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Preface

The work presented in this thesis manuscript was realized between fall of 2013 and fall of 2016, at the
Institut de Physique Théorique, CEA Saclay and the Institute of Systems and Synthetic Biology, Université
d’Évry.

The motivation of this work was to provide physical models for the characterization of chromosome
folding (or architecture) and understand the role it plays in regulating the genetic expression. The
manuscript is organized as follows.

In chapter 1, I give an introduction to chromosome architecture and the current biological conjectures
for its role. I also review standard techniques in Physics to model the chromosome. I conclude this
introductory chapter by giving an outline of the work presented in the subsequent chapters.

In chapters 2 to 5, I present the results of my research activity during these three years. This resulted
in the publication of one research article:

• Phase behavior of DNA in the presence of DNA-binding proteins [1].

Besides, Biology can lead to the usage of a specific vocabulary, or acronyms, whose meaning is
sometimes not obvious. Although I have attempted to always define such terms before use, a glossary is
available at the end of this manuscript, in order to ease the reading.
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Abstract

Increasing evidence suggests that chromosome folding and genetic expression are intimately connected.
For example, the co-expression of a large number of genes can benefit from their spatial co-localization
in the cellular space. Furthermore, functional structures can result from the particular folding of the
chromosome. These can be rather compact bundle-like aggregates that prevent the access to DNA, or in
contrast, open coil configurations with several (presumably) globular clusters like transcription factories.
Such phenomena have in common to result from the binding of divalent proteins that can bridge regions
sometimes far away on the DNA sequence. The physical system consisting of the chromosome interacting
with divalent proteins can be very complex. As such, most of the mechanisms responsible for chromosome
folding and for the formation of functional structures have remained elusive.

Using methods from statistical physics, we investigated models of chromosome architecture. A
common denominator of our approach has been to represent the chromosome as a polymer with bending
rigidity and consider its interaction with a solution of DNA-binding proteins. Structures entailed by the
binding of such proteins were then characterized at the thermodynamical equilibrium. Furthermore, we
complemented theoretical results with Brownian dynamics simulations, allowing to reproduce more of
the biological complexity.

The main contributions of this thesis have been: (i) to provide a model for the existence of transcrip-
tion factories characterized in vivo with fluorescence microscopy; (ii) to propose a physical basis for a
conjectured regulatory mechanism of the transcription involving the formation of DNA hairpin loops by
the H-NS protein as characterized with atomic-force microscopy experiments; (iii) to propose a physical
model of the chromosome that reproduces contacts measured in chromosome conformation capture (CCC)
experiments. Consequences on the regulation of transcription are discussed in each of these studies.

To model transcription factories, we implemented a Flory-Huggins polymer theory to characterize
the equilibrium of DNA chains interacting with non-specific binding proteins. For sufficiently high
DNA-protein binding affinity, this system was shown to exhibit a phase separation with a dilute and a
dense phase. We also investigated the structure of the dense phase and showed that for stiff DNA chains,
the dense phase may undergo a transition from a globular to a crystalline phase. While globular dense
phases can be a model for transcription factories, crystalline dense phases may be a model for bundle-like
aggregates in stressed bacteria.

To characterize the formation of DNA hairpin loops by the H-NS protein, we showed the existence of
a characteristic length for the H-NS binding region, delimiting two regimes. In one regime, DNA hairpin
loops are stable whereas in the other they are not. This result was obtained first from a simplified polymer
model with implicit interactions, and then confirmed using Brownian dynamics simulations with explicit
proteins.

To model chromosome architecture, we considered a Gaussian chain polymer model of the chromo-
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some and added Gaussian effective interactions to model the effect of divalent proteins. The contact
probability for any pair of monomers was computed and yielded an analytical closed-form which can be
used in an inverse approach to reconstruct an effective polymer model of the chromosome reproducing
contact probabilities measured in CCC experiments.

Keywords: statistical physics, polymer physics, Gaussian chain, worm-like chain, Flory-Huggins the-
ory, random phase approximation, DNA phases, structure function, transfer matrix, Brownian dynamics,
contact probability, DNA-binding protein, chromosome architecture, chromosome folding, chromosome
dynamics, gene co-localization, transcription factory, transcription regulation, chromosome conformation
capture.



Résumé

Plusieurs indices suggèrent que le repliement du chromosome et la régulation de l’expression génétique
sont étroitement liés. Par exemple, la co-expression d’un grand nombre de gènes est favorisée par leur
rapprochement dans l’espace cellulaire. En outre, le repliement du chromosome permet de faire émerger
des structures fonctionnelles. Celles-ci peuvent être des amas condensés et fibrillaires, interdisant l’accès
à l’ADN, ou au contraire des configurations plus ouvertes comportant quelques amas globulaires, comme
c’est le cas avec les usines de transcription. Bien que dissemblables au premier abord, de telles structures
sont rendues possibles par l’existence de protéines bivalentes, capable d’apparier des régions parfois très
éloignées sur la séquence d’ADN. Le système physique ainsi constitué du chromosome et de protéines
bivalentes peut être très complexe. C’est pourquoi les mécanismes régissant le repliement du chromosome
sont restés majoritairement incompris.

Nous avons étudié des modèles d’architecture du chromosome en utilisant le formalisme de la physique
statistique. Notre point de départ est la représentation du chromosome sous la forme d’un polymère rigide,
pouvant interagir avec une solution de protéines liantes. Les structures résultant de ces interactions ont été
caractérisées à l’équilibre thermodynamique. De plus, nous avons utilisé des simulations de dynamique
Brownienne en complément des méthodes théoriques, car elles permettent de prendre en considération
une plus grande complexité dans les phénomènes biologiques étudiés.

Les principaux aboutissements de cette thèse ont été : (i) de fournir un modèle pour l’existence des
usines de transcriptions caractérisées in vivo à l’aide de la microscopie par fluorescence ; (ii) de proposer
une explication physique pour une conjecture portant sur un mécanisme de régulation de la transcription
impliquant la formation de boucles d’ADN en tête d’épingle sous l’effet de la protéine H-NS, qui a été
émise suite à l’observation de ces boucles au microscope à force atomique ; (iii) de proposer un modèle
du chromosome qui reproduise les contacts mesurés à l’aide des techniques Hi-C. Les conséquences de
ces mécanismes sur la régulation de la transcription ont été systématiquement discutées.

Afin de modéliser les usines de transcription, nous avons considéré une théorie de Flory-Huggins
pour des chaînes d’ADN en interaction avec des protéines liantes. Cela nous a permis de caractériser
l’équilibre thermodynamique. En particulier, pour une affinité suffisamment forte avec les protéines,
l’ADN se condense, ce qui donne lieu a un système biphasique comportant une phase diluée et une phase
dense. Nous avons ensuite montré que pour des chaînes rigides, la phase dense peut passer d’une structure
globulaire à une structure cristalline. Une phase globulaire semble être un bon modèle pour les usines de
transcriptions, tandis que les amas fibrillaires s’apparentent davantage à une phase cristalline.

Afin de caractériser la formation de boucles d’ADN en têtes d’épingles sous l’effet de la protéine
H-NS, nous avons montré qu’il existe une taille caractéristique pour les régions de liaison avec H-NS.
Au-dessus, les boucles sont stables tandis qu’en dessous elles sont instables. En utilisant un modèle
simplifié de polymère, nous avons obtenu une expression pour cette grandeur, que nous avons ensuite
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confirmée à l’aide de simulations de dynamique Brownienne.
Afin de modéliser le repliement du chromosome, nous avons considéré un modèle de polymère

Gaussien auquel nous avons ajouté des interactions effectives représentant l’effet de protéines bivalentes.
Nous avons alors pu calculer la probabilité de contact entre deux monomères. L’expression obtenue a
ensuite été utilisée pour résoudre le problème inverse consistant à trouver le modèle effectif qui reproduit
les probabilités de contact mesurés lors d’expériences Hi-C.

Mots-clefs: physique statistique, physique des polymères, chaîne gaussienne, chaîne de Kratky-Porod,
théorie de Flory-Huggins, random phase approximation, phases de l’ADN, fonction de structure, matrice
de transfert, dynamique browniennne, probabilité de contact, protéine se liant à l’ADN, architecture du
chromosome, repliement du chromosome, dynamique du chromosome, co-localisation des gènes, usine à
transcription, régulation de la transcription, chromosome conformation capture.
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Chapter 1

Introduction

1.1 Chromosome architecture and genetic expression

1.1.1 The central dogma of biology

Life depends on the ability of cells to store, retrieve and translate a set of instructions commonly denoted
as the genetic code. This information is stored in the genes, which determine the characteristics of each
individual.

Since the beginning of the twentieth century, we know that the genetic code is carried by deoxyribonu-
cleic acid (DNA) molecules, with a simple chemical composition. The realization of X-ray diffraction
experiments in the 1950s led Watson and Crick (Nobel prize 1962) to propose the correct model for the
molecular structure of DNA [2]. Specifically, a DNA molecule consists of two polynucleotide chains (or
strands) wounded in a double-helix. Each nucleotide is made of a sugar and of one of the four bases:
adenine (A), thymine (T), guanine (G) and cytosine (C). The sugars are covalently linked together and
form the DNA “backbone”. In addition, the two strands are held together by hydrogen bonds between
the bases on the different strands, resulting in a double-helical structure with the base pairs (bp) inside.
Actually, bases do not pair at random, but by pair complementarity: A with T and G with C.

The complete sequence of base pairs determines the genetic information of each individual. It is
called the genome. The corresponding sequence of letters is enormous. For instance, in the Escherichia

coli bacterium, it contains 4.6 × 106 letters, and more than 3.3 × 109 in humans. For comparison, in the
latter case it would take more than 1000 books of 1000 pages to write down the full sequence. Besides,
specific DNA sequences, the genes, are encountered in the genome. Their number ranges from less than a
hundred in simple bacteria to several tens of thousands in higher organisms. For example, approximately
4600 genes are found in E. coli and more than 30 000 in humans.

The genes encode macromolecules such as ribonucleic acids (RNA), or polypeptides which are chains
of amino-acids more commonly known as proteins. These macromolecules are responsible for most of
the biochemical workings of a cell and can be envisioned as molecular “tools”. The central dogma of
molecular biology states that DNA sequences from genes are first transcribed into RNA. Furthermore,
some RNA transcripts known as messenger RNA (mRNA) are then translated into proteins. The protein
synthesis relies on a correspondence between the 4-letter nucleotide alphabet of DNA and the 20-letter
amino-acid alphabet of proteins.

In short, the DNA sequences of genes can be seen as a message, handled through two essential and

1



2 CHAPTER 1. INTRODUCTION

successive processes which are transcription and translation. Yet in order to adjust the synthesis of proteins
to the cell needs the genetic expression can be regulated.

1.1.2 From a classical to a modern view of transcription

In a classical work [3], Jacob and Monod (Nobel prize 1965) proposed their vision of the operon system
in bacteria, which has been extended to the whole living realm and is still nowadays a pillar of molecular
biology. Genetic expression is under the control of particular sequences called promoters, found a few
tens of base pairs upstream of the protein encoding sequences. Such regions have typically a size of
300 bp but sometimes can be even longer. The structural unit constituted of one promoter followed by one
or several regulated genes is called an operon. The promoter is of critical importance because it is where
the protein responsible for the mRNA synthesis, the RNA polymerase (RNAP), is recruited to initiate the
transcription of the downstream gene or operon. The affinity of RNAP with the promoter is therefore an
indirect measure for the transcription level and represents a handle for its regulation. Transcription factors
(TFs), that is to say proteins which can regulate the transcription of a gene, can bind to the promoter
thanks to the presence of several transcription factor binding sites (TFBS, fig. 1.1). Importantly the
binding of transcription factors to the promoter can alter its affinity with RNAP. When a transcription
factors stimulates the transcription it is called an activator (or inducer), and a repressor in the opposite
case. At a molecular level, a repressor bound to the promoter area will prevent RNAP binding or obstruct
transcription elongation, and an activator bound to the promoter will enhance transcription by recruiting
RNAP from the bulk (fig. 1.2).

DNA

promoter ORF

TFBS distant enhancer

Figure 1.1 – Organisation of a gene under transcriptional regulation. The open reading frame (ORF) encoding for a protein is
preceded by a promoter region where several transcription factor binding sites (TFBS) are found. The promoter region comprises
one main binding site and several auxiliary binding sites. In eukaryotes, TFBS participating to the gene expression regulation can
sometimes be found very far away on the DNA sequence and are called enhancers.

The transcription factor binding sites can be divided into two sets. The binding site with the highest
affinity is called the main binding site and is generally found in the promoter region. Others binding sites
entailing a weaker binding are called auxiliary binding sites. These are mainly found in the promoter
region, but can also be found outside in some cases. The simultaneous binding of a TF with the main and
auxiliary binding sites can also participate to the regulation of the transcription. A famous example is the
lac repressor system in Escherichia coli. In this particular case, efficient repression is achieved only when
the lac repressor binds simultaneously the main and auxiliary binding sites found 401 bp from each other
in the genome. Actually, many other examples of such regulatory systems have been characterized [5, 6].
This type of repression involves the formation of DNA loops from tens to a few hundreds base pairs long.
An in vitro assay has even constructed a synthetic repressor system involving the interaction between the
main binding site of a promoter and an auxiliary binding site separated by 2800 bp on a plasmid [7].
The corresponding DNA loops were observed with electron microscopy imaging and corresponded to the
repressed state (fig. 1.3). The existence of distant regulatory elements has now been established for a
large number of genes. In eukaryotes specifically, auxiliary binding sites can be found sometimes very far



1.1. CHROMOSOME ARCHITECTURE AND GENETIC EXPRESSION 3

Figure 1.2 – Classical view of the repressor/activator regulation of the transcription [4].

away from the promoter (tens of thousands base pairs), in which case they are called enhancers. When a
TF has a low affinity with its main binding, i.e. the promoter is weak, the simultaneous binding with an
auxiliary binding site may stabilize the binding of the TF to the promoter. When the main and auxiliary
sites are not too far from each other, say less than 200 bp, the formation of a DNA loop may simply prevent
RNAP binding by physically forbidding the access to the promoter. More generally, it is conjectured
that the interaction with a remote regulatory site (or CIS element) can favor the formation of a complex
comprising DNA and proteins which enhances or represses the transcription (fig. 1.4).

Let us now consider the problem of a TF diffusing in the nucleoid (in bacteria) or nucleus (in
eukaryotes), whose target is the main binding site found in the promoter region of the regulated gene.
The typical square displacement of the protein during the time t scales like 〈x2〉 ∼ Dt, where D is the
diffusion coefficient. For a protein diffusing in the cytosol, we typically have D ≈ 10 µm2 s−1 [8]. Hence
the average distance traveled by a protein during 10 ms is approximately 300 nm. If we consider that the
typical size of the bacterial nucleoid in E. coli is 600 nm, then the diffusion time can be quite limiting in
regulatory mechanisms of the transcription where proteins have to find their targets on the DNA, scattered
within the nucleoid. This is even more critical in eukaryotes, where the size of the nucleus is of several
micrometers. The presence of auxiliary binding sites provides an intuitive way to enhance the search
process. When a TF is bound to an auxiliary binding sites, it cannot diffuse freely in the cytosol. Instead,
it is confined in a sphere whose radius is the contour distance, say l, between the main and auxiliary
binding sites. Hence the TF only explores a reduced volume in comparison to the whole cellular (or
nuclear) compartment, of size L. In other words, the apparent concentration of this TF relatively to the
promoter is increased by a factor (L/l)3. This is a typical example of local concentration effect.

In summary, it has become clear in the recent decades that the DNA molecule cannot be reduced to a
mere “cookbook” with a passive role. Instead, it is directly involved in the genetic expression regulation.
Specifically, proteins can use the DNA molecule as a scaffold to build complexes or loops that regulate
the transcription [9]. This is possible because most TFs are divalent and have several additional binding
sites distributed on the genome.
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Figure 1.3 – Electronic microscopy image of a repressor system relying on the formation of a 2850 bp long loop between the main
binding site of a promoter and an auxiliary binding site [7].

Figure 1.4 – A distant regulatory sequence can interact with the promoter through a looping mechanism to enhance/repress
transcription [4].
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1.1.3 Multi-scale description of the chromosome

In physiological conditions, scores of proteins are bound to the DNA molecule, which consequently is
never found “naked”. The resulting molecule is usually called the chromosome. Although in the classical
sense, the chromosome refers to the threadlike structures of condensed DNA observed during mitosis (the
process by which a cell becomes two cells), it is nowadays commonly used to designate the double-helical
DNA molecule with its structuring proteins. Thus we shall follow this convention from now on. Under
the effect of these structuring proteins, the chromosome adopt higher level structures that constitute the
chromosome folding, or architecture.

In order to fit inside the bacterial cell or the eukaryotic nucleus, the chromosome is compacted nearly
103 times, and this is true in all organisms [10]. In E. coli for instance, the free chromosome (after lysis
of the cell walls) spans a spherical volume with a diameter of approximately 20 µm whereas the length
of a bacterium cell is typically of 1 µm (fig. 1.5). Therefore, the chromosome needs to be compacted (or
folded) in a multi-scale organisation whose underlying mechanism has remained unclear.

In eukaryotes, there exist four basic levels of folding of the chromosomal chain [11, 12] (fig. 1.6).
First, there is the nucleosomal organization enabled by the presence of structuring proteins called histones.
Naked DNA wraps around each histone octamer on approximately 147 bp to form a nucleosome. Two
consecutive nucleosomes are connected by a linker DNA approximately 80 bp long. Consequently, the
chromosome adopts a "beads-on-string" structure, clearly characterized by in vitro assays, where the
elementary monomer in the chromosomal chain is the nucleosome. A string of nucleosomes gives rise to
the 11 nm fiber. Second, the 30 nm fiber is obtained by coiling the 11 nm fiber in a solenoidal structure with
about 6 nucleosomes per turn. The chromosomal fiber is then usually designated as chromatin and has
a linear packing fraction ν ≈ 100 bp nm−1 [13–16]. Note that actively transcribed chromatin tends to be
loosely packed and is called euchromatin whereas chromatin containing non-coding or silent genes tends
to adopt more compact conformations (often under the effect of structuring proteins) and is usually called
heterochromatin. Yet, the 30 nm fiber is apparently only observed in the interphase nucleus. Therefore, a
third level of organization exists, in which the chromosomal chain is organized into domains containing
from 30 to 100 kbp and resulting in a fiber of diameter 200-300 nm. Finally during mitosis, the ultimate
level of compaction consists in an helical folding of the metaphase chromosome, resulting in the well
known condensed chromosomes [17,18]. Presumably, structuring proteins are responsible for transitions
from one level of organization to the other.

Bacteria lack histones, therefore the primary level of folding is not achieved and the chromosome
can be seen as a fiber of diameter 2.5 nm [13]. However, the bacterial DNA is most often circular and
negatively super-coiled. This is known to produce plectonemes. In particular, they have been reported
to provide a superior level of organization of the chromosome into domains whose size is estimated to
10− 20 kbp [19,20]. Yet, we stress that they are not maintained by scaffolding proteins and for this reason
can hardly be compared to chromosome folding in eukaryotes.

1.1.4 The role of chromosome architecture

The cooperative binding of hundreds of multivalent TFs producing DNA loops and of structuring proteins
on the chromosome can result in sophisticated structures. This kind of global changes can completely re-
define the chromosome architecture, and have far reaching consequences on transcription (and presumably
other biological processes) that we are just starting to understand.

A modern view of the chromosome is that TFs can form DNA loops resulting in several functional
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Figure 1.5 – E. coli chromosome after lysis of the cell walls (at the center) [21].

Figure 1.6 – The four levels of folding of the eukaryotic chromosome [12].
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clusters with a “rosette” shape [22,23] or in a solenoidal topology [24,25] (fig. 1.7). It is conjectured that
these organizations enable to bring close in space genes whose transcription needs to be synchronized
(fig. 1.7). In other words, the spatial distribution of genes inside the nucleus/nucleoid matters. This
suggests that the genetic expression of a gene will depend on the genes and proteins encountered in its
neighborhood. Hence, the specific folding of the chromosome can result in varying transcription levels
along the genome, a phenomenon known as context sensitivity which has remained poorly understood.

(a) (b)

Figure 1.7 – (a) Organization of the chromosome in “rosettes” by TFs [23].(b) Organization of the chromosome in “solenoid” [25].

Functional structures are also encountered in biological processes radically different from genetic
regulation. For instance, in E. coli and Bacillus subtilis bacteria, following an exposure to assaults inducing
double-strand DNA breaks, the chromosome is reorganized into filamentous bundle-like assemblies
maintained by the RecA protein. It is assumed that these structures with quasi-crystalline order can at the
same time protect DNA from further damages and enhance DNA repair by limiting the dimensionality of
the research in the homologous recombination process, hence justifying the name of “repairosome” [26].
Such ordered states, which have been reproduced in vitro, are also encountered in other contexts such as
viruses, mitochondrial DNA, stressed bacteria, and induce an inactive state for DNA [27].

In summary, recent advances in biology are promoting chromosome architecture as a major determinant
of the cell physiology. Back to transcription, while the operon system may be seen as the primitive
mechanism for genetic expression, it is has become clear that sophisticated regulatory mechanisms
require an interplay between chromosome architecture and transcription. Understanding this link is also
relevant to several active areas of research including conditional genetic expression, cell differentiation
and epigenetics. Yet many unknowns remains, and we are still far from having resolved this phenomenon.

1.1.5 Experimental data in biology

Many important experimental results in biology have been and still continue to be obtained with fluores-
cence in situ hybridization techniques (FISH). In such methods, a fluorescent probe that binds specifically
a target DNA (or RNA) sequence by base complementarity is introduced in the cell and monitored with
confocal microscopy imaging. This allows the spatio-temporal tracking of a precise location on the
chromosome (or locus). For instance, it has been used to investigate spatial organization of transcribed
genes [28] or to follow the motion of loci during DNA replication [29]. However, new technologies as
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well as new ideas have enabled the steady improvement of experimental techniques in biology. Namely,
localization-based super-resolution fluorescence techniques have considerably extended possibilities of-
fered by FISH imaging and enabled to track fluorescent probes at a resolution of a few nanometers, below
the diffraction limit. This can be done in two ways. The first is achieved by post-processing images
obtained from FISH techniques. Thus the increased resolution does not come from more accurate exper-
imental measurements but from an ingenious data treatment of many consecutive images. The second
is achieved in experimental setups implementing stochastic optical reconstruction microscopy or photo-
activated localization microscopy (STORM or PALM, Nobel Prize 2014). Alternatively, the tracking
of quantum “dots” with two-photon adsorption has enabled imaging in living cells at an unprecedented
resolution and with less damages caused to the cell.

Other techniques that have revolutionized experimental biology in the last decade or so are those
relying on polymerase chain reactions (PCR) combined with high-throughput DNA sequencing. For
instance, ChIP-seq techniques [30–32] allow to measure the probability of binding along the genome for
a protein of interest at a resolution of a few tens of base-pairs. Similarly, Hi-C techniques can measure
the probability of contact between pairs of DNA sequences on the chromosome and output a contact
probability matrix for the whole genome at a resolution of a few kbp [33–35].

The convergence in technologies now makes it possible to apply each of these techniques not on
a population of cells but at the single-cell level. Although they still are at their beginning, single-cell
techniques can throw light on stochastic fluctuations from a cell to another one in biological processes
including chromosome organization and genetic expression.

1.2 Modelling complexity in biology

Thanks to modern experimental techniques, the spatial structures of the chromosome that we just discussed
have been pretty well characterized. Yet understanding the underlying physics, that would pave the way to
an era of quantitative predictions, has remained an important challenge. While it is true that all biological
processes result from the superimposition of many individuals abiding by the laws of physics, the resulting
system can be of a daunting complexity. In particular, problems in biology are characterized by their
high-dimensionality, the non unicity of their solutions and the variety of the microscopical players involved
(i.e. the presence of disorder).

Proteins are ubiquitous in the cell and their many interactions with DNA form a complex system. On
a global scale, the chromosome architecture is constrained and shaped by structuring proteins, namely
nucleoid-associated proteins (NAPs) in bacteria and histones in eukaryotes. Yet less abundant but
dedicated transcription factors can bind to DNA and locally alter the structure the chromosome (e.g.

by forming loops). Reconciling these two effects into a single physical model is not an easy task and
requires a multi-scale approach. For example, there have been models of statistical physics showing how
the cooperative binding of transcription factors can result in abrupt transitions leading to the collapse of
the chromosome into loops [36] or to an apparent increased affinity of the TF to the gene promoter [37].
Methods from statistical physics have been very successful in describing a large variety of complex system
phenomena in the twentieth century, yet their application to study biological processes has found many
caveats. While they are adapted to describe systems with many but identical constituents, and possibly
a source of disorder, difficulties arise in biological systems which involve not a few but tens of protein
types, hence these models are rarely tractable.

For example, the organization of the chromosomes does not comply with predictions from standard
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polymer physics. Indeed, instead of being entangled, chromosomes remain in separated and non over-
lapping domains known as chromosome territories [38, 39] (fig. 1.8). The configurations adopted by a
single chromosome seem best described by the so-called crumpled (or fractal) globule polymer which as-
sumes that strong topological constraints (namely excluded volume) prevents mixing and the equilibrium
distribution of the polymer to be reached [40, 41].

It is often hard to know whether a biological process operates at or out of thermal equilibrium. On
the one hand the presence of many stationary processes suggests that processes in biology can occur at
thermal equilibrium. For example, the transcriptional response to external changes can be achieved within
seconds, like the SOS response to stress exposure in E. coli. This suggests that for several biological
processes, equilibrium, or at least a new stationary state, can be reached quickly. On the other hand,
molecular crowding significantly increases the diffusion times, which is also known to result in anomalous
diffusion [42, 43]. Furthermore, consistent with the crumpled globule picture, the equilibration time for
chromosomes is expected to count in tens of years, suggesting that the chromosomes in the nucleus are
never equilibrated [44].

(a) (b)

Figure 1.8 – (a) Fluorescence imaging of the chromosome 12, 14 and 15 in the nucleus of mouse liver cells display an organization
into chromosome territories [38]. (b) Crumpled versus equilibrium polymer globules [41].

A strategy to increase our understanding of biology and still retain a reasonable amount of complexity
is to resort to molecular dynamics (MD) simulations. Even then, it is not possible in general to perform
molecular dynamics simulations at the atomic resolution and produce trajectories corresponding to time
scales compatible with biological times (of the order of seconds). Instead, coarse-grained approaches
ignoring molecular details such as sequence effects, the double-helical structure of DNA and modeling
the solvent implicitly are preferred. This kind of MD, called Brownian Dynamics (BD), has been broadly
used in the past to model the dynamics of the chromosome. It has brought valuable insights on several
biological processes, including genes co-localization [45], transcription factories [46], or the nucleosomal
architecture in eukaryotes [15], and more generally on chromosome architecture [44, 47–49]. Obviously,
BD simulations still rely on several simplifying assumptions that reduce the underlying complexity. In
particular, a trade-off must be found between the system size, i.e. the number of constituents, and the
variety of the interactions, e.g. the types of proteins or sequence effects. For instance, a common approach
is to consider a generic type of protein with average properties, which represent several protein types at
the same time [46, 50]. The investigator is then left with several free parameters to fit (or to guess),
like binding energies between proteins and DNA, which in general are not known. Because of these
limitations, BD simulations cannot be used yet to produce accurate quantitative predictions. However,
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when they are in qualitative agreement with experimental observations, they can be of precious help to
understand the underlying physics and serve as proof of concept for a physical model.

In the next two sections, we spend some time to review some standard results in statistical physics that
will be used at different stages of this manuscript. In particular we introduce standard polymer models of
the chromosome and the Brownian dynamics framework.

1.3 Polymer model of the chromosome

1.3.1 Beads-on-string polymer

Being a long macro-molecule, the chromosome is commonly modeled as a polymer, consisting of the
repetition of structural units called monomers [51,52]. The chromosome is then divided into N+1 “blobs”
of size b, with coordinates ri , with i = 0, . . . , N . This is the so-called beads-on-string polymer of contour
length L = bN (fig. 1.9). In order to be a consistent model of the reality, b should be equal to the diameter
of the chromosome fiber. For eukaryotes, we will consider the 30 nm fiber, and we obtain b ≈ 3000 bp.
For bacteria, we will consider the naked DNA with diameter 2.5 nm and we obtain b ≈ 7.3 bp (where we
have used that one base pair has a size of approximately 0.34 nm). In the sequel, we introduce the standard
polymer models that are used to model the chromosome. For an exhaustive review on polymers, we refer
the interested reader to the classical literature [53–55].

Figure 1.9 – Beads-on-string polymer.

1.3.2 Gaussian chain

Assuming that the first monomer is attached to the origin, r0 = 0, the end-to-end vector is defined as:

Re = rN

=

N
∑

i=1

ui,
(1.1)

where ui = ri − ri−1 is the bond i vector. The expression in eq. (1.1) may be seen as a discrete stochastic
process describing the motion of a particle making random jumps ui . If we assume that all bonds are
independently and identically distributed (i.i.d.) random variables with zero mean and variance b2, we
obtain the mean square end-to-end distance:

〈R2
e〉 = b2N, (1.2)
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where b, the monomer size, is also called the Kuhn length. Note that for long polymers (N ≫ 1), we
have by the central limit theorem that the probability distribution function (p.d.f.) of Re converges to a
Gaussian distribution. Another useful quantity is the (square) radius of gyration:

R2
g =

1

N + 1

N
∑

i=0

(ri − rcm)2, (1.3)

where rcm is the center of mass of the polymer. The radius of gyration gives an account of the spherical
volume occupied by the polymer coil, and it has also the advantage of being defined for branched polymers,
when the end-to-end vector is not.

If we assume that all bonds ui have Gaussian distributions, then Re has also a Gaussian distribution.
This is the so-called Gaussian chain model, which is equivalent to say that monomers are linked one to
another by harmonic springs (fig. 1.10). The internal energy of the polymer chain is then simply obtained
by summing the contributions of each spring:

βUe [{ri }] =
3

2b2

N
∑

i=1

(ri − ri−1)2. (1.4)

The partition function of the Gaussian chain is then

QN =

∫ N
∏

i=1

d3ri exp (−βUe [{ri }]), (1.5)

and we can compute the characteristic function of the end-to-end distance by Gaussian integral calculus:

〈

exp (ik · Re)
〉

=

1

QN

∫ N
∏

i=1

d3ri exp (−βUe [{ri }] + ik · rN )

= exp

(

−1

2
b2N k2

)

,

(1.6)

from which we conclude that Re indeed is normally distributed and with second moment as in eq. (1.2).
For completeness, note that eq. (1.4) can be extended in the continuum limit: ri − ri−1 ← ṙ(s). The chain
is then determined by the space curve r(s), where s is now a continuous variable between 0 and N . The
energy of the continuous Gaussian chain reads:

βUe [r(s)] =
3

2b2

N
∫

0

ds ṙ(s)2. (1.7)

In reality, approximating a polymer to a Gaussian chain is only valid for weak perturbations, and in
particular when the end-to-end distance is much smaller than the contour distance: Re ≪ Nb. Otherwise,
non-linearities in the bonds elasticity may arise. Besides, Gaussian polymers allow the bond distance
to fluctuate quite a lot (〈u2

i
〉 = b2). This will be problematic in BD simulations with excluded volume

interactions between the monomers because this would result in possible crossings between different
bonds. Therefore, for BD implementations, we will prefer to eq. (1.4), the finitely-extensible non-linear
elastic potential (FENE):

Uf ene [{ri }] = −
3ker2

0

2b2

N
∑

i=1

ln *,1 −
u2
i

r2
0

+-, (1.8)
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Figure 1.10 – Gaussian chain model.

where r0 is a distance above which non-linear effects start to appear in the bonds elasticity and ke is the
rigidity constant of the non-linear spring. Note that for ui ≪ r0 we recover eq. (1.4), i.e. a linear spring
(with ke = 1 kBT). In practical applications, and following the authors who introduced this potential [56],
we will generally take r0 = 1.5 b and ke = 10 kBT .

1.3.3 Excluded volume and short-range interactions

Gaussian chains are also known as phantom chains because monomers can overlap. In real polymers
however, monomers cannot inter-penetrate, and it is necessary to introduce excluded volume interactions.

In dilute solutions, the size of real chains depends on the quality of the solvent. In good solvent, the
end-to-end distance is still expressed as a power law of N , as in eq. (1.1), but with another exponent ν:

Re ∼ bNν (1.9)

whose value has been well characterized [53]. Namely, in three dimensions ν ≈ 0.588. This value is well
approximated by the Flory exponent νF = 3/5. In bad solvent, the chain collapses into a close-packed
configuration called globule, in which monomers are in contact. The resulting size of the coil scales like
Re ∼ bN1/3. In the other limit, for very concentrated solutions, chains behave essentially like ideal chains
with size Re ∼ bN1/2.

Let us now consider the nucleoid in E. coli with volume 0.2 µm3 and a genome of length Ng =

4.6 × 106 bp. Following the description of chromosome organization given in section 1.3, we may assume
that the chromosome is represented by a beads-on-string polymer with N = Ng/b monomers of size
b = 7.35 bp = 2.5 nm. It follows that the volume occupied by the polymer is approximately Nπb2/4, from
which we obtain that the chromosome volume fraction in physiological conditions is η ∼ 10−2. By applying
similar arguments to an eukaryotic nucleus of size 1-10 µm with a genome of length Ng = 109 bp, and
monomers of size b = 3000 bp corresponding to the 30 nm fiber packaging, we also obtain a chromosome
density of the order of η ∼ 10−3 − 10−2. Thus, we may consider that the chromosome can be modeled as
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a polymer in a dilute solution. We will also assume that the cytosol is a good solvent for the chromosome
polymer.

Most of DNA-DNA and DNA-protein interactions are in fact Coulombic interactions. Yet ions are
present in the cell, giving rise to screened electrostatic interactions. The range of the interactions is
given by the Debye-Hückel length scale, rDH . In physiological conditions, the concentration of salt is
c0 ≈ 0.1 M, giving rDH ≈ 1 nm [57, 58]. Since interactions decay exponentially for larger distances and
since proteins have a size of the order of the nanometer, the range of the interactions will be typically the
size of the objects interacting together.

A commonly used two-parameter empirical form for describing non-bonded interactions between
two neutral (but possibly polarized) particles is the Lennard-Jones, or “6-12”, potential. For a pair of
monomers separated by a distance r , it reads:

VLJ (r) = 4ε

(

(

σ

r

)12
−

(

σ

r

)6
)

, (1.10)

where ε is an energy scale in kBT and σ is the hard core distance. Here, the interaction still decays as
a power law of the distance r . A standard method to make this interaction short-range, is to introduce a
threshold r th such that for distances r > r th the interaction vanishes. Therefore, in practical applications,
we will consider the truncated Lennard-Jones potential:

Uev (r) =


VLJ (r) − VLJ (r th) if r < r th,

0 otherwise.
(1.11)

The form in eq. (1.11) can be used to describe both repulsive and attractive interactions. Indeed, the
repulsive or attractive nature of the interaction depends on the sign of the Mayer coefficient:

α =

∫

d3r
(

1 − e−βU (r )
)

, (1.12)

which is the mean-field potential associated to the generic pair potential U (r). When α > 0, the potential
is repulsive, and when α < 0 the potential is attractive despite the presence of a hard core (fig. 1.11).
Note that α has the dimension of a volume, and can be understood as follows. Let us consider an isolated
monomer at the center of a spherical volume equal to |α |, that we call the “volume of influence”. An
external monomer penetrating in this volume of influence will tend to be ejected when α > 0 while it
will tend to remain inside when α < 0. In the first case, |α | is effectively a volume from which the other
monomer is excluded, while in the latter case it defines a “basin of attraction”.

In practical implementations, we will take σ = b and ε = 1 kBT . Furthermore, to model a strict
repulsive interaction, we will consider r th = 21/6σ, resulting in Uev (r) > 0 for r < r th , and consequently
α > 0. This choice also ensures that the repulsive force, −∂Uev/∂r , vanishes precisely for r = r th .

1.3.4 Bending rigidity

In reality, polymer chains are not always flexible and may oppose a resistance to bending. Incidentally,
DNA is one of the best characterized examples of polymer with a large bending rigidity. There are different
ways to model stiff polymers.
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Figure 1.11 – Potentials of interaction with different shapes. The Mayer coefficient α =
∫

dr
(

1 − exp (−u(r ))
)

measures the
volume excluded for one bead interacting through this potential with a bead attached to the origin. For potentials with an attractive
tail (red), α can be negative. When α < 0 we say that the potential is attractive, otherwise we say that the potential is repulsive.

1.3.4.1 Worm-like chain

Model

The discrete worm-like chain, originally introduced by Kratky and Porod [59] to describe polymers
with bending rigidity, assumes that the bonds ui are of fixed length, b (fig. 1.12). For simplicity, we will
take b = 1 in the sequel. We therefore introduce the N spherical coordinates systems (wi, vi, ui) attached
to each bond (the zenith is given by the bond i direction). The coordinates of bond i + 1 in the frame i and
the corresponding integration measure read:

ui+1 =
*..,
sin αi cos ζi
sin αi sin ζi

cos αi

+//-(wi,vi,ui )

, d2ui+1 = sin αidαidζi, (1.13)

where αi (resp. ζi) is the polar angle (resp. azimuthal angle) associated to frame i. Hence αi is the angle
between bond i and i + 1. In particular, we have ui+1 · ui = cos αi . We will say that the spherical system
in eq. (1.13) characterizes the joint i of the chain.

The Kratky-Porod chain potential is then expressed as:

Ub [{ri }] = β−1κ

N−1
∑

i=1

(1 − ui · ui+1) , (1.14)

where κ is a bending rigidity coefficient expressed in kBT .

Partition function and chain propagator

The partition function may then be written in a compact form:

QN =

∫

d2uN d2u1 TN−1(uN | u1), (1.15)
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Figure 1.12 – Worm-like chain.

where we introduced the transfer matrix T with elements:

T
(

u | u′) = exp
(−κ(1 − u · u′)), (1.16)

and can be factorized to give an analytical result. To this end, let us introduce the chain propagator
qN−1(u) and the reduced probability function ΨN (u):

qN−1(u) =

∫

d2u′TN−1(u | u′),

ΨN (u) =
1

QN

qN−1(u),

(1.17)

where we have chosen the underscript N − 1 for the chain propagator to emphasize that it is expressed as
the matrix T to the power N − 1. Therefore, qn(u) is the statistical weight for a polymer with n joints (i.e.

n + 2 monomers) to have its last bond (or the first) pointing in the u direction. In order to compute qn(u),
we make use of the change of variable ui · ui+1 ← cos αi . Using the independence of the joints angles we
have:

qn(u) =

∫

d2u1 . . . d
2un T (u | un) . . .T (u2 | u1)

=

n
∏

i=1


2π

∫

0

dζi

π
∫

0

dαi sin αi exp (−κ(1 − cos αi))


= zn with z = 4π

exp (−κ)

κ
sinh κ.

(1.18)

In particular, we get that the reduced probability ΨN (u) is uniform. In other words, the orientation of
the final bond is isotropic. Hence we retrieve the rotational invariance allowed in this model. Due to this
factorization of the chain propagator, the partition function is trivially expressed as:

QN =

∫

d2uN qN−1(uN ) = 4πzN−1. (1.19)
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Orientational correlations

The WLC is also characterized by an exponential decay of the orientational correlations 〈un+1 · u1〉 as
a function of the number of joints n. In order to briefly review this result, let us now introduce the Green
function of the discrete WLC:

Gn(u, u′) =
1

zn
Tn (

u | u′) , (1.20)

where n is the number of joints between the last bond, un+1 = u, and the first bond, u1 = u′ in a chain with
n + 2 monomers. In order to obtain the orientational correlations, we first compute the thermodynamical
average 〈cos αi〉 for any joint i. A similar computation as in eq. (1.18) yields

〈cos αi〉 = coth (κ) − 1

κ
. (1.21)

By expressing un+1 in the spherical coordinate system attached to un:

un+1 = sin αn cos ζnwn + sin αn sin ζnvn + cos αnun, (1.22)

we see that

〈un+1 · u1〉 = 〈cos αnun · u1〉 + 〈c1 cos ζn + c2 sin ζn〉
= 〈cos αn〉 〈un · u1〉,

(1.23)

where we have used the independence of consecutive polar and azimuthal angles, and 〈cos ζn〉 = 〈sin ζn〉 =
0. By recurrence, and by substituting eq. (1.21), we obtain the orientational correlations:

〈un+1 · u1〉 =
(

coth κ − 1

κ

)n

−−−−→
κ→∞

exp
(

−n

κ

)

, (1.24)

for κ ≫ 1. Therefore, κ characterizes the distance (in unit of monomers) above which the chain looses
the memory of its orientation. Following standard notations, κ is usually called the persistence length and
noted lp = κ. For moderate values of κ, we can make use of the two largest eigenvalues (λ0 > λ1) of the
transfer matrix T :

〈un+1 · u1〉 =
∫

du du′ u · u′Gn(u, u′)

=

∫

du du′ u · u′Tn (u | u′)
∫

du du′Tn (u | u′)

∼
(

λ1

λ0

)n

. (1.25)

Therefore, the persistence length is more generally defined as lp = −1/ log (λ1/λ0). We have computed
the persistence length for several values of κ (fig. 1.13). Clearly the persistence length quickly converges
to the bending rigidity parameter, lp → κ, and eq. (1.24) can be considered as a good approximation in
most cases.

Let us note that similarly to the Gaussian chain, the Kratky-Porod potential in eq. (1.14) can be
defined in the continuum limit: (1 − ui · ui+1) ← u̇2(s)/2. In that case the correlation of the tangents is
always: 〈u(0) · u(s)〉 = exp (−s/lp). The continuous worm-like chain is presented in further details in
appendix 1.B.
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Figure 1.13 – Persistence length computed from the ratio of the two largest eigenvalues of T (eq. (1.25)) as lp = −1/ log (λ1/λ0)

for different values of κ. We have used a discretization of the polar angle α interval [0, π] in 1000 points (the azimuthal angle is
irrelevant and disappear from the integration).

1.3.4.2 Gaussian chain with curvature penalty

Although for numerical simulations we will generally consider the WLC model of eq. (1.14), it is not
always adapted to analytical calculations because of the constraint on the bond length: |un | = 1. A simple
alternative is to relax this strict constraint and introduce instead a Lagrange multiplier λ. This trick allows
us to have an integration measure for the bonds on the full volume instead of the unit sphere. The partition
function for this model reads [60–62]:

QN =

∫ N
∏

i=1

d3ui exp *,−
3

4
lp

N
∑

i=1

(ui − ui−1))
2 − λ

N
∑

i=1

u2
i
+- (1.26)

which is a Gaussian integral. Hence it can be computed, and the result in the N → +∞ limit is:

QN = zN, z =

(

4

3πlp

)3/2

exp
(

3 −
√

3λ/lp
)

. (1.27)

The Lagrange multiplier can be then determined with a self-consistent argument:

− 1

N

∂ ln QN

∂λ
= 〈u2

n〉 = 1⇔ λ =
3

4lp
. (1.28)

Remarkably, this model reproduces the orientational correlations of the WLC, namely

〈u1 · un+1〉 = exp (−n/lp). (1.29)

1.3.4.3 Persistence length values for DNA

On the basis of a worm-like chain model, naked DNA has a persistence lp = 50 nm and the 30 nm fiber
has a persistence length lp = 60-90 nm [13]. Therefore, in our familiar monomer units, we will typically
consider in practical applications lp = 20 b for the former and lp = 3 b for the latter.



