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ces phénomènes : comment les populations

changent au cours du temps. Si l'espèce domi-
nante dans la parcelle change constamment, on
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Résumé détaillé

Cette thèse est une étude approfondie des dynamiques de populations hors-équilibre dans les
écosystèmes diversifiés. Cette étude théorique est réalisée sur la base de simulations numériques,
et de travaux analytiques. Après l’introduction de rigueur, dans laquelle nous présentons le con-
texte scientifique ainsi que notre modèle et nos méthodes, la thèse se compose de cinq chapitres
raisonnablement indépendants les uns des autres. Le Chapitre 2 introduit l’outil théorique prin-
cipal, à savoir la théorie de champ moyen dynamique. Nous y présentons un nouvel algorithme
permettant de résoudre numériquement les équations correspondantes. Le Chapitre 3 est une
étude numérique focalisée sur le phénomène de vieillissement dynamique qui se manifeste dans
les écosystèmes isolés. Nous montrons que la dynamique des populations y devient marginale à
temps longs. D’autre part, nous considérons une méta-dynamique plus simple en termes de sauts
entre points fixes. Le Chapitre 4 est une étude analytique dérivant des observations du Chapitre
3. Nous détaillons quelques hypothèses permettant de clôre les équations dynamiques, et nous
discutons leur pertinence. Nous présentons également un calcul de type Kac-Rice, qui précise
la complexité des points fixes de la dynamique ayant certaines propriétés choisies. A l’aide de
cette formule, nous essayons d’inférer les caractéristiques typiques de la dynamique. Dans le
Chapitre 5, nous complexifions le modèle initial afin de prendre en compte la structure spatiale
des écosystèmes. Nous montrons qu’une organisation spatiale triviale permet déjà d’observer
des dynamiques chaotiques sur des temps très longs. Enfin, dans le Chapitre 6, nous oublions la
notion d’espace, mais rajoutons au modèle la stochasticité liée au bruit démographique, dans le
cas d’interactions symétriques. Nous établissons que la structure de l’espace des phases est com-
plexe. Selon la force du bruit et la diversité des interactions entre espèces, on observe un unique
équilibre (replica symmetric), plusieurs équilibres (1RSB) ou alors une structure hierarchique
appelée ‘phase de Gardner’ dans les problèmes de jamming des matériaux amorphes.

Detailed abstract

This thesis consists in a study of the out-of-equilibrium population dynamics that occur in
large-ecosystem models, both from a numerical and analytical point of view. After the usual
introduction, in which we detail the scientific context and introduce our model and methods,
we present five relatively self-contained chapters. Chapter 2 introduces the main analytical tool
(Dynamical Mean Field Theory), and a novel algorithm to solve it numerically. Chapter 3
consists in a numerical study of the aging dynamics that arise in isolated ecosystems model. We
show that these dynamics become marginal at long times, and propose a simpler meta-dynamics
in terms of jumps between fixed points. Chapter 4 presents the analytical study that follows
from the previous numerical investigation. We detail a few hypothesis that enable us to close the
dynamical equations, and discuss their relevance. We also present a Kac-Rice computation of
the fixed-points properties, from which we try to infer the typical behavior of the dynamics. In
Chapter 5, we enlarge the initial model to introduce a spatial structure in the simplest possible
way. We show that this enables very resilient chaotic dynamics. In Chapter 6, we go back
to a single patch dynamics (no spatial structure), but consider the additional stochasticity of
demographic noise. We limit the study to the case of symmetric interactions. We show that
the structure of the phase space is non-trivial. Depending on the strength of the noise and the
variety of interspecies interactions, it goes from a single equilibrium (replica symmetric phase),
to a multiple equilibria (1-RSB phase), and finally to a hierarchical structure called a ‘Gardner
phase’ in the context of jamming of amorphous materials.
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Les enjeux

En écologie théorique, l’un des plus gros enjeux actuels consiste à comprendre comment
tant d’espèces distinctes peuvent coexister au sein d’un même écosystème. En effet, que
l’on considère des exemples aussi différents que le microbiote intestinal (∼ 103 espèces),
le plancton océanique (∼ 105 espèces), la forêt amazonienne (∼ 106 espèces) ou la savane
brésilienne (∼ 104 espèces), la diversité des écosystèmes est bien supérieure à ce que les
différentes théories permettent d’expliquer [3, 10-14].

Parallèlement à ce problème, les dynamiques chaotiques ne sont généralement pas
considérées en écologie théorique. En effet, à partir de données présentant de fortes
fluctations temporrelles en termes de populations, il est souvent difficile de faire la
différence entre des fluctuations intrinsèques (chaotiques) à l’écosystème, et des per-
turbations extérieures [17, 18]. De plus, le comportement chaotique d’un écosystème
isolé est auto-destructeur : le chaos est dû à la présence de beaucoup d’espèces, il se
manifeste par de fortes fluctuations temporelles, qui vont conduire certaines espèces à
l’extinction, alimentant ainsi de moins en moins le chaos [22, 23]. Toutefois, le chaos
en écologie a été introduit et étudié, notamment pour les écosystèmes de phytoplancton
[29-31], et des expériences récentes [32] permettent de valider cette grille d’analyse. En
effet, si le mécanisme auto-destructeur du comportement chaotique est avancé pour les
écosystèmes simples et isolés, rien n’est encore établi quand au temps nécessaire pour
que le chaos disparaisse ainsi. De même, il n’est pas clair que ce comportement soit
nécessairement voué à disparâıtre lorsque l’on considère des modèles d’écosystèmes plus
réalistes, tenant compte de la notion d’espace.

Dans ce travail, nous utilisons la diversité importante des écosystèmes comme un atout
nous permettant d’utiliser des techniques mathématiques spécifiques (provenant de la
physique statistique des systèmes désordonnés). Nous analysons en détails les propriétés
du comportement chaotique, dans différentes variantes du même modèle écologique : un
écosystème isolé du reste du monde, un modèle insulaire relié à un contient (immigration
régulière), un archipel d’̂ıles isolé du reste du monde, ou encore un écosystème isolé
où les fluctuations démographiques sont prises en compte. L’idée générale est que le
comportement chaotique est généralement bien plus durable que ce qui est attendu.
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Le modèle

Dans cette thèse, nous étudions le modèle de Lotka-Volterra généralisé [45]. Les espèces
sont dénotées par les indices i = 1...S, et les populations par les variables continues
{Ni}Si=1. Les interactions entre espèces sont modélisées par la matrice d’interactions
{αij}Si,j=1, et les populations suivent alors la dynamique :

∀i = 1, ..., S,
dNi

dt
=

ri
Ki
Ni(Ki −Ni)−Ni

∑
j 6=i

αijNj + λi (1)

Dans cette équation, ri dénote le taux d’accroissement intrinsèque de l’espèce i, et
Ki la population que cette espèce atteindrait à temps long si elle était seule. Enfin,
le terme λi modélise l’immigration régulière de quelques individus de cette espèce dans
l’écosystème considéré.

Au cours de mon travail, je considèrerai presque toujours le modèle simplifié, où
tous les taux d’accroissement intrinsèques et les populations esseulées sont fixés à 1, et
l’immigration est homogène :

∀i = 1, ..., S, ri = Ki = 1, λi = λ

Cela revient plus ou moins à adimensionner le temps et les populations. Nous étudions
donc le modèle simplifié :

∀i = 1, ..., S,
dNi

dt
= Ni(1−Ni)−Ni

∑
j 6=i

αijNj + λ (2)

Dans la limite d’un grand nombre d’espèces S →∞, on constate une forme d’universalité
du modèle : les prédictions que l’on peut réaliser ne dépendent pas de l’ensemble de la
matrice d’interaction {αij}Si,j=1, mais seulement de quelques paramètres. Nous con-
sidérons donc que la matrice d’interaction est échantillonnée à partir d’une distribution
de matrices aléatoires donnée, et les paramètres du modèle seront les premiers moments
de cette distribution : µ contrôle l’interaction moyenne, σ la diversité des interactions, et
γ la symétrie typique des interactions. En termes plus mathématiques, si les moyennes,
variances et covariances sont prises par rapport à la distribution de matrices aléatoires,
on obtient :

E[αij ] = µ/S, Var[αij ] = σ2/S, Covar[αij , αji] = γσ2/S

Le scaling en 1/S de ces moments permet d’avoir une limite S → ∞ bien définie.
A l’aide de ces paramètres, on peut reconstruire la typologie grossière des écosystèmes,
comme indiqué dans le tableau 1.

En référence [44], il est montré que ce modèle Lotka-Volterra aléatoire permet de
reproduire de manière fiable les prédictions de nombreux autres modèles en écologie.
Nous nous concentrerons donc sur l’analyse de ce modèle.
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Synthèse en français

Écologie Exemples Paramètres

Proies-prédateurs Lapin et renards γ < 0

Compétition pour les ressources Plantes pour l’ensoleillement γ > 0, µ > 0

Mutualisme Plantes et pollinisateurs γ > 0, µ < 0

Table 1. Formulation mathématique des interactions écologiques

Selon les paramètres d’interactions choisis, l’écosystème peut présenter des comporte-
ments très différents :

1. Les populations se stabilisent à temps long, le système atteint un point fixe. Celui-
ci est globalement stable, et les populations finales ne dépendent donc pas des
conditions initiales.

2. Les populations ne se stabilisent jamais, le système est en perpétuel rééquilibrage.
On observe alors un comportement chaotique des populations. Ce comportement
est habituellement ignoré en écologie théorique, car il nécessite une petite immigra-
tion λ > 0. Nous montrerons toutefois que de nombreuses situations écologiques
peuvent se révéler chaotiques. Il est à noter que selon les implémentations du cut-
off dans les populations Nc et de l’immigration λ, le comportement est différent :
λ > 0 implique un chaos durable, λ = 0 et Nc > 0 implique un chaos transitoire
avant un équilibre statique, λ = Nc = 0 implique du vieillissement, dont il sera
question plus en détails ci-dessous.

3. Un sous-groupe d’espèce voit sa population diverger en temps fini, les autres
espèces s’éteignent. Ce comportement est un artefact du modèle, il peut dis-
parâıtre en changeant par exemple la saturation de l’environnement, mais cela
entrâıne quelques complications mathématiques. Dans la suite de nos travaux,
nous choisirons donc simplement de ne pas utiliser les paramètres d’interaction
aboutissant à ce comportement.

Dans la limite d’écosystèmes très diversifiés S →∞, ces trois différents comportements
sont séparés par des limites nettes dans l’espace des paramètres. On peut donc identifier
le diagramme de phase en figure 1 [45]. Les comportements y sont respectivement notés
1-’unique equilibriun’, 2-’multiple equilibria’ et 3-’unbounded growth’.
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µ = S mean(α
ij
)

-1 0 1 2 3 4 5

σ
 =

 S
1/

2  s
td

(α
ij)

0

1

2

3

cooperation competition

(III) unbounded growth

(II) multiple attractors

(I) unique equilibrium

µ
-2 0 2 4

σ

0

1

2

3

4

5
γ = -1
γ = -1/2
γ = 0
γ = 1

(a)

Figure 1. Diagramme de phase [45]. Gauche: Pour γ = 0, la transition entre Unique
Equilibrium et Multiple Attractors est indépendante de µ et se situe sur la
ligne σ =

√
2. Droite: Pour γ générique, cette transition se situe sur la ligne

σ =
√

2
1+γ .

La théorie de champ moyen dynamique

Dans le chapitre 2 (inspiré de notre publication [61]) nous introduisons la théorie de
champ moyen dynamique qui établit le lien entre le problème initial à S espèces, et un
problème stochastique auto-cohérent à une espèce. Lorsque S → ∞, il y a convergence
en loi entre les deux processus. La formulation stochastique s’écrit alors :

Ṅ = N{1−N − µm(t)− ση(t) + γσ2

∫ t

0
χ(t, s)N(s)ds+ h(t)} (3)

h(t) est un champ introduit pour la définition de la fonction de réponse χ(t, s). η(t)
représente un bruit gaussien de moyenne nulle, et de covarance C(t, s). La population
moyenne m(t), la corrélation C(t, s) et la fonction de réponse χ(t, s) sont des fonctions
données. Elles sont déterminées de manière auto-cohérentes par les relations :

m(t) = E[N(t)]

C(t, s) = E[N(t)N(s)]

χ(t, s) = E[
δN(t)

δh(s)

∣∣∣∣
h=0

]

(4)

Dans ces définitions, les moyennes E[.] correspondent aux moyennes par rapport aux
trajectoires du bruit η, ainsi que par rapport aux conditions initiales N(0).

Dans le chapitre 2, nous présentons la démonstration de la théorie de champ moyen
dynamique à l’aide de la méthode de la cavité, pour un ensemble plus général de
modèle. Nous proposons également un algorithme afin de résoudre de manière itérative
les équations stochastiques obtenues. Nous appliquons cet algorithme au modèle de
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Lotka-Volterra généralisé, et montrons que les solutions qu’il produit sont validées par
des simulations numériques directes. Nous montrons également que la théorie de champ
moyen dynamique et notre algorithme peuvent traiter le problème difficile du vieillisse-
ment : dans certains cas1 les dynamiques de populations sont de plus en plus lentes, à
mesure que le système vieillit.

L’étude du vieillissement dans un écosystème isolé

Dans les chapitres suivants, nous étudions ce phénomène de vieillissement plus en détails,
d’un point de vue numérique et analytique. Dans le chapitre 3, nous montrons notam-
ment numériquement que la dynamique à temps long devient marginalement stable par
rapport aux espèces dominantes, et qu’il est pertinent d’analyser le système en termes
de points fixes. Dans le chapitre 4, nous proposons différentes hypothèses simplifica-
trices permettant de fermer analytiquement les équations de champ moyen dynamique,
et étudions leurs conséquences. Nous introduisons également la théorie de Kac-Rice,
permettant de compter le nombre typique de points fixes de la dynamique vérifiant cer-
taines propriétés. Nous montrons que lorsque le système passe de la phase Un Equilibre
à la phase chaotique, on assiste à une transition dans l’espace des phases : initialement,
il n’y a qu’un seul point fixe, globalement stable, puis à la transition ce point fixe de-
vient instable selon certaines directions, et d’autres points fixes instables apparaissent
(le nombre de points fixes qui apparaissent ainsi est exponentiel en S).

Le comportement chaotique stabilisé par la structure spatiale

Dans le chapitre 5 (inspiré de notre publication [62]), nous complexifions le modèle initial
en introduisant la notion d’espace : de nombreuses copies (plus ou moins similaires)
du même écosystèmes sont reliées entre elles par des flux de migrations. Ce système
est représenté sur la figure 2. On peut visualiser ce modèle comme la description d’un
archipel, et les individus de chaque espèce peuvent se déplacer d’une ı̂le à l’autre de temps
à autres. Dans ce cadre, nous implémentons également un cut-off dans les populations
: lorsque la population d’une espèce sur une ı̂le devient inférieure à une certaine valeur,
nous mettons cette population à zéro et l’espèce est alors éteinte sur cette ı̂le.

Les trois paramètres pertinents du modèle sont le nombre M d’̂ıles, σ qui contrôle la
diversité des interactions entre espèces, et ρ qui contrôle la similarité des interactions
entre les différentes ı̂les.

Nous utilisons la théorie de champ moyen dynamique, qui nous permet d’effectuer
certaines prédictions, même si la théorie simplifiée que nous utilisons n’est qu’une ap-
proximation. Nous montrons que, dès lors qu’il y a plus d’une ı̂le, le système voit
coexister beaucoup plus d’espèces, et ce même lorsque les conditions sur les différentes
ı̂les deviennent presque identiques. Ce phénomène est appelé l’effet d’assurance, puisque
pour éradiquer une espèce, il faut le faire sur toutes les ı̂les simultanément. Toutefois,

1Lorsqu’il n’y a ni cut-off dans les populations, ni immigration.
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Figure 2. Schéma de la modélisation de l’archipel. Chaque espèce est représentée par
un point rouge. Les espèces interagissent de manière habituelle sur chaque ı̂le
(cercles bleus), où les lignes bleues représentent les interactions entre espèces.
Les ı̂les sont connectées par des flux de migrations (lignes violettes). Plus
précisément, ces migrations ont lieu au niveau des espèces (ligne violette
en pointillés) : les individus migrent depuis les ı̂les où l’espèce est la plus
abondante vers les autres.

on pourrait s’attendre à ce que la synchronisation des dynamiques entre les ı̂les vienne
tempérer l’effet d’assurance, lorsque les interactions sont quasi-identiques entre ı̂les. Or
nous montrons que, grâce à la phase chaotique, cette synchronisation n’a pas lieu2.

L’étude du bruit démographique dans un écosystème isolé

Dans le chapitre 6 (inspiré de notre article soumis à publication [63]), nous considérons à
nouveau le problème des dynamiques de populations sur une seule ı̂le avec immigration
régulière depuis un continent, toutefois nous intégrons également la description du bruit
démographique aléatoire. Le modèle devient alors :

dNi

dt
= Ni

1−Ni −
∑
j,(j 6=i)

αijNj

+ ηi(t) (5)

ηi(t) est un bruit gaussien de moyenne nulle et covariance

〈ηi(t)ηj(t′)〉 = 2TNi(t)δijδ(t− t′)

2Du moins pas avant des temps très longs.
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Nous utilisons la convention d’Ito. Ce bruit nous permet de modéliser le bruit démographique
dans un modèle continu [117-119] ; plus la population globale est importante, plus la
force T du bruit sera réduite. L’immigration est modélisée par une paroi réfléchissante
pour la dynamique à Ni = λ, ce procédé est plus simple à traiter que la version habituelle
consistant à rajouter λ au terme de droite de l’équation.

Nous limitons l’analyse à des interactions parfaitement symétriques, et montrons que
dans ce cadre, le diagramme de phase présente trois nouvelles phases qui sont détaillées
sur la figure 3.

σ

T

Single equilibrium phase

multiple equilibria phase

Gardner phase

��

������

�����

������

�����

������

�����

������

�����
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Figure 3. Diagramme de phase en fonction de la force T du bruit démographique, et
du degré d’hétérogénéité σ, pour une interaction moyenne µ = 10 et un
cut-off des populations Nc = 10−2. En diminuant le bruit démographique,
trois phases distinctes apparaissent : i) une phase avec un seul équilibre ;
ii) un régime avec différents équilibres (entre les lignes bleue et orange) ; iii)
une Gardner phase, caractérisée par l’organisation hierarchique des équilibres
dans le paysage d’énergie libre.

Nous introduisons un algorithme permettant de simuler le bruit démographique de
façon efficace, avec les conditions aux limites spécifiques. A l’aide de cet algorithme,
nous validons les prédictions théoriques établies par la théorie des répliques.
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Notations

Throughout the thesis, we will use the following notations:

• Ni is the population (sometimes called abundance) of species i. Species will gener-
ically be denoted by indices i or j.

• S is the total number of species.

• λ is the uniform immigration rate into the ecosystem for all species.

• αij is the interaction matrix.

• µ, σ and γ are the statistical properties of the interaction matrix distribution. They
correspond to the rescaled average, standard deviation and symmetry properties.

• φ is the diversity of the ecosystem. It corresponds to the proportion of alive species
compared to the total number of species.

• φmarginal (sometimes called φMayBound) is the marginal diversity. For our model,
it is derived in section 3.4.1 and given by:

φmarginal = [σ(1 + γ)]−2

• m and q are the statistical properties of the populations’ distribution. They cor-
respond respectively to the rescaled first and second moment of the distribution:

m = S−1
S∑
i=1

Ni and q = S−1
S∑
i=1

N2
i

• C(t, t′) denotes generically a correlation function. For instance:

CN (t, t′) = S−1
S∑
i=1

Ni(t)Ni(t
′)

• δij is the Kronecker symbol.

• δ(t) is the Dirac function.
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1. Introduction

In this chapter, we start with a context presentation that does not require any scientific
background. In the following, we introduce the very basic and general ways to model
populations in ecology, and present three fundamental models with associated results:
the MacArthur model, the May model and the neutral theory. Then, we underline the
recent interest in the study of large ecosystems, and we perform a literature review of
the field. Finally, we introduce in more details the model we consider in the rest of the
thesis, and the methods we use.

1.1. Non-technical introduction

This thesis focuses on ecology, which here denotes the study of the different species, how
they interact with each other, and with their environment.

We deal with theoretical ecology, so we will focus on mathematical models that try
to understand the behavior of ecosystems. A mathematical model can be seen as a
black box: we provide the model with some input information, and it will output some
predictions. In our case, we study how the populations of the different species will
change with time. Therefore, our input information is generically which species are
present, how they interact with each other and the environment, and what are their
respective populations at a given time. From the model, we obtain their populations at
any later time.

In simpler words, let’s assume we go into a delimited parcel of forest today. We
list what are the different species we encounter (foxes, rabbits, etc...), and count their
individuals. We feed this to a mathematical model, and it should be able to tell us how
many rabbits and foxes we will find in our parcel should we go back in three months, six
months or ten years.

Nowadays, the models used in ecology are quite trusted. However, the understanding
behind them is still somewhat lacking in some specific aspects. We reckon one of the
issues at stake is that many of the common intuitions in ecology are based on studies
of models with only few species. Using insights from the complementary limit of in-
finitely many species, in this thesis we will mostly focus on two aspects that we deem
problematic from a theoretical point of view:

• The global diversity is still badly understood: how can so many species coexist
simultaneously?

• Isolated ecosystems are usually considered temporally stable, in the sense that if
one waits long-enough, the populations do not change much in time. In other
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1. Introduction

words, should we go back to the forest parcel, we will always find roughly the same
populations for each species.

The logic behind this last point is as follows: if there is some agitation in the population
dynamics, at some point some of the species will go extinct, which will lower the source of
agitation. Therefore, agitation will eventually die out, and we’ll end up with populations
that are constant in time. While this argument is valid, our main concern lies in the
eventually. What is the needed timescale for agitation to disappear?

We reckon that the two points mentioned above are related. More precisely, we think
that the chaotic dynamics (the mathematical term for agitation) are relevant for very
long timescales: if we come back to the forest within three months, the dominant species
will be rabbits, within six months foxes, and within ten years boars maybe. Thanks to
this phenomenon, much more species can coexist. Indeed, if there was a subgroup of
species that became dominant, the outer species should go extinct. However, if there is
a constant change in the equilibrium of the ecosystem, many species are always on the
brink of blooming or going extinct.

With our background in statistical physics of disordered systems, we know that more
is different, in the sense that if you put enough simple parts together, the new group
will behave in ways you cannot understand by studying the single parts, or few of them
together. Also, chaotic dynamics and scalings lie at the core of this field.

Therefore, this thesis consists in a theoretical study of the chaotic dynamics in di-
verse1 ecosystems.

1.2. Basics for modeling

The general object of the study is an ecosystem, and more precisely the time-dependence
of the populations of the species it contains. We label the species with the subscript
i = 1...S, and denote their respective populations Ni(t) where t stands for time. De-
pending on models, both time and populations can be either discrete or continuous.
Here, we will consider both of them to be continuous, which is equivalent to assuming
large populations, and time-scales of observation larger than the typical dynamics of an
individual.

Usually, the dynamics of the populations are described by a first-order differential
equation of the type:

∀i = 1...S,
dNi

dt
= fi(Ni) +

∑
j 6=i

gij(Ni, Nj) (1.1)

There are two distinct phenomena taken into account with that form.

• First, the fi(Ni) describes the dynamics that would follow the population of species
i if it were alone in the environment. This one-species dynamics specifies if the
species would strive or disappear on its own (for instance, rabbits would strive

1Ecosystems with many different species are called diverse.
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Ecological
interactions

Examples
Mathematical
formulation

Predation-prey (species
i preys on species j)

Foxes (i) prey on
rabbits (j)

gij > 0, gji < 0

Competition for
resources

Plants compete for the
sunlight

gij < 0, gji < 0

Mutualism Plants and pollinators gij > 0, gji > 0

Table 1.1. Mathematical formulations of ecological interactions

whereas foxes would disappear). There is also the implementation of a kind of
environmental saturation, stating that the species cannot become more abundant
than a given value of population, because the environment wouldn’t be able to
sustain more. This value is called the carrying capacity of the species. One should
note that it is somewhat artificial to separate species from the environment, but
this is only to fix ideas here.

• Then, the
∑

j 6=i gij(Ni, Nj) part takes into account the interactions between dis-
tinct species. It is assumed that the global effect on one species can be mod-
elled as a superposition of two-species interactions. More refined models, treating
three-species interactions or more can also be used. If the presence of species j is
deleterious to the species i, the contribution gij(Ni, Nj) is negative and tends to
reduce the population Ni. The typology of ecological interactions is presented in
table 1.1.

The models in ecology tend to be multiplicative ones, in the sense that the impact
on population Ni is proportional to Ni itself. This is quite logical, but leads to more
mathematical struggles than usual additive models in physics.

This kind of modeling eventually assumes that there is no spatial structure in the
ecosystem: all individuals from all species can interact. In particular, the interactions
and the presence/absence of a species do not depend on its spatial location. Therefore,
it is generically used to describe well-mixed ecosystems, such as the oceanic plankton.
This modeling is also deterministic, but it is usually built on probabilistic models. For
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instance, the standard Lotka-Volterra model for predation-prey can be seen as the mean-
field limit of an individual-based model when the populations become large enough.

In the following sections, we introduce three very influential models in ecology: the
MacArthur model for resource competitors, the May bound and the neutral theory.

1.2.1. MacArthur’s Consumer Resource model

The first one was proposed around 1970 by Robert MacArthur in [1]. It was designed to
model competition between consumer species for non-interacting resources. The species
populations are always labelled {Ni}i=1...S , and they are competing for resources whose
abundances are denoted {Rl}l=1...m, where m is the total number of resources. The
species populations follow the dynamics:

1

Ni

dNi

dt
= bi

(
m∑
l=1

cil wlRl −mi

)
(1.2)

in which wl is the value of one unit of resource species l to the consumer; cil is the
rate at which consumer species i captures resource l per unit abundance of resource l;
mi is the total value of resource that must be harvested per capita for the growth rate
to be exactly 0. For species population Ni to grow, it needs to have gathered in total
more resources than mi. bi is a factor converting the resource excess into the per capita
growth rate. In this model, the resources abundances are dynamical variables as well.
They follow the dynamics:

1

Rl

dRl
dt

= rl

(
1− Rl

Kl

)
−

S∑
i=1

cilNi (1.3)

The first part of these dynamics is the usual logistic growth, with an intrinsic growth
rate rl, and a carrying capacity (i.e. saturating abundance) Kl. Then the growth rate
is reduced by the amount of resources that were captured by the consumer species.

The model was studied initially in [1], in which it is for instance shown that if the
resource dynamics are faster than the populations’ one, they can be integrated out and
the remaining model is the generalized Lotka-Volterra model from Equation (1.7). For
more details on the MacArthur model analysis, see the review [2] by Peter Chesson in
1989.

1.2.2. The May bound

In his 1972 work Will a large complex system be stable? [3], Robert May starts from
generic dynamics such as the ones from Equation (1.1). He then assumes that the analy-
sis can be performed close to a fixed point, and linearizes the equations. He additionally
assumes that each species is self-regulating in the absence of the others. Therefore the
dynamics for the population of species i around its fixed point value follows:
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∀i = 1...S,
d

dt
δNi = −1 +

S∑
j=1

aij δNj (1.4)

We introduced in this equation the difference δNi(t) = Ni(t) − NFP
i from the pop-

ulation equilibrium value at the fixed point NFP
i . The −1 term comes from the self-

regulation, and would induce an exponential relaxation to the fixed point, if it were not
for the interactions with other species aij .

In May’s setup, the matrix elements aij are taken as a independent identically dis-
tributed random variables. More precisely, aij is set to 0 with probability 1 − C; this
models the fact that some species do not interact. Otherwise, aij is drawn from a distri-
bution of zero mean and variance σ2. Therefore, in the final model, there are only three
parameters: the number of species S, the connectance2 C of the ecological network, and
the strength of interaction σ.

The result of May, rooted in random matrix theory, is that the fixed point is stable if
and only if the connectance or the strength of interactions are small enough compared
to the number of species. More precisely:

stability ⇐⇒ S < (σ2C)−1 (1.5)

This is usually referred to as the May bound : the ecosystem will drive some species
to extinction until only a stable community of SMb species remain, out of the S initial
species.

SMb = (σ2C)−1 (1.6)

This result is discussed in context in section 1.3.1. We can already say that ecologists
have been quite skeptical about this bound because it is very often exceeded in data
from real ecosystems. From a theoretical point of view, the main problem is that it uses
completely random interactions at the fixed point; whereas one could assume that the
ecological dynamics would select some kind of structure in the interactions. Nevertheless,
the prediction seems quite robust to this aspect (see later on).

1.2.3. Neutral theory

There are traditionally two flavors to model ecosystems: niche and neutral approaches.
The niche approach states that each surviving species occupies its own ecological niche;
it uses specific resources or preys upon species in a specific way. The usual examples
are different bird species, that all have a distinct beak which enable each species to have
a different diet. In this setup, the individuals from one species compete more strongly
with other representatives of the same species than with other species: the intraspecific
competition is stronger than the interspecific competition. Most of the usual models in
theoretical ecology follow this path. For instance, the MacArthur model and the May
model presented above are niche models.

2The connectance is the proportion of possible links between species that are realized.
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On the other hand, the neutral approach in its strong formulation assumes that there
is no such concept of species; every individual is competing in the same way with all
other individuals. The dynamics, and the assembly of the community is then determined
mostly by randomness. It can come from speciation, migration, and demographic noise
(birth and death) from the populations. This approach was put forward by Hubbell in
2001 [4] and 2011 [5]. It can be seen as a null model, which yields interesting predictions.
Some of them were validated by empirical studies, the most famous one being the Species
Abundance Distributions: in neutral theory, the distribution of abundance decays as a
power law P (N) ∝ N−1. For a thorough review and presentation of neutral theory, see
[6] released in 2016.

1.3. Literature review

In this section, we review the relevant literature to our research. We mainly focus on
two axis: the high diversity puzzle, and the ongoing debate about chaotic dynamics in
isolated ecosystems. In this thesis, we develop the old idea that the two axis can merge:
chaotic dynamics are quite robust, and they allow for high diversity.

We also review the insights that statistical physics enabled to provide on theoreti-
cal ecology, taking advantage of the high-diversity. We highlight that however, to our
knowledge a theoretical description of the dynamics is still somewhat missing. This is
the context and aim for our research.

1.3.1. The high diversity puzzle

Initially, it was generically considered that ecosystems with a high number of interac-
tions between species would be more stable when facing exterior perturbations, invasions
or extinctions [7, 8]. However, early simulations [9] followed by the theoretical work of
May [3] (see section 1.2.2) seemed to indicate otherwise: to be stable, an ecological
community needs few or only weak links between species. This is at least exact for a
random community. Along the same lines, theories such as the competitive exclusion
principle [10] states that there cannot be more distinct coexisting species than the num-
ber of distinct resources. This limits drastically the diversity of ecosystems, theoretically
speaking. Nevertheless, field observations show that many important ecological commu-
nities – such as tropical forests, coral reefs, freshwater plankton [11, 12], gut microbiota
[13] and so on – display high diversity; much more than what the theories can account
for. This is true to the point that understanding the maintenance of high biodiversity
is considered to be one of the most important modern challenges in science [14].

1.3.2. Can endogenous fluctuations persist in ecology?

While large temporal variations are widespread in natural populations [15, 16], it is
difficult to ascertain how much they are caused by external perturbations, or by the
ecosystem’s internal dynamics; see for instance [17, 18]. In particular, both theoretical
tools and empirical results come short of addressing a fundamental question: can we
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identify when fluctuations in species abundances arise from complex ecological interac-
tions?

Historically, studies of endogenous fluctuations have focused on single populations or
few species [19, 20, 21]. On the other hand, theories of many-species interaction networks
often center on ecosystems that return to equilibrium in the absence of perturbations [3].
Some authors have even proposed that fluctuations driven by interactions are generally
too rare or short-lived to matter, since they can be self-defeating: dynamics that create
large erratic variations lead to extinctions, leaving only species whose interactions are
less destabilizing, until an equilibrium is reached [22, 23]. In this thesis, we will go past
both the equilibrium [3, 24] or few-species starting points [19, 20, 21], to look directly
at the dynamics of high-diversity communities.

Many-species endogenous fluctuations can only persist if they do not induce too many
extinctions. Extinction rates depend critically on the amplitude of fluctuations [25, 26],
their synchrony [27] and their correlation time [28]. The peculiarity of endogenous
fluctuations is that these properties arise from the species dynamics, and therefore feed
back on themselves. A theory of these feedbacks is however lacking.

The idea of sustainable chaotic dynamics in ecology is an old one. In 1993, [29] reviews
the concept of chaotic dynamics in ecology. It focuses on modeling, analysis of time series,
and experiments. Chaos was mostly popularized by the study of plankton dynamics: [30]
and [31] perform rough numerical studies of a model close to the MacArthur Consumer
Resource one. They show that chaos allows for more diversity, even though they only
consider few (around 10) species and resources. In 2008, [32] reports chaotic dynamics
in a long term (6 years) experiment for a full planktonic community.

From a mathematical point of view, [33] shows that chaotic behavior is prevalent in
high-dimensional dynamics. Along the same line of ideas, but focused on game theory,
[34] states that ”complex non-equilibrium behavior, exemplified by chaos, is the norm
for complicated games with many players”.

The empirical high diversity hints that the properties of communities of interacting
species can be studied using tools of statistical mechanics, with the role of the thermo-
dynamic limit being played by the large number of species. This thesis is part of this
philosophy, and we will now review more specifically this field.

1.3.3. Statistical physics insights on ecology

In a simple generalization of the initial work of May [3] (detailed in section 1.2.2), [35]
argued in 2012 that the May bound is dependent on the typology of the ecosystem. The
analysis is again based on random matrix theory; and states for instance that predator-
prey relations are more stable than mutualism.

MacArthur’s Consumer Resource model

Many studies built on the MacArthur’s Consumer Resource model [1] (presented in
section 1.2.1). In 2017, [36] studied the phase portrait of the model. The authors showed
that depending on the number of species and the heterogeneity of resource supply, two
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phases can be distinguished: external perturbations in resources from the environment
can propagate to the local surroundings, or not. Later on, in 2018, [37] deepens the
study by also considering resource dynamics and resource depletion. It confirms that
ecosystems shape their environment, and modify the ecological niches. The same year,
[38] establishes a direct mapping with a well-known model that describes dynamics in
glasses at low-temperature.

Some studies proposed to modify the MacArthur initial model to account for different
mechanisms. In [39], the model is enlarged to take into account cross feeding3. It is
validated against microbial communities, and shows that even though species variability
seems random, functional families4 repartition is very predictable. In a later analytical
work, [40] tracks the flow of energy in the model, and distinguishes two ecological phases.

General Lotka-Volterra model

This is the model that we focused on in this thesis. It is presented in more details in
section 1.4.1 and equation (1.7).

In 2014, [41] shows that there exists a neutral-niche phase transition, varying the
diversity of interactions and the strength of demographic noise. All analytics are done
on a much simpler model of presence-absence of a species. In 2015, [42] considers a
pure competition realization of the model 5 in the mainland-island setting, and studies
the phase portrait as a function of the strength of competition and the variance of
the interactions. The study is mostly numerical with an individual-based model, so
demographic noise is taken into account. The authors identify four distinct dynamical
phases. Following, [43] presents a way to count the number of stable and uninvadable
communities, and shows that in this regime it is surprisingly sub-exponential in the
number of species.

In 2017, [44] shows numerically that the general Lotka-Volterra model is able to re-
produce almost all predictions from other models.

[45] presents the first analytical derivation of the exact ecological properties for the
equilibrium phase, and pinpoints the chaotic instability onset. It also shows what emerg-
ing properties come forward in community assembly, compared to fully random. These
properties are presented in more details in [46], along with an experimental validation
based on plants. More recently, [47] focuses on the pure-symmetric interactions, and
shows that the dynamics are marginally stable using disordered system tools.

In a work that was parallel to ours, [48] derived the dynamical equations (2.9) for
random Lotka-Volterra systems from statistical field theory. Also, in a close-related
work published in 2020, [49] uses the general Lotka-Volterra model for micro-diversity
(different strains of the same species) in ecosystems of microbes and phages. The authors
impressively solve the dynamics for pure antisymmetric interactions building on [50],
and relax the assumption to weak antisymmetry in the setup of infinitely many islands
connected by migration.

3When one species feeds on the metabolic waste of another one, it is called cross feeding.
4Functional families contain species that perform the same ecological function.
5With a different scaling for the interactions.
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Other models and research fields

In a distinct modeling approach, [51] adapts a chemistry kinetics model to multispecies
microbial communities. The model is checked against experiments with three species on
a spatial lattice.

Random neural network models can be quite close to ecological ones, so the onset of
chaotic dynamics that were first described in this field [52, 53] have been influential.

The general Lotka-Volterra model has also been used to model financial markets and
complex economic systems [54, 55, 56, 57].

1.4. Our model and methods

1.4.1. The random Lotka-Volterra model

In this section, we introduce the model we will mostly use in this thesis: the random
Lotka-Volterra (rLV) model [45]. We present its phase portrait in the limit of a large
number of species.

