊗ |Z〉
(3)
k +

4∑
i=1

|φi〉(2)
L2−k+1 ⊗ |φi〉

(3)
k

)
,

where we changed a bit the convention of numbering the sites in the vertex (that’s why
the vertex is marked with tilde) in order to adjust the convention of the section 2.2.1. 12

11. According to our convention the indexes (i, j), related to the states connected by the vertex, should
be ordered oppositely, e.g. |Z〉(j) ⊗ |Z̄〉(i), however in this case we deal just with the scalar fields, which
can be permuted without picking any additional signs, which we cared about when described the most
general case.

12. Here the vertex contracts for example the site number i of one operator with the site number
L− i+ 1 of another unlike the original formulation (2.104), where the vertex contracts those sites of the
operators which has the same numbers. This convention has been used in the previous sections in order
to ensure the writing of some of the vertex properties in the nice way. The price which we paid is the
weird way of numbering the sites in the operators like in (2.117).
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Further we will rewrite the generating fields (2.22) in the oscillator representation, we will
get

|F1〉 =

(
|Z1〉+

4∑
i=1

xi1|φi1〉

)
⊗ ...⊗

(
|ZL1〉+

4∑
i=1

xiL1
|φiL1
〉

)
, (2.159)

|F2〉 =

(
|Z̄1〉+

4∑
i=1

yi1|φi1〉

)
⊗ ...⊗

(
|Z̄L2〉+

4∑
i=1

yiL2
|φiL2
〉

)
,

|F3〉 =

(
|Z̄1〉+

4∑
i=1

zi1|φi1〉

)
⊗ ...⊗

(
|Z̄L3〉+

4∑
i=1

ziL3
|φiL3
〉

)
.

Then the polynomial vertex V123(x,y, z) can be obtained by the following expression

V123(x,y, z) = 〈ṽ123|F1〉|F2〉|F3〉. (2.160)
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Chapter 3

HHL correlators and diagonal form
factors

This section is devoted to considering some specific types of the three-point functions
in N = 4 SYM, namely, heavy-heavy-light (HHL) correlators (the case when the length
of one of the operators is significantly smaller then the length of the two others). It turns
out that the computation of such correlators can be related to the computation of the
form factors in the 2D quantum integrable field theory in the finite volume. At strong
coupling this idea gets the confirmation from the observation that the corresponding HHL
correlator at semi-classical approximation can be computed as an integral of the vertex
operator (defined by the light operator) over the classical states corresponding to the
heavy operators. From the weak coupling point of view this relation originates from the
connection between the gauge invariant operators and the integrable spin chains. Due to
this relation it appears that the computation of the correlator can be formulated as the
computation of the spin chain form factor between the two spin chain states corresponding
to the two of the operators with the spin chain operator defined by the third operator [123].
The most convenient probably is the case when the two operators are conjugated to each
other. In [124] the authors considered such a correlator at strong coupling and noticed on
the example of some concrete computations that the dependence of the correlator on the
length of the heavy operator L is defined by the volume dependence of the diagonal form
factor in 2D integrable models formulated in [125] at any coupling. From this observation
the authors conjectured that the L-dependence of the HHL correlator should be defined
by the volume dependence of the diagonal form factor established in [125] at any coupling.
In the first part of this chapter we will prove the conjecture of [124] at weak coupling on
the example of the HHL correlators with heavy states being from the su(2) sector. In
the second part by exploiting the recently proposed hexagon approach we will extend our
prove to finite coupling in the asymptotic regime. The material is based on the results of
the papers [126, 127]
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3.1 HHL correlator at weak coupling

3.1.1 Form factors in integrable models

Form factors in infinite volume

Here we will review some background related to the form factors in integrable models
necessary for the following. We consider a 1 + 1 dimensional integrable quantum field
theory defined by its S-matrix. For simplicity we restrict ourselves to diagonally scattering
theories with a self-conjugated particle, the generalization to any diagonally scattering
theory is straightforward.

The infinite volume states can be characterized by the set of particles momenta. The
particles are labeled by their rapidities u with the corresponding values of the momenta
p(u) and the energy ε(u).

In the remote past we have an in state which is defined by the corresponding order
of the rapidities: the fastest one is the leftmost while the slowest is the rightmost. The
particles in an out state are ordered oppositely:

|u1, ..., uN〉 =

{
|u1, ..., uN〉in u1 > · · · > uN

|u1, ..., uN〉out u1 < · · · < uN
(3.1)

The infinite volume states that differ only in the order of rapidities are related by the two
particle S-matrix:

|u1, · · · , ui, ui+1, ..., uN〉 = S(ui, ui+1) |u1, ..., ui+1, ui, ..., uN〉 (3.2)

The energy of a multiparticle state is the sum of the one particle energies

E(u1, ..., uN) =
N∑
i=1

ε(ui). (3.3)

In infinite volume we normalize the in states as

in〈u′1, ..., u′M |u1, ..., uN〉in = (2π)NδNM δ(u1 − u′1)...δ(uN − u′N), (3.4)

and the norm of a general state can be determined from (3.4) by (3.2).
Let us consider the matrix elements of a local operator O(t, x) between asymptotic

states. The space-time dependence can be factored out

out 〈u′1, ..., u′M | O(x, t) |u1, ..., uN〉in = eit∆E−ix∆P out 〈u′1, ..., u′M | O(0, 0) |u1, ..., uN〉in ,

where

∆E =
M∑
j=1

ε(u′j)−
N∑
k=1

ε(uk), (3.5)

∆P =
M∑
j=1

p(u′j)−
N∑
k=1

p(uk),
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and we define the form factor of operator O as

FOM,N (u′1, ..., u
′
M |u1, ..., uN) = out 〈u′1, ..., u′M | O(0, 0) |u1, ..., uN〉in (3.6)

The form factors are a priori defined for ordered set of incoming and outgoing rapidities
but can be analytically continued by (3.2). A form factor is a meromorphic function in
all variables and each pole has a physical origin [128].

Suppose that the theory possesses crossing symmetry, i.e. a transformation which
maps an outgoing particle with rapidity u to an incoming anti-particle with rapidity ū.
The crossing symmetry implies the crossing equation for the form factors which, in case
of a single self-conjugated particle, reads

FOM,N (u′1, ..., u
′
M |u1, ..., uN) = FOM−1,N+1

(
u′1, ..., u

′
M−1|ūM , u1, ..., uN

)
(3.7)

+
N∑
k=1

〈u′M |uk〉
k−1∏
l=1

S (ul, uk)F
O
M−1,N−1

(
u′1, ..., u

′
M−1|u1, ..., ûk, ..., uN

)
where the terms on the second line of (3.7) describe disconnected processes that occur if
one of the incoming and one of the outgoing particles have the same rapidity. The hat
ûk denotes that uk is missing from the list of rapidities. By using the crossing relation all
form factors can be expressed in terms of elementary form factors

FON (u1, ..., uN) = 〈0|O(0, 0)|u1, ..., uN〉. (3.8)

These elementary form factors satisfy several functional relations, called the form factor
axioms, which form the basis of the form factor bootstrap program [128]. Here they are.

1. Permutation

FON (u1, ..., ui, ui+1, ..., uN) = S(ui, ui+1)FON (u1, ..., ui, ui+1, ..., uN) (3.9)

2. Periodicity

FON (u1, ..., ui, ui+1, ..., uN + 2πi) = FON (uN , u1, ..., ui, ui+1, ..., uN−1) (3.10)

3. Kinematical singularities

− iResu=u′F
O
N+2 (u+ iπ, u′, u1, ..., uN) =

(
1−

N∏
i=1

S(u, ui)
)
FON (u1, ..., uN) (3.11)

3. Dynamical singularities

− iResu=u′F
O
N+2

(
u+ iθ̄/2, u′ − iθ̄/2, u1, ..., uN

)
= ΓFON+1 (u, u1, ..., uN) , (3.12)

where u is so-called fusion angle, θ̄ = π − θ and Γ defined from

S(u ∼ iθ) ∼ iΓ2

u− iθ
. (3.13)
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Diagonal form factors

The diagonal form factor of the local operator O, defined as

in〈u1, · · · , uN |O(0, 0)|u1, · · · , uN〉in, (3.14)

is singular due to the disconnected terms in the crossing relation (3.7). To avoid the
singularities we regularize it by slightly shifting the outgoing rapidities. After crossing we
get

FO2N (ū1 + ε1, · · · , ūN + εN , uN , · · · , u1) = 〈0|O|ū1 + ε1, · · · , ūN + ε1, u1, · · · , uN〉in
(3.15)

The diagonal limit, εi → 0, of (3.15) is not well-defined. It was first noticed in [129] that
the singular parts vanish in the limit when all εi → 0, but the result depends on the
direction of the limit. Its general structure can be written as

FO2N (ū1 + ε1, · · · , ūN + εN , uN , · · · , u1) (3.16)

=
N∏
i=1

1

εi
·

N∑
i1=1

N∑
i2=1

· · ·
N∑

iN=1

ai1i2···iN (u1, · · · , uN) εi1εi2 · · · εiN + · · ·

where ai1i2...iN is a completely symmetric tensor of rank N . The three dots denote the
terms which vanish in the εi → 0 limit.

There are two generally used regularization scheme in the literature. The first is the
so-called symmetric evaluation when we set all εi to be the same

FO,sN (u1, · · · , uN) = lim
ε→0

FO2N (ū1 + ε, · · · , ūN + ε, uN , · · · , u1) . (3.17)

The second scheme is called connected, in which the diagonal form factors are defined as
the ε-independent term of (3.16):

FO,cN (u1, · · · , uN) = N ! a12···N . (3.18)

Both the symmetric and the connected diagonal form factors are symmetric in the rapidity
variables u1, · · · , uN and not independent: each can be expressed with use of the other
[125].

Diagonal form factors in finite volume

Here we will summarize the results about the volume dependence of the diagonal form
factors following [125, 130].

In finite volume L, the rapidities are quantized and a generic multiparticle state can be
labeled by the Bethe quantum numbers |{I1, · · · , IN}〉L. Apart form the infinite volume
case the states in finite volume should be symmetric in all the particles. We adapt
our notation to the conventions used in [125, 130] and order the quantum numbers in
a monotonly decreasing sequence, I1 ≥ · · · ≥ IN

1. The quantized rapidities with the
quantum numbers {I1, · · · , IN} are solutions of the corresponding Bethe Ansatz equations:

Φj({u1, · · · , uN}) = 2πIj, j = 1, · · · , N, (3.19)

1. Apart from the free boson case all known S-matrix obey the property S(u, u) = −1 which is an
effective Pauli exclusion. In this cases we have I1 > · · · > IN .
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where we defined

Φj({u1, · · · , uN}) = p(uj)L− i
∑
k=1
k 6=j

logS(uk, uj). (3.20)

The finite volume states are orthogonal to each other

L〈{J1, · · · , JM}|{I1, · · · , IN}〉L ∝ δNM δI1,J1 · · · δIN ,JN (3.21)

and their normalization is a question of the convention.
One can change from the quantum number representation of states to the rapidity

representation. This change of variables involves the Jacobian, which is the density of
N -particle states, defined as

%N(u1, · · · , uN)L = detJ (N)(u1, · · · , uN)L (3.22)

J (N)
k,l (u1, · · · , uN)L =

∂Φk(u1, · · · , uN)

∂ul
, k, l = 1, · · · , N .

where we explicitly indicated the volume dependence of these quantities. Then the relation
between the states in quantum number and rapidity representation reads as

|{I1, · · · , IN}〉L =
1√

%N(u1, · · · , uN)L
∏

i<j S(ui, uj)
|u1, · · · , uN〉 (3.23)

where the rapidities {ui} are the solutions of the Bethe Ansatz equations (3.20) corre-
sponding to the quantum numbers {I1, · · · , IN}. This identification holds up to expo-
nential corrections. The product of S-matrices in the denominator ensures that the finite
volume state is indeed symmetric under the exchange of particles.

Defining the system in finite volume regularizes all the divergences appearing in the
diagonal limit of form factors (3.16), thus the normalized finite volume diagonal matrix
element

L〈{I1, · · · , IN}|O(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

(3.24)

is finite, well defined and does not depend on the normalization of the states. Further we
represent the connection between finite and infinite volume form factors. This problem,
challenging in the general case [131, 132], becomes considerably simpler if we neglect the
exponentially small wrapping corrections.

Up to wrapping, the finite volume N -particle diagonal form factor (3.24) can be ex-
pressed as a sum over the bipartite partitions of the full set {1, 2, · · · , N}, involving the
infinite volume form factors and some kind of densities of states. As the diagonal form
factors in infinite volume depend on the regularization scheme, this series is also scheme
dependent. In case of the connected evaluation the relation reads [133, 125]

L〈{I1, · · · , IN}|O(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

=
1

ρN({1, · · · , N})
∑

α⊆{1,...,N}

fO ({uk}k∈ᾱ) ρN (α)

(3.25)
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where ᾱ denotes the complement of α in the full set. The functions appearing on the
right hand side are the connected diagonal form factors

fO(u1, · · · , ul) = FO,cl (u1, · · · , ul) (3.26)

The functions ρN are defined as the diagonal minor determinants of the N -particle Jaco-
bian (3.22),

ρN(α) = det
k,l∈α
J (N)
k,l (u1, · · · , uN)L , α ⊆ {1, · · · , N}. (3.27)

They can also be referred to as partial Gaudin norms. As special cases we have

ρN({1, · · · , N}) = %N(u1, · · · , uN)L ; ρN(∅) = 1. (3.28)

We want to emphasize that the function ρN(α) depend on all the N rapidities. The set
of rapidities {ui} in the right hand side of (3.25) is the solution of the Bethe Ansatz
equations (3.20) corresponding to the quantum numbers {I1, · · · , IN}. Thus, the explicit
volume dependence is encoded only into the factors ρN , the connected form factors fO

depend on the volume only implicitly via the Bethe Ansatz equations.
As the connected and symmetric diagonal form factors are not independent, we can

express the finite volume matrix element in the symmetric regularization scheme. In this
case the series take the form [130]

L〈{I1, · · · , IN}|O(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

=
1

ρN({1, · · · , N})
∑

α⊆{1,...,n}

F s
|ᾱ| ({uk}k∈ᾱ) ρ|α| (α) .