18 CHAPTER 1. INTRODUCTION

1.3.5 Final model of the chromosome

In summary, by collecting the potentials described in the last paragraphs, the chromosome will be modeled
as a beads-on-string polymer with N + 1 monomers, and with a potential energy given by:

U = Uf ene +Ub +Uev . (1.30)

1.4 Brownian dynamics

Brownian dynamics simulations are molecular dynamics simulations in which many molecular details are
coarse-grained. In particular, beads in simulations do not represent an atom nor a base pair, but instead
a “blob” which is the basic entity of a mesoscopic description of the chromosome. Furthermore, the
solvent (i.e. water molecules, plus salt and ions in solution) are not modeled explicitly. Instead, each
bead exchanges energy with a thermal bath at temperature T . The classical framework to describe the
Brownian motion of a particle is the Langevin equation.

1.4.1 The Langevin equation

Let us consider the motion of a particle with coordinates x(t). The Langevin equation is nothing else than
the Newton equation of motion for a particle in a viscous medium plus a stochastic term:

mẍ(t) = −γ ẋ − ∂U

∂x
(x(t)) + γη(t), (1.31)

in which m is the mass of the particle, γ is a damping term and −∂U/∂x is the force applied to the particle
with U being the potential energy of the particle. These first three terms are deterministic. In addition
there is a stochastic term, η(t) which represents random collisions with the solvent at temperature T . More
accurately, η is an uncorrelated continuous random process with two first moments:

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), (1.32)

where D is the diffusion coefficient of the particle. It can be shown that in order to sample the Boltzmann
equilibrium, D needs to satisfy the Stokes-Einstein relation (see appendix 1.C):

D = kBT/γ, (1.33)

where finally from the Stokes’ law applied to a bead of diameter b we get γ = 3πbµ, with µ being the
fluid viscosity.

In order to produce trajectories of polymer dynamics, the Langevin equation eq. (1.31) is applied to
each bead and integrated numerically with the LAMMPS simulation package [63], which uses a standard
velocity Verlet integration scheme [64]. Practically, this requires the choice of an integration time step dt.
Unless specified otherwise, we will consider in this thesis dt = 10−2 when there is no excluded volume
interaction, and dt = 10−3 otherwise. We also set γ = 1 (in simulation dimensionless units).

1.4.2 Mapping to real time

BD simulations can be used in order to compute equilibrium quantities and validate theoretical predictions.
Furthermore, it is possible to map the simulation time to the real time.
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Let us write the diffusion coefficient as D = b2/τB. During the time τB, a particle typically travels
through a distance b, which is its own size. Consequently τB is the natural unit of time for this diffusive
process and is called the Brownian time. In BD simulations we take b = 1 and D = 1 (in dimensionless
units), therefore a unit of simulation time correspond to the Brownian time.

The diffusion coefficient in the bacterial nucleoid was found to be D = 10 µm2 s−1 [8]. Therefore, for
b = 2.5 nm we find τB = 600 ns and for b = 30 nm we find τB = 90 µs. Consequently, by performing runs
of 105 simulation time units, we can typically produce trajectories corresponding to real times between
10 ms and 10 s.

1.4.3 A practical detail: relaxation of polymer systems with excluded volume

In general we will want to start from a random configuration of a self-avoiding polymer. Although we
can start from an arbitrary configuration respecting excluded volume constraints, the relaxation to the
Boltzmann equilibrium can be very slow. Below is a standard procedure to circumvent this problem and
generate quickly an initial configuration for a polymer with excluded volume interactions.

First, perform a relaxation run without excluded volume or short-range attractive interactions. This
corresponds to the dynamics of an ideal chain and aims at sampling rapidly a large number of configurations
to loose the memory of the initial condition.

Second, perform an intermediate run with few iterations (generally 106 iterations at dt = 10−3) with a
soft pair potential:

Uso f t (r) = A

(

1 + cos
(

πr

r th

))

, (1.34)

where r th is the same cutoff as in the truncated Lennard-Jones potential from eq. (1.11). The magnitude
A is progressively increased from 1 to 60 during the run [56], so that we obtain in the end a configuration
with no overlaps between the beads.

Finally, the main run with excluded volume and short-range interactions is performed starting from
the configuration without overlaps. Several configurations (generally 1000) are extracted from the re-
sulting trajectory, which sample the Boltzmann ensemble. These configurations can be used to compute
equilibrium averages according to the ergodic property of the Boltzmann equilibrium.

1.5 Organization of the thesis and personal contributions

This thesis aims at proposing physical models for some of the functional chromosome architectures
characterized or conjectured in biology. In addition, we have sought to understand at a phenomenological
level how these structural features can influence the transcription in living cells. Our strategy has been
to start from simple physical models that may capture observed features and use methods from statistical
physics to obtain analytical results. However, as mentioned previously, such models are not always
amenable to analytical solutions. Therefore, we also have used BD simulations in order to complement
our studies and sometimes bring unique insights.

In chapter 2, I present the work published in [1] on the modelling of transcription factories. Transcrip-
tion factories are clusters of DNA and proteins, characterized in vivo, from which most of the transcribed
RNAs originate. Despite increasing evidences, very little is known about the structure of these clusters,
let alone the underlying physical mechanism. At some point during this investigation, and in the context
of a polymer field theory, I needed to compute the structure function of a polymer with semi-flexibility.
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Yet no analytical form is known, and this led me to design a method based on complex transfer matrices,
that I present in chapter 3.

In chapter 4, I present a model for a regulatory mechanism of the transcription, based on the formation
of DNA hairpin loops by the H-NS structuring protein in E. coli. The disruption of these structures by
external transcription factors may constitute a way to relieve H-NS mediated repression, although this last
mechanism has not been investigated in details in this thesis.

In chapter 5, I propose a method to reconstruct the chromosome architecture from contact matrices
obtained with Chromosome Conformation Capture experiments. Namely, the resulting polymer model
reproduces the experimental contacts. This achievement constitutes a major improvement compared with
other methods proposed in the literature.



Appendix

1.A Asymmetrical DNA double-helix

The four fundamental bases can be divided into purines (A and G) and pyrimidines (T and C). A purine
contains a single heterocycle in its chemical composition whereas a pyrimidine contains two of them.
This introduces an asymmetry in the DNA double-helix. Namely, the DNA molecule has two asymmetric
grooves. One groove is smaller than the other. The larger groove, which is called the major groove, occurs
when the backbones are far apart, while the smaller one is called the minor groove and occurs when they
are close together (fig. 1.14).

The major and minor grooves expose in a different manner the edges of the bases. As might be
expected, the major groove provides an easier access to the bases than the minor groove. Hence the
specific binding of proteins to DNA is generally achieved by making contacts with bases through the
major groove.

Figure 1.14 – The DNA double-helix is asymmetrical and induced the existence of a major and a minor groove. [65]

1.B Continuous worm-like chain

Model

The Kratky-Porod model [59], also known as Worm-Like Chain (WLC), can be formulated for contin-
uous chains. A polymer of length L = bN is described by a space curve, r(s), where s is an arc variable

21
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varying continuously from one end at s = 0, to the other at s = N . Here, b represents a unit length, which
is typically the length of the smallest building unit of the polymer. In addition, let us introduce u(s), the
unit tangent vector to the curve r(s) at coordinate s. The internal energy of the WLC can be written as

βUb [u(s)] =
κ

2

N
∫

0

ds

(

du

ds

)2

(1.35)

where β = (kBT )−1 is the inverse temperature and κ is a bending rigidity parameter. Therefore, βUb is a
functional of u(s) which belongs to the unit sphere. Namely, in the spherical coordinate system attached
to the z-axis we have:

u =
*..,
sin θ cos ϕ
sin θ sin ϕ

cos θ

+//-
, d2u = sin θdθdϕ. (1.36)

Partition function and chain propagator

The partition function reads:

QN =

∫

D [u(s)] exp (−βU0 [u])δ (| u(s) | −1) . (1.37)

Because of the constraint on the norm of u(s), computing the integral in eq. (1.37) is rather difficult.
We now turn our attention to the Chapman-Kolmogorov (or Schrödinger) equation satisfied by Ψ(u; s),
which is the p.d.f. that the last tangent of a chain of length s is u. To this end, we introduce the chain
propagator q(u; s), which is the statistical weight that the last (or the first) segment of a chain of length s

is u. More formally:

q(u; s) =

∫ u(s)=u

D [u(σ)] exp (−βUb [u(σ)])δ (| u(σ) | −1)

Ψ(u; s) =

1

QN

q(u; s)

. (1.38)

In what follows, we will define the thermodynamical average for any functional A [u(s)] of the tangent
curve as:

〈A [u(s)]〉 = 1

QN

∫

D [u(s)] A [u(s)] exp (−βUb [u])δ (| u(s) | −1) . (1.39)

Chapman-Kolmogorov equation

We can make use of the Markovian structure of the path integral in eq. (1.38) to split the integration
over several sub-chains, connected one to the next. In particular, for small variations in the chain length,
∆s, and small displacements on the unit sphere, ∆u we can write (see [55]):

Ψ(u; s + ∆s) =
1

4π

∫

d2(∆u) Ψ(u − ∆u; s) exp (−β∆Ub)

= Ψ(u; s) − 〈∆u〉µ
∂Ψ

∂u
+

1

2
〈∆u2〉µ

∂2
Ψ

∂u2
+ o(〈∆u2〉µ)

(1.40)

where the variation in internal energy is written in terms of the displacement ∆u on the unit sphere:

β∆Ub =
κ

2∆s
∆u2
=

κ

2∆s
(∆θ2

+ sin2 θ∆ϕ2), (1.41)
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and the bracket averages are computed from the Gaussian weight µ such as:

µ(∆u) =
1

4π
exp (−β∆Ub)

〈∆u〉µ = 0, 〈∆u2〉µ =
∆s

κ
.

(1.42)

In the limit ∆s → 0, we obtain the Chapman-Kolmogorov equation:

∂Ψ

∂s
(u; s) =

1

2κ

∂2
Ψ

∂u2
, (1.43)

where the operator ∂2/∂u2 is the Laplacian on the unit sphere:

∂2
Ψ

∂u2
=

1

sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+

1

sin2 θ

∂2
Ψ

∂ϕ2
. (1.44)

Orientational correlations

Let us now introduce the Green function, G(u, u′; s), which is the p.d.f. that a chain of length s has its
last segment oriented according to u, and its first segment oriented according to u′. Formally, it is defined
as

G(u, u′; s − s′) = 〈δ(u(s) − u)δ(u(s′) − u′)〉 (1.45)

In particular, The Green function is related to the reduced probability function:

Ψ(u; s) =
1

4π

∫

d2u′G(u, u′; s − s′)Ψ(u′; s′). (1.46)

The Green function is particularly useful for analyzing statistical properties. In particular, let us define
the orientational correlation function:

〈u(s) · u(0)〉 = 1

4π

∫

du du′G(u, u′; s)u · u′. (1.47)

In order to compute eq. (1.47), we can use the fact that G(u, u′; s) also follows the Chapman-
Kolmogorov equation in eq. (1.43), with the initial condition G(u, u′; 0) = δ(u − u′). Then we write:

∂〈u(s) · u(0)〉
∂s

=

1

4π

∫

du du′
∂G(u, u′; s)

∂s
u · u′ (1.48)

and by using eq. (1.43) and integrating by part (see [54]), we obtain:

〈u(s) · u(0)〉 = exp
(

− s

κ

)

. (1.49)

In conclusion, the bending rigidity coefficient is usually referred as the persistence length: lp = κ. It
characterizes the contour distance over which orientational correlations decay.

1.C Sampling of the Boltzmann equilibrium by the Langevin equa-

tion

We recall here why the Langevin dynamics in the stationary regime samples the Boltzmann equilibrium.
In the over-damped limit τB ≪ m/γ (light particle or viscous solvent), the acceleration term in eq. (1.31)
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can be neglected. Hence we obtain the over-damped Langevin equation:

ẋ(t) = −D β
∂U

∂x
(x(t)) + η(t), (1.50)

where η(t) is an uncorrelated noise with first moments given in eq. (1.32).
Let us now consider a generic observable of the particle position f (x). According to the Itô calculation

rule, the variations of f (x) along the particle trajectory reads:

d f (x(t)) =
∂ f

∂x
dx(t) +

1

2

∂2 f

∂x2
dx(t)2. (1.51)

We will now obtain the continuity equation for ρ(x, t), which is the probability that the diffusing
particle is at position x at time t. On one hand, using eqs. (1.50) and (1.51), we have:

〈

d f (x(t))

dt

〉

=

〈

∂ f

∂x
(x(t))

dx

dt
(t) +

1

2

∂2 f

∂x2
(x(t))

(

dx

dt
(t)

)2〉

=

〈

−D β
∂ f

∂x
(x(t))

∂U

∂x
(x(t)) +

∂2 f

∂x2
(x(t))D

〉

=

∫

dx ρ(x, t)

(

−D β
∂ f

∂x
(x)

∂U

∂x
(x) +

∂2 f

∂x2
(x)D

)

=

∫

dx f (x)
∂

∂x

(

D β
∂U

∂x
(x)ρ(x, t) + D

∂ρ

∂x
(x, t)

)

,

(1.52)

where we have used the independence between x(t) and η(t), eq. (1.32) and integration by parts to obtain
the last line. On the other hand, we have by definition:

d

dt
〈 f (x(t))〉 =

∫

dx f (x)
∂ρ

∂t
(x, t). (1.53)

Therefore, by equating eqs. (1.52) and (1.53), we obtain the heat equation:

∂ρ

∂t
(x, t) +

∂ j

∂x
(x, t) = 0,

j (x, t) = −D β
∂U

∂x
(x)ρ(x, t) − D

∂ρ

∂x
(x, t),

(1.54)

where j (x, t) is the local density current of particles. The equilibrium is achieved when j (x, t) = 0,
yielding:

ρeq (x, t) ∝ exp (−βU (x)), (1.55)

which is the Boltzmann distribution.



Chapter 2

Modelling of transcription factories

In this chapter, we address the characterization of transcription factories, which are clusters of DNA
and proteins where presumably active genes are transcribed. We start by an overview about gene co-
regulation, and in particular we introduce recent developments in biology suggesting that the regulation
of the expression of genes belonging to a same network entails their co-localization in space. We then
introduce transcription factories and discuss what is known about their biological functions.

There are only few physical models for the existence of transcription factories, and still many open
questions. Hence, in a first approach, we propose a model grounded in a polymer representation of the
chromosome in interaction with a solution of binding proteins, that we call a formal nucleus. In order to
characterize the thermodynamical equilibrium of this formal nucleus, a Flory-Huggins free energy model
was implemented. We found that depending on the DNA-protein affinity, the DNA chromosome may
collapse, resulting in a biphasic regime with a dense and a dilute phase. The dense phase is then a model
for transcription factories. Furthermore, we explored the dependence of the collapse on DNA and protein
concentrations. In particular, we computed the corresponding phase diagram.

Although the Flory-Huggins theory gives a proof of principle for the existence of clusters of DNA
and proteins at equilibrium such as transcription factories, it does not give information on the structure of
such a dense phase. By drawing a parallel with an approach based on Hamiltonian paths, used in protein
folding, we show with Brownian dynamics simulations that the dense phase has either a molten globule
or a crystalline structure, depending on the DNA bending rigidity.

At the end of the Flory-Huggins theory and of the dense phase structure study, we will discuss the
biological implications of the results obtained.

2.1 Introduction

2.1.1 From co-regulation to co-localization

Let us consider a network of co-expressed genes. By co-expressed we mean that the expression of such
genes is coordinated in some way. For instance, co-expressed genes might be under the control of the
same promoter. More generally, when their expression is directly regulated by the same transcription
factor (TF) we say that they are co-regulated. Other cases of co-expression may involve a TF that directly
activates the transcription of a gene A, encoding a protein that in turn activates the transcription of a gene
B. This example illustrates how transcriptional cascade can occur in network of co-regulated genes. Such

25
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effects may depend on one or just a few TFs, and therefore co-regulated gene networks can entail a broad
genetic response to changes coming either from external conditions or from other metabolic pathways.
Such transcriptional cascades are not without similarities with cascades occurring in other biological
contexts such as for instance kinase pathways in cell signalling.

Whether it is an external TF or a protein encoded by another gene, every protein must diffuse
in the nucleoid before reaching its target. In chapter 1 we have estimated the time scale to sample the
nucleoid/nucleus to be of the order of seconds, which may be a rate-limiting step in transcription regulation.
A natural way to overcome diffusion-limited processes is to place co-regulated genes consecutively and
next to each other on the DNA sequence (fig. 2.1a). Consequently, the search for the protein target is
biased because it is not far from the place where this protein was initially activated, or even produced (note
that this last argument does not apply to eukaryotes because proteins are synthesized in the cytoplasm and
then imported in the nucleus). In other words, the search time for a protein transiting from one gene to
another can be dramatically reduced if these genes are neighbors in space, i.e. co-localized.

Although proximity on the genome sequence is one way to achieve co-localization, it is hardly scalable
to networks of tens or hundreds of genes, because this would inevitably lead to large genomic distances
for some genes of the network, and hence to large spatial distances. Therefore, other mechanisms must
exist in order to bring into spatial proximity genes separated by large genomic distances (fig. 2.1b). An
influential view is that some TFs have the ability to bind two (or several) sites on the DNA molecules,
resulting in an organization of the chromosome into loops [22–24]. Such TFs are said to be divalent, or
more generally multivalent if they can bind more than two DNA sequences simultaneously.

A direct consequence of the binding of divalent TFs is the formation of DNA loops. A case in
point is the lac operon in Escherichia coli, in which repression is achieved when the lac repressor
binds simultaneously a main site located in the promoter region and an auxiliary sites 401 bp away on
the sequence [5, 6]. In this context, the strength of the binding maintaining the DNA loop is directly
correlated with the efficiency of the repressor system. This looping mechanism can be envisioned as a
mechanical regulatory switch which is turned on and off through the binding of TFs. Let us emphasize
that in vitro and in vivo studies have confirmed the existence of DNA loops, sometimes over long genomic
distances [7,66], suggesting that specific looping can indeed be a key feature of the transcription regulation
even in eukaryotes, where enhancers can be found several kilo base-pairs away from the promoter [67–69].

On the basis of this representation of the chromosome shaped up by divalent TFs, one can think of
several physical models. In a stylized view, divalent TFs can be seen as binding spheres able to bind
several sites on the DNA sequence (fig. 2.1c). The binding of such a bead at two loci separated by a large
genomic distance gives rise to a DNA loop. The superimposition of many such loops not only changes the
global chromosome architecture, but has also an impact on transcription, for instance by preventing RNA
polymerase (RNAP) to access to the promoter. This has been studied in the so-called strings and binders
switch model [36] (fig. 2.1c). Another physical model demonstrated that although it is seemingly more
complex than adjusting the affinity of a TF with a given promoter, DNA looping can confer unique and
relevant properties to transcription regulation [9, 37]. In particular, DNA looping leads to an increased
effective binding free energy of a TF to its promoter. In other words, the apparent search volume to find
the target is reduced and the local concentration of protein is increased. A consequence of such local
concentration effects, which can be envisioned as “molecular traps”, is to stabilize the protein binding
versus global fluctuations of the protein concentration in the cell.
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(a) (b) (c)

Figure 2.1 – (a) An in-row layout for co-regulated genes enables an efficient regulation of the genes in the network. For instance
when a gene produces a protein which down-regulates the expression of the following, or when high local concentration of RNAP
results in an increased transcription of one gene and its neighbours. (b) The in-row layout is hardly scalable to networks of tens or
even hundreds of genes. In eukaryotes, but also in bacteria, several regulation networks involve genes which are located at distant
coordinates along the genome sequence. (c) Strings and binders switch model [36].

2.1.2 Co-localization of genes in transcription factories

Co-localization of co-regulated genes has proven to be more than a surmise. It has been confirmed to
occur in prokaryotes [70, 71] and eukaryotes [28, 72] using fluorescence techniques (FISH). In the case
of the mouse hemoglobin co-regulated genes (more than 40), a combination of FISH and Chromosome
Conformation Capture (3C) techniques demonstrated that these genes tend to co-localize in clusters and
exhibited higher contact frequencies than with other non-related genes [28]. These clusters were shown
to contain of the order of 8 to 10 genes. Associations between co-regulated genes were also shown to
happen between different chromosomes [72].

In a first series of experiments, it was shown that nascent RNA transcripts are synthesized at discrete
foci in the nucleus [70, 73]. Later, it was shown that RNAP itself gathers into clusters instead of being
uniformly distributed within the nucleus [74]. These clusters with increased concentration of nascent
RNA transcripts and RNAP correspond to areas where active transcription occurs. Hence they were
called transcription factories. Although the existence of transcription factories were first obtained on
mammalian cells, because their large size is a better fit for fluorescence studies, their existence has also
been demonstrated in bacteria [75].

In an attempt to connect the co-localization of co-regulated genes with the existence of transcription
factories, it was conjectured that by binding to and organizing the chromosome, TFs gather co-regulated
genes in transcription factories. In addition to achieve gene co-localization, this may lead to a mutualization
of resources, such as the availability of RNAP, TFs or epigenetics marks such as methylations. It would also
give a more general account of local concentration effects and their role in regulating the transcription. It is
very likely that transcription entails a cellular response that will in turn impact chromosome architecture.
Incidentally, the life time of transcription factories was found to be of the order of 5 s [74], suggesting that
transcription factories are dynamically re-allocated as a function of the transcriptional state of the cell. In
our view, this supports the idea that transcription regulation and chromosome organization are related in
some sort of dynamical feedback mechanism which remains to be found.
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(a) (b) (c)

Figure 2.2 – Transcription factories in vivo. (a) FISH imaging of nascent RNA transcripts (green) in human HeLa cells [23]. (b)
PALM imaging of RNA polymerase (red) in human osteosarcoma cell [74]. (c) Fluorescence imaging of RNA polymerase in E. coli

by fusion with green fluorescent proteins [76].

2.1.3 Physical origin of transcription factories

The physical origin of transcription factories has remained controversial. Two questions at least may
be formulated. First, one can wonder if the formation of transcription factories constitutes a Boltzmann
equilibrium. We have mentioned earlier that the typical time for a protein to sample the bacterial nucleoid
is 100 ms, which gives the typical time scale for transcription regulation processes. This figure should
be compared with the life time of transcription factories which has been measured to be of the order of
seconds or tens of seconds [74]. Thus it seems that transcription factories are reminiscent of an equilibrium
phenomenon. Second, the structure of the DNA inside such transcription factories has remained elusive.
In particular, it is not clear what is the effective diffusion coefficient of TFs or RNAP inside transcription
factories. These remarks have motivated the study of the statistical physics of the DNA interacting with
TFs.

2.2 Model proposed

2.2.1 Formal nucleus/nucleoid

We consider a simplified model in which the nucleus (or bacterial nucleoid) is represented by a closed
volume V (fig. 2.3). In the sequel we will indifferently use the words cells and nucleus, since this model
is considered to represent either a bacterial cell or the nucleus of a eukaryotic cell. The double-stranded
DNA chains are modeled as M semi-flexible polymer chains of length b× N , where b is the Kuhn length.
A DNA monomer is specified by a coordinate s varying from 0 to N , and can interact with P spheres,
representing DNA-binding proteins. The typical size of DNA monomer beads and of a protein beads are
taken to be equal in this study. In bacteria, b ≈ 2.5 nm, is the diameter of the naked DNA fiber, and also
corresponds to the size of a typical size of a protein. In eukaryotes, b ≈ 30 nm is the diameter of the
chromatin fiber, therefore a protein bead rather represents a protein complex. Introducing the subscript D

for DNA and P for proteins, we shall consider the three pair potentials uDD (r), uPP (r) and uDP (r) for
the interactions between two beads separated by a distance r . We will also consider that proteins can bind
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to DNA monomers non-specifically. Although this last assumption is strong, it may be considered as a
model for transcription factors with a very large number of targets on the DNA, such as nucleoid-associated
proteins (H-NS, FIS or HU in bacteria), or even RNAP itself.

In the sequel, we will assume that DNA monomers experience pure excluded volume interactions with
other DNA monomers, and similarly proteins-protein interactions are only repulsive. On the contrary,
we will assume that proteins can bind to DNA, and therefore the corresponding interaction potential has
an attractive tail. Hence we have the Mayer coefficients (see eq. (1.12) on page 13) for each of the three
interaction potentials:

αD =

∫

dr uDD (r) > 0,

αP =

∫

dr uPP (r) > 0,

v =

∫

dr uDP (r) < 0.

(2.1)

Figure 2.3 – Stylized view of the bacterial cell or nucleus. It contains DNA chains represented as polymers and binding proteins
represented as free spheres. The dashed circles denote transcription factories.

2.2.2 First principles model

Starting from the model defined in the last paragraph, we now lay the grounds for a study of the statistical
physics of this system. First, we specify the Hamiltonian built from summing over all interactions
between microscopical constituents. Let us consider M polymer chains representing the chromosomes in
the nucleus. In this chapter, we will use continuous polymers to model the chromosomes. Thus, every
DNA chain k is represented by a space curve rk (s) for k = 1, . . . , M , giving the spatial coordinates
of monomer s along the DNA sequence. In addition, we introduce P proteins with coordinates Ri for
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i = 1, . . . , P. Using the pair potentials previously introduced, the Hamiltonian for the system reads:

βH [{Ri }, {rk (s)}] = 1

2

∑

i,j

uPP (Rj − Ri) +
1

2

∑

k,l

N
∫

0

ds ds′ uDD (rl (s′) − rk (s))

+ β
∑

i

∑

k

N
∫

0

ds uDP (rk (s) − Ri)

+

1

3!
w

∑

I,I ′,I ′′
δ(RI ′ − RI )δ(RI ′′ − RI ′ )

(2.2)

The Hamiltonian thus consists in a summation over many bodies interactions. Note that because
uDP (r) is a potential with an attractive tail, the system may collapse in a certain range of concentrations of
DNA and proteins, if it were not to be compensated by higher order terms. For that reason, we needed to
consider an expansion of the Hamiltonian to order three at least, which is a common procedure in polymer
physics [77]. In the present study, we have assumed that a Kuhn segment on the DNA and a protein bead
have same size b, and for that reason, the three-body term is a sum over an index I which can be either
a protein or a DNA monomer. The coefficient w represents a penalty in kBT whenever three such beads
collapse on the same coordinates. The prefactor of 1/3! is here to ensure a standard form of the associated
virial expansion of the osmotic pressure. We will come back to this shortly. We also point out that only
the DNA-protein interaction is temperature-dependent, as can be seen from the β prefactor right in front
of the potential uDP .

The partition of our formal nucleus therefore reads

Z =

∫

1

P!

P
∏

i=1

dRi

∫

1

M!

M
∏

k=1

D [rk (s)] exp *,−βH [{Ri }, {rk (s)}] −
∑

k

βU0 [rk (s)]+-, (2.3)

where we introduced the internal energy of the DNA chains βU0. The functional dependence of the
internal energy on the chain configuration depends on the polymer model retained for the chromosome.
Specifically, DNA is a rigid biopolymer that can be modeled as a semi-flexible polymer (see section 1.3.4
on page 13).

2.2.3 Field representation

We now derive the partition function in field representation. This can be used as a starting point for several
standard approximations, including the saddle-approximation and the Gaussian fluctuations analysis also
know as Random Phase Approximation in the context of polymer physics. In particular, the mean-field
theory, that we will introduce in the next section, can be obtained from a saddle-point approximation.

In order to change the integration in eq. (2.3), which is performed over the individual coordinates of the
constituents to an integration over fields, we make a change of variables by introducing the concentration
fields:

ρP (r) =
∑

i

δ(r − Ri), (2.4)

ρD (r) =
∑

k

N
∫

0

ds δ(r − rk (s)). (2.5)
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We then introduce the following identity in the partition function in eq. (2.3):

1 =

∫

D
[

ρD (r)
]

δ
*..,
ρD (r) −

∑

k

N
∫

0

ds δ(r − rk (s))
+//-

=

∫

D
[

ρD (r)
]

D
[

ϕD (r)
]

exp
*..,
i

∫

dr ρD (r)ϕD (r) −
∑

k

N
∫

0

ds ϕD (rk (s))
+//-
,

(2.6)

where in eq. (2.6) we made use of the exponential representation of the delta-functional by introducing an
auxiliary field ϕD (r). A similar identity can be introduced for the protein concentration field. This leads
to the following re-writing for the partition function of the system:

Z =

∫

D
[

ρD
]

D
[

ϕD
]

D
[

ρP
]

D
[

ϕP

]

exp
(−βS

[

ρD, ϕD, ρP, ϕP

] )

, (2.7)

with the action

βS = −i

∫

dr ρD (r)ϕD (r) − i

∫

dr ρP (r)ϕP (r)

+

∫

dr dr′ ρP (r′)uPP (r′ − r)ρP (r) +

∫

dr dr′ ρD (r′)uDD (r′ − r)ρD (r)

+ β

∫

dr dr′ ρD (r′)uDP (r′ − r)ρP (r)

+

1

3!
w

∫

dr (ρD (r) + ρP (r))3

− P ln W [iϕP] − M ln Q[iϕD] + P ln
P

e
+ M ln

M

e
.

(2.8)

An interesting outcome of this re-writing is the separation of the enthalpic and entropic contributions
in the action expressed in eq. (2.8). Namely, the entropy is represented by the last four terms in the action.
It depends only on the single-particle partition function of the protein beads, respectively the single-chain
partition function of the DNA chains, in the imaginary potential iϕP (r), respectively iϕD (r), whose
expressions are given by

W [iϕP] =

∫

dR exp (−iϕP (R)), (2.9)

Q[iϕD] =

∫

D [r(s)] exp
*..,
−βU0[r(s)] − i

N
∫

0

ds ϕD (r(s))
+//-
. (2.10)

2.3 Flory Huggins theory

In this section, we study the Flory-Huggins theory of the bulk of the nucleus. We will show that the
existence of a binding energy between proteins and DNA can lead to the formation of a dense phase that
one may identify to transcription factories. As pointed out previously, only the DNA-protein interaction
is temperature-dependent. In the sequel, we will often refer to the high, respectively low, temperature
regime which corresponds to a weak, respectively strong, DNA-protein attraction.
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2.3.1 Mean-field free energy

Intuitively, one might expect that for high temperatures, the attraction between DNA monomers and
binding-proteins vanishes. In this regime, the system contains an homogeneous concentration of DNA
monomers and proteins. In other terms, we may perform a mean-field approximation and remove the
spatial dependence of the concentration fields: ρD (r) ← cD = M N/V and ρP (r) ← cP = P/V . In the
context of polymer physics, this is also called the Flory-Huggins theory [53]. We will frequently refer
to these concentrations as the mean-field solutions. Solving the stationary equations for the action in
eq. (2.8) can be done (see section 2.4.1). If in addition we assume mean-field solutions, we obtain the free
energy function per volume unit:

β f (cD, cP) =
1

2
αDc2

D +
1

2
αPc2

P + βvcDcP +
1

3!
w(cD + cP)3

+ cP ln
cPb3

e
+

cD

N
ln

cDb3

Ne
. (2.11)

Another way to look at this expression is to consider that an excluded volume penalty α is applied
whenever two beads are in contact. In the case of the DNA-protein interaction, the effective excluded
volume βv is negative because the interaction is attractive. The probability to find two beads in contact is
proportional to the product of their concentrations. This gives terms of the form α× c2 contributing to the
free energy function. The two logarithmic terms in the free energy accounts for the configurational entropy
of the proteins and DNA chains. Briefly, one can see them as contributions of the form (V/b3)P/P! ∼
exp (VcP ln (cPb3/e)) to the Boltzmann weight, where (V/b3) is the number of accessible configurations
for one bead of size b3 distributed uniformly in the volume V . We may also give an account for the presence
the three-body term without resorting to the microscopical Hamiltonian defined in the last section. For
this, one needs to consider the Flory-Huggins theory as the limit of a gas on a lattice, where the enthalpic
contributions are the first three terms in the right-and side (r.h.s.) of eq. (2.11), and the last two terms are
the entropy of the particles. Now, in any gas on a lattice representation, one should take into account the
entropy of the vacancies, which in our case should be identified to the solvent. If we assume the system
to be incompressible, this entropic contribution has the form (c0 − cD − cP) ln ((c0 − cD − cP)/e), where
c0 is the close-packing concentration. An expansion in powers of (cD + cP) truncated at order three yield
the three-body term in the free energy.

In the high temperature regime, the DNA-protein interaction term, βvcDcP , in eq. (2.11) vanishes.
The free energy is therefore a convex function, making the mean-field solution stable.

2.3.2 Spinodal condition

When the temperature is progressively decreased, the attractive interaction | βv | increases, until the mean-
field solution is no longer stable. This is the so-called spinodal condition, which delimits the region in
which the mean-field solution is stable from the region where it is not. This condition corresponds to an
inversion of the curvature of the free energy, which in our case reads

����������

∂2 f

∂c2
D

∂2 f

∂cD∂cP

∂2 f

∂cD∂cP

∂2 f

∂c2
P

����������
= 0, (2.12)

where the array denotes a determinant. For any given choice of the DNA-protein attraction, βv, the
spinodal equation is an implicit equation for a closed curve in the (cD, cP) plane. The range of con-
centrations enclosed within this curve corresponds to unstable mean-field solutions whereas in the outer
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region are stable mean-field solutions. There is a critical temperature Tc such that for T > Tc there is no
solution to the spinodal condition and the mean-field solution is stable, whereas for T < Tc , the spinodal
condition has solutions. At T = Tc , the closed curve of solutions reduces to a single point of coordinates
(cc

D
, cc

P
,Tc).

Let us point out that eq. (2.12) is not tractable by hands, so we solve it numerically. As shown in
fig. 2.4, we obtain the following scaling relations for the critical concentrations:

ccD ∼
1
√

N

1
√
w
,

ccP ∼ 1/
√
w.

(2.13)

We observe that for T < Tc , the spinodal equation consists of an infinite set of doublet pairs (c1
D
, c1

P
)-

(c2
D
, c2

P
) which together are a parametrization for the spinodal line (fig. 2.5a). However, on each spinodal

line are found two double solutions, meaning that each doublet pair (c1
D
, c1

P
) and (c2

D
, c2

P
) merge into a

single critical point (c0
D
, c0

P
).

In summary, eq. (2.12) is an implicit equation for a surface in the (cD, cP,T ) space, below which the
mean-field solutions are unstable. On this surface lies a critical curve where the spinodal condition has a
double solution (c0

D
, c0

P
), instead of two different solutions (fig. 2.6). At the apex of the critical curve lies

the tricritical point (cc
D
, cc

P
,Tc), which is the first point where the mean-field solution becomes unstable

when the temperature is decreased.

Figure 2.4 – Scaling of the critical concentrations of DNA and proteins as a function of the parameters of the model. wF = b6 is
the value of the three-body repulsive core which naturally arises from a Flory-Huggins theory. The insets display the dependence
of the critical concentrations on the parameters in log-log scale, over a broad range of values.

2.3.3 The biphasic regime

For T < Tc , the free energy function in eq. (2.11) has an unstable range of concentrations. In this range,
the system splits into two phases I and I I which belong to the stable region. The total free energy of the
system can be written as the sum of the free energies of the two phases. The equilibrium state in then
found by minimizing the total free energy function under the constraints that the total number of particles
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(a) (b)

Figure 2.5 – (a) At t = 0.05. The binodal, or coexistence, line is the solid black curve. The mean-field solution is unstable in the
region colored in red and the system splits into two phases. For concentrations falling into the blue region, the mean-field solution is
stable. The black circles are two critical points where the coexistence and the spinodal lines intersect. (b) Binodal, or coexistence,
lines at t = 0.05, 0.5, 1.0. The coexistence line shrinks toward the tricritical point (red dot) when t → 0. For each curve, the dilute
phase is shown in green and the concentrated phase is shown in blue. Coexisting states are connected by tie lines (dotted segments).
The volume fraction of each phase is determined (black arrows) according to eq. (2.20).

is conserved and the volume constant. This is most easily done by minimizing the Lagrangian:

L = φI f (I) + φI I f (I I)

− µD
(

φI cID + φ
I I cI ID

)

− µP
(

φI cIP + φ
I I cI IP

)

− Π
(

φI + φI I
)

,
(2.14)

in which f (I) is a short-hand for f (cI
D
, cI

P
) and φI is the volumic fraction of phase I. The same notations

apply for phase I I. The Lagrangian multipliers µD and µP have been introduced to conserve the number
of DNA monomers and the number of proteins, and are to be identified with chemical potentials. The
Lagrangian multiplierΠ has been introduced to conserve the volume, and is to be identified to the osmotic
pressure. The minimization of L relatively to the variables cI

D
, cI

P
, cI I

D
, cI I

P
, φI, φI I yields the system of

equation



∂ f

∂cD
(cID, c

I
P) =

∂ f

∂cD
(cI ID , c

I I
P ) = µD

∂ f

∂cP
(cID, c

I
P) =

∂ f

∂cP
(cI ID , c

I I
P ) = µP

f (cID, c
I
P) − µDcID − µPcIP = f (cI ID , c

I I
P ) − µDcI ID − µPcI IP = − Π

, (2.15)

which states that the chemical potentials and the osmotic pressure in the two phases are equal. Note that
the writing of the last line can be rewritten more compactly if we introduce the Gibb’s free energy, which
is the Legendre transform of eq. (2.11):

g(cD, cP) = f (cD, cP) − µDcD − µPcP, (2.16)



2.3. FLORY HUGGINS THEORY 35

and where the chemical potentials depend implicitly on the concentrations through the equilibrium con-
dition:



∂g

∂cD
= 0

∂g

∂cP
= 0

⇔


∂ f

∂cD
= µD

∂ f

∂cP
= µP

. (2.17)

The system in eq. (2.15) is a system of 3 equations with the four unknown concentration variables,
plus the temperature. Hence it is a parametrization for a surface, called the binodal, which completely
determines the phase diagram of the system. We solved this system of equations numerically using a
quasi-Newton root finding method [64]. The surface obtained is represented in fig. 2.6, where a parameter
t has been introduced as an expansion of the DNA-protein interaction around the tricritical point:

βv = (βv)c (1 + t). (2.18)

Figure 2.6 – Phase diagram obtained from the resolution of eq. (2.15). ForT < T c , any combination of concentrations lying below
the binodal curve is an unstable mean-field solution, which results in the system splitting into two phases I and I I which sits on
the binodal surface. The dilute phase I (green) has lower concentrations than the dense phase I I (blue). The parameter t from the
vertical axis is defined in eq. (2.18). In this diagram, we chose to use the volumic densities instead of the concentrations, which are
defined as ηD = b3cD and ηP = b3cP . The black line is the critical curve.

At a given temperature though, there is only one solution for the phase separated system. Indeed, the
points on the binodal are uniquely determined by the self-consistent relations:

∂L
∂µD

= M N/V,

∂L
∂µP

= P/V,

∂L
∂Π
= 1,

(2.19)
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which yield

φ

(

cI
D

cI
P

)

+ (1 − φ)

(

cI I
D

cI I
P

)

=

(

cD = M N/V

cP = P/V

)

, (2.20)

and completely determine the dilute and the dense phase from the mean-field concentrations cD and cP .
This relation has a very straightforward graphical interpretation and is a generalization of a Maxwell
construct (fig. 2.5b). If we imagine changing the concentration cD or cP , or more generally going along
a path in the (cD, cP) plane, the system will not phase-separate right away when the path crosses the
coexistence line. That is because there is a range of metastable mean-field solutions enclosed within the
coexistence curve (fig. 2.5a). Continuing along this fictive path, the mean-field solution will become
unstable only when the determinant in eq. (2.12) becomes negative. Only then will the system split into
two phases. Therefore in general, the transition is first order, except at the two critical points where the
coexistence line and the spinodal line intersect.

2.3.4 Conclusion

The relevant biological parameter in this approach is the binding interaction between proteins and DNA,
which is represented by the mean-field coefficient βv. It is a function of the affinity of the proteins with
DNA and depends on the biochemistry of the interaction. What this approach tells us is that for a generic
DNA-binding protein, a phase separation is to be expected if the affinity is such that βv < (βv)c and if
the concentrations of DNA and proteins fall within the biphasic region. The phase separation gives rise
to a dilute phase (I) with few DNA and few proteins and a dense phase (I I) with higher concentrations of
DNA and proteins. Because in general cI

D
< cc

D
∼ 1/
√

N , the concentration of DNA in the dilute phase is
very small. Essentially, the DNA chains are collapsed into molten globules which form the dense phase,
with few protruding loops which form the dilute phase. This feature is visible in BD simulations (fig. 2.7).
The phase transition characterized is first order almost everywhere, in agreement with a thermodynamical
model for the agglomeration of DNA-looping proteins, based on a description with graph ensembles [78].

The globular clusters of the dense phase can be considered as a model for transcription factories
observed in vivo. Of course in reality there are many different TFs in the cell, which together may
contribute to the architecture of the chromosome, including the formation of transcription factories.
However, here we considered a generic type of protein. This come to say that the effect of one abundant
protein prevails on the others in given physiological conditions. Note that we have adopted a coarse-
grained approach in which many details of the chromosome organization such as specific DNA loops or
protein complexes are embedded in the bead representation of DNA monomers and proteins. However,
DNA clusters are indeed observed in the cell (fig. 2.8). These clusters do not display any internal structure,
suggesting that they are globular. This effect can be accounted by the present theory by considering in a
general way the effect of all binding proteins on the DNA.

Increasing evidence has suggested that transcription partly proceeds from transcription factories.
Although the non-specific hypothesis for the binding of proteins to DNA that we have taken in this model
is an over-simplifying assumption of the reality, it is true for instance that RNAP binds widely on the
DNA thanks to its σ-unit. The conclusions reached in this Flory-Huggins theory suggest that a biphasic
regime can exist, with a dense phase spanning a volume of size (1− φ)V and with local concentrations of
DNA and RNAP increased with respect to the mean-field ones. Hence, the equilibrium of complexation
reactions such as:

DNA + protein ⇄ RN AP bound to DN A
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may be shifted towards the formation of complexes and may favour transcription initiation in the transcrip-
tion factories. This is consistent with some experimental study showing that RNAP clusters are formed
during pre-initiation and initiation of transcription [74]. The same authors also proposed that crowding of
enzymes, i.e. higher local concentrations can aid in rate-limiting steps of gene regulation. From a dynam-
ical standpoint, the confinement of unbound RNAP in a restricted volume can reduce the search time for
a promoter. To this extent, it is worth pointing out a study claiming that the promoter search mechanism
is indeed dominated by three-dimensional diffusion of RNAP over the monodimensional diffusion (i.e.

sliding) along DNA [79].

Note that the theory described here is somewhat different from more standard polymer-colloid systems
treatments. In the latter case, the system consists of a solution of polymer coils and colloids, and the
radius of gyration of one single coil and the diameter of the colloidal particles are comparable. In our
case, the proteins can hardly be compared to colloidal particles because their size if comparable not to the
radius of gyration of the whole chromosome but instead to the size of one monomer.

