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Résumé : On construit des représentations loga-
rithmiques de l’algèbre de Virasoro à charge cen-
trale générique en utilisant des dérivées de champs
primaires (nuls ou non). Dans le cas de champs
nuls, les représentations résultantes sont paramé-
trés par les couplages logarithmiques, qui peuvent
être complètement déterminés en utilisant l’exis-
tence des champs dégénérés. On écrit également
des expressions fermées pour les blocs conformes
à quatre points de ces représentations logarith-
miques. Comme application, des représentations
logarithmiques, générées par la dérivée première
de champs nuls, complètent la détermination de
l’action de l’algèbre de Virasoro sur les spectres de
theorie conforme décrivant les points critiques du
modèle de Potts et du modèle O(n) en deux di-
mensions, également connu sous le nom des theo-
ries de Potts et O(n).

De plus, on commençe une étude systéma-
tique des fonctions génériques à quatre points des
theories conformes de Potts et O(n) à charge
centrale générique. Les fonctions à quatre points
de ces deux theories conformes sont soumises à
deux contraintes : la symétrie croisement et les
contraintes de symétrie globale. On résout ensuite
l’équation de symétrie de croisément pour plu-
sieurs de leurs fonctions à quatre points. Pour la
theorie conforme O(n), on trouve que les solu-

tions de l’équation de la symétrie de croisement
sont toujours cohérentes avec la symétrie O(n).
Dans le cas de la theorie conforme de Potts, il
peut cependant y avoir des solutions supplémen-
taires, qui sont incompatibles avec la symétrie SQ

et n’ont pas encore d’interprétation claire. En par-
ticulier, pour les deux theories conformes, on a dé-
terminé leurs nombres de solutions de symétrie de
croiément, plusieurs spectres exacts, plusieurs for-
mules analytiques de leurs constantes de structure
à quatre points et quelques règles de fusion corres-
pondantes. On discute aussi nos résultats prélimi-
naires sur le bootstrap de la theorie conforme O(n)
à n = 0, ce qui correspond à la marche aléatoire
auto-évitante critique en deux dimensions.

Ensuite, on considère les limites rationnelles
des fonctions à quatre points des modèles dits mi-
nimaux généralisés. On trouve que les fonctions à
quatre points résultantes peuvent avoir nos repré-
sentations logarithmiques peuvant impliquer. Ces
fonctions à quatre points conduisent également à
des produits de fusion non chiraux, dont la projec-
tion chirale coïncide avec certaines règles de fusion
des modèles minimaux logarithmiques chiraux pro-
posés par P. Mathieu et D. Ridout. Ceci suggère
qu’il peut exister des modèles minimaux logarith-
miques non-chiraux.
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Abstract : This thesis consists of three main re-
sults. Firstly, we build logarithmic representations
of the Virasoro algebra at generic central charge
by using derivatives of primary fields (null or not).
In the case of null fields, the resulting represen-
tations are parametrized by the logarithmic cou-
plings, which can be completely determined by
using the existence of the degenerate fields. We
also write down closed expressions for four-point
conformal blocks of these logarithmic representa-
tions. As an application, logarithmic representa-
tions, generated by the first-order derivative of null
fields, complete the determination of the action of
the Virasoro algebra on the spectra of CFTs des-
cribing the critical points of the Potts model and
the O(n) model in two dimensions, also known as
the Potts and O(n) CFTs.

Secondly, we initiate a systematic study of
generic four-point functions of the Potts and
O(n) CFTs at generic central charge. Four-point
functions of these two CFTs are subject to two
constraints : the crossing-symmetry equation and
constraints from their global symmetries. We then
solve the crossing-symmetry equation for several of
their four-point functions. For the O(n) CFT, we

find that solutions to the crossing-symmetry equa-
tion are always consistent with O(n) symmetry of
the O(n) CFT. In the case of the Potts CFT, there
however can be extra solutions, which are incon-
sistent with SQ symmetry of the Potts CFT and do
not yet have clear interpretations. In particular, for
both CFTs, we have determined their numbers of
crossing-symmetry solutions, several exact spectra,
several analytic formulae of their four-point struc-
ture constants, and a few corresponding fusion
rules. We also discuss our preliminary results on
bootstrapping the O(n) CFT at n = 0, which cor-
responds to the critical self-avoiding random walk
in two dimensions.

Thirdly, we consider rational limits of four-
point functions of the so-called generalized mini-
mal models. We find that the resulting four-point
functions can have our logarithmic representations
propagating in their channels. These four-point
functions also lead to non-chiral fusion products,
whose chiral projection coincides with some fusion
rules of chiral logarithmic minimal models propo-
sed by P. Mathieu and D. Ridout. This suggests
that there may exist logarithmic minimal models
in the bulk.
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CHAPTER 1

Introduction

1.1 Brief story of 2D CFT

Conformal field theory (CFT) is a quantum field theory with conformal symmetry. Unlike
most other quantum field theories, CFTs do not need any Lagrangian for their definitions.
Conformal symmetry is powerful enough to provide CFTs a simple definition, known as
CFT data: a spectrum of primary fields and their operator-product expansion (OPE)
coefficients which satisfy the consistency conditions, imposed by full consequences of the
model’s symmetries [1]. This way of solving CFT is known as the conformal bootstrap
[2]. In practice, full consequences of conformal symmetry manifest themselves in the
crossing-symmetry equation, a constraint which requires four-point functions of CFTs to
be crossing symmetric. With only CFT data, it is expected that we can compute all
physical observables of CFTs.

In two dimensions, the conformal algebra is an infinite dimensional Lie algebra, also
known as the Virasoro algebra. The Virasoro algebra comes with an additional parameter,
known as the central charge c, to be discussed in more details in the next Chapter.
Therefore, CFT data of two-dimensional CFTs depends explicitly on the central charge,
and different values of the central charge give us different CFTs. With the rich structure of
conformal symmetry, two-dimensional CFTs are then more constrained and more feasible
to be solvable than those in higher dimensions. Moreover, unlike in higher-dimensions
where unitarity plays a crucial role [3], solving two-dimensional CFTs does not rely too
much on unitarity. In some cases, with only conformal symmetry and OPE associativity,
we can already completely solve two-dimensional CFTs, for instance Liouville theory and
minimal models [4, 5]. With these special phenomena, two-dimensional CFT therefore
deserves special attention and become a subject of its own.

Applications

Besides their rich mathematical structure, two-dimensional CFTs are well-known to pro-
vide applications in vast areas of theoretical physics: from describing the worldsheet in
string theory [6] to the critical points of many two-dimensional statistical systems [4]. In
this thesis, we will be particularly interested in the latter case. In the continuum limit,
many lattice models in two dimensions exhibit scaling invariance and can be described
by two-dimensional CFTs, for example the Ising model in two dimensions. It could also

5



6 CHAPTER 1. INTRODUCTION

happen that different physical systems on the lattice coincide in the scaling limit and
belong to the same universality class. The concept of universality class of course does not
only exist in two dimensions but also in higher dimensions, for instance the universality
class of Ising model in three dimensions [3].

Apart from their applications in two dimensions, two-dimensional CFTs also have
relations with higher-dimensional quantum field theories, for instance a one-to-one corre-
spondence between correlation functions in N = 2 supersymmetric gauge theories in four
dimensions and correlation functions in Liouville theory, known as the Alday-Gaiotto-
Tachikawa (AGT) relation [7]. This relation also later led to combinatorial expression for
conformal blocks in two dimensions [8].

1.2 CFTs at generic central charge
This thesis mainly concerns solving two-dimensional CFTs at generic central charge c by
using the conformal bootstrap. Let us also clarify here that our intentions of solving
these CFTs amount to computing all of their correlation functions or at least having all
necessary ingredients such as lists of primary fields, conformal blocks and OPE coefficients.
We are interested in CFTs on the Riemann sphere, and we do not discuss any theory,
which involves enhanced symmetry such as the W-algebra symmetry or supersymmetry.
Furthermore, throughout this thesis, we will always parametrize the central charge c as
the following:

c = 13− 6β−2 − 6β2 , (1.2.1)

where the parameter β2 in general can take generic values on the complex plane. For
instance, Liouville theory is a consistent CFT for c ∈ C − (−∞, 1) [5], an extension of
Liouville theory for the central charge c < 1 was also proposed in [9]. Generalized minimal
models, to be discussed in Section 4.4, are also examples of CFTs whose central charge
c ∈ C. However, in this thesis, we wil always restrict the central charge to the following
c-half-plane:

<(β2) > 0⇐⇒ <(c) < 13 . (1.2.2)

The above inequality ensures the convergence of four-point functions of these particular
CFTs that we consider [10, 11]. Examples of CFTs, which are only valid in the c-half-
plane (1.2.2), are the Potts and O(n) CFTs, which will be introduced in the next Section.
Another example is the odd CFT of [10, 12], which we will not consider in this thesis.

Certainly, CFTs at rational central charge are more well-known than the case of generic
central charge due to their various applications. For instance the critical self-avoiding ran-
dom walk in two dimensions is described by a CFT with the central charge c = 0, the
two-dimensional Ising model at the critical point has the central charge c = 1

2
, and the

critical two-dimensional Ashkin–Teller model comes with the central charge c = 1. How-
ever, CFTs at generic central charge are simpler and more tractable. For instance, Verma
modules of Virasoro algebra at generic central can have at most one null vector, whereas
there can be infinitely many null vectors in the case of rational central charge. Therefore,
in some cases, it is simpler to solve CFTs at rational central charge by considering their
counterparts at generic central charge, whose structure is more well-understood. Then
take limits of these CFTs at generic central charge such that their central charges ap-
proaching rational numbers, to arrive at the desired CFTs at rational central charge. For
example, the critical self-avoiding random walk can be obtained by taking the limit c→ 0
of the O(n) CFT at generic central charge. This type of limits is known rational limits
and will also be discussed in Chapter 6.
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Two types of the degenerate fields

Solving CFTs at generic central charge depends crucially on the existence of the degenerate
fields [10], to be introduced in Chapter 4. For example, generalized minimal models
are completely solved due to infinitely many degenerate fields in their spectra [13]. In
practice, there are two independent types of these degenerate fields [5], and they lead to
two independent constraints on correlation functions, to be discussed in details in Section
4.3. Therefore, the degenerate fields also put constraints on CFT data, in addition to the
crossing-symmetry equation. Let us then classify CFTs at generic central charge according
to the existence of the degenerate fields.

1. Two independent degenerate fields: Most of CFTs at generic central charge,
which have both types of the degenerate fields, admit exact solutions, for instance
generalized minimal models that we previously mentioned. Liouville theory is an-
other example. Although, the degenerate fields do not exist in the spectrum of
Liouville theory with the central charge c ∈ C − (−∞, 1), their OPE coefficients
obey constraints from both types of the degenerate fields [5].

2. One independent degenerate field: Examples of CFTs in this category are
the Potts and O(n) CFTs [14]. This type of CFT is therefore less constrained and
can be much more difficult to solve. For instance, constraints from one independent
degenerate field only help us to compute correlation functions of the Potts and O(n)
CFTs semi-analytically [15].

3. No degenerate field: We do not know yet how to solve CFTs at generic central
charge without any constraint from the degenerate fields, neither do we know if such
CFTs exist.

Logarithmic CFTs

Like the case of rational central charge [16], CFTs at generic central charge can also be
logarithmic. Logarithmic CFTs are simply CFTs whose spectra contain logarithmic fields
that belong to logarithmic representations of the Virasoro algebra. These representations
are well-known to result in Jordan blocks of the Virasoro generators L0 and L̄0 and also
lead to correlation functions which depend logarithmically on the positions.

Building consistent logarithmic CFT on the Riemann sphere usually involves gluing
the right- and left-moving quantities, while requiring correlation functions in the resulting
theory to be single-valued, for instance [17]. Such a procedure in general is not easy. To
overcome this difficulty, in Chapters 2 and 3, we will obtain logarithmic fields by simply
taking derivatives of primary fields on the Riemann sphere with respect to the conformal
dimensions [18] because single-valued objects remain single-valued under differentiation.
This procedure also works in higher dimensions [19].

This way of constructing logarithmic representations also allows us to write down their
corresponding conformal blocks explicitly by taking derivatives of some known results with
respect to the conformal dimensions, as we will see in Section 3.6. Furthermore, we will
argue that some of these derivatives of fields describe the logarithmic structure of the
Potts and O(n) CFTs at generic central charge in Chapter 5 and also play important
roles in some rational limits of generalized minimal models in Chapter 6. It may look
speculative and artificial to describe these CFTs, which have discrete spectra, by using
our approach since taking derivatives with respect to the conformal dimensions requires
having continuous values of conformal dimensions. Therefore, to validate our arguments,
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we will numerically bootstrap four-point functions of these models with our logarithmic
blocks at arbitrary precision.

Rational limits

Rational limits are limits of objects in CFTs at generic central charge, taken such that the
central charge c is approaching some rational numbers. These objects may be correlation
functions, fusion rules, fields, or even the whole CFTs themselves. For instance, rational
limits of Liouville theory with c ∈ C− (∞, 1) results in CFTs at rational central charge,
known as Runkel-Watts type theories [5]. Rational limits are however in general very
complicated due to the analyticity of conformal blocks and structure constants, and there
are still many open questions in this area. We will now discuss a few of them.

1. Rational limits of the Potts and O(n) CFTs describe very interesting statistical
physic systems. For example, the limit c → 0 of the Potts CFTs coincides with
critical bond percolation. Recently, there has been some progress in this area in
[20] where the authors demonstrated how to regularized some divergences in the
limit c → 0 of the four-point connectivities, to be defined in the next section.
Nevertheless, these limits are not well-understood in general and are extremely
complicated. Let us now mention simpler problems below.

2. Rational limits of generalized minimal models have not been completely under-
stood and in general do not lead to minimal models. For instance, the author of
[12] considered some rational limits of four-point functions of generalized minimal
models, whose results appear to be logarithmic in position and do not yet have
interpretations. We will visit this problem for some particular four-point functions
of generalized minimal models in Chapter 6.