(3.29)
Here again, the rapidities {ui} are the solutions of the Bethe Ansatz equations (3.20)
with the quantum numbers {I1, · · · , IN}. The ρ|α| functions appearing in the sum are the
|α|-particle densities of state (3.28,3.22) evaluated at the rapidities {ui}i∈α. Note that,
contrary to the connected expansion, they depend only on the rapidities labeled by the
set α. The explicit volume dependence is still carried only by the ρ functions.

Form factor of densities of conserved charges

An important special case of local operators is the density of a conserved quantity,

Q =

∫ L

0

J(x, t)dx (3.30)

where Q acts diagonally and additively on the multiparticle states. Its density therefore
satisfies

L〈{I1, · · · , IN}|J(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

=
1

L

N∑
j=1

q(uj), (3.31)

where {ui} are the solutions of the Bethe Ansatz equations (3.20) corresponding to the
quantum numbers {I1, · · · , IN}, and q(u) is the one-particle eigenvalue of the operator Q.

A compact expression (presented in [131, 133]) for the connected diagonal form factors
of these densities can be cast into the form

F J,c
2N (u1 · · · , uN) =

∑
σ∈SN

p′(uσ(1))ϕ(uσ(1), uσ(2))ϕ(uσ(2), uσ(3)) · · ·ϕ(uσ(N−1), uσ(N))q(uσ(N))

(3.32)
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Figure 3.1 – HHL correlator at gauge theory side

where the summation runs over all the permutation of the set {1, · · · , N}. Here, p′ denotes
the derivative of the momentum w.r.t the rapidity,

p′(u) =
∂

∂u
p(u). (3.33)

For massive relativistic models we have p(u) = m sinhu and ε(u) = m coshu, so that
p′(u) = ε(u) and (3.32) reduces to the expression presented in [131, 133]. However, in the
case of the Heisenberg XXX1/2 spin chain an extra sign appears: p′(u) = −ε(u).

3.1.2 Heavy-Heavy-Light correlator at weak and strong cou-
pling

In this section we will introduce the notion of the heavy-heavy-light operator (HHL)
and review the main results relevant to the subject. As it has been mentioned above
the HHL correlator is the correlator which has the length of one of the operators (light)
significantly smaller then the other two. Let’s consider the correlator 〈O1(x)O2(y)Oα(z)〉
with the lengthes Lα, L1, L2 such that Lα � L1, L2. From the Fig. 3.1 it is clear that the
heavy operators (O1, O2) in this case should be approximately the same. Further we will
take O1 = Ō2 = O (symmetric case), where by bar we denoted complex conjugation.

The attention to the HHL correlators was drawn by the papers [76, 77], where the
author considered it at the strong coupling limit. From string theory side the heavy
operators correspond to the same propagating string, whereas the third operator can be
presented as a particle-like disturbance of this string corresponding to some supergravity
mode (Fig. 3.2). In this case the HHL correlator in semi-classical approximation can be
presented as the integral of the vertex operator corresponding to the light operator over
the classical string solution corresponding to the heavy operator:

CHHL =

∫
d2σVOα(XH(σ, τ)), (3.34)

where by XH we denoted the sets of the target space coordinates corresponding to the
classical string solution.

After this prescription was proposed the computation of the HHL correlators at weak
coupling appeared [78], where the exact match with the strong coupling computation was
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Figure 3.2 – HHL correlator at string theory side

established. However several years later some new insights related to HHL correlators
were published. In [124] the authors showed that when considering more involved cases
of the correlators the prescription given in [76] is not exact. The source of the problem is
that the prescription assumes that the string solution over which one has to perform the
integration should correspond to the two-point correlator of the heavy operators 〈OŌ〉,
but there is always at least one-parameter family of solutions for the given two-point
functions. The authors of [124] claimed that the right prescription implies the integration
over the whole family of solutions corresponding to the two-point function:

CHHL =
1

Vmod

∫
dp1...dpNp

∫
d2σVOα(XH(σ, τ, p1, ...pNp)), (3.35)

where Np stands for the number of parameters and Vmod for the volume of the moduli
space. They considered several examples and showed that, although for some cases the
integration over the whole family of solutions is trivial, in general case it changes the
result and should be taken into account. On the other hand, the results obtained on the
basis of the new prescription allowed the authors to conjecture that the L-dependence
(dependence on the length of the heavy operator) of the HHL correlator coincides with
the volume dependence of the diagonal form factor and as a consequence is given by the
expression (3.25), that is:

CHHL =
1

ρN(u)

∑
α∪ᾱ=u

fO (ᾱ) ρN (α) (3.36)

This conjecture was claimed to be valid at any order in the coupling constant and the
first goal of this chapter is to show that it works at weak coupling.

Apart from the two-dimensional integrable field theories in N = 4 SYM it is not very
clear what physical meaning we can give to the coefficients f . Therefore what we are
going to prove is that the expression of the HHL correlator is given by (3.36) with some
coefficients F , which don’t depend on the length of the heavy operator L.
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As a set up we consider the scalar sector of N = 4 SYM with the heavy operators
belonging to the su(2) sector. Thus we have

O1 = O = Tr{Z,X}, O2 = Ō = Tr{Z̄, X̄}, (3.37)

where by {...} we mean the set of the elementary fields an operator is made of. Since
we concentrate on the tree level approximation the light operator should be compose as
follows:

Oα = Tr{Z,X, Z̄, X̄}. (3.38)

As it has been already mentioned in the introduction, when computing the three-point
correlator at tree level one takes the operators being the eigenstates of one-loop dilatation
operator. Thus the heavy operators will be taken as eigenstates of the XXX1/2 spin chain
and will be constructed by the algebraic Bethe anstaz technique. On the other hand we
will avoid taking the light operator to be an eigenstate, since in this case we will need
more involved technique of the nested algebraic Bethe ansatz. Instead of this we will prove
the statement (3.36) for any operator of the form Tr{Z,X, Z̄, X̄}. Since any eigenstate
is given by a linear combination of these operators 2, the statement will obviously hold
for the eigenstates as well, but just with accordingly changed coefficients f given by the
appropriate linear combinations.

We will imply the following normalization convention:

〈O1(x)O2(y)Oα(z)〉 =
NHCHHL

|x− y|2∆12|y − z|2∆23|x− z|2∆13
, (3.39)

where NH is the norm of the heavy operator squared.

3.1.3 From field theory correlation functions to spin chain form
factors

In order to efficiently use the technique of the algebraic Bethe-ansatz, we will translate
the computation of the correlation function 〈O1(x)O2(y)Oα(z)〉 to the computation of the
spin chain form factors.

Let’s imagine that we have the Bethe-state of the XXX spin chain and defined by the
set of the rapidities u = u1, ..., uN :

|u1, ..., uN〉. (3.40)

Then the diagonal spin chain form factor of some local spin operator ol is given by the
expression

〈u1, ..., uN |ols|u1, ..., uN〉, (3.41)

where the local spin chain operator is given by the tensor product of the algebra generators:

ols = Ea1b1
1 ...E

alsbls
l , (3.42)

2. Generally speaking, since the sector composed of the fields Z, Z̄,X, X̄ is not closed even at one
loop, we need to consider the whole scalar sector so(6). This means that the fields Y, Ȳ will also appear
in the eigenstates. However the heavy states belong to the su(2) sectors Z,X and Z̄, X̄. It means that
at tree level the terms comprising the fields Y, Ȳ will not contribute in the structure constant and can be
neglected
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(Eab
n )ij = δai δ

b
j , (3.43)

and the lower indexes n stand for the site number on which the local operator acts. 3

Now we consider the HHL correlator 〈O1(x)O2(y)Oα(z)〉 described above. According
to the usual prescription we have the following identification:

Z, Z̄ → ↑, X, X̄ → ↓ . (3.44)

Let’s look at the diagram 3.3, corresponding to an example of such a correlator. One can

Figure 3.3

see that the light gauge operator can be considered here as an operator which acts on
the two last sites of the lower heavy operator and turns them into the two last sites of
the higher operator. Indeed, the second and the third sites of the light operator can be
considered as an operator acting on the L−1’th site of the heavy operator and translating
Z into X̄, that is spin ↑ into spin ↓. In its turn the first and the forth operators can be
considered as an operator acting on the L site and translating X into Z̄, or in other words
spin ↓ into spin ↑. It means that from the point of view of the spin chains the correlator
presented on the Fig. 3.3 can be written as

〈↑1↑2 ... ↓L−1↑L |E21
L−1E12

L | ↑1↑2 ... ↑L−1↓L〉, (3.45)

where the spin operator E21
L−1E12

L plays the role of the light operator (see the Fig. 3.4).
From the discussion above it is clear that any correlator we are considering can be pre-
sented in the form (3.41), and the corresponding spin operator can be established straight-
forwardly.

Let’s consider some examples. The simplest one corresponds to the case when the
length of the light operator Lα is equal to 2. Then the length of the spin chain operator
ls is equal to 1 (we will refer to such operators as to length-1 operators). Since the heavy
operators are conjugated to each other, we should consider just the the light operator
with zero R charge. It means that for the case with Lα = 2 we have just two operators
to consider: TrZZ̄, TrXX̄. They translate to the spin chain operators E11

n and E22
n . In

addition due to relation E22
n = In − E11

n the spin chain correlators of these operators are
related to each other as follows

〈u|E22
n |u〉 = 〈u|u〉 − 〈u|E11

n |u〉 (3.46)

3. It should be understood that due to the periodicity of the XXX1/2 spin chain the translation of
the local operators on any number of the sites doesn’t change the result.
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Figure 3.4 – An example of the mapping between field operators to spin chain
operators. The operator in the field theory O = trZXZ̄X̄ is mapped to the spin
chain operator Ô = E21

L−1E12
L .

In the case of Lα = 2ls = 4 we have more possibilities (length-2 operators). In general
we have sixteen operator Eij

n ⊗ Ekl
n+1, however just six correspond to the operators with

zero R charge:

E11
n ⊗E11

n+1, E11
n ⊗E22

n+1, E22
n ⊗E11

n+1, E22
n ⊗E22

n+1, E12
n ⊗E21

n+1, E21
n ⊗E12

n+1. (3.47)

Due to the same relation E22
n = In − E11

n the correlators corresponding to the second,
third and fourth operators can be expressed through the matrix elements 〈u|E11

n |u〉 and
〈u|E11

n ⊗ E11
n+1|u〉. Finally the fifth and sixth operators are related to each other by

transposition, which means that their correlators are related by complex conjugation.
Thus there are just three independent quantities among the diagonal form factors of
length-1 and length-2 operators:

Fo1 = 〈u|o1(n)|u〉, Fo1
2 = 〈u|o1

2(n)|u〉, Fo2
2 = 〈u|o2

2(n)|u〉, (3.48)

where o1(n) = E11
n , o1

2(n) = E11
n ⊗ E11

n+1, o2
2(n) = E12

n ⊗ E21
n+1.

The computation of the quantity (3.41) can be performed by means of the solution to
QISP reviewed in the section 1.3.5. From (1.55) we get for length-1 operator 4

〈u|Eab
n |u〉 =

〈u|T ab(θn + i/2)|u〉
tu(θn + i/2)

(3.49)

where tu(u) is given by (1.38). At u = θn + i/2, we have

tu(θn + i/2) = Qθ(θn + i)
Q−u (θn)

Q+
u (θn)

, (3.50)

4. We will keep the inhomogeneities θ being arbitrary values through the whole derivation, and put
them to zero only when computing concrete examples. The reason is that we will need them to have
non-zero values when considering HHL correlator at one loop in the section 3.1.7

59



where we used the generally accepted convention

Q+
u (θ) = Qu(θ + i/2), Q−u (θ) = Qu(θ − i/2). (3.51)

The generalization of (3.49) to a string of ls + 1 operators is straightforward

〈u|Ea0b0
n · · ·Ealsbls

n+l |u〉 =

(
ls∏
k=0

Q+
u (θn+k)

Qθ(θn+k + i)Q−u (θn+k)

)
〈u|

ls∏
k=0

T akbkn+k (θn+k + i/2)|u〉 (3.52)

3.1.4 Computation of a spin chain form factor. Simple example

Before proving the statement (3.36) for the most general case we will consider one
simple example, namely the computation of the matrix element Fo1

2 = 〈u|o1
2(n)|u〉. From

the expression (3.52) it is clear that

Fo2
2 ∝ FAA = 〈u|A(θn + i/2)A(θn+1 + i/2)|u〉. (3.53)

In order to compute FAA we first act with A(θn+1 + i/2) on the state |u〉, (1.35) gives

A(θn+1+i/2)|u〉 = a(θn+1+i/2)
Qu(θn+1 − i/2)

Qu(θn+1 + i/2)
|u〉+

N∑
k=1

Mk(θn+1+i/2) |{u, θn+1+i/2}\{uk}〉.

(3.54)
We got two terms, one of them proportional to |u〉 and another proportional to |{u, θn+1+
i/2} \ {uk}〉. Then we act with A(θn + i/2) on these two terms by means of the same
property (1.35). It is not hard to see that we get four terms of the form

∝ |u〉, ∝ |{u, θn + i/2} \ {uk}〉, ∝ |{u, θn+1 + i/2} \ {uk}〉,
∝ |{u, θn + i/2, θn+1 + i/2} \ {uk, ul}〉,

(3.55)

meaning that we need to compute four following scalar products

〈u|u〉, 〈u|{u, θn + i/2} \ {uk}〉, 〈u|{u, θn+1 + i/2} \ {uk}〉,
〈u|{u, θn + i/2, θn+1 + i/2} \ {uk, ul}〉.