The presence of ions in solutions (e.g. Ca2+, Cl– Mg2+) gives rise to screened electrostatic interactions.
For objects of nanometric size like proteins, interactions are short-ranged with a range typically given
by the size of the objects in question. Let us also point out that at the mean-field level, the effect of
ions in solution only arise through an adjustment of the Mayer coefficients αD , αP and βv. The DNA
excluded volume coefficient αD will always be positive and accounts for the electrostatic repulsion between
negatively charged monomers. The protein excluded volume coefficient αP will be positive in general for
the same reasons, but for proteins able to dimerize it may take negative values.

The present theory is stated with a general formalism. Hence, we think it may also be adapted to
the description of the condensation of DNA by other condensing agents such as multivalent ions. As
stated above, within the Flory-Huggins theory, the phase transition induced by condensing agents appears
to be first order, except at the tricritical point and on the critical lines. Therefore the transition from
the swollen to the condensed state should be discontinuous and present hysteresis effects, which was
indeed observed [80, 81]. Interestingly, the Flory-Huggins theory also predicts another effect. For a
fixed temperature and for a DNA concentration taken in a prescribed range, if we start with a small
concentration of condensing agents that we progressively increase, there will be a value at which the
system splits into two phases. Yet, if we keep adding condensing agents, the system will at some point
exit the biphasic regime. This phenomenon called re-entrance has been observed in some experimental
work using polyethylene glycol (PEG) [82].

(a) (b) (c)

Figure 2.7 – Snapshots of Brownian dynamics simulations (polymer with N + 1 = 400 monomers). For small persistence lengths
(a) the dense phase is a molten globule while it is crystal-like for stiffer chains (b)-(c).
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Figure 2.8 – DNA-protein condensates observed in the nucleus in mouse cells with electron microscopy techniques [83]. The
condensates are globular and have DNA (yellow) and proteins (blue), while the rest of the nucleus is filled mostly with proteins.

2.4 Structure of the dense phase

In the last section, the Flory-Huggins theory predicted the existence of a phase separation between two
homogeneous phases. However, in the Flory-Huggins theory, the chain structure does not come into
play, except through the suppression of the translational entropy of the chains. Namely, the dense phase
predicted is a globule, that is to say a melt of collapsed DNA with proteins, regardless of the rigidity of
the DNA chains. It turns out that DNA is a rigid biopolymer. It is an example of polyelectrolytes, and
as such its bending rigidity depends on the screening effect of salt because of the presence of negative
charges along its backbone. In physiological condition, the naked DNA has a persistence length lp of
approximately 150 bp. Several studies have highlighted that the bending rigidity of the polymer has an
influence on the micro-structure of the dense phase [46, 84, 85]. The dense phase then adopts stretched
configurations which are characterized by the apparition of tube-like or helical structures. This effect is
also well characterized through BD simulations (fig. 2.9).

2.4.1 Random Phase Approximation

A standard way to characterize the effect of the chain structure is to use the Random Phase Approximation
(RPA) [53]. The method consists in expanding the action in eq. (2.7) to second order around the mean-field
solution and checking for the stability of the Gaussian fluctuations. The structure function of the DNA
chain then naturally arises as a functional parameter for the stability condition of the Gaussian fluctuations.
For the sake of simplicity, we will introduce the notation

X(r) =

*....,

ρD (r)

ϕD (r)

ρP (r)

ϕP (r)

+////-
, (2.21)

and write the partition function in eq. (2.7) as

Z =

∫

D [X(r)] exp (−S[X]), (2.22)

where to alleviate notations, we took β = 1.
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(a) (b)

Figure 2.9 – Two equilibrium configurations of a polymer chain (blue) interacting with binding spheres (red) in the absence of
bending rigidity (lp = 0) and with strong bending rigidity (lp = 30), obtained with BD simulations. We used a truncated Lennard-
Jones potential with ε = 3.0 kBT and r th = 2. In both cases, the system is phase separated. (a) For lp = 0, the dense phase
consists of several globular aggregates distributed in a necklace fashion along the chain. (b) For lp = 30, the dense phase adopts a
tubular structure.

The saddle-point condition, δS/δX(r) = 0, yields the Lagrange equations:

iϕD (r) −
∫

dr′ uDD (r − r′)ρD (r′) −
∫

dr′ uDP (r − r′)ρP (r′)

− 1

2
w(ρD (r) + ρP (r))2

= 0, (2.23)

iρD (r) + M
δ ln Q

δϕD (r)
[iϕD] = 0, (2.24)

iϕP (r) −
∫

dr′ uPP (r − r′)ρP (r′) −
∫

dr′ uDP (r − r′)ρD (r′)

− 1

2
w(ρD (r) + ρP (r))2

= 0, (2.25)

iρP (r) + P
δ ln W

δϕP (r)
[iϕP] < ++ > = 0. (2.26)

Starting from a guess solution (e.g. homogeneous fields), the previous system can be solved iteratively
or using continuous steepest descent methods. Such procedure is known as numerical self-consistent
field methods in the polymer literature [55]. Although the convolutions are easily handled in Fourier
space, the difficulty lies in the computation of the functional derivative δ ln Q/δϕD (r). Hence it is a hard
computational problem to solve. Based on physical considerations presented in the last section, we may
look for the particular homogeneous (mean-field) solution:

X∗ =
*....,

cD

φD

cP

φP

+////-
. (2.27)
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The resolution of eq. (2.26) is now straightforward. We obtain the following saddle-point approxima-
tion for the partition function:

Z ≃ exp(−S∗) = exp (−V β f (cD, cP)) , (2.28)

where β f is given by eq. (2.11), with cD = M N/V and cP = P/V . That is to say we recover the Flory-
Huggins theory from the last section. The RPA consists in the analysis of the effect of the thermodynamical
fluctuations on the mean-field solution. To this end, let us introduce the vector field Y = X − X∗. An
expansion of the action in eq. (2.22) to second order gives

Z ≃
∫

D [Y(r] exp

(

−S∗ − 1

2

∫

dr dr′Y(r)
δ2S

δX(r)δX(r′)

�����X=X∗
Y(r′)

)

, (2.29)

or in Fourier space

Z ≃
∫

∏

k>0

dYk exp *,−S∗ − 1

V

∑

k>0

Yk
∂2S

∂Xk∂X−k

�����X=X∗
Y−k

+- , (2.30)

where the summation in Fourier space is carried out over the first Brillouin zone. The operator in the
quadratic form is a 4×4 matrix. Its matrix elements can be computed (see appendix 2.A) and the following
expression is obtained in Fourier representation:

∂2S

∂Xk∂X−k

�����X=X∗
=

*....,

ADD (k) −i ADP (k) 0
−i cDSN (k) 0 0

ADP (k) 0 APP (k) −i

0 0 −i cP

+////-
, (2.31)

with

ADD (k) = uDD (k) + w(cD + cP)2,

APP (k) = uPP (k) + w(cD + cP)2,

ADP (k) = uDP (k) + w(cD + cP)2.

(2.32)

Note that the structure of the chain comes into play through the structure factor SN (k) which appears
in one of the matrix elements. The quadratic fluctuations operator is diagonal in Fourier space. Hence
the partition function in eq. (2.30) is a product of Gaussian integrals. It is well-defined as long as for all k

Γ(k) = det

(

∂2S

∂Xk∂X−k

)

> 0. (2.33)

The previous equation is a generalization of the spinodal condition for a Fourier mode k. When the
temperature is lowered, the first mode k∗ to become unstable sets the temperature when the mean-field
solution is no longer stable. If k∗ = 0, then it is simply the spinodal condition of the Flory-Huggins theory,
and at the instability, the system splits into two homogeneous phases as described previously. If k∗ > 0,
then it is the signature of a micro-phase separation. In that case the homogeneous mean-field solution is
no longer a stable solution and instead stable solutions will display spatial modulations of typical length
2π/k∗. The determinant in eq. (2.33) can be computed easily and gives

Γ(k) =

(

ADD (k) +
1

cDSN (k)

) (

APP (k) +
1

cP

)

− ADP (k)2. (2.34)
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The potentials are essentially contact-like because of the screened interactions (we recall that the
Debye-Hückel length is ∼ 1 nm in the cell), thus the Fourier transforms of the interaction potentials have
the expressions:

uDD (k) = αD,

uPP (k) = αP,

uDP (k) = βv.

(2.35)

The structure factor for a Gaussian chain with N Kuhn segments of length b is given by SN (k) =

N D(k2R2
g), where R2

g = b2N/6 is as usual the radius of gyration of the chain and D(x) = 2/x2(x − 1 +
exp (−x)) is the Debye function [53]. There is no analytical expression available for the structure function
for a Worm Like Chain (with persistence lp) as it is the case for the Gaussian chain. To date, to the best
of our knowledge, it is still an open problem despite several classical and more recent works [86–90]. We
first used an approximate expression for the structure factor of a semi-flexible chain found by Thirumalai
and co-worker [62], which lead us to propose an alternative method to compute the structure function of
a worm-like chain, that we will present in chapter 3.

We have monitored the sign of Γ(k) as a function of the wave number k. However we do not
report it here because we have not found any instability arising for a non-zero Fourier mode, that would
characterize a dense phase with micro-structure. On second thought, we suspect that the RPA analysis is
not well suited for this system because the phase transition is first order in general (it is only second order
when crossing the critical line). In order to illustrate this point, let us consider a generic system with a
mean-field order parameter φ and a free energy function F (φ) displaying a second order phase transition
at a critical temperature Tc . For T > Tc , the free energy has a single minimum φ∗ and ∂2F/∂φ2(φ∗) > 0,
i.e. the solution is stable. At T = Tc , the free energy has still one single minimum φ∗, yet the curvature
at this minimum is null. For T < Tc , the former solution φ∗ is unstable, i.e. ∂2F/∂φ2(φ∗) < 0, and the
free energy has two minima φI and φI I . Similarly to what has been presented above, one may give an
approximation of the partition function of this system by integrating over the Gaussian fluctuations:

Z =

∫

dy exp

(

−F (φ∗) − 1

2

∂F

∂φ2
(φ∗)y2

)

, (2.36)

where y = φ − φ∗ is the difference with the high-temperature solution. When T < Tc , ∂2F/∂φ2(φ∗) < 0
and this Gaussian integral is no longer defined. The instability is driven by an inversion of the curvature
around the high-temperature solution φ∗ which occurs at T = Tc (fig. 2.10a). Therefore, for a second
order transition the critical temperature Tc coincides with an instability of the fluctuations around the
high-temperature solution. In that case, we say that the phase transition is driven by critical fluctuations.
To the contrary, in the case of a first order transition, the high-temperature solution φI remains stable as
we cross the phase transition temperature T∗ (fig. 2.10b). For that reason, the integral over the fluctuations
around the high-temperature solution remains a well-defined Gaussian integral and is of no use to identify
the phase transition temperature T∗. In that case, we say that the phase transition is not driven by critical
fluctuations. A generalization of this reasoning suggests that RPA will not help in characterizing a
micro-phase separation because the transition is not driven by critical fluctuations around the saddle-point
solution. Since the RPA did not give any interesting results, we turned to another way to characterize the
structure of the dense phase.
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(a) (b)

Figure 2.10 – Comparison between a first order phase transition (a) and a second order phase transition (b). A second order phase
transition is therefore driven by critical fluctuations at the high temperature equilibrium, which is not the case for a first order phase
transition.

2.4.2 Lattice model of the dense phase

2.4.2.1 Model

Since the RPA is not appropriate to describe the system in the dense phase, we adopt another approach.
Because of their attractive interactions with the DNA, the spheres induce an effective attraction between
the DNA monomers. Before coming back to a system in a continuous volume at the end of this section,
let us turn our attention to a model of a semi-flexible polymer chain on a lattice that was proposed initially
to explain the folding of a protein in compact structures [85, 91, 92] (see fig. 2.11). An attraction energy
εv between non-bonded nearest neighbors is included, which favors compact configurations. A bending
energy of the chain is introduced as a corner penalty which favor stretched configurations (or “helices” in
the protein folding vocabulary). It penalizes corners by an energy εh and thus plays the role of a bending
rigidity. As we will see, this term induces an ordering transition between a random (molten) globule
where corners are mobile in the bulk, and a crystalline phase, where corners are expelled to the surface of
the globule.

In order to explore the equilibrium physics of this system, we write the partition function for this
system as

ZN =

∑

SAW

exp *.,−βεhNc +
1

2
βεv

∑

r,r′
nr∆r,r′nr′ − N βεv

+/-, (2.37)

where the sum is carried out on the self-avoiding walks (SAW) of length N , Nc is the number of corners
in the configuration, ∆r,r′ is the nearest neighbor operator on the lattice, and nr = 0, 1 is the occupancy
variable of the lattice sites. The first term in the exponent gives a penalty proportional to the number of
corners, whereas the second gives a bonus proportional to the number of neighbors pairs. Note the third
term which is introduced to cancel off the interactions between consecutive monomers along the path that
were already counted in the second term. Using a mean field theory, Orland and colleagues [85, 91, 92]
showed that depending on the attraction energy and the corner penalty, three phases can exist, namely a
dilute phase where the polymer is swollen, a condensed phase, which we call a molten globule, where the
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Figure 2.11 – Lattice model for the collapse of a DNA polymer. The attractive interaction mediated by binding proteins (red spheres)
is taken into account implicitly through the introduction of an attractive interaction between neighboring sites.

polymer is collapsed and disordered and finally a second condensed phase where the polymer is collapsed
but with a local crystalline ordering. The phase diagram is described simply in the plane (εv/T, εh/εv).
For fixed small εh , there is a second-order phase transition at a temperature T = Tθ between a dilute and
a disordered condensed phase, followed by a first-order freezing transition at TF between the disordered
condensed phase and a locally ordered condensed phase of the polymer. Upon increasing the chain stiffness
εh , the molten globule region shrinks until it eventually vanishes. Thus, for large stiffness, the polymer
goes abruptly from a swollen to a frozen configuration (TF > Tθ ) through a direct first order transition.
These theoretical results were readily confirmed and improved by Monte-Carlo simulations [93, 94].

2.4.2.2 Counting Hamiltonian paths

For the sake of completeness we review here in a simple case the methods that were used to obtain the
announced results. We consider the extreme case where the polymer has collapsed completely (density
η = 1). That is to say, each of the N sites of the lattice are occupied by a DNA monomer. When both
εh = 0 and εv = 0, the partition function for this system reduces to

ZN =

∑

HP

1, (2.38)

where the sum is carried out on the Hamiltonian paths (HP) on the lattice, that is to say paths that visit
each of the N sites of the lattice once and only once. Hence, the partition function is just the number
of HP on the lattice. An equivalence to a field theory is obtained by introducing for each lattice site a
n-component field ϕr, and the corresponding partition function

Qn =

∫

∏

r

dϕr e−AG

∏

r

(

1

2
ϕ

2
r

)

, (2.39)

where AG is a quadratic action given by

AG =
1

2

∑

r,r′
ϕr∆

−1
r,r′ϕr′, (2.40)

and ∆r,r′ is as before the nearest neighbor operator on the lattice. The quantity in eq. (2.39) is (up to a
normalization), a simple Gaussian average. This average can be computed using Wick’s theorem once it
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has been pointed out that the elementary contraction reads

〈

ϕ
u
r ϕ

v
r′

〉

= δuv∆r,r′ . (2.41)

Therefore, only products of fields corresponding to sites which are nearest neighbors will give a non
zero average. As a result, we obtain that

〈

∏

r

(

1

2
ϕr

)2〉

=

1

2N

∑

all permutations

〈

ϕr1
ϕr2

〉

. . .
〈

ϕr2N−1
ϕr2N

〉

,

=

∑

k=1

nkck,

where ck is the number of graphs on the lattice containing k closed paths which together visit all sites of
the lattice once and only once. Eventually, c1 is just the number of Hamiltonian paths on the lattice, and
we have the equivalence

∑

HP

1 = lim
n→0

1

n

∫

∏

r

dϕr e−AG

∏

r

(

1

2
ϕ

2
r

)

∫

∏

r

dϕr e−AG

∏

r

. (2.42)

This simple equivalence gives an original way to compute the number of Hamiltonian paths on a
lattice. Namely, one can perform a saddle-point approximation on the field partition function in eq. (2.39).
In that case, an approximation of Qn is:

Qn ≃
∫

∏

r

dϕ∗r exp *,−N + d
1

2

∑

r

ln

(

1

2
ϕ
∗
r

)+-, (2.43)

where the ∗ superscript denotes that the integration is carried out on the saddle-point solutions. One can
then go further by making a mean-field approximation, that is to say by considering only saddle-point
solutions of norm ‖ϕ∗r‖ = ϕ. It follows from the saddle-point equation that ϕ2

= 2q where q = 2d is
the coordination number of the lattice. The integration in the last expression is then performed over the
n-dimensional sphere, whose area is 2πn/2/Γ(n/2). Eventually, using the equivalence in eq. (2.42), one
obtains the approximation for the number of Hamiltonian paths on the lattice of N sites:

ZN ≃
(

q

e

)N

. (2.44)

2.4.2.3 The effect of rigidity

Still assuming that the polymer has collapsed completely, we can now slightly modify the previous model
by introducing a corner penalty βεh , 0. In that case, the partition function for this system reads

ZN =

∑

HP

e−βεhNc , (2.45)

where as before Nc counts the number of corners in the HP realization. In close analogy to the previous
developments, we seek for an equivalence with a field theory. For each site of the lattice, we introduce a
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n-component field ϕα (r) for each of the direction α = 1, . . . , d of the d-dimensional lattice. This time we
introduce the partition function

Qn =

∫

∏

r

d
∏

α=1

dϕα (r) e−AG

∏

r

*.,
1

2

d
∑

α=1

ϕα (r)2
+ e−βεh

∑

α<γ

ϕβ (r) · ϕγ (r)
+/- , (2.46)

where AG is a quadratic action given by

AG =
1

2

d
∑

α=1

∑

r,r′
ϕα (r)

[
∆
α
r,r′

]−1
ϕα (r′), (2.47)

and ∆α
r,r′ is the nearest neighbor operator on the lattice in direction α. The quantity in eq. (2.46) is again

a simple Gaussian average. It can be computed using Wick’s theorem with the elementary contraction

〈

ϕ
u
α (r)ϕv

β (r′)
〉

= δuvδαβ∆αr,r′, (2.48)

and again, only products of fields corresponding to sites which are nearest neighbors will give a non-
zero average. Therefore this average selects closed paths on the lattice. However, there is an important
difference with the previous case. While making products of the quantity between parenthesis in eq. (2.46),
the first term of this quantity will tend to select nearest neighbors only in the direction α. Yet, given
a site r and a nearest neighbor r′, one can choose for the former a term of the form ϕα (r)2/2, and
for the latter a term ϕα (r′) · ϕβ (r′), in which case a Boltzmann weight equal to exp (−βεh) must be
applied. Applying Wick’s theorem, one is led to consider products of elementary contractions like
〈ϕα (r) · ϕα (r′)〉e−βεh 〈ϕβ (r′) · ϕβ (r′′)〉. In summary, like before, the partition function in eq. (2.46)
generates closed paths on the lattice. Yet this time a Boltzmann weight with a penalty equal to the number
of turns times βεh is applied to each path. This leads to the following equivalence:

∑

HP

e−βεhNc
= lim

n→0

1

n

∫

∏

r

d
∏

α=1

dϕα (r) e−AG

∏

r

*.,
1

2

d
∑

α=1

ϕα (r)2
+ e−βεh

∑

α<γ

ϕβ (r) · ϕγ (r)
+/-

∫

∏

r

d
∏

α=1

dϕα (r) e−AG

. (2.49)

In the same spirit as in the previous case, a saddle-point approximation supplemented by a mean-field
approximation yields the approximate expression for the partition function in eq. (2.45):

ZN ≃
(

q(β)

e

)N

, (2.50)

where
q(β) = 2 + 2(d − 1)e−βεh . (2.51)

The expression obtained for the partition function is remarkable because it has the same form as
eq. (2.44), but with an effective lattice coordination number q(β). In the limit T → ∞, one recovers the
previous case, with q(0) = 2d. To the contrary, when T → 0, one has q(∞) = 2, which corresponds
to straight paths where each monomer only "sees" the previous and the next monomer. The free energy
f (T ) = −T/N ln ZN has the property to vanish at the temperature TF , defined by q(βF ) = e. Starting
from the high temperatures, f (T ) is a decreasing function of the temperature until T = T∗, at which point
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the entropy S(T∗) = −∂ f /∂T (T∗) = 0 and f (T∗) > 0. When the entropy vanishes, the system freezes
in one configuration. Nonetheless this result is obtained within the context of the saddle-point and mean
field approximation. A more careful analysis of the partition function in eq. (2.46) based on a Schwartz
inequality shows that the free energy is bounded: f (T ) ≤ 0 [91]. Consequently, the positivity of the free
energy in the range of temperature T∗ < T < TF can only correspond to metastable states. In conclusion,
there is a freezing transition at T = TF which separates a high temperature regime in which the collapsed
polymer is a molten globule from a low temperature regime in which the collapsed polymer is crystal-like
and has a (quasi) zero entropy. In the crystalline phase, the configurations look like straight paths with
corners expelled to the surface of the lattice (fig. 2.12). These configurations have been studied previously:
they are elongated neck structures or toroïds [95].

Figure 2.12 – Two realizations of Hamiltonian paths on a cubic lattice. The globular state contains an extensive number of corners
whereas the crystalline state contains a non-extensive number of corners (proportional to the surface).

2.4.2.4 Phase diagram

The methods presented in the two previous paragraphs can be generalized to the case with attractive
interactions between nearest neighbors (βεv < 0) and to a lattice with vacancies (η < 1). Namely, an
equivalence with a field theory in the limit n → 0 can be written for the partition function in eq. (2.37).
Similarly to the previous cases, a combination of saddle-point and mean-field approximations yields the
free energy per monomer:

f (η,T ) = −T ln

(

q(β)

e

)

+ T
1 − η
η

ln (1 − η) + εv (1 − dη), (2.52)

where q(β) is defined in eq. (2.51). The full derivation is presented in details in [85]. In the open coil
regime η ≃ 0 and the free energy reduces to f0(T ) = −T ln q + εv . Introducing the reduced temperature
t = T/εv , the equilibrium equation ∂ f /∂η = 0 yields non-zero solutions η∗ only when

t < tθ = 2d. (2.53)

Therefore, there is a second-order transition between an open-coil state and a globule at tθ . Though, as
characterized previously, for βεh , 0, there is a freezing transition at a temperature tF toward a crystalline
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phase. For each εh the freezing temperature is obtained by equating the free energy in eq. (2.52) with the
free energy of a frozen configuration where all the corners, delimiting the non-vacant region, are expelled
to the surface:

g = −(d − 1)εv . (2.54)

In conclusion, the phase diagram announced is obtained in the plane (t, εh/εv), in which tθ delimits
the coil-globule transition and tF the globule-crystalline freezing transition. This phase diagram was later
confirmed and refined with the help of Monte-Carlo simulations [93] (see fig. 2.13a).

(a)

(b)

Figure 2.13 – (a) Phase diagram of the collapse of a polymer on a lattice as defined in eq. (2.37), and computed in [93] from
Monte-Carlo simulations. x = εh/εv (b) Phase diagram of a polymer interacting with spheres in a continuous volume. The phase
diagram was computed using BD simulations with P = 100 spheres, a polymer with N + 1 = 400 monomers, as a function of the
persistence length lp and of the strength of the Lennard-Jones DNA-protein interaction ε.

2.4.3 Phase diagram of the dense phase structure

The results obtained in this section have enlightened our understanding of the collapse of a rigid polymer.
There are however differences with the model of DNA condensation by binding proteins presented in
section 2.3. First, the formal nucleus model is not a lattice model. Second, the attractive interactions
between DNA monomers are not implicit but mediated by proteins. In that respect, the collapse depends
on the concentration of proteins. Third, the bending rigidity of the DNA is not taken into account by
discrete corner penalties but is instead modeled using a Kratky-Porod potential with persistence length lp

(see section 1.3.4 on page 13).
Despite these differences, we have found that the phase diagram of the collapse of a semi-flexible

polymer interacting explicitly with spheres in an off-lattice volume is very similar to the phase diagram
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obtained for the collapse of a polymer on a lattice presented above (fig. 2.13). Indeed, we performed BD
simulations with a polymer chain of N + 1 = 400 beads and P = 100 protein spheres in a cubic volume
of size L = 100 with periodic boundary conditions. Polymer beads and protein spheres were interacting
through a truncated Lennard-Jones potential with a well depth given by the energy scale ε (in kBT). By
varying lp and ε independently, we explored the phase behaviour of this system (appendix 2.B).

There are minor quantitative differences between the lattice/implicit and the off-lattice/explicit cases.
Namely the numerical values for the coil-globule and globule-crystal transitions are different. This is due
to the difference in the definition of the order parameters, the use of a Lennard-Jones potential for the
attractive interaction, the Kratly-Porod model used to take into account the chain bending rigidity, and it is
also a consequence of going from a lattice model to a continuous model. Furthermore, the concentration
of spheres in solution is smaller than the close packing concentration, making it hardly comparable to an
actual solvent. Despite these discrepancies, we can say that the results in both cases are in qualitative
agreement.

The main conclusion obtained from the phase diagram of the dense phase is the existence of specific
persistence length l∗p ≃ 10 such that:

• for lp < l∗p , the polymer collapses through a second order coil-globule transition, followed by a first
order globule-crystal transition when ε increases;

• for lp > l∗p , the coil-globule transition no longer exists and the polymer collapses directly from a
coil to a crystalline phase through a first order phase transition.

The coil-globule transition is the same as the phase transition depicted using a Flory-Huggins theory
in section 2.3. Yet, when the DNA-protein attraction is strong enough, it appears that the dense phase can
be crystalline. Besides, for very rigid chains (lp > l∗p), the coil-globule transition does not exist because it
is precluded by the freezing transition. In this case, the results of the Flory-Huggins theory are no longer
valid. Snapshots of the coil, globule, and frozen state computed from MD simulations can be seen in
fig. 2.7 and fig. 2.13b.

2.4.4 Conclusion

Let us sum up what has been obtained in this section. We have first noticed that the bending rigidity has
an influence on the structure of the DNA-protein condensates. We have tried to use the RPA in order to
characterize modulations of the DNA and protein concentrations in the dense phase, which is the signature
of the existence of a microphase. Yet, the RPA failed because the collapse transition being generally first
order, it is not driven by critical fluctuations. We turned to a theory of polymer collapse on a lattice,
which is instructive because it predicts the existence of a crystalline phase for large values of the rigidity
parameter εh . Using BD simulations, we effectively recovered this result for our formal nucleus model.

DNA condensation has been well characterized in in vitro experimental works [80, 82, 96–99]. Con-
sequently, it is well known that DNA collapses from disperse structures corresponding to swollen coil
configurations into ordered, highly condensed states, namely toroids or hexagonal bundles [100, 101].
Namely, such studies have concluded that during its collapse, DNA undergoes transitions through the
following three phases: isotropic fluid, cholesteric and crystalline (hexagonal). This is in agreement with
our results, demonstrating that our model for the collapse of DNA by proteins is actually more general
that what was intended in the first place.

Although it is premature to draw any clear biological conclusion, it is tempting to discuss at least
qualitatively potential effects of the crystalline phase on biological functions. In eukaryotes, nucleosomal
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organization provides an effective protection against detrimental factors. This organization is absent in
prokaryotes, which have a significantly lower ratio of DNA-binding proteins [102]. However, in harsh
environmental conditions (radiations, temperature, oxidizing agents and radicals), several bacteria resort
to DNA condensation mechanisms to protect their genome. Maybe the most spectacular case is the
appearance of macroscopic DNA aggregates with crystal-like order in starved E. coli cells. In stressful
conditions, the alternative σS factor is expressed, in response to low temperature, cell surface stress or
oxidative shock. This in turn induces the expression of the DNA-binding protein DPS [103,104]. In starved
cells, DPS is the most abundant DNA-binding protein, with approximately 20 000 DPS proteins per cell.
Consequently, DNA is condensed into crystal-like aggregates, which makes it less accessible to damaging
factors. Wild-type E. coli cells starved for three days remain unaffected by a high dose of oxidizing
agents whereas mutants lacking DPS lose viability [103]. This process is reversible. Interestingly, DPS
binds non-specifically to DNA. We speculate that when DPS concentration increases, it induces the DNA
collapse, and a dense phase appears. For proteins of the size of DPS (< 10 nm), the apparent rigidity of
DNA is large (≈ 50 nm). Hence we might be in a case where the coil-globule transition is precluded by
the freezing transition. Other examples of DNA compaction by non-specific proteins seem to exist. For
instance the protein RecA induces the formation of DNA bio-crystals in E. coli which have an essential role
in the DNA repair system [26], and the condensation of DNA in crystal-like configurations by spermine
and polyamines has also been well characterized [105].

Earlier studies have demonstrated that the frozen phase can present various metastable states [94].
In the large N limit (N is the length of one chain), the transition time scale from one to another could
be very large, and the system might well never equilibrate within biological time scales. Moreover, the
parallel drawn between the Hamiltonian paths theory and the Flory-Huggins theory does not pretend
to mathematical rigor. One essential difference is that in our case the attractive interaction between
monomers is mediated by spheres. A way to compute more precisely the structure of the dense phase
would be to go beyond the homogeneous saddle point approximation leading to the Flory-Huggins theory,
for instance by using self-consistent field methods [54, 55], which are quite complex methods in the case
of semi-flexible polymers.

(a) (b) (c)

Figure 2.14 – (a) Electron microscope (EM) images of DNA co-crystals in E. coli [26]. (b) CryoEM of DNA condensed inside
the T5 bacteriophage in toroidal shapes [100]. (c) DNA-protamines complexes with bundle shapes observed by cryo-imaging with
transmission electron microscope [101].
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2.5 Discussion

We presented here two complementary frameworks to describe the phase diagram of polymeric fluids
induced by binding particles, and applied it to a DNA chain interacting with DNA-binding proteins.
Starting from a Flory-Huggins free energy, we first computed the mean-field phase diagram and found
that at low temperature (i.e. high DNA-protein affinity) a biphasic regime exists, consisting of the
coexistence of a dilute phase and a concentrated phase. The dilute phase may correspond to swollen
configurations of the DNA whereas the concentrated phase is a model for condensed states of DNA. It
turns out that the theory may also apply to DNA condensation by multivalent ions. Second, we addressed
the characterization of the dense phase structure and showed that the chain bending rigidity can have
dramatic effects. Without bending rigidity, the dense phase has no directional order and is a molten
globule. However, when the chain bending rigidity is large enough, there is a freezing transition from the
globular to a crystalline phase. Eventually for very rigid chains, the coil-globule transition is precluded by
the freezing transition and the phase transition predicted in the Flory-Huggins framework does not occur.

In the cell, the existence of a dense phase could be a good approximation for the transcription factories
observed experimentally. It is conjectured that this may increase the rate of success in transcription
initiation by means of protein crowding and by enhancing the promoter search mechanism. Note that
at a scale coarse-grained to a few thousand base-pairs (gene scale), the chromosome is flexible and the
dense phase has the structure of a molten globule. Conversely, at a scale of a few base-pairs, the apparent
rigidity of DNA is much higher. Thus, the DPS protein, which binds non-specifically to DNA, can induce
the collapse of the E. coli chromosome into crystal-like aggregates; the dense phase is then frozen. This
is not an efficient state for a searching mechanism. But on the contrary, it is very adequate to protect DNA
or to halt transcription.



Appendix

2.A Matrix elements of the Gaussian fluctuations

We recall the expression of the action in eq. (2.8):

βS = −i

∫

dr ρD (r)ϕD (r) − i

∫

dr ρP (r)ϕP (r)

+

∫

dr dr′ ρP (r′)uPP (r′ − r)ρP (r) +

∫

dr dr′ ρD (r′)uDD (r′ − r)ρD (r)

+ β

∫

dr dr′ ρD (r′)uDP (r′ − r)ρP (r)

+

1

3!
w

∫

dr (ρD (r) + ρP (r))3

− P ln W [iϕP] − M ln Q[iϕD] + P ln
P

e
+ M ln

M

e
,

(2.55)

with the single bead and single chain partition functions:

W [iϕP] =

∫

dR exp (−iϕP (R)),

Q[iϕD] =

∫

D [r(s)] exp
*..,
−βU0[r(s)] − i

N
∫

0

ds ϕD (r(s))
+//-
.

(2.56)

We now give the first and second order derivative of the action, which are used to find the saddle-point
equations and perform the Gaussian fluctuations analysis. For the sake of clarity, we take β = 1 in the
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sequel. The first order functional derivatives are:

δS

δρD (r)
= −iϕD (r) +

∫

dr′ uDD (r − r′)ρD (r′) +

∫

dr′ uDP (r − r′)ρP (r′)

+

1

2
w(ρD (r) + ρP (r))2,

δS

δϕD (r)
= −iρD (r) − M

δ ln Q

δϕD (r)
,

δS

δρP (r)
= −iϕP (r) +

∫

dr′ uPP (r − r′)ρP (r′) +

∫

dr′ uDP (r − r′)ρD (r′)

+

1

2
w(ρD (r) + ρP (r))2,

δS

δϕP (r)
= −iρP (r) − P

δ ln W

δϕP (r)
,

(2.57)

and the second order derivatives are:

δ2S

δρD (r)δρD (r′)
= uDD (r − r′) + w(ρD (r) + ρP (r))2δ(r − r′),

δ2S

δρP (r)δρP (r′)
= uPP (r − r′) + w(ρD (r) + ρP (r))2δ(r − r′),

δ2S

δρD (r)δρP (r′)
= uDP (r − r′) + w(ρD (r) + ρP (r))2δ(r − r′),

δ2S

δρD (r)δϕD (r′)
= −i,

δ2S

δρP (r)δϕP (r′)
= −i,

δ2S

δϕD (r)δϕD (r′)
= −M

δ2 ln Q

δϕD (r)δϕD (r′)
,

δ2S

δϕP (r)δϕP (r′)
= −P

δ2 ln W

δϕP (r)δϕP (r′)
.

(2.58)

In the RPA analysis of section 2.4.1, these derivatives are to be computed at the mean-field solution:

ρD (r) = cD,

ϕD (r) = φD,

ρP (r) = cP,

ϕP (r) = φP,

(2.59)

which we denote by the ∗ subscript in what follows. Evaluating the five first equations in eq. (2.58) at the
mean field saddle-point is easily done, whereas it requires further computations for the two last ones. We
obtain:

δ2S

δϕP (r)δϕP (r′)

�����∗ = cP

(

δ(r − r′) − 1

V

)

,

δ2S

δϕD (r)δϕD (r′)

�����∗ = cD
(

SN (r − r′) − cD
)

,

(2.60)
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where SN (r−r′) is the structure function of the polymer chain. Its expression follows directly from taking
the second order derivative in eq. (2.56):

cDSN (r − r′) =

〈

N
∫

0

ds ds′ δ(r − r(s))δ(r′ − r(s′))

〉

=

1

Q0

N
∫

0

ds ds′
∫

D [r(t)] δ(r − r(s))δ(r′ − r(s′)) exp (−U0[r])

=

1

Q0

N
∫

0

ds ds′
∫

drN dr0 〈rN |e−(N−s)Û0 |r′〉〈r′ |e−(s′−s)Û0 |r〉〈r|e−sÛ0 |r0〉,

(2.61)

where we have introduced the chain propagator:

q(r′s; r0) =

r(s)=r′
∫

r(0)=r

D [r(t)] exp (−U0[r])

= 〈r′ |e−sÛ0 |r〉
= 〈r′ |ψ(s)〉, |ψ(0)〉 = |r〉.

(2.62)

A proper choice of normalization results in |ψ(s)〉 to be the probability distribution function for the
last monomer. Consequently, we have

∫

dr′ q(r′s; r0) =

∫

dr′ 〈r′ |ψ(s)〉 = 1,
∫

dr dr′ q(r′s; r0) =

∫

dr dr′ 〈r′ |ψ(s)〉 = V .

(2.63)

Eventually, the structure function of the chain has the expression:

SN (r′ − r) =
1

N

N
∫

0

ds ds′ q(r′s′; rs). (2.64)

Let us emphasize that this result is valid only because SN (r′ − r) can be expressed in eq. (2.61) as a
matrix product of the three subchain propagators q(rN N ; r′s′), q(r′s′; rs) and q(rs; r00). More generally,
the chain propagator must obeys a Chapman-Kolmogorov equation. For a Gaussian chain it is [53, 55]:

∂q

∂s
(rs; r′s′) =

a2

6
∆rq(rs; r′s′) − V (r)q(rs; r′s′), (2.65)

where ∆r is the Laplacian operator and V (r) is an external field. It should be noted that the r.h.s. is
diagonal in Fourier basis. In the case of the free Gaussian chain, V (r) = 0, one obtains for the chain
propagator:

q(k, s′ − s) = 〈k|e−
a2 |s′−s |k̂2

6 |k〉

= exp

(

−a2k2 |s′ − s |
6

)

.
(2.66)
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Plugging this result back into eq. (2.64) gives the structure function of the Gaussian chain:

SN (k) = N D(k2R2
g), (2.67)

where R2
g = a2N/6 is the radius of gyration of the chain and D(x) = 2/x2(x + exp (−x) − 1) is the Debye

function.

2.B Detection of the coil-globule-crystal transitions

In order to detect the coil-globule transition, we monitored the quantity:

q =
log Rg

log N
, (2.68)

where Rg is the radius of gyration of the polymer. For a self-avoiding polymer with scaling law Rg ∼ bNν ,
q = ν + cst/ log N . In a good solvent, the polymer is swollen with ν = 0.588 whereas in a bad solvent it
collapses with ν = 1/3 . Thus q varies like ν.

In order to detect the coil-crystalline transition, and following [93], we first defined the quantity

nα =
∑

| ui · eα |, (2.69)

in which i runs over all the bonds of the polymer, ui is the unit vector having the same direction as the bond
i and eα is the unit vector of the corresponding α-axis (α = x, y, z). We chose to monitor the quantity:

p = 1 − nmin

nmax

, (2.70)

where nmin = minα (nα) and nmax = maxα (nα). It is clear that for an isotropic configuration, nx = ny = nz

resulting in p = 0. Conversely, for a configuration stretched in one direction, say along the x-axis, nx = 1
and ny = nz = 0, resulting in p = 1. Thus p effectively measures the directional order of the polymer.

We then performed a thermodynamical average over uncorrelated configurations sampled from BD
trajectories to obtain 〈q〉 and 〈p〉. We carried out this procedure for different values of the DNA-protein
interaction, represented by the strength ε of the corresponding Lennard-Jones interaction and plotted the
values of 〈q〉 and 〈p〉 as a function of ε (fig. 2.15).

In order to to identify the transition point, we performed a fit with a sigmoid function:

s(x) =
1

1 + e−λx
. (2.71)

The inflexion point, x∗ = 0, was taken to be the transition point. Carrying out this procedure for
different values of lp gave the phase diagram from fig. 2.13b.
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Figure 2.15 – Collapse of a DNA polymer interacting with binding proteins through a Lennard-Jones potential with strength ε, for
different persistence length lp . For each ε the average values 〈Rg〉, 〈q〉 ≃ νRg and 〈p〉 are computed from BD simulations. A fit
with a sigmoid function gives access to the coil-globule transition (for Rg and q) and the globule-crystal or coil-crystal transition
(for p).
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Chapter 3

A side-study: computation of the

structure function of a worm-like chain

In chapter 2, we have seen that the structure function of a polymer is a quantity that arises in polymer
field theories, and in particular in the Random Phase Approximation (RPA). Although this object has an
analytical closed-form for a Gaussian chain, it is not the case for a worm-like chain (WLC). However the
chromosome is a rigid biopolymer better described by the latter model. Therefore, the RPA analysis in
chapter 2 has motivated additional work to compute the structure function of polymer chains with bending
rigidity.

In the present chapter, we consider a discrete worm-like chain polymer model. We first introduce the
pair correlation function, which is the central quantity required to compute the structure function. We
will show that the pair correlation function can be expressed exactly as a power of a transfer matrix with
complex entries. We then apply our result to the computation of the structure function for a worm-like
chain and compare it to the values obtained with Monte-Carlo simulations, as well as with other existing
methods of the literature.

3.1 Relevance of the structure function in polymer field theories

In polymer physics, the structure function is a central quantity which characterizes the density fluctuations
at thermal equilibrium. More accurately, it is related to the two points correlation function for the polymer
density:

cSN (r) = 〈ρ (

r + r′)ρ(r′
)〉, (3.1)

where N is the length of the polymer, ρ(r) is the concentration of polymer and c = N/V is the mean-field
concentration in a cavity with volume V .

The structure function has key applications in self-consistent field theories of polymer mixtures,
including the RPA. Briefly, the RPA looks for Fourier modes k driving critical fluctuations (see for
instance [53, 55]). The specific shape of the structure function can induce instabilities for non zero wave
number k, which is in general the signature of a microphase separation.

The analytical expression of the structure function for a Gaussian polymer is known to be the Debye
function [53, 54, 77]. Yet, many polymers cannot be considered as such. The example of biopolymers
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like DNA, actin and microtubules is a case in point. It is then necessary to take into account a persistence
length lp which characterizes the distance over which a polymer looses the memory of its orientation.
This is the realm of semi-flexible polymers. In a simplified picture, such a polymer can be discretized as
a sequence of monomers with inextensible bonds, free to rotate from one to the next. A common way
to deal with them is to use the so-called Kratky-Porod model [59], or worm-like chain (WLC), which
introduces a penalty proportional to a bending modulus κ when two consecutive bonds are not aligned.

Despite the longing interest in computing the structure function for semi-flexible polymers, there is no
exact analytical closed-form available. Nonetheless, several solutions have been proposed. Some of them
rely on analytical approximates [62, 86, 87, 106], while others provide numerical methods to compute the
desired quantity [88–90]. After presenting our method, we will discuss some of them in the sequel.

3.2 Expression of the pair correlation function

3.2.1 Pair correlation and structure function

Let us start from the discrete WLC presented in section 1.3, with N + 1 monomers. The density of
monomers at position r is given by:

ρ(r) =

N
∑

n=0

δ (r − rn) , (3.2)

where as usual, rn is the vector of spatial coordinates for monomer n. If we substitute this expression in
eq. (3.1), and integrate the translational degree of freedom, then we obtain:

SN (r) =
1

N

N
∑

m,n

〈δ (r − (rn − rm))〉, (3.3)

in which the terms such that n = m have been removed when going from a continuous to a discrete chain.
Let us now introduce the pair correlation function:

gN (r) = 〈δ (r − (rN − r0))〉 , (3.4)

with Fourier transform:

gN (k) =
〈

exp (ik · (rN − r0))
〉

=

1

QN

∫ N
∏

j=1

d2uj exp

−κ
N−1
∑

j=1

(1 − uj .uj+1) + ik.

