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Chapter 1

Introduction

1.1 High-energy nuclear physics

Over the last two decades, a novel branch of physical sciences has established
itself as an active and important area of fundamental research. This is the field
of high-energy nuclear physics [1].

The name may sound a bit of an oxymoron. The adjective high-energy implies
a link with the vast field of high-energy physics, i.e., elementary particle physics.
High-energy physics is devoted to studying and testing the fundamental interac-
tions (weak, strong, and electromagnetic) that constitute the Standard Model of
particle physics. This is done by means of exceptional experimental means, involv-
ing particle collider experiments, typically proton-proton collisions, performed at
the most powerful accelerator facilities in the world. The term nuclear physics
denotes on the other hand the hundred-year-old effort devoted to the study of
atomic nuclei, and in particular of their structure, i.e., their mass, geometry, and
energy levels. These features are investigated by means of experiments involving
energy scales that are orders of magnitude lower than achieved in high-energy
experiments, hence the appellative low-energy experiments.

However, it would be reductive to state that nuclear physics is nowadays merely
concerned with the study of atomic nuclei on low energy scales. I think that nu-
clear physics should be rather defined by its goal, which is conceptually different
from that of high-energy physics. Atomic nuclei are packets of nucleons, neutrons
and protons, which are in turn composed by elementary particles, quarks and glu-
ons. The strong force of the Standard Model keeps these constituents together.
While, as mentioned above, high-energy physics aims at unveiling the properties
of the strong force, and of the associated quantum field theory, quantum chro-
modynamics (QCD), at the most fundamental level, the goal of nuclear physics
is instead that of understanding the emergence of more complex forms of matter
and phenomena that are shaped by this fundamental interaction.

Notorious examples of such forms of matter are atomic nuclei and neutron
stars. However, another item should nowadays be added to the list. This is the so-
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6 CHAPTER 1. INTRODUCTION

called quark-gluon plasma, arguably, the weirdest of all forms of strong-interaction
matter. It is a medium composed solely of quarks and gluons, and where nucleonic
degrees of freedom are absent. The quark-gluon plasma is expected to emerge
whenever one stuffs a (huge) lot of QCD matter inside a (very) small volume, i.e.,
when looking at systems that are far denser than normal nuclear matter. Since
one can achieve such conditions of density only by smashing nuclei at very high
energy, one has to perform high-energy experiments, i.e., collider experiments at
the highest energies achievable on Earth. Instead of protons, one accelerates and
smashes atomic nuclei, with the aim of producing and thus characterizing the
quark-gluon plasma. Hence the name, high-energy nuclear physics.

This branch of nuclear science emerged from the results of scattering experi-
ments involving heavy nuclei that were conducted in the last decades of the 20th
century, and it is thus a synonym of relativistic nuclear collisions, or, more com-
mon, relativistic heavy-ion collisions. The discovery of the quark-gluon plasma
was claimed in the early 2000’s [2, 3, 4, 5], following the beginning of operation of
the Relativistic Heavy Ion Collider machine at the Brookhaven National Labora-
tory. Since then, the field of heavy-ion collision has exploded, becoming quickly a
major sub-field of nuclear research. The motivation behind the program of high-
energy nuclear physics is the possibility of learning something new about QCD
matter, such as the equation of state or its transport properties, under extreme
conditions. This program has been highly successful. Thanks to the great amount
of high-precision data coming from particle colliders, the theoretical understand-
ing of the collision process has dramatically improved over the years. This has
lead to the development of comprehensive theoretical frameworks that allow one to
describe quantitatively the experimental observations, and consequently to place
constraints over the physical properties of the quark-gluon medium.

In this work, I discuss a new direction of investigation which is opened by this
optimal state of affairs. I argue that relativistic nuclear collisions provide us in
particular with a new, powerful experimental probe of the structure of atomic
nuclei, specifically, of their deformation, and that a phenomenology of nuclear
structure at high energy is possible and within the reach of current experiments.
Let me explain, then, how this can be done.

1.2 Macroscopic physics on nuclear scales

By creating the quark-gluon plasma in the laboratory, high-energy nuclear physics
aims at characterizing strong-interaction matter in the limit of high temperature.
But what does temperature mean in this context?
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Figure 1.1: Collision between two 208Pb nuclei at a particle accelerator. In the interaction
point, a quark-gluon plasma (QGP) is created, i.e., a region of space densely populated with
quarks an gluons in thermal equilibrium at a temperature of about one trillion Kelvin. Figure
from Ref. [6].

Hydrodynamics – In the interaction between constituent quarks and gluons in,
e.g., a high-energy proton-proton collisions, there is in principle no such notion
of a temperature. There in an initial state, followed by an interaction mediated
by gluons, and then the emission of particles to the final state. The situation is
however quite different when one looks at a high-energy nuclear collision. Insight
can be gained by looking at the illustration shown in Fig. 1.1, displaying the
interaction of two nuclei accelerated along the beam pipe of a particle collider.
In high-energy physics experiments, one is typically interested in elementary pro-
cesses emitting a handful of particles to the final state. By contrast, in heavy-ion
collisions one is interested in events where thousands of particles are detected in
the final state. These events involve an incalculable amount of elementary col-
lision processes, and it would be hopeless trying to describe them by means of
perturbative QCD calculations.

Nevertheless, not only such calculations are hopeless, but as a matter of fact
they are also unnecessary. When a physical system is highly complex, it is usually
possible to find an effective description which allows one to describe the dynamics
of the bulk of particles without paying any attention to the motion of single
constituents [7]. In the context of relativistic nuclear collisions and the physics of
the quark-gluon plasma, this reasoning is the right path to follow.

This can be understood from simple figures. An ultrarelativistic collision be-
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tween 208Pb nuclei releases typically 2000-3000 particles within a volume of order
1000 fm3 [6]. This means that there are approximately 2 − 3 particles per fm3.
Nuclear matter, e.g., the matter that makes up neutron stars and large nuclei,
has about 0.16 particles per fm3. The density achieved in high-energy nuclear
collisions is over one order of magnitude larger than that of nuclear matter.

This has a nontrivial implication. If the particles produced over the interaction
region know about each other, i.e., if they interact, then the system is in a special
regime where the mean free path between two particles is negligible compared to
the overall system size. This implies that the bulk of particle motion can be de-
scribed by fluid dynamical laws. Surprising as it may sound, then, the dynamics
of the quark-gluon plasma, a system which is of the size of an atomic nucleus,
is ruled by macroscopic laws, involving pressure gradients, velocity fields, and
temperature. I stress that this description requires the microscopic constituents
to be coupled strongly enough to permit the system to reach a fair degree of local
thermal equilibrium within a short time span, of typically 1 fm/c (or 3×10−24 s),
following the interaction of the two nuclei. This is a nontrivial requirement. How-
ever, quarks and gluons interact via the strong force, whose associated time scale
is precisely around 1 fm/c, and the hydrodynamic paradigm explains quantita-
tively all experimental observations so far made in relativistic nuclear collision
experiments. The reaching of local thermal equilibrium can thus be viewed as an
established experimental fact.

Today, one can in full safety claim that, as shown in Fig. 1.1, the system
formed in a high-energy 208Pb+208Pb collision is a gas of a few thousand particles
in equilibrium at a temperature T ≈ 1012 K, corresponding to the temperature
at which QCD predicts a gas of nucleons to melt into a plasma of de-confined
quarks and gluons. This is the hottest medium ever produced in the laboratory.

Collectivity – The applicability of an effective description based on fluid dy-
namics in heavy-ion collisions is thus a generic consequence of the fact that such
collisions produce thousands of particles. However, detectors at particle colliders
can only see particles flying out of the interaction point, and do not permit one to
resolve directly the quark-gluon plasma that is produced on nuclear length scales.
What kind of observations do in practice confirm that the fluid paradigm is cor-
rect? The key idea is to look at the way all the observed particles are distributed
in the final states. The hydrodynamic description implies that the dynamics of the
system is collective, so that the particles detected in the final state are produced
following the collective expansion of an underlying fluid that cools in vacuum.

One can easily convince themselves that this idea makes sense by looking at
basic features displayed by the angular distribution of the emitted hadrons. The
relevant experimental data shown in Fig. 1.2. The quantity which is plotted is
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a two-dimensional histogram, displaying the distribution of the number of pairs
of particles separated by a given angular distance detected in the final states of
relativistic 208Pb+208Pb collisions. The angle ∆φ, where the azimuthal angle,
φ, runs between 0 and 2π, corresponds to the angular separation between two
particles in the plane orthogonal to the beam axis (as visualized in Fig. 1.1).
The separation ∆η can be instead viewed as the angular separation between two
particles along the beam axis, where η = 0 corresponds to the interaction point.
A separation ∆η = ±4 corresponds to a good approximation to pairs where the
two particles are detected, respectively, at opposite ends of the detector, i.e., with
a relative angle close to π along the direction of the beam.

I focus on the left panel of Fig. 1.2. The nontrivial result is that the two-
dimensional distribution is structureless along the ∆η direction. The only excep-
tion, i.e., the peak around ∆η ≈ ∆φ ≈ 0, has a trivial origin, and comes from
the fact the probability of particle emission is in enhanced whenever two parti-
cles are collinear, a fully generic feature of the underlying quantum field theory
that governs the processes of particle emission. The same kind of peak would be
observed in proton-proton, or electron-positron collisions. However, the structure
stretching over the whole ∆η interval, which looks like a wave in the ∆φ direction,
is a feature unique of nuclear collisions, or in general of hadronic collision emitting
large numbers of hadrons to the final state. The flatness of the distribution in
∆η implies in particular that particle pairs emitted at the two opposite ends of
the detector have the same relative azimuthal angle as pairs of particles that have
much smaller separations in ∆η. The emitted particles appear thus to follow a
global, collective pattern.

Needless to say, then, that the observable presented in Fig. 1.2 represents a
spectacular confirmation of the effective fluid description, which naturally predicts
such kind of collective phenomena in the final states of high-energy nuclear colli-
sions. The idea that the observed correlations between particles originate solely
from the underlying medium expansion amounts however to assuming that these
correlations are not produced by the mechanism of particle production itself. This
means that, when the quark-gluon plasma converts into hadrons, the momentum
of a given hadron is chosen independently for each hadron. The combination
of the hydrodynamic description with this idea of independent particle emission
constitutes the so-called flow paradigm of relativistic heavy-ion collisions.

1.3 Symmetry breaking

The flow paradigm is thus motivated by simple theoretical arguments and con-
firmed by striking experimental observations. The question is now how one can
exploit it to obtain information about the physical properties of the system cre-
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Figure 1.2: Number of particle pairs as a function of the relative angular distance between the
considered particles in ultrarelativistic 208Pb+208Pb collisions. Left: Central collisions. Right:
Semi-peripheral collisions. Figure from Ref [8].

ated in the interaction region, i.e., of the quark-gluon plasma.

Elliptic flow – In the left panel of Fig. 1.2, one observes a second prominent
feature. The distribution of pair number breaks symmetry along the ∆φ direc-
tion, i.e., there are directions where particle emission is favored, in particular, a
minimum at ∆φ = π/2 and a plateau around ∆φ = π. The origin of these kind
of patterns is best deduced from the right panel of Fig. 1.2. This panel shows the
same observable, but at a different collision centrality, i.e., with the two nuclei
colliding with a significant impact parameter. The latter is defined as the spatial
separation between the centers of the two nuclei in the plane orthogonal to the
beam. The plot I have been analyzing in the left panel is obtained for central
collisions, i.e., collisions where the impact parameter is small and the overlap of
the two nuclei is almost maximal (see the illustration on top of the figure). In the
right panel of Fig. 1.2, on the other hand, the impact parameter is much larger.

Closer inspection of the distribution of particle pairs in the ∆φ direction in
Fig. 1.2 reveals that not only azimuthal isotropy is broken, but the distribution
acquires a pronounced cos(2∆φ) modulation. This phenomenon is known as
elliptic flow. What is its origin? Insight can be gained by looking more closely at
the region of nuclear overlap. A zoom is shown in the left panel of Fig. 1.3.

The figure shows the geometry of overlap of two nuclei in the plane (x, y)
orthogonal to the beam axis. One immediately sees that two nuclei colliding at a
finite impact parameter, as in the left panel, produce an interaction region that
breaks azimuthal symmetry, and that has essentially the shape of an ellipse. This
means in particular that if we call Φ the polar angle in the (x, y) plane, then the
interaction region has precisely a cos(2Φ) modulation.
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y

x

Figure 1.3: Collision geometry in the plane orthogonal to the beam axis. The impact parameter
is along x. Left: Azimuthal isotropy in the region of overlap is broken by the finite impact
parameter. Right: Anisotropy is generated by the deformed shape of the overlapping bodies.

Within a hydrodynamic paradigm, this feature has a striking consequence.
Since the fluid is produced at rest, its dynamics is governed by pressure gradients
which are determined by the geometry of the system. Breaking of symmetry in the
geometry of nuclear overlap implies an imbalance in the pressure gradients that
govern the hydrodynamic expansion of the system. The resulting hydrodynamic
flow is asymmetric, and produces more momentum along a preferred direction
(the x direction, in the case of Fig. 1.3). This is ultimately carried over to the
particles emitted from the fluid, and manifests as a breaking of symmetry in the
azimuthal distribution of particles detected in the final state. Hence an elliptical,
cos(2Φ) modulation of the overlap region, caused by the impact parameter, yields
an elliptical, cos(2∆φ) modulation of the azimuthal distribution of final-state
hadrons, i.e., elliptic flow. In view of this, the appearance of a visible elliptic
flow as one moves from the left panel to the right panel of Fig. 1.2 represents an
additional spectacular experimental confirmation of the fluid description.

The conversion of initial-state anisotropy into final-state anisotropy is driven
by the transport properties (speed of sound, viscosity) of the quark-gluon plasma.
Consequently, if one knows the impact parameter of the detected collisions and
has a good knowledge of the geometry of the quark-gluon plasma at the onset
of the hydrodynamic behavior, one can use experimental data on elliptic flow to
reconstruct information about the transport properties of the fluid. This is indeed
a powerful method allowing theoretical calculations based on hydrodynamic simu-
lations to achieve the goal of high-energy nuclear physics, i.e., the characterization
of hot QCD matter from experimental measurements.

Quadrupole deformation – The fact that the final elliptic anisotropy measured
in data originates from an elliptic anisotropy in the region of nuclear overlap
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might ring a bell in the head of those who have some notions on the fundamental
properties of atomic nuclei. There exists in fact another well-defined origin of
quadrupole asymmetry in the region of overlap, an illustration of which is given in
the right panel of Fig. 1.3. Here, breaking of symmetry is not caused by the impact
parameter, but solely from the fact that the two colliding nuclei have an ellipsoidal
shape. This feature is neither special nor exotic. The majority of atomic nuclei
are in fact nonspherical in their ground state, but present, precisely, a quadrupole
deformation, one of the fundamental features of atomic nuclei investigated by
theories of nuclear structure. Hence, unless the colliding species are chosen from
the (actually limited) pool of stable nuclides that can be considered as spherical
in their ground state (like 208Pb nuclei), one should simply expect the realization
of deformed regions of nuclear overlap due to the deformed nuclear shape of the
colliding bodies.

This implies that if one collided nuclei that have a quadrupole deformation
in their ground state, and if one were able to select collision configurations cor-
responding to a vanishing impact parameter, then an excess elliptic flow should
be observed due to the contamination from the collision geometries shown in the
right panel of Fig. 1.3. An even more ideal situation would however be realized
if from the data one were able to discern directly these geometries that maxi-
mally break azimuthal symmetry, as in these events any manifestation of elliptic
anisotropy in the final state would represent a phenomenological manifestation
of the quadrupole deformation of the colliding nuclei. If such observations were
made, and if the transport properties of the quark-gluon plasma were known from
studies of collision of spherical nuclei, one could use experimental data on elliptic
flow in collisions of nonspherical nuclei as a means to obtain information about
the quadrupole deformation of the colliding species.

This defines a neat method allowing one to use high-energy nuclear experiments
as probes of the deformation of atomic nuclei. This possibility has potentially far
reaching implications, and is in principle of interest for a large fraction of the
nuclear physics community. However, although experimental data on relativistic
collisions of deformed nuclei, notably 238U nuclei, has been already collected at
RHIC, little has been achieved along this direction of investigation. The rea-
son is that, following the publication of data, it has been realized that selecting
geometries of interaction corresponding to the right panel of Fig. 1.3 is more dif-
ficult than originally thought, and perhaps not possible at all. As a consequence,
quantitative studies of nuclear deformation at high energy have not been pursued.

1.4 About this document

This document is divided into two parts.
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Chapters 2 and 3 constitute the first part. In Chapter 2, I discuss generic
features of relativistic heavy-ion collisions. I outline how a collision is modeled
in theoretical calculations, following the so-called Glauber Monte Carlo model. I
explain, then, how the Glauber model can be coupled to a hydrodynamic descrip-
tion, and I give a global picture of the current understanding of the space-time
evolution of a relativistic nuclear collision. Subsequently, in Chapter 3 I introduce
a few observables of paramount importance in the analysis of heavy-ion collisions.
These are: i) the total number of particles detected in a collision event, i.e., the
multiplicity; ii) the elliptic flow, as discussed above; iii) the average momentum
of the final-state hadrons in the plane orthogonal to the beam axis, the so-called
average transverse momentum. I underline the fact that these observables are
amenable to a simple physical interpretation based on elementary fluid dynamic
and thermodynamic laws.

The main subject of this work, i.e., the analysis of phenomenological man-
ifestations of nuclear structure in high-energy nuclear experiments, constitutes
instead Chapters 4 and 5. In Chapter 4 I perform a detailed analysis of existing
experimental data on the fluctuations of elliptic flow in high-multiplicity colli-
sion at RHIC. By means of accurate theory-to-data comparisons, I show that
the RHIC data provides clear evidence of the deformed, ellipsoidal shape of 238U
nuclei, while suggesting, on the other hand, that 197Au nuclei are nearly spher-
ical. This latter result turns out to be highly nontrivial. It is at variance with
empirical estimates, or estimates purely based on a mean-field approximation,
that can be found in the nuclear data tables. Understanding the manifestation of
nearly-spherical gold nuclei in RHIC data requires thus to look at the predictions
of sophisticated frameworks of nuclear structure that go beyond the mean-field
picture. This opens a new direction of investigation, and establishes a deep con-
nection between high-energy and low-energy nuclear phenomena. I then analyze
LHC data on 129Xe+129Xe collisions. This data provides compelling evidence of
the deformed shape of 129Xe nuclei, a result which, based on the predictions of
state-of-the-art nuclear models, suggests the first phenomenological manifestation
of shape coexistence effects in high-energy experiments. In Chapter 5 I overcome
the problem mentioned in the previous section. I introduce a selection of colli-
sion events based on the average transverse momentum that allows one to select
collision geometries corresponding to the right panel of Fig. 1.3 in an experiment.
The key feature is that, for collisions of deformed nuclei at high multiplicity, the
configurations that one is looking for correspond to events where the temperature
of the quark-gluon plasma is abnormally small. I explain that, as a consequence,
the statistical correlation between elliptic flow and the average transverse momen-
tum for events at fixed multiplicity is negative for well-deformed nuclei, a feature
which is confirmed by preliminary RHIC data. I argue that this new method can
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serve as the basis for quantitative studies of nuclear deformation at high energy.
In Chapter 6 I draw my conclusions and, motivated by the results presented in

Chapters 4 and 5, I make a proposal for a future experimental campaign aimed at
the systematic study of nuclear structure effects in relativistic nuclear collisions. I
highlight in particular the great impact that such a program would have on both
high-energy and low-energy nuclear physics.
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Chapter 2

Ultrarelativistic heavy-ion collisions

A particle in the laboratory frame is said to be in the ultrarelativistic regime when
its energy is far greater than its mass at rest. A collision between particles is said
to be ultrarelativistic when the colliding particles are ultrarelativistic. A proton
has for instance a rest energy of about 1 GeV, so that a proton-proton collision
happening at a center-of-mass energy of 100 GeV+100 GeV is ultrarelativistic.
The same applies to nuclei. A collision between two nuclei is ultrarelativistic if
the nucleons that compose the colliding nuclei are themselves ultrarelativistic.

However, when dealing with nuclear collisions, one can define the ultrarelativis-
tic regime by means of an equivalent, and yet insightful geometric condition. To
understand this, let me quote some lines from the paper where special relativity
was invented: [9]

We consider a rigid sphere of radius R. [. . . ] A rigid body that has a
spherical shape when measured in the state of rest thus in the state of
motion – observed from a system at rest – has the shape of an ellipsoid
of revolution with axes:

R

√
1− v2

c2
, R, R.

Thus [. . . ] at v = c, all moving objects – observed from the system “at
rest” – shrink into plane structures.

In the frame of the laboratory, the colliding nuclei are Lorentz-contracted along
the direction of the beampipe. A nucleus can thus be considered as a “plane struc-
ture” in the laboratory frame whenever the Lorentz factor, γ = (1 − v2/c2)−0.5,
is large, γ � 1. However, how small should R/γ be to define the ultrarelativistic
regime? The dynamics of a relativistic nuclear collision involves an additional
scale, corresponding to the time scale on which the system produced in the inter-
action region reaches thermal equilibrium. This scale is dictated by the energy
scale of QCD, and is naturally of order 1 fm/c. In the context of nuclear colli-
sions, I think it is thus fully appropriate to state that the ultrarelativistic regime

15
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is achieved when the thermalization process is completely decoupled from the mo-
tion of the nuclei while they cross each other. If the time taken by the nuclei to
cross each other is infinitesimal compared to 1 fm/c, then the collision is ultrarel-
ativistic. The bottom line is that, if the radius of a nucleus is around R ∼ 10 fm,
then having γ ∼ 10 is not enough to reach the ultrarelativistic limit. One needs
an additional order of magnitude in the Lorentz factor, i.e., γ ∼ 100. This conclu-
sion has been reached without having any knowledge of the center-of-mass energy
of nucleon-nucleon interactions, which sounds like a nontrivial achievement.

In this chapter, I present an end-to-end description of the collision process,
starting from the description of how nuclear collisions are performed at particle
colliders, how one can model the geometry of the collision in the interaction
region, and how a hydrodynamic description is coupled to such a model, eventually
leading to the final observable quantity, i.e., a spectrum of hadrons.

2.1 Collider experiments

To achieve the ultrarelativistic regime, one needs a lot of energy in the center of
mass. This is best achieved in collider mode, with two beams of nuclei running
in the accelerator ring and then crossing at an interaction point. There are only
two collider facilities in the world that are able to perform nuclear collisions at
ultrarelativistic energy.

The Relativistic Heavy Ion Collider (RHIC) is a synchrotron operating at the
Brookhaven National Laboratory (BNL) in Upton, New York, USA (aerial view
given in the right panel of Fig. 2.1). It consists of an accelerator ring with a
diameter of about 1.2 km. It can perform proton-proton collisions at center-of-
mass energy up to 500 GeV, and nuclear collisions at a nucleon-nucleon center-of-
mass energy up to 200 GeV. This machine is entirely devoted to studies of high-
energy nuclear physics, and it is here that the quark-gluon plasma was discovered.
RHIC is also a versatile machine, which allows to collide a lot of different species
of stable nuclides (although so far only a limited number of them has been utilized
in experiments). RHIC started its operation in the year 2000, and it will keep
performing relativistic nuclear collision studies over the next decade.

The high-energy frontier in particle physics is currently being explored by the
Large Hadron Collider (LHC), operated by European Center for Nuclear Re-
search (CERN), in Geneva, CH (aerial view in the left panel of Fig. 2.1). This
synchrotron consists of a ring with a diameter of about 9 km, making it the largest
particle accelerator in the world. LHC allows one to collide protons at a center-
of-mass energy up to 14 TeV, and large nuclei at a nucleon-nucleon center-of-mass
energy up to 5.5 TeV. Contrary to RHIC, LHC is meant to perform high-energy
physics studies, and thus it mainly collides protons to perform precision tests of
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LHC

RHIC

Figure 2.1: Aerial view of the two collider facilities that perform ultrarelativistic nuclear col-
lisions. Left panel: the Large Hadron Collider, operated by CERN, located on the border
between France and Switzerland. The length of the ring is approximately 27 km. Highlighted
are the locations of the four detectors belonging respectively to the four large and infamous col-
laborations doing physics with this machine. Right panel: The Relativistic Heavy Ion Collider
complex on Long Island, approximately 100 km east of New York City. In this work I will be
mostly concerned with experimental data collected by the STAR detector, highlighted in the
figure, which is currently the only detector in activity at RHIC.

the Standard Model of particle physics, and to look for potential signatures of
physics beyond the Standard Model. For this reason, at the LHC collisions of
atomic nuclei are run only for about 1 month per year. The ALICE Collabora-
tion, one of the four large collaborations working at the LHC, consisting of about
1000 members, is however entirely dedicated to the heavy-ion collision program.
There also smaller groups (of order of 100 people) of heavy-ion physicists in the
LHC’s largest collaborations, ATLAS and CMS. Nuclear collisions at LHC will
be performed at least until about 2030 [10]. Beyond 2030, discussions are ongoing
concerning the possibility of running with lighter ions for higher luminosities, as
well as dedicated ambitious new detector upgrades.

How does an ultrarelativistic nuclear collision look like? A representation of a
collision occurring in a particle collider detector is depicted here in Fig. 2.2. The
colliding objects run along the beam axis and smash in the interaction point, high-
lighted in the figure. The collision releases a large number of particles, depicted
as green thin lines, that are collected by the detector surrounding the interac-
tion point. Each particle is labeled by appropriate coordinates in the laboratory
frame. All measurements are performed in momentum space, so that the final
reconstructed object corresponding to a given particle is in fact its 4-momentum
vector, pµ = (p0,p), where p = (px, py, pz), and p0 is equal to γm, where m is
the rest mass of the particle, and I have set c = 1.

The common system of coordinates used in high-energy experiment analyses
is Cartesian, and describes the detector as a volume in the three-dimensional
(x, y, z) space, as illustrated in Fig. 2.2. z is the longitudinal coordinate, and
runs along the direction of the beam axis; x is the direction orthogonal to the
beam axis pointing towards the center of the accelerator ring; y is the vertical
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Figure 2.2: The geometry of a high-energy collision as observed in a particle collider detector
is that of a barrel. The detector is located around the beam axis (z), and covers essentially the
full solid angle. The azimuthal angle, φ, is defined as the angle in the plane (x, y) transverse
to the beam. The polar angle, θ, is usually traded for a pseudorapidity, η, which is a measure
of how boosted a particle is along the z direction with respect to the laboratory frame. See the
text for more details.

coordinate, orthogonal to x and z. The plane orthogonal to the beam axis, (x, y),
is called the transverse plane. The momentum of a particle in this plane is called
the transverse momentum, and is defined by the following equation:

pt = (px, py), pt ≡ |pt| =
√
p2
x + p2

y. (2.1)

Note that the total transverse momentum vector vanishes in a given collision
event, i.e.,

∑
pt = 0, where the sum runs over all the emitted particles.

Alternatively, one can use spherical coordinates. Following Fig. 2.2, one in-
troduces an azimuthal angle, φ, i.e., the angle in the (x, y) plane, and a polar
angle, θ, in the (y, z) plane. Now, when dealing with the longitudinal component,
one typically converts the polar angle into a so-called pseudorapidity, η, which is
defined by:

η = − ln tan(θ/2). (2.2)

As shown in Fig. 2.2, a particle with η = 0 corresponds to θ = π/2, while the
limits of an emission collinear with the beam axis are given by η = ±∞. This
seemingly strange definition is in fact motivated by relativity arguments. The
pseudorapidity can be written as:

η =
1

2
ln
p+ pz
p− pz

, (2.3)

where p ≡ |p|. This expression has to be compared to the formula for the so-called
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rapidity employed by collider physicists, defined by:

y =
1

2
ln
E + pz
E − pz

, (2.4)

where E is the energy of the particle. Two comments are in order. First, the
rapidity y is defined in such a way that it is additive under Lorentz boosts along
z. Hence it gives a measure of how boosted a particle is with respect to the
laboratory frame (y = 0, or midrapidity). Second, for an ultrarelativistic particle
one has p ≈ E, which implies η = y. This clarifies the use of η as a measure of
the longitudinal particle coordinate in high-energy collisions. Note that, since the
collider energy is finite, there exists a maximum value for η (or y). This is the
so-called the beam rapidity. It is close to 5 at top RHIC energy, and to 9 at top
LHC energy.

2.2 Glauber modeling of nuclear collisions

I discuss now the standard theoretical framework describing how a relativistic
nuclear collision takes place in practice. This is the so-called Glauber Monte
Carlo model [11]. This model allows one to relate the experimental knowledge
about the number of particles detected in a sample of collision events to generic
properties of the geometry of these collisions, the knowledge of which is crucial
for the subsequent hydrodynamic expansion.

2.2.1 Nucleon-nucleon collisions

I review the various steps that define the Glauber Monte Carlo model, and that
allow one to describe the interaction between two nuclei in terms of few relevant
quantities, namely, the impact parameter and the participant nucleons.

Nucleon positions – The first step consists in shaping the colliding bodies at
the time of interaction. The idea is that a nucleus is described by a density
of matter ρ(r), and that, on an event-by-event basis, this distribution can be
used to determined the positions of the nucleons inside the nucleus. The nucleus
in the Glauber model is treated as a collection of independent nucleons, whose
coordinates in space are sampled according to a single-particle density, ρ(r).

An established model of ρ(r) is given by the following two-parameter Fermi
distribution:

ρ(r) =
ρ0

1 + exp
(
r−R
a

) . (2.5)

This parametrization has been employed to fit data coming from low-energy
electron-nucleus scattering experiments to characterize the charge density of sev-
eral nuclear species [12]. In Eq. (2.5), ρ0 is the normal nuclear matter density,
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which is about 0.16 fm−3, a is the skin width, or diffusiveness, that is typically of
order a ∼ 0.5 fm, while R is the distance from the center of the nucleus at which
the nuclear density drops by a factor 2, and is of order R ∼ 6.5 fm for large nuclei.
Note that Eq. (2.5) represents our first encounter with nuclear structure physics
in the modeling of high-energy nuclear collisions. It has a few limitations. By
employing ρ(r) to sample the positions of the nucleons, one is essentially assuming
that the nuclear point-like matter density is the same thing as the charge density,
which, strictly speaking, is wrong. Moreover, one assumes that the density of pro-
tons and the density of nucleons within the nucleus have the same shape. This is
a good approximation, although it is known that the parameter a for the neutron
density is somewhat different from that of the proton density [13, 14], which may
play a role for certain observables analyzed in heavy-ion collisions [15, 16, 17].

The density in Eq. (2.5) represents all the nuclear physics involved in the
Glauber Monte Carlo model. The collision process is then entirely described in
terms of constituent nucleons. As anticipated, the idea is that a colliding nucleus
is given by a collection of nucleons whose coordinates are sampled according to
ρ(r). The sampling of nucleon positions is usually done in three dimensions, al-
though, due to the enormous Lorentz contraction of the colliding nuclei in the lab
frame, one is ultimately interested only in the transverse coordinates, x and y.
Typical model implementations [18] use as well a minimum inter-nucleon separa-
tion, say d, to take into account the fact that the potential energy characterizing
nucleon-nucleon interactions is typically divergent on small length scales. Nu-
clear physics indicates that this separation should be of order d ∼ 0.5 fm. It is
unclear to me whether or not one should include such a feature in the Glauber
model, considering that the problem is already highly simplified. Note that re-
cent hydrodynamic calculations suggest a scale d larger than 1 fm [19, 20], which
can not represent an inter-nucleon repulsive potential. The results obtained with
Glauber-kind calculations throughout this manuscript do not implement any such
parameter.

Impact parameter – A crucial quantity for the determination of the geometry
of the interaction region is the impact parameter, which is defined as the spatial
separation between the centers of the colliding nuclei in the transverse plane.

As mentioned in the previous sections, the impact parameter of a collision can
not be controlled experimentally. This means in particular that the orientation
of the impact parameter is not known, so that the quantities measured in exper-
iments either have unknown impact parameter or are averaged over many values
of it. This fact allows for a nice simplification of the implementation of the im-
pact parameter in a theoretical calculation. In principle, the impact parameter
is a 2-component vector b = (bx, by). However, as its orientation is random and
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Figure 2.3: Transverse plane projection of a collision between 208Pb nuclei in the Glauber Monte
Carlo model. The two nuclei are shown as circles of radius RA = 6.62 fm, and are shifted by
±b/2, with b = 8 fm, along the x direction. There is a total of 416 nucleons, depicted as circles,
and colored respectively in green or in red depending of their parent nucleus. The nuclei collide
at
√
sNN = 5.02 TeV, corresponding to σNN = 7 fm2. Therefore, a green(red) nucleon is tagged

as a participant nucleon whenever its distance from at least one red(green) nucleon is lower
than D = 1.5 fm, which corresponds in fact to the diameters of the small circles in the figure.
Participant nucleons are highlighted as full symbols.

uniform in a sample of events, one can more simply consider that it lies along
the same direction in all events. The standard choice in theoretical simulations
is to take the impact parameter along the x direction, b = (b, 0). The direction
of impact parameter is in jargon called the direction of the reaction plane, where
the reaction plane is represented by the (x, z) plane.

