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mais il faut bien dire que vous avez le chic pour avoir systématiquement tort.
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Part I

Introduction

1 2d quantum gravity and Liouville theory: con-

text

1.1 2d quantum gravity and Liouville theory

In a quest of simplification of our understanding of the world into one consistent theory

with respect to the experiments, the aim of quantum gravity is to get a quantum

description of general relativity. In classical general relativity, the gravitational force is

governed by the geometry of space-time. Space-time is a (pseudo) Riemannian space,

and its geometry is supposed to be determined from the matter (and equivalently the

energy) content of the universe, and conversely, the geometry of space-time acts on the

matter content of the universe and constrains its movement. The interaction between

geometry and matter content is governed by the celebrated Einstein equation:

Gµν = κTµν . (1.1)

Einstein tensor Gµν = Rµν − 1
2
gµνR, expressed in terms of the metric gµν and the

Ricci tensor Rµν , contains the information on the geometry of space-time, whereas

the stress-energy tensor Tµν describes the matter content part. The curvature of the

space and the matter content are related through a proportionality constant κ. In

classical general relativity – in opposition to quantum general relativity –, Einstein

tensor must be a solution of equation 1.1, and corresponds to the saddle-point of the

Einstein-Hilbert action:

SEH [gµν ,Φ] =

∫

RD

(
R[gµν ]

2κ
+ LM [Φ]

)√
− det gµνd

Dx, (1.2)

where we consider here D dimensional space-time (one dimension for time and D − 1

dimensions for space) so the measure is dDx. The Greek indices run from 1 to D. The

term LM stands for the Lagrangian associated to the matter fields, generically denoted

by Φ, present in the universe, and the signature of the metric is (−,+,+, . . . ). In

a pure gravity description, we forget about matter field in order to focus exclusively

on the geometry of space-time, so in that case, Einstein-Hilbert action reduces to the

curvature term. It is also customary to add a cosmological term – here to reproduce

the expansion of the universe – to this action, namely:

SΛ[gµν ] =

∫

RD
Λ
√
− det gµνd

Dx. (1.3)

9



The constant Λ is the cosmological constant. In the end, the pure gravity action is the

sum of the Einstein-Hilbert action and the cosmological term:

Sgrav[gµν ] = SEH [gµν ] + SΛ[gµν ].

In a quantum description of general relativity, one allows the topology of the space

and the geometry itself to have fluctuations away from the classical solution, that is

to say, the actual Einstein tensor may differ from the solution of Einstein equation.

Potentially any Einstein tensor can appear, and to each of those instances is assigned

a probability of occurrence. The most probable event must be the tensor which is

solution of the Euler-Lagrange equations associated to the pure gravity action, that

is to say the classical solution of Einstein equation. For other generic instance Gµν

that may not correspond to the saddle-point of the action, the assigned probability is

related to the gravity action evaluated on this instance Sgrav[gµν ]. The closer to the

saddle point the tensor is, the more probable the Einstein tensor is. The action of the

matter fields Φ is denoted Smatter[Φ, g], it depends on the geometry of the space. In

the path-integral formalism, the partition function of quantum gravity coupled with

matter fields is:

Zgrav =
∑

topology

∫
DgDΦe−(Sgrav[g]+Smatter[Φ,g]). (1.4)

The measures Dg, DΦ on the metric and the scalar fields are ill-defined, and they sup-

pose a choice of gauge for the metric, as the action is invariant under reparametrization.

This path-integral is supposed to quantize gravity. The procedure to quantize a theory

by path-integral formalism in quantum field theory usually uses a perturbative expan-

sion in the coupling constants of the theory. Here, the coupling constants associated to

the metric are κ and Λ. However, in D = 4 (the dimension of the physical macroscopic

world), this perturbative procedure is doomed to fail, since gravity is not renormal-

izable in this case. In this thesis, in order to dodge this problem, we study quantum

gravity in 2 dimensions (called thereon 2d quantum gravity) for Euclidean spaces in-

stead of Minkowskian spaces, in a non perturbative way. It is quite unphysical, but

mathematically interesting though. Also there is an indirect link between 2d quantum

gravity and D dimensional quantum gravity. Indeed, a way to overpass the renormal-

ization problem and to define a perturbative quantification of gravity, is to turn the

point-like particles into (closed or open) one-dimensional objects, called the strings.

When a string propagates in a target flat space X of dimension D, it sweeps out a

2 dimensional world sheet M . This world sheet is endowed with a metric tensor gij

(where i, j = 1, 2), the space X is endowed with Minkowski metric ηµν = (−,+,+, . . . ).

10



The action associated to a field Φ propagating in a D is the area of the world sheet:

Sworld sheet = − 1

4πα′

∫

M

d2ξ
√

det gijgij∂iΦµ∂jΦνη
µν , (1.5)

with α′ =

{
1
2

open string
1
4

closed string
Polyakov, in one of the founding papers of 2d quan-

tum gravity [Polyakov, 1981], showed that this action, initially designed to explain

the 4d macroscopic world, can be turned so as to study 2d Euclidean quantum grav-

ity, provided that one adds a cosmological constant term to the world sheet action :∫
M

Λ
√

det gijd2ξ. Let us precise that the usual trick to turn from an Euclidean quan-

tum theory to a Minkowskian one is to use Wick rotation, but in the case of quantum

gravity, this trick may not work. Now that we have motivated a little bit the study of

2d qantum gravity, we may expose how it is related to Liouville action.

In 2d quantum gravity on closed Riemann surfaces, the topology surface M as well as

its metric can fluctuate. The partition function writes

Z2dQG =
∑

topology
of M

∫
DgDΦe−

κ
4π

∫
M

√
det gijRd

2ξ−µ
∫
M

√
det gijd

2ξ−Smatter[Φ,g]. (1.6)

where the metric tensors g on M are Riemannian, and the cosmological constant is now

denoted µ. The scalar curvature is still denoted R. In two dimensions, the integral of

the curvature is a topological invariant, as it is proportional to the Euler characteristic

of the surface, and the cosmological constant multiplies the area of the surface M

measure with the metric g:
{∫

M

√
det gijRd

2ξ = 4πχ(M)∫
M

√
det gijd

2ξ = A(M, g).
(1.7)

This decomposition of the action into the Euler characteristic and the area will be visi-

ble at the level of discretized approach, but we shall forget about it for the moment, and

first transform the partition function according to Polyakov’s ideas [Polyakov, 1981].

The latter implies a formal integration over the possible metric tensors, with the “mea-

sure” Dg over all the possible compact Riemann surfaces. The topology of a compact

Riemann surface M is entirely described by its genus h, which is the number of handles

of the surface, so the sum over the possible topology of M is actually a sum over the

genera. For a given genus h, two Riemann surfaces M and M ′ with metric tensors g

and g′ are conformally equivalent (they have the same conformal structure), if there

exist coordinate systems ξ1, ξ2 in which gij = λ(ξ1, ξ2)g′ij. By Riemann uniformization

theorem, a class of conformal structure of a Riemann surface of a given genus is de-

scribed by the moduli m of the surface. It means that if m is fixed, and M, gm is a

11



Riemann surface along with a metric tensor corresponding to this moduli, any other

metric g′ on M which corresponds to the same moduli is conformally equivalent to g.

For each moduli m, let us choose a background metric gm, this gives a family of metrics

indexed by the moduli. The choice of the family (gm)m is a gauge fixing choice, that

gives birth to Faddeev-Popov ghost fields. All the possible metrics one can construct

from a Riemann surface of moduli m take the form g(z) = eγφ(z)gm(z). For a given

genus, the space of moduli is finite dimensional, so the measure Dg can be decomposed

into a finite dimensional measure dm over the moduli, a measure over the ghosts, and

an infinite dimensional measure Dφ over the conformal factors. In the end, Polyakov

showed that for a metric tensor g = eγφ the action of 2d gravity coupled with matter

can be decomposed in three actions:

S2dQG[g,Φ] = Sγ,µL [φ] + Sghosts[g
m] + SCFT[gm,Φ], (1.8)

where the action Sghosts[g
m] accounts for the coupling between the background metric

and the ghosts field, the action SCFT[gm,Φ] describes the conformal field theory of the

matter content on a surface with fixed background metric gm. Last, the gravitational

action is given by Liouville action:

Sγ,µL [φ, gm] =
1

4π

∫

M

(
|∇gmφ(z)|2 +R[gm]Qφ(z) + 4πµeγφ(z)

)√
det gmij (z)d2z, (1.9)

where ∇gm is the gradient associated to the background metric gm, R[gm] is the cur-

vature measured with the background metric, γ ∈]0, 2[ is a parameter of the theory,

the charge Q satisfies Q = γ
2

+ 2
γ
. The cosmological constant µ is a strictly positive

parameter of the the theory. The pure gravity part of the action associated is thus

Liouville action, and the partition function of 2d pure quantum gravity on a compact

Riemann surface M with given genus and moduli m depends on the parameters γ, µ

of the Liouville action, and can be written in this form:

Zγ,µpuregravity =

∫
Dφe−Sγ,µL [φ,gm]. (1.10)

The observables of pure quantum gravity on M are the so-called vertex operators

Vα(z) = eαφ(z), where z ∈ M . The parameter α is the charge of the operator. Then,

the correlation functions one wants to compute are the expectation values of the vertex

operators: 〈
k∏

i=1

Vαi(zi)

〉γ,µ

=

∫
Dφe

−Sγ,µL [φ,gm]+
k∑
i=1

αiφ(zi)
. (1.11)

Remark 1.1. Let us address a vocabulary point here. In this thesis, the term “observ-

able” is used for a quantity or an event O one can observe in the framework of a theory,
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it is the equivalent of “random variable” in mathematics. The “expectation value” 〈O〉
of an observable is the average value when one observes this very event or quantity.

If the observable O can be decomposed into k similar sub-observables O1, . . . ,Ok, that

is to say the event O is the simultaneous realization of events O1, . . . ,Ok, then its

expectation value is called a “correlation function” or equivalently a “k-point function”.

Hence, this is the framework of 2d quantum gravity. However, there are many

unknowns in this theory, coming from the fact that the objects are ill-defined mathe-

matically, that is to say the probability theory of 2d quantum gravity is not defined.

First, in the partition function, the set of fields φ over which one has to integrate is

not precised – put another way, the space of probability is not defined. In order to get

the most general set of possible metrics, the possible fields φ can be generalizations

of functions, that is to say, distributions. Then, the measure Dφ is supposed to be a

kind of Lebesgue measure over the set of metrics on which we integrate, and it is not

obvious how to define it in the path-integral formalism – thus the probability measure

is not defined either. What is more, in Liouville action, the term that multiplies the

cosmological constant implies the exponential of a potential distribution, which is not

defined. Therefore, the path-integral is ill-defined, and one has to make sense of it. We

sum up in few words the general ideas of the different approaches developed to address

these problems up to now, in order to situate the approach used in this thesis.

1.2 A brief review of the approaches of 2d quantum gravity

1.2.1 The path integral formalism

During the eighties, 2d quantum gravity was extensively studied with path in-

tegral methods in complement with discretized approaches (see [David, 1988a],

[Distler and Kawai, 1989]). The path integral formulation, which is a continuous ap-

proach, is very efficient for physical predictions, and computing various critical expo-

nents. The matter content is supposed to be described by a conformal field theory

(CFT). CFTs are indexed by their central charges c, and a matter field in 2 dimensions

is described by a CFT with a given central charge. If the matter field does not interact

with the metric (i.e. with gravity), the study reduces to the study of the CFT. If

the matter field is coupled with gravity, then the CFT is “dressed” by gravity. The

celebrated KPZ formula (for Knizhnik, Polyakov and Zamolodchikov) relates critical

exponents for a CFT without coupling to gravity and critical exponents for CFT dressed

with gravity, see [Knizhnik - Polyakov - Zamolodchikov, 1988]. Later, Dorn, Otto,

Zamolodchikov and Zamolodchikov conjectured a formula for the three point functions,

the DOZZ formula [Dorn and Otto, 1994], [Zamolodchikov and Zamolodchikov, 1995],
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[Zamolodchikov and Zamolodchikov, 1996]. However, the drawback of path integral is

that it is mathematically ill-defined. There are two essential hurdles, already discussed

in previous section:

• the set of fields on which to integrate needs to be defined properly, as well as the

measure Dφ.

• if one integrates over distributions, the term of the cosmological constant 4πµeγφ

needs also to be defined, as the exponential of distribution is ill defined.

In order to overpass those difficulties, other approaches were developed at the same

time.

1.2.2 Discretized approaches

As the set of all possible fields φ on a surface M is infinite dimensional, a first idea is to

discretize the surface by a polygonal decomposition of the surface (called a map) with

n faces. For 2d surfaces, the faces are polygons, and a discretized field on a polygon

fk gets a single value φk on the whole polygon. If the map has finitely many faces,

the space of possible fields is finite dimensional. Therefore, the discretization allows to

make sense of the measure Dφ and of the Liouville action. The partition function is

transformed:
∑

topologies

∫
Dφ −→

∑

h

∑

mmap of
genus h
sizen

n∏

k=1

dφk. (1.12)

The hope is that when the mesh of the discretized surface tends to 0 (the number n

of faces grows to infinity), one recovers a limiting theory, also called the continuous

limit, which is Liouville quantum gravity. This thesis stands in this framework, so we

dwell on the ideas and results of this approach in more details in chapter II. At the

discretized level, decorations of the polygons can mimic some matter content, so in

this case, if a continuous limit exists, it shall be described by a CFT coupled with

gravity.

Those discretized approaches were first used to prove convergence of observables

that do not take into account metric information (distances between two points in the

surface for instance), see for instance [David, 1985]. Then, Ambjørn and Watabiki

[Ambjørn and Watabiki, 1995] studied distances properties in this framework, by de-

veloping a sort of peeling process of the random maps. The critical exponents are the

same as the ones found by path integral methods. Later, mathematicians proved that

for some discretized models, the limit of random maps in terms of metric spaces exists,
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and the continuous limit is the Brownian map (see [Le Gall, 2013], [Miermont, 2013]).

The techniques employed are mainly combinatorial methods in order to enumerate

maps of a certain size, and probabilistic tools to prove convergence of correlations in

the continuous limit. Most of the results of this thesis concern enumeration of maps

and are purely combinatorial.

1.2.3 Continuous approaches

Another way of making sense of Liouville theories is to tackle the problem directly

in the continuum. Let us mention 3 approaches here, in which we can distinguish

algebraic methods and probabilistic ones. Those methods were developed at the same

time as discretized approaches, and they often are complementary. The presentation

adopted here is not chronological. Also, the diverse methods benefit from each other

through fruitful interchanges.

First, an algebraic approach for continuous is the conformal bootstrap. The bootstrap

idea comes from Polyakov [Polyakov, 1974], it consists in assuming symmetries satis-

fied by a theory and in deducing constraints satisfied by the correlation functions. If

those constraints are strong enough, the correlation functions can be computed. In

2 dimensions, conformal bootstrap was initiated by Belavin, Polyakov and Zamolod-

chikov [Belavin et al., 1984], and implies the study of representations of the Virasoro

algebra. In the bootstrap approach, the theory is defined by a set of axioms, which

are so constraining in 2 dimensions that they allow to determine all the amplitudes〈
k∏
i=1

Vσi(xi)

〉
(this is the probability amplitude for k particles of of respective types

σ1, . . . , σk located at x1, . . . , xk to interact). They are even over determined in the sense

that there are several different ways to compute a given amplitude. The difficult goal

of the conformal bootstrap approach is to prove that the axioms are consistent, that is

to say that the constraints do not contradict each other, or that the different ways of

computing the amplitudes yield the same result. Conformal bootstrap is used for the

study of CFT, and for 2d quantum gravity, the interesting CFT is Liouville CFT. It has

known many developments since it has been defined [Teschner, 1995], [Ribault, 2014].

A second continuous approach was initiated by David, Kupiainen, Rhodes and Vargas

(see [David et al., 2015] and the course of Vargas on the subject [Vargas, 2017]), who

have been defining properly Liouville quantum gravity as a probabilistic theory. Their

study relies on the Gaussian free field (GFF) on a domain of the complex plane. They

define rigorously the “Gaussian multiplicative chaos” in order to make sense of the

term eγφ, and are able to make the k-point functions of vertex operators
〈

k∏

i=1

Vαi(zi)

〉γ,µ

(1.13)
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2d quantum gravity - Liouville quantum gravity

Physical developments:

path-integral formalism

Scaling exponents, KPZ relations, DOZZ formula

Discretized approaches Continuous approaches

Algebraic methods

Conformal bootstrap

Probabilistic methods

Probabilistic LQG (DKRV)

Brownian map and
√

8
3
-LQG

(Duplantier Miller Sheffield)

Random maps

Combinatorial methods

Probabilistic methods

continuous limit of
correlation functions

convergence as metric space

Brownian map

Gaussian free field

Gaussian multiplicative chaos

DOZZ formula

Virasoro algebra

OPE

conformal blocks

SLEκ, CLEκ

quantum surfaces

imaginary geometry

Figure 1: Summary of approaches to 2d quantum gravity. In red, the type of approach,
and in small font, some keywords of the approach.

meaningful. By this powerful approach, Kupiainen, Rhodes and Vargas have recently

managed to prove DOZZ formula [Kupiainen et al., 2017].

Third, another probabilistic approach was initiated by Duplantier, Miller and Sheffield

[Duplantier et al., 2014]. They have been relating the Brownian map – which is a

continuous object – with γ =
√

8
3
-Liouville quantum gravity, which is suspected to

describe pure 2d quantum gravity. The theory needs the machinery of imaginary

geometry and the study of fractal objects such as SLEκ curves and conformal loop

ensembles CLEκ.

Figure 1 summarizes the different approaches for 2d quantum gravity.

2 Content of the thesis

This thesis adresses three aspects of discretized approaches to 2d quantum gravity. It

is organized as follow.
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In the second chapter, the main ideas behind discretized methods are introduced. To

do so, we define random maps and what we mean by their continuous limit. A powerful

tool to study random maps combinatorics is the formulation in terms of matrix models:

since we will encounter them throughout the thesis, they are also introduced as well as

some subsequent techniques.

The contributions of the thesis sit in the four following chapters. They form three

groups: chapter III, chapters IV and V together, and chapter VI. Each group is dedi-

cated to the study of a specific random maps model, which is introduced in the begin-

ning of the chapters. Also, each group is dedicated to the study of an aspect of random

maps. In chapter III, we use Delaunay triangulations and circle patterns in order to

study various properties of the measure defined on this set. Those properties are of two

types: first we show that the measure is related to the widely studied Weil-Petersson

measure on moduli space of Riemann surfaces, second we prove some local inequalities

on the measure as preliminary steps for the study of the continuous limit of Delaunay

triangulations.

Chapters IV and V tackle the computation of expectation values of observables on

random maps and their convergence in the continuous limit in the context of Strebel

graphs, that, as we discuss in chapter IV, look like duals of Delaunay triangulations.

The expectation values are first explicitely computed in chapter IV thanks to Kontse-

vich’s bijection on Strebel graphs. Then, in chapter V, the computation is made more

systematic by resorting to topological recursion. This procedure allows to study the

convergence of the expectation value in the continuous limit. We then identify the

continuous limit of Strebel graphs with (3,2) minimal model.

A third aspect of random maps addressed in this thesis concerns the symmetry of cor-

relation functions defined from random maps combinatorics. Those symmetries have

consequences in terms of constrains imposed, and for further study of the correlation

functions as amplitudes of an integrable system. Certain symmetries of the correlation

functions computed from the Ising model on random maps are proven. The proof al-

lows to reformulate the recursion which determines planar correlation functions, and

we show that the correlation functions are expressed in terms of link patterns.

Each chapter comes with a related flipbook in the bottom right corner. They are com-

plete when the chapter, and the observation of the progress of the animation during

the reading may plummet the reader into despair, or fill him/her with hope.

Along the thesis, some additional concepts are required, such as moduli space of Rie-

mann surfaces, intersection numbers, minimal models or topological recursion. They

are introduced when they appear the first time in the manuscript.

Last, the appendices are dedicated to technical details of computations and proofs, and
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to the special functions appearing in the thesis.
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Part II

Random maps and matrix models

“Tout ce qui est simple, tout ce qui est fort en nous, tout ce qui est durable même, est

le don d’un instant.

Pour lutter tout de suite sur le terrain le plus difficile, soulignons par exemple que le

souvenir de la durée est parmi les souvenirs les moins durables. On se souvient

d’avoir été, on ne se souvient pas d’avoir duré.”

Gaston Bachelard, L’intuition de l’instant

We define precisely the discretization method to approach Liouville quantum gravity.

A hope of the discretization in 2d quantum gravity is that a continuous surface can

be approached by a lattice with sufficiently “small” mesh. Hence, we overpass Zeno

of Elea’s paradox of the arrow, and take as paradigm that the continuous space-time

can be approached by little pieces of discrete space-time. A central notion is random

maps, that we introduce here.

3 Random maps

In order to define maps, we need various preliminary definitions. Maps are subclass of

graphs, that are combinatorial objects.

Definition 3.1. A finite connected graph Γ is the data of a finite set of vertices V(Γ)

and a set E(Γ) of adjacency relations (the edges) between them.

If v1, v2 ∈ V(Γ) are adjacent, there exists e ∈ E(Γ), and we write e = (v1, v2). A

graph is a purely combinatorial object that does not come with a canonical way to

represent it. An embedding gives a way to draw a graph (see figure 2):

Definition 3.2. Let M be a compact orientable smooth surface. A embedding Γf,M of

Γ into M is a map f : Γ ↪→M , which sends vertices vi ∈ V(Γ) to distinct points of M ,

and sends any edges e = (vi, vj) ∈ E(Γ) to a curve of M whose ends are vi and vj. The

embedding is proper if (i) distinct edges do not intersect, except at their extremities,

and (ii) the set M\Γf,M is a union of domains homeomorphic to disks.

To illustrate the second condition for proper embeddings, figure 3 shows an improper

embedding. The genus of a properly embedded graph Γf,M is the genus g of the surface

M . For a graph Γ, the notion of face is not rigid, as it depends on the embedding.

Figure 2 shows two embeddings of a same graph that define different sets of faces.
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Graph:

proper embedding in a torus

v1
v2

v3

v1 v2

v3

f1

f2

v1

v2

v3

f1

f2
f3

f4

Figure 2: A graph and two possible proper embeddings. The embedding on the torus
has 2 faces, whereas the embedding on the sphere has 4 faces. All the faces have the
topology of a disk.

Maps are combinatorial objects that allow to define faces. In order to define maps, let

us introduce an equivalence relation between embeddings:

Definition 3.3. Two embeddings Γf,M , Γh,N of Γ are equivalent Γf,M ∼ Γh,N if there

exists a homeomorphism ϕ : M → N that preserves orientation, such that h = ϕ ◦ f .

Then, we can give a definition of maps:

Definition 3.4. A map m of genus g is an equivalence class of a finite connected graph

properly embedded in a surface of genus g. V(m), E(m) and F(m) refer respectively to

the sets of vertices, edges and faces of m.

A map is an equivalence class of embedded graph. Figure 4 shows an example of

two embedded graphs in the same equivalence class. If the genus of a map is 0, we call

it a planar map, and it can be drawn on a sphere. To show that a map is a purely

combinatorial object, we give another equivalent definition, equivalent to definition 3.4,

which does not refer to embeddings. To construct a map with n edges, one can “cut”

those edges in two to obtain 2n half-edges, that we label by 1, 2, . . . , 2n. The following

definition defines a map by connecting those half edges thanks to permutations:
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v1 v2

v3

f1

f2
f3

Figure 3: Example of an improper embedding. Although none of the edges intersect
each other, the face f1 has the topology of a cylinder.

Figure 4: Two equivalent embeddings of a graph, depicting the same map.
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Definition 3.5. A connected map with n edges is the data of 2 permutations α, ψ ∈ S2n

such that α is a fixed point free involution and the group generated by α and ψ acts

transitively on {1, 2 . . . , 2n}.

The fact that α is a fixed point free involution means that it can be written as

a product of n transposition with pairwise distinct supports. In this interpretation,

the edges are the cycles of α (the n transpositions), the vertices are the cycles of ψ,

and the faces are the cycles of αψ. The permutation ψ allows to define an ordering of

the half-edges around each vertex. Figure 5 gives the relation between (α, ψ) and the

drawing of a map.

Let us mention that another equivalent approach, that we consider also in chapter VI

is to consider a genus g map as a gluing of polygons along their edges, such that the

resulting surface is orientable, compact and has genus g.

The size of a map receives different meanings according to the model of random maps

one considers. It can be defined as the number of vertices, as the number of edges, or

as the number of faces. In chapter III, it is the number of vertices whereas in chapter

IV and V, it is the number of faces.

Let us denote by Mg(n) the set of maps of genus g of size n, (for the suited definition

of size). The degree of a vertex (respectively a face) is the number of edges adjacent

to this vertex (resp. this face). If a map m has genus g, then the numbers of vertices,

edges and faces satisfy Euler relation:

|V(m)| − |E(m)|+ |F(m)| = 2− 2g = χ(m). (3.1)

χ(m) is the Euler characteristic of m. For a map m with n edges, defined by the

permutations α and ψ like in definition 3.5, let us note Aut(m) the group of symmetries

(or automorphisms) of m. It is a subgroup of S2n, and consists of permutations of the

half-edges that leave m unchanged in the following manner:

Aut(m) = {φ ∈ S2n|α = φ ◦ α ◦ φ−1 ; ψ = φ ◦ ψ ◦ φ−1}. (3.2)

The cardinal |Aut(m)| is the symmetry factor of m. Obviously, the identity is an

automorphism of any map, so |Aut(m)| ≥ 1. For a generic map, the symmetry factor

is 1. The following example shows a case where the symmetry group is not trivial.

Example 3.1. Let us consider the map m with 6 edges (hence 12 half-edges), defined

by the permutations:

{
ψ = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

α = (1, 12)(2, 11)(3, 4)(5, 8)(6, 7)(9, 10).
(3.3)
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ψ=(1,2,3,4)(5,6,7)
(8,9,10)

1 5 8

2
3

4

4

3
2

5

6

8

9

10

7

1

6 7
9 10

9

8

76

5

4

32

1

Figure 5: Construction of a map from 2 permutations ψ, α on a set of half-edges
{1, . . . , 10}. The permutation ψ = (1, 2, 3, 4)(5, 6, 7)(8, 9, 10) has 3 cycles and defines 3
vertices. α = (1, 10)(2, 5)(3, 8)(4, 6)(7, 9) is a fixed-point free involution, which defines
the edges on the map (we link the half edges i and j if they appear in α as a transposition
(i, j). Last, we obtain a map, that we can embed in a torus. The faces of the map
are the cycles of αψ = (1, 5, 4, 10, 3, 6, 9)(2, 8, 7): the red face corresponds to the cycle
(1, 5, 4, 10, 3, 6, 9), while the green face corresponds to the cycle (2, 8, 7).
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Figure 6: Map defined by the permutations ψ = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) and
α = (1, 12)(2, 11)(3, 4)(5, 8)(6, 7)(9, 10).

A proper embedding of this map is shown in figure 6. The symmetry group Aut(m) is

generated by the two following automorphisms:

φ1 = (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)

φ2 = (1, 5)(2, 6)(3, 4)(7, 11)(8, 12)(9, 10) (3.4)

So Aut(m) = {Id, φ1, φ2, φ1φ2}, and |Aut(m)| = 4.

If a vertex v• of m is marked, as well as an adjacent edge e•, then the map is

rooted. We denote M•g(n) the set of rooted maps of genus g and size n. A map m

has k boundaries if k faces are labeled (f1, . . . , fk), and each labeled face has a marked

oriented edge, such that the marked face is on the right hand side of the edge along

its orientation. The degree `i of the boundary fi is the length of the boundary. A map

with k ≥ 1 boundaries is rooted. The set of maps of size n, genus g with k boundaries

is denoted Mg,k(n). See figures 7 and 8 for examples. The symmetry group of a map

with k ≥ 1 boundaries is trivial, so |Aut(m)| = 1 for m ∈Mg,k(n).

Maps are used as discretizations of surfaces, and as candidates to mimic matter

fields coupled to gravity or pure gravity in 2d. In order to mimic, at a discretized level,

a field (matter field or metric field), it is necessary to specify a class of maps, which

we call here a model of maps. The 4 chapters of this thesis are dedicated to the study

of 3 models of maps. Specifying a model of maps means that one shall restrain the

set of maps Mg(n) by putting constraints, and shall add decorations to maps. There

exist many ways to restrain and to decorate the set of maps, but the most convenient

ways to do so are to put local constraints and decorations (as opposed to global ones).

A constraint or a decoration on a map is local if it implies to know the structure

of the map around one vertex (resp. one edge, one face) to enforce it, and not the

knowledge of the whole structure of the map. Let us look at examples of constraints

and decorations to get an idea of this locality condition.
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v•

e•

Figure 7: Example of a rooted map.
The marked edge has a natural orien-
tation, away from the marked vertex.

e•1

e•3

e•2 f2

f1

f3

Figure 8: Example of a map with 3
boundaries of respective lengths 5, 4
and 3.The marked edge is oriented such
that the boundaries have clockwise ori-
entation.

Figure 9: Examples of maps with constraints. On the left hand side, all the faces have
degree 3 whereas on the right hand side, all the vertices have valency 3.

• Examples of constraints: one may restrict its study to the subset of Mg(n)

composed of maps having faces of certain degrees. For instance, in chapter III,

we allow uniquely maps with faces of degree 3, that is to say triangles. This

constraint is local, since in order to check if it is satisfied, one has to look at

each face individually. One can also restrict Mg(n) to maps having vertices of

certain degrees, as it is the case of Strebel graphs in chapters IV and V, where

we consider maps with trivalent vertices (of degree 3). See figure 9 for those

examples.

• Examples of decorations: the intuitive idea is that if one considers planar

maps without decorations, he may describe only the geometry of surfaces with-

out matter on them. One of the aims of decorated maps is to add some matter
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Figure 10: Three examples of decorations on a triangulation of the torus. In the first
case, an integer (between 1 and 19) is associated to each edge, in the second case, each
face has a color, and in the third case, a system of non intersecting (red) loops is drawn
on the triangulation.

content at the discrete level, in order to hope for a description of matter coupled

with gravity when one tends to the continuous limit (limit that we define later).

As examples of decorations one can add (see figure 10), one can associate to each

edge e ∈ E(m) a discrete or continuous parameter. It is the case of Delaunay

triangulations (chapter III) and Strebel graphs (chapters IV and V). Labels can

be associated to vertices of faces, making the maps labeled. One can also assign

a classical spin (equivalently a color) to each face, or draw systems of non inter-

secting loops on triangulations. This non intersecting condition seems non local

since it implies all the faces crossed by the loop, but it can be made local by

forcing pieces of loops to cross the triangles in either of the two ways depicted in

figure 11. In appendix E, we propose to construct a bi-colored quadrangulation

on a torus with two boundaries.

By imposing constraints and decorating the maps, for each (g, n) we end up with a
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Figure 11: The 2 ways of crossing a triangle for a loop coming from the upper left edge.
This rule prevents loops from intersecting each other.

set of decorated maps M̃g(n). This set specifies the model of maps studied. Although

the set Mg(n) is finite, the set M̃g(n) may be infinite (but of finite dimension), if the

decorations imply continuous parameters. Now, we introduce some randomness in the

set M̃g(n) by giving a weight to each of its elements. For a given model, we may want

to focus on the specificities of this model: for instance, if maps are decorated with

spins, one may want to study the statistics of spins on the maps. So for a given model,

let us define a set of “interesting” local objects LO (trivalent vertices, quadrangles,

spin +, loops etc.) of this model. For a local object `o ∈ LO, define a fugacity f`o ∈ C.

The fugacity is equivalent to the energy associated to a local configuration. For each

m ∈ M̃g(n), one can count how many of each local object `o ∈ LO there is in m, and

note n`o(m) this number. In order to give a weight to each map, we distinguish two

case.

• The set M̃g(n) is finite or countable: the weight of a map w(m) is given by:

w(m) =
∏

`o∈LO
f
n`o(m)
`o . (3.5)

The set of fugacities is said admissible if the sum

Zg,n =
∑

m∈M̃g(n)

1

|Aut(m)|w(m) (3.6)

is finite.

• If the set M̃g(n) is also decorated with continuous parameters. For a map m ∈
M̃g(n), we distinguish between the decorations that are continuous parameters,

and the others, called countable decorations (the name is not canonical). We

call the Mg(n)c the set of maps with countable decorations. Then M̃g(n) has a

cellular decomposition M̃g(n) =
⊔
mc∈Mg(n)c M̃g(n)m

c
: to each map structure mc

decorated with countable decorations, is associated the continuous set M̃g(n)m
c

of all possible continuous decorations on this structure. Then, we give a weight

w(mc) to the map structure by formula 3.5, and we put a measure dνg,n(mc) on
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the set M̃g(n)m
c

of continuous parameters. In the end, we get a measure on the

whole set M̃g(n) by:

dνg,n(m) = w(mc)dνg,n(mc). (3.7)

The set of fugacities along with the measure are admissible if

Zg,n =
∑

mc∈Mg(n)c

1

|Aut(m)|w(mc)

∫

M̃g(n)mc
dνg,n(mc) (3.8)

is finite.

Whether it be in the countable or the uncountable case, if the fugacities and the

measure are admissible, the quantity Zg,n is called the partition function of the model

for genus g and size n maps. The weights and the measure allow to define probability

distribution for maps of genus g and size n. To introduce the remaining notions, let

us restrain to the countable case for clarity, examples for continuous parameters case

are treated explicitly in chapters III and IV. We define the probability that one picks

a map m ∈ M̃g(n) as:

P(m) =
1

|Aut(m)|
w(m)

Zg,n
. (3.9)

An observable O of the model is a subset of M̃g(n). The expectation value of O is

defined by:

〈O〉 =
1

Zg,n

∑

m∈O

w(m)

|Aut(m)| . (3.10)

Often, the observable O is a subset defined by conditions of the type “faces (vertices)

1, . . . , k have prescribed degrees (decorations)”. This kind of observables are correlation

functions between faces, and are also called k−point functions.

The partition function of the grand canonical ensemble for the maps of genus g is the

following formal series in t:

Zg =
+∞∑

n=0

tnZg,n ∈ C[[t]], (3.11)

t is the fugacity associated to the size of the maps. To recover the partition function

of maps of genus g and size n, one must compute the coefficient of tn. If the radius

of convergence of the series is strictly positive, this coefficient is simply recovered by

carrying out the residue:

Zg,n = Res
t→0

t−n−1Zg(t)dt. (3.12)

The partition functions and the expectation values are generating functions with pa-

rameters t and the fugacities of the model. For instance, if one wants to compute the
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(weighted) number of maps of genus g and size n having n1 occurences of the local

object `o ∈ LO, this number is simply given by:

Res
f`o→0

f−n1−1
`o Zg,ndf`o. (3.13)

Therefore, one sees that the expectation value of an observable, as defined in equation

3.10, reduces to an enumeration problem. This is why models of random maps are

often seen as combinatorial problems. The techniques to enumerate maps are diverse,

we dwell on the formal matrix models methods in section 5 bellow. We can distinguish

two types of approaches to enumerate maps:

• By solving equations “à la Tutte” [Tutte, 1962]. The principle of those equations,

whose name is due to William Thomas Tutte, is to find a relation satisfied by

the generating function of maps, by erasing an edge of the map.

• By bijective approaches, i.e by finding a bijection between the set of maps M̃g(n)

and a set of better known objects (for which the enumeration has already been

done or is trivial). For random maps, the most used bijections are Schaeffer

bijection [Schaeffer, 1998] and a generalization, Bouttier, Di Francesco, Guitter

bijection [Bouttier - Di Francesco - Guitter, 2004]. Those are bijections between

bipartite maps and decorated trees.

The interest of discretization for 2d quantum gravity is that it allows, for each size

n, to define properly the expectation values of observables. In order to recover the

continuous theory of Liouville quantum gravity, one must make the size of the maps

grow to infinity, so that the mesh formed by the embeddings of the maps on a fixed

surface becomes denser and denser. In the end, the mesh shall be so dense as to mimic

in itself a continuous surface. To give a sense to the limiting theory that can arise, one

must define and study the large n limit of a model of random maps, also called the

continuous limit of the model.

4 Continuous limit of random maps

The continuous limit of random maps has two main acceptations.

Convergence as probabilistic spaces The type of convergence we are studying in

chapters III, IV and V the convergence of random maps models viewed as probabilistic

spaces. For each model of random maps, we see that formula 3.9 allows to define a

probability distribution on sets of maps, from the weights of maps (and the measure if

continuous parameters are present). 2d quantum gravity (in the continuous aproach)
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can be viewed as a probabilistic theory (the approach DKRV gives a rigorous meaning

to this theory). Viewed as a stochastic space, the correlation functions of 2d quantum

gravity one wants to compute are actually expectation values of observables. The mea-

sure Dφe−S
γ,µ
L [φ] in the path-integral formalism on the fields φ has to be understood

rather as a probability measure on a set of distributions.

The first way of defining the continuous limit is to study the convergence of the prob-

ability measure in the sense of distributions. For a given model of random maps, we

are able to define probability measure dνg,n on the set M̃g(n) for every n ∈ N, whether

it be in the case where M̃g(n) is discrete or continuous. The questions to tackle in the

case of 2d quantum gravity are:

• do the measures dνg,n converge in the sense of distributions towards a limiting

measure dνg,n
(d)−→ dνg when the size grows to infinity n→∞ ?

• Does the limit measure dνg have the same properties as the one defined for

continuous theories, such as DKRV’s approach ?

In order to answer those questions, the convergence is studied here in two ways. The

first way, which is the convergence of the measure in itself, is carried out for Delaunay

triangulations: section 8 is dedicated to prove properties of the measure dνn itself.

Those properties are preliminary steps to the possible study of the convergence of the

measures in the continuous limit, in the sense of distributions.

The second way is weaker (for proving convergence), but more tractable. It con-

sists in studying the convergence of expectation values of observables (equivalently

random variables) when the size of the maps tend to infinity, so it amounts to

studying the convergence of the measures dνg,n integrated against test functions.

More precisely, choose an observable O that has a meaning for all the sets M̃g(n)

with n ≥ n0, and call On the observable for the set M̃g(n). For instance, if

the model of maps considered is the set of planar triangulations with labeled faces

where the size is the number of faces, a possible choice of observable is O =

{triangulations such that triangles 2, 3, 4 share an edge with triangle 1}. This observ-

able supposes that n ≥ 4, and has a meaning for all n. On the contrary, the observable

O = {triangulations with 6 edges} is not eligible, because only triangulations of size 4

match the condition. Then, one looks at the convergence of the sequence (〈On〉)n≥n0
.

By this way, we get a flavour of what is the limiting theory, but we cannot characterize

entirely the latter. However, it is a legitimate way of tackling the study of 2d quan-

tum gravity, since a physical theory is relevant if the quantities that we can compute

from it, which are precisely expectation values of observables in a quantum theory, are

coherent with the experiments. Of course, experiments do not exist for 2d quantum
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gravity, but we can fix as a goal to recover the same expectation values as the one

found in the path-integral formalism.

Convergence as metric spaces The second way is to view the sets M̃g(n) as metric

spaces, by defining a suitable (with respect to the model) distance dm(v1, v2) on each

map m ∈ M̃g(n) between any two vertices v1, v2 ∈ V(m). The study of random maps as

metric spaces is not the purpose of this thesis, however throughout this manuscript, we

mention natural graph metrics (for Delaunay triangulations in chapter III and Strebel

graphs in chapter IV) that are eligible for a metric study of those models in further

developments. We give here the meaning of a convergence in the continuous limit as a

metric space for random maps, in order to justify the fact that we will insist on the fact

that we have natural distances associated to our maps. Each map is a metric space, so

in order to compare two metric spaces, one uses Gromov-Hausdorff topology. Gromov-

Hausdorff topology is based on Gromov-Hausdorff distance dGH(X, Y ) between two

metric spaces X, Y :

Definition 4.1. If X and Y are submetric spaces of a metric space M (with distance

d), the Hausdorff distance dH between X and Y is:

dH(X, Y ) = max

(
inf
x∈X

d(x, Y ), inf
y∈Y

d(y,X)

)
. (4.1)

Then, the Gromov-Hausdorff distance dGH measures how two metric spaces X, Y are

similar, by minimizing the Hausdorff distance on all isometries ϕ, ψ, embedding X and

Y in the same space:

dGH(X, Y ) = inf
M metric
ϕ:X→M
ψ:Y→M
isometries

dH(ϕ(X), ψ(Y )). (4.2)

The metric space M̃g = ∪n∈NM̃g(n) equipped with Gromov-Hausdorff distance,

can be completed to form Mg. The continuous limit of random maps must then be

understood in the following way: it is the limit of a converging (in Gromov-Hausdorff

sense) sequence of random maps (mn)n∈N with mn of size n.

Actually, it is not necessary to compute the infimum of all possible isometries between

graphs, and to prove that a sequence (mn)n∈N converges, it is enough to find a family of

isometries ϕn : mn →M for which the sequence (ϕ(mn))n∈N converges in the Hausdorff

topology.

The convergence of metric spaces has been first solved for certain models of random

maps in the works of Le Gall [Le Gall, 2013], Miermont [Miermont, 2013].
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Universality There are various ways to define a model of random maps. The con-

straints imposed may be of different types (for instance the degrees of the faces, of the

vertices), as well as the decorations, the weights of local objects, the measure on con-

tinuous parameters, and the distances on the maps. Therefore, it is legitimate to think

that the continuous limits differ for two different models. It is actually the case, but for

some close models, the continuous limits are almost the same. Let us illustrate more

precisely this universality property, and let us consider the three following examples of

random maps:

Example 4.1. In the first model, we only put a constrain on the faces, which we force to

have degree 3, and we mark an edge and a vertex, that is to say the set M̃g(n) = T •g (n)

is the set of rooted triangulations with n vertices and genus g. The fugacity associated

to a vertex is tT . The weight of a triangulation T ∈ T •g (n) is w(T ) =
(
tT
)n

. The

generating function of rooted triangulations of genus g has the following expression:

F Tg (tT ) =
∞∑

n=0

∑

m∈T •g (n)

w(m)

|Aut|(m)
, (4.3)

and it has the singular behaviour when tT reaches the critical value tTc = 1
4
√

27

[Eynard, 2016]:

F Tg ∼
tT→tTc

(
1− tT

tTc

) 5
2

(1−g)
(tTc )2−2gF̃ Tg , (4.4)

where F̃ Tg is independent of tT . One sees that for g ≥ 2, the generating function diverges

when the fugaticty of the vertices reaches the critical value. The critical exponent can

be written in terms of the string susceptibility exponent γTg : 5
2
(1 − g) = 2 − γTg . I

gives the string susceptibility: γTg = 5g−1
2

. The large n limit of the model is related

to the behaviour of the generating functions close to their critical points, so the string

susceptibility is a feature of the continuous limit.

Example 4.2. Second, instead of looking at rooted triangulations, we consider rooted

quadrangulations: M̃g(n) = Q•g(n), where n is still the number of vertices, whose fu-

gacity is set to tQ. Again, the generating function of rooted quadrangulations of genus

g is given by:

FQg (tQ) =
∞∑

n=0

∑

m∈Q•g(n)

w(m)

|Aut|(m)
, (4.5)

which has the singular behaviour when tQ reaches the critical value tQc = 1
12

[Eynard, 2016]:

FQg ∼
tQ→tQc

(
1− tQ

tQc

) 5
2

(1−g)
(tQc )2−2gF̃Qg , (4.6)
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where F̃Qg is independent of tQ, and is actually equal to F̃ Tg . Again, the string suscep-

tibility is γQg = 5g−1
2

.

Example 4.3. Last, let us consider the set of rooted quadrangulations whose faces

are decorated with spins. + spins correspond to red-colored quadrangles, and − spins

to black quadrangles. We call I•g (n) the set of colored and rooted quadrangulations of

genus g with n vertices. The fugacities of the local objects are chosen to be:

• vertex: tI ;

• edge separating two red faces, or two black faces: 4
15

;

• edge separating a red face and a black face: 1
15

.

We see that the energy associated to a bi-colored edge (separating two faces of different

colors), is greater than the energy associated to mono-colored edge. Therefore, the

configurations where there are few interfaces between red and black faces are more

likely to appear than the others. So we see in this example that for a given map, all

the decorations do not have the same probability to appear, there is a coupling between

matter (the color on the faces) and gravity (the structure of the map). The generating

function of colored rooted quadrangulations of genus g is defined as:

F Ig (tI) =
∞∑

n=0

∑

m∈I•g (n)

w(m)

|Aut(m)| . (4.7)

One can show [Eynard, 2016] that for tI ∼ tIc = −10
9

and g ≥ 2, the generating function

is singular and behaves like:

F Ig ∼
tI→tIc

(
1− tI

tIc

) 7
3

(1−g)
(tIc )2−2gF̃ Ig , (4.8)

where F̃ Ig is independent of tI, and differs from F̃ Tg . The string susceptibilty is γIg =
7g−1

3
.

From those examples, one sees that, for the enumeration of triangulations or quad-

rangulations (examples 4.1 and 4.2), the generating functions F Tg and FQg show many

similarities at their critical points, although their critical points are different 1
4
√

27
and

1
12

respectively. Actually, the string susceptibilities are equal, and the critical generat-

ing functions also: {
γTg = γQg
F̃ Tg = F̃Qg .

(4.9)

This means that in the continuous limit, many of the features of random triangulations

should be the same as the features of large random quadrangulations. If two models
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show such similar features, such as common critical exponents, are said to sit in the

same universality class, and their continuous limit shall be the same theory. The

intuitive idea behind universality is that, if, in their definition, two models of random

maps differ by features which seem to be details (irrelevant), those details should not

be important in the continuous limit. For the previous examples, the fact that one

looks at random maps with faces of degree 3 or 4 should not have a great influence

on the continuous limit. On the contrary, some features of a model (decorations or

constraints) may be crucial, as they can have an influence on the structures of the

maps more likely to appear, so there is not only one universality class for random

maps. For instance, the case of example 4.3 (which is the Ising model on random

quadrangulations), shows very different behaviour at the critical point, whether it be

for the value of the string susceptibility or the form of the function F̃ Ig . This means

that the continuous limit of this model is different from the continuous limit of the

two others. In the Ising model, some colored configurations have a greater weight than

others, and there is an interplay between the map structure and the decorations. Thus,

in the continuous limit, the colored map shall mimic the interaction between a matter

field and the metric (i.e. gravity), which is different from mimicking purely gravity.

The model I•g stands therefore in another universality class than T •g and Q•g.
In chapters III and IV, we define models that we show to be in the universality class

of 2d pure gravity, so in the continuous limit, they are supposed to converge to the

same theory. The interest of looking at different models for a same continuous limit,

is that the computation of expectation values of some observables is more convenient

for certain models.

5 Formal matrix models

In many models of random maps, an instance of a map and its associated weight can be

interpreted as a Feynman diagram and its amplitude of a zero-dimensional field theory

of formal matrices. It is the case of Strebel graphs (in chapter IV), and of the Ising

model (in chapter VI). We briefly describe here the relation between formal matrix

models and random maps. This relation was noticed by ’t Hooft [’t Hooft, 1974],

and first used for the study of 2d quantum gravity by Brézin-Itzykson-Parisi-Zuber

[Brézin et al., 1978]. The formalism of matrix models is powerful for finding equations

satisfied by the generating functions (the loop equations), and very helpful to solve the

enumeration of random maps and the computation of certain expectation values. This

presentation is inspired by [Eynard, 2016] and [Di Francesco et al., 1995]. We restrain

it to random Hermitian matrices, although other ensembles of matrices can be used.
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5.1 Feynman graphs of matrix integrals

Let us consider the set HN of Hermitian matrices of size N , and the Lebesgue measure

on HN :

dM =
N∏

i=1

dMi,i

∏

1≤i<j≤N
dMi,jdM i,j. (5.1)

We note Z0 the Gaussian integral over HN :

Z0 =

∫

HN

dMe−
N
2

TrM2

= 2
N
2

( π
N

)N2

2
. (5.2)

The “0” subscript stands for the fact that, as we will see in next subsection, this

quantity corresponds to the partition function of a matrix model without potential.

The expectation value of an observable O(M) is defined by:

〈O(M)〉0 =
1

Z0

∫

HN

O(M)dMe−
N
2

TrM2

. (5.3)

A fundamental piece of matrix models is the propagator :

〈MijMkl〉0 =
1

N
δilδjk. (5.4)

Let v1, . . . , vn ≥ 1 be n integers. Then, the following Gaussian integral has a diagram-

matic interpretation:
〈

n∏

i=1

N
TrM vi

vi

〉

0

=
1

Z0

∫

HN

dM
n∏

i=1

N
TrM vi

vi
e−

N
2

TrM2

=
1

Z0

∫

HN

dM
n∏

i=1


N
vi

N∑

j1,...,jvi=1

Mj1j2Mj2j3 . . .Mjvij1


 e−

N
2

TrM2

(5.5)

It is the correlation function of
n∑
i=1

vi matrix elements. As it is a Gaussian integral, it

does not vanish only if
n∑
i=1

vi = 2k is even. The diagrammatic decomposition relies on

Wick ’s theorem and equation 5.4. Wick’s theorem states that the expectation value

(with a Gaussian measure) of a product of 2k matrix elements is the sum over all

possible pairings of the propagators. A pairing of 2k elements is a fixed-point free

involution σ ∈ S2k. Such permutation can be written as a product of k transpositions

with disjoint support σ = (`1, σ(`1)) . . . (`k, σ(`k)). Wick’s theorem is summarized in

the following equation:

〈Mi1,j1 . . .Mi2k,j2k〉0 =
∑

σ pairings

k∏

m=1

〈
Mi`mj`m

Miσ(`m)jσ(`m)

〉
0
. (5.6)
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Figure 12: Vertex of a ribbon graph. The weight is N
vi

For instance, Wick’s theorem applied to the observable N TrM4 gives:

〈
N

TrM4

4

〉

0

=
N∑

i,j,k,l=1

N

4
〈MijMjkMklMli〉0

Wick
=

N

4

N∑

i,j,k,l=1

(
〈MijMjk〉0 〈MklMli〉0 + 〈MijMkl〉0 〈MjkMli〉0

+ 〈MijMli〉0 〈MjkMkl〉0
)

eq.5.4
=

N

4

N∑

i,j,k,l=1

1

N2
(δikδki + δilδjkδjiδkl + δjlδlj)

=
1

4
(N2 +N2 + 1) =

N2

2
+

1

4
. (5.7)

The diagrammatic representation of the expectation value 5.5 works as follow:

• In the definition of the observable, to each trace N TrMvi

vi
, we associate a vertex

of degree vi, where each edge is fattened in order to carry 2 indices (that are the

indices of the matrices). Each line of the fattened edge carries an orientation,

and two lines are connected if their indices are equal and their orientations are

consistent. On a diagram, a vertex of degree vi carries a weight N
vi

. This rule is

depicted in figure 12.

• For a given pairing σ = (`1, σ(`1)) . . . (`k, σ(`k)), the integral 5.5 is the product of

propagators. In the diagram, the propagator 〈MijMkl〉0 = 1
N
δilδjk forces the lines

having the indices i, j to carry the same indices as the lines carrying respectively

the indices l, k. Diagrammatically, the edge i, j is connected to the edge l, k

consistently with their orientations, forming a propagator (see figure 13). The

weight associated to a propagator is 1
N

.