N
∑

j=1

uj

 .
(3.5)

From eq. (3.3), we see that the Fourier transform of the structure function, SN (k), can be expressed
as:

SN (k) =
1

N

N
∑

n,m

g |n−m | (k), (3.6)

Note that at k = 0, we retrieve SN (0) = N + 1 which is the number of scattering units, i.e. monomers
of the chain. It is clear that the central quantity to compute is the pair correlation function, but the integral
form from eq. (3.5) is out of scope for practical use when N grows to large values.
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3.2.2 Expression in terms of transfer matrices

We extend the transfer matrix defined in eq. (1.16) on page 15 to Fourier modes, k , 0:

T (u | u′) = exp

(

−κ(1 − u · u′) + ik · u + u′

2

)

(3.7)

and rewrite eq. (3.5) as

gN (k) =
1

QN

∫


N
∏

j=1

d2uj T (uj | uj−1)

 exp
(

ik · u1 + uN

2

)

(3.8)

For k = 0, T is real and symmetric, yet for k , 0, the transfer matrix is still symmetric but with complex
matrix elements. Note that this kind of transfer matrix had been introduced earlier in the literature, but
with ik = f real, in order to compute the relative extension of a WLC polymer when a force is applied at
both ends [107, 108]. In what follows, we will keep the same notation for T but it should be kept in mind
that it implicitly depends on the wave number k.

The integration in eq. (3.7) is carried out over the angular variables ϕ and θ in the spherical coordinates
system attached to the z-axis (see eq. (1.36) on page 22). However, we can formally integrate out the ϕ
variables. Hence we obtain a reduced transfer matrix T̂ , with matrix elements:

T̂ (θ | θ ′) = I0(κ sin θ sin θ ′) exp

(

−κ(1 − cos θ cos θ ′) + ik
cos θ + cos θ ′

2

)

, (3.9)

where

I0(z) =

∫

dϕ

2π
exp (z cos ϕ) (3.10)

is the modified Bessel function of rank 0. The evaluation of I0(z) is performed numerically, for which
several routines are available [64]. Besides, one can still use polynomial approximations to save up
computational time. Using the reduced transfer matrix, the pair correlation function from eq. (3.8) now
reads:

gN (k) =
1

QN

π
∫

0

dθ sin θ Φ(θ)T̂N−1
Φ(θ), (3.11)

where we defined Φ(θ) = exp (ik cos θ/2). Note that our notation for matrix-vector product implies that
the correct measure, dθ sin θ, is taken in the integration. In particular, the product of T̂ with the function
Φ reads:

T̂Φ(θ) =

π
∫

0

dθ ′ sin θ ′ T̂ (θ | θ ′)Φ(θ ′). (3.12)

In conclusion, the pair correlation function has been expressed as an integral over one single angular
variable θ. Besides, it only depends on the norm k of the Fourier mode considered. As can be expected
at that point, a calculation scheme of gN (k) will consist in expanding Φ on the basis of eigenfunctions
of T̂ . However it is worth pointing out that T̂ is not hermitian in general, except when k = 0 for which
it is real and symmetric. Therefore in the general case, the eigenfunctions Yn(θ) of T̂ are not orthogonal,
i.e.

∫

dθ sin θYn(θ)Yn′ (θ) , δn,n′ . We stress that the final form in eq. (3.11) is exact and can be formally
rewritten as:

gN (k) =

〈

Φ | T̂N−1 | Φ
〉

k
〈

Φ | T̂N−1 | Φ
〉

k=0

. (3.13)
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3.3 Application to the computation of the structure function

In this section, we introduce our method to compute the pair correlation function gN (k) and apply it to
compute the structure function of a discrete WLC with N + 1 = 200 monomers. Then we compare our
results to existing methods.

For computational efficiency, we have used the following expression for the structure function:

SN (k) =
2

N

N
∑

n=1

(N − n + 1)gn(k), (3.14)

which is equivalent to eq. (3.6), but reduces the computational complexity from O(N2) to O(N ).

3.3.1 Transfer matrix method

As announced, we devised a numerical procedure based on eq. (3.13) to compute gN (k). For convenience,
we have chosen to make the change of variable Υ = − cos θ, with the uniform integration measure on
[−1, 1]. We also chose a discretization of size M , through the regular subdivision:

Υm = −1 + m
2

M
with m = 0, . . . , M . (3.15)

Using this discretization, the matrix elements of the reduced transfer matrix T̂ read:

tmn = exp

(

−κ (1 − ΥmΥn) − ik
Υm + Υn

2

)

I0

(

κ

√

1 − Υ2
m

√

1 − Υ2
n

)

, (3.16)

where I0(z) is the modified Bessel function of rank 0. Similarly, the discrete version of the function Φ is
a vector with coordinates:

φm = exp

(

−ik
Υm

2

)

. (3.17)

For each value of the wave number k, the discrete matrix T̂ can be diagonalized, namely tmn =
∑

j pmjλ jp
−1
jn

, where λ0 > λ1 > . . . λM−1 are the eigenvalues and pi j is the matrix of coordinates for the
diagonal basis. Once again, let us emphasize that both the eigenvalues λi and the matrix pi j depend on
the wave number k. The pair correlation in eq. (3.13) is then finally expressed as the ratio of two sums:

gN (k) =

[
φmpmjλ

N−1
j

p−1
jn
φn

]
(k)[

φmpmjλ
N−1
j

p−1
jn
φn

]
(0)

, (3.18)

where the summation on indices j,m, n is implied.
This procedure provides a systematic way to compute the pair correlation function of a discrete worm-

like chain for any value of the rigidity parameter κ (fig. 3.1). The pair correlation function obtained
correctly interpolates between the Gaussian chain, for which gN (k) = exp

(

−k2R2
g

)

, and the rod-like
chain, for which gN (k) = sin (k N )/(k N ).

In practice, the numerical complexity lies in the fact that for any wave number k, we need to diagonalize
a M × M complex square matrix. As the rigidity of the chain increases (large κ), a discretization with
a larger M is required, resulting in an increased complexity. For κ ≫ 1, T (θ | θ ′) is sharply peaked
around the straight bond configuration θ = θ ′, with a maximum at θ = θ ′ = 0 (π). As T (θ | θ ′) becomes
localized near θ = θ ′, replacing the integral in eq. (3.11) by a Riemann sum with a regular subdivision
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such as in eq. (3.15) is not adapted, and M needs to be increased. Therefore, for very rigid chain, the
transfer matrix method is not ad hoc since the complexity for diagonalizing a matrix of size M grows like
O(M3). As can be expected, the accuracy reached for the computation of the structure function SN (k)

will depend on the value of M (fig. 3.2). In other words, for fixed M , the quality of our prediction falls off
as the rigidity of the chain increases, especially in the small k regime. On the basis of this analysis, we
used a discretization M = 1000 in further applications.

Figure 3.1 – Computation of the pair correlation function for different values κ. The dotted lines are the Gaussian, exp
(

−k2N/6
)

,
and the rod, sin (kN )/kN pair correlation functions. We considered a chain of length N = 200 and used a discretization with
M = 1000.

(a) (b)

Figure 3.2 – Transfer matrix computation of the structure function for M = 50, 100, 500 and 1000. We considered a chain of length
N = 200 with a bending rigidity κ = 20. (a) SN (k) as a function of k. (b) k2SN (k) as a function of k (Kratky plot).
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3.3.2 Comparison with other methods

As a reference method, we computed the structure function of a WLC using Monte-Carlo simulations. We
used a standard Metropolis-Hasting Monte-Carlo algorithm to sample configurations of a discrete WLC
in the Boltzmann ensemble. A configuration was defined by the N + 1 coordinates of the monomers {ri }.
At each iteration, a new configuration {r′

i
} was generated from the previous one using pivot and crankshaft

moves. The probability to accept the new configuration was taken as usual to be

Pr
(

{ri } → {r′i }
)

= min
(

1, exp
[
−βUb ({r′i }) − βUb ({ri })

] )
(3.19)

where βUb is defined in eq. (1.14) on page 14. As is well known, the stationary distribution resulting
from this Markov process samples the Boltzmann equilibrium. After an initial run intended to reach the
Boltzmann equilibrium, we sampled 10 000 configurations every 500 iterations. For N + 1 = 200, the
autocorrelation time appeared to be smaller than the time between two such configurations. Using the
ergodicity property of Markov processes, we computed thermal averages by taking an average over the
sampled configurations. In particular, the pair correlation function was computed using

gN (k) = 〈cos (k · (rN − r0))〉 (3.20)

which is equivalent to eq. (3.5) because gN (k) is real. As can be seen in fig. 3.3, the structure function
obtained with the transfer matrix method and with Monte Carlo simulations are in good agreement.

Other methods to compute the structure function of a WLC can be found in the literature. Two
good analytical expressions are available. Khodolenko [87] used an ansatz for the structure factor of
a WLC based on a Dirac propagator equation. By design, this model smoothly interpolates between
the Gaussian and rod-like chain limits. Although the formula proposed by Kholodenko seems like a
good approximate for the pair correlation function, it is not the actual solution for the WLC model.
Furthermore, both the physical interpretation of the parameters and the accuracy for intermediate stiffness
are not clear. Bhattacharjee and co-workers [62] enforced the constraint on the bond length, | u2

i
− 1 |,

through a mean-field approximation and relaxed the integration on the unit sphere to the full volume (see
section 1.3.4.2 on page 17), and obtained an analytical expression for the pair correlation function. Yet,
its accuracy might be called into question for moderate stiffness, due to uncertain contributions of local
chain length fluctuations which are not taken into account at the mean-field level. Other methods have
been proposed, giving a numerical approximate of the pair correlation function of a WLC. Spakowitz [89]
and co-workers computed gN (k) as an infinite continued fraction, which must be truncated for numerical
evaluation. Although the numerical implementation of the continued fraction seems straightforward,
further treatments are required to obtain the structure function, namely an inverse Laplace transform.
Zhang and co-workers [90] used the Chapman-Kolmogorov equation satisfied by the Green function
G(k, u; s) of a WLC (see appendix 1.B). Physically, G(k, u; s) is the spatial Fourier transform of G(r, u; s),
which is the joint probability distribution that a chain starting at the origin ends up at position r with
orientation u. The associated numerical procedure makes use first of an expansion of G(k, u; s) in terms
of the spherical harmonics functions. This method shares similarities with our own approach.

We chose to compare our results (at M = 1000) with the analytical forms of Khodolenko and
Bhattacharjee (see appendix 3.A), using the Monte-Carlo result as a reference. We observe that the
transfer matrix method performs better than the analytical forms of Kholodenko and Bhattacharjee for
moderate stiffness (fig. 3.3). Conversely, for strong stiffness, the transfer matrix method would require
a higher discretization M , and therefore it performs less well than the analytical expressions. Note
that this could have been expected since both Kholodenko and Bhattacharjee forms are derived from
approximations whose validity improves for stiff chains.
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(a) (b)

Figure 3.3 – Comparison of the structure function obtained with different methods, for κ = 2.00, 4.00, 20.00. We considered a
chain of length N = 200. (a) SN (k) as a function of k. (b) k2SN (k) as a function of k (Kratky plot).

3.4 Discussion

In conclusion, we have presented a method to compute the structure function of a WLC, in Fourier space.
The method relies on the eigenvalue decomposition of a transfer matrix with complex entries, which is
performed for each value of the wave number k. Specifically, the pair correlation function, which is
expressed as a power of the transfer matrix T , can be straightforwardly computed with this method.

Our method appeared to be in good agreement with a computation of the structure function obtained
from Monte-Carlo simulations of a WLC. In addition, we have compared it with two of the existing
analytical approximations that can be found in the literature. We stress that the structure function
computed with these methods is not the WLC structure function, because the authors model the polymer
bending rigidity using models which are approximation of the WLC model. This might have lead to
discrepancies when comparing with our method because the bending rigidity parameter in these models
is not exactly the WLC persistence length, although we followed the interpretation given by the authors
of these studies. We found that our transfer matrix method performs better for moderate stiffness of
the WLC. To the contrary, for large persistence length our method performs less well. This is due to a
too sparse discretization of the transfer matrix T , resulting in a discrepancy between discrete sums and
continuous integrals. A practical way to circumvent this issue would be to consider a finer discretization
of the transfer matrix T (larger M). This is of course possible, but it should be kept in mind, that the time
required to compute the structure function at wave number k, SN (k), scales as N times the time required
to diagonalize T , which is in O(M3).
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Appendix

3.A Other methods to compute the pair correlation function of a

worm-like chain

Kholodenko’s method

In eq. (11) from [87], the pair correlation function is computed from the expression:

gN (k) =



1
√

1 − (k/m)2

sinh
(√

1 − (k/m)2mN
)

sinh(mN )
if k < m

1
√

(k/m)2 − 1

sin
(√

(k/m)2 − 1mN
)

sinh(mN )
if k > m

(3.21)

where m = 3/(2lp). This ansatz is obtained from the analogy of the Hamiltonians between Dirac’s
fermions and semi-flexible polymers.

Bhattacharjee’s method

In eq. (15) from [62], the pair correlation function is computed from the expression:

gN (r) = N
[
1 − (r/N )2

]−9/2
exp

(

−3N

4lp

1

1 − (r/N )2

)

(3.22)

where N is a normalization constant.
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Chapter 4

Model for the role of

nucleoid-associated proteins in

regulating transcription

In this chapter, we propose a model providing a direct connection between regulation of the transcription
and chromosome architecture.

In bacteria, an example of structuring proteins is the so-called family of nucleoid-associated proteins
(NAPs). Hence we will build our analysis on what is known today about these proteins. We first start by a
review of the literature on the four main NAPs in Escherichia coli bacteria which are: H-NS, FIS, HU and
IHF. We will describe the architectural changes induced on the chromosome by these proteins, and what
is known of their consequences on genetic expression. In particular, H-NS leads to the formation of DNA
filaments and hairpin loops which prevent RNA polymerase binding. Several studies have conjectured that
small H-NS/DNA hairpin loops can be unstable or easily disrupted by perturbations, such as the binding
of more dedicated transcription factors. Hence this constitutes the basis for a transcriptional switch, which
motivates an investigation of the underlying physical mechanism.

Second, we will figure out what is the relevant genomic scale to model the structuring effect of NAPs
on the chromosome. To serve this purpose, we will use data from ChIP-seq experiments. We will show
that the distribution of H-NS and FIS binding sites on the E. coli genome cannot be well modeled by
a Poisson stochastic point process where the realization of stochastic events in time corresponds to the
insertion of binding sites on the genome. In particular, we will show that deviations from this model occur
at short genomic distances, hence giving a likely scale at which evolutionary pressure has been exerted.

Finally, we will explore in more details the formation of DNA hairpin loops under the effect of H-NS.
We will show that in order to form stable hairpin loops, binding regions must have a minimum length.
This result is first derived using a simple polymer model with implicit interactions, and then confirmed
using Brownian dynamics simulations with explicit and divalent proteins. Then we elaborate on possible
implications for a regulatory mechanism relying on the disruption of these structures by other proteins
such as FIS.

67
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4.1 Introduction to nucleoid-associated proteins (NAPs)

4.1.1 What are NAPs?

In eukaryotic cells, histones provide a first and significant level of organization of the chromosome. Since
bacteria lack histones, the chromosome is not organized into nucleosomes and the relevant description of
the chromosome is the naked fiber of diameter 2.5 nm [13]. However, proteins playing a structural role
like histones exist. With no surprise, they are called histone-like proteins, or nucleoid-associated proteins
(NAPs), and are well known structuring proteins. In Escherichia coli, the NAPs family comprises 12
proteins [32], including H-NS, FIS, IHF, HU and StpA (a close analog of H-NS). The stationary phase
transcription factor DPS is to be mentioned too, although it is present in significant concentrations only
during the stationary phase or in response to stress.

The presence of NAPs is a universal feature among bacteria. In particular, there are found in many
Salmonella species, like S. typhimurium [109]. In other bacteria species, NAPs are not exactly the same
as in Escherichia coli, but often functional and structural analogs can be found. For instance in Bacillus

subtilis, FIS is present while H-NS is replaced by the protein Rok, which has a similar structure despite
the absence of sequence homology. In Deinococcus radiodurans, a radiation-resistant bacteria, H-NS and
FIS are not found, but HU and DPS are present in the cell [26]. Unless otherwise stated, we discuss in the
sequel the biology of the E. coli bacteria.

4.1.2 Architectural and regulatory role

Like histones in eukaryotes, NAPs contribute significantly to the compaction of the bacterial DNA. In
E. coli the 1.5 mm bacterial DNA is folded dramatically to fit into the 1 µm3 volume of the cell. More
precisely, DNA is constrained to sit in a small region near the center of the cell [110]. It has been
demonstrated that this is mainly due to H-NS, which induces the formation of approximately two clusters
per chromosome, which constitute the bacterial nucleoid. It has been shown that Rok has a similar role in
B. subtilis [111]. Consequently, H-NS is found inside the nucleoid, whereas FIS, IHF and HU are found
mostly at its periphery [112,113].

In general, regions of the chromosome which are trapped inside the nucleoid appear to be transcription-
nally silent. Therefore, there is a connection between chromosome architecture and transcription, yet to
be resolved. More generally, all NAPs were shown to have an effect on the transcription of a large number
of genes. For instance, it is known that the presence of AT-rich regions upstream of gene promoters can
dramatically increases transcription [114]. Incidentally, AT-tracks, which are DNA sequences consisting
of the repetition of A and T nucleotides, are over-represented in the genome of E. coli [19]. Interestingly,
H-NS, FIS and IHF bind preferentially to AT-rich regions [115], suggesting that the binding of NAPs to
the chromosome is correlated with the role of AT-tracks in regulating the transcription.

NAPs have a strong influence on DNA architecture in the cell and are often called structuring proteins.
Yet, it was shown that removing mRNA from E. coli bacteria had more impact on the topology and shape
of the nucleoid than the removal of H-NS, FIS or IHF, suggesting that the prevalent role of NAPs is not
only architectural but also regulatory [115].

In short, the ubiquitousness of NAPs in bacteria points toward a key role maintained throughout
evolution. In particular, NAPs are the most abundant transcription factors in E. coli [116]. Thus their
high concentrations and numerous binding sites scattered across the genome suggest that even today
NAPs still play a prevalent regulatory role over other less abundant transcription factors. Presumably,
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regulatory functions stem from architectural changes induced on the chromosome. Besides, they are
commonly found in bacterial species, suggesting that they are the remnants of a long-lived evolution from
a common ancestor. Altogether, these elements represent strong reasons which motivate a more profound
understanding of the mechanism by which NAPs regulate gene expression.

4.1.3 Characterization in vivo

The concentration of NAPs depends on the growth phases of a cell population (fig. 4.1). H-NS concentra-
tion remains of the order of 20 000 copies/chromosome [116–118]. For this reason, it is often considered
as the NAP of reference. With more than 75 000 copies/chromosome during the exponential growth phase,
FIS is the NAP with the highest concentration in the exponential growth phase. Yet its concentration
plummets to less than 100 copies/chromosome during the stationary phase [19, 116]. Similarly, the ratio
of HU to H-NS is HU:H-NS=2.5 during the exponential growth phase and falls to approximately 1.0
during the stationary phase [110]. IHF concentration is low during exponential growth phase and sharply
increases at the onset of the stationary phase [117]. Eventually, NAPs can be ranked according to their
concentrations in different growth phases [119,120]:

• FIS > HU > H-NS > IHF > DPS in the exponential phase;

• DPS > IHF > HU > H-NS > IHF in the stationary phase;

suggesting that bacterial physiology and NAPs concentrations are intimately connected.
Because of their relatively high concentrations and of the small size of bacterial cells, their observation

with standard fluorescence microscopy is cumbersome [111]. Indeed, let us consider a bacterial cell with
volume 1 µm3, and a NAP with 20 000 copies resulting in a number density c = 2.0 × 104 µm−3. The
typical distance between two NAPs can be estimated to d ≈ c−1/3 ≈ 40 nm, which is below the visible
light wavelength. This issue, also well known as the sub-diffraction limit has been addressed with modern
super-resolution techniques [74, 75].

What distinguishes NAPs from other transcription factors is not only their high copy number but also
their large number of targets on the chromosome. Thus NAPs bind widely on the bacterial chromosome
with a coverage of the order of one binding site for every hundred base pairs (1:100 bp) [111]. Moreover,
although less than 10 % of the genome corresponds to non-coding DNA, approximately 50 % of each
H-NS, FIS and IHF binding sites fall in the promoter regions, suggesting a strong regulatory role for the
NAPs [115].

4.2 The Nucleoid-Associated Proteins of E. coli bacteria

4.2.1 The Histone-like Nucleoid Structuring protein (H-NS)

4.2.1.1 DNA binding

H-NS is a small protein binding widely to DNA (17 % of the chromosome in E. coli [32]). Consequently,
it was believed for long that H-NS could bind non-specifically to DNA [122,123]. In fact, state-of-the art
high-throughput ChIP-seq experimental techniques have demonstrated that sites with a slightly increased
affinity exist. Specifically, a 6 bp long binding motif has been identified [32] (fig. 4.2). This motif consists
in an AT track, with a core of 3 consecutive nucleotides having an information content close to 2 bits of
information (for the meaning of bits of information, see [124,125]). The average number of 3-nucleotide
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Figure 4.1 – Evolution of NAPs concentrations across the different growth phases [121].

random draws before returning to an AT 3-nucleotide core is only 8, or equivalently 24 bp. Therefore,
despite a bias for AT-rich sequences, it turns out that the binding motif might be quite commonly found
throughout the genome, which makes the non-specific binding hypothesis legitimate in a coarse-grained
approach.

A H-NS monomer is able to bind DNA with its C-terminal domain. It can also can dimerize with
another H-NS protein with its N-terminal domain [111]. Such an H-NS dimer is a divalent protein with
two DNA-binding domains. Furthermore, H-NS can gain valency by polymerizing with other dimers.
Contrary to other NAPs, H-NS does not seem to induce any bending of the DNA upon binding. Thus the
old claim that H-NS binds preferentially to curved regions of the DNA might find its origin in the fact that
AT-tracks are indeed more flexible. Alternatively, DNA regions presenting a hairpin-like conformation
might represent good candidates for subsequent binding by H-NS, since in this case H-NS can bridge the
two DNA segments without any enthalpic bending penalty.

Remarkably, H-NS dimers can induce the formation of rigid DNA-H-NS-DNA filaments (or bridges)
[122, 123]. Such filaments can nucleate from an initial binding site with higher affinity and elongate
in a zipper-like fashion. At moderate H-NS concentrations (>1:100 bp), H-NS-bound DNA molecules
display a characteristic structure with many filaments, usually flanked by DNA loops (fig. 4.3a). At larger
concentrations, dense structures are observed, presumably due to the existence of complexes containing
H-NS oligomers with a high polymerization index.

The mechanisms for the formation of DNA/H-NS bridges has remained elusive however. For instance,
it is not clear how DNA binding and polymerization of H-NS dimers result in stable filaments. On one hand,
a single molecule experiment demonstrated that two double-stranded DNA molecules previously coated
with H-NS fail to make filaments, suggesting that dimerization alone is not sufficient to make filaments.
Instead, H-NS dimers, tetramers and other oligomers would bind several DNA sites simultaneously
[126]. On the other hand, the packing of DNA into the nucleoid by H-NS has been demonstrated
to be highly deficient in mutants where H-NS could no longer polymerize, as evidenced by super-
resolution fluorescence microscopy [111]. More accurately, H-NS condenses the bacterial chromosome
in approximately two clusters with diameter close to 300 nm in wild-type cells, but these clusters disappear
in mutant cells where H-NS cannot dimerize.
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4.2.1.2 Thermochemical considerations

As already mentioned, H-NS exists under the form of oligomers with different polymerization indices.
In vivo studies demonstrated that it is a dimer at low concentration and a tetramer at high concentration
[122]. Furthermore, single DNA molecule studies have shown that H-NS has a high off-rate from DNA,
k− ≈ 1.5 s−1, suggesting that the DNA/H-NS bridges are fragile [126]. This can ease the dynamical
re-organization of the genome architecture. The same authors also measured the binding free energy of a
H-NS dimer bound to two DNA sites and found a value close to be 11 kBT , i.e. a binding free energy of
∆

0 f ≈ 5.5 kBT per DNA-protein link.

4.2.1.3 Regulatory function

We have seen that H-NS concentration is constant in first approximation, and that it may be considered as the
NAP of reference. Structural and/or regulatory changes might result from variations in the concentration
ratios of other NAPs relatively to H-NS. For example, the ratio HU:H-NS is 2.5 in the exponential growth
phase whereas it is close to 1.0 in the stationary phase. It has been argued that HU counteracts the
compaction of DNA induced by H-NS and that the balance between the action of the two NAPs have an
important role in regulating the transcription [110].

H-NS over-expression in E. coli has radical effects: it stops the cell growth, and makes the cell
enter a stationary state, even when induced in the middle of the exponential growth phase. In minimal
media, it was even reported to kill the cell [112, 127]. More accurately, H-NS over-expression stops the
production of RNA transcripts, and therefore protein synthesis. The resulting nucleoids displayed strong
morphological signatures: very dense and compact. Therefore, H-NS is generally considered as a global
transcription silencer, through DNA compaction.

In physiological conditions, H-NS represses the transcription of many unrelated and non-essential
genes [32, 109, 111, 112,115, 117,122, 123]. We stress that H-NS is also involved in the regulation of the
rrn operon encoding rRNAs, which are extremely abundant constituents of the ribosomes (essential for
the cell).

In agreement with the results obtained when H-NS is over-expressed, it was shown that genes repressed
by H-NS appear to be bound by H-NS and sequestered in clusters, whereas genes which are not regulated
by H-NS do not localize in such clusters [111]. Consistently, a ChIP-seq study has shown that genes bound
by H-NS are not bound by RNA polymerase (RNAP) and that their associated RNA transcripts have very
low copy numbers in the cell [32]. In contrast, in mutants lacking H-NS, the same genes were significantly
expressed and bound by RNAP. The study also confirmed that H-NS preferentially binds to AT-rich regions
in agreement with previous claims [109,118]. The majority of these AT-rich regions are sequences longer
than 1000 bp which are significantly enriched in genes acquired by horizontal transfer. Smaller binding
regions appeared to correspond essentially to sequences in the promoters of operons or genes. In short,
the mechanism of gene repression by H-NS seems to rely on the co-localization of H-NS-bound genes in
dense clusters which can not be accessed by RNAP. The global regulation of transcription by H-NS might
encompass a transcriptional modulation (by mild repression) of the short promoter-rich binding regions,
and complete silencing of large binding regions.

Most AT-rich regions correspond to xenogenic DNA acquired by lateral transfer (from bacterial
viruses for example). From an evolutionary perspective, it has been argued that the primary role of H-NS
could have been to act as a genome sentinel by silencing the expression of xenogenic DNA [109, 118].
Subsequently, sequences and transcription factors might have evolved independently and occasionally
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produced mechanisms able to relieve H-NS-mediated repression. Thus, although H-NS could have
acquired its prevalence in the bacterial kingdom because of its xenosilencing role, this system designed
for defense might have been diverted from its original function in the course of evolution to serve other
purposes, namely transcription regulation. An example is the rrnB operon which is repressed by H-NS
through the formation of a hairpin loop but activated by FIS (fig. 4.3b).

Incidentally, an interesting candidate for a regulatory mechanism based on H-NS effect is the so-
called RNAP-trapping mechanism by the rrnB promoter [115]. AFM experiments have demonstrated that
upon binding the rrnB promoter, RNAP can be trapped in a hairpin loop at the extremity of a DNA/H-NS
duplex [122]. This mechanism is thought to enable a fast response to external stimulus because RNAP does
not need to be recruited anymore when the H-NS repression is relieved. In the case of the rrnB promoter,
the stimuli corresponds to the binding of FIS in the promoter region. More generally, other TFs might
be able to relieve the H-NS-mediated repression by disrupting the H-NS/DNA complex [109, 118, 123].
On a local scale, H-NS may act in concert with other proteins resulting in specific regulatory functions.
The cooperative effect of H-NS hairpin loop repression with a disrupter TF may be envisioned as a
transcription “switch”.

H-NS is also a sensor to many environmental changes. For instance, H-NS expression is increased in
response to a cold shock. In Salmonella, 75 % of the genes having their expression altered by a temperature
shift from 25 ◦C to 37 ◦C also depend on H-NS concentration [117]. Namely in S. typhimurium it was
found that an increased temperature results in a diminution of the fraction of H-NS bound to the virulence
gene virF, hence relieving its repression [109]. This suggests that the heat-shock response is mediated
by a change in H-NS expression. Therefore, thermodynamical changes in the environment can alter the
relative fraction of H-NS monomers and other oligomers, which induces a physiological response.

As a complementary mechanism, it has been suggested that the H-NS/DNA duplexes might prevent
the supercoiling propagation along the chromosome [118], and it was shown that H-NS over-expression
correlates with a global decrease of supercoiling.

Figure 4.2 – Position Weight Matrices for H-NS and FIS computed from high-throughput ChIP-seq experiment [32].

4.2.2 The Factor of Inversion Stimulation (FIS)

4.2.2.1 DNA binding

It was characterized early that FIS is a protein with a degenerate consensus binding sequence which can
bind widely on the genome [32, 117, 128–130]. Similarly to H-NS, few sites with higher affinity can be
found. In particular, ChIP-seq studies have identified a 15 bp binding motif for FIS [32,114,130] (fig. 4.2).
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(a)

(b)

(c)

(d)

Figure 4.3 – (a) AFM microscopy image of DNA filaments induced by H-NS [110]. (b) AFM microscopy image of a RNAP bound to
a plasmid with the rrnB promoter in its center. After addition of H-NS to the solution, RNAP appears to be trapped in a DNA/H-NS
hairpin complex (two right images) [122]. (c) Principle of xenogenic silencing by H-NS and regulatory integration [118]. (d) H-NS
binding regions are organized into tracks, contrary to other transcription factors and NAPs such as FIS, which are the signature of
filaments [32].
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Due to the presence of side chains in the protein structure, FIS effectively spans a 21 bp region once bound
to DNA [129].

FIS is a homodimer [129,130], i.e. its structure comprises two identical subunits which are assembled
together. Each subunit has a helix-turn-helix structure resulting in a protein domain that can bind DNA.
Hence FIS is divalent, namely it can bind two DNA sites simultaneously. Upon binding, FIS makes
contacts with two consecutive major grooves on the DNA double-helix, separated by approximately 11 bp.
However, the length between the binding domains of the two subunits is too short, and consequently DNA
is bent by 40-50° [19, 130]. Once bound, FIS can interact with flanking DNA and/or proteins with its
side chains. In particular, it has been established that it can bind the α-CTD domain of RNAP by charge
complementarity. This finding supports the view that FIS can recruit RNAP to facilitate the initial binding
step of RNAP to the promoter [114, 122].

The DNA structures resulting from the interaction with FIS are different from the structures induced
by H-NS. In particular, FIS results in the formation of branched structures in supercoiled circular DNA
molecules [119]. This effect is grounded in the formation of DNA loops. In vitro assays have shown
that DNA branching starts to appear at a protein ratio of 1:160 bp. For higher concentrations, starting
with a ratio <1:80 bp (or a concentration > 75 nM), DNA collapses in low mobility complexes [119]. In
between, at moderate concentrations, FIS favors the formation of loops. This has also been evidenced
with force-extension experiments [129,130], in which a stretching force is applied at both ends of a linear
DNA molecule of 50-100 kbp. For various FIS concentrations, a threshold force was identified, below
which the DNA molecule collapses. This appeared to result from the existence of loops induced by
thermal fluctuation at low forces. Such loops can be quenched by FIS proteins binding the extremities
of the loop. Specifically, upon re-extension of the DNA molecule, discrete steps of DNA molecule size
were observed, corresponding to the opening of such quenched loops. Their typical size was estimated to
200 bp. From a regulatory standpoint, formation of loops in promoter regions may potentiate transcription
by bringing in proximity remote regulatory sequences. On the contrary, dense aggregates occurring at
high FIS concentration are expected to silence transcription in a manner similar to H-NS.

4.2.2.2 Thermodynamical considerations

The concentration of FIS peaks during the exponential growth phase, with approximately 75,000
copies/chromosome (∼ 50 µM) [19, 116, 128, 131]. Yet, in the stationary phase, FIS concentration
plummets to undetectable levels [32]. Paradoxically, despite being the most abundant NAP in this phase
of growth, it remains spatially localized to the periphery of the nucleoid, whereas H-NS for instance is
distributed in the whole nucleoid.

It appears that FIS binding to DNA is much stronger than that of H-NS. Indeed, starting from a DNA
molecule coated with FIS, it was shown that the introduction of additional DNA molecules providing free
competitor binding sites was not enough to drive the dissociation of FIS proteins from the original DNA
molecule [130]. Dilution of the solution to increase the entropy of free FIS proteins was also insufficient
to drive FIS dissociation. Finally, upon force re-extension of the DNA molecule and breakage of the
DNA loops maintained by FIS, it appeared that FIS still remained bound to DNA. From these assays, the
apparent dissociation coefficient measured was Kd ≈ 1 mM. Besides, ChIP-seq experiments revealed a
very strong background signal for FIS binding in the exponential phase, confirming the high affinity of
FIS with DNA genome-wide [32].
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4.2.2.3 Regulatory function of FIS

The role of FIS in regulating the transcription is less clear than with H-NS and has remained rather
controversial. It has been argued that FIS is an activator for several genes, including the genes of the
macrosynthesis (tRNA, rRNA) [131] and the hns gene [109, 117]. Early ChIP-chip experiments also
demonstrated that 61 % of FIS binding occurs in promoter regions. Beside, 47 % of these binding
events were correlated with the binding of RNAP, supporting the role of RNAP recruiter for FIS [19].
Interestingly, it is also claimed that FIS has a role in regulating DNA supercoiling since it was found
to be an activator for the expression of topoisomerase I, one of the enzymes responsible for relieving
supercoiling [117].

Yet there are also many cases where FIS acts as a repressor. For instance it represses its own
expression [115]. Hence there is no general tendency toward activation or repression of the transcription.
Even more confusing, some equivalent genes in Escherichia coli and S. typhimurium appear to be contrary
regulated by FIS [131]. Eventually, these results should be taken with caution since the differential
expression measured for those genes is sometimes very small. A rather recent ChIP-seq study [32] has
even concluded that despite its role as a key activator/repressor for very few genes, such as the rrnB

operon, in most cases the transcription of genes bound by FIS is not significantly affected by the fis gene
deletion.

Concerning the rrnB operon, it has been shown that FIS binding increases the transcription of the
downstream genes by 3 to 7 fold [114]. As detailed previously, this promoter is also under the repressive
control of H-NS, which operates through the formation of DNA/H-NS hairpin with RNAP trapped at
the apex [122]. FIS has 3 binding sites upstream in the rrnB promoter. Such bindings may interfere
with H-NS binding, disrupt the DNA/H-NS filament, resulting in the de-repression of the rrnB operon.
Another evidence of this phenomenon seems to be the observation from ChIP-seq experiments that H-NS
and FIS binding are mutually exclusive and anti-correlated [32]. Furthermore, as stated previously, H-NS
has a high off-rate, suggesting that the DNA/H-NS filaments can undergo fast dissociation whereas FIS
binding to DNA is strong, suggesting that it may prevent H-NS mediated repression for large times.

Several works have sought to relate the action of FIS to supercoiling in bacterial chromosome [115].
In E. coli the typical size of a supercoiled domain is of the order of 10 kbp. ChIP-chip studies have shown
that there is approximately two FIS proteins bound per supercoiled domain. Therefore the average spacing
between consecutively bound FIS in vivo is estimated to 5 kbp.

4.2.3 The Heat-Unstable protein (HU)

4.2.3.1 DNA binding

HU is a dimer whose monomers are coded by the hupA and hupB genes. Both homodimers and het-
erodimers are present in vivo [132]. HU binds a 9 bp motif on the DNA sequence [110] and bends DNA
by approximately 60-70° [133]. The binding motif is quite degenerate and consequently, HU binding is
nearly non-specific.

4.2.3.2 Regulatory function

A large number of bacteria contain proteins which are close sequence analogs to HU, pointing to an ancient
and fundamental role of HU [110, 132]. However, the regulatory function of HU has remained elusive.
Some experimental works reported that HU increases transcription initiation. This is maybe because HU
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bends DNA and decreases supercoiling when binding to DNA, which may facilitate RNAP binding [117].
HU has also probably an important role in regulating DNA replication and stimulating DNA unwinding
at the origin of replication (oriC) of E. coli chromosome by regulating the assembly of the pre-replication
complex [134].

More specifically, there are strong reasons to believe that HU can relieve the repressive action of H-
NS [110,117]. Since H-NS concentration is constant during the cell-cycle, variations in HU concentration
may constitute a fundamental mechanism to tune the genetic expression globally. Thus, there is an
antagonism between HU and H-NS effects. The main role of HU would be to counteract the compaction
of the chromosome by H-NS by opening up the chromosome in order to make it accessible for transcription
[110].

4.2.3.3 Thermodynamical considerations

During the exponential growth phase, there are approximately 55,000 HU copies/chromosome, but during
the stationary phase, the concentration of HU is reduced to 20,000 copies/chromosome [110,116,117,132].
Furthermore, HU binding to DNA is relatively strong, with a dissociation constant Kd ≈ 200 − 2500 nM.
As a side remark, similarly to FIS, HU tends to localize at the periphery of the nucleoid, with RNAP and
ribosomes.

4.2.4 The Integration Host Factor (IHF)

4.2.4.1 DNA binding

IHF binds a 13 bp motif on the genome [135]. Although its binding sequence is shorter than FIS, the
binding motif is more constrained, which makes IHF the most specific of the NAPs. IHFs sharply bends
DNA upon binding, by about 160°. This implies an important enthalpic cost because DNA is rigid on
that scale (it has persistence length lp = 150 bp), which explains partially why the IHF binding is weaker
than with other NAPs.

4.2.4.2 Regulatory function

As with HU, a large number of bacteria contain structural analogs to IHF, pointing to an essential role
maintained throughout the evolution. It acts also probably in concert with HU to regulate DNA replication
by stimulating DNA unwinding at the oriC [134].

It has also been conjectured that the sharp bending induced on DNA favors the nucleation of H-NS
filaments. Hence, IHF might work in concert with H-NS and act as a repressor, in agreement with the
finding that IHF binds mostly transcriptionnally silent regions [115,132]. Incidentally, IHF concentration
increases during the stationary phase, in which many genes are silenced.

4.2.4.3 Thermodynamical considerations

During the stationary phase, there are approximately 20,000 IHF copies/chromosome. This concentration
is slightly decreased during the exponential phase but remains close to that value [116]. IHF binding to
DNA is also much weaker than that of HU for instance, with a dissociation constant Kd ≈ 20 − 30 µM.
This low affinity might be due to the important enthalpic cost which comes from bending DNA. It seems
that the bound protein has no contact with the DNA major groove, suggesting that the binding is mainly
entropic, which may be another reason for this low affinity [132].
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Protein H-NS FIS HU IHF

Binding motif 6 bp 15 bp 9 bp 13 bp

Binding

specificity
nearly non-specific nearly non-specific nearly non-specific specific

Binding

strength
weak strong strong weak

DNA bending no 40-50° 60-70° 160°

Oligomeriza-

tion
yes no (no) (no)

Effect on

DNA

DNA/H-NS

filaments

quenching of

thermal loops with

average size 200 bp

open/rigidify the

double-stranded

DNA by decreasing

supercoiling

DNA hairpins

Copy number

(per genome)
20 000

75 000 in

exponential phase

and < 100 in

stationary phase

55 000 in

exponential phase

and 20 000 in

stationary phase

20 000

Table 4.1 – Synthetic table for the properties of the four main NAPs in Escherichia coli. We used parenthesis for properties in which
some doubts remained after careful inspection of the literature.

4.2.5 Summary

NAPs can be quite puzzling at first because they have an effect on the genetic expression of a broad class
of genes and on the structure of the chromosome. As such, they illustrate the loose frontier that exists
between transcription regulation and chromosome architecture, which with most likelihood implies some
sort of feedback mechanism between the two processes.

Their effect on the chromosome architecture entails DNA compaction, DNA bending or the formation
of specific structures. H-NS induces the formation of filaments, which makes DNA hardly accessible
to other transcription factors, including RNAP. FIS is able to quench DNA loops produced by thermal
fluctuations. HU tends to open the DNA double-helix by decreasing supercoiling. IHF can bend DNA in
a hairpin configuration. A summary on the properties discussed in this section is given in table 4.1.

We have seen that NAPs are also the transcription factors with the largest concentrations in the cell.
This prevalence certainly suggests that their structuring role is coupled with specific functions, probably
in regulating the transcription. In this sense, it is remarkable that NAPs, or at least structural analogs,
are found in different bacterial species. This fosters the view of a universal role played by NAPs in the
bacterial kingdom and acquired early in the course of Evolution by giving a crucial fitness advantage.
Subsequently, regulatory mechanisms based on these architectural changes induced on the chromosome
may have been selected. In particular, we shall explore a model of regulation based on the formation of
DNA hairpin loops (or helices) by H-NS.
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4.3 Relevant scale for modeling the effect of NAPs

4.3.1 Evolutionary selection of random insertions

Before attempting to model the effect of NAPs on the chromosome architecture and seeking to relate this to
biological processes, an important question is: what is the correct scale to investigate this effect? Indeed,
performing Brownian Dynamics (BD) simulations at base pair resolution is not realistic because sampling
equilibrium configurations would require too much computational power. It is therefore required to
coarse-grain some molecular details. For instance, taking a unit length of about one double-helix turn, i.e.

1 u ∼ 10 bp = 3.4 nm seems at first like a reasonable choice because it is close to the naked DNA diameter
of 2.5 nm and therefore allows for a consistent modeling of the bacterial DNA using a beads-on-string
polymer. It is also of the order of magnitude of a NAP binding sites (fig. 4.2).

But even at this resolution, modeling the full E. coli chromosome would require about 5 × 105 beads,
let alone the introduction of protein beads to model NAPs which are to interact with DNA. In order to
reduce the complexity and focus on the underlying physical process it seems necessary to consider shorter
chunks of chromosome. But how to choose their size?

In the case of the lac operon, repression occurs through a looping mechanism [5]. It requires the
promoter to contact an auxiliary site, 401 bp downstream on the sequence, caused by the binding of the lac

repressor. Similarly, a repressor system of the coliphage λ was evolved in E. coli in which the simultaneous
binding of a tetramer with the promoter and an auxiliary binding sites separated by 3600 bp lead to a
drastic repression of transcription [7]. In these simple examples, the natural scale for the regulation of
transcription is the distance between the promoter and the auxiliary sites.

Such reasoning does not apply to NAPs because the regulatory mechanism has remained less clear,
and in particular it cannot be reduced to the formation of one single loop. However, NAPs binding sites
may have been acquired and maintained during Evolution by horizontal transfers [118]. Therefore, we
will use this assumption to investigate at which scale was exerted evolutionary pressure.

4.3.2 Model of NAPs binding sites insertion

Let us consider the E. coli genome of size NG = 4.6 × 106 bp, with the usual genomic coordinate
s = 1, . . . , NG . We now introduce the sequence of coordinates:

s0 < s1 < s2 < · · · < sM, (4.1)

which represent the starting position of M+1 binding sites on the genome. We also introduce the spacing
variables di = si − si−1. Formally, this can be seen as the realization of M events, starting from time
s0, drawn from a stochastic point process, in which the spacing distances are random variables. In the
absence of evolutionary pressure, it would be reasonable to expect that random insertions of foreign DNA
have been independent events. Therefore, we will consider that the spacing variables di are drawn from
independently and identically distributed (i.i.d.) random variables that we denote with capital letters, Di

. Thus we may model the insertion of NAPs binding sites as a stochastic point process with independent
increments:

P = (s0, s1, s2, . . . , sM, . . . ) Si − Si−1 = Di
L≡ D. (4.2)

We may also make the more restrictive assumption on the spacing random variable D:

Pr (D ≥ d) = Pr (D − d0 ≥ d | D ≥ d0) , (4.3)
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which is a non-aging condition in standard survival stochastic point processes. As a consequence,
eq. (4.3) ensures that D is an exponentially distributed random variable, with probability distribution
function (p.d.f.)