(3.56)

3.1.5 Computation of a spin chain form factor. General case

The logic of the computation of spin chain form factors in the general case remains
the same as in the example considered in the previous section. The computation of the
diagonal form factor of the local operator

Ea1b1
n ⊗ ...⊗ E

alsbls
n+ls−1 (3.57)

between the Bethe-states |u〉 reduces to the computation of the quantity

〈u|T a1b1(θn + i/2)...T alsbls (θn+ls−1 + i/2)|u〉. (3.58)

As it should be clear from the discussion of the previous section the expression (3.58) will
generate the terms of the form:

〈u|u〉, 〈u|{u, θn1 + i/2} \ {uk1}〉,
〈u|{u, θn1 + i/2, θn2 + i/2} \ {uk1 , uk2}〉, ...,
〈u|{u, θn1 + i/2, θn2 + i/2, ..., θnls + i/2} \ {uk1 , ..., ukls}〉.

(3.59)
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The scalar products listed above have the same common property that the bra state is on-
shell Bethe-state. It means that they can be computed by means of the Slavnov formula
(1.49). Another important thing which should be noticed that for any of these scalar
products the ket states have very specific form. Their rapidities are not just some random
numbers, but part of the rapidities belong to the same set as the rapidities of the bra
state. Let us consider an example of such a scalar product in more details. In the Slavnov
determinant (1.49), the denominator is a simple Cauchy determinant and can be readily
computed. We therefore focus on the non-trivial numerator detjk Ω(uj, vk). To start with
let us consider the scalar product 〈u|{u, θn, θn+1} \ {uj, uk}〉. The determinant takes the
following form

det Ω =

∣∣∣∣∣∣∣∣∣
i φ11 · · · Ω1j · · · Ω1k · · · i φ1N

i φ21 · · · Ω2j · · · Ω2k · · · i φ2N
...

. . .
...

. . .
...

. . .
...

i φN1 · · · ΩNj · · · ΩNk · · · i φNN

∣∣∣∣∣∣∣∣∣ . (3.60)

where we have defined i φjk = Ω(uj, uk) and Ωik = Ωik(ui, θn + i/2). First we perform the
minor expansion of the determinant with respect to all the columns that does not have any
element of the form φnn, that is with respect to the columns j and k in our case. After
performing this expansion we will get the sum of some minors with the corresponding
coefficients. Due to the structure of the determinant (3.60) it is not hard to see that one
can always expand the obtained minors to the diagonal minors of the Guadin norm (3.22):

ρN(ui1 , · · · , uim) = (−1)m

∣∣∣∣∣∣∣∣∣
φi1i1 · · · · · · · · ·
· · · φi2i2 · · · · · ·
...

...
. . .

...
· · · · · · · · · φimim ,

∣∣∣∣∣∣∣∣∣ (3.61)

apart from those minors which contains the elements φjj and φkk. Therefore, the following
expansion holds

〈u|{u, θn, θn+1} \ {uj, uk}〉 =
∑

α∪ᾱ=A

fO(ᾱ) ρN(α), (3.62)

where A = {u1, ..., ûj, ..., ûk, ..., uN} 5. Here ᾱ is the complement of α in A. For an explicit
and simple example, see Appendix E.

From the discussion above it is clear that any scalar product appearing when comput-
ing the spin chain form factors can be presented in the form of the expansion (3.62), just
with different set A and coefficients fO(ᾱ). Then when we sum over all scalar products
(3.59) appearing in the spin chain form factor after applying the solution to the QISP, we
will formally get ∑

α∪ᾱ=u

fO(ᾱ) ρN(α). (3.63)

Now in order to prove the statement (3.36) at tree level for the considered types of the
HHL correlators we need to show that the coefficients fO(ᾱ) do not depend on the heavy
operator length L.

5. Here ĵ and k̂ mean these two indices are absent.
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In the approach of algebraic Bethe-ansatz, the diagonal matrix elements are given in
terms of the following functions: the eigenvalue of the diagonal elements of the transfer
matrix, a(u) and d(u), the products of functions f(u − v) and g(u − v) (see the section
1.3.2), and the matrix elements in the Slavnov formula Ωjk and φjk. Under the normal-
ization we described in the section 3.1.2, the functions a(u) and d(u) either cancel or
appear in the expression as the ratio a(u)/d(u) = eipL, which can be replaced by products
of scattering matrices using the Bethe Ansatz equations. The products of f(u − v) and
g(u−v) functions do not depend on L. The matrix element Ωjk defined in (1.51) also has
no dependence on L. Finally, φjk with j 6= k reads

φjk = φ(uj, uk) =
2

(uj − uk)2 + 1
, j 6= k, (3.64)

again, do not depend on L. The only dependence on L is hidden in the diagonal element
φnn. Recall that we have

φnn =
L∑

m=1

1

(un − θm)2 + 1/4
−

N∑
l=1
l 6=n

φnl (3.65)

In the homogeneous limit, where θm = 0 (m = 1, · · · , L), the first term of (3.65) becomes
L/(u2

n + 1/4) which depends linearly on L. When we perform the minor expansion, we
carefully avoid expansion with this kind of terms and they only appear in the diagonal
minors ρN(α). Therefore, the dependence on the length L is completely contained in
ρN(α). This finishes the proof of the conjecture (3.36), which we will call here finite
volume expansion due to the fact that this conjecture originates form the analogy with
the finite volume expansion of the diagonal form factors in the 2D quantum filed theories
described in the section 3.1.1. However, we want to emphasize that in our proof we didn’t
get any restriction to the coefficients fO(ᾱ), whereas in the original paper [134], where
the conjecture was formulated, the authors claimed that these coefficients should be given
by the form factors in the infinite volume. It is not clear to us what physical meaning
we could assign to these coefficient at weak coupling, but maybe it could be done from
the string theory side. In [135] the authors formulated the set of axioms, analogous to
those listed in the section 3.1.1, for the world-sheet form factors of the light-cone gauge
fixed string theory on AdS5 × S5. Solving these axioms at finite coupling in case of the
diagonal form factors could provide us with data, which we would be able to compare
with the coefficient of finite volume expansion obtained at weak coupling.

Despite the fact that we wasn’t able to come up with the clear physical interpretation
of the coefficients fO(ᾱ), we noticed that they have some interesting structure analogously
to the infinite volume form factors in the 2D QFT’s. In the following few sections we will
compute some examples of the diagonal spin chain matrix elements and describe the
structure of the corresponding coefficients fO(ᾱ) explicitly.

3.1.6 The coefficients fO(ᾱ)

In this section we will perform the finite volume expansion for the diagonal matrix
elements of length-1 and length-2 operators. We will give a simple example of this pro-
cedure for the case of length-1 operator with 2 magnons in detail and then present the
results for more complicated correlators.
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An example: length-1 operator with -2 magnons

We consider the finite volume diagonal matrix element for the operator o1(n) = E11
n

with two magnons

Fo1
L (u1, u2) =

〈u1, u2|o1(n)|u1, u2〉
〈u1, u2|u1, u2〉

. (3.66)

It has the following structure in finite volume

Fo1
L (u1, u2) =

1

ρ2(u1, u2)
(ρ2(u1, u2) + f o1(u2) ρ2(u1) + f o1(u1) ρ2(u2) + f o1(u1, u2)) .

(3.67)

We proceed as described in the previous sections. Using the solution to QISP, we have

Fo1
L (u1, u2) =

1

tu(θ+
n )

〈u1, u2|A(θ+
n )|u1, u2〉

〈u1, u2|u1, u2〉
, (3.68)

where the denominator is the Gaudin norm (1.46),

〈u1, u2|u1, u2〉 =

(
2∏
j=1

a(uj)d(uj)

)
1 + (u1 − u2)2

(u1 − u2)2
ρ2(u1, u2), (3.69)

and θ+
n = θn + i/2. From (1.35) we obtain

〈u1, u2|A(θ+
n )|u1, u2〉 = M0(θ+

n )〈u1, u2|u1, u2〉 (3.70)

+ M1(θ+
n )〈u1, u2|u2, θ

+
n 〉+ M2(θ+

n )〈u1, u2|u1, θ
+
n 〉.

We introduce some notations in order to simplify the expressions. Let us define

Cu,v =

∏N
j=1 a(vj)d(uj)

detjk
1

uj−vk+i

, (3.71)

thus

〈v|u〉 = Cu,v det
jk

Ω(uj, vk). (3.72)

By performing the finite volume expansion for the three scalar products, we obtain

〈u1, u2|A(θ+
n )|u1, u2〉 = − C{u1,u2},{u1,u2}M0(θ+

n ) ρ2(u1, u2) (3.73)

− iC{u1,u2},{u1,θ
+
n }M2(θ+

n )Ω(u2, θ
+
n ) ρ2(u1)

− iC{u1,u2},{u2,θ
+
n }M1(θ+

n )Ω(u1, θ
+
n ) ρ2(u2)

−φ12

(
C{u1,u2},{u2,θ

+
n }Ω(u2, θ

+
n )M1(θ+

n ) + C{u1,u2},{u1,θ
+
n }Ω(u1, θ

+
n )M2(θ+

n )
)
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Plugging (3.73) into (3.68) and comparing to the expansion (3.67), we obtain the expres-
sion for the coefficients

f o1(u1) = i
C{u1,u2},{u2,θ

+
n }

C{u1,u2},{u1,u2}

M1(θ+
n )

M0(θ+
n )

Ω(u1, θ
+
n ) (3.74)

f o1(u2) = i
C{u1,u2},{u1,θ

+
n }

C{u1,u2},{u1,u2}

M2(θ+
n )

M0(θ+
n )

Ω(u2, θ
+
n )

f o1(u1, u2) =
φ12

C{u1,u2},{u1,u2}M0(θ+
n )

(
C{u1,u2},{u2,θ

+
n }Ω(u2, θ

+
n )M1(θ+

n )

+C{u1,u2},{u1,θ
+
n }Ω(u1, θ

+
n )M2(θ+

n )
)

Substituting the explicit expressions in (3.74) and, at the end, taking the homogeneous
limit θn → 0, we obtain very compact results

f o1(uk) =
1

u2
k + 1/4

, k = 1, 2 (3.75)

f o1(u1, u2) =

(
1

u2
1 + 1/4

+
1

u2
2 + 1/4

)
2

1 + (u1 − u2)2
.

Length-1 operator with N magnons

We can perform the same calculation as in the previous subsection and extract the
form factors with more magnons. The process becomes cumbersome for higher number of
particles. However, from the first few magnon cases, we are able to observe a nice pattern
for the coefficients fO. The N -magnon connected diagonal form factor for o1(n) is given
as

f o1(u1, ..., uN) = ε1 φ12 φ23...φN−1,N + permutations (3.76)

where εk is the energy of the magnon with rapidity uk and φjk can be seen as some
“propagator” defined as

εk = ε(uk) =
1

u2
k + 1/4

, φjk =
2

1 + (uj − uk)2
, j 6= k. (3.77)

The structure of f o1 is exactly the structure of the connected form factors of conserved
charge densities (3.32). This is not surprising, since o1(n) = 1

2
(I+σzn) is indeed a length-1

conserved charge density of the Heisenberg spin chain. The nice feature is that once we
know the one particle eigenvalue q(u) of the charge, we can immediately write down the
expression for the corresponding infinite volume form factors. We remark here that our
result (3.76) is consistent with the determinant formula of [136].

Length-2 form factors of N magnons

The calculation of the diagonal matrix elements for the case of length-2 operators can
be performed by following the same logic, but the process is more involved. Nevertheless,
we again found some patterns for the various matrix elements. In summarizing, the infinite
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volume diagonal matrix element of a length-2 operator, fO(u1, · · · , uN), is characterized
by two functions fO(u) and ψO(u, v). The result for N -magnon is given by

fO(u1, ..., uN) =
(
ε1 φ12...φN−1,N fON + permutations

)
+

(
N−1∑
i=1

ε1 φ12...ψ
O
i,i+1...φN−1,N ε

′
N + permutations

)
(3.78)

We list the coefficients for oi2, since any diagonal form factor of a length-2 operator can
be expressed through the corresponding form factors of o1

2, o2
2 and o1, as it was discussed

in the section 3.1.3:

fo
1
2(u) = 2 ψo

1
2(u, v) = −(u− v)(uv − 1/4)φ(u, v)

fo
2
2(u) = −u− i/2

u+ i/2
ψo

2
2(u, v) = (u− v)(u− i/2)(v − i/2)φ(u, v)

(3.79)

These data for the operators can be read off simply from the computation of 2 magnon
case. Once the functions in (3.79) are known, we can write down the diagonal form factor
of length-2 operators for any magnon number of the Bethe-state.

Examples of length-2 operators

Here we compute the matrix elements of the length-2 conserve charge density, which
is the permutation operator Pk,k+1, or equivalently the Hamiltonian density Hk,k+1 =
Ik,k+1−Pk,k+1. We will see that the data for the permutation operator simplifies and the
final result takes exactly the form predicted in (3.32).

The permutation operator Pk,k+1 is a length-2 operator of the Heisenberg spin chain.
It has the following form

Pk,k+1 =
2∑

i,j=1

Eij
k Eji

k+1. (3.80)

After expressing the Pk,k+1 in terms of the operators o1
2, o2

2, it is not hard to get o1 ⊗ I,
I⊗ o1

fP(u) = ε(u) =
1

u2 + 1/4
, ψP(u, v) = 0, fP (∅) = 1. (3.81)

The coefficients fP (3.78) with the entires (3.81) has the structure as a conserved charge
should have (3.32), with the one particle eigenvalue of the corresponding charge being
−ε(u).

3.1.7 Matrix elements at one loop

In this section we generalize the above considerations from tree level to one loop. We
will not give here a rigorous proof of the statement (3.36) at one loop. Our argumentation
will have a minor gap which we will discuss as well. However in the end of this section
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we will give a simple example on which we will demonstrate that the conjecture (3.36)
works at one loop. The examination of (3.36) at any loop order will be given in the next
sections, where we exploit the technique of the hexagon form factor [57].

We are still considering the set up from the section 3.1.2. It means that that the
heavy operators belong to the su(2) sectors Z,X and Z̄, X̄ correspondingly and the third
belongs to the scalar sector so(6). However there are several new features appearing when
computing the three-point correlator at one loop.