• In the end, one obtains a non necessarily connected graph with fat edges com-

posed of 2 lines. Such graph is called a ribbon graph. All the lines are closed,

and if one properly embeds the ribbon graph on a Riemann surface, each closed
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Figure 13: Propagator of a ribbon graph. The weight is δilδjk
N

.

Figure 14: Example of a ribbon graph with 2 closed lines, one red and one black. In a
proper embedding (on a torus), this graph has 2 faces.

line corresponds to a face (see figure 14). Each closed line carries a weight N (it

corresponds to the summation over the index associated to the line).

In the end, the expectation value of equation (5.5) is a sum over ribbon graphs with

n vertices. For a properly embedded ribbon graph G, note |V(G)|, |E(G)|, and |F(G)|
respectively the number of vertices, the number of fat edges and the number of closed

lines (faces) of G. The weight associated to G is:

w(G) = N |V(G)|−|E(G)|+|F(G)|
n∏

i=1

1

vi
. (5.8)

For a connected ribbon graph, the power of N is the Euler characteristic χ(G) of the

embedded graph G. Some ribbon graphs are equivalent as maps, as we can see in

example 5.1.

Example 5.1. Let us compute the expectation value

〈(
N TrM3

3

)2
〉

0

with the dia-

grammatic rules. In total, there are 15 connected ribbon graphs in the sum, that we

can classify into three sets (see figures 15, 16 and 17). The first set comprises 9 graphs

of genus 0 which have the form of “handcuffs”, with 2 faces of length 1 and one face

of length 4. The dual of each graph of this set is the map m1. In the second set, the

three graphs are also planar, with 3 faces of degree 2. The dual map corresponding to

those ribbon graphs is denoted m2. Last, in the third set, each of the three graphs has

genus 1, with only one face of degree 6. The dual map is called m3. The maps mi are
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depicted in figure 18. The weight of each ribbon graph of genus 0 is N2

9
, and the weight

of each ribbon graph of genus 1 is N0

9
. In the end, we get:

〈(
N

TrM3

3

)2
〉

0

= 9
N2

9
+ 3

N2

9
+ 3

N0

9

=
4

3
N2 +

1

3
N0. (5.9)

One can recover this formula by summing over the three maps m1,m2,m3:
〈(

N
TrM3

3

)2
〉

0

=
N2

|Aut(m1)| +
N2

|Aut(m2)| +
N0

|Aut(m3)|

=
N2

1
+
N2

3
+
N0

3
. (5.10)

Indeed, the group of automorphisms of m1 is trivial whereas those of m2 and m3 have

3 elements.

The sum over ribbon graphs can be reduced to a sum over maps (where the edges

are fattened):

Theorem 5.1. [Brézin et al., 1978] The expectation value
n∏
i=1

N TrMvi

vi
can be com-

puted as a sum over (non necessarily connected) maps having n vertices of valencies

v1, . . . , vn: 〈
n∏

i=1

N
TrM vi

vi

〉

0

=
∑

mmap

N |V(m)|−|E(m)|+|F(m)|

|Aut(m)| . (5.11)

This theorem shows the relation between Gaussian matrix integrals and maps. The

diagrammatic decomposition in theorem is exact in the sense that the integrals are

convergent and the sum over maps is finite. The connected expectation value restrains

the sum to connected maps:
〈

n∏

i=1

N
TrM vi

vi

〉c

0

=
∑

mmap
connected

N |V(m)|−|E(m)|+|F(m)|

|Aut(m)| . (5.12)

The dual of a ribbon graph is a map (see figure 19), so when one carries out the sums

over ribbon graphs, it is equivalent to carry out the sum over their duals. In the end,

we have that:
〈

n∏

i=1

N
TrM vi

vi

〉

0

=
∑

G ribbon graph

w(G)

|Aut(G)|

=
∑

mmap
dual ofG

N |V(m)|−|E(m)|+|F(m)|

|Aut(m)| , (5.13)
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Figure 15: Ribbon graphs of the first set. The weight of each graph is N2

9
.

Figure 16: Ribbon graphs of the second set. The weight of each graph is N2

9
.

Figure 17: Ribbon graphs of the third set. The weight of each graph is N0

9
.

m1

m2
m3

Figure 18: The maps m1,m2,m3 corresponding to each set of ribbon graphs.
Each map is the gluing of two triangles.
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Figure 19: The dual of a ribbon graph is a map.

where we have, for m = G∗, |Aut(G)| = |Aut(m)| (the group of automorphisms of a

graph has the same cardinal as the group of automorphisms of its dual), and w(G) =

NV(G)|−|E(G)|+|F(G)| = NF(m)|−|E(m)|+|V(m)| = w(m) (the vertices, edges and faces of a

graph correspond respectively to the faces, edges and vertices of its dual). We shall

privilege this way of writing the expectation values, and in the following, when a sum

over maps is written, the sum runs implicitly over the duals of ribbon graphs.

5.2 Formal matrix models

In the following, we interpret random maps models in terms of formal matrix models.

We begin with generic one-matrix models, and extend to the case of 2-matrix models,

as it is used in chapter VI.

One matrix model Define the following potential:

V (M) =
M2

2
−

d∑

j=3

tj
M j

j
, (5.14)

then the partition function of the formal matrix model associated to this potential is

the formal integral:

Z =

∫

formal

dMe−N Tr V (M). (5.15)
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It has to be understood as a formal series in t3, . . . , td: Z ∈ Q[[t3, . . . , td]], where each

coefficient is a sum of Gaussian integrals over HN . The series is not convergent, and

the study of formal matrix models is different from the study of convergent matrix

models.

Z(t1, . . . , td, N) =
∞∑

n=0

1

n!

d∑

k1,...,kn=3

Z0

〈
n∏

i=1

Ntki
Mki

ki

〉

0

. (5.16)

By using the theorem 5.1 of the previous section, the partition function can be written

as a formal series over (non necessarily connected) ribbon with vertices of degrees

3, . . . , d. It corresponds to a formal series over non connected maps with faces of

degrees between 3 and d. For a map m, we note ni(m) the number of faces of degree i

in m.

Z(t1, . . . , td, N) = Z0

∑

mmaps

t
n3(m)
3 . . . t

nd(m)
d

N |V(m)|−|E(m)|+|F(m)|

|Aut(m)|

= Z0

∑

mmaps

Nχ(m) w(m)

|Aut(m)| . (5.17)

By this formula, we see that the partition function of a formal matrix model is a sum

over maps m, each one carrying a weight w(m). This weight is a product of fugacities.

The power of N (the size of the matrices) accounts for the topology of the map through

the Euler characteristic of the map. The fugacity associated to a face of degree k is tk.

We then have a model of random maps with faces constrained to have degrees 3, . . . , d.

Therefore, the partition function of this formal matrix model is the partition function

that enumerates not connected maps. The partition function of connected maps is the

free energy of the model and is given by the logarithm of Z ; it is denoted F :

F (t1, . . . , td, N) = logZ(t1, . . . , td, N)

=
∑

m connected map

Nχ(m)w(m)(t1, . . . , td)

|Aut(m)| . (5.18)

F is a formal series in tj. Since the maps are connected, the Euler characteristic of a

map χ(m) is simply expressed in terms of its genus: χ(m) = 2− 2g. If one views the

free energy also as a formal series in N , then the coefficient Fg of N2−2g is a formal

series in t1, . . . , td, and it is the partition function of connected maps of genus g:

F (t1, . . . , td, N) =
∞∑

g=0

N2−2gFg(t1, . . . , td)

=
∞∑

g=0

N2−2g
∑

m∈Mg

w(m)(t1, . . . , td)

|Aut(m)| , (5.19)

where the set of maps Mg is restrained to the connected maps of genus g, of generic

size, and with faces of valencies 3, . . . , d. When the size N of the matrices tends to
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infinity, only the leading order term in N2, which is the partition function of planar

maps, survives.

The observables of interest for formal matrix models are

∏̀

i=1

TrMki .

The expectation value of such observable is a formal series in the fugacities t1, . . . , td,

and it is defined by the following formula:
〈∏̀

i=1

TrMki

〉
=

1

Z

∫

formal

dMe−N Tr V (M)
∏̀

i=1

TrMki . (5.20)

It is worth noticing that both the numerator and the denominator are formal series.

Translating this expectation value as a sum over maps, it is the partition function

of connected maps having ` boundary faces of lengths k1, . . . , k`. The non-connected

maps are canceled out by the term 1
Z . The distinguished faces do not have fugacities,

and can have lengths greater than d (the maximum length of the faces of the interior

of the map). 〈∏̀

i=1

TrMki

〉
=

∑

m∈Mg,k

N2−2gw(m). (5.21)

(The automorphism group of a map with boundaries is trivial, so |Aut(m)| = 1).

Two-matrix model A slight extension of the one-matrix model is the two-matrix

model, first introduced by Kazakov [Kazakov, 1986] to study the Ising model on random

maps. Let us look at two Hermitian matrices M1 and M2, and the potentials:




V1(M1) = t2
M2

1

2
−

d1∑
i=3

ti
M i

1

i

V2(M2) = t̃2
M2

2

2
−

d2∑
i=3

t̃i
M i

2

i
.

(5.22)

The partition function of the formal 2-matrix model we look at in chapter VI is:

Z2(t2, . . . , td1 ; t̃2, . . . , t̃d2) =

∫

formal

e−N Tr (V1(M1)+V2(M2)−cM1M2)dM1dM2. (5.23)

Again, this partition function has to be understood as a formal series in

t3, . . . , td1 , t̃3, . . . , t̃d2 . In the same manner as for the one matrix model, this parti-

tion function can be interpreted as a sum over ribbon graphs, or, looking at the dual,

a sum over random maps. Let us first focus on the ribbon graph interpretation. When

looking at a coefficient of the formal series, the typical integral to compute is:

∫

HN×HN

∏̀

i=1

tki
TrMki

1

ki

n∏

j=1

t̃k̃j
TrM

k̃j
2

k̃j
e
−N Tr

(
t2
M2

1
2

+t̃2
M2

2
2
−cM1M2

)
dM1 dM2. (5.24)
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Figure 20: The propagators of the bi-colored ribbon graphs. The weight of a red (resp.

black) propagator is 1
N

t̃2
t2 t̃2−c2 (resp. 1

N
t2

t2 t̃2−c2 ). The weight of mixed propagators is
1
N

c
t2 t̃2−c2 .

Figure 21: The vertices of the bi-colored ribbon graphs. The weight of a red (resp.

black) vertex of degree ki (resp. k̃i) is N
tki
ki

(resp. N
t̃k̃i
k̃i

).

Applying Wick’s theorem, this integral can be written as a sum over pairings of matrix

coefficients. The crossed term cM1M2 in the Gaussian integral allows to pair coefficients

of the matrix M1 with coefficients of the matrix M2. Each pairing corresponds to a

bi-colored ribbon graph G, and given a ribbon graph G appearing in the sum, one

computes its weight with the following rules:

• A fat edge of G is red when it carries the indices of the matrix M1, it is black

when it carries the indices of matrix M2. Three types of propagators are allowed

in the ribbon graph. The two first types are mono-colored propagators, which

connect red (resp. black) fat edges to red (resp. black) fat edges. A red (resp.)

propagator has weight 1
N

t̃2
t2 t̃2−c2 (resp. 1

N
t2

t2 t̃2−c2 ). The third type is mixed prop-

agators, which connect red fat edges to black fat edges with a weight 1
N

c
t2 t̃2−c2 .

Figure 20 summarizes those weights.

• There are red and black vertices ; red vertices have valencies k1, . . . , km and black

vertices have degrees k̃1, . . . , k̃n. A red vertex of degree ki has weight N
tki
ki

, a black

vertex of degree k̃i has weight N
tk̃i
k̃i

, see figure 21.

• The lines of G are closed, but can change color. Each closed lines contributes to

the weight of G with a factor N .

The weight of G is the product of the weights associated to the propagators, the

vertices, and the closed lines. If one notes nrr(G), nbb(G) and nrb(G) respectively the
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Figure 22: The dual of a bi-colored ribbon graph is a bi-colored map.

number of red, black, and mixed propagators of G, the integral 5.24 can be written

as the following sum over non connected ribbon graphs with ` red vertices of degree

k1, . . . , k` and n black vertices of degree k̃1, . . . , k̃n:

(∫

HN×HN
e
−N Tr

(
t2
M2

1
2

+t̃2
M2

2
2
−cM1M2

)
dM1 dM2

)∏̀

i=1

tki
ki

n∏

j=1

t̃k̃j

k̃j
×

∑

G ribbon graph

Nχ(G) 1

|Aut(G)|

(
t̃2

t2t̃2 − c2

)nrr(G)(
t2

t2t̃2 − c2

)nbb(G)(
c

t2t̃2 − c2

)nrb(G)

.(5.25)

Equivalently, this sum can be written as a sum over maps, by considering the dual

of the bi-colored ribbon graphs (see figure 22). We obtain a sum over non connected

maps which have ` red faces of degree k1, . . . , k` and n black faces of degree k̃1, . . . , k̃m.

The weight associated to a red (resp. black) face of degree ki (resp. black) is N
tki
ki

(resp. N
t̃k̃i
k̃i

). The weight of an edge separating two red (resp. black) faces is 1
N

t̃2
t2 t̃2−c2

(resp. 1
N

t2
t2 t̃2−c2 ). The weight of an edge separating a red face and a black face is

1
N

c
t2 t̃2−c2 . Last, a vertex contributes a factor N to the weight of the map. We note

nrr(m), nbb(m) and nrb(m) respectively the number of red, black, and mixed edges of

the non connected map m. Then the integral 5.24 is worth:

(∫

HN×HN
e
−N Tr

(
t2
M2

1
2

+t̃2
M2

2
2
−cM1M2

)
dM1 dM2

)∏̀

i=1

tki
ki

n∏

j=1

t̃k̃j

k̃j
×
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∑

m non connected
map

Nχ(m) 1

|Aut(m)|

(
t̃2

t2t̃2 − c2

)nrr(m)(
t2

t2t̃2 − c2

)nbb(m)(
c

t2t̃2 − c2

)nrb(m)

.(5.26)

The partition function Z2 enumerates non connected bi-colored and weighted maps

with red faces of degrees between 3 and d1, and black faces of degrees between 3 and

d2. The partition function of connected bi-colored maps is the following formal series:

F (t2, . . . , td1 ; t̃2, . . . , t̃d2) = logZ2(t2, . . . , td1 ; t̃2, . . . , t̃d2)

=
∞∑

g=0

N2−2gFg(t2, . . . , td1 ; t̃2, . . . , t̃d2), (5.27)

Where the Fg’s are the partition functions of connected bi-colored maps of genus g.

The observables that one computes in the Ising model have the form:

O(M1,M2) =
∏̀

i=1

TrMki
1

n∏

j=1

TrM
k̃j
2

p∏

α=1

Tr (M
kα,1
1 M

k̃α,1
2 . . .M

kα,`α
1 M

k̃α,`α
2 ), (5.28)

whose expectation value is the formal series:

〈O(M1,M2)〉 =
1

Z2

∫

formal

O(M1,M2)e−N Tr (V1(M1)+V2(M2)−cM1M2)dM1dM2. (5.29)

It enumerates connected (thanks to the denominator Z2) bi-colored maps of any genus,

with ` red boundaries of lengths k1, . . . , k`, n black boundaries of lengths k̃1, . . . , k̃n,

and p mixed boundaries. The mixed boundary α is a boundary of length
`α∑
i=1

kα,i + k̃α,i,

which has kα,1 consecutive red edges, followed by kα,2 consecutive black edges, and so

on.

Example 5.2. The map showed in figure 23 has 3 boundaries:

• boundary 1 has length 8 and is uniformly red ;

• boundary 2 has length 9 and is uniformly black ;

• boundary 3 has length 11, with an alternating pattern of colors, there are 3

changes of colors.

This map appears in the moment

〈
Tr(M8

1 )Tr(M9
2 )Tr(M2

1M
1
2M

1
1M

2
2M

2
1M

3
2 )
〉
c
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1

3
2

Figure 23: Example of a map with 3 boundaries.

5.3 Reduction of the integrals, orthogonal polynomials and
loop equations

The matrix models allow to study a large range of random maps models. Although it

is not the way we are tackling our models in this thesis, we use repeatedly results that

come from formal matrix methods, especially in chapters V and VI. We expose here

some techniques that allows to get the results that we use later, in the optics of clarity

of this manuscript.

Separation between radial and angular parts of matrix integrals The first

simplification of the matrix integrals is to separate it into integral over angular part and

radial part. In the formal matrix models introduced above, the matrices are Hermitian.

This entails that they are diagonalizable:

∀M ∈ HN , ∃U ∈ U(N), λ1, . . . , λN ∈ R s.t. M = UΛU †, (5.30)

where Λ = Diag(λ1, . . . , λN). The matrix U is called the angular part of M , and the

matrix Λ, which consists of the eigenvalues of M , is its radial part. The diagonalization

property means that the map:

U(N)× RN −→ HN

(U,Λ) 7−→ UΛU † (5.31)

is surjective. Carrying out the change of variable M = UΛU † in the matrix integrals

of the one-matrix models, we get:
∫

HN

dM f(M) = CN

∫

RN
dλ1 . . . dλN∆2(λ)

∫

U(N)

DU f(U ΛU †), (5.32)

where:

• f(M) is a function of M

• CN is a coefficient independent of U and Λ
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• DU is the Haar measure – that is, invariant under the group structure – on

U(N)/U(1)N

• ∆(λ) =
∏

1≤i<j≤N
(λj − λi) = det

1≤i,j≤N
(λj−1

i ) is the Vandermonde determinant of the

eigenvalues λi.

This formula is a change of variable, and CN∆2(λ) is the Jacobian of the reparametriza-

tion. If one applies this formula to the one-matrix model, it yields:

Z formal
= CN

∫

RN
dλ1 . . . dλN∆2(λ)

∫

U(N)

DU e−N Tr V (U ΛU†)

formal
= CN

∫

RN
dλ1 . . . dλN∆2(λ)

∫

U(N)

DU e−N Tr U V (Λ)U†

formal
= CNVol(U(N))

∫

RN
∆2(λ)

N∏

i=1

dλi e
−N Tr V (λi) (5.33)

Thanks to the cyclicity of the trace Tr (ABC) = Tr (CAB), the one-matrix model

is reduced to a N -dimensional integral over the radial part, since the angular part is

traced out. The constant CNVol(U(N)) is irrelevant for the computation of expectation

values. The equalities above make sense as formal series, hence the term “formal” over

the equality signs. The same simplification occurs for expectation values of observables

implying traces of M , and one gets:

〈O(M)〉 formal
=

∫
RN O(Λ)∆2(λ)

N∏
i=1

dλi e
−N Tr V (λi)

∫
RN ∆2(λ)

N∏
i=1

dλi e−N Tr V (λi)

. (5.34)

In the case of 2-matrix models, the matrices M1 and M2 are diagonalizable:
{
M1 = U1XU

†
1

M2 = U2Y U
†
2 .

(5.35)

Yet, since they do not commute (in general), the angular part of the integrals cannot

be carried out so simply because of the crossed term Tr cM1M2:

Tr cM1M2 = cTr U1XU
†
1U2Y U

†
2

= cTr (U †1U2)†XU †1U2Y. (5.36)

This entails that the partition function of the 2-matrix model takes this form:

Z2
formal

=

∫

RN×RN
∆2(X)∆2(Y )

N∏

i=1

dxi e
−N Tr V1(xi)

N∏

j=1

dyj e
−N Tr V2(yj)

∫

U(N)

DU ecN Tr UXU†Y

formal
=

∫

RN×RN
dX dY ∆2(X)∆2(Y )e−N Tr (V1(X)+V2(Y ))

∫

U(N)

DU ecN Tr UXU†Y . (5.37)

This transformation of the 2-matrix model is used in chapter VI.
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Orthogonal polynomials Rewriting the one-matrix model as an integral over the

eigenvalues of the Hermitian matrices opens the way for the technique of orthogonal

polynomials. This technique is not applied in this thesis, but its consequences are, in

the case of the continuous limit of planar Strebel graphs in chapter V. The technique

of orthogonal polynomials relies on the fact that, since ∆(λ) = det
1≤i,j≤N

λj−1
i , if one takes

any family (πi)i≥0 of monic polynomials, that is:

πi(λ) = λi + lower degree terms,

then the following identity holds:

∆(λ) = det
1≤i,j≤N

πj−1(λi). (5.38)

From this identity and equation 5.33, one gets easily the determinantal formula for the

partition function:

Z formal
= CNVol(U(N)) det

1≤i,j≤N

[∫

R
dλ πi−1(λ)πj−1(λ)e−N V (λ)

]
. (5.39)

For a fixed N , we construct the monic polynomial family (pk,N)k≥0, such that they are

pairwise orthogonal with respect to the following scalar product:

〈f |g〉N =

∫

R
dλ f(λ)g(λ)e−N V (λ). (5.40)

In other terms, we can write:

〈pi,N |pj,N〉N = hi,Nδij, (5.41)

and the partition function simplifies:

Z formal
= CNVol(U(N)) det

0≤i,j≤N−1
〈pi,N |pj,N〉N

formal
= CNVol(U(N))

N−1∏

i=0

hi,N .

(5.42)

From the orthogonal polynomials pk,N we define the functions ψk,N :

ψk,N(λ) =
pk,N(λ)√
hk,N

e−
N
2
V (λ),

which are orthonormal for the scalar product (f |g) =
∫
R dλf(λ)g(λ):

(ψk,N |ψk′,N) = δk,k′ .
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Those orthonormal functions will appear indirectly in chapter V in the study of the

continuous limit of Strebel graphs, via two operators Q = x, P = d
dx

acting on them.

They act on the basis of orthonormal functions in this way:





xψk,N(x) = Q
(N)
k,k+1ψk+1,N(x) +Q

(N)
k,k ψk,N(x) +Q

(N)
k,k−1ψk−1,N(x)

d
dx
ψk,N(x) =

k+d−1∑
j=0

P
(N)
k,j ψj,N(x),

(5.43)

where d is the degree of the potential V . Although the operators Q,P do not depend

on the size N of the matrices, their coefficients in the basis (ψk,N) do, because the

orthonormal functions depend on N . The operators P and Q satisfy the so-called

string equation:

[P,Q] = Id. (5.44)

We will encounter this equation in the continuous limit of Strebel graphs. The contin-

uous limit of a matrix model can be studied with the formalism of orthogonal poly-

nomials, by taking the double scaling limit, which consists in letting N tend towards

infinity while the parameters ti of the potential tend to their critical value tci with a

rate depending on N : {
N →∞
ti − tci = Nαi t̃i.

(5.45)

In this double scaling limit, we transform the family (ψk,N(x))k≥0 into the function

of two variables u(s, x), with s = k
N

. The operators P and Q are then differential

operators in the variable s. Tuning the parameters of the matrix model in a specific

way, we reach the so-called (3, 2) minimal model, described in chapter V, and the

operators take the form:

{
Q = ∂2

s − 2v0(s,N)

P = ∂3
s − 3v1(s,N)∂s + v2(s,N).

(5.46)

Those equations will be discussed later in the continuous limit of Strebel graphs.
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Part III

Local properties of the random
Delaunay triangulation model and
topological models of 2D gravity

We stressed in the introductory part (see section 4), that there are several ways to

study the continuous limit of maps, and our approach is to study the convergence of

random maps as probabilistic spaces. For a given model of random maps and at the

discrete level, i.e. for a given size of maps, the probabilistic space is constructed by

putting a measure on the set of maps of given size. Then, a natural way to study the

probabilistic space constructed on random maps is to study the measure. This is the

aspect addressed in this part.

In order to do so, we introduce the model of Delaunay triangulations and the as-

sociated measure. This model has already been studied by David and Eynard

[David and Eynard, 2014] and we recall some of their results that we shall use in the

following. The results of this part are of two kinds. The first result relates the measure

over Delaunay triangulations with the Weil-Petersson measure on the moduli space

of punctured Riemann surfaces. The notion of moduli space is briefly reviewed to fit

our purposes. This result allows to relate our combinatorial problem to a well studied

problem of geometry. The second kind of results concerns more local properties of the

measure, as preliminary steps to study the continuous limit of the measure. The results

of this chapter are based on the article [II].

6 Delaunay triangulations

6.1 Circle patterns and Delaunay triangulations

Triangulations of the sphere are planar maps such that every face has degree 3. We

restrict the set of triangulations to maps which do not contain any self loop or double

edges (two edges joining the same vertices). For instance, the situation of figure 24 is

forbidden. Let us call Tn this restriction of the set of triangulations of the sphere with

n vertices. In this chapter, the size of a triangulation is the number of vertices. For

T ∈ Tn, let us note V(T ), E(T ) and F(T ) respectively the sets of vertices, edges and

faces of T . T is planar, so the Euler relation gives |V(T )| − |E(T )| + |F(T )| = 2. As

T is a triangulation, we also know that |F(T )| = 2|E(T )|. Then the sizes of those sets
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Figure 24: Part of a triangulation: all the faces are triangles (the dotted and dashed
edges are taken into account). The green dashed edge is a self loop: the ends of the
edge is a single vertex. The red dotted edges are double edges: they are adjacent to
the same vertices.

are: 



|V(T )| = n

|E(T )| = 3n− 6

|F(T )| = 2n− 4.

(6.1)

A triangulation T ∈ Tn is an abstract triangulation, in the sense that it contains only

information on the structure of the triangulation – the adjacency relations between

vertices, the order of the half-edges –, and not on the embedding in the Riemann

sphere S2 = C∪{∞} = C – that is to say the way to represent the map on the sphere.

For a given triangulation, there are infinitely many ways to embed it in the sphere.

In this chapter, two equivalent approaches are employed to describe the problem of

Delaunay triangulations. The first one starts from an abstract triangulation, and by

solving a circle pattern problem, embed it in the Riemann sphere. The second one

takes a configuration of points as a support for drawing triangulations, and consists in

finding a Delaunay triangulation.

6.1.1 Circle patterns

The circle packing problem, solved by Koebe [Koebe, 1936], is the following: let T ∈
Tn, is there a way to embed T in a complex domain, such that to each vertex v ∈
V(T ) is associated a circle Cv, centered at v, tangent to all the neighboring circles Cv′

with v′ adjacent to v, and intersecting no other circle ? By Koebe-Andreev-Thurston

theorem [Koebe, 1936], it is possible. Circle pattern problems are extensions of circle

packing. In the one considered here, and solved by Rivin [Rivin, 1994], the circles
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Cf are circumcircles of the faces f – that are triangles. Then, we endow each edge

e ∈ E(T ) with an angle θ(e) ∈ R, where θ : E(T ) → R. Let us note T̃ = (T, θ), and

call the set θ = θ(e); e ∈ E(T ) the angle pattern. The problem is the following: is it

possible to find an embedding of the triangulation, such that

• the interior of the circle Cf of a face does not contain any vertex of the triangu-

lation ;

• the circles Cf , Cf ′ of two adjacent faces separated by an edge e, intersect with

an angle π − θ(e) ?

By Rivin’s theorem [Rivin, 1994], the embedding exists and is unique up to Möbius

transformations for admissible flat Euclidean triangulations. The proof relies on the

minimization of a functional. We present this theorem hereafter. First, let us define

the set of admissible flat Euclidean triangulations:

Definition 6.1. An Euclidean triangulation T̃ = (T, θ) is a triangulation T plus an

associated edge angle pattern θ, such that

0 ≤ θ(e) < π . (6.2)

An Euclidean triangulation is flat if for each vertex v ∈ V(T ), the sum of the angles

of the adjacent edges satisfy ∑

e→v
θ(e) = 2π (6.3)

A flat Euclidean triangulation is admissible if for any closed oriented contour C? on

the dual graph T ? of the triangulation T , the sum of the angles associated to the edges

e dual (orthogonal) to the edges e? of C? satisfy

∑

e⊥C?
θ(e) ≥ 2π (6.4)

The set of admissible flat Euclidean triangulations of size n is denoted by T̃ fn .

Those conditions are represented in figure 25. The flatness condition is not required

for Rivin theorem, but it is the framework we use to study Delaunay triangulations.

Allowing different sums around a vertex in equation 6.3, that is
∑

e→v = Φv, is equiv-

alent to embed a triangulation on a sphere having conical singularities located at the

vertices. This generalization will be discussed in the end of chapter IV. For the mo-

ment, we shall require equation 6.3 to hold. For a triangulation T̃ = (T, θ) ∈ T̃ fn , we

can distinguish the structure T ∈ Tn of T̃ , and the angular part θ. For a given size

n, there are finitely many structures of triangulations. Yet, for a given T , there are
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∑
e⊥C?

θ(e) ≥ 2π
∑
e→v

θ(e) = 2π

C∗ v

Figure 25: Part of a triangulation (plain lines), along with its dual graph (dashed
lines). On the left hand side, the condition of equation 6.4 is shown. The contour C∗
of the dual graph is in red thick dashed lines. The sum runs over the red plain edges
that cross the contour. On the right hand side, the condition 6.3 concerns the sum
over the blue plain edges around the vertex v.

infinitely many angle patterns which match equations 6.2, 6.3 and 6.4. Let us call

T̃ fn (T0) = {T̃ ∈ T̃ fn , T̃ = (T0, θ)} the cell associated to the structure T . Then the set

T̃ fn can be decomposed in cells, indexed by the structure of the triangulations:

T̃ fn = t
T∈Tn
T̃ fn (T ) (6.5)

Let us compute the dimension of each cell. For T̃ ∈ T ∈ Tn(T ), there are |E(T )| = 3n−6

real angles θ(e) and |V(T )| = n constraints, so there are 2n − 6 free real angles.

Therefore, dimR(T̃ fn (T )) = 2n− 6.

The theorem of Rivin allows to solve the circle pattern problem:

Theorem 6.1. [Rivin, 1994] There exist a unique embedding, up to Möbius transfor-

mations, of an admissible flat Euclidean triangulation T̃ in the compactified complex

plane C, such that the circumcircles of adjacent faces f , f ′ separated by the edge e

intersect with angle θ∗(e) = π− θ(e), and such that the interior of any circumcircle Cf

does not contain any vertex.

Möbius transformations are the automorphisms of the Riemann sphere, they cor-

respond to transformations:

z 7→ az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1 (6.6)

We identify (a, b, c, d) with (−a,−b,−c,−d). A Möbius transformation is equivalent

to the data of the matrix

m =

(
a b
c d

)
, m ∈ PSL2(C), (6.7)
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so the group of Möbius transformations is identified with PSL2(C).

In figure 26, the angles θ(e), θ∗(e) associated to the edge e are shown in the embedding

v1 v2

v3

v4

C

C ′

f ′

f

R

R′

α

α′

θ
θ′

Figure 26: The triangles f and f ′, the circumcircles C and C ′ and angles θ and θ′ = π−θ
associated to an edge e = (v1, v2) of a Delaunay triangulation. Here, R and R′ are the
radii of C and C ′ respectively.

corresponding to the circle pattern.

Some care must be given to the notion of interior of a circle here. Indeed, in the

Riemann sphere C ∪ {∞}, the point at infinity is included. There are then two cases

for the embedding chosen:

• either there is a vertex at infinity ;

• or ∞ belongs to a face of the triangulation.

It is always possible, by a Möbius transform, to be in the second case. Let us call f∞

the face which contains∞. Let us say that it is the face of the vertices v1, v2, v3. If one

draws the circumcircle of f∞, then the interior is the domain of C containing ∞. This

means that all the vertices must be located in the disc defined by the circumcircle. The

situation is depicted in figure 27.

A triangulation embedded in the compactified complex plane such that no vertex

is located in the interior of any circumcircle is called a Delaunay triangulation. Such
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z2

z1

z3

Figure 27: If the point at infinity is in the face (z1, z2, z3), the interior of the circumcircle
associated to this face (green dashed line), is the region shown in green.

Figure 28: Two examples of Delaunay triangulations of size 6. In the first case, a point
of the triangulation is at infinity, and is linked to four points by red edges. In the second
case, the point at infinity is inside a face. The dashed circles are the circumcircles of
the faces. No vertex belongs to the interior of a circumcircle.

triangulations are shown in figure 28 (the two cases for the point at infinity are repre-

sented).

As it was mentioned previously, the proof of Rivin theorem relies on a variational

principle. We excluded self loops in triangulations, so every edge e separates two dis-

tinct faces f1, f2, so we may write e = (f1, f2). For what follows, the ordering induced

by the labels does not matter. Let us consider any embeddding – which does not match

the conditions for the circle pattern problem a priori – of the triangulation T̃ ∈ T̃ fn (T ).

This embedding is the data of the positions z = {z1, . . . , zn} of the vertices of the

triangulation in the complex plane. For such a configuration of points, the radius of

the circumcircle of face f is denoted by rf . Then, the functional used by Bobenko and

Springborn associates an energy to the embedding by the formula:

S((T, θ); z) =
∑

e=(f1,f2)∈E(T )

(
ImLi2

(
rf1
rf2
ei θ(e)

)
+ ImLi2

(
rf2
rf1
eiθ(e)

)
− (π − θ(e)) ln(rf1rf2)

)
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+2π
∑

f∈F(T )

ln(rf ). (6.8)

The function Li2 is the dilogarithm, see appendix A for the definition. The fact that the

order of the indices for the faces is irrelevant, is manifest in the formula. Bobenko and

Springborn [Bobenko and Springborn, 2004] showed that the configurations of points

z1, . . . , zn which solve the circle pattern problem exposed above are the minima of this

functional. This formula shows that circle patterns minimize an energy involving the

dilogarithm, a feature that we shall recognize later in this chapter.

6.1.2 Delaunay triangulations

The second equivalent approach consists in stating the problem in the reverse manner.

Let us take n ≥ 3 distinct points z1, . . . , zn ∈ C. By a Möbius transform, we can

fix (z1, z2, z3) = (0, 1,∞). The problem is then the following: is there a Delaunay

triangulation TD whose vertices are {z1, . . . , zn} ? Indeed, for a generic triangulation

T having z1, . . . , zn as vertices, there are vertices located inside the interior of some

circumcircle, so it is not a Delaunay triangulation. However, it is always possible to

construct a Delaunay triangulation out of a configuration of points on the Riemann

sphere. There exist several algorithms to build the Delaunay triangulation of a

configuration of points. As we will use one of these algorithms in this chapter, we

describe it here, and it relies on the Lawson flip algorithm (LFA). The Delaunay

algorithm is taken from [Brévilliers, 2008], and the Lawson flip algorithm was first

described by Lawson [Lawson, 1972].

Initialization: first, draw the convex hull of the points 0, 1, z4, . . . , zn. Draw an edge

between all the vertices belonging to the convex hull and the point at infinity. Then,

draw a planar triangulation of the points 0, 1, z4, . . . , zn, such that the edges of the

convex hull are edges of the triangulation (see figure 29). We obtain a triangulation

T0 of the points 0, 1,∞, z4, . . . , zn, which is not a Delaunay triangulation in general.

Consider an edge e ∈ E(T0), which links the vertices v, w. It separates two faces f e1 , f
e
2 .

The faces f e1 , f e1 are the triangles (v, w, x1) and (v, w, x2) respectively. One can draw

the circumcircles Cfe1
, Cfe2

of those faces. Then, the edge e is said illegal if x1 is in the

interior of Cfe2
, and x2 is in the interior of Cfe1

. In the triangulation T0, identify all the

illegal edges. By construction, the edges adjacent to ∞, and the edges of the convex

hull are not illegal. If there is no illegal edge, then T0 is a Delaunay triangulation.

Else, let us note e1, . . . , em those illegal edges.

Steps of the algorithm: from the triangulation T0, we construct successively the

triangulations T1, . . . , Tk = TD. The step Ti → Ti+1 is described. Choose an illegal

edge ei = (bi, ci) ∈ E(Ti), separating the faces (ai, bi, ci) and (di, bi, ci). Then, perform

the Lawson flip for this edge (see figure 30). It transforms the edge ei = (bi, ci) into
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Figure 29: We begin with a configuration of 11 points (one is at ∞) in the plane (top
left corner). We draw the convex hull of the points, and link the outer points to ∞
(red lines in the top right corner). Then, we draw a generic triangulation in the convex
hull. The illegal edges are identified in blue (bottom left corner). In the end, the graph
is a Delaunay triangulation (bottom right corner).

e′i(a
i, di), which is not illegal anymore. The triangulation Ti+1 is the triangulation

obtained after the flip (see [Brévilliers, 2008]).

Final step: in the end, one obtains a triangulation Tk which does not contain any

illegal edge, and this triangulation is precisely the Delaunay triangulation TD of the

points 0, 1,∞, z4, . . . , zn.

Once this Delaunay triangulation TD is constructed, the angle θ∗(e) = π − θ(e)

associated to the edge e ∈ E(TD) is the angle of intersection of the circumcircles of

the adjacent faces (see figure 26). For a generic configuration of points, the Delaunay

triangulation is unique. Yet, if four vertices a, b, c, d of the triangulation are cocyclic,

there are two choices to define the Delaunay triangulation (see figure 31). In this special
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ci bi

ai

di

ci bi

ai

di

Figure 30: Effect of a flip at one step of the Lawson Flip Algorithm. The illegal edge
is flipped.

case, the angle θ(e) associated to the internal edge is null. This situation is specific, so

for the following reasoning, let us consider a generic set of points such that the Delaunay

triangulation is unique. A configuration of distinct points z = {0, 1,∞, z4, . . . , zn}
determines a single Delaunay triangulation TD(z), from which we deduce an angle

pattern θ(z). Therefore, we started with an embedding, that is to say the points z,

and we ended with a triangulation TD(z) along with an angle pattern θ(z). It is easy to

check that this angle pattern satisfies conditions 6.2, 6.3 and 6.4. So we considered here

the reverse problem of previous section. The free parameters in this approach are the

positions of the points z4, . . . , zn. So there are 2(n− 3) = 2n− 6 free real parameters.

It corresponds to the dimension of a cell dimR(T̃ fn (T )) in the other approach, so it is

consistent.

For n ≥ 3, let us call Dn = {{0, 1,∞, z4, . . . , zn} ∈ Cn|zi 6= zj for i 6= j} ⊂ Cn−3 the set

of Delaunay triangulations of the plane. In the end, there is a bijection:

T̃ fn ↔ Dn.

When we refer to Delaunay triangulations, we equivalently consider elements of T̃ fn or

Dn.

A Delaunay triangulation is dual to a Voronöı tessellation: given T̃ ∈ T̃ fn , whose embed-

ding in the Riemann sphere has vertices at z1, . . . , zn. The centers of the circumcircles

of the faces are noted c1, . . . , c2n−4. Then, the dual graph T̃ ∗ of the Delaunay triangu-

lation, drawn with straight lines between the vertices ci, is the Voronöı tessellation of

the points z1, . . . , zn.
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v1
v2

v5

v3 v4

v1
v2

v5

v3 v4

Figure 31: If 4 points of the triangulation are cocyclic (here v1, v2, v3, v4), there are
two choices for the Delaunay triangulation: if one flips the edge (v2, v4) (left hand side)
into (v1, v3) (right hand side), the graph remains a Delaunay triangulation.

6.2 Metric associated to a Delaunay triangulation

In the view of quantum gravity, a triangulation of the sphere of size n and its embedding

represent an instance of a “discretized” metric. This discretized metric associated

to a triangulation can be defined in various ways, one is discussed here. The term

“discretized” used here does not mean that the metric must have discrete values on

the triangulation. It means that it is defined on a discretized surface (a triangulation

of size n), rendering the space of functions defined on this surface of finite dimension.

Let us take n ≥ 3.

To any Delaunay triangulation T̃ with n points on the complex plane, we can associate

an explicit surface S with constant negative curvature and n punctures as follows. Let

H3 = C×R∗+ be the upper half-space above C, with coordinates (z, h) embodied with

the Poincaré metric ds2 = (dzdz + dh2)/h2. It makes H3 the 3-dimensional hyperbolic

space, with C∪{∞} its asymptotic boundary at infinity. Consider a triangle f123 with

vertices (1, 2, 3) (in counter clockwise order) with complex coordinates (z1, z2, z3) in C.

Let B123 be the hemisphere in H3 whose center is the center of the circumcircle of f123

(in C), and which contains the points (1, 2, 3). B123, embodied with the restriction of

the Poincaré metric ds2 of H3, is isometric to the 2 dimensional hyperbolic disk H2.

Let L12 be the intersection of B123 with the half plane orthogonal to C which contains

the points 1 and 2, this is a semicircle orthogonal to C. With a similar definition for

(23) and (31), the semicircles L12, L23 and L31 delimit a spherical triangle S123 on the

hemisphere in H3. The semicircles L12, L23 and L31 are geodesics in H3, hence in B123,

so that S123 is an ideal triangle in H2. S123 is nothing but the face (123) of the ideal
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Figure 32: A triangle f = (1, 2, 3) (left) and the associated ideal spherical triangle S123

in H3 (right).

tetraedra (z1, z2, z3,∞) in H3, see figure 32.

Now consider a Delaunay triangulation T̃ in the plane, with n points, and with one

point at infinity for simplicity. The union of the ideal spherical triangles Sf associated

to the faces f of T̃ form surface S in H3

S =
⋃

f∈F(T )

Sf (6.9)

See figure 33. The surface S embodied with the restriction of the Poincaré metric of

H3, is a constant negative curvature surface. Indeed since the triangles Sf are glued

along geodesics, no curvature is localized along the edges of these triangles. It is easy

to see that the endpoints zi of the triangulations are puncture curvature singularities

of S, i.e. points where the metric can be written (in local conformal coordinates with

the puncture at the origin)

ds2 =
dwdw

|w|2| log(1/|w|)|2 (6.10)

Through the orthogonal projection from S to the plane C, the metric in each Sf
become the standard Beltrami-Cayley-Klein hyperbolic metric in the triangle f . We

recall that it is defined in the unit disk D2 = {z; |z| < 1} in radial coordinates as

ds2
B. =

dr2 + r2dθ2

(1− r2)
+

(r dr)2

(1− r2)2
(6.11)

that it is not conformal, and is such that geodesics are straight lines in the disk. This

is an example of continuous metrics defined by a triangulation, which has singularities

at the vertices. It will be used to prove the link between the measure on the set
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Figure 33: A triangulation and the associated punctured surface

of Delaunay triangulations, and the Weil-Petersson volume form on a moduli space.

Having this natural metric allows also to define a natural distance on the dual of a

Delaunay triangulation. This is discussed in section 6.4.

6.3 Measure on the Delaunay triangulations

Each discretized metric of size n – associated to a triangulation of size n – has a

probability of apparition. Actually, the set of admissible flat Euclidean triangulations

of size n has dimension 2n− 6, so we must give a probability distribution to the set of

triangulations. This is the meaning of the measure dν we put on T̃ fn . As there are two

approaches to describe the Delaunay triangulations, there are two equivalent measures

dν and dν̃ on T̃ fn and Dn respectively, according to which approach we use.

Following the works of David and Eynard [David and Eynard, 2014], the measure on

the set T̃ fn is given by:

dνn(T̃ ) = dνn(T, θ) = uniform(T )
∏

e∈E(T )

dθ(e)
∏

v∈V(T )

δ
(∑

e7→v
θ(e)−2π

) ∏

C?
Θ
(∑

e⊥C?
θ(e)−2π

)

(6.12)

where, Θ(x) =

{
1 if x ≥ 0

0 if x < 0
is the Heaviside function, and the notation e→ v means

that the sum runs over the edges adjacent to vertex v. It is the flat Lebesgue measure

on the admissible flat Euclidean triangulations. When expressed in terms of the con-

figurations of points in Dn, this measure is not the Lebesgue measure on Cn−3, but it
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rather writes:

dνn(T, θ) = dν̃n(z) = DT{i,j,k}(z)
n∏

v=1
v 6=i,j,k

d2zv, (6.13)

where DT{i,j,k}(z) is the Jacobian to switch from the variables θ(e) to the points zv of

the embedding. The Jacobian depends on the structure of the triangulation T , hence

the superscript ; and it depends on which points are fixed by a Möbius transform.

Here, we consider that the points zi, zj, zk are kept fixed, this is why the subscript is

{i, j, k}.
The volume of T̃ fn computed with the measure dνn is finite, as it is bounded by π3n−6×
|Tn|, where the number of triangulations |Tn| is finite, so the measure dνn enables us

to endorse T̃ fn with a probability distribution. Let us note V D
n =

∫
T̃ fn dνn(T, θ) the

volume of the set of admissible flat Euclidean triangulations of size n. The probability

distribution of a triangulation T̃0 = (T0, θ0) ∈ T̃ fn is given by dνn(T̃0)
V D
n

.

Let us stress the fact that, for fixed n, the measure dνn(T, θ) is admissible. Indeed, for

a given triangulation, if one integrates the volume dνn over the configurations of the

parameters θ(e), it is obvious that:

∫

T fixed

dνn(T, θ) ≤ uniform(T ) π2n−6. (6.14)

As the number of simple triangulations of size n is finite, the volume of Delaunay

triangulations measured with dνn is finite. Hence, the measure dνn is admissible.

6.4 Study of the measure

This chapter is dedicated to the study of the measures dνn(T, θ) = dν̃n(z). Along

the computations we carry out, we may switch from one representation to another,

according to their convenience. The study carried out here has two sides. On the one

hand, we study the measure for n fixed, in order to relate it to a well-known formalism,

which is the Weil-Petersson measure on the moduli space M0,n of Riemann surfaces.

This result allows to compute explicitly the volume of T̃ fn , and correlation functions

of the Delaunay triangulations that depend only on the topology (and not on metric

properties). On the other hand, the study addresses the properties of the measures

when n changes. The ultimate goal is to study the continuous limit of the model, that

is to say the limit n → ∞ in one of the meanings given in the introduction. Since we

saw two mathematical meanings for the concept of “continuous limit”, let us briefly

discuss those meanings in order to defuse the possible confusion.
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Random metrics: One may first consider our model as a model of random Rieman-

nian metrics on the plane. Indeed, if one looks at a configuration of distinct points

{z1, . . . , zn} on the Riemann sphere and adds progressively points zn+1, zn+2, . . . , we

have seen in section 6.2 that at each step, one can embody each triangle of the De-

launay triangulation with its natural Beltrami hyperbolic metric. This will happen to

be a useful tool to prove the relation with Weil Petersson measure. It gives a global

metric which is hyperbolic but has puncture singularities at the points zi (see equation

6.10). Since the punctures are at infinite distances, and the metric is not compact,

there is clearly no hope, even with an ad hoc rescaling of the metric, that the space of

triangulations equipped with the Beltrami metric has a limit in the Gromov-Hausdorff

sense when n→∞.

However, in order to have a chance of convergence and by analogy with the random

planar map model, one may rather consider random discrete metrics spaces constructed

from the random triangulations. Here is an eligible example of discrete metric space as-

sociated to a Delaunay triangulation and using the Beltrami metric defined previously.

Consider the random Voronöı graph T ?, dual to the random Delaunay triangulation T ,

whose vertices are the centers (with coordinates ωf ) of the circumcircles to the faces

(the triangles) f of the triangulation T . An edge e? = (ωf , ωf ′) of T ? is dual to an

edge of T , since it is the straight segment between the centers of two faces f and f ′

adjacents to an edge e = (zv1 , zv2) of T (with the notations of figure 26). This dual

edge e? is in fact a geodesic in the global hyperbolic Beltrami metric, with length

`(e?) =
1

2
log

(
(1 + sin(θm))(1 + sin(θs))

(1− sin(θm))(1− sin(θs))

)
(6.15)

where θm = Arg((wf − zv1)/(zv2 − zv1)) is the angle between the vectors (v1, v2) and

(v1, f) while θs = Arg((zv2 − zv1)/wf ′ − zv1)) is the angle between the vectors (v1, f
′)

and (v1, v2). This defines a distance function dT ? on the Voronöı graph T ?, and this

mapping T ? → dT ? is continuous on the space of Delaunay triangulations with n

points, since it is continuons when one performs a flip. Indeed an edge e is flipped if

θ(e) = θm+θs = 0, hence when l(e?) = 0. The distance is defined between two vertices

ω1, ω2 ∈ V(T ∗) by the first passage percolation distance:

dT ∗(ω1, ω2) = min
γ path inT ∗

∑

e∗∈E(γ)

l(e∗), (6.16)

where the paths γ join the vertices ω1 and ω2. Other natural choices of edge lengths

can be done for Delaunay triangulations. For instance, one can assign to an edge e∗

the length:

`(e∗) = θ(e), (6.17)
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defining this way another first passage percolation distance d′T ∗ . The mapping T ∗ →
dT ∗ is still continuous on the space of Delaunay triangulations with n points, since an

edge e is flipped when θ(e) = `(e∗) = 0. A natural conjecture, is that for those metric

spaces (for the distances dT ∗ and d′T ∗), the large n limit makes sense and is in the same

universality class as the random planar map model, namely that (T ?, n−1/4dT ?), consid-

ered as a random (discrete) metric space, converges in the Gromov-Hausdorff sense to-

wards the Brownian map as in LeGall [Le Gall, 2013] and Miermont [Miermont, 2013].

However, this is not the convergence we are tackling in this chapter. We mention those

natural discrete metrics for future developments.

Random (conformal) measures: Secondly, one may rather consider our model as

a model of random measures on the plane, to study the convergence as probability

space. This is the point of view developed in the introduction, that we use in this

work, and this is the one relevant when discussing the relation between the continuum

limit of our model, or of random maps, with the Liouville quantum gravity. Indeed, in

the Liouville theory the Liouville field φL defines by its exponential exp(γφL) random

measures with fascinating multifractal properties linked to multiplicative chaos theory

(see for instance [David et al., 2015] and references therein), and conformal invariance.

It is for instance expected that the moments of the local density of points ρ(z)β are

related to the local vertex operators exp(αφL(z)) in the Liouville theory.

For the rest of the chapter, we suppose that n ≥ 3, so that the notion of De-

launay triangulation is well-defined, and so that the group of automorphisms of

(C; {z1, . . . , zn}) is finite.

6.5 Known results

The results presented in this chapter are a continuation of the work of David and

Eynard. They showed several properties of the measures dνn, dν̃n, that are useful in

the proof of our results. We present them in this section, all the following theorems are

from their article [David and Eynard, 2014]. The size of the triangulations is supposed

to be greater than 3. The first three results concern the measure dν̃n, that is to say the

Delaunay triangulations viewed from configurations of points, whereas the last result

deals with the angular form of the measure dνn.

First, we define the hyperbolic volume of the face and the prepotential. AT (z).

Definition 6.2. For a triangle f with (counter clockwise oriented) vertices (za, zb, zc),

the hyperbolic volume Vol(f) in the hyperbolic upper half space H3 of the ideal tetraedron
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with vertices (za, zb, zc,∞) on its boundary (see figure 32) is given by:

Vol(f) = ImLi2

(
zc − za
zb − za

)
+ ln

∣∣∣∣
zc − za
zb − za

∣∣∣∣Arg

(
zc − zb

za − zb

)
. (6.18)

For a triangulation T of the points z = {z1, . . . , zn}, the prepotential AT (z) is the sum

of the hyperbolic volumes associated to the faces:

AT (z) = −
∑

f∈F(T )

Vol(f). (6.19)

The prepotential is then the hyperbolic volume of the domain located above the

surface S defined in equation 6.9 from the triangulation T . The reason for the calling

AT the prepotential comes from the following theorem, showing that the measure on

the triangulations is a Kähler measure with prepotential AT .