3. Another interesting problem is the rational limit of conformal blocks. At generic
central charge, the Zamolodchikov recursion [21], to be discussed in Section 3.4.2,
provides a closed expression for four-point conformal blocks. Rational limits of the
Zamolodchikov recursion are therefore expected to provide closed expressions for
conformal blocks at rational central charge. This recursion is however not manifestly
analytic for rational values of central charge, and its rational limits have not been
completely understood. While there has been a recent progress on this subject in
[22], finding closed expression of conformal blocks at rational central charge remains
an open problem in two-dimensional CFTs.

1.3 The Potts and O(n) CFTs
The main interests of this thesis are the Potts and O(n) CFTs. The Potts and O(n) CFTs
describe the critical points of the two-dimensional Q-state Potts model with Q ∈ [0, 4]
and the two-dimensional O(n) model with n ∈ [−2, 2] [14]. The parameters Q and n of
these two models are related to the central charge c in (1.2.1) as follows:

Q = 4 cos(πβ2)2 and n = −2 cos(πβ−2) with
1

2
≤ β2 ≤ 1 , (1.3.1)

where Q and n are not required to be integers. In terms of statistical physics, the Potts
model with non-integer Q describes the so-called Fortuin-Kesteleyn random cluster [23]
while the O(n) model with generic n is equivalent to the dilute phase of the loop model
[4]. With these descriptions, correlation of the two lattice models exist even for Q, n ∈ C
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[24]. With the relation (1.3.1), it therefore makes sense to expect CFTs describing these
two models to be valid for generic central charge as well. This led us to the definitions of
the Potts and O(n) CFT [25, 11] as the following:

The Potts and O(n) CFTs are analytic continuations in the central charge c of the
critical Q-state Potts model and the critical O(n) model such that c is subject to the con-
straint (1.2.2)

Therefore, the Potts and O(n) CFTs are defined as two families of CFTs, which are
characterized by the parameter β2 in (1.2.2), and each of them lives on a β2-half-plane in
(1.2.2), or equivalently on a double cover of the c-half-plane. However, we do not know
yet the statistical interpretation of the both CFTs at generic central charge. Thus, these
two CFTs should be considered as theories, which include the Potts and O(n) models as
special cases. Moreover, It also turns out that the Potts and O(n) CFTs are logarithmic
in general. For instance, the author of [26] found that the currents of O(n) CFT belong
to a logarithmic representation of the Virasoro algebra. In [27], the authors also found
that Jordan blocks of L0 and L̄0 only appear in the continuum limit of the Potts and
O(n) model at generic Q and n. In other words, these models are not logarithmic at finite
scales.

In addition to conformal symmetry, the Potts and O(n) CFTs also have global sym-
metries: SQ and O(n) respectively. Representation theories of these two symmetries can
be formulated as tensor categories for generic Q and n [28]. As CFT data, solving these
two CFTs amounts to finding their spectra and solving for their OPE coefficients from the
consistency conditions: the crossing-symmetry equation and constraints from their global
symmetries. The list of primary fields in both CFTs were first obtained in [14]. However,
the complete action of the Virasoro algebra and global symmetries on their spectra were
only recently determined in [29] and [30], respectively. Moreover, conformal blocks for
four-point functions of primary fields in both CFTs are completely known, including the
logarithmic case [29]. The next step in solving these two CFTs is then to compute their
OPE coefficients. Numerically, this can be done by solving four-point structure constants
from the crossing-symmetry equation with the approach of [31].

In recent years, much of the interest has been focusing on the simplest four-point func-
tion of the Potts CFT, namely the four-point connectivities. The four-point connectivities
compute the probability of how the four points belong to the Fortuin-Kasteleyn clusters.
There are four different configurations of these connectivities, namely Paaaa, Pabab, Paabb,
and Pabba, which can be represented as follows:

z1 z2

z4z3

aaaa

z1 z2

z4z3

abab

z1 z2

z4z3

aabb

z1 z2

z4z3

abba

, (1.3.2)

where different colors indicate different Fortuin-Kasteleyn clusters. The spectra of these
connectivities was first proposed by [31], however it was later shown in [24], by using the
transfer-matrix method on the lattice model, that there are infinitely many fields missing
in the proposal of [31]. The complete spectra for the four-point connectivities of [24]
have also been validated by the numerical conformal bootstrap in [15, 29]. Moreover, the
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authors of [15, 32] also found several analytic ratios of four-point structure constants in
the four-point connectivities, which suggest that the Potts CFT can be exactly solved.

1.4 Outline

Let us now discuss the outline for three main results of this thesis.

Logarithmic representations

• In Chapter 2, we build logarithmic representations at generic central charge by using
derivatives of primary fields with respect to the conformal dimensions while also
reviewing basic cases such as Verma modules and the degenerate representations.
Our main results are the non-chiral logarithmic representations: Wκ

(r,s) and W̃κ
(r,s) in

Section 2.5. These representations are parametrized by their logarithmic couplings
κ and also lead to second- or third-rank Jordan blocks of the dilatation generators
L0 and L̄0. In Section 4.5 of Chapter 4, we compute the couplings κ for both
representations by using the existence of the degenerate fields.

• In Chapter 3, we discuss how to translate Verma modules and logarithmic repre-
sentations, introduced in Chapter 2, into the concept of fields, and we review how
to compute some correlation functions of these fields by using the Ward identities.
Particularly, in Section 3.6, we argue how to write down closed expressions for four-
point conformal blocks of logarithmic representations introduced in Chapter 2. In
Section 4.5.2 of Chapter 4, we explain how the degenerate fields fix the undetermined
constants of logarithmic blocks.

Towards solving the Potts and O(n) CFTs

• Chapter 4 is mainly a review on the degenerate fields such as their basic properties:
the degenerate fusion rules and the BPZ equations. We also review consequences
of the existence of the degenerate fields such as the degenerate-shift equation of
[10], then we give an example of CFTs whose spectra are completely made of the
degenerate fields, known as generalized minimal models. At the end of this Chap-
ter, we also discuss the interchiral blocks of [15], which will play crucial roles in
bootstrapping four-point functions of the Potts and O(n) CFTs.

• In Chapter 5, we review spectra of the Potts and O(n) CFTs, including the action
of their global symmetries on primary fields, which was recently determined in
[30]. Then we discuss how to solve the crossing-symmetry equation for their four-
point functions by our approach in [25] in Section 5.2 where we explain how to
count the numbers of crossing-symmetry solutions and how to compare them with
predictions from global symmetries. Thereafter, in Sections 5.3 and 5.4, we discuss
in several examples how to numerically compute four-point functions of both CFT
from [25, 33]. In particular, we conclude several exact results such as their numbers
of crossing-symmetry solutions, exact spectra, vanishing three-point functions, exact
ratios of structure constants, and fusion rules.

• In Subsection 7.2.3 of Chapter 7, we discuss our preliminary numerical results of
bootstrapping the O(n) CFT at n = 0 with vanishing central charge. This particular
case corresponds to the critical self-avoiding random walk in two dimensions.
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Numerical data for Chapter 5 can be found in Notebooks: On4pt.ipynb and Potts4pt.ipynb
in [34].

Rational central charge

In Chapter 6, we discuss consequences of having rational central charge, then we briefly
review the A-series minimal models. In Section 6.3, we discuss chiral logarithmic minimal
models of [35]. This section is the only part of this thesis where we consider CFTs which do
not live on the Riemann sphere, but the upper-half plane. Furthermore, we consider some
rational limits of generalized minimal models, then we compare results from these limits
with chiral logarithmic minimal models and speculate on the existence of logarithmic
minimal models on the Riemann sphere.
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CHAPTER 2

Representations of the Virasoro algebra

We start with a brief review of conformal transformations in two dimensions, then we
discuss various representations of the Virasoro algebra at generic central charge, from the
mainstream case of Verma modules to new results on logarithmic representations.

2.1 Conformal symmetry in two dimensions
We are interested in conformal transformations on the Riemann sphere, on which we assign
the local coordinates z and z̄, called the left- and right-moving coordinates respectively.
Therefore, z and z̄ live on the complex plane C plus the point at ∞. In two dimensions,
any holomorphic function is a conformal transformation. To write down the generators
of two-dimensional conformal transformations, let us then consider the infinitesimal-local
conformal transformation: z → z+ε(z) where ε(z) is a holomorphic function. The Laurent
expansion of ε(z) around z = 0 reads

ε(z) =
∑
n∈Z

εnz
n+1 . (2.1.1)

For any function f(z), we can then write

f(z + ε(z))− f(z) = −
∑
n

εnz
n+1 ∂

∂z
f(z) +O(ε2) ,

=
∑
n

εn`nf(z) +O(ε2) , (2.1.2)

where the same analysis also holds for the infinitesimal transformations of z̄, and we have
introduced the generators `n, to be defined below. With (2.1.2), we find the generators
of local conformal transformations as follows:

`n = −zn+1 ∂

∂z
and ¯̀

n = −z̄n+1 ∂

∂z̄
for n ∈ Z . (2.1.3)

The generators `n form an infinite-dimensional Lie algebra called the Witt algebra [4].
Conformal transformations on the Riemann sphere are then generated by two copies of
the Witt algebra:

[`n, `m] = (n−m)`n+m , [¯̀n, ¯̀
m] = (n−m)¯̀

n+m and [`n, ¯̀
m] = 0 . (2.1.4)

13
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Among infinitely many generators in (2.1.3), only the generators `n and ¯̀
n with n ∈

{−1, 0, 1} can be globally defined at any point on the Riemann sphere and form the
sl(2) × s̄l(2) algebra, which generates the global conformal transformations. The group
of global conformal transformations on the Riemann sphere is equivalent to the group
PSL(2,C) or namely the group of Möbius transformations: (z, z̄)→ (w(z), w̄(z̄)),

w(z) =
az + b

cz + d
for a, b, c, d ∈ C with ab− cd 6= 0 . (2.1.5)

The function w(z) in (2.1.5) then provide us the finite form of global conformal trans-
formations. It is also worth mentioning the following notable transformations which are
special cases of (2.1.5):

1. Translation: z → z + b

2. Rotation: z → az with |a| = 1

3. Scaling: z → az with a ∈ R

4. Inversion: z → 1
z

At first glance, it may seem bizarre to have an inversion of z, which is singular at z = 0,
as a global transformation. However, since we are on the Riemann sphere, the inversion
of z = 0 simply takes us to the point z =∞, and vice versa.

The Virasoro algebra

While two-dimensional CFTs indeed come with infinite local conformal symmetry [36],
the Witt algebra (2.1.4) does not accommodate conformal symmetry of CFTs in two
dimensions since describing symmetry of a quantum theory requires the use of projective
representations. Lifting representations of the Witt algebra to be projective is equivalent
to centrally extending the algebra itself. The resulting algebra is known as the Virasoro
algebra, generated by the Virasoro generators Ln. Sometimes we will refer to them as the
Virasoro modes. The Witt algebra has infinitely many central extensions, which however
are equivalent up to a trivial redefinition of the generators Ln → Ln + g(n)C for some
functions g and constant C [5]. We write the Virasoro algebra as follows:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m . (2.1.6)

Since we are interested in CFTs which live on the Riemann sphere, let us also introduce
the right-moving generators L̄n, which satisfy

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m , (2.1.7a)

[Ln, L̄m] = 0 . (2.1.7b)

The parameters c is called the central charge, which was defined in (1.2.1). In general, the
left- and right-moving algebras are allowed to have different values of central charge but
we are only interested in the case where they have the same central charge. Furthermore,
we always assume that the conformal algebra of CFT on the Riemann sphere is a direct
product between the left- and right-moving Virasoro algebra, which led us to (2.1.7b).
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2.2 Verma modules
Verma modules of the Virasoro algebra are highest-weight representations generated by
the Virasoro generators. Since the left- and right-moving generators commute, it is suffi-
cient to study Verma modules generated by either Ln or L̄n. In this representation space,
the generator L0 can be completely diagonalized, therefore we define the highest-weight
states, also called the primary states |∆〉 for the Verma module V∆ as follows:

L0|∆〉 = ∆|∆〉 and Lm>0|∆〉 = 0 , (2.2.1)

where the conformal dimension ∆ is related to the central charge c in (1.2.1) as follows,

∆(P ) =
c− 1

24
+ P 2 , (2.2.2)

where the parameter P is called the momentum. For generic ∆ at generic central charge,
the Verma module V∆ has |∆〉 as the only highest-weight state and is always irreducible.
Acting on the primary state |∆〉 with the negative Virasoro modes Ln<0 then gives us a
tower of infinitely many states, called the descendants state. These descendants can be
characterized according to the degree of the Virasoro generators acting upon them. Let
us then introduce the bases of the descendant at level N ,

p∏
i=1

L−ni |∆〉 with 0 < n1 . . . ≤ np−1 ≤ np , (2.2.3)

where the sets of integers {np, np−1, . . . , n1} are all possible integer partitions of N . Using
the relation (2.1.7b), one can easily show that any descendant of |∆〉 at level N is an
eigenvector of L0 with the conformal dimension ∆ +N . Let us now write down examples
of (2.2.3) explicitly up to level 3,

|∆〉

L−1|∆〉

L2
−1|∆〉 L−2|∆〉

∆ + 1

∆ + 2

∆ + 3L−3|∆〉L−1L−2|∆〉L3
−1|∆〉

(2.2.4)

Therefore, the number of linearly-independent vectors in (2.2.3) at level N is equivalent
to the number of integer partitions for N , which is given by the coefficient pN in the
generating function:

∞∑
N=0

pNx
N =

∞∏
i=1

(1− xi)−1 = 1 + x+ 2x2 + 3x3 + 5x4 + . . . , (2.2.5)

Thus, the vector space of the Verma module V∆ is infinite-dimensional.
Let us now also introduce right-moving Verma module V̄∆̄ which are generated by the

right-moving generators L̄n and come with the highest-weight state |∆̄〉. Therefore, for
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a given value of the central charge c, we can also build a non-chiral Verma module as
the direct product V∆⊗V̄∆̄ whose highest-weight state is the non-diagonal primary states
|∆, ∆̄〉, given by

|∆, ∆̄〉 = |∆〉 ⊗ |∆̄〉 . (2.2.6)

In our notations, the generators Ln always act the left factor on the product |∆〉 ⊗ |∆̄〉,
whereas L̄n acts on the right. Moreover, whenever we have the coincidence ∆ = ∆̄, the
highest-weight state of V∆ ⊗ V̄∆ is called the diagonal primary state |∆〉D,

|∆〉D = |∆〉 ⊗ |∆〉 . (2.2.7)

2.3 Degenerate representations

Although basis vectors of descendants at each level for the primary |∆〉 in (2.2.3) are
not themselves primaries, their linear combinations at the same level can lead to another
primary for some special values of ∆. In such scenarios, the Verma modules V∆ become
reducible and contain non-trivial subrepresentations whose highest-weight states are called
the null vectors. In other words, the null vectors are states which are both descendant
and primary. Let us now demonstrate of how to compute these null vectors.