First of all at one loop we need to consider the operators being the eigenstates of
two-loop dilatation operator. Therefore the dilatation operator in the su(2) sector is no
longer the Hamiltonian of the XXX1/2 spin chain, but becomes long-range interacting
spin chain (the BDS spin chain [29]). Therefore the two heavy operators correspond to the
eigenvectors of the BDS spin chain. The eigenstates of the BDS spin chain can be obtained
from the eigenstates of a special inhomogeneous XXX1/2 spin chain by performing the
unitary transformation, namely |u〉BDS = S|u;θBDS〉. Where the inhomogeneities θ was
put to some special value θBDS given by

θBDS
k = 2g sin

2πk

L
, k = 1, · · · , L (3.82)

where g is the coupling constant. The unitary operator S has been worked out in [72] up
to g2 order

S = exp i
L∑
k=1

[
νkHk +

i

2
ρk[H]k−1

]
, (3.83)

where Hk ≡ Ik,k+1 − Pk,k+1 and [H]k ≡ [Hk,Hk+1]. The parameters νk and ρk are related
to the inhomogeneities by

νk = −
k∑
j=1

θj, ρk = 2g2k − θkνk −
k∑
j=1

θ2
j , k = 1, · · · , L. (3.84)

Concerning the light operator, we still will not be considering it as an eigenstate of the
two-loop dilatation operator, but rather as an arbitrary term of an eigenstate as we did
for the tree level case. At two loops the scalar sector is not closed anymore. Apart from
the scalars another kind of fields, such as fermions and covariant derivatives of scalars,
will appear in the eigenstates (see e.g. [137]).

Finally the contributions of the one-loop Feynman diagrams should be taken into
account. In what follows for the sake of simplicity we will put some constrains on the
light operator. Namely, we will consider the terms which consist only of the scalar fields:
Z, Z̄,X, X̄, Y, Ȳ . However our argumentation can be easily generalized to the light oper-
ators containing the fermionic fields and derivatives.

The effects of one-loop Feynman diagrams

In the case when all the fields of which the operators are made appear to be scalars
the contribution from the one-loop Feynman diagrams can be computed by means of the
operator insertions at the splitting points [70, 71], as is shown in Fig. (3.5). The insertions
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Figure 3.5 – The quantum corrections are taken into account by operator insertions
at the splitting points. At one-loop in the so(6) sector, the insertion takes the form
of one-loop Hamiltonian density.

take the form of the so(6) spin chain Hamiltonian density coming with the factor of −g2

2
:

Hl,l+1 = −g
2

2
H

so(6)
l = −g

2

2
(Kl,l+1 + 2Il,l+1 − 2Pl,l+1) (3.85)

where Il,l+1, Pl,l+1 and Kl,l+1 are the identity, permutation and trace operators, and g2 =
λ

16π2 . They act on the so(6) spin chain states as

Il,l+1|...φilφ
j
l+1...〉 = |...φilφ

j
l+1...〉, (3.86)

Pl,l+1|...φilφ
j
l+1...〉 = |...φjlφ

i
l+1...〉,

Kl,l+1|...φilφ
j
l+1...〉 = δij

6∑
k=1

|...φkl φkl+1...〉.

As it can be seen from the Fig. (3.5) there are six insertions, two for each operator. We
divide them in two groups: insertions to the light operator and insertions to the heavy
operators. It is not hard to see that we can present the light operator with insertions
as some local spin operator acting on the heavy states. We will demonstrate it on a
simple example. Let us consider the light operator containing the fields Y , and Ȳ , which
unlike to the tree level case we have to take into account at one loop. If an operator has
the terms comprising these fields the only way they can contribute is through the trace
operator from the insertions, since this is the only option to transform the fields Y, Ȳ into
Z, Z̄ or X, X̄. It is clear that since the heavy operators still belong to su(2) sector they
have the same form of the su(2) spin chain states. Therefore according to the same logic
as described in the section 3.1.3 the light operator with insertions can be presented as
an appropriate local spin chain operator Ô(σ±, σz) acting on the heavy states (see the
Fig. 3.6). When we compute the insertions to the heavy operators the same logic works.
The only difference is that the length of the local operators increases when we take the
insertions into account (see the Fig. (3.7))

To summarize, the one-loop structure constants can be recast to the calculation of
matrix elements of the BDS spin chain BDS〈u|Ô(σ±, σz; g2)|u〉BDS.
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Figure 3.6 – An example of mapping the light operator to the spin chain operator
in the presence of one-loop insertion.

Figure 3.7 – The effect of operator insertions for the heavy operators. They
increase the length of the spin operator by 1. The red cross denotes the splitting
point.

The effects of the operator S

After we take into account the effect of insertions and modify the states the HHL
three-point correlators can be written as follows

〈u;θBDS|S−1Ôl+1(σ±, σz)S|u;θBDS〉, (3.87)
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where the index l + 1 stands for the length of the local operator after taking insertions
into account. The S operator takes an exponential form S = exp F̂, thus we have

S−1Ôl+1(σ±, σz)S = Ôl+1(σ±, σz)− [F̂, Ôl+1(σ±, σz)] +
1

2
[F̂, [F̂, Ôl+1(σ±, σz)]] +O(g3).

(3.88)

The action of S operator on the spin chain operator can be divided into two types. The
first type is length preserving, it originates from the operators Hk and [H]k that act within
the range of the spin chain operator Ôl+1, which gives rise to an operator with the same
length, this is depicted in Fig. (3.8).

Figure 3.8 – The length preserving action generated by [H]k on the spin chain
operator.

The other type of the action increases the length of the operator by 1 or 2, which
are generated from the operators Hk and [H]k acting at the boundary of the spin chain
operator (see Fig. (3.9),(3.10)).

Figure 3.9 – The length changing action generated by [H]k on the spin chain
operator. In this example it increases the length of the spin chain operator by 2.

From our analysis we see that the action of the S operator on the spin chain operators,
in general, increases the length of the spin chain operator:

S−1 Ôl(σ
±, σz) S = Ô′l(σ

±, σz) + Ô′l+1(σ±, σz) + Ô′l+2(σ±, σz) +O(g3) (3.89)
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Figure 3.10 – The length changing action generated by two Hk’s on both ends of
the spin chain operator. IN this example it increases the length of the spin operator
by 2.

This implies that in order to compute the form factor of length l operator for BDS spin
chain, we need to compute the form factors of length l + 2, l + 1 and l operators in the
inhomogeneous XXX1/2 spin chain.

Since the argumentation in the section (3.1.5) is given for the general inhomogeneous
spin chain, once we write the three-point function in terms of matrix elements of the
inhomogeneous XXX1/2 spin chain, we can perform the finite volume expansion and
organize the results in the form conjectured in [124]. The difference is that in the end we
do not put the θ’s to zero, but put them to the BDS values. It assumes the modification
of the Gaudin norm. The equations (1.48), and (1.47) are still valid, but the eigenvalues
a(u) and d(u) are corrected

a(u) =
L∏
k=1

(u− θBDS
k + i/2) = x(u+ i/2)L +O(g2L), (3.90)

d(u) =
L∏
k=1

(u− θBDS
k + i/2) = x(u− i/2)L +O(g2L),

where x(u) is the Zhukowsky map given by

x(u) +
g2

x(u)
= u. (3.91)

By replacing

p(uk) =
uk + i/2

uk − i/2
−→ x(uk + i/2)

x(uk − i/2)
(3.92)

in (1.48) and expanding the result up to O(g2) order, we obtain the Gaudin norm at
one-loop, ρ1-loop

n . In fact, the replacement (3.92) gives the correct Gaudin norm up to the
wrapping corrections [69, 72].

From the discussion above it should be clear that the presence of the fermions and
derivatives in the light operator will not change the argumentation, since the heavy oper-
ators anyway have the form of the su(2) spin chain states, and therefore any kind of the
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light operator can be finally presented as some local su(2) spin chain operator acting on
the heavy states. Moreover, since the su(2) sector is closed ay any loop order we can hope
that the conjecture (3.36) really holds asymptotically at any loop order. We will see that
this is indeed the case in the following sections where we exploit the hexagon program
approach.

However, before going to the all loop consideration we will discuss a minor gap in our
one-loop argumentation. Namely, the conjecture (3.36) states that the coefficients fO do
not depend on the length of the heavy operators L. But if we look at the expression (3.88)
for the local operator after we take the action of the operator S into account, we will see
that the coefficient in front of the spin chain operators will depend on L through the
functions νk and ρk (3.84). This means that when we compute the matrix element (3.87)
it is not guaranteed that after performing the finite volume expansion the coefficients fO

will not depend on L.
Here we are not going to prove rigorously that when putting everything together the

explicit dependence of the coefficients fO on L will cancel. But we will give a simple
example of one-loop computation for which we show that this is true.

A simple example of the one-loop computation

As an example we will consider the HHL correlator with the light operator being a
simple half-BPS state Oα = Tr(Z̃2), where Z̃ = Z+ Z̄+Y − Ȳ . And the heavy operators
will be taken to be a one magnon state. Let us first consider the contribution from the
insertions.

As it has been mentioned above we have two kinds of insertions: to the light operator
and to the heavy operators. In our case they schematically presented on the Fig.(3.11),

H
H

Figure 3.11 – Insertions to the light (on the left) and to the heavy (on the right)
operators

Now we will translate the action of the insertions into diagonal matrix element of the
lengthened light operator. Let us first consider the left picture on the Fig. (3.11). Due to
the symmetry of the problem it is clear that the only terms of the light operator which
will contribute are Tr(ZZ̄) and −Tr(Y Ȳ ). The action of the insertions on the first can
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be divided in two parts: H12(Z1 ⊗ Z̄2) and H12(Z̄1 ⊗ Z2), they give

1.H12(Z1 ⊗ Z̄2)→ −(Z1 ⊗ Z̄2 + Z̄1 ⊗ Z2 +X1 ⊗ X̄2 + X̄1 ⊗X2 + Y1 ⊗ Ȳ2 + Ȳ1 ⊗ Y2)

− 2(Z1 ⊗ Z̄2) + 2(Z̄1 ⊗ Z2).

2.H12(Z̄1 ⊗ Z2)→ −(Z1 ⊗ Z̄2 + Z̄1 ⊗ Z2 +X1 ⊗ X̄2 + X̄1 ⊗X2 + Y1 ⊗ Ȳ2 + Ȳ1 ⊗ Y2)

+ 2(Z1 ⊗ Z̄2)− 2(Z̄1 ⊗ Z2).

(3.93)

The expression above means that after taking into account the action of the insertions the
term Tr(ZZ̄) of the light operator transforms into two terms on the rhs of the expressions
(3.93). Analogous result we have for the term −Tr(Y Ȳ ). The only difference is that the
action of the unity and permutation operators can be neglected since they preserve the
fields of the operator:

1.H12(Y1 ⊗ Ȳ2)→ Z1 ⊗ Z̄2 + Z̄1 ⊗ Z2 +X1 ⊗ X̄2 + X̄1 ⊗X2 + Y1 ⊗ Ȳ2 + Ȳ1 ⊗ Y2.

2.H12(Z̄1 ⊗ Z2)→ Z1 ⊗ Z̄2 + Z̄1 ⊗ Z2 +X1 ⊗ X̄2 + X̄1 ⊗X2 + Y1 ⊗ Ȳ2 + Ȳ1 ⊗ Y2.

(3.94)

It is not hard to see that when putting all the terms of the expression (3.93), (3.94)
together we will get zero. Thus the left diagram from (3.11) does not contribute to the
correlator.

Now we consider the contribution of the insertions to the heavy operators. It is slightly
more complicated. The hamiltonian density acts on the two site of the heavy operator,
which means that the action of the trace operator K can be neglected. In addition one
site of the light operator is contracted with heavy operator. This means that the terms
comprising Y or Ȳ will not contribute as well. Let us consider one of the configurations
corresponding to the case depicted on the Fig. (3.12) So we have that the hamiltonian

H Z

Z

Z

1

1

2

2

Figure 3.12

density acts on the two sites of the heavy operator Oh : (Z,X) and the result is contracted
with the two sites of the heavy operator Ōh : (Z̄, X̄) with the second site being Z̄. It’s not
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hard to see that the computation of this diagram can be computed as the matrix element
of the following spin chain operator:

I1 = E11
k (Hk,k+1) = −g2(Ik ⊗ E11

k+1 − E11
k ⊗ E11

k+1 − E21
k ⊗ E12

k+1), (3.95)

There are three more diagrams corresponding to the right picture of the Fig.(3.11), one
of them, I2, coincide with I1, and two others are equal to transposed of I1:

I3 = I4 = −g2(Ik ⊗ E11
k+1 − E11

k ⊗ E11
k+1 − E12

k ⊗ E21
k+1). (3.96)

Since the operator insertions have the order of O(g2) we can but the inhomogeneities θk
to zero. Therefore the computation of the contribution from the insertions reduced to the
computation of the following spin chain matrix elements:

〈u|E11|u〉, 〈u|E11 ⊗ E11|u〉, 〈u|E12 ⊗ E21|u〉, 〈u|E21 ⊗ E12|u〉, (3.97)

which we already learnt how to do. Putting all the contributions together we get that the
contribution from the insertions δH takes the form

δH =
1

ρ1(u)

32g2

(4u2 + 1)2
. (3.98)

The expression (3.98) should come with the factor of 2, since there are two terms Tr(ZZ̄)
in the light operator Tr(Z̃2), but we normalize by 2〈u|u〉.