Theorem 6.2. The measure dνn(T, θ) = dνn(z) on Dn is a Kähler measure of the

local form

dν̃n(z) = 2n−3 det
[
D{i,j,k}(T )

] n∏

v=1
v 6=i,j,k

d2zv (6.20)

where D{i,j,k} is the restriction to the n−3 lines and columns u, v ∈ {1, . . . , n}\{i, j, k}
of the Kähler metric on Cn:

Du,v(z) =
∂

∂zu

∂

∂zv
AT (z). (6.21)

As a side remark, this theorem relates the jacobian DT{i,j,k} to the prepotential AT
which implies the dilogarithm. This special function already appeared in the functional

allowing to embed the triangulation in the plane, so this function is central in the study

of Delaunay triangulations.

Note that the Kähler metric D is also defined for generic triangulations (not necessarily

Delaunay). The three following results show properties for generic triangulations. The

Kähler metric can be expressed in terms of the matrices A and E:

Theorem 6.3.

D =
1

4i
AEA† (6.22)

with A the n× 3(n− 2) vertex-edge matrix

Aue =

{
1

zu−zu′
if u is an end point of the edge e = (u, u′) of T ,

0 otherwise.
(6.23)

and E the 3(n− 2)× 3(n− 2) antisymmetric matrix

Eee′ =





+1 if e and e′ consecutive edges of a face f , in c.w. order,

−1 if e and e′ consecutive edges of a face f , in c.c.w. order,

0 otherwise.

(6.24)
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Figure 34: The red edges form a basis of edges of a triangulation of size 16. Their
complementary (black edges) form a cycle-rooted spanning tree of the triangulation.
The cycle is of length 3, and the cycle-rooted spanning tree has 16 edges.

The Kähler metric D is positive:

Lemma 6.1. If the faces of a planar triangulation T are all positively oriented, the

Hermitian for Du,v(T ) is positive.

The Jacobian DT{i,j,k} depends on the three points zi, zj, zk chosen to be kept fixed,

but the following lemma shows a covariance property with respect to the choice of the

3 points.

Lemma 6.2. The quantity

DT{i,j,k}
|∆3(i, j, k)|2

,

with ∆3(i, j, k) = (zi − zj)(zi − zk)(zj − zk), is independent of the choice of the three

fixed points {zi, zj, zk}.

It allows to change the three fixed points in a computation. For the last result,

we switch to the other viewpoint for the measure. It allows the delta functions to get

rid-off the measure.

Definition 6.3. Given a triangulation T ∈ Tn, a cycle-rooted spanning tree of T is a

subgraph of T which contains all the vertices of T , and has n edges. It necessarily has

a cycle. A set E0 ⊂ E(T ) of 2n− 6 edges is a basis if its complementary E(T )\E0 is a

cycle-rooted spanning tree of the triangulation T , where the cycle is of odd-length.

For a same triangulation, several basis of edges exist. An example is shown in figure

34.
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Theorem 6.4. Let T ∈ Tn be a triangulation of size n, and note E0 a basis of edges.

In the cell T̃ fn (T ) ⊂ T̃ fn , the measure can be written in this ways:

dνn(T, θ) =
1

2
uniform(T )

∏

e∈E′
dθ(e). (6.25)

In particular, it is independent of the choice of basis E0.

This theorem will be useful for the simple case of a Delaunay triangulation of size

4.

7 Relation with Weil-Petersson metric

As was mentioned in previous section, David and Eynard [David and Eynard, 2014]

showed that the flat measure on Delaunay triangulations can be expressed in terms

of a Kähler metric D, defined in equation 6.21. We showed with David and Eynard

[II] that this very Kähler metric D is related to the Weil-Petersson metric on the

moduli space of decorated punctured surfaces. Hence, this result allows to use the

known results on Weil-Petersson metric to study the model of Delaunay triangulations

presented in the previous section. In the reverse manner, it also furnishes another way

to realize the Weil-Petersson in a random map model. We first present briefly the

moduli space of punctured surfaces decorated with horospheres, and give a formula for

the Weil-Petersson 2-form ΩW P . Then, we relate the latter to a 2-form defined from

the Kähler metric D. Last, we discuss the consequences of this relation.

7.1 Moduli space of decorated punctured surfaces

We briefly present the moduli space of marked Riemann surfaces, which will be useful

in next chapter too, and Teichmüller space of marked surfaces. Then we decorate this

moduli space with λ-lengths, and relate it to the Weil-Petersson measure on the moduli

space.

Let Mg,n be the moduli space of compact Riemann surfaces of genus g, with n

distinct marked points:

Mg,n = {(Σg, p1, . . . , pn)}/Iso (7.1)

where Σg is a Riemann surface of genus g and p1, . . . , pn are n distinct and la-

beled marked points on Σg. Two marked Riemann surfaces (Σg, p1, . . . , pn) and

(Σ̃g, p̃1, . . . , p̃n) are isomorphic iff there exists an analytic bijection ϕ (whose inverse
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ϕ−1 is also analytic) that maps one to the other, respecting the marked points:





ϕ : Σg → Σ̃g analytic bijection

ϕ−1 : Σ̃g → Σg analytic

∀i ∈ {1, . . . , n} ϕ(pi) = p̃i.

(7.2)

In this case the marked surfaces are equivalent: (Σg, p1, . . . , pn) ∼ (Σ̃g, p̃1, . . . , p̃n), and

in the moduli space Mg,n, they are identified. The points of Mg,n are equivalence

classes of marked Riemann surfaces, that are quotiented by the group of automor-

phisms (isomorphisms of (Σg, p1, . . . , pn) onto itself). For instance, the identity is an

automorphism. Therefore, the spaceMg,n is an orbifold (locally a manifold quotiented

by a group). It is well defined if its elements have finite automorphism groups ; in this

case the elements are called stable marked surfaces. The following examples show an

example of an unstable surface and two examples of stable surface.

Example 7.1. Let (Σ0, p1, p2) be a Riemann surface of genus 0 with two distinct

marked points. By Riemann uniformization theorem, Σ0 is isomorphic to the Riemann

sphere , i.e. the complex plane compactified by adding a point at ∞, and this is also

the complex projective line, we write it

C = C ∪ {∞} = CP 1. (7.3)

Therefore, (Σ0, p1, p2) ∼ (C, z1, z2). By the isomorphism z 7→ z−z1
(z−z1)

(
1+ 1

z1−z2

)
+1

, we even

have (Σ0, p1, p2) ∼ (C, 0, 1). The automorphisms of the Riemann sphere are Möbius

transformations z → (az + b)/(cz + d) with ad − bc = 1. The automorphisms of the

Riemann sphere with two marked points 0, 1 are Möbius transformations that have 0

and 1 as fixed points. They take the form z 7→ z
z(1−d)+d

, ∀d ∈ C∗. This group is cleary

infinite, so genus 0 surfaces with 2 marked points are unstable.

Example 7.2. If one considers a the Riemann sphere with n ≥ 3 distinct marked points

(C, z1, . . . , zn), then there is a unique Möbius transformation which maps z1, z2, z3 to

respectively 0, 1, ∞. Therefore, (C, z1, . . . , zn) ∼ (C, 0, 1,∞, p4, . . . , pn). The automor-

phisms of (C, 0, 1,∞, p4, . . . , pn) are Möbius transformations that must leave 0, 1,∞
unchanged, so the only automorphism of this marked sphere is the identity, so it is

stable.

The moduli space of genus 0 compact Riemann surfaces with n ≥ 3 marked points has

the following description:

M0,n = {(C, 0, 1,∞, p4, . . . , pn)|pi 6= pj, 0, 1,∞}. (7.4)

So dimR(M0,n) = 2(n− 3).
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Example 7.3. Let Σg be an unmarked genus g surface, with g ≥ 2. By Hurwitz’s

automorphism theorem:

|Aut(Σg)| ≤ 84(g − 1), (7.5)

so any surface of genus g ≥ 2 is stable.

More generally, marked Riemann surfaces (Σg, p1, . . . , pn) are stable if 2−2g−n < 0

(it is its Euler characteristic). For 2−2g−n < 0, the orbifoldMg,n has real dimension

dimRMg,n = 2(3g − 3 + n). (7.6)

This means that it can be parametrized (locally) by 2(3g − 3 + n) real parameters, or

also by 3g − 3 + n complex parameters.

Last, we will compute volumes of moduli spaces, so we need compact spaces. To do so,

we use Deligne-Mumford compactification (see [Deligne and Mumford, 1969]), which,

by adding nodal surfaces to the moduli spaces Mg,n, is a procedure giving compact

moduli spaces Mg,n.

Another useful space is the Teichmüller space of marked surfaces, defined as follows.

Let Σg be a compact Riemann surface of genus g, and P = {p1, . . . , pn} ⊂ Σg be a set

of n distinct points in Σg. Let ϕ1, ϕ2 be two diffeomorphisms: ϕi : (Σg, P )→ (Ξi, Qi),

where Ξi are 2 Riemann surfaces and Qi ⊂ Ξi are marked points on those surfaces. ϕ1

and ϕ2 are said equivalent ϕ1 ≈ ϕ2 if there exists a biholomorphic map Φ : (Ξ1, Q1)↔
(Ξ2, Q2) such that Φ ◦ ϕ1 is isotopic to ϕ2, and where the diffeomorphisms preserve

the set P (they can permute the points of P ). Then the Teichmüller space TΣg ,P of

a marked surfaces of genus g is composed of equivalence classes of diffeomorphisms.

Equivalently, it is the equivalence classes of hyperbolic structures on (Σg, P ):

TΣg ,P = {ϕ : (Σg, P )→ (Ξ, Q)}/ ≈
= {Hyperbolic structures on (Σg, P )}/ ≈ . (7.7)

The Teichmüller space TΣg ,{p1,...,pn} of marked surfaces is related to the mod-

uli space Mg,n of marked Riemann surfaces thanks to the mapping class group

MC(Σg, {p1, . . . , pn}), which is the group of isotopy classes of orientation-preserving

homeomorphisms of (Σg, {p1, . . . , pn}). Then we have the following:

Mg,n = TΣg ,{p1,...,pn}/MC(Σg, {p1, . . . , pn}). (7.8)

The Teichmüller space of marked surfaces is the universal cover of the moduli space of

Riemann surfaces.

Example 7.4. For compact genus 0 surfaces, the mapping class group of

(Σ0, {p1, . . . , pn}) is the group of permutations Sn of the marked points, so

M0,n = TΣ0,{p1,...,pn}/Sn.
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Once those concepts are introduced, we relate them to our problem of Delaunay

triangulations. We saw in section 6.2 that each Delaunay triangulation – modulo

PSL(2,C) transformations – gives explicitly a surface with constant negative curvature.

So each Delaunay triangulation of size n represents a point in the moduli spaceM0,n.

We want to compare the measure of Delaunay triangulations with a measure on moduli

space of surfaces. To do so, we relate our Delaunay triangulations with decorated

Teichmüller and moduli.Those are not decorated yet, in the sense that a point in

Mg,n is simply a punctured surface. Following [Penner, 1987], we decorate surfaces

by supplementing each puncture v by a horocycle hv, i.e. a closed curve orthogonal

to the geodesics emanating from v (in the constant curvature metric). Horocycles are

uniquely characterized by their length `v. The moduli space of decorated punctured

surfaces is simply

M̃g,n =Mg,n ⊗ R⊗v+ (7.9)

A geodesic triangulation T of the abstract surface S is a triangulation such that the

edges are (infinite length) geodesics joining the punctures, and the triangles are oriented

counter clockwise (and non-overlapping). For a decorated surface S̃, for any geodesics

e joining two punctures u and v (generically one may have u = v), its λ-length Λe(u, v)

is defined from the (finite, algebraically defined) geodesic distance de(u
′, v′) along e

between the intersections u′ and v′ of e with the horocycles hu and hv by

Λe(u, v) = exp(de(u
′, v′)/2) (7.10)

For a given triangulation T (of a genus g surface with n punctures), it is known that

the set of the independent λ-lengths Λe ∈ R+ for the 6g + 3n − 6 edges of T provide

a complete set of coordinates for the decorated Teichmüller space T̃Σg ,{p1,...,pn}. This

parametrization is independent of the choice of triangulation, thanks to the Ptolemy’s

relations between lambda-lengths when one passes from a triangulation T to another

one T′ through a flip similar to the ones of figure 54, namely

Λ13Λ24 = Λ12Λ34 + Λ14Λ23 (7.11)

In this parametrization, the so-called Weil-Petersson 2-form on Mg,n (through its

projection from T̃Σg ,{p1,...,pn}) can be written simply as a sum over the 2(2g + n + 2)

oriented faces (triangles) f of T, as

ΩWP = −2
∑

faces f

d log(Λ12)∧ d log(Λ23) + d log(Λ23)∧ d log(Λ31) + d log(Λ31)∧ d log(Λ12)

(7.12)

where (1,2,3) denote the vertices (punctures) v1(f), v2(f) and v3(f) (here in counter

clockwise order) of the geodesic triangle f of T, and the Λij denote the λ-length of the

edges of the triangle.
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Figure 35: The punctured surface decorated with horospheres. Although this 3d rep-
resentation looks non smooth at the edges, the intrinsic metric of the surface is indeed
a smooth constant curvature metric.

In order to compare the 2-form ΩWP to a 2-form defined from a Delaunay triangu-

lation, one simply has to look at horocycles and λ-lengths in Delaunay triangulations.

We have an explicit representation of a point in M0,n as the constant curvature sur-

face S in H3 constructed above the Delaunay triangulation T for the set of points

z = {zi}i=1,n in the complex plane. Horocycles are easily constructed by decorating

each point (puncture) zi by a horosphere Hi, i.e. an Euclidean sphere in R3, tangent to

the complex place C at the point zi, and lying above zi (i.e. in H3). The intersection

(in H3) of the horosphere Hi with the union of the ideal spherical triangles Sf for the

faces f which share the vertex i defines the horocircle hi associated to the puncture i

of S. It is depicted in figure 35.

Let Ri denote the Euclidean radius of the horosphere Hi above vertex i. The λ-

length for the edge joining two vertices (i, j) of the triangulation is easily calculated

(applying for instance the formula in the Poincaré half-plane in 2 dimensions) and is

Λ(i, j) =
|zi − zj|√

4RiRj

(7.13)

where |zi− zj| is the Euclidean distance between the points i and j in the plane C. See

figure 36.
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Figure 36: The geodesics between the horospheres H1 and H2 at points 1 and 2.

Incorporating this into 7.12, the Weil-Petersson 2-form 7.12 the takes the form:

ΩWP =
∑

f

d |z1 − z2]

|z1 − z2|
∧ d |z2 − z3]

|z2 − z3|
+
d |z2 − z3]

|z2 − z3|
∧ d |z3 − z1]

|z3 − z1|
+
d |z3 − z1]

|z3 − z1|
∧ d |z1 − z2]

|z1 − z2|
(7.14)

Let us remark that, although this formula refers to a given geodesic triangulation, the

resulting 2-form ΩWP is known to be independent of the triangulation through the

Ptolemy’s relation. This 2-form is related to a 2-form associated to the Kähler metric

of Delaunay triangulations, as shown in next section.

7.2 Kähler metric and Weil-Petersson 2-form

The set of Delaunay triangulations allows to define the Delaunay Kähler 2-form:

ΩD .(z) =
1

2i
dzu ∧ dzvDu,v(z), (7.15)

where the Kähler metric D was defined in equation 6.21. Let us note that ΩD . is

continuous across flips, so it is continuous on T̃ fn . We show the following result:

Theorem 7.1.

ΩD . =
1

2
ΩWP (7.16)

Proof. We use theorem 6.3 of David and Eynard [David and Eynard, 2014] to express

the matrix D in the following form:

D =
1

4i
AEA†. (7.17)

With this factorization, the 2-form ΩD . takes a simple form, as a sum over faces (trian-

gles) f of T . Let us denote (f1, f2, f3) the vertices of a triangle f , in counter clockwise

order (this is defined up to a cyclic permutation of the 3 vertices).

ΩD .(z) =
∑

faces f

ωD.(zf1 , zf2 , zf3) (7.18)
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with, for a face f with vertices labelled (1, 2, 3) (for simplicity), and denoting zij =

zj − zi

ωD.(z1, z2, z3) =
1

8




d log(z23) ∧ d log(z31) + d log(z23) ∧ d log(z31)
+ d log(z31) ∧ d log(z12) + d log(z31) ∧ d log(z12)
+ d log(z12) ∧ d log(z23) + d log(z12) ∧ d log(z23)


 (7.19)

Reexpressed in term of the log of the modulus and of the argument of the zij’s

λij = log(|zj − zi)| , ϑij = arg(zj − zi) (7.20)

we obtain

ωD. = ωlength + ωangle (7.21)

with the length contribution

ωlength =
1

4
(d λ12 ∧ d λ23 + d λ23 ∧ d λ31 + d λ31 ∧ d λ12) (7.22)

and the angle contribution

ωangle =
1

4
(d ϑ12 ∧ d ϑ23 + d ϑ23 ∧ d ϑ31 + d ϑ31 ∧ d ϑ12) (7.23)

Reexpressed in terms of the angles α1, α2 and α3 of the triangle (1, 2, 3) (using α1 =

ϑ13 − ϑ12, etc.), and using α1 + α2 + α3 = π, one has

ωangle =
1

4
(dα1 ∧ dα2) =

1

4
(dα2 ∧ dα3) =

1

4
(dα3 ∧ dα1) (7.24)

Using the triangle relation

sin(α1)

exp(λ23)
=

sin(α2)

exp(λ31)
=

sin(α3)

exp(λ12)
(7.25)

one gets

dα1 cotα1 − dλ23 =dα2 cotα2 − dλ31 = dα3 cotα3 − dλ12

= (dα1 + dα2)
cotα1 cotα2 − 1

cotα1 + cotα2

− dλ12 (7.26)

which gives

dα1 =
csc2 α2

cotα1 + cotα2

(dλ23 − dλ12) +
cotα1 cotα2 − 1

cotα1 + cotα2

(dλ31 − dλ12) (7.27)

dα2 =
cotα1 cotα2 − 1

cotα1 + cotα2

(dλ23 − dλ12) +
csc2 α1

cotα1 + cotα2

(dλ31 − dλ12) (7.28)

which implies

dα1 ∧ dα2 = d λ12 ∧ d λ23 + d λ23 ∧ d λ31 + d λ31 ∧ d λ12 (7.29)
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Hence ωangle = ωlength. Therefore one has

ωD. =
1

2
(d λ12 ∧ d λ23 + d λ23 ∧ d λ31 + d λ31 ∧ d λ12). (7.30)

This means that the Delaunay Kähler 2-form has the following expression:

ΩD. =
1

2

∑

f∈F(T )

d |z1 − z2]

|z1 − z2|
∧d |z2 − z3]

|z2 − z3|
+
d |z2 − z3]

|z2 − z3|
∧d |z3 − z1]

|z3 − z1|
+
d |z3 − z1]

|z3 − z1|
∧d |z1 − z2]

|z1 − z2|
.

(7.31)

This shows the theorem 7.1 of this section:

ΩD. =
1

2
ΩWP. (7.32)

7.3 Consequences

This identity between the Weil-Petersson form and our form on the space of random

triangulations shows that the random Delaunay triangulation model is equivalent to

the more abstract topological Witten-Kontsevich intersection theory based on the Weil-

Petersson measure on moduli spaces. The Weil-Petersson volume form dνWP
n on M0,n

is a 2n− 6 form, and is given by:

dνWP
n =

1

(n− 3)!
Ωn−3

WP . (7.33)

Then, the Weil-Petersson volume of the moduli space M0,n of Riemann surfaces of

genus 0 with n punctures is

VolWP

(
M0,n

)
=

∫

M0,n

1

(n− 3)!
Ωn−3

WP . (7.34)

By theorem 6.2 of David and Eynard, the measure dν̃n(z) can in turn be expressed in

terms of the two-form ΩD :

dν̃n(z) =
2n−3

(n− 3)!
Ωn−3

D . (7.35)

Therefore, the previous result shows that the two following volumes are actually equal:

V D
n = VolWP

(
M0,n

)
. (7.36)

The total Weil-Petersson volume of the Mg,n was computed by Zograf, Kauf-

mann, Manin, Zagier, and finally by Mirzakhani for all genera ([Zograf, 1993]

[Kaufmann et al., 1996], [Manin and Zograf, 2000]). It behaves for large n as

VolWP

(
Mg,n

)
= Cn n(5g−7)/2 (ag +O(1/n)) (7.37)
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C and the ag are known positive constants. Note that we omit the n! factor in the

explicit result of Mirzakhani [Manin and Zograf, 2000]). This factor comes from the

labelling of the punctures, while in our model the punctures are unlabelled. For planar

Delaunay triangulations, we shall take g = 0 and mutiply by 2−n+3. This result, in

particular the explicit form of the “string exposent” (5g − 7)/2 which is the same as

for random maps, shows that the Random Delaunay model is in the universality class

of pure two-dimensional gravity (Liouville theory with γ =
√

8/3 and cmatter = 0).

For finite n, the volume VolWP

(
M0,n

)
is given in the same references. We shall come

back to those volumes in next chapter when we will compare the features of Delaunay

triangulations volumes to the Strebel graph volumes (see section 13.2).

Apart from the volumes of the sets T̃ fn , the identification of Delaunay triangulations

with the Witten-Kontsevich intersection theory based allows to compute explicitly

other generating functions on Delaunay triangulations, that are topological in the sense

that they do not depend on the metric associated to a triangulation (whether it be

a discrete metric or the Beltrami metric). Those accessible topological generating

functions ZD
n,k(Θ1, . . . ,Θk) are briefly discussed in section 13 of next chapter, and are

defined by analogy to the generating functions of Strebel graphs.

Note that it is possible to generalize the random Delaunay model from the planar

case (genus g = 0) to the higher genus g > 0 case. Since the identification 7.32 between

the Delaunay Kähler form and the Weil-Petersson form is local, it should also be valid

for the g > 0 case. As it was visible in equation 7.37, the higher genera volumes are also

known, and this makes the identification of the 2-forms an effective tools to compute

volumes of Delaunay triangulations of any genus g.

Therefore, this identification of the measures shows very effective to compute gen-

erating functions and extend the model of Delaunay triangulations. However, is the

study of Delaunay triangulations in the frame of quantum gravity worth to be con-

tinued if it seems contained in the Witten-Kontsevich intersection theory ? Actually,

the random Delaunay model remains an interesting model of random two-dimensional

geometry since it is an explicit model of a global conformal mapping of an abstract

(or intrinsic) but continuous two-dimensional geometry model onto the complex plane.

This mapping through Delaunay triangulations is different, and somehow simpler, than

the general mapping provided by the Riemann uniformization theorem, which is usually

considered. Indeed a local modification of the position of one vertex of the triangula-

tion translates in a local modification of the associated Kähler form, since the Kähler

potential AT given by 6.19 is a sum over local terms (the hyperbolic volumes V(f) of

the triangles). This is not the case for the uniformization mapping, which leads to a

global Kähler potential (a classical Liouville action).

75



Therefore the model discussed here should allow to study the local properties of

the conformal mapping of a random metric onto the plane, as we shall see in the next

section where two preliminary local results are presented.

8 Local properties of the measure

In the previous part, we showed that the measure dνn = dν̃n(z) on T̃ fn can be expressed

locally in terms of the Weil-Petersson measure on M0,n. Although this result allows

to compute various correlation functions such as the volume of T̃ fn , the study of finer

observables (which depend on the metrics) is out of the reach of Weil-Petersson mea-

sure. In order to get more effective tools to study the convergence of the correlations

functions (moments and cumulants) for this random measure in the complex plane

(defined from Delaunay triangulations), it is necessary to know the local properties of

this random measure, considered as a random point process in C. In this section we

present two first results on the properties of this measure.

8.1 Maximality property over the Delaunay triangulations

Looking at the measure dν̃n(z) on Dn (the space of distributions of n points on the

Riemann sphere), theorem 6.20 gives

dν̃n(z) = 2n−3 det
[
D{1,2,3}(z)

] n∏

v=4

d2zv,

where, implicitely, the Kähler metric D is defined from the Delaunay triangulation TD

of the points {z1, . . . , zn}. However, for a generic triangulation T of those points, the

Kähler metric D(T ) is still well defined. A question on can legitimately ask is wether

the Kähler metric has special properties when it is defined on Delaunay triangulations

rather than generic ones. We prove here two properties on the metric when one varies

the structure of the triangulations. The second one shows that, indeed, Delaunay

triangulations are special for the Kähler metric. We use a short-hand notation in this

section:

d(ijk)(T ) = det
[
D{i,j,k}(T )

]
. (8.1)

In order to compare the metric of a generic triangulation T with the metric of a

Delaunay triangulation TD, we use the Lawson Flip Algorithm described in section

6.1.2. With this algorithm, two successive triangulation differ by an edge flip (see

figure 37). A preliminary result concerns the variation of d(ijk)(T ) when T undergoes

a Lawson flip. The final triangulation is called T ′. With the notations of figure 37,
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Figure 37: Lawson flip, the illegal edge (13) is flipped.

we consider that the edge (z1, z3) is flipped into (z2, z4), and note this flip T
(13)−−→
(24)

T ′.

Through this flip the Kähler metric changes according to this lemma:

Lemma 8.1. Denote f the triangle (124), and ωf , Rf respectively the center and the

radius of its circumcircle. Then

d(124)(T
′)−d(124)(T ) = det

[
D{1,2,3,4}(T )

]
×Area(f)

|z3 − ωf |2 −Rf
2

|z3 − z1|2 |z3 − z2|2 |z3 − z4|2
, (8.2)

where D{1,2,3,4} means that we restrict the matrix Du,v to the indices u, v 6= 1, 2, 3, 4,

and Area(f) is the Euclidean area of the triangle f .

Proof. The proof of this lemma is given in appendix C.

This preliminary result will appear useful to prove a maximality property specific

to Delaunay triangulations:

Theorem 8.1. Given n points z1, . . . , zn in C, their Delaunay triangulation TD(z) is

the one which maximizes d(ijk)(T ) among all possible triangulations T :

d(ijk)(T
D(z)) = max

T triangulation of z
d(ijk)(T ). (8.3)

Proof of the theorem 8.1. For the configuration of points {zv}, take a generic triangu-

lation T on this configuration, and note TD the Delaunay triangulation of those points.

We must prove that d(123)(T
D) ≥ d(123)(T ).

The proof relies on the Lawson Flip Algorithm (LFA) described in section 6.1.2. It

transforms the triangulation T into TD by a sequence of edge flip. At each step of the
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algorithm, the LFA applies a single edge flip. Note (Ti)0≤i≤k the sequence of successive

triangulations obtained by the LFA, with T0 = T and Tk = TD({zv}):

T0 = T
(b1c1)−−−→
(a1d1)

T1
(b2c2)−−−→
(a2d2)

. . .
(bkck)−−−→
(akdk)

Tk = TD({zv}). (8.4)

At each step, the illegal edge (bi, ci) is flipped into the edge (ai, di) (see figure 30 in

section 6.1.2). It follows that for the two new faces (ai, ci, di) and (ai, di, bi), their

circumcircles enclose respectively neither bi nor ci. We prove that:

d(ai,ci,di)(Ti+1)− d(ai,ci,di)(Ti) ≥ 0.

Indeed, from lemma 8.1, this difference yields:

d(ai,ci,di)(Ti)− d(ai,ci,di)(Ti−1) = det
[
D{ai,bi,ci,di}(Ti)

]
× Area(aicidi)×∣∣bi − ω(aicidi)

∣∣2 −R(aicidi)
2

|bi − ai|2 |bi − ci|2 |bi − di|2
. (8.5)

As all the faces are positively oriented (we enforce it in our notations), lemma 6.1 states

that the Hermitian for D(Ti) is positive, so the principal minors of D(Ti) are positive.

Therefore,

det
[
D{ai,bi,ci,di}(Ti)

]
≥ 0.

Then, the difference d(ai,ci,di)(Ti) − d(ai,ci,di)(Ti−1) is positive only if bi is outside the

circumcircle of (aicidi). Precisely, the flip was done in order to satisfy this condition.

So we have:

d(ai,ci,di)(Ti)− d(ai,ci,di)(Ti−1) ≥ 0. (8.6)

This is true at each step, and now, using the covariance property of the measure (see

lemma 6.2), we have:
d(123)

|∆3(1, 2, 3)|2 =
d(ijk)

|∆3(i, j, k)|2 . (8.7)

Therefore, inequality 8.6 can propagate along the steps:

d(123)(T
D)− d(123)(T ) =

k∑

i=1

[
d(123)(Ti)− d(123)(Ti−1)

]

= |∆3(1, 2, 3)|2
k∑

i=1

[
d(ai,ci,di)(Ti)− d(ai,ci,di)(Ti−1)

|∆3(ai, ci, di)|2
]

≥ 0.

This ends the proof.

The measure dν̃n(z) used is then maximal over the Delaunay triangulations.
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8.2 Growth of the volume

The second result relates to the n dependence of the total volume

V D
n =

∫

T̃ fn
dνn(T, θ)

=

∫

Dn

dν̃n(z). (8.8)

The space Dn of configurations of n distinct points modulo Möbius tranformations in

contained in Cn−3. As the set Cn−3\Dn is of measure 0 (with the measure dν̃n), we

can write:

V D
n =

∫

Cn−3

2n−3 det
[
D{1,2,3}(T

D({zv}))
] n∏

v=4

d2zv (8.9)

It is the volume of the space of Delaunay triangulations with n vertices with the

measure dν̃n(z). A lower bound of the growth of the volume when the number of

vertices increases is given by the following inequalities:

Theorem 8.2. If we add a n + 1’th point to a given triangulation and integrate over

its position, the following inequality holds:
∫

C
d2zn+1 det

[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

≥ (n− 2)
π2

8
det
[
D{1,2,3}(T

D({z1, . . . , zn}))
]

(8.10)

It implies the inequality for the total volumes

V D
n+1 ≥ (n− 2)

π2

8
V D
n . (8.11)

Before proving the theorem, let us stress that this growth property is global with

respect to the last point zn+1. The result gives more information than the inequality

8.11 on the volumes, which is of little interest once we know from last section that it

is a volume of Weil-Petersson. The inequality 8.10 is local in the variables z1, . . . , zn,

and this is the interesting feature for this result.

A similar inequality does not stand locally for the measure det
[
D{1,2,3}(TD({zv}))

]

when one adds a vertex at a fixed position to an existing Delaunay triangulation. This

has been checked numerically.

Proof. We first focus on the inequality 8.10. The proof follows the following procedure:

• Fix n points {z1, . . . , zn} in C, and note TD({zv}) the Delaunay triangulation

constructed on this configuration.
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• Pave the Riemann sphere with regions R(f) (defined bellow) associated with the

faces f of the triangulation.

• Then add a point zn+1 in C to this triangulation. Depending on the region

R(f) where it stands, transform the triangulation to include the new point and

compute the measure associated with this triangulation.

• Integrate over zn+1, find a lower bound on of the integral, and compare the result

with the measure associated with TD({z1, . . . , zn}).

For the Delaunay triangulation constructed over {z1, . . . zn}, the Riemann sphere

can be conformally paved with regions R(f) associated to each face in the following

way. Let us look at the edge e whose neighboring faces are f and f ′. The cir-

cumcircles of f and f ′ meet at the vertices located at the ends of e with an angle

θ′(e) = (π − θ(e)). Define Ce the arc of a circle joining the ends of e, and making an

angle θ′(e)/2 = (π − θ(e))/2 with each of the circumcircles of f and f ′ at the vertices

of e. See figure 38. The region R(f) is now defined as the domain enclosed in the three

arcs of a circle Ce1 , Ce2 , Ce3 corresponding to the three edges e1, e2, e3 surrounding f (see

figure 39). This domain is now transformed covariantly under a Möbius transformation.

We add the point zn+1 in the Riemann sphere. If zn+1 ∈ R(f), we construct

zd zb

za

zc

f

Cf′Cf

Ce

θ∗(e) θ∗(e)
2

Figure 38: Definition of the arc Ce.

the triangulation TDf ({z1, . . . , zn}, zn+1) by joining the vertex zn+1 to the vertices a,

b and c of the face f . The triangulation TDf ({z1, . . . , zn}, zn+1) is in general different

from the Delaunay triangulation TD({z1, . . . , zn+1}). Yet it is still possible to define

the measure detD{1,2,3}(TDf ({zv}, zn+1)), which is still a positive quantity, and which,

from theorem 8.1, satisfies:

det
[
D{1,2,3}(T

D
f ({zv}, zn+1))

]
≤ det

[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

(8.12)
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Figure 39: The region R(f) is en-
closed in the bissector arcs.

Figure 40: The region B(f) associ-
ated with a face f .

The aim is to find a lower bound to the integral over each region R(f). The

interesting result is that we found a lower bound that does not depend on the region,

although the shapes of the regions depend on the angle θ(e) between two neighboring

circumcircles. We take this dependence out by integrating over smaller regions

B(f) ⊆ R(f). for the face f , B(f) is the region enclosed by the three arcs of circle

that pass through two of the vertices of f and that are orthogonal to the circumcircle

of f (see figure 40).

The integration over zn+1 thus decomposes in the following way:

∫

C
d2zn+1 det

[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

=
∑

f

∫

R(f)

d2zn+1 det
[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

≥
∑

f

∫

R(f)

d2zn+1 det
[
D{1,2,3}(T

D
f ({zv}, zn+1))

]

≥
∑

f

∫

B(f)

d2zn+1 det
[
D{1,2,3}(T

D
f ({zv}, zn+1))

]
(8.13)

In the last line, the integral can be computed explicitly. If zn+1 ∈ B(f) with f = (abc),
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one can compute the integration on B(f) using lemma 6.2:

∫

B(f)

d2zn+1 det
[
D{1,2,3}(T

D
f ({zv}, zn+1))

]

=
∆3(z1, z2, z3)

∆3(a, b, c)

∫

B(f)

d2zn+1 det
[
D{a,b,c}(T

D
f ({zv}, zn+1))

]
. (8.14)

Then the right term factorizes nicely thanks to the shape of the triangulation around

zn+1:

∫

B(f)

d2zn+1 det
[
D{a,b,c}(T

D
f ({zv}, zn+1))

]

=

∫

B(f)

d2zn+1 det
[
D{a,b,c}(T

D({zv}))
]
× det

[
D{a,b,c}(T

D({a, b, c, zn+1}))
]
. (8.15)

In the integrand, the term depending on zn+1 is the second determinant, so we need

to estimate:

I =

∫

B(f)

d2zn+1 det
[
D{a,b,c}(T

D({a, b, c, zn+1}))
]
. (8.16)

It is the integral of the measure on the Delaunay triangulation made of the 4 points a,

b, c and zn+1, where zn+1 crosses the region B(f) (see figure 41):

I =

∫

B(f)

dν̃4({a, b, c, zn+1}). (8.17)

The integral is computable if one switches the approach and considers the measure dν4

in terms of the angles. Using the theorem 6.4, we express the measure dν4 in terms of

a basis of two angles θ1, θ2 (they are depicted in figure 41):

I =
1

2

∫

zn+1∈B(f)

dθ1dθ2 (8.18)

The point zn+1 belongs to the region B(f) if θmin
i ≤ θi ≤ θmin

i + π
2

for i = 1, 2, 3.

θmin
i corresponds to the angle θi for which the point zn+1 is on the boundary arc of

B(f) associated with the edge i.

We also have θ1 + θ2 + θ3 = π and θmin
1 + θmin

2 + θmin
3 = π

2
, so eventually, zn+1 ∈ B(f) if:

θmin
1 ≤ θ1 ≤ θmin

1 +
π

2
(8.19)

θmin
2 ≤ θ2 ≤ θmin

2 +
π

2
(8.20)

θmin
1 + θmin

2 ≤ θ1 + θ2 ≤ θmin
1 + θmin

2 +
π

2
(8.21)
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Figure 41: The Delaunay triangulation (in black) with the associated circumcircles.
The center of the external face is at ∞.
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From these conditions we immediately obtain that I = 1
2

[
1
2

(
π
2

)2
]

= π2

16
. Then, one

gets in equation 8.15:

∫

B(f)

d2zn+1 det
[
D{a,b,c}(T

D
f ({zv}, zn+1))

]

=
π2

16
det
[
D{a,b,c}(T

D({z1, . . . , zn}))
]

=
π2

16

∆3(a, b, c)

∆3(z1, z2, z3)
det
[
D{1,2,3}(T

D({z1, . . . , zn}))
]

(8.22)

So in the end:
∫

C
d2zn+1 det

[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

≥
∑

f∈F(TD)

π2

16
det
[
D{1,2,3}(T

D({z1, . . . , zn}))
]

≥ (n− 2)
π2

8
det
[
D{1,2,3}(T

D({z1, . . . , zn}))
]
, (8.23)

which is the inequality 8.10. A corollary is:

V D
n+1 ≥ (n− 2)

π2

8
V D
n (8.24)

The previous result gives a lower bound which does not depend on the shape of the

triangle, by integrating over a restrained region B(f). If we do the same calculation

and keep the region R(f), then the lower bound is more accurate, but not universal

any more (it depends on the triangulation of size n). In this case, we then get a refined

result:

Theorem 8.3.
∫

C
d2zn+1 det

[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

≥


(n− 2)

π2

8
+

1

8

∑

e∈E(TD)

θ(e)(2π − θ(e))


 det

[
D{1,2,3}(T

D({z1, . . . , zn}))
]

(8.25)

(See appendix D for a proof). We see that the angles associated to the triangulation

appear. This angle-dependent term should be related to the kinetic term of the Liouville

action in the continuum limit.
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Part IV

Convergence of correlation
functions: the case of iso-perimetric
planar Strebel graphs

In previous chapter, a model of random maps – namely Delaunay triangulations – was

studied through a measure defined on the set of random maps. Therefore, all the results

proven for Delaunay triangulations address directly the properties of the measure.

Another way to characterize the measure, and to get a flavor of the continuous limit of

the model is to define observables on the random maps model whose expectation value

with respect to the measure are computable explicitly. This is equivalent to studying

the measure through its moments, so it is less complete mathematically than directly

studying the measure. However, this approach makes sense physically. Indeed, the only

way to know about a physical system is by its interactions : for instance, a particle

cannot be detected if it does not interact with an instrument. A physical system can

only be characterized by the quantity one is able to observe, that is by the expectation

values of observables. It cannot be known intrinsically from scratch. Another image

is that of the definition of tangent spaces of differentiable manifolds in mathematics.

The tangent space of a manifold at a point is defined thanks to the way functions

defined on the manifold vary around this point: in order to know the tangent space, it

is necessary to “test” the manifold with functions, and to see how they behave. In a

similar manner, in order to know the physical system defined by a random map model,

it is necessary to test it with observables, and look at their behaviour when the maps

vary.

We adopt this paradigm here, so the aspect studied in this chapter is the computation

of observables. In order to do so, we introduce a different map model, isoperimetric

planar Strebel graphs which looks very alike duals of Delaunay triangulations, we

embody them with a measure, and we define observables. The model defined may

look very special as the constraints may look fancy and arbitrary. However, they

are justified by the fact that they allow to compute explicitly the expectation values

of many observables, thanks to a theorem of Kontsevich. This theorem supposes to

introduce Chern classes, which we do. The result will show that Bessel functions play a

primordial role. We analyze the continuous limit of the one-point function with different

scalings for the perimeters, in order to spot how the large Strebel graphs behave when

one face has a different perimeter. Last, we dwell on the similarities and the differences
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between Strebel graphs and Delaunay triangulations. It appears that Bessel functions

also appears in expectation values of observables of Delaunay triangulations, and that

the Strebel graphs constitute a source of inspiration for defining observable of Delaunay

triangulations. The articles [I] (for the Strebel graphs) and [II] (for the result on

Delaunay) cover the problems addressed in this part.

9 Presentation of Strebel graphs

The Strebel graphs are ribbon graphs, with trivalent vertice Let us first define formally

the Strebel graphs:

Definition 9.1. A Strebel graph of genus g with n faces, is a connected ribbon graph,

that can be embedded on a surface of genus g, with trivalent vertices, whose n faces are

labeled topological discs (it is a cellular graph), and which is metric: the edges e carry

a real positive number called the edge length `e ≥ 0. n is the size of the graph, and we

denote by Sg,n the set of Strebel graphs of genus g and size n.

In the same fashion as in the previous part, if Γ ∈ Sg,n, we call F(Γ) = {f1, . . . , fn},
E(Γ) and V(Γ) respectively the set of faces, edges and vertices of Γ. The Euler relation

stands:

|F(Γ)| − |E(Γ)|+ |V(Γ)| = 2− 2g, (9.1)

and as the vertices are trivalent, we have the constrain 2|E(Γ)| = 3|V(Γ)|, so in the

end:

|F(Γ)| = n (9.2)

|E(Γ)| = 3n− 6 + 6g (9.3)

|V(Γ)| = 2n− 4 + 4g. (9.4)

Example 9.1. In figure 42, a planar (that is to say, g = 0) Strebel graph of size 20 is

shown. It is an element of S0,20

As the faces are bounded by edges carrying lengths, one can define the perimeter

Pf of the face f :

Pf =
∑

e→f
`e (9.5)

where the notation e → f means that the sum runs over the edges adjacent to the

face f . Then, one denotes by Sg,n(L1, . . . , Ln) the subset of Sg,n such that, for all

i ∈ {1, . . . , n} the face i has perimeter Li: Pi = Li, ∀i. It is a stratum of Sg,n In

example 9.1, the graph belongs to S0,20(10). The sets S and S0,n(P1, . . . , Pn) have
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Figure 42: Example of a planar isoperimetric Strebel graph of size 20. Each face has
perimeter 10 (±0.05). It belongs to the set S0,20(10)
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cellular decompositions, where each cell is indexed by a graph structure. A (g, n)-graph

structure Γg,n is a cellular trivalent connected graph of genus g and size n. Then the

following holds:

Sg,n = ∪
Γg,n
{(Γg,n, `1, . . . , `3n−6+6g)|`i ∈ R+}

Sg,n(L1, . . . , Ln) = ∪
Γg,n
{(Γg,n, `1, . . . , `3n−6+6g)|`i ∈ R+, Pf = Lf} (9.6)

For g and n given, there are finitely many cells, but each cell is uncountable. For Sg,n,

the real dimension of a cell is the number of edges, that is 3n− 6 + 6g, and the lengths

`1, . . . , `3n−6+6g are local coordinates.

A standard way to study distances (see the review of Miermont for a summary of

results [Miermont, 2009]) for the study of random maps as metric spaces is to take the

graph distance (each edge is considered to be of length 1), that is to say, the distance

between two vertices v1, v2 ∈ V(Γ) is:

d(v1, v2) = min
l path from v1 to v2

|l|. (9.7)

For Strebel graphs, the natural distance to consider on the graph is the first passage

percolation distance, that takes the lengths of the edges into account (a similar distance

was shown in previous chapter):

d(v1, v2) = min
l path from v1 to v2

∑

e∈l
`e. (9.8)

Actually, a great asset of Strebel graphs is that from the combinatorial data of a graph

Γ ∈ Sg,n(L1, . . . , Ln) with 2 − 2g − n < 0, it is possible to construct a metric ω on a

Riemann surface of genus g with n punctures, such that Γ is composed of geodesics of

ω, and such that the lengths `e of the Strebel graphs are the lengths of the geodesics

measured with the metric ω. Therefore, one can extend the notion of distance from

the graph to a whole surface of genus g by using the metric ω. The way to construct

ω from Γ is described hereafter, and it needs quadratic differentials.

9.1 Strebel differentials on Riemann surfaces

From marked Riemann surfaces to Strebel graphs: Strebel’s theorem

Let Σg be a compact Riemann surface of genus g ; p1, . . . , pn ∈ Σg, n labeled marked

points ; and P1, . . . , Pn ∈ R+, n positive real numbers. Let {Uα, ϕα} be an atlas of Σg.

In the following, the local coordinate inherited from ϕα on Uα will be denoted by zα

A meromorphic quadratic differential is a meromorphic section

Ω : Σg → K2
Σg ,
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where KΣg is the canonical bundle of Σg and K2
Σg

the symmetric square of the canonical

bundle. Locally, we say that Ω is a meromorphic quadratic differential, if for all chart

Uα, Ω can be written in the form:

Ω(zα) = fα(zα) (dzα)2 , (9.9)

with fα a meromorphic function on Uα. If p ∈ Uα ∩ Uβ lays in the intersection of two

charts, the local functions fα and fβ must satisfy:

fα(zα(p)) = fβ(zβ(p))

(
dzβ
dzα

(p)

)2

(9.10)

Strebel differentials are quadratic differentials, with contraints. Let us specify them in

the following, and state Strebel’s theorem. First, the poles of a Strebel differential Ω

must be of order 2: let p ∈ Uα (we note pα = zα(p)) be a pole of Ω, then the admissible

poles for a Strebel differential are double poles of this form:

Ω(zα) =
zα→pα

−R2

(zα − pα)2
(1 +O(zα − pα))(dzα)2, (9.11)

with R ∈ R+. According to the rule 9.10, the coefficient −R2 does not depend on the

local coordinate. It is the residue of Ω, for the following reason: if Cp is a small simple

loop circling around p, then
√

Ω is well defined on Cp and one has:

∮

Cp

√
Ω =

∮

pα

iR
dzα

(zα − pα)

√
1 +O(zα − pα) = −2πR (9.12)

(modulo the sign). Second, a Strebel differential allows to define horizontal and vertical

trajectories:

Definition 9.2. Let us consider γ : [0, 1]→ Σg a C1 parametric curve. Let us suppose

without loss of generality that γ([0, 1]) ⊂ Uα. Then γ is said to be:

• a horizontal trajectory, if ∀t ∈ [0, 1], fα(zα(γ(t)))
(
dzα(γ(t))

dt

)2

> 0.

• a vertical trajectory, if ∀t ∈ [0, 1], fα(zα(γ(t)))
(
dzα(γ(t))

dt

)2

< 0.

Horizontal (resp. vertical) trajectories correspond to lines for which Im(
∫ γ(t)√

Ω) =

constant (resp. Re(
∫ γ(t)√

Ω) = constant). Near a pole p of Ω with residue R, there

exists a local coordinate z such that z(p) = 0 and Ω can be written as Ω = −R2 dz2

z2 .

The horizontal trajectories satisfy:

−R2

(
d ln(z)

dt

)2

> 0, (9.13)
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pole p

Horizontal line

Vertical line

Figure 43: Horizontal trajectories (black
plain circles) and vertical trajectories (red
dashed rays) around a pole p.

Critical line

Simple pole

Figure 44: Horizontal lines around a sim-
ple zero. The thick red rays are critical
lines.

that is to say, if we are close enough to p, Re ln(z) = constant, so the horizontal

trajectories near p in the coordinate z are circles of center p. The vertical trajectories

must satisfy Im ln(z) = constant, so they are rays stemming from p. Figure 43 shows

the horizontal and vertical trajectories in the vicinity of p. Near a zero a ∈ Uα of Ω

of order k > 0, take a local coordinate z such that z(a) = 0 and such that the Strebel

differential has the local behaviour:

Ω =
z∼0

(k + 2)2

4
zk(dz)2. (9.14)

The horizontal and vertical trajectories obey respectively:

(
d

dt
z
k+2

2

)2

> 0
(
d

dt
z
k+2

2

)2

< 0 (9.15)

Therefore, in the coordinate z, k + 2 horizontal lines and vertical lines meet at 0 with

angle 2π
k+2

(see figure 44). For a simple zero, 3 horizontal lines meet with an angle 2π
3

.

Among the horizontal trajectories of a generic quadratic differential with double poles

satisfying equation 9.11, we distinguish the critical trajectories, which are the hori-

zontal trajectories that arrive at a zero of Ω. Note that generically, the horizontal

trajectories that emerge from a zero of Ω are not compact and can wind a infinite

times around a domain. In that case, the critical trajectories are the accumulation

points of the horizontal trajectories. It is now possible to define Strebel differentials:

Definition 9.3. A Strebel differential on Σg Ω with poles p1, . . . , pn and residues

−P 2
1 , . . . ,−P 2

n is a meromorphic quadratic differential, having the behaviour of equa-
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tion 9.11 with residue Pi around the pole pi, and such that the critical trajectories form

a connected cellular graph.

The set of critical trajectories form a connected graph of genus g. The vertices

aj are the zeros of Ω, and for a Strebel differential with simple zeros, the vertices are

trivalent. The pole pi of Ω sits in the center of the face fi.

The critical trajectory Ca1,a2 linking a1 and a2 is the edge e between the vertices a1

and a2. On Ca1,a2 , we have
∫ z
a1

√
Ω > 0 uniformly or

∫ z
a1

√
Ω < 0 uniformly. We define

the length of e as:

`e =
1

2π

∣∣∣∣∣

∫

Ca1,a2

√
Ω

∣∣∣∣∣ . (9.16)

What is more, the perimeter of the face fi is simply the residue Pi of Ω at the pole pi:

∑

e→fi
`e =

1

2π

∣∣∣∣∣

∮

Cpi

√
Ω

∣∣∣∣∣ = Pi. (9.17)

Therefore, a Strebel differential of genus g with simple zeros and residues P1, . . . , Pn at

the poles p1, . . . , pn, defines naturally a Strebel graph of genus g, size n, with perimeters

P1, . . . , Pn. Strebel’s theorem allows to make a one-to-one correspondence between

Strebel differentials and marked compact Riemann surfaces with perimeters:

Theorem 9.1. Strebel [Strebel, 1984] For g ≥ 0, n ≥ 1 and 2g + n − 2 > 0, let Σg

be a compact Riemann surface of genus g, p1, . . . , pn be n marked points on Σg, and

P1, . . . , Pn ∈ R+. Then, there exists a unique Strebel differential on Σg whose only

poles are p1, . . . , pn with respective residues −P 2
1 , . . . ,−P 2

n .

Example 9.2. In figure 45, a representation of horizontal lines of a Strebel differential

of genus 0 with 4 poles is shown, as well as the Strebel graph corresponding to it. It

belongs to S0,4(1, 1, 1, 1).

The metric associated to a Strebel differential Ω is then

ω =
1

2π

√
Ω×

√
Ω

=
1

2π
|fα(zα)|dzαdzα (9.18)

A face f of the Strebel graph obtained from a Strebel differential Ω, endowed with the

metric ω is a semi-infinite cylinder of perimeter Pf . Indeed, near a pole pi, one can use

the local coordinate zi such that zi(pi) = 0 and such that Ω = −P 2
i

(dzi)
2

z2
i

. If one uses

the coordinate xi = ln(zi) for zi /∈ R−, the coordinate xi is defined on a strip (see figure

46). If one identifies the sides of the strip, xi is defined on a cylinder. In this local
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Figure 45: Horisontal lines of a Strebel differential of genus 0 with four poles
(p1, p2, p3, p4) = (0, 1, 2i, 1

e−
iπ
6 +2e−

iπ
3

). The critical lines (red and thick) form an isoperi-

metric Strebel graph. In this example, each edge is of length 1
3

so that the graph is in
S0,4(1, 1, 1, 1). The white pieces of circles cutting the horizontal lines are due to the
cut coming from the square roots in computing the integral

∫ z√
Ω.
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0

zi

+iπ

−iπ
xi

xi = ln(zi)R−

Figure 46: The change of coordinates from zi to xi transforms the circles in straight
vertical lines in a strip, where the lines Im(xi) = ±iπ are identified.

coordinate, the metric is just ω = P 2
i dxidxi: it is a flat metric, defined on a cylinder.

The perimeter of the cylinder is just the width of the strip, that is Pi. Globally, the

surface Σg endowed with the metric ω is a punctured surface with singularities at the

marked points pi, and which is a gluing of semi-infinite cylinders (see figure 47 for a 3

dimensional view of this gluing).