The probability distribution from which the impact parameter is generated
on an event-by-event basis is proportional to b for dimensional reasons, as I will
discuss in detail below, in Eq. (2.8). Consider for the moment a collision occurring
at a given value of b. Once the coordinates of the nucleons are sampled, one has
then to shift them by ±b/2 (e.g. along the x axis). The result of such a procedure
for b = 8 fm is shown in Fig. 2.3 in the case of a 208Pb+208Pb collision. The two
colliding nuclei are depicted as circles of radius RA = 6.62 fm, and are shifted
along the x direction by ±4 fm. Each nucleus is associated with a collection of 208
nucleons, depicted respectively in red and in green. The geometry of the collision
is thus determined.

Participant nucleons – What now? Now one has to select those nucleons that
undergo an interaction, and that will be flagged as participant nucleons. The idea
is to look at the amount of overlap between pairs of nucleons, as follows. Pick a
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nucleon from a given nucleus, then check if there is at least one nucleon belonging
to the other nucleus that lies within a certain distance, D. If yes, then the nucleon
chosen at the beginning becomes a participant.

The distanceD is determined by the collision energy under consideration. Since
the nucleon-nucleon cross section increases with energy, the size of D increases
as well with the beam energy, or equivalently, with the center-of-mass energy of
nucleon-nucleon interactions. This latter quantity is denoted by

√
sNN, and is

equal to 200 GeV for collisions at top RHIC energy, while it is equal to 5.02 TeV
for collisions at the current top LHC energy. The inelastic nucleon-nucleon cross
section associated with these values of

√
sNN is known from proton-proton colli-

sions. One has in particular:
√
sNN = 200 GeV −→ σNN ' 4.2 fm2,√
sNN = 2.76 TeV −→ σNN ' 6.4 fm2,√
sNN = 5.02 TeV −→ σNN ' 7.0 fm2. (2.6)

Within the above-mentioned black-disk approximation for nucleon-nucleon inter-
actions, the distance D is therefore defined by:

D =
√
σNN/π. (2.7)

Let me go back, then, to Fig. 2.3. The nucleons represented as colored full
symbols represent the participant nucleons of this specific event, i.e., those nu-
cleons that are within a distance

√
7 fm2/π ≈ 1.5 fm from at least one nucleon

belonging to the other nucleus. Note that the size of the nucleonic balls in the
figure corresponds precisely to a radius of 1.5 fm, which gives an accurate idea
of the size of a nucleon in a collision at LHC energy. The number of participant
nucleons in a collision event is usually dubbed Npart.

2.2.2 Collision centrality

Experimentally, the impact parameter and the number of participant nucleons are
not known. Collisions are sorted into classes of centrality based on the amount
of particles, or the amount of energy that they release. Clearly, a collision that
produces a number of particles much higher than average corresponds to a collision
in which there is a large overlap between the two nuclei, so that the number of
detected particles and the impact parameter should be in a tight correlation.

The collision impact parameter does indeed give the true centrality of a col-
lision. The probability density function of the impact parameter is given by the
following formula:

P (b) =
2πbPinel(b)

σinel
. (2.8)
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Figure 2.4: Left: fraction of events yielding an inelastic collision at a given impact parameter,
in 208Pb +208 Pb collisions at top LHC energy. Right: inelastic nucleus-nucleus cross section
differential in b. This quantity can be used to define classes of true centrality, as highlighted
by the vertical dashed lines. The probability distribution of b is equal to dσ/db divided by the
total inelastic nucleus-nucleus cross section.

The quantity Pinel(b) is the fraction of events that yield an inelastic nucleus-
nucleus collision at a given impact parameter. This quantity is plotted in Fig. 2.4
for 208Pb+208Pb collisions. Intuitively, Pinel is constant and equal to unity when
b < 2RA, meaning that in this range of impact parameter it does never occur
that two nuclei cross each other without yielding any inelastic nucleon-nucleon
interactions. Beyond b ≈ 2RA, Pinel decreases sharply. The fall off is not step-like
because of quantum effects, i.e., the presence of participant nucleons at large im-
pact parameter. When multiplied by 2πb, the numerator of Eq. (2.8) corresponds
to the probability for an inelastic nucleus-nucleus collision to occur at a given
impact parameter, which I dub dσ/db. It is plotted in the right panel of Fig. 2.4.
This quantity is a line of slope 2π up to b ≈ 2RA. The integral of dσ/db over b
is equal to the total inelastic cross section for the nucleus-nucleus interaction, a
quantity dubbed σinel in Eq. (2.8). This quantity is about 770 fm2 in 208Pb+208Pb
collisions at LHC, and about 685 fm2 in 197Au+197Au collisions at RHIC.

The true centrality is then defined as the cumulative probability distribution of
b. This means that if a collision occurs at impact parameter b∗, then its centrality
is equal to:

cb(b∗) =

∫ b∗

0
P (b)db. (2.9)

Note that, as long as b∗ ≤ 2RA, then one can consider that Pinel(b) in Eq. (2.8)
is unity, and the centrality becomes:

cb(b
∗) =

πb2
∗

σinel
, (2.10)
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which has a straightforward interpretation as a ratio of areas, explaining intu-
itively why collisions at large b are more likely to occur than collisions at small
b, and also clarifying the presence of the factor 2π in Eq. (2.8). The centrality
is thus a number between 0 and 1. It is however more customary to express its
value as a percentile, i.e., from 0% (central collisions) up to 100% (peripheral
collisions). Depending on their value of cb, events can thus be sorted into classes
of true centrality. See the right panel of Fig. 2.4 for an illustration.

In an experiment, one does not know the impact parameter, so that the cen-
trality has to defined through a different variable. I consider the case where the
centrality of a collision is defined from the measured distribution of the final-state
multiplicity of charged particles, dubbed Nch. An example of the histogram of Nch

resulting from 208Pb+208Pb collision events is represented as a solid blue line in
Fig. 2.5. The Glauber model does not provide a prescription to evaluate this his-
togram. This requires additional ingredients, as I shall discuss in the next section
and in Chapter 3. Let me then assume for the time being that one has been able
to reproduce the measured histogram of Nch starting from a Glauber calculation.
In Fig. 2.5, one immediately sees that collisions that yield small multiplicity have
much larger probability than collisions at large multiplicity, which is expected
from Fig. 2.4 if b and Nch are (positively) correlated. The experimental definition
of the collision centrality is given by the cumulative distribution of Nch. If one
records a collision yielding multiplicity N∗, this corresponds to centrality:

c =

∫ N∗

0
P (Nch)dNch. (2.11)

As illustrated in Fig. 2.5, one can play with the boundaries of integration in
Eq. (2.11) in order to define centrality classes from the histogram of Nch, much
as I did for the histogram of dσ/db in Fig. 2.4.

Experimentally, to a given value ofNch corresponds a distribution of both b and
Npart, as also indicated in Fig. 2.5. Examples of plots of the distribution of b at
fixed Nch can be found in Refs. [21, 22]. I stress that the correlation between the
experimental c and the true centrality, cb, is in fact very tight [23] for large collision
systems, such as 208Pb+208Pb or 197Au+197Au collisions. The simple estimate of
Eq. (2.10) is in fact an excellent approximation as long as this correlation is tight.
It breaks down in two cases. In very peripheral collisions, when b approaches 2RA,
which corresponds to c ∼ 70% experimentally. The correlation between c and cb
is further lost in ultracentral collisions, when the impact parameter is essentially
as large as the size of a couple of nucleons, and quantum fluctuations become the
dominant effect in the determination of the system geometry. This is typically
the case when b < 2 fm, corresponding to c < 2%.
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Figure 2.5: The solid line represents a theoretical evaluation of the histogram of charged-particle
multiplicity observed in 208Pb+208Pb collisions at LHC energy, within the pseudorapidity win-
dow |η| < 1. Depending on the amount of produced particles, events are classified in centrality
classes, corresponding to specific fraction of the total inelastic cross section. The Glauber
model allows one to relate the measured histogram of multiplicity to the geometric properties
of the interaction region, i.e., the impact parameter and the number of participant nucleons
(as represented in the top of the figure). Note that a given experimentally-defined centrality
corresponds to a distribution of both b and Npart. Figure from Ref. [11].

2.3 Hydrodynamic framework

I have thus completed the first part of my end-to-end description of a heavy-ion
collision. I explained how a collision looks like experimentally, and how its ge-
ometry is described by a few simple quantities within the Glauber Monte Carlo
model. Now, I want to use the output of the Glauber model as an input for hy-
drodynamics. The hydrodynamic expansion of the system will bring me from the
participant nucleons in the region of overlap to the final-state detected hadrons.

2.3.1 The initial density profile

The previous discussion left me with the picture of Fig. 2.3, i.e., with a bunch of
coordinates in the (x, y) plane corresponding to the location of the participant
nucleons. To move on, I need to turn that information into a continuous density
profile that may serve as the initial condition for the hydrodynamic expansion.
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Thermalization – Hydrodynamics applies if the system is in (or at least close
to) thermal equilibrium. There must exist, hence, a short phase of thermalization
which brings one from the out-of-equilibrium system produced immediately after
the collision to a thermal medium [24]. The issue of thermalization in hot QCD
matter is fascinating, and is made particularly timely by the observation that the
hydrodynamic description of heavy-ion collisions works very well in practice. A
vast literature is devoted to this problem [25], and numerical frameworks, such as
KøMPøSt [26], have been recently developed to include the short pre-equilibrium
phase in the theoretical simulations of the collision evolution.

That being said, one should keep in mind that the inclusion of a phase of
thermalization in collisions of large nuclei, while certainly needed for a complete
description of the collision process, is typically of poor relevance for the phe-
nomenological output. A central collision between large nuclei produces a system
with a transverse size of order 10 fm, which is much larger than the thermalization
time. As the subsequent hydrodynamic expansion is driven by pressure gradients
determined by the large-scale structures of the system, i.e., structures that are
significantly larger than 1 fm/c, the expansion has essentially no sensitivity to
features produced over the short thermalization period. This is good news: if
the impact of the pre-equilibrium phase were crucial in the determination of the
final-state observables, then one would have a hard time performing simulations
that quantitatively describe experimental data.

This situation is however different in so-called small systems, like proton-
nucleons (pA) and proton-proton (pp) collisions, or even peripheral nucleus-nucleus
collisions. Recent experimental measurements show that high-multiplicity pp and
pA collisions exhibit the same kind of collective phenomena observed in nucleus-
nucleus collisions, pointing to the fact they may also reach thermal equilibrium.
However, in these systems the transverse size of the medium and the thermal-
ization time are comparable, so that corrections coming from the pre-equilibrium
dynamics can in principle be significant. The problem of thermalization in small
systems seems, thus, more compelling, because it may be important for under-
standing quantitatively the experimental observations.

The initial condition – For collisions of large nuclei, one can thus either model
the initial condition of the hydrodynamic expansion directly, or following a short
pre-equilibrium phase. In all cases, one needs a good model. In view of recent de-
velopments in theory-to-data comparisons, and after years of playing with models
of initial conditions, a good model of initial conditions, consistent with essentially
all the phenomenology of heavy-ion collisions, can be obtained as follows.

Recall that, after the collision takes place, one is left with a bunch of coor-
dinates for the participant nucleons. I consider now that each nucleon carries a
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density of participant matter. Suppose that a nucleon in the rest frame of the nu-
cleus is described by a matter density ρn(x, y, z). Then, in the laboratory frame,
assuming an infinitely strong Lorentz boost, the nucleon becomes a transverse
density, or thickness function:

ρn(x) =

∫
ρn(x, z)dz. (2.12)

The standard prescription for the boosted nucleon density is that of a Gaussian,
i.e., ∫

z
ρn(x, z)dz = (2πw)−1/2 exp

(
− x2

2w2

)
, (2.13)

which is normalized to return 1 upon integration over the transverse plane, thus
representing the contribution from one participant nucleon. A participant nu-
cleon is randomly located within the nucleus, so that its associated density is
off-centered:

ρi(x) = (2πw)−1/2 exp

(
−(x− xi)

2

2w2

)
. (2.14)

The output of the Glauber model is essentially the set of coordinates xi. The
Gaussian width, w, is not a feature of the Glauber model. It is generically chosen
to be close to 0.5 fm.

I label the colliding nuclei with letters A and B. For each nucleus I construct
a density of participant matter as follows:

tA =
∑

i

λiρi,A, (2.15)

where I introduce a normalization, λi, that allows one to include in the model the
possibility that certain participant nucleons contribute to the density more than
others. Finally, the density profile of the system is a function of the kind:

(tAtB)ν , (2.16)

where 0 < ν ≤ 1. A few comments are in order:

• By setting ν = 1 one obtains an initial density which is given by the sum
of pairwise interactions between nucleons. This corresponds to the recently-
developed IP-JAZMA model [27]. Note that the amount of density released
by a given nucleon-nucleon interaction depends essentially on the amount of
overlap between the two participant nucleons, which sounds reasonable.

• The prescription with ν = 1 is further consistent with the expectation of
the color glass condensate (CGC) effective theory [28, 29] of high-energy
QCD [30]. An important predictions made by this theoretical framework,
first put into simple formulas by Lappi [31], and that should nowadays be
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considered as textbook material (see Problem 11.8 in the recent quantum
field theory textbook by Gelis [32]), states indeed that, if τ = 0+ is the time
right after two infinitely-boosted nuclei cross each other, then the average en-
ergy density of the system at τ = 0+ is proportional to tAtB. The numerical
framework which performs high-energy nuclear collisions following the pre-
scriptions of the CGC is called IP-GLASMA [33, 34], a detailed description of
which can be found in Ref. [35]. Note that the density returned by IP-GLASMA

is not strictly equivalent to that returned by the IP-JAZMA model. There are
quantitative differences, because of the inclusion of additional features, in
particular, sources of fluctuations in the system related to the sub-nucleonic
structure of the colliding nuclei. Furthermore, the density profile associated
with a nucleus is more complicated than a simple linear superimposition of
nucleons, as it presents a dependence on the Bjorken-x variable [35].

• If one considers that the entropy density of the system at the onset of the
hydrodynamic behavior is proportional to Eq. (2.16) with ν = 1/2, i.e.,√
tAtB, then one obtains what I shall refer to as the TRENTo model. This

model was developed by the Duke group [36]. It has been used in particular to
perform comprehensive theory-to-data comparisons with the aim of inferring
the most probable parameters of the model, and their mutual correlations,
by means of a Bayesian analysis [37]. The model uses a density of the form:

(
tpA + tpB

2

)1/p

, (2.17)

which is a generalized mean. The results of the Bayesian analysis show very
clearly that p = 0 yields the best description of data. This is equivalent to
the anticipated geometric mean:

√
tAtB. (2.18)

Note that this is the only combination of the kind (tAtB)ν that can be re-
turned by this model. In particular, the scaling of the CGC, ν = 1, is not
allowed by Eq. (2.17). However, let me emphasize that having ν = 1/2 for
the entropy density at the onset of hydrodynamics is not fully at variance
with ν = 1 for the energy density created at τ = 0+. An analysis of scaling
laws under the assumption of conformal symmetry shows that the process of
thermalization does modify the exponent of Eq. (2.16) as follows. If τ0 is the
time at the beginning of the thermalization process, and τhydro is the time at
which hydrodynamics becomes applicable, then one has [38]:

(τhydros(x, τhydro)) ∝ (τ0ε(x, τ0))
2/3 . (2.19)

Note that, strictly speaking, τ0 is larger than 0+. However, assuming that
τ0ε(x, τ0) in the right-hand side remains proportional to (tAtB), which within
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the IP-GLASMA framework is in fact a good approximation in central colli-
sions [39], then the left-hand side becomes proportional to (tAtB)2/3. One
sees that this is not too distant from

√
tAtB, and shows that the great effec-

tiveness of the TRENTo Ansatz may in fact be motivated by deeper argu-
ments.

• However, in their latest Bayesian analyses [19, 20], the Duke group included
in the TRENTo framework the pre-hydrodynamic phase of the system, mod-
eled as a purely free-streaming evolution. When doing so, the prescription
of TRENTo turns from ν = 1/2 for the entropy density of the system at
the beginning of hydrodynamics, to ν = 1/2 for the energy density of the
system at τ = 0+. This creates an inconsistency with the IP-GLASMA frame-
work, that corresponds essentially to ν = 1, and thus a more localized profile
on average. It would be useful to understand whether this inconsistency is
actually required to improve the description of data in the TRENTo frame-
work, or whether it is a mere model artifact, due to the fact that this model,
starting with a generalized mean, can only return ν = 1/2 by construction.
My suggestion for future Bayesian analyses is to constrain the shape of the
density with a function of the form (tAtB)ν. A nontrivial confirmation of
the CGC picture will be achieved if the experimental data turns out to favor
ν ≈ 1.

The prescription of the CGC implies that the production of energy is a coherent
process, in the sense that the energy density is given by the sum of contributions
coming from individual nucleon-nucleon interactions. This feature seems rather
unattackable. Exponents ν < 1 in Eq. (2.16) do not really modify this state-
ment, but they yield a modification of the geometry of the whole collision system.
At the very first instant after the interaction takes place, and considering that
the interaction is ultrarelativistic, such effects seem difficult to justify, because
scattering processes between quarks and gluons are typically localized semi-hard
processes. The prescription with ν = 1 predicted by the CGC seems in general
the only one that makes sense for the condition of the system immediately after
the interaction occurs.

I pick now a model to exhibit a realistic example of initial condition for hydro-
dynamics. The prescription I shall use throughout this manuscript is the TRENTo
model used in the first Bayesian analysis of the Duke group [37]. I consider that
the entropy density at the onset of hydrodynamics (τ = τ0) is obtained by setting
ν = 1/2 in Eq. (2.16), i.e.,

s(x, τ0) =
N0

τ0

√
tAtB, (2.20)

where N0 is a global dimensionless factor that fixes the total amount of entropy
in the system, which is determined by the collision energy. Further, I consider
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that λi in Eq. (2.15) is randomly chosen for each participant nucleon according
to the following gamma distribution:

P (λ; k) =
kk

Γ(k)
λk−1e−λk, (2.21)

which has unit mean and variance equal to 1/k.
Hydrodynamic equations are typically solved in terms of the energy density of

the system, rather than the entropy density. By use of the equation of state of
hot conformal QCD, I transform the entropy density given by Eq. (2.20) into an
energy density:

ε(x, τ0) = s(x, τ0)
4/3

(
3

4

)4/3(
νQCD

π2

30

)−1/3

, (2.22)

with a number of degrees of freedom νQCD = 40 corresponding to a plasma of
gluons, and two light quarks. Calculating the entropy density in Eq. (2.20) from
the participant nucleons shown in Fig. 2.3, Eq. (2.22) leads to the profile of energy
density which is displayed in Fig. 2.6. This profile represents as an example of
quark-gluon plasma created in a semi-peripheral 208Pb+208Pb collision at top
LHC energy. One should note that the density profile is by no means uniform nor
smooth in the transverse plane. The energy density can vary by almost one order
of magnitude within short length scales, of order e.g. 2 fm. This feature reflects
the quantum nature of nuclei, and in the Glauber paradigm of nuclear collision it
originates mostly from the random spatial positions of the colliding nucleons.

Longitudinal structure – The expression in Eq. (2.16) gives the initial density
in the transverse plane, but what about its longitudinal structure along z? The
important observation is that, in experimental data, the particle yields are es-
sentially flat [40, 41, 42] as functions of the rapidity, y, given in Eq. (2.4). This
suggests that the particle production mechanism is almost independent of the
longitudinal coordinate. One can motivate this observation by means of simple
yet solid arguments.

The interaction between two nuclei at ultrarelativistic energy scarcely slows
the interacting particles. The particles over the interaction region carry the same
constant longitudinal velocity, vz. A particle located at z has then velocity z/t,
where t is the time in the laboratory frame and t = 0 is the time of interaction.
Hence if one performs a Lorentz boost along the z direction, both z and t gets
modified, but the value of vz = z/t is unchanged, i.e., the system is invariant
under boosts along z. This argument was first pointed out by Bjorken [43].

This picture implies that, if we define:

τ =
√
t2 − z2, ηs =

1

2
ln
t+ z

t− z , (2.23)
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Figure 2.6: Profile of energy density at the onset of hydrodynamics, here occurring at τ =
0.6 fm/c, for a semi-peripheral (b = 8 fm) 5.02 TeV 208Pb+208Pb collision. The colliding nuclei
and the participant nucleons are the same as in Fig. 2.3. The energy density profile is obtained
with the TRENTo prescription, i.e., by applying Eq. (2.20) and subsequently Eq. (2.22).

which are called, respectively, proper time and space-time rapidity, then a boost
along the z direction, with coordinates (τ,x, ηs), leaves τ unchanged and shifts ηs
by a constant. The previous picture of boost-invariant particle production along
z means now that the dynamics of the system is independent of ηs. This has
a nice implication. Recalling that a given particle has vz = pz/E, where E is
the energy of the particle, and considering that the transverse momentum of a
particle emitted by the fluid contribute only a negligible amount to the rapidity
of a particle, one obtains that the space-time rapidity ηs in Eq. (2.23) coincides
with the particle rapidity y in Eq. (2.4).

Hence the initial three-dimensional density profile of a heavy-ion collision is
usually specified as a function of τ , x and ηs, and hydrodynamic simulations are
performed using these coordinates. I shall always omit the longitudinal coordi-
nate in the following, and consider that the medium is boost invariant, i.e., the
evolution of the system and the final spectrum are the same at all values of ηs.
This is good enough for the practical purposes of this manuscript. I dub ε(x, τ) or
s(x, τ), respectively, the transverse energy density and transverse entropy density
of the system at midrapidity, y = η = ηs = 0.

2.3.2 Fluid expansion

The energy density at the onset of hydrodynamics in the TRENTo model for
the collision considered in Fig. 2.3 is thus depicted in Fig. 2.6. The subsequent
expansion is ruled by conservation laws. At ultrarelativistic energy, one can safely
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assume the the density of baryons vanishes in the hot quark-gluon medium, due
to the very large number of produced particles. The dynamics is thus ruled solely
by the conservation of energy and momentum. The associated currents can be
written in the form a rank-2 tensor, the so-called energy-momentum tensor:

T µν =




T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33.


 (2.24)

ν labels the components of the 4-momentum, while µ labels the associated current.
Thus T 00 is the density of energy; T 0i is the density of the i-th component of the
momentum; T i0 is the flux of energy along direction i; T ij is the flux of j-th
component of the momentum along direction i. T 11 and T 22 represent the so-
called transverse pressure, PT , while T 33 is the longitudinal pressure, PL.

Since one can always characterize the system by means of the energy-momentum
tensor, it is useful to have an idea of what T µν looks like at various stages dur-
ing the evolution, even before hydrodynamics is applicable. I shall use gµν =
diag(1,−1,−1,−1)µν.

Immediately after the interaction of two nuclei, at τ = 0+, the stress-energy
tensor can be computed within the framework of the color glass condensate. Ac-
cording to the CGC, at τ = 0+ the system is amenable to a description in terms
of classical chromodelectric and chromomagnetic fields. This system is dubbed
glasma [44]. The semi-classical methods of the CGC allow one to evaluate the
full field strength tensor of the system, F µν, which can then be used to derive the
energy-momentum tensor, leading to [44]:

T µν(τ = 0+) =




ε 0 0 0
0 ε 0 0
0 0 ε 0
0 0 0 −ε


 . (2.25)

The stress-energy tensor is diagonal, with all entries equal to the energy density, ε.
The distinctive feature of the glasma energy-momentum tensor is the longitudinal
pressure, which comes with a negative sign, PL = −ε. The glasma evolves in time
according to classical Yang-Mills equations, whose computation is also included
in the IP-GLASMA framework. Due to the negative pressure, the total energy of the
system increases during this evolution, by an amount which is proportional to τ .
However, this lasts only for a short time. The longitudinal pressure does in fact
vanish very quickly, on a time scale of order 0.1 fm/c [45]. This corresponds also
to the time at which the classical fields lose coherence, and the system becomes
amenable to a particle description.
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The classical Yang-Mills phase is thus expected to be followed by a kinetic
theory description, for the dynamics of hard quasi-particles that carry most of the
energy of the system. The system is now associated with a phase space density
f(τ,x,p), and the components of the energy-momentum tensor correspond to
moments of this distribution:

T µν =

∫
d3p

(2π)3p0
pµpνf(τ,x,p). (2.26)

The system thus follows a Boltzmann equation within the boost-invariant picture
of Bjorken. Assuming conformal symmetry, which implies that T µν is traceless,
and recalling that the longitudinal pressure is negligible at the onset of the kinetic
theory description, the energy-momentum tensor must be close to:

T µν(τ ≈ 0.1 fm) ≈




ε 0 0 0
0 ε/2 0 0
0 0 ε/2 0
0 0 0 0


 . (2.27)

If this energy-momentum tensor were obtained following the classical Yang-Mills
phase of the IP-GLASMA framework, then Eq. (2.27) would also contain off-diagonal
terms, which are however small corrections for a large system. The explicit form
of T µν in Eq. (2.27) gives useful insight about the actual role of the thermaliza-
tion process. Thermodynamic equilibrium is reached when the particle density is
locally isotropic, i.e., when the longitudinal and the transverse pressure are equal.
Thermalization is thus a process that builds up the longitudinal pressure, and
which leads from PT = ε/2 and PL = 0 to P ≡ PL = PT , within a time span of
order 1 fm/c.

Finally, at equilibrium the form of the energy-momentum tensor can be guessed
from the equation of state of QCD at high temperature. High-temperature QCD
has in particular P = 1

3ε, i.e., a speed of sound squared c2
s ≡ ∂P/∂ε = 1/3. At

equilibrium, the system is locally isotropic, and thus the form of T µν in the local
rest frame should be close to:

T µν(τ ≈ 1 fm) ≈




ε 0 0 0
0 ε/3 0 0
0 0 ε/3 0
0 0 0 ε/3


 . (2.28)

Once again, this neglects any effect coming from the physics of the first fm/c,
which produces nonzero values for the off-diagonal terms.

I move on, then, to a brief discussion of the equations of motion that rule the
evolution of T µν once the hydrodynamic phase sets in.



34 CHAPTER 2. ULTRARELATIVISTIC HEAVY-ION COLLISIONS

Ideal hydrodynamics – I first consider the case of an ideal fluid. Assuming that
the effect of the pre-equilibrium dynamics can be neglected, the energy-momentum
tensor at the beginning of hydrodynamics (in the fluid rest frame) is of the form:

T µν(τ0) ≈




ε 0 0 0
0 P (ε) 0 0
0 0 P (ε) 0
0 0 0 P (ε)


 (2.29)

where the pressure P is related to the energy density via the equation of state.
Now, the conservation of energy and momentum is written as:

∂µT
µν = 0, (2.30)

where there is a summation over repeated indices. Further, the energy-momentum
tensor satisfies the following covariant equation:

T µν = (ε+ P )uµuν − Pgµν, (2.31)

where uµ is the 4-velocity of the fluid, with uµuµ = 1. Combined with the
equation of state, Eq. (2.30) and Eq. (2.31) form a closed system of equations.
The dynamics of all the degrees of freedom of the fluid can thus be solved (at
least numerically).

The fluid expansion decreases the temperature of the fluid elements until the
point where the quark-gluon plasma description is no longer justified, i.e., parton
confinement sets in and the system becomes a gas of hadrons. This occurs at the
so-called critical, or freeze-out temperature, Tc. which is of order Tc ' 0.15 GeV.
In numerical codes, the freeze-out is typically implemented following a Eulerian
approach. The fluid is discretized over a space-time grid. At each τ , one looks
at the temperature of a given fluid cell. If the temperature is below Tc, then one
records that, at that value of τ , that cell, corresponding to coordinates (x, y) in
space, has frozen out. Once the whole fluid has frozen out, one is left with a
so-called freeze-out hypersurface, i.e., the isothermal hypersurface corresponding
to T = Tc.

I show now an example of such a hypersurface. To do so, I take the initial con-
dition profile given in Fig. 2.6, I assume that it corresponds to the initial condition
of hydrodynamics at τ = 0.6 fm/c, and I evolve it with ideal fluid dynamic equa-
tions by means of the MUSIC hydrodynamic code [46, 47, 48]. The medium has the
equation of state of QCD [49], and it freezes out at a temperature T = 150 MeV.
In Fig. 2.7, I show projections of the resulting freeze-out hypersurface. Following
the standard visualization of this surface that one can find in the literature, I
show how τ , i.e., the time at which a given cell freezes out, depends on x, y, ux,
and uy. The simulation is boost-invariant, hence, uηs = 0, and the shape of the
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Figure 2.7: Freeze-out hypersurface resulting from the ideal hydrodynamic evolution of the
energy density profile shown in Fig. 2.6. Left: spatial coordinates, x (top) and y (bottom), of
the fluid cells at freeze-out, i.e., at the time when the local temperature reaches Tc = 0.150 GeV.
Right: velocity coordinates, ux (top) and uy (bottom).

surface is independent of ηs. Let me point out a few features. On the left of
Fig. 2.7, I show τ as a function of x and y. We can see that the initial system at
τ = 0.6 fm/c is more elongated in the y direction (bottom panel) with respect to
the x direction (upper panel), reflecting the fact that I am looking at a collision
occurring with a large impact parameter, b = 8 fm (see Fig. 2.6). Second, one
can distinctly appreciate a difference in the pattern of the flow velocities. The
upper-right panel, displaying ux is significantly broader than the pattern in the
lower-right panel, displaying uy, where only few fluid elements have velocity larger
than unity. This phenomenon corresponds precisely to the elliptic flow discussed
in Chapter 1, on which I shall return in greater detail in Chapter 3.

The freeze-out hypersurface has now to be converted into a distribution of
hadrons, corresponding to the experimental observations. The idea is simply that
the momentum distribution of outgoing particles leaving the fluid is the same
as the distribution of particles within the fluid at the end of the hydrodynamic
phase. In ideal hydrodynamics, the momentum distribution of a given species a
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is simply a thermal distribution, fth(x,p) (kB = 1):

dNa

d3xd3p
∝ gafth(x,p) ∝ ga

[
1± exp

(
−E

a

Tc

)]−1

, (2.32)

where ga is the spin degeneracy of the species a, Ea = pµuµ is the energy of the
particle that has 4-momentum pµ, and the ± sign in the denominator depends
on whether a is a fermion or a boson. For each species, the total momentum
distribution is obtained by integrating over the hypersurface:

Ea
dNa

d3p
=

dNa

dyd2pt
= ga

∫
fthp

µdΣµ, (2.33)

where dΣµ is the vector normal to the freeze-out hypersurface. This integral is
referred to as the Cooper-Frye formula [50].

The outcome of the freeze-out integral is a spectrum of hadrons in momentum
space, which corresponds now to the experimental observable. A final comment
is however in order. The spectrum resulting from the thermal distributions of
hadrons can not be compared directly to the measured one. The reason is that all
kinds of hadrons are emitted from the quark-gluon plasma. Many of these hadrons
undergo strong decays and only their decay products are actually observed in the
detector. One needs to include the decays of resonances in the final spectrum.
The effect of resonance decays is very significant, for instance, the number of
stable light hadrons (pions, kaons, protons) emitted thermally at freeze-out is
only half its actual value after all unstable resonances have decayed. One can
also include an intermediate phase between the quark-gluon plasma and the gas
of free-streaming hadrons, which, while performing resonance decays, computes
as well the scattering processes that occur in the hadron gas. Codes devoted to
this task are, e.g, SMASH [51] or UrQMD [52, 53]. Including the rescattering
of hadrons has however a minor effect on the phenomenology. It helps though
hydrodynamic simulations get the right value of average transverse momentum
for the heavier detected species, like protons.

Viscous hydrodynamics – The previous discussion is valid for an ideal fluid, i.e.,
an inviscid medium in which there is no heat diffusion between fluid cells. How-
ever, shortly after the beginning of the heavy-ion program at RHIC, and the
detection of elliptic flow, theoretical [54, 55] studies concluded that viscous cor-
rections, in particular the presence of a small shear viscosity of the medium, do
in fact yield sizable effects on the measured elliptic flow, and thus play a role in
the experimental observations.

If one aims at a quantitative understanding of data, viscous corrections to
the evolution of the quark-gluon plasma have indeed to be taken into account.
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Constraining the viscous properties of the quark-gluon plasma from experimental
data represents one of the main goals of the heavy-ion collision program.