Next we compute the contribution coming from the correction of the state. Thus we
have to calculate the expression

〈u, θBDS|S−1OαS|u, θBDS〉. (3.99)

It is obvious that the terms comprising the field Y will not contribute here. It means
that the only term we need to consider is the term Tr(ZZ̄), which correspond to the local
operator E11. As it has been just mentioned this term comes with the facto of 2, but due
to the normalization this factor cancels. Thus the corrections to the states can be written
as follows

δS =
〈u, θBDS|S−1E11

l S|u, θBDS〉
2〈u, θBDS|u, θBDS〉

, (3.100)

where the index l states for the site on with the local operator E11
l acts. From (3.88) we

have

S−1E11S = E11 + [E11, F̂ ] +
1

2
[F̂ , [F̂ ,E11]] +O(g3). (3.101)

From the (3.83) we get

S−1E11S = E11
l + iνl−1[E11

l ,Hl−1] + iνl[E
11
l ,Hl]−

1

2
ρl−1[E11

l , [Hl−2,Hl−1]]−
1

2
ρl[E

11
l , [Hl−1,Hl]]−

1

2
ρl+1[E11

l , [Hl,Hl+1]]− 1

2

(
νl−2νl−1[Hl−2, [Hl−1,E

11
l ]]+

ν2
l−1[Hl−1, [Hl−1,E

11
l ]] + νl−1νl[Hl, [Hl−1,E

11
l ]] + νl−1νl[Hl−1, [Hl,E

11
l ]]+

ν2
l [Hl, [Hl, E

11
l ]] + νlνl+1[Hl+1, [Hl,E

11
l ]]
)
.

(3.102)
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Thus as it was discussed above the we need to compute length-1,-2,-3 operators. Notably
all the length-3 operators have the coefficients in font of them proportional to g2, which
means, which means that when computing the length-3 operators, we can put all the θ
to zero. Moreover, one can show that the matrix elements of only three of the length-3
operators involved are independent:

E11E12E21,E12E11E21,E12E21E11,E12E22E21 (3.103)

The rest can be obtained from them by conjugation or their linear combinations with
already known length-1 and length-2 operators. For one magnon case we easily compute
the matrix element for the length-3 operators listed above. We get

〈u|E11E12E21|u〉
〈u|u〉

= − 1

ρ1(u)

1

(u+ i/2)2
,

〈u|E12E11E21|u〉
〈u|u〉

= − 1

ρ1(u)

u− i/2
(u+ i/2)3

,

〈u|E12E21E11|u〉
〈u|u〉

= − 1

ρ1(u)

1

(u+ i/2)2
,

〈u|E12E22E21|u〉
〈u|u〉

= 0.

(3.104)

Then by substituting the expression for all the matrix elements in (3.102) we get

δS =
1

ρ
(1)
1 (u)

(
ρ

(1)
1 (u) +

1

u2 + 1/4
+

32g2(12u2 − 1)

(4u2 + 1)3

)
. (3.105)

As we can see from (3.105) the dependence on L contained in the functions ν and ρ indeed
cancels. Finally the HHL correlator under consideration is givan by the expression

δH + δS =
1

ρ
(1)
1 (u)

(
ρ

(1)
1 (u) +

1

u2 + 1/4
+

512g2u2

(4u2 + 1)3

)
, (3.106)

which has the form of the expansion (3.36), and the explicit dependence on the length

of the heavy operator L comes only through ρ
(1)
1 (u). The expression for the coefficient

f Z̃
2
(u) at one loop takes the form

f Z̃
2

(u) =
1

u2 + 1/4
+

512g2u2

(4u2 + 1)3
. (3.107)

3.2 HHL correlator at all loop

In this section we will consider the HHL correlator at any loop by exploiting the
approach of the hexagon form factor [57] in the asymptotic approximation. It means that
we will assume that the length of the light operator although is much smaller then the
length of the heavy operators, but still large enough, so we can neglect the wrapping
corrections. We will consider the configuration of the correlator with the light operator
being the half-BPS state Tr(Z̃2l0), where Z̃ = Z + Z̄ + Y − Ȳ . The heavy states, as
in the previous sections, will be taken from the su(2) sector. For this configuration we
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Figure 3.13 – Cutting of the three-point correlator in two hexagons. The dashed
lines correspond to the cuts

will show that in the case when the heavy operators has one and two excitations the
statement (3.36) works up to the leading wrapping corrections. 6 The choice of the light
operator is quite specific, but, as it has been shown in [138], the proof given in [127] can
be generalized to the cases with the light operator having arbitrary excitations added
upon the BMN vacuum Tr(Z̃2l0), and even with the heavy states taken from other rank-1
sectors, such as sl(2) and su(1|1).

3.2.1 The hexagon program

In this section we will review the recently proposed all-loop technique of the computa-
tion of the non-extremal three-point functions in N = 4 SYM called the hexagon program
[57].

This technique is very similar to the one developed for computing the scattering am-
plitudes [56], where the computation of the null polygon Wilson loops is reduced to the
computation of some building blocks called pentagon transition. In its turn the com-
putation of the pentagon transitions is possible to perform exactly by exploiting the
integrability of the theory.

As it follows form the name of the method, the main building block for computing the
three-point functions appears to be a hexagon, or hexagon form factor. Indeed the main
idea of the hexagon program is to cut the three-point function pants in two hexagons (see
the Fig. 3.13). We cut an each cuff of the three-point function pants in two parts. In
this way we produce two hexagons. Thus each hexagon will have three physical edges
corresponding to each of the gauge invariant operators, and three edges appeared due to
the cutting. After the cutting we left some part of the excitations of the operators to be
on one hexagon and the rest on another. According to the prescription of the hexagon
program one has to perform a sum over all possible partitions of the excitations of each
operator between the two hexagons. The summing over all the partitions is performed in
the same way as it is described in [67], which implies that, as it is depicted on the Fig.

6. The proof for any number of excitations is given in [127]
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Figure 3.14 – The Sum over partitions of the excitations for the case of the two
magnons

3.18, each term should come with appropriate cutting factor

ωlij(α, ᾱ) =
∏
uj∈ᾱ

eip(uj)l
∏

ui∈α,i>j

S(ui, uj), (3.108)

where lij =
Li+Lj−Lk

2
is the length of the bridge connecting the i-th and j-th operators.

Here we would like to draw attention of the reader to the fact that here and till the end of
the section 3.2, we accommodate the convention for the S-matrix notation according to
the one used in [57], which means the following substitution with respect to the notation
of the previous sections: S(u, v)→ 1/S(u, v).

When we cut the three-point function we forbid the mirror particles to travel between
the hexagons. In order to take the mirror channel into account we have to sew the pants
back. It is performed by summing over all possible states living on the edges formed due
to the cutting, which implies the integrating over the rapidities of the mirror excitations.
The mirror excitation start contribute at the order of O(g2lij), so in the case when all the
lengthes are taken to be large they can be neglected.

The main advantage of the hexagon program is that the authors of [57] proposed an
all-loop expression for the hexagon. The ansatz, they gave, corresponds to the so-called
fundamental hexagon, the configuration when all the excitations are located on one of the
edges. However, as we will discuss below, it turned out that all other hexagons are related
to the fundamental one by the mirror transformation, which translates the particle from
one edge to another.

In order to fix the form of the fundamental hexagon the authors performed some
symmetry analysis. When computing three-point functions in N = 4 SYM we first choose
the physical vacua of the states, and then form the operators by putting the excitations
on top of them. In the quality of vacuum one can choose the generic half-BPS state:

Oi(xµi ) = Tr(yki φk)
Li(xµi ), (3.109)

where yk are six complex values such that (yk)2 = 0 and summation over the repeated
index is implied. The symmetry of such a BMN vacuum is described by psu(2|2)2 algebra.
When having three different states of this kind, by use of the conformal and R-symmetry,
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one can simultaneously reduce them to the following form

Oi = Tr(Z + a2
i Z̄ + ai(Y − Ȳ ))Li(0, ai, 0, 0). (3.110)

Then the residual symmetry left at our disposal will correspond to the algebra psu(2|2). 7

Then by appealing to the idea of the vertex (see chapter 2) the authors of [57] define the
fundamental hexagon through the following quantity

HA1Ȧ1···AN ȦN (u1, ..., uN) = 〈h|χA1Ȧ1(u1)...χAN ȦN (uN)〉, (3.111)

Here 〈h| stands for the hexagon vertex. The excitations form the representation of
psu(2|2)2, so Ai,Ȧi are the su(2|2)L ⊗ su(2|2)R bifundamental indexes of the i-th ex-
citation. Finally ui denotes as usual the rapidity of the corresponding excitation. The
authors of [57] proposes that the hexagon vertex should preserve the symmetry left after
reducing the states to the form (3.110). That is it should be annihilated by the generators
of the residual symmetry of psu(2|2) algebra. Elaborating on these ideas the authors eas-
ily fixed the expression of the fundamental hexagon for the cases of one and two magnons.
Then by generalizing the obtained results they suggested the following expression for the
fundamental hexagon

H = Hdyn · Hmat, (3.112)

where

Hdyn =
∏
i<j

h(ui, uj)

Hmat = (−1)f 〈χȦNN · · ·χ
Ȧ1
1 |S|χA1

1 · · ·χ
AN
N 〉,

(3.113)

and the factor (−1)f accommodates for the grading. The dynamical part Hdyn is simply a
product of the scalar function h(u, v) given by

h(u, v) =
x−1 − x−2
x−1 − x+

2

1− 1/x−1 x
+
2

1− 1/x+
1 x

+
2

1

σ12

(3.114)

where the variables x±1,2 are defined as x±1 = x(u± i/2) and x±2 = x(v± i/2). Here x(u) is
the Zhukowsky variable satisfying x + 1/x = u/g and σ12 = σ(u, v) is the square root of
BES dressing phase[43]. Finally S form the matrix part Hmat stands for Beisert’s S-matrix
[39, 139] with the scalar factor S0

12 set to 1.
Let us now discuss the mentioned above mirror transformation γ, which relates the

fundamental hexagon to a generic one. When the excitations are distributed between
more then one edges, the mirror transformation allows to move the particles from one
edge to another as it is depicted on the Fig. (3.15). To be more precise, since we are
not considering here the contribution from mirror excitations we will be always moving
the particles with even numbers of the mirror transformations. So we will concentrate on
double-mirror transformation, or in other words crossing transformation 2γ.

In [57] the authors introduced two frames for describing the hexagon excitations: spin
chain frame and string frame. We will stick to the spin chain frame, since it is well

7. To be more precise the symmetry of the BMN vacuum includes also three central charges. Thus
the full symmetry is psu(2|2)2 nR3. And when we reduce the three BMN vacua to the form (3.110), one
of the central charges is preserved, so the residual symmetry is psu(2|2) nR
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Figure 3.15 – Crossing transformation for the excitations of the two hexagons.
One magnon case

suited for comparison with result at weak coupling. However the string frame is more
convenient for describing effect of the crossing transformation, so we will start with it.
The rule relating the excitations connected by crossing transformation is very simple:

χAḂ(u)
2γ→ −χBȦ(u2γ). (3.115)

The dynamical part Hdyn also changes under the crossing. First of all the Zhukowsky
variable transform as follows:

x−
γ→ x−, x+ γ→ 1/x+,

x−
2γ→ 1/x−, x+ 2γ→ 1/x+,

x−
3γ→ x−, x+ 3γ→ 1/x+,

x−
4γ→ x−, x+ 4γ→ x+.

(3.116)

In addition the BES dressing phase σ(u) satisfies the following relation

σ(u2γ, v)σ(u, v) =
(1− 1/x+y+)(1− x−/y+)

(1− x−/y−)(1− 1/x+y−)
. (3.117)

Finally the relation connecting the hexagon form factor at string and spin chain frames
read as

〈h|ψ1〉|ψ2〉|ψ3〉string = e−
i
2

(P (l+n−m)+Q(m+l−n)+R(n+m−l))FpFqFr〈h|ψ1〉|ψ2〉|ψ3〉spin, (3.118)

where |ψi〉 stands for the spin chain state located on the i-th physical edge of the hexagon,
l, m, n and P , Q, R are numbers of the excitations and total momenta of these states
correspondingly, and the quantities Fp, Fq, Fr are given by the expressions

Fp =
∏
k

eipk/2ζk
ζ

, Fq =
∏
k

eiqk/2ζk
ζ

, Fr =
∏
k

eirk/2ζk
ζ

. (3.119)

Here pk, qk, rk are the momenta of the excitations of the corresponding spin chain state,
ζk+1 = eipkζk, ζ1 = ζ.
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3.2.2 Set-up

In this section we will discuss the correlator we are going to consider from hexagon
approach point of view. As it should clear from the previous section this approach consider
the correlators, which operators are built by putting the excitations on top of the vacua
(3.110). By putting a1 to 0, a2 to ∞ and finally a3 to 1, we get the following three vacua

Tr(ZL1), Tr(Z̄L2), Tr(Z̃L3). (3.120)

This is the configuration was used by the authors of [57] and we will be using it in
our computation. Therefore we consider two heavy operators belonging to the su(2)
sectors Z,X and Z̄, X̄ correspondingly as before. The length of the heavy operators are
L1 = L2 = L. In quality of the light operator we will take the generalization of the one
considered in the section (3.1.7), namely a half-BPS state Tr(Z̃2l0).

In the HHL three-point function we have l0 � L. As it has been mentioned above
we will consider the asymptotic L-dependence of the structure constant. It means that
we will neglect the wrapping corrections, two kinds of which we will distinguish. The
first type of the wrapping is the appearing from the corrections to the states, when we
normalize the three-point function by the norm of the heavy operators. It appears at
the order of O(g2L) and we can neglect it, since the conjecture (3.36) is formulated to be
valid up to this kind of corrections. Another kind of wrapping, to which we will refer as
to bridge wrapping, appears from the mirror channel of the correlator itself, and should
be taken into account by correct sewing the hexagons together. As it has been already
mentioned, this wrapping appears at the order of O(glij), and in case of small length
of one of the operators, which is our case, might contribute already at two loop order.
We postpone the computation of this corrections to future investigation, since it is still

Figure 3.16 – Two kinds of wrapping corrections of the structure constant. The
blue lines corresponds to the bridge wrappings and the gray lines corresponds to
the state wrappings.

not very clear how to sum all the bridge wrapping corrections (see [140, 141] for more
details). Thus in the following we assume 1� l0 � L, so that we can trust the result up
to relatively high orders without worrying about the wrapping. In this regime, we only
need to consider the physical excitations and we can study the asymptotic L-dependence.
We will see that the result confirms (3.36).