From Strebel graphs to marked Riemann surfaces In what precedes, Strebel

graphs arise as critical curves on Riemann surface. The critical curves are defined

through a quadratic differential Ω, that allows to define a metric 1
2π
|Ω| on the whole

surface. The converse problem is the following: given a Strebel graph, that is, the

combinatorial data of a metric cellular trivalent ribbon graph, is it possible to construct

the differential Ω ? The answer is yes, and we describe the procedure to locally (that

is, in a system of charts) construct Ω. Given a Strebel graph Γ, there is a canonical

way to describe it as the critical graph of a Strebel differential, so there is a canonical

way to associate a metric to a Strebel graph. We show here a local description (that

is, in a system of charts) of the Strebel differential, inspired from Mulase and Penkava

[Mulase and Penkava, 1998]. The set of charts is divided in three sets

∪
v∈V(Γ)

Uv ∪
e∈E(Γ)

Ue ∪
f∈F(Γ)

Uf . (9.19)

The chart Uv (respectively Ue, Uf ) is defined in the neighborhood of the vertex v (resp.

center of edge e, center of face f), and containing no other vertex (resp. edge, face). We

describe the charts and the local coordinates, the Strebel differential and the transition

functions between the charts.

Charts associated to the vertices Radius lmin. The coordinate zv chosen around

vertex v is such that the half-edges meeting at v are straight rays meeting at 0 (see

figure 48) with an angle 2π
3

. Then, Strebel differential has the form :

Ω =
9

4
zv(dzv)

2 (9.20)
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Figure 47: In this plot, the Riemann sphere is the unit sphere S2 =
{(cos θ sinϕ, sin θ sinϕ, cosϕ), (θ, ϕ) ∈ [0, 2π[×[0, π

2
]}. The surface depicts the radial

view of
∣∣∣Re
∫ z√

Ω
∣∣∣ above S2: the distance between the origin and the surface in a

direction (θ, ϕ) (above the point z = (cos θ sinϕ, sin θ sinϕ, cosϕ)) is equal to the value

1+
∣∣∣Re
∫ z√

Ω
∣∣∣. The picture emphasizes the fact that a Strebel Differential corresponds

to a gluing of cylinders.
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With this local coordinate, the chart Uv is a disk of radius lmin
2

.

Charts associated to the edges Close to an edge e of length le, the coordinate ze

0

2π
3

Figure 48: Critical lines meeting at 0 in the chart Uv with the local coordinate zv.

chosen is such that the edge is the segment [0, 2π] and such that Strebel differential is

Ω = (dzv)
2 (9.21)

In this system of coordinates, the chart Ue is an infinite strip {ze ∈ C, 0 < Re(ze) < le}.
Charts associated to the faces The perimeter of face f is Pf , so we choose zf such

that:

Ω = −
P 2
f

4π2

(dzf )
2

z2
f

(9.22)

And in this system of coordinates, the chart Uf is a disk.

Transition functions

• If p ∈ Uv ∩ Ue, then the transition relation between local coordinates is:

zv(p) = cze(p)
2
3 (9.23)

where c is a 3rd root of unity.

• If p ∈ Ue ∩ Uf , one has:

zf (p) = e
2πize(p)
Pf e

2πi
Pf

∑
e′<e `e′ (9.24)

where one choses arbitrarily an edge of reference e1 on the face f , and assign a

label to the edges in counterclockwise order.

• If p ∈ Uv ∩ Uf , the transition is given by:

zf (p) = γe
−2πzv(p)

3
2

Pf (9.25)

where γ is a constant of integration.
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In the end, the data of a Strebel graph allows to define a metric on a whole punctured

sphere. At the level of quantum gravity, as it was mentioned in previous chapter for

Delaunay triangulations, there is no hope that, when the number of faces grows to

infinity, that is to say, the number of punctures grows to infinity, the metrics converge

toward a meaningful limiting metric. Yet, the interest of endorsing a graph with a

metric on the whole surface, is that one is able to study naturally the distances in

the graphs, without invoking the discrete graph metric. Strebel graphs considered as

discrete metric spaces with the natural distances have chances to converge to a limiting

metric space in the continuous limit.

10 Definition of the correlation functions

We specialize the model of Strebel graphs by adding two constraints: first, we consider

planar graphs (g=0). Second, let L > 0, we consider isoperimetric Strebel graph,

by requiring all the perimeters to satisfy Pi = L. Therefore, the set of interest is

S0,n(L, . . . , L), that is denoted S0,n(L). In figure 42 is shown a example where L =

10. As in the case of Delaunay triangulations, the Lebesgue measure dνL1,...,Ln
n of

a stratum S0,n(L1, . . . , Ln) of S0,n allows to define a probability distribution over

S0,n(P1, . . . , Pn). Let Γg,n be a (g, n)-graph structure. Then locally, that is to say for

a given graph structure) , the measure can be expressed in terms of the edge lengths:

dνL1,...,Ln
n (Γg,n) =

∏

e∈E(Γg,n)

d`e
∏

f∈F(Γg,n)

δ(Pf − Lf ). (10.1)

For isoperimetric Strebel graphs, the measure is:

dνLn (Γg,n) =
∏

e∈E(Γg,n)

d`e
∏

f∈F(Γg,n)

δ(Pf − L). (10.2)

As for the measure defined on Delaunay triangulations, this one is also admissible.

Indeed, for a given graph structure Γg,n, the integral of the measure over the parameters

`e has an obvious upper bound:
∫

[0,L]3n−6+6g

dνLn (Γg,n) ≤ L2n−6+6g. (10.3)

Moreover, the number of graph structures for g, n fixed is finite, so the total volume:

∑

Γg,n graph
structure

∫

[0,L]3n−6+6g

dνLn (Γg,n) (10.4)

is finite. Therefore, the measure is admissible.

The reference sets under study are the strata S0,n(L), for n ≥ 3. The aim is to
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characterize S0,n(L) with the measure dνLn when n → ∞. For a fixed large n and

k ≥ 0 bounded (in the limit n → ∞, k � n), it is useful to study deformations of

the stratum S0,n+k(L), by letting k perimeters to be different from L. In other words,

the strata S0,n+k(L;L1, . . . , Lk) = {Γ ∈ S0,n+k|P1 = · · · = Pn = L, Pn+i = Li}, that

are deformations of the stratum S0,n+k(L), will allow to define correlation functions

of the model. The k faces for which the perimeters may vary are similar to k sensors

on S0,n+k(L), allowing to study the sensibility of the set S0,n+k(L) to a change of

perimeter.

Definition 10.1. Let n ≥ 3 and k ≥ 0. The correlation functions of Strebel graphs

are defined as follows:

• The volume of S0,n+k(L):

Vn+k(L) =
∑

Γ0,n+k graph structure

∫

[0,L]3(n+k)−6

dνLn+k(Γ0,n+k) (10.5)

• The k-point function:

Zn,k(L;L1, . . . , Lk) =
∑

Γ0,n+k graph structure

∫

[0,L]3(n+k)−6

dνL;L1,...,Lk
n+k (Γ0,n+k). (10.6)

It is the volume of S0,n+k(L;L1, . . . , Lk).

Those correlation functions are encoded in the generating functions V(µ, L) and

Zk(µ, L;L1, . . . , Lk):

V(µ, L) =
+∞∑

n=3

µn

n!
Vn(L)

Zk(µ, L;L1, . . . , Lk) =
+∞∑

n=3

µn

n!
Zn,k(L;L1, . . . , Lk) (10.7)

Those generating functions are series in µ defined for µ close to 0. If one knows V(µ, L)

and if it is analytic in a neighborhood of 0, it is possible to recover any volume Vn(L)

for n ≥ 3:

Vn(L) = n! Res
µ→0

V(µ, L)

µn+1
dµ. (10.8)

From the generating functions Zk one can define the Legendre transform Uk and the

Laplace transform Fk:

Uk(µ, L; d1, . . . , dk) =
1

(µL2)k

∫ µ

dµk−4

∫ µk−4

dµk−5· · ·
∫ µ1

dµ0 Res
Lk→0

dk!2
2dk

L2dk+1
k

dLk . . .
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Res
L1→0

d1!22d1

L2d1+1
1

dL1 Zk(µ0, L;L1, . . . , Lk)

Fk(µ, L; z1, . . . , zk) =

∫ ∞

0

dL1· · ·
∫ ∞

0

dLke
−∑k

i=1 ziLiZk(µ, L;L1, . . . , Lk) (10.9)

Those auxiliary functions are redundant with Zk, yet in chapter V, we shall see that

the Laplace transform plays an important role. In this chapter, except for section 15,

the Strebel graphs of interest are planar. This is why, for convenience, there is no

mention of the genus in the correlation functions defined above. Yet, it will be useful,

in chapter V, to consider correlation functions of generic genus. For generic g ≥ 0:

Vg(µ, L) =
∞∑

n=1

µn

n!
Vol(Sg,n(L))

Zgk(µ, L;L1, . . . , Lk) =
∞∑

n=1

µn

n!
Vol(Sg,n+k(L;L1, . . . , Lk))

Fg,k(µ, L; z1, . . . , zk) =

∫ ∞

0

dL1· · ·
∫ ∞

0

dLke
−∑k

i=1 ziLiZgk(µ, L;L1, . . . , Lk)

(10.10)

Now that the correlation functions are defined, the tools to compute them are presented

in next section.

Remark 10.1. Strebel graphs, and more precisely their duals, Kontsevich graphs, are

encoded in a matrix model. Let Λ = diag(λ1, . . . , λN) be a real diagonal matrix of size

N , and VΛ(M) be the following potential on the Hermitian matrices:

VΛ(M) = ΛM2 − M3

3
. (10.11)

The the matrix model encoding Kontsevich graphs is encoded in the partition function:

ZK formal
=

∫
HN

dM e−N Tr VΛ(M)

∫
HN

dMe−N Tr ΛM2

formal
=

∫
HN

dM e−N Tr ΛM2−M3

3

∫
HN

dMe−N Tr ΛM2 . (10.12)

In this matrix model, the vertices of the ribbon graphs are trivalent, and the propagators

now have weights:

〈MijMkl〉 =
1

N

1

λi + λj
δilδjk. (10.13)

Each face – or closed line – of the ribbon graph then carries an index j, and a parameter

λj ∈ R. The parameters λj of the ribbon graphs correspond to the parameters introduced

if one makes the laplace transform of the perimeters of a Strebel graphs. Indeed, let us

take a Strebel graphs of size n with perimeters L1, . . . , Ln. If one fattens every edge of
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the graph into a ribbon bordered by 2 lines, and then associate the index i to the line in

face i, and if one carries out the Laplace transform
∫
R dLie

−λiLi of the perimeters to

replace them by λi, then we end up with a ribbon graph that appears in the diagrammatic

expansion of the partition function 10.12.

11 Moduli space, Kontsevich theorem and intersec-

tion numbers

As was advertised in the introduction of the chapter, there is a practical interest for

defining the specific model of isoperimetric Strebel graphs with the correlation func-

tions Vn and Zn,k, being that those are explicitly computable by applying Kontsevich’s

theorem. This theorem relates the sets Strebel graphs and moduli spaces of Riemann

surfaces. After a brief presentation of decorated moduli space of Riemann surfaces and

of the Chern classes and intersection numbers, Kontsevich’s theorem is stated. The

moduli space of marked Riemann surfaces was introduced in section 7.1 of previous

chapter. In order to relate the moduli space Mg,n to the set of Strebel graphs Sg,n,

we decorate each marked point pi of a Riemann surface with a positive real number

Li, which plays the role of perimeters in the case of Strebel graphs. In other words, we

consider the extension:

M̃g,n =Mg,n × Rn
+. (11.1)

Its dimension is

dimR M̃g,n = 3n+ 6g − 6. (11.2)

It has the same dimension as Sg,n, and by Strebel’s theorem (theorem

9.1) [Strebel, 1984], and the works of Penner [Penner, 1988], Harer, Zagier

[Harer - Zagier, 1986], Kontsevich [Kontsevich, 1992], there exists an orbifold-

isomorphism, i.e. respecting the quotients by automorphism groups on both sides:

M̃g,n ∼ Sg,n. (11.3)

A point of M̃g,n, is therefore uniquely represented by a Strebel graph, and the edge

lengths provide a set of real coordinates. The interest of this isomorphism is that the

measure dνL1,...,Ln
n defined on the set of planar Strebel graphs can be pulled back to

a measure on the moduli space genus 0 surfaces, which requires the introduction of

Chern classes.

11.1 Chern classes over Mg,n

Let us first recall the notion of cohomological class. Let U be a manifold and Ωk(U)

the set of differential k-forms. For each k, the exterior derivative d maps a k form to
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a k + 1 form:

Ω0(U)
d−→ Ω1(U)

d−→ . . .Ωk(U)
d−→ Ωk+1(U)

d−→ . . . . (11.4)

A k-form ω ∈ Ωk(U) is closed if dω = 0, that is to say if:

ω ∈ ker(d) d : Ωk(U) −→ Ωk+1(U). (11.5)

It is exact if there exists α ∈ Ωk−1(U) such that ω = dα, i.e. :

ω ∈ Im(d) d : Ωk−1(U) −→ Ωk(U). (11.6)

The set of closed (respectively exact) k-forms is denoted Zk(U) (respectively Bk(U)).

Since d ◦ d = 0, every exact form is closed: Bk(U) ⊂ Zk(U) ⊂ Ωk(U). The quotient

space Zk(U)/Bk(U) is denoted Hk(U), and it is the kth cohomology group of U . The

elements of [ω] ∈ Hk(U) are cohomology classes, and any two elements ω1, ω2 of a same

class differ by an exact form ω1 − ω2 = dα.

For instance, if U = R2\{0} with canonical coordinates x, y. The following one-form

α ∈ Ω1(U):

α =
xdy − ydx
x2 + y2

(11.7)

is closed dα = 0, but not exact, so [α] 6= 0.

Chern classes are cohomology classes, that are defined on fiber bundles. Let L be

a complex vector bundle over the complex manifold U , whose fibers are of complex

dimension r: Cr. U is covered by a set of charts Ui, and locally, the fiber bundle can

be trivialized as Ui×Cr. The coordinates on Ui are denoted xµ. Then, let us choose a

connection one-form ω ∈ Ω1(L)⊗End(Cr), whose expression in local coordinates takes

the form

ω = (∂µ − Aµ)dxµ. (11.8)

The term Aµ is a matrix of size r, which acts on the fibers of the bundle. The curvature

F of the connection is an element of Ω2(L) ⊗ End(Cr), and has the following local

expression:

F = (∂µAν − ∂νAµ)dxµ ∧ dxν . (11.9)

Chern classes are defined from the matrix value 2-form F .

Definition 11.1. Given a complex vector bundle L over the complex manifold U with

fibers Cr and F the curvature of a connection on L, the Chern classes c0, . . . , cr are

the coefficients of the characteristic polynomial of F .

det
r×r

(y − F ) =
r∑

k=0

(−1)kcky
r−k. (11.10)

The cohomology class ck(L) is the kth Chern class of L, it belongs to Hk(U).
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The 0th Chern class is just a trivial constant function. In the case of a line bundle

(r = 1), the only non trivial Chern class is the first Chern class c1(L), which is an

element of H2(U): it is the cohomology class of the curvature c1(L) = [F ].

The Chern classes are independent of the choice of connection on L, and are topological

invariants of L. Note that for any trivial line bundle L over U , c1(L) = 0. In the case

of the moduli space Mg,n, the line bundles L1, . . . ,Ln over Mg,n are respectively the

bundles whose fibers over (Σg, p1, . . . , pn) are the cotangent spaces T ∗p1
Σg, . . . , T

∗
pnΣg

of the Riemann surface at the marked points p1, . . . , pn. In the same fashion, n line

bundles L̃1, . . . , L̃n are defined over M̃g,n:

Li π→ Mg,n

(Σg, p1, . . . , pn, T
∗
pi

Σg) 7→ (Σg, p1, . . . , pn) (11.11)

and

L̃i π̃→ M̃g,n

(Σg, p1, . . . , pn, L1, . . . , Ln, T
∗
pi

Σg) 7→ (Σg, p1, . . . , pn, L1, . . . , Ln). (11.12)

The first Chern classes of those bundles are denoted:

ψi = c1(Li) and ψ̃i = c1(L̃i). (11.13)

Since M̃g,n =Mg,n×Rn
+ is a product bundle, the Chern classes add, and since Rn

+ is a

trivial bundle its Chern class vanishes, so that, by misuse of notations, the two objects

ψi and ψ̃i (11.14)

will be denoted the same way. The class ψi is a 2-form, so (
∑n

i=1 L
2
iψi)

n−3+3g
is a

2n − 6 + 6g form, which is the dimension of Mg,n, so it is a volume form on Mg,n.

As it was mentioned in section 7.1, the volume of Mg,n measured with this volume

form makes sense if one compactifies Mg,n. By Deligne-Mumford compactification

procedure, Mg,n is a compact space, and the following volume:

∫

Mg,n

(
n∑

i=1

L2
iψi

)n−3+3g

(11.15)

is well-defined. Thus, Chern classes allow to define a measure over the moduli spaces

Mg,n. Kontsevich’s theorem relates this measure to a measure over Strebel graphs.

11.2 Kontsevich’s theorem

Kontsevich used the isomorphism between M̃g,n and Sg,n to express the Chern

classes ψi in terms of edge lengths `e and perimeters. Then, he related the measure

(
∑n

i=1 L
2
iψi)

n−3+3g∏n
i=1 dLi over M̃g,n to the Lebesgue measure over Strebel graphs.
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Theorem 11.1. Kontsevich [Kontsevich, 1992] Using the edge length coordinates in-

duced by the isomorphism M̃g,n ∼ Sg,n (for a point (Σg, p1, . . . , pn, L1, . . . , Ln) corre-

sponding to a graph Γg,n ∈ Sg,n(L1, . . . , Ln)), the Chern class takes locally the form

ψi =
∑

e<e′ , adjacent to pi

d

(
`e
Li

)
∧ d
(
`e′

Li

)
, Li = Pfi , (11.16)

where the e’s adjacent to the vertex zi are labelled in counterclockwise order. With this

convention, the notation “e < e′ adjacent to zi” means that the sum runs on the pairs

of edges e, e′ adjacent to the vertex zi and such that their labels satisfy e < e′. What is

more,
∏

e∈E(Γg,n)

d`e =
25−5g−2n

(n− 3 + 3g)!

(
n∑

i=1

L2
iψi

)n−3+3g n∏

i=1

dLi. (11.17)

11.3 Genus 0 case and intersection numbers

From now on, we shall focus on the planar case g = 0, and require that the number

of marked points be n ≥ 3 (see example 7.2). The previous result applied to g = 0

allows to reexpress the correlation functions of Strebel graphs as integrals over moduli

spaces. Namely, for k ≥ 0:

Vn+k(L) =
25−2(n+k)

(n+ k − 3)!

∫

M0,n+k×R3(n+k)−6
+

(
n+k∑

i=1

P 2
i ψi

)n+k−3 n+k∏

i=1

dPi

n+k∏

j=1

δ(Pj − L) (11.18)

Zn,k(L;L1, . . . , Lk) =
25−2(n+k)

(n+ k − 3)!

∫

M0,n+k×R3(n+k)−6
+

(
n+k∑

i=1

P 2
i ψi

)n+k−3 n+k∏

i=1

dPi

n∏

j=1

δ(Pj − L)
k∏

m=1

δ(Pm+n − Lm) (11.19)

The integrals over Pi are easily done:

Vn+k(L) =
25−2(n+k)

(n+ k − 3)!

∫

M0,n+k

(
n+k∑

i=1

L2ψi

)n+k−3

(11.20)

Zn,k(L;L1, . . . , Lk) =
25−2(n+k)

(n+ k − 3)!

∫

M0,n+k

(
n∑

i=1

L2ψi +
k∑

i=1

L2
iψn+i

)n+k−3

(11.21)

For all the correlation functions, it remains integrals over moduli spaces of marked

Riemann spheres. If one develops the powers of the sums, it entails that the correlation
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functions defined for Strebel graphs are combinations of terms of this form:
∫

M0,n+k

ψd1
1 . . . ψ

dn+k

n+k . (11.22)

These called are intersection numbers of M0,n+k, and noted:

∫

M0,n+k

ψd1
1 . . . ψ

dn+k

n+k = 〈ψd1
1 . . . ψ

dn+k

n+k 〉0,n+k = 〈τd1 . . . τdn+k
〉0. (11.23)

With this notation, the Legendre transform Uk of Zk takes the form

Uk(µ, L; d1, . . . , dk) =

1

2

∞∑

n=0

µn

22n(n+ k)!

∫

M0,n+k+3

( ∞∑

d=0

L2d

d!
τd

)n+3 k∏

i=1

(2L)2di−2ψdin+3+i. (11.24)

The term intersection comes from the notion of intersection of cycles on a manifold.

Let us look at an example with 2 oriented cycles γ1 and γ2 drawn on an oriented

surface M (that has real dimension 2). γ2 can cross γ1 in two ways: either the crossing

is direct with respect to the orientation of the surface, in which case one associates

the number +1 to the crossing, or it is indirect and the crossing bears a −1 (see

figure 49). The intersection number γ1 ∩ γ2 is the sum of the crossing numbers of

γ2 intersecting γ1. It is anti-symmetric: γ1 ∩ γ2 = −γ2 ∩ γ1. In figure 49, we have

γ1 ∩ γ2 = +1. The intersection number is invariant under a homotopic change of γ1

and γ2, so actually it is defined for homology classes [γ1], [γ2] ∈ H1(M,R), that are

linear combinations of cycles (the addition of two classes is the concatenation of the

cycles), seen up to homotopy. The elements of H1(M,R) are generalized cycles that

have the form
∑
i

αi[γi], where γi are cycles and αi ∈ R. The intersection number is a

bilinear map, so (α1[γ1]+α2[γ2])∩[γ3] = α1[γ1]∩[γ3]+α2[γ2]∩[γ3]. This example covers

only the case of a surface of real dimension 2, with two paths that have dimension 1.

Let us extend the intersection of cycles to a more general case, where now M is an

orientable manifold of dimension r, [γ1] ∈ Hk(M) is a homology class of order k (that

has co-dimension r − k), and [γ2] ∈ Hr−k(M). Note that the co-dimensions of γ1, γ2

must sum up to give r, the dimension of the manifold. In order to define γ1 ∩ γ2,

we resort to Poincaré duality theorem: it allows to define a form-cycle duality, by

associating to a homology class (a generalized cycle) [γ] ∈ Hk(M,R), a cohomology

class (a form) [γ∗] ∈ Hr−k(M,R). Then, the intersection number is defined by:

[γ1] ∩ [γ2] =

∫

γ1

γ∗2

= −
∫

γ2

γ∗1
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Figure 49: On the left hand side, the types of crossings of two oriented cycles with
their crossing numbers ; on the right hand side, an example of two intersecting cycles
on a torus with intersection number γ1 ∩ γ2 = 1− 1 + 1 = +1.

=

∫

M

γ∗1 ∧ γ∗2 . (11.25)

The intersection number of two cycles defined on a manifold is an integer, so the integral∫
M
γ∗1 ∧ γ∗2 ∈ Z in this case.

In our case, the integral of Chern classes
∫
M0,n+k

ψd1
1 . . . ψ

dn+k

n+k is the intersection of the

homology classes

[ψd1
1 ]∗ ∩ · · · ∩ [ψ

dn+k

n+k ]∗ ∈ Q.

These intersection numbers are not integers (except for g = 0) but rather rational

numbers because Mg,n is an orbifold and not a manifold.

If the set of Strebel graphs has been specialized to planar graphs in this study, it is

because the intersection numbers in genus 0 are known:

〈τd1 . . . τdn+k
〉0 =

{
(n+k−3)!
d1!...dn+k!

if d1 + · · ·+ dn+k = n+ k − 3

0 otherwise.
(11.26)

12 Computation of the correlation functions and

Bessel functions

The correlation functions are now computed, the whole section relies on formula 11.26.

The modified Bessel function will arise naturally from the generating functions.

12.1 Volumes of Strebel graphs

It is easier to compute the 3rd derivative of the volume generating function. Using

11.26, we get:

∂3

∂µ3
V(µ, L) =

∞∑

n=0

µn

n!
Vn+3(L)
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=
1

2

∞∑

n=0

µn

22n n!

∑

d1+···+dn+3=n

L2n

∏n+3
i=1 di!

〈
n+3∏

i=1

τdi

〉

0

=
1

2

∞∑

n=0

µn

22n n!

∑

d1+···+dn+3=n

L2n

∏n+3
i=1 di!

n!∏n+3
i=1 di!

=
1

2

∞∑

n=0

µnL2n
∑

d1+···+dn+3=n

1∏n+3
i=1 22didi!2

(12.1)

Let us consider the first kind modified Bessel function I0(z):

I0(z) =
∞∑

d=0

z2d

22d d!2
. (12.2)

We have

∑

d1+···+dn+3=n

1∏
i 2

2didi!2
= [z2n]I0(z)n+3 = Resz→0

dz

z2n+1
I0(z)n+3, (12.3)

where [zk]f(z) stands for the coefficient of zk in the expansion of f around 0.

Therefore

∂3

∂µ3
V(µ, L) =

1

2

∞∑

n=0

Res
z→0

dz

z2n+1
I0(z)n+3(µL2)n

=
1

4πi

∮

C

dz

z

I0(z)3

1− µL2I0(z)/z2
(12.4)

where C is the integration contour of fig.51 below. Indeed, the residue Res
z→0

f(z)dz

is an integral over a contour C encircling 0, and no other pole of f(z): Res
z→0

f(z)dz =
1

2πi

∮
C f(z)dz. The size of the contour is fixed after exchanging the sum and the residue.

Once they are formally exchanged, one ends up with 1
2πi

∮
C dz

∑
n

1
z2n+1 I0(z)n+3(µL2)n.

The sum is convergent iff
∣∣∣ z2

I0(z)

∣∣∣ > µL2, so the contour C has to surround ±u(µL2),

defined as the O(µ) solutions of

µL2 =
u2

I0(u)
. (12.5)

The function u2/I0(u) is plotted in fig.50. As one sees on the plot, the O(µ) solutions

of equation 12.5 cease to make sense when |u| ≥ uc ≈ 2.58. This value is critical, and

the study of its neighborhood is crucial to get the large n limit of volumes.

The contour integral can be evaluated; it consists of residues of the 2 poles at

z = ±u(µL2):

∂3

∂µ3
V(µ, L) =

1

µL2u

I0(u)3

2I0(u)/u3 − I ′0(u)/u2
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Figure 50: Plot of the function u2

I0(u)
.

−u(µ) +u(µ)0

C

Figure 51: Contour of integration

=
I0(u)4

2I0(u)− uI ′0(u)
(12.6)

The derivative of the Bessel function I0 is the Bessel function I1 (see appendix A), thus

∂3

∂µ3
V(µ, L) =

I0(u)3

2− uI1(u)/I0(u)
=
uI0(u)2

L2

du

dµ
. (12.7)

Using I ′1(u) = I0(u)− I1(u)/u, we can integrate:

∂2

∂µ2
V(µ, L) =

u2(I0(u)2 − I1(u)2)

2L2
. (12.8)

Further integration is not doable explicitly, but this formula fits for our purpose of

getting the behaviour of the large n volumes (see section 14).

12.2 k-point functions

Let us fix d1, . . . , dk, and note D
def
=
∑k

i=1(di − 1). We begin with the auxiliary gen-

erating function U . In the same manner as for the volumes, we introduce the Bessel

function I0(z) and we have:

Uk(µ, L; d1, . . . , dk) =
1

2

∑

n

µn L2n

∏k
i=1 di!

Resz→0
dz

z1+2(n−D)
I0(z)n+3

=
1

4πi

1∏
i di!

∮

C

z2Ddz

z

I0(z)3

1− µL2I0(z)/z2

(12.9)

The residues at the two poles z = ±u(µL2) can be evaluated easily. Besides, if D < 0,

there can be another pole at z = 0. We have

Uk(µ, L; d1, . . . , dk) =

Res at ±u︷ ︸︸ ︷
1∏
i di!

u2D I0(u)4

2I0(u)− uI1(u)
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+
1

2

1∏
i di!

Resz→0 z
2D+1dz

I0(z)3

z2 − µL2I0(z)︸ ︷︷ ︸
Res at 0 if D<0

=
1∏
i di!

u2D I0(u)4

2I0(u)− uI1(u)

−1

2

1∏
i di!

−D∑

j=1

1

(µL2)j
Resz→0 z

2(D+j)−1dz I0(z)3−j.

(12.10)

If D < 0, the first term, proportional to u2D is a Laurent formal series of µL2,

starting with a negative power, whereas the last term contributing only if D < 0, is a

polynomial of 1/µL2. Since the whole result should be a power series of µL2 with only

positive powers, we understand that the last term just cancels the negative part of the

first. We thus may write:

Uk(µ, L; d1, . . . , dk) =
1∏
i di!

(
u2D I0(u)4

2I0(u)− uI1(u)

)

+

(12.11)

meaning that we keep only positive powers of µL2 in the Laurent expansion. We

observe that upon multiplying by
∏

i di!, the right hand side depends only on D and

u, we write it

Uk(µ, L; d1, . . . , dk) =
1∏
i di!

fD(u) , fD(u) =

(
u2D I0(u)4

2I0(u)− uI1(u)

)

+

. (12.12)

The relationship to our previously defined generating functions is

Zk(µ, L;L1, . . . , Lk) = L2k

∞∑

d1,...,dk=0

k∏

i=1

L2di
i L−2di

22didi!
∂k−3
µ

(
µkUk(µ, L; d1, . . . , dk)

)

(12.13)

So

Zk(µ, L;L1, . . . , Lk)

= L2k
∑

d1,...,dk

k∏

i=1

L2di
i L−2di

22didi!2
∂k−3
µ

(
µkfD(u(µL2))

)

= ∂k−3
µ

(
µkL2k

∑

D

fD(u(µL2))
∑

d1+···+dk=D+k

k∏

i=1

L2di
i L−2di

22didi!2

)

= ∂k−3
µ

(
µkL2k

∑

D

fD(u(µL2)) Resz→0
dz

z1+2(D+k)

k∏

i=1

I0(zLi/L)

)

= ∂k−3
µ

(
µkL2k Resz→0

dz

z1+2k

k∏

i=1

I0(zLi/L)
∞∑

D=−k
z−2D fD(u(µL2))

)
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(12.14)

Carrying out the sum over D is possible if we impose |z| > |u|, so enforcing this

condition, one gets:

1

z1+2k

+∞∑

D=−k

fD(u(µL2))

z2D
=

(
1

u2k

z

z2 − u2

I0(u)4

2I0(u)− uI1(u)

)

+

(12.15)

Then we can rewrite Zk in the following way:

Zk(µ, L;L1, . . . , Lk) =
1

2πi
∂k−3
µ

(
µkL2k

[
1

u2k

I0(u)4

2I0(u)− uI1(u)
×

∮

C

zdz

z2 − u2

k∏

i=1

I0(zLi/L)

]

+

)

= ∂k−3
µ

(
µkL2k

[
1

u2k

I0(u)4

2I0(u)− uI1(u)

k∏

i=1

I0(uLi/L)

]

+

)

(12.16)

The contour integral is now C (see figure 51), because, though the residue is around 0,

we imposed |z| > |u|, in order to sum over D. Its Laplace transform is

Fk(µ, L; z1, . . . , zk) = ∂k−3
µ

(
µkL2k

[
1

u2k

I0(u)4

2I0(u)− uI1(u)

k∏

i=1

(z2
i − u2/L2)−1/2

]

+

)
.

(12.17)

Again, note that the third derivative simplifies the result:

∂3
µFk(µ, L; z1, . . . , zk) = ∂kµ

(
µkL2k

u2k

I0(u)4

2I0(u)− uI1(u)

k∏

i=1

(z2
i − u2/L2)−1/2

)
. (12.18)

In the end, we see that we can compute all the k-point functions we defined. More

generally, for the set S0,n(L) we can compute all the correlation functions expressible

in terms of Chern classes ψ1, . . . , ψn. Therefore, we can compute n independent cor-

relation functions (that is to say observables depending on n independent sets of edge

lengths). The number of independent observables one can compute is the number of

independent edge lengths in S0,n(L), which is 2n − 6. Hence we are able to compute

approximately half of the possible independent correlation functions. Among the cor-

relation functions that are not computed here, there is the correlation function that

compute the average distance (on the graph) between two vertices for instance.
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13 Link with Delaunay triangulations

Strebel graphs and Delaunay triangulations are very close to be dual sets, that is,

Strebel graphs and Voronöı tessellations look alike. Indeed, consider a Delaunay trian-

gulation with n ≥ 3 vertices T ∈ Tn. To each edge e ∈ E(T ) is associated the angle θe.

At each vertex v ∈ V(T ), the constraint

∑

e→v
θe = 2π (13.1)

holds. T has 3n− 6 edges. Now, consider the dual T ∗ of T . It is a Voronöı tessellation

with n faces, 3n − 6 edges, and trivalent vertices (as the faces of T are triangles).

The label `e∗ of an edge e∗ ∈ E(T ∗) dual to the edge e ∈ E(T ) is simply the angle θe

associated to e: `e∗ = θe The constraint 13.1 becomes

∑

e∗→f∗
`e∗ = 2π (13.2)

for any f ∗ ∈ F(T ∗). Therefore, T ∗ is an isoperimetric Strebel graph of size n:

T ∗ ∈ S0,n(2π). The inclusion T ∗n ⊂ S0,n may incite to use the results obtained for

Strebel graphs in previous section to Delaunay triangulations. Yet, many discrepan-

cies appear when looking at the details of the models, preventing from making a strict

correspondence between the models. Still, it is possible to compute correlation func-

tions of Delaunay triangulations using cohomology classes, and the common feature of

Bessel functions appears. Hereafter I stress on the differences and the similarities of

the models.

13.1 Differences between Strebel graphs and Delaunay trian-
gulations

First, the dual set of Delaunay triangulations is a strict subset of isoperimetric Strebel

graphs. Indeed, consider the Strebel graph depicted in figure 52. It belongs to S0,5(2π)

and yet, its dual (depicted in dashed lines), although it is a triangulation, does not

have the structure of a Delaunay triangulation, because of the edge ẽ linking the vertex

v1 to itself: Delaunay triangulations are simple graphs.

Second, once one knows that T ∗n $ S0,n(2π), one may still want to use the local

expression of Chern classes (see theorem 11.1) and transpose the volumes of Delaunay

triangulations in terms of intersection numbers of Chern classes, by integrating the

cohomology classes on a subset ofM0,n. It happens that this is doomed to fail, for the

following argument, that we developed in [II].
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Figure 52: Example of an isoperimetric Strebel graph (black, plain lines) in S0,5(2π)
whose dual (red, dashed lines) is a triangulation, but cannot be a Delaunay triangula-
tion.

Relation with topological Witten-Kontsevich intersection theory For a De-

launay triangulation T ∈ Tn, n ≥ 3 with n vertices, the formula 11.16 defining locally

the Chern class ψi for each face i in the Strebel graphs case, can be transposed in order

to define a cohomology class ψv for each vertex v ∈ V(T ), provided that one replaces

`e by θe, and Li by 2π:

ψv =
1

(2π)2

∑

e′<e→v
d

(
θe
2π

)
∧ d
(
θ′e
2π

)
, (13.3)

with the same counterclockwise orientation of the edges as in formula 11.16. This idea

of applying the local definition of Chern classes to the case of Delaunay triangulations

was introduced in [David and Eynard, 2014]. The authors showed that indeed, the

measure on Delaunay triangulations satisfies:

dνn(T, θ) =
22n−5

(n− 3)!


 ∑

v∈V(T )

(2π)2ψv



n−3

. (13.4)

Also, there is a one-to-one correspondence between the set Tn and the moduli space

M0,n of conformal structures of the sphere with n marked points, so we identify Tn
with M0,n. Thus, it seems that the class ψv is a Chern class of a U(1) line bundle

Lv → M0,n attached to the vertex v, in the same manner as ψi = c1(Li). Yet, in

order to be a Chern class over the set of Delaunay triangulations, the class ψv has
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to be the curvature of a global connection. In the same paper of David and Eynard

[David and Eynard, 2014], the 2-form ψv was defined explicitly as the curvature duv of

the U(1) connection

uv =
1

(2π)2

∑

f→v
θ(f+) dγv(f) (13.5)

In 13.5 the sum runs over the faces f adjacent to the vertex v. γv(f) is the angle

between a reference half-line γv with endpoint v and the half line starting from v and

passing through the center of the (circumcircle of the) face f . f+ is the leftmost edge

of f adjacent to v (see figure 53). This connection is locally continuous inside each cell

Figure 53: Construction of the connection uv

(a cell corresponds to a triangulation structure T ), but, as is shown in next paragraph,

not continuous at the boundaries of the cells. Hence, the cohomology class is not a

Chern class.

Discontinuities of the connection The total cohomology class of interest through

13.4 on Delaunay trinagulations is

ψ(T, {dθ}) =
∑

v∈V(T )

ψv. (13.6)

Inside a cell, that is for a triangulation structure T , the following equality holds

ψ(T, {dθ}) = du(T, {dθ}) , u =
∑

v∈V(T )

uv. (13.7)
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The curvature 2-form ψ and the 1-form u (the global U(1) connection) depend

implicitly on a choice of triangulation T of the marked sphere, which is supposed to

be kept fixed, but the final measure µ and its integral over the moduli space does not

depend on the choice of triangulation.

In our formulation, the moduli space M0,n is the closure of the union of disjoint

domainsM(T )
n where the triangulation T is combinatorially a given structure of Delau-

nay triangulation. Two domains M(T )
n and M(T ′)

n meet along a face (of codimension

1) where the four vertices of two faces sharing an edge are cocyclic, so that one passes

from T to T ′ by a flip, as depicted on Fig. 54. Hence, more generally, the 2-form ψ

can be written in this form:

ψ =
∑

T triangulation
structure

χ(T ) du(T, {dθ}) (13.8)

where χ(T ) is the indicator function (hence a 0-form) of the domainM(T ) and u(T, {dθ})
the 1-form for the triangulation T . David and Eynard [David and Eynard, 2014]

showed that this measure is continuous at the boundary between two adjacent do-

mains M(T )
n and M(T ′)

n , so that the definition 13.8 is global.

The total class ψ is a Chern class if it is the curvature of a connection. Let us define

ũ =
∑

T triangulation
structure

χ(T ) u(T, {dθ}). (13.9)

Then ũ is a global U(1) connection, and its curvature is

dũ =
∑

T triangulation
structure

χ(T ) du(T, {dθ}) + dχ(T ) ∧ u(T, {dθ})

= ψ +
∑

T triangulation
structure

dχ(T ) ∧ u(T, {dθ}) (13.10)

Therefore, ψ is a Chern class if the last sum vanishes. Inside a cell, one has obviously

dχ(T ) = 0, but on the boundary, if u is not continuous along a flip, ψ might not be

exact. In this case, the measure over the Delaunay triangulation would be different

from the measure over the moduli space of marked Riemann spheres.

Let us therefore compare the 1-form u for a triangulation T and the corresponding

1-form u′ for the triangulation T ′ obtained from T by the flip (2, 4) → (1, 3) depicted

on Fig. 54. The angles θ of the edges of T and θ′ of the edges of T ′ are a priori different

for the five edges depicted here (when the points 1, 2, 3 an 4 are not cocyclic) but only

six among the ten angles are independent, since they satisfy the relation at vertex 1

θ12 + θ14 = θ′12 + θ′13 + θ′14 (13.11)
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and the three similar relations for vertex 2, 3 and 4. These relations imply for instance

that θ24 +θ′13 = 0. From the definition 13.5 of the 1-forms u and u′ one computes easily

u− u′ (which depends a priori on the choice of section angles γ1, . . . γ4). However we

are interested at the difference at the flip between the Delaunay triangulations T and

T ′, i.e when the 4 points are cocyclic. Then θ12 = θ′12, θ14 = θ′14, θ23 = θ′23, θ34 = θ′34

and θ24 = θ13 = 0 and we get

u(T, {dθ})− u′(T ′, {dθ′})|flip = (θ14 + θ23 − θ12 − θ34)(dθ12 − dθ′12) + (θ14 + θ23)dθ24.

(13.12)

Despite of the apparent dihedral symmetry breaking of formula 13.12, it is actually

symmetric, and using the relations holding at the vertices, it is equivalent to:

u(T, {dθ})− u′(T ′, {dθ′})|flip =
1

2
((θ12 + θ34)(dθ′12 − dθ12 + dθ′34 − dθ34)

+(θ14 + θ23)(dθ′14 − dθ14 + dθ′23 − dθ23)) .(13.13)

Therefore the 1-form u is not continuous on the boundary of a cell T . This means that

ψ fails to be the curvature of a connection at the boundaries of the domains M(T )
n , so

it is not a Chern class.

13.2 Common features of the models.

Despite the class ψ is not a Chern class, we showed (see chapter 85) that the measure

over Delaunay triangulations of size n is the Weil-Petersson measure over M0,n – up

to a factor 1
2n−3 . Therefore, the volume

V D
n = Vol(T̃ fn ) =

∑

T∈Tn
triangulation

structure

∫

T̃ fn (T )

dνn(T, θ) (13.14)
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Figure 55: Plot of the function µ =
√
VDJ1(2

√
VD). The relation is valid for VD ∈

[0,Vcrit].

of Delaunay triangulations of size n is equal to the Weil-Petersson volume V W P
n =

VolW P(M0,n) of the moduli space M0,n: V D
n = V W P

n . V W P
n was computed by Zograf

[Zograf, 1993], Kaufmann, Manin and Zagier [Kaufmann et al., 1996], Manin and Zo-

graf [Manin and Zograf, 2000], and more generally by Mirzakhani [Mirzakhani, 2007],

who extended the formula for higher genus cases. In the same manner as for the vol-

umes of Strebel graphs, one can encode the volumes V D
n Weil-Petersson volumes in a

generating function:

VD(µ) =
∞∑

n=3

µn−2

(n− 2)!(n− 3)!
V D
n

=
∞∑

n=3

µn−2

(n− 2)!(n− 3)!
V W P
n . (13.15)

The generating function is defined for µ close to 0. Kaufmann, Manin and Zagier

[Kaufmann et al., 1996] showed that this generating function satisfies the relation:

µ =
∞∑

m=1

(−1)m−1

m!(m− 1)!

(
VD(µ)

)m

=
√
VDJ1(2

√
VD) (13.16)

where J1(z) = z
2

∑+∞
m=0

(−1)m

m!(m+1)!

(
z2

4

)m
is a Bessel function of the first kind. It is related

to I1(z) by J1(iz) = iI1(z). Equation 13.16 is valid for µ close to 0. In figure 55 is

plotted the function µ(VD). As for Strebel graphs, there is a critical value µc ≈ 0.312115

above which equation 13.16 is not valid anymore. Hence, a common feature between

Strebel graphs and Delaunay triangulations is the presence of Bessel functions for the

generating functions of the volumes.
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This common features incites us to define k-point functions for Delaunay triangulations

in a similar fashion as for Strebel graphs. Let us consider a Delaunay triangulation

with n + k vertices (n ≥ 3, k ≥ 0), for which one allows k vertices vn+1, . . . , vn+k to

have respective conical singularities Θ1, . . . ,Θk ∈ R+, that is, at those vertices, the

condition 13.1 transforms into:

∑

e→vn+i

θe = Θi, ∀i ∈ {1, . . . , k}. (13.17)

It is equivalent to allowing some perimeters Li to be different from L in the case

of isoperimetric Strebel graphs. Let us note T̃n+k(Θ1, . . . ,Θk) the set of Delaunay

triangulations with k vertices satisfying the condition 13.17. Note that Delaunay tri-

angulations have unlabeled vertices, so the k vertices can be any of the n+k vertices of

the triangulation. Allowing k vertices to have some default angles enables to test the

sensibility of Delaunay triangulations to the change of constraints. Then, in the same

manner as for Strebel graphs, the k-point function ZD
n,k(Θ1, . . . ,Θk) is the volume of

the stratum

ZD
n,k(Θ1, . . . ,Θk) = Vol(T̃n+k(Θ1, . . . ,Θk))

=
∑

T triangulation
structure

∫
dνn+k(T, θ,Θi). (13.18)

Those correlation functions are expressible in terms of Weil-Petersson volumes, and a

similar analysis as for the volumes stands. Therefore, the study of Strebel graphs has

allowed us to define computable correlation functions for Delaunay triangulations.

14 Asymptotic behaviour of the volume and the

one-point function

It remains to study the large N behaviour of the observables. Since n + k is the

number of faces of the Strebel graph (number of vertices of the dual triangulation),

the large n limit should be the continuum limit of large maps. It should tend towards

the Brownian map (according to [Le Gall, 2013]-[Miermont, 2013]) and it is expected

to converge towards Liouville theory.

Large n expansions are controlled by the singularities of the generating functions,

that is to say we have to study the behavior as µL2 → µcL
2, where µc is a point (closest

to 0) at which the generating functions are not analytic.

Volume and correlation functions large n asymptotics are then related to the sin-

gular behavior of their respective generating functions when approaching the critical

point µc.
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Figure 56: Plot of the third derivative of the generating function of the volumes ∂µV
in terms of µL2. The generating function diverges at µcL

2.

We first focuse on asymptotics of the volume, using the explicit computation we

did in the second part. In order to compute the one point function at large N , we

enforce the saddle point method in a second time. This allows us to identify a typical

length scale for large maps. Last, we use Topological Recursion results and the critical

Spectral curve to compute n-point functions.

14.1 Asymptotics of the volume

The third derivative of the generating function for the volume is given by formula 12.7

of section 12.1:

∂3
µV(µ, L) =

I0(u)4

2I0(u)− uI1(u)
(14.1)

A plot of this generating function is given in figure 56. It diverges at the critical point

µc, for which 2I0(u(µc)) − u(µc)I1(u(µc)) = 0. This critical value is precisely the one

for which u(µ)2

I0(u(µ))
is maximal (see figure 50).

If µ is close to µc, i.e. u is close to uc, we have:

µ

µc
= 1− u2

c − 4

2u2
c

(uc − u)2 +O
(
(uc − u)3

)
,

u2
c − 4

2u2
c

= 0.2005...

i.e.

uc − u ∼
√

2u2
c

u2
c − 4

√
1− µ

µc
(1 +O(

√
1− µ/µc)) ,

√
2u2

c

u2
c − 4

= 2.23... (14.2)

So we get:

∂3
µV(µ, L) ∼

µ→µc

C√
1− µ

µc

+O(1) , C =
1√
2

I0(uc)
3

√
u2
c − 4

= 18.69... (14.3)
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∂3
µV(µ, L) behaves as (1−µ/µc)−1/2, so V(µ, L) has a (1−µ/µc)5/2 singularity. Writing

that

C√
1− µ

µc

=
∑

n≥0

µn

n!

C(2n− 1)!!

2nµnc
, (14.4)

and comparing with:

∂3
µV(µ, L) =

∞∑

n=3

µn−3

(n− 3)!
Vn(L), (14.5)

we find the large n behavior of the volume

Vn(L) ∼
n→∞

C
(2n− 7)!!

2nµnc
= C

(2n− 7)!!L2n

2n(µcL2)n
, µcL

2 = 1.902...

∼
n→∞

C n!A(L)n n−
7
2

with A(L) = L2

2µcL2 . The exponent −7
2

is the same as the one for the large n volumes of

Delaunay triangulations. It is a universal feature of pure gravity random map models,

so this confirms that Strebel graphs lay in this universality class.

14.2 One-point function – Saddle point method

We want to study the large n limit of the one-point function:

fn

(
L,
L1

L

)
def
= Zn,1(L,L1)

= . . . (14.6)

=
(n− 2)!L2n−4

2
Res
z→0

dz

z
I0(z)2e(n−2)(ln I0(z)−2 ln z+ 1

n−2
ln I0(zL1/L)) (14.7)

The detail of the computation has been transferred to appendix B for readability, as

the calculus is close to the one for the volume. Let us define

Sn(z) = ln I0(z)− 2 ln z +
1

n− 2
ln I0

(
L1

L
z

)
(14.8)

Sn is an even function. In the large n limit, we use the saddle point approximation

to compute the residue, hence we have to find the saddle point of Sn. First, let us
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compute its derivatives.

∂

∂y
Sn(x+ iy) = i

[
I1(x+ iy)

I0(x+ iy)
− 2

x+ iy
+

1

n− 2

L1

L

I1

(
L1

L
(x+ iy)

)

I0

(
L1

L
(x+ iy)

)
]

(14.9)

∂2

∂y2
Sn(x+ iy) = −1 +

I1(x+ iy)

(x+ iy)I0(x+ iy)
+
I2

1 (x+ iy)

I2
0 (x+ iy)

− 2

(x+ iy)2
−

(14.10)

1

n− 2

(
L1

L

)2
(

1− I1

(
L1

L
(x+ iy)

)
L1

L
(x+ iy)I0

(
L1

L
(x+ iy)

) − I2
1

(
L1

L
(x+ iy)

)

I2
0

(
L1

L
(x+ iy)

)
)

(14.11)

(14.12)

We distinguish three regimes for the behaviour of L1 at large n. For each regime, we

may compute the saddle points and carry out the residue. Let us note in all the regimes

l = L1

nL
.

Regime 1: l→ 0 when n→∞ In this regime, the term 1
n−2

ln I0

(
L1

L
z
)

is negligible,

the saddle point is the saddle point of ln I0(z)− 2 ln z, it is independent of L1/L, and

it is worth z = ±uc. This gives

fn

(
L,
L1

L

)
∼

n→∞
I0

(
L1

L
uc

)
I0(uc)

n

u2n−4
c

√
2π√

u2
c − 4

(n− 2)!L2n−4 (14.13)

Zn,1(L;L1) ∼
n→∞

C n!
[
L2A1(l)

]n
n−2 I0 (n l uc) (14.14)

(14.15)

with A1(l) = I0(uc)
u2
c

(it is independent of l, but the parameter is kept to uniformize the

notations with the other regimes).

Regime 2: l = O(1) when n→∞ We use the asymptotics:

I0(x) =
x→∞

ex√
2πx

(1 +O

(
1

x

)
) (14.16)

which gives:

Sn(z) = ln

(
I0(z)

z2

)
+ lz +O

(
lnn

n

)
(14.17)

By the same argument as in the first regime, there are two saddle points x0(l), x1(l) =

−x0(l) situated on the real axis. Again, let x0 be the positive one. The equation

S ′n(x0) = 0 gives:

x0I1(x0)− (2− lx0) I0(x0) = 0 (14.18)
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At the point x0(l):

Sn(x0) = ln I0(x0)− 2 lnx0 + lx0 + o(1) (14.19)

∂2

∂y2
Sn(x0) = −

(
1 +

4l

x0

− 4

x2
0

− l2
)

+ o(1) (14.20)

= −1 +

(
l − 2

x0

)2

+ o(1) (14.21)

= O(1) (14.22)

We then have:

fn

(
L,
L1

L

)
= (n− 2)!L2n−4 I0(x0(l))n

x0(l)2n−4

e(n−2)lx0(l)

√
2π(n− 2)lx0(l)

√
2π√

(l2 + 1)x0(l)2 + 5x0(l)− 4
(14.23)

Of course, the factors 2π simplify, but in this form, we see that fn in the second regime

is matching the one of the first regime. Indeed, as L1

L
∼ nl, we have:

I0

(
L1

L
x0(l)

)
∼

n→∞
enlx0(l)

√
2πnlx0(l)

(14.24)

What is more, if l = 0, the last fraction is equal to
√

2π√
u2
c−4

. So we recover the first

regime in this limit, and more generally, in this regime:

Zn,1(L;L1) ∼
n→∞

C n!
[
L2A2 (l)

]n
n−2 I0 (n l x0(l))

with A2(l) = I0(x0(l))
x0(l)2 .