I combine now arguments by Teaney [56] and Ollitrault [57] to show that the
viscosity of the quark-gluon plasma is small. A viscous (nonrelativistic) fluid
satisfies the Navier-Stokes equation:

ρ
dv

dt
= −~∇P + η∇2v, (2.34)

where d/dt =
(
∂
∂t + v · ~∇

)
is the so-called material derivative, and η is the

shear viscosity of the medium. This coefficient is zero in a perfect fluid, where
the previous equations is simply equivalent to the statement that the dynamics
is governed by pressure-gradient forces, i.e., ~F = −~∇P . The viscous correction
goes against the effect of the pressure gradients. It involves an additional gradient,
and thus it scales with two powers of the inverse macroscopic length scale, say,
1/R2. All other terms involve only one gradient, and scale like 1/R. The relative
importance of the viscous correction over the acceleration terms is thus of order
(vη/ρ)/R. As viscous hydrodynamics is defined as a small correction to the ideal-
fluid scenario, one should have (vη/ρ)/R� 1 for a hydrodynamic description to
apply. This requirement constraints the magnitude of the viscosity. Consider now
a relativistic fluid, where the mass density ρ is replaced by the enthalpy density
ε+ P . The condition for hydrodynamics to apply reads:

η

e+ P

v

R
� 1. (2.35)

By use of the identity ε+P = Ts, and by trading the ratio v/R for a time scale,
τ , the previous expression becomes:

η

s
× 1

τT
� 1. (2.36)

The dimensionless ratio η/s is a convenient way to express the quality of a fluid.
In ultrarelativistic heavy-ion collisions 1/τT is around 0.2. As a consequence,
η/s should be at maximum η/s ≈ 0.5, otherwise the hydrodynamic description
breaks down. A similar upper bound for η/s was found recently from an estimate
of the energy dissipated during the evolution the system [38]. These arguments
show that η/s has to be O(0.1) if the quark-gluon plasma can be treated as a
hydrodynamic medium. The fact that experimental data are in excellent agree-
ment with the hydrodynamic paradigm provides, thus, evidence that the created
system is indeed the most perfect fluid known to mankind.

Viscous corrections modify the form of the energy-momentum tensor, and thus
the space-time evolution of the medium. In the modern approach to relativistic
hydrodynamics, recently reviewed by Romatschke and Romatschke [58], one con-
structs a covariant form of T µν as a sum of tensor structures allowed by symmetry
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that are organized according to the number of gradients of ε and uµ that they
contain:

T µν = T µν(0) + T µν(1) + T µν(2) + . . . , (2.37)

where the subscript denotes the power of gradients of ε and uµ. The zeroth-order
truncation is the ideal energy-momentum tensor, T µν(0) = (e + P )uµuν − gµνP ,
which is the only rank-2 tensor with the right symmetries that does not involve
any gradient of e and uµ. First-order hydrodynamics involves two additional
tensor structures:

T µν(1) = ησµν + ζ(∂ρu
ρ)∆µν, (2.38)

where two transport coefficients appear, namely, η, the shear viscosity, which is
coupled to the traceless shear-stress tensor, σµν, which is first order in gradients,
and ζ, the bulk viscosity, which is coupled to the fluid expansion rate ∂µuµ, while
∆µν = gµν + uµuν projects onto space-like components. Modern hydrodynamic
simulations include as well second-order terms, which are 11, and play a negligible
role for the phenomenology of central heavy-ion collisions in which I am interested.
I refer to the MUSIC manual [59] for a list of all these coefficients, as well as for
additional formulas related to the viscous terms.

Viscous corrections play as well a role at freeze-out. The reason is simply that,
if the fluid is viscous, then at freeze-out one can not match the momentum distri-
bution in a fluid element to a thermal equilibrium distribution ∝ (exp−E/Tc).
The thermal distribution has itself to be modified to account for viscous correc-
tions. The standard method to attack this issue is to transform:

fth(p) −→ fth(p) (1 + δfη(p) + δfζ(p)) , (2.39)

where δfη and δfζ are small correction to the equilibrium distribution. The form
of the δf corrections is essentially unknown, and relies on Ansatzes. For the
shear term, δfη, the most common prescription is that of Teaney [54], which
is proportional to p2. A discussion on the current status of δfζ can be found
in Ref. [60]. I refer again to the MUSIC manual [59] for the expressions used
in theoretical simulations. Fortunately enough, these corrections do not play a
major role in the phenomenology of heavy-ion collisions, although some effects
are visible [61]. In small collision systems, δf corrections can on the other hand
translate into sizable effects for several observables, and so this whole business
may need a different kind of treatment [62].

2.3.3 The big picture

This concludes my end-to-end description of a heavy-ion collision. Let me give
a quick summary of the salient features of the evolution of the system at z = 0,
also presented in the illustration of Fig. 2.8. The value of t is in fm/c, and the
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0 < t ≲ 1 equilibration

1 < t ≲ 10 fluid expansion

10 < t < ∞ hadronic gas

-∞ < t < 0

t (fm / c)

z

Figure 2.8: Main features of the evolution of a heavy-ion collision. See the text for a detailed
discussion. (courtesy Aleksas Mazeliauskas)

boundaries of the proposed time intervals represent rough estimates rather than
accurate figures. Also, these figures are meant to describe central collisions of
large nuclei.

• −∞ < t < 0, two nuclei, strongly Lorentz-contracted along the collision
axis, approach the interaction point.

• t = 0, the interaction takes place. At ultrarelativistic energy, the nuclei also
cross each other at t = 0, as the process is instantaneous.

• 0+ < t < 0.1, the system is in the glasma phase, and its evolution is dictated
by classical Yang-Mills equations. The longitudinal pressure is negative: the
longitudinal expansion increases the energy of the system. At the end of this
phase, the longitudinal pressure is close to zero.

• 0.1 < t < 1, the system has now a particle description and evolves according
to a Boltzmann equation. The equilibration process builds up longitudi-
nal pressure. Thermal equilibrium is reached when the phase space density
becomes isotropic.

• 1 < t < 10, the system is in the quark-gluon plasma phase, described by fluid
degrees of freedom and the equation of state of hot QCD. It undergoes a col-
lective expansion governed by the laws of relativistic viscous hydrodynamics.
This is the part of the evolution process which produces the most distinct
phenomenological signatures. The system is treated as a fluid until the local
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temperature drops below the critical temperature, of order 150 MeV. At this
temperature, the fluid cells convert into hadrons.

• 10 < t < 100, hadron gas cascade. The gas contains unstable hadrons that
gradually decay into stable particles. Chemical equilibrium is achieved when
inelastic processes no longer occur. Kinetic equilibrium is instead achieved
when elastic scatterings also cease.

• 100 < t < ∞, the produced stable hadrons free stream to the detector. A
spectrum dN/d3p, or dN/(d2ptdy) is measured.

Before concluding this chapter, let me stress that the IP-GLASMA framework,
describing the system in the temporal range −∞ < t < 0.1 fm/c, has been
recently coupled to the KøMPøSt framework, which further evolves the system
throughout thermalization up to 1 fm/c. The output has then been used as an
input for the MUSIC hydrodynamic code, which further evolved the equilibrated
fluid all the way to the hadronic phase. This happened in 2018 [63], i.e., 18 years
following the beginning of the high-energy nuclear physics program at RHIC, and
demonstrates that nowadays one is able build up end-to-end simulations whose
results can eventually be compared to experimental data.



Chapter 3

Basics of heavy-ion phenomenology

The observable outcome of the space-time evolution of a heavy-ion collision, as
obtained at the end of a hydrodynamic calculation, is thus a spectrum of hadrons,
dN/(d2ptdy). An observable, O, is a function of this quantity:

O = f

(
dN

d2pt

)
, (3.1)

where I have dropped the dependence of the spectrum on y since I shall always
consider a boost-invariant setup. There are infinite possibilities, but some observ-
ables are more useful than others.

The goal of this chapter is very simple. I present three observables of paramount
importance in the phenomenology of heavy-ion collisions, namely:

1. The multiplicity, i.e., the total number of hadrons collected in the phase
space available to the detector:

multiplicity ≡ N =

∫

pt

dN

d2pt
. (3.2)

2. The average transverse momentum, 〈pt〉, i.e., the first moment of the distri-
bution of pt ≡ |pt|:

〈pt〉 =
1

N

∫

pt

pt
dN

d2pt
. (3.3)

3. The second-order Fourier harmonic of the azimuthal part of the spectrum.
In polar coordinates, one can write:

d2N

dpt
=

d2N

ptdptdφp
, (3.4)

and extract the complex second-order Fourier coefficient:

V2 =
1

N

∫

pt

dN

d2pt
e−i2φp. (3.5)

This quantity is dubbed elliptic flow. Note that V−2 = V ∗2 .

41
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I shall emphasize that, in spite of the apparently complicated space-time history
from which they emerge, these observables have an intuitive physical origin in
the hydrodynamic framework. These quantities will be at the heart of the phe-
nomenology of nuclear deformation to be discussed later on in Chapters 4 and 5.

An important comment is in order. The thermal hadron spectrum at the end
of hydrodynamics is, as a function of pt, close to a thermal distribution, hence, it
has typically an exponential fall-off at large pt. Most of produced particles lie as a
consequence at somewhat low values of pt. The majority of the charged hadrons
detected in the final state are pions, whose transverse momentum is on average
about 0.5 GeV, thus giving the order of magnitude of first moment of the pt
spectrum, 〈pt〉 in Eq. (3.3). The integrals that lead to the observables discussed
in this chapter are thus dominated by the low-pt region of the spectrum, which is
dubbed the soft sector. In heavy-ion collisions there is also a rich phenomenology
of the hard sector. It involves the study of the rare objects that populate the
high-pt tail of the spectrum. These are typically either hadrons emitted with
pt > 3 GeV, or jets at much higher pt, which are abundantly produced at LHC
energy. This phenomenology is complementary to that of the soft sector, as it
involves different energy scales and a different dimensional analysis. The goal
is however the same, i.e., inferring the properties of the quark-gluon plasma, by
studying in particular how the production of these energetic particles are modified
by their interaction with a surrounding hot and dense medium, a problem that
can be treated to a good extent by means of perturbative methods in QCD.

3.1 Entropy and particle number

I discuss now the physical interpretation of the most straightforward observable
of heavy-ion collisions, i..e, the multiplicity in Eq. (3.2).

In the limit of high temperature, the quark-gluon plasma can be viewed as an
ideal classical gas of massless particles, with zero baryon density and an equation
of state close to P = ε/3. The corresponding phase space density is given by
the Maxwell-Boltzmann statistics: exp(−p/T (x)), where the particle momentum,
p ≡ |p|, coincides with the energy per particle. The number density, n, and the
energy density, ε, of this medium are given by (~ = 1) [64]:

n =

∫
d3p

(2π)3
e−p/T , ε =

∫
d3p

(2π)3
p e−p/T . (3.6)

Carrying out the integrals, and summing over νQCD degrees of freedom in the gas
one obtains:

n =
νQCD

π2
T 3, ε = 3nT. (3.7)
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Now, by use of the thermodynamic identity ε + P = Ts, and the ideal gas law
P = nT , one obtains for the entropy density:

s = 4n. (3.8)

The entropy of the system is thus proportional to the number of particles.
Next, let the gas evolve according to inviscid hydrodynamics. The absence of

heat diffusion between fluid cells implies that the fluid expansion is adiabatic. As
a consequence, the total entropy in the fluid is conserved as a function of time.
In the local rest frame (and thus in all frames), the total entropy of the system is
given by [64]:

S = τ

∫
su0d2x. (3.9)

These considerations suggest that, since the created fluid is close to perfect, then
by virtue of Eq. (3.8) the number of particles produced at the end of hydrody-
namic expansion should be proportional to the entropy, S, of the system. I check
this explicitly in hydrodynamic simulations. I use a large batch of 208Pb+208Pb
collisions, corresponding to the calculation presented in Ref. [65]. This calcula-
tion consists of 50000 208Pb+208Pb events evolved with the viscous hydrodynamic
code V-USPHYDRO [66, 67, 68]. This calculation implements η/s = 0.05, ζ/s = 0,
and the equation of state of hot QCD [49]. The initial entropy profile for the
hydrodynamic expansion is given by the TRENTo model of Ref. [37]. The pro-
files of entropy density returned by the TRENTo calculation correspond to the
initial condition of the hydrodynamic expansion at τ0 = 0.6 fm/c. The effect of
pre-equilibrium dynamics is neglected. The medium freezes out a temperature
T = 150 MeV, and all resonances are thermally produced. Strong decays of
resonances are also implemented [69].

The entropy per unit rapidity at the initial condition is defined by (u0 = 1):

S(τ0) = τ0

∫

x
s(τ0,x), (3.10)

where s(τ0,x) is the entropy density shown in Eq. (2.20), with N0 ≈ 72 for
top LHC energy. The calculation yields a boost-invariant spectrum of hadrons,
dN/d2pt, and the charged-particle multiplicity is computed in the window −0.5 <
η < 0.5, which corresponds to the acceptance used by the ALICE Collabora-
tion [70]. Note that the spectrum is invariant with respect to y, but whenever
one integrates the spectrum taken within an interval of pseudorapidity, [η−, η+],
as done in experiments,

dN

dη

∣∣∣∣
η−<η<η+

=

∫

pt

dN

d2ptdη

∣∣∣∣
η−<η<η+

, (3.11)
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Figure 3.1: Joint probability distribution of total entropy per unit rapidity at the initial con-
dition, S, as defined by Eq. (3.10), and charged-particle multiplicity, dN/dη, in the acceptance
−0.5 < η < 0.5, for 5.02 TeV 208Pb+208Pb collisions. Lighter colors indicate larger values of
probability.

then the transformation of y into η has to be properly taken into account in the
definition of dN/(d2ptdη). From Eq. (2.3) and Eq. (2.4), this can be done by use
of the equality:

mt sinh y = pt sinh η, (3.12)

where, mt =
√
p2
t +m2 is the transverse mass, m being the particle rest mass.

The hydrodynamic result for the correlation between the initial entropy per
unit rapidity, S, and the final charged-particle multiplicity, dN/dη, is shown in
Fig. 3.1. One observes a very strong linear correlation between these two quan-
tities. I am showing here results for hydrodynamic simulations of minimum bias
collisions, i.e., collisions at all impact parameters. The strong linear correlation
is thus observed both for low-multiplicity (peripheral) and high-multiplicity (cen-
tral) events. The simple ideal gas picture where the particle number provides a
measure of the entropy gives thus an accurate description of the physics at play,
even in the case of a full hydrodynamic calculation involving viscous corrections,
freeze-out, and resonance decays.

A natural question is, hence, whether the TRENTo calculation alone allows one
to reproduce the distributions of dN/dη observed in experimental data. This is in
fact the case, and demonstrates the remarkable goodness of the TRENTo Ansatz.
I first look at the minimum bias distribution of multiplicity observed experimen-
tally. The ALICE collaboration does not show the minimum bias distribution
of the multiplicity, however, they measure a proxy of dN/dη, corresponding to
the energy collected in a given calorimeter, the so-called V0 amplitude [71]. The
minimum bias distribution of this multiplicity measured by the ALICE detector
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Figure 3.2: Left: minimum bias distribution of V0 amplitude collected by the ALICE detector
in 5.02 TeV 208Pb+208Pb collisions [70]. This histogram is used to determine the centrality of
the collision events. Right: centrality dependence of the average charged-particle multiplicity,
〈dNch/dη〉 [70]. In both panels, red lines correspond to the results of the TRENTo model,
where the multiplicity is estimated from the initial total entropy, S, rescaled by an appropriate
factor.

is shown as squares in the left panel of Fig. 3.2, and it corresponds to the proba-
bility distribution used by the ALICE collaboration to sort events into centrality
classes, as discussed in Fig. 2.5. This quantity is proportional to the actual mul-
tiplicity, dN/dη, hence, on the basis of Fig. 3.1, I should be able to describe the
previous histogram by means of the entropy, S, returned by the TRENTo model.
The minimum bias distribution of S, rescaled by an appropriate factor, is shown
as a red line in the figure. Agreement with data is excellent, within few percent
across the full range of multiplicity. This shows that a centrality selection in the
TRENTo calculation based on S is fully consistent with the centrality selection
performed by the ALICE collaboration.

After determining the centrality classes from the histogram shown in the left
panel of Fig. 3.2, the ALICE collaboration measures the average value of 〈dN/dη〉
as a function of collision centrality. The corresponding experimental data is shown
in the right panel of Fig. 3.2. I compare data to the estimate of the average
total entropy produced by the TRENTo model, 〈S〉, as a function of collision
centrality. The total entropy is rescaled by a factor 6, which can be viewed as
the entropy per charged particle predicted by this TRENTo calculation. The
result is shown as a red line in the right panel of Fig. 3.2. Agreement with data
is impressive. The TRENTo result describes data with an accuracy of order 1%
across the full centrality range. To the best of my knowledge, this is the only model
of particle production which allows one to reproduce the centrality dependence
of the multiplicity with such a degree of precision. One should also note that
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this specific result is essentially independent of the parameter k and w of the
TRENTo model. The important feature is the square root taken in Eq. (2.20).
This suggests that the agreement with data is not a coincidence, and that this
model does capture to a good extent the underlying physical picture.

In summary – The multiplicity of a heavy-ion collision is a measure of the entropy
of the system, whose value is essentially constant across the evolution of the fluid
due to quasi-ideal nature of the quark-gluon plasma. The initial entropy provides
thus the natural variable to use to sort collision events into centrality classes. The
initial entropy obtained in the TRENTo model provides an excellent description
of the measured multiplicity distributions.

3.2 Energy and momentum

The equation for ε in Eq. (3.7) can be written as:
ε

n
= 3T, (3.13)

meaning that the energy per particle is proportional to the temperature. Now, in
the ultrarelativistc regime, the momentum of a particle coincides with its energy,
hence

p = 3T. (3.14)

In the final state, a reasonable measure of the energy per particle is the first
moment of the pt spectrum, i.e., 〈pt〉. It would be useful to establish a relation
similar to Eq. (3.14), where p is replaced by 〈pt〉, and the right-hand side contains
some measure of the temperature.

If this is possible, then 〈pt〉 would give access to the thermodynamic properties
of the quark-gluon plasma. As the average transverse momentum measured in
208Pb+208Pb collisions at top LHC energy is of order 0.70 GeV [72], one has:

〈pt〉/3 = 0.23 GeV. (3.15)

If 0.23 GeV corresponded to the average temperature of the system at some time
during the space-time history of the QGP, then 〈pt〉 could be used as a probe
of the quark-gluon plasma phase, because 0.23 GeV is significantly higher than
the freeze-out temperature. This correspondence has been recently established
quantitatively in Ref. [6], whose analysis I shall reformulate here. My goal is
to assign a meaning to the the right-hand side of Eq. (3.15), and show that it
corresponds to a well-defined temperature during the evolution of the system. The
conclusion is that 〈pt〉 measured in heavy-ion collisions probes the thermodynamic
properties of the quark-gluon medium, carrying in particular information about
the equation of state of hot strong-interaction matter.
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3.2.1 Effective temperature: the quark-gluon plasma

I consider the quark-gluon plasma at the beginning of hydrodynamics. The fluid
velocity in the midrapidity slice, z = 0, is nonzero only along z, and equal to
vz = z/t, such that ∂v/∂z = 1/t. Conservation of energy yields:

dε

dt
= −ε+ P

t
(3.16)

where P represents the longitudinal pressure, which is nonzero due to the re-
quirement of local isotropy in the medium. The previous equation can be written
as:

d(εt) = −Pdt, (3.17)

which implies:
dE = −PdV, (3.18)

where E is the total energy per unit rapidity in the fluid, defined by:

E(τ) = τ

∫

x
ε(x, τ), (3.19)

while V is the volume. Equation (3.18) implies that the energy of the fluid
decreases during the hydrodynamic expansion due to longitudinal cooling, i.e., the
work performed by the longitudinal pressure against the longitudinal expansion
of the medium. Now, this cooling is not eternal, and in fact is effective only
over a short time. The reason is that, while expanding along z, the medium also
expands freely in the transverse plane. This transverse expansion reduces the
transverse pressure, but since the fluid is in equilibrium, the longitudinal pressure
also decreases, because of the requirement of local isotropy.

At a certain time, then, the pressure in the medium becomes negligible: the
medium keeps expanding in the transverse direction, but with little acceleration,
and longitudinal cooling is almost ineffective. As argued in Ref. [73], this occurs
at a time close to R̄/cs, where the transverse size R̄ can be defined through:

1/R̄ =

√
1

〈x2〉 +
1

〈y2〉 , (3.20)

where the average is weighted with the energy density of the system: 〈. . .〉 =
1
E

∫
x . . . ε(x, τ), and cs is the speed of perturbations in the medium, i.e., the

speed of sound. As the transverse expansion merely converts internal energy into
kinetic energy, it does not dissipate energy. Hence, after the conjectured time
R̄/cs, the energy of the fluid, E, becomes approximately a constant. The entropy
per rapidity in the medium, S, defined in Eq. (3.10), is also roughly constant in
time, since the expansion is nearly ideal. I conclude that E/S should be roughly
constant in time beyond τ = R̄/cs, i.e., after longitudinal cooling has ended.
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I check this explicitly in a hydrodynamic simulation. I evolve a smooth profile
of entropy density given by the so-called thickness function of a 208Pb nucleus,
corresponding to

∫
dzρ(x, z), where ρ(x, z) is the nuclear matter density given

in Eq. (2.5). This corresponds essentially to the average entropy density profile
returned by TRENTo simulations at b = 0. The medium is evolved through the
MUSIC hydrodynamic code with viscous hydroydnamic equations, implementing
η/s = 0.16 and ζ/s = 0, and the QCD equation of state. The total energy per
unit rapidity at the initial condition,

E(τ0) = τ0

∫

x
ε(x, τ0), (3.21)

is normalized to 5000 GeV, corresponding to a good approximation to a central
208Pb+208Pb collisions at

√
sNN = 2.76 TeV. In the left panel of Fig. 3.3, I show

the ratio E/S as a function of τ in this simulation. The intuitive expectation
is nicely confirmed: longitudinal cooling dissipates energy in the first few fm/c,
while E/S flattens at larger τ , when the transverse expansion has washed out the
longitudinal pressure. The initial profile of energy density has about R̄ ≈ 2 fm,
so that with cs = 0.5, which is the natural ballpark for the speed of sound of the
quark-gluon plasma at LHC energy, one obtains R̄/cs ≈ 4 fm. This time scale is
highlighted in the figure with a vertical line. This line falls precisely around the
time where the curve starts flattening.

The fact that E/S is constant after τ ∼ 4 fm has a nice consequence. Since
S is proportional to the final number of particles, then the left panel of Fig. 3.3
suggests that the transverse energy per particle emitted from the medium is essen-
tially fixed at an early time scale during the hydrodynamic phase, thus carrying
information about the thermodynamic state of the fluid at τ ≈ R̄/cs. As argued at
the beginning of this discussion, the transverse energy per particle should be close
to the measured mean transverse momentum, 〈pt〉. With the additional consid-
eration that resonance decays at the end of hydrodynamics do not alter the value
of E/S, one is lead to conclude that 〈pt〉 serves as a probe of the thermodynamic
state of the system deep into the quark-gluon plasma phase.

Effective temperature – I show that this is indeed the case. I follow the analysis
of Ref. [6]. The idea is to track the value of E/S all the way until the fluid has
frozen out. On the freeze-out hypersurface, the total energy and the total entropy
are given, respectively, by:

Ef =

∫
T 0µdΣµ,

Sf =

∫
suµdΣµ. (3.22)
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Figure 3.3: Left: ratio E/S as a function of τ in the evolution of the average density profile of
2.76 TeV 208Pb+208Pb collisions at zero impact parameter. Right: temporal evolution of Teff

(dashed line), as defined by Eq. (3.25), and 〈TQGP〉 (solid line), as defined by Eq. (3.27). In
both panels, the vertical line indicates τ ≈ R̄/cs ≈ 4 fm.

An effective description based on an equivalent uniform fluid, as introduced in
Ref. [6], allows one to gain an intuitive understanding of the physics at play. I
consider a uniform medium with volume Veff which contains energyEf and entropy
Sf . The medium is, hence, at a temperature Teff . One obtains a system of two
equations for two variables, namely, the effective temperature and the effective
volume:

Sf = seff(Teff)Veff (3.23)
Ef = εeff(Teff)Veff . (3.24)

Their ratio,
Ef

Sf
=
εeff

seff
(Teff) (3.25)

no longer depends on Veff , so that one can extract Teff from the equation of state of
QCD. This calculation was carried out in Ref. [6]. By means of the MUSIC code,
smooth profiles of energy density, corresponding to average TRENTo profiles,
tuned to reproduce the multiplicity observed in 208Pb+208Pb collisions at LHC
energy, were evolved with both ideal and viscous hydrodynamic equations. The
value of Teff obtained in hydrodynamic simulations is shown as light blue lines
in Fig. 3.4, as a function of collision centrality. At top LHC energy, is of order
220 MeV, and its value depends little on the viscous corrections. In the right
panel of the figure I show instead the effective volume, Veff . It is of order 800 fm3

at top LHC energy in 208Pb+208Pb collisions.
Now, from Eq. (3.7) and Eq. (3.8), one has ε/s ∝ T . It is thus instructive to

check the dependence of Teff on τ . One can simply use the values of E/S shown in
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〈pt〉 = 3.07 Teff

Figure 3.4: Left: 〈pt〉 as a function of centrality in ALICE data [72] (symbols) and in hy-
drodynamic simulations (black lines) for 5.02 TeV 208Pb+208Pb collisions. The light blue line
corresponds to Teff , as explained in the text. Note that the lines of Teff and those of 〈pt〉 largely
overlap, and one has in particular 〈pt〉 = 3.07Teff . Right: Effective volume as function of
collision centrality (solid lines). Symbols are rescaled ALICE data points [70] for the charged-
particle multiplicity. Different line styles indicate different hydro setups: ideal hydrodynamics
with η/s = 0 and ζ/s = 0 (solid lines), viscous hydrodynamics with η/s = 0.2 and ζ/s = 0
(dashed lines), and viscous hydrodynamics with η/s = 0 and ζ/s = ζ/s(T ) as parametrized in
Ref. [61] (dotted lines). Figure adapted from Ref. [6].

Fig. 3.3 and apply the equation of state at each τ . The resulting curve for Teff is
shown in the right panel of Fig. 3.3, as a dashed line. We see that this curve is to a
good extent the same as that of E/S, in the sense that it also does flatten around
the same value of τ . Hence, if as argued before a proxy for E/S, representing
the energy per particle, is given by 〈pt〉, then 〈pt〉 should be essentially close to
3Teff , following Eq. (3.14). In the left panel of Fig. 3.3, the black lines are the
values of 〈pt〉 for different hydrodynamic setups. One sees that the picture is fully
consistent, since:

〈pt〉 = 3.07Teff , (3.26)

irrespective of viscous corrections and collision energy. The same calculation was
also repeated in Ref. [6] with a completely different equation of state, leading solely
to a minor modification of the proportionality coefficient. In Ref. [74], it has been
further checked that Eq. (3.26) is to a good extent unaffected by the inclusion of
more realistic initial conditions based on Glauber nucleons in the hydrodynamic
simulations. The result is thus robust and has a clear interpretation. A given value
of 〈pt〉 can be associated with a uniform quark-gluon medium at a temperature
close to 〈pt〉/3. But as the energy per particle is roughly constant following the end
of longitudinal cooling, measuring 〈pt〉 in heavy-ion collisions is thus like reading
a thermometer that indicates the temperature of the system into the quark-gluon
plasma phase.

But I can do more. The effective equivalent-uniform-fluid description is very
elegant, but, in hindsight, it is not strictly necessary. I define the average tem-



3.2. ENERGY AND MOMENTUM 51

perature within the quark-gluon plasma phase as:

〈TQGP〉 =
1

E

∫

x
T (x)ε(x, τ), (3.27)

where I perform the average only over fluid elements that are at a temperature
larger than the freeze-out temperature. In the right panel of Fig. 3.3, I show
the value of 〈TQGP〉 as a function of τ , along with the value of Teff , as returned
by Eq. (3.25). The striking result is that Teff at freeze-out, and 〈TQGP〉 at τ =
R̄/cs are essentially the same. Beyond that time, 〈TQGP〉 keeps decreasing and
disappears around τ ∼ 13 fm, where the entire system is below the freeze-out
temperature, whereas the value of Teff becomes constant, because it includes as
well a contribution from the motion within the fluid cells, which is developed
during the expansion. One can thus safely conclude that Teff extracted from
ALICE data corresponds approximately to the average temperature of the quark-
gluon plasma at the time where longitudinal cooling ends.

We have thus arrived to the following law:

The value of 〈pt〉 measured in a heavy-ion collision is close to 3T ,
where T is the average temperature of the quark-gluon plasma at the
time when longitudinal cooling becomes ineffective.

This statement is very important, as it shows that 〈pt〉 gives access to the ther-
modynamics of the quark-gluon plasma, in particular, to its equation of state, the
extraction of which is one of the main goals of the heavy-ion collision program.

As a side remark, a similar statement holds as well for the volume of the system.
I define:

VQGP = τπR2, (3.28)

where R2 is defined, e.g., as the mean squared radius of the entropy density profile:

R2 =
2

S

∫

x
|x|2s(x, τ), (3.29)

where the average is taken only on fluid cells with local temperature larger than
the freeze-out temperature, and the factor 2 in the numerator ensures that the
right-hand side gives precisely R2 when an uniform fluid of radius R is considered.
With this definition, one finds indeed in simulations that VQGP at τ ∼ R̄/cs and
Veff coincide to a good extent.

Extracting the EOS – Reference [75] states that, as of 2018, one of the main
open problems in the field of heavy-ion collisions is the determination of two
independent thermodynamic variables from heavy-ion data, which would give
access to the EOS. In Ref. [6] we have precisely fulfilled this task, so that I am
now able to extract the EOS of the quark-gluon plasma (at T = Teff) from data.
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From Fig. 3.4 I can extract the temperature. ALICE data [72] indicates that
〈pt〉 = 0.685 GeV. From Eq. (3.26), this corresponds to a temperature:

T ' 〈pt〉/3.07 ' 222± 9 MeV. (3.30)

The error bar is mostly driven by the uncertainty over the freeze-out temperature.
With this temperature at hand, along with the estimated volume of the system,
Veff , we can evaluate all the thermodynamic quantities.

First, the number density, n, of the quark-gluon plasma can be evaluated as:

n = 1.5
dN/dη

Veff
, (3.31)

where the factor 1.5 is included to take into account that dN/dη counts only the
charged hadrons, which are about two thirds of the total. With Veff = 800 fm3,
and dN/dη = 2000, one obtains:

n ' 4 fm−3. (3.32)

This should be compared to the matter density of normal nuclear matter, i.e.,
ρ0 = 0.16 fm−3, showing that the quark-gluon plasma is at least a factor 20 denser
than atomic nuclei, and likely about a factor 5 denser than the matter existing in
the core of neutron stars, or created in neutron star mergers. Furthermore, from
Eq. (3.7) we can give an estimate of the number of degrees of freedom:

νQCD =
π2n

T 3
eff

≈ 30. (3.33)

This large value is an indication that the system is in a phase where color degrees
of freedom are liberated and active, i.e., the quark-gluon plasma phase.

I extract now the entropy density, which is defined by:

s(Teff) =
dN/dy

Veff
S/Nch, (3.34)

where dN/dy is the charged multiplicity per unit rapidity, and S/Nch is the en-
tropy per particle. The latter was recently studied and extracted from LHC
data [76], and it is about 6.7 in 208Pb+208Pb collisions at top LHC energy. With
dN/dy ≈ 1.15dN/dη, dN/dη = 2000 and Veff = 800 fm3, one obtains:

s(T = 220 MeV) ' 20± 5fm−3, (3.35)

where the significant uncertainty comes mostly from the fact that Veff depends on
the choice of the model of energy deposition. The entropy density as a function of
temperature in hot QCD is shown in the left panel of Fig. 3.5. The light shaded
band in magenta represents the result of lattice QCD calculations for the dimen-
sionless ratio s/T 3 [49]. This curve grows rather steeply around T ≈ 150 MeV,
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Figure 3.5: Equation of state of hot QCD. Left panel: entropy density scaled by T 3. Right
panel: speed of sound. The light shaded bands in magenta represent the results of first-
principles lattice QCD calculations, taken from Ref. [49]. The dark-shaded boxes represent,
on the other hand, the extraction of these quantities from heavy-ion experimental data, as
described in the text. Figure adapted from Ref. [6].

while it is rather flat beyond T = 300 MeV, towards the high-temperature limit.
The steep growth of the curve for T > 150 MeV is a signature of parton decon-
finement. Indeed, by combining Eq. (3.8) with Eq. (3.33), one obtains:

s

T 3
=
νQCD

π3
. (3.36)

Hence the growth of s/T 3 shown in the figure is a characteristic signature of the
liberation of color degrees of freedom in the medium when T becomes higher
than the critical temperature. The value of s/T 3 extracted from ALICE data
at T = Teff = 222 ± 9 MeV gives me the result shown as a dark shaded box in
the left panel of Fig. 3.5. The estimate of the entropy density from heavy-ion
collision data is thus in agreement with the results of lattice QCD, showing that
the quark-gluon plasma is indeed formed in these experiments.