Let us denote the two sets of rapidities of the excitations of the heavy operators O1

and O2 to be {u}N = {uN , · · · , u1} and {v}N = {v1, · · · , vN}, as is shown in Fig. 3.17. We
first compute the correlator 〈O1O2Oα〉 and then take the diagonal limit vi → ui. Then
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Figure 3.17 – The rapidities for the two heavy operators. Notice that the for
O1, the set rapidities is labeled by uN , uN−1, · · · , u1 while for O2 is labeled by
v1, v2, · · · , vN .

the structure constant will have the following sum-over-partition expression [57]

C2N =
∑

α∪ᾱ={u}N
β∪β̄={v}N

ω−l(α, ᾱ)ωl(β, β̄)H(α|β)H(β̄|ᾱ). (3.121)

where the two splitting factors are

ω−l(α, ᾱ) =
∏
uj∈ᾱ

(e−ilp(uj)
∏
ui∈α
i>j

S(uj, ui)) (3.122)

ωl(β, β̄) =
∏
vj∈β̄

(eilp(vj)
∏
vi∈β
i>j

S(vi, vj)).

and l = L − l0 ∼ L. Here H(α|β) and H(β̄|ᾱ) are the hexagon form factors which can
be computed non-perturbatively by applying the prescription (3.112)-(3.114). Note that
we have applied Bethe Ansatz Equations (BAE) to rewrite the splitting factor in (3.122).
It turns out to be an important point which we will discuss in the next section. Then
both splitting factors ω−l and ωl depend on the large size scale l. This is the origin of the
explicit L-dependence of the structure constant. As we will see later, when we take the
diagonal limit {v}N → {u}N , a 0

0
uncertainty appears, so we will have to take derivatives

of the phase factors eilp(v), which leads to the polynomial dependence of L. Another
source of the L-dependence is the phase factors itself, but, after taking the limit, it can
be eliminated by applying BAE.

3.2.3 One-magnon case

First let us consider the case when the heavy operators have just one excitation. The
structure constant in this case is given as follows

C2 = H(u|v) + eipl31eiql12H(v|u), (3.123)

where l12 = L1+L2−L3

2
= L− l0 = l, l13 = L1+L3−L2

2
= l0 and p = p(u), q = p(v).

The first hexagon is given by the expression

H(u|v) = 〈h|X(u)〉|X̄(v)〉, (3.124)
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1

2 3

X(u)X̄(v−4γ)

X̄(v)

2

1 3

X̄(v)X(u−4γ)

X(u)

Figure 3.18 – Crossing transformation for the excitations of the two hexagons.
One magnon case

with X = Φ11̇ and X̄ = −Φ22̇, which correspond to the notations of [57]. Now we have to
perform the crossing transformation in order to put the excitations on the same edge (see
the left hexagon on the Fig. 3.18). According to the prescription (3.115) in the string
frame we get

〈h|X(u)〉|X̄(v)〉st = 〈h|X1(u)X̄2(v−4γ)〉st. (3.125)

From the connection between string and spin chain description (3.118), we get

〈h|X(u)〉|X̄(v)〉st = e−iqeip/2eiq/2〈h|X(u)〉|X̄(v)〉sp,
〈h|X1(u)X̄2(v−4γ)〉st = e−i(p+q)eip/2eiq/2eip〈h|X1(u)X̄2(v−4γ)〉sp.

(3.126)

which gives for the spin chain frame

〈h|X(u)〉|X̄(v)〉sp = 〈h|X1(u)X̄2(v−4γ)〉sp, (3.127)

so in this case the factor relating two frames cancels resulting in the same expression.
performing analogous computation for the second hexagon 8 (right hexagon on the Fig.
3.18) we get

〈h|X̄(v)〉|X(u)〉sp = 〈h|X̄1(v)X2(u−4γ)〉sp. (3.128)

Thus one can see that for both hexagons the phase factor cancel in the spin chain frame 9.

8. We draw attention of the reader to the fact that for the first hexagon we apply −4γ transformation
to the excitations of the second operator and move them to the edge corresponding to the first operator.
Whereas for the second hexagon we apply the same −4γ transformation to the excitations of the first
operator moving them to the second edge

9. In fact it turns out that the phase factor cancels for arbitrary number of magnons. Indeed

〈h|X1(u1)...XN (uN )〉|X̄1(v1)...X̄1(vN )〉st =

= e−iNQeiP/2eiQ/2eip1(N−1)+ip2(N−2)+...+ipN−1eiq1(N−1)+iq2(N−2)+...+iqN−1×
〈h|X1(u1)...XN (uN )〉|X̄1(v1)...X̄1(vN )〉sp,

(3.129)

and

〈h|X1(u1)...XN (uN )X̄N+1(v−4γ1 )...X̄2N (v−4γN )〉st =

e−i(P+Q)NeiP/2eiQ/2eip1(2N−1)+ip2(2N−2)+...+ipNNeiq1(N−1)+iq2(N−2)+...+iqN−1×
〈h|X1(u1)...XN (uN )X̄N+1(v−4γ1 )...X̄2N (v−4γN )〉sp,

(3.130)
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Now in order to compute the obtained fundamental hexagons we use the prescription
(3.113)

〈h|Φaȧ
1 (u)Φbḃ

2 (v)〉 = h(u, v)A(u, v)εȧbεbȧ +
1

2
h(u, v)

(
A(u, v)−B(u, v)

)
εabεȧḃ, (3.132)

where the coefficients A(u, v), B(u, v) are the elements of the Beisert’s S-matrix with the
scalar factor S0 put to 1:

A(u, v) =
x+

2 − x−1
x−2 − x+

1

, B(u, v) =
x+

2 − x−1
x−2 − x+

1

(
1− 2

1− 1
x−2 x

+
1

1− 1
x−2 x

−
1

x+
2 − x+

1

x+
2 − x−1

)
. (3.133)

Applying (3.132) to the first hexagon we get

H(u|v) = 〈h|Φ11̇
1 (u)(−Φ22̇

2 (v−4γ))〉 = −

(
− h(u, v−4γ)A(u, v−4γ)+

h(u, v−4γ)

2

(
A(u, v−4γ)−B(u, v−4γ)

))
,

(3.134)

and analogously for the second one

H(v|u) = 〈h|(−Φ22̇
1 (v))Φ11̇

2 (u−4γ)〉 = −

(
− h(v, u−4γ)A(v, u−4γ)+

h(v, u−4γ)

2

(
A(v, u−4γ)−B(v, u−4γ)

))
,

(3.135)

Then by using the property (3.117) of the dressing phase σ(u, v) to transform under the
crossing transformation and noticing that

(x− − y−)
(

1− 1

x−y−

)
= (x+ − y+)

(
1− 1

x+y+

)
=
u− v
g

, (3.136)

we get

h(u, v−4γ) =
1

h(v, u)
. (3.137)

On the other hand for the coefficients A(u, v) and B(u, v) we have simply

A(u, v−4γ) = A(u, v), B(u, v−4γ) = B(u, v). (3.138)

By putting everything together we get the all loop result

C2 =
1

2h(v, u)

(
A(u, v) +B(u, v)

)
+
eip(u)l31eip(v)l12

2h(u, v)

(
A(v, u) +B(v, u)

)
, (3.139)

so

〈h|X1(u1)...XN (uN )〉|X̄1(v1)...X̄1(vN )〉sp =

〈h|X1(u1)...XN (uN )X̄N+1(v−4γ1 )...X̄2N (v−4γN )〉sp.
(3.131)
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where by p(u) we as usual denotes the momenta Now, since we are interested in the
symmetric case, we need to take the diagonal limit v → u. At this point some interesting
issues appear. First of all we notice that the function 1

h(u,v)
has a simple pole when at

u = v:

1

h(u, v)
=
u− v − i
u− v

1

h̃(u, v)
, (3.140)

where

h̃(u, v) =
(1− 1/x−1 x

+
2 )2

(1− 1/x−1 x
−
2 )(1− 1/x+

1 x
+
2 )

1

σ12

(3.141)

is nonzero for coinciding rapidities (h̃(u, u) 6= 0). Since the structure constant in the
symmetric case should be a well-defined quantity, this pole should be counterbalanced by
the zero in the numerator leading to the 0

0
uncertainty. Let us see how it works at tree

level, we have

Ctr2 = − i

u− v
− eip(u)l0eip(v)(L−l0) i

v − u
. (3.142)

From this one can see that in order to get a zero in the numerator we have to take into
account the Bethe equations (1.34). The problem is that we can do it by two different
ways: applying the Bethe equations to the momentum of the first state p or to the
momentum of the second state q. As it is not hard to see, the results will be different. In
order to resolve this issue we will follow a simple strategy, namely by comparing with the
already known computation at tree level we choose the right choice. By comparing with
the tree level approximation of one-loop result (3.106) corresponding to the case l0 = 1,
we get the prescription for our set-up: one should apply the Bethe equations to those
momenta, in front of which there is a small length l0 in order to restore the dependence
on the large length L. Thus we will be using the expression (3.123) for the structure
constant, where we already took this prescription into account.

Now armed with this recipe we take the diagonal limit of the all loop result (3.139).
We introduce the following quantity

Ω(u, v) =
u− v + i

2h̃(v, u)

(
A(u, v) +B(u, v)

)
. (3.143)

Then the expression (3.139) can be rewritten as follows

C2 =
Ω(u, v)− eil(p(v)−p(u))Ω(v, u)

u− v
. (3.144)

Which gives for the symmetric structure constant denoted as CHHL(u)

CHHL(u) ∝ ilp′(u)Ω(u, u) + Ω(1,0)(u, u)− Ω(0,1)(u, u), (3.145)

where the sign ∝ signals that the expression should be appropriately normalized. By
recalling that the expression for ρN((u)) (we always use the connected scheme, see the
section 3.1.1) is given by (1.47) up to the wrapping corrections, when assuming the sub-
stitution (3.92), we get

CHHL(u) ∝ 1

h̃(u, u)

(
ρ1(u)− l0p′(u) + h̃(u, u)(Ω(1,0)(u, u)− Ω(0,1)(u, u))

)
. (3.146)
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Now we notice that 1
h̃(u,u)

= µX(u), where µX(u) is a measure introduced in [57], which

is contained in the norm of the operators:

NH =
∏
i

µX(ui)ρN(u). (3.147)

We stick to the convention of normalization described in the section 3.1.2, thus we nor-
malize the structure constant dividing it by NH , and we get exactly the result (3.106):

CHHL(u) =
1

ρ1(u)

(
ρ1(u)− l0p′(u) + h̃(u, u)(Ω(1,0)(u, u)− Ω(0,1)(u, u))

)
=

1

ρ
(1)
1 (u)

(
ρ

(1)
1 (u) +

1

u2 + 1/4
+

512g2u2

(4u2 + 1)3

)
+O(g4),

(3.148)

where we put l0 to 1. Thus we can see that at least for one magnon case the conjecture
(3.36) holds up to the leading wrapping corrections with the all-loop coefficient f(u) given
as follows

f(u) = −l0p′(u) + h̃(u, u)(Ω(1,0)(u, u)− Ω(0,1)(u, u)). (3.149)

3.2.4 Two-magnon case

In this section we will consider more complicated case with the heavy operators having
two excitations. For the structure constant from (3.123) we have

C4 = H(u1, u2|v1, v2) + e−ilp(u1)−ilp(u2)+ilp(v1)+ilp(v2)S(u2, u1)H(v1, v2|u1, u2)

+ e−ilp(u2)+ilp(v2)H(u1|v1)H(v2|u2) + e−ip(u2)+ilp(v1)S(v2, v1)H(u1|v2)H(v1|u2)

+ e−ilp(u1)+ilp(v2)S(u1, u2)H(u2|v1)H(v2|u1)

+ e−ilp(u1)+ilp(v2)S(u1, u2)S(v2, v1)H(u2|v2)H(v1|u1).

(3.150)

Let us consider the hexagon H(u1, u2|v1, v2). Its dynamical part is given as follows

Hdyn(u1, u2|v1, v2) =
u1 − v1 + i

u1 − v1

u2 − v2 + i

u2 − v2

1

h̃(v1, u1)h̃(v2, u2)

h(u1, u2)h(v1, v2)

h(v2, u1)h(v1, u2)
. (3.151)

As in the case with one magnon we can see that there is a pole appearing when taking
diagonal limit vi → ui. Following the logic of the previous section we separate the
divergent part by introducing a function Ω(u1, u2, v1, v2) such that

H(u1, u2|v1, v2) =
Ω(u1, u2, v1, v2)

(u1 − v1)(u2 − v2)
, (3.152)

and which therefore remains finite when taking the diagonal limit. Now we can rewrite
the structure constant in terms of Ω(u, v) and Ω(u1, u2, v1, v2), we get

C4 =
Ω(u1, u2, v1, v2)

(u1 − v1)(u2 − v2)
+ e−ilp(u1)−ilp(u2)+ilp(v1)+ilp(v2)S(u2, u1)

Ω(v1, v2, u1, u2)

(v1 − u1)(v2 − u2)

+ e−ilp(u2)+ilp(v2) Ω(u1, v1)Ω(v2, u2)

(u1 − v1)(v2 − u2)
+ e−ip(u2)+ilp(v1)S(v2, v1)

Ω(u1, v2)Ω(v1, u2)

(u1 − v2)(v1 − u2)

+ e−ilp(u1)+ilp(v2)S(u1, u2)
Ω(u2, v1)Ω(v2, u1)

(u2 − v1)(v2 − u1)

+ e−ilp(u1)+ilp(v1)S(u1, u2)S(v2, v1)
Ω(u2, v2)Ω(v1, u1)

(u2 − v2)(v1 − u1)
.