Consider the descendant at level 1: L−1|∆〉. While L−1|∆〉 is annihilated by the
generators Ln>2, acting upon L−1|∆〉 with L1 yields

L1L−1|∆〉 = 2L0|∆〉 = 2∆|∆〉 . (2.3.1)

Thus, the descendant L−1|∆〉 is a primary if and only if ∆ = 0. This motivates us to
define the null vector at level 1 as

|η〉 = L−1|∆〉
∣∣∣
∆=0

. (2.3.2)

At level 2, we write the null vector, |η′〉, as the linear combination:

|η′〉 = aL2
−1|∆〉+ bL−2|∆〉 , (2.3.3)

To solve for a and b, we recall that |η′〉 must be annihilated by the positive Virasoro modes
Ln>0. However, the constraints from the generators Ln>2 are unnecessary since they can
be obtained as commutators of L1 and L2. For instance, we can write L3 = [L1, L2].
Therefore, it is sufficient to only consider the action of L1 and L2 on |η′〉. We require

L1|η′〉 = 0 and L2|η′〉 = 0 . (2.3.4)

These two equations give us a linear system for the two unknowns a and b in (2.3.3),(
4∆ + 2 3

6∆ 4∆ + c
2

)(
a
b

)
= 0 . (2.3.5)

Thus, the linear system (2.3.5) has non-trivial solutions if and only if the determinant of
the square matrix in (2.3.5) is zero. We have

det
(

4∆ + 2 3
6∆ 4∆ + c

2

)
= 0 =⇒ ∆ = ∆± =

1

16

(
5− c±

√
(c− 25)(c− 1)

)
. (2.3.6)
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In contrast to the level-1 null vector, null vectors at level 2 come with two possible
conformal dimensions: ∆±. One can then write down |η′〉 explicitly by solving (2.3.5)
with ∆ in (2.3.6).

|η′〉± ∼ L2
−1|∆±〉 −

12∆±
8∆± + c

|∆±〉 . (2.3.7)

For higher-level null vectors, the primary state |∆(r,s)〉 with r, s ∈ N∗ has the null vector
|η(r,s)〉 at level rs where the conformal dimension ∆(r,s) is parametrized by the the Kac
indices (r, s),

∆(r,s) = ∆(P(r,s)) with P(r,s) =
1

2

(
rβ − s

β

)
. (2.3.8)

We also call ∆(r,s) with r, s ∈ N∗ as the degenerate conformal dimensions. The null vector
|η(r,s)〉 associated to the primary state |∆(r,s)〉 is then given by

|η(r,s)〉 = L(r,s)|∆(r,s)〉 for r, s ∈ N∗ , (2.3.9)

where the operator L(r,s) denotes the null vector operator, a linear combination of negative
Virasoro modes of degree rs which creates the null vector |η(r,s)〉 at level rs. For instance,
in the case of (r, s) = (1, 1), one simply has L(1,1) = L−1. Furthermore, we shall be writing
L(r,s) entirely in terms of β2 by using (2.3.8) for the rest of this thesis. Since the null
vectors are primary states,

L0|η(r,s)〉 = ∆(r,−s)|η(r,s)〉 and Ln>0|η(r,s)〉 = 0 . (2.3.10)

where we have used the following identity for the dimensions of |η(r,s)〉,

∆(r,s) + rs = ∆(r,−s) . (2.3.11)

To compute (2.3.9), there are formulae for L(1,s) in [4]. However, there seems to be
no closed-form expressions of L(r,s) for general values of r and s. In practice, we have
written a small program in Mathematica to calculate L(r,s), which can easily reach the
level rs = 20. The program is also available on request. Let us now display examples of
L(r,s) for rs ≤ 4:

(r, s) ∆(r,s) L(r,s)

(1, 1) 0 L−1

(2, 1) −1
2

+ 3
4
β2 L2

−1 − β2L−2

(1, 2) −1
2

+ 3
4
β−2 L2

−1 − β−2L−2

(3, 1) −1 + 2β2 L3
−1 − 4β2L−2L−1 + (4β4 − 2β2)L−3

(1, 3) −1 + 2β−2 L3
−1 − 4β−2L−2L−1 + (4β−4 − 2β−2)L−3

(4, 1) −3
2

+ 15
4
β2

L4
−1 − 10β2L−2L

2
−1 + 9β4L2

−2 + 2(12β4 − 5β2)L−3L−1 − (6β2 − 4β4 + 6β6)L−4

(2, 2) −3
2

+ 3
4

(β2 + β−2) L4
−1 − 2(β2 + β−2)L−2L

2
−1 + (β4 − β−4)2L2

−2 − 2(β2 − 3 + β−2)L−3L−1 − 3(β2 − β−2)2L−4

(1, 4) −3
2

+ 15
4
β−2

L4
−1 − 10β−2L−2L

2
−1 + 9β−4L2

−2 + 2(12β−4 − 5β−2)L−3L−1 − (6β−2 − 4β−4 + 6β−6)L−4

(2.3.12)
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Observe that the null vectors |η(r,s)〉 are invariant under

r ↔ s simultaneously with β → β−1 , (2.3.13)

which naturally follows from (2.3.8) and (2.3.10). At generic central charge, there is only
one null vector for each pair (r, s), in contrast to the case of rational central charge where
V∆(r,s)

can have infinitely many null vectors, which we shall see in Chapter 6.
From (2.3.9), the Verma module V∆(r,s)

is then reducible and contains a non-trivial
subrepresentation: V∆(r,−s) , whose highest-weight state is |η(r,s)〉. We can then build an
irreducible representation by taking a quotient between V∆(r,s)

and V∆(r,−s) . The result is
known as the degenerate representation R(r,s):

R(r,s) = V∆(r,s)
/V∆(r,−s) . (2.3.14)

Thus, the resulting representation R(r,s) is irreducible. We also stress the construction
(2.3.14) is only valid at generic central charge. Let us also define the highest-weight state
of R(r,s) as |〈r, s〉〉, which comes with conformal dimensions ∆(r,s) and the vanishing null
descendants:

L(r,s)|〈r, s〉〉 = 0 . (2.3.15)

Likewise to their left-moving counter parts, we define the right-moving degenerate rep-
resentation R̄(r,s) as V̄∆(r,s)

/V̄∆(r,−s) . At generic central charge, it is not possible to
build non-diagonal degenerate representations: R(r,s) ⊗ R̄(r′,s′) due to the constraints
∆(r′,s′) − ∆(r,s) ∈ Z from the single-valuedness. However, such constraints are always
satisfied trivially by diagonal representations. We then write the diagonal degenerate
representations RD as follows:

RD = R(r,s) ⊗ R̄(r,s) . (2.3.16)

whose height-weight states are

|〈r, s〉〉D = |〈r, s〉〉 ⊗ |〈r, s〉〉 , (2.3.17)

whose left- and right-null descendants vanish identically,

L(r,s)|〈r, s〉〉D = L̄(r,s)|〈r, s〉〉D = 0 . (2.3.18)

2.4 Derivatives of primary states
Let us now consider representations of the Virasoro algebra, upon which the action of L0

and L̄0 cannot be diagonalizable, known as logarithmic representations. That is to say
the matrices of L0 and L̄0 come with Jordan blocks. This kind of representations is well-
known to lead to correlation functions which are logarithmic in positions. The simplest
way of introducing Jordan blocks to L0 and L̄0 is to use derivatives with respect to the
conformal dimensions [18]. For convenience, let us now introduce a formal notation:

∂n

∂∆n
|∆〉D = |∆(n)〉D . (2.4.1)

For simplicity, we only consider derivatives of the diagonal primary state |∆〉D with respect
to ∆ in details. The non-diagonal case is however more complicated since the single-
valuedness requires that the action of L0− L̄0 on any state must always be diagonalizable
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[37]. Now recall that the ∆-derivatives commute with all of the Virasoro generators,
therefore acting on the states |∆(1)〉D and |∆〉D with L0 yields

L0|∆(1)〉D = |∆〉D + ∆|∆(1)〉D and L0|∆〉 = ∆|∆〉D . (2.4.2)

Thus, taking the derivative of |∆〉D with respect to ∆ results in a second-rank Jordan
block of L0. That is to say the logarithmic state |∆(1)〉D comes with a Jordan part-
ner |∆〉D, or equivalently the primary state |∆〉D has |∆(1)〉D as its logarithmic partner.
Moreover, acting on |∆(1)〉 with negative Virasoro modes simply gives us the logarithmic
descendants which have the descendants of the primary state |∆〉 as their Jordan partners.
For instance,

L0Ln<0|∆(1)〉D = Ln<0|∆〉D + (∆ + n)Ln<0|∆(1)〉D . (2.4.3)

In other words, taking the ∆-derivative of the primary states |∆〉D amount to differenti-
ating their whole Verma modules:

∂

∂∆

(
V∆ ⊗ V̄∆

)
, (2.4.4)

where the derivative in (2.4.4) means that we are taking the ∆-derivative of every state in
V∆⊗V̄∆. Therefore, the representations in (2.4.4) are no longer holomorphically factorized.
Moreover, notice that (2.4.4) is invariant under changing of the normalizations:

|∆〉D → λ(∆)|∆〉D =⇒ |∆(1)〉D → λ(∆)|∆(1)〉D + λ′(∆)|∆〉D , (2.4.5)

where λ(∆) are arbitrary functions. The transformations (2.4.5) preserve the Jordan
blocks of L0 and do not change the structure of (2.4.4). Thus, the derivatives of Verma
modules in (2.4.4) have no free parameters. Let us now consider the case of higher-order
derivatives briefly. We introduce the vector ~∆(n),

~∆(n) =

[
1

n!
|∆(n)〉D, . . . , 1

2!
|∆(2)〉D, |∆(1)〉D, |∆〉

]T
. (2.4.6)

Therefore, we have

L̂0
~∆(n) = ∆̂~∆(n) and L̂m>0

~∆(n) = 0 , (2.4.7)

where L̂n is a diagonal matrix whose diagonal elements are Ln. The matrix ∆̂ is a n× n
matrix with rank-n+ 1 Jordan blocks,

∆̂ =



∆ 1 0 · · · 0

0 ∆ 1
. . . 0

0 0 ∆
. . . 0

...
. . .

. . .
. . . 1

0 0 0 0 ∆


. (2.4.8)

Thus, the nth-derivatives of primary states lead to rank-n+1 Jordan blocks of L0. Similarly
to (2.4.4), the states ~∆(n) transform in the representations ∂n

∂∆n

(
V∆ ⊗ V̄∆

)
, which are also

invariant under renormalizing the primary state |∆〉D.
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2.5 Derivatives of null vectors

We now consider representations of Virasoro algebra which are logarithmic and also in-
clude the null vectors |η(r,s)〉D. To do so, we simply use the derivatives of |η(r,s)〉D with
respect to its conformal dimensions. Since we are working with Verma modules, we stress
that

|η(r,s)〉D = L(r,s)L̄(r,s)|∆(r,s)〉D 6= 0 . (2.5.1)

Let us then write down the nth-derivatives of the null vectors |η(r,s)〉D as the following:

|η(n)
(r,s)〉

D =
∂n

∂∆n
|∆ + rs〉D

∣∣∣
∆=∆(r,s)

, (2.5.2a)

|µ(n)
(r,s)〉

D = L(r,s)L̄(r,s)
∂n

∂∆n
|∆〉D

∣∣∣
∆=∆(r,s)

, (2.5.2b)

where these two states are normalized such that

|µ(0)
(r,s)〉

D = |η(r,s)〉D . (2.5.3)

By their definitions, the action of the Virasoro algebra on the states |η(n)
(r,s)〉D can be

obtained immediately by setting ∆ = ∆(r,−s) in (2.4.7) while the case of |µ(n)
(r,s)〉D is less

straightforward, and we only discuss it up to n = 2.