Definition and notations

The ecosystem consists of S species. Each species i is characterized by its population
Ni(t) which is a positive continuous variable at all times t. In the absence of interactions
each species may grow until saturation (e.g., due to limitations on resources). The
impact of other species is modeled through bilinear interactions. A small immigration
rate λi is added so that new individuals arrive to the ecosystem from the outside. The
dynamical equations read:

∀i = 1, ..., S,
dNi

dt
=

ri
Ki
Ni(Ki −Ni)−Ni

∑
j 6=i

αijNj + λi (1.7)

The different parameters are the intrinsic growth rates ri of the species, their single-
species population sizes (carrying capacities) Ki in the environment and the interaction
matrix α. Within our convention, a positive coefficient αij indicates that the presence of
species j is deleterious to the species i, due to predation or competition over resources.

For clarity of presentation, in this thesis we mainly discuss the case where all ri and
Ki are set to unity, but the generalization is quite straightforward. We also consider that
the immigration rate λ is uniform. The analytical and numerical tools described can be
used more generally. Immigration acts as a regularization of the problem, as detailed
in appendix A.1. Many of our published results are derived with infinitesimal but finite
immigration rate λ > 0. We will separately discuss the case without immigration, and
how the chaotic behavior is aging in chapters 3 and 4. The elements of the interaction
matrix αij

6 are i.i.d. random variables with moments:

αij = µ/S, (αij − αij)2 = σ2/S, (αij − αij)(αji − αji) = γσ2/S

6 Recent works on the inference of the interaction matrix from experiments have been carried out for
the gut microbiome in [58, 59].
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Figure 1.1. Phase diagram, taken from [45]. Left: At γ = 0, the transition from
Unique Equilibrium to Multiple Attractors is independent from µ and lies
on the line σ =

√
2. Right: For generic γ the previous transition lies on

the line σ =
√

2
1+γ . Increasing the symmetry γ shifts the two transitions

towards lower variance and stronger interactions. This result shows how
predation-prey relations may stabilize an ecosystem.

where we introduced X the average over the distribution of the {αij}. The exact dis-
tribution of the {αij} does not matter for our results, only the existence and values of
the first two cumulants do7. The scaling with S of the cumulants ensures a proper large
S limit. In this limit, the model becomes characterized by three parameters only: the
average strength of interaction µ, the variety of interactions σ, and their symmetry γ.
More specifically, γ ranges from -1 (fully antisymmetric case, where all interactions are
of predation-prey type) to 1 (fully symmetric case, where an energy can be defined).

For a real ecosystem with given size S, the parameters µ, σ and γ can be statistically
computed from the interaction matrix α. Our result then stands for this ecosystem with
the relevant parameters values. From numerical simulations, we find that ecosystems
with S > 200 are well described by results obtained in the ”thermodynamic” limit
S →∞.

Phase diagram

In the large-S limit, three different dynamical phases are found [45]; see figure 1.1.

• Phase I: Unique Equilibrium. In this regime, corresponding to small σ, the ecosys-
tem displays only one stable equilibrium. Whatever the initial conditions, each

7 More precisely, what we require is that the distribution of α satisfies:

lim
S→∞

S log eX α = X S α+X2/2S (α− α)2

10
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Figure 1.2. Time evolution of 100 species in the Unique Equilibrium phase:
(µ, σ, γ, λ|S) = (4, 1, 0, 10−10|100). Left: After a transient time, each
species reaches a final population value which is stable. Right: Dynamical
evolution of three species (e.g., ‘sheep’, ‘rabbits’ and ‘foxes’) out of all the
species. We show different trajectories obtained starting from different ini-
tial conditions. They always converge to the same equilibrium value (black
dot) independent of the initial conditions, demonstrating the stability and
uniqueness of this equilibrium.

species asymptotically ends up with a given number of individuals which is always
the same (it can be zero as some species go extinct). This equilibrium state is sta-
ble to local and global perturbations. On figure 1.2 we display the dynamics of an
ecosystem in this phase: each line represents the time evolution of the population
of one species.

• Phase II: Multiple Attractors. When the variability in the interactions σ is in-
creased, the single stable fixed point loses its stability, and the system is left with
a huge number of (possibly unstable) equilibria. This phase exhibits a complex
dynamics with chaos (or aging dynamics, as for spin-glasses, for γ = 1 [47]). If
there is a positive immigration rate λ > 0 into the ecosystem, these dynamics are
stable in time: they keep on existing indefinitely. However, when the immigration
rate λ is set to zero, another kind of aging dynamics appear: the dynamics become
slower and slower. We present in section 2.4.3 a preliminary study using numerical
DMFT, and later on tackle this aging numerically in chapter 3. An example of
lasting chaotic dynamics can be seen on figure 1.3.

• Phase III: Unbounded Growth. When the average interaction is negative enough
(µ < −1), the interactions are cooperative enough to have a beneficial effect on any
given species that overrides the single-species saturation. If we fix a higher µ and
increase the standard deviation σ, at some point a small community of species will
have cooperative interactions stronger than their own saturation and this subgroup
of species will thus grow without bound, even though all the other species will die

11
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Figure 1.3. Left: Time evolution of 100 species in the Multiple Attractors phase:
(µ, σ, γ, λ|S) = (4, 2, 0, 10−10|100). The trajectories do not display any
simple behavior; at some points, the system seems to relax to a fixed point
before realizing that it has some unstable directions, and the dynamics
starts again. Right: Time evolution of 100 species in the Unbounded
Growth phase: (µ, σ, γ, λ|S) = (4, 4, 0, 10−10|100). A large proportion of
species present a divergence of their population, while the other ones die
out.

out. This explains the existence of phase III also for µ > −1 for a large-enough σ.
An example of such dynamics is displayed in figure 1.3. It should be noted that
the divergence occurs as a finite time explosion of the ecosystem. The unbounded
growth is a pathology of the model that could be cured by a saturation stronger
than quadratic.

The borders between phases can be computed analytically: I/II and I/III are exact, but
II/III is only approximate [45]. They are shown on figure 1.1.

The symmetric case γ = 1 is special in the sense that the Multiple Attractor phase
is not a chaotic one, but rather a spin glass one [47]: the dynamics gets slower and
slower as the system approaches marginally stable states. In this case, a kind of physical
energy can be defined and serves as a Lyapunov function. The dynamics corresponds
to a gradient descent in a rough energy landscape. We study this phase (enriched with
demographic noise) in more details in chapter 6. The antisymmetric case γ = −1 is also
special, because another Lyapunov function can be defined. For a thorough study of this
setup, see [49].

1.4.2. Methods

In this section, we review briefly the different tools we used: both theoretical ones and
numerical ones.

12



1. Introduction

Theory

Most of the theoretical techniques used in this thesis come from the field of statistical
physics of disordered system. However, there are two main issues that are specific to
ecology.

1. Unlike all common systems that comes from physics, ecological interactions usually
are non-symmetric. For instance, rabbits do not have the save impact on foxes as
foxes on rabbits. This trivial difference actually represents a considerable theoreti-
cal difficulty. Indeed, the symmetry of the interactions simplifies a lot the analysis
from a mathematical point of view: a global energy can be defined for the system,
and some equilibrium relationships such as Fluctuation-Dissipation Theorem hold.
This is not the case in generic ecosystems.

2. The way we model the ecosystems (assuming large continuous populations) is prob-
lematic, because in a regular model, a continuous variable can only go to 0 in an
infinite time. However, we know that at some point species do become extinct;
when the last individuals die out. There are different ways to consider this issue,
mainly by adding a cut-off in the dynamics (if the rescaled population gets be-
low say 10−4, the species is withdrawn from the system), or implementing some
immigration. It always depends on what we actually want to describe, but for
our purposes immigration is often the best mathematical way to regularize the
problem. We discuss this point in more details in appendix A.1.

Some tools from disordered systems can still be adapted to our problem. More pre-
cisely:

• Our whole analysis relies heavily on dynamical mean field theory. This is a tool
that draws a mapping between an S-body mathematical problem, and a 1-body
stochastic problem. The theory is presented in more details in chapter 2, along
with its derivation for the random Lotka-Volterra model.

• In section 4.6, we use a technique that counts the number of fixed points for a
given dynamics. This is referred to as the Kac-Rice method.

• In the case of perfectly symmetric interactions in the ecosystems (γ = 1), it is
possible to define some kind of energy landscape. This enables us to draw an exact
mapping to a standard disordered systems problem, and we use replica theory to
study it. We refer to [60] for a gentle introduction of this theory.

• We use some standard dynamical system techniques: mostly for linear stability
of a given fixed point of the dynamics. This also calls for some random matrix
theory, from which we use the typical spectrum distribution for large matrices.

13



1. Introduction

Numerics

We use numerics for two distinct purposes: simulating the dynamical systems, and
solving some equations.

For simulations, we always use discrete schemes to approximate the systems: time
only takes discrete values. One needs to be careful in doing so, to avoid some numerical
problems. For instance, the populations need to stay positive at all times. This is
obviously the case in the continuous system of dynamical equations. However, as soon
as the system is discretized in time, there is always a non-zero probability that the
populations become negative. In order to prevent this, we usually simulate the system
using the log-population variables. The case with demographic noise induces a whole
new difficulty for simulations, we discuss this in section 6.5 of chapter 6.

To solve simple equations (such as the stationary cavity ones from equation (A.4))
numerically, we use standard numerical methods. However, more involved equations
such as the DMFT from equation (2.5) required a specific algorithm, which we detail in
section 2.2.3.

Most of the numerical results in this thesis rely on some (usually simple) parallelization
on the Kondo cluster of IPhT, CEA Saclay.

1.5. Outline of the work in this thesis

Starting from the random Lotka-Volterra model, we introduce the dynamical mean field
theory in chapter 2. We present a simple derivation for a generic class of models, perform
a quick theoretical analysis for the field theory applied to the random Lotka-Volterra
model, and describe the algorithm we derived to solve it numerically. This work is
published in [61].

In the two following chapters (which are still unpublished work), we focus on the
chaotic properties and the aging phenomenon of the basic model without immigration.
In both chapters, we present finished results and ongoing work; the distinction is made
clear in each introduction. In chapter 3, we first explore the dynamics numerically, and
show that they are marginally stable. Then in chapter 4, we explore different simplifying
analytical approaches to understand the aging phenomenon. We also introduce a way
to count the number of fixed points of the dynamics with given properties.

Armed with these initial studies, we then generalize the model by taking into account
two other ecological effects. In chapter 5, we enlarge the model to describe spatial
heterogeneities in the ecosystem. We show both analytically and numerically that in
this case, chaotic dynamics (also known as endogenous fluctuations) can persist for very
long times. This work is published in [62].

In chapter 6, we study the impact of demographic noise on the phase portrait of the
model. As the treatment becomes quite involved, we restrain ourselves to fully symmetric
ecosystems. We derive an analytical study, and introduce a complex numerical scheme
for comparison. This work can be seen in [63].

In Appendix G we enclose a few additional results: a Landau-like expansion in the correlation

function, and a quick study of the LV model modified with logarithmic or cubic saturation.
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2. Dynamical Mean Field Theory

In this chapter, we introduce the dynamical mean field theory. We detail the generic
intuitive derivation through the cavity method. Then we apply the theory to the ran-
dom Lotka-Volterra model, and give some analytical results. Eventually, we present a
numerical scheme that we designed to solve the DMFT equation, and we show some
results.

Materials from this chapter can be found in [61]. Additional details about computa-
tions and numerics are given in Appendix A.

2.1. Introduction1

A growing body of work has demonstrated that the properties of communities of interacting species

can be studied using tools of statistical mechanics, with the role of the thermodynamic limit being

played by the large number of species. Such high-diversity communities, with tens to thousands

of species, are ubiquitous and can be found anywhere from microbes in the gut to plants in a rain

forest[13].

Most of the works in ecology have focused on the properties of fixed-points of the
dynamics, and much less is known about the dynamics themselves, in particular when
they never reach a fixed-point.

Dynamical mean-field theory (DMFT) is a useful theoretical framework which has
been often used in the past to study complex stochastic dynamics of interacting degrees
of freedom (spins, agents, neurons, ...) [64, 65, 66, 53, 52]. In this work we develop DMFT
for models of ecosystems formed by a large number of interacting species [47, 45, 48].
In the limit of large ecosystems, interactions between different species are commonly
modeled by taking random interaction strengths [67, 44]. The resulting model consists
in generalized Lotka-Volterra equations with random couplings. This leads to interesting
problems of statistical physics, similar to ones encountered in the theory of disordered
systems. Yet, there are a number of crucial differences; in particular an ecosystem is
driven by non-conservative forces, hence its dynamics cannot be mapped in general to the
one of a physical system in thermal equilibrium. Therefore ecosystems display complex
dynamical regimes which have been discussed in other fields before, mainly in neural
networks [52] and game theory [66, 53] (see also [68] and [69] for disordered system-like
treatment).

1So that each chapter may be read separately, I decided to preserve all specific chapters’ full introduc-
tion, even though it may overlap with the global and more detailed introduction from section 1. The
overlapping parts are presented in the box and can be skipped.
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2. Dynamical Mean Field Theory

DMFT maps a many-body dynamical problem to a one-body stochastic problem.
However, in doing so it introduces specific mathematical complications such as a time-
delayed friction or non-linearities. Dues to these complications, solving numerically
the equations corresponding to DMFT represents a major difficulty. In the past this
obstacle has been solved—actually circumvented—only for simplified (spherical or trun-
cated) spin-glass models for which DMFT equations greatly simplify and reduce to closed
integro-differential equations on correlation and response functions of local degrees of
freedom [70]. To the best of our knowledge, a procedure to numerically integrate DMFT
was still missing when we started our project (with the exception of [71, 72] that were re-
stricted to the case of Ising spins and simple dynamical protocols), especially one able to
analyze the complex dynamics relevant for ecosystems. In [61], following ideas developed
for DMFT of strongly correlated quantum systems [73], we develop a generic numerical
scheme to solve DMFT. Our method lays foundations for the study of high-diversity
ecological dynamics, but also provides general tools that can be applied to problems
beyond ecology, for example in the fields mentioned above. Our code is available in a
public gitHub repository [74].

We focus on the generalized Lotka-Volterra model of ecosystems. We first present a
derivation of DMFT based on the dynamical cavity method [75], which is a more intuitive
procedure compared to the usual ones based on generating functional formalism, such as
Martin-Siggia-Rose-DeDominicis-Janssen [66, 48, 71, 72]. We then detail our numerical
approach for solving DMFT, and show concrete examples of its implementation. This
allows us to test the method, and illustrate its ability to describe and characterize
complex dynamics involving chaos and aging. We finally conclude by discussing further
directions and possible future applications.

2.2. The Dynamical Mean Field Theory

In this section, we derive the Dynamical Mean Field Theory (DMFT) using the dynami-
cal cavity method [75]. For simplicity, we first present the derivation in the simplest case
of random Lotka-Volterra model, then we extend the result to more general models, and
finally we explain a numerical method to solve the DMFT equation. We also checked
the relevance of the description by comparing the DMFT results with direct simulations,
increasing the size S of the ecosystem.

2.2.1. Derivation via the cavity method

For simplicity, DMFT is first derived with the simplest random Lotka-Volterra model,
presented in equation (2.1). Our approach holds in more general cases, we will present
its generalization in section 2.2.2. We start from the Lotka-Volterra equations:

∀i = 1, ..., S, Ṅi = Ni(1−Ni −
∑
j 6=i

αijNj + hi(t)) (2.1)

where we have added an external field hi that will be necessary to define the response
of the system to a perturbation. The initial conditions are sampled from a product
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2. Dynamical Mean Field Theory

measure: P{Ni(t = 0)} =
∏S
i=1 P (Ni(t = 0)). For instance, we generally use a uniform

distribution in [0, 1] for simulation purposes.
The main steps of the derivation are the following:

1. For given parameters µ, σ, γ and system size S, accordingly sample the interaction
matrix {αij}i,j=1...S and initial populations {Ni(0)}i=1...S species;

2. Obtain the trajectories {Ni(t)}i=1...S following the dynamics from equations (2.1);

3. Add a new species N0, and draw its initial condition N0(0) and the interactions
αi0 and α0i for i = 1, ..., S;

4. If S is large enough, the impact of this new species on the previous trajectories
is a small perturbation and therefore we only consider linear response for the
trajectories {Ñi(t)}i=1...S in the presence of species ‘0’:

Ñi(t) = Ni(t)−
∑

j=1,...,S

∫ t

0

δNi(t)

δhj(s)

∣∣∣∣
h=0

αj0N0(s)ds

The partial derivative are to be understood in a functional sense. We introduce

the notation χij(t, s) = δNi(t)
δhj(s)

∣∣∣
h=0

5. We plug these new trajectories in the equation for N0:

Ṅ0 = N0(1−N0 −
∑
i 6=0

α0iÑi + h0(t))

We introduce the matrix aij : αij = µ/S+σaij , so that aij is a Gaussian with zero
mean and 1/S variance, verifying in addition aijaji = γ/S. All the sums

∑
i stand

for
∑S

i=1, so the interaction term reads:

∑
j

α0jÑj =
µ

S

∑
i

Ni(t)−
µ

S

∑
ij

∫ t

0
χij(t, s)

(µ
S

+ σaj0

)
N0(s)ds

+σ
∑
i

a0iNi(t)− σ
∑
ij

a0i

∫ t

0
χij(t, s)

(µ
S

+ σaj0

)
N0(s)ds (2.2)

6. We take the large S limit and analyze the statistical properties of all terms. The
main idea is that by construction {Ni(t)}i=1,...,S are independent from αi0 and α0i,
therefore one can use central-limit-like arguments. Henceforth, the notation 〈.〉
refers to the average over the couplings aij and initial conditions Ni(0). We will
detail the procedure for the response function term as an example. We start from∑

ij a0iχij(t, s)aj0. We consider that the different χij(t, s) are random functions
that will depend on the initial conditions Ni>0(0) and the interaction matrix aij>0,
but are otherwise independent from aj0 and a0i. We first treat the diagonal part.
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2. Dynamical Mean Field Theory

According to the central limit theorem and up to second order contribution, the
term

∑
i a0iχiiai0 will converge towards its average:

S〈χiiai0a0i〉 = S〈χii〉〈ai0a0i〉 = γ〈χii〉

We now focus on the non-diagonal part. Its average is zero because 〈a0iaj0〉i 6=j = 0.
To determine the scaling of its fluctuations we evaluate the variance of its single
components obtaining 〈χ2

ij〉i 6=j〈a2
j0a

2
0i〉i 6=j . It can be shown by perturbation theory

in the strength of interactions that χij is of order S−1/2 for i 6= j [75] (see appendix
A.2). Regrouping the scalings, we obtain that

∑
i 6=j a0iχijaj0 behaves as:

S(S − 1)〈χij〉i 6=j〈aj0a0i〉i 6=j +
√
S(S − 1)

√
〈χ2
ij〉i 6=j

√
〈a2
j0a

2
0i〉i 6=jZ

∼ 0 + S
1√
S

1

S
Z

where Z is a centered standard Gaussian. This shows that the non-diagonal term
induces corrections of order S−1/2 and can therefore be neglected in the large-S
limit. After careful evaluation of all terms in equation 2.2 according to the same
procedure, we get:

Ṅ0 = N0{1−N0 − µ〈Ni(t)〉 − ση(t) + γσ2

∫ t

0
〈χii(t, s)〉N0(s)ds+ h0(t)}

where η(t) is a Gaussian noise with zero mean and covariance 〈η(t)η(s)〉η =
〈Ni(t)Ni(s)〉.

7. Since nothing differentiates N0 from any other species, we obtain the self-consistent
equation that leads to dynamical mean field theory:

Ṅ = N{1−N − µm(t)− ση(t) + γσ2

∫ t

0
χ(t, s)N(s)ds+ h(t)} (2.3)

where η is a Gaussian noise with zero mean and correlator C(t, s), and m(t),
C(t, s) and χ(t, s) are given functions. They are self-consistently determined with
the relations: 

m(t) = E[N(t)]

C(t, s) = E[N(t)N(s)]

χ(t, s) = E[
δN(t)

δh(s)

∣∣∣∣
h=0

]

(2.4)

In these definitions, the averages E[.] are now taken with respects to the noise tra-
jectories η and the initial condition N(0). Therefore, the equation is self-consistent
in the three following functions: the average population m(t), the correlator
of the noise C(t, s) and the averaged response function χ(t, s).
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2. Dynamical Mean Field Theory

To sum up, we started from an S-body deterministic system of differential equations,
and ended up with a one-body stochastic self-consistent differential equation 2. It has
been mathematically proven [77] for spin glasses that when S → ∞, there is a conver-
gence in law between the statistics of the two descriptions. We expect that this holds
true for our class of models as well, due to the similarity of both the equations and the
method.

An important additional remark is that the DMFT is valid as long as we consider
times that do not diverge with system size S. Otherwise, one cannot neglect terms
vanishing with S as we did.

2.2.2. DMFT equation for a general class of models

The derivation above can be performed almost identically in more general cases. The only
additional subtlety is that we use the fact that the correlation 〈Ni(t)Nj(t)〉 scales as S−1/2

for i 6= j, as can be shown by perturbation theory in the strength of interactions [75] (see
appendix A.2). Below, we just present the result for a general class of dynamics with a
generic and species-dependent response function Ri(Ni), non-linear p-body interactions
due to Ii(Ni), J(Nj) and a species scaled thermal noise fi(Ni)ξi(t).

Ṅi = Ri(Ni) + Ii(Ni)

 ∑
1≤j2<...<jp≤S

αij2...jpJ(Nj2)...J(Njp) + hi(t)

+ fi(Ni)ξi(t) (2.5)

where ξi is a Gaussian white noise, with variance 2ω2. The i-dependence of the functions
denotes the possible presence of random parameters for each species. For instance, in the
general Lotka Volterra case, Ri(Ni) = (ri/Ki)(Ki−Ni) where the ri and Ki respectively
correspond to species-dependent growth rates and carrying capacities, that we will treat
as random variables sampled from given distributions. The coupling tensor satisfies
αij1...jp = 0 if there exists k such that i = jk, so as not to interfere with the self-interaction
Ri(Ni). Otherwise, its cumulants are taken as:

αij1...jp = µ
p!

2Sp−1
(αij1...jp)

2
con

= σ2 p!

2Sp−1
αij1...jpα

jk
j1...i...jk−1jk+1...jpcon

= γσ2 p!

2Sp−1

where the notation Xcon denotes the connected average of X, i.e. when subtracting
their average to the elements. Because of the constraint 1 ≤ j1 < ... < jp ≤ S, when
considering the cross correlation, there is only one place for the upper index i to go
down.

Within this setup, the DMFT equation for a given species reads:

Ṅ = R(N) + I(N)

(
µm+ ση + γσ2 p(p− 1)

2

∫ t

0
χ(t, s)C(t, s)p−2J(N(s))ds+ h

)
+f(N)ξ (2.6)

2The derivation is similar to the one of the Langevin equation from Newtonian dynamics [76], with
the extra-ingredient that the bath corresponds to the rest of the system whose behavior can be
self-consistently obtained from the one of N0.
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2. Dynamical Mean Field Theory

where η is a Gaussian noise with zero mean and covariance Cη(t, s) = p
2C(t, s)p−1, and

ξ is a Gaussian white noise, with variance 2ω2. The species-dependent parameters R, I
and f are random variables to be sampled according to their statistical distribution. The
self-consistent average is over the thermal noise and these parameters. For example, in
the Lotka-Volterra case, the growth rate r and carrying capacity K should be sampled
at each realization of the process. Using subscripts for the different times, we obtain the
self-consistent closure: 

m(t) = E[J(Nt)]
p−1

C(t, s) = E[J(Nt)J(Ns)]

χ(t, s) = E[J ′(Nt)
δNt

δhs

∣∣∣∣
h=0

]

(2.7)

where the average E[.] is now taken with respects to the initial condition distribution,
the distribution of species-dependent parameters in the functions R, I and f , the noise
trajectory η and the thermal noise ξ.

It should be stated that the DMFT we derived with the dynamical cavity tech-
nique can also be obtained using generating functional technique of Martin-Siggia-Rose-
DeDominicis-Janssen [66, 48, 71, 72] .

2.2.3. Solving numerically the DMFT equation

It is difficult to solve numerically a self-consistent equation where the self-consistency
applies to functions. We focus on DMFT generic equations (2.6) and (2.7). We imple-
mented a strategy which works as pictured in figure 2.1. In this section, we write down
in details the methodology of the algorithm. More details are presented in appendix
A.8. We always work with discrete time. The different steps of the program are the
following:

1. We start from initial guesses for the correlator C(t, s), the average population m(t),
and the response function χ(t, s). The results are found to be independent on the
initial guesses.

2. Using the correlator, we can sample a Gaussian path as a simple multivariate
Gaussian random variable with covariance matrix Cη(t, s) = (p/2)C(t, s)p−1. We
draw many (#traj) such Gaussian paths.

3. For each path, we use our guesses m(t) and χ(t, s) to numerically integrate the
DMFT equation where the initial condition is sampled according to the wanted
distribution. We used the uniform measure on [0, 1] for example. For each Gaussian
path, we get a different population trajectory.

4. From these trajectories, we compute the updated values of the average population
vector, the correlator matrix and the response matrix (see below), using the self-
consistent closure:
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2. Dynamical Mean Field Theory

sample η1(t)η2(t)

η#traj(t)
...

run N1(t)
N2(t)

N#traj(t)

average

reinject softly

 C(t,t’)

m(t) χ(t,t’)

dynamics

reinject softly

mnew(t)Cnew(t,t’)χnew(t,t’)

Figure 2.1. Sketch of the numerical scheme for solving the DMFT equation.


mnew(t) = Epaths [J(Nt)]

p−1

Cnew(t, t′) = Epaths
[
J(Nt)J(N ′t)

]
χnew(t, t′) = Epaths

[
J(Nt)

∫
ds C−1

η (t′, s) η(s)

]
or Epaths

[
χi(t, t

′)
]

5. We update softly the set of functions: Xupdated = (1− a)X + aXnew with X being
respectively m, C and χ. The soft reinjection is necessary for the algorithm to
converge, and not jump erratically from functions to functions.

6. We start a new iteration of the loop, with the updated set of functions.

The convergence of the algorithm is of exponential form in the number of iterations,
and is independent of the initial set of functions. On figure 2.2, we show an example of
such a convergence.

Now, let us explain the above point (4) in more detail. Obtaining the average popu-
lation vector, and the correlator matrix from the trajectories is a trivial procedure: one
just needs to average. Evaluating the response function χ is instead more tricky. We
studied two different complementary, or alternative, procedures. The first one consists
in using Novikov’s theorem [78] (or Stein’s lemma) in the statistical field formulation in
order to obtain:

χ(t, s) = σ−1E[J(Nt)

∫
dx C−1

η (s, x) η(x)] (2.8)
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Figure 2.2. We show the convergence of different observables as a function of the num-
ber of iterations: the final mean abundance m(tf ), the final same-time cor-

relation C(tf , tf ) and the integrated response kernel χint =
∫ tf

0 ds χ(tf , s).
For comparison, dotted black lines represent the analytic stationary cavity
solutions. The relative errors to the stationary cavity solutions are below
2%. As the DMFT observables are computed from a finite number of tra-
jectories #traj , there is always some residual fluctuations. The solver was
run with rLV DMFT with parameters (µ, σ, γ, λ) = (10, 1/2,−1, 10−4) in
the Unique Equilibrium phase. The parameters of the program are: rein-
jection rate a = 0.3, final time tf = 40, discrete time steps τ = 0.1, final
number of trajectories to average upon #traj = 105.
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In this formulation, C−1
η denotes the matrix inverse of Cη. The detailed derivation is

presented in appendix A.3. This expression is easy to implement, however it is some-
times too greedy for numerics. For instance, in our problem with multiplicative noise,
the number of DMFT trajectories to average upon in order to obtain a satisfactory esti-
mate for the response function is too high. We thus derive another relation, by directly
applying δ

δh(t′) to equation 2.6. In this way, for each trajectory i, we can compute the

response function χi(t, t
′) via temporal integration, and eventually average over trajec-

tories to obtain χ(t, t′). This procedure is less greedy in terms of needed trajectories, and
is of the same numerical complexity. However, it is not fully parallelizable. The details
are given in appendix A.4. In appendix A.5, we sum up and compare the adequacy of
the two methods.

The algorithm we presented here can still be improved in several ways. More specifi-
cally, when the response function is needed (when γ 6= 0), the above algorithm is quite
expensive numerically.

The details of the numerical implementation are in appendix A.8, and a public gitHub
repository with the corresponding Python programs is available [74].

2.2.4. Numerical check of the results

We checked that the numerical solution of DMFT is consistent with the one from di-
rect simulations. More specifically, we sample #instances = 200 interaction matrices and
initial conditions for an ecosystem of size S, run the deterministic dynamics, and aggre-
gate the observables by averaging over the S species and #instances realizations. This
is what we call direct simulations. In the Unique Equilibrium phase, the agreement is
excellent. In figure 2.3, we show the comparison between DMFT and direct numerical
simulations in the Multiple Attractors phase. As S increases the direct simulations ob-
servables converge at all times to the one from DMFT. It is surprising however that the
direct simulations are so different from DMFT for S = 200. We reckon it is related to
the fact that at finite S, when sampling the interaction matrix with parameters in the
Multiple Attractor phase, there is a non-zero probability to get an interaction matrix
that describes an Unbounded Growth ecosystem. This problem makes it difficult to have
clean data using direct simulations, and underlines the relevance of DMFT analysis.

2.3. Application to the random Lotka-Volterra model

From the general model in equation 2.5, we recover the random Lotka-Volterra model
by taking: 

Ri(x) = x(1− x) + λ

Ii(x) = −x
J(x) = x

fi(x) = 0

Note that there is no species-dependent parameters in these functions, as we consider
the simplified case where all parameters ri and Ki are set to unity, and the immigration
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Figure 2.3. Comparison of the observables m(t) (Left) and C(t, t) (Right) between di-
rect simulations varying the ecosystem size S, and DMFT predictions in
dotted red line. It shows the convergence in law towards DMFT as S in-
creases. The parameters of the simulations are (µ, σ, γ, λ) = (4, 2, 0, 10−4),
in the Multiple Attractors phase.

rate λ is uniform. We then apply the general result of equation 2.6, and we obtain the
DMFT:

Ṅ = N{1−N − µm(t)− ση(t) + γσ2

∫ t

0
χ(t, s)N(s)ds+ h(t)}+ λ (2.9)

The self-consistent closure is that of equation 2.4. In this section, we show how to
get back the stationary results [45] from DMFT, and we study the stability of such
stationary solution. All the following results are valid for λ > 0 where the limit λ → 0
is subsequently taken. The reason for this regularization is detailed in appendix A.1.

2.3.1. How to recover the stationary results

If the ecosystem parameters belong to the Unique Equilibrium phase, each species will
eventually reach a final population value and stop changing. We describe this final
state using DMFT. The one-species stochastic process becomes time-independent, so
the derivative is zero, the average m(t) converges to a number m(∞), the population
N(t) and the Gaussian noise η(t) converge to random variables N(∞) and η(∞). As
the process is stationary, we treat the memory kernel as time-translational invariant
χ(t, s) = χ(t− s) and therefore:∫ t

0
χ(t, s)N(s)ds =

∫ t

0
χ(u)N(t− u)du→t→∞

∫ ∞
0

χ(u)duN(∞)

Introducing the integrated memory kernel χint =
∫∞

0 du χ(u), the DMFT equation 2.9
finally converges to:

0 = N∞{1−N∞ − µm∞ − ση∞ + γσ2χintN∞ + h} (2.10)
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2. Dynamical Mean Field Theory
m∞ = E[N∞]

χint = E[
δN∞
δh

]

E[η2
∞] = E[N2

∞]

(2.11)

From equation 2.10, N∞ can either be 0 or (1 − γσ2χint)
−1(1 − µm∞ − ση∞). By a

simple linear stability analysis performed on the real system of S species (see appendix
A.6.1), it can be shown that the 0 solution is linearly unstable when the other solution
is positive. Therefore, we obtain:

N∞ = max

(
0,

1− µm∞ − ση∞
1− γσ2χint

)
(2.12)

so the random variable N∞ follows a Gaussian distribution, truncated for negative abun-
dances. We write the closed system of equations in appendix A.6.1, and show that we
end up with the same system as the one from [45]. From it, all observables can be
computed numerically as a function of the parameters (µ, σ, γ): the fraction of species
coexisting at the fixed-point, the mean abundance N of species that survive and the
mean response function. Some further analytical results can be derived as well, such as
identifying in parameter space the boundary between the Unique Equilibrium phase and
the Unbounded Growth phase. However, this analysis is only exact when we are in the
Unique Equilibrium phase. It becomes approximate in the Multiple Attractors phase.

2.3.2. Dynamical stability and the transition line to Multiple Attractors

We now describe the loss of stability of the Unique Equilibrium solution when increas-
ing the variability σ of interactions: a dynamical phase transition takes place. The
setup follows the one of [53]: starting in the Unique Equilibrium phase, we let the sys-
tem reach an equilibrium point, then add some small field h(t) which we will take as
a Gaussian white noise with covariance h(t)h(s) = σ2

hδ(t − s), and see how the system
responds in perturbation theory. In order to do so, we consider the DMFT equation
2.9, linearize it around a stationary solution, and perform a Fourier analysis [53]. The
detailed calculations are presented in appendix A.7. Introducing X̃ the Fourier trans-
form of X, we obtain the small frequency expansions for both the connected correlator
Cc(t, t

′) = E[η(t)η(t′)]− E[η2
∞] and the response function:

C̃c(ω)/σ2
h = χ2

int

(
φ− σ2χ2

int + ω χint
φ

π
2 p+(0)

)−1
(2.13)

χ̃(ω) = χint + iω log(ω)
p+(0)χ2

int/φ

φ−γσ2χ2
int

(2.14)

.
where φ, χint and p+(0) are properties of the Unique Equilibrium we started from.

They correspond respectively to the fraction of surviving species, the integrated response
to perturbations, and the value in 0+ of the surviving species’ distribution. They can
be computed using the Unique Equilibrium distribution detailed in appendix A.6.1.
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2. Dynamical Mean Field Theory

Different things should be noted about these expansions. First, it can be checked that
we obtain the same zeroth order condition for the response function as in the stationary
cavity study: χ̃(ω = 0) = χint. Secondly, the correlator initially behaves as (a + b ω)−1

which corresponds to a temporal decay as 1/t2. But a change of behavior is displayed
when zeroth order term a goes to zero: we observe a 1/ω correlation spectrum, which is
an indicator of the chaotic transition [53]. Indeed, with this criterion we find the same

transition in parameter space as the one from random matrix theory (the line σc =
√

2
1+γ

in the phase portrait in figure 1.1). Surprisingly, the response function instead does not
exhibit a transition at σc, except for γ = 1 where the fluctuation-dissipation theorem
establishes a direct link between the correlation function and the response function.
More complex response functions might be needed to locate the transition in the general
case.

2.4. Numerical solution for the random Lotka-Volterra model

In this section, we present some numerical results for the random Lotka-Volterra DMFT,
and show the consistency of both analytics and numerics. The aim is to illustrate the
quality of the DMFT results, and present a first description of the dynamical phases (a
more complete one will be presented elsewhere).

2.4.1. Results in the Unique Equilibrium phase

We focus on the correlator C(t, t′) = E[N(t)N(t′)]. In the Unique Equilibrium phase,
it reaches a plateau as each trajectory converges to a random constant. Moreover, the
value of the plateau coincides with the stationary cavity observable q. This is indeed
the case, as pictured on figure 2.4. The convergence to the stationary solution is a good
check of the validity of our numerical strategy. It is shown more precisely on figure 2.2.

2.4.2. Results in the Multiple Attractors phase

In the Multiple Attractor phase we expect a different behavior. The system does reach a
time-translational invariant (TTI) chaotic state. This means that the one-time observ-
ables (the mean population m(t), the proportion of alive species φ(t), or the equal-time
correlation Cσ(t, t)) converge to a constant, and the two-time observables become func-
tions of the time difference: Cσ(t, t′) = Cσ(t− t′). If we focus on large times, we expect
a relaxing behavior for the correlator, as the trajectory decorrelates from itself when it
explores the phase space along the chaotic attractor. We observe this phenomenon in
the numerical solutions. Moreover, the TTI state depends on how deep in the Multiple
Attractors phase the system is. On figure 2.5, we show the dependence on σ of the TTI
correlation Cσ(t − t′), rescaled as follows. These functions Cσ(τ) starts at a TTI value
for the equal-time correlation Cσ(0), then as the trajectories decorrelate from themselves
Cσ(τ) relaxes towards a TTI final value Cσ(∞) over a timescale aσ. We therefore plot
Cσ(t−t′)−Cσ(∞)
Cσ(0)−Cσ(∞) . We also denote Qσ = Cσ(0) − Cσ(∞) the amplitude of the decorrela-

tion. It is representative of the chaos strength, and this is an order parameter for the
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Figure 2.4. Numerical correlator of plateau type, for rLV DMFT with parameters
(µ, σ, γ, λ) = (4, 1, 0, 10−4) below the onset of chaos. The parameters of
the program are the same as in figure 2.2.

chaotic transition. Indeed, Qσ = 0 in the One Equilibrium phase as the TTI Cσ(t) is
a constant in this phase, and Qσ > 0 in the Multiple Attractors phase as there is some
persistent dynamics. It is easier to compute numerically than other order parameters
such as the Lyapunov exponent. On figure 2.6 we show the dependence of both the
chaos strength Qσ and the time scale aσ as a function of the chaotic depth σ − σc. As
expected, the chaos strength Qσ increases and the chaos time scale aσ decreases with
the chaotic depth. Our results show that chaos emerges through a second-order out of
equilibrium dynamical phase transition. A first attempt to obtain critical exponents is
shown in figure 2.6.