Regime 3: l → ∞ when n → ∞ In this regime, l � 1. We can show that in this

regime, we have necessarily, for the saddle point x0:

x0 →
n→∞

0 (14.25)

L1

L
x0 →

n→∞
+∞ (14.26)

We can then expand x0 as a series of nα
(
L1

L

)β
. We find:

x0(l) =
2

l
+

2

5

1

nl
+O

(
1

n2l

)
(14.27)

We then get:
∂2S

∂y2
(x0(l)) = − l

2

2
(1 +O

(
1

n

)
) (14.28)
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and

Sn(x0(l)) = ln I0

(
2

l

)
− 2 ln

2

l
+

1

n− 2
ln I0(2n− 4)) (14.29)

In the end, we obtain:

fn

(
L,
L1

L

)
= n!L2n−4

[
I0

(
2

l

)]n(
l

2

)2n−4

n−2
√
πI0(2n− 4), (14.30)

so in the third regime:

Zn,1(L;L1) ∼
n→∞

C n!
[
L2A3(l)

]n
n−2I0(2n)

with A3(l) = l2

4
I0

(
2
l

)
.

To summarize, for large n (for which lnn is negligible compared to n), the one-point

function has the following behaviour :

1

n
ln
Zn,1(L;L1)

n!L2nn−2
=

lnC

n
+ lnAi(l) +

ln I0(nlx0(l))

n≈ lnAi(l) + lx0(l). (14.31)

The plot of this function is displayed in figure 57. The domain of validity of each regime

is shown on the plot. One sees that in regime 1, the one-point function does-not depend

on l, as it is nearly constant, so the coupling between the small face and the rest of

the graph does not appear at the leading order ; in regime 3, the dependence becomes

linear, so again, the face with a large perimeter decouples from the rest of the graph.

Last, in regime 2, for which L1 ∼ nL, one sees a transition phase and a non trivial

dependence of the one-point function. Therefore, the face with perimeter L1 shows a

strong coupling with the rest of the graph when L1 scales as n.

15 Extension to genus 1

What makes all the previous computations possible is the fact that intersection numbers

of Chern classes in genus 0 are known in a closed formula. This crucial fact is also true

for genus 1:

〈τd1 . . . τdn〉1 =
1

24

n!

d1! . . . dn!
δ

(
n−

n∑

i=1

di

)
. (15.1)

Following exactly the same steps as for genus 0, we end-up with the explicit formulas

for those functions:

V1(µ, L) =
1

24

2I0(u)

2I0(u)− uI1(u)

Z1
k(µ, L;L1, . . . , Lk) =

1

24

dk

dµk

∞∑

n=0

(µL2)n+k [z2n]

(
I0(z)n

k∏

j=1

I0

(
Lj
L
z

))
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Figure 57: Plot of the dependence of the one-point function in terms of ln l

=
1

24

dk

dµk

(
(µL2)k

[
1

u2k

2I0(u)

2I0(u)− uI1(u)

k∏

j=1

I0

(
Lj
L
z

)])
.

(15.2)

The results are very similar to the genus 0 case: instead of having I0(u)4 at the nu-

merator, we get I0(u), and the order of the derivative with respect to µ changes also.

Therefore, the combinatorics of isoperimetric Strebel graphs for genera 0 and 1 are

very similar.
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Part V

Spectral curve and topological
recursion for Strebel graphs

The expectation values of the observables defined on isoperimetric planar Strebel

graphs are explicitly known from previous chapter. Taking advantage of this result, it is

possible to study the continuous limit of any k-point function Zn,k. However, as we see

in the case of the one-point function, whose continuous limit was approached via saddle

point approximation, the computations are rather long, and for k-point functions with

k ≥ 2, the saddle point approximation is way subtler than for the 1-point function.

Moreover, the continuous limit has to be derived for each correlation function, which

means that, for the moment, we do not have a global view of what happens in the con-

tinuous limit, and hard to identify towards which theory it converges, if it does. It is

therefore useful to be able to derive those correlation functions, encoded in generating

functions, in a more systematic way. This way, in our case, is topological recursion,

which is a procedure to compute certain class of generating functions of combinatorial

models (among others), from the data of a spectral curve.

This chapter treats the same aspect of random maps as the previous one, that is, the

computation of expectation values of observables, and it is realized thanks to topolog-

ical recursion applied to the same model as the previous part, isoperimetric Strebel

graphs. First, we introduce the procedure of topological recursion, developed by Ey-

nard and Orantin [Eynard and Orantin, 2007]. Then, to apply it to Strebel graphs, we

compute the spectral curve in our case. It allows to compute the generating functions

of correlation functions defined previously, and also to generalize the computation to

higher genera (and not only to planar correlation functions). As we will see, the con-

tinuous limit of Strebel graphs corresponds to critical point of the spectral curve, found

by tuning the parameter µ of the model to a critical value µc. We exhibit the critical

spectral curve and the scalings when the parameter µ is close to µc. Once the criti-

cal spectral curve and the different scalings are identified, there are two consequences.

First we can determine to which theory the continuous limit of Strebel graphs is eligible

to converge. We show that in the continuous limit, the model of Strebel graphs should

be equivalent to the (3,2) minimal model, that we define briefly, dressed with gravity.

This (3,2) minimal model corresponds to a conformal field theory with central charge

c = 0, known to describe pure quantum gravity once dressed with Liouville theory.

Second we are able to compute easily the behaviour of the correlation functions in the

large n limit (the continuous limit).
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The results proven in this section may make appear the one-point function analy-

sis with the saddle-point machinery of previous chapter completely obsolete. Yet,

this pedestrian study was necessary in order to spot the “interesting” regime for the

marked perimeters L1, . . . , Lk (for which the behaviour of the generating functions is

non-trivial). Indeed, we will use here the regime Li ∼ nL found in chapter IV. This

chapter is based on the article [I].

16 Spectral curve and topological recursion

Topological recursion was developed by Eynard and Orantin

[Eynard and Orantin, 2007]. It is a procedure that allows, from the data of a

spectral curve S, to compute recursively invariants ωg,k(z1, . . . , zk), which are mero-

morphic forms on a Riemann surface Σ, where g, k ∈ N. The recursion is on the

quantity 2 − 2g − k, which is the Euler characteristic χg,k of a compact Riemann

surface of genus g with k boundaries, and Eynard proved [Eynard, 2011] that the

invariant ωg,k is related to integrals over the moduli space Mg,k of Riemann surfaces

of genus g with k boundaries, hence the name for “topological recursion”. Let us give

the definitions of the spectral curve and of topological recursion.

First, let us precise the notation: given a Riemann surface Σ, we note M 1(Σ) the set

of meromorphic 1-forms on Σ. In the following, the meromorphic k-forms we refer to

are not exterior k-forms but rather elements of M 1(Σ)⊗ · · · ⊗M 1(Σ)︸ ︷︷ ︸
k times

.

A spectral curve S = (Σ,C, x, y, ω0,2) is the data of

• a Riemann surface Σ (not necessarily connected nor compact) ;

• a base curve Σ0, which is also a Riemann surface, we consider here that Σ0 = C ;

• two meromorphic maps x, y : Σ→ C ;

• a symmetric meromorphic 2-form ω0,2 ∈M 1(Σ)⊗symM 1(Σ) whose only poles are

double poles at coinciding points with this behaviour ω0,2(z1, z2) ∼
z1→z2

dz1⊗dz2
(z1−z2)2 +

analytic.

Figure 58 allows to visualize the curve Σ, the base curve Σ0 and the map x. In an

equivalent way, if we define the 1-form ω0,1(z) = y(z)dx(z), the spectral curve is also

the data of (Σ,C, x, ω0,1, ω0,2). In an abuse of notation, later we shall identify the map

x with the variable x(p) for p ∈ Σ, and treat x as a variable on the base curve Σ0 = C.

The maps x and y allow to embed the curve Σ in the space C× C.

The recursive formula defining the ωg,k requires the introduction of the branchpoints

of S, the involution σa, and the kernel Ka(z; z1).
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Figure 58: Representation of a spectral curve, with the elements Σ, Σ0 = C and x.

• A branchpoint a ∈ Σ of is a point of the curve such that dx(a) = 0. Generically,

the branchpoints are simple, that is, the zero of dx in a is simple. A branchpoint

a of order m is a zero of order m of dx(z).

• In a neighborhood Ua of a simple branchpoint a (in this manuscript, all the

branchpoints are simple), there exists an analytic involution σa : Ua → Ua,

σa 6= Id, such that x(z) = x(σa(z)).

• The kernel Ka(z, z1) associated to a simple branchpoint a is given by the formula:

Ka(z; z1) =
1

2

∫ z
s=σa(z)

ω0,2(z1, s)

ω0,1(z)− ω0,1(σa(z))
, (16.1)

it is a 1-form in z1, and 1
Ka(z;z1)

is a 1-form in z.

The formula of topological recursion for k ≥ 1, g ∈ N, 2− 2g − k < 0 is:

ωg,k(z1, . . . , zk) =
∑

a
dx(a)=0

Res
z→a

Ka(z; z1) [ωg−1,k+1(z, σ(z), z2, . . . , zk)

+
′∑

g1+g2=g
I1tI2={z2,...,zk}

ωg1,1+|I1|(z, I1)ωg2,1+|I2|(σ(z), I2)


 (16.2)

where
∑′ means that the sum excludes the pairs (gi, Ii) = (0,∅). On the right hand

side, the invariants ωg′,k′ satisfy 2 − 2g′ − k′ > 2 − 2g − k, therefore this formula is a

recursive formula on 2− 2g − k. For all g, k, ωg,k is a meromorphic k-form on Σ.

The so-called free energies Fg with g > 1 are computed from those invariants through:

Fg =
1

2− 2g

∑

a
dx(a)=0

Res
z→a

Φ(z)ωg,1(z), (16.3)
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where Φ is a primitive of ydx, that is, once a base point o ∈ Σ is chosen:

Φ(z) =

∫ z

o

ydx. (16.4)

There exist other formulations of topological recursion (see Kontsevich-Soibelman

[Kontsevich and Soibelman, 2017], [Andersen - Borot - Chekhov - Orantin, 2017]),

but this one fits for our purposes. This recursion relation is a type B-model, that is to

say it defines invariants ωg,n from a complex curve S. In section 18, we shall see that a

theorem from Eynard [Eynard, 2011] relates those invariants computed from a specific

spectral curve (found in next section) to the problem of enumerating isoperimetric

Strebel graphs. Problems of enumerative geometry are type A models. The interest of

topological recursion for us is the correspondence between a type A model and a type

B. This correspondence is the mirror symmetry.

An important property is that the invariants ωg,k are unchanged under a

reparametrization of the spectral curve. What is more, if one adds to y a polyno-

mial in x, the kernel Ka(z; z1) remains unchanged. Indeed, if one adds a monomial xm,

then

ω0,1(z)− ω0,1(σa(z)) = y(z)dx(z)− y(σa(z))dx(σa(z))

+x(z)mdx(z)− x(σa(z))mdx(σa(z))

= y(z)dx(z)− y(σa(z))dx(σa(z)). (16.5)

Therefore, the invariants ωg,k remain unchanged under y → y + xm.

17 Spectral curve for Strebel graphs

The spectral curve of the planar isoperimetric Strebel graphs derives from results shown

by Eynard in [Eynard, 2007], [Eynard, 2011]. We have two parameters µ, L in our

model, so actually, we need to determine the family of spectral curves S(µ, L) indexed

by those parameters. In order to express them, let us transform the formula for the

generating function of the volumes in terms of times tk. We showed in chapter IV,

using a theorem by Kontsevich, that the generating function of the volumes V(µ, L)

can be expressed in terms of Chern classes. More precisely, if one looks at equation

12.1:

V(µ, L) =
1

2

∞∑

n=3

23

2n
µn

n!

∑

d1+···+dn=n−3

〈
n∏

i=1

L2di

2didi!
τdi

〉

0

= 4
∞∑

n=0

µn

2nn!

〈( ∞∑

d=0

L2d

2dd!
τd

)n〉

0
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= 4

〈
e

1
2

∑∞
d=0 µ

L2d

2dd!
τd

〉

0

(17.1)

where, to pass from the first line to the second line, we used the convention

〈τd1 . . . τdn〉0 = 0 if n < 3 or d1 + . . . dn 6= n − 3. We shall write it in the follow-

ing form:

V(µ, L) = 4
〈
e

1
2

∑∞
d=0(2d−1)!!t2d+1(µ,L)τd

〉
0
, (17.2)

with the times t2d+1(µ, L) = µL2d

(2d)!
. We can define the even times – which do not appear

here thus one can choose them arbitrarily – to be t2d(µ, L) = µL2d−1

(2d−1)!
, so that in general

for d ≥ 0

td+1(µ, L) =
µLd

d!
. (17.3)

For a given (µ, L), the spectral curve S(µ, L) of isoperimetric planar Strebel graphs

is defined by the times t(µ, L) = (t1(µ, L), t2(µ, L), t3(µ, L), . . . ). They are functions

of µ and L, in the following we may drop the out (µ, L) in the formulas to get more

readable expressions. Once S(µ, L) is found, Topological Recursion allows to compute

the quantities

Fg(µ, L) =
〈
e

1
2

∑∞
d=0(2d−1)!!t2d+1τd

〉
g

for g ≥ 2, (17.4)

which are the generating functions of the volumes of isoperimetric Strebel graphs of

genus g:

Fg(µ, L) =
∞∑

n=0

µn

n!
Vol(Sg,n(L)). (17.5)

It has been shown (see e.g. [Eynard, 2011]) that for g ≥ 2, one can express the free

energies Fg in terms of Chern classes τd with d > 0:

Fg(µ, L) =
〈
e

1
2

∑∞
d=1(2d−1)!!ť2d+1(µ,L)τd

〉
g

(17.6)

provided that the family of times ť(µ, L) = (ť1(µ, L), ť2(µ, L), ť3(µ, L), . . . ) are related

to t by

ť1 =
∞∑

j=0

(2j − 1)!!

2jj!
ťj1t2j+1 , ť2k+3 =

∞∑

j=0

(2k + 2j + 1)!!

(2k + 1)!! 2jj!
ťj1t2k+2j+3. (17.7)

It is necessary to have g ≥ 1 for the equality 17.6 to hold. Indeed, for genus 0, we

saw that 〈τd1 . . . τdn〉0 = 0 if d1 + · · · + dn 6= n − 3. But if di > 0, we must have

d1 + · · ·+ dn ≥ n, so 〈
e

1
2

∑∞
d=1(2d−1)!!ť2d+1τd

〉
0

= 0. (17.8)

Still, the spectral curve associated to the invariants Fg must be the spectral curve

associated to V , because the times t are the same. Eynard showed in [Eynard, 2007]
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and [Eynard, 2011] that the spectral curve S(µ, L) for the invariants Fg(µ, L) is:

S(µ, L) =

(
C,C, x(µ, L), y(µ, L),

dz1 ⊗ dz2

(z1 − z2)2

)

{
x(µ, L; z) = z2 + ť1

y(µ, L; z) = z − 1
2

∑+∞
k=0 ť2k+3z

2k+1
(17.9)

Therefore the Riemann surface is Σ = C, the base space is Σ0 = C, and the Bergman

kernel is B(z1, z2) = dz1⊗dz2
(z1−z2)2 . Those three objects are independent of the parameters

µ, L. In order to get explicit formulas for the functions x and y, we simply need to

compute the times ť(µ, L), defined by equations 17.7 in terms of the times t(µ, L).

Time ť1(µ, L)

The equation determining ť1(µ, L) is

ť1(µ, L) = µ
∞∑

j=0

1

22jj!j!
ťj1L

2j = µI0(L
√
ť1(µ, L)), (17.10)

That is to say:
ť1(µ, L)L2

I0(
√
ť1(µ, L)L2)

= µL2, (17.11)

which is precisely the equation defining u(µL2). This means that actually ť1(µ, L) =
u(µL2)2

L2 .

Times ť2k+3(µ, L)

Once the time ť1 found, the derivation of times ť2k+3 is straightforward, by application

of formula 17.7. For k ≥ 0

ť2k+3(µ, L) =
∞∑

j=0

(2k + 2j + 1)!!

(2k + 1)!! 2jj!
ťj1t2k+2j+3

=
µL2k+2

(2k + 1)!!

∞∑

j=0

1

22j+k+1(k + 1 + j)!j!
ťj1L

2j

=
µL2k+2

(2k + 1)!!u(µL2)k+1

∞∑

j=0

u2j+k+1

22j+k+1(k + 1 + j)!j!

=
µL2k+2

(2k + 1)!!u(µL2)k+1
Ik+1(u), (17.12)

where Ik is the kth modified Bessel function of the first kind (see appendix A). Hence,

the functions x and y can be expanded in terms of Bessel functions of u(µL2).

S(µ, L) =

(
C,C, x(µ, L), y(µ, L),

dz1 ⊗ dz2

(z1 − z2)2

)

{
x(µ, L; z) = z2 + u(µL2)2

L2

y(µ, L; z) = z − µL2

2u

∑+∞
k=0

L2kIk+1(u)

(2k+1)!!uk
z2k+1.

(17.13)
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The functions x and y allow to embed the spectral curve in C × C. In figure 59

are depicted the intersection of this embedding with R × R of the spectral curve for

different values of the parameter µL2. The generic case corresponds to the first plot.

In order to run topological recursion, it is necessary to identify the branchpoints, the

involutions σa and the kernels Ka(z; z1).

• There is one branchpoint: dx(a) = 0 for a = 0, it is a simple branchpoint.

• The associated involution is simply σa(z) = σ0(z) = −z.

• As we see in the formula 16.1 for the kernel Ka(z; z1), a more fundamental object

than the function y is the one form ω0,1(µ, L; z) = y(µ, L; z)dx(µ, L; z). Indeed,

the invariants computed through topological recursion are differential forms ωg,n,

that can be deduced from ω0,1 and ω0,2. It follows immediately from the descrip-

tion of S(µ, L) that

ω0,1(µ, L; z) =

(
2z2 − µL2

u

+∞∑

k=0

L2kIk+1(u)

(2k + 1)!!uk
z2k+2

)
dz (17.14)

So the kernel is:

K0(z; z1) =
1

2

z

z2
1 − z2

dz1

ω0,1(µ, L; z)
. (17.15)

The spectral curve depends on the parameters µ and L, but actually, the parameter

L, which is the perimeter of the faces of the Strebel graphs, is just there to fix the scale

of lengths. In the following, we may fix L, and then vary µ, so the spectral curves

S(µ, L) depend on one parameter µ.

18 topological recursion for strebel graphs of any

genus

In this section, as a corollary of a result proved by Eynard in [Eynard, 2011], we see that

topological recursion implemented on the spectral curve S(µ, L) allows to compute the

Laplace transform of correlation functions of isoperimetric Strebel graphs. Therefore,

the correlation functions Zg,k of isoperimetric Strebel graphs – which is an A-model

–, can be deduced from the invariants ωg,k computed through topological recursion on

S(µ, L) – B-model invariants. The following theorem is the
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Figure 59: Intersections with R2 of the embedding of the spectral curves in C2
. The firs

plot corresponds to a generic value of the parameter µL2, the second plot corresponds
to the critical value µcL

2, for which the curve is singular and has a cusp. The third
curve is the critical spectral curve, which happens to be the spectral curve of the (3,2)
minimal model. For an animation of the variation of the embedding between the first
plot (generic µL2) and the second one (at the critical value), see the flipbook animation
in the bottom right hand side corner along this chapter.
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Theorem 18.1. [Eynard, 2011] The invariants dz1 . . . dzkFg,k(λ; z1, . . . , zk) defined for

generic times t(λ) as:

22−2g−k
+∞∑

d1,...,dk
=0

k∏

i=1

−(2di + 1)!!dzi

z2di+2
i

〈
e

1
2

∑∞
d=0(2d−1)!!t2d+1(λ)τd

k∏

i=1

τdi

〉

g

= dz1 . . . dzkFg,k(λ; z1, . . . , zk) (18.1)

are the Eynard-Orantin invariants ωg,k(λ; z1, . . . , zk) for the spectral curve S(λ) deduced

from the times t.

As one looks at the expression on left hand side for genus 0, we see that these

are precisely the Laplace transforms F0,k(µ, L; z1, . . . , zk) of the generating functions

Zk(µ, L;L1, . . . , Lk), if we specialize the times t to be t2d+1(µ, L) = µL2d

(2d)!
. We shall

note those invariants in the following way Fg,k(S(µ, L); z1, . . . , zk) to emphasize the

fact that they are computable from the spectral curve. The theorem is true for genus

0 invariants, provided that k ≥ 3. Therefore, the recursion for the Fg,k is (we drop the

dependence on S(µ, L) for readability):

dz1 . . . dzkFg,k(z1, . . . , zk) = Res
z→0

1

2

1

z2 − z2
1

dz1

y(µ, L; z)dz
×

[dzd−zdz2 . . . dzkFg−1,k+1(z,−z, z2 . . . , zk)

+
′∑

g1+g2=g
I1tI2={z2,...,zk}

dzdzI1Fg1,1+|I1|(z, I1)×

d−zdzI2Fg2,1+|I2|(−z, I2)
]
.

(18.2)

As an example of application, let us compute the Laplace transform of the 3-point

function.

Example 18.1. The invariant ω0,3 worthes:

ω0,3(z1, z2, z3) = dz1dz2dz3F0,3(S(µ, L); z1, z2, z3)

=
1

2
Res
z→0

1

z2
1 − z2

dz1

y(µ, L; z)dz
(ω0,2(z, z2)ω0,2(−z, z3)

+ω0,2(z, z3)ω0,2(−z, z2))

=
1

2
Res
z→0

dz

z2 − z2
1

dz1dz2dz3

y(µ, L; z)

(
1

(z − z2)2(z + z3)2
+

1

(z − z3)2(z + z2)2

)

= −dz1dz2dz3

z2
1z

2
2z

2
3

Res
z→0

dz

y(z)

= − 2I0(u)

2I0(u)− uI1(u)

dz1dz2dz3

z2
1z

2
2z

2
3

. (18.3)
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From ω0,3 we deduce F0,3:

F0,3(S(µ, L); z1, z2, z3) =
2I0(u)

2I0(u)− uI1(u)

1

z1z2z3

. (18.4)

19 Critical point and (3,2) minimal model

In previous chapter, we saw that the parameter µL2 has a critical value, which allows

to study the large n limit of correlation functions and volumes. What motivates the

study of the large n limit (or continuum limit) of correlation functions is the study of

correlation functions in a conformal field theory coupled with Liouville theory. This

is equivalent to study correlation functions of a matter field (which abides by the

CFT laws) dressed by gravity (the dressing corresponds to the coupling with Liouville

theory). Conformal field theories are indexed by their central charge c. The question

one may ask when studying a particular model of random maps is: to which gravity

dressed conformal field theory does the model converge ? If one knows the family of

spectral curves S(λ) spectral curve of a family of models of random maps indexed by

the set of parameters λ, the continuum limit of the random maps is related to a critical

spectral curve Sc, corresponding to critical values of the set of parameters λc. Then, the

conformal field theory, towards which the model random maps converges in the large n

limit, can be deduced from the critical spectral curve. This section is dedicated to the

critical spectral cure of isoperimetric Strebel graphs, that we find to be the spectral

curve of the (3,2) minimal model dressed by gravity, corresponding to a conformal field

theory of central charge 0 coupled with gravity, also known as a pure gravity. Thus,

we prove that in the continuum limit, the model of isoperimetric Strebel graphs mimic

pure (that is to say, with no content of matter) quantum gravity in 2d. The procedure

to find a critical goes as what follows. To each parameters µ, L is associated a spectral

curve S(µ, L). For generic µ and L, the spectral curve is regular, that is to say, for all

z ∈ Σ = C, (dx(µ, L; z), dy(µ, L; z)) 6= (0, 0). Yet, µ and L can be tuned to critical

values µc, Lc in order to get, at some z0 ∈ C:

dx(µc, Lc; z0) = dy(µc, Lc; z0) = 0.

At that point, the spectral curve is singular, and its embedding in C × C has a cusp.

By rescaling x(λ; z) and y(λ; z) close to (λc; z0) by powers of λ − λc, it is possible to

resolve the singularity, to obtain a critical spectral curve

S̃ = lim
λ→λc

(
C,C, (λ− λc)−qνx(λ; z0 + (λ− λc)ν(z − z0)),

(λ− λc)−pνy(λ; z0 + (λ− λc)ν(z − z0)),
dz1 ⊗ dz2

(z1 − z2)2

)
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=

(
C,C, x̃(ξ), ỹ(ξ),

dξ1 ⊗ dξ2

(ξ1 − ξ2)2

)
. (19.1)

In the case of Strebel graphs, Eynard showed in [Eynard, 2007] and [Eynard, 2011]

that for any times t:
〈
e

1
2

∑∞
d=0(2d−1)!!t2d+1τd

〉
all genera

= e
∑∞
g=0 Fg . (19.2)

Kontsevich proved that precisely the left hand side is a KdV tau function evaluated at

times t: 〈
e

1
2

∑∞
d=0(2d−1)!!t2d+1τd

〉
all genera

= τKdV

(
1

2
(2d− 1)!!t2d+1

)
(19.3)

(the KdV hierarchy is independent of even times). Therefore, for isoperimetric Strebel

graphs, we specialize the times to td+1 = µL2d

(2d)!
, and the invariants Fg are linked to a

KdV tau function. Thus, the critical spectral curve of isoperimetric Strebel graphs is

related to a “critical” KdV tau function. This critical KdV tau function is related to a

minimal model Mp,q. Once the minimal model of the critical spectral curve is identified

and the rescaling exponents known, the continuum limit of correlation functions and

of the model are known.

Let us apply this procedure to our spectral curve. The parameters of the model are

λ = (µ, L). In what follows, the notation uc implicitly means u((µL2)c). The equations

for getting a singular curve are:

{
2z0dz0 = 0(

1− µcL2
c

2uc

∑+∞
k=0

L2k
c Ik+1(uc)

(2k−1)!!ukc
z2k

0

)
dz0 = 0

(19.4)

From which we deduce the critical parameters:

z0 = 0 ;
(µL2)c

2uc
I1(uc) = 1 (19.5)

Actually, the second equation is an equation for µL2. This means that we obtain a

family of critical parameters ; to each perimeter L > 0 there exists one critical value µc

such that the spectral curve is singular. If one recalls that µL2 = u2/I0(u), the second

equation is simply equivalent to

d

du

u2

I0(u)

∣∣∣∣
uc

= 0. (19.6)

That is to say, the critical parameter uc is precisely the point for which µL2 is maximal

(see the plot of figure 50). There are two solutions for uc to this equation, both of them

corresponding to the same critical parameter µcL
2:

uc = ±2.5844 . . . ; µcL
2 = 1.902 . . . . (19.7)
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The spectral curve is thus critical when the parameters are equal to the critical values

found in the previous chapter. This is not surprising as in both cases, we search for

parameters eligible for a study of large n maps. Let us consider – without loss of

generality – the critical uc > 0. In figure 59, the second plot, which is the intersection

of the singular spectral curve with the plane R2, shows a cusp. This means that for

z − z0 = (µcL
2 − µL2)νζ, the functions x and y scale as

x(µ, L; z)− x(µc, L; z0) ∼ (µcL
2 − µL2)qν

y(µ, L; z)− y(µc, L; z0) ∼ (µcL
2 − µL2)pν . (19.8)

Rescaling z, x, y respectively by (µcL
2−µL2)−ν , (µcL

2−µL2)−qν and (µcL
2−µL2)−pν

allows to desingularize the curve and to define the critical spectral curve S̃.

In our case:

x(µ, L; z)− x(µc, L; z0) = (µcL
2 − µL2)2νζ2

y(µ, L; z)− y(µc, L; z0) = (µcL
2 − µL2)ν+ 1

2 ζ

√
I0(uc)

u2
c − 4

2u2
c

−(µcL
2 − µL2)3νζ3u

2
c − 4

2u2
c

+O((µcL
2 − µL2)5ν). (19.9)

One sees that for ν = 1
4
, the function y scales as (µcL

2−µL2)
3
4 (bζ3 + cζ), so we choose

this value for ν. Then, after a reparametrization of ζ:

z = (µcL
2 − µL2)

1
4 ζ = (µcL

2 − µL2)
1
4

(
2u2

cI0(uc)

9(u2
c − 4)

) 1
4

ξ

x(µ, L; z) = x0 + A(µcL
2 − µL2)

1
2 (ξ2 − 2) +O((µcL

2 − µL2)
3
4 )

y(µ, L; z) = B(µcL
2 − µL2)

3
4 (ξ3 − 3ξ) +O((µcL

2 − µL2)) (19.10)

with x0 = u2
c

L2 , A = uc
L2

√
2I0(uc)
u2
c−4

and B = (u2
c − 4)

1
4

(2I0(uc))
3
4

6L
√
uc

. Therefore, the exponents

are known : ν = 1
4
, q = 2, p = 3, and we can take the following limits:

lim
µ→µc

x(µ, L; z)− x0

A(µcL2 − µL2)
1
2

= ξ2 − 2 = x̃(ξ)

lim
µ→µc

y(µ, L; z)

B(µcL2 − µL2)
3
4

= ξ3 − 3ξ = ỹ(ξ). (19.11)

The critical spectral curve is then:

S̃ =

(
C,C, x̃, ỹ,

dξ1 ⊗ dξ2

(ξ1 − ξ2)2

)

{
x̃(ξ) = ξ2 − 2

ỹ(ξ) = ξ3 − 3ξ
(19.12)
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This critical spectral curve, whose intersection with R2 of its embedding into C2
is

displayed in the third plot of figure 59, is the spectral curve of the first reduction of

the Korteweg-De-Vries (KdV) hierarchy. This reduction is also known as the minimal

model M3,2 ; Douglas [Douglas, 1990], studying the critical points of chain matrix

models, formulated it in terms of differential operators. The generic minimal model

M3,2 is the data of 2 differential operators P and Q which statisfy the equations:

[P,Q] = Id

Q = ∂2 − 2v0(s,N)

P = ∂3 − 3v1(s,N)∂ + v2(s,N) (19.13)

where s, N are two additional parameters, and ∂ = 1
N

d
ds

. Those equations are obtained

by considering the operators P,Q that act on orthogonal polynomials of a matrix model

when the parameters of the potential of the matrix model are tuned. The operators

P,Q and the orthogonal polynomials were briefly covered in section 5.3. In the frame

of integrable systems, N is a parameter linked to the genus of the correlation one

computes. It is, in the matrix model formalism, the size of the matrices. Therefore,

the powers of N introduce a grading in the correlation functions. As far as we are

concerned here, we are looking for genus 0 correlation functions, so in the following,

we will select the leading order in N . The parameter s is related to a position in

the integrable models, but for Strebel graphs, we will work at s fixed, and there is no

specific interpretation for this parameter in the continuum limit of Strebel graphs. The

first equation is the so-called “string equation” ; the derivation operator is a derivation

with respect to s, ∂ = 1
N

d
ds

; and v0, v1, v2 are functions to be determined by the string

equation.

Solving the string equation leads to the following solution:

Q = ∂2 − 2v(s)

P = ∂3 + (α− 3v(s))∂ − 3

2N
v̇(s) =

(
Q

3
2

)
+

+ α
(
Q

1
2

)
+
, (19.14)

under the condition that v satisfies the constraint:

αR1(v(s)) +R2(v(s)) = s. (19.15)

R1 and R2 are Gelfand-Dikii polynomials, which are worth:
{
R1(v) = −2v

R2(v) = 3v2 − v̈
2N2 .

(19.16)

Therefore the constraint 19.15 in the minimal model M3,2 reduces to Painlevé I equa-

tion:

3v(s)2 − v̈(s)

2N2
− 2αv(s) = s (19.17)
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The critical spectral curve we found corresponds to operators P = ∂3−3∂, Q = ∂2−2.

It is a planar solution of the string equation (i.e. we take the limit N →∞ to get only

the leading order), with α = 0, and v evaluated at s0 such that v(s0) = 1. In this case,

the planar solution of Painlevé I is v(s) =
√

3
3

√
s, so s0 = 3. Therefore, we see that the

large n limit of Strebel graphs is related to an integrable system. This integrability

allows to determine the correlation functions in the limit. In order to relate the critical

spectral curve with a conformal field theory coupled to Liouville theory, it is useful to

keep the function v(s) =
√

3
3

√
s generic, and specialize it to 1 in the end by evaluating it

at s0 = 3. The link between minimal models Mp,q and amplitudes of a conformal field

theory dressed by gravity – equivalently, coupled with Liouville theory– has been done

by Di Francesco and Kutasov in [Di Francesco and Kutasov, 1990]. They related the

partition function and certain correlation functions derived from the minimal model

Mp,q with amplitudes of a Liouville conformal field theory, provided that its central

charge is given by:

c = 1− 6(p− q)2

pq
. (19.18)

For the minimal model M3,2, this corresponds to a central charge c = 0.

For generic minimal model Mp,q, the amplitudes of the conformal field theory one can

recover by their method does not span the whole possible amplitudes. Yet, we know

that for a null central charge, there is only one operator in the CFT, the identity. The

primary field corresponding to the identity operator is φ(1,1). The amplitudes that we

can compute in this CFT are then the dressed k point functions:

〈
φ(1,1)(x1)φ(1,1)(x2) . . . φ(1,1)(xk)

〉
.

Those amplitudes can be computed from the operators P , Q of the minimal model.

First, let L be a pseudo-differential operator such that, for all k ≥ 0, Qk =
(
L2k
)

+
.

In our model,L = ∂ − v∂−1 + . . . . For a minimal model Mp,q, one can construct the

operators:

Rr,s = Lpr−qs, 1 ≤ s ≤ r ≤ q − 1 (19.19)

For M3,2, there is one operator R1,1 = L. Then, Di Francesco and Kutasov showed

[Di Francesco and Kutasov, 1990]:

〈
φ(1,1)(x1)φ(1,1)(x2) . . . φ(1,1)(xk)

〉
= −2( Res L)(k), (19.20)

with Res L being the coefficient of ∂−1 in L, which is −v(s). This implies that the

dressed k-point functions for a generic s is:

〈
φ(1,1)(x1)φ(1,1)(x2) . . . φ(1,1)(xk)

〉
=

1

(−4)k−1

(2k − 1)!

(k − 1)!
s−k+ 1

2 . (19.21)

135



Strebel Graphs KdV Hierarchy Spectral Curve

Critical
Spectral Curve

Minimal Model
(3,2)

CFT c = 0
coupled to Liouville

Kontsevich Eynard

Douglas
Di Francesco

Kutasov

large n large n
Charbonnier

Eynard

David

Figure 60: Summary of the reasoning for the large n limit of isoperimetric Strebel
graphs and pure gravity.

At s0, it worthes:

〈
φ(1,1)(x1)φ(1,1)(x2) . . . φ(1,1)(xk)

〉
=

1

(−4)k−1

(2k − 1)!

(k − 1)!
3−k+ 1

2 . (19.22)

It turns out that they are trivial (there is no dependence in the xi’s), which is the

feature of the correlation of the identity operator.

In the end, the correlation functions of large isoperimetric Strebel graphs are com-

puted from a critical spectral curve. This spectral curve is the one of a Liouville

conformal field theory with c = 0, therefore the correlation functions we compute for

Strebel graphs must be linear combination of amplitudes of a CFT dressed by gravity

with central charge 0. This liouville CFT is called pure gravity, as there is no matter

field, and just a trivial operator – the identity – in the matter content.The scheme 60

sums up the reasoning for this section.

20 Large n asymptotics of k-point functions

We saw in last chapter that we are able to compute explicitly the k-point generating

functions Zk and the large n limit of Zn,1(µ, L;L1). Yet, we needed to use the

saddle point approximation, which is efficient for computing one point functions,

but hard to handle for k point functions with k ≥ 2. Hence, having a more generic

results is necessary to get the continuous limit of generic correlation functions.

As was stated in the previous section, the knowledge of S̃, ν, q, and p allows to

compute the large n limit of correlation functions. This is due to two results, from

Eynard [Eynard, 2011] and Eynard and Orantin [Eynard and Orantin, 2007]. The

first one is theorem 18.1, seen in section 18, states that the Laplace transforms

Fk(µ, L; z1, . . . , zk) are topological recursion invariants of the spectral curve S(µ, L)

found in this chapter. The second theorem gives the scalings of the invariants
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Fg,k. Let us state the latter, and apply the two results to our model. Our main

result is to transform the scaling of the Laplace transforms Fg,k into the large n

limit of any k point function, provided that the marked faces have large perime-

ters. As an application of this result, we apply it to the cases of 3 and 4 point functions.

Theorem 20.1. [Eynard and Orantin, 2007] Let us consider a family of spectral curves

S(λ) near a critical parameter λc, having those scalings:

z − z0 = (λc − λ)νξ

x(λ; z) = x(λc; z0) + (λc − λ)qν x̃(ξ)

y(λ; z) = y(λc; z0) + (λc − λ)pν ỹ(ξ). (20.1)

The critical spectral curve is noted S̃. Note Fg,k(S(λ); z1, . . . , zk) and F̃g,k(S̃; ξ1, . . . , ξk)

the invariants computed from the spectral curves S(λ) and S̃ respectively. Then, for

2− 2g − k < 0:

lim
λ→λc

(λc − λ)γ
p,q,ν
g,k Fg,k(S(λ); z1, . . . , zk) = F̃g,k(S̃; ξ1, . . . , ξk), (20.2)

where γp,q,νg,k = (2− 2g − k)(p+ q)ν.

Let us apply those result to isoperimetric planar Strebel graphs, that is with the

parameter λ = µ and scaling exponents (ν, p, q) = (1
4
, 3, 2) for k ≥ 3 point functions in

genus g = 0. Then 2 − 2g − k = 2 − k < 0, so we can apply the results. The critical

spectral curve S̃ is the one of the minimal model M3,2.

lim
µ→µc

(µc − µ)−
5
4

(2−k)F0,k(S(µ, L); z1, . . . , zk) = C(L)2−kF̃0,k(S̃; ξ1, . . . , ξk)(20.3)

where C(L) =
(

2I0(uc)
u2
c−4

) 5
4 √uc

L
u2
c−4
6

is global coefficient depending only on L.

Example 20.1. Let us look at the 3-point functions and 4-point functions. The

invariants F̃0,3(S̃; ξ1, ξ2, ξ3) and F̃0,4(S̃; ξ1, ξ2, ξ3, ξ4) have the following expressions

[Eynard, 2016]:

F̃0,3(S̃; ξ1, ξ2, ξ3) =
1

6ξ1ξ2ξ3

(20.4)

F̃0,4(S̃; ξ1, ξ2, ξ3, ξ4) = − 1

36ξ1ξ2ξ3ξ4

[
1 +

1

ξ2
1

+
1

ξ2
2

+
1

ξ2
3

+
1

ξ2
4

]
. (20.5)

So the scalings are the following close to the critical parameter µc:

F0,3(S(µ, L); z1, z2, z3) ∼
µ→µc

1

(µc − µ)
5
4C(L)

1

6ξ1ξ2ξ3
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F0,4(S(µ, L); z1, z2, z3, z4) ∼
µ→µc

−1

(µc − µ)
5
2C(L)2

1

36ξ1ξ2ξ3ξ4

[
1 +

1

ξ2
1

+
1

ξ2
2

+
1

ξ2
3

+
1

ξ2
4

]
. (20.6)

The expression for F̃0,3 is consistent with the one found in formula 18.4 for the invariant

F0,3 at a generic value of the parameter µ. Also, the scaling deduced from the theorem

of Eynard and Orantin, is consistent with the one we would find if we let µ tend to µc

in equation 18.4.

Yet, with these results, we only get the scaling of the Laplace transforms of the

original generating functions Zk. Therefore, we still do not have access to the large n

limit of correlation functions Zn,k. It remains to perform the inverse Laplace transform

with respect to the variables ξi to get the asymptotics of correlation functions. One

has to be careful in carrying out the inverse Laplace transform to be sure to take into

account all the poles. This is the purpose of the following computations, whose result

is stated in:

Theorem 20.2. For k ≥ 3, if L1, . . . , Lk scale as L(µc − µ)−
1
2 , the k-point generating

function Zk(µ, L;L1, . . . , Lk) has the following behaviour:

Zk(µ, L;Li) ∼
µ→µc

2k

ikπk
(µc − µ)

5
2
− 3

4
kAkC(L)2−kL

k

ukc

∫ +∞

−∞
dζ1· · ·

∫ +∞

−∞
dζk

k∏

i=1

eu
Li
L

k∏

j=1

e−
1
2

Lj
L

(uc−u)ζ2
j ζjF̃0,k(S̃; iζj)(1 +O(

√
µc − µ)),(20.7)

with A = uc
L2

√
2I0(uc)
u2
c−4

and C(L) =
(

2I0(uc)
u2
c−4

) 5
4 √uc

L
u2
c−4
6

, that are global coefficients de-

pending only on the choice of perimeter L.

Indeed, for k ≥ 3, we have:

22−k
k∏

i=1

(2di − 1)!!

〈
e
µ
2

∑∞
d=0

L2d

2dd!
τd

k∏

i=1

τdi

〉

0

= Res
zi→∞

k∏

i=1

z2di
i dziF0,k(S(µ, L); z1, . . . , zk).

(20.8)

The quantity we are interested in is Zk(µ, L;L1, . . . , Lk) and we want to recover it from

the previous expression. The left hand side is equal to:

l.h.s. = 2−
∑k
i=1 diL−2D

k∏

i=1

(2di − 1)!!
∂k−3

∂µk−3
[µkUk(µ, L, d1, . . . , dk)] (20.9)
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Hence, in order to recover Zk, we have to carry out the following sum:

Zk(µ, L;L1, . . . , Lk) =
∑

d1...dk

k∏

i=1

L2di
i

2di(2di − 1)!!di!
× l.h.s. (20.10)

=
∑

d1...dk

k∏

i=1

L2di
i

(2di)!
× Res

zi→∞

k∏

i=1

z2di
i dziF0,k(S(µ, L); zi).(20.11)

The functions F0,k(S(µ, L); zi) are entire functions of the 1
zi

’s. By the following change

of coordinates : zi =
√
z̃2
i + u2

L2 , the functions F0,k(S(µ, L); z̃i) become polynomials in

the 1
z̃i

. Indeed, if z̃i ∈ C, the variables z̃2
i + u2

L2 are the xi’s, living on the base space Σ0,

and are then more ‘canonical’ than the zi’s. So we have:

Zk(µ, L;Li) =
∑

d1...dk

k∏

i=1

L2di
i

(2di)!
Res
z̃i→∞

k∏

i=1

(
z̃2
i +

u2

L2

)di− 1
2

2z̃idz̃iF0,k(S(µ, L); z̃i). (20.12)

The residue is taken at infinity, and we want to deform its contour of integration. The

function F0,k(S(µ, L); z̃i) has poles only around z̃i = 0; the term
(
z̃2
i + u2

L2

)di− 1
2

has a

cut on the segment
[
−i u

L
; +i u

L

]
(the branch cut for

√
is −iR). Hence, we can deform

the contour of integration into the one described in figure 61. The contour surrounds

the segment
[
−i u

L
; +i u

L

]
, and the pole at 0.

Now it is possible to exchange
∑

and Res, because the contour is no longer at

infinity. This gives:

Zk(µ, L;Li) =
∑

d1...dk

Res
z̃i→∞

k∏

i=1

Ldii
di!

√
z̃2
i +

u2

L2

di
2z̃iF0,k(S(µ, L); z̃i)√

z̃2
i + u2

L2

dz̃i (20.13)

= 2k Res
z̃i→∞

k∏

i=1

eLi
√
z̃2
i + u2

L2
z̃iF0,k(S(µ, L); z̃i)√

z̃2
i + u2

L2

dz̃i (20.14)

We want the asymptotic behaviour (n → ∞) of the Strebel Graph volumes with

k marked faces, which corresponds to looking at the limit µ → µc in the function Zk.
In that limit, the contour can be divided into two regions (see figure 61): region 1

corresponds to the parts of the contour which are close to the pole (z̃i = 0) of F0,k,

region 2 corresponds to the rest of the contour.

The contour integral over region 2 remains finite (of order 1) when µ→ µc. As we may

see in the following, on the contrary, the integral over region 1 diverges as µ→ µc.

Region 1 is the part of the integral close to 0. Let us define:

z̃i = −√uc − u
√
u

L
ξi (20.15)
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+iu/L

-iu/L

0

Region 2

Region 2

Region 1

Figure 61: The contour of integration of Res
∞

is deformed and encloses a cut.
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+i∞

-i∞

0

C− C+

Figure 62: Contour of the region 1 in the variable ξi.

From the scaling of formula 20.3, we can replace F0,k by its scaling, expressed in terms

of the minimal model M3,2 invariants. F0,k behaves like (µc − µ)
5
4

(2−k), so, as k ≥ 3, it

is divergent when µ→ µc.

In order to get the dominant order in the large n limit, we may then focus our attention

on the region 1. In the variables ξi, we have to carry out the integration over the

contours C+, C− (see figure 62). C+ is going from +i∞ to −i∞, with Re(ξi) > 0 ; C−

is going from −i∞ to +i∞, with Re(ξi) < 0.

We look at the expansion in µc − µ, so we re-express the square root as:

√
z̃2
i +

u2

L2
=

√
u2
c

L2
+ (uc − u)

uc
L2

(ξ2
i − 2) +O((uc − u)2) (20.16)

=
uc
L

√
1 +

uc − u
uc

(ξ2
i − 2) +O((uc − u)2) (20.17)

=
uc
L

+
1

2

uc − u
L

(ξ2
i − 2) +O((uc − u)2) (20.18)

We are also looking at a regime where Li
L
→ ∞ as µ → µc. From the previous

expansion, we see that the argument of the exponential contains Li
L

(uc − u)(ξ2
i − 2),

which, at ξi fixed, remains of order 1 if Li
L
∼ (uc−u)−1 ∼ (µc−µ)−

1
2 . This corresponds

to a regime where Li
L
∼ √n.

The function to integrate is odd, but C+ and C− have opposite orientations, so we can
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restrict to the integration over C+:

Zk(µ, L;Li) ∼
µ→µc

2k(µc − µ)
5
4

(2−k)C(L)2−k 2

2iπ

∫ −i∞

+i∞
dξ1 . . .

2

2iπ

∫ −i∞

+i∞
dξk

k∏

i=1

euc
Li
L

+ 1
2

Li
L

(uc−u)(ξ2
i−2)(uc − u)

u

L2

ξi
uc
L

+ 1
2
uc−u
L

(ξ2
i − 2)

×

F̃0,k(S̃; ξi)(1 +O((µc − µ)))

∼
µ→µc

22k

(2iπ)k
(µc − µ)

5
2
− 3

4
kAkC̃(L)2−k

(∫ −i∞

+i∞
dξ1· · ·

∫ −i∞

+i∞
dξk

)

k∏

i=1

euc
Li
L

+ 1
2

Li
L

(uc−u)(ξ2
i−2) ξi

uc
L

F̃0,k(S̃; ξi)(1 +O(µc − µ)
1
2 )

(20.19)

with A = uc
L2

√
2I0(uc)
u2
c−4

. We carry out the change of variable ξi = iζi, and in the end:

Zk(µ, L;Li) ∼
µ→µc

2k

ikπk
(µc − µ)

5
2
− 3

4
kAkC(L)2−kL

k

ukc

∫ −∞

+∞
idζ1· · ·

∫ −∞

+∞
idζk

k∏

i=1

eu
Li
L

k∏

j=1

e−
1
2

Lj
L

(uc−u)ζ2
j iζjF̃0,k(S̃; iζj)(1 +O(

√
µc − µ))

∼
µ→µc

2k

ikπk
(µc − µ)

5
2
− 3

4
kAkC(L)2−kL

k

ukc

∫ +∞

−∞
dζ1· · ·

∫ +∞

−∞
dζk

k∏

i=1

eu
Li
L

k∏

j=1

e−
1
2

Lj
L

(uc−u)ζ2
j ζjF̃0,k(S̃; iζj)(1 +O(

√
µc − µ)).

(20.20)

This is the result announced in theorem 20.2. Let us apply it to the 3-point and the

4-point functions.

Example 20.2. 3-point function and 4-point function in the large n limit

Applying the result of formula 20.20, we obtain:

Z3(µ, L;Li) ∼
µ→µc

8

(
2

π

) 3
2 L4

u
5
2
c (u2

c − 4)
(uc − u)

1
2

3∏

i=1

euc
Li
L√

Li
L

(uc − u)
(20.21)

It may seem that this quantity is not divergent, but remember that, in the exponentials,

we have Li
L
∼ (uc − u)−1 ∼ (µc − µ)−

1
2 .

For the 4-point function:

Z4(µ, L;Li) ∼
µ→µc

64

π2

L6

u3
c

1

(u2
c − 4)2

(uc − u)−1

(
1 +

4∑

i=1

Li
L

(uc − u)

)
4∏

i=1

euc
Li
L√

Li
L

(uc − u)

(20.22)
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Here, the divergence is clear. We want to underline that the terms
∑

i
Li
L

(uc − u) are

not subdominant, but of order 1, so we have to take them into account.
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Part VI

Symmetries of correlation functions

The three preceding parts addressed the random maps as probabilistic spaces that need

to be characterized, and whose continuous limit needs to be identified. This chapter

is dedicated to another aspect of random maps, and does not concern the potential

continuous limit of a model, but rather the symmetries arising in the enumeration of

maps. In a model of maps, the maps that satisfy certain conditions, such as having

k boundaries and genus g for instance, can often be enumerated, and the numbers of

maps, called correlation functions, are encoded in generating functions. Those generat-

ing functions depend on a set of variables, and they inherit symmetry properties under

certain permutations of variables from the symmetries of the random maps. Actually,

random maps are a source of motivation and of intuition for such symmetries, but we

shall progressively consider the problem of symmetries of expectation values for generic

correlation functions, whether they be defined from random maps models or not. Those

symmetries of correlation functions, defined independently of the underlying random

maps, allow to put strong additional constraints on the correlation functions. It is

then tempting to consider the correlation functions as amplitudes of states of an effec-

tive theory on the boundaries of the random maps, which is reminiscent of a kind of

AdS/CFT duality between the theory in the bulk (the enumeration of random maps

on surfaces with boundaries) and the theory on the boundaries. The constraints on the

correlation functions are a clue that the enumeration of random maps can be related

to integrable systems.

In this chapter, we show symmetry properties of correlation functions computed from

the Ising model on random maps. First we review some symmetry properties inher-

ited from the topological recursion. Second, we introduce the Ising model on random

maps, the correlation functions that encode the combinatorics of such maps, the matrix

model formulation of the model, and we give the recursive relation which presides over

the computation of correlation functions, which was proven by Eynard and Orantin

[Eynard and Orantin, 2008]. In this very section, we define the transformation that

maps can undergo, and the possible symmetries of the correlation functions that we

can hope to stand for the correlation functions. The recursion formula shows to be

similar to the topological recursion in some of its aspects, but has also fundamental

differences that prevent us from deducing symmetry properties. In the third section,

we state the precise problem that we tackle, we give the already known results that

we use after in our proofs, and we state the main theorem of the chapter. This result

shows that certain planar correlation functions computed from the recursive relation
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satisfy another recursion – which implies link patterns –, and as a corollary, they are

also invariant under rotation and inversion transformations. We also give the first

form a some kind of “forgetful map” for removing a change of color in the correlation

functions. We then, in the fourth section, investigate some of the consequences of the

main theorem. We show, using the work of Eynard [Eynard, 2016], that the correla-

tion functions satisfy strong constraints, it is a first step for relating the correlation

functions to an integrable system on the boundaries of the maps. We have only an

inkling of this relation to integrable systems for the moment, and we still investigate

at the time of writing this manuscript. Section 25 is dedicated to the quite technical

proof of the theorem, and the sixth and last section addresses the future extensions of

the theorem.