µ(d) =
1

〈d〉 e
−d/〈d〉, (4.4)

which is equivalent to say that P is a Poisson stochastic point process.
Therefore, if NAPs have a regulatory role underlying cooperative binding between distant sites along

the DNA sequence, this should be visible as a bias in the insertion of binding sites throughout time
(fig. 4.4). In particular, the independence between consecutive binding sites insertions is flawed and
deviation from the exponential distribution in eq. (4.4) should arise. However, it is reasonable to think that
at large genomic distances, binding site insertions become uncorrelated. We may thus define a cross-over
distance d∗ such that:


D< = ✶{d<d∗ }D is exponentially distributed,

D> =
(

1 − ✶{d<d∗ }
)

D is exponentially distributed.
(4.5)

In conclusion, we propose to compute the p.d.f. of the spacing distance between consecutive NAPs
binding sites (we will shortly present how). If it is exponentially distributed, then no evolutionary pressure
has flawed the Poisson-dot-process-like insertion of the binding sites. In that case, one can doubt that any
regulatory role is exerted by NAPs. Conversely, if it is non-exponentially distributed, it is the signature
for the existence of a non-random layout of NAPs binding sites with a regulatory role. The cross-over
between the two regimes will give us the scale that should be considered when modeling the effect of
NAPs on the chromosome architecture.

−
+ +

s0 s1 si−1 si si+1

di

random insertion by
horizontal transfer

evolutionary selection of
regulatory mechanisms

binding sites layout

Figure 4.4 – Random insertion of NAPs binding sites and evolutionary selection of sites playing an essential regulatory role.

4.3.3 Binding sites spacing analysis from AT content

In a first approach, we consider that NAPs binding sites correspond to AT-rich sequences. This is valid
to some extent because as discussed in the last section, H-NS indeed binds preferentially to AT-rich
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sequences [115]. In order to perform this investigation, we use the MG1655 E. coli genome, available
from [136]. Then we define the density of AT nucleotides at coordinate s on the genome, ρAT (s), by
considering a running window of size L:

ρAT (s) =
1

L

s+L−1
∑

k=s

✶{A,T } (bk ) (4.6)

where bk ∈ {A,T,G,C} is the nucleotide at coordinate k. The corresponding p.d.f. can be computed and
is shown in fig. 4.5 for different sizes of the running window.

In order to identify potential NAPs binding sites, we need to set a threshold ρ such that an occupancy
variable can be defined as:

χAT (s) =


1 if ρAT (s) > ρ

0 otherwise,
(4.7)

and used to identify binding sites to coordinates where χAT (s) = 1. The threshold was set by fitting the
AT-density ρAT (s) with a sum of Gaussian distributions. For example, for L = 20 the distribution of
ρAT (s) is well fitted by a single Gaussian p.d.f. whereas for L = 200 two Gaussian p.d.f. were required
(fig. 4.5). We then set the threshold as:

ρ = µ + 3σ (4.8)

where µ and σ2 are the mean and variance of the dominant Gaussian distributions. In fig. 4.6, we show
the binding regions obtained (χAT (s) = 1) for a chunk of the E. coli genome. We have chosen genomic
coordinates in the range 3.8 × 106-3.9 × 106 bp in agreement with [32], which will be used in the next
section.

Eventually, we are able to analyze the presence of long-range interactions in the NAPs binding sites
repartition. Following the directions given in section 4.3.2, we have computed the p.d.f. for the distance
between consecutive binding regions (fig. 4.7). In other words, we computed the p.d.f. of the size of
the empty regions. We observe that this p.d.f. has an exponential tail, suggesting that no evolutionary
constraint is exerted at distances d > d∗ ≈ 2 kbp. On the contrary, deviations from the exponential decay
are seen for d < d∗ and characterized by an over-represented fraction of empty regions with small sizes.

For cross-validation, we have also computed the (connected) auto-correlation function of the AT-
density:

CAT = 〈ρAT (s + s0)ρAT (s0)〉 − 〈ρAT (s)〉〈ρAT (s0)〉 (4.9)

where s0 can be any coordinate on the genome. We observed a non-exponential decay at short genomic
distances (fig. 4.8). Moreover, an exponential fit of the tail suggests that the cross-over indeed takes place
for genomic distances of a few kbp.

4.3.4 Binding sites spacing analysis from ChIP-seq data

While the previous approach can give insight on existing correlations between NAPs binding sites on
the genome, it is clear that limiting NAPs binding sites to AT-rich regions is a crude approximation of
the reality. Incidentally, ChIP-seq experiments provide a way to measure directly the in vivo genomic
positions of NAPs binding sites. Therefore, in this section, we will consider this ChIP-seq experimental
data and use the Poisson-point-process analogy described in section 4.3.2.

ChIP-seq experiments measure the density of binding for a protein of interest to the chromosome.
Briefly, ChIP-seq experiments involve first a cross-linking step to fix proteins bound to DNA. Then DNA
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Figure 4.5 – Probability distribution function of the AT-content ρAT (s) (data points), fitted to a sum of Gaussian p.d.f. . We used
a window size L = 20 or L = 200.

is sheared and the proteins, tagged with an anti-body, are immuno-precipitated. After purification, DNA
fragments that were bound to such proteins remain and are amplified by PCR. An alignment step follows,
in which the read sequences are mapped to genomic coordinates with a typical resolution of 200 bp.
Hence, for each bin at coordinate s, we obtain the number of times the protein of interest was bound to
this particular location. Actually, the counts obtained represent the number of binding events up to the
PCR amplification ratio. However, we shall consider that this operation only changes the normalization
of the counts. In summary, a counting variable nchip (s) is obtained. Here we use recent high-throughput
ChIP-seq data for H-NS and FIS [32].

Let us now define the density of binding:

ρ(s) =
1

N n(s), N =
∑

s

n(s), (4.10)

where we have dropped the “chip” index for the sake of clarity. As before, we need to define a threshold
that allows us to label each coordinate s as a binding or a non-binding site.

It may seem natural to assume that the density of binding at coordinate s is a Boltzmann weight [124]:

ρ(s) =
1

Z
e−βε(s), (4.11)

where ε(s) is the binding energy of the protein to the sequence at coordinate s, β = (kBT )−1 is the inverse
temperature and Z is a normalization.

Let us also assume that there is a finite number M of binding energy levels encountered throughout
the genome, such that:

εM < εM−1 < · · · < ε1 < ε0 (4.12)

where ε0 is the unbound state and εi with i ≥ 1 are bound states. The bound states may represent different
binding modes and correspond to the existence of binding sites with different affinities, e.g. primary and
auxiliary binding sites. Then the probability for a protein to be bound to to the chromosome with energy
ε is expressed as a sum of delta functions:

Pr (ε) =

M
∑

k=1

αkδ(ε − εk ), (4.13)
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Figure 4.6 – Binding regions in a chunk of E. coli genome computed from AT-content (L = 200) or from ChIP-seq counts with
H-NS and FIS.
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(a) (b) (c)

Figure 4.7 – Probability distribution of the distance between consecutive binding sites for (a) L = 20 and (b) L = 200. (c) Fit with
an exponential (logarithmic scale). We only considered bins of the histograms with a number of data points greater that 10.

(a) (b)

Figure 4.8 – Auto-correlation of ρAT (s): (a) standard and (b) logarithmic scale.
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where αk is the proportion of sequences with binding energy εk in the genome.
In reality, the energy states might not be exactly discrete because the space of binding sequences is

very large. Hence a better description might be to replace the delta-functions introduced in eq. (4.13) by
Gaussian weights:

Pr (ε) =

M
∑

k=1

αk

1
√

2πσ2
k

exp *,−
(ε − εk )2

2σ2
k

+-, (4.14)

where σ2
k

is the variance of the energy fluctuations of the NAP binding in mode k, with mean energy εk .
For both H-NS and FIS, fitting − ln n(s) to a sum of Gaussian distribution according to eq. (4.14) appeared
to be a good approximation. For H-NS (fig. 4.9b), we can clearly distinguish two peaks in the energy
levels distribution. In particular, we can assess the difference between the bound state and the unbound
state to ε0 − ε1 ≈ 2 kBT . Note however that the energy scale in kBT depends on the PCR amplification
ratio. For FIS (fig. 4.9c), the conclusion is less clear because only one mode remains in the binding energy
distribution. It seems highly unlikely however that FIS be present only in the unbound state because it has
a strong affinity with DNA. Instead we prefer to consider that the bulk of the proteins is actually bound to
the chromosome.

In summary, we can extract the binding energies of the protein (up to a constant) from the logarithm
of the ChIP-seq counts, and fitting the energy p.d.f. to a multi-variate Gaussian mixture model gives us
the associated energy levels. In particular, we can use this information to define a threshold that retain
only the bound states. More accurately, we considered the sum of the M∗ dominant Gaussian distributions
such that

∑

k≤M∗
αk > α, (4.15)

with α = 50 %. This defines a distribution fb (c) for the bulk of the binding sequences with mean and
standard deviation given by:

εb =

M∗
∑

k=1
αkεk

M∗
∑

k=1
αk

, σ2
b =

M∗
∑

k=1
αk (ε2

k
+ σ2

k
)

M∗
∑

k=1
αk

− ε2
b, (4.16)

which appears to be a better description of the dominant mode (unbound for H-NS) than taking the single
Gaussian distribution with k = 0. As announced, this enables the definition the thresholds:

ε = εb − 3σb, ρ = exp (−ε), (4.17)

from which we defined an occupancy field, similar to eq. (4.7):

χ(s) =


1 if ρ(s) > ρ,

0 otherwise,
(4.18)

such that coordinates where χ(s) = 1 are considered as binding sites.
We have applied this method to H-NS and FIS (fig. 4.9) and scanned the ChIP-seq counts along the

genome to find potential binding sites. In fig. 4.6, we show the result for the same genome window as the
one used in [32]. In order to attenuate inaccuracies related to the resolution of ChIP-seq experiments, and
following the same authors, we have joined binding regions separated by less that 200 bp. The obtained
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(a) (b) (c)

Figure 4.9 – (a) Distribution of the ChIP-seq counts ρ(s) and determination of a threshold separating non-binding from binding
sites. (b)-(c) Fit of ε(s) = − ln ρ(s) with a Gaussian multi-variate distribution from which the threshold is determined, for H-NS
and FIS.

binding regions are in qualitative agreement with [32], so we conclude that our definition for the threshold
is consistent, and stick to it because it has a clearer physical interpretation in terms of binding energies.

We are now ready to analyze the presence of long-range interactions in the NAPs binding sites
repartition. Similarly to section 4.3.2, we have computed the p.d.f. for the distance between consecutive
binding regions on the genome (i.e. the p.d.f. for the length of the empty regions). For both H-NS and FIS,
we obtain that this p.d.f. is well fitted by an exponential distribution, except at short genomic distances
(fig. 4.10). Actually, a large number of distances fall within the first bin of the histogram in our figure
and result in a deviation from the exponential decay. Altogether, the distribution for the distance between
consecutive binding sites can be considered as exponential for genomic distances d > d∗, with d∗ ≈ 3 kbp
for H-NS and FIS. Note that the exponential distribution of the distance between binding regions for FIS is
consistent with a previous work which found it to be well described by an exponential p.d.f. with average
5 kbp [19].

We cross-validated our results by computing the auto-correlation function for the ChIP-seq counts
n(s):

C(s) = 〈n(s + s0)n(s0)〉 − 〈n(s + s0)〉 〈n(s0)〉 , (4.19)

where s0 can be any coordinate on the genome. For both H-NS and FIS, we obtain that C(s) decays
exponentially for genomic distances larger than a few kbp (fig. 4.11). For shorter genomic distances, it
is clear that C(s) does not have exponential variations, as can be seen in logarithmic scale. For genomic
distances larger than 5 kbp, the auto-correlation functions seems to collapse on an exponential curve.

4.3.5 Conclusion

In this section, we have exploited an analogy between a Poisson stochastic point process and the insertion
of NAPs binding sites in the genome throughout evolution. We found that the repartition of NAPs binding
sites in E. coli genome presents very few correlations at long genomic distances. This suggests that any
regulatory mechanism induced by an architectural change of the chromosome following NAPs binding
can be investigated for chromosome chunks of length d < d∗.

Using ChIP-seq data for H-NS and FIS, we found d∗ ≈ 3 kbp. We conclude that it is sufficient to
study H-NS and FIS in regions with a size of a few d∗ (typically N ≈ 10 kbp) because it is unlikely that
regulatory mechanisms involving architectural changes exist at larger genomic distances. In particular,
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(a) (b) (c)

Figure 4.10 – Probability distribution of the distance between consecutive binding sites for (a) H-NS and (b) FIS. (c) Fit with an
exponential (logarithmic scale). We only considered bins of the histograms with a number of data points greater that 10.

(a) (b)

Figure 4.11 – Auto-correlation of the ChIP-seq counts for FIS and H-NS. (a) Standard scale. (b) Logarithmic scale.
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this suggests that BD simulations at a relatively low resolution (i.e. with a monomer size b ≈ 10 bp) may
be used to investigate the effect of NAPs on the chromosome architecture, and infer regulatory effects.

4.4 Model for the regulatory effect of H-NS

As seen in the previous section, we may assume that it is sufficient to model the effect of H-NS on the
chromosome architecture on relatively short scales. In this section, we investigate a view of genetic
regulation in which short H-NS binding regions of the DNA experience transitions between an open
state, in which the chromatin is accessible to RNAP, and a closed (or looped) state which prevents RNAP
binding and therefore represses transcription.

4.4.1 Experimental evidences of H-NS loops

Atomic-force microscopy experiments (AFM) have shown that H-NS induces the formation of DNA
filaments (fig. 4.3a on page 73) [110]. These filaments result from the action of H-NS, which can bridge
two neighboring DNA sequences together. Other experiments were performed with a rrnB promoter (the
main promoter of one of the seven ribosomal RNA synthesis genes in Escherichia coli) inserted in the
middle of a 1200 bp long linear DNA fragment [122]. First, when introduced into the medium, RNAP
appeared to bind the promoter, and in most cases induced a local curvature of the DNA fiber. Second, the
introduction of H-NS resulted in the formation of DNA filaments in the vicinity of the promoter. More
accurately, the structure obtained can be compared to a hairpin loop. Remarkably in many cases, RNAP
appeared to be trapped at the apex of such hairpin loops (fig. 4.3b). Such RNAP-trapping mechanism is
thought to silence transcription of the gene under the control of this promoter, but also to enable quick
transcription restart once the H-NS mediated repression is relieved because RNAP does not need to be
recruited from the bulk.

It was also demonstrated with high-throughput ChIP-seq techniques that H-NS binding sites are
clustered in regions, or tracks, of varying size L [32]. Regions of size L > 1000 bp appeared to correspond
to genes with very low transcription levels. On the contrary, in short regions of size L < 1000 bp
transcription levels were not so low. Actually, many of these short regions appeared to fall within the
promoters. Following earlier discussions, we may assume that large regions are transcriptionnally silent
because of the formation of DNA filaments by H-NS. In short regions however, the overall force to
maintain the DNA hairpin loop is weaker, and consequently, DNA filaments may disassemble under the
effect of perturbations, leading to the removal of one or several H-NS proteins from the complex. Such
perturbations may result from the binding to DNA of a protein with higher affinity, or simply from the
entropic fluctuations of the DNA polymer. Altogether, the disruption of DNA hairpin loops in binding
regions of short lengths under the effect of thermal fluctuations or by the binding of an external protein,
may lead to the derepression of the downstream genes.

In summary, we propose that H-NS regulatory functions have derived from its original sentinel role.
Long binding regions are strongly repressed because they are confined in DNA filaments where RNAP
cannot bind. In shorter regions, the looped state is more sensitive to perturbations and can undergo
transitions to an open state, that can be used to modulate the expression of genes. This suggests that there
is a characteristic length for the size of H-NS binding regions which separates the two regimes. In the
sequel, we present a simplified model for the underlying physical mechanism in which such a characteristic
length naturally emerges.
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4.4.2 Model for the formation of H-NS loops

4.4.2.1 Free energy for hairpin configurations

As usual, we model a chunk of chromosome by a discrete polymer chain of size N . The chain consists
of N + 1 monomers with coordinates r0, r1, . . . , rN ; N bonds defined as ui = ri − ri−1; and N − 1 joints
characterized by an angle αi such that cos αi = ui · ui+1. Furthermore, we use the WLC model, with
internal energy given by:

βUb [{ri }] = lp

N−1
∑

i=1

(1 − cos αi) , ‖ui ‖ = 1 (4.20)

where β = (kBT )−1 is the inverse temperature and lp is the persistence length.
In first approximation, we assume that the bridging effect of H-NS can be modeled implicitly by

introducing effective interactions between DNA monomers. Hence we consider a chain made of 2P

monomers and a "sticky" sequence of 2(L + 1) monomers in its center (fig. 4.12a). This constitutes a
chain of size N = 2P + 2L + 1. We are interested in the equilibrium of this system, and in particular in
the probability of the configurations in which the sticky sequence is paired with itself. For simplicity, we
assume that the configurations space is reduced to two configurations:

• Open (o): the chain is free; in particular the sticky sequence is not paired.

• Closed (c): the sticky sequence is paired in a hairpin structure of length L.

Hence the partition function of this system reduces to a two-state model:

Z = Zo + Zc . (4.21)

In the rest of this section, we shall use notations introduced in section 1.3 to describe a discrete worm-
like chain. In particular, let us introduce again the entropy per monomer z (see eq. (1.19) on page 15),
and the chain propagator qN (u) (see eq. (1.17) on page 15). The first term in the right-hand side (r.h.s.)
of eq. (4.21) is simply the partition function of the free chain, i.e.

Zo = 4πz2P+2L . (4.22)

The second term is obtained as follows. We divide the polymer in three pieces (see fig. 4.12a) which
are: the paired sequence of size 2L + 1 and the two dangling extremities of length P. The partition
function for the closed configuration is then obtained by summing the Boltzmann weights of two free
polymer chains of length P, plus the Boltzmann weight corresponding to a polymer folded in a hairpin
configuration with direction u. It can be expressed by using the Chapman-Kolmogorov structure of the
worm-like chain propagator qn(u):

Zc = 2π

∫

duP+1 duP+2L+1 qP (uP+1)qP (uP+2L+1)δ (uP+1 + uP+2L+1) e−βEL

= 2π

∫

du qP (u)qP (−u)e−βEL ,

(4.23)

where EL is the enthalpic contribution of the hairpin configuration. We considered this enthalpic gain to
be extensive in the hairpin length and proportional to the pairing energy −2ε, and the enthalpic cost comes
from the chain bending rigidity. Thus we have βEL = 2lp − 2Lε. Note that without loss of generality, we
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have considered that the apex of the hairpin has a double-elbow structure with αP+L = αP+L+1 = π/2.
There is also a factor 2π due to the invariance by rotation around the hairpin axis. Finally, we obtain for
the Boltzmann weight for the close state:

Zc =
1

2
(4π)2z2Pe−2lp+2Lε . (4.24)

The closed configuration will be dominant at thermal equilibrium if its free energy is lower than the
open configuration free energy:

− ln Zc < − ln Zo ⇔ L > L∗ =
lp − ln

√
2π

ε − ln z
. (4.25)

Therefore, a characteristic length naturally arises that separates a regime in which the closed config-
uration prevails at equilibrium, for L > L∗, from another regime in which the open state prevails, for
L < L∗. The precise value of L∗ results from a competition between the chain bending rigidity, the pairing
energy and the conformational entropy per monomer, through lp , ε and ln z respectively.

The probabilities for the two states at equilibrium are then simply given by

Pr (o) =

Zo

Zo + Zc

=

1

1 + Υ1−L/L∗

Pr (c) =

Zc

Zo + Zc

=

Υ
1−L/L∗

1 + Υ1−L/L∗

with Υ = 2πe−2lp (4.26)

When increasing the length of the sticky sequence, the probability of the closed configuration increases
progressively from Pr (c) = 0 to Pr (c) = 1. At L = L∗, the two states have the same probabilities
Pr (o) = Pr ( f ) = 1/2. Note that this is not a phase transition because the cross-over between the two
regimes is continuous. However, this result breaks down in the limit lp → ∞. In that case, the probability
of the closed configuration jumps abruptly from Pr (c) = 0 to Pr (c) = 1 at L = L∗ and it is a phase
transition.
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Figure 4.12 – (a) Bridged configuration with no loop (hairpin). (b) Bridged configuration with a loop.
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4.4.2.2 Free energy for hairpin-plus-loop configurations

We have just studied the case of a polymer chain containing a unique “sticky” region of size 2L + 1. We
now consider the case in which a chain contains two sticky regions, each of size L, and separated by a
linker of M non-sticky monomers (fig. 4.12b). As before, the rest of the chain is made of 2P monomers.
The partition function of the closed configuration now reads

Zc =

∫

d2u qP (u)qP (−u)e2LεGM (u) (4.27)

where GM (u) is the Boltzmann weight for the linker:

GM (u) =

∫

d2u⊥ TM+2 (−u | u) δ (uP+L+1 + · · · + uP+L+M+1 − u⊥) δ (u · u⊥) (4.28)

where u⊥ is by construction a unit vector perpendicular to u, and T is the transfer matrix used to describe
a worm-like chain (see eq. (1.16) on page 15). With the same arguments as before, we obtain a more
general expression for the characteristic length in eq. (4.25):

L∗ = −1

2

ln GM

ε − ln z
(4.29)

In particular, for a chain with no linker, M = 0, we have G0 = 2π exp (−2lp) and eq. (4.29) reduces
to the previous expression of eq. (4.25).

4.4.3 Investigation with Brownian Dynamics

We have obtained the existence of a characteristic length for H-NS binding regions from a very simple
polymer model. In particular we have considered implicit interactions so far. To cross validate our result,
we now present a BD model with explicit proteins and compute the probabilities of the open and close
states.

4.4.3.1 Model for DNA and H-NS

Following the results of section 4.3, we model the chromosome at a resolution close to the naked DNA
fiber. In particular, we take monomers of size b ≈ 10 bp = 3.3 nm. It is also close to the size of one
H-NS binding site. Thus we model a chunk of chromosome of size 4 kbp as a beads-on-string polymer
with N + 1 = 400 monomers and persistence length lp = 15 b. As usual we use a FENE potential to
model the bonds elasticity, a Kratky-Porod potential to model the chain bending rigidity and a truncated
Lennard-Jones potential to model excluded volume. A summary of the potentials considered for BD
simulations is given in table 4.2.

We also introduce the H-NS protein as a sphere with same dimensions as the DNA monomers. But
in reality, H-NS is a divalent protein, with two DNA binding sites roughly making a 180° angle with the
center of mass of the protein. In order to reproduce this anisotropy in the binding to DNA, we introduce
two tiny spheres of diameters d, tangent to the protein sphere of diameter b (fig. 4.13a). Note that such
spheres are fake atoms that we have introduced only to construct a numerical model for H-NS bivalency.
This design was inspired by previous work [46]. In the sequel, we have taken d = 0.2b.

Similarly, H-NS binding sites can only bind one H-NS protein at a time. Thus, for DNA monomers
able to bind H-NS, we also introduce a fake atom of diameter d (fig. 4.13b). Let us denote vi the unit
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vector giving the direction to the H-NS binding site from the DNA monomer center with coordinates ri .
Incidentally, the covalent bonds between H-NS and DNA are formed with bases making contacts through
the major groove. However, at the scale considered, b corresponds approximately to one helical turn of
the major groove, which is of 11 bp. Due to DNA torsional stiffness, H-NS binding sites on consecutive
monomers should point approximately in the same direction. In order to reproduce this property in our
simulations we had to introduce additional potentials. First, we introduce a bending rigidity potential to
favor configurations in which the H-NS binding site points in a direction orthogonal to the bond direction.
More explicitly we introduce the potential:

U⊥ = k⊥

N
∑

i=0

(1 − sin γi), sin (γi) = ui · vi, (4.30)

in which it is seen that the penalty is a minimum when γi = π/2. This ensures that the H-NS binding
site remains on the surface of the tube of diameter b containing the DNA monomers (i.e. the DNA fiber).
Second, we need to ensure that consecutive H-NS binding sites tend to point in the same direction. This
is achieved by introducing a dihedral potential:

U� = k�

N−1
∑

i=1

(1 − cos ϕi), (4.31)

where ϕi is the azimuthal angle between H-NS binding sites for the monomers i and i − 1 in the spherical
coordinate system whose zenith direction is ui . It is a dihedral potential because computing the angle ϕi
involves two DNA monomers with their respective H-NS binding sites, i.e. four atoms. Altogether, the
combination of these two potentials mimics the DNA torsional rigidity that tends to maintain consecutive
H-NS binding sites aligned. In our simulations, we chose k⊥ = 50 kBT and k� = 1 kBT . A snapshot of
BD simulation implementing this model is shown in fig. 4.14.

Finally, the attractive interaction between H-NS and DNA must be a Coulombic screened interaction,
which can be well represented by a Yukawa potential:

Ucoul (r) = A
e−r/rd

r
, (4.32)

where A is a scale in kBT measuring the strength of the interaction and rd is the range of the interaction.
Since the Debye-Hückel length is of the order of 1 nm in the cytosol [137], the range of the interaction is
small and essentially reduces to the dimensions of the objects interacting together. In our simulations, we
took a cutoff rd = 0.3b ≈ 1 nm (table 4.2).

We considered a polymer of N + 1 = 400 monomers and P = 100 spheres in a cubic volume of size
80b with periodic boundary conditions. A relaxation run was performed first for 107 iterations in order
to loose the memory of the initial configuration. We then performed a run of 106 iterations with a soft
pair potential to remove overlaps between atoms. Finally, we performed a run of 2 × 108 iterations with
all interactions in table 4.2, with integration time step dt = 7 × 10−4, from which we extracted 200 evenly
sampled configurations.

4.4.3.2 Detection of DNA/H-NS bridges

The goal of our BD simulations is to assess the existence of DNA/H-NS bridges characterized in exper-
iments and check whether they are maintained at equilibrium. Therefore, we need a strategy to detect
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Figure 4.13 – Numerical model for H-NS binding to DNA. (a) Model for H-NS as a divalent protein. (b) Model for monovalent
DNA monomers binding to H-NS.

Property Model Values

Bonds elasticity

FENE potential:

Uf ene = −
ker

2
0

2b2

N
∑

i=1
ln *,1 −

u2
i

r2
0

+-
with:
ui = ri − ri−1

ke = 30 kBT

r0 = 1.5 b

Bending rigidity
Worm-Like chain potential:

Uwlc = β−1
N−1
∑

i=1

lp

b
(1 − cos αi)

lp = 15 b

Excluded volume
interactions

Truncated Lennard-Jones potential:
Uev (r) = VLJ (r) − VLJ (r th), if r < r th

with:

VLJ (r) = 4ε
[
(

σ
r

)12 −
(

σ
r

)6
]

σ = b

ε = 1 kBT

r th = 21/6σ

Short-range coulombic
interaction

Yukawa potential:

Ucoul (r) = A
exp (−r/rd)

r
rd = 0.3 b

Table 4.2 – Numerical model to perform Brownian Dynamics simulation of H-NS/DNA bridges
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Figure 4.14 – Snapshot of Brownian dynamics simulation implementing the model of bivalency for H-NS (green with two red
binding sites) and monovalency for H-NS binding sites (cyan with one yellow binding site). Fake atoms are represented with an
exaggerated diameter in order to be seen.

such structures from BD trajectories. Following conventions from protein folding analysis, we define the
contact diagram associated with a configuration of the binding region as a sequence of L pairs (ie, je)

with e = 1, . . . , L such that je is the closest of the monomers in contact with ie, and reciprocally ie is the
closest of the monomers in contact with je. A contact is said to occur between monomers ie and je when
| rie − rje |< ξ, where ξ is a threshold to be defined. In practical applications, we have taken ξ = 2.25,
and we have ignored contacts between nearest neighbors (up to third nearest neighbors). Such contact
diagrams can be represented by drawing an arc for each pair of monomers in contact (fig. 4.15).

Starting from a contact diagram, we will say that a subset of pairs (ie, je) with e = 1, . . . , H form a
helix of length H when there is no crossing between the arcs joining the monomers in contact. There are
only two possibilities. First, when

i1 < i2 < · · · < iH < jH < · · · < j2 < j1, (4.33)

we will say that it is an anti-parallel (or “-”) helix. Alternatively, when jH − iH is sufficiently small, we
may call such a helix a hairpin loop. Second, when

i1 < i2 · · · < iH < j1 < j2 < . . . jH, (4.34)

we will say that it is a parallel (or “+”) helix. Moreover, we impose that the contour distance between
consecutive monomers of a helix is not too large. In other words, | ie − ie+1 |≤ lb and | je − je+1 |≤ lb

where lb can be seen as the length of the smallest bubble allowed in a helix. In practical applications,
we have taken lb = 3. Examples of helices detected in configurations obtained from BD simulations are
shown in fig. 4.15.

For a given BD trajectory, we can compute N−
h

(t) (resp. N+
h

(t)), which is the number of “-” helices
(resp. “+” helices) present in the configuration at time t. These quantities display dynamical variations,
as can be seen in fig. 4.16. We can compute the probability to have a “+” (or “-”) helix at equilibrium as:

Pr (±) = 〈✶❘∗
+
(N±h )〉, (4.35)

where the brackets stand for a thermodynamical average performed over several configurations sampled
from a BD trajectory. Finally, the probability for the existence of a helix at equilibrium is simply the sum
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of the probabilities of the two types of helices:

Pr (helix) = Pr (+) + Pr (−) . (4.36)

(a)

(b)

(c)

Figure 4.15 – Examples of helices detected from BD simulations. (a) One anti-parallel helix. (b) Several anti-parallel helices. (c)
Parallel helices arising from a toroidal shape. We show in the first column a snapshot of the conformation used. In the second
column, we show the contact diagrams for the binding region in which monomers in contact are joined with an arc. In the third
column, we represent the helices present in the configuration of length H ≥ 4. All three conformations were taken from a single
BD trajectory with N = 400, L = 50 and A = 8.0 kBT . H-NS spheres are not represented.
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Figure 4.16 – Time evolution of the number of helices. BD simulation performed with N = 400, L = 50 and A = 8.0 kBT .

4.4.3.3 Critical size of the binding region

On the basis of these definitions, we can investigate numerically the existence of the characteristic
length L∗ for the binding region. For several values of the binding region size L we performed 50
independent BD simulations as detailed above. Then we computed the helix and hairpin probabilities
according to eqs. (4.35) and (4.36). Note that to detect hairpin loops, we actually detected "-" helices with
jH − iH ≤ lh = 15.

In fig. 4.17, we represent these probabilities as a function of L for A = 7.0 kBT and A = 8.0 kBT .
In both case L∗ is clearly visible. For L < L∗ we have Pr

(

hairpin
) ≈ 0, hence such structures are not

found at equilibrium. On the contrary for L > L∗, we have Pr
(

hairpin
)

. 1, hence such structures can
be found at equilibrium. The fact that Pr

(

hairpin
)

is close but not equal to one means however that these
structures undergo dynamical fluctuations, as has already been seen in fig. 4.16. Finally, for A = 7.0 kBT

we have L∗ ≈ 60 whereas for A = 8.0 kBT we have L∗ ≈ 20 ∼ lp . Therefore, we qualitatively recover
that the critical binding region size decreases when the H-NS/DNA binding energy increases, as claimed
in eq. (4.29).

4.4.4 Conclusion

In conclusion, we have investigated whether H-NS/DNA filaments characterized in AFM experiments
do correspond to equilibrium structures. Our analysis was also grounded on the observation that H-NS
binding regions follow a peculiar layout throughout the E. coli genome, characterized with ChIP-seq
assays. In particular, the fact that H-NS binding sites cluster in tracks means that binding regions can be
found in the genome with various size L. Such a layout suggests that H-NS binding regions can fold in
helices or even hairpins.

We have addressed this issue by first considering a simplified physical model in which only one binding
region of size L is present, and in which DNA monomers belonging to the binding region experience
attractive interactions between themselves. It is an implicit model for the effect of H-NS proteins. In this
framework, we have shown that a critical length for the binding region naturally emerges, separating an
open regime in which the binding regions remains unfolded, from a looped regime in which the binding
region folds into a hairpin conformation (possibly with a loop at the apex). We have then confirmed this
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(a) (b)

Figure 4.17 – Characterization of the existence of the critical length L∗ for the H-NS binding region. The probability for each
points was obtained by performing an average as in eq. (4.35) over 50 BD trajectories computed independently. BD simulations
were performed with N = 400 and: (a) A = 7.0 kBT and (b) A = 8.0 kBT .

prediction using BD simulations. In the latter, we have considered the H-NS proteins explicitly, and we
have also designed a numerical model in order to reproduce the bivalency of the H-NS proteins and the
monovalency of the H-NS binding sites.

4.5 Discussion

In this chapter, we have sought to relate directly transcription to the chromosome architecture. Naturally,
we have started our investigation by reviewing the properties of NAPs, which are abundant proteins in the
bacterial cell and well known for their role in structuring the chromosome. The high degree of conservation
among bacteria species, combined with their prevalence over other transcription factors suggests that their
role is not only architectural, but that instead they are involved in biological processes and for that reason
have been selected during Evolution. In our review of the literature, we have seen that their effect on cell
physiology includes some elements of transcription regulation. Therefore, NAPs seem to illustrate the
connection that exists between chromosome architecture and transcription. We are convinced that this
connection is dynamical and may rely on a feedback mechanism between these two components.

Much uncertainty remains however on the precise link between structures entailed by NAPs and the
transcriptional response. In particular, the genomic scale of such regulatory mechanisms has remained
elusive. On the basis of an analogy between a stochastic point process and the insertion of NAPs binding
sites throughout Evolution, we have analyzed the presence of correlations in the NAPs binding sites
insertions. Using ChIP-seq data available for FIS and H-NS, we have concluded that it is very unlikely
that regulatory mechanisms selected by Evolution exist on genomic scales larger than 10 kbp in E. coli

bacteria. In particular, the distribution of the distances between NAPs binding sites appeared to have an
exponential tail above this genomic scale.

Then we have studied in more details a typical structure induced by H-NS and well characterized in
AFM experiments: DNA hairpin loops. The effect of these hairpin loops on the transcription have been
thoroughly discussed in the existing literature, and appear to be at stake in the regulation of the important
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rrn operon in E. coli bacteria. In general, H-NS/DNA filaments lead to a repression of transcription by
preventing RNAP binding. Yet, the result obtained from ChIP-seq experiments, that short H-NS binding
regions are found preferentially near the promoters led us to conjecture that short hairpins may be used
as dynamical switches to modulate the transcription level of downstream genes. Using a very simple
polymer model of H-NS binding sites, we have found that a characteristic size for the binding region
naturally emerges, resulting from the competition between the chain entropy of the DNA polymer, the
bending rigidity (i.e. the persistence length of the DNA fiber) and the bridging effect of H-NS. Binding
regions with larger sizes lead to stable hairpins whereas smaller binding regions cannot form such hairpins
at equilibrium. We have confirmed this finding with BD simulation, using a model in better agreement
with the biological reality. Namely, we have considered divalent beads to model H-NS and monovalent
beads to model H-NS binding sites on the chromosome.

The existence of a characteristic length for H-NS binding regions suggests an ambivalent role. For
binding regions of large sizes, H-NS has a repressive role mediated by the formation of long DNA hairpin
loops, or helices. These helices are stable and can be maintained over biological time scales. Second
for regions with a size close to the characteristic length, the dynamical assembly and disassembly of
DNA hairpins may modulate the genetic repression or entail fast transcriptional response, such as the
so-called RNAP trapping mechanism. It also suggests that these hairpins, lying at the limit of the stability
condition, can be easily disrupted by external perturbations. For instance, it could be the binding of another
transcription factor with a larger affinity with DNA, such as FIS. In other words, FIS may introduce local
defects to the H-NS filament. Consequently, the two remaining binding regions flanking the FIS binding
site will have a size L̃ < L∗, resulting in the disassembly of the filament. This is a possible model for
transcription activation by FIS, that we call a transcriptional “switch”, and possibly at stake at the rrn

operon. Because it is based on the local structure of the DNA, which namely depends on the presence of
H-NS binding sites, it may explain why the effect of FIS on the transcription is so heterogeneous in E.

coli bacteria.
Of course, these speculations need to be refined and confirmed with further work. In particular, we

plan to model a chunk of the E. coli genome and include the real distribution of binding sites for H-NS and
FIS, based on ChIP-seq assays. We will investigate which among the H-NS binding regions form hairpin
structures. Furthermore, upon addition of FIS, we will see which ones are easily disrupted, and which
ones are not. It will be interesting to see if the dynamical re-organization observed in BD simulations
indeed correspond to known regulatory sites such as promoter regions. Nonetheless, we underscore that
a study based solely on BD simulations has many limitations. In particular, the biological values for the
binding energies are often unknown, and when experimental measures were performed, it is actually the
free energy which is measured and not the enthalpic binding energy alone. Therefore, such approaches
require some arbitrary choices. However, they also constitute a first step in relating more accurately
architectural changes and transcription regulation.
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Chapter 5

Reconstruction of chromosome

architecture from chromosome

conformation capture experiments

In this chapter, we address the problem of finding a model for the chromosome architecture from contact
probabilities measured in Chromosome Conformation Capture (CCC) experiments.

We start by introducing the reasons to find a better representation of the chromosome architecture.
We then present in more details what are CCC techniques and how contact probability matrices can be
generated. In particular we will present the methods used in this work to normalize CCC counts maps. We
conclude this introductory section by reviewing methods which have proposed models for the chromosome
architecture based on CCC contact matrices.

We then move on to present our model for reconstructing chromosome architecture. It consists
of a Gaussian chain polymer representation of the chromosome to which we add effective interactions
between DNA monomers under the form of harmonic springs. Such effective interactions do not have
any microscopic signification but instead represent a coarse-grained approach. Besides they are to be
determined from an input contact probability matrix. The resulting model defines a Gaussian effective
model (GEM). More formally, we may say that we address the problem of finding the connected object,
as a Gaussian chain, that produces a given contact matrix.

As an important result, we will obtain an analytical closed-form relating these effective couplings to
the contact probabilities at the Boltzmann equilibrium for the GEM. This method can be used to propose
a physical model of the chromosome under the form of a GEM which reproduces exactly the experimental
contacts. Yet it can result in a non-physical model when the correlation matrix of the GEM has negative
eigenvalues. Therefore we will present an alternative method, more demanding computationally, that
addresses this issue and yields a stable effective model of the chromosome.

Finally, we will apply our method to contact matrices from CCC experiments and comment on the
biological significance of the architecture obtained.
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5.1 Introduction

The primary function of the chromosome is to encode the genetic information of each cell individual. Yet,
chromosome folding (that we call architecture) has an impact on several biological processes including
replication, chromosomes segregation and transcription. On a local scale, divalent transcription factors
(TFs) can bind to DNA and locally alter the structure of the chromosome, namely by forming DNA loops.
In the case of the lac operon in Escherichia coli, the formation of a DNA loop leads to the repression
of the lac gene. On a global scale, chromosome architecture is constrained and shaped by structuring
proteins, which are nucleoid-associated proteins (NAPs) in bacteria and histones in eukaryotes. In
chapter 4, we have shown how structures of the chromosome entailed by NAPs can affect transcription
regulation. Therefore, a better understanding of chromosome folding seems like a keystone to unveil
complex regulatory mechanisms underlying the genetic expression.

A fundamental consequence of chromosome folding on transcription is to bring co-regulated genes
close in space. Chromosome folding is also assumed to induce the existence of transcription factories
[28, 70, 71, 74], or for instance the global silencing of genes in H-NS clusters [111]. At first, such co-
localization effects were called into question because the existence of molecular crowding together with
the confinement of the chromosome in the nucleus/cell result in strong topological constraints. However,
several Brownian dynamics (BD) and Monte-Carlo (MC) studies have demonstrated that co-localization
of a large number of genes can be achieved despite these constraints [45, 46].

From a broader perspective, co-localization can be seen as a way to synchronize biological processes in
the nucleus/nucleoid. For the transcription, this would be achieved by sharing higher local concentrations
of RNA polymerase (RNAP) in transcription factories. In the context of epigenetics, regions on the chro-
mosome are tagged with marks (like methylations) which affects locally genes expression. In particular,
such marks can result in transcriptionnally active (euchromatin) and inactive (heterochromatin) regions.
Epigenetics marks held by a region of the chromosome can also propagate to neighboring regions, and
turn them for instance into actively transcribed euchromatin. Therefore chromosome architecture entails a
spatial network in which biological “signals” can propagate to nearest neighbors. We think this constitutes
a major determinant of cell physiology. Yet it is not clear whether chromosome architecture induces phys-
iological changes by selecting genes to be transcribed, or to the contrary whether physiological changes
lead to biological responses which alter chromosome architecture, or both.

Chromosome architecture can be investigated with physical models introducing binding proteins
[49, 50, 138, 139]. However, it is a difficult problem for several reasons. First, the copy number of all
TFs without distinction is huge (up to 106 in E. coli [116]). Second, there are many different binding
proteins, with different binding energies and binding sites. A common approach to address this problem
is to consider a generic type of protein with average properties and representing several protein families
at the same time [46,50]. Third, the values of the binding energies are in general not known, which leaves
the investigator with a free parameter to fit (or to guess) [49]. Simulations and theoretical studies have
usually dealt with these limitations by considering simplifying assumptions which decrease the underlying
complexity. For example, taking a crude model for the protein-DNA interaction, reducing the number of
target types on the genome or considering several protein species as one. . . etc. Consequently, it is hard
to expect more than qualitative agreements between results of such studies and experimental data sets.
Therefore, models of chromosome architecture better rooted in biological data sets and which can be used
in BD studies are actively sought.
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5.2 Chromosome Conformation Capture experiments

5.2.1 Historical context

Chromosome Conformation Capture (CCC) techniques were developed during the years 2000s. At first,
they aimed at counting the number of contacts of a particular location on the chromosome (or locus)
with an other locus and were denoted by the acronym 3C. Later improvements have consisted in counting
the contacts of a single locus with several other loci on the chromosome (4C), and then of many loci
between themselves (5C). Finally, the combination of CCC techniques with high throughput sequencing
methods (Hi-C) brought these techniques to a larger scale by enabling the measurement of contacts
between thousands of loci on the chromosome. Hence these methods yield an enormous amount of data
to deal with.

During the last decade, Hi-C experiments have revolutionized experimental biology. Before them,
measures of the spatial distance between different loci or genes on the chromosome were essentially
performed with fluorescence techniques. Yet even with state-of-the-art techniques, like localization-based
super-resolution imaging (STORM or PALM) which can be used to survey the subcellular distributions
of DNA sequences tagged with a fluorophore, the resolution achieved and the amount of data generated is
very humble in comparison with Hi-C methods.