One can further obtain a solid estimate of the speed of sound of the fluid. I
recall the following thermodynamic identity [77]:

c2
s ≡

dP

dε
=
sdT

Tds
=
d lnT

d ln s
. (3.37)

Now, if s is proportional to the final-state multiplicity, dNch/dη, and Teff is pro-
portional to 〈pt〉, the relative variations of these quantities coincide, i.e.,

dT

T
=
d〈pt〉
〈pt〉

,
ds

s
=
d(dNch/dη)

dNch/dη
. (3.38)

Hence, Eq. (3.37) becomes:

c2
s =

d ln〈pt〉
d ln(dNch/dη)

. (3.39)
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Figure 3.6: At fixed entropy, S, the origin of the fluctuations of 〈pt〉 can be ascribed to the
fact that the size of the system, R, fluctuates. In this figure, systems A and B have the same
entropy, but A presents a smaller value of R. The temperature in A is thus larger. For an
ultrarelativistic gas, this implies in particular that the particles in A carry larger momentum,
pt. Figure from Ref. [80].

As measurements of 〈pt〉 and dNch/dη are available at both
√
sNN = 2.76 TeV

and
√
sNN = 5.02 TeV, I can extract the value of c2

s at a value of temperature
which is halfway between the values of Teff at the two energies, which turns out
to be Teff ' 217 MeV. By doing so, one obtains:

c2
s(Teff = 217 MeV) = 0.24± 0.04. (3.40)

The speed of sound of hot QCD returned by first-principles lattice calculations
is shown in the right panel of Fig. 3.5. One notes, once again, the steep increase
of this quantity above the critical temperature (shaded band in magenta). The
dark-shaded band represents the evaluation from heavy-ion collision data, which
is in nice agreement with the lattice QCD result. The speed of sound of the
quark-gluon plasma extracted from heavy-ion data is thus 0.5, i.e., half the speed
of light in vacuum.

3.2.2 Fluctuations of 〈pt〉
I turn now my attention to an aspect of the physics of 〈pt〉 which will be crucial in
the upcoming discussion of nuclear deformation effects in heavy-ion collisions. At
a given collision centrality, i.e., at a fixed experimental value of the multiplicity,
the value of 〈pt〉 is not constant, but it fluctuates on an event-by-event basis.
Fluctuations of 〈pt〉 at a given centrality were analyzed at RHIC very shortly
after the beginning of the heavy-ion program [78]. A few years later, they were
eventually studied by the Krakow group in the context of modern event-by-event
hydrodynamic simulations to elucidate their physical origin [79].

These studies show in particular that in hydrodynamics the fluctuations of 〈pt〉
are driven by the fluctuations of the system size, R, as defined by Eq. (3.29) [79,
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Figure 3.7: Results from 850 ideal hydrodynamic simulations of 5.02 TeV Pb+Pb collisions
at fixed impact parameter b = 2.5fm. The events have different entropy profiles, but they all
correspond to the same integrated entropy, S. Left: 〈pt〉 versus the initial energy per unit
rapidity, E, defined by Eq. (3.21). Right: 〈pt〉 versus the initial size, R, defined by Eq. (3.29).
Figure adapted from Ref. [82].

81]. This is very transparent in view of the previous result that 〈pt〉 is essentially a
measure of the temperature, T . I refer to the illustration in Fig. 3.6. I consider two
quark-gluon plasmas that share the same entropy, but that are contained within
different volumes. I assume for simplicity that these systems are uniform. The
medium that has a smaller volume is thus denser, and it has a larger temperature.
It consequently yields to the final state particles that carry a larger value of 〈pt〉.
In this setup, then, there is a one-to-one correspondence between the system size,
and the other thermodynamic quantities (temperature, volume, energy).

I make an explicit check that this picture is true in event-by-event hydrody-
namic simulations. These simulations are conceived in such a way to make the
effect I am after more apparent. This calculation evolves, through the MUSIC code,
850 profiles obtained with the same TRENTo model used for Fig. 3.2 with ideal
hydrodynamic equations, for 208Pb+208Pb collisions at fixed impact parameter
b = 2.5 fm, and fixed final-state multiplicity, i.e, fixed S at the initial condition,
corresponding to collisions at top LHC energy. One studies, then, the statistical
correlation between 〈pt〉 and thermodynamic quantities. The left panel of the fig-
ure shows the correlation between 〈pt〉 and E ≡ E(τ = τ0), i.e., the total energy
in the fluid at the beginning of hydrodynamics. The panel on the right shows
instead the correlation between 〈pt〉 and the size, R.

The correlation is strong and linear in both panels, confirming the proposed
physical origin of the fluctuations of 〈pt〉. However, it is distinctly stronger for E.
This is somewhat natural. The simple picture of Fig. 3.6 holds for a uniform fluid,
where R and T at fixed S are in an exact one-to-one correspondence. But if one
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drops the assumption of an uniform fluid, and introduces spiky structures in the
density profile, then R and T are no longer in a one-to-one correspondence [80],
while the relation p ∼ E remains true, as confirmed by Fig. 3.7. One should also
note that, as I shall argue later on in Chapter 5, if one relaxes the condition of
fixed S in Fig. 3.7, then the natural initial-state predictor of 〈pt〉 becomes precisely
E/S. Finally, the fluctuations of E and R relative to their mean are of order 2%,
while the relative fluctuation of 〈pt〉 in experimental data is around 1% [83]. In
general it is not easy for hydrodynamic simulations to return the right magnitude
of the relative fluctuation of 〈pt〉 [84], although the most recent results from the
Duke group [20] show that a TRENTo model where Eq. (2.20) is used for the
energy density at τ = 0+ allows to capture the fluctuations of 〈pt〉 observed in
experimental data at the end of hydrodynamics.

In summary – I have elucidated the origin of 〈pt〉 in a given hydrodynamic event.
It corresponds approximately to 3T , where T is the average temperature of the
quark-gluon plasma at the time when longitudinal cooling becomes ineffective.
This allows one in particular to use 〈pt〉 as a probe of the EOS of hot QCD
matter. Secondly, I have shown that the value of 〈pt〉 is not the same in all
events at a given multiplicity. Fluctuations of 〈pt〉 are driven by fluctuations of
thermodynamic quantities (energy, volume, etc.) at the initial condition.

3.3 Momentum anisotropy from spatial anisotropy

In the field of observational cosmology, accurate measurements of the anisotropies
that characterize the temperature map of the cosmic microwave background are
performed. Anisotropy is quantified through a power spectrum, which is obtained
with a multipole decomposition of the observed temperature map [85]. The study
of anisotropy sheds light on the initial condition of the system, as well as on
the dynamical features of the cosmological expansion. Remarkably enough, a
similar kind of analysis is performed as well in the context of heavy-ion collision
experiments, where the observable sky is replaced by the detector surrounding
the interaction region, the map of temperature is replaced by the distribution of
particle momenta, and spherical symmetry is replaced by cylindrical symmetry,
due to the peculiar geometry of interaction as observed in the laboratory frame.

Due to the latter symmetry, in heavy-ion collisions one is mostly interested in
the anisotropy of particle emission in the two-dimensional plane corresponding
to the midrapidity slice. One performs a Fourier expansion of the measured
spectrum:

dN

ptdptdφp
=

+∞∑

−∞
Vne

inφp. (3.41)
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where the complex Vn coefficients are the so-called anisotropic flow coefficients.
Flow coefficients depend in principle on the kinematic variables, pt, and also on
y if one goes beyond the approximation of boost-invariant evolution. Here I shall
only be interested in coefficients that are integrated over the entire phase space:

Vn =
1

N

∫

pt

dN

d2pt
e−inφp, (3.42)

where φp is the azimuthal angle in momentum space. The Fourier spectrum of
ultrarelativistic heavy-ion collisions has been to date analyzed up to n = 9 [86].

3.3.1 Elliptic flow

Elliptic flow is the quadrupole, i.e., the Fourier coefficient corresponding to n = 2
in Eq. (3.41):

V2 =
1

N

∫

pt

dN

d2pt
e−i2φp, (3.43)

This quantity plays a special role in high-energy nuclear physics. The reason is
that the hydrodynamic expansion of the quark-gluon plasma created in a generic
heavy-ion collision is expected to yield an especially-visible elliptic flow in the
azimuthal distribution of emitted particles.

Physical origin – Recall the Euler equation, corresponding to the Navier-Stokes
equation for an ideal fluid (d/dt is a material derivative):

ρ
dv

dt
= −~∇P, (3.44)

stating that the force per unit volume is driven by pressure gradients in the
medium. The pressure gradient scales like 1/R, where R is as usual the trans-
verse size. This implies that, if the density profile of the system at rest, i.e., the
initial condition, is not symmetric under azimuthal rotations, then its evolution is
governed by a pressure gradient that is not azimuthally isotropic. The force that
drives the expansion in vacuum is not the same in all directions, thus leading to
an anisotropic distribution of momentum within the fluid.

As originally pointed out by Ollitrault [87], this simple feature is crucial in
heavy-ion collisions. Consider the case of an off-centered heavy-ion collision, with
b ≈ 10 fm. I follow the illustration of Fig. 3.8. The left panel is the initial
condition at τ = τ0. The colliding nuclei are depicted as circles in the (x, y)
plane. The medium, which is drawn as a contour plot, is created in the almond-
shaped region of overlap, and acquires naturally an elliptical shape. Following
Eq. (3.44), in such a medium there is more acceleration along x than along y,
because of the asymmetric shape. The expansion thus builds up more flow along
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Figure 3.8: Build-up of flow in the medium created following the interaction of two nuclei at
a finite impact parameter. Left: initial condition. The spatial density of the medium presents
a distinct quadrupole anisotropy in the transverse plane. Right: Momentum density in the
medium close to the end of the hydrodynamic phase. The distribution of momentum in the
medium has a pronounced cos 2φp asymmetry, leading to nonzero elliptic flow.

x. I look then at the right panel of the figure, showing the system in momentum
space (px, py) at a later time, for instance τ ∼ 10 fm, which is close to the end
of the hydrodynamic phase. Due to the imbalance of forces in the medium at
the initial condition (left panel), we see that the density of momentum in the
transverse plane has also a quadrupole asymmetry. More momentum has been
produced along x, hence, if we label φp the azimuthal angle in momentum space,
then the distribution of momentum has precisely a cos 2φp asymmetry.

Freeze-out of the medium and the subsequent decays of resonances modify only
mildly the global anisotropy pattern imprinted by the hydrodynamic expansion,
so that the anisotropy of the system in momentum space is carried over to the
final-state particles. The previous argument thus explains why elliptic flow, as
given by Eq. (3.5), is important in heavy-ion collisions, and why its detection has
been historically considered as a smoking-gun of the hydrodynamic behavior of
the system created at RHIC. Before showing the results of experiments, I would
like to follow up on the discussion of the previous sections. The idea is that elliptic
flow is also an observable whose origin can be traced back to the initial state, much
as the final-state multiplicity is a measure of the entropy of the system, or 〈pt〉 is
a measure of the total energy at a given collision centrality.

Initial anisotropy – The relevant initial-state predictor for elliptic flow is, un-
surprisingly, the elliptic anisotropy of the medium at the beginning of the hydro-
dynamic expansion. A measure of the ellipticity of the system which takes into
account the fact that the created medium is not a smooth deformed profile, but
contains nontrivial structures induced by the colliding nucleons, is provided by:

E2 = −
∫
x |x|2ei2φε(τ0,x)∫

x |x|2ε(τ0,x)
, (3.45)
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Figure 3.9: Correlation between v2 ≡ |V2| and ε2 ≡ |E2| in narrow bins of centrality in
208Pb+208Pb collisions at

√
sNN = 5.02 TeV. Both panels show approximately 2500 points,

each point corresponding to a full hydrodynamic simulation. Left: 0-5%, corresponding to
〈b〉 ≈ 3 fm. Right: 40-45%, corresponding to 〈b〉 ≈ 10 fm.

where φ is the azimuthal angle in the transverse plane, τ0 is the time at which the
hydrodynamic expansion starts, ε is the profile of energy density, and the minus
sign is a convention. In the context of heavy-ion collision, this quantity has been
introduced by Teaney and Yan [88], who rigorously derived it from a cumulant
expansion of ε, and demonstrated that E2 corresponds to the elliptic anisotropy of
the long-wavelength modes of the system. The expression of E2 is derived here in
Appendix A. It is interesting to note that the same expression for the ellipticity
of a generic two-dimensional density profile was in fact introduced 25 years ago in
the context of weak gravitational lensing, to define the elliptic anisotropy in the
shape of the images of galaxies, see Eq. (3-2) in Ref. [89].

I show now in hydrodynamic simulations that the final-state elliptic flow ob-
tained from the distribution of hadrons provides, at a given collision centrality, a
measure of the initial eccentricity of the medium. I go back to the hydrodynamic
simulations of 208Pb+208Pb collisions used to draw Fig. 3.1. From the values of
the initial TRENTo entropy, I sort the events into centrality classes, and in these
classes I evaluate both V2 and E2 for all events. I shall use two centrality bins for
reference: 0-5%, corresponding to central collisions at 〈b〉 ≈ 3 fm, and 40-45%,
corresponding to peripheral collisions, 〈b〉 ≈ 10 fm. I plot v2 ≡ |V2| as a function
of ε2 ≡ |E2|, to examine their correlation. The results are displayed in Fig. 3.9

For both collision centralities, I remark a strong correlation between the final
elliptic flow and the initial eccentricity. The statistical correlation between these
quantities, as given e.g. by the Pearson correlation coefficient is larger than 0.9
in both panels. The correlation is thus mostly linear. If one defines a coefficient
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of linear response:

κ2 =
〈V2E∗2 〉
〈E2E∗2 〉

, (3.46)

where angular brackets denote an average over events in the centrality bin, one
has to a very good approximation:

v2 = κ2ε2, (3.47)

as I shall show explicitly in a moment. The coefficient κ2 is a property of the
medium. It depends on the viscosity of the quark-gluon plasma, as well as on its
equation of state.

Viscosity – I make now a short digression to show that, due to simple dimensional
arguments, elliptic flow represents a neat probe of the viscosity of the quark-gluon
plasma. I recall the nonrelativistic Navier-Stokes equation, where I include now
both the shear viscosity, η, and the bulk viscosity, ζ [90]:

ρ
dv

dt
= −~∇P︸ ︷︷ ︸

1/R

+ η~∇2v + ~∇
[
~∇ · v

(
ζ +

2

3
η

)]

︸ ︷︷ ︸
1/R2

. (3.48)

The viscous corrections go against the pressure-gradient force, i.e., against the
development of anisotropic flow. As these corrections scale with two inverse pow-
ers of the system size, they are more important at large centrality than at small
centrality, and in smaller colliding systems. Viscous corrections to elliptic flow
can then be studied systematically by varying the size of the system, which makes
V2 a powerful probe of the role of η and ζ. One should however note that the
viscosity does not break up the linear relation between ε2 and v2 discussed in
Fig. 3.9. The effect of the viscous corrections is simply that of damping the value
of the response, κ2, in Eq. (3.47).

Phenomenology – Time to look at experimental data. In the upcoming Sec. 3.4
I shall explain that, experimentally, one can not measure elliptic flow, V2, or its
magnitude, in each event, due to the fact that the number of particles detected
in one event is not sufficient to reconstruct a Fourier series. In experiments, one
can only measure the even moments of the distribution of |V2|, i.e., moments of
V2V

∗
2 , which do not depend on the phase of the complex number. The standard

measure of elliptic flow is the rms value:

v2 ≡
√
〈|V2|2〉, (3.49)

where the angular brackets denote an average over events, typically corresponding
to a given class of centrality. Note that, if Eq. (3.47) is valid on an event-by-event
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basis, then the rms v2 defined by Eq. (3.49) is in a linear correlation with the rms
value of the initial ellipticity:

√
〈|V2|2〉 = κ2

√
〈|E2|2〉. (3.50)

I analyze now these quantities as a function of collision centrality in 5.02 TeV
208Pb+208Pb collisions, by means of the same hydrodynamic simulations used to
draw Fig. 3.1 and Fig. 3.9. The results are shown in Fig. 3.10.

The black dash-dotted line represents the rms ε2, rescaled by a constant factor
0.28. This quantity grows by essentially one order of magnitude from central to
peripheral collisions. This is related to the increasing collision impact parameter,
which leads to a region of nuclear overlap that possesses a more and more enhanced
elliptical asymmetry. The red solid line shows instead results for the rms v2

computed at the end of the full viscous hydrodynamic simulations [65]. The
elliptic flow coefficient grows again by a large factor from central to peripheral
collisions, although it is not simply given by a global rescaling of the curve of
ε2. In particular, in peripheral collisions the rms elliptic flow tends to flatten,
and presents a decreasing trend much earlier than ε2. This is an effect of the
above-mentioned viscous damping, which becomes sizable at large centrality, due
to the smaller system size [recall Eq. (3.48)]. The blue dashed curve shows the rms
v2 = κ2ε2, where κ2 is calculated, at each centrality, from Eq. (3.47). I note an
excellent agreement between the red solid curve, the rms v2, and the blue dashed
curve, i.e., the estimate of linear response theory. The response is thus linear all
the way to peripheral collisions, where nonlinearities become more sizable.

To a very good approximation, then, the role of hydrodynamics is that of
providing, at each centrality, a response coefficient κ2, whose magnitude and
centrality dependence depends on the properties of the medium, i.e., viscosity
and equation of state. The centrality dependence of κ2 can be essentially read
by eye off this plot by comparing the curve for the rescaled rms ε2 with the
curve for κ2ε2. Finally, Fig. 3.10 shows, as symbols, recent ALICE data on the
rms v2. The agreement between data and the the red solid curve, i.e., the full
hydrodynamic prediction, is good. If the value of κ2 were known beforehand, then,
one could simply try to describe experimental data from the TRENTo model. This
procedure would work within an accuracy of order 5% in central and semi-central
collisions, which is excellent. In the following, I shall indeed exploit this fact to
perform both comparisons with data and new predictions by means of the sole
knowledge of ε2 at a given collision centrality.

3.3.2 The role of fluctuations

A nontrivial result displayed by Fig. 3.10 is the fact that elliptic flow does not
vanish in the limit of central collisions, b→ 0. The origin of elliptic flow in central
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Figure 3.10: Centrality dependence of the rms elliptic anisotropy in 208Pb+208Pb collisions at√
sNN = 5.02 TeV. Dot-dashed line: rms eccentricity of the medium, ε2, rescaled by a factor

0.28. Solid line: rms elliptic flow, v2, resulting from full viscous hydrodynamic simulations.
Dashed line: results for κ2ε2, where ε2 is the rms eccentricity shown as a dot-dashed line, while
κ2 is defined by Eq. (3.47). Symbols are ALICE data [91] on the rms elliptic flow. The axis on
top of the plot displays the average value of the impact parameter, computed with Eq. (2.9),
corresponding to a few selected centrality percentiles.

collisions is easy to guess from the analysis performed in this manuscript. As
pointed out in Fig. 2.6, the quark-gluon plasma does not have a smooth profile of
density, but is rather a spiky landscape with valleys and peaks. These structures,
which in heavy-ion collisions are mostly caused by event-by-event fluctuations in
the positions of the colliding nucleons, generate anisotropy. Hence elliptic flow
is quite significant even in collisions at zero impact parameter. In addition, the
hadron distribution acquires a full spectrum of Fourier modes:

Vn =
1

N

∫

pt

dN

d2pt
e−inφp. (3.51)

In the hydrodynamic paradigm, these coefficient have also a simple geometric
origin. One can play the same game as in the case of elliptic flow, and define:

E1 = −
∫
x |x|3eiφε(τ0,x)∫
x |x|3ε(τ0,x)

, E3 = −
∫
x |x|3ei3φε(τ0,x)∫

x |x|3ε(τ0,x)
, (3.52)

where E1 is the dipole asymmetry, and E3 is the triangularity, originally introduced
by Alver and Roland [92]. The geometric interpretation of E1 and E3 is displayed,
for sake of clarity, in Fig. 3.11. Much as V2 is a linear response to the initial E2, the
final V1 and V3 are a linear response to the initial E1 and E3. The expressions of E1

and E3 were also obtained with the rigorous derivations of Teaney and Yan [88],
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Figure 3.11: Anisotropies of order n = 1, 2, 3. Left: dipole asymmetry. The profile has ε1 =
0.22, ε2 = 0, ε3 = 0. Center: ellipticity. The profile has ε1 = 0, ε2 = 0.28, ε3 = 0. Right:
triangularity. The profile has ε1 = 0, ε2 = 0, ε3 = 0.22.

and a derivation of these quantities is also proposed here in Appendix A. It is once
again interesting to note that these quantities were also shown about 15 years
ago in the context of weak gravitational lensing, with the aim of characterizing
anisotropies in the shapes of galaxies beyond the elliptical one (see Eqs. (26) and
(27) of Ref. [93]). Finally, anisotropies of order n > 3, like V4 or V5, have also
a geometric origin, En>3, which can be evaluated as in the Teaney-Yan paper.
However, the expressions are not as straightforward as for n < 4, due to the fact
that higher-order harmonics receive important contributions from the mixing of
lower-order terms allowed by symmetry [94, 95, 96]. For instance V4 receives a
contribution from V 2

2 , which is in fact dominant in peripheral collisions, while V5

receives a contribution from V2V3, and so on.

In Fig. 3.12 I show experimental LHC data on the rms values of vn, for
n = 2 . . . 7. I show both ALICE and ATLAS data, to assess the role played by
the pt cuts implemented in the integral of the spectrum in Eq. (3.51) (indicated
in the figure), which turns out to yields a vertical shift for all n. The feature of
the experimental data that jumps to the eye is the fact that the Fourier spectrum
is rather strongly-ordered (note the log scale for the vertical axis). This is non-
trivial. In central collisions, for example, the value of the initial-state anisotropy
εn is of the same order of magnitude for all values of n. The splitting between
harmonics in central collision is a consequence of hydrodynamics, in particular
of viscous hydrodynamics, as the damping of higher-order harmonics is enhanced
by the viscous corrections, for the same dimensional arguments pointed out pre-
viously. As expected, elliptic flow is the only coefficient that grows by almost
one order of magnitude from central to peripheral collisions, due to the increasing
impact parameter. The other coefficients display instead a mild increase with
the centrality percentile. This is intuitive. The size of the system decreases with
the impact parameter, and a smaller system size is associated with larger density
fluctuations, i.e., larger anisotropy for all values of n.
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Figure 3.12: Centrality dependence of the rms Fourier anisotropies of the azimuthal momentum
distribution of hadrons produced in 5.02 TeV 208Pb+208Pb collisions. Full symbols: ALICE
data [91] (0.4 < |η| < 1, 0.2 < pt < 5 GeV). Empty symbols: ATLAS data [97] (1.0 < |η| < 2.5,
0.5 < pt < 60 GeV).

In summary – The azimuthal distribution of hadrons measured in heavy-ion col-
lisions is characterized by a spectacular degree of anisotropy, and a full spectrum
of nonzero Fourier harmonics. In hydrodynamics, final anisotropy in momen-
tum space originates from spatial anisotropy in the density profile at the initial
condition. Elliptic flow is the largest anisotropy, as the corresponding spatial
anisotropy, ε2, is mostly induced by the collision impact parameter. At a given
collision centrality, v2 and ε2 are in a linear relation, v2 = κ2ε2.

3.4 Observables as multi-particle correlations

Before closing this chapter, I briefly discuss the experimental method that is used
in practice to measure the observables analyzed in the previous sections. The
point is that measuring v2 or 〈pt〉 is not as straightforward as it may seem. In
theory, e.g., at the end of a hydrodynamic simulation, one is left with a contin-
uous spectrum of hadrons in phase space, that can be integrated to obtain the
relevant observables, as in Eq. (3.3) and Eq. (3.5). However, the outcome of a
real collision consists of a collection of N hadrons, and integrals are performed by
means of discrete sums. This implies that, since N is finite, any observable comes
necessarily with a statistical uncertainty of order 1/

√
N . At current particle col-
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lider experiments, this statistical fluctuation is as large as the genuine dynamical
fluctuation that one would like to understand. Meaningful observables involving
v2 and 〈pt〉 can however be constructed to overcome this difficulty.

〈pt〉 – In an experiment, the average transverse momentum is obtained by re-
placing the integral in Eq. (3.3) with a sum over the particles of the event under
consideration:

1

N

∫

pt

pt
dN

d2pt
−→ 1

N

N∑

i=1

pt,i, (3.53)

where N is the number of detected hadrons and pt,i is the transverse momentum
of the i-th hadron. The relative dynamical fluctuation of 〈pt〉 in central collisions
is of order 1% [83]. Therefore, when computed in a single event with N ∼ 1000,
this quantity is almost meaningless. To remove the large influence of statistical
fluctuations one has to average over a large batch of events, typically, the events
belonging to a given class of centrality:

〈〈pt〉〉 ≡
〈

1

N

N∑

i=1

pt,i

〉
=

1

Nev

Nev∑

j=1

1

Nj

Nj∑

i=1

pt,i, (3.54)

where Nev is the number of events belonging to the considered centrality class,
Nj is the multiplicity of the j-th event, and i runs over the particles collected in
this event. This correctly gives the average value of 〈pt〉 at a given centrality.

In Chapter 5 I shall use as well the second centered moment of the 〈pt〉 distri-
bution, i.e., the variance, at a given centrality. This quantity is given by:

〈(
〈pt〉 − 〈〈pt〉〉

)2
〉

=

〈∑
i,j (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉)

N 2

〉
, (3.55)

where outer brackets denote the average over events in a given class of centrality.
and i, j labels a pair of particles in a given event. The variance thus defined
contains both the dynamical component of the fluctuation of 〈pt〉, as well as a
trivial statistical component due to the finite value of N . This latter contribution
comes from pairing particles with themselves, i.e., from the terms having i = j.
Subtracting these terms from Eq. (3.55) yields the so-called dynamical fluctuation:

σ2
dynamical(〈pt〉) =

〈∑
i,j 6=i (pi − 〈〈pt〉〉) (pj − 〈〈pt〉〉)

N (N − 1)

〉
. (3.56)

Here the careful reader should have noticed that, if the statistical component of
the fluctuation is entirely contained in the diagonal terms, then this assumes that
the momenta of two distinct particles i and j are independent variables. This
assumption does in fact underlie the interpretation of multi-particle observables
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such as Eq. (3.56), and is at the heart of the phenomenology of relativistic nuclear
collisions. The idea is precisely that, from the freeze-out hypersurface, particles
are emitted independently from an underlying distribution of p, i.e., the spectrum.
This idea goes under the name of flow paradigm, and all experimental evidence
points to the fact that this idea is correct. The flow paradigm implies in particular
that the distribution of particle pairs emitted at freeze-out is equal to the product
of single-particle distributions [98]:

dNpair

d3p1d3p2
=

dN

d3p1

dN

d3p2
, (3.57)

and this generalizes to triplets, quadruplets, etc., of particles. The hydrodynamic
description is thus a single-particle description, where correlations originate solely
from fluctuations of the single-particle distribution. One should note that, on
the other hand, a single-particle description does not imply hydrodynamics. For
instance, calculations of particle production in the dilute-dense approach of the
color glass condensate also assume independent particle emission, although there
is not a fluid involved [99].

An additional comment is in order. A measurement of Eq. (3.56) in heavy-ion
collisions does not return the correlation due to genuine dynamical effects. Other
phenomena can contribute to the two-particle correlations, most notably, the de-
cays of resonance, which naturally produce particles with correlated momenta, as
well as the hadronization of jets. All such phenomena do however yield correla-
tions of particles across small ranges of rapidity. In the experimental analysis,
hence, one can suppress the contribution of these background effects, in jargon
called non-flow contributions, by imposing a gap in the values of y, or η, between
the hadrons used to evaluate the correlations. Methods involving multiple rapid-
ity gaps have also been invented [100]. Once this correction is performed, the final
result can be considered as the genuine long-range correlation of collective origin.

v2 – The experimental definition of elliptic flow in a given event reads:

V2 =
1

N

∑

i

e−i2φp,i, (3.58)

where φp,i is the azimuthal direction of the momentum of particle i. Measuring
such a quantity in a single event does basically amount to measuring statistical
noise. One has thus to average over events at a given centrality, much as done for
〈〈pt〉〉:

〈V2〉 =

〈
1

N

∑

i

e−i2φp,i
〉
, (3.59)

where brackets represent an average in the centrality class. But this does not
work. The direction of the impact parameter of the collision is random (uni-
formly distributed) in a sample of collision events, and thus 〈Vn〉 does vanish
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upon averaging. The only quantities one can have access to must be necessarily
independent of this random phase.

Forgetting for a moment the dependence on pt, the quantity I am after is the
Fourier coefficient, Vn, of the single-particle distribution:

dN

dφ
=

+∞∑

n=−∞
Vne

−inφ. (3.60)

Independence of particles implies that the pair distribution can be written as:

dNpairs

dφ1dφ2
=

+∞∑

n1,n2=−∞
Vn1Vn2e

−in1φ1e−in2φ2, (3.61)

where φi is the direction of the momentum of particle i. Introducing ∆φ = φ1−φ2,
one obtains:

dNpairs

d(∆φ+ φ2)dφ2
=

+∞∑

n1,n2=−∞
Vn1Vn2e

−in1∆φe−i(n1+n2)φ2. (3.62)

Upon integration over φ2, only the terms n1 = −n2 remain, but since Vn = V ∗−n,
this implies:

dNpairs

d∆φ
=

+∞∑

n=−∞
|Vn|2e−in∆φ. (3.63)

Hence in the flow paradigm the Fourier coefficients of the distribution of ∆φ are
equal to v2

n ≡ |Vn|2.
Now, the magnitude vn does not vanish upon averaging over events. One can

thus perform the average over all events in a centrality class to obtain the mean
squared vn:

〈v2
n〉 = 〈en(φ1−φ2)〉, (3.64)

where the average is over all pairs of distinct particles (to remove trivial statis-
tical effects) in the centrality bin. Note that, although the correlation does not
vanish, the sine components do, because parity-violating effects [101], if present,
are negligible. Therefore:

〈en(φ1−φ2)〉 = 〈cosn(φ1 − φ2)〉. (3.65)

This observable is naturally affected by nonflow correlations, as discussed above,
and thus has to be measured with the implementation of rapidity gaps. An advan-
tage of multi-particle correlations is that they do not require to make distinctions
between events. The only event-by-event observable is the multiplicity, which al-
lows one to classify events. Once that is done, the knowledge that a given particle
belongs to a given given event becomes redundant in the calculation of 〈v2

n〉.



68 CHAPTER 3. BASICS OF HEAVY-ION PHENOMENOLOGY

One can easily show that the previous equations generalize to higher-order
quantities. One has to correlate the angles of more and more particles to con-
struct higher-order moment of the distribution of vn. For instance, a four-particle
correlation yields the fourth moment:

〈v4
n〉 = 〈en(φ1+φ2−φ3−φ4)〉, (3.66)

where the average is performed over all distinct quadruplets of particles in the
centrality bin. Note that, in a single event, the quadruplets are N(N − 1)(N −
2)(N − 3), which is much larger than the number of pairs. This explains why
higher-order moments of the vn distributions can in fact be measured with great
precision. One can further mix different harmonics, e.g.,:

〈v2
2v

2
3〉 = 〈e2(φ1−φ2)+3(φ3−φ4)〉, (3.67)

or measure correlations between vectors, so-called plane correlations, provided
that the phases cancel out:

〈V 2
2 V
∗

4 〉 = 〈e2(φ1+φ2)−4φ3〉. 〈V2V3V
∗

5 〉 = 〈e2φ1+3φ2−5φ3〉, (3.68)

and so on. Quantities that are particularly relevant in the phenomenology of
heavy-ion collisions are the cumulants of the distribution of vn. They correspond
to nontrivial combinations of moments, and they will be used in the next section. I
derive their expressions and I say a few words about their meaning in Appendix B.

I have thus clarified that, as one can only observe a finite number of hadrons,
the phenomenology of the soft sector of heavy-ion collisions is a phenomenology
of multi-particle correlations. This represents a new method of analyzing particle
collider events, introduced in the context of high-energy nuclear experiments.



Chapter 4

A matter of shape

I move on now to the main topic of this manuscript. The discussion of anisotropic
flow in the previous chapter should have made clear that the geometric shape
of the quark-gluon plasma is of paramount importance in the phenomenology of
heavy-ion collisions. The medium is essentially at rest when it is produced, and its
transverse expansion is driven by pressure gradients which are determined by the
geometry of the system. It is interesting that the study of shape and anisotropy
plays such a central role in high-energy nuclear physics. The reason is that the
characterization of anisotropy is central as well in low-energy nuclear physics,
although applied to the geometric shape of atomic nuclei. Today it is indeed
established that the majority of atomic nuclei present in particular a quadrupole
deformation, which I shall introduce in this chapter.

It is important to appreciate that there are no such things as direct experimen-
tal probes of the geometric shape of atomic nuclei. While accurately predicted
by models of nuclear structure, the deformation of atomic nuclei from exper-
imental data can only be inferred by means of indirect methods that rely on
model-dependent approximations. These models prove successful in the context
of low-energy experiments, but what about higher energies? From the previous
discussion on the physical origin of 〈pt〉 and v2 in heavy-ion collisions, it is nat-
ural to expect that these quantities are nontrivially influenced by the shape of
the colliding nuclei if they are nonspherical. If such manifestations of nuclear
deformation were observed, then high-energy experiments would provide a novel
method to observe direct phenomenological consequences of the deformation of
nuclei, and thus to perform spectacular tests of the predictions of nuclear models.