21 Introduction

21.1 Symmetries in Topological Recursion

Let us consider a spectral curve S. We saw in chapter V the formula of topological

recursion (equation 16.2), allowing to define invariants ωg,k(z1, . . . , zk) from the knowl-

edge of S. In this formula, the variable z1 plays a specific role with regards to z2, . . . , zk,

as it appears in the kernel of recursion Ka(z; z1) and not in the invariants ωg′,k′ present

in the remaining part. This apparent lack of symmetry should naturally lead to in-

variants ωg,k that are not symmetric under the exchange of variables z1 ↔ zj. Yet, for

some spectral curves, the invariant ωg,k is related to the enumeration of random maps

drawn on a genus g surface with k boundaries. In the perspective of the combinatorial

model, exchanging two boundaries do not affect the combinatorics: it amounts to apply

a homeomorphism to the underlying surface, which has no effect on the enumeration of

random maps (they are unchanged under such homeomorphisms). Therefore, for those

spectral curves, it is obvious, from the combinatorial model, that the invariants ωg,k

are symmetric under a exchange of variables. Hence the legitimate question: is this

symmetry attributable to the specificity of the spectral curves deduced from random

maps models, or a systematic property of topological recursion ?

The answer, given by Eynard and Orantin [Eynard and Orantin, 2008], is that the

invariants ωg,k(z1, . . . , zk) are symmetric under the exchange of variables, no matter

which spectral curve is used:

Lemma 21.1. For any spectral curve S, the invariants ωg,k computed through topolog-

ical recursion are symmetric:

∀σ ∈ Sk, ωg,k(z1, . . . , zk) = ωg,k(zσ(1), . . . , zσ(k)). (21.1)
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The proof is carried out by an easy recursion on 2g+k. Hence, although the formu-

lation of topological recursion is not symmetric, it defines symmetric invariants. This

statement sums up the general idea of this chapter: we prove properties of symmetry

for invariants computed from a recursion that is not symmetric in its formulation.

21.2 Forgetful map

Topological recursion allows to compute invariants ωg,k from ω0,1 anf ω0,2 by recurrence

on 2− 2g − k. The knowledge of the invariants ωg′,k′ with 2g′ + k′ < 2g + k allows to

determine ωg,k. The inverse question is the following: if one knows ωg,k, is it possible to

recover ωg,k−1 (provided that k ≥ 2) ? The answer is yes, and the operator carrying out

the deletion of a boundary is the forgetful map OTRk . It is valid for invariants computed

by topological recursion. We introduce it here, following the results of Eynard and

Orantin [Eynard and Orantin, 2007].

The root of the one-form y(z)dx(z) is defined as:

Φ(z̃) =

∫ z̃

o

y(z)dx(z), (21.2)

where o ∈ Σ is any base point on the spectral curve. Let us fix k ≥ 2. The operator

OTRk :
⊗k M 1(Σ)→⊗k−1 M 1(Σ) is defined as:

OTRk f(z1, . . . , zk) =





Res
z2→z1

Φ(z2)f(z1, z2) if k = 2

1
2g+k−3

∑
abranchpoint Res

zk→a
Φ(zk)f(z1, . . . , zk) if k > 2,

(21.3)

where f is a meromorphic k-form. Eynard and Orantin showed in

[Eynard and Orantin, 2007], that the operator OTRk erases the last boundary in the

invariant ωk, that is:

OTRk ωg,k(z1, . . . , zk) = ωg,k−1(z1, . . . , zk−1). (21.4)

As we will define a forgetful map in this chapter, let us stress an important feature of

the operator OTRk , that we will want to impose to our operator: except for k = 2, OTRk
is independent of the other variables z1, . . . , zk−1, and depends only on the spectral

curve (through the branchpoints and the root). We will show an operator in section

23.4.3 that matches this generic requirement.

22 Ising model on random maps

As was mentioned in the previous section, we shall prove properties of a recursion

formula (equation 22.12 below), no matter what the underlying physical and combina-

torial model – from which it comes from – is. However, it is useful to describe first this
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Figure 63: Riemann surface Σ1,3 of genus
1 with 3 boundaries

1

3
2

Figure 64: Random map on Σ1,3

1

3
2

Figure 65: Ising model on Σ1,3

very model, in order to understand how the properties translate in the physical side,

and which are the consequences of such symmetries. This section briefly describes the

Ising model on random maps, and the invariants H
(g)
kL;m;n that enumerate the maps.

22.1 Combinatorics of the Ising model

Consider an orientable surface Σg,K of genus g with K labeled boundaries (figure 63),

and a map M embedded in Σg,K , having faces of degree smaller than dmax (see fig-

ure 64). We assign a color (red or black) to every face of the map (see figure 65).

Three types of boundaries can arise: uniform red boundaries (boundary 1 in figure 65),

corresponding to boundaries having only red edges ; uniform black boundaries (e.g.

boundary 2, figure 65) , whose edges are black ; and mixed boundaries (boundary 3),

having both red and black edges. We give a type to every boundary edge of the map

(see figure 66):

• For the edges belonging to a uniform (red or black) face, their type is the label

of the face.

• For the mixed boundary i, we define

ki = #connected sets of red edges of the boundary.

For instance, in figure 66, ki = 4. The edges are labeled in the following manner.

One chooses arbitrarily a connected part of red edges on the boundary (this part
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Figure 66: Ways to assign a type to any boundary edge according to the boundary
type.

must be neighboured by black edges), and assigns to these edges the type (i, 1).

Then, the black edges part following clockwisely is given the same type (i, 1).

The next (in the clockwise order around the boundary) set of red edges then

has label (i, 2), etc. In the end, the edges of the mixed boundary i have types

(i, 1), . . . , (i, ki).

Definition 22.1. We define M(g)
kL;m;n as the set of connected random maps of genus

g with L mixed boundaries with kL = {k1, . . . , kL} changes of colors, m uniform red

boundaries and n uniform black boundaries.

In appendix E, the map we propose to build is a quadrangulation belonging to

M(1)
3,3;0;0.

In order to assign a Boltzmann weight to a map M ∈ M(g)
kL;m;n, we assign a weight to

local objects composing M: The weight of M is then

W(M) =
dmax∏

k=1

∏

I,J
types of edges

tnkk t̃
ñk
k

xlI+1
I y l̃J+1

J

cnrrrr c
nbb
bb c

nbr
br . (22.1)

The invariants of interest in this article are the partition functions of M(g)
kL;m;n for

all (g,kL,m, n). They are then computed by enumerating the weighted maps M ∈
M(g)

kL;m;n.

Definition 22.2. The generating function of the set M(g)
kL;m;n is denoted by H

(g)
kL;m;n. It

is given by:

H
(g)
kL;m;n =

∑

M∈M(g)
kL;m;n

W(M). (22.2)

Those partition functions also called the correlation functions, generating functions,

invariants, observables or amplitudes of the Ising model on random maps with boundary

conditions, depending on the context.
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Object Description
Boltzmann

weight
number
in M

Red k-gone (k ≥ 3) tk nk

Black k-gone (k ≥ 3) t̃k ñk

Edge between 2 red faces crr = t̃2
t2 t̃2−c2 nrr

Edge between 2 black faces cbb = t2
t2 t̃2−c2 nbb

Edge between a red face
and a black face

cbr = c
t2 t̃2−c2 nbr

J
Red boundary edge of type J xJ lJ

J’
Black boundary edge of type J ′ yJ ′ l̃J ′

The generating functions depend on the complex fugacities xJ and yJ ′ . Namely:

H
(g)
kL;m;n ((x1,1, y1,1, . . . , x1,k1 , y1,k1), . . . , (xL,1, . . . , yL,kL);x1, . . . , xm; y1, . . . , yn) .

The generating functions H
(g)
kL;m;n are formal power series in the times tk, t̃k (k ≥ 3),

in the weights crr, cbb, cbr, and in the variables 1/xJ , 1/yJ ′ , but as it was shown in

[Eynard and Orantin, 2008], they are actually algebraic functions of the times tk, t̃k,

of the weights crr, cbb, cbr, and of the variables xJ , yJ ′ .

Physically, assigning a Boltzmann weight to a colored random map with boundaries,

is equivalent to assigning an energy to a configuration of spins on the random map.

Indeed, if red faces corresponds to faces of classical spin +, and black faces are faces

of classical spin −, then the weights crr, cbr, cbb are the energies of interaction between

respectively 2 neighboring +/+ faces, 2 neighboring +/− faces, and two neighboring

−/− faces. This is the reason why this model is called the Ising model. The hope, in

the quantum gravity frame, is that when the number of faces increases toward infinity,

the configuration of spins mimic a matter field of spin 1
2
, coupled with the geometry

of the surface. This coupling means that the matter field interacts with the geometry,

and therefore with gravity. At the level of finite random maps, the coupling between
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1 m

1
n

1

g

Figure 67: Representation of a map of genus g with m uniform red boundaries, n
uniform black boundaries, and L mixed boundaries with {k1, . . . , kL} changes of colors.

the spins and the geometry is visible in the Boltzmann weights. Indeed, the energy

of a configuration depends on the structure of the random maps, that is to say the

neighboring relations between the faces.

Graphically, we represent the generating function H
(g)
kL;m;n as in figure 67.

An alternative way to encode the correlation functions is to interpret them as

expectation values in a random matrix model, introduced by Kazakov [Kazakov, 1986],

as we saw in section 5. This 2-matrix model has a partition function that is expressible

in terms of a formal integral over Hermitian matrices of size N :

Z =

∫

formal

dM1dM2e
−NTr(V1(M1)+V2(M2)−cM1M2), (22.3)

where V1 and V2 are the following polynomials:





V1(x) = t2
x2

2
−

d1+1∑
k=3

tk
xk

k

V2(x) = t̃2
x2

2
−

d2+1∑
k=3

t̃k
xk

k
.

(22.4)

The partition function enumerates (not necessarily connected) colored random maps,

each random map being given the Boltzmann weight defined in what precedes. In the

matrix model, the expectation value of an observable O(M1,M2) depending on the

hermitian matrices M1 and M2 is given by the formula:

〈O(M1,M2)〉 =
1

Z

∫

formal

dM1dM2O(M1,M2)e−NTr(V1(M1)+V2(M2)−cM1M2). (22.5)

For instance, the moment
〈
TrMk

1

〉
is the generating function of maps of any genus,

having one red boundary of length k. Yet, in this enumeration, the boundary edges
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have weight 1. Those maps are not connected in general. The moment which enumer-

ates the connected maps only, is denoted
〈
TrMk

1

〉
c
. Similarly, the moments

〈
Tr(M `

2)
〉
c
,〈

Tr(Mk
1M

`
2)
〉
c

count connected maps of any genera, with respectively one black bound-

ary of length `, and one mixed boundary with k consecutive red edges and ` consecutive

black edges.

Example 22.1. The map showed in figure 65 has 3 boundaries:

• boundary 1 has length 8 and is uniformly red ;

• boundary 2 has length 9 and is uniformly black ;

• boundary 3 has length 11, with an alternating pattern of colors, there are 3

changes of colors.

This map appears in the moment

〈
Tr(M8

1 )Tr(M9
2 )Tr(M2

1M
1
2M

1
1M

2
2M

2
1M

3
2 )
〉
c

In order to integrate the fugacities of the boundary edges in the counting, we use

the following notation: 〈
Tr

1

x−M

〉
=

+∞∑

k=0

〈
TrMk

〉

xk+1
. (22.6)

Example 22.2. The map of figure 65 will appear in the moment:

〈
Tr

1

x1 −M1

Tr
1

x2 −M2

Tr
1

x1,1 −M1

1

y1,1 −M2

1

x1,2 −M1

1

y1,2 −M2

1

x1,3 −M1

1

y1,3 −M2

〉

c

For the generating functions of generic random maps, if l ≥ 1 – we are interested

in maps having at least one mixed boundary –, the invariants H are defined in the

following way:

HkL;m;n(SL;x1, . . . , xm; y1, . . . , yn) =〈
l∏

i=1

Tr

(
Nδ1,ki +

ki∏

j=1

1

xi,j −M1

1

yi,j −M2

)
m∏

s=1

Tr

(
1

xr −M1

) n∏

t=1

Tr

(
1

yt −M2

)〉

c

(22.7)

It enumerates connected maps of any genus with the boundary conditions of figure 67.

It admits a topological expansion, that is, at large N :

HkL;m;n =
+∞∑

g=0

N2−2g−l−m−nH(g)
kL;m;n.
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In this expansion, the term H
(g)
kL;m;n enumerates uniquely connected maps of genus g.

This description of the generating functions in terms of a matrix model will be useful

for deriving the consequences of the symmetries in the following.

In the article [Eynard and Orantin, 2008], Eynard and Orantin showed that the

generating functions are computable by a recurrence relation. This recurrence relation

differs from topological recursion in its expression but the principle is the same, as all

the generating functions defined are encoded in a spectral curve S = (Σ,Σ0, x, y, B)

(see chapter V for the definition of the spectral curve). The meromorphic functions

x and y are related by an algebraic equation E(x(z), y(z)) = 0, ∀z ∈ Σ. In the Ising

model, the spectral curve is rational. That is to say, it has the following form:

• the surfaces Σ and Σ0 are both the Riemann sphere C.

• The meromorphic functions x and y admit a rational parametrization:
{
x(p) = γp+

∑d1

k=0 αkp
−k

y(q) = γq−1 +
∑d2

k=0 βkq
k.

(22.8)

In this case, the algebraic equation E(x(z), y(z)) = 0, ∀z ∈ C is a polynomial in

x and y of respective degrees d1 and d2.

• As the curve Σ is of genus 0, the Bergman kernel is simply:

B(p1, p2) =
dp1 ⊗ dp2

(p1 − p2)2
. (22.9)

In what follows, let us consider generic spectral curves, that are not necessarily related

to the combinatorics of Ising model. For given x, y ∈ Σ0, there are respectively d1 + 1

and d2 + 1 preimages in Σ. We note them in this way:
{
p0,0, p1,0, . . . , pd1,0 such thatx(pi,0) = x,

p0,0, p0,1, . . . , p0,d2 such that y(p0,j) = y
(22.10)

(we take p0,0 = p). More generally,

∀i = 0, . . . , d1, ∀j = 0, . . . , d2, y(pi,j) = y(pi,0)

∀i = 0, . . . , d1, ∀j = 0, . . . , d2, x(pi,j) = x(p0,j).

Actually, the boundary edges fugacities xi,j and yi′,j′ are the images x(pi,j), y(qi′,j′)

of pi,j and qi′,j′ . The generating functions defined in equation 22.2 in terms of the

fugacities xi,j, yi′,j′ ∈ Σ0, are meromorphic functions of the variables pi,j, qi′,j′ ∈ Σ:

H
(g)
kL;m;n ((p1,1, q1,1, . . . , p1,k1 , q1,k1), . . . , (pL,1, . . . , qL,kL); p1, . . . , pm; q1, . . . , qn) .
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This statement deserves to be analysed. If one replaces the variable pi,j (resp. qi,j)

by pk,0i,j with k 6= 0 (resp. q0,k
i,j ), then the value of H

(g)
kL;m;n changes. In this case, we

have replaced xi,j = x(pi,j) (resp. yi,j = y(qi,j)) by x(pk,0i,j ) = x(pi,j) = xi,j (resp.

y(qk,0i,j ) = y(qi,j) = yi,j): the fugacities are not changed. Therefore, it states that the

original generating functions, defined in equation 22.2, with fugacities living in the

base space Σ0 is actually a multivalued function. It is monovalued only if one restrict

the curve Σ to the so-called “physical sheet”, which corresponds for the variable p

– parameter of x – to the branch of Σ in the vicinity of ∞, and for the variable q –

parameter of y – to the branch of Σ in the vicinity of 0. If p and q are in their respective

physical sheets, let us denote:

X(y) = x(q)

and

Y (x) = y(p).

The generating function of the Ising model on planar maps having one mixed boundary

with 1 change of color has been computed in [Eynard and Orantin, 2005], and is worth:

H
(0)
1;0;0(p, q) =

E(x(p), y(q))

(x(p)− x(q))(y(q)− y(p))
(22.11)

An important property of this function is that it has only a pole at p → q. If one

considers a generic spectral curve, this equation stands as a definition for the invariant.

22.2 Recurrence relation

In order to make expressions more compact, we introduce the notations:

• Si = (pi,1, qi,1, pi,2, qi,2, . . . , pi,ki , qi,ki). It represents the variables associated to the

ith mixed boundary.

• Si(r) = (r, qi,1, pi,2, qi,2, . . . , pi,ki , qi,ki): the first variable of the boundary is re-

placed by r.

Topological recursion [Eynard and Orantin, 2007] allows to compute the uniform

invariants ωg,m(p1, . . . , pm) = H
(g)
0;m;0(p1, . . . , pm)dx(p1) . . . dx(pm), ω̃g,n(q1, . . . , qn) =

H
(g)
0;0;n(q1, . . . , qn)dy(q1) . . . dy(qm), and H

(g)
0;m;n(p1, . . . , pm; q1, . . . , qn). The generating

function H
(0)
1;0,0(p, q) is also known, by formula 22.11. Once those invariants are known,

it remains therefore to compute the generating functions with mixed boundaries. A re-
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cursion allowing to determine them was found to be (see [Eynard and Orantin, 2008]):

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

Res
r→p1,1,pi,α,pj ,q

0,j
1,k1

H
(0)
1;0;0(p1,1, q1,k1)dx(r)

(x(p1,1)− x(r))(y(q1,k1)− y(r))H
(0)
1;0;0(r, q1,k1)

×

∑

h

∑

A∪B={2,...,l}

k1∑

α=2

∑

I,J

H
(h)
k1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . , q1,k1},SB; pM/I; qN/J)

×
H

(g−h)
α−1,kA;|I|;|J |({r, q1,1, . . . , p1,α−1, q1,α−1},SA; pI; qJ)

x(p1,α)− x(r)

+

k1∑

α=2

1

x(p1,α)− x(r)
×

H
(g−1)
α−1,k1−α+1,kL/{1};m;n({r, q1,1, . . . , p1,α−1, q1,α−1}, {p1,α, q1,α, . . . , q1,k1},SL/{1}; pM; qN)

+
l∑

i=2

ki∑

α=1

1

x(pi,α)− x(r)
×

H
(g)
k1+ki,kL/{1,i};m;n({S1(r), pi,α, qi,α, pi,α+1, . . . , qi,ki , pi,1, . . . , qi,α−1},SL/{1,i}; pM; qN)+
∑

h

∑

A∪B={2,...,l}

∑

I,J

H
(h)
k1,kA;|I|;|J |(S1(r),SA; pI; qJ)H

(g−h)
kB;m−|I|+1;n−|J |(SB; r,pM/{I}; qN/{J})

+

g∑

h=1

H
(h)
0;1;0(r)H

(g−h)
k1,...,kl;m;n(S1(r), S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

+H
(g−1)
kL;m+1;n(SK(r); r,pM; qN)

]
(22.12)

It is a recurrence on 2g + L+ n+m. In the residue, the notation q0,j
1,k1

, that has been

introduced in the previous section, appears and j is non zero. This formula is valid to

compute the Ising model generating functions (with a rational spectral curve). It is

however possible to apply it with a generic spectral curve. In this case, the recurrence

serves as a definition of the functions H
(g)
kL;m;n, that are not necessarily generating

functions of combinatorial objects such as maps. The order of the boundaries imports

a priori. The spectral curve is present at several places in this formula:

• In order to know the location of q0,j
1,k1

, one has to know the embedding of the

spectral curve, namely the analytic functions x(p), y(q).

• In the right hand side, the function H
(0)
1;0;0 and potentially the 2-form B(p, q) can

appear. Both are directly linked to the spectral curve S.

One can prove by induction on 2g + L+m+ n the following:
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Lemma 22.1. H
(g)
kL;m;n has the following poles:





in pi,j = qi′,j′

in pi = qi′,j′

in pi,j = qi′

(22.13)

Differences with topological recursion: let us stress the differences between

formula 22.12, and the formula of topological recursion 16.2 for ωg,n. First, a slight dif-

ference is that the invariants H
(g)
kL;m;n are functions and not differential forms. In order

to get proper invariants one has to take into account the differential forms dx(p)dy(q),

that is to say, the invariants h
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) have rather this form:

h
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) = H

(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn)×

dx(p1,1) . . . dx(pl,kl)dy(q1,1) . . . dy(ql,kl)

dx(p1) . . . dx(pm)dy(q1) . . . dy(qn).

(22.14)

Second, although formula 22.12 is recursive on the topology 2− 2g−L− n−m of the

correlation functions, two features of topological recursion are missing:

• the residues are carried out on the variables pi, and q0,j
k1

, instead of the branch-

points of the spectral curve. Also, the residues q0,j
k1

are very non local terms, as

they are located in the non physical sheets of the spectral curve.

• The kernel of recursion is the following one:

K(r, p, q) =
H

(0)
1;0;0(p, q)

H
(0)
1;0;0(r, q)(x(r)− x(p))(y(r)− y(q))

(22.15)

It is obviously different from the one of topological recursion defined in equation

16.1, as it implies the invariant H
(0)
1;0;0, and not the one-form ydx nor the two-form

B(p1, p2).

Remark 22.1. The recursion for the generating functions H
(g)
kL;m;n solves the loop

equations of those generating functions. Those loop equations are recursive relations

“à la Tutte”, and in the present case, they are determined from the 2-matrix model

through Schwinger-Dyson equations. Schwinger-Dyson equations translate the fact that

the expectation values of observables, that are formal integral over Hermitian matrices

M1 and M2, are invariant under change of variable of M1 and M2.

22.3 Symmetries of the generating functions

Looking at the combinatorial problem of counting weighted colored maps on a surface,

some obvious symmetries arise. To be more precise, let us look at three types of

transformations one can do.
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Figure 68: Boundary conditions before ro-
tation
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Figure 69: Boundary conditions after ro-
tation

22.3.1 Rotation transformation

This transformation is illustrated in figures 68 and 69. It consists in rotating all the

edges of a given boundary i, and leaving all the other boundaries unchanged. For a

boundary i, let us note Ri the following rotation of the edges:

RiSi = Ri(pi,1, qi,1, pi,2, qi,2, . . . , pi,ki , qi,ki) (22.16)

= (pi,2, qi,2, pi,3, qi,3, . . . , pi,ki , qi,ki , pi,1, qi,1) (22.17)

Any rotation of the edges of the ith boundary is then a power of the operator Ri. We

extend the definition of this operator to the generating functions:

RiH
(g)
kL;m;n(S1, . . . , SL;m;n) = H

(g)
kL;m;n(S1, . . . ,RiSi, . . . , SL;m;n). (22.18)

22.3.2 Inversion transformation

The so-called inversion transformation represents, in this paper, the operation of chang-

ing the labelling of all the mixed boundaries from a clockwise ordering to a counter-

clockwise ordering (see figures 70 and 71). Let us note I the operator corresponding

to this transformation. Then, one has:

∀i ∈ {1, . . . , L} : ISi = (pi,1, qi,ki , pi,ki , qi,ki−1
, . . . , pi,2, qi,1). (22.19)

We define the action of I on the generating functions by:

IH(g)
kL;m;n(S1, . . . , SL;m;n) = H

(g)
kL;m;n(IS1, . . . , ISi, . . . , ISL;m;n). (22.20)

This is equivalent to consider the surface from the inside rather than from the outside.
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Figure 70: Boundary conditions before in-
version
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Figure 71: Boundary conditions after in-
version: all the mixed boundaries have
changed.

22.3.3 Symmetry under the exchange of boundaries

The symmetry exposed in the introductory section on symmetries of the formula

of topological recursion concerns the permutation boundaries. In the same way

for the invariants H
(g)
kL;m;n(S1, . . . , SL;m;n), one can ask if it is unchanged under

(S1, . . . , SL) → (Sσ(1), . . . , Sσ(L)) for any permutation σ ∈ SL. Indeed, we mentioned

that the order of the mixed boundaries S1, . . . , SL imports a priori in the definition of

the invariants through the recursion formula 22.12. However, from the point of view

of the enumeration of colored maps, the symmetry is obvious, as it amounts to de-

form the underlying surface on which the random map is drawn, in order to exchange

the boundaries. This operation does not change the structure of the graphs, so the

counting is unchanged too. Hence, this symmetry shall be studied for generic spectral

curves.

The group of permutations SL is generated by the transpositions (1, i), i = 2, . . . , L,

so it is enough to study the transformations:

Ti(S1, S2 . . . , Si−1, Si, Si+1, . . . , SL) = (Si, S2, . . . , Si−1, S1, Si+1, . . . , SL), (22.21)

whose action on the generating functions are:

TiH(g)
kL;m;n(S1, . . . , SL;m;n) = H

(g)
kL;m;n(Ti(S1, . . . , SL);m;n). (22.22)

This transformation is pictured in figures 72 and 73.
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Figure 72: Boundary conditions before the
exchange of boundaries
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Figure 73: Boundary conditions after the
exchange of mixed boundaries 1 and i.

23 Problematics and results

23.1 Generic spectral curve: problematics

The goal is to prove the invariance of the generating functions defined by the recurrence

relation 22.12 under the rotation and the inversion transformations:

RiH
(g)
kL;m;n = H

(g)
kL;m;n ∀i ∈ {1, . . . , L} (23.1)

IH(g)
kL;m;n = H

(g)
kL;m;n. (23.2)

Remark 23.1. These invariances are trivially satisfied for the combinatorial problem

of counting colored maps with given boundary conditions exposed in the previous section.

In the generic case (i.e. for a generic spectral curve), the generating functions are only

defined through the recurrence relation 22.12. The symmetries are then not obvious,

as, for example, the parameter p1,1 plays a special role regarding to the other p variables

in the recursion.

23.2 Notations

We shall use short hand notations for H
(0)
1;0;0:

Hi,j = H
(0)
1;0;0(p1,i, q1,j). (23.3)

Also:

xij = x(p1,i)− x(p1,j)

yij = y(q1,i)− y(q1,j)

xrj = x(r)− x(p1,j)

yrj = y(r)− y(q1,j)

158



H
(0)
k;0;0(p1,1, q1,1, . . . , p1,k, q1,k) = H0

k(p1, q1, . . . , pk, qk)

Computing the generating function H0
k by the recurrence formula 22.12, one sees that

it contains terms proportional to H1j:

H0
k(p1, q1, . . . , pk, qk) = H1,ja({pi, qi}) + terms not proportional toH1,j,

so, in order to extract the content in H1,j from H0
k , and with the previous equation

notation, we define:

H0
k[j]({pi, qi}) = a({pi, qi}).

Example 23.1. In [Eynard and Orantin, 2008], the following generating function was

explicitly computed:

H0
2 (p1, q1, p2, q2) =

H1,2H2,1 −H1,1H2,2

x1,2y1,2

. (23.4)

We then have: {
H0

2[1](p1, q1, p2, q2) = − H2,2

x1,2y1,2

H0
2[2](p1, q1, p2, q2) = H2,1

x1,2y1,2

(23.5)

Another short hand notation is:

h(q) := Res
p→q

H(p, q) dx(p). (23.6)

23.3 Known result for Ising model

In [Eynard and Orantin, 2005], the authors proved that the generating functions of

planar random maps coupled to the Ising model with one mixed boundary could be

written as a sum over planar link patterns. We will prove this decomposition in theorem

23.2 for generic spectral curves, so it is useful to recall the results obtained by Eynard

and Orantin, in order to introduce the notations. The presentation of this section is

adapted from section 4 of [Eynard and Orantin, 2005].

Let us consider one mixed boundary with k changes of colors. The fugacities are

x1, y1, . . . , xk, yk, clockwisely. One can draw them as points located on a circle (see

figure 74).

A first ingredient we need is the notion of planar permutations Sk of length k, which

is a subset of the permutations Sk. The cycle (1, 2, . . . , k) is denoted S.

A permutation σ ∈ Sk is called planar if when one draws a straight line (that we call

a link) between each pair (xj, yσ(j)), the lines don’t intersect. The pattern formed by

the lines associated with a planar permutation σ is called the link pattern of σ. The

flipbook in bottom right hand side corner of this chapter shows a planar permutation
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Figure 74: Link pattern on a boundary with 10 changes of colors. The arrows symbolize
the orientations of the faces in which they sit.

of S3 (the lines are not straight for visibility). The k + 1 faces of the link pattern are

the cycles of σ and Sσ.

Equivalently, σ ∈ Sk is planar if

ncycles(σ) + ncycles(Sσ) = k + 1,

where ncycles(σ) is the number of irreducible cycles composing the permutation σ.

We note Sk the set of planar permutation of rank k. The notation Sk(i1, . . . , ik) is

used when the permutation is on the set {i1, . . . , ik} instead of {1, . . . , k}.
Last, the faces of the link pattern are given an orientation:

• if the face corresponds to a cycle of σ, the orientation is counterclockwise ;

• if the face is a cycle of Sσ, the orientation is clockwise.

The order of a face is the number of links that belong to the face, which is also the

length of the cycle.

Example 23.2. In figure 74, the planar permutation is σ = (1, 2)(5, 10, 9)(6, 8, 7), the

cycle decomposition of σ and Sσ is
{
σ = (1, 2)(3)(4)(5, 10, 9)(6, 8, 7)

Sσ = (1, 3, 4, 5)(2)(10)(8)(7)(6, 9).
(23.7)
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The faces corresponding to cycles of σ are slightly colored (in red), and the faces of Sσ

are simply white. The orientations are given by the arrows in the faces.

To each link pattern corresponding to a planar permutation σ, we associate a ra-

tional function C
(k)
σ (x1, y1, . . . , xk, y). This function is a product of rational functions

F (j) over the faces of the link pattern. Therefore, the planar permutations σ are the

underlying diagrams on which we sum, and the functions F (j), C
(k)
σ depend on the

structure of σ.

Let us consider a face of the link pattern. Let ` be its order, and suppose that, following

its orientation, the fugacities are xi1 , yj1 , . . . , xi` , yj` . Then to this face is associated the

function F (`)(xi1 , yj1 , . . . , xi` , yj`), which is a rational function of the fugacities. The

functions F (`) are defined recursively on `:

Definition 23.1.
{
F (1)(x1, y1) = 1

F (`)(x1, y1, . . . , x`, y`) =
∑`−1

j=1
F (j)(x1,...,yj)F

(`−j)(xj+1,...,y`)

(x`−x1)(y`−yj) for ` ≥ 2.
(23.8)

For instance:

F (2)(x1, y1, x2, y2) =
1

(x1 − x2)(y1 − y2)

F (3)(x1, y1, x2, y2, x3, y3) =
1

(x3 − x1)(y3 − y1)(x2 − x3)(y2 − y3)
−

1

(x3 − x1)(y2 − y3)(x1 − x2)(y1 − y2)
. (23.9)

Now, for a link pattern, the product of all the faces functions gives the rational function

C
(k)
σ (x1, y1, . . . , xk, yk). In more detail, the decomposition in cycle of σ and Sσ is:

{
σ = σ1σ2 . . . σm

Sσ = σ̃1σ̃2 . . . σ̃n,
(23.10)

`j, ˜̀
j are respectively the lengths of σj, σ̃j. The cycles are:

σj = (j1, j2, . . . , j`j)

σ̃j = (j̃1, j̃2, . . . , j̃˜̀
j
).

(23.11)

Therefore, following their orientations, the faces have these forms:

(xj1 , yj2 , xj2 , . . . , xj`j , yj1) for cycle σj

(xj̃1 , yj̃2−1, xj̃2 , . . . , xj̃˜̀
j

, yj̃1−1) for cycle σ̃j. (23.12)

In the end, the function C
(k)
σ is given by:
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Definition 23.2.

C(k)
σ (x1, y1, . . . , xk, yk) =

m∏

j=1

F (`j)(xj1 , yj2 , xj2 , . . . , xj`j , yj1)×
n∏

j=1

F (˜̀
j)(xj̃1 , yj̃2−1, xj̃2 , . . . , xj̃˜̀

j

, yj̃1−1).

(23.13)

Once we have those functions, the theorem showed by Eynard and Orantin

[Eynard and Orantin, 2005] is:

Theorem 23.1. The generating functions of planar maps coupled to the Ising model

with one mixed boundary having k changes of colors are given by the formula:

H
(0)
k;0;0(x1, y1, . . . , xk, yk) =

∑

σ∈Sk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

Hi,σ(i) (23.14)

The proof of this result relies on the combinatorics of random maps, and inde-

pendent of the recurrence relation 22.12, so it is not valid for generic spectral curves.

Hereafter we give an example of application of this formula for planar maps with one

mixed boundary of size 3.

Example 23.3. The set S3 of planar permutations of size 3 has 5 elements. The

generating function H
(0)
3;0;0 is therefore a sum of 5 terms, which we detail in the follow-

ing table. The orientations of the faces having one link do not matter because their

contribution is always 1, so they are not depicted for visibility.
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Link pattern σ C
(3)
σ Contribution to H

(0)
3;0;0

F (3)(x1,y1,x2,y2,x3,y3)

F (1)(x1,y1)F (1)(x2,y2)

F (1)(x3,y3)

H1,1H2,2H3,3

x31y23

(
1

x23y31
− 1

x12y12

)

F (2)(x1,y1,x2,y3)

F (2)(x2,y3,x3,y2)

F (1)(x1,y1)F (1)(x2,y3)

H1,1H2,3H3,2

x12x23y23y31

F (2)(x1,y2,x2,y1)

F (2)(x1,y2,x3,y3)

F (1)(x2,y1)F (1)(x3,y3)

H1,2H2,1H3,3

x12x31y12y23

F (3)(x1,y3,x3,y2,x2,y1)

F (1)(x1,y3)F (1)(x3,y2)

F (1)(x2,y1)

H1,3H2,1H3,2

x12y12

(
1

x23y31
− 1

x31y23

)

F (2)(x1,y3,x3,y1)

F (2)(x2,y2,x3,y1)

F (1)(x1,y3)F (1)(x2,y2)

H1,3H2,2H3,1

x23x31y12y31

In the end, the generating function H
(0)
3;0;0 is the sum of the terms of the last column.

Besides this result, they showed the cyclic invariance of this formula:

Lemma 23.1. The functions F , C and H are cyclically invariant. ∀k ≥ 0, σ ∈ Sk:

F (k)(x1, y1, . . . , xk, yk) = F (k)(x2, y2, . . . , xk, yk, x1, y1)

C(k)
σ (x1, y1, . . . , xk, yk) = C(k)

σ (x2, y2, . . . , xk, yk, x1, y1)

H
(0)
k,0,0(x1, y1, . . . , xk, yk) = H

(0)
k,0,0(x2, y2, . . . , xk, yk, x1, y1). (23.15)

23.4 Results

23.4.1 Preliminary result: rational functions of the faces

In [Eynard and Orantin, 2005], the rational functions F (k) were defined (see section

23.3).

Let us define, in the same manner, two other families of rational functions F
(k)
a and

F
(k)
b :
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Definition 23.3. The F
(k)
a ’s:

{
F

(1)
a (x1, y1) = 1

F
(k)
a (x1, y1, . . . , xk, yk) =

∑k−1
j=1

F
(j)
a (x1,...,yj)F

(k−j)
a (xj+1,...,yk)

(xj+1−x1)(yj+1−y1)
for k ≥ 2

(23.16)

The F
(k)
b ’s:

{
F

(1)
b (x1, y1) = 1

F
(k)
b (x1, y1, . . . , xk, yk) =

∑k−1
j=1

F
(j)
b (x1,...,yj)F

(k−j)
b (xj+1,...,yk)

(xj+1−x1)(yk−y1)
for k ≥ 2

(23.17)

Then we have the following lemma:

Lemma 23.2. For all k ≥ 1, the functions F (k), F
(k)
a and F

(k)
b are equal. Moreover,

their poles in x1 are simple, located at xj, j = 2, . . . , k, and the residues are:

Res
x1→xj

F (k)(x1, . . . , yk)dx1 =
F (j−1)(xj, y1 . . . , xj−1, yj−1)F (k−j+1)(xj, . . . , yk)

y1 − yj
. (23.18)

This lemma entails the following one, that we use in section 25.2.4:

Lemma 23.3. For k ≥ 2 and σ ∈ Sk, with the notations of

[Eynard and Orantin, 2005], we have:

C(k)
σ (x1, y1, . . . , xk, yk) =

k−1∑

i=j

∑

ρ∈Sk−i

∑

τ∈Si

δσ,ρτ
C

(k−i)
ρ (xi+1, . . . , yk)C

(i)
τ (x1, . . . , yi)

x1,i+1yk,j

(23.19)

and

C(k)
σ (x1, . . . , yk) = −

k−1∑

i=j

∑

ρ∈Sk−i

∑

τ∈Si

δσ◦(1,i+1),ρτ
C

(k−i)
ρ (xi+1, . . . , yk)C

(i)
τ (xi+1, y1, . . . , yi)

x1,i+1yk,j

(23.20)

23.4.2 Main theorem

We first focus on the case where there is only one mixed boundary (with k ≥ 2 changes

of colors on the boundary). Therefore, we want to compute H
(0)
k;0;0(p1, q1, . . . , pk, qk).

The recurrence relation 22.12 yields only one sum –the first one– as the other ones

individually vanish. Indeed:

• The second term vanishes because it requires g ≥ 1.

• The third term vanishes because l = 1 (one boundary), so the sum has no term.

• The fourth term vanishes because H
(0)
0;1;0 = 0.
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• The fifth term vanishes because it requires g ≥ 1.

• The last term vanishes because it requires g ≥ 1.

So the recurrence 22.12 simplifies and we get:

H0
k(p1, q1, . . . , pk, qk) = Res

r→pi,q0,j
k

H1,kdx(r)

xr1xriykrHr,k

k∑

α=2

H0
k−α+1(pα, qα, . . . , pk, qk)×

H0
α−1(r, q1, . . . , pα−1, qα−1). (23.21)

The following theorem contains 4 parts. The first one allows to simplify the recur-

rence relation 23.21. The second and third one allows to compute explicitly H0
k , and

the last one to prove its symmetry.

Theorem 23.2. For all k ≥ 1, the following holds:

• The generating function H0
k belongs to the ring of polynomials

C
[

1
xi,j
, 1
xi,j
, Hi,j

] [
1

y(pl)−y(qk)
, 1
Hl,k

]
, where i, j = 1, . . . , k and l = 2, . . . , k.

Moreover, it has degree at most 1 in 1
y(pl)−y(qk)

and 1
Hl,k

, that is to say, there exist

[H0
k ]Irr , a

k,l, bk,l, ck,l,l
′ ∈ C

[
1
xi,j
, 1
xi,j
, Hi,j

]
such that:

H0
k =

[
H0
k

]
Irr

+
k∑

j=2

ak,j

y(pj)− y(qk)
+

k∑

j=2

bk,j

Hj,k

+
k∑

j,j′=2

ck,j,j
′

(y(pj)− y(qk))Hj′,k
(23.22)

We call [H0
k ]Irr the irreducible part of H0

k .

• With the notations of [Eynard and Orantin, 2005], the irreducible part of H0
k has

the same form as in the Ising Model:

[
H0
k

]
Irr

(pi, qi) =
∑

σ∈Sk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

j=1

Hj,σ(j) (23.23)

• For all 2 ≤ j ≤ k, the functions ak,j +
∑k

j′=2
ck,j,j

′

Hj′,k
and bk,j vanish:

ak,j +
k∑

j′=2

ck,j,j
′

Hj′,k
= bk,j = 0,

so H0
k is equal to its so-called irreducible part.

• The generating function H0
k is invariant under a rotation of its variables:

H0
k(p1, q1, . . . , pk, qk) = H0

k(p2, q2, . . . , pk, qk, p1, q1). (23.24)

The proof is given in section 25.2 below.

165



23.4.3 Removing one change of color and adding other boundaries

Removing one change of color This result defines an additional operator, effective

at least for the case of one mixed boundary. Its effect is similar to the forgetful map

of section 21.2: in one mixed boundary S1 = (p1, q1, . . . , pk1 , qk1), it erases one change

of color, that is to say one pair of variable (pi, qi). This operator exists if there exists

q∗ ∈ Σ such that it is a pole of y and x. For the spectral curves arising from the Ising

model, two values of q match this condition: q∗ = 0 and q∗ =∞.

Lemma 23.4. The operator Oi defined as:

Oi(f) = Res
qi→q∗

x(qi)

h(qi)
dy(qi) Res

pi→qi
fdx(pi). (23.25)

erases the ith pair (pi, qi) from the generating function H
(0)
k1;0;0(S1):

∀1 ≤ i ≤ k1, OiH(0)
k1;0;0(S1) = H

(0)
k1−1;0;0(p1, q1, . . . , pi−1, qi−1, pi+1, qi+1, . . . , pk1 , qk1).

(23.26)

The operator Oi matches the requirements of section 21.2: it depends only on the

spectral curve – through q∗, x, y and h –, and on the variables pi, qi to delete, not on

the other variables pj, qj, j 6= i.

Insertion of uniform boundaries The first extension concerns planar maps with

one mixed boundary and several uniform boundaries, i.e. generating functions of this

type:

H
(0)
k;m;n({p1, q1, . . . , pk, qk}; p′1, . . . , p′m; q′1, . . . , q

′
n).

As we shall show in the following, it can be obtained by insertion of m red boundaries

and n black boundaries through the action of insertion operators. We begin with

defining these operators.

Definition 23.4. Let δrz (δbz) be the insertions operator of a uniform red (resp. black)

boundary at position z, defined by:
{
δrzY (x(z1)) = H

(0)
0;2;0(z1, z)

δrzH
(0)
0;2;0(z1, z2) = H

(0)
0;3;0(z1, z2, z)

(23.27)

(respectively: {
δbzX(y(z1)) = H

(0)
0;0;2(z1, z)

δbzH
(0)
0;0;2(z1, z2) = H

(0)
0;0;3(z1, z2, z))

(23.28)

Moreover, we impose the following rule:

δrz Res
r→p

= Res
r→pz

δrz ,
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respectively

δbz Res
r→p

= Res
r→pz

δbz

This definition suffices to define recursively the action of the insertion operators

on any generating function H
(g)
kL;m;n via the topological recursion. First, as δrz is a

derivation at fixed x(z), one can deduce its action on x(y(q)):

δrzx(y(q)) = −H(0)
0;2;0(q, z)

dx

dy
(q).

For more general generating functions, we show that:

Lemma 23.5.

δrzH
(g)
kL;m;n(S1, . . . , SL; {pi}; {qj}) = H

(g)
kL;m+1;n(S1, . . . , SL; p1, . . . , pm, z; q1, . . . , qn)

(23.29)

This lemma allows to state the result of this section, which extends the result of

the theorem 23.2:

Theorem 23.3. The invariants H
(0)
k;m;n of genus 0, with one mixed boundary, m uni-

form red boundaries and n uniform black boundaries, are symmetric under R1 and

I

24 Consequences

We know that in the Ising model, the generating functions H
(g)
kL;m;n enumerate random

maps of fixed genus with specified boundary conditions. We may distinguish two parts

here: the boundaries, whose configurations are specified by the structure of the fugac-

ities S1, . . . , SL;x1, . . . , xm; y1, . . . , yn ; and the bulk part, which is the enumeration of

the maps relying on the boundaries. The weight of a map depends on the configu-

ration of the boundaries (through the fugacities of the boundary edges), and on the

configuration of the bulk. However, it is tempting to treat the generating functions

H
(g)
kL;m;n as observables depending only on the boundaries, and not on the bulk, as if

they arose from an effective theory on the boundaries. They can be seen as amplitudes

of a configurations of spin chains located on the boundaries (section 24.1 hereafter).

Those spin chains have complex interactions, as they are coupled to the bulk. But

knowing that their amplitudes satisfy a recurrence relation of the type of equation

22.12, and without computing them explicitly, are there constraints to impose to those

amplitudes, which constraint and simplify their expression ? We shall see that there

are indeed such constraints, which can determine some generating functions without
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x1,1

x1,2

xi,j

xL,kL

y1,1

y1,2

yi,j

yL,kL

(1, 1)

(1, 2)

(i, j)

(L, kL)

Figure 75: Variables assigned to chains of up spins (resp. of down spins). The red
(resp. black) edges considered up to now are replaced by chains of up (resp. down)
spins

resorting to the recursion 22.12.

This question, that we ask for generating functions stemming from the enumeration of

random maps, can be extended to any generating function computed through formula

22.12 from a generic spectral curve. The same constraints still hold, but the proof

relies on the symmetries of the generating functions. Therefore, theorem 23.2 allows

to constraint the generating functions H
(0)
k;m;n.

24.1 Amplitudes of spin chains

Let us take k chains of consecutive up spins (resp. down spins), that we name 1, . . . , k.

To the chain i of up spins (resp. down spins) is associated the variable xi (resp. yi),

see figure 75.

To a pair (π, π′) of permutations of {1, . . . , k} (there are k! possible permutations on

this set), one associates a set of circular spin chains:

• The right end of the ith up spin chain is glued with the left end of the π(i)th down

spin chain.

• The right end of the i′th down spin chain is glued with the left end of the π′−1(i′)th

up spin chain.
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x1,1

y1,1

x1,2

y1,2

y1,k1

xL,1

yL,1

xL,2

yL,2

yL,kL

π(1, 1) = (1, 1)

π′−1(1, 1) = (1, 2)

π(1, 2) = (1, 2)

π′(1, 1) = (1, k1)

π(L, 1) = (L, 1)π′−1(L, kL) = (L, 1)

Figure 76: Set of circular spin chains made from the up spin chains (1, 1), . . . , (L, kL),
the down spin chains (1, 1), . . . , (L, kL), and from the permutations (π, π′) defined in
equation 24.1.

The circular spin chains associated to (π, π′) are the cycles of π′−1 ◦ π.

In figure 76 is represented the set of circular spin chains cor-

responding to the permutations π = Id and π′ on the set

{(1, 1), . . . , (1, k1), (2, 1), . . . , (2, k2), . . . , (L, 1), . . . , (L, kL)} defined by:

π = Id

π′((i, j)) =

{
(i, ki) if j = 1

(i, j − 1) else
(24.1)

If the permutation π′−1 ◦ π has L cycles of lengths {k1, . . . , kL}, with i1, . . . , iL

belonging to different cycles, one defines the following formal series in N :

Ĥπ,π′ =
∞∑

g=0

N2−2g−LH(g)
kL;0;0

(
{xi1 , yπ(i1), . . . , x(π′−1◦π)k1−1(i1), yπ((π′−1◦π)k1−1)(i1)}, . . . ,

{xiL,...,yπ((π′−1◦π)kL−1)(iL)
}
)
.

The power of N is the Euler characteristic χ of a surface of genus g with L boundaries:

χ = 2− 2g − L.

The coefficient of Nχ is the invariant defined previously for the Ising model on random

maps. It counts connected maps of genus g. The following formal series allows to

count, for a given coefficient, the connected and the non-connected invariants:

Hπ,π′(x1, . . . , xk; y1, . . . , yk) = exp
(
Ĥπ,π′(x1, . . . , xk; y1, . . . , yk)

)
(24.2)

If π′−1◦π has L cycles, the coefficient of Nχ is called the amplitude of genus g = 1− χ+L
2

of the permutations (π, π′). It is a function of (x1, . . . , xk), (y1, . . . , yk), and is denoted
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by H
(g)
π,π′(x1, . . . , xk; y1, . . . , yk).

Last, we define the matrix of amplitudes :

H(x1, . . . , xk; y1, . . . , yk) = {Hπ,π′(x1, . . . , xk; y1, . . . , yk)}π,π′∈Sk . (24.3)

We note it also Hπ,π′(~x, ~y).

24.2 Constraints on the amplitudes

The constraints associated to the matrix of amplitudes are commutation relations with

the matrix M, defined as:

Mπ,π′(x1, . . . , xk; y1, . . . , yk; ξ, η) =
k∏

i=1

(
δπ(i),π′(i) −

1

Nc

1

(xi − ξ)(yπ(i) − η)

)

= Mπ,π′(~x; ~y; ξ, η). (24.4)

The parameters ξ and η are called the spectral parameters, for a reason given in next

subsection on the matrix model. The parameter N is the size of the matrices when

one considers the generating functions as expectation values of a matrix model. This

parameter is the the same as the one used for the matrix of amplitudes, all the object

defined here are viewed as formal series in N , including M which is a finite sum in

powers of N .

Remark 24.1. In equation 24.4, δπ(i),π′(i) = 1 if the circular chain containing the chain

i has only two pieces: the chain i of up spins, and the chain π(i) of down spins. One

sees in this definition that the invariants Hij play a special role, and that they can be

considered as fundamental block for the construction of invariants.

Then, under certain assumptions – developed in this section –, the following holds:

∀ξ, η , [H(x1, . . . , xk; y1, . . . , yk),M(x1, . . . , xk; y1, . . . , yk; ξ, η)] = 0. (24.5)

This commutation relation has to be understood as valid for every coefficient in the

power series in N , for [H,M] ∈ C[[N−1]] is a formal series.

The equation 24.5 implies that the matrices H andM have the same eigenvectors. In

order to determine entirely the matrix H, i.e. the amplitudes, one has to compute the

eigenvectors of M, and the eigenvalues of H (that can be expressed in terms of Hij).

The eigenvectors of the matrixM are amplitudes of a circular spin chains. Therefore,

the knowledge of the invariants H
(g)
kL;0;0 (that are sum over all maps having certain

boundary conditions) is (indirectly) determined by a statistical physics model located

on the boundaries. It is thus a sort of AdS/CFT correspondence for this class of
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problems: the amplitudes of quantities depending on the bulk and on the boundaries

of a surface are computable, by a duality principle, from a physical model on the

boundaries.

Equation 24.5 imposes constraints on the amplitudes H
(g)
π,π′ . For instance, we will show

that it allows to determine recursively (on the size of the boundary) the amplitude

H0
k;0;0. Hereafter, we describe when relation 24.5 holds, for the case of matrix models

and for the case of generating functions H
(g)
kL;0;0 derived from the recursion relation

22.12.

24.2.1 Commutation in the matrix model

In the case where the matrix of amplitudes stems from the matrix model described

above, the commutation of the matrix of amplitudes H and the matrix M is true

for any power of N . The derivation of this result comes from a lemma of Eynard

and Prats Ferrer [Eynard and Prats Ferrer, 2006]. Let us describe how one gets to the

commutation of the matrices.