For historical reasons, Hi-C techniques were first used in eukaryotic cells, like in human [35] or
yeast [140], but they have also been used later in bacteria [141,142]. They have also lead us to revise our
conception of chromosome architecture. In particular, contact matrices generated by these experiments
generally exhibit checkerboard patterns. In eukaryotes, such patterns have been conjectured to represent
a high level organization of the chromosome into Topologically Associated Domains (TADs) with a size
slightly below the megabase pair. Although the biological relevance of TADs is still controversial, it has
been shown in eukaryotes that TADs are highly conserved in a population of cells with the same type. Yet
significant changes are visible during cell differentiation [143–145] and cell senescence [146]. In bacteria,
the existence of TADs is less clear given the smaller size of the bacterial chromosome. Yet changes in
the physiological conditions have been shown to induce significant re-organization in the contact matrices
measured [34]. In short, Hi-C techniques have provided a novel type of biological data. In particular, it
has led to studies fostering the idea that chromosome architecture and gene’s expression are intimately
connected.

5.2.2 Method

From a practical point of view, a restriction enzyme able to cut DNA at specific restriction sites (i.e.

a nuclease) must be chosen. The DNA segments in between two restriction sites (or cuts) are called
restriction fragments. A critical requirement is therefore to find an enzyme whose restriction sites are
sufficiently degenerate and common in the genome to yield a subdivision of the genome as regular as
possible. Typically, restriction enzymes recognize a specific DNA sequence of 6 base pairs. Hence, it cuts
DNA every 46

= 4096 bp in average. Ideally, all restriction fragments should have the same size, which of
course is never reached in experimental settings. The experimental procedure then relies on the following
steps [35] (fig. 5.1a). First, a population of cells is cross-linked with formaldehyde and lysed. This
results in the formation of covalent links between adjacent chromatin segments. Second, the restriction
enzyme is introduced in order to shear the chromosome, resulting in free pairs of cross-linked restriction
fragments with dangling ends. Third, a ligation step is performed in order to join the dangling ends in
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each restriction fragment pair, which leads to the formation of small DNA rings made of two restriction
fragments. This step also removes the restriction sites and adds biotin tags in place for use in the next
step. Fourth, the DNA solution is purified and all ligated fragments are obtained by immuno-precipitation
of the biotin tags. Finally, the collection of fragments are amplified by PCR and sequenced, yielding a
collection of “reads”. A complex bioinformatics treatment is then required to map the reads to the original
genome and identify the loci in contact. This last step has many caveats and is known to be prone to
error [33, 147]. The genome is then divided into bins of equal size, longer than the restriction fragment
length. The collection of mapped sequences can then be assigned to each bin and used to produce a counts
map where each matrix element ni j is the number of contact events between bins i and j on the genome
(fig. 5.1b). The typical size of the bins ranges from a few kbp to 1 Mbp [34,35, 148].

(a)

(b)

Figure 5.1 – Hi-C experiments (from [35]). (a) Experimental procedure to generate pairs of sequence “reads” corresponding to
DNA segments in contacts. (b) counts maps obtained.

5.2.3 Caveats

The reliability and repeatability of Hi-C experiments has been frequently called into question. Besides,
processing Hi-C experiments raw measures involves a number of bioinformatics steps which are cum-
bersome and prone to error. Therefore, the counts maps which are a prerequisite for the computation of
contact probability matrices should be considered with caution. Without pretending to exhaustivity, we
review some of the experimental and methodological artifacts which should be kept in mind and that can
affect the quality of the experimental data.

First, the experimental protocol involves several steps in which inaccuracies can accumulate and lead
to inconsistencies. In particular, formaldehyde in aqueous solution is present in the form of methylene
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glycol HOCH2OH monomers, but it also exists in the form of oligomers HO(CH2O)nH, where n is a
polymerization index. The equilibrium of the polymerization reaction depends on the formaldehyde
concentration. For instance, in an aqueous solution with 40 % mass fraction of formaldehyde at 35 ◦C, the
proportion of monomers in solution is only 26.80 %, the rest being oligomers with n > 1 [149]. This is
very close to the conditions used in [35], with 37 % mass fraction of formaldehyde, which clearly suggests
that cross-links between restriction fragments have varying size depending on the formaldehyde oligomer
that made the cross-link. Furthermore, the size of the cross-link itself between formaldehyde and DNA is
of varying length [150]. For these reasons, it may be better to consider that the actual distance between a
pair of cross-linked restriction fragments is a Gaussian distribution centered around a most-likely distance
ξ, rather than always below a threshold distance ξ.

Another origin of inconsistency in the experimental protocol may come from the PCR amplification
of the purified reads. Indeed, an important requirement is to perform as few PCR cycles as possible
(∼ 10). This ensures a linear amplification of the reads and preserves the counts distribution up to a
normalization [148]. Finally, several control experiments must be carried out to check the quality of the
produced Hi-C library (the collection of read pairs). For instance, the distribution of the size of restriction
fragments can be checked by gel electrophoresis. Ideally, they should all have the same size.

Another control carried out consists in re-digesting the obtained Hi-C library with the restriction
enzyme to check that a complete digestion of the chromosome occurred. Note also that in the original
Hi-C study [35], counts map had been generated with two different restriction enzymes in order to cross-
validate the obtained results. This practice has somehow been lost since all subsequent Hi-C publications
have only used one restriction enzyme.

Once the Hi-C library has been obtained, it must still be processed with bioinformatics methods in
order to transform the raw data of read pairs into a counts map with elements ni j counting the number of
contacts (to a normalization) between genomic locations i and j [33, 35, 147]. In particular this implies
mapping each read to a location on the genome. At a low level, a primary source of concern is to actually
successfully map all reads. For instance, reads from regions with many DNA repeats (coming for instance
from transposon elements) or small reads can often not be mapped uniquely to a specific genomic location.
These ambiguous reads are therefore discarded. There are also cases in which a read cannot be mapped to
the genome. This can originate from DNA recombinations which occur during the experimental protocol,
PCR/sequencing errors, reads alignment issues... In this work, we used the results of these procedures
as it is available from the literature. In particular, we worked directly with the counts maps computed in
previous research works [34, 35].

5.2.4 From counts to contact probabilities

5.2.4.1 Normalization issue

The counts map can be used to assess the contact probability ci j between any pair (i, j) of loci on the
genome. However, this step is not straightforward because the normalization to transform counts into
contact probabilities is not known.

In [35] the contact probabilities are computed as ci j = ni j/〈ni j〉, where 〈ni j〉 simply means the average
over genomic loci pair (p, q) separated by the same contour distance, | p − q |=| i − j |. However there
is no rigorous justification for this choice of normalization. Other studies have attempted to address
the normalization problem by designing a numerical procedure that ensures that the obtained contact
probabilities produce a stochastic matrix, i.e. the line sums

∑

j ci j = 1 [33, 147, 151]. However, although
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this tends to smoothen the variations of the contact probabilities, we do not see clear reasons supporting
the idea that the contact probability matrix should be a stochastic matrix. For instance, in the case of a
Gaussian polymer, the probability that the distance between any pair (i, j) of monomers vanish, di j = 0,
is:

ci j =

(

3

2πb2

)3/2

| i − j |−3/2, (5.1)

where b is the size of a monomer. It obviously does not satisfy the stochastic matrix condition. Conse-
quently, we have chosen to consider an alternative approach (although less sophisticated than the methods
just mentioned) to normalize counts maps into contact probability matrices.

In principle, the normalization factor between counts and contact probabilities should be the total
number of cells in the experimental sample (possibly multiplied by the PCR amplification ratio). Then
ni j is simply the number of cells in which a contact between loci i and j is observed. Assuming that the
experimental sample contains N cells, the contact probability is then simply expressed as ci j = ni j/N .
In practice however, N is unknown. We now propose two simple approximations for this normalization.

5.2.4.2 Trace normalization

It is natural to expect that the closer restriction fragments are on the DNA sequence, the higher their
contact probability is. In particular, restriction fragments falling into the same bin should always be in
contact, i.e. cii = 1, and indeed diagonal elements nii usually take the largest values. Hence, we may be
tempted to assume that each diagonal element is equal to the number of cells in the sample. However, in
real data sets, all diagonal elements are not equal. Thus we consider instead that the number of cells in
the sample can be approximated by the average value of the diagonal elements. The contact probability is
then computed as:

ci j =
ni j

N , N = 1

N

N
∑

i=1

nii . (5.2)

5.2.4.3 Maximum normalization

It is possible however that diagonal counts nii are abnormally high. This might be due for instance to
self-ligations of isolated restriction fragments or cross-linking with sister DNA during replication. In
order to circumvent this issue, we assume that there exists at least one pair of off-diagonal loci (i0, j0)

which are always in contact, i.e. ci0 j0 = 1. Note that this assumption is different from the stochastic matrix
condition, which assumes that every monomer is always in contact with at least one other monomer.
Therefore, the number of cells in the sample is estimated as the maximum of the off-diagonal counts.
Actually, counts are very high not only on the diagonal, but also near the diagonal. Therefore, we may
choose to discard counts such that | i − j |< ld where ld ≥ 1 is a length to adjust. In the end, the contact
probability is computed as:

ci j =
ni j

N , N = max
|i−j | ≥ld

(ni j ). (5.3)

This method with ld = 3 gives a contact probability matrix in qualitative agreement with [35] (see
figs. 5.1 and 5.2).
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(a) (b) (c)

Figure 5.2 – Normalization of Hi-C counts into contact probabilities. (a) Counts map of human chromosome 14 with bin size
1 Mbp [35]. (b) “Trace” normalization. (c) “Maximum” normalization with ld = 3.

5.3 Previous approaches to predict chromosome folding from Hi-C

data

We now review some of the models which have been investigated in the past to address the reconstruction
of chromosome architecture from CCC data.

5.3.1 Models based on an estimate of the distance matrix

5.3.1.1 Non-polymer models

Harmonic model. A numerical procedure relying on the introduction of harmonic potentials has been
proposed to reconstruct the equilibrium configurations of the chromosome from the experimental contact
probabilities [142]. Harmonic interactions are introduced between each restriction fragment pair (i, j),
such that:

βU ({ri }) =
∑

i< j

k

2

(

ri j − r0
i j

)2
, (5.4)

in which ri j =| rj − ri | is the distance between loci i and j, k is an arbitrarily chosen elastic constant
and r0

i j
is the length of the corresponding spring. A Monte-Carlo simulation is then performed to sample

equilibrium configurations of the system defined in eq. (5.4). These configurations are used to represent
the chromosome configurations (fig. 5.3a).

In this method, the elastic constant was assigned arbitrarily to k = 5 kBT . The fact that this elastic
constant is the same for all (i, j) is a first limitation in this approach. The spring lengths are taken such
that r0

i j
= di j , where di j is the distance desired between beads i and j. The authors assumed that the

equilibrium distance between two restriction fragments is inversely proportional to the contact probability,
di j = 1/ci j . We will come back to this assumption at the end of this section. Importantly, in a network
of connected springs such as defined in eq. (5.4), the average distance at thermal equilibrium between a
locus (i, j) is in general not equal to the spring length, hence 〈ri j〉 , di j . This is an example of frustrated
systems, and constitutes a fundamental limitation of this approach.

Constraint satisfaction. Another approach is to cast the problem of reconstituting chromosome archi-
tecture into a constraint satisfaction problem [140]. The reformulated problem then consists in finding
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the coordinates {ri } such that the distances between any (i, j) restriction fragment pair is bounded from
below and from above:

r i j < ri j < r i j . (5.5)

In eq. (5.5) the upper bound is taken inversely proportional to the experimental contact probability,
r i j ∝ 1/ci j , and the proportionality coefficient is a parameter of the method. The lower bound r i j is
introduced to take into account excluded volume between restriction fragments, and to penalize contacts
between adjacent fragments due to the chromosome bending rigidity. This is a constraint satisfaction
problem, which can be solved with the simplex method. The obtained solution is then used to represent a
chromosome configuration (fig. 5.3b).

The main limitation of this approach is clearly that the choice of the lower and upper bounds must be
adjusted by the user and adapted to each data set. Beside, this is not a physical model of the chromosome
architecture.

Singular value decomposition of the spatial correlation matrix. Let us consider the matrix R of size
d×N , where d is the space dimension and N is the number of bins in the Hi-C contact matrix. The matrix
element rαi is therefore the spatial coordinate of loci i along the α-axis (α = x, y, z). Next we consider
the Singular Value Decomposition (SVD) of R:

rαi =

d
∑

γ=1

λγuαγviγ, (5.6)

where U and V are two orthogonal matrices, and
{
λγ

}
γ=1,...,d

are the singular values of R. Then C = RT R

and C̃ = RRT have the same non-zero eigenvalues, which are λ2
1, λ2

2 and λ2
3 (if d = 3). Finally we

introduce the matrix of distances, D, with elements:

di j =

√
√

√

d
∑

α=1

(

rαi − rα j

)2
. (5.7)

It was pointed out that the correlation matrix C can be obtained from the distance matrix D [34, 152].
Therefore, from the knowledge of the distances, one can infer the singular values of the coordinates matrix,
and obtain an approximation for R.

Relation between contact probability and average distance. The methods that we have presented
have the inconvenient to rely on an estimate of the distances between loci on the chromosome, taken to
be inversely proportional to the contact probabilities, i.e. di j ∝ 1/ci j . This assumption can be called into
question.

5.3.1.2 Polymer models

Models presented in section 5.3.1.1 lack a physical model of the chromosome. In clear, the Hi-C bins
define a gas of particles with coordinates {ri } and minimizing eq. (5.4) (resp. solving eqs. (5.5) and (5.7))
can result in configurations that violate topological constraints of the polymer chain representing the
chromosome. Therefore, subsequent improvements have consisted in incorporating a polymer model of
the chromosome when attempting to reconstruct chromosome architecture.
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Random walk backbone with tethered loops. Another way to look at Hi-C data is to consider that
when the contact probability between loci i and j is high enough, it defines a DNA loop. This is the
approach taken in [153]. In short, whenever

ci j > c, (5.8)

with an arbitrary lower bound c on the contact probability, the authors considered that the DNA subchain
in the interval [i, j] constitutes a loop, with ri = rj . The chromosome is then represented by a backbone
polymer with Gaussian statistics on which are tethered polymer loops with varying sizes (fig. 5.3c).
Numerical simulations are then performed on the basis of this polymer model of the chromosome.

Although this backbone-with-loops model takes into account some sort of connectedness of the
chromosome as a polymer, it is an ad hoc model and therefore can only give rather qualitative insights.

5.3.1.3 Discussion on the relation between distances and contact probabilities

The methods introduced in section 5.3.1.1 assume that the distance between any restriction fragment pair
(i, j) can be related to their contact probability in such a way that:

di j ∝ 1/ci j . (5.9)

While eq. (5.9) may appear to be a reasonable assumption, there is no fundamental reason to support
it. For instance, if we model the chromosome as a polymer with scaling exponent ν, we have [53]:

Pr
(

ri j
)

≃ 1

〈ri j〉d
fp

(

ri j

〈ri j〉

)

, fp (x) ∼
x∼0

xg

〈ri j〉 ≃ b | i − j |ν
(5.10)

.
Let us consider that the contact probabilities are given by ci j = Pr

(

ri j = b
)

, and write di j = 〈ri j〉.
Then, we obtain the relation:

di j ∼ 1/c1/(d+g)

i j
. (5.11)

For a Gaussian chain, we have g = 0, and for a self-avoiding chain, g = 1/3. Hence we obtain (d = 3),
di j ∼ 1/c0.33

i j
and di j ∼ 1/c0.3

i j
, in direct contradiction with eq. (5.9). Besides, we have seen that the contact

probabilities are already an approximation obtained from the counts maps. Hence, this assumption on
the relation between average distances and contact probabilities may add significant inaccuracies that one
may want to avoid.

Following this line of thoughts, we emphasize that all the methods reviewed previously have in
common to aim at a characterization of the 3D-folding of the chromosome. That is to say, the solution
consists in a collection of coordinates {r∗

i
} that represent an average conformation of the Hi-C restriction

fragments. Without rejecting the quality of the research carried out, let us emphasize that reducing
chromosome architecture to a mere conformation is probably unrealistic. Indeed, co-localization of loci
on the chromosome results from the effect of divalent (or multivalent) proteins. Such proteins have
preferred binding sites which are commonly represented with a Position Weight Matrix (PWM) [135].
We may estimate the strength of the binding by considering contributions of about one kBT per significant
contact [125]. For H-NS, which binds widely on the genome, we have approximately three significant
contacts. For CRP, which recognizes more specific sequences, we have approximately eight significant
contacts. For more specific transcription factors, we may have of the order of fifteen significant contacts.
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Therefore, we may consider that structuring proteins have a binding energy with DNA in the range
ε = 3− 15 kBT . Consequently, as seen above, we may assess the probability to form a DNA loop between
loci i and j as:

Pr (i ↔ j) =
1

| i − j |ν(d+g)
eβε, (5.12)

where ν(d + g) = 2 for a self-avoiding polymer chain with scaling exponent ν = 3/5. For example,
considering a relatively strong transcription factor, with βε = 10 kBT , the contact probability ci j ≃ 1
when | i − j |= 150 monomers and falls quickly to zero for larger contour distances. Here a monomer
typically represents the scale at which a beads-on-string polymer representation of the chromosome is
valid, i.e. when the size of one monomer is of the order of the DNA fiber diameter. In bacteria for instance,
the chromosome can be seen as a fiber of diameter 2.5 nm ≃ 7.5 bp. In eukaryotes, a monomer typically
represents 3000 bp. Yet, in Hi-C contact matrices a bin typically represent 103-106 bp [34, 35]. This
suggests that loops interactions between loci identified with Hi-C data are rather weak. In other words,
thermodynamic fluctuations may provide the chromosome folding with a non negligible conformational
entropy. In particular it seems a bit awkward to reduce the chromosome architecture to an average
conformation.

5.3.2 A polymer model reproducing experimental contact frequencies

Instead of finding a chromosome folding which satisfies constraints on the monomer pair distance di j , an
alternative approach is to seek a physical model of the chromosome which reproduces the experimental
contact probabilities. This has been proposed and investigated with BD simulations [50, 154]. However,
as mentioned earlier, due to the complexity of chromosome interactions with proteins, this kind of studies
could only be made under strong simplifying assumptions. In particular, a unique generic type of protein
is included and the variety in the binding energies with different loci on the chromosome is replaced by
a single binding energy (or just a few). Consequently, comparisons with experimental contact matrices
have been rather qualitative.

If such simplifications are performed, we put forward the idea that chromosome architecture might
be well described with an effective model in which microscopical details, such as proteins and sequence
effects, are coarse-grained. In particular, the effect of structuring proteins can be taken into account
implicitly by introducing an effective potential Vi j (r) between each (i, j) monomer pair. In other words,
each location on the genome experiences an effective interaction with the other loci on the genome, which
mimics the effect of multivalent proteins. An inspiring approach was carried out recently, in which such
potentials are considered to be short-range square potentials [155]:

Vi j (r) =


+∞ if r < σ

−εi j if σ < r < ξ

0 otherwise,

(5.13)

where σ is the hard-core distance and ξ is a threshold which defines at the same time the range of the
potential and the distance below which monomers i and j are said to be in contact. By performing
MC simulations on a polymer model with the pair potentials in eq. (5.13), one can obtain equilibrium
configurations and use them to compute contact probabilities between monomer pairs.

Let us note c
exp

ij
the experimental contact probability between restriction fragments i and j obtained

from Hi-C experiments, and ci j the contact probability between monomers i and j obtained from MC
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(a) (b)

(c)

(d)

Figure 5.3 – Models for reconstructing chromosome architecture. (a) Harmonic model [142]. (b) Constraint satisfaction model [140].
(c) Random walk with tethered loops [153]. (d) Singular value decomposition of the correlation matrix [152].



110 CHAPTER 5. RECONSTRUCTION OF CHROMOSOME ARCHITECTURE

simulations of a polymer model with potentials as in eq. (5.13). We define the least-square distance
between the experimental and the predicted contact matrices:

d(ci j, c
exp

ij
) =

1

N
∑

i< j

(

ci j − c
exp

ij

)2
, (5.14)

where N is the number of monomer pairs. Finding a good model for chromosome architecture now
consists in finding a collection of potentials Vi j (r) that minimize d(ci j, c

exp

ij
). The solution is achieved at

the optimal values for σ, ξ and the matrix of binding energy εi j .
In [155], a MC simulation was performed at each step of the minimization procedure, in order to

re-sample equilibrium configurations of the chromosome and compute the ci j values. Therefore the
computational burden is high.

Following these tracks, we propose in the sequel a method giving a chromosome architecture under
the form of a physical model that predicts contact probabilities which match as closely as possible the
experimental ones. Our approach retains some of the features introduced here, namely the representation
of the chromosome with a coarse-grained polymer and effective interactions.

5.4 Gaussian Effective Model

5.4.1 Model

From now on, we model the chromosome as a polymer of length N , i.e. made of N + 1 monomers with
coordinates {ri }. Each monomer represents a Hi-C bin with size b. We assume that the chromosome can
be well modeled by a Gaussian chain with energy:

βUe [{ri }] =
3

2b2

N
∑

i=1

(ri − ri−1)2 , (5.15)

where as usual β = (kBT )−1. For a more accurate theory, one may include an additional term to eq. (5.15)
in order to model the chain bending rigidity:

βUb [{ri }] =
lp

2

N−1
∑

i=1

(ri+1 + ri−1 − 2ri)
2 , (5.16)

where lp is the chain persistence length. In that case, the total chain energy is given by

βU0 [{ri }] = βUe [{ri }] + βUb [{ri }] . (5.17)

However, we have seen earlier that Hi-C experiments have a resolution which typically gives b ≈
103 − 106 bp. Therefore, as a first approximation, we choose to neglect the bending rigidity of the
chromosome and take βU0[{ri }] = βUe[{ri }]. We now introduce effective interactions between the
monomers under the form of harmonic potentials with unknown rigidity constants. The interaction
energy reads

βUI [{ri }] =
3

2b2

∑

i< j

ki j
(

ri − rj
)2
, (5.18)

where a coupling matrix K with elements ki j has been introduced. Finally, the total energy (or Hamiltonian)
is defined by

βU [{ri }] = βU0 [{ri }] + βUI [{ri }] . (5.19)
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The physical system with energy as in eq. (5.19) defines the Gaussian Effective Model (GEM). It simply
corresponds to a Gaussian chain model of the chromosome to which are added harmonic interactions
between monomer pairs (i, j), which are effective interactions representing the superimposition of many
microscopic interactions (fig. 5.4). Before writing down the partition function, let us point out that this
system is ill-defined at this stage. To break the translational invariance, we attach the first monomer to the
origin and consider r0 = 0. After this preliminary remark, we can write the GEM partition function. The
energy in eq. (5.19) is quadratic, hence the partition function is computed as a Gaussian integral:

Z =

∫ N
∏

i=1

d3ri exp (−βU [{ri }])

=

∫ N
∏

i=1

d3ri exp *.,−
3

2b2

∑

i, j

ri · rjσ−1
i j
+/-

=

(

2πb2

3

)3N/2

det Σ3/2,

(5.20)

where we have introduced the inverse correlation matrix with elements σ−1
i j

:

Σ
−1
= T +W, (5.21)

with:

T =

*........,

2 −1 . . . 0 0
−1 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 2 −1
0 0 . . . −1 1

+////////-
, W =

*....................,

∑

j=0
j,1

k1j −k12 . . . −k1N−1 −k1N

−k21
∑

j=0
j,2

k2j . . . −k2N−1 −k2N

...
...

. . .
...

...

−kN−11 −kN−12 . . .
∑

j=0
j,N−1

kN−1j −kN−1N

−kN1 −kN2 . . . −kNN−1
∑

j=0
j,N

kN j

+////////////////////-

. (5.22)

T is the tridiagonal matrix enforcing the chain structure from eq. (5.15) and W is the matrix of
reduced couplings enforcing the interactions from eq. (5.18). Being a Gaussian model, the system is fully
determined by its correlation matrix. In particular, we have:

〈ri · rj〉 = σi jb
2, (5.23)

where the brackets stand for a thermodynamical average with a Boltzmann weight defined from the
partition function in eq. (5.20), i.e. for any function of the monomer coordinates, A({ri }):

〈A ({ri })〉 =
1

Z

∫ N
∏

i=1

d3ri A ({ri }) exp (−βU [{ri }]). (5.24)

Note that when W = 0, we retrieve the standard Gaussian chain with 〈ri · rj〉 = min (i, j)b2. Let us
emphasize that the GEM is stable only when Σ has all its eigenvalues strictly positive. Therefore not every
choice of coupling matrix K leads to a physical model.
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Polymer models with Gaussian interaction Hamiltonian as defined in eq. (5.18) have received some
attention in the past. They were introduced in the context of cross-linked polymers, in order to predict
the size of a collapsed polymer of size N with M cross-links [156–158]. However, an essential difference
with the GEM presented here is that in those studies, the effective interactions were uniform, i.e. ki j = k.
More recently, such model has been re-introduced to account for the particular scaling of the gyration
radius of the chromosome in the interphase nucleus [159]. More accurately, the radius of gyration is
reaching a plateau for genomic distances larger than a few Mbp, 〈R2

g〉 ∼ O(1). This scaling was recovered
by considering the above GEM model, in which the ki j are Bernoulli random variables with probability
distribution function (p.d.f.) such that Pr

(

ki j = k
)

= pδ(ki j − k) + (1− p)δ(ki j ). Under this assumption,
each non-zero value ki j defines a loop between monomer i and j with harmonic spring constant k. For
this reason, this model was named Random Loop Model. The theoretical results obtained on the radius
of gyration scaling were confirmed later with BD simulations [160].

0

1

2

i

j

ki j

k0i

Figure 5.4 – Gaussian Effective Model. Harmonic interactions with elastic coefficient ki j are added on top of the Gaussian polymer
model.

5.4.2 Naive approach

5.4.2.1 Rationale

As argued in section 5.3.2, a reasonable strategy seems at first to seek the coupling matrix K which
minimizes d(ci j, c

exp

ij
), as defined in eq. (5.14), between the experimental contact probabilities and

the ones predicted by the GEM. The optimal coupling matrix, Kopt can then be used as a model for
chromosome architecture. Intuitively, one may expect the contact probabilities to be proportional to the
values of the couplings:

ki j = Λci j, (5.25)

where Λ is a scaling coefficient which needs to be adjusted. For each value of Λ, we can run BD
simulations in order to sample equilibrium configurations of the corresponding GEM. Then, for any (i, j)



5.4. GAUSSIAN EFFECTIVE MODEL 113

pair of monomers, we can compute the contact probabilities as:

ci j =
〈

θ
(

ξ − ri j
)〉

, (5.26)

where the brackets here mean that we perform an average over the system configurations, θ is the theta
function (i.e. the indicator function of R+), and ξ is a threshold distance below which a contact is said to
occur. Therefore the computed contact probabilities depend on the coupling scale Λ and on the threshold
ξ. However, the threshold is clearly arbitrary and should be chosen in order to best fit the experimental
contacts. Therefore, we may define the optimal threshold ξopt that minimizes the contacts least-square
distance:

ξopt (Λ) = argmin
ξ

[
d

(

ci j, c
exp

ij

)]
, c

opt

i j
(Λ) = ci j (Λ, ξ

opt ). (5.27)

and similarly, we may define the optimal scale, Λopt as:

Λ
opt
= argmin

Λ

[
d

(

c
opt

i j
, c

exp

ij

)]
. (5.28)

Since the method to compute the contact probabilities ci j relies on BD simulations, we may consider
other polymer models than the Gaussian chain defined in eq. (5.15). In particular, we can add excluded
volume interactions between monomers.

5.4.2.2 Application

We have applied this method to Hi-C data from the human chromosome 14 [35]. The experimental contact
matrices were computed by applying either the “Trace” or “Maximum” method on the available counts
map, as described in section 5.2.4. In fig. 5.5a, we show the experimental contact matrix obtained by using
the “Maximum” normalization method with ld = 2. The p.d.f. of the corresponding contact probabilities,
c
exp

ij
, is shown in fig. 5.5b.

In order to have a reasonable amount of non-zero ki j , we fitted the c
exp

ij
distribution with a sum of M

Gaussian distributions, i.e.

Pr
(

c
exp

ij
= c

)

=

M
∑

k=1

αk

1
√

2πσ2
k

exp *,−
1

2

(c − µk )2

σ2
k

+-. (5.29)

We then considered the sum of the M∗ dominant Gaussian distributions such that
∑

k≤M∗
αk > α, (5.30)

with α = 75%. This defines a distribution fb (c) for the bulk of the ki j , with mean and standard deviation
given by:

µb =

M∗
∑

k=1
αk µk

M∗
∑

k=1
αk

σ2
b =

M∗
∑

k=1
αk (µ2

k
+ σ2

k
)

M∗
∑

k=1
αk

− µ2
b,

(5.31)
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which we used to define the threshold:

c = µb + 3σb . (5.32)

Therefore, the coupling matrix K was set using eq. (5.25), but we discarded all values such that
c
exp

ij
< c. We applied this procedure for 0 ≤ Λ ≤ 1, using a discretization such that dΛ = 2 × 10−2.

For the BD simulations, we modeled the chromosome as a flexible polymer with FENE bonds. We
also introduced Lennard-Jones interactions to model excluded volume interactions between monomers.
In order to sample equilibrium configurations, we first performed a relaxation run of 107 iterations
with integration time step dt = 10−2 and without excluded volume interactions. The value of Λ was
progressively increased to reach its final value. This relaxation run is meant to loose the memory of the
initial condition and to sample many configurations without topological constraints. We then performed
an intermediate run of 106 iterations with integration time step dt = 10−3 in which overlaps between
monomers are removed. Finally, the main run consists of 108 iterations of Langevin dynamics with
integration time step dt = 10−3, in which the excluded volume interactions are modeled with a Lennard-
Jones potential. From this final trajectory, we extracted 103 evenly sampled configurations that we used
to compute the model contact probability matrix.

After sampling a BD trajectory for each value of Λ, we computed the model contact matrix for
0 ≤ ξ ≤ 2 with dξ = 2 × 10−2, and selected the threshold minimizing the distance between experimental
and predicted contacts. In fig. 5.5d we showed the distance d(c

opt

i j
, c

exp

ij
) as a function of the couplings

scale Λ. This distance reaches a minimum at Λ = Λopt , which corresponds to the optimal GEM given
the experimental contacts. The coupling matrix at the optimal scale, K = Kopt , is shown in fig. 5.5e and
the corresponding predicted contacts obtained with the optimal threshold applied to the BD trajectory is
shown in fig. 5.5c.

5.4.2.3 Conclusion

We have presented here a simple method to model chromosome architecture. If we assume that a
proportionality relation holds between couplings and contact probabilities, the value obtained for Λopt

determines the closest GEM reproducing the experimental contacts. The proportionality hypothesis from
eq. (5.25) requires solely to adjust the scale Λ, and the numerical procedure is therefore computationally
less demanding than adjusting all ki j independently as in [155]. However, it is clear that this proportionality
assumption has no rigorous justification. A fortiori there is no better reason to choose this one rather than
the di j ∼ 1/ci j assumption made in the literature. Therefore, in the sequel we present another approach
rooted in an analytical expression of the contact probabilities ci j of a GEM.

5.4.3 One-to-one correspondence between couplings and contact probabilities

We now investigate a more rigorous choice for the couplings ki j of the GEM. Let us formally express the
contact probability between monomers i and j as:

ci j = 〈µ(ri j )〉

=

∫

d3r µ(r)〈δ(ri j − r)〉,
(5.33)

where µ(r) = θ(ξ − r). As before, θ stands for the theta function and ξ is the threshold distance below
which a contact is said to occur. In order to make progress, we need to express the p.d.f. of the pair
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5 – Application of a naive approach to identify an optimal GEM model matching the Hi-C contact matrix generated from
ref. [35] with bin size 1 Mbp. (a) Experimental contact matrix constructed from the counts map using a “Maximum” normalization
with ld = 2 (see section 5.2.4). (b) Probability distribution of the experimental contacts. A threshold is defined from a fit with a
sum of Gaussian distributions. (c) Final contact matrix obtained from a Brownian dynamics trajectory with Λopt

= 0.06. The
threshold used to compute the contact probabilities is ξopt

= 1.82. (d) Plot of the least-square distance d(c
opt

i j
, c

exp

i j
). Each

point is obtained by performing a BD simulation and finding the optimal threshold ξopt that minimizes d(ci j, c
exp

i j
). (e) Coupling

matrix k
opt

i j
corresponding to the final GEM obtained by applying eq. (5.25) withΛ = Λopt . (f) Snapshot of a Brownian dynamics

configuration for the optimal GEM withΛ = Λopt . The color represents the intensity of the bond rigidity between monomers pairs.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6 – Same as fig. 5.5 but with a “Maximum” normalization with ld = 3 for the Hi-C contact probability matrix.
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distance, 〈δ(ri j − r)〉. This quantity can be evaluated by standard Gaussian calculus using the weight in
eq. (5.24). We obtain:

〈δ(ri j − r)〉 = *,
2πb2γi j

3
+-
−3/2

exp

(

− 3

2b2

r2

γi j

)

, (5.34)

where we have introduced the matrix Γ of the average square distances whose matrix elements are:

γi j = σii + σ j j − 2σi j =
1

b2
〈r2

i j〉 for 0 < i < j ≤ N,

γ0j = σ j j =

1

b2
〈r2

j 〉 for 0 < j ≤ N .

(5.35)

The pair distance is a Gaussian distribution, hence the integral in eq. (5.33) can be calculated and
yields:

ci j = FT (γi j )

= erf

(

X
√

2

)

−
√

2

π
X exp

(

−X2

2

)

, X =
ξ

a

√

3

γi j
,

(5.36)

where we have introduced the standard error function:

erf(x) =
2
√
π

x
∫

0

dt e−t
2
. (5.37)

The function FT (γi j ) is a bijection. Hence, to any contact probability ci j , eq. (5.36) associates a unique
average square distance γi j . The correlation matrix Σ of the GEM can then be determined using eq. (5.35),
and finally the coupling matrix K can be obtained by inverting Σ and using eqs. (5.21) and (5.22). Thus,
we have found a unique mapping between the couplings and the contact probabilities of a GEM. A strategy
to infer chromosome architecture then consists in using this mapping to obtain the GEM that reproduces
the experimental contact probabilities. Let us emphasize that this is an exact result.

5.4.4 Form factors

So far, we have considered that the measure in eq. (5.33) was a theta function, i.e. µ(r) = µT (r) with

µT (r) = θ(ξ − r). (5.38)

In the context of Hi-C experiments, this is equivalent to considering that every restriction fragment
pair separated by a distance r < ξ is cross-linked. Or in other words, the probability that restriction
fragments separated by a distance r cross-link is

Pr
(

cross-link between i and j | ri j = r
)

=


1 if r < ξ

0 otherwise .
(5.39)

However, there are many experimental artefacts that make this assumption quite unrealistic. In
particular as already pointed out in section 5.2.3, the chemical compound used to cross-link DNA,
which is formaldehyde, is known to polymerize in aqueous solution. Thus formaldehyde oligomers with
different polymerization indices are present in solution, resulting in cross-links with varying lengths. For
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that reason, the cross-linking probability may be more accurately represented by a measure which ensures
that most of the cross-links occur for distances r < ξ, but also allow for few cross-links to occur when
r > ξ. To serve this purpose, we introduce a Gaussian measure:

µG (r) = exp

(

−3

2

r2

ξ2

)

, (5.40)

and an exponential measure:

µE (r) = exp

(

− r

ξ

)

. (5.41)

Let us emphasize that the form factor µ(r) is not a p.d.f. so it does not need to be normalized. It
should rather be considered as a probability for a Bernoulli random variable. For a restriction fragment
pair separated by a distance r , the probability to cross-link is µ(r) and the probability not to cross-link is
1 − µ(r). Note that µ(0) = 1.

The contact probability in eq. (5.33) can be re-computed for each form factor to obtain a mapping
between contact probabilities and couplings, similarly to eq. (5.36). We obtain for the Gaussian form
factor:

ci j = FG (γi j )

=
*,1 +

b2γi j

ξ2
+-
−3/2

,
(5.42)

and for the exponential form factor:

ci j = FE (γi j )

= (1 + Y 2)

(

1 − erf

(

Y 2

2

))

exp

(

Y 2

2

)

− Y

√

2

π
, Y = X−1

=
*.,
ξ

a

√

3

γi j

+/-
−1

.
(5.43)

In addition to representing more faithfully the experimental conditions, the Gaussian and exponential
form factors can be seen as regularization parameters for the contact probabilities. Namely, the saturation
of ci j → 1 as γi j → 0 is less pronounced than with the theta form factor (fig. 5.7). In that respect, the
Gaussian form factor appears to be the best because FG (γi j ) tends to have a greater slope for ci j in the
range 0.1-1.0. Thus it is less sensitive to inaccuracies in the measured contact probabilities.

5.4.5 Conclusion

In conclusion, we have introduced a physical model for chromosome architecture. We called this model
a Gaussian Effective Model because all interactions between loci on the chromosome have been replaced
by effective Gaussian potentials with rigidity coefficients ki j . Within this simplified framework, we have
been able to compute an analytical expression for the contact probability ci j between monomers i and j.
It turns out that the contact probability matrix is uniquely determined by the couplings, and reciprocally.
We will sometimes refer to this property as the “GEM mapping” in the sequel. Importantly, this mapping
relies on the choice of a threshold ξ and on a form factor µ. We have found that a Gaussian form factor
has the advantage of decreasing the mapping sensitivity to the inaccuracies in the ci j values, and account
for formaldehyde polymerization which results in Hi-C contacts to be detected for distances of varying
lengths.
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Figure 5.7 – Comparison of mappings between contact probabilities and average square distances for the theta, Gaussian and
exponential form factors. The functions are defined in eqs. (5.36), (5.42) and (5.43). We used b = 1.

5.5 Reconstruction from artificial contact probability matrices

5.5.1 Artificial contact probability matrices

We plan to use the GEM mapping as a method to give a prediction of chromosome architecture from
Hi-C contact probabilities under the form of a GEM. In order to validate the method, we first apply it to
artificial contact matrices generated with BD simulations from GEM whose couplings k th

i j
are known. We

have carried out this validation for various sizes ranging from N + 1 = 20 to N + 1 = 1000. However,
in this section, we present the results for N + 1 = 200 because it is a reasonable compromise between a
not-too-small contact matrix, and not-too-large computational time for BD simulations.

In order to construct arbitrary coupling matrices k th
i j

, we randomly choose Nc elements and assign to
them a value such that:

k thi j = ΛU, (5.44)

in which U is a uniform random variable between 0 and 1, andΛ is a scale parameter. We therefore obtain
a coupling matrix with Nc non-zero elements, which represent the number of constraints of the GEM. An
example of such a matrix is shown in fig. 5.8.

Using the one-to-one mapping between the coupling matrix and the contact probability matrix of a
GEM, we can compute the theoretical contact probabilities, cth

i j
, associated to the theoretical couplings

k th
i j

of the model. In order to check the validity of this mapping, we run BD simulations of a GEM with the
aforementioned couplings. The chain internal energy was Gaussian, as defined in eq. (5.15). Simulations
were run for 108 iterations with integration time step dt = 10−3, from which 1000 configurations evenly
sampled were extracted in order to compute the experimental contact matrix c

exp

ij
, with threshold ξexp
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Figure 5.8 – Theoretical coupling matrix k th
i j

for N = 200. It is made of Nc = 20 uniform random variable with scale Λ = 1.

and form factor µexp . Note the distinction that we have introduced for the form factors. Indeed, we
need to use a theoretical form factors µth when computing the theoretical contact probabilities cth

i j
from

the theoretical couplings; and we also need to specify a form factor µexp which is used to compute the
contact probabilities c

exp

ij
= 〈µexp (ri j )〉 from configurations sampled with BD simulations. In the sequel,

unless stated otherwise, we used a Gaussian form factor to compute both the theoretical and experimental
contacts, i.e. µth = µexp = µG . As shown in fig. 5.9, the theoretical and experimental contact probability
matrices are in very good agreement. The difference can be attributed to thermal fluctuations and the
finite number of configurations used to compute the experimental contacts.

In conclusion, the correspondence found in section 5.4 between couplings and contact probabilities of
a GEM has been checked with BD simulations. We now move on to use this relation in order to infer the
couplings from a given experimental contact probability matrix. In the rest of this section, we will call
experimental contact probabilities the probabilities computed from BD simulations.

5.5.2 Direct method for reconstructing a Gaussian effective model

Here we provide a first method to derive chromosome architecture from experimental contacts. We shall
use the GEM mapping to express the model average square distances from the experimental contacts:

γ̂i j = F−1
G (c

exp

ij
) (5.45)

where we used hats to emphasize that this is a prediction of GEM matching the experimental contacts.
Actually, because the previous relation is exact, the predicted and experimental contacts are the same and
ĉi j = c

exp

ij
. The predicted couplings, k̂i j , can then be simply computed using eqs. (5.21) and (5.35). Thus

this method is quite straightforward.
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(a)

(b) (c) (d)

Figure 5.9 – (a) Theoretical contact probability matrix cth
i j

computed from the GEM with couplings k th
i j

(Nc = 20 and Λ = 1).

(b), (c) and (d) Experimental contact probability matrix c
exp

i j
obtained from BD simulations of the GEM using 10, 100 or 1000

sampled configurations. We used ξ th
= ξexp

= 3.00 and µth
= µexp

= µG .

However, what should be the threshold ξ used in eq. (5.45)? In section 5.4.2, free parameters were
adjusted in order to minimize the distance between predicted and experimental contacts. But precisely
because ĉi j = c

exp

ij
, we cannot hope to use this method to find the optimal threshold ξopt . In the present

case, because we know the couplings of the underlying GEM model used to generate the experimental
contacts, it is pretty obvious that the optimal threshold should minimize d(ki j, k th

i j
). In other words, the

predicted couplings should be as close as possible to the theoretical ones. Consequently, we define:

ξ∗ = argmin
ξ

(d(ki j, k thi j )), (5.46)

which can be seen as a hidden optimal threshold.
In practical applications however, experimental contact matrices are not generated from an underlying

GEM, therefore we have to find another criterion to choose the threshold in the reconstruction procedure.
Intuitively, one may expect that a good GEM candidate should not alter the rigidity of the underlying
polymer chain. In other words, couplings near the diagonal should be close to zero, so that the sum in
eq. (5.21) on page 111 leaves the ti j elements unchanged. In order to do this, we monitored the norm of
the matrix ∆l obtained by taking only ki j values such that | i − j |≤ l, and assigning other values to zero.
Thus we define:

ξopt = argmin‖∆l ‖
ξ

. (5.47)

In fig. 5.10, we show that d(ki j, k
exp

ij
) and ‖∆l ‖ have approximately the same variations, and in most

cases, their minimum is achieved for the same threshold, i.e. ξ∗ = ξopt . For the experimental contact
matrices computed from the same BD trajectory, we used either a Gaussian form factor (µexp = µG)



122 CHAPTER 5. RECONSTRUCTION OF CHROMOSOME ARCHITECTURE

or an exponential form factor (µexp = µE ). We then applied eq. (5.45) with a Gaussian form factor in
both case to obtain a candidate GEM. Note that we did not show the result for an experimental contact
matrix using a theta form factor (µexp = µT ) because the inversion procedure gave an unstable GEM (the
correlation matrix is not positive definite). When applying the retrieval method to the Gaussian contact
matrix we retrieve that the optimal threshold is ξopt = ξexp . On the contrary, when we apply the retrieval
method to the exponential contact matrix, we have ξopt , ξexp . This is due to the discrepancy between
the exponential form factor used to compute the experimental contacts and the Gaussian form factor of the
retrieval method (µ , µexp). Furthermore, we see that when there is such a discrepancy, the variations
of both criteria become jagged as the threshold ξ used in the retrieval method increases (fig. 5.10b).
This leads to the existence of several local minima that makes the definition of the optimal threshold in
eq. (5.47) ambiguous. To solve this ambiguity, we took for ξopt the first local minimum found from the
left, i.e. when increasing progressively the threshold from small values.