We recall that we have considered small but finite immigration. Dynamics without
immigration is different, as we discuss below.

2.4.3. Aging dynamics without immigration

We now consider the effect of the absence of immigration on the chaotic dynamics. The
main issue is that chaos induces fluctuations that can drive species to extinction in
absence of immigration and, hence, potentially kill chaos itself. The sustainability of
chaotic dynamics without immigration is therefore far from being granted, actually a
very different dynamical behavior can be present when λ = 0. Here we show that this is
indeed the case for γ = 0. In figure 2.7 we compare the correlation functions, normalized
by its equal time value, obtained by DMFT for γ = 0 with and without immigration. In
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Figure 2.5. Left: Time evolution of the TTI correlation Cσ(t − t′) varying σ. Those
are DMFT numerical results with parameters (µ, γ, λ) = (10, 0, 10−4). We
checked that the system indeed reaches TTI, t′ = 200 is enough here. More

precisely, we show the rescaled TTI correlator Cσ(t−t′)−Cσ(∞)
Cσ(0)−Cσ(∞) , in order to

see the dependence of the chaotic time scale aσ with σ. This time scale
decreases with σ. In order to have a quantitative approximation for aσ,
we use a Lorentzian fit; an example of such is the dotted black curve.
Right: σ dependence of the TTI equal-time correlator Cσ(0). The red line
indicates the chaotic transition. In orange dots, we show for comparison
the analytical static cavity results. In the Unique Equilibrium phase, the
DMFT and static cavity results coincide (to a non-zero but small value).
In the Multiple Attractors phase, they diverge from each other, but the
static cavity remains a good approximation for a relevant chaos depth.
Note that Cσ(0) > 0 for all σ.
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Figure 2.6. Left: Chaos strength Qσ = Cσ(0) − Cσ(∞) as a function of σ. It is zero
in the Unique Equilibrium phase, and non-zero in the Multiple Attractors
phase. The red line corresponds to the chaotic transition σ = σc. The inset
is a log-log plot Q(σ − σc). The behavior seems to agree with a critical
exponent around 2.4: Q ∼ (σ − σc)2.4. Right: Chaos time scale aσ as a
function of σ. It is non-zero in the Multiple Attractors phase, and should
diverge as we approach the chaotic transition. The red line corresponds to
the chaotic transition σ = σc. These values are only approximate, based
on basic Lorentzian fit from figure 2.5. They do not allow us to extract a
critical exponent.

29



2. Dynamical Mean Field Theory

10−1 100 101 102

t− t′
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
R

es
ca

le
d

co
rr

el
at

io
n
C

(t
,t
′ )

t’=30

t’=60

t’=120

t’=240

10−1 100 101 102

t− t′

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
es

ca
le

d
co

rr
el

at
io

n
C

(t
,t
′ )

t’=30

t’=60

t’=120

t’=240

Figure 2.7. Aging phenomenon without immigration in DMFT. In the chaotic phase,
we show the decay of the rescaled correlation C(t, t′)/C(t′, t′) as a function
of (t− t′), varying t′. The parameters are (µ, σ, γ) = (10, 3, 0) Left: With
immigration λ = 10−4, the system reaches a TTI state, there is no depen-
dence on the age of the system t′. Right: Without immigration λ = 0,
the relaxation of the correlation does depend on the age of the system t′;
the older the system, the longer it takes to relax. The parameters of the
program are the same as in figure 2.2.

the former case (left panel), it is clear that a stationary chaotic state establishes as C(t, t′)
becomes a function of (t−t′) at large times. On the contrary, without immigration (right
panel), C(t, t′) shows the aging behavior characteristic of glassy system: the correlation
function is not a function of t − t′ and displays a relaxation that is slower the older is
the system. This is a nice illustration of how our numerical implementation of DMFT
allows to unveil the existence of different and complex dynamical behaviors.
A more detailed study of the aging chaotic behavior shown in figure 2.7, and an analysis
of how and when chaos fades away is presented later on in chapters 4 and 4.6.

2.5. Conclusion

In summary, we have presented a general derivation of DMFT for models of ecosystems
based on the dynamical cavity method. We have implemented and tested our numerical
method for generalized Lotka-Volterra models of ecosystems and showed that it can
capture complex dynamics such as chaos and aging. Future works will be devoted to a
thorough analysis of these complex dynamical regimes, and also to improvements of our
algorithm along the ways discussed in this chapter.
The main contribution of our work is the development of a numerical method to solve
DMFT that can be used for many different systems characterized by stochastic dynamics
and by a large number of degrees of freedom. One important potential application is
to the dynamics of interacting particle glassy systems in the limit of infinite dimensions

30



2. Dynamical Mean Field Theory

for which mean-field dynamical equations were derived recently [79, 80]. A collaborator
[81] presented numerical results for this system, after our initial work [61].
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3. Numerical investigation of the aging
dynamics

In this chapter, we focus on the Lotka-Volterra dynamics without the immigration reg-
ularization. This aim of the study is to shed light at how and why chaos is killed, and
to give insights on related models from economy for example.

First, we present the most obvious and intuitive manifestations of aging in the numer-
ics. Then we detail the mathematical tools for fixed points (FP) and stability, that we
use later on to investigate numerically the marginal stability of the dynamics.

This chapter consists in unpublished results and ongoing work, we make the clear
distinction between both here. The numerical study of the aging phenomenon establishes
the marginal stability of the dynamics as a result. Starting from section 3.5, the Fixed
Point picture which we propose is only tentative, and involves ongoing work.

Throughout the chapter, we use a slightly misleading vocabulary for convenience. We
will refer to a species being ’dead’/’alive’ instead of ’extinct’/’present’. We will also say
that it is ’invadable’ if it can invade the system.

3.1. Introduction1

Historically, studies of endogenous fluctuations have focused on single populations or few species

[19, 20, 21]. On the other hand, theories of many-species interaction networks often center on

ecosystems that return to equilibrium in the absence of perturbations [3]. Some authors have even

proposed that fluctuations driven by interactions are generally too rare or short-lived to matter,

since they can be self-defeating: dynamics that create large erratic variations lead to extinctions,

leaving only species whose interactions are less destabilizing, until an equilibrium is reached [22, 23].

In this thesis, we will go past both the equilibrium [3, 24] or few-species starting points [19, 20, 21],

to look directly at the dynamics of high-diversity communities.

Without immigration, we observe that the chaotic dynamics2 displayed by the ecosys-
tem in the Multiple Equilibria phase are no longer stable: the dynamics become slower
and slower as the time goes on. The fact that the dynamics depend on the time at which
we look at them is called aging phenomenon: because indeed the observations depend
on the age of the system. It is quite studied in the context of spin-glasses and disor-
dered systems [82, 83, 65, 84]. The mathematical analysis is generically more involved

1So that each chapter may be read separately, I decided to preserve all specific chapters’ full introduc-
tion, even though it may overlap with the global and more detailed introduction from section 1. The
overlapping parts are presented in the box and can be skipped.

2Such dynamics can be seen on figure 1.3.
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Figure 3.1. We consider one given ecosystem, sampled in the chaotic phase, and run
the dynamics without immigration. We show the time evolution of the
populations of a few species (the same set for both plots). We perform
this plot with the same time window, but after different waiting times. We
clearly see that the dynamics become slower as the system gets older: the
dynamics are slower on figure 3.1b than on figure 3.1a.

than for usual systems that lie in an equilibrium state. In disordered systems, aging is
associated with trapped dynamics and a general slowing down: the energy landscape
displays many local minima that effectively trap the system for longer and longer times.
In the case of ecology, there is generically no energy landscape to simplify the analysis.
In this chapter, we detail a brief analysis of the ecological fixed points, followed by the
numerical investigation of the aging behavior in this context.

3.2. Preliminary numerical investigation

The first obvious proof of aging appears when plotting the populations as a function
of time, on figure 3.1. We can see that the dynamics gets slower as the ecosystem gets
older.

To quantify more precisely the slowing down of the dynamics, we consider the corre-
lation function 〈N(t)N(t′)〉, averaged over the species [82] . The typical time it takes
for the species population to decorrelate is linked to the timescale of the dynamics. We
show on figure 3.2 that this timescale increases with time, and that this phenomenon
is robust to different values of the symmetry parameter γ. This is important, because
we know that perfect symmetry γ = 1 or antisymmetry γ = −1 are two special cases
(of which we have a better understanding). In this thesis, we study perfect asymmetry
γ = 0, and interpolate between perfect symmetry or antisymmetry. For γ = 0, we see
on figure 3.2 that the timescale for decorrelation is roughly proportional to the age of
the system:
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τdecorrel(t) ∼ t (3.1)

Eventually, the aging phenomenon in the correlation function can also be seen numer-
ically with the DMFT formalism, as detailed in section 2.4.3 (figure 2.7).

3.3. Stability considerations for fixed points

In order to study the dynamics, a crucial aspect is the linear stability of the fixed points
of the dynamics. Indeed, a good understanding of the dynamical flow in phase space can
be achieved by such a study. In this section, we detail the stability theoretical analysis
of the fixed points, that we use later on for the numerical investigation.

3.3.1. Set up

From the dynamics, it is possible to define many stability conditions. In this section we
will focus on two of them: the stability with respect to perturbation in the environment,
and the dynamical linear stability. We start from the general Lotka-Volterra equations:

∀i ∈ {1...S}, Ṅi = Ni

Ki −Ni −
∑
j

αij Nj


We introduce the population vector ~N , with coordinates the species populations

Ni=1...S . We look for a fixed point: ~̇N = 0. Then, for each species we can either choose
Ni = 0, or Ni = Ki −

∑
j αij Nj . We will refer to this as the ’(dead/alive) choice’.

Therefore, there are always 2S possible fixed points, but some of them are dynamically
unreachable because they have negative coordinates.

We consider a given fixed point, so each (dead/alive) choice has already been made.
We relabel the species so that the alive ones correspond to i = 1...φS. We introduce the
notation Xa that corresponds to vectors and matrices restricted to alive species i ≤ φS.
We introduce the corresponding notation Xd for vectors and matrices restricted to dead
species i > φS. The population values of the fixed point are then given by:{

~Na =
(
α̃a
)−1

. ~Ka

~Nd = ~0d
(3.2)

where we denote a matrix by the two underlines α, and we used the matrix . product.
We introduced the matrix α̃ = Id + α. We assumed that α̃a is invertible, which is
generically the case.

We now derive the two distinct stabilities that we consider: the environmental one,
and the dynamical one.
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Figure 3.2. Correlation function showing aging phenomenon in the chaotic phase with-
out immigration. This is robust to different values of the symmetry pa-
rameter γ, from top to bottom γ = −0.5, 0, 0.5. More precisely, what is
shown is the rescaled correlation C(t, t′)/C(t′, t′) as a function of t − t′,
varying t′. This data corresponds to ninstance = 100 realizations of ecosys-
tems with parameters S = 500, µ = 100, varying γ and σ to stay in the
chaotic phase.
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3.3.2. Environmental stability

A perturbation in the environment of the ecosystem can be modelled as a perturbation in
the carrying capacities {Ki}i=1...S . Now we wonder whether the alive species populations
at the fixed point are stable with respects to infinitesimal environmental fluctuations.

We define: (χaK)ij =
∂Na

i
∂Ka

j
. From equation 3.2, we obtain directly the environmental

stability matrix:

χaK =
(
α̃a
)−1

(3.3)

The only instability that can occur in this case comes from the largest eigenvalue of
χaK . Indeed, from random matrix theory [85], we know that the typical spectrum of the

matrix α̃a is a dense ellipse in the complex plane, centered in the Cartesian coordinates
(1, 0). Therefore, if the spectrum has some eigenvalues with negative real part, it will
also have eigenvalues very close to zero (by density, and connectedness of the ellipse).
Then, the corresponding eigenvalue for the inverse matrix χaK will be diverging.

Eventually, we will consider that the ecosystem is stable with respect to perturbation
in the environment iif all the eigenvalues of the interaction matrix α̃a have a strictly
positive real part.

3.3.3. Dynamical stability

We linearize the dynamics around the above fixed point. Remember that it is given by
(3.2). We introduce the lower left submatrix αda, such that αda

ji
= α

j>φS, i≤φS . With

these conventions, the linearization yields: ˙δN i = −Na
i

(
α̃ . ~δN

)
i

for alive species i ≤ φS
˙δN j = ej δNj for dead species j > φS

(3.4)

where we introduced the growth rates:

~ed = ~Kd − α̃da.
(
α̃a
)−1

. ~Ka (3.5)

that quantifies whether a dead species j can establish in the ecosystem after a small
immigration (ej ≥ 0) or not (ej < 0).

There are three questions to answer for the above fixed point to be both physical and
dynamically stable:

1. Is this fixed point physical? By this we mean that all populations have to be
positive:

~Na =
(
α̃a
)−1

. ~Ka ≥ 0

2. Are the dynamics stable, when considering only the alive community of species?
I.e. does the ecosystem remain close to the fixed point, or does it escape quickly
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from it? To define this, we use equation (3.4) and we introduce the dynamical
stability matrix:

χaD = diag( ~Na). α̃a (3.6)

so that the linear dynamics restrained to alive species writes ~̇ a
δN = −χaD. ~δN

a
.

Then, the dynamical stability condition amounts to the positive definition of the
dynamical stability matrix χaD: all its eigenvalues need to have a strictly positive

real part.
χaD > 0 (in the positive definite sense)

3. Do the dead remain dead? More precisely, for all dead species, if a few individuals
of the species are introduced in the ecosystem at the fixed point, does the species
go extinct quickly? This is quantified by the condition:

~ed = ~Kd − α̃da
(
α̃a
)−1 ~Ka < 0

3.3.4. Summary of the fixed point properties

We present in table 3.1 the different mathematical formulations of the ecological prop-
erties of the fixed points. We abusively used the positive notation. For vectors, we mean
it for each coordinates:

” ~X > 0” ⇔ ”∀i, Xi > 0”

And for matrices, in the positive definite sense. If we denote λMi the eigenvalues of a
matrix M , then:

”M > 0” ⇔ ”∀i, λMi > 0”

3.3.5. Relation between the two stability matrices

We recall the two different stability matrices (restrained to alive species) that we intro-
duced:

• the environmental stability matrix: χaK =
(
α̃a
)−1

• the dynamical stability matrix:χaD = diag( ~Na). α̃a

We are interested only in definite-positivity for these two matrices. A very interesting
result from [86] states that in our setup, for large ecological communities φS � 1,
environmental stability is equivalent to dynamical stability (provided the fixed point is
feasible):

”χaK > 0” ⇔ ”χaD > 0”
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Fixed point
property

Mathematical object to
consider

Mathematical
condition

Feasibility ~Na =
(
α̃a
)−1

. ~Ka ~Na ≥ 0

Uninvadability ~ed = ~Kd − α̃da
(
α̃a
)−1 ~Ka ~ed < 0

Environmental
stability

χaK =
(
α̃a
)−1

α̃a > 0

Dynamical
stability

χaD = diag( ~Na). α̃a χaD > 0

Table 3.1. Mathematical formulation of the ecological properties of the fixed points

3.4. Marginality of numerical simulations

In this section, we will argue that at long times, the chaotic dynamics without immigra-
tion become marginally stable. This behavior is quite standard in disordered systems
[82]. Indeed, in the context of spin-glasses the situation is the following. The system
explores the vicinity of different fixed points, which are initially dynamically unstable,
so it evades quickly from them. However, as time goes on, the fixed points that the
system explore become marginally stable: they have directions in phase space that are
neither stable nor unstable. As a consequence, it takes a long time for the system to
evade from these fixed points. The analysis is generally performed by studying the en-
ergy function (whose extrema correspond to the fixed points of the dynamics). In the
case of ecology, there is no energy (or Lyapunov) function, we thus have to come up
with a distinct procedure to study the dynamics. Still, the idea of marginal stability has
been around in this field for a long time as well. Indeed, the May bound (presented in
more details in section 1.2.2) corresponds exactly to the ecosystem being in a marginally
stable equilibrium.

3.4.1. Our protocol to study marginality

In order to study the dynamics, our idea is to identify which fixed points the system
visits as time goes on, and examine their properties. Identifying which fixed point the
system feels is not an easy task. The most intuitive way to find the corresponding fixed
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point ~NFP (t) to the dynamical ~N(t) would be to stop the dynamics, define some other
dynamics3 that can find the fixed point, and look at how these specific dynamics end at
long times. This is quite tedious, and numerically heavy.

We follow a different approach here. We will use the fact that, once we have identified
which species are dead or alive, there is an obvious fixed point: the one defined from
equations (3.2) that we recall here when all carrying capacities are set to unity.{

~Na =
(
α̃a
)−1

.~1a

~Nd = ~0d
(3.7)

It should be stated that there is no a priori reason for this fixed point to be the closest,
nor the most influential for the dynamics. However, it is an easy choice, and we will
check in the following that it is indeed relevant for the dynamics.

Therefore, the initial step of our study is to define at each time step which species are
dead, and which ones are alive. There is actually another interest quantifying the global
diversity4 of the ecosystem at each time. This follows the same line as the May bound
argument (in section 1.2.2), but we present it in more details here:

1. From [87], we know that the dynamics from Lotka-Volterra do not modify the ob-
vious statistical properties of the interaction matrix. In particular, the interactions
restrained to the alive communities that are formed still retain the same variance
and symmetry compared to the initial pool of species.

2. Thanks to this and classical random matrix theory [85], we know the typical spec-
trum of eigenvalues of the modified interaction matrix α̃a of the alive species: the
spectrum forms a dense ellipse in the complex plane whose geometrical properties
directly follows from the statistics. We recall the properties of the initial interaction
matrix (see section 1.4.1):

αij = µ/S, (αij − αij)2 = σ2/S, (αij − αij)(αji − αji) = γσ2/S

Then, the ellipse is centered in (1, 0) in Cartesian coordinates, with horizontal
semi-axis b = φ1/2σ(1 + γ) and vertical semi-axis b = φ1/2σ(1− γ). We introduced
the diversity φ at the fixed point.

3. Thanks to the work of [86], we know that the dynamical stability of a fixed point
is equivalent5 to the definite positivity of the modified interaction matrix of the
alive species:

”α̃a > 0” ⇔ ”χaD > 0”

3A gradient descent minimizing the derivative norm for instance.
4The diversity is the proportion of alive species.
5Provided its feasibility.
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4. Combining all previous results, we derive that the dynamical stability of a fixed
point can be directly inferred from its diversity (and the statistical properties of
interactions, but these do not change with time):

”χaD > 0” ⇔ ”φ < φmarginal” (3.8)

where we introduced the marginal diversity (i.e. the May bound):

φmarginal = [σ(1 + γ)]−2 (3.9)

We explain a bit more the above points 1 and 2. It should be noted that when we use
the random matrix spectrum, we implicitly assume that the interaction matrix restricted
to alive species is statistically equivalent to a random matrix with i.i.d. elements. One
could have imagined that the matrix element become correlated because they are con-
ditioned on the alive species. Even though it is shown in [46] that the conditioning does
introduce some correlation, this cannot be seen if considering simple statistical observ-
ables [87]. In particular, Ref [47] shows that for the typical spectrum of the matrix, the
approximation is valid.

We just showed that the marginal stability of the dynamics is equivalent to φ(t) =
φmarginal. We now detail the different methods we use to infer diversity.

3.4.2. Inference of diversity from the dynamics

The determination of diversity from simulations is slightly ill-defined. Indeed, the pop-
ulations are continuous variable in the general Lotka-Volterra model, it takes therefore
an infinite time for a species abundance to be exactly zero.

Counting cut-off

The most intuitive way to infer diversity is then to use a counting cut-off Ncut: for each
species, we will consider that it is extinct at a given time t iif Ni(t) < Ncut. One needs
to remember that according to this criterion and our dynamics, a species can be extinct
at a given time, but alive later on.

Assuming truncated Gaussian distribution of abundances

We present here an alternative way to infer diversity. In the One-Equilibrium phase, the
abundances {Ni}i=1...S have a truncated Gaussian distribution. In the dynamical phase,
it is only an approximation. Indeed, species can fluctuate around their typical popula-
tions (what we call their bias N∗ in chapter 4), so the truncated Gaussian distribution
is wrong at low abundances N � 1. Still, we can use this approximation to infer the
global diversity of the system from simple observables.

What we have access to easily is (m, q), the first and second moments of the full
abundance distribution. Assuming truncated Gaussian distribution, we can define a
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corresponding diversity φ(m, q):

φ(m, q) = w0 ◦
(
w2/w

2
1

)−1
[q/m2]

where we used the static cavity functions wk(∆) =
∫ ∆
−∞(∆−s)kDs, with Ds the standard

Gaussian measure.
With this method, we can infer the diversity, but not which species are dead or alive.

Evidence of marginality from simulations

We now use the distinct methods to compute the diversity at all time, and compare
it to the marginal stability one from (3.9). On figure 3.3, we see that the dynamics
get quite close to φmarginal up to numerical precision, whatever the criterion used to
define dead/alive. This is the first evidence that the ecosystem becomes marginally
stable at long times, and that this phenomenon is responsible for the slowing down of
the dynamics.

3.4.3. Fixed points analysis

We now identify marginality more thoroughly. We use an effective cut-off to distinguish
dead/alive species. In the following study, we always checked that the results do not
depend on the value of this cut-off Ncut = 10−5, 10−10, 10−100... First, we check that
the fixed point defined by this cut-off (all populations below the cut-off are put to zero,
all above are determined by inverting the alive interaction matrix) is relevant for the
dynamics. This is done on figure 3.4. For each time, we plot the distance between the
dynamical point ~N(t) and the corresponding fixed point ~NFP (t). More precisely, we plot
the rescaled distance as a function of time:

d(t) =

(
1

S

S∑
i=1

(Ni(t)−Ni,FP (t))2

)1/2

We see that as time increases, the distance decreases and goes towards 10−3 or lower, so
the corresponding fixed point is a good approximation of the dynamics. Therefore we
can use its corresponding stability analysis.

Second, we use the corresponding fixed points and study their stability. To do this, we
compute the spectrum of their environmental and dynamical stability matrices, and plot
them on figure 3.5. It can be seen that they both become marginal: all eigenvalues are
positive at long times, but the smallest one touches zero. This means that the dynamics
become slower and slower.

3.4.4. Comparison with immigration

For comparison, we now use results from simulations with immigration (λ = 10−10).
The one-time observable are very similar, and there is no aging as expected. On figure
3.6a, we show the distance to the corresponding fixed points. The dynamics cannot get
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Figure 3.3. We plot the diversity difference to the marginal one as a function of time,
for different criterions. The parameters for this particular data set are
ninstance = 100 realizations (from which the error bars are computed).
Results are robust to distinct parameter choices. In purple dotted line we
plot the diversity inferred using the truncated Gaussian assumption. In full
colored lines, the diversity is computed using different Ncut. Whatever the
criterion, we see that the numerical diversity tends to the marginal one: it
is eventually only higher by 10−2). The static cavity diversity is shown in
grey line, for comparison. It overestimates diversity, which confirms that
the static cavity predictions are not valid in this phase.
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Figure 3.4. Distance to the corresponding fixed point across time, for different alive cri-
terions. The rescaled distance decreases with time, and goes towards 10−3

or lower, indicating that the FP at long times are a good approximation
of the dynamics.

as close to the fixed points as in the isolated case, because immigration acts as a barrier.
Therefore the stability analysis of the fixed points is not so relevant for the dynamics.
However, it can also be seen on figure 3.6b that the fixed points are no longer marginally
stable, but rather unstable.

Basically, immigration prevents aging with the following mechanism: around the un-
stable fixed points, it builds an unreachable sphere of radius λ if the fixed point has dead
species; and therefore makes the exit from this fixed points influence much quicker.

For this analysis, we assumed that for small immigration, we could still apply equations
(3.2) to compute the fixed point populations.

3.5. Slowing down of the dynamics, fixed point picture

We established that at long times, the corresponding fixed points (FPs) are good ap-
proximations of the configurations visited by the real dynamics. We will use this in order
to study the dynamics, by considering some simpler metadynamics: we will assume that
the system jumps between FPs. We will analyze these metadynamics in the following:
how does the system chooses which FP to jump to, and how much time does it spend
in one FP.
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Figure 3.5. Stability spectra. At different times, we compute the corresponding FP of
the dynamics, and evaluate the spectrum of its matrix stabilities. We then
plot the distribution of complex eigenvalues, both for the environmental
(top plot) and dynamical (bottom plot) stability. For the environmental
stability, we actually plot the spectrum of the inverse α̃a of the environ-
mental stability matrix. For its spectrum, we expect the usual ellipse [85]
in complex plane, shrunk by diversity until it reaches marginality: the left
edge of the ellipse touches zero. This is indeed the case. For the dynamical
stability, the structure is less clear (somehow fish-like [86]), but the same
marginality can be seen for large times.
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(b) Spectrum with immigration

Figure 3.6. Stability spectra and distance to the corresponding fixed points, with im-
migration. These are the equivalents of figures 3.3 and 3.5. On figure 3.6a,
we see that whatever the alive criterion, the dynamical point stays quite
far from its corresponding FP (d ∼ 10−1). This means that the analysis
in terms of fixed points is not so relevant here. Anyway, on figure 3.6b we
show that these fixed points are not marginal but rather unstable: there
are many eigenvalues with negative real parts.

3.5.1. Metadynamics

We consider a naive picture: the system jumps from FP to FP because none of them are
stable. Each FP is characterized by the dead/alive choice for species. From this state
vector, all population values and stabilities can be computed, as stated in section 3.3.3.
More precisely, one should check for each FP:

1. the feasibility of the FP: positivity of the alive species populations;

2. the stability of the dynamics restrained to the alive species;

3. the uninvadability of the FP from dead species.

If those conditions are not matched, the system should jump to another FP by chang-
ing the choice of ’dead/alive’ consequently. In particular, if condition 1) is not matched,
the system should kill negative alive species. And if condition 3) is not matched, it
should introduce invadable dead species. Condition 2) is usually verified at long times,
as the dynamics become marginally stable. In the new FP, the new populations and
stability are computed again based on the new ’dead/alive’ choice. We then iterate the
procedure.

We now analyze real dynamics, keeping in mind this naive picture.
In this section, we consider a long (tmax = 106) and detailed simulation of a big chaotic

isolated ecosystem S = 2000, (µ, σ, γ, λ) = (10, 2, 0, 0). This chaos is not stable: it will
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age. Again, defining a cut-off abundance (say Ncut = 10−5) 6 , at each time step we
can define which species are alive (i.e. with population Ni(t) > Ncut), and which ones
are dead. From this information, we can compute the corresponding fixed point and its
properties: what are the alive populations, their stability, the invadability from the dead
species...

3.5.2. Quantified properties of the fixed points

On figure 3.7, we show the simple properties of the FPs varying time. More precisely, for
each FP, we count the fraction of species that are respectively alive with positive popu-
lation, alive with negative population, dead and non-invadable, or dead and invadable.
We can see that there is stabilization in time: these diversities become roughly constant.
The wrong classification ’negative alive’ disappears, which is what we expected: the
system becomes marginal, and is only driven by invasions. Indeed, a huge fraction of
species (around 10%) stay invadable. Arguably, this might be an indicator of the chaos
strength. The marginality can be seen as the positive alive diversity reaches the marginal
one.

Through the simulation (after the transient), we check that almost all events are
consistent with the corresponding FP categorization. For instance, an invasion of species
554 occurred, and we check afterwards that for the corresponding FP, species 554 was
indeed invadable. Or species 33 went extinct, and it was indeed alive negative in the
corresponding FP. However, at this stage we cannot predict what FP the system will
typically jump to, given the FP it jumps from. We expect it to be a balance between
the classification and the real dynamical population distribution. This is still ongoing
investigation.

3.5.3. Timescales analysis

In this section, we study a different indicator of the slowing down of the dynamics, based
on diversity rather than correlations.

Rate of events

Given a counting cut-off Ncut, we consider that an event occurred at time t if there
has been an ”invasion” or an ”extinction”: if a species population has crossed the cut-
off. We first investigate on figure 3.8 the rate of these events (the number of events
divided by the time of the observation window), and how it evolves with time. Because
of the dynamical slowing down, the rates decrease with time. We expected a typical
slow down rateevents(t) ∼ t−1, based on the numerical scaling of the decorrelation time
τdecorrel(t) ∼ t (computation in the next paragraph). Data is more or less consistent with
this scaling. Numerically, the fit rather shows rateevents(t) = At−0.85, but we reckon this
might be a finite size effect.

6Then we check that the analysis is robust to change of Ncut. Generically, we check Ncut =
10−5,−10,−100. Lowering Ncut only seems to delay the results in time, because it takes more time for
species to reach it. However, all the quantitative results seem to hold.
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Figure 3.7. Classification proportions of the corresponding FP species as a function of
time. Proportions stabilize with time. We can see that the positive alive
species (orange full line) reach the marginal diversity (25% here), while
the wrongly classified negative alive species (orange dotted line) almost
disappear. However, the wrongly classified invadable dead species (blue
dotted line) stabilize around a non-zero value (roughly 10%).
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We want the typical scaling τFP (t) of the time for which the system stays in one given
FP at time t. We use: ∫ t+τFP (t)

t
rateevents(t) dt ∼ 1 (3.10)

Then, assuming rateevents(t) = At−1, it follows:

τFP (t)/t = eA
−1 − 1 (3.11)

With this scaling of rateevents(t), τFP (t) is then proportional to t, as τdecorrel(t).
However, if we use numerical estimates for A ∼ e5, this yields τFP (t) ∼ 10−2 t, whereas
from simulations τdecorrel(t) ∼ t. This would indicate that to actually lose correlation,
the system would need to go through many (100) FPs.

Figure 3.8. Rate of events (”invasions” and ”extinctions”) as a function of time, re-
spectively in orange and blue. At the beginning of the simulation, there
are more extinctions than invasions, as the system reduces its diversity.
After this transient state, the two rate become comparable as the diversity
is stabilized. However, the rates still decrease as the system ages, because
of the dynamical slow down. The decay is roughly consistent with t−1

scaling. In dotted lines we show the log-log fits of the rate decays, with
coefficients in the legend (the first one is the slope, the second one the
intercept).
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Turn-over of alive species

In this section, we wonder how important is the turn-over in the species: are they always
the same species that contribute to the dynamics (i.e. alive or invadable)? On figure 3.9,
we show an estimate for redundancy. For each species, we compute during how much
time it was alive across the simulation. Then we plot the distribution across species of
these times.
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Figure 3.9. Time distribution of the alive time fraction for species. In the vertical axis
is shown the statistical frequency. The distribution is very roughly uniform,
with two peaks around 0 and 1. The two peaks mean that some species
keep their status across the whole simulation: 55% stay permanently dead,
and 6% permanently alive. However, the uniform distribution states that
the remaining 40% are switching between dead and alive, with varying
levels of success.

We see that the distribution presents two peaks at 0 and 1, which stand respectively for
the species that are always dead and alive. However, the fraction of species corresponding
to the alive peak is much lower than the real diversity of the system (0.06 � 0.25 =
φmarginal). It follows that a great part of the diversity of the system consists of species
that flickers from alive to dead. We reckon that these species are responsible for the
slowing down on the dynamics, according to the following picture:

1. When the ecosystem is around a given FP, some species i should go extinct;

2. However, as the population variables are continuous, it only dives towards 0 but
does not reach it;
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3. Then, due to some other invasion or extinction, the ecosystem jumps to another
FP, in which species i is favored;

4. At this point, species i needs to come back up from its very low population in
order to relaunch the dynamics by causing a new invasion;

5. This takes a long time, during which the ecosystem stays in the same FP, where
another species j should go extinct;

6. As the ecosystem stays for a long time in this FP, it has the time to make species
j reach even lower population values than what species i had reached;

7. Therefore, it will take even longer for species j to come up again afterwards.

We are still investigating this idea, both numerically and analytically (see section C).
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4. Analytics: DMFT closures and Kac-Rice
complexity

In this chapter, we provide some analytical analysis of the Lotka-Volterra system of
equations (2.1). More precisely, we detail different theoretical approaches to study the
dynamics.

First, we assume time-translational invariance and integrability of the correlation, and
we close the DMFT equation (2.9) for the stationary process. However, for the closure
to be self-consistent, we need to solve the dynamics as well. We then introduce some
further approximations, that enable us to do so, and investigate whether the chaotic
solution is self-consistent. Nevertheless, the numerical study from chapter 3 showed us
that the chaotic state is not stable. Our aim was to show an inconsistency such as an
infinite temperature in the chaotic phase, in order to prove that a stable chaotic phase
is impossible. This is not what we found, other instabilities may be responsible for the
unreachability of a chaotic steady state. Eventually, we present an alternative way to
look at the dynamics, using the Kac-Rice complexity of fixed points.

This chapter consists in unpublished results and ongoing work, we make the clear
distinction between both here. The results are the following:

• The analytical closure of the TTI chaotic state is finished for all potential ap-
proximations we tried, and yields a finite temperature in the Multiple Equilibria
phase;

• The annealed Kac-Rice computation of the number of fixed point is finished. It
shows that at the onset of the Multiple Equilibria phase, the number of fixed points
goes from one to an exponential number in the number of species S of the system.
Similarly to what was found recently in [88], none of these fixed points are stable,
a feature likely linked to the complex dynamics observed in this regime.

The ongoing work consist in:

• Understanding why the TTI chaotic state found within our approximation seems
consistent. This might be due to a dynamical instability: this state exists, but the
system would not be able to reach it.

• From the Kac-Rice computation, and following section 3.5, we tried but so far
failed to match the numerical dynamics with our fixed point picture for the aging
behavior.

• In Appendix C, we propose a toy model that might be able to catch the aging
phenomenon.
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4.1. Introduction1

Historically, studies of endogenous fluctuations have focused on single populations or few species
[19, 20, 21]. On the other hand, theories of many-species interaction networks often center on
ecosystems that return to equilibrium in the absence of perturbations [3]. Some authors have even
proposed that fluctuations driven by interactions are generally too rare or short-lived to matter,
since they can be self-defeating: dynamics that create large erratic variations lead to extinctions,
leaving only species whose interactions are less destabilizing, until an equilibrium is reached [22, 23].
In this thesis, we will go past both the equilibrium [3, 24] or few-species starting points [19, 20, 21],
to look directly at the dynamics of high-diversity communities.

Without immigration, we observe that the chaotic dynamics displayed by the ecosystem in the

Multiple Equilibria phase are no longer stable: the dynamics become slower and slower as the

time goes on. The fact that the dynamics depend on the time at which we look at them is called

aging phenomenon: because indeed the observations depend on the age of the system. It is quite

studied in the context of spin-glasses and disordered systems [82, 83, 65, 84]. The mathematical

analysis is generically more involved than for usual systems that lie in an equilibrium state. In

disordered systems, aging is associated with trapped dynamics and a general slowing down: the

energy landscape displays many local minima that effectively trap the system for longer and longer

times. In the case of ecology, there is generically no energy landscape to simplify the analysis.

4.2. General assumptions

In this chapter, we will focus on the DMFT equation (2.9), that we recall here in the
case of purely asymmetric interactions (γ = 0 which removes the memory kernel χ) and
no immigration:

Ṅ = N{1−N − µm(t)− ση(t)} (4.1)

where η is a Gaussian noise with zero mean and correlator Cη(t, s); m(t) and Cη(t, s)
are given functions. They are self-consistently determined with the relations:{

m(t) = E[N(t)]
Cη(t, s) = E[N(t)N(s)]

(4.2)

Here, E[.] denotes the average over the process: the initial condition N(t = 0) and the
Gaussian noise.

To investigate the possibility of a self-consistent chaotic solution, we assume the
existence of time translational invariance (TTI). This implies: m(t) = m and
Cη(t, t

′) = Cη(t− t′). From the numerics (such as figure 3.2 for instance), we know that
the correlation has a non-vanishing residual part at long times: Cη(+∞) > 0. Therefore,
we separate the noise into a static part, and a dynamical part: ση(t) = z + ξ(t). In this
setup, z and ξ(t) are independent zero-mean Gaussian variables, with second moment:

1So that each chapter may be read separately, I decided to preserve all specific chapters’ full introduc-
tion, even though it may overlap with the global and more detailed introduction from section 1. The
overlapping parts are presented in the box and can be skipped.
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{
Var[z] = σ2Cη(+∞)

Cov[ξ(t) ξ(t′)] = σ2 [Cη(t− t′)− Cη(+∞)]
(4.3)

Now that the noise η has been separated, we will refer to the correlation CN (t, t′) =
Cη(t, t

′) in the following, for clarity’s sake. We label Cξ(t − t′) = Cov[ξ(t) ξ(t′)] the
dynamical correlation. We also introduce the species-dependent bias N∗ = 1−µm−σz,
and write the DMFT equation in terms of the more natural variable x(t) = log N(t):

ẋ = −V ′(x) + ξ(t)

with V (x) = −N∗x+ exp(x). As ξ is not a white noise, there is no Ito term within the
change of variables. We denote by X the ensemble average over the noise ξ(t). Assuming

ergodicity, we assimilate this average to the time average: X = T−1
∫ t+T
t dsXs. The

species for which N∗ < 0 will simply be extinct in the TTI state, we will forget about
them in what follows. Within the TTI state (for alive species), the average of a one-time
observable is a constant, therefore:

dt x(t) = dt x(t) = 0 ⇒ N = N∗ (4.4)

This is already an interesting result: the time average of the population of a species
is equal to its bias.