(3.153)
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From (3.153) we can see that there are two types of the terms appear, which we denote
as T1 and T2:

T1 = e−ip(u2)+ilp(v1)S(v2, v1)
Ω(u1, v2)Ω(v1, u2)

(u1 − v2)(v1 − u2)

+ e−ilp(u1)+ilp(v2)S(u1, u2)
Ω(u2, v1)Ω(v2, u1)

(u2 − v1)(v2 − u1)
,

T2 =
Ω(u1, u2, v1, v2)

(u1 − v1)(u2 − v2)
+ e−ilp(u1)−ilp(u2)+ilp(v1)+ilp(v2)S(u2, u1)

Ω(v1, v2, u1, u2)

(v1 − u1)(v2 − u2)

+ e−ilp(u2)+ilp(v2) Ω(u1, v1)Ω(v2, u2)

(u1 − v1)(v2 − u2)

+ e−ilp(u1)+ilp(v1)S(u1, u2)S(v2, v1)
Ω(u2, v2)Ω(v1, u1)

(u2 − v2)(v1 − u1)
.

(3.154)

The terms gathered in T1 are finite when taking the diagonal limit and the terms in T2

have a double pole and serve as a source of the 0
0

uncertainty. We introduce the following
notations

T d1 = lim
vi→ui

T1, T d2 = lim
vi→ui

T2. (3.155)

Then T d1 is simply given as follows

T d1 = e−ip(u2)+ilp(u1)S(u2, u1)
Ω(u1, u2)2

(u1 − u2)2
+ e−ilp(u1)+ilp(u2)S(u1, u2)

Ω(u2, u1)2

(u2 − u1)2
. (3.156)

On the other hand the expression for T2 is more complicated and can be written in the
following from

T d2 =
1

2

∂2

∂ε2

(
Ω(u1, u2, u1 + ε, u2 + ε)

+ e−ilp(u1)−ilp(u2)+ilp(u1+ε)+ilp(u2+ε)S(u2, u1)Ω(u1 + ε, u2 + ε, u1, u2)

− e−ilp(u2)+ilp(u2+ε)Ω(u1, u1 + ε)Ω(u2 + ε, u2)

− e−ilp(u1)+ilp(u1+ε)S(u1, u2)S(u2 + ε, u1 + ε)Ω(u2, u2 + ε)Ω(u1 + ε, u1)
)
|ε=0.

(3.157)

Let us now analyze the L-dependence recalling that l = L − 1. We start with the term
which appear with a factor of L2. It is the following

1

2

(
− L2p′(u1)2 − L2p′(u2)2 − 2L2p′(u1)p′(u2)

)
S(u2, u1)Ω(u1, u2, u1, u2)

+
1

2
L2p′(u2)2Ω(u1, u1)Ω(u2, u2) +

1

2
L2p′(u1)2Ω(u2, u2)Ω(u1, u1).

(3.158)

Before going further we describe one of the properties of the hexagon, which we are
going to use in order to prove that the form of the L-dependence indeed satisfy (3.36).
Namely, it turns out that when two rapidities of the hexagon coincide the resulting
hexagon form factor is proportional to the hexagon form factor with less excitations.
We will refer to this relation as the factorization property:

Hmat(u, {u}n|{v}n, u) = −Hmat({u}n|{v}n). (3.159)
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Note that here the relation only concern the matrix part. The factorization property is
a reformulation of the decoupling condition in [57], reflecting the fact that a pair of a
particle and its anti-particle with zero energy and momentum decouples from the state
by forming a singlet state [39], which scatters trivially with the rest of the excitations.

Other useful relations we are also going to use simply express the property of the
hexagon to acquire a factor of the S-matrix when permuting the particles. The relations
again are written for the matrix part, which gives rise to appearing of the h(u, v)’s:

Hmat(?, u, v, ?|?) = S(v, u)
h(v, u)

h(u, v)
Hmat(?, v, u, ?|?), (3.160)

Hmat(?|?, u, v, ?) = S(v, u)
h(v, u)

h(u, v)
Hmat(?|?, v, u, ?).

Applying the factorization property to (3.158) we get that the L2-term is given as
follows

L2p′(u1)p′(u2)

h̃(u1, u1)h̃(u2, u2)
. (3.161)

By performing the same kind of manipulations with the L-term one can get that it
reads

1

h̃(u1, u1)h̃(u2, u2)

(
− iLp′(u1)S(0,1)(u1, u2)

S(u1, u2)
− iLp′(u2)S(0,1)(u2, u1)

S(u2, u1)

+ Lp′(u1)f(u2) + Lp′(u2)f(u1)
)
.

(3.162)

Therefore the L-dependence of the structure constant C4 exactly reproduce the one
predicted by (3.36). After putting everything together, one can get

CHHL(u1, u2) ∝ 1

h̃(u1, u1)h̃(u2, u2)

(
ρ2(u1, u2) + f(u1)ρ1(u2) + f(u2)ρ1(u1)

+ f(u1, u2)
)
,

(3.163)

where f(u) is defined in (3.149) and f(u1, u2) doesn’t depend on L. We will not give the
exact expression for f(u1, u2) here, since it is very huge.

Finally, normalizing the structure constant by the norm of the heavy operator squared
we get

CHHL(u1, u2) =
1

ρ2(u1, u2)

(
ρ2(u1, u2) + f(u1)ρ1(u2) + f(u2)ρ1(u1)

+ f(u1, u2)
)
.

(3.164)

When we go to the arbitrary number of magnons, the main points stay the same. The
dynamical part of the hexagon, which easily can be computed at all loop as follows

Hdyn({u}n|{v−4γ}n) (3.165)

=
n∏
k=1

uk − vk + i

uk − vk
1

h̃(vk, uk)

∏
i<j h(ui, uj)h(vi, vj)∏

j 6=k h(vi, uj)
,

Hdyn({v4γ}n|{u}n)

=
n∏
k=1

uk − vk − i
uk − vk

1

h̃(uk, vk)

∏
i<j h(ui, uj)h(vi, vj)∏

j 6=k h(ui, vj)
,
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will be always the source of the simple poles at ui = vi, generating 0
0

uncertainty. Resolving
this uncertainty by taking the derivatives we will be always generating the L-dependence
coming from the cutting exponential factor e±ilp(u). Finally by using the factorization
property (3.159) one will be able to extract all the constituents of the proposal (3.36). 10

3.2.5 Coefficients f

Now let us discuss the coefficients f . We have already seen before that for one magnon
case we got match with one loop calculation (3.106). For arbitrary number of excitations
we can compare with the tree level result, since, if we put l0 = 1, the configuration of the
correlator we consider here reduces to the case, when the light operator is being 2Tr(ZZ̄),
corresponding to the situation discussed in (3.1.6) up to the factor of 2, which however
cancels under our normalization convention.

The comparison with the tree level gave the perfect match. We remind that in the
connected scheme (see the section (3.1.1)) the expression for the coefficients f c is given
as follows

f c(0)({u}N) =σ
(0)
1 ϕ

(0)
12 ϕ

(0)
23 · · ·ϕ

(0)
N−1,N + permutations. (3.166)

where

σ(0)(u) =
1

u2 + 1/4
, ϕ(0)(u, v) =

2

(u− v)2 + 1
. (3.167)

It is interesting that one loop computation indicates that the form still holds with the
following corrections

σ(1)(u) =
1

u2 + 1/4
+

8g2 u2

(u2 + 1/4)3
,

ϕ(1)(u, v) =
2

(u− v)2 + 1

+
4g2(u2 − v2)

(u2 + 1/4)(v2 + 1/4)((u− v)2 + 1)
,

(3.168)

which we checked analytically up to three magnons and numerically up to four. This
observation gives us a hope that the ansatz of this kind with appropriate corrections can
still hold at higher loops. However, in the case when l0 = 1, in order to check if it is true,
even at two loop we already need to take into account the leading wrapping corrections,
which goes beyond the subject of this thesis.

10. The proof of (3.36) for the arbitrary number of magnons is given in [127]

87



Chapter 4

Conclusion

In this thesis we considered some approaches to the three-point correlators in N = 4
SYM theory. The body of the thesis consists of the two parts presented in the second
and third chapters correspondingly. In the second chapter we considered the approach
to computation of the three-point functions inspired from the string field theory (SFT).
On the analogy of the string vertex which describes the interaction between the strings in
SFT we constructed the object which we call spin vertex. First we constructed the spin
vertex at tree level of the scalar sector of N = 4 SYM. We examined the BMN limit of
the spin vertex and showed that it reproduces the string vertex of SFT constructed in
[142, 115]. Then we generalized the spin vertex to full theory at tree level by exploiting
the oscillator representation of the symmetry algebra psu(2, 2|4). The vertex was written
in the form of exponential of bilinears of the oscillators acting on the vacuum. Then the
scalar product of the spin vertex with the states corresponding to the operators gives
the expression of the three-point function. By reducing the vertex to the so(4) sector we
reproduced the tree level result obtained in [67]. Finally we showed that the spin vertex
satisfies the monodromy condition and as a consequence appears to be Yangian invariant.

In the third chapter we considered the approach to the HHL correlators based on
the relation of this kind of correlators with the diagonal form factors. According to
the conjecture of [124] in case when the heavy operators are conjugated to each other
the dependence of the structure constant on the length of the heavy operators L should
take the form proposed for the diagonal form factors in two-dimensional quantum field
theories (QFT) [125]. First we examined this conjecture at tree level on the example of
the three-point correlators with the heavy operators being from the su(2) sector and the
light operators belonging to the scalar sector so(6). We showed that for the considered
configuration the conjecture of [124] holds at tree level. We also presented the general
argumentation in favor of the validness of the conjecture at one loop supported by the
explicit computation.

According to the conjecture, the structure constant of HHL correlator takes the form
of the sum over all the partitions of the heavy operator rapidities:

CHHL =
1

ρN(u)

∑
α∪ᾱ=u

fO (ᾱ) ρN (α) , (4.1)

where the ρN(α) is a diagonal minor of a Guadin norm (see (3.61)) and the coefficients
fO are defined by the form of the light operator O and don’t depend on L explicitly.
In case of the diagonal form factors in two-dimensional QFT’s these coefficients appear
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to be the diagonal form factors of the same local operator, but in infinite volume. The
infinite volume form factors are known to satisfy the property to be expressed in terms of
some simple building blocks for any number of magnons. In spite of it is not clear to us
what exact physical meaning is carried by the coefficients fO appearing in the structure
constant of the heavy-heavy-light correlators in N = 4 SYM, we showed that they also
can be expressed by means of some simple functions (see e.g. (3.76)), which we checked
up to five magnon case.

In the second part of the third chapter we extended our consideration to all loop by
exploiting the hexagon program [57], the newly proposed all loop method for computing
non-extremal three-point correlators. We considered the same kind of correlator config-
uration as in the first part with the only difference that for the sake of simplicity we
restricted ourselves by taking the light operator being a half-BPS state. On the examples
with heavy operators having one and two excitations we demonstrated that the conjecture
still holds at the level of any loop up to the leading wrapping corrections.

As for the tree level computation we examined the behavior of the coefficients fO.
Interestingly that we found that at one loop the coefficients fO can still be expressed
by the same ansatz with the proper one loop modification of the building functions (see
(3.168)), which we checked up to four magnon case. This give us a hope that the same
kind of ansatz can hold at the level of any loop.

In the end we would like to say that in spite of the great progress recently made due
to the hexagon program proposal, there is still a lot to be done in the field of three-point
function computation. One of the unsolved questions is computation of the finite size
corrections. It happened that already at four loop level it is not clear how to compute the
wrapping corrections to some correlators due to the appearance of the double pole in the
integrand which is not clear how to deal with [140]. Another important issue is related to
efficiency of the hexagon program. Even in the asymptotic approximation the structure
constant is given as a sum over partitions of the operator excitations, which makes very
hard the computation of the three-point correlators of the operators with large number of
excitations. Finally even after the problem with double pole is resolved, the computation
of three-point correlators at finite coupling still will remain an outstanding problem even
for the operators with small number of excitations. At this point further study of the
HHL correlators might play an important role, since the computation of the wrapping
corrections to the diagonal form factors exist in the literature [132, 143], and one can
try to apply these results to N = 4 SYM. Another idea which should be kept in mind
is the application of the separation of variables (SoV) technique to three-point function
computation. However, as it has been mentioned in the introduction, at the moment all
the results made in this direction are restricted to the tree level approximation.
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Appendix A

Large µ behavior of Neumann
coefficients

In this appendix, we list the leading order of Neumann coefficients in the large µ
expansion. We take the same convention as in [66]. For (m,n) 6= (0, 0)

N22
mn =

(−1)m+n

4πµ|α(1)|r
, N23

mn =
(−1)m+1

4πµ|α(1)|
√
r(1− r)

(A.1)

N33
mn =

1

4πµ|α(1)|(1− r)
, N11

mn =
(−1)m+n+1 sin(πmr) sin(πnr)

πµ|α(1)|

N21
mn =

(−1)m+n+1 sin πnr

π
√
r(n−m/r)

, N31
mn =

(−1)n sin(πnr)

π
√

1− r(n−m/(1− r))
.

For (m,n) = (0, 0), we have

N11
00 = 0, N12

00 = −
√
r, N13

00 = −
√

1− r (A.2)

N23
00 = − 1

4πµ|α(1)|
√
r(1− r)

, N22
00 =

1

4πµ|α(1)r
, N33

00 =
1

4πµ|α(1)|(1− r)
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Appendix B

The elementary fields in oscillator
representation

Z = |0〉, Z̄ = c†1d
†
1c
†
2d
†
2|0〉,

Y = c†2d
†
1|0〉, Ȳ = c†1d

†
2|0〉,

X = c†1d
†
1|0〉, X̄ = −c†2d

†
2|0〉,

Ψi1 = b†ic
†
2|0〉, Ψ̄i1 = −a†ic

†
1d
†
2d
†
1|0〉,

Ψi2 = −b†ic
†
1|0〉, Ψ̄i2 = −a†ic

†
2d
†
2d
†
1|0〉,

Ψi3 = b†ic
†
1c
†
2d
†
1|0〉, Ψ̄i3 = a†id

†
2|0〉,

Ψi4 = b†ic
†
1c
†
2d
†
2|0〉, Ψ̄i4 = −a†id

†
1|0〉,

Fij = −b†ib
†
jc
†
1c
†
2|0〉, F̄ij = a†ia

†
jd
†
1d
†
2|0〉,

(B.1)

Fµν = (σ̄µνε)ijF̄ij − (εσµν)ijFij, i, j = 1, 2, µ, ν = 1, ..., 4,

σµν =
1

4

(
σµσ̄ν − σν σ̄µ

)
, σ̄µν =

1

4

(
σ̄µσν − σ̄νσµ

)
, ε12 = 1.