First, by the method introduced in section 5, we transform the partition function of

the formal matrix model into a formal integral over the radial parts and the angular

parts of M1 and M2. Namely, there exists U ∈ U(N) (corresponding to the angular

part), and X = diag(ξ1, . . . , ξN), Y = diag(η1, . . . , ηN) (the radial parts) such that:

Tr (Mk
1M

`
2) = Tr (XkUY `U †). (24.6)

It entails for the mixed boundaries:

Tr

(
k∏

i=1

1

xi −M1

1

yi −M2

)
= Tr

(
k∏

i=1

1

xi −X
U

1

yi − Y
U †
)
. (24.7)

This angular/radial decomposition allows to rewrite the expectation values of functions

O implying traces of matrices M1, M2:

〈O(M1,M2)〉 formal
=

1

Z

∫

HN×HN
dM1dM2O(M1,M2)e−N Tr (V1(M1)+V2(M2)−cM1M2)

formal
=

1

Z

∫

RN×RN
dX dY∆(X)∆(Y )e−N Tr (V1(X)+V2(Y ))

∫

U(N)

DUecNXUY U†O(X,UY U †). (24.8)

The measure over U(N) is the Haar measure, and ∆(X) =
∏

i<j(ξi − ξj), ∆(Y ) =∏
i<j(ηi − ηj). In the case of random maps with fugacities (x1, . . . , xk); (y1, . . . , yk) =

~x; ~y, we associate an expectation value to a pair of permutations π, π′ ∈ Sk. This ex-

pectation value is a formal series in N , and enumerates bi-colored random maps having
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the Boltzmann weight described in the beginning of the chapter, whose boundaries are

the cycles of π′−1 ◦ π. For m = 1, . . . , ncycles(π
′−1 ◦ π), let us note `m the length of

the mth cycle (which is the number of changes of colors of the mth boundary). The

function associated to the fugacities ~x, ~y and the permutations π, π′ is then:

Oπ,π′(M1,M2; ~x, ~y) =

ncycles(π
′−1◦π)∏

m=1

(
δ1,`m + Tr

`m∏

i=1

1

xmi −M1

1

yπ(mi) −M2

)
. (24.9)

The expectation value associated is precisely the amplitude:

Hπ,π′(~x; ~y) = 〈Oπ,π′(M1,M2; ~x, ~y)〉 (24.10)

Therefore, using the previous angular/radial decomposition, we can write:

Hπ,π′(~x; ~y) =

∫

RN×RN
dXdY∆(X)∆(Y )e−N Tr (V1(X)+V2(Y ))

∫

U(N)

dUecNXUY U
†Oπ,π′(X,UY U †; ~x, ~y). (24.11)

The angular integral can be carried out using a result of Eynard and Prats Ferrer

[Eynard and Prats Ferrer, 2006]:

∫

U(N)

dUecNXUY U
†Oπ,π′(X,UY U †; ~x, ~y) =

∑

σ∈SN
(−1)ε(σ)

(
N∏

i=1

M(~x; ~y; ξi, ησ(i))

)

π,π′

,

(24.12)

ε(σ) being the signature of the permutation. One has to be careful in the previous

formula, as the permutations π, π′ belong to Sk, k being the length of the vectors

~x, ~y, whereas σ belongs to SN , where N is the size of the matrices X and Y . Now, a

property in [Eynard and Prats Ferrer, 2006] states that the matricesM with different

spectral parameters commute:

∀ξ, η, ζ, χ , [M(~x; ~y; ξ, η),M(~x; ~y; ζ, χ)] = 0, (24.13)

and that they are symmetric: M =Mt. It is therefore possible to diagonalize simul-

taneously those matrices in the angular integration 24.12, that is to say there exists a

matrix V of size k!× k! independent of the spectral parameters, such that:

Mπ,π′(~x; ~y; ξ, η) =
∑

ρ∈Sk
Vπ,ρ(~x, ~y)Λρ(~x, ~y; ξ, η)Vπ′,ρ(~x, ~y) (24.14)

where Λ is a vector of size k!. The angular integration 24.12 simplifies into:

∑

ρ∈Sk
Vπ,ρ(~x, ~y) det

1≤i,j≤N
(Λρ(~x, ~y; ξi, ηj))Vπ′,ρ(~x, ~y). (24.15)
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In the end, the amplitude is simply given by the radial integration:

Hπ,π′(~x; ~y) =
∑

ρ∈Sk Vπ,ρ(~x, ~y)Vπ′,ρ(~x, ~y)∫
RN×RN dXdY∆(X)∆(Y )e−N Tr (V1(x)+V2(Y )) det

1≤i,j≤N
(Λρ(~x, ~y; ξi, ηj))

(24.16)

Two elements are important in the last formula. First, the matrix element Vπ,ρ are

independent of the radial integration, as they do not depend on the spectral parameters.

Second, the radial integration depends only on the permutation ρ. We can conclude

that the matrix of amplitudes H is diagonalizable in the same basis as the matrices

M, so they commute. This shows that:

∀ξ, η, ∀~x, ~y, [H(~x; ~y),M(~x, ~y, ξ, η)] = 0. (24.17)

This demonstration, given by Eynard and Prats Ferres, uses extensively matrix inte-

grals methods, but does not explicitly require the symmetries of the generating func-

tions.

24.2.2 Commutation for generic spectral curves

If the invariants H
(g)
kL;0;0, that satisfy by construction the recursive relation 22.12, are

symmetric under the rotations Ri and the inversion I, then the matrix of amplitudes

commute with the matrix M (see [Eynard, 2016]):

∀ξ, η , [H(x1, . . . , xk; y1, . . . , yk),M(x1, . . . , xk; y1, . . . , yk; ξ, η)] = 0, (24.18)

In this chapter, we have proven that the invariants H
(0)
k;0;0 (for which the Euler

characteristic is χ = 1) satisfy the symmetries. It allows to obtain the following

commutation relation:

∀ξ, η , [H(x1, . . . , xk; y1, . . . , yk),M(x1, . . . , xk; y1, . . . , yk; ξ, η)](0) = 0, (24.19)

where by [](0), we mean the coefficient of N0 in the formal series

[H(x1, . . . , xk; y1, . . . , yk),M(x1, . . . , xk; y1, . . . , yk; ξ, η)] in N .

Example 24.1. Let us look at the case k = 2. There are 2 permutations: Id and (1, 2).

The leading order coefficients in N of the matrix H(x1, x2; y1, y2) are:
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π
π′

Id (1, 2)

Id (N2) (N)

(1, 2) (N) (N2)

where, in the parenthesis is given the power of N corresponding to such amplitudes.

The matrix M is given by:

π
π′

Id (1, 2)

Id

(
1− 1

Nc
1

(x1−ξ)(y1−η)

)
×(

1− 1
Nc

1
(x2−ξ)(y2−η)

) 1
N2c2

1
(x1−ξ)(y1−η)(x2−ξ)(y2−η)

(1, 2) 1
N2c2

1
(x1−ξ)(y1−η)(x2−ξ)(y2−η)

(
1− 1

Nc
1

(x1−ξ)(y2−η)

)
×(

1− 1
Nc

1
(x2−ξ)(y1−η)

)

In [H(x1, x2; y1, y2),M] = 0, the coefficient of N0 yields the equation:

H
(0)
2;0;0(x1, y1, x2, y2) =

H
(0)
1;0;0(x1, y2)H

(0)
1;0;0(x2, y1)−H(0)

1;0;0(x1, y1)H
(0)
1;0;0(x2, y2)

(x1 − x2)(y1 − y2)
. (24.20)

Therefore the commutation relation 24.5 is constraining enough to determine entirely

the generating function H
(0)
2;0;0

Actually, the commutation of the matrix of amplitudes and the matrix M allows

to determine recursively the generating functions of planar one mixed boundaries am-

plitudes H
(0)
k;0;0. Indeed, we have the result:

Lemma 24.1. Let k ≥ 2, and assume H
(0)
k′;0;0 is known ∀k′ < k. Then H

(0)
k;0;0 is

determined by the equation:

[N0][M(~x; ~y; 0, 0), H(~x, ~y)]Id,Sk = 0, (24.21)

where Sk is the cycle (1, k, k − 1, . . . , 2) and [N0] means that we take the coefficient of

N0 of the formal series [M, H] ∈ C[[N−1]].

Proof. We show that equation 24.21 allows to compute H
(0)
k;0;0(x1, y1, . . . , xk, yk) =

[N ]HId,Sk . This means that we have to show that, at the order N0:

• Only the genus 0 parts of the Hπ,π′ is present.
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• The leading order in N of the commutator is N0, and it involves H
(0)
Id,Sk

.

• besides HId,Sk , there is no other Hπ,π′ with π′−1 ◦π being a cycle of length k. This

means that the only amplitude with one boundary of length k is HId,Sk .

Point 1: writing the coefficient Id, Sk of the commutation relation gives:

∑

π∈Sk
MId,πHπ,Sk −HId,πMπ,Sk . (24.22)

Mπ,π′ is a polynomial inN−1. The leading order whenN →∞ is at mostN0. The term

Hπ,π′ represents a sum over the genus of amplitudes with at least one boundary. The

characteristic of amplitudes with genus g ≥ 1 is therefore less or equal to 1− 2g ≤ −1.

This means that amplitudes with genus g ≥ 1 contribute in the commutator at most in

the coefficient of N−1. Hence, in equation 24.21, only planar amplitudes are involved.

Point 2: The contribution to order N1 of the commutator is worth:

H
(0)
Id,Sk

(
[N0]MId,Id − [N0]MSk,Sk

)
= H

(0)
Id,Sk

(1− 1) = 0, (24.23)

so the commutator has leading order N0. At this order, HId,Sk contributes in this way:

H
(0)
Id,Sk

[N−1] (MId,Id(~x; ~y; 0, 0)−MSk,Sk(~x; ~y; 0, 0)) = H
(0)
Id,Sk

k∑

i=1

(
1

xiySk(i)

− 1

xiyi

)

6= 0. (24.24)

The contribution of H
(0)
Id,Sk

is not null at the order N0.

Point 3: take π 6= Id such that S−1
k ◦ π is a cycle of length k. As π 6= Id, there exists

at least two integers i, j such that π(i) 6= i, π(j) 6= j. Therefore the leading order in N

of MId,π is less or equal to N−2. Therefore, Hπ,SkMId,π contributes to the coefficients

Nm with m ≤ −1. With the same argument, the terms HId,πMπ,Sk with π 6= Sk such

that π is a cycle, contribute to the coefficients Nm with m ≤ −1. In the end, the only

amplitude with one boundary of length k appearing at the order N0 is HId,Sk .

Example 24.2. As an example, we show how to compute H
(0)
3;0;0(x1, y1, x2, y2, x3, y3).

It corresponds to the genus 0 part of the amplitude HId,(132)(x1, x2, x3; y1, y2, y3). In

the matrix H, we keep only the leading order terms in N , which consist in products

of planar amplitudes with one boundary. Then, we apply the commutation relation

[N0][H(~x; ~y),M(~x; ~y; ξ, η)]Id,S3 = 0. We specialize the spectral parameters ξ = η = 0.

The matrix H is shown in the 6× 6 following table.
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π
π
′

Id
(1
,2

)
(1
,3

)
(2
,3

)
(1
,2
,3

)
(1
,3
,2

)

Id
H

1
,1
H

2
,2

H
0 2
(x

1
,y

1
,x

2
,y

2
)

H
0 2
(x

1
,y

1
,x

3
,y

3
)H

2
,2

H
0 2
(x

2
,y

2
,x

3
,y

3
)H

1
,1

H
0 3
(x

1
,y

1
,x

3
,y

3
,x

2
,y

2
)

H
0 3
(x

1
,y

1
,x

2
,y

2
,x

3
,y

3
)

H
3
,3

H
3
,3

N
2

N
2

N
1

N
1

N
3

N
2

(1
2)

∗
H
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H

2
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H

3
,3

H
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3
)
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)
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,y

3
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1
,2
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3
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3
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1
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1
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∗
∗
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H
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H
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0 3
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,y

3
,x
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,y

2
,x

3
,y

1
)
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0 2
(x

1
,y

3
,x

2
,y

2
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3
,1

H
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2
,y

2
,x

3
,y

1
)H

1
,3

N
3

N
1

N
2

N
2

(2
3)

∗
∗

∗
H

1
,1
H

2
,3
H

3
,2

H
0 2
(x

1
,y

1
,x

3
,y

2
)H

2
,3

H
0 2
(x

1
,y

1
,x

2
,y

3
)H

3
,2

N
3

N
2

N
2

(1
23

)
∗

∗
∗

∗
H

1
,2
H

2
,3
H

3
,1

H
0 3
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,y

2
,x
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2
,y

3
)

N
3
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1
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∗
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∗
∗
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The matrix element [N0][H(~x; ~y),M(~x; ~y; 0, 0)]Id,(1,3,2) yields the equation:

H1,3H2,1H3,2

x1x2x3y1y2y3

− (H1,3H2,1 −H1,1H2,3)H3,2

x2x3y2y3(x1 − x2)(y1 − y3)
+

H1,3(H2,2H3,1 −H2,1H3,2)

x1x3y1y3(x3 − x2)(y1 − y2)

−H1,1H2,2H3,3

x1x2x3y1y2y3

+
(H1,2H2,1 −H1,1H2,2)H3,3

x1x3y2y3(x1 − x2)(y1 − y2)
+

H2,2(H1,3H3,1 −H1,1H3,3)

x2x3y1y2(x1 − x3)(y1 − y3)

− H2,1(H1,3H3,2 −H1,2H3,3)

x1x2y1y2(x1 − x3)(y2 − y3)
+

H1,1(H2,3H3,2 −H2,2H3,3)

x1x3y1y2(x2 − x3)(y2 − y3)

+H
(0)
3;0;0(x1, y1, x2, y2, x3, y3)

[
1

x1y1

− 1

x2y1

+
1

x2y2

− 1

x3y2

− 1

x1y3

+
1

x3y3

]
= 0.

(24.25)

This gives H
(0)
3;0;0 as a sum over link patterns (see the table of example 23.3 for the

expression of the sum), which is consistent with the result of theorem 23.2.

It remains to extend the theorem to result to the more general casesH
(g)
kL;m;n. Several

ways of generalizing the result are under consideration. Yet, the most probable plan

to tackle the problem is to show the rotational invariance in the following order:

1. Add uniform boundaries with insertion operators, and prove the rotation sym-

metry of H
(0)
k;m;n (the invariants are still planar and have one mixed boundary).

2. Prove by induction on L that:

• H(0)
kL;m;n is invariant when one permutes the two boundaries S1, S2.

• H(0)
kL;m;n is symmetric under the rotations Ri

3. Prove the theorem for genus g ≥ 1.

If those generalizations are true, then formula 24.5 is true.

25 Proof of the results

25.1 Preliminary result

Proof. We prove this result by induction on k. It is clearly true for k = 1, so let k ≥ 2

and suppose the equality holds for all 1 ≤ j ≤ k − 1.

From the definitions 23.1-23.3, it is also clear that the three functions have simple poles

in x1 around the xj’s for j ≥ 2. Let 2 ≤ l0 + 1 ≤ k. We compute the residues of the

three functions around xl0+1.

Res
x1→xl0+1

F (k)
a (x1, . . . , yk)dx1 =

F
(l0)
a (xl0+1, y1 . . . , xl0 , yl0)F

(k−l0)
a (xl0+1, . . . , yk)

y1 − yl0+1
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=
F (l0)(xl0+1, y1 . . . , xl0 , yl0)F (k−l0)(xl0+1, . . . , yk)

y1 − yl0+1

(25.1)

So the residue for F
(k)
a is of the right form.

Res
x1→xl0+1

F (k)dx1 =
k−1∑

j=l0+1

F (k−j)(xj+1, . . . , yk)

(xk − xl0+1)(yk − yj)
Res

x1→xl0+1

F (j)(x1, . . . , yj)

=
k−1∑

j=l0+1

F (k−j)(xj+1, . . . , yk)

(xk − xl0+1)(yk − yj)
F (l0)(xl0+1, y1 . . . , xl0 , yl0)

y1 − yl0+1

×

F (j−l0)(xl0+1, . . . , yj)

=
F (l0)(xl0+1, y1 . . . , xl0 , yl0)

y1 − yl0+1

k−1∑

j=l0+1

F (k−j)(xj+1, . . . , yk)

(xk − xl0+1)(yk − yj)
×

F (j−l0)(xl0+1, . . . , yj)

=
F (l0)(xl0+1, y1 . . . , xl0 , yl0)F (k−l0)(xl0+1, . . . , yk)

y1 − yl0+1

(25.2)

So we get the same residues for F
(k)
a and F (k).

Last, for F
(k)
b :

Res
x1→xl0+1

F
(k)
b dx1 =

k−1∑

j=l0+1

F
(k−j)
b (xj+1, . . . , yk)

(xj+1 − xl0+1)(yk − y1)
Res

x1→xl0+1

F
(j)
b (x1, . . . , yj)

−F
(l0)
b (xl0+1, y1 . . . , xl0 , yl0)F

(k−l0)
b (xl0+1, . . . , yk)

yk − y1

=
k−1∑

j=l0+1

F (k−j)(xj+1, . . . , yk)

(xj+1 − xl0+1)(yk − y1)

F (l0)(xl0+1, y1 . . . , xl0 , yl0)

y1 − yl0+1

×

F (j−l0)(xl0+1, . . . , yj)−
F (l0)(xl0+1, y1 . . . , yl0)F (k−l0)(xl0+1, . . . , yk)

yk − y1

=
F (l0)(xl0+1, y1 . . . , xl0 , yl0)F (k−l0)(xl0+1, . . . , yk)

yk − y1

×
(
−1 +

yk − yl0+1

y1 − yl0+1

)

=
F (l0)(xl0+1, y1 . . . , xl0 , yl0)F (k−l0)(xl0+1, . . . , yk)

y1 − yl0+1

(25.3)

Therefore, the functions F (k), F
(k)
a and F

(k)
b have the same poles in x1, so they must

be equal for all x1. This ends the proof of the lemma.

Proof. The proof follows exactly the same steps as the proof of theorem 4.1 in

[Eynard and Orantin, 2005], but instead of using the recursive definition 23.1, we use

the 2 others ones of definition 23.3.
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25.2 Proof of the theorem

The theorem is proved by induction on k. It is clearly true for k = 1, so for the rest

of this section, let k ≥ 2 and assume the theorem holds for H0
j , 1 ≤ j ≤ k − 1. The

scheme of the proof follows the points of the theorem.

• First, in section 25.2.1, we transform formula 23.21 into another one

(equation 25.13). This allows us to show that H0
k belongs to the ring

C
[

1
xi,j
, 1
xi,j
, Hi,j

] [
1

y(pl)−y(qk)
, 1
Hl,k

]
, and to give the degrees in 1

y(pl)−y(qk)
and 1

Hl,k
.

• Second, in section 25.2.2, we give explicit expressions (from equation 25.13) for

ak,j +
∑k

j′=2
ck,j,j

′

Hj′,k
, bk,j and [H0

k ]Irr. From the previous expressions, it is convenient

to define Ak,j and Bk,j that are functions independent of p1. This proves the first

item of the theorem.

• Third, in section 25.2.3, we show that [H0
k ]Irr satisfies the formula 23.23 in the

second item of the theorem. It requires to use the recurrence formulas of definition

23.3.

• We show that Ak,j = 0, then Bk,j = 0 in section 25.2.4, proving the third part,

and allowing to compute H0
k explicitly (that is, not recursively).

• To conclude, in section 25.2.5, the symmetry of the generating functions follows

from the previous results.

25.2.1 Transformation of the recurrence formula

We use the formula 23.21 and make some manipulations first:

H0
k(pi, qi) = H1,k

k−1∑

i=1

H0
k−i(pi+1, . . . , qk) Res

r→p1,pi+1,q
0,j
k

H0
i (r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1
(25.4)

For a given j, we want to decompose the function H0
i on the basis of C [H1,j]. Let us

introduce the subsets S
j

i ⊂ Si for j ≤ i, of the planar permutations Si:

S
j

i = {σ ∈ Si s.t. σ(1) = j} (25.5)

The S
j

i ’s form a partition of Si.

As the theorem is true for i ≤ k− 1, H0
i is a polynomial of degree 1 in H1,j. Moreover,

calling H0
i[j] the coefficient of H1,j, we have:

H0
i (r, q1, . . . , pi, qi) =

∑

σ∈Si

C(i)
σ (r, y1, . . . , xi, yi)Hr,σ(1)

i∏

l=2

Hl,σ(l)
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Recursive relation 22.12

Point 1

section 25.2.1

H0
k =

[
H0
k

]
Irr

+
∑k

l=2
ak,l

y(pl)−y(qk) +
∑k

l=2
ck,l,l

(y(pl)−y(qk))Hl,k
+
∑k

l=2
bk,l

Hl,k

Ak,j Bk,j
[
H0
k

]
Irr

section 25.2.2 section 25.2.2

[
H0
k

]
Irr

=
∑

σ∈Sk
C

(k)
σ
∏

iHi,σ(i)Point 2

section 25.2.3

Ak,j = 0

Bk,j = 0

section 25.2.4

Point 3

H0
k =

[
H0
k

]
Irr

H0
k is symmetric under R and IPoint 4

section 25.2.5

Figure 77: Scheme of the proof. Red arrows show when the successive points are
proven.
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=
i∑

j=1

Hr,j

∑

σ∈Sji

C(i)
σ (r, y1, . . . , xi, yi)

i∏

l=2

Hl,σ(l)

=
i∑

j=1

Hr,jH
0
i[j](r, q1, . . . , pi, qi)

(25.6)

The functions H0
i[j] belong to C

[
1

xm,n
, 1
ym,n

, Hr,s

]
with m,n = 1, . . . , i ; r = 2, . . . , i and

s = 1, . . . , i, s 6= j.

Applying this decomposition of H0
i :

H0
k(ps, qs) = H1,k

k−1∑

i=1

H0
k−i(pi+1, . . . , qk) Res

r→
p1
pi+1

q0,m
k

i∑

j=1

Hr,jH
0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1yk,rHr,k

= H1,k

k−1∑

i=1

H0
k−i(pi+1, . . . , qk)

i∑

j=1

Res

r→
p1
pi+1

q0,m
k

Hr,jH
0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1yk,rHr,k

(25.7)

For a given pair 1 ≤ j ≤ i ≤ k − 1, we transform the factor inside the residue, using

the identity:

1

y(qk)− y(r)
=

y(r)− y(qj)

(y(qk)− y(r))(y(qk)− y(qj))
+

1

y(qk)− y(qj)
. (25.8)

Restating it with our notations, this gives:

1

yk,r
=

yr,j
yk,ryk,j

+
1

yk,j
(25.9)

Remark 25.1. This identity was used by Eynard and Orantin in

[Eynard and Orantin, 2008] in order to compute H0
2 .

We use it in the residue, so that we get:

H0
k(pi, qi) = H1,k

k−1∑

i=1

H0
k−i(pi+1, . . . , qk)

i∑

j=1

Res
r→p1
pi+1

q0,m
k

(
yr,j

yk,ryk,j

Hr,jH
0
i[j](r, q1, . . . , qi)dx(r)

xr,i+1xr,1Hr,k

+
1

yk,j

Hr,jH
0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1Hr,k

.

)

(25.10)

Now, it is possible to compute explicitly the residues. Indeed, we have to distinguish

between the first term of the sum (on the first line), and the second one (on the second

line).
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First term Let us characterize the poles of
yr,j

yk,ryk,j

Hr,jH
0
i[j]

(r,q1,...,pi,qi)dx(r)

xr,i+1xr,1Hr,k
with respect

to r.

• The equation 25.6 tells us that H0
i[j] is a rational function of x(r), having poles

in x(r)→ x(pl), l = 2, . . . , i.

• yr,jHr,j =
E(x(r),y(qj))

x(r)−x(qj)
is a rational function of x(r), having no pole in r → qj.

• yk,rHr,k = −E(x(r),y(qk))
x(r)−x(qk)

is a rational function of x(r), which does not vanish when

r → qk, but vanishes when r → q0,m
k , m ≥ 1.

• yr,jHr,j
yk,rHr,k

is a rational function of x(r), regular when x(r)→∞.

Hence
yr,j

yk,ryk,j

Hr,jH
0
i[j]

(r,q1,...,pi,qi)dx(r)

xr,i+1xr,1Hr,k
is a rational function of x(r), having poles in x(r)→

x(pl), l = 1, . . . , i+ 1. Therefore, moving the contour C1 of integration for the residues

Res
r→p1,pi+1,q

0,m
k

to the contour C2 (see figures 78 and 79):

Res
r→p1,pi+1,q

0,m
k

yr,j
yk,ryk,j

Hr,jH
0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1Hr,k

= −
i∑

l=2

Res
r→pl

yr,j
yk,ryk,j

Hr,jH
0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1Hr,k

=
i∑

l=2

(
y(pl)− y(qj)

(y(pl)− y(qk))yk,j

)
Hl,j

Hl,k

Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1

=
i∑

l=2

(
1

yk,j
+

1

y(pl)− y(qk)

)
Hl,j

Hl,k

Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1

(25.11)

Second term As there is no longer yk,r in the denominator of the second term, there

is no pole around r → q0,m
k , then we can carry out the residues around r → p1 and

r → pi+1 without difficulty, and we get:

1

yk,j

H1,j

H1,k

Res
r→p1

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1
+

1

yk,j

Hi+1,j

Hi+1,k

Res
r→pi+1

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,i+1xr,1
(25.12)

Bringing the first and second terms together Equations 25.11 and 25.12 yield:

H0
k(pi, qi) =

k−1∑

i=1

H0
k−i(pi+1, . . . , pk, qk)

i∑

j=1

i+1∑

l=1

H1,kHl,j

Hl,kykj
Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,1xr,i+1
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p1 pi+1 q0,1k p2

q0,d2k

pi

C1

Figure 78: Contour of integration for the residue, and location of the poles.

p1 pi+1 q0,1k p2

q0,d2k

piC2

Figure 79: Deformed contour.
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+
k−1∑

i=1

H0
k−i(pi+1, . . . , qk)

i∑

j=1

i∑

l=2

H1,kHl,j

Hl,k(y(pl)− y(qk))xl,1xl,i+1

×

Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r)

(25.13)

This recursive formula is equivalent to equation 23.21. In the r.h.s.,

i ≤ k − 1 and k − i ≤ k − 1,

so the theorem applies to H0
i (r, q1, . . . , pi, qi) and H0

k−i(pi+1, qi+1, . . . , pk, qk): they

actually belong to C
[
Hm,n,

1
xm,n

, 1
ym,n

]
(with, respectively, m, n = 1, 2, . . . , i

and m, n = i + 1, . . . , k). Therefore, we immediately see that H0
k belongs to

C
[

1
xm,n

, 1
Hm,n

, Hm,n

] [
1

Hm,k
, 1
y(pm)−y(qk)

]
.

Moreover, the degrees with respect to 1
Hm,k

and 1
y(pm)−y(qk)

are at most 1, and the

monomials that are allowed when decomposing H0
k in the ring C

[
1

y(pm)−y(qk)
, 1
Hm,k

]
are

1

y(pm)− y(qk)
,

1

Hm,k

and
1

(y(pm)− y(qk))Hm,k

(There can’t be any term like

1

(y(pm)− y(qk))(y(pm′)− y(qk))
,

1

Hm,kHm′,k
or

1

(y(pm)− y(qk))Hm′,k
, m 6= m′).

Therefore, the first point of the theorem is proven. We restate it in the following way:

there exist [H0
k ]Irr , a

k,l, bk,l, ck,l,l
′ ∈ C

[
1
xi,j
, 1
xi,j
, Hi,j

]
such that:

H0
k =

[
H0
k

]
Irr

+
k∑

l=2

ak,l

y(pl)− y(qk)
+

k∑

l=2

bk,l

Hl,k

+
k∑

l=2

ck,l,l

(y(pl)− y(qk))Hl,k

(25.14)

(it is similar to equation 23.22, but we don’t allow (better, we proved that they van-

ished) ck,l,l
′

with l 6= l′). The polynomials [H0
k ]Irr , a

k,l, bk,l, ck,l,l
′

can be computed

recursively by the recurrence equation 25.13 we just derived, and this is the aim of the

following section.

25.2.2 Explicit expressions

Actually, instead of computing separately ak,l, and ck,l,l
′
, we need to compute a combi-

nation of ak,l and ck,l,l that is encoded in the quantity Ak,l.
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Computation of the A’s From the decomposition of H0
k in equation 25.14, we can

transform it into:

H0
k =

[
H0
k

]
Irr

+
k∑

l=2

bk,l

Hl,k

+
k∑

l=2

1

y(pl)− y(qk)

(
ak,l +

ck,l,l

Hl,k

)
. (25.15)

We need to compute ak,l + ck,l,l

Hl,k
(it is the coefficient of 1

y(pl)−y(qk)
when we decompose

H0
k over the ring C

[
1

y(pl)−y(qk)

]
). It is possible to do so if we look at the recurrence

relation 25.13. We extract easily this coefficient:

ak,l +
ck,l,l

Hl,k

=
H1,k

xl,1

k−1∑

i=l

i∑

j=1

H0
k−i(pi+1, . . . , qk)

Hl,j

Hl,kxl,i+1

Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r).

(25.16)

We define Ak,l for l ≥ 2 as:

Ak,l(q1, p2, q2, . . . , pk, qk) =
k−1∑

i=l

i∑

j=1

H0
k−i(pi+1, qi+1, . . . , pk, qk)

Hl,j

Hl,kxl,i+1

×

Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r). (25.17)

so that we rewrite the coefficient ak,l + ck,l,l

Hl,k
as:

ak,l +
ck,l,l

Hl,k

=
H1,k

xl,1
Ak,l (25.18)

The Ak,l’s do not depend on p1 from equation 25.17.

Then, equation 25.13 reads:

H0
k(pi, qi) =

k−1∑

i=1

H0
k−i(pi+1, . . . , qk)

i∑

j=1

i+1∑

l=1

H1,kHl,j

Hl,kykj
Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,1xr,i+1

+
k∑

l=2

H1,kA
k,l(q1, p2, q2, . . . , pk, qk)

xl,1(y(pl)− y(qk))

=
[
H0
k

]
Irr

+
k∑

l=2

bk,l

Hl,k

+
k∑

l=2

H1,k

xl,1

Ak,l

y(pl)− y(qk)
. (25.19)

Computation of the b’s Now, from equation 25.19, we have to decompose the first

sum on C
[

1
Hl,k

]
to find the coefficients bk,l (and [H0

k ]Irr in the next section).

Let us take l0 ∈ {1, . . . , k}. From formula 25.19, the 1
H1,k

compensate with H1,k at the

numerator, so we suppose l0 ≥ 2. The coefficient of 1
Hl0,k

in the first sum of equation

25.19 is:

H1,k

xl0,1Hl0,k

k−1∑

i=l0

H0
k−i(pi+1, . . . , qk)

xl0,i+1

i∑

j=1

Hl0,j

yk,j
Res
r→pl0

H0
i[j](r, q1, . . . , pi, qi)dx(r)
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+
H1,k

xl0,1Hl0,k

H0
k−l0+1

′
(pl0 , . . . , qk)

l0−1∑

j=1

Hl0,j

yk,j
H0
l0−1[j](pl0 , q1, . . . , pl0−1, ql0−1) (25.20)

where, by H0
k−l0+1

′
, we mean:

H0
k−l0+1

′
= H0

k−l0+1 −H0
k−l0+1[k] (25.21)

As k− l0 +1 ≤ k−1, the theorem stands for H0
k−l0+1, so we use it to compute H0

k−l0+1
′
:

H0
k−l0+1

′
(pl0 , . . . , qk) =

k−1∑

i=l0

H0
k−i(pi+1, . . . , qk)

xl0,i+1

i∑

j′=l0

Hl0,j′

yk,j′
H0
i−l0+1[j′](pl0 , ql0 . . . , qi)

(25.22)

So, in the end, the coefficient bk,l0 of 1
Hl0,k

is:

bk,l0 =
H1,k

xl0,1

k−1∑

i=l0

H0
k−i(pi+1, . . . , qk)

xl0,i+1

[
i∑

j=1

Hl0,j

yk,j
Res
r→pl0

H0
i[j](r, q1, . . . , pi, qi)dx(r)+

l0−1∑

j=1

Hl0,j

yk,j
H0
l0−1[j](pl0 , q1, . . . , pl0−1, ql0−1)

i∑

j′=l0

Hl0,j′

yk,j′
H0
i−l0+1[j′](pl0 , ql0 . . . , qi)

]
.

(25.23)

We define Bk,l as:

Bk,l0 =
k−1∑

i=l0

H0
k−i(pi+1, . . . , qk)

xl0,i+1

[
i∑

j=1

Hl0,j

yk,j
Res
r→pl0

H0
i[j](r, q1, . . . , pi, qi)dx(r)+

l0−1∑

j=1

Hl0,j

yk,j
H0
l0−1[j](pl0 , q1, . . . , pl0−1, ql0−1)

i∑

j′=l0

Hl0,j′

yk,j′
H0
i−l0+1[j′](pl0 , ql0 . . . , qi)

]
,

(25.24)

so that the Bk,l’s are independent of p1, and:

bk,l =
H1,k

xl,1
Bk,l. (25.25)

To sum up, when we decompose H0
k over the ring C

[
1

Hl,k
, 1
y(pl)−y(qk)

]
, we have computed

all the coefficients except the constant term [H0
k ]Irr, which we do now.

Computation of the irreducible part We have given the expression of the Ak,ls

(equation 25.17) and the Bk,ls (equation 25.24). We can use these expressions and

equation 25.13 to compute [H0
k ]Irr:

[
H0
k

]
Irr

= H0
k −

k∑

l=2

H1,k

xl,1

Ak,l

y(pl)− y(qk)
−

k∑

l=2

H1,k

xl,1

Bk,l

Hl,k

. (25.26)
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More specifically, using equation 25.19:

[
H0
k

]
Irr

=
k−1∑

i=1

H0
k−i(pi+1, qi+1, . . . , pk, qk)

i∑

j=1

i+1∑

l=1

H1,kHl,j

Hl,kykj
Res
r→pl

H0
i[j](r, q1, . . . , qi)dx(r)

xr,1xr,i+1

−
k∑

l=2

H1,k

xl,1

Bk,l

Hl,k

. (25.27)

As
∑k

l=2
H1,k

xl,1

Bk,l

Hl,k
is the sum of the terms of the first line where the 1

Hl,k
s are not com-

pensated by a Hl,k on the numerator, the irreducible part corresponds to the sum of

the terms in
k−1∑

i=1

H0
k−i(pi+1, qi+1, . . . , pk, qk)

i∑

j=1

i+1∑

l=1

H1,kHl,j

Hl,kykj
Res
r→pl

H0
i[j](r, q1, . . . , pi, qi)dx(r)

xr,1xr,i+1

(25.28)

where the 1
Hl,k

s are compensated, i.e. they cancel with some Hl,k in the numerator.

There are 2 cases:

• either l = 1 and 1
Hl,k

cancels out with H1,k, so we get:

k−1∑

i=1

H0
k−i(pi+1, qi+1, . . . , pk, qk)

x1,i+1

i∑

j=1

H1,j

ykj
H0
i[j](p1, q1, . . . , pi, qi) (25.29)

• either l ≥ 2 and 1
Hl,k

can only cancel with a Hl,k coming from H0
k−i(pi+1, . . . , qk).

So we need l ≥ i + 1. From the summation bounds, we also have l ≤ i + 1, so

l = i+ 1 and we have all these terms:
k−1∑

i=1

H0
k−i[k](pi+1, qi+1, . . . , pk, qk)

xi+1,1

i∑

j=1

H1,kHi+1,j

ykj
H0
i[j](pi+1, q1, . . . , pi, qi). (25.30)

In the end, the irreducible part of H0
k is:

[
H0
k

]
Irr

(ps, qs) =
k−1∑

i=1

i∑

j=1

1

x1,i+1yk,j

[
H0
k−i(pi+1, qi+1, . . . , pk, qk)H1,jH

0
i[j](p1, q1, . . . , qi)

−H0
k−i[k](pi+1, qi+1, . . . , pk, qk)H1,kHi+1,jH

0
i[j](pi+1, q1, . . . , pi, qi)

]

(25.31)

We have thus decomposed the recursion relation in this way:

H0
k(p1, q1, . . . , pk, qk) =

[
H0
k

]
Irr

(p1, q1, . . . , pk, qk)

+
k∑

j=2

H1,k

xj,1

Ak,j(q1, p2, q2, . . . , pk, qk)

y(pj)− y(qk)

+
k∑

j=2

H1,k

xj,1

Bk,j(q1, p2, q2, . . . , pk, qk)

Hj,k

(25.32)

and given the expressions for [H0
k ]Irr, A

k,l and Bk,l.
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25.2.3 Proof of the second point

From the expression of the irreducible part in equation 25.31, we first prove that [H0
k ]Irr

can be written this way:

[
H0
k

]
Irr

(ps, qs) =
∑

σ∈Sk

D(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

Hi,σ(i) (25.33)

where D
(k)
σ is a rational function of xi, yj, i, j = 1, . . . , k. Indeed, we have, from

equation 25.31, and applying the hypothesis of recurrence to the H0
i s and H0

k−i (it is

legitimate because i ≤ k − 1 and k − i ≤ k − 1):

[
H0
k

]
Irr

(ps, qs) =
k−1∑

i=1

i∑

j=1

∑

ρ∈Sk−i

∑

τ∈Si
τ(1)=j

C
(k−i)
ρ (xi+1, . . . , yk)C

(i)
τ (x1, . . . , yi)

x1,i+1yk,j
×

i∏

l=1

Hl,τ(l)

k∏

m=i+1

Hm,ρ(m)

−
k−1∑

i=1

i∑

j=1

∑

ρ∈Sk−i
ρ(i+1)=k

∑

τ∈Si
τ(1)=j

C
(k−i)
ρ (xi+1, . . . , yk)C

(i)
τ (xi+1, y1, . . . , xi, yi)

x1,i+1yk,j

H1,kHi+1,j

i∏

l=2

Hl,τ(l)

k∏

m=i+2

Hm,ρ(m)

(25.34)

We need to check that the following stands: if ρ ∈ Sk−i(i+ 1, . . . , k), τ ∈ Si(1, . . . , i),

then {
ρτ ∈ Sk

if τ(1) = j, ρ(i+ 1) = k ⇒ ρτ ◦ (1, i+ 1) ∈ Sk

(25.35)

Proof. We show this graphically.

First case: If one takes ρ ∈ Sk−i(i + 1, . . . , k), it is equivalent to draw a system of

non-intersecting arches on the disk (i+ 1, . . . , k). For τ ∈ Si(1, . . . , i), it is equivalent

to a system of non-intersecting arches on (1, . . . , i). If we open the disks and glue them

according to figure 80, we see that ρτ gives a system of non-intersecting arches on the

disk (1, . . . , k), so ρτ ∈ Sk(1, . . . , k).

Second case: From figures 81 and 82, one sees that, if ρ ∈ Sk−i(i + 1, . . . , k),

ρ(i+1) = k and τ ∈ Si(1, . . . , i), τ(1) = j, one can draw a system of (non-intersecting)

arches on the disk (1, . . . , k) corresponding to the planar permutation ρτ (it is repre-

sented in figure 81). Now, drawing the system of arches of ρτ ◦ (1, i+1) gives figure 82.

Obviously, it is a system of non-intersecting arches of the disk (1, . . . , k), so ρτ ◦(1, i+1)

is a planar permutation: ρτ ◦ (1, i+ 1) ∈ Sk(1, . . . , k).
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Arches Arches

Arches Arches

Arches Arches

ρ ∈ Σ̄k−i(i+ 1, . . . , k) τ ∈ Σ̄i(1, . . . , i)

ρ ∈ Σ̄k−i(i+ 1, . . . , k) τ ∈ Σ̄i(1, . . . , i)

ρτ ∈ Σ̄k(1, . . . , k)

qk

pi+1

qk

pi+1

qk

pi+1

p1

qi

p1

qi

p1

qi

Figure 80: Gluing 2 systems of arches gives a system of non intersecting arches.
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Arches

Arches

Arches

ρ ∈ Σ̄k−i

ρ(i+ 1) = k
τ ∈ Σ̄i

τ(1) = j

p1

qi

qk

pi+1

pk

qi+1

q1

pj

qj

pj+1

Figure 81: System of arches of ρτ

Arches

Arches

Arches

ρ ∈ Σ̄k−i

ρ(i+ 1) = k
τ ∈ Σ̄i

τ(1) = j

p1

qi

qk

pi+1

pk

qi+1

q1

pj

qj

pj+1

Figure 82: System of arches of ρτ◦(1, i+1)

Therefore, the irreducible part admits a decomposition on planar permutations:

[
H0
k

]
Irr

(ps, qs) =
∑

σ∈Sk

D(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

Hi,σ(i) (25.36)

We need to show that for all σ ∈ Sk, D
(k)
σ = C

(k)
σ . Let us take σ ∈ Sk.

The proof splits in two parts:

σ(1) = j with j ≤ k − 1 In this case, the permutation σ can only come from terms

of the first 2 lines in equation 25.34. We then have:

D(k)
σ (x1, y1, . . . , xk, yk) =

k−1∑

i=j

∑

ρ∈Sk−i

∑

τ∈Si

δσ,ρτ
C

(k−i)
ρ (xi+1, . . . , yk)C

(i)
τ (x1, . . . , yi)

x1,i+1yk,j

(25.37)

From section 23.4.1, the r.h.s is equal to C
(k)
σ (x1, y1, . . . , xk, yk).

σ(1) = k Here, the permutation σ can only come from the last 2 lines of equation

25.34. Considering this, we get:

D(k)
σ (x1, y1, . . . , xk, yk) = −

k−1∑

i=j

∑

ρ∈Sk−i

∑

τ∈Si

δσ◦(1,i+1),ρτ
C

(k−i)
ρ (xi+1, . . . , yk)C

(i)
τ (xi+1, y1, . . . , yi)

x1,i+1yk,j

(25.38)
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And again, from section 23.4.1, the r.h.s is equal to C
(k)
σ (x1, y1, . . . , xk, yk).

Therefore, the second point is proven:

[
H0
k

]
Irr

(pi, qi) =
∑

σ∈Sk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

j=1

Hj,σ(j) (25.39)

which is equation 23.23.

25.2.4 Proof of the third point

We show successively that Ak,l = 0 and Bk,l = 0. The main tool for this step is that we

already know (see [Eynard and Orantin, 2008]) that H0
k has no pole in pi → pj. Then,

for all l0 ≥ 2, Res
p1→pl0

H0
k(ps, qs)dx(p1) = 0. So we have, ∀l0 ≥ 2:

Res
p1→pl0

[
H0
k

]
Irr

(pi, qi)dx(p1)

+
A(k,l0)(q1, p2, q2, . . . , pk, qk)

y(pl0)− y(qk)
+B(k,l0)(q1, p2, q2, . . . , pk, qk) = 0.

(25.40)

From the expression of B(k,l) in equation 25.24 and the expression of [H0
k ]Irr in equation

25.31, one easily finds that:

Res
p1→pl0

[
H0
k

]
Irr

(pi, qi)dx(p1) +B(k,l0)(q1, p2, q2, . . . , pk, qk) = 0 (25.41)

So Ak,l = 0.

From the result of the third point, we know that the irreducible part of H0
k is the

generating function of the Ising Model. We also know that the generating func-

tions of the Ising Model have no pole at coinciding xi (for both statements, see

[Eynard and Orantin, 2005]). We then get:

Res
p1→pl0

[
H0
k

]
Irr

(pi, qi)dx(p1) = 0 (25.42)

so Bk,l = 0, and the third part of the theorem is true. The generating functions H0
k

computed from the recursive relation 22.12 can be computed from the Ising model

generating functions:

H0
k(p1, q1, . . . , pk, qk) =

∑

σ∈Sk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

j=1

Hj,σ(j). (25.43)
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25.2.5 Conclusion

It is enough to use the proof of the symmetry of the generating functions

in[Eynard and Orantin, 2005] to conclude about rotational the symmetry of H0
k . This

closes the proof of the theorem.

25.3 Removing one change of color from the boundary

Let us prove the lemma 23.4 for the operator O1 applied to the generating function

H
(0)
k+1(p1, q1, . . . , pk+1, qk+1). From the rotation symmetry proven in theorem 23.2, it is

enough to prove the lemma: Oi = O1Ri
1.

Let us suppose also that the spectral curve is such that there exists a common pole

q∗ ∈ Σ of x and y.

From theorem 23.2, the generating function can be written as:

H
(0)
k+1(p1, q1, . . . , pk+1, qk+1) =

∑

σ ∈Sk+1

C(k+1)
σ (x1, y1, . . . , xk+1, yk+1)

k+1∏

i=1

Hi,σ(i). (25.44)

As we have:
1

h(q1)
Res
p1→q1

dx(p1)H(p1, qj) = δ1,j, (25.45)

let us then carry out the following residue:

1

h(q1)
Res
p1→q1

dx(p1)H
(0)
k+1(Sk+1) =

∑

σ ∈Sk+1

σ(1)=1

C(k+1)
σ (x(q1), y1, . . . , xk+1, yk+1)

k+1∏

i=2

Hi,σ(i).

It selects the link patterns with a link between p1 and q1. Then, using the point q∗,

the following residue gives:

Res
q1→q∗

x(q1)

h(q1)
dy(q1) Res

p1→q1
dx(p1)H

(0)
k+1(Sk+1) =

∑

σ̃ ∈Sk

C
(k)
σ̃ (x2, y2, . . . , xk+1, yk+1)

k+1∏

i=2

Hi,σ̃(i)

= H
(0)
k (p2, q2, . . . , pk+1, qk+1)

Therefore the ”forget map of the first pair of colors” is:

O1 = Res
q1→q∗

x(q1)

h(q1)
dy(q1) Res

p1→q1
dx(p1), (25.46)

which proves lemma 23.4.
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25.4 Insertion of uniform boundaries

Proof. This result is proven by induction, using the recursion 22.12 formula.

Initialization: Let us first apply the insertion operator to the generating function

H
(0)
1;0;0. Using the Leibniz rule for the derivations:

δrzH
(0)
1;0;0(p, q) = δrz

∏
i 6=0(y(q)− Yi(x(p)))

x(p)−X(y(q))

=

∏
i 6=0(Yi(x(p))− y(q))

x(p)−X(y(q))

(∑

i 6=0

H
(0)
0;2;0(p, z)

y(q)− Yi(x(p))
+

H
(0)
0;2;0(q, z)

x(p)−X(y(q))

dx

dy
(q)

)

= −H(0)
1;0;0(p, q)

(∑

i 6=0

H
(0)
0;2;0(p, z)

y(q)− Yi(x(p))
+

H
(0)
0;2;0(q, z)

x(p)−X(y(q))

dx

dy
(q)

)

It is possible to compute H
(0)
1;1;0 from the recursion formula, which gives:

H
(0)
1;1;0(p, q; z) = H

(0)
1;0;0(p, q) Res

r→
p
z
q0,j

H
(0)
0;2;0(r, z)dx(r)

(x(r)− x(p))(y(q)− y(r))

= H
(0)
1;0;0(p, q) Res

r→pi,0
q

H
(0)
0;2;0(r, z)dx(r)

(x(r)− x(p))(y(r)− y(q))

= H
(0)
1;0;0(p, q)

(∑

i 6=0

Res
r→pi,0

H
(0)
0;2;0(r, z)dx(r)

(x(r)− x(pi,0))(y(r)− y(q))

+Res
r→q

dx

dy
(r)

H
(0)
0;2;0(r, z)dy(r)

(x(r)− x(p))(y(r)− y(q))

)

= −H(0)
1;0;0(p, q)

(∑

i 6=0

H
(0)
0;2;0(p, z)

y(q)− Yi(x(p))
+

H
(0)
0;2;0(q, z)

x(p)−X(y(q))

dx

dy
(q)

)

Therefore:

δrzH
(0)
1;0;0(p, q) = H

(0)
1;1;0(p, q; z),

and a similar computation yields δbzH
(0)
1;0;0(p, q) = H

(0)
1;0;1(p, q; z), which initializes the

induction.

Induction: First, let us rewrite the recursion relation 22.12 in a more compact way,

using the kernel K and the recursive terms Rec
(g)
kL;m;n:

H
(g)
kL;m;n = Res

r→
p1,1

q̃j1,k1
pi,α

K(r, p1,1, q1,k1)Rec
(g)
kL;m;n(r)dx(r), (25.47)

where:

K(r, p, q) =
H

(0)
1;0;0(p, q)

H
(0)
1;0;0(r, q)(x(r)− x(p))(y(r)− y(q))

, (25.48)
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and

Rec
(g)
kL;m;n(r) =

∑
h

∑
A∪B={2,...,l}

k1∑
α=2

∑
I,J

H
(h)
k1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . , p1,k1 , q1,k1},SB; pM/I; qN/J)

×H
(g−h)
α−1,kA;|I|;|J|({r,q1,1,...,p1,α−1,q1,α−1},SA;pI;qJ)

x(p1,α)−x(r)

+
∑k1

α=2
1

x(p1,α)−x(r)
×

H
(g−1)
α−1,k1−α+1,kL/{1};m;n({r, q1,1, . . . , p1,α−1, q1,α−1}, {p1,α, q1,α, . . . , p1,k1 , q1,k1},SL/{1}; pM; qN)

+
∑l

i=2

∑ki
α=1

1
x(pi,α)−x(r)

×
H

(g)
k1+ki,kL/{1,i};m;n({S1(r), pi,α, qi,α, pi,α+1, . . . , qi,ki , pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i}; pM; qN)

+
∑
h

∑
A∪B={2,...,l}

∑
I,J

H
(h)
k1,kA;|I|;|J |(S1(r),SA; pI; qJ)H

(g−h)
kB;m−|I|+1;n−|J |(SB; r,pM/{I}; qN/{J})

+
∑g

h=1 H
(h)
0;1;0(r)H

(g−h)
k1,...,kl;m;n(S1(r), S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

+H
(g−1)
kL;m+1;n(SK(r); r,pM; qN) (25.49)

According to the definition of the insertion operators, one gets:

δrzH
(g)
kL;m;n(SL; pM ; qN) = Res

r→
p1,1

q0,j
1,k1
pi,α
z

δrz

[
K(r, p1,1, q1,k1)Rec

(g)
kL;m;n(r)

]
dx(r)

= Res

r→
p1,1

q0,j
1,k1
pi,α
z

(
δrz [K(r, p1,1, q1,k1)] Rec

(g)
kL;m;n(r)

+K(r, p1,1, q1,k1)δrzRec
(g)
kL;m;n(r)

)
dx(r)

In the last term, we have:

δrzRec
(g)
kL;m;n(r) = Rec

(g)
kL;m+1;n(r)−H(g)

kL;m;n(r)H
(0)
0;2;0(r, z) (25.50)

(the term H
(g)
kL;m;n(r)H

(0)
0;2;0(r, z) comes from the red part of equation 25.49). Therefore:

δrzH
(g)
kL;m;n(SL; pM ; qN) = Res

r→
p1,1

q0,j
1,k1
pi,α
z

(
K(r, p1,1, q1,k1)Rec

(g)
kL;m+1;n(r)

+δrz [K(r, p1,1, q1,k1)] Rec
(g)
kL;m;n(r)

−K(r, p1,1, q1,k1)H
(g)
kL;m;n(r)H

(0)
0;2;0(r, z)

)
dx(r)

= H
(g)
kL;m+1;n(SL; pM , z; qN)
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+ Res

r→
p1,1

q0,j
1,k1
pi,α
z

(
δrz [K(r, p1,1, q1,k1)] Rec

(g)
kL;m;n(r)

−K(r, p1,1, q1,k1)H
(g)
kL;m;n(r)H

(0)
0;2;0(r, z)

)
dx(r)

It remains to show that the following holds:

Res

r→
p1,1

q0,j
1,k1
pi,α
z

δrz [K(r, p1,1, q1,k1)] Rec
(g)
kL;m;n(r)dx(r) = Res

r′→
p1,1

q0,j
1,k1
z

K(r′, p1,1, q1,k1)H
(g)
kL;m;n(r′)×

H
(0)
0;2;0(r′, z)dx(r′) (25.51)

In order to make the term Rec
(g)
kL;m;n(r) appear in the right hand side, we express

H
(g)
kL;m;n(r′) with the recursion relation, so that the right hand side is:

Res

r′→
p1,1

q0,j
1,k1
z

Res

r→
r′

q0,j
1,k1
pi,α

K(r′, p1,1, q1,k1)K(r, r′, q1,k1)H
(0)
0;2;0(r′, z)Rec

(g)
kL;m;n(r)dx(r)dx(r′) (25.52)

In order to get an expression similar to the left hand side, one has to exchange the

residues in r and r′. Using the following rule:

Res
r′→p

Res
r→r′

= Res
r→p

Res
r′→p
− Res

r′→p
Res
r→p

,

we end up, for the right hand side, with the following expression:

Res

r→
p1,1

q0,j
1,k1
pi,α
z

Res

r′→
p1,1

q0,j
1,k1
z

K(r′, p1,1, q1,k1)K(r, r′, q1,k1)H
(0)
0;2;0(r′, z)Rec

(g)
kL;m;n(r)dx(r′)dx(r). (25.53)

Regarding the left hand side, we compute explicitly the action of the insertion operator

on the kernel:

δrzK(r, p, q) =

(
H

(0)
1;1;0(p, q; z)

Hp,q

− H
(0)
1;1;0(r, q; z)

Hr,q

− H
(0)
0;2;0(r, z)

y(r)− y(q)

)
K(r, p, q)

(25.54)

The three terms can be expressed in this manner:

• First term

H
(0)
1;1;0(p, q; z)

Hp,q

K(r, p, q) = Res
r′→

p
q0,j

z

K(r′, p, q)K(r, r′, q)H(0)
0;2;0(r′, z)

x(r)− x(r′)

x(r)− x(p)
dx(r′)

(25.55)
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• Second term

−H
(0)
1;1;0(r, q; z)

Hr,q

K(r, p, q) = Res
r′→

r
q0,j

z

K(r′, p, q)K(r, r′, q)H(0)
0;2;0(r′, z)

x(r′)− x(p)

x(r)− x(p)
dx(r′)

(25.56)

• Third term

− H
(0)
0;2;0(r, z)

Hr,q

K(r, p, q) = −Res
r′→r
K(r′, p, q)K(r, r′, q)H(0)

0;2;0(r′, z)dx(r′) (25.57)

Summing up these terms gives:

δrzK(r, p, q) = Res
r′→

p
q0,j

z

K(r′, p, q)K(r, r′, q)H(0)
0;2;0(r′, z). (25.58)

Hence, the left hand side is equal to:

Res

r→
p1,1

q0,j
1,k1
pi,α
z

Res

r′→
p1,1

q0,j
1,k1
z

K(r′, p1,1, q1,k1)K(r, r′, q1,k1)H
(0)
0;2;0(r′, z)Rec

(g)
kL;m;n(r)dx(r′)dx(r), (25.59)

which is equal to the right hand side, and finally proves by induction that

δrzH
(g)
kL;m;n(SL; pM ; qN) = H

(g)
kL;m+1;n(SL; pM , z; qN). (25.60)

Similar computations would give the result for the insertion of a uniform black bound-

ary:

δbzH
(g)
kL;m;n(SL; pM ; qN) = H

(g)
kL;m;n+1(SL; pM ; qN , z). (25.61)

Proof. The theorem is a consequence of theorem 23.2 and lemma 23.29.