At this stage, let’s recall the three different averages:

• X the ensemble average over ξ(t) the dynamical noise, identified with the time
average;

• Ez+ the average over the static noise z for alive species, i.e. species with positive
bias N∗ > 0;

• EIC the average over the initial condition (IC) N(t = 0).

The closure equations rely on the average over the whole process: E[X] = EIC, z[X].
Another simplification comes from the ergodicity assumption: within this hypothesis we
can forget EIC . The TTI assumption implies that the distribution P(N(t)|N∗) is sta-
tionary. In order to compute dynamical correlations, we will sample the initial condition
for the TTI process from this distribution, and denote the average over this distribution
by EICTTI . Eventually, we write down the simplified (TTI + ergodicity) process:{

ẋ = −V ′(x) + ξ(t)
V (x) = −N∗x+ exp(x)

(4.5)

With the closures in the bias and dynamical noise:
CN (t) = Ez, ICTTI [exp(xt + x0)]

Mean[N∗] = 1− µEz, ICTTI [exp(xt)]
Var[N∗] = σ2CN (+∞)
Cξ(t) = σ2 [CN (t)− CN (+∞)]

(4.6)
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We can already say a few things about this set of equations. We introduce two
quantities at given bias: the average population mN∗ = EICTTI [exp(xt)], and the left-
over correlation qN∗ = limt→∞ EICTTI [exp(xt + x0)]. Given equation 4.4, we know that
for a given bias, N = mN∗ = max(N∗, 0). In addition, for an ergodic state, it is safe
to assume that the variables Nt and N0 decorrelate at long times. Therefore the left-
over correlation is simply qN∗ = m2

N∗ = max
(
(N∗)2, 0

)
. The closure on the Gaussian

distribution of bias N∗ then becomes:{
Mean[N∗] = 1− µEN∗ [max(N∗, 0)]

Var[N∗] = σ2EN∗ [max
(
(N∗)2, 0

)
]

(4.7)

This is exactly the static cavity closure, detailed in section 2.3.1. So N∗ follows the
static cavity Gaussian distribution, if a chaotic state exists (without immigration). This
is also an interesting result. Even though we know that the static cavity result is only
an approximation in the chaotic phase, we see that the time averaged populations is
exactly given by this result. Eventually we only have to deal with the closure on the
dynamical noise ξ.

We summarize again the intended procedure:

1. Assume a stable chaotic state (TTI and ergodicity);

2. Make simplifying assumptions for the correlation Cξ and the potential, in order to
solve the dynamics;

3. Make predictions, and check if these assumptions are self-consistent or not.

4.3. Stationary distribution with the real potential

The first usual approximation that we make is to assume that the noise is white. This
implicitly assumes the existence of a temperature T , which amounts to the integra-
bility of the dynamical correlation:

T =

∫ +∞

0
dt Cξ(t) < +∞ (4.8)

Therefore, in this section we will consider that the correlation simplifies to:

Cξ(t, t
′) = 2Tδ(t− t′) (4.9)

The details of the computations are in Appendix B.1. Under this assumption, we can
compute the stationary distribution for abundances, at given bias N∗:

Pt=∞(N |N∗) =
ββN

∗

Γ(βN∗)
N−1 + βN∗e−βN 1N∗>0 + δ(N)P(N∗ < 0) (4.10)

which is a usual Gamma distribution. We introduced β = T−1. It can be shown
with Large Deviation Theory (in Appendix B.1) that the white noise assumption can
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Figure 4.1. In blue line, we show the real potential, and in filled blue the part of the
x-space that is typically reachable with thermal agitation. We show our
approximations for the potential: the harmonic one in dotted orange, the
box one in red, and the triangular one in dotted green. (Left) The box
approximation is obviously wrong at T � N∗, but the harmonic one is a
good one. (Right) When T � N∗, the harmonic approximation fails, but
the box approximation holds better, and the triangular one even more so.

be relaxed, and the conditional distribution stays the same for N � 1. However, the
temperature still needs to be finite:

∫∞
0 dtCξ(t) = T <∞.

We also obtain the consequent small-population expansion for the stationary distri-
bution on N , by averaging equation (4.10) over the bias N∗:

Palive(0 < N � 1) ' 1

N log(N)2

which is barely integrable at low abundances. This interestingly gives back the inverse
distribution from neutral theory, up to log corrections.

All we have done so far does not yield tractable dynamics, so we cannot check the self
consistency of the TTI assumption. Indeed, we would like to close the equation on the
correlation Cξ to check the finite temperature crucial assumption. In order to do this,
we need to simplify the potential. Different simplified potentials can be used: harmonic,
box, triangle... We present on figure 4.1 the approximations we will use (harmonic, box
and triangle), and their validity domains.

4.4. Dynamics with the approximate potentials

4.4.1. Harmonic potential

The usual simplest approximation from physics is the harmonic (or Gaussian) one. We
first look at the true potential V (x) = −N∗x+ex. It has its minimum at xmin = logN∗.
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There, V (xmin) = N∗(1− logN∗), and the curvature is V ′′(xmin) = N∗. The harmonic
approximation then becomes:

Vh(x) =
N∗

2
(x− xmin)2 (4.11)

This approximation should be valid when the system cannot explore far from the
minimum xmin, so when T � N∗. With the harmonic potential, the dynamics become
linear in log space. The full solution is given in appendix B.2.

We present now a few interesting aspects of this solution (for a positive bias N∗ > 0).
The time-averaged population is no longer N = mN∗ = N∗. Indeed, we changed the
potential, so equation (4.4) no longer holds. It is given by:

mN∗ = N∗e
T

2N∗ > N∗ (4.12)

The x variable is confined symmetrically around its minimum, which then translates
into an overestimation in N variable. However, the populations do decorrelate (as follows
from ergodicity), and therefore qN∗ = m2

N∗ still holds. We see that it does satisfy
mN∗ ∼ N∗, for T � N∗ which is the validity domain of the harmonic approximation.
It is then diverging exponentially when T � N∗.

We compute the self-consistent temperature:

T harmN∗ (T )/σ2 = N∗ exp(T/N∗)
∫ T/N∗

0

ex − 1

x
dx (4.13)

The self-consistent temperature is logically an increasing function of T/N∗, because
the log variable can explore a larger space.

4.4.2. Box potential

In this section, we investigate the other limit T � N∗. In this regime, the harmonic
approximation is no longer valid. We consider more carefully the true potential V (x) =
−N∗x+ex. Indeed, in this case the x variable can explore much further on the left (weak
confinement) than on the right. We will treat both the exponential and linear saturation
by hard walls, so that the potential becomes box-like. We determine the position xleft
and xright of the walls by thermal reachability. Then, we use the linear approximation
on the left, and the exponential one on the right.

More precisely, we use: 
V (xboundary)− V (xmin) ∼ T
V (xleft) ∼ −N∗xleft
V (xright) ∼ exright

in order to obtain: {
xleft = − T

N∗ − (1− logN∗)
xright = log T + log

(
1 + N∗

T (1− logN∗)
)
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Keeping in mind that we are interested in the regime T � N∗, we will only keep the
dependence: {

xleft = − T
N∗

xright = log T
(4.14)

Then the box potential is fully determined:

Vbox(x) =

{
0 if x ∈ [xleft, xright]

+∞ otherwise
(4.15)

And so is the stationary distribution, if we introduce L = xright − xleft:

Pt=∞(x|N∗) = L−1 1 (x ∈ [xleft, xright]) (4.16)

The problem eventually consists in solving the diffusion equation in a box. This can
be done by standard techniques, and we obtain the probability distribution at all times.
From this we perform the closure relation in temperature (still conditioned on N∗ via
L). See Appendix B.3 for all details. We can deduce the average population at given
positive bias:

mN∗ = N∗
(

1− e− T
N∗
)
< N∗ (4.17)

Compared to equation (4.12), the average population is now underestimated, because
the x log variable can explore much further on the left. The ergodic relation qN∗ = m2

N∗

is again fulfilled. And we still recover mN∗ ∼ N∗ from equation (4.4) when T � N∗

which is the validity domain of the box approximation.
Finally, the self-consistent temperature is:

T boxN∗ (T )/σ2 =
1

3
T − 3N∗

2
+

2(N∗)2

T
+OT/N∗→∞(T e−T/N

∗
) (4.18)

4.4.3. Triangular potential

In this section, we investigate again the other limit T � N∗. Indeed, the box potential
can be considered as a rather crude approximation, so we improve it by considering a
triangular potential. This one fits snuggly the real potential at high negative values,
and models the exponential saturation with the same hard wall on the right side as the
box potential. Just as was done in section 4.4.2, we fix the location of the right wall by
thermal reachability, yielding xright = log T .

We solve the whole dynamics using Laplace transforms; the full computation is pre-
sented in Appendix B.4. We deduce the average population at given positive bias:

mN∗ = N∗
T

T +N∗
< N∗ (4.19)

The same comments as for the box potential still holds here. Compared to equation
(4.12), the average population is again underestimated, because the x log variable can

59



4. Analytics: DMFT closures and Kac-Rice complexity

Approximate
potential

Harmonic Box Triangle

Validity
domain

T < N∗ T > N∗ T > N∗

Stationary
distribution
P (N |N∗)

Log-normal
Bounded power-law

N−1

Power-law N−1,
with exponential

cut at low
populations

Average
population mN∗

N∗e
T

2N∗ > N∗ N∗
(

1− e− T
N∗
)
< N∗ N∗ T

T+N∗ < N∗

Self-consistent
temperature

TN∗/σ
2

N∗E(T/N∗) ' 1
3T − 3N∗

2 + 2(N∗)2

T
2T

(1+N∗
T

)3(2+N∗
T

)

Table 4.1. Comparison of the results for the potential approximations

explore much further on the left. The ergodic relation qN∗ = m2
N∗ is again fulfilled.

And we still recover mN∗ ∼ N∗ from equation (4.4) when T � N∗ which is the validity
domain of the triangular approximation.

The self-consistent temperature is:

T triN∗(T )/σ2 =
2T

(1 + N∗

T )3(2 + N∗

T )
(4.20)

4.4.4. Summarizing results

In table 4.1, we summarize the results from the dynamics with white noise and the three
approximations for the potential: the harmonic one, the box one, and the triangular
one. We introduced the function:

E(y) = exp(y)

∫ y

0

ex − 1

x
dx
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4.5. Closure in temperature

In order to solve the dynamical closure in temperature, we still have to perform the
z-average, i.e. the average over the bias N∗. To do this, we need to use both potential
approximations, in their respective validity domain: the box potential for low bias N∗ <
T , and the harmonic potential for high bias N∗ > T . More precisely:

T =

∫ T

0
dN∗ρ(N∗) T boxN∗ (T ) +

∫ ∞
T

dN∗ρ(N∗) T harmonicN∗ (T ) (4.21)

where we recall that ρ(N∗) is the Gaussian distribution from the static cavity.
We perform the low and high temperature expansion for the rhs of equation (4.21).

The behavior is dominated by the harmonic contribution at low temperature, and by
the box contribution at high temperature:

Trhs(T )σ−2 ∼
{
φT − 5

4T
2 log T when T → 0

φ
3T when T →∞

(4.22)

where we introduced the proportion of alive species φ =
∫ +∞

0 dN∗ ρ(N∗). From the static
cavity, φ depends only on σ and not on µ, just like the transition to chaos (and unlike
the average population m for instance). So first, we’ll consider only the σ-dependence.

On figure 4.2, we plot Trhs as a function of T in a log-log plot, varying σ. There
are three different regimes. More precisely, we show on figure 4.3 the self-consistent
temperature solutions of equation (4.21) as a function of σ.
T = 0 is always a solution. At low σ < σ1, it is the only solution. This makes sense,

because in the One Equilibrium phase there are no dynamics. Surprisingly, increasing
σ but still in the One Equilibrium phase, two other solutions appear (as a first-order
transition). From the expansion in equation (4.22), we can show that the lower solution
merges with 0 exactly at the chaotic transition σ = σchaos =

√
2 (the condition writes

σ2φ = 1). For σ > σchaos, there is then only one non-zero solution. This makes sense as
well, as this is the Multiple Equilibria phase, a possible chaotic state. This self-consistent
temperature is an increasing function of σ, which is logical as the higher σ, the stronger
the chaos.

There might be additional transitions, for instance when σ2φ > 3. But this occurs
for quite high σ, that usually lie in the Unbounded Growth phase so we do not consider
them here.

We can also perform a stability analysis of the temperature solutions, if we consider
the closure from equation (4.21) in the following sense: we start from a given long time
chaotic state of the system with temperature T , then the dynamics perform the closure
from the rhs Trhs(T ), and the system settles in a new long time chaotic state with
temperature Trhs(T ). With this kind of ad hoc iteration, we can show that the T = 0
solution is stable in the One Equilibrium phase, and unstable in the Chaotic phase. We
represent instability with dashed lines on figure 4.3.

We were a bit surprised by the results. Indeed, from numerical simulations we ex-
pected:
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Figure 4.2. Log-log plot of Trhs as a function of T , varying σ. The self-consistent
temperature lies at the intersection between the dashed black line (identity
function) and the colored lines. There are three different regimes. At low
σ, Trhs is below T for all T . Then increasing σ ∈ [σ1, σchaos], the two
curves intersect twice. Eventually, for σ > σchaos =

√
2 there is only one

intersection.
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Figure 4.3. Self-consistent temperature solution, as a function of σ. Increasing from
σ = 0, there is initially only the T = 0 solution. Then, at σ = σ1 (green
line), two other solutions appear discontinuously. The lower one merges
with 0 exactly at σ = σchaos (orange line). The dashed lines represent
unstable solutions.

63



4. Analytics: DMFT closures and Kac-Rice complexity

• A self-consistent zero temperature T = 0 for all the One Equilibrium phase;

• Something indicating that there was no self-consistent solution in the Chaotic
phase, which would have shown that our assumptions were wrong. We know that
without immigration, there is no stable TTI chaotic state.

This is still ongoing work. A solution to the above points might be in a possible
dynamical instability of the different branches of temperature solutions. We also expect
the intermediate phase with three solutions to be a consequence of the rough modeling.
Indeed, the mixed model predictions are quite sensitive to the precise location of the
walls in the box potential for instance. It seems doable to solve the dynamics with a
triangular potential, i.e. drifted diffusion with a wall. We assume that this would get
rid of the three-solution phase issue, and maybe also of the non-inconsistence of the
TTI chaotic phase2. Based on numerical simulations, we expect a stable T = 0 solution
in all the One Equilibrium phase, and an unstable or infinite solution in the Multiple
Equilibria phase.

We know from simulations that the chaotic state is unstable, and the system displays
aging dynamics. In Appendix C, we propose a model to analyze the aging behavior that
slows down the chaotic dynamics. We do not have results for this model yet, this is also
ongoing work.

4.6. Analysis based on complexity and properties of the typical
fixed points

In this section, we present an alternative to DMFT in order to study the dynamical
Lotka-Volterra system. We introduce a way to count the number of fixed points (FP)
of the dynamics, with given properties such as average population, species diversity and
uninvadability. We perform the Kac-Rice computation of this number of FP, and try to
use this to shed a new light on the dynamics.

4.6.1. Context

We recall here the general Lotka Volterra dynamics from equation (1.7), without immi-
gration:

∀i ∈ {1...S}, Ṅi = Ni

1−Ni −
∑
j

αij Nj

 (4.23)

These dynamics allow a huge number of FPs. Indeed, when putting the derivative
to zero, we can decide for each species whether it is dead (Ni = 0) or alive (Ni =

2After computation, the self-consistent closure with the triangular potential yields almost the expected
behavior, but it still requires more analysis. More precisely, the small and high temperature ex-
pansions in this case predict that T = 0 is a stable solution for σ < σchaos, and that T = ∞ is a
stable solution for σ > σchaos. However, the behavior of Trhs(T ) at intermediate values of T is still
problematic.
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1−∑j αij Nj) in this FP. This amounts to exactly 2S possible FPs3. However, for the
FP to be interesting for the dynamics, it needs to satisfy other conditions. For instance,
all populations have to be positive. This leads to the specific question of how many FPs
with given properties do exist. We focus in this chapter on the following properties:

1. The FP needs to be feasible, so all alive species should have a positive population;

2. The FP has a given proportion of alive species, which we denote φ;

3. The FP populations have their first moments specified by m = S−1
∑S

i=1Ni and

q = S−1
∑S

i=1N
2
i ;

4. The FP should be stable with respects to the invasions of dead species: any dead
species that is injected in small quantity into the ecosystem at the FP should not
establish.

Summarizing, we want to count how many FPs do the dynamics allow, imposing
their feasibility (positive populations) and uninvadability, and specifying their properties
(φ,m, q). Naively, we expect this number of FPs to scale exponentially with S; we recall
that the total number of unspecified FPs is 2S . In order to solve quantitatively this
problem, we introduce in the next section the Kac-Rice method (see [89] for the first
introduction of the method, and [90] for detailed lectures notes).

The goal of this procedure is the following. Once we know the total number of FPs
with given properties #FP (φ,m, q), we might be able to predict some of the properties by
imposing other ones and optimizing the complexity. More precisely, we know that at long
times in the Multiple Equilibria phase, the dynamics become marginally stable. This
imposes as a direct consequence that the diversity has a specific value φ = φmarginal. At
this stage, the dynamics visit different feasible FPs that all share the marginal property
φ = φmarginal. We assume that this set of visited FPs is stable in time, and form a
given ensemble E . If the system is simple enough, we can make some kind of ergodic
assumption, stating that the dynamical observables correspond to an average over E .
For instance, we expect the mean abundance to be given by:

m = EFP∈E [mFP ] (4.24)

Eventually, if the number of FPs with given properties is indeed exponential in S, we
expect that the average in equation (4.24) is dominated by the most abundant properties:

m = argmaxm [ #FP (φ = φmarginal,m, q) ] (4.25)

Therefore, we could predict the mean abundance imposing only the marginality of the
fixed points.

3Up to invertibility of a modified interaction matrix, which is generically the case.
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4.6.2. Kac-Rice complexity of Lotka-Volterra system

What we call the (annealed) complexity Σ(φ,m, q) here is the average log-number of
non-invadable feasible FPs with given value of (φ,m, q), which are respectively the pro-
portion of alive species, the first and second moment of the population distribution.
More precisely, if we call #FP (φ,m, q) the number of FPs with properties (φ,m, q), the
complexity is defined as:

Σ(φ,m, q) = S−1 log #FP (φ,m, q) (4.26)

As we defined it so far, the number of FPs #FP (φ,m, q) is specific to a given interaction
matrix αij . However, in the large S limit, we expect that this number typically does not
depend on the specific realization of the interaction matrix. Therefore, we will compute
it as:

Σ(φ,m, q) = S−1 logEα [#FP (φ,m, q)] (4.27)

where Eα [X] is the average over the distribution of random interaction matrices intro-
duced in section 1.4.1; we recall it here. The elements of the interaction matrix αij are
i.i.d. Gaussian random variables with moments:

Eα [αij ] = µ/S, Varα [αij ] = σ2/S, Covα [αij , αji] = γσ2/S

Equation (4.27) corresponds to what we call the annealed complexity. However, so
as not to give too much importance to very rare realizations of the matrix, the right
complexity to consider would be the quenched one, defined by:

Σquenched(φ,m, q) = S−1Eα [log #FP (φ,m, q)] (4.28)

This last computation is much more involved, and in this thesis we only present the
annealed one, which should already give relevant insights. The quenched computation
is still ongoing work.

It should be noted that at some point we might want to relax the uninvadability
condition for the FPs. Indeed, we know that at some point the dynamics become sus-
ceptible to invasions from the dead species. In case of ambiguity, we will denote Σfree

the complexity without imposing uninvadability.

4.6.3. Sketch of the Kac-Rice computation

In this section, we sketch briefly how the computation is performed in the simplest setup.
The details are in Appendix D. From equation (4.27), we want to compute:

Eα [#FP (φ)] ∼
∫
Dα 1 [Ni≤φS > 0;Ni>φS = 0] (4.29)

But once we have specified which species are alive, the abundances are completely
determined by the interaction matrix, as detailed in equation (3.2). If we denote ~N the
vector of alive species with components Ni=1...φS , this vector is a simple function of the
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interactions: ~N = ~f(α). We inject this information into equation (4.29) in the following
way:

Eα [#FP (φ)] ∼
∫
Dα

∫ +∞

0
d ~N δ

(
~N − ~f(α)

)
(4.30)

where we used the Dirac function δ(X). Switching the integrals, we obtain:

Eα [#FP (φ)] ∼
∫ +∞

0
d ~N Pα

(
~N = ~f(α)

)
(4.31)

which can be computed using standard Gaussian integrals. In the above sketch, we did
not care about uninvadability of the FP, permutation of species, nor the Jacobian from
the change of variables.

4.6.4. Mathematical formulas for complexity

The derivations are presented in Appendix D. Putting all together, we obtain the final
complexity:

Σ(φ,m, q) = C(φ) +Dγ,σ(φ)− Pµ,γ,σ(φ,m, q) + V(φ,m, q) [+Uµ,σ(φ,m, q)]

Combinatorial term

C(φ) = S−1 log

(
S

φS

)
= − [φ log φ+ (1− φ) log(1− φ)]

Determinant term

Dγ,σ(φ) =
φ

π

∫ 1

−1
dx

∫ √1−x2

0
dy log

[
(1 + ax)2 + (by)2

]
with a = σ

√
φ(1 + γ) and b = σ

√
φ(1− γ).

Probability term

P =
φ

2
log(2πσ2q) +

1

2σ2q

(
(1− µm)2

[
φ− γ

1 + γ

m2

q

]
+
q − 2m(1− µm)

1 + γ

)
Uninvadability term

U(φ,m, q) = (1− φ) log cdf

(
−1− µm√

σ2q

)
We introduced cdf (and later on pdf) the cumulative distribution function (and prob-

ability distribution function) of the standard Gaussian.
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Volume term

V(φ,m, q) =
φ

2
log(2π) + φmax

x,y

{
m

φ
xy +

q

φ

y2

2
− log(y) +

1

2
x2 + log cdf(−x)

}
The (log cdf) term comes from the {Ni ≥ 0} boundaries. Taking the derivatives of

the function H in the max, the saddle point values are given by:
α
2

(√
x2
SP + 4/α− xSP

)
= −xSP + pdf

cdf (−xSP )

ySP = φ
m
α
2

(√
x2
SP + 4/α− xSP

)
where we introduced α = m2

qφ . To find an non-subdominant volume term, it is necessary
to have 1/2 < α < 1. This is discussed in appendix D.3.3.

4.6.5. Check of the complexity formula in the One Equilibrium phase

Before trying to predict anything with the mathematical formulas, we wanted to perform
a few basic checks. The first simple one corresponds to the One Equilibrium phase of the
ecosystems. Indeed, for interaction matrix parameters in this domain, we know that the
system has only one FP which is a globally stable and unique equilibrium. Therefore,
we expect a zero complexity in this phase. In addition, we know the properties of this
FP, they are given by the static cavity equations (A.4).

We check this in two steps. First we compute the complexity evaluated at the static
cavity values Σ(φsc,msc, qsc). We plot this as a function of σ in figure 4.4. We show that
the complexity evaluated at the static cavity values is indeed 0 in the One Equilibrium
phase. Then, we checked numerically that in the One Equilibrium phase, the complexity
is maximal at the static cavity values:

argmax Σ(φ,m, q) = (φsc,msc, qsc) (4.32)

It should be possible to prove equation (4.32): this would amount to obtaining the
static cavity set of equations (A.4) by optimizing the complexity. However, it is quite
tedious and we did not spend enough time on this derivation.

4.6.6. Complexity in the chaotic phase

On figure 4.4, we see that in the chaotic phase, the complexity becomes strictly positive,
and increasing with the chaos strength (related to σ). This also corresponds to the
intuition: entering the chaotic phase, the previously unique and stable FP loses its
stability and many other FPs appear (an exponential number in S). Even without
considering invadability, the vast majority of these FPs is unstable with respect to the
alive species dynamics. Indeed, this condition directly amounts to φFP > φmarginal, and
we show on figure 4.5 that the complexity is actually higher when allowing for higher
diversities φ > φstatCav (> φmarginal).

The behavior of the complexity in the chaotic phase is shown in more details on the
following figures, where we optimize in (m, q) the complexity Σ at given diversity φ. In
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4. Analytics: DMFT closures and Kac-Rice complexity

Figure 4.4. Complexity computed at the static cavity values. It is exactly zero in the
One Equilibrium phase, as there is only one valid FP. Above the chaotic
transition (orange dotted line), the complexity increases but all the FPs
are unstable.
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Figure 4.5. Optimization of complexity in the chaotic phase with respect to (m, q),
varying φ. We show that the maximal complexity is reached for higher
diversities φ > φstatCav (> φmarginal). This is true imposing uninvadability
(blue line) or not (orange line).
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(a) Marginal φ (b) Static cavity φ

Figure 4.6. Complexity Σ(φ,m, q) varying (m, q) in the chaotic phase, for two different
diversities φ: on the left the marginal diversity, and on the right the static
cavity one. The black cross corresponds to the static cavity values for
(m, q), while the red one is the argmax of the complexity. The argmax
coincides with the static cavity value, when constraining the diversity at
the static cavity result, but not otherwise. The two dotted lines indicate
the analytical bounds from the volume term.

figure 4.6b, we show that optimizing at the static cavity diversity yields the static cavity
(m, q).

On figure 4.7, we show that the number of fixed points goes from one to an exponential
number in the number S of species, right at the Unique Equilibrium / Multiple Equilibria
transition. In addition, we show that although the unique fixed point was stable in the
Unique Equilibrium phase, in the Multiple Equilibria phase all the numerous fixed points
are unstable. The exact complexity would be the quenched one; however, as the annealed
complexity is always an upper bound for the quenched one, our result shows that indeed
all fixed points are unstable.

4.6.7. The complexity cannot predict chaotic dynamical observables so far

We had the following picture in mind. In the chaotic phase, the dynamics starts to move
around FPs with high diversity. Then the system realizes that these FPs are unstable,
so it will move away from them. From long simulations, we saw in section 3.4 that
the system moves towards marginal stability (the May bound). In this case, it might
be possible to follow the (m, q) observables by comparing them with the typical FP
properties (argmax of the complexity), at fixed φ = φmarginal. The argument is more
detailed in section 4.6.1.

On figure 4.8, we show the results for uninvadable complexity. We inferred the diversity
from simulations φ(t), then computed the argmax of the complexity evaluated at this
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Figure 4.7. Optimized uninvadable complexity in the chaotic phase with respect to
(m, q), varying φ and σ. We rescale diversity φ so that the marginal sta-
bility diversity does not depend on σ (red line). The fixed points with a
lower diversity, if they exist, are stable (blue zone), while a higher diversity
indicates instability (red zone). In the One Equilibrium phase (blue line),
there is only one fixed point (the complexity is zero), and it is stable. Ex-
actly at the transition (orange line), this fixed point becomes marginally
stable. In the Multiple Equilibria phase (green line), there are many fixed
points but they are all unstable: indeed, the complexity is always negative
for the stable fixed points.
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diversity:
(mKC , qKC) = argmaxm,qΣ (φ = φ(t),m, q)

where KC stands for Kac-Rice. Then we compare the argmax (mKC , qKC) to the cor-
responding numerical observables (m(t), q(t)). On figure 4.8, we see that the argmax is
not a good prediction. Still, this makes sense because we know that the FPs explored
by the dynamics are invadable.

However, on the same figure 4.8 we see that results for non-uninvadable complexity
are non-conclusive either. This is surprising, it means that either our intuition with
typical FP dynamics is wrong, or the marginal diversity information is not enough to
capture the behavior. It could also be that the quenched computation of complexity is
needed, instead of the annealed one we performed here.

72



4. Analytics: DMFT closures and Kac-Rice complexity

0.008

0.010

0.012

0.014

0.016

m

Optimize complexity (m, q)
= 100, = 5.0, = 0.00

0.1 0.2 0.3 0.4

0.000

0.005

0.010

0.015

0.020

q

uninvadable
free

marginal

static cavity
simulations

Figure 4.8. Optimization of complexity in the chaotic phase with respect to (m, q),
varying φ. We use this optimization to plot the argmax(Σ), that we hoped
would be a good prediction. We show the corresponding m and q predic-
tions, imposing uninvadability (blue line) or not (orange line). We compare
them with the simulation data (black line): for each time of simulation,
we infer the diversity of the system and plot the corresponding observables
(m, q). The optimal complexity is actually worse than the static cavity
(dotted red lines) as a prediction.
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5. Stabilization of chaos by a spatial
structure

In this chapter, we add a simple spatial structure to the initial model presented in
section 1.4.1. We show that high-diversity metacommunities can persist in dynamically-
fluctuating states for extremely long periods of time without extinctions, and with a
diversity well above that attained at equilibrium. We describe the quantitative conditions
for these endogenous fluctuations, and the key fingerprints which would distinguish them
from external perturbations. We establish a theoretical framework for the many-species
dynamics, derived from statistical physics of out-of-equilibrium systems. These settings
present unique challenges, and observed behaviors may be counter-intuitive, making
specialized theoretical techniques an indispensable tool. Our theory exactly maps the
many-species problem to that of a single representative species (metapopulation). This
allows us to draw connections with existing theory on perturbed metapopulations, while
accounting for unique properties of endogenous feedbacks at high diversity.

Materials from this chapter can be found in [62]. Additional details about computa-
tions and numerics are given in Appendix E.

My contribution to this work was to perform the DMFT derivation detailed in sec-
tion 5.3, redo the computation of the theory from section 5.4.1, and perform numerical
simulations for both ”real” ecosystems and DMFT.
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5. Stabilization of chaos by a spatial structure

5.1. Introduction1

While large temporal variations are widespread in natural populations [15, 16], it is difficult to
ascertain how much they are caused by external perturbations, or by the ecosystem’s internal
dynamics, see e.g. [17, 18]. In particular, both theoretical tools and empirical results come short of
addressing a fundamental question: can we identify when fluctuations in species abundances arise
from complex ecological interactions?

Our focus here is on high-diversity communities. Historically, studies of endogenous fluctuations
have focused on single populations or few species [19, 20, 21]. On the other hand, theories of many-
species interaction networks often center on ecosystems that return to equilibrium in the absence
of perturbations [3]. Some authors have even proposed that fluctuations driven by interactions
are generally too rare or short-lived to matter, since they can be self-defeating: dynamics that
create large erratic variations lead to extinctions, leaving only species whose interactions are less
destabilizing, until an equilibrium is reached [22, 23]. Here we go past both the equilibrium [3,
24] or few-species starting points [19, 20, 21], to look directly at the dynamics of high-diversity
communities in a spatially extended systems.

Many-species endogenous fluctuations can only persist if they do not induce too many extinctions

(Fig. 5.2). Extinction rates depend critically on the amplitude of fluctuations [25, 26], their

synchrony [27] and their correlation time [28]. The peculiarity of endogenous fluctuations is that

these properties arise from the species dynamics, and therefore feed back on themselves. A theory

of these feedbacks is however lacking.

We propose a novel quantitative approach, and show that many-species endogenous
fluctuations can persist for extremely long times. Furthermore, they can be realized in
experimental conditions, and identified in these experiments by multiple characteristic
features. Crucially, we show that states with higher species diversity have stronger
fluctuations, and vice versa. We also offer reasons why they may not have been observed
in previous studies, and directions in which to search. An important factor in maintaining
a dynamically fluctuating state is the spatial extension of the ecosystem, here modeled as
a metacommunity: multiple patches (locations in space) that are coupled by migration.
Such as setup is pictured in figure 5.1.

While equilibria are bound by linear stability, beyond that diversity there exist dy-
namically fluctuating states, with abundance fluctuations that grow continuously with
the diversity. This places equilibria within a broader continuum which also includes non-
equilibrium states. And as equilibria at high diversity have a unique phenomenology and
require dedicated tools [3, 24], so do these high-diversity, dynamically fluctuating states.

Our strategy is the following. We first propose and simulate experiments to show that
persistent fluctuations can be very elusive in a single well-mixed community, yet attain-
able in a metacommunity via three main ingredients: the existence of multiple patches,
moderate migration fluxes coupling them, and differences in conditions between patches.
These three ingredients can dramatically reduce the likelihood that large fluctuations
within a patch will lead to overall extinctions (see Fig. 5.2), and make it possible for
species to persist in highly fluctuating states. We then offer a quantitative understanding
of this phenomenon. We build on the analytical framework developed in [61] (dynamical

1So that each chapter may be read separately, I decided to preserve all specific chapters’ full introduc-
tion, even though it may overlap with the global and more detailed introduction from section 1. The
overlapping parts are presented in the box and can be skipped.
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Figure 5.1. Picture of the metacommunity setup. Each species is represented by a red
circle. The species form locally distinct well-mixed communities (blue cir-
cles), where the blue lines stand for the interaction between species. Even-
tually, communities are coupled by migration fluxes (large purple lines).
Specifically, this migration acts at the level of the species (dotted thin pur-
ple line), flowing individuals from the most abundant community to the
less abundant one.

Figure 5.2. The fluctuation-diversity feedback cycle. Species diversity is required to
maintain endogenous fluctuations. But these fluctuations cause extinc-
tions, which reduce diversity. This negative feedback cycle can lead to
the disappearance of endogenous fluctuations, especially in a well-mixed
community. However, if spatial heterogeneity can limit extinctions, this
negative feedback loop may slow down and create a fluctuating state that
persists for very long times.
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mean-field theory, see also [53, 66, 49]) that allows us to investigate, in a quantitative and
predictive way, the conditions under which robust fluctuations can arise from complex
interactions. This theory exactly maps a deterministic metacommunity (many-species
dynamics over multiple spatial locations) to a stochastic representative metapopulation
(single-species dynamics over multiple spatial locations). It predicts the distribution of
abundance, survival and variability for a species subjected to “noise” that results from
other species in the same community, rather than external perturbations. Dynamical
mean-field theory allows us to analyze these fluctuations, and show that the effective
stochasticity of species dynamics is a manifestation of high-dimensional chaos.

The intuitive picture that emerges from our analysis is the following: the persistence
of endogenous fluctuations involves a balance between competing phenomena, see Fig.
5.2. On the one hand, the system needs to preserve a high diversity (both in terms
of species number and interaction heterogeneity), as it is known [3, 24] that lower di-
versity leads to a stable equilibrium. On the other hand, the system also has to limit
excursions towards very low abundances. This requires weeding out species that induce
unsustainable fluctuations, and rescuing the others from sudden drops.

To accomplish that, the system relies on asynchronous dynamics between different
spatial locations, and finite strength and correlation time of the abundance fluctua-
tions. Even though all species show large fluctuations (so that interactions in a patch
often switch between being favorable and unfavorable to a given species), long-lasting
“sources” emerge for some of the species, i.e. patches where these species are, on aver-
age, more likely to remain away from extinction. Rare dynamical fluctuations leading
to extinction in a given patch are hampered by migration from the other patches, which
keeps the system in a non-equilibrium state. We show that, with moderate migration
and some spatial heterogeneity, high-diversity dynamical states can be reached where
species populations fluctuate over orders of magnitude, yet remain bounded for very long
times above their extinction threshold.

In a parallel work, Pearce et. al. [49] study a similar model for micro-diversity (dif-
ferent strains of the same species) in ecosystems of microbes and phages. They impres-
sively solve the dynamics for pure antisymmetric interactions, and relax the assumption
to weak antisymmetry in the setup of infinitely many islands connected by migration.
They also find that spatial structure enables endogenous fluctuations to persist for very
long times.

Our findings allow us to paint a more precise picture of when persistent endogenous
fluctuations can arise. We conclude with a discussion of the implications for biodiversity
and ecosystem stability, and predictions for future experiments on community dynamics.

5.2. Proposed experiments

In the following, we introduce our results via a set of proposed experiments, realized in
simulations, see Fig. 5.3. These results are later explained in the theoretical analysis.
All parameters for simulations are detailed in Appendix E.1.

We focus on a meta-community which consists of M patches (well-mixed systems)
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5. Stabilization of chaos by a spatial structure

Figure 5.3. Numerical realization of the proposed experiments, illustrating conditions
that lead to a fixed point or persistent fluctuations. (A) A single patch
(well-mixed community) with an interaction matrix Aij . (B) Multiple
patches connected by migration, with slightly different conditions (e.g.
temperature or resources) in each patch, represented here by location-
dependent parameters such as Aij,u. In the right and left panels we show
the time evolution of a few representative species abundances Ni(t): Ex-
periment A, with a single patch (M = 1) reaches a fixed point, while in
experiment B a meta-community with M = 8 patches reaches a stationary
chaotic state (S = 250). Middle panel: Fraction of persistent species (S∗

out of a pool of S = 250 species) as a function of time. Parameters and
values for running the simulations are given in Appendix E.1.
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connected by migration, and isolated from the external world. As an archetype of com-
plex ecological dynamics, we consider generalized Lotka-Volterra equations with random
interactions, which have been the focus of many recent theoretical advances [91, 42, 92].
The dynamics of the abundance Ni,u of species i in patch u read:

d

dt
Ni,u = Ni,u

Bi,u −Ni,u −
∑
j

Aij,uNj,u


+
∑
v

Di,uv (Ni,v −Ni,u) . (5.1)

where Aij,u are the interactions coupling the species, Bi,u represents the equilibrium
abundance in absence of interactions and migration (known as the carrying capacity),
and Di,uv are the migration rates between patches u and v. In addition, an extinction
threshold is implemented as follows: when a species’ abundance goes below a cutoff Nc

in all patches, the species is removed from the metacommunity and cannot return2. This
threshold corresponds to the minimum sustainable number of individuals, hence 1/Nc

sets the scale for the absolute population size (P ) of the species. This recipe combines
differential equations, which applies when populations are large, while still allowing for
extinctions. For simplicity, we take Di,uv = d/ (M − 1) and Nc identical for all species
and patches.