2.5.1 First-order derivatives

We start with the first-order derivatives of the null vectors in (2.5.2) by introducing the
following linear combination,

|W κ
(r,s)〉 = (1− κ)|η(1)

(r,s)〉
D + κ|µ(1)

(r,s)〉
D . (2.5.4)

With (2.5.2) and (2.3.10), the null vector |η(r,s)〉D and the state |W κ
(r,s)〉 then form second-

rank Jordan blocks of L0 and L̄0:

L̄0|W κ
(r,s)〉 = L0|W κ

(r,s)〉 = |η(r,s)〉D + ∆(r,s)|W κ
(r,s)〉 . (2.5.5)

Therefore, representations generated by |W κ
(r,s)〉, which we shall denote as Wκ

(r,s), are in
general logarithmic and also non-chiral. Moreover, the parameter κ is known as the
logarithmic coupling, which characterizes logarithmic representations Wκ

(r,s). That is to
say different values of κ lead to different Wκ

(r,s).
Let us now analyse the complete structure of primary states in the representations

Wκ
(r,s). To do so, we must understand how the generators Ln act upon |W κ

(r,s)〉. Let us
then introduce the annihilation and creation operators AN and LN as combinations of
negative and positive Virasoro modes of degree N , respectively. For any AN and LM , one
can write

ANLM |∆(1)〉D = P[AN ,LM ](∆)|∆(1)〉D + P ′[AN ,LM ](∆)|∆〉D , (2.5.6)

where the prime symbol denotes the first-order derivative of P[AN ,LM ](∆) with respect to
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∆. Moreover, the functions P[AN ,LM ](∆) depend polynomially on ∆. For instance,

AN P[AN ,L5
−1](∆)

L1 10(∆ + 2)L4
−1

L2
1 40(∆ + 2)(2∆ + 3)∆L3

−1

L3
1 240(∆ + 1)(∆ + 2)(2∆ + 3)L2

−1

L4
1 480(∆ + 1)(∆ + 2)(2∆ + 1)(2∆ + 3)L−1

L5
1 960∆(∆ + 1)(∆ + 2)(2∆ + 1)(2∆ + 3)

(2.5.7)

More precisely, P[AN≤M ,LM ](∆) are combinations of the generators Ln<0 whose coefficients
are polynomials in ∆ of degree at most N . Choosing LM to be the null vector operator
L(r,s) and setting ∆ = ∆(r,s) in (2.5.6) yields

ANL(r,s)|∆(r,s)〉 = AN |η(r,s)〉D = 0 =⇒ P[AN ,L(r,s)](∆(r,s)) = 0 . (2.5.8)

At generic central charge, the function P[AN ,L(r,s)](∆) always has a simple zero at ∆ =
∆(r,s). Using (2.5.8), let us now write

AN |µ(1)
(r,s)〉

D = P ′[AN ,L(r,s)]
(∆(r,s))L̄(r,s)|∆(r,s)〉D ,

= P ′[AN ,L̄(r,s)]
(∆(r,s))|∆(r,s),∆(r,−s)〉 . (2.5.9)

Taking into account the above with (2.4.7), we have

Ars|W κ
(r,s)〉 = |∆(r,s),∆(r,−s)〉 , (2.5.10a)

Ārs|W κ
(r,s)〉 = |∆(r,−s),∆(r,s)〉 , (2.5.10b)

where Ars and Ārs are normalized such that

P ′[L(r,s),Ars](∆(r,s)) = P ′[L(r,s),Ārs](∆(r,s)) = 1 . (2.5.11)

Let us also stress here that the normalizations (2.5.11) are only valid at generic value
of central charge whereas P ′[L(r,s),Ars](∆(r,s)) could vanish non-trivially at rational central
charge. From (2.5.10), the representation Wκ

(r,s) then contains two non-diagonal Verma
modules as its subrepresentations. We have

(V∆(r,s)
⊗ V̄∆(r,−s))⊕ (V∆(r,−s) ⊗ V̄∆(r,s)

)

(V∆(r,−s) ⊗ V̄∆(r,−s))
⊂ Wκ

(r,s) , (2.5.12)

which then implies thatWκ
(r,s) is indecomposable but reducible. We summarize the struc-

ture of Wκ
(r,s) in the figure 2.1. Now, let us climb down from the two non-diagonal states

in (2.1) to the null vector |η(r,s)〉D by using the null vector operators L(r,s) or L̄(r,s). More
explicitly, we have the relation:

L̄(r,s)Ārs|W κ
(r,s)〉 = L(r,s)Ars|W κ

(r,s)〉 = κ(L0 −∆(r,s))|W κ
(r,s)〉 . (2.5.13)

The above equation then defines the logarithmic state |W κ
(r,s)〉 and the logarithmic coupling

κ algebraically. In other words, one can also define the representation Wκ
(r,s) by using

(2.5.13) without relying on any derivative of null vector in (2.5.2). However, our derivative
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formalism will show its strength when computing logarithmic conformal blocks in Chapter
3. Furthermore, with the normalizations (2.5.11), the parameter κ does not depend on
the choice of Ars and Ārs , and observe from (2.5.13) that W∞(r,s) is not a logarithmic
representation wherein |W∞

(r,s)〉 are eigenvectors of L0 and L̄0. The case of Wκ
(r,s) with

any finite value of κ is however always logarithmic. Morevover, likewise to (2.4.5), the
equation (2.5.13) is invariant under renormalizing the null vector |η(r,s)〉D:

|η(r,s)〉D → λ(∆(r,−s))|η(r,s)〉D =⇒ |W κ
(r,s)〉 → λ(∆(r,−s))|W κ

(r,s)〉+λ′(∆(r,−s))|η(r,s)〉D .
(2.5.14)

Thus, the representation Wκ
(r,s) is unchanged under the gauge transformations (2.5.14),

and any logarithmic state related by (2.5.14) generates the same representation Wκ
(r,s).

L0, L̄0 |η(r,s)〉D|W κ
(r,s)〉

|∆(r,−s),∆(r,s)〉|∆(r,s),∆(r,−s)〉

Ars L̄(r,s)
L(r,s) Ārs

Figure 2.1: Primary and logarithmic states in Wκ
(r,s)

2.5.2 Second-order derivatives

Let us now discuss a more complicated case: the second-order derivatives of the null
vectors in (2.5.2). We consider the linear combination:

|W̃ κ
(r,s)〉 =

1− κ
2
|η(2)

(r,s)〉
D +

κ

2
|µ(2)

(r,s)〉
D (2.5.15)

We write W̃κ
(r,s) for representations generated by the state |W̃ κ

(r,s)〉. Acting on |W̃ κ
(r,s)〉 with

the generators L0 and L̄0 yields

L̄0|W̃ κ
(r,s)〉 = L0|W̃ κ

(r,s)〉 = |W κ
(r,s)〉+ ∆(r,−s)|W̃ κ

(r,s)〉 , (2.5.16a)

(L0 −∆(r,−s))
2|W̃ κ

(r,s)〉 = (L̄0 −∆(r,−s))
2|W̃ κ

(r,s)〉 = |η(r,s)〉D . (2.5.16b)

Thus, the Jordan partner of the logarithmic state |W̃ κ
(r,s)〉 is |W κ

(r,s)〉, whose Jordan partner
is given by the null vector |η(r,s)〉D. These three states then form third-rank Jordan blocks
of L0 and L̄0 in (2.5.16). To see the structure of the representation W̃ κ

(r,s), we start acting
on |W̃ κ

(r,s)〉 with the annihilation operators Ars and Ārs. Using (2.5.8), we have

Ars|W̃ κ
(r,s)〉 =

κ

2
Ars|µ(2)

(r,s)〉
D ,

= κP ′[Ars,L(r,s)]
(∆(r,s))L̄(r,s)|∆(1)

(r,s)〉
D +

κ

2
P ′′[Ars,L(r,s)]

(∆(r,s))L̄(r,s)|∆(r,s)〉D .

(2.5.17)
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The second derivative P ′′[Ars,L(r,s)]
(∆(r,s)) does not vanish in general, however the term

P ′′[Ars,L(r,s)]
(∆(r,s)) in (2.5.17) is redundant since it can always be absorbed in the gauge

transformations (2.5.21), which leave the representation W̃κ
(r,s) invariant. Using the nor-

malizations (2.5.11), we now write

Ars|W̃ κ
(r,s)〉 = κL̄(r,s)|∆(1)

(r,s)〉
D , (2.5.18a)

Ārs|W̃ κ
(r,s)〉 = κL(r,s)|∆(1)

(r,s)〉
D , (2.5.18b)

ĀrsArs|W̃ κ
(r,s)〉 = κ|∆(r,s)〉D . (2.5.18c)

From the above primary states, let us now start descending by acting upon them with
the null vector operators L(r,s) and L̄(r,s),

L(r,s)Ars|W̃ κ
(r,s)〉 = L̄(r,s)Ārs|W̃ κ

(r,s)〉 = κL(r,s)L̄(r,s)|∆(1)
(r,s)〉

D ,

= κ|µ(1)
(r,s)〉

D . (2.5.19)

Now recall (2.5.16), therefore both |W κ
(r,s)〉 and |µ

(1)
(r,s)〉D transform in the representation

W̃κ
(r,s). Since one can always take linear combinations of those two states to obtain |Wκ′

(r,s)〉
with any value of κ′, the representation W̃κ

(r,s) then contains Wκ′

(r,s) with arbitrary κ′ as
non-trivial subrepresentations. To summarize, as shown in the figure 2.2, W̃κ

(r,s) have 4
primary states and 4 logarithmic states. Acting on the diagonal primary state |∆(r,s)〉D
with both L(r,s) and L̄(r,s) simply brings us back to the null vector |η(r,s)〉D in (2.5.16),

L(r,s)L̄(r,s)ArsĀrs|W̃ κ
(r,s)〉 = κ(L0 −∆(r,−s))

2|W̃ κ
(r,s)〉 , (2.5.20)

which provides an algebraic definition for the representation W̃κ
(r,s). Similarly to the case

of W∞(r,s), the logarithmic state |W̃∞
(r,s)〉 are eigenvectors of L0 and L̄0, consequently the

representation W̃∞(r,s) is not logarithmic. Furthermore, the equation (2.5.20) is unchanged
under transforming |ηD(r,s)〉 → λ(∆(r,−s))|ηD(r,s)〉, or equivalently

W̃κ
(r,s)〉 → W̃κ

(r,s)〉+ λ′′|η(r,s)〉D + κλ′|µ(1)
(r,s)〉

D + (1− κ)λ′|η(1)
(r,s)〉

D , (2.5.21a)

Ars|W̃ κ
(r,s)〉 → Ars|W̃ κ

(r,s)〉+ κλ′L̄(r,s)|∆(r,s)〉D , (2.5.21b)

Ārs|W̃ κ
(r,s)〉 → Ārs|W̃ κ

(r,s)〉+ κλ′L(r,s)|∆(r,s)〉D (2.5.21c)

where we have written down the last two equations in the above by acting on (2.5.21a)
with Ars and Ārs. Hence, the representation W̃κ

(r,s) is invariant the gauge transformations
(2.5.21).

Using derivatives of null vectors, we have then constructed logarithmic representations
of the Virasoro algebra, which are non-chiral and also valid at generic central charge. In
Chapter 4, we will fix the values of these coupling by using the existence of the degenerate
fields. In particular the representations Wκ

(r,s) with such fixed values of κ play important
in bootstrapping four-point functions of the Potts and O(n) CFTs. While we do not know
yet applications of the representations W̃κ0

(r,s) at generic central charge, the authors of [20]
found that our logarithmic representation W̃ κ0

(1,1) with κ0 = − 1
48

at c = 0 appears as the
vacuum module of the Potts and O(n) CFTs at the central charge c = 0. This vacuum
module is also an example of the non-chiral staggered module of [38].
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Ars

Ārs

Ārs

Ars

ĀrsArs

L̄0, L0L0, L̄0

L̄(r,s) L(r,s)

L(r,s) L̄(r,s)

L0, L̄0

L0, L̄0

|∆〈r,−s〉,∆〈r,s〉〉L̄(r,s)|∆(1)
(r,s)〉D L(r,s)|∆(1)

(r,s)〉D|∆〈r,s〉,∆〈r,−s〉〉

|∆〈r,s〉〉D

|W̃ κ
(r,s)〉

|W κ′

(r,s)〉

|η(r,s)〉D

Figure 2.2: Primary and logarithmic states in W̃κ
(r,s)



CHAPTER 3

Primary fields and logarithmic fields

One of the fundamental principles of CFTs is the existence of a one-to-one map between
states and operators, which is known as the operator-state correspondence [4]. In the case
of two-dimensional CFT, one can then uniquely associate each field with each state in
the representation of the Virasoro algebra. Consequently, correlation functions of fields in
two-dimensional CFTs are also strongly constrained by conformal symmetry. Let us then
discuss how to translate representations of the Virasoro algebra into fields, and how their
correlation functions are subject to conformal symmetry. In this Chapter, we only focus
on primary fields and logarithmic fields at generic central charge, while the degenerate
fields will be discussed in Chapter 4.

3.1 Primary fields
The primary state |∆, ∆̄〉 gives rise to the primary field V∆,∆̄(z, z̄) with the left- and
right-conformal dimensions (∆, ∆̄). In other words, the primary field V∆,∆̄(z, z̄) is an
object that depends on the coordinates z and z̄ and also transforms in the Verma module
V∆ ⊗ V̄∆̄ as its highest-weight state. More explicitly, we have

L
(z)
0 V∆,∆̄(z, z̄) = ∆V∆,∆̄(z, z̄) , (3.1.1a)

L̄
(z̄)
0 V∆,∆̄(z, z̄) = ∆̄V∆,∆̄(z, z̄) , (3.1.1b)

L̄
(z̄)
n>0V∆,∆̄(z) = L

(z)
n>0V∆,∆̄(z, z̄) = 0 , (3.1.1c)

Acting on V∆,∆̄(z, z̄) with the negative Virasoro modes simply gives us the descendant
fields, which are in correspondences with the descendant states of |∆, ∆̄〉,

p∏
i=1

L
(z)
ni<0V∆,∆̄(z, z̄)←→

p∏
i=1

Lni<0|∆〉 ⊗ |∆̄〉 . (3.1.2)

Moreover, we refer to primary fields with the same left- and right-conformal dimensions
as diagonal primary fields, denoted by V D

∆ (z, z̄). Let us now consider how the primary
field V∆,∆̄(z, z̄) transforms under finite global conformal transformations w(z) and w̄(z̄)
in (2.1.5). From [4], we have

V∆,∆̄(w(z), w̄(z̄)) =

(
∂w

∂z

)−∆(
∂w̄

∂z̄

)−∆̄

V∆,∆̄(z, z̄) . (3.1.3)

25
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We also stress that while the definition of primary fields in (3.1.1) automatically imply
the global transformations (3.1.3), the transformations (3.1.3) do not define primary fields
but can serve as a definition for quasi-primary fields. In other words, any primary field is
a quasi-primary, but the converse is not always true. An example of such a phenomenon
will be given at the end of next subsection. Let us now consider (3.1.3) for some special
cases of w(z) and w̄(z̄),

• Under the scaling: (z, z̄)→ (λz, λz̄), we have

V∆,∆̄(λz, λ̄z̄) = λ−(∆+∆̄)V∆,∆̄(z, z̄) . (3.1.4)

Therefore, the total dimension ∆+∆̄, also known as the scaling dimension, dictates
how primary fields scale under scaling the coordinates z and z̄.