In this chapter, I show that this is indeed the case. I first introduce the
concept of nuclear quadrupole deformation, and I explain how this concept is
implemented in the modeling of heavy-ion collisions. I perform then a detailed
analysis of the current experimental evidence of nuclear deformation in heavy-
ion collision experiments. I shall conclude that high-energy nuclear experiments
provide in fact a very powerful tool to trigger phenomenological manifestations of
the geometric shape of atomic nuclei.

69
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4.1 Nuclear quadrupole deformation

A nucleus has a quadrupole deformation if its quadrupole moment does not vanish,
i.e.,

Q2 ∝
〈
Y 0

2 (Θ,Φ)r2
〉
6= 0, (4.1)

where I use spherical coordinates in the intrinsic nuclear frame, r = (Θ,Φ, r), and
the spherical harmonic breaks spherical symmetry: Y 0

2 ∝ 3 cos2 Θ − 1. Angular
brackets denote an expectation value with respect to the nuclear wavefunction,
expanded in some basis. The concept of deformation is typically associated with
the image of a nucleus as a deformed body, like an ellipsoid. Nevertheless, one
should be careful when invoking such a picture. For instance, an even-even nu-
cleus presenting a significant quadrupole moment, such as 238U, has nonetheless
a vanishing total angular momentum, J = 0, and so its wavefunction is invariant
under rotations in space. There is a priori no need to describe the nucleus as
deformed, ellipsoidal object. One could expand the wavefunction in a basis of
eigenstates that are spherically symmetric, and then let the quadrupole moment
of Eq. (4.1) emerge solely from correlations between eigenstates. However, the
collective nature of nuclear excitations has made clear since long time [102] that,
especially when dealing with large nuclei, an excellent approximation of the nu-
clear wavefunction can be obtained with a so-called rotational model. Roughly
speaking, the idea is that the nucleus is described by an ellipsoidal density of
charge, or matter, with a random orientation in space. Upon averaging over ori-
entations, one finds that the system has the right rotational symmetry. However,
in this approach when the wavefunction collapses the positions of the nucleons
are determined following the shape of a randomly-oriented ellipsoid. I anticipate
that strong evidence of this behavior will be provided by the results discussed
later on in Chapter 5, in particular by their comparison with experimental data
from heavy-ion collisions.

Data-driven approach – Evidence of the quadrupole deformation is provided by
rotational spectra, which assume a characteristic form if the nucleus is a rigid
rotor. For even-even nuclei, the quantity of interest is the electric quadrupole
operator transition probability from the ground state to the first 2+ state, a
quantity dubbed B(E2)↑ [103, 104]. Other kind of observables can be used for
odd nuclei [105]. In the simple picture of the rotational model, assuming that
the electric charge density in the nucleus is a sharp-edged ellipsoid of revolution,
one can characterize the quadrupole deformation of the nucleus with the following
dimensionless parameter [106]:

β =
4π

3ZeR2
0

√
B(E2)↑, (4.2)



4.1. NUCLEAR QUADRUPOLE DEFORMATION 71

Figure 4.1: Left: Oblate spheroid (β < 0). Center: Sphere (β = 0). Right: Prolate spheroid
(β > 0). The arrow indicates the axis of the nucleus.

where e is the fundamental electric charge, Z is the proton number, and R0 =
1.2A1/3 is the empirical nuclear radius. The expression of β is related to the
nuclear quadrupole moment because there is a simple relation between B(E2)↑
and Q2 [106]:

B(E2)↑= 5

16π
|eQ2|2. (4.3)

As a matter of fact, as originally pointed out by Kumar [107], if one considers a
uniform ellipsoidal charge density ρ(r) that has the same quadrupole moment as
the nucleus, and the same volume (i.e., the same mean squared radius), then the
parameter β is simply given by the following reduced quadrupole moment:

β =
4π

5

∫
r r

2Y 0
2 (Θ,Φ)ρ(r)∫
r r

2ρ(r)
, (4.4)

where r = |r|. Note the similarity of this expression with that of the two-
dimensional eccentricity in Eq. (3.45).

The value of β characterizes the shape of the nucleus under consideration. A
nucleus is spherical if β = 0. It looks instead like an oblate spheroid, squeezed
at the poles, when β < 0. When β > 0 on the other hand, the nucleus is a
prolate spheroid, and it looks like a rugby ball. These possibilities are illustrated
in Fig. 4.1. Note that the experimental determination provided by Eq. (4.2)
returns a value of β which is positive by construction. One should keep in mind
that the simple idea of considering the nucleus as an ellipsoidal object with a
well-defined quadrupole deformation is not always justified. It is typically a good
approximation for large nuclei that are well-deformed (β > 0.2) but in general
one should be careful when assigning shapes to nuclei, as effects related to the
fluctuations of β [108], that I shall also briefly mention in the following sections,
can also be important.

Mean field estimate – In a theoretical calculation, the value of β requires the
knowledge of the quadrupole moment of the nuclear wavefunction. The dynamics
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of a nucleus is, in an ab-initio approach, given by the solution of the Schrödinger
equation for the full nuclear wavefunction:

H|ψ〉 = E|ψ〉, (4.5)

where H is the nuclear Hamiltonian, |ψ〉 is the nuclear wavefunction, and E is
the energy of the system. For large nuclei this problem is intractable. A powerful
method that allows one to simplify this matter is the Hartree-Fock, or mean
field, method. The mean field approach is based on a picture of independent
particles, where the nuclear wavefunction is written as a Slater determinant of
the system of A fermions, |ψi〉, where i labels a nucleon. This Ansatz implies
that the nuclear Hamiltonian can be decomposed as

∑
i hi, where hi is a single-

particle Hamiltonian. The dynamics is then given by the solution of A identical
Schrödinger equations, which are easier to handle:

hi|ψi〉 = Ei|ψi〉. (4.6)

The independent particle picture may sound like a rough simplification, es-
pecially considering that nuclei are self-bound objects, whose existence depends
precisely on nucleon-nucleon interactions. But as a matter of fact this approxi-
mation is perfectly justified [109]. The main reason is that in low-temperature
nuclear matter nucleons have a rather large mean free path, of order of few fm,
meaning that two nucleons barely see each other within the nuclear volume, a
feature supported by experimental measurements. Second, Fermi statistics and
the Pauli principle also tend to keep nucleons far apart.

Variational methods are used to calculate the ground state of the system, say
|Φ〉, at the mean field level. A great advantage of this approach is that it allows
one to do so while breaking the symmetries of the exact nuclear wavefunction. To
describe a deformed nucleus, for instance, one can perform a minimization under
constraints which allows the resulting ground state to explicitly break rotational
symmetry. Formally, one performs a variation of the kind:

δ (〈Φ|H − µQ2|Φ〉) = 0, (4.7)

where µ is a Lagrange multiplier which enforces the ground state returned by the
minimization procedure to have a quadrupole moment Q2, i.e., a nonzero value of
β. The minimization can thus be performed by imposing any value of β. One looks
then at the mean-field ground-state energy, E, to see where the minimum value of
E as a function of β lies. This kind of calculation has been performed for hundreds
of nuclides in Ref. [110], where the mean-field wavefunction is expanded in a
harmonic oscillator basis that allows to break spherical symmetry while preserving
axial symmetry. The results of this calculation are collected in the AMEDEE
database, that can be found in Ref. [111]. I report in Fig. 4.2 the results for two
nuclei in which I am particularly interested.
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Figure 4.2: The solid lines represent the potential energy surface of 208Pb (left) and 238U (right)
obtained within the Hartree-Fock-Bogoliubov calculations of Ref. [110], where the minimization
under constraints of Eq. (4.7) allows the mean-field wavefunction to break both rotational and
particle number symmetry (separately for protons and neutrons). The energy is plotted against
the quadrupole deformation parameter, β. See text for more details. Figures from Ref. [111].

In the left panel, the procedure is performed for the 208Pb nucleus. The solid
line gives the ground-state energy, E, as a function of β, shifted to 0 at the
minimum. This calculation shows that the potential energy curve has a minimum
for β = 0. This minimum is sharp, as the potential curve grows steeply as soon
as β 6= 0, the other minima lying at much higher values of E. The fact that the
curve grows steeply around the minimum is an indication of a well-define shape,
corresponding in this case to a vanishing quadrupole moment. In the right panel
of Fig. 4.2 I show instead the result of the minimization procedure for 238U. Here
the situation is more interesting. As one varies the magnitude of the quadrupole
deformation, one observes a spontaneous breaking of rotational symmetry. The
minimum of the potential energy curve is around a nonzero value of β, close to
0.3, and its sharpness implies again a well-deformed shape. Hence it is right to
treat 238U within the approximations of the rotational model.

I presented two cases of two nuclei possessing a well-defined shape, i.e., a single
sharp minimum of E as a function of β. However, if the minimization procedure
yields a minimum that is less prominent, so that the energy difference between
different minima is only of order 1 MeV, then the simple mean-field estimate
should not be considered a reliable estimate of the value of β, and one may even
need to go beyond the simple approximation of the rotational model. I shall
return to this point in the upcoming discussion of 197Au nuclei.
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4.2 Relativistic collisions of deformed nuclei

The approach to the structure of nuclei that is used in the modeling of heavy-ion
collisions, as described in Sec. 2.2.1, is thus reminiscent of the mean field method.
One assumes that the nucleons are independent, and that each nucleon follows a
single-particle density of Woods-Saxon form, which I recall here for clarity:

ρ(r) =
ρ0

1 + exp

{
1
a

[
r −R

]} . (4.8)

The modeling of deformed nuclei in the context of heavy-ion collisions goes
along the same lines. The only difference is that the single-particle density is
no longer given by Eq. (4.8), but it breaks spherical symmetry. This is done
by adding an angular dependence to the radius of the system. For a surface
oscillating around the spherical shape, this can conveniently achieved by means
of an expansion in spherical harmonics [106]:

R(Θ,Φ)→ R0

(
1 + c00 +

∞∑

l=1

l∑

m=−l
clmY

m
l (Θ,Φ)

)
. (4.9)

The constant c00 represents a change in the nuclear volume. As nuclear matter is
almost incompressible, deformation does not change the volume, and one can find
an expression for c00 as a function of the other coefficients in order to keep the
volume fixed. However, I shall gloss over this detail in the following, and consider
densities that yield to a good extent to A upon integration over space. The terms
with l = 1 shift the center of mass of the system, while terms with l > 1 introduce
deviations from spherical symmetry. As the deformation of nuclei originates from
long-range collective correlations of nucleons, the most important terms in the
expansion are those corresponding to long-wavelength modes, i.e., small values of
l. Among these, the quadrupole deformation is the most prominent. Hence for
all phenomenological purposes, the most relevant term of the expansion is l = 2,
m = 0, which corresponds to the quadrupole deformation of the long wavelength
structures. The other quadrupole terms l = 2, m = ±2 are less important,
although I shall discuss them in some detail in Chapter 6. One defines:

c20 = β, (4.10)

where β is precisely the quadrupole deformation parameter used in nuclear physics.
The density of matter in a deformed nucleus is thus given by an actually minor
modification of Eq. (4.8):

ρ(r,Θ,Φ) =
ρ0

1 + exp

{
1
a

[
r −R0

(
1 + βY 0

2 (Θ,Φ)
)]} , (4.11)
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Figure 4.3: A bunch of deformed nuclei is running in the beam pipe (left). The beam axis
corresponds to the z axis. Each nucleus (right) has a random orientation in space, and with
respect to the laboratory frame is thus tilted by a polar angle, θ, and by an azimuthal angle,
φ. Figure from Ref. [112].

The rest of the model is unchanged: Eq. (4.11) represents the single-particle
density, and, in each realization of the nucleus, one samples the positions of the
nucleons according to this distribution. From the previous considerations, it is
clear that this model is good whenever the nuclei have well-defined shapes, as
observed for 208Pb and 238U nuclei.

Deformed nuclei in the beampipe – The model used in heavy-ion collisions is thus
a simple rotational model. The nucleus is an ellipsoidal distribution of matter
which is randomly oriented in space. The nuclei running in the beampipe can
thus be depicted as in Fig. 4.3. In the laboratory frame, which I recall is defined
by a beam axis, z, and a plane orthogonal to it, (x, y), each nucleus is randomly
oriented, so that the laboratory frame and the intrinsic nuclear frame differ by a
polar tilt, θ, and by an azimuthal spin, φ, which I shall refer to as Euler angles.
When two nuclei collide, the collision geometry in the laboratory frame is therefore
determined by two sets of Euler angles, θA, θB, and φA, φB, where A and B label
the colliding nuclear bodies.

Body-body and tip-tip collisions – Collisions of nuclei that are deformed pro-
duce nontrivial geometries of overlap. I discuss here two extreme kinds of such
overlap geometries, showing that a nontrivial phenomenology of the quadrupole
parameter, β, is naturally expected in relativistic collisions of deformed nuclei.
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Figure 4.4: Left: fully-overlapping body-body collision (top). The nuclei collide with their
axes aligned orthogonally to the beam axis, z (θA = θB = π/2), and with the same azimuthal
orientation, φ. The transverse area of nuclear overlap in such collisions (bottom) possesses an
enhanced quadrupolar asymmetry (Ry > Rx). Right: fully-overlapping tip-tip collision (top).
The nuclei collide with their axes parallel to the beampipe, θA = θB = 0. The area of overlap
(bottom) is isotropic in the transverse plane, Rx = Ry. Figure from Ref. [80].

I consider collisions between prolate nuclei, β > 0, and I look at the limit
where these nuclei collide at very small impact parameter, i.e., when they are fully
overlapping. In this limit, there are two extreme situations, which are illustrated
in Fig. 4.4.

• There are body-body configurations, shown in the left panel of Fig. 4.4, in
which the axes of the two nuclei are both orthogonal to the beam direction,
i.e., θA = θB = π/2, and both nuclei are rotated by the same azimuthal
angle, φA = φB. In such configurations the area of overlap in the transverse
plane, following the strong Lorentz contraction, has an enhanced elliptical
deformation, which originates from the shape of the colliding nuclei.

• There are also tip-tip configurations, shown in the right panel of Fig. 4.4,
in which the axes of both nuclei are aligned with the beam axis, z, or θA =
θB = 0. The resulting area of overlap is circular.
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The relevant comment is that, while tip-tip collisions produce a medium that has
an isotropic shape in the transverse plane (Rx = Ry), so that the anisotropy of
the created medium is entirely generated by fluctuations, as discussed in Sec. 3.3,
body-body collisions produce, on the other hand, a medium which has an intrinsic
elliptical deformation. Depending on the value of β, the medium created in body-
body collisions possesses an initial eccentricity, E2, that receives a contribution
from the quadrupole deformation of the colliding bodies. For large nuclei, e.g.,
A > 150, this contribution is in fact dominant whenever β > 0.2, which unsur-
prisingly corresponds as well to the limit of well-deformed nuclei. The nontrivial
conclusion is that collisions between nonspherical nuclei can thus yield elliptic
flow from a genuine elliptic deformation of the created medium even in head-on
collisions occurring at zero impact parameter.

Conclusion – I have outlined the relevant elements of nuclear structure, as well
as their implementation in the modeling of heavy-ion collisions. I can now look
at existing experimental data on elliptic flow in collisions of nonspherical nuclei,
to assess whether or not effects of nuclear deformation are visible.

4.3 Evidence of deformation at RHIC: 238U+238U collisions

In May 2015 the STAR collaboration at RHIC published groundbreaking results,
corresponding to the release of data on elliptic flow fluctuations in collisions of
deformed 238U nuclei [113]. The results of the STAR collaboration are reported
here in Fig. 4.5. Two quantities are displayed:

v2{2}2 ≡ 〈v2
2〉, (4.12)

v2{4}4 ≡ 2〈v2
2〉2 − 〈v4

2〉. (4.13)

These represent respectively the second- and fourth-order cumulants of the distri-
bution of the magnitude v2 = |V2|, whose expressions are derived in Appendix B.
For reasons that I shall make clear in the following, to reveal the effect of the
deformed nuclear shapes on these observables, it is crucial to perform measure-
ments in central collisions, and by means of fine multiplicity classes. As one can
appreciate from Fig. 4.5, this is precisely the path followed by the STAR collab-
oration, and this is why their results are groundbreaking. My goal in this section
is to look at all the experimental results shown by the STAR collaboration in
Ref. [113], and discuss their meaning and their implications, with an emphasis on
the role played by the deformed shape of the colliding nuclei.



78 CHAPTER 4. A MATTER OF SHAPE

Figure 4.5: STAR data on the fluctuations of elliptic flow in 197Au+197Au (empty symbols) and
238U+238U (full symbols) collisions at, respectively,

√
sNN = 200 GeV and

√
sNN = 193 GeV.

Circles represent measurements of the second-order cumulant of elliptic flow, v2{2}, while stars
represent the cumulant of order four, as defined by Eq. (4.12). v2 fluctuations are plotted
against the charged-particle multiplicity per unit pseudorapidity, which is obtained in the range
−0.5 < η < 0.5. Elliptic flow in ths η window is further obtained by imposing an additional
cut in the transverse momentum: 0.2 < pt < 2 GeV. The inset highlights the differences in
the fourth-order cumulant of v2 between ultracentral 197Au+197Au and 238U+238U collisions.
Figure from Ref. [113].

4.3.1 Spectacular failure of the two-component Ansatz

I start by discussing an observable from the STAR paper which is not shown in
Fig. 4.5. I reproduce it here in Fig. 4.6. The quantity which is plotted is the
rms elliptic flow, v2, as a function of the charged-particle multiplicity, dN/dη, in
a given class of ultracentral events, selected by means of the energy deposited
in the forward regions of the detector, in the so-called Zero Degree Calorimeters
(ZDC). If we assume that the selection based on the ZDC energy allows one to
pick events where the two nuclei are fully overlapping, i.e., events at b = 0, then
studying v2 as a function of multiplicity is essentially tantamount to looking at
how v2 varies as a function of the total entropy of the system.

This observable is interesting because a widespread model of particle pro-
duction utilized in experimental analyses of heavy-ion collisions, the so-called
two-component Glauber model, makes a nontrivial prediction for the data points
shown in Fig. 4.6. In this model, the number of sources of particles, the so-called
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Figure 4.6: Experimental data on the correlation between v2 and the charged particle multi-
plicity Mult ≡ dN/dη, with |η| < 0.5, in 238U+238U collisions (filled circles) and 197Au+197Au
collisions (empty squares). The dashed bars represent the prediction of the IP-GLASMA frame-
work [119]. The dashed line is the prediction of the constituent-quark Glauber model, while
the dashed line highlighted in yellow is the prediction of the two-component Glauber model.
Figure from Ref. [113].

ancestors, produced in a heavy-ion collision is written as the sum of two terms [11]:

a×Npart + (1− a)×Ncoll, (4.14)

where the parameter Ncoll corresponds to the number of nucleon-nucleon collisions
occurring in the event, while a can be fitted to data on the probability distribution
of dN/dη. Each ancestors produces then a random number of particles following
a negative binomial distribution, whose parameter are fitted to data.

The term with Ncoll in Eq. (4.14) has a rather dramatic consequence in the
context of collisions between deformed nuclei. I recall Fig. 4.4. Fully-overlapping
tip-tip and body-body collisions share the same Npart, however, the value of Ncoll

is naturally larger in tip-tip collisions, because the density of nucleons per unit
area is larger. According to Eq. (4.14), a tip-tip collision has a larger density and
produces more particle than a body-body collision. By selecting high-multiplicity
events, one does effectively select mostly tip-tip events. This implies that one
could use high-multiplicity 238U+238U collisions to produce systems whose tem-
perature and density are larger than that of 197Au+197Au collisions at the same√
sNN by as much as 30% or 40%. This very feature was in fact the main moti-

vation driving the run of 238U+238U collisions at RHIC, and most of the existing
pre-2015 literature discussing effects of nuclear deformation at high energy is based
on the manifestation of tip-tip geometries in high-multiplicity collisions, see, e.g.,
Refs. [114, 115, 116, 117, 118].

But something went wrong. If fully-overlapping events at high-multiplicity
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correspond to tip-tip events, then, since tip-tip events correspond to the limit of
a round geometry of overlap, there should be a negative correlation between v2

and the multiplicity in collisions at b = 0. This correlation can be calculated
quantitatively by assuming that v2 is proportional to the eccentricity of the sys-
tem, ε2, and by relating the ZDC energy to the number of spectator neutrons,
i.e., those neutrons that do not participate in the collision. This calculation was
carried out by the STAR collaboration for 238U+238U collisions implementing β
from Ref. [104]. The resulting curve is showed as a dashed line highlighted in
yellow in Fig. 4.6. It must be compared to the experimental measurement, shown
as filled blue circles. While both data and the two-component model return a
negative slope, the slope of the theoretical estimate is completely off. The STAR
collaboration could only but claim the failure of the two-component model.

By means of further model-to-data comparisons, however, the STAR collabo-
ration clarifies where the issue is. Experimental data are compared to two other
models. One is the so-called constituent-quark Glauber model [120]. In this
model, one does not collide nucleons, but sub-nucleonic constituents (quarks),
which are sampled within each nucleon. The multiplicity scales then like the total
number of participant quarks. In the notation of Eq. (2.20), this implies a scaling
of the form tA + tB for the initial entropy density, where I recall that tA is the
linear sum of all the sources of density, i.e., the participant quarks, coming from
nucleus A. The prediction of this model is shown as a dashed line in Fig. 4.6
and is nicely consistent with experimental data. The second model shown by the
STAR collaboration is the IP-GLASMA model. Within the IP-GLASMA framework,
the observable analyzed by the STAR collaboration was studied in Ref. [119]. The
prediction of IP-GLASMA is shown as a dashed line in Fig. 4.6. As discussed in
Sec. 2.2.1, the scaling of the multiplicity predicted by the color glass condensate
framework is roughly some power of tAtB, and the model turns out to be in good
agreement with experimental data. Additionally, let me stress that this observ-
able is also studied in the original TRENTo publication [36]. It is pointed out in
particular that the phenomenological Ansatz for the multiplicity,

√
tAtB, provides

naturally an excellent description of STAR data on the correlation between v2 and
the particle number shown in Fig. 4.6.

The common denominator between quark Glauber model, IP-GLASMA, and
TRENTo, is that in neither of these models the number of produced particles
depends on Ncoll. The negative slope reported by all these calculations, implies
that high-multiplicity collisions correspond to some extent to tip-tip geometries,
but the effect observed in data is clearly incompatible with the overwhelming ef-
fect obtained when the particle production model depends on Ncoll. This is why
the two-component Glauber model fails, and why, in my opinion, it should not
be considered as a viable model of particle production for heavy-ion collisions.
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By contrast, this analysis of the STAR collaboration provides a highly nontrivial
confirmation of the prediction of the color glass condensate framework, and the
idea that particle production in high energy nuclear collisions is a simple coherent
process, i.e., resulting roughly from the sum of the contributions coming from
individual nucleon-nucleon interactions.

That being said, the results shown in Fig. 4.7 were considered as a big failure.
The problem is that both the IP-GLASMA and the TRENTo frameworks do not
provide any simple prescription for discerning body-body and tip-tip geometries
in central heavy-ion collisions. The possibility of triggering a phenomenology
based on the orientation of the colliding nuclei somehow vanished. The problem
was more complicated than expected. Due to this, the 238U+238U run has not had
any follow-up, and no one has even tried to understand in detail the observations
made by the STAR collaboration. In Chapter 5, I will show that one can in fact
overcome the previous difficulty, and that there exists a well-defined method to
discern collisions geometries. However, for the moment let me stick to the plan,
i.e., explaining in details all measurements shown by the STAR collaboration.

4.3.2 Impact of deformation on the fluctuations of elliptic flow

The second result shown by the STAR collaboration concerns the fluctuations of
elliptic flow, shown in Fig. 4.6. I became aware of these measurements around
November 2016. At that time I was performing high-quality comparisons between
models of εn and experimental data on vn by looking at observables that were
independent of the linear hydrodynamic response. One such observable was the
relative fluctuation of anisotropic flow, corresponding to the ratio vn{4}/vn{2},
which in central collisions can be predicted by means of the ratio εn{4}/εn{2} to
assess the goodness of initial-state models. These studies eventually lead to the
results published in Ref. [121].

An important result of that paper is the realization that a scaling of the initial
density consistent with the color glass condensate framework, as realized e.g. by
the IP-GLASMA or TRENTo frameworks, does a very good job in reproducing the
centrality dependence of the fluctuations of v2 and v3, quantified by the ratio
vn{4}/vn{2}. The scaling of the quark Glauber model, tA + tB, on the other
hand, does not work. Hence TRENTo and IP-GLASMA do many things right: They
yield histograms of final multiplicity which are in good agreement with data, they
predict the right centrality dependence of v2{4}/v2{2} at LHC, and they yield
the right correlation between v2 and the charged multiplicity in central collisions
of deformed 238U nuclei. These models should also be able, then, to reproduce
the observations made by the STAR collaboration on the fluctuations of elliptic
flow in central collisions of deformed nuclei.

In Ref. [122], I perform such a study within the TRENTo model, which allows
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Figure 4.7: Histograms of dNch/dη in 197Au+197Au collisions (green squares) and 238U+238U
collisions (blue squares), obtained from the STAR collaboration paper [113]. The dashed lines
represent the rescaled histograms of total entropy provided by the TRENTo model used here.
Figure adapted from Ref. [122].

for fast large-scale computations. I set up a TRENTo parametrization that allows
me to describe STAR data with the best possible accuracy. This turns out to be
a nontrivial task, because while TRENTo has been largely tested against LHC
data, little has been done concerning RHIC data. I keep the scaling of the density
unchanged, i.e.,

√
tAtB, and also the size of the nucleons, w = 0.5 fm in Eq. (2.13).

What instead needs to be modified is the fluctuation parameter, k, governing the
fluctuation of entropy produced at the level of the participant nucleons. In Fig. 3.2
I showed that LHC data can be described by implementing k = 2. To describe
the histograms of multiplicity observed by the STAR collaboration, one needs
instead a smaller value, around k = 0.5. In Fig. 4.7, I show the multiplicity
histograms measured by the STAR collaboration in 197Au+197Au and 238U+238U
collisions [113]. My TRENTo parametrization, which I compare to experimental
data by means of the Bayesian inversion method introduced in Ref. [21], is shown
as dashed lines. Agreement is good, although it is not as amazing as in the
case of LHC data. It should be stressed, though, that the STAR curves do not
represent actual experimental data, but parametrizations of dN/dη as a function
of the collision centrality which are obtained after fitting the measured histograms
with the two-component Glauber model. Therefore, it is not clear to me to which
extent my results are supposed to reproduce them. Note that the fact that k = 0.5
works well means in practice that initial-state fluctuations are larger at RHIC
energy than at LHC energy, a feature which can be inferred as well from other
observables [123].
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Figure 4.8: Left: STAR data [113] on the rms v2 in 200 GeV 197Au+197Au collisions (empty
symbols) and 193 GeV 238U+238U collisions (full symbols). Right: Results of the TRENTo
model for κ2ε2{2}, where κ2 = 0.155 in 197Au+197Au collisions and κ2 = 0.165 in 238U+238U
collisions. Solid line: 197Au+197Au collisions (β = 0). The dotted line represents 238U+238U
collisions with β = 0, while the dashed line implements β = 0.3.

Variance of v2 fluctuations – The phenomenological manifestations of nuclear de-
formation become apparent in the comparison between 197Au+197Au and 238U+238U
data. As these systems differ in the number of emitted particles, the best way to
compare them is to plot observables as a function of collision centrality. I start
by analyzing the second-order cumulant of v2. STAR data on this observables is
shown in the left panel of Fig. 4.8. One observes that the rms elliptic flow becomes
considerably larger in 238U+238U collisions as one approaches the limit of central
collisions. If one forgets any potential effect related to the deformation of nuclei,
this result is highly nontrivial. In central collisions, the rms elliptic flow is driven
by fluctuations, which are in turn are driven by the number of nucleons. Hence
they are smaller in 238U+238U collisions than in 197Au+197Au collisions. There is
no room in hydrodynamics for an rms v2 which is larger by as much as 20% in
238U+238U systems than in 197Au+197Au systems. The data thus points clearly
to a strong modification of the 238U+238U results due to some additional features.
If the existence of the deformation in 238U were not known beforehand, we would
be in great trouble understanding this data.

The right panel of Fig. 4.8 shows the results of the TRENTo model. I evaluate
v2{2} as ε2{2} rescaled by a coefficient κ2. This coefficient is 0.165 for 238U+238U
collisions, and 0.155 for 197Au+197Au collisions. These numbers are simply taken
from Ref. [122], and give only a rough indication of their actual values. How-
ever, as here I am looking at qualitative difference between systems, the exact
normalization of v2 is not relevant for the present discussion. I also make use of a
single value for the response coefficient, κ2, without addressing the issue that this
quantity depends on centrality [124, 125, 126]. In the 0-10% centrality range, the
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coefficient varies by about 10%, but such kind of corrections to my results would
leave my conclusions unchanged. I will however come back to the magnitude of
the response coefficients in Chapter 5.

The blue solid line in the right panel of Fig. 4.8 represents the result for
197Au+197Au collisions. Here I am colliding spherical 197Au nuclei, where the
Woods-Saxon density parameters in Eq. (4.8) are taken from Ref. [12]. I shall
comment on the deformation of this nucleus in the following section. The dotted
line represents instead the result for collisions of 238U nuclei in absence of specific
modeling of the deformation, i.e., by simply assuming that 238U is a spherical
charge density whose Woods-Saxon parameters are again given by the fits of
Ref. [12]. This simple model leads to wrong results, as the curve for 238U+238U
collisions overlaps with that of 197Au+197Au collisions, showing no sign of the
splitting observed in experimental data.

I add, then, a quadrupole deformation to these nuclei, following Eq. (4.11). I
implement β = 0.3, which corresponds to the mean-field estimate of Ref. [110],
and which is also close to the experimental value of Ref. [104], β ' 0.29. The
resulting rms v2 is given by the green dashed line in the right panel of Fig. 4.8.
We see that the inclusion of nuclear deformation does precisely create a splitting
between 197Au+197Au and 238U+238U, in agreement with data. Note that the
splitting in the right panel is larger than in the left panel, suggesting that the
details of my model might need a little more tweaking.

I explain now why the inclusion of nuclear deformation in the model increases
the rms v2. As shown in Appendix B, the square of ε2{2} can in full generality
be decomposed as:

ε2{2}2 = σ2 + µ2. (4.15)

σ2 is the variance of the distribution of E2, and originates from initial-state fluctu-
ations. µ is instead the average value of the distribution of E2 along the direction
of the impact parameter, and represents the genuine geometric contribution to
the eccentricity coming from the elliptical shape of nuclear overlap. For colli-
sions with centralities larger than 5%, the impact parameter is sizable enough
that the eccentricity becomes dominated by this geometric contribution, so that
ε2{2} ≈ µ. This explains why, beyond 5% centrality, the rms v2 observed in data
becomes the same for both 197Au+197Au and 238U+238U collisions, as the value of
µ does not vary between these two systems, and is not affected by the deformed
shapes. In central collisions, on the other hand, µ vanishes, and ε2{2} ≈ σ. While
the fluctuations due to genuine initial-state effects, such as the number of partic-
ipant nucleons are larger in 197Au+197Au systems, 238U+238U systems receive a
contribution from the fluctuations of the orientation of the colliding nuclear bod-
ies, which is random. In central collisions, these fluctuations yield in particular
body-body geometries, which produce abnormally large values of v2. This nat-
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urally enhances the variance of the distribution of ε2, lifting up the rms elliptic
anisotropy. In Ref. [122] one can indeed find a plot of ε2{2}2 as a function of β
in 238U+238U collisions at b = 0, where µ = 0 in Eq. (4.15) by construction. One
finds that the mean squared ε2 grows indeed like β2.

Non-Gaussianity of v2 fluctuations – The second observable analyzed by the
STAR collaboration is even more interesting. I show STAR data on v2{4} as
a function of collision centrality in Fig. 4.9. In the most central events, the differ-
ence between 197Au+197Au and 238U+238U collisions is startling. In 197Au+197Au
collisions, the cumulant displays a change of sign, occurring around 2.5% central-
ity. Conversely, the curve for 238U+238U collisions does never go negative, but
flattens around 0.01 in central collisions. At larger centrality, the two systems
overlap.

We can once again understand this behavior from the calculations of Ap-
pendix B, and the behavior of the fourth-order cumulant of anisotropic flow (or
of the eccentricity) in two distinct regimes. When the centrality is larger than
typically 5%, the cumulant is dominated by the geometric contribution caused by
the finite impact parameter, and one has simply

ε2{4} = µ. (4.16)

This explains why 197Au+197Au collisions and 238U+238U collisions have the same
v2{4} away from central collisions, as β does not affect the average flow along the
direction of impact parameter. In the regime of ultracentral collisions, one has
instead µ ≈ 0, which leads to:

ε2{4}4 = −K, (4.17)

where K is the kurtosis of the distribution of E2, as discussed in Appendix B. In
central collisions the cumulant is thus dominated by non-Gaussian corrections to
the distribution of E2, which can in fact be either positive or negative.