The species are assumed to have unstructured interactions (e.g. they belong to the
same trophic level), meaning that Aij,u are sampled independently 3 and identically for
different (i, j). (Our results also hold when Aij,u and Aji,u are correlated, see Appendix
E.5.) For a given species pair, its interactions Aij,u vary somewhat with u; this variability
corresponds to small differences in the conditions between the patches [93]. In the
simulation examples we set all carrying capacities Bi,u = 1; the phenomena described
below are also found if Bi,u vary between patches in addition to, or instead of the
interaction coefficients.

Our proposed experiments, illustrated by dynamical simulations, are the following:
(A) First, we model a single patch, M = 1 initially containing S = 250 species. Each

interaction coefficient is non-zero with probability c = 1/8, and the non-zero interactions
are Gaussian with mean (Aij,u) = 0.3, std (Aij,u) = 0.45. We find that species go extinct
until the system relaxes to a fixed point (stable equilibrium), see left panel of Fig. 5.3.

(B) We now takeM = 8 patches with the same initial diversity S = 250 and interaction
statistics as in (A). For each pair of interacting species, Aij,u varies slightly with location
u, with a correlation coefficient ρ = 0.95 between patches. The abundances now fluctuate

2We are interested in the regime where recolonization by migration between patches is fast compared
to the rate of extinction events. In this regime, we expect (and checked in a few cases) that other
implementations of the cut-off Nc will lead to the same qualitative phenomena. For instance, we
implemented patch-wise extinctions when the abundance goes below the threshold in one particular
patch, while still allowing migrations in.

3In the main text we focus on the asymmetric case in which Aij,u and Aji,u are uncorrelated. We show
in Appendix E.5 that our results also hold when correlations are present.
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without reaching a fixed point, see right panel of Fig. 5.3. At first the diversity decreases
as species go extinct, but this process dramatically slows down, and the diversity is
unchanged at times on the order of 105, see middle panel of Fig. 5.3. This result
is robustly reproducible: repeating the experiment three times, with interaction and
initial conditions sampled anew each time, dynamical fluctuations are reached and at a
similar long-time diversity, see Fig. 5.4(top).

Three essential observations emerge from simulating these experiments, and repeating
them for different parameters. First, species diversity and the strength of endogenous
fluctuations are tightly bound, each contributing to the other’s maintenance. Second,
as shown in Fig. 5.3, species trajectories first go through a transient phase where they
fluctuate over many orders of magnitude, causing numerous extinctions which lead to
a reduction of variability, until a fixed point (for M = 1) or non-equilibrium state (for
M = 8) with weaker fluctuations is reached. Third, the qualitative difference between
experiments A and B is robust to changes in parameter values. Changes in Nc and d
affect only quantitatively the states that are reached in experiment B, see Fig. 5.4(top).
For instance, by increasing the population size P = 1/Nc, we can reach dynamically
fluctuating states with higher long-time diversities, as shown in Fig. 5.4(bottom). When
the population size is reduced by increasing Nc, the long-time diversity decreases, but
remains high until Nc ∼ 10−2− 10−1, where it decreases dramatically. For example, the
diversity shown in Fig. 5.3(right) is 80%±13% higher than that reached for fixed-points4

with precisely the same number of patches, interactions and migration. Similarly, as
long as the migration coefficient is in the range d . 0.1 the main qualitative results
remain unaltered.

5.3. Dynamical Mean Field Theory

We now aim to understand which conditions allow a fluctuating state to be reached and
maintained without loss of species.

We use the Dynamical Mean Field Theory (DMFT), already presented in more details
in chapter 2. It exactly maps the deterministic meta-community problem (many species
in multiple patches) to a stochastic meta-population problem (single species in multiple
patches). When species traits and interactions are disordered, e.g. drawn at random
from some probability distributions, all species can be treated as statistically equivalent
[44]. We can then describe the whole system by following the trajectory of a single
species, randomly sampled from the community, and studying its statistics. In the
DMFT framework, the effect of all other species on that single species is encapsulated
by an “ecological noise” term generated by their fluctuations. This is analogous to the
use, in physics, of thermal noise to represent interactions between an open system and its
environment. Since species are statistically equivalent, the properties of this ecological
noise can be self-consistently obtained from the dynamics of the single species.

4Fixed points were found by removing species after the dynamical state has stabilized, by increasing
Nc until a fixed point was obtained.
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Figure 5.4. (Top) Species diversity at long times, compared to the theoretical bound
obtained in Appendix E.3 for large S (solid line). The bound depends on
the distribution of interactions, carrying capacities and initial pool size S.
Each symbol represents the state at the end of one simulation run, with
different values of the migration rate d and the abundance cut-off Nc, with
fluctuating states (circles) and fixed points (crosses). Three yellow circles
(two of which are overlaid) show the diversity in three runs with the same
conditions as in Fig. 5.3(B), all reaching dynamically-fluctuating states
and similar diversities. States closer to the theoretical bound (with higher
diversity) also exhibit larger fluctuations and are more difficult to reach
due to extinctions in the transient dynamics (see Fig.5.3). The dashed line
represents full survival (S∗ = S). (Bottom) The final diversity is set by
the transient dynamics, which is affected by factors such as the migration
strength and the total population size (1/Nc).

82



5. Stabilization of chaos by a spatial structure

We now present the sketch of the mathematical derivation of DMFT in this case.
We consider as a starting point equation Eq. (5.1). For the sake of clarity, we derive
DMFT under simplifying assumptions, but the result is much more robust and could
be applied to different ecology models as well as real data [44]. DMFT for ecological
models has a double valency analogous to the one of mean-field theories in physics: it is
at the same time an exact theory for some simple models, and a powerful approximation
largely applicable to a broad range of systems. For the sake of clarity, the derivation
assumes a fully connected model (all interactions are non-zero), but the results hold for
any connectivity C as long as C � 1, see remark at the end of this Appendix.

The assumptions which make DMFT exact are the following: all constants Ni,u(0),
Bi,u, Di,uv and Aij,u are random variables, sampled from known distributions. More
precisely:

• In each patch u and for all species i, the parameters Xu = {Ni,u(0), Bi,u, Di,uv}Si=1

are drawn from a probability distribution P which is a product measure Pu(Xu) =∏S
i=1 P(Xu

i );

• The interaction matrix can be decomposed as Aij,u = µ/S + σ/
√
S aij,u. aij,u are

standard random variables with mean zero, variance one, and correlation:

E [aij,u akl,v] = δik δjl ρuv

where we used the Kronecker symbol δik, and ρuv = ρ + (1 − ρ)δuv is a uniform
correlation ρ between patches.

With these conventions, we rewrite Eq. (1) in the following way:

d

dt
Ni,u = Ni,u [Bi,u −Ni,u − µmu(t) + ηi,u(t)] +

∑
v

Di,uv (Ni,v −Ni,u)

where mu(t) = S−1
∑S

i=1Ni,u(t) is the mean abundance in patch u, and ηi,u(t) =

−σS−1/2
∑S

j=1 aij,uNj,u(t) is a species-and-patch-dependent noise.
The DMFT equation can be obtained by following Ref. [61]: in the large-S limit, it

can be shown that the statistics of this multi-species deterministic process corresponds
to the following one-species stochastic process, for each patch.

d

dt
Nu = Nu [Bu −Nu − µmu(t) + ηu(t)] +

∑
v

Duv (Nv −Nu) (5.2)

where {Nu(0), Bu, Duv} are sampled from the distribution P(Xu), mu(t) is a determin-
istic function, and ηu(t) is a zero-mean Gaussian noise. The variability from one species
to another becomes in the DMFT setting the randomness contained in {Nu(0), Bu, Duv}
and ηu(t).

To make this point clearer, let us introduce two different averages:

• Y averages over the stochastic process in Eq. (5.2): over the stochastic noise ηu
and over the distribution P(Xu);
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• ES(Y ) denotes the statistical average over the deterministic multi-species system.
ES(Y ) =

∑S
i=1 Yi, and therefore also includes sampling of Xu

i .

DMFT represents in terms of a stochastic process the deterministic dynamical system
governing the dynamics of the S species in the ecosystem. In consequence, averages
over the stochastic process coincide with average over species [75, 61, 94]: for a given
observable Y : Y = limS→∞ ES(Y ). This is analogous to the representation of the
environment of an open physical system in terms of thermal noise, as it is done e.g. in
the case of the Langevin equation.

The second important aspect of DMFT is self-consistency. This is related to the fact
that the noise is induced by the dynamics of the species themselves, so its properties
can be obtained from dynamical averages:{

mu(t) = Nu(t)

〈ηu(t)ηv(t
′)〉 = σ2 ρuv Nu(t)Nv(t′)

where we used a last average 〈·〉 over the stochastic noise only, in order to define its
covariance. Henceforth we use the notation CNuv(t, t

′) = ρuvNu(t)Nv(t′). These relations
exactly take into account the correlations that emerge between the abundances and the
interactions.

We now show how DMFT equations simplify for a time-translationally-invariant state
of the system, which is in general reached after some transient time. In this state, all one-
time observables become constant in time, and two-time observables become functions
of the time difference only. {

mu = Nu(t)

CNuv(t, t
′) = CNuv(t− t′)

The correlation CNuv(t − t′) decays at large time differences to a non-zero constant,
leading to a static contribution to the noise term. In order to disentangle the static
part and the time-fluctuating part of the noise, we perform the decomposition ηu(t) =
zu + ξu(t) such that zu and ξu(t) are independent zero-mean Gaussian variables and
processes verifying:

〈zuzv〉 = σ2 lim
t−t′→∞

CNuv(t− t′)

and subsequently 〈ξu(t)ξv(t
′)〉 = σ2CNuv(t− t′)−σ2 limt−t′→∞CNuv(t− t′) which vanishes

for t− t′ →∞.
Substituting this decomposition into Eq. (5.2), we obtain:

d

dt
Nu = Nu [N∗u −Nu + ξu(t)] +

∑
v

Duv (Nv −Nu) (5.3)

where N∗u = 1−µmu + zu is a Gaussian variable, whose statistics is described in section
5.4.1. We checked numerically that for small migration D, the noise is only correlated
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between patches through its static part: for u 6= v, 〈ξu(t) ξv(t
′)〉 � zu zv, as presented

in Fig. 5.5. In this case, we can write the self-consistent closure as follows:

mu = lim
t′�1

Nu(t′)

〈zuzv〉 = σ2 lim
t�t′�1

CNuv(t, t
′)

〈ξu(t)ξv(t
′)〉 = δuv σ

2

[
CNuv(t, t

′)− lim
t�t′�1

CNuv(t, t
′)
] (5.4)

Figure 5.5. Covariance of the abundances in distinct patches. We use the general
notation cov(Yu, Yv) = ES [Y c

u (t)Y c
v (t′)] and Y c

u (t) = Yu(t) − ES [Yu(t)].
Left: In full lines we show the abundance covariance within a patch
u = v, and across patches u 6= v in dotted lines. The correlation
in abundances across patches is mainly static: dotted lines are reason-
ably flat. In other words, the correlation of ξu with ξv for u 6= v is
very small. Right: The covariance in ξ is shown to reach a TTI state.
It only depends on t − t′ after t′ = 105: the colored curves collapse.
In this data, 100 distinct simulations were averaged, with parameters
(S, µ, σ |M,ρ, d,Nc) = (400, 10, 2 | 8, 0.95, 10−10, 10−15).

We detail in Appendix E.2 that even though it is outside of the scope of this chap-
ter, the DMFT equations are valid in more general settings such as complex spatial
structures, or random graphs of interactions.

5.4. Diversity predictions at low migration rates, and numerical
validation

In this section, we use DMFT to predict some ecological properties, which we then
compare to numerical simulations. In order to compute the analytical predictions, we
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5. Stabilization of chaos by a spatial structure

use the static cavity method (see section 2.3.1). This method is exact in the Unique
Equilibrium phase, but is only approximate in the chaotic phase.

5.4.1. Predictions

We now focus on what the theory can predict. More precisely, we derive in Appendix
E.3 that the distribution of {N∗u}u=i...M satisfies the following closure in the limit of
large populations and small migration Nc � D � 1:mean [N∗u ] = 1− µ

〈
N∗i,u

〉
+

covariance [N∗u , N
∗
v ] = σ2ρuv

〈
N∗i,uN

∗
i,v

〉
+

(5.5)

where we introduced the average 〈Xi,u〉+ over alive species (N∗i,u > 0) only.
When u = v, as ρuu = 1, we find the expected single community result. In particular,

mean [N∗u ] and variance [N∗u ] do not depend on the patch u.
Given covariance [N∗u , N

∗
v ], the distribution of N∗i,u is completely specified: it is a

multivariate Gaussian in u, has the single-patch statistics of a single community, and a
known covariance between patches. The solution can then also give the distribution of
the number of sourcing patches.

In addition, we can compute the correlation coefficient ρN∗ of the N∗u ’s. We use here
our simple case of a uniform correlation ρa between patches ρuv = ρa + (1− ρa)δuv. We
introduce the notation ρa instead of ‘ρ’ in this section in order to avoid confusion with
ρN∗ .

ρN∗ ≡
covariance [N∗u , N

∗
v ]

variance [N∗u ]
= ρa

〈
N∗i,uN

∗
i,v

〉
+〈

N∗i,u
2
〉

+

The results are surprising: even when the different patches’ conditions tend to be iden-
tical (ρa → 1), the overlap between communities is not perfect (ρN∗ < 1), so the total
diversity is larger than the one in each patch. This happens exactly at the transition to
chaos at σc =

√
2, see Fig. 5.6.

5.4.2. Numerical checks

On Fig. 5.7, we compare the theory predictions to simulations. In terms of diversity,
the theory appears to give an upper bound to the simulations. The difference becomes
larger at higher values of σ, and for ρa closer to one. To look further into this difference,
it is useful to study diversity as a function of the value of the space-averaged N∗eff =

M−1
∑M

u=1N
∗
u of each species. Most of the difference in diversity is due to low values

of N∗eff , which are precisely the species that are more likely to go extinct, with good
agreement with theory at higher values of N∗eff . This is demonstrated in Fig. 5.9, which
shows that the theoretical prediction for the number of species with N∗eff > 0.2 is closer
to simulation results than the predictions for total diversity. At the moment we do not
know if remaining differences are because the theoretical argument is only approximate,
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Figure 5.6. Theoretical predictions for the diversity as a function of σ for M = 1, 8
patches, ρa = 0, 0.5, 0.95 and ρa → 1.

or whether in principle, with exceedingly low values of Nc and D, it could be approached
by simulations for any σ.

In addition, the analysis of the DMFT equations clarifies the main effect of coupling
patches by migration: patches with higher N∗u tend to act as sources, i.e. the species
most often grows there, and migrates out to sites where it cannot grow (sinks). We show
directly from simulations of the Lotka-Volterra equations in Fig. 5.8 that species have
particular patches which tend to act as sources consistently over long times. This fact
is counter-intuitive, as the abundances of all species may be fluctuating over orders of
magnitude in any given patch, yet this patch will retain its identity as a source (or sink)
when averaging over long time periods. The variability of the N∗us between patches thus
leads to an insurance effect, since it is enough to have one patch acting as a source to
avoid extinction of the species in the others.

5.4.3. Limitations of the theory

We do know however that the argument (in the derivation of Appendix E.3 for instance)
relies heavily on the fact that the time-averaged abundance of a species equals its local
bias:

Ni,u(t) = N∗i,u (5.6)

and that this condition is only approximate for low biases |N∗i,u| � 1. Also, the fact
that the theory does not explicitly depend on the migration implementation is somewhat
problematic. For instance, we could invert the flow of migrations and still get the same
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Figure 5.7. Numerical checks of the theoretical predictions. From top to bottom, we consider three

different observables: the diversity, the covariance in the abundances across distinct patches, and this

covariance rescaled by the one patch variance. By varying σ, we can control the state of the system:

on the left (σ = 1), we show the results for fixed points; on the right (σ = 2 >
√

2), we show the

results for persistent dynamical fluctuations. In dotted lines, we plot the theory predictions, as functions

of the correlation between patches’ interactions ρa. We compare them to simulations with parameters

(S,M, µ) = (400, 8, 10), and obtained by simulations run until final time tf = 104. We eventually vary

the couple (D,Nc). We use 50 distinct samples of the simulations for each combination of parameters,

in order to get error bars and relevant statistics. The cut-off is implemented via patch-wise extinctions

when the abundance goes below the threshold in each particular patch, in which case migration out of

the patch is turned off while still allowing inward migrations.

On the left side, we can see that the theory is exact in the fixed point regime. In this regime, as ρa → 1,

the predictions are equivalent to the one patch M = 1 theory, as all patches are the same. In the

persistent fluctuation state, the theory is only a good approximation. More precisely, the predictions

become more accurate as D and Nc go to zero, as expected. In addition, the agreement gets worse when

ρa → 1, because synchronization can occur.

In the top right figure, we show that the prediction for diversity is an upper bound. In the bottom right

figure, we see that indeed the prediction for ρn is still far from 1 when ρa → 1, for the values of D,Nc

used in the simulations.
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Figure 5.8. Sources maintain their identity over time. The degree to which a patch is
a source for a given species is measured by (dN/dt)diff, the contribution of
diffusion to the change of N(t), which is negative for sources and positive
for sinks. We show all species-patch pairs ordered by the average of this
quantity over long times, with error bars giving its standard deviation. For
94% of sources, and 85% of all species-patch pairs, this quantity (dN/dt)diff

retains its sign most of the time, being at least one standard deviation away
from zero.

(wrong in this case) theory. However, the agreement with numerical experiments is
surprisingly good as shown in figure 5.7, given the limitations.

To find the boundary of parameter space where fixed points loose their stability and
the system becomes chaotic, we look at the linear stability of persistent species. When
D is small, the species that are not sourced in each patch do not affect the stability, and
so the question simplifies to single patch stability, which when corr [Aij , Aji] = 0, results
in σc =

√
2 and with 1/2 of the species being sourced in each patch [45].

5.5. Reaching and maintaining a dynamical state

Let us first consider a single community (M = 1). For a species to survive for long
periods of time, it follows from DMFT that it must have positive N∗, or else N (t) decays
exponentially until the species goes extinct. Even if N∗ > 0, there is still a probability
(per unit time) of extinction, which depends on N∗, Nc and on the strength of the noise
ξ (t). Following extinctions, a remaining species interacts with fewer fluctuating other
species, causing the strength of the noise to decrease, see Fig. 5.10(a), and with it the
probability for extinction, see feedback loop in Fig. 5.10. To generate Fig. 5.10(a),
abundance fluctuations were measured in simulations at precisely the same conditions
but with fewer surviving species. Since extinctions become very rare at long times, this
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Figure 5.9. The fraction of persistent species S∗/S (circles) is compared to theoretical
bound (blue dashed line), for different values of Nc. Also shown is the
fraction of species above N∗eff > 0.2, compared to the theoretical bound for
that (red dotted line), showing better agreement than for the full diversity.
In this case, N∗eff has a slightly different definition.

could not be done by running the simulations for longer times. Instead, species where
removed from the simulation, starting with those that have the highest probability for
extinction, see Appendix E.1 for details. Results are averaged over 3 runs.

We can develop an analytical treatment for very small cut-off Nc (large population
size). In this case there is a large difference in time-scales between the short-term
dynamics induced by endogenous fluctuations, and the long-term noise-diversity feedback
cycle discussed above. In fact, the extinctions driving this feedback are due to rare events
in which the abundance of species with a positive N∗ decreases below the (very small)
cut-off Nc. For a species in an isolated patch (M = 1), the time-scale for such an event
is known [25, 26] to be of order of τ (1/Nc)

a where τ is a characteristic time of the
endogenous fluctuations, and a = 2N∗/W is independent5 of Nc, with W the amplitude
of the endogenous fluctuations,

W ≡
∫
dtCξ

(
t, t′
)

(5.7)

The important point here is that, although endogenous fluctuations disappear eventu-
ally, there is a clear separation of time-scales between typical endogenous fluctuations,
that are fast and lead to a quasi-stationary dynamical state, and rare extreme fluctua-
tions that cause extinctions and push the ecosystem into a different state.

While a single community might in principle achieve long-lasting endogenous fluctu-
ations, this however requires unrealistically large population sizes and species number,

5The expression of the time scale is analogous to the Arrhenius law for activated processes in physics
and chemistry: in this case, the counterpart of the energy barrier is −[N∗ lnNc] and fluctuation
amplitude W plays the role of the temperature.
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5. Stabilization of chaos by a spatial structure

Figure 5.10. Revisiting the noise-diversity feedback cycle in the light of our theoretical
framework. (a) Quantitative relationship between species diversity S∗,
i.e. the number of coexisting species, and strength of fluctuations std(ξ)
for M = 8 (rescaled by interaction heterogeneity σ). (c) Patch number
M and heterogeneity 1 − ρ (defined from the correlation coefficient ρ
between interactions Aij,u in different patches u) both contribute to the
persistence of endogenous fluctuations by two means, shown in (b): they
create source patches where a given species will tend to grow (see Fig.5.8),
and allow the asynchrony of fluctuations in different patches. These two
factors mitigate the likelihood that endogenous fluctuations will induce
species extinctions and cause their own suppression.
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see Appendix E.4. Migration between multiple patches substantially enhances persis-
tence due to the spatial insurance effect [27]: species are more unlikely to go extinct
because they need to disappear everywhere at once. The time scale for such an event
is intuitively expected to scale as τ (1/Nc)

Maeff with aeff = 2N∗eff/W where N∗eff is an
effective value for N∗ of a species across patches. This result is thus similar to the one
identified above for one patch, raised to the power M . The exact dependency should
still be worked out, this is ongoing work. These results assume that W is finite, and
that the noise acting on a species is independent between patches (asynchrony). Indeed,
for moderate values of D and ρ not too close to one, simulations show that Cξ (t, t′) is
a well-behaved function of t so that W is finite, and the correlation between patches is
found to be very small, see Fig. 5.5.

These expressions provide a quantitative description of the feedback cycle in Fig. 5.10.
Endogenous fluctuations disappear on the time scale at which species with characteristic
abundance N∗eff of order one would go extinct. We must further account for the vanishing
strength of the noise W as species disappear. This is shown in Fig. 5.10(a), where the
strength of the fluctuations is tightly linked to species diversity, and is zero at the
diversity of fixed points. Hence, extinctions significantly increase aeff , reducing the
chance for further extinctions.

As stressed above, the asynchrony of fluctuations in different patches is crucial: it
allows some species to survive with positive characteristic abundanceN∗i in at least one of
the patches. This leads to a higher total number of long-term persisting species, decreases
the likelihood of fluctuations to small abundances, and hence increases the stability of
a dynamically fluctuating state. If the migration rate D is too strong or ρ very close to
one, dynamics in the different patches synchronize, quickly annulling the insurance effect.
However, minor (few percent) changes in interaction coefficients or carrying capacities
between patches are enough to maintain this effect, see Fig. 5.10(bottom); we don’t need
to impose coexistence artificially, e.g. by requiring that every species has at least one
refuge (a patch so favorable to it that it always dominates there). These little variations
in the interaction coefficients are highly plausible, as interaction strength can vary with
many factors, including resource availability [95], or temperature and its influence on
metabolism [96]. The heterogeneity ρ required to reach a fluctuating state decreases
with M , see Fig. 5.10(bottom).

In practice, maintaining a dynamical state seems unfeasible for only one patch, at least
for reasonable values of population size P = 1/Nc and species number S, see discussion
in Appendix E.4. Yet the combined effect of the two phenomena described above allows
for very long-lived endogenous fluctuations in metacommunities, already for M = 2
patches.

5.6. Discussion

Complex ecological interactions can give rise to long-lasting fluctuating states, which
both require and allow the maintenance of high species diversity. This can happen
under a wide range of conditions, which we have illustrated in simulated experiments,
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and identified through an analytical treatment based on Dynamical Mean-Field Theory.
These results are robust to various modeling assumptions: our work puts forward the
role of spatial extension in persistent endogenous fluctuations. In a close-related study,
Pearce et al. [49] start from a slightly different ecological setting6 and reach a similar
conclusion. It should be noted that their analytical treatment is much more developed
than ours. In particular, they were able to derive the precise expression for the typical
timescale of extinctions.

While we have drawn parallels with the theory of stability and coexistence in externally-
perturbed ecosystems [27, 25, 26, 20], our approach also highlights essential differences
between environmentally-driven and endogenous fluctuations. We show that many-
species dynamics induce feedback loops between perturbation and response, and in par-
ticular a tight relationship between fluctuation strength and species diversity, which are
absent from externally-perturbed ecosystems. Moreover, while similar species can dis-
play correlated responses to environmental stochasticity [97], we expect here that their
trajectories will be starkly different and unpredictable, due to high-dimensional interac-
tions which lead to complex dynamics. The resulting picture from DMFT is that the
abundance of any given species undergoes stochastic dynamics with a finite correlation
time. This means that the trajectory of the species abundance cannot be predicted
after a time that is large compared to the correlation time–a hallmark of chaos, also
found in other models of high-dimensional systems [52]. Our theory paves the way for
quantitative testing of these fingerprints of diversity-driven fluctuations in data.

In a counterpoint to classic results [3], we have shown that, while highly diverse ecosys-
tems are unstable, they might still persist: extinctions can be avoided and biodiversity
maintained, despite species abundances fluctuating over multiple orders of magnitude.
We do observe a negative feedback loop, in which endogenous fluctuations cause ex-
tinctions, and eventually lead to their own disappearance as the ecosystem reaches a
lower-diversity stable equilibrium. But this self-suppression of fluctuations can be miti-
gated by a number of factors, among which space is particularly important.

In a single well-mixed community, we expect that persistent fluctuations might not be
observed in practice: while theoretically possible, they may require unrealistic population
sizes and species numbers. But spatial extension and heterogeneity can dramatically
reduce these requirements, in a way that parallels the insurance effect against exogenous
perturbations. When fluctuations are not synchronized across space, some patches can
act as sources, from which failing populations will be rescued through migration [20, 27].
Here, we find that the existence of sources is surprisingly robust: even if there is no
location where the environment is favorable to a given species, source patches can arise
from interactions, and endure for long times despite the large fluctuations in species
abundances. By allowing fluctuations without extinctions, spatial heterogeneity helps
maintain species diversity, and thus the fluctuations themselves. This result is robust
over a wide range of parameters, as it only calls for moderate values of inter-patch

6The two studies focus on complementary examples (antisymmetric interactions instead of asymmetric,
without self-regulation). In our setting, a single species pair would attain a stable equilibrium, while in
[49], it would exhibit predator-prey oscillations. Both cases lead to many-species chaotic fluctuations.
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migration [98]: the rate D must be such that, over the typical time scale of abundance
fluctuations, many individuals can migrate out of a patch (allowing recolonization in the
absence of global extinction), while representing only a small fraction of the population
in that patch.

A crucial result is that this condition suffices to ensure that synchronization between
patches is absent, and that the total strength and correlation time of the noise within
patches (W above) remain bounded for finite populations and finite migration rates
between patches. This is in contrast to alternative scenarios where noise correlations
decay slowly with time [99]. This result is non-trivial for endogenous fluctuations, as the
existence of feedbacks (encoded in the self-consistent equations of the DMFT framework)
can potentially lead to synchronization and long-time correlations in the noise. Yet we
demonstrate that synchrony is avoided, both through direct simulations, and by building
an analytical theory based on these assumptions, whose predictions match simulations
quantitatively.

The work raises many interesting directions for future work, including the role of finite-
dimensional space, where patches are only connected to their neighbors, and comparison
with experiments, for example on the role of asynchrony [100].

In conclusion, non-equilibrium fluctuating states might be much more common than
suggested by experiments and theory for well-mixed communities. And since these fluc-
tuations permit the persistence of more species than could coexist at equilibrium, we
might also expect significantly higher biodiversity in natural environments.
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In this chapter, we forget about the spatial structure of the ecosystem, but we add the
stochasticity of demographic noise for symmetric interactions. Our theoretical analysis,
which takes advantage of a mapping to an equilibrium disordered system, proves that for
sufficiently heterogeneous interactions and low demographic noise the system displays
a multiple equilibria phase, which we fully characterize. In particular, we show that in
this phase the number of stable equilibria is exponential in the number of species. Upon
further decreasing the demographic noise, we unveil a Gardner transition to a marginally
stable phase, similar to that observed in jamming of amorphous materials. We confirm
and complement our analytical results by numerical simulations. Furthermore, we ex-
tend their relevance by showing that they hold for others interacting random dynamical
systems, such as the Random Replicant Model. Finally, we discuss their extension to
the case of asymmetric couplings.

Materials from this chapter can be found in [63]. In particular, all details about the
analytical computations are in the Appendix of [63]. Additional details about numerics
are given in Appendix F.

My main contribution to this work lies in the numerical simulations. I designed
the numerical scheme, and performed the numerical study; which is a complex issue
in presence of demographic noise (see section 6.5). I also checked the basic analytical
computations.
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6.1. Introduction1

Lotka-Volterra equations describing the dynamics of interacting species are key to theoretical
studies in ecology, genetics, evolution and economy [67, 13, 58, 54, 42, 101]. Cases in which the
number of species is very large are becoming of general interest in disparate fields, such as in ecology
and biology, e.g. for bacteria communities [102, 103], and economy where many agents trade and
interact simultaneously both in financial markets and in complex economic systems [55, 56].

The theoretical framework used in the past for a small number of species is mainly based on the

theory of dynamical systems [104, 1, 105, 106, 107, 108]. When the number of ordinary differential

equations associated with the Lotka-Volterra (LV) model becomes very large, i.e. for many species,

methods based on statistical physics are ideally suited. Indeed, several authors have recently in-

vestigated different aspects of community ecology, such as properties of equilibria, endogenous

dynamical fluctuations, biodiversity, using ideas and concepts rooted in statistical physics of disor-

dered systems [42, 41, 109, 45, 47, 36, 38, 49, 62, 110, 111, 112]. Similar investigations have been

also performed for economic systems [57]. Dealing with a large number of interacting species can

actually become a welcome new ingredient both conceptually and methodologically. In fact, quali-

tatively new collective behaviors, classified into phases, can emerge. Also, as it happens in physics,

such phases are not tied to the specific model they come from, instead they characterize whole

classes of systems in a generic way, potentially including natural systems2. From this perspective,

it is very interesting to ask which kind of different collective behaviors arise for LV models in the

limit of many interacting species and what are their main properties [45, 47]. These questions,

which have started to attract a lot of attention recently, tie in with the analysis of the properties

of their equilibria [113, 114, 115].

Here, we focus on the usual disordered Lotka-Volterra system from section 1.4.1, but
we add demographic noise. We consider the case of symmetric interactions and small
immigration and work out the phase diagram as a function of the degree of heterogeneity
in the interactions and of the strength of the demographic noise. Compared to previous
works [42, 116, 45, 47] adding demographic noise not only allows us to obtain a more
general picture, but also to fully characterize the phases and connect their properties
to the ones of equilibria. In particular, we show that the number of stable equilibria in
the LV model is exponential in the system size and their organization in configuration
space follows general principles found for models of mean-field spin-glasses. Our findings,
which are obtained for symmetric interactions, provide a useful starting point to analyze
the non-symmetric case, as we shall demonstrate by drawing general conclusions on
properties of equilibria in the case of small asymmetry.

1So that each chapter may be read separately, I decided to preserve all specific chapters’ full introduc-
tion, even though it may overlap with the global and more detailed introduction from section 1. The
overlapping parts are presented in the box and can be skipped.
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6.2. Model

Henceforth we focus on the disordered Lotka-Volterra model for ecological communities
[42, 45] defined by the equations:

dNi

dt
= Ni

1−Ni −
∑
j,(j 6=i)

αijNj

+ ηi(t) (6.1)

where Ni(t) is the relative abundance of species i at time t (i = 1, . . . S), and ηi(t) is
a Gaussian noise with zero mean and covariance 〈ηi(t)ηj(t′)〉 = 2TNi(t)δijδ(t − t′) (we
follow Ito’s convention). This noise term allows us to include the effect of demographic
noise in a continuous setting [117, 118, 119]; the larger the global population, the smaller
the strength T of the demographic noise. Immigration from the mainland is modeled by
a reflecting wall for the dynamics at Ni = λ, since this is more practical for simulations
than the usual way of adding a λ in the RHS of Eq. (6.1) (see the Appendix for more
details).

The elements of the interaction matrix αij are again independent and identically
distributed variables such that:

mean[αij ] = µ/S var[αij ] = σ2/S (6.2)

We consider the interactions in the symmetric case with αij = αji. As shown in
[47], the stochastic process induced by eq. (6.1) admits an equilibrium-like stationary
Boltzmann distribution:

P ({Ni}) = exp

(
−H({Ni}

T

)
(6.3)

where

H = −
∑
i

(
Ni −

N2
i

2

)
+
∑
i<j

αijNiNj +
∑
i

[T lnNi − ln θ(Ni − λ)] (6.4)

The before-last term is due to the demographic noise and the last one to the reflect-
ing wall, which leads to a lower-immigration cut-off, at Ni = λ (θ(x) is the Heaviside
function). By taking advantage of this mapping to an equilibrium statistical mechanics
problem and by using theoretical methods developed for disordered systems, we ob-
tain the properties of the stationary states and the equilibria of the LV-model from the
analysis of the equilibrium states and the local minima of the energy function H. Our
theoretical framework is standard and based on the replica method [75]; the computation
is described in full details in the Appendix of [63]. Here, we present directly the results.

6.3. Analytical Results

Among the most important ones is the existence of three distinct phases for the LV-
model in presence of demographic noise and small but non-zero immigration, as shown
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in Fig. 6.1 (we focus on λ = 10−2, similar results are obtained for smaller values of
λ). We find no sensitive dependence on the average interaction parameter, so the phase
diagram has been obtained at fixed value µ = 10.

For large enough demographic noise (corresponding to high-temperature) we find that
there is a single equilibrium phase, i.e. the noise is so strong that the interactions
within species do not play an important role: for any initial condition the system relaxes
toward a unique dynamically fluctuating stationary state. When the strength of the
demographic noise decreases, multiple states emerge. We can study this transition by
analyzing the stability of the thermodynamic high-temperature phase. This is performed
by analyzing its free-energy Hessian matrix H. The point at which the lowest eigenvalue
of H reaches zero signals the limit of stability of the high-temperature phase and the
emergence of multiple equilibria.

Within the replica method that we used here, this corresponds to the breaking of
replica symmetry and to the requirement of having a zero replicon eigenvalue. This
leads to an equation for the transition line corresponding to the blue curve in Fig. 6.1:

λR = (βσ)2
[
1− (βσ)2

(
〈N2

i 〉 − 〈Ni〉2
)2]

= 0 , (6.5)

where β = 1/T . The average 〈X〉 is the thermodynamics average taken over the effective
Hamiltonian (6.4), while X denotes the average over the quenched disorder associated to
the random interactions (i is a dummy index since statistically all species are equivalent
after average over the interactions). Physically, the condition above can be shown to
correspond to a diverging response function [45, 47], and is a signature of the system
being at the edge of stability, namely at a critical point in the parameter space.

Below the blue curve there exist multiple states—which one is reached dynamically
depends on the initial condition. Such states correspond to dynamically fluctuating equi-
libria that are stable to perturbations and that have typically an overlap in configuration
space given by

q0 =
1

S

∑
i

〈Ni〉α〈Ni〉β (6.6)

where α and β denote the average within two generic states α and β. One can similarly
define the intra-state overlap q1 = 1

S

∑
i〈Ni〉2α. See Fig. 6.2 for a pictorial representation

of these two quantities and the organization of equilibria in phase space. This is (in the
replica jargon) the so-called one-step replica symmetry breaking phase (1RSB) [60]. In
order to characterize the properties of this phase of the LV-model, we have computed
the number of states, and hence of equilibria, using methods developed for structural
glasses [120]. More specifically, we have computed the complexity Σ, which is defined as
the logarithm of the number of equilibria with a given free-energy density f normalized
by the number of species S. This allows us to show that the number of equilibria below
the blue line in Fig. 6.1 is exponential in S, i.e. there is a strictly positive complexity
Σ.

When decreasing further the demographic noise, the heterogeneity in the interactions
becomes even more important and a second phase transition takes place. In order to
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Figure 6.1. Phase diagram showing the strength of the demographic noise, T , as a
function of the degree of heterogeneity, σ, at fixed µ = 10 and selected value
of the cutoff, Nc = 10−2. Upon decreasing the noise three different phases
can be detected: i) a single equilibrium phase; ii) a multiple equilibria
regime between the light blue and the orange lines; iii) a Gardner phase,
which turns out to be characterized by a hierarchical organization of the
equilibria in the free-energy landscape.

q1

q0

Figure 6.2. Zoom on a pictorial landscape. The parameters q0 and q1 denote the size
of the largest and the innermost basins respectively within the two-level
structure of the 1RSB phase.