• Under the rotation: (z, z̄)→ (eiθz, e−iθz̄), we have

V∆,∆̄(eiθz, e−iθz̄) = eiθ(∆−∆̄)V∆,∆̄(z, z̄) . (3.1.5)

The quantity ∆− ∆̄ is called the conformal spin of V∆,∆̄(z, z̄) and is an eigenvalue
of the operator L0 − L̄0. Notice that conformal spins of diagonal primary fields are
always zero.

• Under the inversion (z, z̄) → (1/z, 1/z̄). The transformation (3.1.3) then gives us
the behaviour of V∆,∆̄(z, z̄) near the point at infinity:

lim
z,z̄→∞

V∆,∆̄(z, z) ∼
V∆,∆̄(0)

z2∆z̄2∆̄
+ . . . . (3.1.6)

The limit (3.1.6) then provides us a well-behaved definition of primary fields at infinity,

V∆,∆̄(∞) = lim
z,z̄→∞

z2∆z̄2∆̄V∆,∆̄(z, z) . (3.1.7)

More precisely, primary fields are analytic over the whole Riemann sphere, including the
point at infinity, except for the points where the other fields are located. The validity of
the latter argument will be clear when discussing Ward identities in Sections 3.3.

3.2 The stress-energy tensors

As functions of z and z̄, the Virasoro generators generate infinitesimal conformal trans-
formations. Therefore we can immediately write down the action of L−1 and L̄−1 as
differential operators on O(z, z̄) as follows:

L
(z)
−1O(z, z̄) =

∂

∂z
O(z, z̄) and L̄

(z̄)
−1O(z, z̄) =

∂

∂z̄
O(z, z̄) . (3.2.1)

While we have been adding the positional dependence on the Virasoro generators, the
action of the Virasoro generators at different positions indeed describe the same Virasoro
algebra [5]. For instance, consider [ ∂

∂z
, L

(z)
n ] = (n + 1)L

(z)
n+1, which implies that Ln acting

on different positions are linearly related and belong to the same vector space.
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To consider the action of the other generators, we need the field description of the Vira-
soro algebra: the stress-energy tensors T (z) and T̄ (z̄), which can be defined as generating
functions of the generators Ln and L̄n,

T (z) =
∑
n∈Z

L
(y)
n

(z − y)n+2
, (3.2.2a)

T̄ (z̄) =
∑
n∈Z

L̄
(y)
n

(z̄ − ȳ)n+2
, (3.2.2b)

where the series in (3.2.2) converge, provided that (z, z̄) is sufficiently closed to (y, ȳ).
Now recall from [14] that T (z) and T̄ (z̄) are quasi-primary fields with the conformal
dimensions: (2, 0) and (0, 2), respectively. Since quasi-primary fields transform under
global conformal transformations as in (3.1.3), using (3.1.6), we find that T (z) behaves
asymptotically as follows,

T (z)
z→∞∼ 1

z4
, (3.2.3)

which means that T (z) is smooth at z = ∞, as well as T̄ (z̄). As a matter of facts,
the stress-energy tensors are holomorphic functions on the whole Riemann sphere. More
precisely, the equations in (3.2.2) suggest that T (z) and T̄ (z̄) satisfy the Cauchy–Riemann
equations:

∂

∂z̄
T (z) = 0 and

∂

∂z
T̄ (z̄) = 0 , (3.2.4)

which then allow us to expand T (z) and T̄ (z) around any point. For compactness, from
now, we only write the left-moving objects, whenever their analyses also hold for the right-
moving ones. To consider the action of Virasoro algebra on fields, we insert an arbitrary
field O(z, z̄) into (3.2.2),

T (x)O(z, z̄) =
∑
n∈Z

L
(z)
n O(z, z̄)

(x− z)n+2
. (3.2.5)

The product of two fields in (3.2.5) is an example of the operator-product expansion
(OPE), which shall be discuss in more details in Section 3.3.3. Applying the residue
theorem to (3.2.5), we arrive at the action of L(z)

n on O(z, z̄):

L(z)
n O(z, z̄) =

∮
Cz

dx

2πi
(x− z)n+1T (x)O(z, z̄) , (3.2.6)

where Cz is a smooth curve, which encloses the point x = z. Since the formula (3.2.6)
acts as a one-to-one map between the OPE in (3.2.5) and L(z)

n O(z, z̄), therefore knowing
the action of Virasoro algebra on the field O(z, z̄) also allows us to compute T (x)O(z̄, z).
For instance, using (3.1.1), we can write the OPE between T (x) and the primary field
V∆,∆̄(z, z̄) as follows:

T (x)V∆,∆̄(z, z̄) =
∆

(x− z)2
V∆,∆̄(z, z̄) +

1

x− z
∂

∂z
V∆,∆̄(z, z̄) +O(1) . (3.2.7)

Therefore, together with its right-moving counterpart, the OPE (3.2.7) provides us an
alternative way of defining primary fields.
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As fields describing the Virasoro algebra, the product of the stress-energy tensor with
themselves are equivalent to the Virasoro algebra [4, 5]. For example, using the left-moving
Virasoro algebra (2.1.6) with (3.2.6) gives us

T (x)T (z) =
c

2(x− z)4
1 +

2

(x− z)2
T (z) +

1

x− z
∂

∂z
T (z) +O(1) , (3.2.8)

where we have introduced the identity field 1, a constant field which has vanishing con-
formal dimension and does not depend on the positions. While the product of the right-
moving stress-energy tensors is comparable to (3.2.8), the vanishing commutators [Ln, L̄m]
constrain the the OPE T (x)T̄ (z̄) to have no singular terms. Using (3.2.8) with (3.2.6),
one can write the action of L(z)

n≥0 on T (z) as the following:

L
(z)
0 T (z) = 2 , L

(z)
1 T (z) = 0 , L

(z)
2 T (z) =

c

2
1 and L

(z)
n>2T (z) = 0 . (3.2.9)

For c 6= 0, the stress energy tensors are examples of quasi-primary fields which are not
primary fields since L(z)

2 T (z) 6= 0.

3.3 Ward identities

Conformal Ward identities, which we simply call Ward identities, are constraints from
conformal symmetry on correlation functions. In two-dimensional CFTs, Ward identities
then tell us how correlation functions are subject to the Virasoro algebra. To begin,
we introduce the n-point functions

〈∏n
i=1Oi(zi, z̄i)

〉
of arbitrary fields Oi(zi, z̄i). Now

requiring that these n-point functions are translational invariant gives us [4]

〈 n∏
i=1

Oi(zi, z̄i)
〉

= h(z12, z13, . . . zn n+1; z̄12, z̄13, . . . z̄n n+1) with zij = zi− zj , (3.3.1)

where h are arbitrary functions. The result (3.3.1) then suggests that the n-point func-
tions in (3.3.1) can become singular if two or more of their external fields are located at
the same points, which then led us to an important axiom of correlation functions in CFTs:〈∏n

i=1Oi(zi, z̄i)
〉
are smooth functions for (zi, z̄i) 6= (zj, z̄j) with i, j ∈ {1, . . . n}.

To consider how the rest of conformal symmetry constrains correlation functions, we insert
infinitesimal conformal transformations ε(z)T (z) into the n-point functions

〈∏n
i=1Oi(zi, z̄i)

〉
.

The resulting correlation functions are then analytic provided that z ∈ C− {z1, . . . , zn}.
Now consider the behaviour of

〈
ε(z)T (z)

∏n
i=1 Oi(zi, z̄i)

〉
as z approached infinity. Using

(3.2.3), one finds [5]

∮
C∞
dz
〈
ε(z)T (z)

n∏
i=1

Oi(zi, z̄i)
〉

= 0 provided ε(z)
z→∞∼ O(z2) . (3.3.2)

The above equation is known as the Ward identities, which are characterized by the
functions ε(z). If ε(z) correspond to the global conformal transformations, we refer to
(3.3.2) as global Ward identities, while the case of local conformal transformations lead to
local Ward identities.
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3.3.1 Local Ward identities

Local Ward identities can be derived by assuming that ε(z) in (3.3.2) is a meromorphic
function, which only has poles at the points z ∈ {z1, . . . zn}. In particular, we choose

ε(z) =
1

(z − zj)n−1
for n > 1 . (3.3.3)

With the above choice of ε(z) and using (3.2.6), we then pull the contour integral in (3.3.2)
over the Riemann sphere, pick up the poles at z ∈ {z1, . . . , zn}, then arrive at(

L
(zj)
−n +

∑
i 6=j

∞∑
k=−1

(
n+ k − 1

k + 1

)
L

(zi)
k

zn+k
ij

)〈 n∏
i=1

Oi(zi, z̄i)
〉

= 0 . (3.3.4)

Let us also specialize (3.3.4) to the case of all fields Oi(zi, z̄i) being primary fields. There-
fore, any term in (3.3.4) with positive Virasoro modes vanishes, and we simply find the
well-known result [4]:

〈
L

(zj)
−n V∆i,∆̄i

(zi, z̄i)
∏
i 6=j

V∆i,∆̄i
(zi, z̄i)

〉
= −

∑
i 6=j

(
1

zn−1
ji

∂

∂zj
− n− 1

znji
∆i

)〈 n∏
i=1

V∆i,∆̄i
(zi, z̄i)

〉
.

(3.3.5)

In particular, the equation (3.3.5) tells us how the generators L(zj)
−n act on correlation

functions of primary fields as differential operators. The local Ward identities (3.3.5) and
(3.3.4) then allow us to compute correlation functions of descendant fields from correlation
functions of their primary fields, while computing correlation functions of primary fields
require solving global Ward identities, which we shall now discuss.

3.3.2 Global Ward identities

Global Ward identities are obtained by setting ε(z) ∈ {1, z, z2} in (3.3.2), which amounts
to choosing ε(z) which are holomorphic functions on the whole Riemann sphere. With
these choices of ε(z), we arrive at

ε = 1→
n∑
i=1

L
(zi)
−1

〈 n∏
i=1

Oi(zi, z̄i)
〉

= 0 , (3.3.6a)

ε = z →
n∑
i=1

(
L

(zi)
0 + ziL

(zi)
−1

)〈 n∏
i=1

Oi(zi, z̄i)
〉

= 0 , (3.3.6b)

ε = z2 →
n∑
i=1

(
L

(zi)
1 + 2ziL

(zi)
0 + z2

iL
(zi)
−1

)〈 n∏
i=1

Oi(zi, z̄i)
〉

= 0 . (3.3.6c)

For the case of correlation functions with only primary fields, the terms with L(zi)
1 then

give no contributions, and one can also express the action of L−1, L0, and L1 in (3.3.6) as
differential operators by using the OPE (3.2.7). Let us now discuss results from solving
the global Ward identities for n-point functions of primary fields up to n = 4. Detailed
calculations of these cases exist in many literatures. For example, see [4].
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One-point functions

Since zero-point functions on the Riemann sphere is just a constant, which depends on
the central charge c [5], we start with the case of one-point functions. Writing the first
two equations in (3.3.6) for 〈V∆,∆̄(z, z̄)〉 yields

〈 ∂
∂z
V∆,∆̄(z, z̄)〉 = 0 , (3.3.7a)

∆V∆,∆̄(z, z̄) + z
∂

∂z
〈V∆,∆̄(z, z̄)〉 = 0 , (3.3.7b)

where the last equation in (3.3.6) gives a trivial constraint in this case. The equation
(3.3.7a) is equivalent to L−1V∆,∆̄(z, z̄) = 0. Subsequently, solving the second equation in
(3.3.7), as well as its right-moving counterpart, give us ∆ = ∆̄ = 0. The only field, which
satisfies both of these two requirements, is the identity field 1. Thus, the identity field is
the only field with non-vanishing one point function of CFTs on the Riemann sphere,

〈V∆,∆̄(z, z̄)〉 6= 0 ⇐⇒ V∆,∆̄(z, z̄) = α for some constants α . (3.3.8)

Two-point functions

Global Ward identities completely fix two-point functions of primary fields up to normal-
izations. Assuming that (∆1, ∆̄1) and (∆2, ∆̄2) take continuous values, we have

〈V∆1,∆̄1
(z1, z̄1)V∆2,∆̄2

(z2, z̄2)〉 = δ(∆1 −∆2)δ(∆̄1 − ∆̄2)
B(V∆1,∆̄1

)

z∆1
12 z̄

∆̄1
12

, (3.3.9)

where B(V∆1,∆̄1
) is also known as the two-point structure constant. Moreover, we replace

the Dirac-delta functions in (3.3.9) with the Kronecker-delta symbols δ∆1,∆2δ∆̄1,∆̄2
if the

conformal dimensions in (3.3.9) take discrete values. Therefore, two-point functions of two
primary fields vanish if their dimensions do not coincide, but the converse is not always
correct. For instance, two-point functions of two identical null fields vanish. Moreover,
B(V∆,∆̄) cannot always be normalized to one. For instance, normalizing BV∆,∆̄

to one is
inconsistent with the analyticity of three-point functions in Liouville theory [5].