In ultracentral collisions of spherical nuclei, the value of v2{4} is negative.
This behavior has been observed as well in precision measurements performed in
208Pb+208Pb collisions at LHC energy [127]. The reason for the negative sign of
this cumulant is at present unknown. Theoretical calculations suggest that it is
mostly associated to the fluctuations of the number of participant nucleons at
a given impact parameter, as it is never observed if one keeps Npart fixed [128].
That being said, calculations of ε2{4} within initial-state models tuned to data
naturally reproduce the experimental observation. The results of the TRENTo
model for 197Au+197Au collisions are shown as a solid line in the right panel of
Fig. 4.9. I remark a nice similarity between experimental data and the theoretical
curve. The model captures the centrality percentile at which experimental data
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Figure 4.9: Same as in Fig. 4.8, but for the fourth-order cumulant of elliptic flow, v2{4}. The
negative values are obtained by calculating −v2{4}4 when the cumulant goes negative, and
then taking the fourth root.

changes sign, and the magnitude of v2{4} in the negative region is fairly compat-
ible with data, except for the most central point, due to a statistical fluctuation.
I perform now this calculation for 238U+238U collisions in the case where there is
no quadrupole deformation. The result is shown as a dotted line in Fig. 4.9. It
shows once again that, in absence of nuclear deformation, there is no difference
between the results of 197Au+197Au and 238U+238U systems, at variance with the
experimental observation.

I repeat, then, this calculation by correctly implementing β = 0.3 in the
Woods-Saxon parametrization of 238U. The result is shown as a dashed line in
Fig. 4.9. One understands now the origin of the puzzling experimental observa-
tion, as the cumulant does not change sign but flattens in the same precise way
as in the data. From Eq. (4.17), this result can be understood as follows. The
contribution to the fluctuations of ε2 which comes from the random orientation
of the colliding nuclei increases the width of the distribution of the eccentricity,
thus enhancing v2{2}, but while doing so, it also modifies the tails, making the
distribution of ε2 less Gaussian. This is shown explicitly in Ref. [122], where I plot
ε2{4}4 as a function of β in collisions at b = 0, where µ = 0 and ε2{4}4 = −K.
One finds indeed that the cumulant grows like β4, showing that β yields a distri-
bution of E2 which has tails narrower than a Gaussian. As the non-Gaussianity of
distributions are in general very strongly sensitive to tiny details that modify their
tails, it is not surprising that the resulting effect is so sizable in the comparison
between 197Au+197Au and 238U+238U. STAR data on v2{4} represents arguably
one of the most striking manifestations of nuclear deformation ever observed in
an experiment.
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Figure 4.10: Symbols: STAR data [113] on v2{4} in 197Au+197Au collisions at
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sNN = 200 GeV.

Lines are the results of the TRENTo model, implementing both spherical 197Au nuclei (solid
line) and deformed nuclei with β = −0.13 (dashed line).

4.4 Is gold deformed?

It turns out that we have just uncovered the tip of the iceberg.

Issue at high energy – I focus now on 197Au+197Au collisions. Up to this point
I have been able to nicely reproduce the experimental results on elliptic flow
fluctuations for this collision system by means of a TRENTo parametrization
in which the colliding 197Au nuclei are spherical. However, phenomenological
nuclear models, such as the Hartree-Fock-Bogoliubov calculations of Ref. [110],
or the comprehensive empirical deductions of the liquid-drop model of Ref. [129],
suggest that 197Au is in fact oblate, with a deformation of order β ≈ −0.15. One
can thus ask whether the inclusion of such a value of β in 197Au+197Au collisions
would change the nice TRENTo model results shown in the previous figures.

I repeat thus the previous calculations by implementing β = −0.13 [129] in the
Woods-Saxon parametrization of the gold nuclei. The resulting effect on v2{2}
is small, and of little interest. However, the effect of the oblate deformation on
v2{4} is quite dramatic. The results are shown in Fig. 4.10. The STAR data
points and the blue solid line are the same as in Fig. 4.9, showing more explicitly
that there is good agreement between data and model for this observable. The
new result implementing β = −0.13 is shown instead as a red dashed line. One
observes the emergence of the the same kind of behavior observed in 238U+238U
collisions. The cumulant flattens towards the limit of central collisions, and does
not display a change of sign. In Ref. [122], this feature was tested as well within
a different initial-state model, namely, the wounded nucleon model, with a very
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Figure 4.11: Mean-field potential energy surface for 197Au. Plot from Ref. [111].

different scaling for the initial density, tA+tB. The same result was produced, i.e.,
a positive sign for v2{4}. This wrong sign in presence of β = −0.13 seems robust,
and the discrepancy between data and the TRENTo evaluations implementing
such a parameter is so large that it can not be fixed by a simple tweaking of
model parameters.

Nuclear structure solution – Let me dig, then, into our knowledge of the structure
of 197Au nuclei. First of all, there are no experimental measurements that give
an indication of what the deformation of this nucleus should be. From the theory
side, the Hartree-Fock-Bogoliubov results of Ref. [110] for the potential energy
surface of this nucleus are reported in Fig. 4.11. One immediately remarks the
difference between this curve and those shown in Fig. 4.2 for 208Pb and 238U.
The minimum at β ≈ −0.15 is not sharp, and the curve is somewhat symmetric
around β = 0, displaying a second minimum at β ≈ 0.15 lying just a couple
of MeV above. As I mentioned in the previous sections, this indicates that this
nucleus does not possess a well-defined shape, and that the simple mean-field
estimate, β ≈ −0.15, is not good enough.

In a situation of this type, a meaningful quantification of the deformation of
the nucleus requires going beyond the mean field approach. In rough terms, the
idea is the following. The minimization under constraints described by Eq. (4.7)
returns a mean-field wavefunction, |Φ〉, which explicitly breaks rotational symme-
try. This wavefunction describes thus a system which does not possess the same
symmetries as the exact nuclear wavefunction, i.e., as the Hamiltonian. To repair
this issue, one has to restore symmetry. This is done by projecting the mean-field
wavefunction obtained at all values of β onto the right quantum numbers, e.g.,
J = 0 for an even-even nucleus. One then writes down a beyond-mean-field wave-
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nuclide experimental [104] mean field [130] beyond mean field [130]
188Pt 0.186 -0.18 0.04
190Pt 0.149 -0.16 -0.02
192Pt 0.153 -0.15 -0.04
194Pt 0.151 -0.15 -0.05
196Pt 0.129 -0.14 -0.05
198Pt 0.114 -0.12 -0.06

Table 4.1: Value of β for stable platinum isotopes. The isotopes are listed in the first column.
The second column from the left reports the values of β obtained from the experimental de-
ductions of Ref. [104]. The third and the fourth column come both from Ref. [130]. The third
column reports mean-field estimates, while the last column corresponds to the average value of
β associated with the full beyond-mean-field wavefunction.

function that is a mixture of all these states. The contribution of each state to the
total wavefunction is weighted depending on the corresponding mean-field energy,
E, in such a way that to a value of β associated with a large E corresponds a small
contribution. This approach allows one, hence, to describe the deformation of the
nucleus under study by including information coming from the entire potential
energy surface, thus going beyond the mean-field estimate where the nucleus has
a single value of β corresponding to the energy minimum.

Data tables with the results of such a calculation for a large number of even-
even nuclei have been published by Bender et al. in Ref. [130]. As expected,
for well-deformed nuclei like 238U the beyond-mean-field estimates are in perfect
agreement with the mean-field (and the experimental) results, because the poten-
tial energy has a sharp minimum around just one value of β, which essentially
carries all the contribution to the final wavefunction. However, this is not the
case for 197Au, where the evaluation of β does include a non-negligible contribu-
tion from the minimum of E lying at the opposite value of the deformation. One
expects, thus, that by taking into account the full shape of the potential energy
surface, the resulting average deformation parameter will be significantly lower in
magnitude than −0.15, and much closer to zero.

Careful inspection of the literature shows that a very neat example of this
phenomenon at play is in fact provided by the values of β for the chain of stable
platinum isotopes, 188,190,192,194,196,198Pt. The experimental determination of the
value of β for these nuclei, as given by Ref. [104], is reported in the second
column of Tab. 4.1. Both the third column and the fourth column of Tab. 4.1
report instead results from the calculations of Ref. [130]. The third column reports
what is referred to as a mean-field estimate of β, which for all isotopes turns out
to be consistent with the experimental determination, as they both correspond
essentially to the same level of approximation. The fourth column of Tab. 4.1
shows instead the average value of β in the full beyond-mean-field calculation,
following the restoration of symmetry and the mixing of states. As the potential



90 CHAPTER 4. A MATTER OF SHAPE

energy surface of these Pt isotopes looks precisely like that in Fig. 4.11, with
two minima symmetric about the origin, and separated by a small energy, these
estimates turn out to be much closer to zero than those obtained at the mean
field level. The same thing should thus occur for 197Au nuclei. At the beyond-
mean-field level, then, these nuclei are on average more spherical than predicted
by the simple mean-field estimates. This is in principle good news, as more
spherical nuclei will provide an improved agreement between the estimates of
the TRENTo model and heavy-ion data on v2{4}. On the other hand, within a
beyond-mean-field picture all the information from the potential energy surface
must be taken into account, and one can not simply employ a single value of β
in all the realizations of the nuclear wavefunction. Shape-coexistence effects, i.e.,
fluctuations in the value of β in the ground state, are likely to influence the final
results even further. A quantitative calculation aimed at assessing the relevance
of such phenomena in 197Au+197Au collisions is under way [131].

On the whole, this accurate analysis of RHIC data demonstrates that a de-
tailed understanding of elliptic flow cumulants in central nucleus-nucleus collisions
requires state-of-the-art modeling of the structure of the colliding nuclei. This es-
tablishes a new important connection between low-energy and high-energy nuclear
physics, with potentially far-reaching consequences that are still to explore.

4.5 Evidence of deformation at LHC: 129Xe+129Xe collisions

In October 2017, LHC physicists announced a short run of 129Xe+129Xe collisions.
They asked for predictions from hydrodynamic calculations, and so we sent them
results from high-statistics V-USPHYDRO simulations. However, immediately after
doing that, they informed us of an anomalous behavior in the measured v2 in
129Xe+129Xe collisions, which was much larger than expected, most probably due
to the fact that 129Xe nuclei were nonspherical. Indeed, although an experimental
determination of the quadrupole deformation of this nucleus is not available in nu-
clear data tables, a detailed analysis performed by the ALICE collaboration [132],
based on the liquid-drop [129] and experimental [104] estimates, suggests β = 0.18
for this nucleus. The Hartree-Fock-Bogoliubov estimates of Ref. [110] are also in
fair agreement with that result, as they report β = 0.15. Much as for 197Au
nuclei, such a value of β should have an impact on experimental data. We thus
repeated our hydrodynamic calculations by implementing deformed 129Xe nuclei
with β = 0.162, following Ref. [129]. We were eventually the first to publish a
paper with quantitative hydrodynamic predictions for 129Xe+129Xe collisions [65].

Contrary to the case of 238U+238U collisions, 129Xe+129Xe collisions were run
only for a short time (only for 8 hours on October 12th, 2017), so that only about
15× 106 events were recorded by the ATLAS and CMS detectors, and about 106
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events by the ALICE detector. This somehow prevents one from carrying out
high-precision measurements, such as the detailed mapping of v2{4} in central
collisions, as reported by the STAR collaboration.

Variance – A clear signature of the deformation of 129Xe is however visible in the
experimental data on v2{2}. It emerges in the comparison between 129Xe+129Xe
data and 208Pb+208Pb data. The corresponding plot made by the ALICE collabo-
ration [133] is reproduced here in Fig. 4.12. The upper panel of the plot shows the
rms v2 and v3 in both 208Pb+208Pb and 129Xe+129Xe collisions, while the lower
panel shows the ratio of the flow coefficients in these systems. From the lower
panel one sees that in central collisions both v2 and v3 are larger in 129Xe+129Xe
than in 208Pb+208Pb. This has a simple explanation. In central collisions, flow
coefficients, or better the initial anisotropies ε2 and ε3, are driven by fluctuations,
which are in turn determined by the nucleons involved in the collision. These
fluctuations thus scale like 1/

√
A, where A is the atomic mass number. The

fluctuation in 129Xe+129Xe collisions is thus larger by a factor:
√

208

129
≈ 1.3. (4.18)

However, one can not simply conclude that v2 in 129Xe+129Xe is larger by a factor
1.3. The reason is that 129Xe+129Xe collisions present as well a smaller system size.
From the dimensional analysis of the Navier-Stokes equation, the hydrodynamic
flow of these systems is more damped by the viscous corrections. In formulas, one
has:

vn[Xe]

vn[Pb]
=
κnεn[Xe]

κnεn[Pb]
= 1.3× κ2[Xe]

κ2[Pb]
, (4.19)

where dimensional analysis implies:

κ2[Xe]

κ2[Pb]
< 1. (4.20)

Our hydrodynamic results with a small η/s suggest the the ratio of the κ2 coef-
ficient is around 0.95, so that the ratio of the final vn coefficients is about 1.2.

The ratio of the triangular flow coefficients in Fig. 4.6 is consistent with this
analysis, as it is close to 1.2 in central collisions. However, for elliptic flow the sit-
uation is completely different. The ratio of the v2 coefficients has a dramatic
enhancement in central collisions, reaching a value as large as 1.6. There is
only one possible explanation for this observation: 129Xe nuclei have a significant
quadrupole deformation and one is observing its phenomenological manifestation.
Note that data has been published as well by the CMS [134] and ATLAS [135]
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Figure 4.12: Top: ALICE data on the rms elliptic and triangular flows in central 208Pb+208Pb
(empty symbols) and 129Xe+129Xe (full symbols) collisions. The lower panel shows the ratio of
the flow coefficients measured in these systems. Figure from Ref. [133].

collaborations, reporting equivalent observations. Unfortunately, these collabo-
rations average their events over large intervals of centrality, thus making the
manifestation of the deformation much less visible.

Non-Gaussianity – A value of β of order 0.2 for 129Xe nuclei should leave distinct
signatures as well in the fourth-order cumulant, v2{4}. The situation is however
a little different compared to the analysis made for RHIC systems. In 238U+238U
collisions, the positive sign of v2{4} in central collisions is entirely driven by the
quadrupole deformation, and, as discussed in Fig. 4.9, the cumulant is negative
if β = 0. On the other hand, 129Xe+129Xe collisions are affected by larger initial-
state fluctuations, associated with the smaller system size, and as a consequence
in these systems v2{4} is positive even if β = 0. An effective way to assess the
role of β is thus to study the behavior of v2{4} as a function of this parameter
in simulations, and then check agreement with data. A very good observable
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Figure 4.13: Relative fluctuation of elliptic flow, v2{4}/v2{2} in central 129Xe+129Xe collisions at
top LHC energy. Symbols: preliminary ATLAS data [138]. Lines: TRENTo model evaluations,
for different values of the quadrupole deformation, namely, β = 0 (solid line), β = 0.10 (dotted
line), β = 0.18 (dashed line). Preliminary data is not available below 3.5% centrality.

for this study is the relative fluctuation of v2, which is quantified by the ratio
v2{4}/v2{2} [121]. If v2 = κ2ε2, then this ratio is equal to the ratio ε2{4}/ε{2}.
This is typically a very good approximation up to 20% centrality.

In Fig. 4.13, I show results for the centrality dependence of the ratio v2{4}/v2{2},
estimated from ε2, in central 129Xe+129Xe collisions simulated with the TRENTo
model. The Woods-Saxon parametrization for 129Xe is the same as in the ALICE
paper [133], while the parameters of the TRENTo models are the same as those
used here for LHC 208Pb+208Pb collisions in Fig. 3.2. The calculation is performed
for β = 0, 0.10, 0.18, displayed with different line styles in the figure.

There are two regimes for v2{4}/v2{2}, as discussed in the previous section.
For centralities above 5%, the fourth-order cumulant is equal to the average flow
along the impact parameter, i.e., v2{4} ' µ. The second-order cumulant con-
stains instead a contribution from both µ and the fluctuation, σ2. In non-central
collisions, then, their ratio can be written as:

v2{4}
v2{2}

=
µ√

µ2 + σ2
. (4.21)

The growth of µ due the collision impact parameter drives the growth of the ratio
observed in Fig. 4.13 towards unity. Since β does not modify µ, this explains
why the three theoretical estimates in Fig. 4.13 do essentially overlap above 5%
centrality. In the opposite limit of central collisions where µ = 0, the fourth-order
cumulant is a measure of the kurtosis of the V2 distribution, v2{4} = −K, while
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Figure 4.14: Potential energy surface for 129Xe returned by the Hartree-Fock-Bogoliubov cal-
culations of Ref. [110].

v2{2} originates solely from fluctuations. The ratio becomes:

v2{4}
v2{2}

=
−K
σ
, (4.22)

which is a measure of the standardized kurtosis of the fluctuations of V2 [136, 137].
As observed in 197Au+197Au and 238U+238U collisions, the kurtosis is strongly
sensitive to β. This explains the splitting between the curve for β = 0.10 and the
curve for β = 0.18 in Fig. 4.13, for the most central events.

I compare now these results to experimental data. The most accurate measure-
ment of the relative fluctuation of v2 in 129Xe+129Xe collisions has been performed
by the ATLAS collaboration. This result has not been published yet, but it can
be found in a conference note [138]. Preliminary ATLAS data are displayed as
circles in Fig. 4.13. Unfortunately, preliminary data is available only for cen-
tralities larger than 4%, precisely where the theoretical curves start to overlap,
yielding an excellent description of experimental data up to 20% centrality. One
additional data point is thus needed to close the case. If this point falls around
0.5, it will provide a striking indication of the deformed shape of 129Xe nuclei.
This is currently under investigation by the experimental collaboration.

Interpretation beyond the mean field – Data on v2{2} in 129Xe+129Xe collisions
provide, thus, neat evidence of the ellipsoidal shape of 129Xe nuclei, and of a
quadrupole deformation parameter close to the prediction of the simple mean
field [110], liquid-drop [129], and experimental [104] evaluations. But what about
the more sophisticated beyond-mean-field estimates that I discussed for 197Au
nuclei? The potential energy surface of this nucleus resulting from the calculations
of Ref. [110] is shown in Fig. 4.14. The result is nontrivial. The curve has a
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minimum around β ≈ 0.15, but this minimum is not sharp, nor it is unique, as
a symmetric minimum at the opposite value of β is also present, at nearly the
same value of energy. Much as discussed for 197Au nuclei, one expects, then, that
a more rigorous beyond-mean-field treatment would yield an average deformation
parameter close to zero. In the data tables of Ref. [130], one does indeed find
that, for 128Xe and 130Xe, which also present two symmetric minima close in
energy, the mean-field estimates of β are respectively 0.17 and 0.14, while for
the full beyond-mean-field results the average deformations are 0.05 and 0.04.
These latter results are not consistent with heavy-ion collision data, thus opening
an interesting question. The energy surface in Fig. 4.14 is significantly broader
than that of Fig. 4.11, meaning that 197Au has in general a more well-defined
shape than 129Xe. Hence for this nucleus shape-coexistence effects, related to the
fluctuation of β, are more important. This suggests that the observations made
in 129Xe+129Xe collisions are not ascribable to the simple fact that these nuclei
are ellipsoidal, but rather to the fact that their shape fluctuates around a prolate
minimum, a possibility which is currently under investigation [131].

Wrapping up, a clear indication of nuclear deformation in heavy-ion collision
data does not have an immediate interpretation in nuclear theory, and requires
state-of-the-art modeling of the structure of the colliding objects, including non-
trivial effects related to the fluctuations of β in the ground state. Situations of
this kind, motivated by experimental data, do usually lead to nice advances.





Chapter 5

Discerning collision configurations

High-energy nuclear experiments thus lead to remarkable phenomenological man-
ifestations of the deformation of atomic nuclei. A nontrivial phenomenology of
nuclear deformation has been triggered by the simple measurements of v2{2} and
v2{4} in central heavy-ion collisions, leading to results and possibilities which are
unprecedented in the context of nuclear experiments.

The situation remains however a little disappointing. The observables dis-
cussed so far are averaged over all events in a given class of centrality. In the
picture of the rotational model, where the colliding nuclei are ellipsoidal objects,
this implies that the observables are obtained by averaging over all orientations
of the colliding bodies. The net effect is an increase in the fluctuations of v2,
which can be significant, however, it would be desirable to have observables that
make explicit use of the information on the orientation of the nuclei on an event-
by-event basis, i.e., that are sensitive to whether collisions are, e.g., tip-tip-like
or body-body-like. This has indeed been the idea driving the 238U+238U colli-
sion run at RHIC, although it has been classified as a hopeless task following the
failure [113] of the predictions based on the two-component Glauber model.

In this chapter, I show that this apparently great difficulty can be overcome. I
present a method to make a distinction between body-body and tip-tip events at
a given collision centrality. The idea to make a selection of events based on 〈pt〉,
which is a measure of the temperature of these systems. As tip-tip collisions have
more compact profiles, they are also hotter at fixed centrality, while the opposite
is true for body-body events. This method allows me in particular to construct
observables that possess an unparalleled sensitivity to the value of β.

5.1 Discerning body-body and tip-tip geometries

5.1.1 The idea

The method is essentially an application of Ref. [6], which clarifies the physical
origin of the average transverse momentum, 〈pt〉, and of its fluctuations, in hy-

97
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drodynamics, as explained in detail in Sec. 3.2. The quantity which allows one to
discern body-body and tip-tip geometries at a given collision centrality is precisely
〈pt〉. Let me explain why.

I recall first Fig. 4.4, showing the transverse area of overlap for body-body and
tip-tip collisions. The important feature to remark, and which had never occurred
to me before September 2019, is that the system size of a body-body collision is
considerably larger than the system size of a tip-tip collision as soon as β is large
enough. Recall then the picture of Fig. 3.6. At the same entropy, larger-than-
average system size implies smaller temperature, and consequently smaller average
transverse momentum, 〈pt〉. Now, combining these two arguments one concludes
that, at fixed multiplicity, tip-tip collision yields a larger 〈pt〉. Summarizing:

At fixed multiplicity, a tip-tip collision produces the same amount of
entropy as a body-body collision, but in a smaller volume, resulting in
a hotter system that yields a larger average transverse momentum.

This idea was introduced in Ref. [112].
To get an intuitive understanding of the physical effect I am talking about,

it is instructive to look at the actual density profile of a body-body collision
and of a tip-tip collision that share the same total entropy. I take the profiles
shown in Ref. [80], which correspond to the initial conditions of the hydrodynamic
simulations that I shall discuss in Appendix C. The left panel of Fig. 5.1 shows the
energy density profile, e(x, τ0) of a body-body collision. The right panel shows
instead the profile of a tip-tip collision. The most prominent difference between
these system is obviously the global geometry, strongly elliptical in the body-body
event. However, a second feature that can be inferred essentially by eye is that
the tip-tip profile, containing the same total entropy as the body-body profile
but within a smaller transverse area, presents on average larger values of energy
density (or temperature). For this reason, the tip-tip event yields a larger value
of 〈pt〉 at the end of the hydrodynamic phase. I refer to the figure caption for the
actual values of these quantities.

5.1.2 Freezing nuclear orientations

I first check that the idea works within the TRENTo model, although any other
model of initial conditions would be simply as good for this purpose. My claim is
that, at fixed total entropy, collisions at low 〈pt〉 correspond to body-body events,
while collisions at large 〈pt〉 correspond to tip-tip events. Since in the simulations
I have knowledge of the Euler angles of the colliding nuclei, I can check explicitly
their average orientation as a function of 〈pt〉 in a given centrality class.
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Figure 5.1: Left: energy density profile at the onset of hydrodynamics (τ = 0.2 fm/c) for a body-
body collision, with S = 4040, E = 1294 GeV, ε2 = 0.478, ε3 = 0.191, and average temperature
〈T 〉 = 0.433 GeV. The hydrodynamic evolution of this system yields: dNch/dη|η|<1 = 1296,
〈pt〉 = 0.587 GeV, v2 = 0.083, v3 = 0.016 to the final state. The flow coefficients are calculated
by implementing the same kinematic cuts as the STAR collaboration: |η| < 1, and 0.2 < pt <
2 GeV. Right: density profile for a tip-tip collision, with S = 4072, E = 1429 GeV, ε2 = 0.096,
ε3 = 0.089, and 〈T 〉 = 0.475 GeV. After hydrodynamics this event yields dNch/dη|η|<1 = 1280,
〈pt〉 = 0.651 GeV, v2 = 0.027, v3 = 0.009. Figure from Ref. [80].

Initial-state predictor – To do so from the initial-state calculation, I need an
estimator of 〈pt〉 and of its fluctuations. In Ref. [112] I make the simplest choice.
I use the system size, R, as defined by Eq. (3.29), as an event-by-event predictor
of 〈pt〉. In the limit of small fluctuations, which is a good approximations for the
fluctuations of R at fixed multiplicity, one can use the thermodynamic identity
encountered Sec. 3.2.1:

c2
s =

dP

dε
=
d lnT

d ln s
, (5.1)

where P , ε, s, and T are respectively the pressure, the energy density, the entropy
density, and the temperature of the system. Dimensional analysis implies that
s ∝ R−3, while I consider that T is proportional to 〈pt〉 in view of the discussion
of Sec. 3.2.1. The relative variation of R is thus related to that of 〈pt〉 by:

〈pt〉 − 〈〈pt〉〉
〈〈pt〉〉

= −3c2
s

R− 〈R〉
〈R〉 , (5.2)

where 〈〈pt〉〉 is the average value of 〈pt〉 in the centrality class. This equation is
used indeed in Ref. [112] to relate the relative fluctuations of R returned by the
TRENTo model to the relative fluctuations of 〈pt〉. This relation is very accurate,
however, later studies showed that the simple choice of R as a predictor of 〈pt〉
is not good enough. In particular, it does not allow to describe the correlation
between 〈pt〉 and the flow coefficients vn which is observed in experiments, as I
shall show explicitly in Sec. 5.2.2. A predictor which works much better is the
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quantity used in the discussion of Sec. 3.2, i.e., the initial energy of the system, E,
given by Eq. (3.21), divided by the initial entropy, S, given by Eq. (3.10), whose
value is almost fixed in the centrality bin. The predictor becomes:

〈pt〉 − 〈〈pt〉〉
〈〈pt〉〉

= κ0
E/S − 〈E/S〉
〈E/S〉 , (5.3)

where κ0 is a parameter that can be fixed by imposing that distribution of the
relative E/S has the same width as the distribution of the relative 〈pt〉. A recent
paper by the STAR collaboration [139] reports in particular that the relative
dynamical fluctuation of 〈pt〉 in central 197Au+197Au collisions is equal to:

σdynamical(〈pt〉)
〈〈pt〉〉

= 0.012, (5.4)

with a average transverse momentum, 〈〈pt〉〉, of about 0.57 GeV. The relative
fluctuation of E/S in my TRENTo calculation is instead of order 0.03, so that
κ0 ≈ 0.4 to match my simulations to RHIC data on 〈pt〉 fluctuations.

Orientation of colliding nuclei – I study the orientation of the colliding nuclei
as a function of 〈pt〉/〈〈pt〉〉 − 1, estimated from Eq. (5.3). I simulate 238U+238U
collisions at top RHIC energy, implementing β = 0.3, and I focus on a narrow
class of ultracentral collisions, corresponding to the 0.4− 0.8% range, where the
average impact parameter is about 1.5 fm. I recall that body-body collisions
correspond to θA = θB = π/2, and correlated azimuthal spins, φA = φB, whereas
tip-tip collisions correspond to θA = θB = 0, and uncorrelated azimuthal angles
φA 6= φB.

The left panel of Fig. 5.2 shows the average value of sin θ for both colliding
nuclei as a function of the relative variation of 〈pt〉. The results look excellent. The
curve has a rather steep trend. In the limit of small 〈pt〉, it goes very close to unity,
which implies θ ' π/2 for both nuclei, corresponding precisely to the expectation
from body-body collisions. Moving to large values of 〈pt〉, I find on the other hand
that the value of sin θ does only get as low as 0.5, which suggests that the average
angle is about π/6, in contrast with the expectation of tip-tip collisions. In the
right panel of Fig. 5.2 I show the magnitude of the relative polar angle between
the colliding nuclei, where the polar angles are properly defined between 0 and
π/2, so that the difference |θA−θB| is uniquely determined. This quantity should
vanish for both body-body and tip-tip collisions. The trend observed in Fig. 5.2
is very interesting. At low 〈pt〉, the relative polar angle is very small, going as low
as π/20, and confirming that the two nuclei have equal polar orientations. The
relative angle then grows reaching π/6 at the average value of 〈pt〉, corresponding
somehow to the most probable value for this relative angle in the centrality bin.
This quantity shows then a slow decreasing trend for larger values of 〈pt〉, meaning
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Figure 5.2: Left: Sine of θA (full symbols) and θB (empty symbols) as function of the relative
variation of 〈pt〉 in ultracentral 238U+238U collisions (β = 0.3) at top RHIC energy. Right:
Relative polar angle between the two colliding nuclei.

that the selection based on 〈pt〉 is in fact trying to isolate tip-tip configurations,
with some difficulty.

To understand these results in greater detail, I study how the two nuclei are
aligned in both polar and azimuthal orientation. I quantify the alignment of the
axes of the two nuclei in polar angle by means of the following correlator:

1− (cos 2θA − cos 2θB)2 /4. (5.5)

This quantity satisfies all the symmetries of the problem: θ ↔ π − θ, θA ↔ θB,
θ ↔ −θ. It is equal to unity for both body-body and tip-tip collisions. For the
alignment of the nuclear axes in azimuthal angle, I use instead:

cos 2(φA − φB), (5.6)

which vanishes if the azimuthal directions are uncorrelated. This quantity should
be equal to unity in body-body collisions, and equal to zero in tip-tip collisions.

The results are shown in Fig. 5.3. The alignment of the polar orientations is
displayed as red squares. At low 〈pt〉, it is essentially equal to unity, confirming the
selection of body-body collisions. The correlator then decreases mildly, reaching
a minimum of about 0.8 around the average of 〈pt〉, and then grows up again,
confirming the previous intuition that large-〈pt〉 collisions the two nuclei are slowly
re-aligning in polar angle towards the limit of tip-tip collisions. As a side remark,
it is not surprising that selecting tip-tip events is more difficult than selecting
body-body events. The random orientations of the nuclei are sampled such that
the distribution of cos θ is a uniform distribution. This yields a distribution of θ
which has a peak at θ = π/2, and a minimum at θ = 0. Tip-tip collisions are thus
strongly disfavored from a probabilistic point of view. The fact that the polar
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Figure 5.3: Alignment of the nuclear axes in ultracentral 238U+238U collisions at top RHIC
energy. An alignment close to unity implies correlated orientations (nuclear axes are parallel),
while the alignment is zero for uncorrelated orientations. Squares: polar orientation, Eq. (5.5).
Circles: azimuthal orientation, Eq. (5.6)

correlation remains as high as 0.9 at large 〈pt〉 with a relative angle lower than
π/6 demonstrates that the selection of events based on 〈pt〉 in discerning collision
geometries is in fact very powerful.

The case is then fully closed by the results on the azimuthal correlation of the
nuclear axes, which is shown as circles in Fig. 5.3. Quite remarkably, this quantity
grows steeply towards low values of 〈pt〉, reaching a magnitude as large as 0.6,
corresponding to correlated azimuthal orientations. The final conclusion is that
events at low 〈pt〉 correspond indeed to body-body collisions. Conversely, as we
move towards high values of 〈pt〉, the correlator becomes remarkably compatible
with zero. As tip-tip collisions have uncorrelated azimuthal angles, this results
also confirms that the nearly tip-tip configurations are selected at large 〈pt〉.

The conclusions drawn from these results are summarized in Fig. 5.4. The
picture is rather clear. As shown in the left panel of the figure, in ultracentral
collisions between deformed nuclei events at low 〈pt〉 correspond to body-body
configurations, with an average impact parameter of about 1 fm, and with corre-
lated azimuthal and polar orientations. Events at large 〈pt〉, shown in the right
panel of the figure, correspond instead to nearly tip-tip configurations. The aver-
age relative polar angle is around π/6. As the the actual limit θ = 0 is hard to
achieve due to probabilistic considerations, a plausible average configuration for
these events is thus θA = π/4 and θB = π/12, or vice versa. This is consistent
with all the results of the previous figures, and corresponds to the right panel of
Fig. 5.4. The average impact parameter of these large-〈pt〉 events is about 4 fm.
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Figure 5.4: Transverse plane projection of the average geometry of 238U+238U collisions as a
function of 〈pt〉. Left: low 〈pt〉, corresponding to body-body collisions with correlated orienta-
tions and b ∼ 1 fm. Right: high 〈pt〉, corresponding to nearly-tip-tip collisions with a relative
polar tilt of about π/6, and b ∼ 4 fm. In this case the azimuthal orientations are arbitrary.