99



6. Impact of demographic noise

locate it, we repeat exactly the same procedure as for the single equilibrium phase but
now within one of the typical states with a given free-energy f . The computation is
more involved (it corresponds to analyzing the stability of the 1RSB Ansatz) and leads
to the condition:

λ1rsb
R = (βσ)2

[
1− (βσ)2〈

(
〈N2〉1r − 〈N〉21r

)2〉m-r

]
= 0 (6.7)

where the two different averages correspond to the intra-state average 〈·〉1r and the
inter-state average, 〈·〉m-r. All technical details of the calculation are in the Appendix
of [63]. The critical temperature that results from the equation above leads to the
orange line in Fig. 6.1. Crossing this line results in a fragmentation of each state into
a fractal structure of sub-basins [121] (see the landscape on the bottom in Fig. 6.1):
each state becomes a meta-basin that contains many equilibria, all of them marginally
stable, i.e. poised at the edge of stability [47], and organized in configuration space
in a hierarchical way, as in the case of mean-field spin glasses [75]. This phase, which
is called Gardner, plays an important role in the physics of jamming and amorphous
materials [122, 123]. Our results unveil its relevance in theoretical ecology by showing
that it describes the organization of equilibria in the symmetric disordered LV-model at
low enough demographic noise and for highly heterogeneous couplings.

6.4. Numerical results

We now present numerical simulation results that confirm and complement our analytical
study. We numerically integrate the stochastic equation Eq. (6.1) using a specifically
designed method detailed in section 6.5. The initial abundance for each species is drawn
independently in [0, 1]. The exact numerical protocol is presented in Appendix F.1. In
this section, we will refer to the One Equilibrium phase, and the Multiple Equilibria
phase identified on figure 6.1 (we do not consider here the Gardner phase). They are
separated by a critical temperature that we denote T1RSB(σ).

6.4.1. Observables’ definition

In order to compare with the theory, we need to decide which observables to focus
on. So far, there are four sources of fluctuations in the process: the three random
parts (interactions, initial conditions and demographic noise) that we labelled with r =
1..Nsample, and the species themselves i = 1..S. In the following, we will denote E[X]
the average over all those contributions. For example:

E[N(t)N(t′)] = S−1N−1
sample

S∑
i=1

Nsample∑
r=1

N r
i (t)N r

i (t′)

It can be shown [77] that if the system is large enough (S � 1) and the sampling
thorough enough (Nsample � 1), there is a convergence in law of the process. Mainly,
there is a well defined limit (S,Nsample → ∞) that we can compare with the theory.
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To fix ideas, we generically use S ∼ 500 and Nsample ∼ 50, and we checked there is
no (S,Nsample) dependency at this scale. More precisely, in the S → ∞ limit, the free
energy is self-averaging, so results should typically not depend on the realization of the
sampling. Here for the numerics, as 1 � S < ∞, we still use some averaging over the
samples to get cleaner data.

We will first assume that if we wait for a long-enough time twait, the system will reach
a time-translationally invariant (TTI) state, at least for high-enough temperatures. For
instance, the two-time correlation C is a function of the time difference:

∀ t ≥ t′ > twait, E[N(t)N(t′)] = C(t, t′) = C(t− t′)

We check this numerically, see figures 6.3a and 6.3b. The waiting-time depends on
the parameters, mainly (σ, T ). However, if we lie in the One Equilibrium phase, we can
always find the TTI state, for rather small waiting times twait ∼ 102.

All the comparisons we will be making are in this state (t ≥ twait), for the One
Equilibrium phase. We will now use a mapping between thermodynamics properties,
and dynamical ones. Our observables are the following:

h = E [N(t)]

qd = C(0) = E
[
N(t)2

]
q0 = lim

τ→∞
C(τ) = lim

τ→∞
E [N(t)N(t+ τ)] ∼ E [N(t)N(tmax)]

The lhs is predicted by the theory, and the rhs are numerical observables.

6.4.2. One example of numerical results in the One Equilibrium phase

On figure 6.3a, we show that one time observables such as E [N(t)] or E
[
N(t)2

]
converge

to a constant value in time. This indicates the reach of a TTI state. It can be confirmed
by the collapse of two-time observables such as the correlation E[N(t)N(t′)] = C(t, t′),
that we plot as C(t− t′, t′) for different t′ on figure 6.3b. The long-time limit of C(t− t′)
is the overlap between two generic configurations belonging to the single equilibrium
state.

We can see that for t > twait ∼ 20 here, the system is indeed TTI, at least regarding
these observables. We then read the values of h = E [N(t)]TTI and qd = E

[
N(t)2

]
TTI

when they stabilize. And we read q0 = E [N(t)N(tmax)]TTI on the collapse of figure
6.3b.

From the time-dependence of C(t − t′) one can also estimate the typical time-scale
characterizing dynamical fluctuations within the single equilibrium phase. Formally, we
define τdecorrel by the identity:

C(τdecorrel)− C(∞)

C(0)− C(∞)
= 0.3 (6.8)
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(b) Correlation E[N(t)N(t′)] = C(t, t′), plotted
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Figure 6.3. The system reaches a TTI state in the One Equilibrium phase. (a) The
dashed lines correspond to the read TTI value of h and qd. (b) We see that,
up to fluctuations, the correlation collapse as a function of t − t′ for t′ >
twait ∼ 20. The dashed line correspond to the read TTI value of q0. Here,
the timescale for decorrelation is around τdecorrel ∼ 10. The data for both
plots comes from only one sample of the process, with discrete timestep
dt = 10−1, and parameters (S, µ, σ, λ, T ) = (500, 10, 1, 10−2, 10−1).

6.4.3. Comparison with analytical results in the One Equilibrium phase

The results are presented on figure 6.4: the theory matches beautifully the numerics.
In Fig. 6.5, we plot τdecorrel as a function of (T − T1RSB), where T1RSB is the critical

value of T at which the single equilibrium phase becomes unstable (blue line in Fig. 6.1).
We find that the thermodynamic instability is accompanied by a dynamical transition
at which τdecorrel diverges as a power law with an exponent close to 0.5, see Fig. 6.5.

6.4.4. Results in the Multiple Equilibria phase

For small demographic noise, i.e when T is below the blue line of Fig. 6.1, previous
results on the dynamics of mean-field spin glasses [124, 125, 65] suggest that the LV-
model should never reach an equilibrium stationary state, and instead it should display
aging [84, 126]. In fact, one expects that, among the very many equilibria, the dynamics
starting from high-temperature-like initial conditions falls in the basin of attraction of
the most numerous and marginally stable equilibria, and display aging behavior. This
is indeed what we report in Fig. 6.6 which shows that older the system is, the longer
it takes to decorrelate. The landscape interpretation of this phenomenon is that the
system approaches at long times a part of configuration space with many marginally
stable equilibria. This leads to aging because the longer the time, the smaller the
fraction of unstable directions to move, hence the slowing down of the dynamics, but the
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Figure 6.4. Comparison with the theory in the One Equilibrium phase. Parameters
are (S, µ, σ, λ) = (500, 10, 1, 10−2). We consider the observables (h, qD, q0)
as a function of temperature. The orange full line is the theory predictions.
Blue crosses are numerical results, error bars are taken with respects to the
Nsample = 50 different samples of the ecosystem. We found twait ∼ 200 to
be enough to observe TTI state in all these values of temperature, except
for the last point on the left (T = 2.102): due to slowing down of the
dynamics, we had to increase the extent of the simulation and found twait ∼
3000. the orange dashed line correspond to the critical temperature at
which the theory enters the Multiple Equilibria phase (it becomes 1RSB).
Indeed, numerically we can’t observe TTI state below this temperature,
even increasing tmax to 107.
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Figure 6.5. Critical slowing down of the dynamics. We plot the decorrelation time
τdecorrel(T ) as a function of T − T1RSB, in a log-log scale. Blues crosses
come from the same numerical data as figure 6.4. Red dashed line is a
simple fit. As we approach the transition, the system becomes slower and
slower, and the dynamical timescale diverges.

exploration never stops and eventually the system never settles down in any equilibrium
[83, 127, 128]. The two dashed lines in Fig. 6.6 correspond to our analytical prediction
for the intra-state and the inter-state overlaps of the marginally stable equilibria. The
agreement is satisfactory but larger times would be needed to fully confirm it.

6.5. Numerical scheme to sample demographic noise

In this section, we present in details our numerical scheme for integration of the stochastic
equation Eq. (6.1). As detailed in Appendix F.2, the immigration has to be treated
carefully. Indeed, a generic constant immigration rate is not strong enough to prevent
populations from reaching very low values. We first perform a quick literature review of
the different existing schemes, before introducing ours.

6.5.1. Literature review

Numerical simulations need discrete time. However, when discretizing time with bounded
random processes, one often encounters a non-zero probability that during one time-step
the system will cross the boundary of the system (for example the N ≥ 0 boundary in
our case), and become numerically unstable. We review different solutions that have
been proposed to solve this issue, and check how they deal with our Lotka-Volterra (LV)
system. A more thorough review can be found in [119].
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Figure 6.6. Aging behavior. Parameters are (S, µ, σ, λ, T,Nsample) =
(2000, 10, 1, 10−2, 1/80, 40). We plot the rescaled correlation
C(t, t′)/C(t′, t′) as a function of t − t′, for different t′. The different
curves no longer collapse, there is no TTI state anymore. In dotted black
and red lines, we respectively show the predictions for the intermediate
and final plateau values. They do not coincide exactly with the data, but
the trends correspond.

A first naive way to go around the difficulty is to change variable (sqrt, ln...). But
this won’t work because if the noise becomes treatable, the deterministic part becomes
numerically unstable. Most articles then study the numerical integration of processes
such as Ṅ = α+ βN + η, where η has correlation 〈ηtηt′〉 = 2TNt δ(t− t′).

Reference [129] proposes Balanced Implicit Method: they implement a clever dis-
cretization scheme so that the boundaries (positivity) are respected. The scheme amounts
to Euler’s for small time step. It needs a small regularization. It does not work for LV,
because it needs very small regularization parameter and time-step to give good results.
This is too heavy numerically. Reference [130] derives the exact Fokker Planck solution of
a simpler system. But sampling is inefficient (rejection method). Reference [131] builds
on this method by improving the sampling method, but this still isn’t satisfactory. Even-
tually, Reference [132] improves again the method, by exactly solving (Fokker-Planck)
the full process. The sampling is clever, with Poisson variables. They also indicate a
way to solve more elaborate processes, which we will detail in the following section. Our
strategy is heavily based on Reference [132].

6.5.2. Our implementation

The idea from [132] is to separate the process into solvable ones. More precisely, we
want to solve:
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Ṅi = ηi −N2
i −Ni

(∑
αijNj − 1

)
...+hardWall(λ) (6.9)

where hardWall(λ) implements the hard wall boundary at N = λ. We will discretize
time with a timestep dt, and further subdivide it into three timesteps dt′ = dt/3. We
consider that only one part of the process is active during a subtimestep dt′. So the final
scheme is the following:

1. From [130], we know how to sample efficiently the demographic noise only

Ñi(t+ dt′) = Gamma

[
Poisson[

Ni(t)

T dt′
]

]
T dt′

This corresponds to a process which only feels the demographic noise Ṅi = ηi dur-
ing [0, dt′]. We respectively used the notation Poisson[ω] (Gamma[ω]) for random
Poisson (Gamma) variables, with parameter ω.

2. Treating immigration as a reflecting wall. The particle wishes to go to Ñi but
bounces on the wall.

Ni(t+ dt′) = λ+ |Ñi(t+ dt′)− λ|

3. During [dt′, 2dt′], only integrate the blue process Ṅi = −N2
i :

Ni(t+ 2dt′) =
Ni(t+ dt′)

1 + dt′Ni(t+ dt′)

4. During [2dt′, 3dt′], only integrate the pink process Ṅi = −Ni (
∑
αijNj − 1):

Ni(t+ 3dt′) = Ni(t+ 2dt′) exp dt′
(

1−
∑

αijNj(t)
)

There are a lot of different combinations of this kind of schemes. We tried some, and
chose this one after a lot of checks on simpler models for which we know the distributions
at all times. In Appendix F.3, we review the issues and possible improvements of our
current scheme.

6.6. Analytical results on other models

In this section, we apply our analytical treatment to a close-related model, and discuss
the behavior we expect from the relaxation of the perfect symmetry hypothesis in the
interactions.

Our characterization of the phases and the dynamics of the LV-model has important
consequences on related systems, in particular on the so-called random replicant models
(RRMs) that consist of an ensemble of replicants evolving according to random interac-
tions. Given their numerous applications in biology, optimization problems [133, 134] as
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well as evolutionary game theory [135, 136], RRMs still attract great theoretical inter-
est. The RRM, which was introduced in [134] and further studied in [116], is remarkably
similar to the disordered LV-model we studied. In the case of symmetric interactions,
one can similarly map the problem onto an equilibrium statistical physics one with the
following Hamiltonian:

HR = −
S∑

i<j=1

Jijxixj − a
S∑
i=1

x2
i (6.10)

where xi/S is the concentration of the ith family in the species pool subject to the
global constraint

∑
i xi = S for all xi ≥ 0. The couplings Jij are i.i.d. Gaussian variable

with variance J2/S. Provided an appropriate rescaling of the interaction matrix of the
two models, we can show that the average interaction term µ for LV – standing for a
purely competitive environment – plays the same role as the Lagrange multiplier that
is introduced in RRM to enforce the sum of all concentrations to be fixed. The main
differences with respect to Eq. (6.4) is the absence of the logarithmic term. Our analysis
can be fully extended to the RRM, as we show in the Appendix. The main result is that
the three phases we found for the LV-model are present also for the RRM, and organized
in a phase diagram (see Fig. 8) that is remarkably similar to the one in Fig. 6.1. This
strengthens the generality of our results, and clarifies the nature of the glassy phase of
the RRM that was first investigated in [116].
Let us finally discuss how we expect our results to change if the interactions contain a
small random asymmetric component. The multiple basins structure associated with the
1RSB phase should not be affected because its basins correspond to stable stationary
states, and a small non-conservative random force should not destabilize them [137]. On
the contrary, the fractal structure and the decomposition into sub-basins are expected to
be wiped out because of the marginal stability of the equilibria associated with it [138,
139, 115]. In absence of demographic noise, one therefore expects a single equilibrium
at small σ, which is replaced by an exponential number of chaotic attractors at large
σ. The demographic noise adds additional dynamical fluctuations to these multiple
equilibria and eventually makes them merge in a single equilibrium, thus leading to a
phase diagram similar to Fig.1 but with only the blue line and two phases (single and
multiple equilibria).

6.7. Conclusion

In conclusion, we have unveiled a complex and rich structure for the organization of
equilibria in a central model for ecological communities. Our results, supported by dy-
namic simulations, highlight the relevance of multiple equilibria phases for the dynamics
of many strongly interacting species. Moreover, our findings clarify the glassy nature of
the equilibria previously studied in [42, 45, 47, 38, 140]. As we have shown, our results
carry out to more general contexts, in particular to models originating from evolution-
ary game theory. We expect that the collective dynamical behaviors — the phases —
found in this work go beyond the LV-model itself and may play an important role in a
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variety of contexts from biology to economy, which can be modeled by high-dimensional
dynamical systems with random couplings.
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Complex ecological interactions can give rise to long-lasting fluctuating states, which
both require and allow the maintenance of high species diversity. This can happen
under a wide range of conditions, which we have illustrated in simulated experi-
ments, and identified through an analytical treatment based on disordered system
techniques: the Dynamical Mean Field Theory.
While we have drawn parallels with the theory of stability and coexistence in
externally-perturbed ecosystems [27, 25, 26, 20], our approach also highlights essen-
tial differences between environmentally-driven and endogenous fluctuations. We
show that many-species dynamics induce feedback loops between perturbation and
response, and in particular a tight relationship between fluctuation strength and
species diversity, which are absent from externally-perturbed ecosystems. Moreover,
while similar species can display correlated responses to environmental stochasticity
[97], we expect here that their trajectories will be starkly different and unpredictable,
due to high-dimensional interactions which lead to complex dynamics. The resulting
picture from DMFT is that the abundance of any given species undergoes stochastic
dynamics with a finite correlation time. This means that the trajectory of the species
abundance cannot be predicted after a time that is large compared to the correlation
time – a hallmark of chaos, also found in other models of high-dimensional systems
[52].
In a counterpoint to classic results [3], we have shown that, while highly diverse
ecosystems are unstable, they might still persist: extinctions can be avoided and
biodiversity maintained, despite species abundances fluctuating over multiple or-
ders of magnitude. We do observe a negative feedback loop, in which endogenous
fluctuations cause extinctions, and eventually lead to their own disappearance as
the ecosystem reaches a lower-diversity stable equilibrium. But this self-suppression
of fluctuations can be mitigated by a number of factors, among which space is par-
ticularly important.

1So that each chapter may be read separately, I decided to preserve all specific chapters’ full conclusion,
even though it may overlap with the global conclusion from here. The overlapping parts are presented
in the box and can be skipped.
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Conclusive remarks on my work

Summary

I will now conclude in more details on my work in particular. During my PhD, I worked
on the chaotic population dynamics in large ecosystems. I tried to show that chaos is
much more present in ecological setups than what is usually considered – at least from
a theoretical point of view. Non-equilibrium fluctuating states might be more common
than suggested by experiments and theory for well-mixed communities. And since these
fluctuations permit the persistence of more species than could coexist at equilibrium, we
might also expect significantly higher biodiversity in natural environments.

In order to study this phenomenon, I applied a powerful theoretical framework relying
on disordered system techniques: the Dynamical Mean Field Theory. In chapter 2, I
have presented a general derivation of DMFT for models of ecosystems based on the
dynamical cavity method. I developed a numerical method to solve DMFT that can
be used for many different systems characterized by stochastic dynamics and by a large
number of degrees of freedom. One important application concerns the dynamics of
interacting particle glassy systems in the limit of infinite dimensions [79, 80, 81]. In a
more ecological context, I have implemented and tested our numerical method for the
generalized Lotka-Volterra model of ecosystems and showed that it can capture complex
dynamics such as chaos and aging.

In the following chapters, I focused on the aging dynamics: without immigration, the
chaotic dynamics in an isolated ecosystem become slower and slower. In chapter 3, I pre-
sented the basic properties of the fixed points of the dynamics, and numerically showed
that the ecosystem chooses marginally stable fixed points at long times. In chapter 4, I
made various assumptions in order to solve analytically the DMFT equations, proposed
a simpler model to understand aging dynamics within DMFT, and derived the Kac-Rice
complexity of fixed points as an alternative method to study the dynamics. Both chap-
ters 3 and 4 are still ongoing studies. More precisely, I am currently investigating if the
fixed points metadynamics can be a predictive approach; I want to solve DMFT with a
triangular potential in order to check the closure in temperature and the self-consistency
of stable chaotic dynamics; and I would like to solve the aging toy-model. I reckon that
the current state of these studies already gives relevant insights on the disappearance of
the chaotic behavior, but also that a more complete view could be reached with a little
bit more work.

In chapter 5, I used the DMFT framework to study how the spatial structure of an
ecosystem stabilizes the chaotic dynamics. In a single well-mixed community, persis-
tent fluctuations might not be observed in practice: while theoretically possible, they
may require unrealistic population sizes and species numbers. But spatial extension and
heterogeneity can dramatically reduce these requirements, in a way that parallels the
insurance effect against exogenous perturbations. When fluctuations are not synchro-
nized across space, some patches can act as sources, from which failing populations will
be rescued through migration [20, 27].

Eventually, in chapter 6, I considered how demographic noise can affect the dynamics
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of the single well-mixed community. Analytical results, supported by dynamic simu-
lations, highlight the relevance of multiple equilibria phases for the dynamics of many
strongly interacting species. Moreover, the findings clarify the glassy nature of the equi-
libria previously studied in [42, 45, 47, 38, 140]. The results carry out to more general
contexts, in particular to models originating from evolutionary game theory. It is ex-
pected that the collective dynamical behaviors found in this work go beyond the general
Lotka-Volterra model itself and may play an important role in a variety of contexts from
biology to economy, which can be modeled by high-dimensional dynamical systems with
random couplings.

Future directions of research

One aspect which is clearly missing from my PhD consists in the application to real
ecological data obtained monitoring well-mixed ecosystems, such as microbiota or plant
experiments [51, 39, 46]. Even though precise time-series of populations are challenging
to obtain in field ecology, new techniques [59, 141] should allow the comparison to our
theoretical predictions.

From a more theoretical aspect, my PhD raises many interesting directions for fu-
ture work, including the role of finite-dimensional space, where spatial patches are only
connected to their neighbors. Comparison with experiments could also be done in this
context, for example on the role of asynchrony [100].

A few related directions of research are already under investigation at the moment:
how does the analysis extend to ecological interactions that do not scale with the number
of species, and how to integrate the theory of evolution into the ecological predictions.
These two directions should provide a more general picture of the natural dynamics in
real ecosystems.

On a more specific subject, one crucial theoretical key-point is still missing from my
study: the time-scale needed for chaotic dynamics to disappear, in an isolated ecosystem
with a population cut-off. This is related to the ongoing study, both numerical and
analytical, that was presented in chapters 3 and 4. Even though a relevant advancement
towards this scaling was hinted at in [49], a full theory for this time-scale is still missing. I
reckon that this theory is the missing step for chaotic dynamics to be considered seriously
in data analysis.

Nevertheless, I consider that this PhD can provide a strong theoretical base to pursue
further analysis, and I am glad that I could contribute in this way.

From a more personal point of view, I reckon that, while research can always improve
our understanding of ecosystems, the emergency of the global ecological situation should
trigger a different kind of involvement. Indeed, it seems to me that the priority now lies in
scientific vulgarization and political commitment. Along these lines, I was lucky enough
to be invited to contribute to a national radio broadcast on France Culture [142], and I
do intend to keep on being active in these domains.
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A. Dynamical Mean Field Theory (chapter
2)

A.1. Immigration as a mathematical regularization of the
problem

In this section, we consider why a regularization is needed in the general Lotka-Volterra
model and how it is performed by immigration.

We recall the general Lotka-Volterra model from equation 1.7:

∀i = 1, ..., S,
dNi

dt
=

ri
Ki
Ni(Ki −Ni)−Ni

∑
j 6=i

αijNj + λi

Without immigration λi, there are two main issues:

• the abundances are considered continuous, but they come from individual-based
processes. Therefore there should be a cut-off below which an abundance is set to
0, as there is no longer any alive individual of the species. Without such a cut-off,
the species that should go extinct only do so in the limit of infinite time, which is
unphysical;

• in the absence of immigration, the final state of the system can depend strongly on
initial conditions. For example, if a species population is set to 0 at time t = 0, it
cannot appear in the ecosystem, even though the Unique Equilibrium might allow
it to coexist with the others.

Putting a small parameter λi which corresponds to an individual of species i arriving
in the ecosystem from time to time solves both issues: a species will be considered dead
if its population stays at the minimal level λi, and it will always be given the chance to
invade the ecosystem.

Therefore immigration regularizes the problem. We then consider the limit λ→ 0 so
that the analytical solutions are simpler.

A.2. Scaling of the cross response function and cross
correlation

In this section, we detail rough arguments to show two mathematical results used in the
main text:
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• the response from the population of species i to an infinitesimal perturbation in
the population of species j 6= i is subleading: χij = δNi

δhj
∼ 1/

√
S;

• the correlation between two distinct species is subleading: 〈NiNj〉 − 〈Ni〉〈Nj〉 ∼
1/
√
S.

A.2.1. Cross response function

We start from the simplified rLV case:

∀i = 1, ..., S, Ṅi = Ni(1−Ni −
∑
j 6=i

αijNj + hi(t))

We differentiate this equation with respect to hl(t
′), in the functional sense. We’ll

denote χil(t, t
′) = δNi(t)

δhl(t′)
. We obtain:

∂

∂t
χil(t, t

′) = χil(t, t
′)
[
d

dt
logNi(t)−Ni(t)

]
+Ni(t)

δ(t− t′)δil −∑
j

αijχjl(t, t
′)


From this equation, and considering that χil(t < t′) = 0 from causality, it can be shown

that χil(t
′, t′) = Ni(t

′)δil. Therefore the diagonal response is of order one at short time,
and we know from simulations and simpler cases that it is decaying when increasing t at
fixed t′, see for instance A.4. We expect that the response conveyed through correlation
loop will be subleading compared to the diagonal response: χii � χi 6=l. Therefore, its
scaling can be inferred by considering only the contribution from the diagonal in its time
evolution:

∂

∂t
χi 6=l(t, t

′) ∼ −Ni(t) αil χll(t, t
′)→ χi 6=l ∼ αil ∼ S−1/2.

A.2.2. Cross correlation

If we had the Fluctuation-Dissipation theorem, we would directly get the scaling of the
cross correlation Ci 6=l ∼ χi 6=l ∼ S−1/2. The theorem cannot be applied here, but we
show that the scaling relation still holds here. We start again from the simplified rLV
case:

Ṅi = f(Ni)−Ni

∑
j

αijNj

where f(Ni) = Ni(1−Ni), and remember that αii = 0. We use perturbation theory in
the interaction matrix α = ||α||. Denoting the solution of the equation N0

i when α = 0
and introducing Ni = N0

i + αδNi + α2..., we obtain the first order correction for two
different species i 6= l through linear response:

δNi(t) = −
∫
dt1χii(t, t1)

∑
j

αijN
0
j (t1)
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δNl(t
′) = −

∫
dt2χll(t

′, t2)
∑
j′

αlj′N
0
j′(t2)

From this relation, we compute the connected averages:

〈Ni(t)Nl(t
′)〉con = 〈δNi(t)δNl(t

′)〉con
=
∫
dt1dt2χii(t, t1)χll(t

′, t2)
∑

jj′ αijαlj′〈N0
j (t1)N0

j′(t2)〉con

We remark that the last term 〈N0
j (t1)N0

j′(t2)〉con corresponds to the connected cor-
relation Cjj′,con(t1, t2). Then, from the same argument as the cross response func-
tion, we expect the cross correlation to be subleading compared to the diagonal one:
Cii,con � Ci 6=l,con. Therefore we only consider the diagonal contributions:

〈δNi(t)δNl(t
′)〉con =

∫
dt1dt2χii(t, t1)χll(t

′, t2)
∑

j αijαljCjj,con(t1, t2)

∼∑j αijαlj

The last term is a random variable with average µ2/S, and variance σ4/S, therefore
we obtain Ci 6=l ∼ S−1/2.

A.3. Novikov’s theorem and generating functional formalism

In this section, we detail how to derive equation 2.8 introduced in section 2.2.3.

We want to evaluate: χ(t, t′) = E[J ′(Nt)
δNt
δht′

∣∣∣
h=0

]. For simplicity, we do not take into

account the averaging over initial conditions and thermal noises, since it does not change
the proof. Also, without any loss of generality we will focus on parameters µ = γ = 0.
In this case the general DMFT equation 2.6 writes:

Ṅt = R(Nt) + I(Nt) (σηt + ht) + f(Nt)ξt (A.1)

We introduce the distribution of the population trajectories:

P{N} =

∫
Dη P{η} P{N |η, h}

where the brackets denotes functional distributions. η is a Gaussian noise, so its proba-
bility measure is given up to a normalization factor by:

P{η} α exp

(
−1

2

∫
dt ds η(t) C−1

η (t, s) η(s)

)
Furthermore, the P{N |η} distribution is deterministic and follows the DMFT dynamics
from equation A.1. It is therefore a Dirac-distribution:

P{N |η, h} =
∏
t

δ
(
Ṅt −R(Nt)− I(Nt) (σηt + ht) + f(Nt)ξt

)
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We now have everything to write down the average:

χ(t, t′) = E[J ′(Nt)
δNt
δht′

∣∣∣
h=0

]

= δ
δht′

E[J(Nt)]

= δ
δht′

∫
DN Dη P{η} P{N |η, h} J(Nt)

=
∫
DN Dη J(Nt) P{η} δ

δht′
P{N |η, h}

When we write the average as an integration over the different paths, they become non-
correlated variables. The correlation aspect is taken care of in the distributions. In
addition, the distribution P{N |η, h} is symmetric in h(t′) and ση(t′). We also perform
an integration by part and find:

χ(t, t′) =
∫
DN Dη J(Nt) P{η} δ

σδηt′
P{N |η, h}

= −
∫
DN Dη J(Nt) P{N |η, h} δ

σδηt′
P{η}

= 1
σ

∫
DN Dη J(Nt) P{N |η, h}

(∫
ds C−1

η (t′, s) η(s)
)
P{η}

= 1
σE[J(Nt)

(∫
ds C−1

η (t′, s) η(s)
)
]

A.4. Temporal integration of the response function

In this section, we present an alternate way to compute the response function χ(t, t′)
that was briefly presented at the end of section 2.2.3.

We remind the DMFT equation 2.6 for a general class of models here, and we will
consider each trajectory (denoted with i) simulated through this equation:

Ṅi = Ri(Ni) + Ii(Ni)

(
µm+ σηi + γσ2 p(p− 1)

2

∫ t

0
χ(t, s)C(t, s)p−2J(Ni(s))ds+ hi

)
+fi(Ni)ξi(A.2)

We now apply δ
δhi(t′)

. In this way, for each trajectory i, we can compute the response

function χi(t, t
′) = δNi(t)

δhi(t′)
via temporal integration:

∂

∂t
χi(t, t

′) = χi(t, t
′)I ′i(Ni(t)) {µm(t) + σηi(t)}

+χi(t, t
′)I ′i(Ni(t))γσ

2 p(p− 1)

2

∫ t

0
χ(t, s)C(t, s)p−2J(Ni(s))ds

+χi(t, t
′)
{
R′i(Ni(t)) + f ′i(Ni(t))ξi(t)

}
+Ii(Ni(t))γσ

2 p(p− 1)

2

∫ t

0
χ(t, s)C(t, s)p−2J ′(Ni(s))χi(s, t

′)ds

+Ii(Ni(t))δ(t− t′)
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We thus construct χi by temporal integration in t at fixed t′, using the initial conditions
χi(t, t

′) = 0 for t < t′ from causality. Eventually, we get:

χ(t, t′) = E[χi(t, t
′)] ∼ 1

#traj

#traj∑
i=1

χi(t, t
′)

A.5. Comparison of the different methods for the response
function

Method Novikov Temporal integration

Formulation 1
#traj

∑#traj

i=1
1
σJ(Ni(t))

∫
dsC−1

t′,s ηi(s)
1

#traj

∑#traj

i=1 χi(t, t
′)

Needed #traj Non-linearity dependent Low

Complexity O(#traj #3
time) O(#traj #3

time)

Parallelizable Fully Not fully

Adequacy Linear problems Non linear, but short range

A.6. Closure in the Unique Equilibrium phase

In this section, we derive the Unique Equilibrium population distribution presented in
section 2.3.1.

A.6.1. Linear stability of dead species

We consider the rLV system of equations 2.1. For each species, there are two possible
equilibria 0 or N∗i = 1 −∑j 6=i αijNj . In total, assuming the reduced matrix is almost

always invertible (which is reasonable), this gives 2S possible equilibria for the ecosystem,
from which we would have to subtract the unreachable ones with negative populations.
We can linearize the equation around both possible choices for one species:

˙δNi =

{
N∗i δNi if the fixed point is 0,

−N∗i
(
δNi +

∑
j 6=i αij δNj

)
if the fixed point is N∗i .

From this, we see that if N∗i > 0, the fixed point Ni = 0 is linearly unstable. Therefore
the system will dynamically prevent this species i from going extinct (Ni = 0) in this
case.

We now use the stationary cavity solution from equation 2.12. The species population
distribution is a truncated Gaussian: p(n) = φp+(n) + (1− φ)δ(n) where φ = wo(∆) is
the fraction of surviving species, and p+ is a Gaussian distribution whose parameters
need to be determined. We inject this form in the closure system of equations 2.11.
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We introduce the parameters q = E[N2
∞], ∆ = (1 − µm∞)σ−1√q−1 and the functions

wk(∆) =
∫ ∆
−∞(∆ − s)kDs where Ds is the standard Gaussian measure, and eventually

obtain: 

1− σ√q∆
µ

=
σ
√
q

1− γσ2χint
w1(∆)

χint =
1

1− γσ2χint
w0(∆)

1 =
σ2

(1− γσ2χint)2
w2(∆)

(A.3)

These equations have also been obtained by several methods [48, 87]. It is worth noting
that, with the implicit dependence wn = wn(∆), the system can be rewritten as:

σ2 (w2 + γw0)2 = w2

1− γσ2χint = σ2 (w2 + γw0)

σ
√
q =

σ2 (w2 + γw0)

µw1 + ∆σ2 (w2 + γw0)

(A.4)

Under this form, the first line of system A.4 gives ∆(σ, γ). Afterwards, we directly have
χint(σ, γ,∆) and q(µ, σ, γ,∆).

This system can be numerically solved in the variables (χint,∆, q) as functions of
the parameters (µ, σ, γ). All observables can then be computed from the solution. For
example, the proportion of alive species φ = w0(∆). On figure A.1, we detail some
analysis on φ(σ, γ), and the response to an environmental press χint(σ, γ). See also
[45, 48, 87] for an analysis of the system.

A.7. Linear stability analysis of the Unique Equilibrium solution

In this section, we perform the linear stability analysis sketched in section 2.3.2, and
show how to recover the expansions in equations 2.13 and 2.14.

A.7.1. Context reminder

We recall the protocol [53]: starting in the Unique Equilibrium phase, we let the sys-
tem reach an equilibrium point, then add some small field h(t) which we will take as
a Gaussian white noise with covariance h(t)h(s) = σ2

hδ(t − s), and see how the system
responds in perturbation theory. In order to do so, we consider the DMFT equation
2.9, and linearize it around a stationary solution. We introduce the relative amplitudes
δN(t) = N(t)−N∞, δm(t) = m(t)−m∞ and δη(t) = η(t)−η∞, respectively correspond-
ing to the population, average population and interaction noise. These amplitudes are
supposed to go to zero, at least in the Unique Equilibrium phase. The self-consistent re-
lation also holds for these relative amplitudes. Indeed, if we denote Cc(t, s) the connected
correlator, it verifies:

Cc(t, s) = E[δη(t)δη(s)] = E[δN(t)δN(s)]
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Figure A.1. Contour plots of the proportion of alive species φ and the integrated re-
sponse kernel χint, with parameters σ and γ. Both of them are indepen-
dent from µ. In dotted black line is the chaotic transition. In the Multiple
Attractors phase (upper right side of the black line), the stationary cavity
analysis is only approximate. The color scale starts at 1 in bright red,
then each level corresponds to a 0.05 decrease. Left: Proportion of alive
species φ(σ, γ). It can be shown that the chaotic transition corresponds to
an isocline φ = 1/2: half the species survive. Right: Integrated response
kernel χint(σ, γ). It can be shown that the chaotic transition corresponds
to a saddle line: ∂γχint|transition = 0.
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From now on, E denotes the average over the static noise η∞, the dynamical noise δη
and the perturbation field h(t).

A.7.2. Linearization around the fixed point

The cases when N∞ = 0 will just give a relaxing exponential and not influence relevantly
the correlator nor the response function at large times. Therefore, we will focus on the
cases N∞ > 0, and write the corresponding average E+. The linearization reads:

˙δN = N∞(−δN − µδm− σδη + γσ2

∫ t

0
dsχ(t, s)δN(s) + h) (A.5)

where the statistics of N∞ is not perturbed by h at linear order. We focus on long
times, and we assume time-translational invariance for the system: Cc(t, s) = C(t − s)
and χ(t, s) = χ(t − s). This assumption has two consequences. First it transforms the
integral term in equation A.5 into a convolution product. Secondly, denoting f̃(ω) the
Fourier transform of f , the closure relations become:

C̃c,alive(ω) = E+

[
| ˜δN(ω)|2

]
= E+

[
|δ̃η(ω)|2

]
χ̃alive(ω) = E+

[
δÑ(ω)

δh̃(ω)

]
(A.6)

We are computing observables X for alive species only; the global average should be:

E[X] = φE+[X] + (1− φ)Edead[X]

where for relevant observables, the dead species contribution Edead[X] vanishes in the
large-S limit. φ denotes the fraction of alive species in the Unique Equilibrium around
which we are linearizing. It can be computed from the Unique Equilibrium distribution
detailed in appendix A.6.1.

A.7.3. Getting closed equations for the response and correlation

We consider the linearized cavity equation A.5 in Fourier space:

˜δN = (−µ ˜δm− σδ̃η + h̃)

(
iω

N∞
+ 1− γσ2χ̃

)−1

(A.7)

Averaging directly equation A.7, and as the perturbation is of zero mean h(t) = 0,
we get that the perturbation of the mean population is δm = 0. At this point, we can
directly apply the relation in equation A.6 for the response function and get the closed
equation:

χ̃(ω) = φE+

[(
iω

N∞
+ 1− γσ2χ̃(ω)

)−1
]

(A.8)

Now we want to apply the relation in equation A.6 for the correlation. In order to do
so, we take the modulus of equation A.7 (remember that δm = 0):
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| ˜δN |2 = | iω
N∞

+ 1− γσ2χ̃|−2
{
|h̃|2 + σ2|δ̃η|2 + 2σRe(h̃ δ̃η

∗
)
}

(A.9)

where X∗ denotes the complex conjugate of X, and Re(X) its real part. At this stage,
we want to take the average of the l.h.s., whereas there are three random variables on
the r.h.s.: N∞, h̃ and δ̃η. They verify independence relations for different reasons:

• h̃ is independent of N∞ by construction, because we added the perturbation once
the steady-state had already been reached;

• δη and N∞ are uncorrelated since at linear order in equation A.7 we only need to
consider the unperturbed statistics for N∞;

• h and δη are directly uncorrelated, as the noise is sampled from a given covariance
C.