Three-point functions

Solving (3.3.6), one finds that three-point functions of primary fields are given by〈 3∏
i=1

V∆i,∆̄i
(zi, z̄i)

〉
= C123|F (3)(∆i|zi)|2 , (3.3.10)

where C123 are unfixed coefficients also known as the three-point structure constants.
Unlike two-point functions, the coefficients C123 cannot be fixed by using field renormal-
izations. Furthermore, F (3)(∆i; zi) are the three-point conformal blocks, defined by

F (3)(∆i; zi) = z∆3−∆1−∆2
12 z∆2−∆1−∆3

13 z∆1−∆2−∆3
23 . (3.3.11)

In (3.3.10), we have also introduced the modulus square of arbitrary functions f(z; ∆):

|f(z; ∆)|2 = f(z; ∆)f̄(z̄; ∆̄) . (3.3.12)

Furthermore, the three-point structure constants C123 are functions of the conformal di-
mensions of the three primary fields in (3.3.10) and also depend explicitly on the central
charge c. In the case of all three fields in (3.3.10) being bosonic, C123 are then full symmet-
ric under exchanging the indices [10]. Although it is not possible to compute C123 by using
only conformal symmetry, C123 can be computed by taking into account associativity of
the OPE.
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Four-point functions

In contrast to the previous three cases, the dependence on the positions of four-point
functions of primary fields cannot be completely fixed by the global Ward identities,
which only allow us to write

〈∏4
i=1 V∆i,∆̄i

(zi, z̄i)
〉
as the following

〈 4∏
i=1

V∆i,∆̄i
(zi, z̄i)

〉
= |z−2∆1

13 z∆1−∆2+∆3+∆4
23 z∆1+∆2−∆3−∆4

34 z−∆1−∆2+∆3−∆4
24 F (∆i, c, x)|2 , (3.3.13)

where F (∆i, c, x) is an arbitrary function, which depends on the conformal dimensions of
V∆i,∆̄i

, the central charge c, and also the cross-ratios x and x̄:

x =
z12z34

z13z24

and x̄ =
z̄12z̄34

z̄13z̄24

. (3.3.14)

Let us now also observe that four-point functions on the left-handside of (3.3.15) has 8
positional variables: (z1, z̄1), . . . , (z4, z̄4) while the dependence of the position of its right-
hand can be determined by only 2 variables: the cross-ratios x and x̄. This follows directly
from having 2×3 = 6 Virasoro generators for the global conformal transformations, which
put constraints on positions of three fields on the left-hand side of (3.3.15). For instance,
one can use global conformal transformations to fix the positions of three primary fields
in (3.3.15) as the following:

〈V∆1,∆̄1
(z, z̄)V∆2,∆̄2

(0)V∆3,∆̄3
(∞)V∆4,∆̄4

(1)〉 = |F (∆i, c, z)|2 . (3.3.15)

Throughout this thesis, we shall always compute four-point functions as in (3.3.15).

3.3.3 The OPE-Ward identities

The operator-product expansions (OPE) is a general idea in quantum field theory of
writing a product between two fields, which are sufficiently close to each other, as a
sum of other fields in the model’s spectrum. We are interested in how two-dimensional
conformal symmetry constrains the product of two arbitrary scaling fields O1(z1, z̄1) and
O2(z2, z̄2). Now consider

O1(z1, z̄1)O2(z2, z2) =
∑
O

CO
O1O2

(z12, z̄12)O(z2, z̄2) . (3.3.16)

Taking into account the scaling and translational symmetry, we can then write down the
dependence on positions of CO

O1O2
(z12, z̄12) as follows:

CO
O1O2

(z1, z2) = CO
O1O2
|z∆O−∆O1

−∆O2
12 | . (3.3.17)

The coefficients CO
O1O2

are known as the OPE coefficients. The OPE coefficients CO
O1O2

have no dependence on positions but depend on the fields O1, O2, and O. Likewise to
how conformal symmetry gives rise to the Ward identities (3.3.2), the OPE (3.3.16) are
constrained by the Virasoro algebra as follows [5],(

L(z2)
n +

n∑
m=−1

(
n+ 1

m+ 1

)
zn−m12 L(z1)

m

)
O1O2 =

∑
O

CO
O1O2
|z12|∆O−∆O1

−∆O2L(z2)
n O . (3.3.18)
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The above is also known as the OPE-Ward identities. For simplicity, we will discuss the
equation (3.3.18) for the case of CFTs with only Verma modules. Specializing (3.3.16) to
this case, the OPE of two primary fields reads

V∆1,∆̄1
(z1, z̄1)V∆2,∆̄2

(z2, z̄2) =
∑

∆

∑
L
|C∆,L

12 z
∆1−∆2−∆−∑L,L̄ L
12 |LL̄V∆,∆̄(z2, z̄2) , (3.3.19)

where the operators L ∈ {L−1, L
2
−1, L−2, . . .}, that is to say the sum in (3.3.19) is not only

taken over primary fields but also all of their descendants. Inserting the right-handside
of (3.3.19) into the three-point functions (3.3.10) then allows us to express the OPE
coefficients of primary fields C∆

12 through the two- and three-point structure constants:

C∆
12 =

C12∆

B∆

. (3.3.20)

OPE coefficients of the descendant fields

Although two-dimensional CFTs come with infinite conformal symmetry, it is not possible
to fix OPE coefficients of primary fields with only conformal symmetry. Nevertheless,
through the OPE-Ward identities (3.3.18), conformal symmetry still allows us to fix the
relative ratio between the OPE coefficients of primary fields and their descendants. We
rewrite the OPE coefficients of the descendant fields LV∆ as the following,

C∆,L
12 = C∆

12f
L
∆ . (3.3.21)

We call fL∆ as the relative OPE coefficients of LV∆ and its primary V∆. Let us also stress
here that fL∆ also depends on ∆1 and ∆2, as we will see in examples below. With (3.3.21)
and (3.3.19), the OPE-Ward identities (3.3.18) become [5]∑

|L|=N−n
(∆j +N − n+ n∆1 −∆2)fL∆LV∆ =

∑
|L|=N

fL∆[Ln,L]V∆ for n > 0 , (3.3.22)

where the derivatives in z from the generator L−1 can be wiped out completely by con-
sidering the OPE-Ward identities (3.3.18) with n = 0,(

z12
∂

∂z1

− L(z2)
0

)
V∆1,∆̄1

(z1, z̄1)V∆2,∆̄2
(z1, z̄1) = 0 . (3.3.23)

The equation (3.3.22) then provides us the system of linear equations for fL∆. The number
of unknowns fL∆ is therefore given by the number of partitioning the integer N . Moreover,
let us again remind ourselves that the equation (3.3.22) with n > 2 is redudant since
they are just the commutators of the case n = 1, 2. For each value of N , it is therefore
sufficient to consider the equation with n = 1, 2. For instance, at N = 2, we have

(N, n) = (1, 1) : 2∆f
L−1

∆ = ∆ + ∆1 −∆2 ,

(N, n) = (2, 1) : 6∆f
L2
−1

∆ +
(
4∆ + c

2

)
f
L−2

∆ = ∆ + 2∆1 −∆2 ,

(N, n) = (2, 2) : (4∆ + 2)f
L2
−1

∆ + 3f
L−2

∆ = (∆ + 1 + ∆1 −∆2)f
L−1

∆ ,

(3.3.24)

where it is easy to see that both sides of the equation (3.3.22) become zero for (N, n) =
(1, 2). Solving the first equation in (3.3.24) simply yields

f
L−1

∆ =
∆1 −∆2 −∆

2∆
. (3.3.25)
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Therefore, fL−1

∆ has a pole at ∆ equals zero, which is the degenerate dimension ∆(1,1),
previously defined in (2.3.8). For the last two equations in (3.3.24), we have

f
L−2

∆ = −6f
L−1

∆ ∆ (∆1 −∆2 + ∆ + 1)− 2 (2∆1 −∆2 + ∆) (2∆ + 1)

2(∆−∆−)(∆−∆+)
, (3.3.26a)

f
L2
−1

∆ =
f
L−1

∆ (∆1 −∆2 + ∆ + 1) (c+ 8∆)− 6 (2∆1 −∆2 + ∆)

4(∆−∆−)(∆−∆+)
, (3.3.26b)

where ∆± were defined in (2.3.6) as the degenerate conformal dimensions at level 2.
Moreover, one can check that the numerators of both fL

2
−1

∆ and fL−2

∆ do not have zeroes
at ∆ = ∆± for generic ∆1 and ∆2. Therefore, these two coefficients have the following
poles in ∆,

fL∆ ∼
1

(∆−∆+)(∆−∆−)
for L ∈ {L2

−1, L−2} . (3.3.27)

The general result for fL∆ comes with the following poles [21]:

fL∆ ∼
∏
rs=N
r,s∈N∗

(∆j −∆(r,s))
−1 for |L| = N . (3.3.28)

Having simple poles at each value of degenerate conformal dimension in the above is also
consistent with the Zamolodchikov recursion for conformal blocks [21], to be introduced
in (3.4.15).

3.4 Conformal blocks
The concept of the OPE also holds inside correlation functions [6], therefore we can reduce
n-point functions to lower-point functions by performing the OPE on a string of fields
inside correlation functions. This led us to the definition of conformal blocks as bases of
correlation functions of CFTs, arising from using the OPE. Conformal blocks are universal
objects which are solutions to Ward identities and can be completely determined by only
conformal symmetry. For instance, applying the OPE to two identical primary fields in
their two-point functions gives us a sum of one-point functions,

〈V∆1,∆̄1
V∆1,∆̄1

〉 ∼
∑

∆

〈V∆,∆̄〉 ∼ 〈1〉 = 1 . (3.4.1)

Thus, the only non-vanishing two-point conformal block corresponds to the identity field.
For three-point conformal blocks, we simply have the three-point conformal block F (3)

in (3.3.10). In CFTs, we are usually interested up to only four-point conformal blocks
since all dynamical data is already encoded in the four-point functions a priori [2]. For
convenience, let us discuss the case of CFTs with only Verma modules. Now consider the
four-point function

〈∏4
i=1 V∆i,∆̄i

(zi, z̄i)
〉
in which we perform the OPEs of the following

pairs of these non-diagonal primary fields: {V∆1,∆̄1
, V∆2,∆̄2

} and {V∆3,∆̄3
, V∆4,∆̄4

}. We
then define the s-channel conformal blocks F (s)

∆ (x; ∆1,∆2,∆3,∆4) for the Verma module
V from the s-channel decomposition:〈 4∏

i=1

V∆i,∆̄i
(zi, z̄i)

〉
=
∑

∆

D
(s)
∆ |F

(s)
∆ (x; ∆1,∆2,∆3,∆4)|2 , (3.4.2)
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where we have introduced the four-point structure constants,

D
(s)
∆ =

C12∆C∆34

B∆

. (3.4.3)

If we had chosen to perform the OPE on different pairs of fields in (3.4.2), we would
have arrived at different channels of 〈

∏4
i=1 V∆i,∆̄i

(zi, z̄i)〉, namely the t- and u- channels.
Conformal blocks in these two channels are related to the s-channel as follows:

F (t)
∆ (x; ∆1,∆2,∆3,∆4) = F (s)

∆ (1− x; ∆1,∆4,∆3,∆2) , (3.4.4a)

F (u)
∆ (x; ∆1,∆2,∆3,∆4) = x−∆1F (s)

∆

(
1

x
; ∆1,∆3,∆2,∆4

)
. (3.4.4b)

That is to say the t-channel is related to the s-channel via the permutation: 1 ↔ 4
and 2 ↔ 3, while one arrives at the u-channel by permutting 1 ↔ 3 and 2 ↔ 4 in the
s-channel. Therefore, it also follows that four-point structure constants in the t- and u
channels are given by

D
(t)
∆ =

C14∆C∆23

B∆

and D
(s)
∆ =

C13∆C∆24

B∆

. (3.4.5)

Crossing symmetry

Since the OPE obey associativity, different channel expansions of four-point functions
must coincide. Schematically, we have

2 3

1 4

s-channel

=

2

41

3

t-channel

=

2

41

3

u-channel

. (3.4.6)

The equation (3.4.6) is known as the crossing-symmetry equation, which constrains four-
point functions of CFTs to be crossing symmetric. Furthermore, if all conformal blocks
in each channel of (3.4.6) are known, the crossing-symmetry equation is then a system
of quadratic equations for three-point structure constants, or equivalently a system of
linear equations for four-point structure constants. It is also interesting to point here that
the crossing-symmetry of two channels does not always imply the coincidence of all three
channels.

3.4.1 Pedestrian computation

We now show how to compute conformal blocks in(3.4.2) by using the pedestrian com-
putation [5]. This formalism is not only valid for conformal blocks of Verma modules
but can also be applied to the case of generic representations of the Virasoro algebra. To
start, let us write the s-channel decomposition in (3.4.2) more explicitly. Using (3.3.19),
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we have

〈V∆1,∆̄1
(z, z̄)V∆2,∆̄2

(0)V∆3,∆̄3
(∞)V∆4,∆̄4

(1)〉

=
∑

∆

C12∆

B∆

∑
L

∣∣fL∆z−∆1−∆2+∆+|L|∣∣ 〈LL̄V∆,∆̄(0)V∆3,∆̄3
(∞)V∆4,∆̄4

(1)〉 ,

=
∑

∆

C12∆C∆34

B∆

∑
L

∣∣fL∆z−∆1−∆2+∆+|L|∣∣ 〈LL̄V∆j ,∆̄(0)V∆3,∆̄3
(∞)V∆4,∆̄4

(1)〉
〈V∆j ,∆̄(0)V∆3,∆̄3

(∞)V∆4,∆̄4
(1)〉︸ ︷︷ ︸

F(s)
∆ F̄

(s)

∆̄

, (3.4.7)

where we have recalled that four-point functions of primary fields factorize into the prod-
uct of their left- and right-moving parts. From (3.4.7), we can then write F∆ as the
following,

F (s)
∆ =

∑
L
z∆−∆1−∆2+|L|fL∆g

L
∆ , (3.4.8)

where fL∆ can be computed from (3.3.22). Using (3.3.28), the expansion (3.4.8) then
suggests that F (s)

∆ then can have a pole at ∆ equals to the degenerate conformal dimen-
sion ∆(r,s) in (2.3.8). Furthermore, the coefficients gL∆ are ratios of three-point structure
constants,

gL∆ =
〈LV∆,∆̄(0)V∆1,∆̄1

(∞)V∆2,∆̄2
(1)〉

〈V∆,∆̄(0)V∆1,∆̄1
(∞)V∆2,∆̄2

(1)〉
(3.4.9)

For example, we write

g
L−1

∆ = ∆−∆1 + ∆2 , (3.4.10a)

g
L−2

∆ = ∆−∆1 + 2∆2 , (3.4.10b)

g
L2
−1

∆ = (∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1) . (3.4.10c)

Using the above to compute (3.4.8) for the first few terms yields

F (s)
∆ (z) = z∆−∆1−∆2

(
1 +

(∆−∆1 −∆2)(∆−∆3 −∆4)

2∆
z + . . .