(a) (b)

Figure 5.10 – Comparison of d(k̂i j, k
th
i j

) and ‖∆5 ‖ for different thresholds in the direct reconstruction procedure with µ = µG .

Experimental contact matrix c
exp

i j
were computed from a BD trajectory using a threshold ξexp

= 2.00 and: (a) a Gaussian form
factor µexp

= µG ; (b) an exponential form factor µexp
= µE .

Nonetheless, we do not always find ξopt = ξ∗. This is expected because the criterion used to define
ξopt , that is to say ‖∆l ‖, is rather phenomenological. Therefore, we investigated to which extent this
criterion can be trusted in order to find the best GEM matching the experimental contacts. In order
to do this, we computed the least-square distance between ξopt and ξ∗ obtained for a large number of
experimental contacts:

χ2(ξ
opt
a , ξ∗a) =

1

2

∑

a

| ξopta − ξ∗a |2, (5.48)

where the index a runs over different experimental contact matrices. More accurately, we sampled BD
trajectories for a number of constraints Nc = 5, 20, 50, 100 and scaling coefficient Λ = 1, 5, 10, from
which we computed experimental contact matrices using either a Gaussian (µexp = µG) or an exponential
form factor (µexp = µE ). We then applied the retrieval procedure and computed ξopt and ξ∗ as explained
above. The results obtained suggest that ξopt is a good approximation of ξ∗ (fig. 5.11). Actually, we
also carried out this analysis for other criteria. Namely we monitored: ‖K ‖, the Froebenius norm of the
coupling matrix; |K | = ∑ | ki j |; max (K ) = max (ki j ) and entr(K ), the entropy of the p.d.f. of the
couplings ki j . Yet, ‖∆l ‖ appeared to be the best criterion in the sense of eq. (5.48). We also found that
important deviations of ξopt from ξ∗ occurred mostly for experimental contact matrices obtained from



5.5. RECONSTRUCTION FROM ARTIFICIAL CONTACT PROBABILITY MATRICES 123

GEM with very few constraints or with a large couplings scaleΛ. Indeed, the same analysis carried out by
discarding GEMs with Nc = 5 and Λ > 1 significantly improved the performances of the ‖∆l ‖ criterion
(fig. 5.12). Finally, most deviations of ξopt from ξ∗ occurred when µexp , µ. In that case, ξopt has a
tendency to slightly overestimate ξ∗. Altogether, the definition taken for ξopt gave consistent results.

In conclusion, the bijective relation that exists between the couplings and the contact probabilities
of a GEM can be used to propose a chromosome architecture under the form of a GEM with couplings
k̂i j . The GEM obtained has the property to exactly reproduce the experimental contacts. However, the
computation of the GEM couplings from the contact probabilities requires to choose a threshold, which is
a parameter in the form factor (see eq. (5.40) on page 118). In this section, we have shown that choosing
the threshold that minimizes the norm ‖∆l ‖, where∆l is the matrix of couplings in which only the diagonal
band of length l has been retained, appeared to be a good estimate of the optimal threshold. In particular,
we used home-made GEMs together with their contact matrices computed from BD simulations to ensure
that the distance d(k̂i j, k th

i j
) between predicted and theoretical couplings is minimum at ξ = ξopt . From a

computational standpoint, this method is particularly efficient since it only requires to invert the correlation
matrix Σ in order to obtain the coupling matrix k̂i j .

Figure 5.11 – Least-square difference between ξopt and ξ∗. The points correspond to the optimal threshold obtained using
the ‖∆5 ‖ criterion. We used the direct reconstruction procedure applied to experimental contact matrices computed from BD
simulations of a GEM with N = 200, Nc = 5, 20, 50, 100 and Λ = 1, 5, 10, and using a Gaussian or an exponential form factor
µexp . The form factor used in the retrieval procedure was Gaussian, µ = µG .

5.5.3 Stability analysis

In the last section, we have presented a method to compute the GEM reproducing a given experimental
contact probability matrix. However, nothing ensures that the GEM obtained is stable, i.e. that the
correlation matrix Σ has only positive eigenvalues. Incidentally, we found that applying the direct
reconstruction method to contact matrices generated using a theta form factor (which is maybe the
simplest definition of a contact matrix) resulted in unstable GEMs. This is a fundamental weakness of
the direct reconstruction method, and it is therefore desirable to better understand under which conditions
such instabilities occur. In particular, we may expect that Hi-C contact matrices contain some noise due
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Figure 5.12 – Same as fig. 5.11 but with Nc = 20, 50, 100 and Λ = 1 only.

to inaccuracies in the measures or biases inherent to the experimental procedure. Thus, before presenting
an alternative method in the next section, we analyze here the effect of corrupting contact probability
matrices with noise on the performance of the direct reconstruction method.

Let us start again from our artificial GEM with couplings k th
i j

. We compute the associated contact

matrix cth
i j

, using a threshold ξ th and a form factor µth . When we perform BD simulations of this system,
we obtain configurations from which we compute the experimental contact matrix c

exp

ij
, using a threshold

ξexp and a form factor µexp . We assume µth = µexp . Thermal fluctuations, together with the finite
number of such configurations results in c

exp

ij
, cth

i j
. We may therefore write the experimental contact

probabilities as:
c
exp

ij
= cthi j + ηi j, (5.49)

where ηi j can be considered as a noise with unknown distribution, corrupting the “true” contact matrix.
For N = 200, Nc = 20 and Λ = 1, we computed the p.d.f. of the difference cth

i j
− c

exp

ij
. We used a

Gaussian form factor for both the experimental and the theoretical contact matrices, µth = µexp = µG ,
and we took ξexp = 2.50 and different values for ξ th (fig. 5.13). We obtained that when ξ th = ξexp

the p.d.f. of ηi j fits well a centered Gaussian distribution. Actually, we also obtained this result when
computing the noise with µexp = µth = µE or µexp = µth = µT .

Consequently, instead of running BD simulations in order to compute experimental contact matrices
c
exp

ij
, we may construct pseudo-experimental contact matrices by adding a Gaussian noise with mean and

variance given by
〈ηi j〉 = 0, 〈η2

i j〉 = ε2, (5.50)

to the theoretical contact matrix cth
i j

. This trick allows us to investigate the stability of the direct recon-
struction method as a function of the noise amplitude ε. Furthermore, it also allows us to explore more
values for Nc than if we had to run systematically a BD simulation.

Following this observation, we explored the stability of the direct reconstruction method in the (ε, Nc)

plane. Note that for this study only, we used a larger size of polymer and considered N = 1000. For each
value of Nc , we generated a random coupling matrix k th

i j
with scale Λ = 1, and the associated theoretical
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Figure 5.13 – Distribution of the noise ηi j = c
exp

i j
− cth

i j
, fitted to a Gaussian distribution. We used a Gaussian form factor to

compute both contact matrices. N = 200, Nc = 20 and Λ = 1.

contact probabilities cth
i j

. We used ξ th = 3.00 and µth = µG . Then we computed a pseudo-experimental
contact probability matrix c

exp

ij
by adding to the theoretical contact probabilities a centered Gaussian noise

with standard deviation ε. Following our previous observation, we assume that the contact probabilities
obtained are a good approximation of the experimental contact probabilities that would be obtained by
performing a BD simulation of the GEM and computing the contact probabilities with ξexp = ξ th and
µexp = µth . Then we applied the direct reconstruction procedure to c

exp

ij
using µ = µexp and ξ = ξexp ,

which is the optimal threshold. We therefore obtained a predicted GEM with couplings k̂i j that we
compared to the theoretical couplings by computing d(k̂i j, k th

i j
). The result of this analysis is shown in

fig. 5.14, in which we shaded in grey the region where the predicted couplings k̂i j result in an unstable
GEM with a correlation matrix Σ having negative eigenvalues. We obtain that for each value of the
number of constraints, Nc , there is an upper bound ε on the noise amplitude such that for ε > ε, the direct
reconstruction method fails, in the sense that the predicted GEM is unstable. It is remarkable that for
ε < ε the direct reconstruction methods perform very well, with d(k̂i j, k th

i j
) . 10−2 in the worse cases.

Therefore, the reconstruction appears to be robust to noise until some critical value of the noise amplitude
is reached. Then the method suddenly starts to fail. We also note that the value of ε seems to depend
on the number of constraints of the underlying GEM. In particular, it is clear that the performances of
the direct reconstruction method get worse when Nc → 0. Specifically, for Nc = 0, we observe that even
blurring the theoretical contacts with a noise of amplitude as small as ε = 10−6 is sufficient to make the
retrieval fail. To the contrary, the value of ε seems to be maximum in a range of constraints between
Nc = 10 %N and Nc = 100 %N .

In conclusion, we have shown that the primary reason causing the direct reconstruction method to fail
is when the predicted couplings produce an unstable GEM. By definition of the Gaussian effective model,
this means that the correlation matrix Σ of the Gaussian model has negative eigenvalues. This occurs
suddenly when the experimental contacts are corrupted with a noise whose amplitude is above a critical
value. However, when the noise’s amplitude (or experimental precision error) is below this threshold, the
predicted couplings appeared to be close to the theoretical ones. Hence whenever the direct reconstruction
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method gives a stable GEM, we may consider that this is the theoretical GEM from which the experimental
contact matrix was generated. Therefore, when applying this method to an experimental matrix from a
Hi-C experiment, we may consider similarly that whenever the reconstructed GEM is stable, it constitutes
a reliable model for the chromosome architecture.

(a) (b)

Figure 5.14 – Performance of the direct reconstruction method when the theoretical contact probabilities cth
i j

are blurred with a

Gaussian noise such that 〈ηi j 〉 = 0 and 〈η2
i j
〉 = ε2. We used N = 1000. The region in which the predicted couplings k̂i j define an

unstable GEM was shaded in grey. (a) Nc = 0, . . . , 1000. (b) Zoom for Nc = 0, . . . , 100.

5.5.4 Reconstruction of a stable Gaussian effective model

5.5.4.1 How to ensure the stability of the reconstructed Gaussian effective model?

When the input experimental contacts are very noisy, we have seen that the direct reconstruction procedure
fails because the associated GEM is unstable. However, in the space of contact matrices, there may exist
a nearby contact matrix which can be mapped to a stable GEM. This remark motivates the design of
an alternative method which aims at reconstructing the closest stable GEM. In particular, the predicted
contact probabilities may not exactly reproduce the experimental ones. This suggests an approach in
which one seeks to minimize the distance d(ci j, c

exp

ij
) between the contact matrix predicted by a GEM

and the experimental contact matrix, under the constraint that the GEM is stable.

A rigorous enforcement of this principle would be to ensure that the correlation matrix of the candidate
GEM has strictly positive eigenvalues. Yet, this constraint seems difficult to implement in practice. Instead
we turn our attention to the more restrictive condition:

ki j > 0, (5.51)

which ensures the positivity of the couplings. It is clear that eq. (5.51) is a sufficient although not necessary
condition for Σ to be a positive definite matrix. Indeed, if it is so, then the sum in eq. (5.18) on page 110
is always positive.
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5.5.4.2 Minimization procedure

Finding the best stable GEM matching an input experimental contact matrix can therefore be recast in a
minimization problem on the ki j variables, with Lagrangian:

L = A + B. (5.52)

The two functionals in the right-hand side (r.h.s.) of eq. (5.52) have the expressions:

A = 1

2
‖Σexp · Σ−1 − I ‖2, (5.53)

where I is the identity matrix, and:

B =
∑

i< j

θ(−ki j )

( | ki j |
k

)p

. (5.54)

For A, we have preferred the expression in eq. (5.53) to d(ci j, c
exp) because it is quadratic in the

ki j , which is desirable for a function to minimize. In particular, in the absence of B the minimization
would reduce to the minimization of a quadratic function whose regularity and convexity ensure straight
convergence to the global minimum with standard minimization techniques. We can hope that the addition
of the B functional will not alter too much this property. From a computational standpoint, computing
A and its derivatives is very straightforward while computing d(ci j, c

th
i j

) requires first to to invert Σ−1 in
order to compute the average square distances γi j from which can be computed the contact probability
matrix ci j . The latter option involves therefore an additional computational burden that we want to avoid.
However, due to the GEM mapping between the inverse correlation matrix with elements σ−1

i j
and the ci j ,

both criteria are equivalent. We give the derivatives of A:

∂A
∂ki j

=



∂A
∂w j j

if 0 = i < j

∂A
∂wii

+

∂A
∂w j j

− ∂A
∂wi j

if 0 < i < j,

(5.55)

with:

∂A
∂wii

=

[
ST (S · Σ−1 − I)

]
ii

∂A
∂wi j

=

[
ST (S · Σ−1 − I)

]
i j
+

[
ST (SΣ−1 − I)

]
ji
,

(5.56)

where we have used S = Σexp to alleviate notations, and wi j is a matrix element of the reduced coupling
matrix. Note the particular shape for the derivative of the off-diagonal elements in the second line of
eq. (5.56) which appears when we enforce that the coupling matrix ki j is symmetric.

The B functional has been chosen arbitrarily to enforce the positivity of the couplings, as required
from eq. (5.51). The theta function ensures that the penalty is applied only when some couplings become
negative. Besides, k can be seen as the modulus of the smallest negative coupling allowed. Indeed, due
to the power law in eq. (5.54), the penalty increases abruptly when ki j < −k. The values of p and k have
been adjusted from our particular experience. Actually, decreasing k results in a more stringent constraint
and tends to increase the number of iterations required for the minimization to converge. To a lesser extent
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increasing p also resulted in a more stringent constraint, but the consequences on the convergence speed
were less visible. In practice, we typically used k = 0.1 and p = 8.

Last but not least, we enforced kii+1 = 0 and removed these variables from the minimization. We have
made this choice to ensure that the bonds rigidity of the Gaussian chain in eq. (5.15) is not modified.

For the practical implementation of the minimization, we used a standard steepest descent method. In
other terms, ki j values were updated according to the equation of motion:

∂ki j

∂t
(t) = − ∂L

∂ki j
({ki j (t)}), (5.57)

or more precisely its discretized version:

k
(n+1)

i j
= k

(n)

i j
− h

∂L
∂ki j

(n)

, (5.58)

where n is the time (or iteration) and h represents the time step. Actually, we have also tried more
sophisticated methods such as the conjugate-gradient method. However, although the number of iterations
required to converge is significantly decreased, each step then requires to perform a line minimization,
with several evaluations of A per iteration. Yet, evaluating A requires of the order of O(N2) operations.
Therefore we have found that using a simple steepest descent method resulted in a faster convergence to the
minimum. Following ideas developed in section 5.4.2, we chose to initialize the couplings to k

(0)

i j
= c

exp

ij
.

5.5.4.3 Speeding up convergence

While the computation of A has a complexity in O(N2), the computation of the gradient of A requires
of the order of O(N3) operations. This scaling seems at first particularly unadapted to deal with contact
matrices with size N ∼ 102 or 103 like in Hi-C experimental data sets. However this issue can be
circumvented.

The key is to reduce the complexity of the gradient evaluation. It turns out that during the minimization,
only a few ki j tend to non-zero values and represent significant constraints. The bulk of the ki j actually
decreases quickly to near zero values, which then fluctuate in the vicinity of zero, with a magnitude well
below the relevant couplings scale chosen for the procedure: | ki j |≪ k. Computational time spent to
perform the dynamics on these couplings may be regarded as wasted because they do not correspond in the
end to significant constraints and it is of little interest to know whether these couplings have a magnitude
near zero or exactly equal to zero.

Therefore, every nt iterations, we performed a “trim” operation. We set all couplings such that
| ki j |< k to ki j = 0 and removed them from the minimization. As a consequence, computing the gradient
ofA becomes of complexity O(M N2) where M is the number of ki j , 0. In general, M quickly decreases
to M ∼ Nc < N . Hence this trick enables us to save a significant amount of time in the minimization. For
practical implementations, we typically used nt = 100.

5.5.4.4 Results

In order to validate the minimization method, we applied it to experimental contact matrices obtained
from BD simulations performed on our artificial GEMs. We used a form factor µexp and a threshold ξexp

but as before, we assumed that this information is hidden in the reconstruction procedure.
Starting from the experimental contact probabilities c

exp

ij
, we perform a minimization on the ki j as

described above. The couplings k̂i j where L is minimum define the best stable GEM matching the
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experimental contacts. Nonetheless, to compute Σexp we had to choose a form factor µ and a threshold ξ.
The goal is to find the GEM whose associated contact probability matrix ĉi j is as close as possible to the
experimental one. Therefore we define the optimal threshold as the one minimizing the distance to the
experimental contacts:

ξopt = argmin
ξ

(d(ĉi j, c
exp

ij
)). (5.59)

We considered BD trajectories of GEMs with N = 200, Λ = 1 and Nc constraints. We then applied
the minimization procedure to the experimental contact matrices computed using a Gaussian form factor
µexp = µG and a threshold ξexp = 3.0. In fig. 5.15, we report the results for Nc = 20, 50, 100. In the first
column we represented d(ĉi j, c

exp

ij
) as a function of the threshold ξ. Since we know the true couplings of

the GEM used to produce the experimental contacts, we also represented the distance between the retrieved
couplings k̂i j and the theoretical ones, i.e. d(k̂i j, k th

i j
). We observe that d(ĉi j, c

exp

ij
) display one narrow

local minimum and another “fat” local minimum for smaller values of ξ, which is rather unexpected.
However, d(k̂i j, k th

i j
) diverges near the “fat” minimum so we conclude that this is an unphysical minimum.

We do not have clear explanation for the existence of this secondary minimum, but we suspect that it is due
to the positivity constraint on the ki j . That being said, if we admit that the first minimum encountered from
the right (i.e. when decreasing progressively ξ from large values) corresponds to the optimal threshold
ξopt as defined in eq. (5.59), then the performances of the method are very good. In particular we recover
that ξopt = ξexp . In the second and third columns, we show the optimal coupling matrix k

opt

i j
and contact

matrix c
opt

i j
when ξ = ξopt . Note that k

opt

i j
reproduces k th

i j
to a very good precision. We also carried

out the same procedure on contact maps such that µexp = µT , µ and ξexp = 1.5 (fig. 5.16). Due to
the discrepancy between the form factors, we now have ξopt , ξexp . Although a little bit less accurate
than with µexp = µG , we still obtain satisfactory results and the optimal couplings are very close to the
theoretical ones. Interestingly, when µexp , µ, the “fat” minimum of d(ĉi j, c

exp

ij
) almost vanishes and we

are left with a pronounced and dominant global minimum at ξ = ξopt .

Let us emphasize that despite its apparent computational burden, this method is still more efficient than
the method proposed in [155]. Indeed, the latter one also uses a minimization scheme such as eq. (5.57), yet
at each step n, evaluating L requires to perform a full Monte-Carlo simulation to sample configurations of
the system in the canonical ensemble and use them to compute the contact matrix associated to the values
of the couplings at time n + 1. Besides, the free parameters in this same approach (σ and ξ in eq. (5.13))
are adjusted by hand while here we adjust the free parameter ξ in order to find the optimal GEM matching
the experimental contacts. That being said, when the system size is not too large (say N < 100), their
approach allows to virtually consider any polymer model, and any type of monomer-monomer interaction,
while our approach is valid only when the system’s Hamiltonian is Gaussian.

In conclusion, we have presented here a method to reconstruct the true couplings of an underlying GEM
from an input experimental contact matrix. In contrast to the direct reconstruction method, it ensures that
the obtained GEM is stable. It is therefore safer to apply to noisy experimental contact matrices, coming
for instance from Hi-C experiments. As a drawback, the minimization involves a heavier computational
burden that we somehow attenuated by trimming small couplings values during the minimization. The
method has ξ as a free parameter, which is chosen a posteriori to minimize the distance between the
experimental and the reconstructed contact probabilities. Applying this method to BD trajectories of our
artificial GEMs has proven quite successful. Hence we now attempt to apply it to real contact matrices
coming from Hi-C experiments.
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(a)

(b)

(c)

Figure 5.15 – Application of the minimization method to experimental contact matrices generated from a BD trajectory of a GEM
(N = 200 and Λ = 1). We used ξexp

= 3.00 and µexp
= µG (Gaussian form factor). We show in the first column d(ĉi j, c

exp

i j
)

and d(k̂i j, k
th
i j

) as a function of the threshold ξ used in the minimization. The optimal threshold ξopt minimizing d(ĉi j, c
exp

i j
)

is shown. The optimal coupling matrix k
opt

i j
and the associated contact matrix c

opt

i j
are shown in the second and third column. (a)

Nc = 20. (b) Nc = 50. (c) Nc = 100.



5.5. RECONSTRUCTION FROM ARTIFICIAL CONTACT PROBABILITY MATRICES 131

(a)

(b)

(c)

Figure 5.16 – Same as fig. 5.16 but the experimental contact matrices were generated from the BD trajectories with a theta form
factor instead: µexp

= µT and ξexp
= 1.50. (a) Nc = 20. (b) Nc = 50. (c) Nc = 100.
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5.6 Reconstruction from Hi-C contact probability matrices

In this section, we shall use Hi-C data from the human chromosome 14 [35]. Because we did not have
clear arguments to prefer one normalization over the others, we have normalized the counts map in a
contact probability matrix according to each of the methods presented in section 5.2.4 and applied the
reconstruction procedure to obtain a Gaussian effective model of the chromosome.

First, we have tried to use the direct reconstruction method. However, the method has failed because
the GEMs obtained were unstable. Therefore we have implemented the minimization method. We show
the results for contact matrices normalized with the “Maximum” method and ld = 2 or ld = 3. For ld = 2
(fig. 5.17), the optimal GEM has a contact probability matrix very close to the experimental one, with
d(c

opt

i j
, c

exp

ij
) < 0.1. Yet, with this choice of normalization, only short-range interactions emerge from the

optimal coupling matrix. For ld = 3 (fig. 5.18), we obtain a more complex architecture, with the presence
of long-range interactions in the optimal coupling matrix. Besides, there are compartments visible in
the contact probability matrix associated to the reconstructed GEM, in good global agreement with the
experimental contact probability matrix. However, we now have d(c

opt

i j
, c

exp

ij
) > 0.1. The configurations

obtained with BD simulations of this GEM are typical of a collapsed polymer and may model “rosette”
structures conjectured for chromosome architecture [22]. Noting that the experimental contact probability
matrix generated with ld = 3 has globally entries with larger values and less smooth variations, we may
interpret this increased distance, d(c

opt

i j
, c

exp

ij
), by saying that it is harder to fit the experimental contacts

with a GEM than when ld = 2.

5.7 Discussion

Representation of the chromosome architecture with a Gaussian effective model

On the basis of an inspiring study [155], in this chapter we have sought to propose a polymer model
of the chromosome that reproduces the contact probabilities measured in Hi-C experiments. In order to
address this issue, we have investigated a physical model that we called Gaussian effective model (GEM).
Specifically, we started from a Gaussian chain model of the chromosome, and added effective interactions
between monomers under the form of harmonic springs with rigidity coefficients ki j . The problem of
reconstructing the chromosome architecture is then equivalent to find the ki j values such that the GEM
reproduces, at Boltzmann equilibrium, the experimental contact probabilities, c

exp

ij
. As a central result of

our investigation, we found that within this theoretical framework, the contact probabilities of the GEM,
ci j , are uniquely related to the matrix of couplings, ci j ⇔ ki j . In particular, an analytical closed-form has
been obtained. This mapping depends on two parameters which are: a threshold ξ and a form factor µ,
which specify the probability that two monomers separated by a distance r are found in contact. These
parameters depend on the particular experimental setup and need to be adjusted a posteriori. Besides,

in our investigation we have chosen to use a Gaussian form factor, µG (r) =
(

1 + b2γi j/ξ
2
)−3/2

, in order
to account for the dispersion in the cross-linking distances due to formaldehyde polymerization in Hi-C
experiments.

Validation of the analytical relation between couplings and contact probabilities

In order to validate the analytical closed-form obtained, we have generated Brownian dynamics (BD)
trajectories of artificial GEM with known couplings, k th

i j
, from which we extracted M configurations to

compute virtual contact matrices. We compared these matrices to the matrix of contacts predicted by
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(a) (b)

(c) (d)

(e)

Figure 5.17 – Application of the minimization procedure to Hi-C data from the human chromosome 14 with bin resolution
1 Mbp [35]. (a) Experimental contact probability matrix obtained from the counts map with the “Maximum” normalization and
ld = 2. (b) Contact probability matrix of the optimal GEM. (c) Snapshot of a BD simulation of the optimal GEM. (d) coupling
matrix of the optimal GEM. (e) Result of the minimization method.



134 CHAPTER 5. RECONSTRUCTION OF CHROMOSOME ARCHITECTURE

(a) (b)

(c) (d)

(e)

Figure 5.18 – Same as fig. 5.17 but with ld = 3 rather than 2.
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the GEM mapping, cth
i j

. We found that the distance between the two was very small. For example, with

M = 1000 configurations, we had d(cth
i j
, c

exp

ij
) ∼ 5 × 10−3, where the distance actually represents the

average difference between matrix elements. Hence we concluded that the analytical relation obtained
was reliable.

Direct reconstruction method

This led us to propose a first method to reconstruct chromosome architecture. Starting from an
experimental contact matrix, c

exp

ij
, this method uses the aforementioned mapping to give the couplings

which define a GEM with the same contact probability matrix, ĉi j = c
exp

ij
. This method performed very

well on virtual contact matrices generated from BD simulations. Namely, the original couplings k th
i j

were
retrieved within a very good accuracy. Yet, we were faced with an unexpected problem when applying
this method to experimental contact matrices from Hi-C experiments. It turns out that the GEM mapping
does not ensure that the model obtained is physical. That is to say, the reconstructed couplings may
result in a Gaussian correlation matrix with negative eigenvalues, corresponding to an unstable GEM. We
characterized this phenomenon by showing that the method is sensitive to the presence of noise in the
experimental contact probabilities. More accurately, when the noise amplitude increases above a certain
value, which depends on the number of non-zero couplings in the GEM (i.e. the number of constraints Nc),
the reconstruction can fail even though the underlying contact matrix was generated from a stable GEM.
The effect can be particularly devastating on the input data. For instance, for contact matrices generated
from a free polymer (Nc = 0), a noise of amplitude of 10−6 was sufficient to result in an unstable GEM.

Finding a stable Gaussian effective model

To address the stability issue, we had to consider an alternative approach. Instead of considering that
an input contact probability matrix should be directly associated to a GEM, we rather decided to find the
closest element, in the space of contact matrices, which is associated to a stable GEM. To implement this
approach, we considered the minimization of a function of the ki j variables, and consisting of two terms.
The first term was the distance between the experimental contacts and the contact matrix associated to the
current ki j vector through the GEM mapping. The second term corresponded to a constraint on the ki j to
ensure that the GEM is stable. This minimization is carried out for several values of the threshold used in
the mapping, and the GEM having the closest contact matrix, ĉi j , to the experimental one is retained.

We demonstrated that this method gave consistent results by applying it as before to contact probability
matrices generated from BD trajectories. We found that the minimum of the distance d(ĉi j, c

exp

ij
) indeed

corresponded to a satisfactory retrieval of the hidden couplings. The method however is less accurate
than the direct reconstruction discussed above. First, by construction the reconstructed contact matrix is
no longer equal to the experimental one, ĉi j , c

exp

ij
. In particular, at the optimum, the distance between

the two matrices was of the order d(ĉi j, c
exp

ij
) ∼ 5 × 10−2 − 10−1. Furthermore, the distance as a function

of the threshold displayed a secondary and unexpected minimum for small values of the threshold. We
suspect that it is due to the stringent constraint imposed on the ki j to enforce the GEM stability. Indeed,
the condition that we impose is ki j > 0. Although having positive couplings is sufficient to obtain a
positive definite Gaussian correlation matrix, it is not a necessary condition. Therefore, this condition
may be too strong and prevent proper relaxation of the couplings to a GEM with an associated contact
matrix closer to the experimental one.
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Application to matrices from Hi-C experiments

Finally, we applied the reconstruction by minimization method to Hi-C experimental data sets [35]. It is
not clear in our view how to properly normalize the experimental counts in contact probabilities. Therefore
we used the “Maximum” normalization method presented in section 5.2 with ld = 2 or ld = 3. In the
first case, we obtained a predicted GEM where all the non-zero couplings correspond to short contour
distances between monomer pairs. The distance between predicted and experimental contacts was quite
small, with d(ĉi j, c

exp

ij
) ≃ 5 × 10−2. In contrast, with ld = 3 the predicted GEM presented several

long-range interactions. The distance between predicted and experimental contacts was less satisfactory,
namely d(ĉi j, c

exp

ij
) > 0.1. An interpretation is that the GEM obtained is overfitting the variations of the

bulk of the ci j , namely the checkerboard patterns in the Hi-C experimental contact probability matrix.
Hence a future improvement may consist in filtering first the experimental contacts c

exp

ij
in order to

smoothen the background variations. Incidentally, methods that normalize the Hi-C counts to produce
stochastic contact matrices precisely achieve this effect. Therefore it may be interesting to resort to these
methods [33, 147].

Furthermore, we performed BD simulations of the reconstructed GEM. For ld = 2 the polymer
configurations sampled corresponded to an open coil whereas for ld = 3 they were rather those of a globule.
Although at first, open coil configurations may seem a more reasonable model of the chromosome, the
globule configurations have the advantage to reproduce the effect of cell wall confinement. Hence, maybe
an appropriate normalization of the Hi-C counts should precisely correspond to a transition from an open
coil to a globule for the associated GEM. Incidentally, studies on cross-linked polymers have shown that
for ideal Gaussian chain as it is the case here, this transition should occur when the number of non-zero ki j

is of the order of the number of monomers, Nc ∼ N [157]. This gives a criterion to assess the relevance
of the predicted GEMs.

Computational efficiency

Our investigation has led us to use three reconstruction methods to obtain a GEM of the chromosome.
Let us now briefly review their computational advantages and drawbacks.

Our first attempt has been to try a naive approach relying on BD simulations. In this approach, we
did not use the GEM mapping to relate the couplings to the contact probabilities. Instead, we postulated
that they are proportionally related with a scaling coefficient Λ, namely ki j = Λci j . We then performed
BD simulations for several values of Λ and chose the value that minimizes the distance between the Hi-C
and the virtual contact probability matrices from BD simulations. This approach is obviously subject to
the same criticism that we made for studies using Monte-Carlo (MC) simulations [155]. Yet an important
difference is that in our approach the minimization is performed as a function of just one variable, Λ, and
it is therefore sufficient to run BD simulations for several values of this scaling coefficient. In contrast,
in [155] the minimization runs over all the ki j , which is much more complex. Hence the naive approach
presented in this chapter is more scalable and can be used on contact matrices of larger size.

Our second attempt has been to perform the GEM mapping directly on the experimental contacts.
From a computational standpoint, this approach only requires to invert a N × N matrix where N + 1 is the
size of the probability contact matrix. Hence it is a particularly appealing method, in which we placed
much hope at first. However we have seen that it can result in an unstable GEM. Altogether, it may be a
good practice to systematically try this method before one of the other two methods.

Our third and last attempt has consisted in the minimization of the distance between an experimental
contact matrix and another one corresponding to a stable GEM. Similarly to [155], this method assumes
a minimization as a function of all the ki j . Yet, in our case each iteration only requires to evaluate a cost
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function L together with its gradient, in comparison with a full BD or MC simulation. At first we though
that this would provide us with a significant advantage. Yet evaluating the gradient of L is an O(N3)

operation, therefore involving a significant computational burden. Presently, with a non-optimized code
it takes more than two days on a multi-threaded CPU with twelve cores to minimize L for N = 1000 (and
a few minutes for N = 100). It is not clear at the moment whether this procedure can be significantly
improved to yield more reasonable time. Besides, within our current setup, this method must be repeated
for each values of the threshold ξ in the GEM mapping. Unfortunately, most Hi-C contact matrices have
a size such that N ∼ 1000.

Conclusion

Despite some caveats just discussed, we find that the methods presented in this chapter to reconstruct
chromosome architecture are rather novel and pave the way for interesting applications. It is clear that a
Gaussian effective model cannot help us to better describe the biological processes at the molecular level.
However it can be used to propose a mesoscopic model for the chromosome. Namely the GEM obtained
can be used as a basis to perform BD simulations. In comparison with BD models where interactions
between DNA and proteins are chosen arbitrarily it has the advantage to be by construction better rooted
in biological experiments.

Last but not least, from a theoretical standpoint, the correspondence found between the couplings of a
GEM and the Boltzmann contact probabilities constitute a (humble) contribution to the problem of finding
if a contact matrix can be produced by a connected physical object such as a polymer. As far as we know,
advances on this subject in the literature are rather rare.
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Chapter 6

Concluding remarks

Achievements

The binding of many divalent proteins to the chromosome entails the formation of DNA loops or
compact structures, which result in a chromosome architecture (or folding) that we do not fully understand.
Biological assays have demonstrated that this organization is intimately related to the transcription.
Namely, the observation that co-regulated genes tend to be close in space and the characterization of
transcription factories have been milestones in this new thinking. In this thesis, I have investigated the
physical origin of such structures and proposed models that underlie their existence. To serve this purpose,
I have combined analytical approaches from statistical physics with Brownian dynamics simulations. A
major challenge in this endeavor has been two reconcile the microscopic scale of the molecular biology
with the mesoscopic scale of chromosome folding.

In chapters 2 and 4, I have considered first principles models to identify the physical mechanisms
responsible for features characterized in experiments. Namely, the approaches undertaken explicitly
considered the effect of proteins on the chromosome. In chapter 2, I have proposed a model for the
existence of transcription factories. I concluded that such clusters can indeed occur at equilibrium under
the effect of a generic type of binding protein. I also proposed that at small scales, binding proteins can
induce the collapse of the chromosome in a crystalline phase. Incidentally, such aggregates do form in
the bacterial cell, and have often the role to protect DNA from detrimentals factors. In chapter 4, I have
investigated the formation of DNA hairpin loops by the H-NS protein. In the looped state, RNA polymerase
cannot bind, resulting in the silencing of genes whose promoters are sequestered in these DNA loops.
My findings suggest that that such hairpins are stable only when the length of the H-NS binding region
is above a characteristic length. This gives credit to a conjecture proposing that genes silencing mediated
by H-NS/DNA loops constitutes a mechanism for transcription regulation. Namely H-NS binding regions
of intermediate lengths can lead to fragile DNA hairpins which can be easily perturbed, for instance by
the binding of more dedicated transcription factors. In short, the formation of DNA hairpin loops by the
H-NS protein may be seen as a mechanical switch for regulating the transcription.

In chapter 5, I have investigated the inverse problem which is to reconstruct the chromosome folding
from chromosomal contacts measured in Chromosome Conformation Capture (CCC) experiments. Using
analytical results and Brownian dynamics simulations, I have proposed reconstruction methods relying
on a representation of the chromosome with an effective polymer model. The main achievement of these
methods was to reproduce the experimental contacts. Although perfectible, these methods represent in my
view an original departure from what have been proposed in the literature during the last decade. Namely,
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the effective model obtained may be used to perform Brownian dynamics simulations of the chromosome
better rooted in biological data.

Value of the predictions

A common denominator of our approaches has been to base our investigation on experimental evi-
dences. However, accurate in vivo measurements are not always available. For example, measuring the
transcription level of a pair of genes as a function of their spatial distance is an experimental challenge, and
most often biologists must resort to indirect measures. Besides, even though high-throughput techniques
relying of DNA sequencing and Polymerase Chain Reaction have produced a mine of experimental data,
the relevant biological information can be hard to extract or it can be corrupted by noise. For these rea-
sons, we are not yet in an era where established models can be confirmed by experiments to a quantifiable
accuracy. This may explain partly at least why in this thesis I have remained at a rather qualitative level of
comparison with experimental data. Maybe a fundamental limitation is the lack of a minimal biological
system on which can be tested competing models. Indeed, bacteria are often considered as the simplest
living system that can be investigated experimentally. Yet many biological processes in bacteria, like
transcription regulation, replication or the cell-cycle control are very complex and not fully understood.

Link between architecture and transcription

The work presented in this thesis is a humble contribution to the broader scientific effort that has been
undertaken to unveil the relation between chromosome architecture and genetic expression. Specifically,
it has become clear that the interplay between chromosome folding and transcription regulation is highly
dynamical and should be more generally considered as two related components of the cell physiology.
Understanding the link between these two components is critical to decipher complex regulatory mech-
anisms of the genetic expression. For instance, chromosome folding seems to play an important role in
still unresolved biological processes such as cell differentiation and cell senescence. More generally, it is
widely assumed that a better understanding of chromosome architecture is a prerequisite for addressing
modern challenges in biology such as conditional gene expression and epigenetics.

During my investigation, I have acquired the conviction that the chromosome should be envisioned as
a cellular organ rather than as a mere carrier of the genetic information. In particular, the chromosome
might provide a physical medium, or scaffold, for propagating genetic signals. Such signals can be for
instance the transcriptional state (a gene is transcribed or not), or the existence of methylations in the
context of epigenetics. Assuming that a genetic signal can propagate to nearest neighbors in space, the
outcome of chromosome folding should determine the distribution of genetic signals on the chromosome.
This schematic view illustrates the problem of context sensitivity. Transcription levels display uneven
variations when considered as a function of the genomic coordinate. Yet this can be seen as the result
of an unlucky projection from a three-dimensional to a one-dimensional space. Indeed, one can expect
that the three-dimensional folding of the chromosome results in the genomic coordinates with the same
transcription levels to be close in space. In short, I put forward the idea that the chromosome should
be compared to a “brain” in which every locus is a “neuron” carrying a genetic signal. The particular
folding of the chromosome results in contacts between loci that can be seen as synapses enabling the
propagation of the genetic signal between neurons. If one associates a particular layout of synapses to a
given physiological state, then adjusting chromosome folding can lead to the dynamical re-allocation of
these synapses and may be interpreted as the transition to another physiological state.
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Toward the design of synthetic gene networks?

In the classical view of the operon system, it is the affinity of a protein to a promoter that determines
the efficiency of a transcription factor to repress or activate the transcription of a gene. Thus, chemical
engineering might be used to produce a protein with a strong binding affinity to a promoter. An important
message that I have tried to convey all along this manuscript is that the regulation of transcription can also
be achieved by means of structural changes applied to the chromosome. For instance, DNA loops can
be envisioned as mechanical switches, and similarly to protein folding, chromosome folding can result
in active or inactive domains with a dedicated function. Therefore, designing a regulatory mechanism to
obtain a folding of the chromosome with mechanical switches and/or functional domains involves rather
a structural and mechanical engineering approach. In short, there has been a shift in our conception of
what constitutes a handle for regulating the transcription.

In terms of real applications, the design of a synthetic gene network would require for instance
knowing how to position genes on the DNA sequence in order to achieve their co-expression. In particular
this would require to have a deterministic knowledge of the functional structures formed. Despite the
increasing number of physical models available, we are not able to achieve such a design yet.

Future research

My motivation for future research will be to obtain a better understanding of the connection between
chromosome architecture and gene expression. Fundamentally, I would like to understand whether changes
in the chromosome folding can be the driver of cell differentiation or cell senescence. In the short term,
I would like to construct an empirical map that associates chromosome architecture to the physiological
state of a cell. To serve that purpose, results obtained in the prediction of chromosome architecture
from CCC data may be of precious help. Interesting outcomes of this mapping may be to provide novel
diagnosis tools to detect cell deficiencies based on CCC assays.
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ABSTRACT To characterize the thermodynamical equilibrium of DNA chains interacting with a solution of nonspecific binding

proteins, we implemented a Flory-Huggins free energy model. We explored the dependence on DNA and protein concentrations

of the DNA collapse. For physiologically relevant values of the DNA-protein affinity, this collapse gives rise to a biphasic regime

with a dense and a dilute phase; the corresponding phase diagram was computed. Using an approach based on Hamiltonian

paths, we show that the dense phase has either a molten globule or a crystalline structure, depending on the DNA bending ri-

gidity, which is influenced by the ionic strength. These results are valid at the thermodynamical equilibrium and therefore should

be consistent with many biological processes, whose characteristic timescales range typically from 1 ms to 10 s. Our model may

thus be applied to biological phenomena that involve DNA-binding proteins, such as DNA condensation with crystalline order,

which occurs in some bacteria to protect their chromosome from detrimental factors; or transcription initiation, which occurs in

clusters called transcription factories that are reminiscent of the dense phase characterized in this study.

INTRODUCTION

Predicting the three-dimensional (3D) structure of chromo-

somes from the primary DNA sequence has become an

important goal, as genomic and transcriptomic data are be-

ing generated at an elevated pace. In eukaryotes and pro-

karyotes, transcription of highly active genes has been

shown through morphological evidence to occur within

discrete foci containing RNA polymerases (RNAPs). It

has later been demonstrated that one given focal point was

enriched in one type of dedicated transcription factor (TF)

(1,2) and one type of gene promoter (3), as well as nascent

transcripts (4), thus justifying the naming of such foci as

transcription factories. A thermodynamic model has shown

that the stiff DNA polymer and properly located attractive

sites mimicking TF bridges were necessary and sufficient

ingredients to produce a transcription factory through

DNA looping (5). Indeed, there is now convincing evidence

that chromosomes are organized into loops (Hi-C, 3C, etc.)

(2), and that looping brings distant genes together so that

they can bind to elevated local concentrations of RNAPs

(FISH, 3C, etc.) (6). DNA-binding proteins such as TFs

are generally positively charged, thus providing a nonspe-

cific interaction with the negatively charged DNA polymer.

DNA sequence-dependent binding offers specific interac-

tions. Together, nonspecific and specific associations allow

proteins to search their target DNA sequences more effi-

ciently via facilitated diffusion (7,8), which combines 3D

diffusion in the bulk volume and monodimensional diffu-

sion along the DNA. These considerations motivated studies

to characterize the timescale of the dynamics or anomalous

diffusion. Molecular dynamics simulations are used to

model proteins that diffuse to DNA, bind, and dissociate.

The timescales reached in numerical simulations are usually

several orders of magnitude smaller than the biological

ones, and thus the phenomena observed during such simula-

tions might be transient and irrelevant biologically.