26 Extensions of the results

26.1 Toward several mixed boundaries

All the results obtained so far in this chapter concerns generating functions with one

mixed boundary, and genus 0. But what do we have for higher genera, and several

mixed boundaries ? The symmetries are not proven for those cases, but if we assume

one invariance of the genus 0 generating functions, then the proof is straightforward.

Namely, suppose in the next two sections, that:

∀L ≥ 2, ∀{k1, . . . , kL}, T2H
(0)
kL;0;0 = H

(0)
kL;0;0. (26.1)

Let us show that, assuming this symmetry, the rotation symmetry and the symmetry

under a permutation of mixed boundaries are statisfied.
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26.1.1 Exchange of boundaries

For all 2 ≤ i ≤ L, for all k1, . . . , kL,m, n, we prove that TiH(g)
kL,m,n

= H
(g)
kL,m,n

. We

simply need to prove the result for m = n = 0: to get the result for non null m, n, one

simply uses the insertion of uniform boundary operators, and the result comes straight-

forwardly. The proof is done by recursion on (L, k1, . . . , kL) (using the lexicographic

order).

In that case, the recursion has three terms:

H
(0)
kL;0;0(SL) = Res

r→
pi,`

q0,j
1,k1

H0
1 (p1,1,q1,k1

)dx(r)

H0
1 (r,q1,k1

)(x(r)−x(p1,1))(y(r)−y(q1,k1
))
×

[∑k1

α=2

∑
AtB=
{2,...,L}

H
(0)
α−1,kA;0;0({r,q1,1,...,q1,α−1},SA)H

(0)
k1−α+1,kB;0;0({p1,α,...,q1,k1

},SB)

x(p1,α)−x(r)

+
∑L

i=2

∑ki
α=1

H
(0)
k1+ki,kL/{1,i};0;0({S1(r),pi,α,qi,α,...,pi,α−1,qi,α−1},SL/{1,i})

x(pi,α)−x(r)

+
∑

AtB=
{2,...,L}

H
(0)
k1,kA;0;0(S1(r),SA)H

(0)
kB;1;0(SB; r)

]
. (26.2)

There are three sums (two double sums and one simple sum) in the recurrence. We

may refer to them in the following, as the 1st, 2nd and 3rd sum.

The initialization of the recurrence is done for L = 2, and any k1, k2 ∈ N. By assump-

tion, one has T2H
(0)
k1,k2

(S1, S2) = H
(0)
k1,k2

(S1, S2), which initializes the recurrence. In the

following, let us suppose L ≥ 2

The second simplification we use is that, as we have the following identity on the

transpositions:

(1, i) = (1, 2)(2, i)(1, 2),

and as we assume the invariance under T2, we just need to prove recursively the invari-

ance of the generating function under the transposition of the boundaries 2 and i. Let

us note Ti,2 this transformation:

Ti,2(S1, S2, . . . , SL) = (S1, Si, . . . , Si−1, S2, Si+1, . . . , SL).

The hypothesis of recurrence is the following:

∀i = 3, . . . , L, Ti,2H(0)
kL;0;0(SL) = H

(0)
kL;0;0(SL). (26.3)

If it is true up to (L, k1, . . . , kL), let us prove that it is true for (L + 1, 1, k1, . . . , kL),

and (L, k1 + 1, k2, . . . , kL). In both cases, we use formula 26.2 to compute

H
(0)
1,kL;0;0({p, q}, Ti(SL)) and H

(0)
k1+1,kL/{1};0;0({p, q, S1}, Ti(SL/{1})). In the first case, only

the 2nd and 3rd sum are present, whereas in the second case, the 3 sums are there.

In the equation 26.2, the first two sums are symmetric under the exchange S2 ↔ Si:
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the symmetry amounts to rearrange the sum over AtB = {2, . . . , L}, and to apply the

invariance of H
(0)
α−1,SA;0;0, H

(0)
k1−α+2,kB;0;0 and H

(0)
k1+kj ,kL/{1,j};0;0({S1(r),Rα−1

j Sj},SL/{1,j})

under Ti,2, ∀i ≥ 3 by hypothesis of recurrence. In the last sum, the symmetry is

manifest if one reorders the sum over A tB = {2, . . . , L}, and uses the invariance of

H
(0)
k1,kA;0;0(S1(r),SA)H

(0)
kB;1;0(SB; r)

when exchanging S2 and Si: this is the invariance under Ti,2 ∀i ≥ 3 and T2 by hypothesis

of recurrence.

Therefore, the formulas computing H
(0)
1,kL;0;0 and H

(0)
k1+1,kL/{1};0;0 are respectively the

same as the one computing Ti,2H(0)
1,kL;0;0 and Ti,2H(0)

k1+1,kL/{1};0;0, which prove that they are

equal. This proves by recurrence that the generating functions H
(0)
kL;m;n are symmetric

under a permutation of the mixed boundaries.

26.1.2 Rotation symmetry for several mixed boundaries

Once the symmetry under permutations of the mixed boundaries is proven, the rotation

symmetry under Ri of generating function with several mixed boudaries of genus 0

comes also easily. As for the exchange of boundaries, we simply need to prove the

result in the case where there is no uniform boundary. Adding uniform boundaries

by applying insertion operators does not change the rotation symmetries. The proof

is carried out by recurrence over (L, k1, . . . , kL) with the lexicographic order. The

initialization is done for L = 1, and any k1 ≥ 1: this is the result proved in the

theorem 23.2:

R1H
(0)
k1;0;0(S1) = H

(0)
k1;0;0(S1). (26.4)

Then, suppose that the symmetries under Ri ∀i = 1, . . . , L are satisfied up to order

(L, k1, . . . , kL). A first remark is that for L > 1, it is enough to prove the invariance

under R2. Indeed, we have the following:

Ri = Ti,2R2Ti,2. (26.5)

Ti,2 leaves the generating functions invariants from previous section. The proof of

invariance of H
(0)
1,kL;0;0 and H

(0)
k1+1,kL/{1};0;0 under R2 is the same as in the previous

section, for the invariance under Ti,2. In the end, one get:

∀L ≥ 1, ∀k1, . . . , kL, ∀m,n ≤ 0, ∀1 ≤ i ≤ L, RiH
(0)
kL;m;n = H

(0)
kL;m;n. (26.6)

26.1.3 The exchange of boundaries 1 and 2.

For the two previous results to be true, it remains to show that the generating functions

are not changed if one exchange boundaries 1 and 2. One could be tempted to apply the
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proof of lemma 21.1. However, this recursive proof relies on the fact that the residues

of topological recursion are local. The crucial fact of topological recursion is that it

depends only on the Taylor expansion of the one-form ω0,1 close to the branchpoints,

and on the Taylor expansion of the two-form ω0,2 at coinciding points. We stressed that

the recursion of formula 22.12 is not local in the sense that the residues are done on

all the sheets of the spectral curve (if one considers q0,j
1,k1

). Those residues prevent from

proving the symmetries recursively, uniquely using the master equation 22.12. This

is why we had to find another formulation of the recursion, more convenient for our

purposes in the one mixed boundary case. We ended up with a sum over link patterns,

and the recursion does not involve residues any more.

This is why it is necessary to find another equivalent formulation of the recursion 22.12

to have a hope of proving the symmetries. What follows is purely speculative. In a

first approach, it is tempting to extend the sum over planar link patterns to the case

of several mixed boundaries on a genus g surface. It would then be necessary to define

new functions for the faces, as they would not be all cellular (see figure 83). This

approach would give a formula similar to the recursion computing the braided gener-

ating functions found by Borot and Eynard [Borot and Eynard, 2011] in the O(n) loop

model. Namely, their recursion is a sum over planar link pattern drawn on a genus g

surfaces with boundaries.

A second approach would be to extend topological recursion to the case of mixed bound-

aries. Indeed, the residues of topological recursion are located at the branchpoints only,

so they are local. However, the formula of topological recursion allows to compute gen-

erating functions which have uniform boundaries. This means that to each boundary is

associated a parameter belonging to the spectral curve. A generalization of topological

recursion would imply to generalize the kernel of recursion and the residues. For in-

stance, if one looks at the generating function H
(g)
1,...,1;0;0((p1, q1); (p2, q2); . . . ; (pk, qk)), it

corresponds to an invariant associated to a surface of genus g with k mixed boundaries.

To each boundary is associated a pair (pi, qi) of spectral parameters. It is tempting to

formally write the following recursive formula:

H
(g)
1,...,1;0;0((p1, q1); (p2, q2); . . . ; (pk, qk)) =

∑

(a,b)
dx(a)=0
dy(b)=0

“ Res ”
(s,t)→(a,b)

“Ka,b”((s, t), (p1, q1))×

[
H

(g−1)
1,...,1;0;0((p, q); (σa,b(p, q)); . . . ; (pk, qk))

+
′∑

g1+g2=g
ItJ={2,...,k}

H
(g1)
1,...,1;0;0((p, q); SI)×

H
(g2)
1,...,1;0;0(σa,b((p, q)); SJ)

]
(26.7)
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Figure 83: A non intersecting link pattern on a surface of genus 1 with 3 boundaries
of lengths 2, 3 and 4. Some faces are no longer homeomorphic to a disk.

The quotation marks on the residues and the kernel are there to emphasize that this

formula implies to find a generalization of the kernel and the residues so that it takes

into account both parameters (p, q) ∈ Σ2, and not only one. At the moment of writing

this thesis, such generalization has not been found yet.
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Part VII

Conclusion

Three aspects of random maps were investigated in this thesis. First, we studied a

measure over the set of Delaunay triangulations, and showed that this very measure

is the Weil-Petersson measure over the moduli space of punctured Riemann surfaces.

Also, two local properties of the measure were proven, as preliminary steps toward

the continuous limit of Delaunay triangulations. In the future, it is worth keeping on

proving other properties of this measure in order to get a more substantial flavour of

the continuous limit of the measure. Second, we computed explicitly the expectation

values of observables defined on Strebel graphs. It allowed us to study different

regimes for the marked perimeter of the one-point function when the size of the graphs

grows to infinity. Then, once the interesting regime was identified, we implemented

topological recursion in order to compute the expectation values in a more systematic

way. Through the behaviour of the correlation functions, we could tag the continuous

limit of Strebel graphs as a (3,2) minimal model dressed by gravity, corresponding to

the pure quantum gravity. However, we got this result by considering the continuous

limit of the observables accessible from the Chern class, which represent roughly half

of the possible observables on Strebel graphs. It would be useful to study the other

observables one can define on Strebel graphs, encoding for some of them the graph

distance. Hence, we could have a glimpse of the continuous limit of Strebel graphs as

metric spaces. Last, we studied the symmetry properties of the correlation functions

of the Ising model on random maps. Those symmetries were not obvious from the

recursive relation defining the correlation functions, and we showed the rotation and

inversion symmetries for some cases. The generalization of this result is currently

under study.

The continuous limit of generic random maps and its relation with Liouville

quantum gravity is still a lively area of research: although we have many physical

predictions for the large n limit, many of the statements are not proven yet. Also, the

powerful procedure of topological recursion has not shown all its possibilities yet, and

it is worth digging them.

In the forthcoming months, I intend to focus on the three following problems:

B Find a combinatorial way to compute the correlation functions of the Ising

model on random maps in order to find another recursive formula. The current
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recursion comes from the resolution of loop equations coming from the matrix model.

The combinatorial recursion would be found by exploring the interfaces between the

red and black faces of the random maps. Then, it is probable that the recursive

relation directly gives a sum over non intersecting link patterns. Such decomposition

over link patterns simplifies considerably the symmetry properties of the correlation

functions.

B Extend the topological recursion, first by applying it to other models. For

instance, the r-spin model, for which the topological recursion allows to compute

expectations of ciliated maps. Second, the extension would correspond also to a

generalization of the topological recursion, in order to get a “topological recursion”-like

formula for the correlations of the Ising model. Indeed, it has been stressed that the

current recursion is different from topological recursion because of the non-locality of

the residues.

B Third, investigate the algebraic properties of the correlation functions of the

Ising model and of the O(n) model, in order to relate them with integrable systems.

This would imply to define operators (such as Dunkl operators) and algebras acting

on the correlation functions. It is foreseen that the expectation values of the Ising

model on random maps can be interpreted as amplitudes of a Calogero model. This

relation must be strengthened.
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A Special Functions

Here are some definitions and useful properties of special functions used in this thesis

(dilogarithm and Bessel functions).

The dilogarithm Li2 is defined by the series:

Li2(z) =
+∞∑

k=1

zk

k2
. (A.1)

It is also the integral of the logarithm:

Li2(z) = −
∫ z

0

ln(1− ζ)

ζ
dζ. (A.2)

Bessel functions of (complex) order ν is defined by the generating series

Jν(x) =
(x

2

)ν ∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)

(x
2

)2k

. (A.3)

The modified Bessel functions of the first kind of order ν are given by:

Iν(x) =
(x

2

)ν ∞∑

k=0

1

Γ(k + 1)Γ(k + ν + 1)

(x
2

)2k

. (A.4)

For n ∈ Z, those Bessel functions are related by:

In(x) = i−nJn(ix) (A.5)

For all n ∈ Z, the modified Bessel functions of the first kind satisfy the recurrence

relations:

In−1(x)− In+1(x) =
2n

x
In(x)

In−1(x) + In+1(x) = 2I ′n(x). (A.6)

B Explicit computation of the one point function

The one point function fn
(
L, L1

L

)
can be computed in the same manner as the volumes

Vn. For n ≥ 3

fn

(
L,
L1

L

)
= Zn,1(L;L1)

= 2
+∞∑

d1=0

〈(
1

2

∑

d

L2d

2dd!
τd

)n
L2d1

1

2d1d1!
τd1

〉

0
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=
2

2n

∑

d1,...,dn+1

L2(d2+···+dn+1)

2d2+···+dn+1d2! . . . dn+1!

L2d1
1

2d1d1!
〈τd1 . . . τdn+1〉0

(B.1)

Now:

〈τd1 . . . τdn+1〉0 =
(n− 2)!

d1! . . . dn+1!
δ

(
n− 2−

n+1∑

i=1

di

)
. (B.2)

So:

fn

(
L,
L1

L

)
=

(n− 2)!L2n−4

2

∑

d1+...dn+1=n−2

1

22(d2+···+dn+1)

(
L1

2L

)2d1 1

(d1! . . . dn+1!)2

=
(n− 2)!L2n−4

2
[z2n−4]I0(z)nI0

(
z
L1

L

)

=
(n− 2)!L2n−4

2
Res
z→0

dz

z2n−3
I0(z)nI0

(
z
L1

L

)

=
(n− 2)!L2n−4

2
Res
z→0

dz

z
I0(z)2e(n−2)(ln I0(z)−2 ln z+ 1

n−2
I0(zL1/L)). (B.3)

C Change of the measure with a flip: proof of

lemma 8.1

When the triangulation T undergoes a flip to give the triangulation T ′, only the two

faces surrounding the edge change. So in the prepotentials A(T ) and A(T ′), the only

terms that differ are those implying the changed faces:

A(T )−A(T ′) = Vol(124) + Vol(234)− Vol(123)− Vol(134) (C.1)

Therefore, the differences between D(T ) and D(T ′) are located in the Di,j with i, j ∈
{1, 2, 3, 4}. As we are looking at the quantities d(124), the indices 1, 2 and 4 are not

taken into account in the determinant. So the differences between D(T ) and D(T ′) lay

in D3,3. By expanding the determinant with respect to the third line, we get:

d(124)(T )− d(124)(T
′) = [D3,3(T )−D3,3(T ′)] det

[
D{1,2,3,4}(T )

]
(C.2)
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Let us focus on the term D3,3(T )−D3,3(T ′). Using the form D = 1
4i
AEA†, and noting

zij = zi − zj one gets:

D3,3(T )−D3,3(T ′) =
1

4i

[∑

e→3

∑

e′ neighbour of e

A3,eEe,e′A3,e′

]
(C.3)

=
1

4i

[
1

z31

−1

z32

+
1

z32

1

z31

+
1

z31

1

z34

− 1

z34

1

z31

− 1

z32

1

z34

+
1

z34

1

z32

]

(C.4)

=
1

4i

z32z34z31z42 + z31z32z34z21 + z31z34z32z14

|z31|2|z32|2|z34|2
(C.5)

=
1

4i

N(z3, z3)

|z31|2|z32|2|z34|2
(C.6)

The coefficient of the term z2
3z3 in N(z3, z3) gives z42 + z21 + z14 = 0. What is more,

N(z) = −N(z), so N can be written as N(z3, z3) = az3z3 + bz3 − bz3 + c, with a ∈ iR,

b and c ∈ iR functions of zi, zi, i = 1, 2, 4. Setting ω = − b
a

and R2 = − c
a

+ |a|2,

N(z3, z3) = a[(z3 − ω)(z3 − ω)−R2] (C.7)

N(z3, z3) = 0 is thus the equation of a circle for the point 3. As we have N(zi, zi) = 0

for i = 1, 2, 4, the circle is the circumcircle of the face f = (124), of center ωf = ω

and radius Rf = R. The coefficient a is given by a = z41z21 − z21z41, which is the

(euclidean) area of the face (124). Eventually we have:

D3,3(T )−D3,3(T ′) = Area(f)
|z3 − ωf |2 −R2

f

|z31|2|z32|2|z34|2
(C.8)

which proves the lemma 8.1.

D Refined lower bound for the volume: proof of

theorem 8.3

The notations introduced here refer to the figure 41. Each edge of the triangle (abc)

is surrounded by two faces. If we remove the point zn+1, we obtain the Delaunay

Triangulation for the points {z1, . . . , zn}, and the triangle (abc) is one of its faces. Let

us note θ(ab), θ(bc),and θ(ca) the angles between the face f = (abc) and the other face in

contact with the edges (ab), (bc), and (ca) respectively.

Now, in formula 8.16, instead of computing the integral of the measure over the region

B(f), we carry out the integral over the region R(f). The integrand is not changed: it

is the measure of the Delaunay triangulation made of the 4 points a, b, c and zn+1.

I1 =

∫

R(f)

d2zn+1 det
[
D{a,b,c}(T

D({a, b, c, zn+1}))
]
. (D.1)
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Figure 84: Domain on which dθ̃1dθ̃2 has to be integrated. We take here θ̃i = θi − θmin
i .

Then the computation of I1 follows the same steps as for I, the only difference being

the inequalities 8.19 satisfied by θ1 and θ2:

θmin
1 − θ(ca)

2
≤ θ1 ≤ θmin

1 +
π

2
(D.2)

θmin
2 − θ(ab)

2
≤ θ2 ≤ θmin

2 +
π

2
(D.3)

θmin
1 + θmin

2 ≤ θ1 + θ2 ≤ θmin
1 + θmin

2 +
θ(bc)

2
+
π

2
(D.4)

The integral is then the area of the red region in figure 84. So we get:

I1 =
π2

16
+

1

16
[θ(ab)(2π − θ(ab)) + θ(bc)(2π − θ(bc)) + θ(ca)(2π − θ(ca))].

Then, following the same steps as for the previous lower bound, the result comes:
∫

C
d2zn+1 det

[
D{1,2,3}(T

D({z1, . . . , zn+1}))
]

≥


(n− 2)

π2

8
+

1

8

∑

e∈E(TD)

θ(e)(2π − θ(e))


 det

[
D{1,2,3}(T

D({z1, . . . , zn}))
]
.

(D.5)
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E Origamap

The equipped and courageous reader can do better than a 3d printer and build a bi-

colored quadrangulation on a torus with 2 boundaries, by following this tutorial. Some

pictures are here to help to the construction of the map.

• Duration: approximately 30 minutes.

• Equipment: liquid glue, scissors, printed version of this appendix.

Steps:

1. Cut the pattern along the plain thick lines, in order to get two pieces of paper.

They constitute two parts of the torus.

2. For each piece, fold the pattern along the dashed thick lines, except the dashed

lines neighbouring the areas labeled “1” and “7”. The strips “2” and “4” must

be folded in the opposed way with respect to the other strips.

3. On each piece of paper, glue the areas “1” to the neighboring triangle. Then glue

the area “2”.

4. Glue the two pieces of paper together along the areas “3”, in such a way that the

strips “4” cannot touch each other.

5. Then, glue successively the areas “4”, “5”, “6” and “7”.

6. The origamap should look like a square donut, see figure 86.
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Figure 85: Pattern for the construction of a bi-colored quadrangulation on a torus with
2 boundaries.
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Figure 86: Pictures of the map in construction. On the left hand side, it is after step
3 ; on the right hand side, it is after step 4.

F Synthèse des résultats

On présente dans cette annexe une synthèse de certains résultats de la thèse, chapitre

par chapitre.

F.1 Propriétés locales d’une mesure définie sur les triangula-
tions de Delaunay et modèles de gravité topologique en
2D

Dans ce chapitre, on étudie diverses propriétés d’une mesure définie sur les triangula-

tions de Delaunay.

Definition F.1. Etant donnés n points du plan complexe z1, . . . , zn ∈ C distincts deux

à deux, une triangulation de Delaunay de ces points est un graphe tel que:

• les nœuds du graphe sont z1, . . . , zn ;

• toutes les faces, y compris la face externe, sont de degré 3 ;

• l’intérieur du cercle circonscrit de chaque face ne contient aucun nœud.

On note TD la structure (c’est-à-dire les relations d’adjacence entre les nœuds) d’une

triangulation de Delaunay. On note V(T ), E(T ) et F(T ) respectivement l’ensemble des

nœuds, des arêtes et des faces d’une triangulation T .

209



Une propriété importante de telles triangulations est que pour chaque configuration

de points {z1, . . . , zn}, il existe une unique triangulation de Delaunay de cette config-

uration. À chaque arête de la triangulation est associé un angle, de la façon suivante

:

Definition F.2. Soit e = (zi, zj) une arête de TD, et f1 = (zi, zj, zk), f2 = (zi, z`, zj)

les faces adjacentes à e. On note ω1, ω2 les centres respectifs des cercles circonscrits

aux triangles f1 et f2. Alors l’angle θe associé à e est défini par :

θe = ̂(ω1zjω2).

L’ensemble des angles d’une triangulation est noté θ. Pour toute arête d’une triangu-

lation de Delaunay, on a 0 ≤ θe ≤ π.

La configuration d’angles associée à une triangulation de Delaunay satisfait deux

contraintes.

1. La première contrainte est locale : soit v un nœud de TD, alors

∑

e 7→v
θe = 2π,

où e 7→ v est une notation qui signifie que la somme porte sur les arêtes incidentes

en v.

2. La seconde est globale : soit C un cycle du graphe dual TD ; on note C∗ l’ensemble

des arêtes de TD qui intersectent le contour C, alors

∑

e∈C∗
θe ≥ 2π.

Ce qu’on appelle une triangulation de Delaunay est la donnée (TD, θ) de la structure et

de la configuration d’angles. La taille d’une triangulation de Delaunay est le nombre de

nœuds de la triangulation. Un autre intérêt des triangulations de Delaunay est qu’elles

satisfont une propriété d’invariance conforme :

Proposition F.1. Soit {z1, . . . , zn} ⊂ C une configuration de points distincts deux

à deux, et ϕ ∈ SL2(C) une transformation de Möbius. Alors {z1, . . . , zn} et

{ϕ(z1), . . . , ϕ(zn)} ont la même structure et la même configuration d’angles : ces con-

figurations ont la même triangulation de Delaunay.

Un espoir est que dans la limite continue (lorsque la taille n tend vers l’infini),

le modéle limite conserve cette propriété d’invariance conforme. On note Dn =
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Cn/SL2(C) l’ensemble des triangulations de Delaunay de taille n. On définit une mesure

sur Dn :

dνn(T, θ) = uniforme(T )
∏

e∈E(T )

dθe
∏

v∈V(T )

δ

(
2π −

∑

e7→v
θe

) ∏

mathcalC

Θ

(∑

e∈C∗
θe − 2π

)
,

où Θ est la fonction de Heaviside. C’est la mesure de Lebesgue sur les angles, où les

contraintes, locale d’une part et globale d’autre part, sont imposées. En terme des

coordonnées des points, cette mesure a la forme suivante :

dνn(T, θ) = DT{i,j,k}(z1, . . . , zn)
n∏

v=1
v 6=i,j,k

d2zv,

DT{i,j,k} étant le jacobien pour passer de la description en termes d’angles à la description

en termes des coordonnées des points. Ce dernier est défini que T soit la triangulation

de Delaunay ou pas. David et Eynard ont montré [David and Eynard, 2014] que la

mesure utilisée est Kählerienne, et que ce jacobien peut s’écrire sous la forme d’un

déterminant :

DT{i,j,k}(z1, . . . , zn) = 2n−3 det [Di,j,k(z1, . . . , zn)] ,

ce qui permet de définir une 2-forme

ΩD =
1

2i

n∑

u,v=1

Du,vdzu ∧ dz̄v.

Les résultats de ce chapitre sont de deux ordres. D’abord, on relie la mesure sur les

triangulations de Delaunay à la mesure de Weil-Petersson sur l’espace des modules des

surfaces de Riemann marquées de genre 0. Ensuite, on prouve 2 propriétés, de max-

imalité d’une part et de croissance d’autre part. Ces deux propriétés sont des étapes

préliminaires à une possible étude de la limite continue des triangulations de Delaunay.

Les résultats sont donc les suivants. On montre d’abord que la 2-forme ΩD est propor-

tionnelle à la 2-forme de Weil-Petersson ΩW P :

Théorème F.1. La 2-forme ΩD admet l’expression:

ΩD =
1

2

∑

f∈F(T )

d|zi − zj|
|zi − zj|

∧ d|zj − zk||zj − zk|
+
d|zj − zk|
|zj − zk|

∧ d|zk − zi||zk − zi|
+
d|zk − zi|
|zk − zi|

∧ d|zi − zj||zi − zj|
,

et

ΩD =
1

2
ΩW P .

Ceci a pour conséquence directe que les formes volumes dνn (sur Dn) et dνW P
n (sur

M0,n) sont égales. La propriété de maximalité de la mesure est formulée ainsi :
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Théorème F.2. Soit {z1, . . . , zn} ⊂ C une configuration de points distincts. Soit T

une triangulation générique construite sur ces points (T n’est pas nécessairement la

structure de la triangulation de Delaunay de la configuration), et TD la structure de

la triangulation de Delaunay associée à cette configuration. Alors le jacobien associé à

TD est maximal :

DT{i,j,k}(z1, . . . , zn) ≤ DTD{i,j,k}(z1, . . . , zn)

Enfin, la propriété de croissance est la suivante.

Théorème F.3. Soient z1, . . . , zn+1 ∈ C, et Tn, Tn+1 les structures des triangulations

de Delaunay de {z1, . . . , zn} et {z1, . . . , zn+1} respectivement. Alors :
∫

C
d2zn+1 det [D1,2,3(Tn+1)] ≥ (n− 2)

π2

8
det [D1,2,3(Tn)] .

F.2 Limite continue des fonctions de corrélation définies sur
les graphes de Strebel

Les graphes de Strebel ont été introduits par Penner [Penner, 1988].

Definition F.3. Un graphe de Strebel de genre g et de taille n est un graphe ruban

cellulaire métrique et trivalent, qui a n faces, et qui peut être plongé dans une surface

de genre g. On note Sg,n l’ensemble des graphes de Strebel de taille n et genre g. Le

périmt̀re de la face i est noté Pi. On note Sg,n(L1, . . . , Ln) la strate constituée des

graphes de Strebel de genre g et taille n, tels que le périmètre de la face i est Li.

Étant donné un graphe ruban trivalent Γ, on note V(Γ), E(Γ), F(Γ) respectivement

l’ensemble des nœuds, arêtes, faces de Γ, et pour e ∈ E(Γ), la longueur associée à e est

notée `e, et l’ensemble des longueurs est `.

La mesure dνL1,...,Ln
g,n sur Sg,n(L1, . . . , Ln) est la mesure de Lebesgue sur les longueurs :

dνL1,...,Ln
g,n (Γ, `) =

∏

e∈E(Γ)

d`e
∏

f∈F(Γ)

δ(Pf − Lf )

La strate de référence dans ce chapitre est S0,n(L) : on considère les graphes

de Strebel planaires tels que tous les périmètres sont égaux à L. Les fonctions à k-

points font intervenir les strates S0,n+k(L;L1, . . . , Lk), où les n premières faces ont

pour périmètre L, et les k dernières faces ont les périmètres L1, . . . , Lk. Les fonctions

de corrélation sont :

• le volume Vn(L) de la strate S0,n(L) : Vn(L) =
∫

S0,n(L)
dνL0,n(Γ, `), on encode les

volumes dans la fonction génératrice

V(µ, L) =
∞∑

n=3

µn

n!
Vn(L)
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• la fonction à k-points est le volume de la strate S0,n+k(L;L1, . . . , Lk) :

Zn,k(L;L1, . . . , Lk) =
∫

S0,n+k(L;L1,...,Lk)
dνL;L1,...,Lk

0,n (Γ, `), qu’on encode dans la

fonction génératrice

Zk(µ, L;L1, . . . , Lk) =
∞∑

n=3

µn

n!
Zn,k(L;L1, . . . , Lk).

En utilisant le théorème de Kontsevich [Kontsevich, 1992], on calcule explicitement les

fonctions génératrices des fonctions à k points.

Théorème F.4. Les fonctions génératrices V et Zk ont les expressions suivantes :

∂3

∂µ3
V(µ, L) =

I0(u)4

2I0(u)− uI1(u)

Zk(µ, L;L1, . . . , Lk) =
∂k−3

∂µk−3

(
µkL2k

[
1

u2k

I0(u)4

2I0(u)− uI1(u)

k∏

i=1

I0(uLi/L)

]

+

)

où I0, I1 sont des fonctions de Bessel modifiées du premier type ; [ ]+ signifie qu’on ne

garde que les puissance positives dans la série génératrice en µ ; et u est une fonction

des paramètres µ, L

µL2 =
u2

I0(u)
.

On se sert de ces expressions pour étudier la limite n grand du volume Vn et de

la fonction à un point Zn,1. Pour le volume, le comportement dominant s’obtient en

étudiant la singularité de la fonction génératrice V(µ, L) lorsque µ atteint le rayon de

convergence µc.

Vn(L) ∼
n→∞

C n!A(L)nn−
7
2

où A(L) = L2

2µcL2 . Pour la fonction à un point, on distingue trois régimes pour le

périmètre L1 de la face marquée. On note ` = 1
n
L1

L
:

1. ` →
n→∞

0 ;

2. ` ∼
n→∞

`0 ;

3. ` →
n→∞

∞.

On applique la méthode du point-selle pour les différents régimes, et on obtient le

comportement suivant

ln
Zn,1(L;L1)

n!L2nn−2
∼

n→∞
n lnAi(`) + n`x0(`),
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Figure 87: Comportement asymptotique de la fonction à un point pour les différents
régimes : lnAi(`) en fonction de ln `.

où Ai(`) est une fonction de ` valide dans le régime i, et x0(`) est une fonction de `

valide dans tous les régimes. Le comportement de la fonction à un point est résumé

dans le graphique de la figure 87. On déduit de cette étude asymptotique que le régime

où la fonction à un point ne présente pas un comportement simple est le régime 2 :

` = O(1).

F.3 Courbe spectrale associée aux graphes de Strebel

Afin d’avoir une vue englobante des fonctions de corrélation, celles-ci sont encodées

dans la courbe spectrale du modèle. Pour calculer les fonctions de corrélation à partir

de la courbe spectrale, il faut appliquer la récurrence topologique, procédure développée

par Eynard et Orantin [Eynard and Orantin, 2007]. Dans le cas des graphes de Strebel,

la courbe spectrale S(µ, L), qui dépend des paramètres du modèle, est la donnée de

5 objets : une surface de Riemann Σ (dans notre cas Σ = C) ; une courbe Σ0 (Σ0 =

C) ; deux fonctions méromorphes x(µ, L), y(µ, L) : Σ → Σ0 = C ; une forme bi-

différentielle méromorphe ω0,2 ∈M1(Σ)⊗symM1(Σ) dont les seuls pôles sont doubles

et se situent aux points cöıncidents avec ce comportement ω0,2(z1, z2) ∼
z1→z2

dz1⊗dz2
(z1−z2)2 +

analytique. Pour résumer, la courbe spectrale est donnée par le quintuplet :

S(µ, L) = (C,C, x(µ, L), y(µ, L), ω0,2).
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Pour les graphes de Strebel forme bi-différentielle est ω0,2(z1, z2) = dz1⊗dz2
(z1−z2)2 , et les

fonctions x, y sont données par :



x(µ, L; z) = z2 + u2

L2

y(µ, L; z) = z − µL2

2u

∞∑
k=0

L2kIk+1(u)

(2k+1)!!uk
z2k+1

où les fonctions de Bessel modifiées du premier type Ik, et le paramètre u apparais-

sent. L’objectif étant l’étude de la limite continue des graphes de Strebel, on étudie le

comportement de la courbe spectrale lorsque les paramètres µ, L, et plus précisément

le paramètre µL2, tendent vers la valeur critique µcL
2. Comme on le voit sur la figure

88, à cette valeur, la courbe spectrale est singulière. Pour obtenir une courbe spec-

trale critique non singulière, il faut redimensionner les fonctions x, y en fonction du

paramètre (µL2 − µcL2, et on obtient le résultat :

Théorème F.5. Notons x0 = u2
c

L2 , A = uc
L2

√
2I0(uc)
u2
c−4

et B = (u2
c − 4)

1
4

(2I0(uc))
3
4

6L
√
uc

trois

constantes, et notons ξ la paramétrisation suivante :

z = (µcL
2 − µL2)

1
4

(
2u2

cI0(uc)

9(u2
c − 4)

) 1
4

ξ.

Alors les fonctions x(µ, L), y(µ, L), après un redimensionnement, ont les limites suiv-

antes:

lim
µ→µc

x(µ, L; z)− x0

A(µcL2 − µL2)
1
2

= ξ2 − 2 = x̃(ξ)

lim
µ→µc

y(µ, L; z)

B(µcL2 − µL2)
3
4

= ξ3 − 3ξ = ỹ(ξ).

Cela donne la courbe spectrale critique suivante :

S̃ =

(
C,C, x̃, ỹ,

dξ1 ⊗ dξ2

(ξ1 − ξ2)2

)

{
x̃(ξ) = ξ2 − 2

ỹ(ξ) = ξ3 − 3ξ

La courbe spectrale critique est celle du modèle minimal (3,2) [Douglas, 1990],

qui est une réduction de la hiérarchie KdV. Di Francesco et Kutasov

[Di Francesco and Kutasov, 1990] ont relié ce mod‘ele minimal à une théorie des

champs conforme ayant une charge centrale nulle cmatiere = 0, couplée à la théorie

de Liouville. Cela est supposé correspondre à la gravité pure. Ainsi, la limite continue

des fonctions de corrélations définies sur les graphes de Strebel correspond à une théorie

conforme de charge centrale nulle, habillée par la gravité. La figure 89 synthétise le

raisonnement des deux chapitres sur les graphes de Strebel, qui permet de déduire la

limite continue des fonctions de corrélation.
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Figure 88: Intersection des fonctions x(µ, L), y(µ, L) avec le plan x, y ∈ R pour
différentes valeurs du paramètre µL2. Le premier graphe correspond à une valeur
générique du paramètre ; le deuxième correspond à µL2 = µcL

2, et la courbe spectrale
est singulière ; enfin le troisième graphe est la représentation de x̃, ỹ, c’est-à-dire de la
courbe spectrale critique, obtenue à partir de la courbe spectrale au paramètre critique
après redimensionnement.
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Figure 89: Schéma récapitulatif pour les graphes de Strebel

F.4 Invariances de fonctions de corrélation dans le modèle
d’Ising

Dans ce chapitre, des propriétés de symétries de fonctions de corrélations inspirées

du modèle d’Ising sur cartes aléatoires sont étudiées. On considère des fonctions de

corrélation de genre g, avec L bords dits “mixtes”, m bords dits “uniformes et rouges”,

et n bords dits “uniformes et noirs”.

• Le bord mixte i est noté Si, et sa longueur est notée ki. On associe au i-ème

bord mixte les 2ki variables (pi,1, qi,1, pi,2, qi,2, . . . , pi,ki , qi,ki) (ces variables sont

ordonnées).

• Au i-ème bord uniforme rouge (resp. noir) on associe la variable pi (resp. qi).

Alors la fonction de corrélation de genre g, à L bords mixtes S1, . . . , SL, m bords

uniformes rouges et n bords uniformes noirs, est notée

H
(g)
kL;m;n(S1, . . . , SL; p1, . . . , pm; q1, . . . , qn).
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Ces fonctions de corrélations sont définies par récurrence sur 2g +
∑L

i=1 ki +m+ n, la

formule ayant été dérivée par Eynard et Orantin [Eynard and Orantin, 2008] :

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

Res
r→p1,1,pi,α,pj ,q

0,j
1,k1

H
(0)
1;0;0(p1,1, q1,k1)dx(r)

(x(p1,1)− x(r))(y(q1,k1)− y(r))H
(0)
1;0;0(r, q1,k1)

×

∑

h

∑

A∪B={2,...,l}

k1∑

α=2

∑

I,J

H
(h)
k1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . , q1,k1},SB; pM/I; qN/J)

×
H

(g−h)
α−1,kA;|I|;|J |({r, q1,1, . . . , p1,α−1, q1,α−1},SA; pI; qJ)

x(p1,α)− x(r)

+

k1∑

α=2

1

x(p1,α)− x(r)
×

H
(g−1)
α−1,k1−α+1,kL/{1};m;n({r, q1,1, . . . , p1,α−1, q1,α−1}, {p1,α, q1,α, . . . , q1,k1},SL/{1}; pM; qN)

+
l∑

i=2

ki∑

α=1

1

x(pi,α)− x(r)
×

H
(g)
k1+ki,kL/{1,i};m;n({S1(r), pi,α, qi,α, pi,α+1, . . . , qi,ki , pi,1, . . . , qi,α−1},SL/{1,i}; pM; qN)+
∑

h

∑

A∪B={2,...,l}

∑

I,J

H
(h)
k1,kA;|I|;|J |(S1(r),SA; pI; qJ)H

(g−h)
kB;m−|I|+1;n−|J |(SB; r,pM/{I}; qN/{J})

+

g∑

h=1

H
(h)
0;1;0(r)H

(g−h)
k1,...,kl;m;n(S1(r), S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

+H
(g−1)
kL;m+1;n(SK(r); r,pM; qN)

]

Trois opérateurs agissent sur les variables de bords des fonctions de corrélation :

1. la rotation Ri du bord mixte i, qui agit de la manière suivante :

RiSi = (pi,2, qi,2, pi,3, qi,3, . . . , pi,ki , qi,ki , pi,1, qi,1),

et dont l’action sur les fonctions de corrélations est simplement

RiH
(g)
kL;m;n(S1, . . . , SL; p1, . . . , pm; q1, . . . , qn) =

H
(g)
kL;m;n(S1, . . .RiSi, . . . , SL; p1, . . . , pm; q1, . . . , qn).

2. L’inversion I de tous les bords mixtes est la transformation qui inverse l’ordre

des variables de tous les bords mixtes :

∀i ∈ {1, . . . , L} ISi = (pi,1, qi,ki , pi,ki , qi,ki−1, . . . , pi,2, qi,1),

218



et dont l’action sur les fonctions de corrélations est :

IH(g)
kL;m;n(S1, . . . , SL; p1, . . . , pm; q1, . . . , qn) =

H
(g)
kL;m;n(IS1, . . . , ISL; p1, . . . , pm; q1, . . . , qn).

3. L’échange Ti des bords mixtes S1 et Si :

TiH(g)
kL;m;n(S1, . . . , SL; p1, . . . , pm; q1, . . . , qn) =

H
(g)
kL;m;n(Si, . . . , Si−1, S1, Si+1, . . . , SL; p1, . . . , pm; q1, . . . , qn)

L’objectif du chapitre est de prouver que les fonctions de corrélation définies par la

formule de récurrence sont invariantes sous ces trois opérations. On prouve le théorème

suivant :

Théorème F.6. Les fonctions de corrélation planaires (g = 0), à un bord mixte (L =

1) de taille k et sans bord uniforme (m = n = 0) ont l’expression suivante :

H
(0)
k;0;0 =

∑
systemes de liens

planaires

x4

y3

x3

y2

x2
y1x1

yk

xk

yk−1

xk−1

yk−2

xk−2

y4

Dans cette formule, chaque diagramme est un système de liens planaire. Le cercle

sur lequel sont dessinés les points rouges et noirs représente le bord mixte de taille k.

Chaque point rouge (resp. noir) porte une étiquette xi (resp. yi), qui est une fonction

de pi (resp. qi). Les variables sont orientées dans le sens horaire le long du cercle. Un

système de liens est un couplage tel que chaque point rouge est relié à un unique point

noir. Il est planaire si on peut dessiner le système de liens à l’intérieur du cercle sans

que les liens ne se croisent.

Chaque diagramme ainsi dessiné a un poids, qui est le produit de poids locaux :
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• chaque lien entre xi et yj a le poids H
(0)
1;0;0({pi, qj}).

• Une face de taille ` a un poids F (`)(xj1 , yj1 , xj2 , yj2 , . . . , xj` , yj`) :

yj2

xj2

yj1

xj1
yj`

x`

= F `(xj1 , yj1 , xj2 , yj2 , . . . , xj` , yj`)

Les fonctions F (`) sont définies par la formule de récurrence suivante :




F (1)(x1, y1) = 1

F (`)(x1, y1, . . . , x`, y`) =
`−1∑
j=1

F (j)(x1,...,yj)F
(`−j)(xj+1,...,y`)

(x`−x1)(y`−yj) .

Une conséquence directe de ce théorème est que ces fonctions de corrélation sont in-

variantes par rotation et inversion du bord mixte.

Corollaire F.1. Pour tout k ∈ N,

R1H
(0)
k;0;0({p1, q1, . . . , pk, qk}) = H

(0)
k;0;0({p1, q1, . . . , pk, qk}),

IH(0)
k;0;0({p1, q1, . . . , pk, qk}) = H

(0)
k;0;0({p1, q1, . . . , pk, qk}).

En introduisant les opérateurs d’insertion de bords uniformes rouges (resp. noirs),

on étend ce résultat à des fonctions de corrélation plus génerales :

Definition F.4. On note δrp (resp. δbq) l’opérateur d’insertion d’un bord uniforme rouge

(resp. noir), défini par :





δrpY (x(p1)) = H
(0)
0;2;0(p1, p)

δrpH
(0)
0;2;0(p1, p2) = H

(0)
0;3;0(p1, p2, p)

δrpRes
r→z

= Res
r→zp

δrp

220



(resp. 



δbqX(y(q1)) = H
(0)
0;0;2(q1, q)

δbqH
(0)
0;0;2(q1, q2) = H

(0)
0;3;0(q1, q2, q)

δbqRes
r→z

= Res
r→zq

δbq)

Alors ces opérateurs permettent d’nseérer des bords uniformes dans les fonctions

de corrélation :

Théorème F.7. Pour l’insertion d’un bord uniforme rouge :

δrpH
(g)
kL;m;n(S1, . . . , SL; {pi}; {qj}) = H

(g)
kL;m+1;n(S1, . . . , SL; {pi} ∪ {p}; {qj})

et de même pour l’insertion d’un bord uniforme noir, on applique l’opérateur δbq.

Grâce à ces opérateurs d’insertion, on montre le corollaire suivant :

Corollaire F.2. Pour tous k,m, n ∈ N,

R1H
(0)
k;m;n({p1,1, q1,1, . . . , p1,k, q1,k}, p1 . . . , pm; q1, . . . , qn) =

H
(0)
k;m;n({p1,1, q1,1, . . . , p1,k, q1,k}, p1 . . . , pm; q1, . . . , qn),

IH(0)
k;m;n({p1,1, q1,1, . . . , p1,k, q1,k}, p1 . . . , pm; q1, . . . , qn)

H
(0)
k;m;n({p1,1, q1,1, . . . , p1,k, q1,k}, p1 . . . , pm; q1, . . . , qn).
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Titre:Théorie de Liouville et cartes aléatoires

Mots clés: Théorie de Liouville, cartes aléatoires, gravité quantique, triangulations de Delaunay, graphes de Strebel,
modèle d’Ising

Résumé: Cette thèse explore divers aspects des cartes
aléatoires par l’étude de trois modèles. Dans un premier
temps, nous examinons les propriétés d’une mesure définie
sur l’ensemble des triangulations de Delaunay planaires
comportant n sommets, qui est un modèle de cartes où les
arêtes sont décorées par des angles. Nous montrons ainsi
que la mesure est égale à la mesure de Weil-Petersson sur
l’espace des modules des surfaces de Riemann planaires
marquées. Sont aussi montrées deux propriétés de la
mesures, premiers pas d’une étude de la limite continue
de ce modèle. Dans un deuxième temps, nous définissons
des fonctions de corrélations sur les graphes de Strebel
planaires isopérimétriques à n faces, qui sont des cartes
métriques trivalentes. Les périmètres des faces sont fixés.
Nous recourons au théorème de Kontsevich pour cal-
culer les fonctions de corrélations en termes de nombres
d’intersection de classes de Chern sur l’espace des mod-
ules des surfaces de Riemann. Pour la fonction à une
face marquée, la limite des grandes cartes est examinée
via l’approximation du point-selle, pour différents régimes
du périmètre de la face marquée, et nous déduisons le

régime où le comportement de la fonction de corrélation
n’est pas trivial. Les fonctions de corrélations peuvent
être calculées de manière systématique par la récurrence
topologique. Partant, nous calculons la courbe spectrale
de notre modèle, ce qui nous permet de montrer qu’il
existe une courbe spectrale critique. Nous déduisons de
cette courbe critique que la limite continue des graphes de
Strebel isopérimétriques est un modèle minimal de type
(3,2), habillé par la théorie de Liouville. Cela correspond
bien à la gravité pure. Enfin, nous abordons la question
des symétries dans le modèle d’Ising sur cartes aléatoires.
Certaines fonctions de corrélations de ce modèle comptent
le nombre de cartes bicolores avec des faces marquées, les
bords, ayant des conditions aux bords mixtes, calculées par
récurrence à partir de la courbe spectrale du modèle. Nous
prouvons ici que, pour des courbes spectrales génériques,
les fonctions de corrélations des cartes à un bord mixte
sont symétriques par rotation et par inversion du bord
mixte. Nous décrivons ensuite les conséquences de telles
symétries, suggérant une possible reformulation du modèle
en termes de châınes de spins.

Title: Liouville theory and random maps

Keywords: Liouville theory, random maps, quantum gravity, Delaunay triangulations, Strebel graphs, Ising model

Abstract: This thesis explores several aspects of random
maps through the study of three models. First, we exam-
ine the properties of a measure defined on the set of planar
Delaunay triangulations with n vertices, a model in which
the edges of the maps are decorated with angles. We show
that the measure is the Weil-Petersson volume form on the
moduli space of planar Riemann surfaces having n marked
points. Two other properties, first steps toward the con-
tinuous limit study of the model, are also shown. Sec-
ond, we define correlation functions on isoperimetric pla-
nar Strebel graphs with n faces, which are trivalent maps
whose edges are decorated by positive lengths, and whose
faces have a fixed perimeter. Kontsevich’s theorem allows
us to compute the correlation functions in terms of the
intersection numbers of Chern classes of moduli space of
Riemann surfaces. The continuous limit of the one-point
function is computed in different regimes for the perime-
ter of the marked face via the saddle-point approximation.
We identify the regime in which the behaviour of the one-

point function is not trivial. The correlation functions
can be computed in a systematic way by the Topological
Recursion. To do so, we compute the spectral curve of
the model, and show that there exists a critical spectral
curve. We deduce from the latter that the continuous limit
of isoperimetric Strebel graphs is a (3,2) minimal model
dressed by Liouville theory: it corresponds to pure gravity.
Last, we address the problem of symmetries in the Ising
model on random maps. Some correlation functions of this
model count the bi-colored maps with marked faces hav-
ing mixed boundary conditions. They are computed via
a recursive formula and the spectral curve of the model.
We prove here that the correlation functions of maps with
one mixed boundary, computed from the recursive rela-
tion with generic spectral curve, are invariant under ro-
tation and inversion of the mixed boundary. We describe
the consequences of such symmetries, suggesting a possible
reformulation of the model in terms of spin chains.
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