5.1.3 Revealing nuclear deformation

At fixed multiplicity, then, a selection of events based on 〈pt〉 allows to discern
body-body and tip-tip configurations. However, experimentally one does not know
anything about the Euler angles, hence, if one selects events according to 〈pt〉,
how can they know that this idea works in practice? The answer is obviously that
one should look at the elliptic flow. Whenever the colliding nuclei are deformed
enough to yield an eccentricity that dominates over the quantum fluctuations in
the regime of body-body collisions, the previous selection implies that elliptic flow
of events at low 〈pt〉 should be significantly larger than average. In summary [112]:

In central collisions of large well-deformed nuclei, the elliptic flow
and the average transverse momentum are anticorrelated.

I check that this is indeed the case in my TRENTo calculations, by evaluating
the eccentricity of the system, ε2, as a function of relative variation of 〈pt〉 in the
same bunch of ultracentral 238U+238U collisions used for the previous figures. I
rescale the eccentricity by the constant κ2 = 0.165, the same used in Chapter 4,
to display values of the rms v2 that can be compared to experimental data. The
results are shown in Fig. 5.5.

The effect is bright and clear. In collisions of large deformed nuclei, such
as 238U+238U collisions, the effects of the geometry induced by the deformation
of these nuclei dominates over the underlying quantum fluctuations, due to the
positions of the nucleons, in the limit of body-body events. As a consequence
elliptic flow grows steeply as one moves towards low values of 〈pt〉, the increase
depending on the value of β. In this calculation it increases by almost 40%.
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Figure 5.5: Rms ellptic flow, v2 = 0.165ε2, as a function of the relative variation of 〈pt〉 in
ultracentral 238U+238U collisions (β = 0.3) at top RHIC energy.

This is a new feature of high-energy nuclear physics, and represents a neat
prediction to be tested in experiments. However, the result shown in Fig. 5.5
can not be considered yet as a quantitative prediction, as I shall discuss in the
next section, which is devoted to the derivation of quantitative predictions to be
compared with future experimental data. Note also that the conclusions drawn
from this analysis have been obtained by means of TRENTo simulations. One can
naturally wonder if all the arguments involved in these calculations, such as the
fact that body-body events have larger 〈pt〉 than tip-tip events, or the value κ2 =
0.165, are in fact consistent with the results of full hydrodynamic evaluations.
I perform a number of such checks by means of comprehensive hydrodynamic
simulations of body-body and tip-tip collisions in Appendix C.

5.2 Quantitative analysis

In a funny turn of events, I obtained these results right before leaving for a visit
to the Brookhaven National Laboratory. Once there, I could knock on the door of
the STAR physicists, and point out that I had found the way to discern collision
geometries, corresponding to a new striking prediction to be tested in 238U+238U
data. The measurement was performed overnight. Although I was not allowed to
look at the data, I was confirmed that the effect was there. Official preliminary
STAR data were later shown in this year’s Winter Workshop on Nuclear Dynam-
ics [140]. The result is that the slope of v2 plotted against 〈pt〉 is indeed negative
in central 238U+238U collisions, confirming my arguments, and thus the selection
of body-body collisions at low 〈pt〉.

However, preliminary STAR data looks fairly different from the curve shown
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in Fig. 5.5, meaning that something is missing in my calculation. The problem is
that evaluating the rms v2 as function of 〈pt〉 requires the knowledge of the mean
transverse momentum in each event. As pointed out in Sec. 3.4, this is not an
issue in a theoretical calculations, however, as the number of particles detected in
central 238U+238U collisions is of order 1000, the experimental determination of
〈pt〉 is affected by a significant statistical error. The relative dynamical fluctuation
of 〈pt〉 is only about 1.2% following Eq. (5.4), and this is essentially as large as
the relative statistical fluctuation. The effect of these trivial fluctuations should
thus be included in my TRENTo evaluations.

In this section, I compute quantitative predictions for the dependence of v2

and v3 on 〈pt〉 in ultracentral collisions, by properly addressing this problem.
Furthermore, I introduce an observable that quantifies the dynamical correlation
between vn and 〈pt〉. This observable is by construction independent of trivial sta-
tistical features, and turns out to possess an amazing sensitivity to the quadrupole
deformation of the colliding nuclei.

5.2.1 vn as a function of 〈pt〉

The distribution of the relative fluctuations of 〈pt〉 estimated from the TRENTo
model has to be corrected for statistical fluctuations. Performing this correction
is straightforward. A simple method to do this is described in Ref. [80], and is
explained here in Appendix D. The correction results in a distribution of 〈pt〉 that
is broader than the original one, as it now includes two independent contributions,
and that leads to a depletion of the correlation between vn and 〈pt〉.

In Fig. 5.6 I show quantitative predictions for the rms v2 in ultracentral
238U+238U collisions (left panel) and 197Au+197Au collisions (right panel) as a
function of the corrected relative variation of 〈pt〉. If one compares the result in
the left panel of this figure with that shown in Fig. 5.5, one sees that there is
indeed a depletion of the negative slope of v2, which now decreases by only 10%
from low to large 〈pt〉. However, the correlation remains negative, and does not
change the overall picture. The effect of the statistical fluctuations on the quan-
tities shown in Fig. 5.2 and Fig. 5.3 can be found in Ref. [80]. The right panel of
Fig. 5.6 shows on the other hand the results for 197Au+197Au collisions. Here I am
colliding spherical gold nuclei, following the analysis of Sec. 4.5. One sees that in
this panel the correlation between v2 and 〈pt〉 is positive. This is not surprising.
As I shall discuss in the next section, the correlation between the mean transverse
momentum and v2 has indeed been recently measured in 208Pb+208Pb collisions at
top LHC energy by the ATLAS collaboration [141], and experimental data shows
that these quantities are positively correlated in central collisions. The same is
thus expected to occur in central 197Au+197Au collisions.

The results of Fig. 5.6 can thus be compared to preliminary STAR data [140].
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Figure 5.6: Rms elliptic flow, v2, as a function of 〈pt〉 in 200 GeV 238U+238U collisions (left panel)
and 197Au+197Au collisions (right panel). The coefficient of linear hydrodynamic response,
κ2 = v2/ε2, is specified in each panel. Figure adapted from Ref. [80].

I am not allowed to reproduce this data here, but my predictions turn out to be in
good agreement with it. With an accuracy of order 10%, the magnitude of elliptic
flow is captured, and the slopes of the curves are nicely reproduced by my results,
in particular, the negative slope in 238U+238U collisions, which is a measure of
the quadrupole deformation of these nuclei. I emphasize that there are no free
parameters in my predictions. The features of the model are all constrained by
other sets of data.

Expanding on this latter point, it is particularly insightful to study as well the
dependence of v3 on 〈pt〉 in ultracentral collisions. This is shown in Fig. 5.7. The
results from 208Pb+208Pb collisions at top LHC energy from the ATLAS collab-
oration [141] suggest that the correlation between v3 and 〈pt〉 should be positive
in central collisions. This is also observed in Fig. 5.7, and in preliminary STAR
data [140]. The comparison between the results in Fig. 5.7 and preliminary STAR
data turns out to be very good. This is important. v3 is not affected by the pres-
ence of a quadrupole deformation parameter, hence, this result is a nontrivial
confirmation of the goodness of the model implementation. The response coeffi-
cient for 238U+238U collisions, κ3 = 0.11, is justified by the hydrodynamic results
shown in Appendix C, while κ3 = 0.10 in 197Au+197Au collisions is guessed from
the fact that this quantity is slightly damped by viscous corrections.

5.2.2 Statistical correlation between v2 and 〈pt〉

Due to the issue of statistical fluctuations, the measurement of v2 as a function of
〈pt〉 goes a little against the spirit of the analyses of heavy-ion collisions, described
in Sec. 3.4, where one typically tries to construct observables that are insensitive
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Figure 5.7: Rms v3 as a function of 〈pt〉 in 200 GeV ultracentral 238U+238U collisions (diamonds)
and 197Au+197Au collisions (circles). The response coefficients are specified, and they are
consistent with the hydrodynamic simulations reported in Appendix C. Figure adapted from
Ref. [80].

to trivial effects due to the finite number of particles. The main point in plotting
v2 as a function of 〈pt〉 is the extraction of the slope of the curve, which is negative
in 238U+238U collisions while positive in 197Au+197Au collisions, and represents
essentially a measure of the value of β.

The slope can be quantified as the statistical correlation between v2 and 〈pt〉.
This correlation was first analyzed by Teaney and Mazeliauskas in the context
of a principal component analysis in Ref. [142]. Later on, it was reformulated
by Bożek [143] as a simple Pearson correlation coefficient, constructed as a multi-
particle observable. The Pearson correlation coefficient between v2

n and 〈pt〉 reads:

ρn
(
v2
n, 〈pt〉

)
=

〈
〈pt〉v2

n

〉
− 〈〈pt〉〉

〈
v2
n

〉

σptσv2n
. (5.7)

where as usual outer angular brackets denote an average over events in a given
centrality class. The coefficient is normalized by the standard deviations σpt and
σv2n, given by:

σpt =

√
〈〈pt〉2〉 − 〈〈pt〉〉2,

σv2n =

√
〈v4
n〉 − 〈v2

n〉2. (5.8)

In my TRENTo calculations, this quantity is estimated by the correlation of the
associated initial-state quantities:

ρn
(
v2
n, 〈pt〉

)
=

〈
E/Sε2

n

〉
− 〈E/S〉

〈
ε2
n

〉

σE/Sσε2n
, (5.9)
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Figure 5.8: Correlation of v2
n and 〈pt〉 for n = 2 (left panel) and n = 3 (right panel) in

208Pb+208Pb collisions at top LHC energy. The correlator ρn is plotted against the number of
participant nucleons, Npart. Symbols: ATLAS data [141]. Solid lines: initial-state predictor
calculated with the TRENTo model and Eq. (5.9). Dashed lines: initial-state predictor with
the initial energy, E, replaced by the system size, R. Figure adapted from Ref. [82].

with equivalent definitions for the standard deviations in the denominator.

LHC data – I make here a short digression to show explicitly that the initial-
state estimator given in Eq. (5.9) is good. As anticipated in the discussion of
Fig. 5.6 and Fig. 5.7, the correlation between vn and 〈pt〉 has been indeed measured
by the ATLAS collaboration in 208Pb+208Pb collisions at top LHC energy [141].
For n = 2 and n = 3, the experimental results as a function of the number of
participant nucleons are shown as circles in Fig. 5.8. As anticipated, ρn is positive
for both n = 2 and n = 3 in central collisions, and it possesses a nontrivial
centrality dependence, which for n = 2 has been clarified in Ref. [144].

The results of the TRENTo model for the correlator given in Eq. (5.9) come
from Ref. [82], and are shown here as red solid lines. I remark a nice agreement
between the initial-state estimator and data, as both the sign and the nontrivial
dependence on centrality of the experimental measurements are captured at the
quantitative level. A similar result has also been shown in Ref. [144], using IP-

GLASMA initial conditions, where a similar initial-state predictor allows to capture
accurately the full hydrodynamic evaluation. For completeness, Fig. 5.8 reports
as well the coefficient ρ2 which is obtained by using the system size, R, as initial
predictor for 〈pt〉. One sees that, despite the fact that 〈pt〉 and R are strongly
correlated at fixed multiplicity, this predictor fails in reproducing the experimental
observations. This also explains why my original results shown in Ref. [112],
derived from Eq. (5.2), can not be used in comparisons with experimental data.
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New predictions – The results on the correlator ρn in 208Pb+208Pb collisions im-
ply that one can use the TRENTo model to perform quantitative predictions for
other systems, such as 129Xe+129Xe collisions, or RHIC systems. Results for ρ2

as a function of collisions centrality are shown for all these systems in Fig. 5.9.
I discuss first 208Pb+208Pb and 197Au+197Au collisions. The two curves overlap
to a large extent, as β = 0 in both these systems. The sole notable difference is
that the result for 197Au+197Au collisions reaches higher values in central collision.
This is due to the lower value of the fluctuation parameter, k, implemented in the
TRENTo simulations, and is thus ascribed to the different beam energy, at least
in my setup. Note that the curve for 197Au+197Au collisions shown in Fig. 5.9
may however provide a wrong description of future data at larger centralities. In
Ref. [145], we evaluate ρ2 in full hydrodynamic simulations of 197Au+197Au colli-
sions by means of IP-GLASMA calculations. The resulting ρ2 is quite different from
that shown here in Fig. 5.9. It is in particular much flatter with centrality, and
it does not exhibit a change of sign in peripheral collisions. This comes from the
fact that, in IP-GLASMA, the anisotropy v2 of peripheral 197Au+197Au collisions
receives an important contribution from a primordial source of anisotropy other
than ε2. This corresponds to the anisotropy induced by the off-diagonal com-
ponents of the energy-momentum tensor of the system, which are generated by
the classical Yang-Mills evolution within the glasma phase. The inclusion of these
components increases ρ2 in peripheral collisions, and makes it nearly flat with cen-
trality. The change of sign observed Fig. 5.9 is a generic feature of nucleus-nucleus
collisions [144], so that its absence in future data will provide strong experimental
evidence of primordial off-diagonal anisotropic terms predicted by the color glass
condensate theory. This issue is under investigation by the STAR collaboration.

Moving on to collisions of deformed nuclei in Fig. 5.9, one can see very clearly
the effect of the quadrupole deformation of 238U nuclei on ρ2. The correlator is
negative in central collisions (recall the negative slope of v2 vs. 〈pt〉 in Fig. 5.6),
and then it grows up quickly to positive values, behaving similarly to the other
systems. It is remarkable that the splitting between 197Au+197Au collisions and
238U+238U collisions persists at centralities as large as 30%. For the fourth-order
cumulant of elliptic flow, v2{4}, discussed in Chapter 4, the splitting between
these systems essentially disappears above 5% centrality, when v2{4} becomes
dominated by elliptic flow along the direction of impact parameter, µ. This is not
however the case for the correlator ρ2, which as a consequence shows a sensitivity
to the value of β which persists at larger centralities. I will come back to this point
in the next section. In Fig. 5.9 I show as well results for 129Xe+129Xe collisions
implementing β = 0.18. The correlator does not get negative, as in 238U+238U
collisions, due to the fact that the quadrupole deformation is not able to com-
pensate for the large quantum fluctuations that affect this system. However, the
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Figure 5.9: Predictions for ρ2 (v2
2, 〈pt〉), calculated from Eq. (5.9), as a function of collision cen-

trality for RHIC systems, 197Au+197Au collisions (solid line) and 238U+238U collisions (dashed
line), as well as for LHC systems, 208Pb+208Pb collisions (dot-dashed line) and 129Xe+129Xe
collisions (dotted line). Figure from Ref. [80].

correlator is close to zero, and thus distinctly lower than in 208Pb+208Pb collisions.
This phenomenon is currently under investigation by LHC collaborations.

5.3 Constraining the value of β

The results in Fig. 5.9 suggest that ρ2 coefficient is sensitive to the effect of the
quadrupole deformation across most of the centrality range. I perform now a
study of the sensitivity of this observable to variations in the value of β.

I focus on 238U+238U collisions. To start with, I simply reduce the quadrupole
parameter by a factor two, so that I implement β = 0.15. Note that, strictly
speaking, this is not allowed. The quadrupole deformation of 238U is mostly con-
strained by data on the transition probability for the electric quadrupole operator,
following Eq. (4.2). In particular, the quadrupole moment of the nucleus should
satisfy Eq. (4.3). When varying the value of β, one should at the same time
vary the other Woods-Saxon parameters to ensure that Eq. (4.3) remains true,
as done in the careful analysis of Ref. [146]. I shall gloss over this feature in the
present section, where I am simply concerned with giving an idea of how sensitive
observables are to the amount of deformation in the colliding bodies.

I show results for the dependence of the rms vn on 〈pt〉 in Fig. 5.10. The
results for elliptic flow, shown in the left panel, are quite striking. The correlation
between v2 and 〈pt〉 is indeed positive when β = 0.15, in stark disagreement with
preliminary STAR data[140]. This shows that, as soon as we look at obsrvables
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quadrupole deformation parameter. Diamonds: β = 0.30. Circles: β = 0.15. Figure from
Ref. [80].

that depend so strongly on β, then heavy-ion collision data can essentially be used
to place independent constraints on the quadrupole parameters. The results for v3

as a function of 〈pt〉 are instead shown in the right panel of the figure. As expected
from the previous discussions, the role of β in this observable is negligible.

As a final result, which in a sense does summarize all the results related to
the deformation of nuclei discussed in this work, I show in Fig. 5.11 the centrality
dependence of the the Bożek coefficient, ρ2, and of the fourth-order cumulant of
elliptic flow, v2{4} from my TRENTo evaluations. The calculation is performed
for β = 0, 0.15, 0.30, and the results are shown as shaded bands to highlight the
dependence on β. The upper panel of Fig. 5.11 shows ρ2, while the lower panel
shows v2{4}. The point I want to make is these observables have a very different
sensitivity to the value of β. Above 5% centrality, the fourth-order cumulant is
dominated by the almond shape of the system induced by the impact parameter
of the collision, so that the phenomenological manifestation of β is visible only
in the most central collisions. The impact of β on ρ2 is instead clearly visible up
to much larger centrality. At 10% centrality, for instance, there is still a factor
2 of difference between the result with β = 0 and that with β = 0.3. This is
due to the fact that this observables makes explicit use of the information on the
orientation of the colliding objects.

In the business of high-energy nuclear physics, the coefficient ρ2 represents
thus the first observable ever found that, for collisions of large and well-deformed
nuclei, is almost entirely dominated by the magnitude of β. If one disregarded
effects of nuclear deformation and tried to evaluate v2{4} in hydrodynamics, then,
with the exception of the 0-5% centrality bin, one would get this quantity right.
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However, if the same were done for the quantity ρ2, hydrodynamics would give
the wrong answer across essentially the full range of centrality. This observable
makes nuclear deformation effects so sizable to become affordable even for full
hydrodynamic simulations, and not only for TRENTo-like evaluations focused on
the most central collisions.

Conclusion – Quantitative studies of the deformation of atomic nuclei can be
performed by means of high-energy nuclear experiments. These studies are within
the reach of existing high-energy colliders.



Chapter 6

Conclusion and proposal

High-energy nuclear physics has undergone great progress over the past 20 years,
and is nowadays a mature field of research, possibly, the most active subfield of
nuclear science. The flow paradigm, based on an effective hydrodynamic descrip-
tion, has allowed for an accurate understanding of a large wealth of high-quality
particle collider data related to the soft sector of relativistic nuclear collision.

The quark-gluon plasma evolves according to hydrodynamic laws which are
governed by a strict causality. If the causes are known, then the effects are also
known. This explains why the hydrodynamic framework of heavy-ion collisions
is robust and fully predictive, and also why one is able to define initial-state
predictors, as I have argued throughout this manuscript, that give a transparent
physical understanding of the experimental observations.

In this work, I have established that among the causes that lead to the emer-
gence of the phenomenon of anisotropic flow one can nowadays include the defor-
mation of atomic nuclei. This has been made possible thanks to the great quality
of RHIC and LHC data. I summarize the main results:

• RHIC data does not show any clear evidence of quadrupole deformation in
197Au nuclei. This result, at variance with mean-field and empirical esti-
mates, demonstrates the importance of a state-of-the-art modeling of the
colliding nuclei for the understanding of high-energy data.

• LHC data provides instead evidence of a significant quadrupole deformation
in 129Xe nuclei, suggesting for the first time that high-energy data is largely
impacted by shape-coexistence effects in the nuclear ground states.

• The observation of a negative correlation between v2 and 〈pt〉 reported by
the STAR collaboration in 238U+238U collisions shows that experimentally it
is possible to freeze the orientation of the colliding nuclei, in particular, to
isolate body-body collisions. The observable ρ2

(
v2

2, 〈pt〉
)
displays an unpar-

alleled sensitivity to the prolate deformation of the colliding species.

These nontrivial conclusions have been achieved with just 4 collision systems. It
is not possible to foresee the number of new observations and new discoveries that
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could be made if a larger number of systems were available. I discuss now this
possibility in more detail.

6.1 System-size scan at RHIC

My proposal is thus to collide more nuclear species to observe the emergence of
phenomena related to their structure. Such a program should be defined depend-
ing on whether certain species are more interesting than others. However, in all
cases I think it should be guided by two principles:

1. Collide large enough nuclei – When I say that nuclei should be large enough, I
mean two things. i) If one aims at understanding quantitatively the phenomeno-
logical manifestations of nuclear deformation, then the geometric properties of
nuclei should somewhat dominate over the quantum fluctuations that affect the
geometry of the quark gluon plasma. The analysis of v2{4} in 197Au+197Au col-
lisions makes it clear that one can be sensitive to values of the deformation as
low as β = 0.13. However, this is possible because gold nuclei are large, which
suppresses the fluctuations associated e.g. with the number of nucleons. ii) The
effects one is after may be small effects, hence, it is important that theory-to-
data comparisons are meaningful and the details under control. This implies that
these systems should produce enough particles to make non-flow phenomena as
irrelevant as possible, which typically requires O(103) particles for |η| < 1.

A window of viable nuclei can thus be found in the region of the nuclear chart
shown in Fig. 6.1, which is extracted from Ref. [111]. This region corresponds to
50 < Z < 82, and 82 < N < 126. It includes in particular the so-called rare-
earth region, filled with a large number of stable nuclides that are well-deformed
(highlighted in red in the figure). The green shaded stripe that I place on top of
the figure guides the eye, as it indicates where the stable nuclides lie.

What seems particularly interesting is the possibility of mapping transitional
phenomena, i.e., the emergence and disappearance of nuclear deformation, as
one moves along the nuclear chart. One could collide e.g. a chain of samarium
isotopes, like 144,150,152,154Sm, corresponding, to β ≈ 0.05, 0.2, 0.3, 0.35, some of
which have also been recently analyzed in Ref. [147], to observe the transition
from spherical to deformed nuclei. One could then crosscheck the predictions
of nuclear models for the well-deformed shapes of rare-earth nuclei, and then
look at collision systems that brings one from prolate to spherical nuclei, in the
neighborhood of 197Au. Nuclear theory results, including those shown in Fig. 6.1,
suggest in particular that nuclei are first prolate, then oblate, and then tend
become spherical. It is clear from my analysis of 197Au that this transition from
prolate to spherical nuclei requires a fine modeling from a nuclear structure point
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Figure 6.1: The nuclear chart for N = 82 − 126 and Z = 50 − 82. Each nucleus is labeled by
a color depending on its value of β. The values of β result from the Hartree-Fock-Bogoliubov
calculations of Ref. [110]. This plot is extracted from the nuclear chart shown in Ref. [111].
The shaded stripe crossing the graph contains roughly all the stable nuclides that belong to
this interval of Z and N . The nuclei highlighted with circles are, respectively, 197Au and 208Pb.

of view. Relativistic collisions thus offer a chance to test such theoretical models
against data.

2. Make a systematic study possible – With systematic study, I mean two things.
First, that a significant amount of new species should be collided, like 10 or 20, the
more the better. Second, these species should represent a reasonably wide range
of atomic masses, to look for systematic trends. Besides serving as probes of
the shape of nuclei, these experiments would have a great impact on high-energy
studies:

• Viscous corrections to the hydrodynamic evolution scale like 1/R. By scan-
ning over systems with several values of R, one can constrain the viscosity
of the quark-gluon plasma. By means of the Bayesian analysis framework
developed by the Duke group, for instance, improved constraints on the vis-
cous properties of the quark-gluon plasma, η/s and ζ/s, would be obtained
by the simultaneous analysis of a large number of different systems.
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• The Bayesian analysis could be further modified to include parameters re-
lated to the shape of the colliding species, in order to extract their deforma-
tion properties with well-defined error bars.

• A system-size scan would also constrain all effects related to the magnetic
field created in heavy-ion collisions, which depend essentially on A at fixed
collision energy, as I shall further discuss in the next section.

• The physics of the hard sector, that will be investigated at RHIC thanks
to the upcoming sPHENIX detector, will also be impacted by a systematic
system-size scan, as phenomena of energy loss have naturally a dependence
on the size of the medium.

There are thus many possibilities offered by a systematic system-size scan in
high-energy experiments, which are still largely to explore. It would be a pity
to miss this opportunity at RHIC over the next decade. One needs about 108

collisions to perform precision measurements, which should amount to a few days
of RHIC operation per species.

6.2 Further developments

I conclude by pointing out a couple of other potential applications of nuclear
deformation to heavy-ion collisions which may become of great relevance in the
analysis and interpretation of current and future experimental data.

6.2.1 Triaxiality

So far I have considered only axially-symmetric nuclei that are elongated (β > 0)
or squeezed (β < 0) along the direction of the nuclear axis, z′, but where the ra-
dius of the nucleus is the same along x′ and along y′, where (x′y′z′) is the intrinsic
frame of the nucleus. However, in nuclear structure theory the shape of a nucleus
is usually not characterized by the sole quadrupole deformation parameter, β.
Nuclei can in fact break axial symmetry, and present an imbalance in their axes,
x′ 6= y′, i.e., they can be triaxial. In theoretical descriptions based on the mean
field approach, this feature can be implemented in a rather straightforward man-
ner by simply letting the mean-field wavefunction break axial symmetry in the
minimization procedure of Eq. (4.7). The relevant spherical harmonics related to
the triaxial shape are Y ±2

2 . The resulting geometry is that of a triaxial spheroid,
illustrated in Fig. 6.2.

In the modeling of heavy-ion collisions, one can include a triaxial deformation
via a simple modification of the deformedWoods-Saxon parametrization presented
in Eq. (4.11). Triaxiality implies that the spherical harmonic Y2,0 is no longer
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Figure 6.2: Triaxial spheroid: a 6= b 6= c.

sufficient to describe the system, and that one has to keep the l = 2,m = ±2
modes in the expansion of Eq. (4.9). By doing so the expressions of the coefficients
of the spherical harmonic expansion become the following [106]:

c2,0 = β cos γ, (6.1)

c2,±2 =
1√
2
β sin γ, (6.2)

where γ is the so-called triaxial deformation parameter, which by symmetry varies
between 0 and π/3. The nuclear density used in heavy-ion collisions becomes:

ρ(r,Θ,Φ) =
ρ0

1 + exp
(
r−R(Θ,Φ)

a

) , (6.3)

where this time R(Θ,Φ) reads:

R(Θ,Φ) = R0

[
1 + β cos γY2,0(Θ,Φ) +

1√
2
β sin γ

(
Y2,2(Θ,Φ) + Y2,−2(Θ,Φ)

)]
.

(6.4)
In the intrinsic frame of the nucleus, the axes lengths of the triaxial spheroid are:

Rx′ = R0

[
1 +

√
5

4π
β cos

(
γ − 2π

3

)]
,

Ry′ = R0

[
1 +

√
5

4π
β cos

(
γ +

2π

3

)]
,

Rz′ = R0

[
1 +

√
5

4π
β cos(γ)

]
, (6.5)

Hence γ quantifies the length difference between the x′ axis and the y′ axis of the
deformed ellipsoid.

As pointed out, e.g., in Ref. [108], γ is a quantity which is typically charac-
terized by a large degree of softness, meaning that it does not assume a single
value, but rather a distribution of values in the ground state. Fluctuations in the
triaxiality are typically unimportant for large nuclei, and thus are unlikely to play
any role in the phenomenology of e.g. 197Au+197Au, 208Pb+208Pb, or 238U+238U
collisions. However, they may play a role for 129Xe+129Xe collisions, as well as in
upcoming RHIC data on 96Zr+96Zr and 96Ru+96Ru collisions.
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6.2.2 Phenomenology of the magnetic field

While playing with the selection of events based on 〈pt〉 at fixed multiplicity, a
funny fact occurred to me.

Among all final-state observables one can think of, 〈pt〉 turns out to be the
one that possesses perhaps the strongest correlation with the value of Npart at a
given collision centrality. Let me show an explicit example. In Fig. 6.3, I show the
average value of the number of spectator nucleons in central 197Au+197Au collisions
and 238U+238U collisions. This calculation is done with the same TRENTo setup
used in the previous sections. The number of spectator nucleons is simply equal
to

Ns,A(B) = A(B)−Npart,A(B), (6.6)

where as usual A and B label the colliding nuclei, Npart,A(B) is the number of
participant nucleons from nucleus A(B), while A(B) in the right-hand side is
the mass number. The left panel of the figure shows indeed a strong positive
correlation between this quantity and 〈pt〉. In both systems, the spectator number
does increase by at least a factor 3 as one moves toward large values of 〈pt〉.

Why is this interesting? The point is that there exists a nontrivial phenomenol-
ogy of spectator and participant nucleons related to the magnetic fields that are
produced in high-energy nuclear collisions [148, 149, 150]. Magnetic fields emerge
naturally in nuclear collisions because of the electric current carried by the mov-
ing protons. These magnetic fields are the strongest ever created in a laboratory,
however, as protons fly away from the interaction region at the speed of light,
they exist only for a very short time, and their phenomenological manifestations
are somewhat scarce and elusive. The phenomenology of magnetic fields depend
entirely on the number of participant and spectator nucleons that are involved in
the collision. The strong correlation observed in the left panel of Fig. 6.3 suggests,
thus, that 〈pt〉 could be used as a sort of handle to turn these magnetic fields up
and down. I published this simple idea in Ref. [151], where I propose to look in
particular at the correlation between 〈pt〉 and the signal of the chiral magnetic
effect [101]. Quantitative calculations are ongoing [152].

Going back to the main topic of this manuscript, one sees in the left panel
of Fig. 6.3 that there is little difference between 197Au+197Au collisions and
238U+238U collisions. The larger number of spectators observed in 238U+238U
events is simply a consequence of the larger number of nucleons in 238U nuclei.
The number of spectators does not seem to know anything about the fact that
the nuclei are deformed and that one is selecting tip-tip configurations at large
〈pt〉, or body-body configurations at low 〈pt〉.

However, a quantity that is instead aware of the deformation of 238U is the spec-
tator asymmetry, which corresponds to the imbalance of forward- and backward-
going spectator nucleons. In the context of the phenomenology of magnetic fields
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Figure 6.3: Left: number of spectator nucleons as a function of the relative variation of 〈pt〉,
in central 197Au+197Au collisions (circles) and 238U+238U collisions (diamonds) at top RHIC
energy. Right: spectator nucleon asymmetry, as defined by Eq. (6.7).

in heavy-ion collisions, the study of this quantity was originally proposed by Chat-
terjee and Tribedy [153]. The spectator asymmetry is defined by:

spectator asymmetry = |Ns,A −Ns,B|, (6.7)

where I do not make any distinction between spectator protons or spectator neu-
trons. The right panel of Fig. 6.3 shows the average spectator asymmetry in these
collision systems. The asymmetry grows as a function of 〈pt〉 in both systems.
However, this growth is visibly steeper in 238U+238U collisions, where the asym-
metry is also much higher in magnitude. One can easily understand this behavior
from the fact that, for 〈pt〉 > 〈〈pt〉〉, the nuclei approach the tip-tip configura-
tion, but keeping a sizable relative polar angle, as discussed around Fig. 5.4. The
configuration proposed for events at large 〈pt〉, i.e, θA = π/12 and θB = π/4, is
essentially a body-tip collisions, with the nucleus in the body position tilted by
45◦. This gives rise to a collision geometry that exhibits an intrinsic spectator
asymmetry, hence the steeper growth of this quantity for 238U+238U systems.

The fact that the magnetic field produced by the spectator nucleons is stronger
along one direction may have nontrivial influence on its phenomenological man-
ifestations, which was in fact the original point made in Ref. [153]. It would be
therefore interesting to assess in a theoretical calculation whether observables sen-
sitive to the magnetic field are more or less correlated with 〈pt〉 when the colliding
species are well-deformed, especially in central collisions.





Appendix A

Cumulant expansion for anisotropy

I derive the expressions of the spatial anisotropies E2, E1, and E3, shown respec-
tively in Eq. (3.45) and Eq. (3.52). These quantities were originally derived in a
famous paper by Teaney and Yan [88]. The derivation proposed here differs from
theirs, and is in fact simpler. It has been shown to me by Prof. Matt Luzum.
Parts of the derivation are scattered across the literature (e.g. [154]), and it is
reproduced in its entirety here for the first time.

Consider the density of energy deposited in the transverse plane following a
heavy-ion collision, T 00(x) ≡ ε(x). The idea of Teaney and Yan is that, since the
hydrodynamic expansion of the system (much as the collective dynamics of nu-
cleons that lead to the deformation of nuclei) is mostly driven by long-wavelength
properties, what really matters for the phenomenology of anisotropic flow, like
elliptic flow, is the anisotropy of the large-scale structures of the fluid. The nat-
ural way to discern long- and short-wavelength structures is to take a Fourier
transform:

ρ(k) =

∫

x
ρ(x)eik·x. (A.1)

Small values of k ≡ |k| correspond to large-scale structure, while large k represents
small scales. Assuming then that the Fourier transform is sufficiently well-behaved
to be expanded in a Maclaurin series around k = 0, one can write:

ρ(k) =
∞∑

m=0

ρm(φk)k
m, (A.2)

where the coefficient ρm does not depend on k, and I have introduced polar
coordinates where φk represents the azimuthal angle in momentum space. Now,
if ρ(k) is the Fourier transform of the initial density, one can also write:

ρ(k) =

∫

x
ρ(x)

∞∑

m=0

1

m!
(ik · x)m =

∞∑

m=0

im

m!