)
. (3.4.11)

For ∆ < ∆1 + ∆2, the s-channel conformal blocks F (s)
∆ (z) then become singular at z = 0.

Using (3.4.4), it follows that F (t)
∆ (z) and F (u)

∆ (z) can also have singularities at z = 1 and
z = ∞ respectively. With the crossing-symmetry equation (3.4.6), four-point functions
of CFTs on the Riemann sphere are then not well-defined at the points z ∈ {0, 1,∞}.
From now, we shall neglect writing the channel index of conformal blocks whenever the
discussion holds for three channels. Using (3.4.8), the conformal blocks F∆(z) are then
linear in three-point functions of Verma modules V∆. This argument can also be extended
to other representations of the Virasoro algebra.

3.4.2 The Zamolodchikov recursion

The conformal blocks F∆(z) are analytic over the whole Riemann sphere, except for the
points z ∈ {0, 1,∞}. This can be seen by rewriting F∆(z) as infinite power series of the
elliptic nome q(z), which maps the complex plane C to a unit disk [39]. This representation
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of the conformal blocks F∆(z) is also known as the Zamolodchikov recursion. Let us write
q(z) as follows:

q(z) = exp
{
iπ
K(1− z)

K(z)

}
⇐⇒ z =

(
θ2(q)

θ3(q)

)4

, (3.4.12)

where K(z) is the complete elliptic integral of the first kind of modulus z, while the
functions θ2(q) and θ3(q) are the Jacobi theta functions. The nome q(z) is analytic over
the whole complex plane C. For example, we have

q(z)
z→0
=

z

16
+
z2

32
+ . . . (3.4.13)

Let us now write the s-channel conformal blocks F (s)
∆ (z) by using the Zamolodchikov

recursion. We have

F (s)
∆ (z) = (16q)∆s+

c−1
24 z−

c−1
24
−∆1−∆2(1−z)−

c−1
24
−∆1−∆2θ3(q)−

c−1
8
−4(∆1+∆2+∆3+∆4)H∆(∆i|q) .

(3.4.14)

The functions H∆s(∆i|q) satisfy the so-called Zamolodchikov recursion,

H∆(∆i|q) = 1 +
∞∑

m,n=1

(16q)mn

∆−∆(m,n)

R(m,n)H∆(m,−n)
(∆i|q) , (3.4.15)

where the residues Rm,n are defined by

Rm,n =
2P(0,0)P(m,n)∏m

r=1−m
∏n

s=1−n 2P(r,s)

m−1∏
r

2
=1−m

n−1∏
s

2
=1−n

(P2±P1 +P(r,s))(P3±P4 +P(r,s)) , (3.4.16)

where the momenta P(r,s) were introduced in (2.3.8). From several numerical observations,
we expect that the conformal blocks F∆(z) in all three channels converge for |q(z)| < 1, or
equivalently z ∈ C − {0, 1,∞}. However, proving the convergence of the Zamolodchikov
recursion is still an open problem. Furthermore, the Zamolodchikov recursion shows
explicitly that F∆(z) can have a pole in the conformal dimensions at ∆ = ∆(m,n), which
agrees with our discussion for the pedestrian computation.

3.5 Logarithmic fields

Similarly to primary states and primary fields, logarithmic states give rise to logarithmic
fields. Let us then define the derivatives of diagonal primary fields V D(n)

∆ as follows:

V D(n)

∆ =
1

n!

∂n

∂∆n
V D

∆ , (3.5.1)

which satisfy the following conditions:

L0V
D(n)

∆ = V D(n−1)

∆ + ∆V D(n)

∆ and Ln>0V
D(n)

∆ = 0 . (3.5.2)

The order-n derivatives of primary fields in (3.5.1) then lead to a rank-n+ 1 Jordan block
of L0, as shown in (2.4.8). Assuming that the null fields ηD(r,s) do not vanish, let us now
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introduce the derivatives of these null fields, which correspond to logarithmic states in
(2.5.2). We have

ηD
(n)

(r,s) = V D(n)

∆

∣∣∣
∆=∆(r,−s)

, (3.5.3a)

µD
(n)

(r,s) = L(r,s)L̄(r,s)V
D(n)

∆

∣∣∣
∆=∆(r,s)

. (3.5.3b)

Therefore, the representations Wκ
(r,s) and W̃κ

(r,s) are generated by the logarithmic fields:

W κ
(r,s) = (1− κ)ηD

(1)

(r,s) + κµD
(1)

(r,s) , (3.5.4)

W̃ κ
(r,s) =

(1− κ)

2
ηD

(2)

(r,s) +
κ

2
µD

(2)

(r,s) . (3.5.5)

The action of Virasoro algebra on logarithmic fields in (3.5.4) and (3.5.5) is the same as
the logarithmic states in (2.5.4) and (2.5.15), respectively. For example, the logarithmic
fields Wκ

(r,s) satisfy the equation:

L(r,s)ArsW κ
(r,s) = L̄(r,s)ĀrsW κ

(r,s) = κ(L0 −∆(r,−s))W
κ
(r,s) , (3.5.6)

where the operators Ars and Ārs are always normalized as in (2.5.11). For W̃ κ
(r,s), we have

L(r,s)L̄(r,s)ArsĀrsW̃ κ
(r,s) = κ(L0 −∆(r,−s))

2W̃ κ
(r,s) . (3.5.7)

Furthermore, let us write V(r,s) for non-diagonal primary fields with the conformal dimen-
sions (∆(r,s),∆(r,−s)). For r, s ∈ Z−{0}, the non-diagonal fields V(r,s) therefore correspond
to the states |∆(r,s),∆(r,−s)〉 in the figures 2.1 and 2.2. It then follows that V(r,s) have non-
vanishing null descendants:

L(r,s)V(r,s) = L̄(r,s)V(r,−s) = ηD(r,s) 6= 0 . (3.5.8)

3.5.1 Logarithmic correlation functions

Since we are expressing logarithmic fields as derivatives of fields, it should therefore be
possible to obtain correlation functions of logarithmic fields in (3.5.1)-(3.5.5) by just taking
derivative of correlation functions with respect to the conformal dimensions. For instance,
using (3.3.10) gives us

〈V D(1)

∆1
(z1, z̄1)V D

∆2
(z2, z̄2)V D

∆3
(z3, z̄3)〉 =

∂

∂∆1

〈
3∏
i=1

V D
∆i

(zi, z̄i)〉 ,

=

(
∂

∂∆1

logC123 − 2 log

∣∣∣∣z12z13

z23

∣∣∣∣) 〈 3∏
i=1

V D
∆i

(zi, z̄i)〉 .

(3.5.9)

While this trick seems to work for higher-point functions as well, computing two-point
functions of logarithmic fields is not as straightforward as in (3.5.9). For instance, in
the case of CFT with continuous spectrum, we cannot obtain the correct results for the
two-point functions 〈V D(1)

∆1
V D

∆1
〉 by directly taking the ∆1-derivative of 〈V D

∆1
V D

∆2
〉, whose

expression comes with the Dirac-delta function δ(∆1 −∆2).
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Logarithmic Ward identities

While it is not always possible to take derivatives of correlation functions as in (3.5.9), we
can always differentiate the Ward identities and solve the differentiated Ward identities,
also known as logarithmic Ward identities. For example, we write the Ward identities for
two-point functions, which involve V D(1)

∆ and V∆ by taking the ∆-derivative of (2.1.5).
For X, Y ∈ {V D(1)

∆ , V∆}, we write

〈XY 〉 = 〈X(z1, z̄1)Y (z2, z̄2)〉 . (3.5.10)

Acting on (3.5.10) with global Ward identities in (2.1.5) then yields

2∑
i=1

∂

∂zi
〈XY 〉 = 0 , (3.5.11a)

2∑
i=1

(∆ + δ̂1 + zi
∂

∂zi
)〈XY 〉 = 0 , (3.5.11b)

2∑
i=1

(2zi(∆ + δ̂1) + z2
i

∂

∂zi
)〈XY 〉 = 0 , (3.5.11c)

where we have defined the operator δ̂ as follows [40].

δ̂1V D(1)

∆ = V∆ and δ̂1V∆ = 0 . (3.5.12)

The system (3.5.11) is then a set of linear differential equations for the two-point func-
tions: 〈V D

∆ V D
∆ 〉, 〈V D(1)

∆ V D
∆ 〉, and 〈V D(1)

∆ V D(1)

∆ 〉. These equations have non-trivial solutions,
provided that the two-point function 〈V D

∆ V D
∆ 〉 vanishes. Solving the set of equations

(3.5.11) and its right-moving counterpart then led us to the well-known results [16]:[
〈V D(1)

∆ V D(1)

∆ 〉 〈V D
∆ V D(1)

∆ 〉
〈V D

∆ V D(1)

∆ 〉 〈V D
∆ V D

∆ 〉

]
=

1

|z12|4∆

[
k1 − k0 log |z12|2 k0

k0 0

]
, (3.5.13)

where k1 is an unfixed coefficient, while the coefficient k0 is defined up to the field renor-
malizations: V D

∆ → λ(∆)V D
∆ , which led us to

V D(1)

∆ → λV D(1)

∆ + λ′V D
∆ for α ∈ C . (3.5.14)

Similar situations also happen in the case of higher-point functions. For instance, the
structure constants ∂

∂∆1
logC123 in (3.5.9) is uniquely defined up to the transformation

(3.5.14). Furthermore, observe from (3.5.13) and (3.5.9) that correlation functions in-
volving V D(1)

∆ in general are not factorized into their left- and right-moving parts, which
agrees with the structure of the representation (2.4.4).

3.5.2 Two-point functions of higher-order derivatives

Let us now compute two-point functions of the fields V D(n)

∆ , V D(n−1)

∆ , . . . , V D∆ . Therefore
it is convenient to first define the matrix K̂∆ of their two-point functions:

K̂ij
∆ = 〈V D(n−i)

∆ (z1, z̄1)V D(n−j)

∆ (z2, z̄2)〉 . (3.5.15)
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Likewise to (3.5.11), one can write down explicitly the Ward identities for (3.5.15) by
differentiating (3.3.6). The resulting Ward identities then have non-trivial solutions if
and only if

(L
(i)
0 − L

(j)
0 )K̂ij

∆ = 0 or equivalently iff ∆̂K̂∆ = K̂∆∆̂T , (3.5.16)

where the matrix ∆̂ was defined in (2.4.8). Solving (3.5.16), we find that the matrix K̂∆

takes the form:

K̂∆ = g(∆̂)K̂0 = K̂0g(∆̂T ) , (3.5.17)

where g is not yet determined, and K̂0 is a triangle matrix with unfixed elements,

K̂0 =


kn kn−1 . . . k0

kn−1 . .
.

k0 0
... . .

. ...
k0

k0 0 · · · 0

 . (3.5.18)

Therefore, the matrix K̂0 leads to vanishing two-point functions:

i+ j < n =⇒ 〈V D(i)

∆ V D(j)

∆ 〉 = 0 . (3.5.19)

The function g in (3.5.17) can be determined by solving the full Ward identities for
(3.5.15), which gives us

g(∆̂) =
1

|z12|2∆̂
. (3.5.20)

Additionally, Ward identities also constrain the coefficients ki to be independent of the
positions. For example, in the case of Kij with n = 1, we substitute ∆̂ as the second-rank

Jordan block:
[
∆ 1
0 ∆

]
and recover the results in (3.5.13). For two-point functions with

at most second derivatives, we have
〈1

2
V D(2)

∆
1
2
V D(2)

∆ 〉 〈1
2
V D(2)

∆ V D(1)

∆ 〉 〈1
2
V D(2)

∆ V∆〉

〈V D(1)

∆
1
2
V D(2)

∆ 〉 〈V D(1)

∆ V D(1)

∆ 〉 〈V D(1)

∆ V∆〉

〈V∆
1
2
V D(2)

∆ 〉 〈V∆V
D(1)

∆ 〉 〈V∆V∆〉


=

1

|z12|4∆

k2 − k1 log |z12|4 + 1
2
k0 (log |z12|4)

2
k1 − k0 log |z12|4 k0

k1 − k0 log |z12|4 k0 0
k0 0 0

 . (3.5.21)

With this matrix formalism, one can also compute the two-point functions which involve
V D(n)

∆ with arbitrary n. For example, see general results in [41].