(B.2)
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Appendix C

Computing the propagators from the
spin vertex

Here we will justify the expression for the spin vertex (2.104) and explain why the
expressions (2.102), (2.115) give the correct expression for the two- and three-point func-
tions.

The propagators for the elementary fields have the following form:

〈S̄(y)S(x)〉 =
1

(x− y)2
, S = X, Y, Z,

〈Ψ̄jb(y)Ψia(x)〉 = iδabσ
µ
ij∂xµ

1

(x− y)2
, a, b = 1, ..., 4, i, j = 1, 2,

〈Fρσ(y)Fµν(x)〉 = (ηνσ∂µ∂ρ + ηµρ∂ν∂σ − ηµσ∂ν∂ρ − ηνρ∂µ∂σ)
1

(x− y)2
.

(C.1)

We have to show that the spin vertex formalism reproduce these propagators correctly,
by means of the equation

〈O2(y)O1(x)〉 = 〈V12| ei(L
+
1 x+L+

2 y)|O2〉 ⊗ |O1〉 . (C.2)

First we establish the rule how the vertex transform the fields form the space (2) to the
space (1). Using the representation of the elementary fields from the App. B we obtain
by direct computation

(2)〈S|U2
F |V12〉 = |S̄〉(1), (2)〈S̄|U2

F |V12〉 = |S〉(1), S = X, Y, Z
(2)〈Ψia|U2

F |V12〉 = |Ψ̄ia〉(1), (2)〈Ψ̄ia|U2
F |V12〉 = |Ψia〉(1),

(2)〈Fij|U2
F |V12〉 = |F̄ij〉(1), (2)〈F̄ij|U2

F |V12〉 = |Fij〉(1),

(C.3)

where

U2
F |V12〉 = e

∑
i=1,2

(b
(1)†
i a

(2)†
i −a(1)†

i b
(2)†
i +c

(1)
i c

(2)†
i −d(1)

i d
(2)†
i )

c
(1)†
1 d

(1)†
1 c

(1)†
2 d

(1)†
2 |0〉(1)|0〉(2). (C.4)

This leads to the following expansion for the vertex

U2
F |V12〉 = |S̄(2)

n 〉|S(1)
n 〉+|S(2)

n 〉|S̄(1)
n 〉+|Ψ̄

(2)
ia 〉|Ψ

(1)
ia 〉+|Ψ

(2)
ia 〉|Ψ̄

(1)
ia 〉+|F̄

(2)
ij 〉|F

(1)
ij 〉+|F

(2)
ij 〉|F̄

(1)
ij 〉+...,

(C.5)
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where we assume summation over repeating indexes and three dots mean other possible
states appearing in the vertex expansion, including those not satisfying the zero central
charge condition.

Now we are ready to compute the propagators using the (C.2). We start with the
scalars.

〈S̄(y)S(x)〉 = 〈V12|ei(L
+
(1)
x+L+

(2)
y)|S̄〉(2) ⊗ |S〉(1) = 〈V12|ei(L

+
(1)
x−L+

(1)
y)|S̄〉(2) ⊗ |S〉(1) =

〈V12|U2
F (1)U

2
(1)e

i(L+
(1)
x−L+

(1)
y)|S̄〉(2) ⊗ |S〉(1) = 〈S|U2ei(L

+x−L+y)|S〉 =

〈0|U2ei(L
+x−L+y)|0〉 =

1

(x− y)2
,

(C.6)

where in order to get the last line we used (2.93). For the fermions we’ll consider one of
the possible propagators, the rest can be computed absolutely analogously:

〈Ψ̄j4(y)Ψi4(x)〉 = −〈V12|ei(L
+
(1)
x+L+

(2)
y)a

(2)†
j d

(2)†
1 |0〉(2)b

(1)†
i c

(1)†
1 c

(1)†
2 d

(1)†
2 |0〉(1) =

〈0|bid2c2c1U
2ei(L

+x−L+y)b†ic
†
1c
†
2d
†
2|0〉 = −〈0|U2e−iL

+ya†jb
†
ie
iL+x|0〉 =

i

2
∂µσ

µ
ij〈0|U2ei(L

+x−L+y)|0〉

=
i

2
∂µσ

µ
ij

1

(x− y)2
,

(C.7)

where we used the explicit expression in terms of the oscillators for the L+µ = −a†i σ̄
µ
ijb
†
j

and the property of the σ matrices

σµij(σ̄µ)kl = −2δilδjk. (C.8)

Finally we compute the propagator for the strength field:

〈F ρσ(y)F µν(x)〉 = 〈V12|eiL
+
(1)
xeiL

+
(2)
y
(

(σ̄µνε)ija
(2)†
i a

(2)†
j d

(2)†
1 d

(2)†
2 + (σµν)ijb

(2)†
i b

(2)†
j c

(2)†
1 c

(2)†
2

)
|0〉(2)⊗(

(σ̄µνε)ija
(1)†
i a

(1)†
j d

(1)†
1 d

(1)†
2 + (σµν)ijb

(1)†
i b

(1)†
j c

(1)†
1 c

(1)†
2

)
|0〉(1) =

− (σ̄µνε)ij(εσ
ρσ)kl〈0|U2e−iL

+ya†ia
†
jb
†
kb
†
l e
iL+

(1)
x|0〉+ (µ↔ ρ, ν ↔ σ) =

1

4
(σ̄µνε)ij(εσ

ρσ)klσ
κ
kiσ

ω
lj∂κ∂ω

1

(x− y)2
+ (µ↔ ρ, ν ↔ σ) =

1

8
(σ̄µνε)ij(εσ

ρσ)kl

(
σωljσ

κ
ki + σκljσ

ω
ki

)
∂κ∂ω

1

(x− y)2
+ (µ↔ ρ, ν ↔ σ).

(C.9)

Further we use the following identity:

σµijσ
ν
kl + (µ↔ ν) = −ηµν ε̄ik ε̄jl + 4ηκω(σκµε̄)ik(ε̄σ̄

ων)jl, (C.10)

where ε̄12 = −1. It gives

1

8
(σ̄µνε)ij(εσ

ρσ)kl

(
− ηκω ε̄lk ε̄ji + 4ητθ(σ

τκε̄)lk(ε̄σ̄
θω)ji

)
∂κ∂ω

1

(x− y)2
+ (µ↔ ρ, ν ↔ σ) =(

− ηκω

8
Tr(σρσ)Tr(σ̄µν) +

ητθ
2

Tr(σρσστκ)Tr(σ̄µν σ̄θω)
)
∂κ∂ω

1

(x− y)2
+ (µ↔ ρ, ν ↔ σ).

(C.11)
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Next, noticing that Tr(σµν) = Tr(σ̄µν) = 0 and also using the relations

Tr(σµνσρσ) = −1

2

(
ηµρηνσ − ηµσηνρ + iεµνρσ

)
,

Tr(σ̄µν σ̄ρσ) = −1

2

(
ηµρηνσ − ηµσηνρ − iεµνρσ

)
,

(C.12)

we get

〈F ρσ(y)F µν(x)〉 =
ητθ
8

(
ηρτησκ − ηρκητσ + iερστκ

)(
ηµθηνω − ηµωηνθ − iεµνθω

)
∂κ∂ω

1

(x− y)2
+

(µ↔ ρ, ν ↔ σ) =
1

8

(
ησκηµρηνω − ηρνησκηµω − ηρκηµσηνω + ηρκηµωηνσ + iερσµκηνω − iερσνκηµω−

iεµνρωησκ + iεµνσωηρκ + ητθε
ρστκεµνθω

)
∂κ∂ω

1

(x− y)2
+ (µ↔ ρ, ν ↔ σ).

(C.13)

One can see that after taking into account symmetrization with respect to the permu-
tation (µ ↔ ρ, ν ↔ σ) and also (κ ↔ ω), all the terms proportional to i cancel out.
Decomposition of the Levi-Civita tensor contraction gives (we use convention ε0123 = 1)

ητθε
ρστκεµνθω = ησνηρωηκµ + ησωηρµηκν + ηρνησµηκω − ησωηρνηκµ − ησµηρωηκν − ηρµησνηκω.

(C.14)
The terms proportional to ηκω cancel out due to equation of motion ∂2 1

(x−y)2 = 0. Taking
all this remarks into account we get final result:

〈F ρσ(y)F µν(x)〉 =
1

2

(
ησκηµρηνω − ηρνησκηµω − ηρκηµσηνω + ηρκηµωηνσ

)
∂κ∂ω

1

(x− y)2
.

(C.15)
The action of covariant derivatives in terms of oscillators is given by Dij = a†ib

†
j. Thus,

in case, when an elementary field belongs to the non-compact sector, the corresponding
propagator can be obtained by taking appropriate number of derivatives contracted with
right component of the sigma matrices, e.g.

〈Z̄(y)DijZ(x)〉 = 〈V12|ei(L
+
(1)
x+L+

(2)
y)|Z̄〉(2) ⊗ |DijZ〉(1)

= − i
2
σµji∂xµ〈V12|ei(L

+
(1)
x+L+

(2)
y)|Z̄〉(2) ⊗ |Z〉(1) = − i

2
σµji∂xµ

1

(x− y)2
.

(C.16)
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Appendix D

The operator U

In this Appendix we collect some formulas about the action of the operator U = UUF
which represents a finite super-conformal transformation. The operator is a product of a
su(2, 2)-rotation in imaginary angle

U = e−
π
4

(P0−K0) = e−
π
4

(L+
0 −L

−
0 ) = e−

π
4

(a†i b
†
i+biai) (D.1)

and a unitary su(4)-rotation

UF = e−
π
4

(R13−R31+R24−R42) = e−
π
4

(c†id
†
i−dici) . (D.2)

As it was suggested in [91], it is convenient first to compute the action of a rotation in an
arbitrary angle it

Ut = U †t ≡ et(a
†
i b
†
i+biai). (D.3)

The action of Ut on the oscillators ai, a
†
i , bi, b

†
i is

ai(t) ≡ UtaiU
−1
t = ai cos t− b†i sin t, bi(t) ≡ UtbiU

−1
t = bi cos t− a†i sin t,

a†i (t) ≡ Uta
†
iU
−1
t = a†i cos t+ bi sin t, b†i (t) ≡ Utb

†
iU
−1
t = b†i cos t+ ai sin t. (D.4)

From here one easily obtains the following property

U2aU−2 = b† , U2a†U−2 = −b , U2b U−2 = a† , U2b†U−2 = −a . (D.5)

Similarly one derives the analogous relations for compact piece UF

U2
F ci U

−2
F = d†i , U2

F c
†
i U
−2
F = di, U2

Fdi U
−2
F = −c†i , U2

Fd
†
i U
−2
F = −ci.

(D.6)
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Appendix E

Finite volume expansion

In this appendix we will demonstrate how to perform the finite volume expansion of
the scalar product discussed in the section 3.1.5 explicitly. Let us consider the following
scalar product

〈u1, u2, u3, u4|θ + i/2, u2, u3, u4〉 ∝

∣∣∣∣∣∣∣∣
iΩ11 −φ12 −φ13 −φ14

iΩ21 −φ22 −φ23 −φ24

iΩ31 −φ32 −φ33 −φ34

iΩ41 −φ42 −φ43 −φ44

∣∣∣∣∣∣∣∣ . (E.1)

By expanding the determinant with respect to the first column we get

iΩ11

∣∣∣∣∣∣
−φ22 −φ23 −φ24

−φ32 −φ33 −φ34

−φ42 −φ43 −φ44

∣∣∣∣∣∣
− iΩ21

∣∣∣∣∣∣
−φ12 −φ13 −φ14

−φ32 −φ33 −φ34

−φ42 −φ43 −φ44

∣∣∣∣∣∣
+ iΩ31

∣∣∣∣∣∣
−φ12 −φ13 −φ14

−φ22 −φ23 −φ24

−φ42 −φ43 −φ44

∣∣∣∣∣∣
− iΩ41

∣∣∣∣∣∣
−φ12 −φ13 −φ14

−φ22 −φ23 −φ24

−φ32 −φ33 −φ34

∣∣∣∣∣∣ .

(E.2)

By recalling the definition of ρ given in (3.61) it is easy to see that the first term is simply
equal to

iΩ11ρ3(u2, u3, u4). (E.3)

Now we perform one more expansion of each determinant of the second, third and fourth
terms with respect to those columns which do not contain the diagonal elements φii. We
get

− iΩ21

(
− φ12ρ2(u3, u4) + φ32(−φ13ρ1(u4)− φ14φ43)− φ42(φ13φ34 + φ14ρ1(u3))

)
, (E.4)

iΩ31

(
φ13ρ2(u2, u4) + φ23(φ12ρ1(u4) + φ14φ42) + φ43(φ12φ24 + φ14ρ1(u2))

)
, (E.5)
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− iΩ41

(
− φ14ρ2(u2, u3) + φ24(−φ12ρ1(u3)− φ13φ32) + φ34(φ12φ23 + φ13ρ1(u2))

)
. (E.6)

By putting everything together we get the finite volume expansion for the given scalar
product

〈u1, u2, u3, u4|θ + i/2, u2, u3, u4〉 ∝ iΩ11ρ3(u2, u3, u4) + iΩ41φ14ρ2(u2, u3)

+ iΩ31φ13ρ2(u2, u4) + iΩ21φ12ρ2(u3, u4) + (iΩ31φ43φ14 − iΩ41φ34φ13)ρ1(u2)

+ (iΩ21φ42φ14 + iΩ41φ24φ12)ρ1(u3) + (iΩ21φ32φ13 − iΩ31φ23φ12)ρ1(u4)

+ iΩ21φ32φ14φ43 + iΩ21φ42φ13φ34 + iΩ31φ23φ14φ42 + iΩ31φ43φ12φ24

+ iΩ41φ24φ13φ32 − iΩ41φ34φ12φ23.

(E.7)
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