We can then average equation A.9;

E+

[
| ˜δN |2

]
= E+

[
| iω
N∞

+ 1− γσ2χ̃|−2

]{
E+

[
|h̃|2
]

+ σ2E+

[
|δ̃η|2

]}
Finally, we apply the closure relation in equation A.6 for the correlation, and rearrange

the terms so that we obtain:

C̃c(ω) =

({
φE+

[
| iω
N∞

+ 1− γσ2χ̃(ω)|−2

]}−1

− σ2

)−1

σ2
h (A.10)

A.7.4. Compute the small-ω expansions

As we are interested in the large time behavior of the system, we perform a small-ω
expansion of the equations A.10 and A.8. This limit needs to be taken carefully because
there is a competitive effect in the average between ω and 1

N∞
. We recall that:

E+ [f(N∞)] =

∫ ∞
0

dn p+(n) f(n)

where p+(n) is the truncated Gaussian computed from the Unique Equilibrium analysis
in appendix A.6.1.

Let’s first focus on the expansion for the response function in equation A.8. We first
take the limit ω = 0 to obtain:

χ̃(0) =
φ

1− γσ2χ̃(0)

which consistently shows that the integral of the response function is the same as the
response to a press perturbation from appendix A.6.1: χ̃(0) = χint. We introduce
χ′(ω) = χ̃(ω)− χ̃(0), and develop equation A.8:
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χ′(ω) =
(
1− γσ2χ̃(0)

)−1
∫ ∞

0
dn p+(n)

−iω + nγσ2χ′

iω + n (1− γσ2χ̃(ω))

We introduce the constant B = 1 − γσ2χ̃(0), and the denominator d(n, ω) = iω +
n (B − γσ2χ′(ω)). We now consider independently the two terms in the integral:

Bχ′(ω) = −iω
∫ ∞

0
dn p+(n) d(n, ω)−1 + γσ2χ′(ω)

∫ ∞
0

dn p+(n) n d(n, ω)−1

Because of the strong behavior of the Gaussian p+(n) at large n, we know that the
integrals will be dominated by the behavior at small n. We focus on the first integral.
We introduce a cut-off A, and the contribution from −iω reads:

∫ ∞
0

dn p+(n) d(n, ω)−1 ∼ p+(0)

∫ A

0
dn

1

iω + nB
+

∫ ∞
A

dn p+(n) d(n, ω)−1

= −p+(0)B−1 log(ω) + oω→0(log(ω))

Now we can get the proper coefficient by considering also the second term. We even-
tually obtain the expansion:

χ̃(ω) =
φ

B
+ iω log(ω)

p+(0)

B2 − γσ2φ

The correlation function integral is slightly simpler. We denote this integral:

I2(ω) = φE+

[
| iωN∞ + 1− γσ2χ̃(ω)|−2

]
=

∫∞
0

dn p+(n)
|iω/n+B−γσ2χ̃′(ω))|2

The ω = 0 contribution is directly I2(0) = φ/B2. We remember that the dominant
term in χ′ is iKω log(ω). We this in mind we expand:

I2(ω)− I(0) = −B−2

∫ ∞
0

dn p+(n)
ω2 (1/n− γσ2K log(ω))2

B2 + ω2 (1/n− γσ2K log(ω))2

We focus on small n such that 1/n � log(ω). It can be shown that the remaining
integral is subleading (ω2 log(ω)−2).

I2(ω)− I(0) ∼ −ωB−2

∫ A

0
dn p+(n)

ω

B2 n2 + ω2

I2(ω)− I(0) ∼ −ωB−2
∫ A

0 dn p+(n) ω
B2 n2+ω2

∼ −ωB−3 π
2 p+(0)
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where we used the fact that the Lorentzian function converges to a Dirac: 1
π

ω
ω2+n2 →ω→0

δ(n). The 1/2 factor comes from limiting the integral to positive values. Eventually, we
obtain the expansion:

C̃c(ω)/σ2
h =

(
B2

φ
− σ2 + ω

B

φ2

π

2
p+(0)

)−1

In order to get the cleaner expressions in equations 2.13 and 2.14, we simply use the
relation B = φ/χint from the second line of the system of equations A.3.

A.8. Details of the numerical strategy for the DMFT solver

In this section, we provide more details about the numerical strategy presented in sec-
tion 2.2.3: how to sample the noise, integrate the trajectories, iterate the observables.
Eventually, we show an example of convergence, and we make explicit what initialization
was used.

We made a gitHub repository with the Python programs we wrote [74]. There is also
a runMe.py file which can be directly run in order to produce DMFT solutions and
figures such as 2.2 or 2.4. In this section, we write down in details the methodology of
the algorithm.

We discretize time in equal units of dt such that tk = k dt. We also fix the final time
we’re interested in as tmax = #time dt. We usually take dt = 0.1. The two-dimensional
functions then become matrices, and the one-dimensional ones are vectors:

mk = m(tk) Ckl = C(tk, tl) χkl = χ(tk, tl)

We will now describe how one iteration of the algorithm is computed numerically. We
start from the observables mk, Ckl and χkl, and we want to compute the new ones mnew

k ,
Cnewkl and χnewkl after one iteration.

A.8.1. Sampling of the noise

We will simulate #traj trajectories that we will refer to as ”species”. Remember that
they are independent in DMFT setting. We will then detail the procedure for one species
only. For each species, we need a given realization of the Gaussian noise at all times
{ηk}k=1,...,#time

= {η(t = tk)}k=1,...,#time
, sampled according to the correlator C. Given

the discretization, we sample {ηk}k=1,...,#time
as a multivariate Gaussian vector with

covariance Ckl. One way to do this is to diagonalize the matrix Ckl, then in the proper
basis all components are independent.

A.8.2. Numerical integration of the trajectory

For the trajectory of the species, the integration of the differential equation is done
with a basic Euler scheme. The Lotka-Volterra system is better simulated in log space.
Therefore, if we denote Nk = N(tk), we implement the scheme:
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logNk+1 = logNk + dt F(Nk|m, η, χ) + dt G(Nk|λ)

with: 
F(Nk|m, η, χ) = 1−Nk − µmk − σηk + γσ2dt

k∑
l=0

χkl Nl

G(Nk|λ) =

{
0 for λ = 0

exp [log(λ)− logNk] for λ > 0

The last λ-dependent scheme is for numerical stability whenever there is immigration
in the system. Using this scheme, we compute the trajectory {Nk}k=1..#time

.

A.8.3. Computing the new observables from the trajectories

We sample and integrate the trajectories for #traj species following the previous proce-
dure. We end up with an array of trajectories:{

N i
k

}i=1,...,#traj

k=1,...,#time

From them we can compute the new observables m and C by direct averages:
mnew
k =

1

#traj

#traj∑
i=1

N i
k

Cnewkl =
1

#traj

#traj∑
i=1

N i
kN

i
l

As stated in appendix A.5 and section 2.2.3, the response function χ is more difficult
to compute. The two methods can be used:

χnewkl =

{
1

#traj

∑#traj

i=1
1
σN

i
k dt

∑#time

l′=1 C−1
ll′ η

i
l′ for Novikov

1
#traj

∑#traj

i=1 χikl for temporal integration

In the last line of the equation χikl is integrated for each species according to appendix
A.4. Eventually, we will start a new iteration of the algorithm, with a soft update:

mupdated = (1− a) m+ a mnew

Cupdated = (1− a) C + a Cnew

χupdated = (1− a) χ+ a χnew

After some trials, a reinjection parameter a = 0.3 is a good value.
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A.8.4. Convergence and the iterative strategy

After one iteration of the algorithm, the new results always present some statistical
noise, due to the fact that we average over a finite number #traj of trajectories. To get
a good convergence, we increase the number of trajectories as the iteration goes on. The
first iterations are performed with few trajectories; they correspond to rough steps in
the configurational space. As the observables get closer to the real solution, we refine
the iterations by using more trajectories.

All results are shown with the following scheme: 30 iterations with 103 trajectories
each, then 10 iterations with 104 each, and 20 iterations with 105 each. The convergence
is considered to be reached when the iteration step becomes lower than a given threshold.
More precisely, labeling Cikl the correlator after iteration i, we have reached convergence
when:

‖Ci+1 − Ci‖F < 10−9

where ‖M‖F = #−2
time

∑
klM

2
kls is the rescaled Frobenius norm. We use the threshold on

the correlator, because we found that it is the most difficult observable to converge. A
mixed criterion in all three observables would work as well. On figure A.2 we show the
convergence in terms of iteration steps.
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Figure A.2. Amplitude of each iteration step as a function of the number of iterations.
The amplitude is computed as the matrix norm of the difference in the
correlator before and after iteration. It is plotted on a semi-log scale. This
computation was done with parameters (µ, σ, γ, λ) = (10, 4,−1, 10−4) in
the Unique Equilibrium phase.

A.8.5. Initialization

At the beginning of the algorithm, we need to give as input initial guesses for the
correlator matrix C(t, s), the average abundance vector m(t), and the response matrix
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χ(t, s). The results are found to be independent on the initial guesses. We consider for
example random initial guesses: a random vector for m, diagonal or random positive
symmetric matrices for C, and lower triangular random matrices for χ (since χ is a
causal function).

A.9. Some examples of numerical solutions

In this section, we show some more examples of numerical solutions for the correlator
and the response function.

On figure A.3, we show an example of a chaotic correlator C(t, t′). It is to be put in
contrast with figure 2.4, which depicted the Unique Equilibrium plateau type correlator.
On A.4, we show an example of a response numerical solution χ(t, t′). The behavior of χ
does not seem to change drastically between Unique Equilibrium phase and the Multiple
Attractors phase.
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Figure A.3. Numerical correlator, for rLV DMFT with parameters (µ, σ, γ, λ) =
(4, 2, 0, 10−4) in the Multiple Attractors phase. The parameters of the
program are the same as in figure 2.2. Contrary to the Unique Equilibrium
case in figure 2.4, there is no convergence towards a plateau. However,
after a transient, the systems becomes TTI.
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Figure A.4. Numerical response function, for rLV DMFT with parameters (µ, σ, γ, λ)
= (10, 1/2, 1/2, 10−4) below the onset of chaos. The parameters of the
program are the same as in figure 2.2. From causality, χ(t, t′) = 0 for
t < t′. It can be shown analytically that χ(t, t) = m(t). Then, for t > t′,
there is a relaxation towards 0, as the perturbation is absorbed.
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B.1. Stationary distribution with the real potential

B.1.1. Stationary distribution conditioned on N∗

Here we assume that the dynamical noise is white: Cξ(t, t
′) = 2Tδ(t − t′). The first

consequence is that we know:

Pt=∞(x|N∗) = Z−1 exp(−βV (x))

⇒ Pt=∞(N |N∗) =
ββN

∗

Γ(βN∗)
N−1+βN∗e−βN 1N∗>0 + δ(N)P(N∗ < 0)

which is a usual Gamma distribution. We use rescaled variables for convenience n = βN
and n∗ = βN∗. Then:

P alivet=∞ (n|n∗) = Γ(n∗)−1 nn
∗−1 e−n

from which it is easy to compute (using Γ(x+ 1) = xΓ(x)):

〈nm〉|n∗ = n∗(n∗ + 1)...(n∗ +m− 1)

It yields in particular:

〈N〉|N∗ = N∗
〈
N2
〉
|N∗ = (N∗)2 +N∗/β

B.1.2. Consequent stationary distribution on N

We need to integrate against the distribution P (N∗), which we know is a truncated
Gaussian. In particular, P (N∗) = ON∗→0(1).

Palive(n) =

∫ ∞
0

dn∗ P (n|n∗)P (n∗) = e−n/n
∫ ∞

0
dn∗ Γ(n∗)−1 en

∗ log(n)P (n∗)

For small abundances n� 1, the integral is dominated by n∗ � 1. There, using again
Γ(x+ 1) = xΓ(x) (and Γ(1) = 1), we know that Γ(x)−1 = x+ ox→0(x). Therefore, the
integral is roughly:∫ A

0
dxx ex log(n)P (n∗ → 0) ' P (n∗ → 0) log(n)−2
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Eventually:

Palive(0 < N � 1) ' 1

n log(n)2

which is barely integrable
∫ A
ε dxx−1 log(x)−2 ' log(ε)−1 →ε→0 0.

B.1.3. Relax the white noise assumption

Here we show that we can relax the white noise assumption into ’integrable correlation
C’ only, for the small values xf � −1. We denote 2T =

∫∞
−∞ dtC(t). Then, we introduce

the large deviation formalism:

PN∗(xf , tf |x0, t0) =
∫
DxDξ P (ξ)

∏
t δ(ẋt + V (xt)− ξt)

=
∫
DxDx̂Dξ P (ξ) exp

(∫ tf
t0
dt x̂t(ẋt + V ′(xt)− ξt)

)
=
∫
DxDx̂ exp (S{x, x̂})

with

S{x, x̂} =

∫ tf

t0

dt x̂t(ẋt + V ′(xt)) + 1/2

∫ tf

t0

dt dt′ x̂tC(t− t′) x̂t′

Now we assume that the distribution of path is dominated by a saddle point. Maybe
it can be justified because |xf | � 1. The saddle point equation 0 = δS

δx = δS
δx̂ yields: ˙̂xt = x̂t V

′′(xt)

ẋt = −V ′(xt)−
∫ tf
t0
dt′C(t− t′) x̂t′

(B.1)

Now, as |xf | � 1, we can say that for a long portion of the trajectory near its end,
˙̂xt ' x̂t e

xf ' 0. We will therefore consider x̂t roughly constant. More precisely, we use
the adiabatic approximation: the dynamics of x̂t is slower than the one of C. In the
second line, we then take it out of the integral. What remains is twice the temperature,
if we consider t0 � t� tf :

ẋt ' −V ′(xt)− 2T x̂t ⇒ x̂t = − ẋt + V ′(xt)
2T

Now we show that the solution ẋt = V ′(xt) satisfies the system:

˙̂xt = − 1

T
ẋtV

′′(xt) = x̂t V
′′(xt)

(The trick is to use alternatively sometimes x̂t = −T−1V ′(xt) and x̂t = −T−1ẋt.)
We inject the saddle point path into the action:

S{xSP , x̂SP } = [−2V (xt)/T ]
tf
t0

+ 1/2
∫ tf
t0
dt x̂t x̂t 2T

= [V (xt)/T ]
tf
t0

(−2 + 2/2)

' −βV (xf )

(B.2)
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And eventually:

PN∗(xf , tf |x0, t0) ' exp−βV (xf )

B.2. Dynamics with the harmonic potential

In this section, we’ll use the variable u = x − xmin. The Langevin equation for the
harmonic approximation is:

u̇ = −N∗u+ ξ ⇒ eut = exp

(
u0e
−N∗t +

T

2N∗
(1− e−2N∗t)

)
Then, we directly obtain by Gaussian (stationary distribution) integration:

EICTTI [ext ] = N∗ e
T

2N∗ EICTTI [ext+x0 ] = (N∗)2 exp

(
T

N∗
(1 + e−N

∗t)

)
We see that it does satisfy ext ∼ N∗, for T � N∗ which is the validity domain of the

harmonic approximation. We can close the equation on mN∗ and qN∗ . Switching the Ez
and limt→∞, we obtain:

mN∗ = N∗e
T

2N∗ qN∗ = (N∗)2e
T
N∗

This is diverging for N∗ � T . In this regime, it is not a good approximation, as
expected. However it can give some relevant insights for species with N∗ � T . We also
see that qN∗ = m2

N∗ logically holds, because of ergodicity. Using equations 4.6 and 4.8,
we can compute the self-consistent temperature for a given bias:

T harmN∗ (T )/σ2 = N∗ exp(T/N∗)
∫ T/N∗

0

ex − 1

x
dx (B.3)

The self-consistent temperature is logically an increasing function of T/N∗, because
the log variable can explore a larger space. The small temperature expansion can be
written:

T harmN∗ (T )/σ2 = T

(
1 +

5

4

T

N∗
+ oT�N∗

(
T

N∗

))
(B.4)

B.3. Dynamics with the box potential

B.3.1. Solve the diffusion in a box

We’ll consider the Fokker-Planck equation, which in this case is simply the diffusion
equation for P (x, t), inside a box of length L, with right wall in 0. We can solve it
exactly.
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∂tP = D∂2
xP | P (x, t = 0) = δ(x− x0) & ∂xP ({−L, 0}, t) = 0

Thanks to the hard boundary, we can construct by reflection a periodicity of 2L, and
P is now even in x. Therefore we analyze the system on the Fourier basis, with frequency
ω = 2π/(2L):

P (x, t) =

∞∑
n=0

an(t) cos(nωx)

For now, we write the Fourier series in complex form P (x, t) =
∑∞

n=−∞ cn(t) einωx.
As this is a free family, this yields the differential equation for all Fourier coefficients:
∀n, c′n(t) = (inω)2cn(t). We then determine cn(0) with the symmetrized IC: ∀n, cn(0) =
(2L)−1(einωx0 + e−inωx0). Eventually we obtain:

P (x, t) =
1

L
+

2

L

∞∑
n=1

e−D(nω)2t cos(nωx0) cos(nωx) (B.5)

This equation is properly normalized. P (x, t) can also be computed by the image
method technique, yielding:

P (x, t) =
1

4πDt

+∞∑
m=−∞

e−
(x−2mL−x0)2

4Dt + e−
(x−2mL+x0)2

4Dt

And this expression can be recovered from eq (B.5), by writing e−D(nω)2t as a Gaussian
integral, switching sum and integral, and computing the poles of the expression.

Now, we want to compute the closure relation in temperature. For this we need ext ,
for which we will need the basic integrals:∫ 0

−L
dx ex cos(nωx) =

1− e−L(−1)n

1 + (nω)2

From them, we compute directly:

Lext =
(
1− e−L

)
+ 2

∑∞
n=1 e

−D(nω)2t cos(nωx0) 1−e−L(−1)n

1+(nω)2

=
(

1 + 2
∑∞

n=1 e
−D(nω)2t cos(nωx0)

1+(nω)2

) (
1 +OL→∞(e−L)

)
Then we average against the initial distribution, sampling x0 from the stationary

distribution: the uniform one.

L2 EICTTI [ext+x0 ] =
(
1− e−L

)2
+ 2

∑∞
n=1 e

−D(nω)2t
(

1−e−L(−1)n

1+(nω)2

)2
(B.6)

=
(

1 + 2
∑∞

n=1
e−D(nω)2t

(1+(nω)2)2

) (
1 +OL→∞(e−L)

)
(B.7)
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B.3.2. Closure in temperature

In order to apply the last result in equation B.6 to our problem, we need to remember
that in our case, the right limit of the box is in xright 6= 0. Therefore:

L2 EICTTI [ext+x0 ] = e2xright

(
1 + 2

∞∑
n=1

e−D(nω)2t

(1 + (nω)2)2

)(
1 +OL→∞(e−L)

)
(B.8)

We integrate equation (B.8) in time, between t = 0 and +∞:

DL2

2
e−2xright TL = D2

(∑∞
n=1

1
(nω)2(1+(nω)2)2

) (
1 +OL→∞(e−L)

)
= D2

(
1
6 L

2 − 3
4L coth(L) + 1− 1

4

(
L

sinh(L)

)2
)(

1 +OL→∞(e−L)
)

Eventually:

DTL e
−2xright = 1/3− (3/2)L−1 + 2L−2 +OL→∞(e−L) (B.9)

B.4. Dynamics with the triangular potential

B.4.1. Solve the drifted diffusion

We’ll consider the Fokker-Planck equation, which in this case is simply the drifted dif-
fusion equation for P (x, t), for x < 0, and with a right wall in x = 0. We can solve it
exactly. The differential equation reads:

∂tP = −vP +D∂2
xP | P (x, t = 0) = δ(x− x0) (B.10)

We only consider positive bias v > 0, that pushes back the particle against the wall.
Otherwise the particle escapes to −∞. The no-flux boundary condition imposes:

− v P (x = 0, t) +D∂xP (x = 0, t) = 0 (B.11)

We introduce the Laplace transform in time c(x, s) = L{P (x, t)}. Then the Fokker-
Planck equation (B.10) becomes:

s c− δ(x− x0) = −v c+D∂2
xc (B.12)

We denote the rates:

r± =
v

2D

(
1±

√
1 +

4D

v2
s

)
(B.13)

Then, equation (B.12) can be solved above and below x0:
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{
c<(x, s) = Ber+x +B∞er−x

c>(x, s) = A (er+x +Rer−x)
(B.14)

where A, B, B∞ and R are constants that depend on s and x0. To determine them,
we use:

• the fact that the probability should decay at x ==∞:

B∞ = 0

• the continuity of c in x0:

Ber+x0 = A (er+x0 +Rer−x0)

• the no flux boundary condition at x = 0:

−v(1 +R) +D(r+ +Rr−) = 0

• the junction equation in x0, obtained by integrating equation (B.12) between x0±ε:
−D−1 = A(r+e

r+x0 +Rr−er−x0)−Br+e
r+x0

This determines all constants. The quantity that we are interested in is 〈ext〉, where
the average is over the white noise, at given x0. Therefore, we introduce another Laplace
transform: g(s) = L{〈ext〉}. After some computation, we obtain:

g(s) =
D−1

(1 + r+)(1 + r−)

(
−ex0 − e−r−x0

r−

)
(B.15)

From this, we can already obtain the interesting quantity:

lim
t→∞
〈ext〉 = lim

s→0
sg(s) =

v

D + v
(B.16)

In order to obtain the self-consistent temperature, we will need:

Ex0

[
ex0

∫ +∞

0
dt
(
〈ext〉 − lim

t→∞
〈ext〉

)]
(B.17)

We first compute the integral part, using Laplace properties:

lim
s→0

[
g(s)− s−1 lim

s′→0
s′g(s′)

]
=

1

D + v

[
−ex0 + x0 +

D

v
+

v

D + v

]
(B.18)

Eventually, we average against the stationary distribution for x0, which we recall here:

P(x0) =
v

D
e
v
D
x0 1 {x0 ≤ 0} (B.19)

We then obtain for equation (B.17):

2

D

1

(1 + v
D )3(2 + v

D )
(B.20)
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B.4.2. Back to the ecological problem

In the previous section, we solve the drifted diffusion with a hard-wall in x = 0, a bias v,
and temperature D. In the ecological set-up, the bias is N∗, the temperature is denotes
T , and the hard-wall is located at xright = log T , as for the box potential. We obtain
the average abundance at given bias N∗ using equation (B.16):

mN∗ = N∗
T

T +N∗
< N∗ (B.21)

This is an underestimation as for the box potential, and it becomes exact in the
expected limit T � N∗. Eventually, using equations (B.17) and (B.20), we obtain the
self-consistent triangular temperature:

T triN∗(T )/σ2 =
2T

(1 + N∗

T )3(2 + N∗

T )
(B.22)
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We know from simulations that the chaotic state is unstable, and the system displays
aging dynamics. Therefore, in this section we propose a model to analyze the aging
behavior that slows down the chaotic dynamics. We do not have results for this model
yet, this is also ongoing work.

We start again from the DMFT equation with γ = 0:

Ṅ = N (1− µmt −N + σ ηt)

and the closure writes:  m(t) = E[N(t)]

Cη(t, s) = E[N(t)N(s)]

We will now simplify the dynamics step-by-step, in order to obtain a tractable model.
Based on numerical simulations, we will assume that some one-time properties are con-
stant in time: the average population mt = m, the equal-time correlation Cη(t, t) = qd,
and the left-over correlation Cη(+∞, t) = q0. What we are interested in is the timescale
τ(tw) it takes to decorrelate populations starting from a given age tw (for ”waiting time”)
of the system. From simulations, it seems this timescale behaves as τ(tw) ∼ tw, which
is consistent with stationary dynamics in log time. We would like to catch the aging
scaling by a simple self-consistent argument.

We perform the usual decomposition of the dynamical noise into two independent parts
σηt = z + ξt, such that 〈z2〉 = σ2q0, and Cξ(t, tw) = C( t−twτ(tw)) with C(0) = σ2(qd − q0),

and C(∞) = 0. Reformulating, we have the following simple dynamics:

Ṅ = N (N∗ −N + ξt)

where N∗ = 1 − µm + z is a static Gaussian, ξt is a Gaussian noise. The full problem
would be to close equations on the moments of the Gaussians, and the timescale of the
noise. This is too difficult. We will assume that the moments are given (from simulations
for example), and try to catch the timescale.

As the noise is colored (so everything is continuous), it makes no difference to consider
Ito or Stratonovich discretization. We can change to the natural log variables:

ẋ = N∗ − ex + ξt = −V ′(x) + ξt
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with V (x) = −N∗x+ ex. This potential is strongly restraining on the right side, the
left side depends on the species. We can already forget about species that have N∗ < −1,
because they will never contribute to the dynamics. We add the following assumptions:

• For a species to contribute to the correlation Cξ(t, tw) ∼ 〈elt+ltw 〉, it needs to have
its log-population around 0 at both times. Mathematically:

Cξ(t, tw) ∼ 〈1[lt = 0, ltw = 0]〉

• The time-evolution for low-abundance species is linear by parts in log-population:
their dynamics can be approximated by linear dives and blooms at various depths.

Until now, all hypothesis are well-funded. Starting here, we make further wrong
assumptions to try to close the problem:

• We assume that the dynamical noise ξt is constant by parts τ(t). More precisely,
we will discretize time tn, such that tn+1 − tn = τn = τ(tn) is the decorrelation
time. The time index will be n, the species index i.

• We feel more comfortable working with positive values, so we introduce x = −l.
We further simplify the dynamics during one timestep. During the decorrelation
time, every species feels a constant random growth-rate gin = N∗i +ξin. We assume
that the non-linearity in the potential can be treated as follows: in log-space, all
species perform a linear jump of length gin and with sticky boundary conditions
at 0.

xi,n+1 = max (xi,n − gin τn, 0)

We will denote the jumps jin = −gin τn in the following. Let’s recall jin = −(N∗i +
ξin) τn.

It still seems too difficult to obtain the series τn(m, qd, q0). We will focus on a more spe-
cific aspect of the problem, which we find crucial to understand the aging phenomenon.
We consider a given species, with bias N∗. For it to contribute to the correlation decay,
we assume that it starts at O(1) abundance, so x0 = 0. We consider the correlation
length of the noise constant τ . We perform the above dynamics for the species:

xn+1 = max (xn + jn, 0)

where jn = −(N∗+ξn) τ is a static Gaussian variable, with given mean −N∗ and variance
σ2(q0 + qD). Then, we consider that this species will contribute to the correlation at
time n if and only if xn = 0. This amounts to the contribution for a given bias N∗:

CN
∗

n = PN∗(xn = 0 |x0 = 0)PN∗(x0 = 0) (C.1)

Eventually, the full correlation is recovered by Cn = EN∗ [CN
∗

n ]. This correlation
should be decaying with n, and reaching a constant left-over correlation plateau C∞.
From this decorrelation, we will be able to infer a timescale τdecor(τ,m, qD, q0).
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The first rhs term of equation (C.1) roughly amounts to computing the distribution
of the first return time in 0 of a discrete-time random walk with a sticky boundary con-
dition. Actually, this weird boundary condition can be taken care of by also discretizing
space with step a, using a smaller time step τ/2, and enforcing a hard-wall reflection in
x = −a.

If we denote φn = PN∗(xn = 0 |x0 = 0), and r(t) the first return time distribution in
0, we can condition on this return time:

φt =
∑
t′>t

r(t′) . 0 +
∑
t′≤t

r(t′)φt′ =
∑
t′≤t

r(t′)φt′ (C.2)

There are probably some issues of taking the first step to the right, but we would say
that this is manageable. We still have to:

1. Derive, or find in the literature r(t) the distribution of the first return time in 0;

2. Solve φt the generic return time to 0, using equation (C.2) or something similar;

3. Use an ansatz for the probability PN∗(x0 = 0) to start from x0 = 0 at a given bias
N∗;

4. Average equation (C.1) over the bias N∗ to obtain the correlation decay;

5. Study the behavior of the decorrelation time as a function of the input parameters
τdecor(τ,m, qD, q0).
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I recall the setup of the computation of fixed-points, and its derivation. I start from the
usual LV system:

∀i ∈ {1...S}, Ṅi = NiFi(Ni)

where I used Fi(Ni) =
(

1−Ni −
∑

j αij Nj

)
, I introduced α = µ/S + σ/

√
S a, and the

matrix a follows a Gaussian distribution with:

aii = 0 〈aij〉 = 0 〈aijakl〉 = δikδjl + γδilδjk

To simplify notations, we also introduce the matrix α̃ = I(1− µ
S )+ µ

S 1+ σ√
S
a, so that

we can express ~F ( ~N) = ~1− α̃ ~N .
First, I choose which species are alive: i = 1...φ S will be alive. Then I fix the disorder

(the matrix a). Then the number of (possibly invadable) fixed points is:

NgivenAlive|disorder =
∣∣det α̃∗

∣∣ ∫ ∞
0

φS∏
i=1

dNi

∏
i

δ(Fi(Ni))

I introduced the ∗ in α̃∗ to remind that this matrix is of size φS. In the following, I
will neglect the subdominant diagonal effects: the µ/S term in I(1− µ/S), and the fact
that aii = 0. I average over the disorder:

NgivenAlive = E
[
NgivenAlive|disorder

]
=

∫
d(φS)2

a P(a)
∣∣det α̃∗

∣∣ ∫ ∞
0

dφS ~N δφS(~F ( ~N))

=

∫ ∞
0

dφS ~N P
(
~F ~N = ~0

)
E
[∣∣det α̃∗

∣∣ |~F]
From now on, I will assume that the conditioning on ~F in the average of the determi-

nant is subdominant. This can be checked tediously, it holds.

D.1. Compute P
(
~F ~N = ~0

)
The main point is to compute P

(
~F ~N = ~0

)
. It has Gaussian statistics, which can be

made explicit:
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|E[F ]〉 = (1− µm)|1〉 − |N〉

Covij = Cov [Fi, Fj ] =
σ2

S

∑
i′,j′

E
[
aii′ajj′

]
Ni′Nj′

Cov = σ2q

(
I +

γ

qS
|N〉〈N |

)
⇒ Cov−1 =

1

σ2q

(
I − Γ

qS
|N〉〈N |

)
where I introduced the bracket notations for vectors. I also introduced the order param-
eters Sm = 〈N |1〉, Sq = 〈N |N〉, and Γ = γ

1+γ . For convenience, I label A = 1 − µm.
With these conventions, the Gaussian probability can be computed exactly:

P
(
~F ~N = ~0

)
= det

(
2πCov

)−1
exp−1

2
〈E[F ]|Cov−1|E[F ]〉

We use the bilinearity, and the intermediate computations:

σ2q Cov−1|1〉 = |1〉 − Γm

q
|N〉

σ2q Cov−1|N〉 = |N〉 − Γ|N〉

to obtain:

P
(
~F ~N = ~0

)
= (1 + γ)−1 exp−SP

P =
φ

2
log(2πσ2q) +

1

2σ2q

(
A2

[
φ− Γm2

q

]
+ (q − 2Am)(1− Γ)

)

D.2. Compute the average determinant

The missing part is now E
[∣∣det α̃

∣∣]. Matrix theory tells me that the spectrum of a/
√
S

converges to the uniform distribution over the ellipse Eγ in complex plane, with real
semi-axis 1 + γ and imaginary semi-axis 1− γ. The same convergence holds for a∗/

√
φS

I recall that α̃∗ = I∗+ µ
S 1∗+ σ

√
φ√
S∗
a∗. The I adds 1 to all eigenvalues. The 1 part will

only give a contribution for one high eigenvalue, I will forget about it in the following.
So I write:

E
[∣∣det α̃

∣∣] = E

[
exp

(∑
i

log |λ̃i|
)]

= E
[
expφS

∫
dλ ρ(λ) log |1 + σ

√
φλ|
]

∼ expφS

∫
Eγ

dλ

π(1− γ2)
log |1 + σ

√
φλ|
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where ρ is the uniform distribution in the ellipse Eγ . I change variables to go to the unit
circle C, and I use the complex conjugate of each eigenvalue to write the integral:

1

S
logE

[∣∣det α̃
∣∣] = Dγ,σ(φ)

=
φ

π

∫ 1

−1
dx

∫ √1−x2

0
dy log

[
(1 + ax)2 + (by)2

]
where a = σ

√
φ(1 + γ) and b = σ

√
φ(1 − γ). One of the integral can be computed

analytically.
Putting everything together, we find:

NgivenAlive =
eSDγ,σ(φ)

1 + γ

∫ ∞
0

dφS ~N e−S Pµ,γ,σ(φ,m,q)

=
eSDγ,σ(φ)

1 + γ

∫ ∞
0

dmdq e−S Pµ,γ,σ(φ,m,q)+SV(φ,m,q)

D.3. The volume term

D.3.1. Intuitive derivation

The dependence on the species abundances only comes through φ, m and q. To compute
the volume term of the change of variables , we will use the saddle point approximation.

eSV(φ,m,q) =

∫ ∞
0

dφS ~N δ(m ~N −m) δ(q ~N − q)

=

∫ ∞
0

dφS ~N S2δ(~1. ~N −mS) δ( ~N2 − qS)

= S2

∫
iR
dm̂ dq̂ eS(m̂m+q̂q)

∫ ∞
0

dφS ~N exp

[
−m̂

∑
i

Ni − q̂
∑
i

N2
i

]

= S2

∫
iR
dm̂ dq̂ eS(m̂m+q̂q)+φSv(m̂,q̂)

Where we introduced:

v(m̂, q̂) = log

(∫ ∞
0

dN e−m̂N−q̂N
2

)
=

1

2
(
m̂√
2q̂

)2 + log cdf(− m̂√
2q̂

)− log(
√

2q̂) +
1

2
log(2π)
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where cdf(x) =
∫ x
−∞Dz where Dz is the centered Gaussian measure.

Now we consider the saddle point approximation:

V(φ,m, q) = max
m̂,q̂

m̂m+ q̂q + φ

{
− log(

√
2q̂) +

1

2

(
m̂√
2q̂

)2

+ log cdf(− m̂√
2q̂

) +
1

2
log(2π)

}

=
φ

2
log(2π) + φmax

x,y

{
m

φ
xy +

q

φ

y2

2
− log(y) +

1

2
x2 + log cdf(−x)

}

Where I introduced x = m̂√
2q̂

and y =
√

2q̂. I now take the derivatives of the function H
in the max: {

∂H
∂x = m

φ y + x− pdf(−x)
cdf(−x)

∂H
∂y = m

φ x+ q
φy − 1

y

I can solve ∂yH = 0, considering φ,m, q, y > 0. I introduce α = m2

φq .

ySP =
φ

m

α

2

(√
x2 + 4/α− x

)
Then ∂xH = 0 can be rewritten:

α

2

(√
x2 + 4/α− x

)
=
pdf(−x)

cdf(−x)
− x

Or equivalently:

α

2

(√
x2 + 4/α− x

)
=

√
2

π

(
erfcx(x/

√
2)
)−1
− x

D.3.2. Probabilistic derivation

The saddle point can also be seen as a probabilistic interpretation. The final formulas
are the same, but the geometric one is faster numerically.

V(φ,m, q) = max
m̂,q̂

m̂m+ q̂q + φ log

∫ ∞
0

dN e−q̂N
2−m̂N

And now I take the saddle point equations in (q̂, m̂).{
∂m̂H = m− φ 〈N〉trunc
∂q̂H = q − φ

〈
N2
〉
trunc

Where I introduced the average 〈.〉trunc, with regards to the truncated Gaussian den-
sity:

ρtrunc(N) =
Θ(N)

Z
exp

(
−q̂(N +

m̂

2q̂
)2 +

m̂2

4q̂

)
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The last term in the exponential is just a proportionality factor that will drop out in
the normalization. I introduce the cumulants of the non-truncated Gaussian µ = − m̂

2q̂

and σ = 1/
√

2q̂. Then it becomes quite close to the static cavity equations! In fact, I
introduce ∆ = µ/σ = − m̂√

2q̂
= −x, and N = σ(∆ + z). Then the saddle point on (q̂, m̂)

rewrites: {
m
φ = σw1/w0(∆)
q
φ = σ2w2/w0(∆)

where wi(∆) =
∫∞
−∆Dz(∆ + z)i. I eliminate easily the variable σ, and get back the

adimensionned parameter α = m2

qφ :

α =
w2

1

w2w0
(∆)

And then:

y = σ−1 =
φ

m

w1

w0
(∆)

D.3.3. Bounds on α = m2

qφ

It can be shown that:
(S∗)−1 ≤ α ≤ 1

The upper bound comes from Cauchy-Schwartz, and is therefore saturated by a uniform
ecosystem ∀i, Ni = 1. The lower bound comes from developing m2, and is saturated by
N1 = 1, Ni 6=1 = ε and taking ε→ 0 at fixed S.

However, there is a numerical bound 1/2 < α below which I cannot find solutions.
The only complication arises from the {Ni ≥ 0} boundaries. Indeed, without these

boundaries, the volume term becomes a simple high-dimensional sphere. I computed this
simple approximation twice, once with the saddle point, and once with exact geometry.
I obtain:

Vsph(φ,m, q) =
φ

2

(
1 + log 2π + log

qφ−m2

φ2

)
Going back to the complete volume term, I can find a solution only if 1/2 < α < 1. If

I visualize the problem in φS-dimensional space, imposing q fixes the ~N vector on the
sphere of radius

√
Sq. Imposing m fixes its projection on the unit vector colinear to ~1.