In this article, we present a study of the properties and

phase diagram of a DNA-protein solution, at thermody-

namic equilibrium, which entails DNA condensation into

compact structures induced by nonspecific DNA-binding

proteins. The calculated phase diagram is thus expected

to be relevant at biological timescales. To do so, we

consider a simplified model in which the nucleus (or bac-

terial nucleoid) is represented by a closed volume V

(Fig. 1). The double-stranded DNA chains are modeled

as M semiflexible polymer chains (polymerization index N)

that interact with P spheres, which represent either tran-

scription factors or structural proteins. We consider the nu-

cleus (or bacterial nucleoid) to be a good solvent for DNA

chains, so that monomers experience a repulsive interaction

between themselves. Conversely, we assume that there is

an attractive interaction between proteins and DNA that al-

lows the proteins to bind to DNA. As for the protein-pro-

tein interaction, we consider a repulsive (hard-core)

interaction, but the case of an attractive (e.g., complexa-

tion, dimerization, etc.) interaction could be treated in the

same way. Finally, we assume that all interactions are

nonspecific. In the sequel, subscripts D and P stand for

DNA and protein, respectively. We first describe the phase

diagram of such a system in the mean-field approximation

and show that there is a phase transition from a dilute phase
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at high temperature to a concentrated phase of the DNA

and proteins at lower temperature, which can be identified

as the transcription factory phase. In a second step, we

characterize the structure of the dense phase and show

that it can adopt a crystalline order, suggesting an inter-

esting parallel with the existence of some DNA biocrystals

in vivo. This general method can be applied to many

genome architecture problems.

Flory-Huggins theory

Free energy and thermodynamic functions

In the following, we study the phase diagram of the bulk of

the bacterial cell (or nucleus) in the mean-field approxima-

tion. In the context of polymer theory, this approximation is

also called the Flory-Huggins theory (9). A similar kind of

approach has been used to study the demixion of a mixture

of polymers and colloids, in which the interaction is repul-

sive (10). By contrast, in our study, the polymer-colloid

interaction is taken as attractive. We denote the concentra-

tions of DNA monomers and proteins as cD and cP, respec-

tively, and the molecular volume of a DNA monomer and of

a protein as sD and sP, respectively. The (Flory-Huggins)

free energy per unit volume is as follows:

bf ðcD; cPÞ ¼ 1

2
aDc

2
D þ 1

2
aPc

2
P þ vcDcP þ

1

6
wðcD þ cPÞ3

þ cPlog
cPsP

e
þ cD

N
log

cDsD

eN
;

(1)

where aD, aP, and v are second-order virial coefficients

denoting the DNA-DNA, protein-protein, and DNA-protein

interactions, respectively; and w is the third virial coeffi-

cient, necessary to avoid the collapse of the system. Note

that this last term comes mostly from the entropy of the

solvent. Indeed, if solvent molecules were present with

concentration cS and molecular volume sS, the solvent

translational entropy would be cSlogcSsS=e. If we assume

incompressibility of the DNA-protein-solvent mixture

(i.e., cD þ cP þ cS ¼ c0), the solvent entropy can be written

as a mean-field solution as ðc0 � cD � cPÞlogðc0 � cD�
cPÞs0=e, which, when expanded to the third order in

ðcD þ cPÞ, yields the cubic term in Eq. 1.

The Gibb’s free energy per unit volume is the following

Legendre transform of Eq. 1:

bgðcD; cPÞ ¼ bf ðcD; cPÞ � mDcD � mPcP ¼ �bP; (2)

where P is the osmotic pressure and mD and mP are the

chemical potentials of DNAmonomers and proteins, respec-

tively. The total number of particles of the system is fixed,

but as we show below, these chemical potentials play a use-

ful role when the system separates into two phases at equi-

librium. At thermal equilibrium, the Gibb’s energy is an

extremum: vbg=vcD ¼ 0 and vbg=vcP ¼ 0, from which

we deduce the following chemical potentials:

mDðcD; cPÞ ¼ vbf

vcD
¼ aDcD þ vcP þ

1

2
wðcD þ cPÞ2

þ1

N
ln
�cDsD

N

�

mPðcD; cPÞ ¼ vbf

vcP
¼ aPcP þ vcD þ 1

2
wðcD þ cPÞ2

þlnðcPsPÞ:

(3)

By inserting the last expressions in Eq. 2, we see that aD, aP,

and v are indeed identified to the coefficients of a virial

expansion.

The free energy in Eq. 1 is quite general and holds for

arbitrary interactions between the constituents. It is possible

to relate aD, aP, and v to any pair potential, say uðrÞ, used to
model the corresponding interaction. Indeed, these virial co-

efficients can be computed to lowest order (in the density)

using the following well-known Mayer relation:

a ¼ �
Z

d3r
�

e�buðrÞ � 1
�

; (4)

and the same for v.

In physiological conditions, salt (e.g., NaCl and KCl) and

ions (e.g., Ca2þ and Mg2þ) are present in solution, giving

rise to screened electrostatic interactions. The interactions

are therefore short-ranged with a range given by the De-

bye-Hückel length. Yet, at the mean-field level, the specific

shapes of the interaction potentials is irrelevant, and the

FIGURE 1 (A) Model of DNA represented as beads-on-string polymers

(blue) interacting with proteins (red). Dotted circles stand for clusters

with high concentrations of DNA monomers and proteins. (B) Monomer-

monomer interaction is repulsive. (C) Protein-protein interaction is repul-

sive. (D) DNA-protein interaction is attractive. To see this figure in color,

go online.
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effect of ions in solution only arises through an adjustment

of the Mayer coefficients aD, aP, and v. The DNA excluded

volume coefficient aD, which accounts also for the electro-

static repulsion between negatively charged monomers, is

positive. The protein-protein coefficient aP in general is

positive (repulsive), because of electrostatic repulsion be-

tween identically charged proteins; but it can be attractive

(negative) for specific molecules, which may undergo

dimerization or hybridization. For hard spheres, for

instance, a ¼ 23s, s is the volume of one sphere. We here-

after restrict our focus to the case where DNA-DNA and

protein-protein interactions are purely repulsive (steric).

Conversely, we assume v < 0, i.e., the DNA-protein

interaction has an attractive tail, which is temperature-inde-

pendent (in first approximation). As we show below, the

Flory-Huggins theory predicts the existence of a critical tem-

perature Tc. We assume that vðTÞ is analytic in jT � Tc j and
can be written to the leading order as in the following:

vðTÞ ¼ vðTcÞ q� T

q� Tc
; (5)

where q is the Flory-Huggins temperature for which

vðqÞ ¼ 0, i.e., the interaction vanishes.

The regime of phase separation

As mentioned previously, there is a phase transition when

the homogeneous solutions cD ¼ MN=V and cP ¼ P=V
become unstable. It is well known that generically, when

the temperature decreases, the system separates into two

phases. At the phase separation point, the homogeneous

high-temperature phase may stay metastable down to a

point, called the spinodal point, where the homogeneous

phase becomes totally unstable. The so-called spinodal con-

dition is given by the following equation:

�

�

�

�

v
2ðbf Þ

vðcD; cPÞ

�

�

�

�

¼
�

�

�

�

v2bf
�

vc2D v2bf
�

vcDvcP

v
2
bf
�

vcDvcP v
2
bf
�

vc2P

�

�

�

�

%0; (6)

where the array denotes the determinant of the matrix.

In general for vðTÞ fixed, Eq. 6 with the equality deter-

mines a line of spinodal points, delimiting the region where

the homogeneous mean-field solution is stable from the re-

gion where it is not. In the unstable regions, the system un-

dergoes a phase separation. If T is increased, vðTÞ becomes

less negative. At some point, the spinodal lines merge into a

point when T reaches a critical value Tc (Fig. 2). This is a

tricritical point. For T >Tc, the homogeneous solution is sta-

ble for any value of c�D and c�P, where we use the � super-

script to emphasize that these concentrations are the

mean-field solutions in the absence of phase separation.

There are critical lines emerging from the tricritical point

when the temperature is decreased, as we show below.

In a biphasic regime, the concentrations are different but

uniform in each of the two phases, separated by an interface

whose energy is not extensive (the interfacial free energy is

proportional to the surface of the interface). We label the

dilute phase by I, and the dense phase by II. The total sys-

tem free energy then reads as follows:

bFtot

V
¼ fIbf ðIÞ þ fIIbf ðIIÞ; (7)

where f ðIÞ is a shorthand for f ðcID; cIPÞ and fI and fII denote

the volume fraction of the dilute and dense phase.

A straightforward minimization of Eq. 7, with the con-

straints of conservation of volume and particles number of

D and P, yields the following usual equations of coexistence

between phase I and phase II:
8

<

:

mDðIÞ ¼ mDðIIÞ
mPðIÞ ¼ mPðIIÞ
PðIÞ ¼ PðIIÞ

; (8)

where P denote the osmotic pressures of each phase. The

above equations are simply the equalities of the chemical

potentials and the osmotic pressures. It trivially implies

fII ¼ 1� fwith f ¼ fI . Note that Eq. 8 is a system of three

equations with five variables ðcIP; cID; cIIP ; cIID; TÞ; thus it deter-
mines a surface of coexistence.

FIGURE 2 Three-dimensional representation of

the coexistence surface in a ðhD;hP; tÞ coordinate
system. Coexistence lines are shown for

h�P ¼ 0:0015 and 0.015, with h�D ¼ 0:01 (red

lines). Critical lines (black lines) emerge from

the tricritical point (black dot). To see this figure

in color, go online.
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MATERIALS AND METHODS

Molecular dynamics simulations

To sample configurations of our system we used the LAMMPS (large-scale

atomic/molecular massively parallel simulator) software package. The sys-

tem is coarse-grained so that DNA is modeled as a beads-on-string polymer

and proteins as spheres. The simulations are run in the Brownian dynamics

(BD) mode. The resulting dynamics consists in the integration of the

following Langevin equation:

mi

d2ri

dt2
¼ Fi � gi

dri

dt
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTgi

p

hiðtÞ; (9)

where i is the index of one bead, ri is the position of the bead, gi is the fric-

tion coefficient, Fi is the resulting force exerted on the bead from the rest of

the system, kB is the Boltzmann constant, and T is the temperature. The last

term is a stochastic force in which hiðtÞ is a Gaussian white noise such that
hhiðtÞhjðt0Þi ¼ dijdðt � t0Þ. Simulations were run with mi ¼ 1, gi ¼ 1, and

kBT ¼ 1, in a cubic volume of size L ¼ 100 with periodic boundary condi-

tions, and we took a polymer with N ¼ 400 beads. The diameter a of the

beads was taken as the unit length.

As for the polymer chain model, beads i and iþ 1 are connected with a

finitely extensible nonlinear potential (FENE) that results in the following:

UelðuiÞ ¼ �Kel

2
r20 ln

	

1� u2i
r20




; (10)

where ui ¼ ri � ri�1. Simulations were run with Kel ¼ 30 kBT=a
2 and

r0 ¼ 1:5 a.
The bending rigidity of the polymer chain is introduced through the

following Kratky-Porod potential:

UbðqiÞ ¼ Kbð1� cosqiÞ; (11)

where qi is the angle between vectors ui and uiþ1. The bending coefficient is

related to the persistence length by Kb ¼ lp � kBT.

We restricted our analysis to the case of DNA monomers and protein

spheres of same dimension (with diameter a). This assumption does not

alter the main qualitative features of the physics but makes the discussion

simpler. Steric as well as attractive interactions between beads are intro-

duced using a truncated Lennard-Jones potential such as the following:

Unless stated otherwise, we took the values indicated in Table 1. The DNA-

DNA interaction being purely repulsive, we retrieve aDx23sD, where sD
is the volume of one monomer. The same argument holds for the proteins.

Conversely, the monomer-sphere coefficient vðTÞ is largely negative (Ta-

ble 1 and Fig. 3).

We systematically performed equilibration runs of 105 time units to reach

thermal equilibrium.We then performed sampling runs of 106 time units that

we used tomeasure physical quantities. Our simulation time units can be un-

derstood as follows. The diffusion coefficient can be expressed as

D ¼ a2=tB, where tB is the Brownian time corresponding to one simulation

time unit. Therefore, we can do a mapping to physical units. Assuming a

diffusion coefficient ofDx10 mm2s�1 for a protein in the bacterial nucleoid

(11), we find tB ¼ 600 ns for a ¼ 6 nm, and tB ¼ 2:0 ms for a ¼ 20 nm.

Mean-field concentrations

To assess physiological concentrations, we assimilate an Escherichia coli

(E. coli) bacteria to a cylinder of radius 0:5 mm and length 1 mm. We

took a genome length of 4:6 106 base pairs (bp). We consider that the diam-

eter of one monomer is 1 a ¼ 6 nmh17 bp, so that one such chromosome

is modeled as a polymer of N ¼ 2:6 105 monomers with diameter 1 a. This

leads to a density of DNA hD � 10�2. As for the proteins, there are several

DNA-binding proteins, called nucleoid-associated proteins, which act on

the structure of the DNA. In E. coli, for instance, HU, H-NS, Fis, RecA,

Dps, and other proteins have this structuring function. We choose to use

Fis as a reference because it is a well-known structural protein with a large

number of target sites (12) and binds to DNA sequences of 17 nucleotides

(13). In E. coli, there are ~75,000 Fis proteins per genome copy (14) in the

early exponential growth phase, yielding a ratio hP=hDx0:3. This is also

consistent with previous numerical studies for which 0:1< hP=hD < 0:5
(15). Eventually we suggest that this ratio might be quite general and can

also be mapped to eukaryotes. Indeed, we could either consider a human

cell (genome length of � 3:3 109 bp and nucleus diameter of 10 mm) and

take 1 a ¼ 20 nm as a unit length (size of protein complex). Considering

that the DNAwould be packed as euchromatin with a linear packing frac-

tion n ¼ 100 bp=nm (16), the unit length is 1 ah1:7106 bp and we get

hD � 10�2. In the former case, the proteins are assumed to be ~6 nm in

diameter, whereas the latter case better describes the interaction of DNA

with large protein complexes.

Computation of the phase diagram

The coexistence surface is computed by solving Eq. 8. Because of numer-

ical accuracy limitations, we computed the phase diagrams for chains with a

polymerization index of N ¼ 5000. Because the critical values scale like

1=
ffiffiffiffi

N
p

(Fig. 4), this arbitrary choice captures the essential features of the

N/N limit. Finally, the model relies on a free parameter w, which can

be used to fit the model. In Flory-Huggins theory, w is extracted from the

development of the entropy of mixing and would be wF ¼ 1=c20, where c0
is the close packing concentration. However, cells are crowded environ-

ments, containing other species, metabolites, or organelles. Furthermore,

biological compartments can also restrict the accessible volume. Eventu-

ally, this value is underestimated and we arbitrarily choose w ¼ 10� wF.

Although it could be much larger, the variations of ccP above this value

are quite slow and do not alter dramatically the previous phase diagrams

(Fig. 4). With all these parameters, we find for the tricritical point coordi-

nates: ccP ¼ 2:2 10�2 a�3, ccD ¼ 7:7 10�4 a�3, and bcvðTcÞ ¼ �25:67 a3.

TABLE 1 Parameters for the truncated Lennard-Jones

potential modeling the DNA-DNA, protein-protein, and DNA-

protein interactions

1 2 ε a dtr Mayer Coefficient a

DNA DNA 1.00 1.00 1.12 4.40

Protein Protein 1.00 1.00 1.12 4.40

DNA Protein 3.00 1.00 2.00 �62.6

The mean-field pair coefficients are computed using Mayer formula.
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rij
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�12
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#

if rij <dtr

0 otherwise

: (12)
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RESULTS

We present in this section the results of the mean-field

theory and defer the discussion of the actual values of

the parameters (see Materials and Methods). We assume

that DNA and protein spheres have the same size

(diameter a) that we use as the new unit length. The tem-

perature T and the coefficient vðTÞ are related through

Eq. 5, and we therefore introduce the order parameter t

in the following:

vðTÞ ¼ vðTcÞð1þ tÞ: (13)

We choose to discuss the phase separation in terms of t and

of the densities hD ¼ cDsD and hP ¼ cPsP. The coexis-

tence surface is then computed numerically by solving

Eq. 8 and is shown in Fig. 2. At the critical point, Eq. 8

has a unique solution, namely the triplet ðhcD; hcP; TcÞ. As
previously reported for such systems (10), we find the

following:

hc
D � 1

ffiffiffiffi

N
p : (14)

This is the same scaling as the overlap density for polymer

chains of size N, which is the density at which polymer coils

begin to interpenetrate (see, for instance, (9)). Given that

DNA is present in the nucleoid at concentrations close to

the overlap density, this suggests that biological systems

may function at the vicinity of this tricritical point.

For T <Tc we have vðTÞ< vðTcÞ< 0, which corresponds

to a DNA-protein interaction more attractive than at the crit-

ical point and the solutions of Eq. 8 are distributed on a

closed curve. This closed curve is in fact the collection of

all pairs of coexisting dilute ðcID; cIPÞ and dense ðcIID; cIIPÞ
phases. They are represented in Fig. 5, where the pairs of co-

existing phases are connected by tie lines. Although there is

an infinite set of possible states of coexistence, the total

number of DNA and protein spheres selects a unique

solution pair. The resulting coexistence state is uniquely

determined by the following relation, whose graphical inter-

pretation is shown in Fig. 5:

f

	

cID
cIP




þ ð1� fÞ
	

cIID
cIIP




¼
	

c�D ¼ MN
�

V

c�P ¼ P
�

V




: (15)

An important point to note is that in general, the concentra-

tion of DNA in the dilute phase is very small. Indeed, the

FIGURE 4 (A) The DNA critical concentration ccD � 1=
ffiffiffiffi

N
p

. (B) For

w> 10wF the variations of ccP and of the other critical parameters are

very slow. To see this figure in color, go online.

FIGURE 3 Truncated Lennard-Jones potential modeling an attractive

interaction between DNA and proteins with parameters indicated in Table 1:

(A) potential shape and (B) Mayer function. To see this figure in color, go

online.
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translational entropy of DNA is small, because of the factor

1=N, and thus there is no entropic gain for the DNA to be in

the dilute phase, whereas it has an important enthalpic

advantage to be in the concentrated phase. To illustrate

how one can determine the composition of the system, we

now explain how phase separation takes place when cooling

the system from high to low temperature. We consider the

following case of DNA and protein densities:

h�
D ¼ 0:01; (16)

h�
P ¼ 0:0015: (17)

Again, we defer the justification for this choice of the pa-

rameters. The system splits into two phases at a temperature

T�. For T >T�, the system is homogeneous with values of

the concentration given by Eq. 16, whereas for T <T�, the
system splits into two phases whose composition is deter-

mined by Eqs. 8 and 15. The line of coexistence obtained

is shown on Fig. 2. Note that at T ¼ T�, the phase transition
is first order, except when T� is on a critical line, in which

case it is second order. Let us now assume that the concen-

tration of proteins is increased by a factor of 10 to

h�P ¼ 1:5 10�2. When the system is cooled from high tem-

peratures, it splits into two phases, and as before, the coex-

isting states are distributed on the surface of coexistence.

However, the mass conservation requirement (Eq. 15) yields

a different line of coexistence. The new line of coexistence

is shown with dashed lines in Figs. 2 and 6. As might have

been expected, an augmentation of the protein concentration

results in an increased protein concentration in both the

dilute and concentrated phases (Fig. 6 A). The DNA concen-

tration, however, shows a two-step pattern. When additional

proteins are added to the solution, the free DNA monomers

of the dilute phase are transferred to the concentrated one,

and consequently, the DNA concentration in the dense phase

first increases. But at some point, the DNA concentration in

the dense phase reaches a maximum and starts to decrease

(Fig. 6, B and C). Indeed, a fraction of the newly added pro-

teins populate the concentrated phase and make it swell,

while the amount of DNA remains the same. Therefore,

varying the total quantity of proteins can induce

FIGURE 5 Coexistence lines for t ¼ 0:05; 0:5; 1:0. The coexistence line

shrinks toward the tricritical point (red dot) when t/0. For each curve, the

dilute phase is shown in green and the concentrated phase is shown in blue.

Coexisting states are connected by tie lines (dotted segments). The volume

fraction of each phase is determined (black arrows) according to Eq. 15. To

see this figure in color, go online.

FIGURE 6 Coexistence lines for h�P ¼ 0:0015

and 0.015, with h�D ¼ 0:01. These are the projec-

tions of the coexistence lines of Fig. 2 as a function

of the density of (A) proteins or (B) DNA. (C) Sec-

tion of the phase diagram at t ¼ 1:5 (corresponding
to the parameters given in Table 1). A path corre-

sponding to a fixed DNA density of h�D ¼ 0:01 is

drawn (black line). (D) Density ratio

ðhD þ hPÞ=ðh�D þ h�PÞ for the dilute phase and

dense phase, for a density of DNA fixed to

h�D ¼ 0:01. To see this figure in color, go online.
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nonmonotonous variations of the DNA concentration in the

phases of the system.

Structure of the dense phase

Example of structures

We showed above how the Flory-Huggins theory predicts

the existence of a phase separation between two homoge-

neous phases. It is well known that within the Flory-Hug-

gins approximation, the chain structure is not taken into

account, except through the suppression of the transla-

tional entropy of the chains. In particular, the fact that

chains may have a strong bending rigidity (long persis-

tence length) does not play any role at this level. There-

fore, the predicted structure of the dense phase is that of

a melt of collapsed polymer with spheres. However,

several studies have highlighted that the bending rigidity

of the polymer has an influence on the microstructure of

the dense phase (15-17). This is well characterized

(Fig. 7). A standard way to characterize the effect of the

chain structure is to use the random phase approximation

(RPA) (see (9)). We have performed such RPA calcula-

tions, but we do not report them in this article, because

they did not show any interesting instability in the dense

phase. The reason for the failure of RPA is that the phase

transition from the homogeneous to the separated phases is

first order and thus is not driven by critical fluctuations.

This is a typical case when RPA fails to give insights about

the dense phase structure.

Theory of Hamiltonian paths

Because RPA is not appropriate to describe the system in

the dense phase, we adopt another approach. Because of

their attractive interactions with the DNA, the spheres in

which the polymer is immersed play the role of colloid

particles that bridge various parts of the polymers. Conse-

quently, these spheres induce an effective attraction be-

tween the monomers. We thus turn to a model of a

semiflexible polymer chain on a lattice that has been pro-

posed initially to explain the folding of a protein in

compact structures (17-19) (see Fig. 8). An attraction en-

ergy εv between nonbonded nearest neighbors is included,

which favors compact configurations. A bending energy of

the chain is introduced as a corner penalty. It penalizes

corners by an energy εh and thus plays the role of a

bending rigidity. As we show below, this term induces an

ordering transition between a random (molten) globule

where corners are mobile in the bulk, and a crystalline

phase, where corners are expelled to the surface of the

globule. Using mean-field theory, it was shown that de-

pending on the temperature and chain stiffness, three

phases can exist, namely a dilute phase where the polymer

is swollen; a condensed phase, which we call a molten

globule, where the polymer is collapsed and disordered;

and finally a second condensed phase where the polymer

is collapsed but with a local crystalline ordering. The

phase diagram is described simply by the two parameters

εv and εh. For fixed small εh, there is a second-order phase

transition at a temperature T ¼ Tq between a dilute and a

disordered condensed phase, followed by a first-order

freezing transition at TF between the disordered condensed

phase and a locally ordered condensed phase of the

FIGURE 7 Two equilibrium configurations of a single polymer chain

(blue) displaying the coexistence of a dense and a dilute phase, with persis-

tence length lp ¼ 1 (A) and lp ¼ 20 (B) interacting with proteins (red).

For small bending rigidity, the structure of the dense phase is globular

whereas it is cylindrical in the other case. We performed simulations with

P ¼ 10 spheres (see Materials and Methods). To see this figure in color,

go online.

FIGURE 8 Two realization of Hamiltonian paths on a cubic lattice. The

globular state contains an extensive number of corners whereas the crystal-

line state contains a nonextensive number of corners (proportional to the

surface). To see this figure in color, go online.
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polymer. Upon increasing the chain stiffness εh, the molten

globule region shrinks until it eventually vanishes. For

larger stiffness, the polymer goes abruptly from a swollen

to a frozen configuration ðTF >TqÞ through a direct first-or-

der transition (Fig. 9). These theoretical results were

readily confirmed and improved by Monte-Carlo simula-

tions (17,20,21).

In its simplest form, this model considers a completely

collapsed polymer on a lattice. It is represented as a

Hamiltonian path (HP) on a lattice, that is a path that

visits each site once and only once. Thus the density of

monomer is h ¼ 1. A good approximation to the total

number N of HP on a lattice was shown to be (22) the

following:

N ¼
�q

e

�N

; (18)

where N is the total number of points of the lattice and q is

the coordination number of the lattice, e.g., q ¼ 2d on a

d-dimensional cubic lattice.

In the case of semiflexible polymers (HP with corner

penalty), the partition function is the following (17):

Z ¼
X

fHPg
e�bεhNCðHPÞ; (19)

where NCðHPÞ counts the number of corners of a HP

realization.

A saddle-point approximation gives the following corre-

sponding free energy per monomer:

bf ¼ �ln
qðbÞ
e

; (20)

where

qðbÞ ¼ 2þ 2ðd � 1Þe�bεh ; (21)

is an effective coordination number, e ¼ 2:718 28:::, and
d is the dimensionality of the lattice. Note that if the corner

penalty vanishes, we recover the result of Eq. 18.

As the temperature decreases, the effective coordination

number qðbÞ decreases, and the free energy increases. There
is a temperature TF for which qðbÞ ¼ e, giving a free energy

per monomer f ðTFÞ ¼ 0. For T <TF, f ðTÞ would become

positive in Eq. 20 if the saddle-point approximation were

still valid. However, f ðTÞ is a negative quantity (18) and,

therefore, remains zero the freezing temperature TF. Conse-

quently for temperatures T >TF, the corners are mobile in

the bulk, leading to a liquid-like structure for the corners;

whereas for T <TF, the polymer is frozen in stretched con-

figurations with f ðTÞ ¼ 0, in which corners are expelled to

the surface and polymer segments tend to be aligned inside

(Fig. 8). These configurations have been studied previously:

they are elongated neck structures or toroı̈ds (23), whose

typical size is given by the following:

εh

UðbÞ � lp; (22)

where UðbÞ ¼ vðbf Þ=vb is the internal energy.

This simple model can be extended to the case where the

volume fraction h< 1. It requires the introduction of the

parameter εv ¼ �c, where c is the Flory-Huggins parameter

of a polymer chain in a solvent and denotes the effective

attraction between monomers induced by the proteins.

This leads to the computation of the above mentioned phase

diagram in terms of the two parameters εv and εh.

Results

To make the HP approach more quantitative, it is interesting

to relate its parameters to our simplified picture of DNA in-

teracting with proteins. Namely, we would like to relate εv

and εh to the parameters of the Flory-Huggins free energy

in Eq. 1. But in the last one, the monomer-monomer attrac-

tion is mediated by spheres. In the dense phase, the total

concentration of monomers and spheres: c ¼ cD þ cP is

essentially fixed to the close packing concentration c0. By

inserting this in Eq. 1, we obtain the following:

bf ¼
	

aD þ aP

2
þ vðTÞ




c2D þ 1

6
c3 þ ðc� cDÞln

c� cD

e
;

(23)

where we neglect the translational entropy of the polymer in

the dense phase and drop the linear terms in cD as this results

FIGURE 9 Phase diagram obtained for a polymer chain interacting with

spheres. The phase diagram is plotted as a function of kBT=ε and lp, where ε
is the strength of the Lennard-Jones DNA-protein interation and lp is the

persistence length. We performed simulations with P ¼ 100 spheres (see

Materials and Methods). To see this figure in color, go online.
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in an adjustment of the chemical potentials. We then have

the following correspondence:

εvh� vðTÞ � aD þ aP

2
: (24)

For low temperature, vðTÞ can reach large negative values.

This is mapped to a large εv in the HP model. Depending

on the rigidity of the chain, the dense phase might be glob-

ular (low lp) or crystalline (large lp). The effective monomer

density in the dense phase is given by the following:

hh
cD

cD þ cP
: (25)

One important result obtained using a HP model is the phase

diagram of a polymer on a lattice (implicit solvent) with

bending rigidity, obtained in an earlier mean-field study

(17) and then supplemented by Monte Carlo studies (20).

We show in our study that the phase diagram of a semiflex-

ible polymer interacting explicitly with spheres in an off-lat-

tice volume is very similar. We performed BD simulations

with a polymer chain of N ¼ 400 beads and P ¼ 100 protein

spheres in a cubic volume of size L ¼ 100 with periodic

boundary conditions (see Materials and Methods). Polymer

beads and protein spheres interact through a Lennard-Jones

potential with a well depth given by the energy scale ε

(in kBT). We used a Kratky-Porod model of polymer, with

bending rigidity characterized by the persistence length lp.

By varying lp and ε independently, we were able to explore

the phase behavior of this system. We monitored the coil-

globule transition by looking at the quantity in the

following:

q ¼ logRg

logN
; (26)

where Rg is the radius of gyration of the polymer. For a

self-avoiding polymer with scaling law Rg � bNn,

q ¼ nþ cst=logN. In a good solvent, the polymer is swollen

with n ¼ 0:588, whereas in a bad solvent it collapses with

n ¼ 1=3 . It is clear that q varies like n.

Following the same authors (20), we define the quantity

na ¼ Pjui,ea j for a ¼ x; y; z, in which i runs over all the

bonds of the polymer, ui is the unit vector having

the same direction as the bond i and ea is the unit vector

of the corresponding a-axis. We then define nmin ¼
minaðnaÞ, nmax ¼ maxaðnaÞ, and the following:

p ¼ 1� nmin

nmax
: (27)

For an isotropic configuration, nx ¼ ny ¼ nz resulting in

p ¼ 0. Conversely, for a configuration stretched in one di-

rection, for example, along the x axis, nx ¼ 1 and

ny ¼ nz ¼ 0, resulting in p ¼ 1. Thus p measures the direc-

tional order of the polymer.

We plotted the phase diagram obtained as a function of

kBT=ε and lp (Fig. 9). There is a clear similarity with the

case of a polymer on a lattice without explicit proteins.

However, we observe that the coil-globule and globule-crys-

tal transitions occur at a higher interaction energy ε. This

might be a consequence of going from a lattice model to a

continuous model. It might also be because of the fact that

in the high-temperature regime, the concentration of spheres

in solution is smaller than the close packing, therefore mak-

ing it hardly comparable with an actual solvent. There is a

specific persistence length lcpx10 such that

� for lp < lcp, the polymer collapses through a second-order

coil-globule transition, followed by a first-order

globule-crystal transition when ε increases; and

� for lp > lcp, the coil-globule transition no longer exists and

the polymer collapses directly from a coil to a crystalline

phase through a first-order phase transition.

DISCUSSION

DNA condensation in vitro

The condensation of DNA induced by DNA-binding pro-

teins or ions has been thoroughly studied. It is well known

that DNA collapses from disperse structures corresponding

to swollen coil configurations into ordered, highly

condensed states. This has been the focus of several

in vitro experimental studies (24-28). One important conclu-

sion from these studies is that during its collapse, DNA un-

dergoes phase transitions through the following three

phases: isotropic fluid, cholesteric, and crystalline (hexago-

nal), in agreement with our results. As stated above, within

the Flory-Huggins theory, the phase transition induced by

ions or DNA-binding proteins appears to be first order,

except at the tricritical point and on the critical lines. There-

fore, the transition from the swollen to the condensed state

should be discontinuous and present hysteresis effects,

which was indeed observed (27,29). Interestingly, the

Flory-Huggins theory predicts another effect. At fixed tem-

perature, there is a line of possible coexisting states. Given a

certain amount of DNA, we are able to discuss the conse-

quences of adding proteins to the system. The protein con-

centration would increase from zero until it reaches a

value for which the system splits into two phases. If we

keep adding proteins, the system will at some point exit

the biphasic regime (Fig. 6, C and D). This phenomenon

called reentrance has been observed in some experimental

work (26).

DNA condensation in vivo

Although it is premature to draw any clear biological

conclusion, it is tempting to discuss at least qualitatively

the effect of DNA condensation on biological functions.

In eukaryotes, nucleosomal organization provides an
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effective protection against detrimental factors. This organi-

zation is absent in prokaryotes, which have a significantly

lower ratio of DNA-binding proteins (30). However, in

harsh environmental conditions (radiations, temperature,

oxidating agents, and radicals), several bacteria resort to

DNA condensation mechanisms to protect their genome.

Maybe the most spectacular case is the appearance of mac-

roscopical DNA aggregates with crystal-like order in

starved E. coli cells. In stressful conditions, the alternative

sS factor is expressed, in response to low temperature, cell

surface stress, or oxidative shock. This in turn induces the

expression of the DNA-binding protein Dps (31,32). In

starved cells, Dps is the most abundant DNA-binding pro-

tein, with ~20,000 Dps protein per cell. Consequently,

DNA is condensed into crystal-like aggregates, which

make it less accessible to damaging factors. This process

is reversible and wild-type E. coli cells starved for three

days remain unaffected by a high dose of oxidating agents

whereas mutants lacking Dps lose viability (31). Interest-

ingly, Dps binds nonspecifically to DNA. In regard to

what has been discussed in this article, we may infer that

when Dps concentration increases, a dense phase appears.

But at a scale of Dps size ð� 10 nmÞ, the apparent rigidity

of DNA is large ð� 50 nmÞ. Therefore, as Fig. 9 shows,

this might be a case where the coil-globule transition is pre-

cluded by the freezing transition. Other examples of DNA

compaction by nonspecific proteins seem to exist (33,34).

Local concentration effects and transcription

Increasing evidence suggests that transcription proceeds

from nucleation points called transcription factories, which

are formed from the interaction of DNA with general and

dedicated transcription factors. Although the nonspecific

hypothesis is not guaranteed, it is true that RNAP can

bind widely onto DNA thanks to its s-unit. The Flory-Hug-

gins results from this article suggest that a biphasic regime

can exist, with a dense phase spanning a volume of size

ð1� fÞV and with local concentrations of DNA and

RNAP increased by a factor of 4-to-8 with respect to the

mean-field ones (Fig. 6 D). This would result in shifting

the equilibrium of complexation reactions such as the

following:

DNA þ protein%RNAP bound to DNA

toward the formation of complexes and may favor transcrip-

tion initiation. This is consistent with some experimental

work showing that RNAP clusters are formed during preini-

tiation and initiation of transcription (35). The same authors

also proposed that crowding of enzymes, i.e., higher local

concentrations, may aid in rate-limiting steps of gene regu-

lation. From a dynamical standpoint, the confinement of un-

bound RNAP in a restricted volume of size ð1� fÞV can

reduce the search time for a promoter. To this extent, it is

worthwhile to point out a recent study claiming that the pro-

moter search mechanism is indeed dominated by 3D diffu-

sion of RNAP over the one-dimensional diffusion along

DNA (36).

Structure of the dense phase

Earlier studies have demonstrated that the frozen phase can

present various metastable states (21). In the N/N limit

(N is the length of one chain), the transition timescale

from one to another could be very large, and the system

might well never equilibrate within biological timescales.

Finally, the parallel drawn between the HP theory and the

Flory-Huggins theory does not pretend to mathematical

rigor. One essential difference is that in our case the attrac-

tive interaction between monomers is mediated by spheres.

A way to compute more precisely the structure of the dense

phase would be to go beyond the homogeneous saddle-point

approximation, for instance, by using the so-called self-

consistent field theory method (37,38), which is a very com-

plex method in the case of semiflexible polymers.

CONCLUSIONS

We presented in this study two complementary frameworks

to describe the phase diagram of polymeric fluids induced

by colloids, and we applied it to a DNA chain interacting

with DNA-binding proteins. Starting from a Flory-Huggins

free energy, we first computed the mean-field phase diagram

and found that at low temperature (i.e., high DNA-protein

affinity) a biphasic regime exists, consisting of the coexis-

tence of a dilute phase and a concentrated phase. The dilute

phase may correspond to swollen configurations of the DNA

whereas the concentrated phase is a model for condensed

states of DNA. This theory may also apply to DNA conden-

sation by multivalent ions or proteins in general. Second, we

addressed the characterization of the dense phase structure

and showed that the chain bending rigidity can have dra-

matic effects. Without bending rigidity, the dense phase

has no directional order and is a molten globule. However,

when the chain bending rigidity is large enough, there is a

freezing transition from the globular to crystalline phase.

Eventually for very rigid chains, the coil-globule transition

is precluded by the freezing transition and the phase transi-

tion predicted in the Flory-Huggins framework does not

occur.

In the cell, the existence of a dense phase could be a good

approximation for the transcription factories observed

experimentally. It is conjectured that this may increase the

rate of success in transcription initiation by means of protein

crowding and by enhancing the promoter search mecha-

nism. Note that at a scale that is coarse-grained to several

thousand base-pairs (gene scale), the chromosome is flex-

ible and the dense phase has the structure of a molten

globule. Conversely, at a scale of a few base-pairs, the
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apparent rigidity of DNA is much higher. Thus, the Dps pro-

tein, which binds nonspecifically to DNA, can induce the

collapse of the E. coli chromosome into crystal-like aggre-

gates; the dense phase is then frozen. This is not an efficient

state for a searching mechanism. But on the contrary, it is

very adequate to protect DNA.

The two frameworks are quite general and can be used to

describe biological phenomena where DNA compaction oc-

curs under the cooperative effect of binding proteins. In the

future, we plan to apply it to other biological cases when

more quantitative experiments become available.
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Glossary

base pair Two nucleotides in a DNA (or RNA) molecule that are paired by hydrogen bonds.

binding energy Energy determining the strength of the chemical linkage (or affinity) between two con-
stituents. For instance the binding energy of a protein with DNA.

central dogma The fundamental principle that genetic information flows from DNA to RNA to protein.

ChIP-sequencing ChIP-seq assays combine chromatin immunoprecipitation (ChIP) with massively paral-
lel DNA sequencing to identify the binding sites of DNA-associated proteins. After post-processing
experimental data, it gives access to the density of binding of a protein as a function of the genomic
coordinate.

chromosome (or chromatin) Term regrouping the DNA molecule with the structuring proteins that are
bound to it.

chromosome conformation capture experiment Set of experimental techniques that have been devel-
oped in order to identify interactions between genomic location (loci) in vivo. Namely, these
techniques count the number of contacts between different loci on the genome, resulting from the
particular folding of the chromosome.

chromosome folding The chromosome is a long object, and as such can adopt many three-dimensional
configurations. One such configuration defines its folding, or architecture.

co-regulated genes Genes whose expressions are regulated by the same regulators.

cytosol Intra-cellular space, excluding the organelles.

divalent protein Protein with two functional domains enabling the binding to two DNA sites.

epigenetics Ensemble of biological processes resulting in genetic effects which are not encoded in the
DNA sequence. Such effects may result from external factors that affect how cells express genes.
For example, DNA methylation can alter how a gene is expressed, yet it does not involve a change
in the nucleotide sequence.

Fluorescence in situ hybridization Technique that uses fluorescent probes that bind specific DNA (or
RNA) sequences by base pair complementarity. Fluorescence microscopy can then be used to detect
and localize these specific sequences. In particular, regions of the chromosome can be localized in
the cellular compartment, which helps in defining the spatial-temporal patterns of gene expression.
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genome It is the unique sequence of nucleotides which embeds the genetic information of one individual.

Hi-C Experimental technique combining chromosome conformation capture and high-throughput DNA
sequencing in order to obtain a high-resolution map of the contacts between chromosomal locations.

horizontal gene transfer Process through which DNA is passed from one organism to another. This
contrasts with vertical gene transfer which refers to the inheritance of genes from parent to progeny.

hydrogen bond A weak chemical bond between an electronegative atom such as nitrogen or oxygen and
a hydrogen atom bound to another electronegative atom.

monomer Fundamental unit of a polymer.

nucleoid In prokaryotes which do not have a nucleus, the chromosome is confined to an area near the
center of the cell called the nucleoid.

nucleus In eukaryotes, the nucleus contains the chromosomes, and is separated of the rest of the cell by
a membrane.

polymer Large molecule made of the repetitive assembly of monomers held by chemical bonds. The
number of monomers in the polymer is called the polymerization index.

polymerase General term for a protein that can assemble monomers together to form a polymer. It
catalizes the process of polymerisation. For instance RNA polymerase is the enzyme responsible
for transcribing coding sequences of genes into RNA.

polymerase chain reaction Technique used to amplify a target DNA sequence. It relies on denaturation-
hybridization-elongation cycles and the usage of a polymerase resistant to high temperatures. This
technique enables the production of millions of copies of an initial DNA sequence in just a few
hours.

promoter DNA region where RNA polymerase binds in order to initiate transcription.

random phase approximation In the context of polymer field theories, it is a stability analysis of the
saddle-point solution for the polymer density. Namely, the Hamiltonian is expanded to second
order around the saddle-point solution in order to obtain the quadratic fluctuations. A Fourier
mode analysis can reveal if modulations in the polymer density can trigger instabilities, which are
associated to a microphase separation. It is also called the Gaussian fluctuations analysis.

restriction enzyme Enzyme that can cleave the DNA molecule at specific sites (restriction sites) corre-
sponding to a specific short sequence of nucleotides.

super-resolution microscopy Fluorescence microscopy imaging methods that allow to obtain a resolu-
tion beyond the diffraction limit. They rely on the stochastic activation of each fluorophore in the
sample from a non-emissive state (or off-state) to an emissive state (or on-state). This ensures that
for each image, only a small fraction of the fluorophores (those in the on-state) is emitting photons.
This results in very few overlaps between the fluorophore sources and leads to an increased reso-
lution. Transitions from the on-state to the off-state occur through reversible switching in STORM
whereas in PALM the phenomenon of photobleaching is exploited.
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transcription factor Term loosely applied to any protein that can bind to DNA in order to alter (or
regulate) the expression of a gene.

transcription level The transcription level of one gene can be measured in at least two ways. A direct
measure of the transcription level consists in measuring the number of RNA transcripts of a given
gene in the cell. This is usually achieved by extracting all messengers RNA from a cell and
sequencing them in order to count the transcripts of the gene of interest. An indirect measure
of the transcription level is to insert downstream of the gene of interest a reporter gene which
encodes a fluorescent protein (such as GFP). The intensity of the fluorescence can be related to the
transcription level of the gene of interest.

transcripton factor binding site DNA sequence to which a transcription factor binds to in order to
regulate the transcription of a gene.

worm-like chain Model used to describe a polymer with bending rigidity. A key parameter of the model
is the persistence length, that characterizes the contour distance above which the polymer loses the
memory of its orientation. Also known as the Kratky-Porod model.

xeno-silencing Repression of the transcription of genes in foreign DNA sequences acquired by horizontal
transfer.
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Acronyms

3C chromosome conformation capture experiment.

AFM Atomic-force microscopy.

BD Brownian dynamics.

bp base pair.

CCC chromosome conformation capture experiment.

chIP-seq ChIP-sequencing experiment.

EM electron microscopy.

FENE finitely-extensible non-linear elastic potential.

FISH Fluorescence in situ hybridization.

GEM Gaussian effective model.

Hi-C CCC with high-throughput DNA sequencing.

i.i.d. independently and identically distributed (random variables).

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator.

MD molecular dynamics.

NAP nucleoid-associated protein.

p.d.f. probability distribution function.

PALM photo-activated localization microscopy.

PCR polymerase chain reaction.

PWM position weight matrix.
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RNAP RNA polymerase.

RPA random-phase approximation.

SAW self-avoiding walk.

STORM stochastic optical reconstruction microscopy.

TF transcription factor.

TFBS transcription factor binding site.

WLC worm-like chain polymer.
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