∫

x
ρ(x)rm cosm(φk − φ), (A.3)

where r ≡ |r|, and I have again made use of polar coordinates. Matching powers
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of m in Eq. (A.2) and Eq. (A.3), one obtains:

ρm(φk) =
im

m!

∫

x
rmρ(x) cosm(φk − φ). (A.4)

Now, since one is eventually interested in the anisotropy of the density profile,
one has to further expand the density in Fourier series. The idea of Teaney and
Yan is that of performing the Fourier expansion mode-by-mode, for each value
of m. From the Taylor expansion in Eq. (A.2), this amounts to expanding the
coefficients of the power series with respect to the angle φk. The expression of the
ρ(k) thus becomes:

ρ(k) =
∞∑

m=0

+∞∑

n=−∞
ρn,mk

me−inφk. (A.5)

The label n is the order of the Fourier harmonic, and represents the rotational
property of the mode labeled by m, which represents instead the wavelength.

For a given m, the n-th order Fourier coefficient finally reads:

ρn,m =
1

2π

∫
dφkρm(φk)e

inφk, (A.6)

which according to Eq. (A.4) can be written as:

ρn,m =
im

m!

∫

x

∫
dφkr

mρ(x) cos(φk − φ)e−inφk. (A.7)

The integral over φk vanish unless m < |n| and m − |n| is an even number. If
these conditions are met, the final expression reads:

ρn,m =
im

m!

1

2m
m!(

m+n
2

)
!
(
m−n

2

)
!

∫

x
rmρ(x)einφ, (A.8)

where I recall that φ in the last term is the azimuthal angle in spatial coordinates.
The coefficient ρn,m is in principle the quantity one is after, i.e., the n-th order
Fourier harmonic of the modes m, which for the lowest values of m correspond to
the large-scale structures of the system.

These coefficients can not however be the end of the story. The problem is
that they depend on the center of coordinates, while the Fourier harmonics, Vn,
to which one wants to match them, are translation-invariant. This is an important
property that one should require. Small k does not in fact represent large-scale
structures, but rather structures that are far from the chosen center of coordinates.
Teaney and Yan realized that this issue can be overcome if, instead of ρ(k), the
expansion in Fourier modes is performed on ln ρ(k), which corresponds, with a
slight abuse of language, to the cumulant generating function of the distribution
ρ(x). One writes:

ρ(k) = eW (k), (A.9)
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so that formally W (k) represents the cumulant generating function of ρ(x). The
idea is then to take the Fourier series of the Maclaurin coefficients of this quantity:

W (k) =
∞∑

m=0

+∞∑

n=−∞
Wn,ke

−inφk, (A.10)

and to characterize anisotropy through the coefficients Wn,m. As anticipated the
advantage is that W (k) has good properties under translations of ρ(x). Suppose
to perform a shift of the system:

ρ(x) −→ ρ(x + b). (A.11)

The Fourier transform becomes:

ρ(k) −→
∫

x
ρ(x + b)eik·x =

∫

x
ρ(x)eik·(x−b) = ρ(k)e−ik·b. (A.12)

After taking the logarithm, the transformation of W (k) thus reads:

W (k) −→ W (k)− ikb cos(φk − φ). (A.13)

This means in particular that the quantitiesWn,m with m > 1 are invariant under
translations of ρ(x), thus representing genuine short- or large-scale features of the
density profile, depending on the value of m.

The coefficients Wn,m can be obtained iteratively from the expression of ρn,m
derived in Eq. (A.8). ρ(k) can be viewed as the moment generating function of
ρ(x), and so it does satisfy the following identity:

ρ(k) =
∞∑

s=0

ks

s!
cs, (A.14)

where cs, the moments of ρ(x), are defined by cs = ∂
(m)
k ρ(k)|k=0. Combining with

Eq. (A.9), one obtains:

ρ(k) = eW (0)

[
1 + kW ′(0) +

k2

2

(
W ′′(0) +W ′(0)2

)

+
k3

6

(
W ′′′(0) +W ′(0)3 + 3W ′(0)W ′′(0)

)
+ . . .

]
. (A.15)

This can now be matched, order by order in k, to the formal expansion of ρ(k)
in Eq. (A.5), which gives:

ρ0,0 = eW (0),
∑

n

ρn,1
ρ0,0

e−inφk = W ′(0),
∑

n

ρn,2
ρ0,0

e−inφk =
1

2

(
W ′′(0) +W ′(0)2

)
,

∑

n

ρn,3
ρ0,0

e−inφk =
1

6

(
W ′′′(0) +W ′(0)3 + 3W ′(0)W ′′(0)

)
, (A.16)
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and so on. From Eq. (A.10), one further has:

W (l)(0) =
∑

n

Wn,le
−inφk,

which inserted into Eq. (A.16) yields:

ρ0,0 = eW (0),
∑

n

ρn,1
ρ0,0

e−inφk =
∑

n

Wn,1e
−inφk,

∑

n

ρn,2
ρ0,0

e−inφk = W2,0 +W1,−1W1,1

+ ei2φk
(
W2,2 +

1

2
W 2

1,1

)
+ e−i2φk

(
W−2,2 +

1

2
W 2
−1,1

)
,

∑

n

ρn,3
ρ0,0

e−inφk = eiφk
[
W1,3 +W−1,1W2,2 +W1,1W0,2 +

1

2
W 2

1,1W−1,1

]

+ ei3φk
[
W3,3 +W1,1W2,2 +

1

6
W 3

1,1

]
+ e−i3φk

[
W−3,3 +W−1,1W−2,2 +

1

6
W 3
−1,1

]

+ e−iφk
[
W−1,3 +W1,1W−2,2 +W−1,1W0,2 +

1

2
W 2
−1,1W1,1

]
, (A.17)

and so on. Matching each azimuthal harmonics at each order, substituting lower
order solutions into higher order equations, substituting the expressions of ρn,m
from Eq. (A.9), and with the notation:

〈. . .〉 =

∫
x ρ(x) . . .

ρ0,0
=

∫
x ρ(x) . . .∫
x ρ(x)

, (A.18)

one arrives at the final expressions of the Fourier coefficients. The term with
m = 0, ρ0,0, is the integral of the density, which physically corresponds to the
total energy of the system. For m = 1:

W1,1 =
i

2
〈reiφ〉, W−1,1 =

i

2
〈reiφ〉. (A.19)

For m = 2:

W2,2 =
i2

8

[
〈r2ei2φ〉 − 〈reiφ〉2

]
,

W0,2 =
i2

4

[
〈r2〉 − 〈re−iφ〉〈reiφ〉

]
,

W−2,2 =
i2

8

[
〈r2e−i2φ〉 − 〈re−iφ〉2

]
. (A.20)
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For m = 3:

W3,3 =
i3

48

[
〈r3ei3φ〉+ 〈reiφ〉

(
3〈r2ei2φ〉 − 2〈reiφ〉2

)]
,

W1,3 =
i3

16

[
〈r3eiφ〉 − 〈r2ei2φ〉〈re−iφ〉 − 2〈r2〉〈riφ〉+ 2〈reiφ〉〈re−iφ〉

]
,

W−1,3 =
i3

16

[
〈r3e−iφ〉 − 〈r2e−i2φ〉〈reiφ〉 − 2〈r2〉〈r−iφ〉+ 2〈re−iφ〉〈reiφ〉

]
,

W3,3 =
i3

48

[
〈r3e−i3φ〉+ 〈re−iφ〉

(
3〈r2e−i2φ〉 − 2〈re−iφ〉2

)]
.

Two comments are in order. First, coefficients with negative n are trivially related
to those with positive n, and so they are redundant. Second, and more important,
the coefficients with m = 1 correspond essentially to the center of mass of the
system. If one shifts the system in such a way that the center of mass vanishes,
i.e., ∫

x
xρ(x) = 0, (A.21)

then the quantitiesWn,1 vanish, and the previous expressions simplify a lot. Since
the choice of the center of coordinates is arbitrary, one can always re-center the
system before performing the cumulant expansion, and thus consider simplified
expressions.

Eventually, one is left with:

W0,2 = 〈r2〉, (A.22)

which corresponds to the mean squared radius of the system, while the anisotropy
is carried by the other quantities:

W2,2 = 〈r2ei2φ〉, W1,3 = 〈r3eiφ〉, W3,3 = 〈r3ei3φ〉. (A.23)

These correspond, respectively, to the quadrupole, the octupole, and the dipole
asymmetry of the density profile. However, while these quantities possess the
same translational and rotational properties as the Fourier harmonics Vn, the
latter coefficients are dimensionless, as well as bounded from above. Both these
missing conditions can be fulfilled by normalizingWn,m with 〈rm〉. This eventually
leads to the final expressions:

E2,2 =
〈r2ei2φ〉
〈r2〉 , E1,3 =

〈r3eiφ〉
〈r3〉 , E3,3 =

〈r3ei3φ〉
〈r3〉 , (A.24)

which correspond to Eq. (3.45) and Eq. (3.52). Note that these complex quantities
are in magnitude lower than unity.
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In summary, the idea of the Teaney-Yan derivation is that the final anisotropies
Vn can be decomposed as:

Vn =
∞∑

m=n

κn,mEn,m + higher orders, (A.25)

where n represents the rotational property of the harmonic, m labels the wave-
length of the considered modes in the density profile, κn,m is a real coefficient
that depends now on both n and m, and “higher-orders” means all terms of the
form En−l,m′En+l,m′′, or even more complicated, that are allowed by rotational
symmetry, but that are associated with higher-order modes of the system. As the
gradients that drive the hydrodynamic expansion are mostly due to large-scale
structures, one can truncate Eq. (A.25) at the lowest orders. This leads to the ec-
centricities of Eq. (A.24), which are excellent predictors of the final Vn coefficients
in hydrodynamic simulations.
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Cumulants of flow fluctuations

I derive the expressions of the cumulants of anisotropic flow, Vn, that are measured
in experimental analyses. I derive expressions for n = 2, although equivalent
expressions can be derived for any value of n.

One has first to choose a sample of events, typically, a class of events at a given
multiplicity. In this sample there is a probability distribution for the flow vector:

P (V2) = P (vx, vy), (B.1)

where (x, y) corresponds to an appropriate choice of the frame. A useful choice
for n = 2, and also the most standard, is that of considering x as the direction of
the impact parameter of the collision. The reason is that, as soon as the impact
parameter, b, is sizable, elliptic flow goes preferably along the direction of b, and
thus the probability distribution P (vx, vy) has a nonzero average value along x,
the so-called elliptic flow in the reaction plane.

The cumulant generating function of the distribution of V2 is defined by:

ln
〈
ek·V2

〉
. (B.2)

One can now write k · V2 = kv2 sin θ, where k = |k|, v2 = |V2|, and realize that
the angle θ, like the reaction plane angle, is random with a uniform distribution.
One can thus average over this angle, and write:

ln
〈
ek·V2

〉
= ln

〈∫ 2π

0

dθ

2π
ekv2 sin θ

〉
= ln

〈
I0(kv2)

〉
, (B.3)

where I0 is the modified Bessel function, which, as a consequence of the random
averaging over orientations, is an even function. The cumulants of the distribu-
tion of v2, whose standard notation is v2{m}m, are then defined by the formal
equivalence:

ln
〈
I0(kv2)

〉
=

∞∑

m=0

cmk
mv2{m}m, (B.4)

where m ≥ 2 is an even number, and the coefficients cm are the coefficients of the
power series of the function I0, i.e., c2 = 1/4, c4 = −1/64, c6 = 1/576, etc. . The
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left-hand side of Eq. (B.4) can in fact be written as:

ln
〈
I0(kv2)

〉
= ln

(
1 +
〈v2

2〉k2

4
− 〈v

4
2〉k4

64
+
〈v6

2〉k6

576
+ . . .

)
. (B.5)

Expanding ln(1 + . . .) in powers of k, and matching to the right-hand side of
Eq. (B.4), one obtains:

v2{2}2 = 〈v2〉,
v2{4}4 = 2〈v2

2〉 − 〈v4
2〉,

v2{6}6 =
1

4

(
〈v6

2〉 − 9〈v4
2〉〈v2

2〉+ 12〈v2
2〉3
)
, (B.6)

and so on. I recall that angular brackets denote an average over events in a
given centrality class. Historically, higher-order cumulants have been introduced
because they are to a large extent insensitive to nonflow contribution (see e.g.
Fig. 6 of Ref. [155]), and isolate the genuine multi-particle correlations observed
in the final state [156]. Expressions for the cumulants up to order 16 can be found
in Ref. [157]. In a recent paper, Taghavi [158] generalizes these expressions to
include correlations between harmonics of different order. The idea is to calculate
the cumulants of the joint probability distribution P (V2, V3, . . .).

As realized in Ref. [159] for the first time, more insightful expressions can be
obtained if one makes use of the full two-dimensionality of the distribution of V2,
i.e., without performing the average over θ in Eq. (B.3). I follow the derivations
of Ref. [160]. The cumulants of the distribution of V2 can in fact be defined by:

ln〈ekxvx+kyvy〉 =
∑

nx,ny

knxx k
ny
y

nx!ny!
κnx,ny , (B.7)

where now there is a double sequence of cumulants κnx,ny , which correspond to the
cumulants of the joint probability distribution of vx and vy. Neglecting effects of
parity violation, and considering that x is the direction of impact parameter, the
distribution of V2 must be an even function of vy, meaning that all terms where
ny is an odd number vanish. Up to fourth order, the expansion of the right-hand
side of Eq. (B.7) gives:

ln
〈
ekxvx+kyvy

〉
= kxκ10+

k2
x

2
κ20+

k2
y

2
κ02+

k3
x

6
κ30+

kxk
2
y

2
κ12+

k4
x

24
κ40+

k4
y

24
κ04+

k2
xk

2
y

4
κ22,

(B.8)
where:

κ10 = 〈vx〉 ≡ µ, κ20 =
〈
(vx − µ)2

〉
,

κ30 =
〈
(vx − µ)3

〉
, κ40 =

〈
(vx − µ)4

〉
− 3κ2

20,
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and similarly for κ0,ny , with ny = 2, 4, while for the mixed terms:

κ12 = 〈vxv2
y〉, κ22 = 〈(vx − µ)2v2

y〉 − κ20κ02. (B.9)

What one would like to do, then, is to find a way to match this expansion to
the measured cumulants of v2 in Eq. (B.6), and perhaps use experimental data
to gain insight about the detailed features of the two-dimensional distribution of
V2. The idea is to move to polar coordinates, and then average over θ inside the
two-dimensional expansion. The procedure is the following.

• Substitute kx = k cos θ and ky = k sin θ in Eq. (B.8).

• Exponentiate the resulting equation, and expand it in powers of k.

• Average over the value of θ, as done in Eq. (B.3).

• Expand the logarithm of the resulting expression in powers of k.

• Match to the right-hand side of Eq. (B.4).

This yields for the first three cumulants:

v2{2}2 = µ2 + κ20 + κ02,

v2{4}4 = µ4 + 2µ2(κ02 − κ20)− 4µ(κ30 + κ12)− (κ20 − κ02)
2 − (κ04 + κ40 + 2κ22),

v2{6}6 = µ6 + 3µ4(κ02 − κ20)− 2µ3(2κ30 + 3κ12) +
3

2
µ2(κ40 − κ04)

− 6µκ30(κ02 − κ20) +
3

2
(κ04 − κ40)(κ02 − κ20) +

5

2
κ2

30 + 3κ30κ12 +
9

2
κ2

12

+
3

2
µ(κ50 + κ14 + 2κ32) +

3

4
(κ24 + κ42) +

κ60

4
+
κ06

4
. (B.10)

These relations can not be inverted, however, they can help one understand in
deeper detail the results shown in this manuscript.

If the distribution of elliptic flow is a two-dimensional Gaussian [161]:

P (vx, vy) =
1

2πκ20κ02
e−

(vx−µ)2
2κ20

− vy
2κ02 , (B.11)

then Eq. (B.10) yields:

v2{2} =
√
µ2 + κ20 + κ02, v2{4} = v2{6} = . . . = µ. (B.12)

Remarkably enough, this corresponds to the experimental observations. As soon
as the centrality percentile is of order 5%, the value of µ starts to dominate
over the other terms, and experimental data shows precisely [162, 91, 127] that
v2{2} > v2{4} ' v2{6} ' v2{8} = . . .. The experimental fact that in non-central
collisions the distribution of V2 is close to a Gaussian explains in particular why,
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above 5% centrality, the value of v2{4} in 197Au+197Au collisions is the same as
in 238U+238U collisions, and also why the observable v2{4} loses any sensitivity
to the value of the deformation parameter, as explicitly shown in Fig. 5.11.

For studies of nuclear deformation, hence, the limit of central collisions, where
µ = 0, is more interesting. In this limit, one finds in particular:

v2{2} = κ20 + κ02 ≡ σ2, (B.13)

which can be found in Eq. (4.15), and is equal to the sum of the variances of the
projections of the distribution of V2. Elliptic flow is in this case generated solely
by fluctuations. The presence of nuclear deformations increase both κ20 and κ02,
thus showing why the rms elliptic flow is larger in central 238U+238U collisions
than in central 197Au+197Au collisions. For µ = 0, the fourth-order cumulant
becomes on the other hand:

v2{4} = −(κ04 + κ40 + 2κ22) ≡ −K, (B.14)

shown in Eq. (4.17). This is the sum of the coefficients of kurtosis, and implies in
particular that, in this limit, the cumulant in central collisions originates as a non-
Gaussian correction to the distribution of V2. Nuclear deformation modifies the
tails, and thus the kurtosis of the distribution of V2, thus leading to sizable effects
on the value of v2{4} for central collisions. As shown in Fig. 4.9 and Fig. 4.10, it
can in fact change the sign of this cumulant.

As a final remark, if the initial anisotropy E2 satisfies V2 = κ2E2, then all the
previous derivations are equivalent for the cumulants of E2. The final quantities
are simply rescaled by appropriate powers of the coefficient κ2.



Appendix C

Hydrodynamic study

The results obtained in Chapter 4 and Chapter 5 are obtained by means of
TRENTo simulations, which are then compared to experimental data on the ba-
sis of approximations, such as the scaling vn ∝ ε2, or the fact that the collisions
at large E correspond to collisions at large 〈pt〉. These approximations are solid,
however, it is relatively cheap to perform some explicit checks of their goodness by
means of full hydrodynamic evaluations. I do so in this appendix, which follows
closely Appendix B of Ref. [80].

I perform hydrodynamic simulations of central 238U+238U collisions with the
aim of checking the following points:

• The correlation between 〈pt〉 and E is strong in viscous hydrodynamics.

• Elliptic flow is indeed larger in body-body collisions than in tip-tip collisions.

• The response coefficients κn = vn/εn used in the phenomenological applica-
tions of this paper are consistent with full hydrodynamic results.

• Tip-tip collisions do in fact yield larger 〈pt〉 than body-body collisions.

• Whether or not the response coefficient κn has a dependence on 〈pt〉.

To do this, I evolve hydrodynamically profiles of entropy density generated with
the TRENTo model:

s(x, τ0) =
N0

τ0

√
tA(x)tB(x), (C.1)

where tA,B is defined by Eq. (2.15). I fix the orientation of the colliding nuclei to
impose body-body and tip-tip configurations. I let the impact parameter of these
body-body and tip-tip configurations fluctuate, and I select events according to
their total entropy, consistent with a realistic selection of ultracentral events. For
both choices, I select and then evolve 60 initial conditions. I consider that the
selected profiles correspond to the initial condition of hydrodynamics at proper
time τ0 = 0.2 fm/c, while the overall multiplicative factor in Eq. (C.1) is N0 =
21.6. The profiles thus obtained belong to the 0.78 − 0.96% centrality class,
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which corresponds to the narrow interval of total initial entropy per unit rapidity
4023 < S < 4078.

I neglect the effects of the pre-equilibrium [63, 24] phase of the system. I carry
out a boost-invariant evolution of these initial conditions by means the MUSIC

hydrodynamic code [46, 47, 48]. I use the equation of state of lattice QCD [49],
and I implement a freeze-out temperature T = 0.15 GeV. The hydrodynamic
expansion is viscous, and the viscous corrections are chosen such that they are
pretty sizable, for instance, they increase the total entropy of the system during
the hydrodynamic evolution by nearly 40%. For the shear viscosity over entropy
ratio, I implement a temperature-independent η/s = 0.16. The implementation of
the bulk viscosity over entropy ratio, ζ/s, requires instead more thinking, because
I am essentially the first to implement this quantity in simulations at RHIC energy
with TRENTo initial conditions. The situation in the literature is at present a
little paradoxical [60]. Calculations that implement IP-GLASMA initial conditions
tend to yield too large values of 〈pt〉 at the end of the expansion, and solve this
issues by implementing a bulk viscosity that has a peak around ζ/s ≈ 0.3, at both
RHIC and LHC energy [163, 164, 61, 165]. Calculations that start with TRENTo
initial conditions, available only for simulations of LHC collisions, produce on
the other hand values of 〈pt〉 that agree with experimental data even in absence
of a bulk viscosity [37], hence, they implement a ζ/s that is smaller by almost
one order of magnitude at the peak [20]. As I want to describe RHIC collisions
with TRENTo initial conditions, I make up a sort of hybrid scenario. The bulk
viscosity has the same temperature profile as in the IP-GLASMA papers, but the
value of ζ/s at the peak is reduced by a factor 10. Finally, the corrections δfη and
δfζ to the equilibrium distribution at freeze-out are chosen following Ref. [61]. All
hadronic resonances can be formed at freeze-out [166], and I take into account
their decay to stable hadrons. The outcome is a boost-invariant spectrum of
charged hadrons, dN

d2pt
, which is used to calculate the charged-particle multiplicity,

the average transverse momentum, and the flow coefficients, following Eq. (3.2),
Eq. (3.3), and Eq. (3.5).

In Fig. C.1, I show my results for 〈pt〉 as a function of E. One notes that there
is a strong correlation between these two quantities. I recall that the same plot is
shown in Fig. 3.5, although for the ideal hydrodynamic expansion of events at fixed
entropy and fixed impact parameter. The strong correlation observed in Fig. C.1
implies then that the inclusion of viscous corrections and some fluctuations in
impact parameter do not disrupt the physical picture about the origin of 〈pt〉.
The second remarkable result observed in Fig. C.1 is the fact that body-body
and tip-tip collisions, while falling on the same line, cover distinct regions in E
and 〈pt〉. This shows that the tip-tip produce indeed larger 〈pt〉 than body-body
events at the same entropy, thus confirming the idea that 〈pt〉 can be used to
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Figure C.1: Correlation between the average transverse momentum, 〈pt〉 and the initial energy,
E, in viscous hydrodynamic simulations of ultracentral 238U+238U collisions at top RHIC energy.
Full symbols: body-body collisions. Empty symbols: tip-tip collisions. These events present
〈dN/dη〉 = 1287 for |η| < 1, which corresponds approximately to the 1% centrality cut in the
STAR analysis. Figure from Ref. [80].

discern collision geometries.
I calculate then the flow coefficients, vn. They are plotted as a function of the

corresponding initial anisotropy, εn, in Fig. C.2.
The left panel contains results for n = 2. First of all, I confirm the strong linear

correlation between v2 and ε2. Second, as expected, one sees that body-body and
tip-tip collisions are separated, and cover distinct regions in both ε2 and v2. The
value of the response coefficient is essentially given by the slope of the scatter plot.
The shaded band shows the range of viable values for κ2 = v2/ε2. The dashed line
corresponds to the value used throughout this manuscript, κ2 = 0.165, suggested
by the TRENTo results of Ref. [122]. One sees that this value is fairly reasonable,
although a bit small, suggesting that the predictions that depend on κ2 shown
in this manuscript are underestimated by about 5%. Body-body and tip-tip
collisions appear then to fall almost on the same curve, indicating that κ2 has a
very mild dependence on 〈pt〉. The right panel of the figure shows instead results
for n = 3. One notes both ε3 and v3 are slightly larger in the case of tip-tip
collisions, as expected. Remarkably, the value κ3 = 0.110 chosen in Fig. 5.7, and
which yield an rms v3 in good agreement with STAR preliminary data, is fully
consistent with the correlation between ε3 and v3 shown in Fig. C.2

The fact that the coefficients κ2 and κ3 chosen for 238U+238U collisions are
reasonable implies that the choices made for 197Au+197Au collisions, κ2 = 0.155
and κ3 = 0.100, are also reasonable. The κn coefficients are damped by vis-
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Figure C.2: Flow harmonics v2 (left panel) and v3 (right panel) as a function of the corre-
sponding spatial anisotropies, ε2 and ε3, in body-body and tip-tip 238U+238U collisions. The
vn coefficients are obtained with STAR kinematic cuts, |η| < 1 and 0.2 < pt < 2 GeV. The
shaded bands provide the viable range of values for κn = vn/εn. The values of κn chosen in
this manuscript are shown with dashed line. Figure from Ref. [80].

cous corrections, and should be indeed a little smaller in 197Au+197Au systems,
due to the smaller system size. However, a difference of order 5% or 10% between
197Au+197Au and 238U+238U sounds a little large, hence, this estimate could prob-
ably be improved if actual hydrodynamic simulations of ultracentral 197Au+197Au
events were available.



Appendix D

Realistic estimate of 〈pt〉 fluctuations

Evaluating an observable as a function of 〈pt〉, as done for Fig. 5.5, requires
the knowledge of the mean transverse momentum in each event. As discussed
in Sec. 3.4, while this is not an issue in a hydrodynamic simulation, where the
output of an event is a continuous spectrum in momentum space, the situation is
problematic in an experiment, where the integration in Eq. (3.3) corresponds to
a discrete average:

〈pt〉 =
1

N

N∑

i=1

pt,i, (D.1)

where N is the multiplicity of the event, and pt,i is the transverse momentum of
particle i. The multiplicity is of order 1000 in central 238U+238U collisions, imply-
ing that the determination of 〈pt〉 is affected by a relative statistical fluctuation,
proportional to 1/

√
N , which is as large as the relative dynamical fluctuation of

〈pt〉, which is only about 1.2% following the STAR measurement [139]. To include
the presence of statistical fluctuations in the TRENTo calculation, one has to add
an artificial decorrelation between the value of 〈pt〉 and that of E/S, which is
the initial-state predictor of the average transverse momentum considered in this
work. Fig. 5.5 is obtained by assuming that E/S and 〈pt〉 are in a one-to-one
correspondence. The idea is to disrupt this correspondence in a realistic way to
mimic the trivial finite-N effect.

Within the flow paradigm explained in Sec. 3.4, particles are emitted indepen-
dently from the decoupling surface at the end of the hydrodynamic phase. Each
particle has a random value of pt, chosen, independently for each particle, from an
underlying probability distribution, i.e., the pt spectrum, which is a measurable
observable at a given collision centrality. The magnitude of the trivial statistical
fluctuations can thus be evaluated from law of large numbers:

σstat =
1√
N

√
〈p2
t 〉 − 〈pt〉2, (D.2)

where 〈. . .〉 = 1
N

[∫
. . . dNd2pt

]
. At top RHIC energy in the full acceptance of the

STAR detector, |η| < 1, one detects N ≈ 1000 particles. Evaluation of the mo-
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ments of the pt distribution from the spectrum measured in central 197Au+197Au
collisions [167] then yields:

σstat = 0.01 GeV. (D.3)

Normalizing by the average value of 〈pt〉, one obtains the relative statistical fluc-
tuation:

σstat/〈〈pt〉〉 = 0.18, (D.4)

where 〈〈pt〉〉 = 0.57 GeV [78]. This corresponds to the the relative fluctuation
of the average transverse momentum originating from the simple fact that N is
finite.

Now, comparing Eq. (D.4) with Eq. (5.4), one finds:

σstat(〈pt〉)
〈〈pt〉〉

= 1.5× σdynamical(〈pt〉)
〈〈pt〉〉

, (D.5)

showing that the relative statistical fluctuation is larger than the relative dynam-
ical fluctuation, and that as a consequence any theoretical estimate of observables
the require the evaluation of 〈pt〉 on an event-by-event basis must include this
statistical smearing before they can be compared to experimental data.

It is however simple to include the effect of these trivial fluctuations in the
theoretical calculation. The flow paradigm helps out. As particles are emitted
independently from the freezeout hypersurface, the number of emitted particles
in a sample of events follows a Poisson distribution, or more simply a Gaussian
distribution, since N � 1. I can thus readily correct the results of the TRENTo
calculations for statistical fluctuations. First, from Eq. (5.3) I compute the dis-
tribution of 〈pt〉/〈〈pt〉〉, by choosing the coefficient κ0 that allows me to reproduce
the magnitude of the dynamical fluctuations given in Eq. (5.4), which I dub σ.
Each entry of the distribution is then multiplied by a number sampled from a
Gaussian distribution of unit mean and standard deviation equal to 1.5 × σ, in
agreement with Eq. (D.5). The resulting fictitious distribution of 〈pt〉/〈〈pt〉〉 thus
properly includes a decorrelation between E/S and 〈pt〉 due the finite number of
particles. Observables can now be computed as functions of this corrected relative
variation of 〈pt〉, and can be genuinely compared to experimental data. This is
how the quantitative predictions shown in Sec. 5.2.1 and in Fig. 5.10 are obtained.
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Titre: Question de forme: observer la déformation des noyaux atomiques aux collisionneurs
des hautes énergies
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Résumé: Les expériences conduites au colli-
sionneurs de particules BNL RHIC et CERN LHC
montrent que l’émission azimutale de hadrons vers
l’état final des collisions relativistes noyau-noyau
est fortemente anisotrope. Cette observation est
compatible avec un paradigme hydrodynamique,
selon lequel les hadrons observés dans l’état fi-
nal sont émis à l’issue de l’expansion d’un milieu
fluidiforme créé dans la région d’interaction. Ce
paradigme prédit notamment que l’anisotropie de
l’émission des particules est sensible à la déforma-
tion de l’état fondamental des noyaux interagis-
sants. À travers des comparaisons de haute préci-
sion entre les données des expériences et le mod-
èle hydrodynamique, j’étudie les manifestations
phénomenologiques de la déformation des noy-
aux atomiques dans les collisions 197Au+197Au,
238U+238U, et 129Xe+129Xe. Cette analyse dé-
montre qu’une compréhension approfondie de la
structure des ions interagissants est nécessaire

pour l’interprétation des données aux hautes én-
ergies. Les données du RHIC confirment que
la géometrie du noyau 238U est bien celle d’un
ellipsoïde, tandis que le noyau 197Au apparaît
être presque sphérique, ce qui est en désaccord
avec les prédictions des modèles nucléaires em-
piriques et de champ moyen. Le données du
LHC indiquent ensuite la présence de déformation
quadrupolaire dans l’état fondamental du 129Xe,
ce qui pourrait indiquer la première observation
d’effets de coexistence de forme en physique nu-
cléaire des hautes énergies. J’introduis une méth-
ode pour isoler les configurations de collision où
l’orientation des noyaux déformes brise la symme-
trie azimutale du système d’une façon maximale.
Cela me permet de définir une nouvelle catégorie
d’observables sensibles à la déformation des noy-
aux qu’on utilise, en ouvrent ainsi le chemin vers
des études quantitatives de la structure des noy-
aux atomiques en physique des hautes énergies.

Title: A matter of shape: seeing the deformation of atomic nuclei at high-energy colliders

Keywords: heavy-ion physics, quark-gluon plasma, elliptic flow, nuclear deformation

Abstract: Collider experiments conducted at
the BNL RHIC and at the CERN LHC show that
the the emission of particles following the interac-
tion of two nuclei at relativistic energy is highly
anisotropic in azimuthal angle. This observation
is compatible with a hydrodynamic paradigm, ac-
cording to which the final-state hadrons are emit-
ted following the expansion of a fluidlike sys-
tem created in the interaction region. Within
this paradigm, anisotropy in the emission of par-
ticles is enhanced whenever the colliding nu-
clei have deformed ground states. By means
of high-quality comparisons between the predic-
tions of hydrodynamic models and particle col-
lider data, I study the phenomenological manifes-
tations of the quadrupole deformation of atomic
nuclei in relativistic 197Au+197Au, 238U+238U,
and 129Xe+129Xe collisions. This analysis demon-
strates that a deep understanding of the structure

of the colliding ions is required for the interpreta-
tion of data in high-energy experiments. RHIC
data confirms in particular the well-known fact
that the geometry of 238U nuclei is that of a well-
deformed ellipsoid, while indicating that 197Au
nuclei are nearly spherical, a result which is at
odds with the estimates of mean-field and empir-
ical nuclear models. LHC data brings instead ev-
idence of quadrupole deformation in the ground
state of 129Xe nuclei, ascribable to the first visible
manifestation of shape coexistence phenomena in
high-energy nuclear experiments. I introduce a
simple method to isolate collision configurations
that maximally break azimuthal symmetry due
to the orientation of the deformed nuclei. This
allows me to define observables with an unprece-
dented sensitivity to the deformation of the collid-
ing species, thus paving the way for quantitative
studies of nuclear structure at high energy.
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