More specifically, if I call θ the angle between ~N and ~1, I get cos2 θ = α.
Therefore, I start to have issues numerically when θ = 45o. This is not the angle for

which the allowed space start to touch the boundary (that would be cos θ∗ =
√

1− d−1,
with d = φS the dimension of the problem).

1/2 is the moment almost all the volume starts to concentrate at the {Ni ≥ 0}
boundary, and the saddle point collapses: the volume term becomes sub-exponential
in S.
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In the probabilistic interpretation, it comes from the fact that with a truncated
Gaussian distribution and playing with its two moments, it is not possible to obtain
α = 〈N〉2/〈N2〉 < 1/2.

D.4. Add uninvadability constraint

For the dead species j = φS + 1..S, I want to impose that Fj( ~N) < 0. This can be
written as:

NgivenAlive = E
[∣∣det α̃∗

∣∣] ∫ ∞
0

dφS ~N

∫ 0

−∞
d(1−φ)S ~G P

(
~F ~N = ~G

)
where α̃∗ is the same matrix as before, I just added the ∗ to make clear that this is an

S∗-size matrix. However, now the vectors are slightly different. Indeed, ~N has its first
φS components positive and free, but the (1 − φ)S last ones are set to 0. Similarly, ~G
has its first φS components set to 0, but the (1− φ)S last ones are negative and free. I
recall ~F ( ~N) = ~1− α̃ ~N . We can rederive the exact same steps:

|E[F ]〉 = (1− µm)|1〉 − |N〉

Cov = σ2q

(
I +

γ

qS
|N〉〈N |

)
⇒ Cov−1 =

1

σ2q

(
I − Γ

qS
|N〉〈N |

)
but now, |1〉 is the S-dimensional ~1, whereas |N〉 has 0 on its last (1− φ)S components.

D.4.1. Normalization

The normalization is slightly different from before because the matrix is bigger. Before I
had det(2πCov) = (2πσ2q)φS(1+γ), and now it becomes det(2πCov) = (2πσ2q)S(1+γ).
But actually, I will keep the extra term for the contribution of the uninvadability.

D.4.2. Bilinear form

We need to compute the bilinear form for the Gaussian probability:

(〈G|−E[〈F |])Cov−1(|G〉 − E[|F 〉]) =

S∑
i,j=1

ViCijVj

=

 φS∑
i,j=1

+2

φS∑
i=1

S∑
j=φS+1

+

S∑
i,j=φS+1

ViCijVj

I introduced ~V = E[~F ]− ~G. More precisely:
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Vi =

{
(1− µm)−Ni, if i ≤ φS
(1− µm)−Gi, if i > φS

The first sum gives the same contribution as before. But actually the block decompo-
sition of the matrix Cov is 0

φ.(1−φ)
in the upper right corner, and I

(1−φ)2 in the lower

right corner. So the only extra-term is:

∫ 0

−∞

d(1−φ)S ~G√
2πσ2q

(1−φ)S
exp

− 1

2σ2q

S∑
j=φS+1

(A−Gj)2

 =

(∫ 0

−∞

dG√
2πσ2q

e
− 1

2σ2q
(A−G)2

)(1−φ)S

=

(∫ −A/√σ2q

−∞
Dz

)(1−φ)S

=
(
cdf(−A/

√
σ2q)

)(1−φ)S

Eventually, the contribution to the complexity is to add a negative term:

U(φ,m, q) = (1− φ) log cdf(−A/
√
σ2q)
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E.1. Model parameters used in simulations, definitions of
quantities in figures

For convenient reference, this Appendix includes the parameters for all simulations. The
model is given in Eq. (5.1). All Bi,u = 1 and all Di,uv = d/ (M − 1). The Aij,u are
independent for different (i, j) pairs (except in Appendix E.3).

In Fig. 5.3, the probability of Aij,u to be non-zero is c = 1/8, and the non-zero elements
are sampled from a normal distribution with mean (Aij,u) = 0.3, std (Aij,u) = 0.45.
The same elements Aij,u are non-zero across all patches u. The correlation coefficient
between non-zero Aij,u in different patches is ρ = corr [Aij,u, Aij,v] = 0.95 for u 6= v.
(The correlation is 0.964 when interactions with Aij,u = 0 are also counted.) The initial
(pool) diversity is S = 250. In Fig. 5.3(A), M = 1. In Fig. 5.3(B), M = 8 patches
and d = 10−3. The cutoff is Nc = 10−15. For each i, j, the M values Aij,u=1..M are
drawn simultaneously from a multi-variate normal distribution with correlation matrix
Cuv = ρ + (1− ρ) δuv, using standard numerical methods (e.g., as implemented in the
Matlab function mvnrnd).

Fig. 5.4(bottom), uses the same parameters as Fig. 5.3, but with a range of values
for d, S and Nc.

Fig. 5.8 uses the runs shown in Fig. 5.3(B). Standard deviation and mean are esti-
mated from 1601 time points during the time period t = [104, 2 · 105].

Fig. 5.10(a) uses multiple runs, with the same parameters as 5.3, except for d = 10−4

and Nc = 10−15. Fig. 5.10(c), shows the line where half of the runs are fixed points,
and half continue to fluctuate until t = 2 · 105. It uses same parameters as Fig. 5.10(a),
except with D = d/ (M − 1) = 10−4.

In Fig. 5.10(a), the size of the fluctuations are calculated from var (ξu) =
〈
ξ2
u (t)

〉
=

σ2CN,u (t, t), with CN,u (t, t) =
〈
N2
u (t)

〉
− limt−t′→∞ 〈Nu (t)Nu (t′)〉. For more details

on the averaging, see section 5.3 and Fig. 5.5.
Fig. 5.10(a) shows the strength of noise at different diversities. Extinctions beyond the

time shown in simulations (t = 2 · 105) take extremely long times to happen, so reaching
these lower diversities in simulations is unfeasible. Instead, we remove species that are
most likely to go extinct. Recalling that the time to extinction is τ (1/Nc)

2MN∗eff/W ,
we remove species with the lowest Neff . This is done by running the system for time
∆t = 15 ·103, calculating Neff , and removing the 5 species with the lowest values of Neff .
This process is repeated. Other protocols for species removal where attempted, such as
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increasing Nc in time; they give similar results. The results are averaged over 3 runs,
with independent sampling of interactions and initial conditions.

E.2. General validity of DMFT equations

As explained above, DMFT can be implemented as an approximation for a large va-
riety of systems. In this case one has to infer the average µ, the standard devi-
ation σ of interactions, and the distribution P(Xu) from the data (we remind that
Xu = {Nu(0), Bu, Duv}) and use them as an input to define an effective model. The
generalization to patch-dependent cumulants µu and σu is quite straightforward. So is
the generalization to patch-dependent correlation ρuv. With the assumptions described
below, the fraction of coexisting species S∗/S is finite when S is large, so that resident
diversity S∗ in each community is also large.

We have derived DMFT for a completely connected set of interactions Aij . A different
way to obtain DMFT is considering a finite connectivity network of interactions Aij , e.g.
the one produced by a Erdos-Renyi random graph with average connectivity per species
C or a regular random graph with connectivity C. In these cases, for each link ij
one generates a random variable with average µ/C and variance σ2/C and set it to
Aij . In the large connectivity limit, C → ∞, each species interacts with a very large
number of species and one can replace the deterministic interaction with an effective
stochastic noise, as done for a completely connected lattice. Although the resulting
DMFT equations are the same, the two cases are quite different: in the former a species
interact with C � S species whereas in the latter a species interacts with C = S species.
The equivalence of DMFT for completely connected lattices and finite connectivity ones
in the C →∞ limit has been thoroughly studied in physics of disordered systems in the
last twenty years [143].

In addition, this chapter focuses on the case where migration connects all patches to
one another. But the basic DMFT framework, Eq. (5.2), is valid even if only certain
patches are connected, and migration is zero otherwise. This can allow for analysis of
different spatial connectivities, such as lattices representing finite-dimensional space, and
is an interesting direction for future work.

E.3. Derivation of the multivariate Gaussian distribution for
diversity

We use notations from section 5.3. Within the time-translational-invariant state:

1

Nu

dNu

dt
= N∗u −Nu + ξu (t) +

∑
v∼u

Duv

(
Nv

Nu
− 1

)
Consider the case of low migration, D → 0+. We now develop a theory assuming that
the amplitude of the endogenous fluctuations,

W ≡
∫
dt Cξ

(
t, t′
)
,
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remains finite in the limit D → 0+. Assume the species survives, i.e. there is at least
one patch with N∗u > 0. If N∗u < 0 then Nu = O (D). If N∗u > 0 then Nu = O (1) and

therefore
∑

v∼uDuv

(
Nv
Nu
− 1
)

= O (D). Taking the time average of the above equation

0 =
1

Nu

dNu

dt
= N∗u −Nu +O (D)

and therefore Nu = N∗u +O (D).
The previous arguments lead to the conclusion that in the D → 0+ limit Nu = N∗u if

N∗u > 0 and is equal to zero otherwise. In the following we provide more detail about
this argument and its possible limitations. For this last equality to be valid, we need

that
∑

v∼u
(
Nv
Nu
− 1
)

will be finite, so that D
∑

v∼u
(
Nv
Nu
− 1
)

will indeed be small. This

might break if Nu can be small while some other Nv remains O (1). An estimate for
that proceeds by noting that the carrying capacity of patch u in the presence of other
patches is larger or equal to N∗u −MD ' N∗u , its carrying capacity alone. If patch u
fluctuates alone, then

dxu
dt

= N∗u + ξ (t)⇒ P (x) ∼ e
2N∗x
σ2W

This gives for 1/Nu

e−xu ∼
∫ 0
−∞ e

x
(
N∗u
W
−1

)
dx∫ 0

−∞ e
x
N∗u
W dx

=
N∗u
W + 1
N∗u
W

= 1 +
W

N∗u

For any given N∗u this is finite. It diverges as N∗u → 0. Therefore the migration term is
negligible only if DW

1−D ' DW � N∗u . (Note that migration itself would limit Nu going
below much below DNv, which would make this term smaller.) The main approximation
(or limitation) of our approach is the assumption that W remains finite in the small D
limit. This is shown to hold in simulations presented in section 5.3 and Fig. 5.5. It
breaks down if the noise develops long-lasting correlations in time. Our approximation
will be nevertheless good for large |N∗u | and for weak endogenous fluctuations.

We now used the relationship discussed above between Nu and N∗u to determine the
statistics of N∗u . We shall use the term “source” for patches where N∗u > 0, and “sink”
otherwise1. In order to understand the correlation between the sources in the different
communities, we unpack N∗u using section 5.3. Taking the time-average is equivalent
to averaging over the dynamical noise ξ. Therefore, in patch u for species i, zi,u =
−σS−1/2

∑
j aij,uNj,u = −σS−1/2

∑
j,+ aij,uN

∗
j,u. The sum

∑
j,+ means that we only

sum over N∗j,u > 0. Here, we recall that aij,u are standard random variables with mean
zero, variance one, and correlation between patches:

E [aij,u akl,v] = δik δjl ρuv

1The term “source” is used here so as to include patches (sometimes referred to as pseudo-sinks) where
a species might still receive migration from patches with even larger N∗u . But the contribution of this
migration is small and not required for its persistence.
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where we used the Kronecker symbol δik.
Therefore:

N∗i,u = 1− µmu − σS−1/2
∑
j,+

aij,uN
∗
j,u (E.1)

where we recall mu =
〈
Ni,u

〉
=
〈
N∗i,u

〉
+

. We can now compute the different moments

of the multivariate Gaussian random variable N∗u , using equation (E.1). We obtain the
closure: mean [N∗u ] = 1− µ

〈
N∗i,u

〉
+

covariance [N∗u , N
∗
v ] = σ2ρuv

〈
N∗i,uN

∗
i,v

〉
+

When u = v, as ρuu = 1, we find the expected single community result. In particular,
mean [N∗u ] and variance [N∗u ] do not depend on the patch u.

We numerically solve the closure in a self-consistent way: start with a guess for〈
N∗i,uN

∗
i,v

〉
+

, and then (1) Produce many samples of the vector N∗u=1..M and (2) calcu-

late the next estimate for
〈
N∗i,uN

∗
i,v

〉
+

, by averaging only over N∗i,u and N∗i,v that are

both positive. For stability of this numerical scheme, we only replace half the samples at
each iteration. We use 105 samples and 1000 iterations. The algorithm is always found
to converge to the same solution.

E.4. Single patch (M = 1)

Here we show that in principle a single patch can reach and maintain a dynamically
fluctuating state. However, this requires prohibitively large S, not attainable in practice.
In Fig. E.1 and Fig. E.2 we show results of a numerical solution [61] to the DMFT
equations detailed in section 5.3. At extremely low values of Nc the system appears to
reach a final diversity above the May bound and, hence, to be chaotic. DMFT however
describes the behavior in the S � 1 limit. When full simulations of the model in Eq.
(5.1) are carried out at finite S, they diversity falls somewhat below the DMFT final
diversity, leading to a fixed point, rather than a chaotic state, see Fig. E.2. This finite-
size correction to the DMFT result are important since they show that maintaining a
dynamically fluctuating state for realistic values of S is not possible for M = 1.

E.5. Correlations of interactions in a pair of species

In the main text we assumed that Aij,u is sampled independently from Aji,u. Here we
show that the long-lived endogenous fluctuations can be found even if this assumption
is relaxed. For this purpose, we consider a symmetric network of non-zero Aij,u, namely
Aij,u 6= 0 if and only if Aji,u. We define γ the correlation of the non-zero elements
γ = corr [Aij,u, Aji,u]Aij,u 6=0. Fig. E.3 shows two simulations, one with γ > 0 and the

other with γ < 0. In both cases the system relaxes to a long-lived state with fluctuating
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Figure E.1. DMFT numerics for a single patch, M = 1, showing that chaos is in prin-
ciple possible here, although for unrealistic values of model parameters.
(A) The fraction of species above different values of N0, P (N > N0) is
plotted as a function of time, for different values of N0. (B) The curves
for different N0 collapse when P (N > N0) − φ∞ (N0) ∼ |lnN0| /t. Here
φ∞ (N0) is a fitted parameter, the extrapolated value of P (N > N0) at
long times. (C) The values of φ∞ (N0) are well above the linear stabil-
ity bound (“May bound”), and at (very) low N0 come quite close to the
theoretical maximal value for φ∞ (N0), predicted in section 5.4.1. Here
σ = 2, µ = 10, Nc = 10−120.
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Figure E.2. The DMFT solution and the simulations only agree up to times t ∼ 103, af-
ter which the diversity in the simulations reduces more rapidly and reaches
a fixed point. This means that the convergence to the DMFT solution is
slow with S.

abundances, without further loss of diversity up to time 2 ·105. They are intended solely
to demonstrate that conditions with γ 6= 0 exist, rather than a systematic exploration
of such cases.

The parameters for the simulations (using the notation of Appendix E.1) are the
following:

Run with positive γ: γ = 1/4, S = 350, mean (Aij,u) = 0.075, std (Aij,u) = 0.175,
c = 0.357, M = 8, d = 10−3, ρ = 0, Nc = 10−15.

Run with negative γ: γ = −1/2, S = 250, mean (Aij,u) = 0.075, std (Aij,u) = 0.358,
c = 0.5, M = 8, d = 10−3, ρ = 0, Nc = 10−15.
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F. Impact of demographic noise (chapter 6)

F.1. Protocol for the numerical samples

For comparing with the theoretical results, we sample the dynamical system presented in
Equation (6.1). The input parameters of a sample are the system size S, the interaction
matrix parameters (µ, σ), the immigration λ, the strength of the demographic noise T
(temperature), and the initial condition distribution P[{Ni(0)}i=1..S ]. In order to sample
one realization of the ecosystem, we perform the following steps:

1. We sample the S-sized symmetric interaction matrix α, from the Gaussian distri-
bution with scaled parameters (µ, σ).

2. We sample the initial conditions Ni(t = 0) from the distribution P[{Ni(0)}i=1..S ].
For instance, we use a factorized uniform distribution in [0, 1]:

P[{Ni(0)}i=1..S ] =

S∏
i=1

1{Ni(0) ∈ [0, 1]}

where 1{.} is the indicator function.

3. We sample the demographic noise {ηi(t)}t=0..tmax
i=1..S , from the white-noise distribu-

tion, with temperature T .

4. Then, all three random contributions (interactions, initial conditions and demo-
graphic noise) have been dealt with. We can then integrate deterministically the
system, to end up with {Ni(t)}t=0..tmax

i=1..S , where tmax is the temporal extent for the
simulation.

Actually, the above 3 and 4 points are a bit more involved: the implementation of
immigration is detailed in Appendix F.2, and the exact numerical scheme we used is
presented in Appendix 6.5. But for simplicity’s sake, let’s focus on this framework: we
fix parameters (S, µ, σ, λ, T ), we sample the three random contributions, we integrate,
and we obtain the species populations over time {Ni(t)}t=0..tmax

i=1..S .
When we reproduce different sets of data by keeping the same parameters, but sam-

pling different randomness, we obtain {N r
i (t)}t=0..tmax

i=1..S, r=1..Nsample
.

F.2. Mathematical issues for immigration implementation

In this part, we detail the mathematical issue for immigration implementation. This
problem is independent on the interactions, so we drop them (α = 0 here). We consider
the following one-species Ito-stochastic process:
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F. Impact of demographic noise (chapter 6)

dN

dt
= N(1−N) +

√
2TN η + λI(N) (F.1)

with white noise 〈η(t)η(t′)〉 = δ(t− t′), and immigration function I(N). Immigration
is generically implemented so that the populations do not go too close to 0. In the usual
immigration, I(N) = 1, but we will see that this is problematic.

We want to have a hint at the stationary distribution of population P∞(N) = P (N, t =
∞). In order to obtain it, we change variables so that the noise becomes additive, and
not multiplicative any more. Here the relevant change of variables is s(t) =

√
N(t), and

Ito’s lemma gives:

ds

dt
=
s2 − s4 + λI(N)

2s
− T/4

s
+
√

2T/4 η

Then we use Langevin-Boltzmann to read the stationary distribution.
In the usual immigration I(N) = 1 case, the stationary distribution is always inte-

grable:

P∞(N) = Z−1Nλ/T−1 exp
1

T
(N − N2

2
)

However, the corresponding effective potential Veff (N) behaves repulsively around
N = 0 only if λ > T :

Veff (N) = −N +
N2

2
− (λ− T ) lnN

Indeed, if we introduce an approximate induced cut-off valueNcut(b) such that P∞(N <
Ncut) ∼ e−b � 1, the scaling yields Ncut(b) ∼ e−bT/λ, which means that the density is
still relevant up to e−bT/λ � 1.

Basically, this means that demographic noise with usual immigration will not prevent
populations from reaching very low values. The usual immigration is not strong enough
when facing demographic noise. This is indeed problematic, because whenever we will
want to actually compute observables, the integrals will be dominated by the domain
N ∼ 0. This is wrong physically (important species should be the high population ones),
and difficult numerically (integration is ill-defined).

In order to solve this, we can implement stronger immigration such as I(N) = N−α

with α > 0. However, another even simpler physical solution is to impose a hard repulsive
boundary condition on the problem: an infinite potential at N = λ. In this case, the
same steps can be performed and we obtain the stationary distribution:

P∞(N) = Z−1N−1 exp

[
1

T
(N − N2

2
)

]
1{N > λ}

which is well-behaved. This is the solution we chose for both the theory predictions
and the numerics. We will now detail in the next section how to integrate this process
numerically.
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F.3. Issues of our numerical scheme

After careful tests on simpler models, we used this scheme to compare with the theory.
Initially we used a hard-wall immigration at λ = 10−3. The agreement was quite good
for second degree observables (qd, q0), but not for h. This is due to the numerical scheme.
Indeed, if T is quite high (T � λ), the sampling of the demographic noise sends many
O(1) species close to 0, then they bounce on the wall and end up at N = 2λ. Therefore
there is an induced concentration of species at N = 2λ. Because of the 2λ peak, there
is a subsampling of the O(1) populations.

In order to reduce this issue, we use a higher λ = 10−2 in the final results that are
shown on figure 6.4. We reckon the slight discrepancy at high temperature between
theory and numerics comes from this issue. We are aware that the method is still in
development. However, it is already enough at the moment to beautifully confirm the
theory.

We detail here the ongoing improvements for the numerical scheme. In the current
version, we first sample pure demographic noise then implement the hard wall immi-
gration. When doing this, a lot of trajectories do bounce on the wall, which lowers the
accuracy of the scheme. A way to solve this would be to directly solve the Fokker-Planck
equation associated to the whole process ”demographic noise + hard wall”. We reckon
this can be done adapting the proof from [132].
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G. Miscellaneous

In this chapter, we detail three results that are independent from all previous chapters.
First, we perform a Landau-like expansion in the correlation function, close to the chaotic
transition. Then, we play with the quadratic saturation in the Lotka-Volterra model.
We show that there is no chaotic phase with a log saturation. And eventually, we show
that there is an aging chaotic behavior with a cubic saturation; just like with the usual
quadratic one.

G.1. Perturbation expansion in the correlation close to the
chaotic transition

In this section, we present an expansion for the correlation function, close to the chaotic
transition.

I wait for a steady state to be reached, either a chaotic one or a stable equilibrium.
Starting here, I’ll perform a perturbation expansion over the noise.

The details of the computation can be found in Appendix H. This result involved quite
tedious computations, so any application should check the second order coefficients. In
theory, it could also be obtained by using Martin-Siggia-Rose field theory.

G.1.1. Result

Using Wick’s theorem, the evenness of the correlation and assuming time-translation
invariance, I obtain a second-order closed equation on the correlation function C(τ):

∀τ, C(τ) =

∫
dt1 M

C
1 (τ ; t1) C(t1) +

∫
dt1 dt2 M

C
2 (τ ; t1, t2) C(t1) C(t2) (G.1)

It is easier to simplify the diagrams in Fourier space, where the nodes’ law from
electronics applies. After tedious classifications, and writing c(ω) the direct Fourier
transform of C(τ) I obtain:

161



G. Miscellaneous

c(ω) = σ2c(ω)〈 N2

N2 + ω2
〉+

+ 2πσ4δ(ω)〈{
∫
dΩ

2π
c(Ω)

iΩ

N2 + Ω2
}2〉+

+ σ4

∫
dΩ

2π
c(Ω)c(ω − Ω)〈N2 N(−2iΩ + 3iω) + ωΩ

(N2 + ω2)(N2 + (ω − Ω)2)(N2 + Ω2)
〉+

+ σ4c(ω)

∫
dΩ

2π
c(Ω)〈N P (N,ω,Ω)

(N2 + ω2)(N + iω)(N + i(ω − Ω))(N2 + Ω2)
〉+

(G.2)

In what I wrote, 〈.〉+ denotes the average over the stationary solution. I also introduced
P (N,ω,Ω), which is the polynomial expression:

P (N,ω,Ω) = 8N4 +N3(−9− 8iΩ) +N2(5iΩ− 4iω) +N(−2Ωω − 4Ω2) + iωΩ(ω − Ω)

The second line with the δ(ω) in equation (G.2) should probably be omitted, because
it comes from non-connected diagrams.

G.1.2. First order

If I keep only the first order, I recover the usual transition line to chaotic behavior. Let’s
detail this result a little bit more. If I keep only the first order in equation (G.2), it
reads:

∀τ, 0 =

∫
dt1 L(τ ; t1) C(t1) (G.3)

where I introduced the linear operator L(τ ; t1) = MC
1 (τ ; t1) − δ(τ − t1). When the

operator L is invertible, there is only one solution to equation (G.3): ∀τ, C(τ) = 0.
This is the case in the One Equilibrium phase. For a chaotic state to exist, it is therefore
needed that the linear operator L becomes non-invertible. This operator happens to
be time-translationally invariant, and it can thus be diagonalized in Fourier space. It
starts to be non-invertible when its lowest eigenvalue touches zeros. The corresponding
eigenvector is the small frequency one, and the transition happens when σ =

√
2. More

precisely, the Fourier representation of the operator is:

lim
ω→0
L̃(ω) = φ(φ−1 − σ2) (G.4)

It can then be shown that the condition that indicates the appearance of chaos (i.e.
0 = limω→0 L̃(ω)) is exactly the same condition as the one from section 2.3.2 (for γ = 0).

G.1.3. Second order

The second order analysis of equation (G.2) should be able to tell us how the transition
to chaos occurs: what is the correlation function just above the chaotic threshold. we
haven’t done it yet.
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G.2. Different functional responses

In this section, we broaden the study of the model to different saturations (which are
called functional responses in ecology). We do know that they are essential to the
different phases the ecosystem can present. For instance, the Unbounded Growth phase
can be suppressed by implementing a stronger limitation from the environment. Here,
we present the analytical study of a logarithmic saturation, followed by the numerical
investigation of a cubic saturation.

G.2.1. Log saturation

In this section, we study a slightly different model, where the saturation from the envi-
ronment isn’t quadratic but rather logarithmic:

∀i = 1, ..., S,
dNi

dt
= Ni

− log(Ni)−
∑
j 6=i

αijNj

 (G.5)

The logarithmic saturation simplifies the analytical treatment, because the natural
variables of the dynamics are indeed the log of the populations. Due to the saturation,
the extinct-state of a species can never be stable: all species stay present. A previous
study [144], showed that there was no chaotic dynamics in the case µ = 0. However, we
hoped to observe them with this saturation for µ 6= 0, and DMFT would be easier to
tackle (at least for γ = 0). However, we show here that there is no Multiple Attractor
phase in the phase space of the model.

We will only deal with the purely asymmetric γ = 0 case. We write the static cavity
equations: {

q = m2eσ
2q

meµm = eσ
2q/2

(G.6)

We perform the stability analysis of the static cavity solution, just like in Appendix
A.7. We end up with the correlation closure (similar to equation 2.13 with a different
saturation):

C̃c(ω)/σ2
h =

q

1− σ2q + ω2
(G.7)

From it, we see that the instability occurs again at zero mode (ω = 0), but that this
time it is inversely quadratic in the frequency instead of inversely linear. This instability
transition occurs at σ2q = 1, which in the phase portrait means:

µ√
e

= σ(1 + log σ)

This would usually mark the boundary between the One Equilibrium phase and the
Multiple Attractors one. However, we can also check when does the Unbounded Growth
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transition occurs. We now focus on the system of equations G.6, we want to understand
when does the solution explodes.

The first equation is of the type eX = aX, with X = σ2q and a = {σm}−2. This
equation admits two solutions when a > e, that merge and disappear at X = 1 when
a = e. A quick stability analysis of the system shows that the stable (in terms of flow)
solution is the X < 1 one.

The second equation is always well-behaved, because it is of the type e−Y = bY with
Y = µm, and b = µ−1e−σ

2q/2. There is always one unique solution Y (b).
This analysis shows that the static cavity solution disappears when a→ e from above.

But interestingly, the limit a = e exactly corresponds to the Multiple Attractors phase
transition. Therefore, we showed that the system cannot exhibit chaotic dynamics,
because the instability directly ends up in the Unbounded Growth phase: there is no
Multiple Attractors phase. We confirmed this result numerically, it was not possible to
find a chaotic simulation with log saturation.

G.2.2. Cubic saturation

In this section, we change again the saturation in the model, and use a cubic one. The
model then becomes:

∀i = 1, ..., S,
dNi

dt
= Ni

1−N2
i −

∑
j 6=i

αijNj

 (G.8)

Based on the work of [49], it was suspected that the cubic saturation might prevent
the chaotic behavior from aging and disappearing. However, we performed a numerical
study to show that this is not the case. Indeed, it can be seen on figure G.1 that the
system does exhibit chaotic aging dynamics; just like the usual quadratic saturation
model.
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Figure G.1. Chaotic aging with cubic saturation
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H. Perturbation expansion in the
correlation (Appendix G)

H.1. Setup

I wait for a steady state to be reached, either a chaotic one or a stable equilibrium.
Starting here, I’ll perform a perturbation expansion over the noise.

In all this section, I’ll focus first on the γ = 0 case. I consider the interactions from
all species as a noise ηi =

∑
j aijNj(t) without going through the cavity derivation. I

introduce the notation Xj = 1
S

∑
j Xj , and 〈.〉 denotes the average over the noise.

Ṅi = Ni(1−Ni − µNj − σηi)

From the cavity derivation, I know that ηi is Gaussian with covariance

〈ηi(t)ηi(t′)〉 = 〈Nj(t)Nj(t′)〉

Now I will separate the noise into two independent contributions: ηi(t) = η∞ + δη(t),
and their variance:

〈η2
∞〉 = 〈Nj〉2

〈δη(t)δη(t′)〉 = 〈Nj(t)Nj(t′)〉 − 〈Nj〉2

The idea is that in the chaotic regime, Nj(t) and Nj(t
′) will decorrelate when t − t′

becomes large enough. The ergodic hypothesis should hold. In addition, in small chaos,
I should also have that the time average of a trajectory 〈Ni(t)〉T = N∞i (I checked it
with Giulio at some point). Therefore the noise δη will disappear

I need to be careful, because the stationary noise I introduce is not the one the system
converges to in the 1eq phase. Maybe it would be better to introduce three independent
noises to be clear. I’ll keep on with the computations I had started.

I can rewrite:
Ṅi = Ni(Hi −Ni − σδηi)

H.2. Diagrammatic expansion

First I rule out the extinct species. For them, Hi < 0 and at first order in δNi and
δηi: δNi(t) = Ni(t) = Ni(0) exp(−|Hi|t −

∫ t
0 δηi). The integral term scales as

√
t and

therefore at long times |Hi| always wins.
Now I focus on the remaining species, for which Hi > 0 and I introduce ni(t) =

δNi(t) = Ni(t)−Hi. I’ll drop the i index, the δs and the ∗.
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ṅ = −(N + n)(n+ ση) (H.1)

I know from the self-consistent relation that η and n are of the same order, supposed
to be small. If I forget about the transient (exponential relaxation) by sending the initial
condition to −∞, I get the perturbative expansion:

n(t) =

∫
dt1M1(t; t1)η(t1) +

∫
dt1dt2M2(t; t1, t2)η(t1)η(t2)

+

∫
dt1dt2dt3M3(t; t1, t2, t3)η(t1)η(t2)η(t3) + ...

I define the operator M(t, t1) = θ(t− t1)e−N(t−t1) where θ is the Heavyside function.
Then I can define the Mi operators from above as diagrams. Eventually, I’m interested
in the second order for the correlation function, so I need to go up to third order in η:

C(t, t′) = 〈n(t)n(t′)〉 = ... (H.2)

Using Wick’s theorem, the evenness of C and assuming time-translation invariance,
I obtain a closed equation on C. It is easier to simplify the diagrams in Fourier space,
where the nodes’ law from electronics applies. After tedious classifications, and writing
c(ω) the direct Fourier transform of C(τ) I obtain:

c(ω) = σ2c(ω)〈 N2

N2 + ω2
〉+ (H.3)

+2πσ4δ(ω)〈{
∫
dΩ

2π
c(Ω)

iΩ

N2 + Ω2
}2〉+

+σ4

∫
dΩ

2π
c(Ω)c(ω − Ω)〈N2 N(−2iΩ + 3iω) + ωΩ

(N2 + ω2)(N2 + (ω − Ω)2)(N2 + Ω2)
〉+

+σ4c(ω)

∫
dΩ

2π
c(Ω)〈N P (N,ω,Ω)

(N2 + ω2)(N + iω)(N + i(ω − Ω))(N2 + Ω2)
〉+

P (N,ω,Ω) = 8N4 +N3(−9− 8iΩ) +N2(5iΩ− 4iω) +N(−2Ωω − 4Ω2) + iωΩ(ω − Ω)

In what I wrote, 〈.〉+ denotes the average over the stationary solution. I should be
careful with the decomposition of the noise, but so far I considered it was the usual
truncated Gaussian.

I present the blackboard notes of the derivation in figure H.1.
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Figure H.1. Diagrammatic expansion: definitions and closure in Fourier space

169





Bibliography

[1] Robert MacArthur. Species packing and competitive equilibrium for many species.
Theoretical Population Biology, 1(1), May 1970.

[2] Peter Chesson. MacArthur’s consumer-resource model. Theoretical Population
Biology, 37(1), February 1990.

[3] Robert May. Will a large complex system be stable. Nature, 238:413–4, 09 1972.

[4] Stephen P. Hubbell. The Unified Neutral Theory of Biodiversity and Biogeography
(MPB-32). Princeton University Press, April 2001.

[5] James Rosindell, Stephen P. Hubbell, and Rampal S. Etienne. The Unified Neu-
tral Theory of Biodiversity and Biogeography at Age Ten. Trends in Ecology &
Evolution, 26(7), July 2011.

[6] Sandro Azaele, Samir Suweis, Jacopo Grilli, Igor Volkov, Jayanth R. Banavar, and
Amos Maritan. Statistical mechanics of ecological systems: Neutral theory and
beyond. Rev. Mod. Phys., 88:035003, Jul 2016.

[7] Charles S. Elton. The Ecology of Invasions by Animals and Plants. Springer US,
1958.

[8] Robert MacArthur. Fluctuations of Animal Populations and a Measure of Com-
munity Stability. Ecology, 36(3), 1955.

[9] Mark R. Gardner and W. Ross Ashby. Connectance of Large Dynamic (Cybernetic)
Systems: Critical Values for Stability. Nature, 228(5273), November 1970.

[10] Garrett Hardin. The competitive exclusion principle. Science, 131(3409):1292–
1297, 1960.

[11] Maayke Stomp, Jef Huisman, Gary G. Mittelbach, Elena Litchman, and Christo-
pher A. Klausmeier. Large-scale biodiversity patterns in freshwater phytoplankton.
Ecology, 92(11), 2011.

[12] G. E. Hutchinson. The Paradox of the Plankton. The American Naturalist,
95(882), May 1961.

[13] Karoline Faust and Jeroen Raes. Microbial interactions: from networks to models.
Nat Rev Micro, 10(8):538–550, Aug 2012.

171



BIBLIOGRAPHY

[14] Elizabeth Pennisi. How Did Cooperative Behavior Evolve? Science, 309(5731),
July 2005.

[15] Per Lundberg, Esa Ranta, Jörgen Ripa, and Veijo Kaitala. Population variability
in space and time. Trends in Ecology & Evolution, 15(11), November 2000.

[16] Pablo Inchausti and John Halley. On the relation between temporal variability and
persistence time in animal populations. Journal of Animal Ecology, 72(6), 2003.

[17] Stephen Ellner and Peter Turchin. Chaos in a Noisy World: New Methods and
Evidence from Time-Series Analysis. The American Naturalist, 145(3), March
1995.

[18] Marten Scheffer, Sergio Rinaldi, Jef Huisman, and Franz J. Weissing. Why plank-
ton communities have no equilibrium: solutions to the paradox. Hydrobiologia,
491(1), January 2003.

[19] Robert M. May. Biological Populations with Nonoverlapping Generations: Stable
Points, Stable Cycles, and Chaos. Science, 186(4164), November 1974.

[20] J. C. Allen, W. M. Schaffer, and D. Rosko. Chaos reduces species extinction by
amplifying local population noise. Nature, 364(6434), July 1993.

[21] Jean P. Gibert and Justin D. Yeakel. Laplacian matrices and Turing bifurcations:
revisiting Levin 1974 and the consequences of spatial structure and movement for
ecological dynamics. Theoretical Ecology, 12(3), September 2019.

[22] A. A. Berryman and J. A. Millstein. Are ecological systems chaotic — And if not,
why not? Trends in Ecology & Evolution, 4(1), January 1989.

[23] Roger Nisbet, Steve Blythe, Bill Gurney, Hans Metz, Kevin Stokes, Adam Lom-
nicki, and G. S. Mani. Avoiding chaos. Trends in Ecology & Evolution, 4(8),
August 1989.

[24] Dominique Gravel, François Massol, and Mathew A. Leibold. Stability and com-
plexity in model meta-ecosystems. Nature Communications, 7(1), August 2016.

[25] Egbert Giles Leigh. The average lifetime of a population in a varying environment.
Journal of Theoretical Biology, 90(2), May 1981.

[26] Russell Lande. Risks of Population Extinction from Demographic and Environ-
mental Stochasticity and Random Catastrophes. The American Naturalist, 142(6),
December 1993.

[27] Michel Loreau, Nicolas Mouquet, and Andrew Gonzalez. Biodiversity as spatial
insurance in heterogeneous landscapes. Proceedings of the National Academy of
Sciences, 100(22), October 2003.

172



BIBLIOGRAPHY

[28] Jörgen Ripa and Per Lundberg. Noise colour and the risk of population extinc-
tions. Proceedings of the Royal Society of London. Series B: Biological Sciences,
263(1377), December 1996.

[29] Alan Hastings, Carole L. Hom, Stephen Ellner, Peter Turchin, and H. Charles J.
Godfray. Chaos in Ecology: Is Mother Nature a Strange Attractor? Annual
Review of Ecology and Systematics, 24(1), 1993.

[30] Marten Scheffer. Should we expect strange attractors behind plankton dynamics –
and if so, should we bother? Journal of Plankton Research, 13(6), January 1991.

[31] Jef Huisman and Franz J. Weissing. Biodiversity of plankton by species oscillations
and chaos. Nature, 402(6760), November 1999.
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