3.5.3 Two-point functions of derivatives of null fields

Let us now discuss two-point functions of the representation Wκ
(r,s), generated by the

logarithmic field W κ
(r,s) in (3.5.4). We only consider two-point functions of the logarithmic
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fieldW κ
(r,s), its Jordan partner ηD(r,s), and the non-diagonal primary field V(r,s), while results

which include V(r,−s) can be obtained in similar manners. We write

〈W κ
(r,s)W

κ
(r,s)〉 〈W κ

(r,s)η
D
(r,s)〉 〈W κ

(r,s)V(r,s)〉
〈ηD(r,s)W κ

(r,s)〉 〈ηD(r,s)ηD(r,s)〉 〈ηD(r,s)V(r,s)〉
〈V(r,s)W

κ
(r,s)〉 〈V(r,s)η

D
(r,s)〉 〈V(r,s)V(r,s)〉



=
1

|z12|4∆(r,−s)

k1 − log |z12|4 1
2ω(r,s)

ρ(r,s)
zrs12

1 0 0
2ω(r,s)

ρ(r,s)
zrs21 0 2

κρ(r,s)
zrs12z

rs
21

 . (3.5.22)

Recall the definition of P(r,s) in (2.3.8), the functions ω(r,s) and ρ(r,s) are given by

ω(r,s) =
2P(r+1,s+1)

2P(1,1)

∏r
i=0

∏s
j=0 2P(i,j)

2P(0,0)2P(r,0)2P(0,s)2P(r,s)

r−1∏
i=1

s−1∏
j=1

2P(i,j) , (3.5.23a)

ρ(r,s) = −
∏r

i=1−r
∏s

j=1−s 2P(i,j)

2P(0,0)P(r,s)

. (3.5.23b)

The results of 〈W κ
(r,s)W

κ
(r,s)〉, 〈W κ

(r,s)η
D
(r,s)〉, 〈ηD(r,s)W κ

(r,s)〉, and 〈ηD(r,s)ηD(r,s)〉 can be immediately
taken from (3.5.13). However, it is also interesting to point out here that the two-point
function 〈W κ

(r,s)W
κ
(r,s)〉 is not annihilated by the generator L1 in the Ward identities (3.5.11)

but satisfy the non-trivial constrain:

〈L1W
κ
(r,s)W

κ
(r,s)〉+ 〈W κ

(r,s)L1W
κ
(r,s)〉 = 0 . (3.5.24)

Furthermore, the two-point functions 〈ηD(r,s)V(r,s)〉 and 〈V(r,s)η
D
(r,s)〉 contain two primary

fields with different dimensions, therefore they vanish. We now discuss the other cases,
which come with the functions ρ(r,s) and ω(r,s) in details.

The case of 〈V(r,s)V(r,s)〉

The two-point function 〈V(r,s)V(r,s)〉 is a two-point function of two non-diagonal primary
fields, but its two-point structure constant is controlled by the equation (3.5.6). Let us
now restrict ourselves to the case of generic real central charge for a moment. Therefore we
can translate two-point structure constants into the norms of states [4]. For any creation
operator Ars with the normalization (2.5.11), we can write

lim
z2→∞

lim
z1→0

1

κ
〈ηD(r,s)(z1, z̄1)W κ

(r,s)(z2, z̄2)〉

= lim
z2→∞

lim
z1→0
〈L(r,s)ArsW κ

(r,s)(z1, z̄1)W κ
(r,s)(z2, z̄2)〉 ,

= 〈ArsW κ
(r,s)|L

†
(r,s)W

κ
(r,s)〉 ,

= 〈∆(r,s),∆(r,−s)|L†(r,s)A
rs†L†(r,s)L(r,s)|∆(r,s),∆(r,−s)〉 ,

= P ′L†
(r,s)

,L(r,s)
(∆(r,s))〈∆(r,s),∆(r,−s)|∆(r,s),∆(r,−s)〉 ,

= lim
z2→∞

lim
z1→0

(−1)rsP ′L†
(r,s)

,L(r,s)
(∆(r,s))〈V(r,s)(z1, z̄1)V(r,s)(z2, z̄2)〉 , (3.5.25)

where the function P ′L†
(r,s)

,L(r,s)
(∆(r,s)) is defined by the equation (2.5.6). Moreover, we

have the factor (−1)rs because of the non-diagonality of the field V(r,s). We then arrive at
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the desired result for 〈ηD(r,s)W κ
(r,s)〉 shown in (3.5.22),

〈V(r,s)V(r,s)〉
〈ηD(r,s)W κ

(r,s)〉
=

(−1)rs

κ
z2rsρ(r,s) , (3.5.26)

where we have defined

ρ(r,s) = P ′L†
(r,s)

,L(r,s)
(∆(r,s)) . (3.5.27)

The function P ′L†
(r,s)

,L(r,s)
(∆(r,s)) was first computed by Zamolodchikov in [21]. Indeed, we

have computed the ratio (3.5.26) by assuming the central charge is real. However, the
ratio (3.5.26) has also been shown to hold for generic complex central charge in [29] by
solving the Ward identities for two-point functions on the left-handside of (3.5.26).

The case of 〈V(r,s)W
κ
(r,s)〉

To start, it is useful to recall the follwing relations from (2.5.10),

ArsWκ
(r,s) = κV(r,s) , (3.5.28a)

ĀrsWκ
(r,s) = κV(r,−s) . (3.5.28b)

Let us now consider the two-point functions 〈V(r,s)L
n
1W

κ
(r,s)〉, which do not vanish for

n ≤ rs. The L−1- and L0-Ward identities in (3.3.6) constrain 〈V(r,s)L
n
1W

κ
(r,s)〉 to take the

form:

〈V(r,s)L
n
1W

κ
(r,s)〉 =

AL
n
1

zrs+n12 |z12|4∆(r,s)
, (3.5.29)

where the coefficients ALn1 depend on n and will be determined below. Now consider the
L1-Ward identity for (3.5.29). We have(

2(z1 + z2)∆(r,s) + 2z2rs+ z2
1

∂

∂z1

+ z2
2

∂

∂z2

)
〈V(r,s)L

n
1W

κ
(r,s)〉 = −〈V(r,s)L

n−1
1 W κ

(r,s)〉

(3.5.30)

Substituting (3.5.29) into (3.5.30) results in the recursion for the coefficients ALn1 :

AL
n+1
1 = (rs− n)AL

n
1 with AL

rs
1 =

P ′Lrs1 ,L(r,s)
(∆(r,s))

ρ(r, s)
and 0 ≤ n ≤ rs . (3.5.31)

By using the relation (3.5.28), we find that the case of n = rs in (3.5.29) is simply the
two-point function 〈V(r,s)V(r,s)〉 with the extra renormalization factor ALrs1 . Solving the
recursion (3.5.31) yields

〈V(r,s)W
κ
(r,s)〉

〈V(r,s)V(r,s)〉
= z−rs12

2ω(r, s)

ρ(r, s)
, (3.5.32)

where we have defined

ω(r,s) =
P ′Lrs1 ,L(r,s)

(rs)!
. (3.5.33)
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Unlike the function ρ(r,s), there seems to be no derivations of ω(r,s) in any literature. With
the normalization L(r,s) = Lrs−1 + . . ., let us then compute explicitly ω(r,s) for rs ≤ 6:

ω(1,1) = 2 ,

ω(2,1) = 2P(3,2) · 2P(1,0) ,

ω(3,1) = 2P(4,2) · 2P(2,1) · 2P(2,0) · 2P(1,0) ,

ω(4,1) = 2P(5,2) · 2P(3,1) · 2P(2,1) · 2P(3,0) · 2P(2,0) · 2P(1,0) ,

ω(2,2) = 2P(3,3) · 2P(2,1) · 2P(1,2) · 2P(1,1) · 2P(0,1) · 2P(1,0) ,

ω(5,1) = 2P(6,2) · 2P(4,1) · 2P(3,1) · 2P(2,1) · 2P(4,0) · 2P(3,0) · 2P(2,0) · 2P(1,0) ,

ω(2,3) = 2P(3,4) · 2P(1,3) · 2P(2,2) · 2P(2,1) · 2P(0,2) · 2P(1,0) · 2P(0,1) · (2P(1,2))
2 · 2P(1,1) ,

(3.5.34)

where we have taken into account the relation ω(r,s) = ω(s,r)(β → β−1). The above results
led us to propose the analytic formula of ω(r,s) in (3.5.23a). We have also further checked
that (3.5.23a) always agree with explicit calculations of (3.5.33) for rs ≤ 20.

3.6 Logarithmic conformal blocks
It is well-known in logarithmic CFTs that computing conformal blocks of logarithmic rep-
resentations can be very tedious since the representations themselves can be quite com-
plicated, as we have seen in (2.2). However, using derivatives of fields allows us to simply
write conformal blocks of logarithmic representations as derivatives of the non-logarithmic
blocks. For convenience, we now neglect the positional dependence of conformal blocks
and our analysis here holds for conformal blocks in all three channels.

Derivatives of primary fields

We start with introducing chiral primary fields v∆ with the conformal dimensions ∆. Now
recall that conformal blocks are linear functions of primary fields. Since derivatives are
also linear operators, we can therefore write conformal blocks of ∂

∂∆
v∆ as follows:

F
(
∂

∂∆
v∆

)
=

∂

∂∆
F(v∆) = F ′∆ , (3.6.1)

where the prime denotes the ∆-derivative. Taking into account the right-moving fields,
general results for conformal blocks of V D(n)

∆ are then given by

∂n

∂∆n
(F∆F̄∆) . (3.6.2)

However, the above is not the full conformal block of representations generated by V D(n)

∆ .
For instance, recall that the structure of representation generated by V D(1)

∆ is invariant
under changing the normalization: V D

∆ → λ(∆)V D
∆ , which is equivalent to

V D′

∆ → λ(∆)V D′

∆ + λ′(∆)V D
∆ . (3.6.3)

Taking into account how the conformal block (F∆F̄∆)′ changes under the above transfor-
mation, the full conformal block of representation generated by V D(1)

∆ is given by

(F∆F̄∆)′ + cαF∆F̄∆ , (3.6.4)

where cα are unfixed structure constants.
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Derivatives of null fields

For the derivatives of null fields in (3.5.3a)-(3.5.3b), conformal blocks of the fields ηD(n)

(r,s) can
be obtained by simply setting ∆ = ∆(r,−s) in (3.6.2). For the case of µD(n)

(r,s) , we will argue
heuristically how to arrive at their conformal blocks. We expand the chiral descendant
field L(r,s)v∆ as the following,

1

∆−∆(r,s)

L(r,s)v∆

∆→∆(r,s)∼ 1

∆−∆(r,s)

L(r,s)v∆r,s

+
∞∑
n=1

1

n!
(∆ −∆(r,s))

n−1L(r,s)
∂n

∂∆n
v∆

∣∣∣
∆=∆(r,s)

. (3.6.5)

While computing conformal blocks of L(r,s)v∆ explicitly looks complicated, we know that
the resulting blocks must be approaching F∆(r,−s) as ∆ approaching the degenerate con-
formal dimensions ∆(r,s) in (2.3.8). Now recall from the Zamolodchikov recursion (3.4.15)
that the conformal block F∆ has a pole at the degenerate dimension ∆ = ∆(r,s). The
expansion (3.6.5) is therefore comparable to expanding F∆ as follows:

F∆

Rr,s

∆→∆(r,s)∼
F∆(r,−s)

∆−∆(r,s)

+
∞∑
n=1

(∆−∆(r,s))
n−1F reg-n

∆(r,s)
. (3.6.6)

As a consistency check, notice that the leading conformal block F∆(r,−s) in (3.6.6) is
consistent with the leading field in (3.6.5). Moreover, the conformal blocks F reg-n

∆(r,s)
are

defined by

F reg-n
∆(r,s)

=

∮
C∆(r,s)

d∆

2πi
(∆−∆(r,s))

−n F∆

Rr,s

, (3.6.7)

where C∆(r,s)
is a curve which lives on the ∆-plane and encloses the point ∆ = ∆(r,s). The

conformal blocks F reg-n
∆(r,s)

are in general logarithmic For instance, in the case of F reg-1
∆(r,s)

, we
have

F reg-1
∆(r,s)

=

∮
C∆(r,s)

d∆

2πi
(∆−∆(r,s))

−1 F∆

Rr,s

,

∼
∮
C∆(r,s)

d∆

2πi

{
q∆+rs

(∆−∆(r,s))2
+ . . .

}
,

∼ log(16q) + . . . . (3.6.8)

where q = q(z) is the elliptic norm, previously introduced in (3.4.12). Using (3.4.13),
the conformal block F reg-1

∆(r,s)
is then linear in log(z). In general, F reg-n

∆(r,s)
comes with the

terms logn(z). Hence, the word “reg” in (3.6.6) actually means that F reg-n
∆(r,s)

are logarithmic

regularizations of F∆ at ∆ = ∆(r,s). Let us now write down the conformal blocks of µD(n)

(r,s) .
Taking into account the right-moving counterpart of (3.6.6), we have

F(µD
(n)

(r,s) ) =

∮
C∆(r,s)

d∆

2πi
(∆−∆(r,s))

−n F∆

R(r,s)

F̄∆̄

R̄r,s

. (3.6.9)

Using (3.6.9) and (3.6.2) with (3.5.4), we can write down the conformal blocks of the
logarithmic fields W κ

(r,s) explicitly as follows:

Gκ(r,s) = (1− κ)
(
F∆(r,−s)F̄∆(r,−s)

)′
+

κ

Rr,s

[
F∆(r,−s)F̄

reg-1
∆(r,s)

+ F reg-1
∆(r,s)
F̄∆(r,−s)

]
.

(3.6.10)
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In case of the logarithmic fields W̃ κ
(r,s) in (3.5.5), we have

G̃κ(r,s) =
κ

2

{
F reg-2

∆(r,s)
F̄ reg-2

∆(r,s)

R2
r,s

+
1

Rr,s

(
F reg−1

∆(r,s)
F̄∆(r,−s) + F̄ reg−1

∆(r,s)
F∆(r,−s)

)}

+
(1− κ)

2

(
F∆(r,s)

F̄∆(r,−s)

)′′
, (3.6.11)

Nevertheless, recall that the representation Wκ
(r,s) is defined up to the gauge transforma-

tion (2.5.14). Consequently, the full conformal blocks of the representationWκ
(r,s) is given

by

Gκ(r,s) + cβ

(
F∆(r,−s)F̄∆(r,−s)

)
, (3.6.12)

where cβ is an unfixed structure constants. Likewise, using (2.5.21), conformal blocks of
the representation W̃κ

(r,s) read

G̃κ(r,s) + cδ

(
F∆(r,−s)F̄∆(r,−s)

)
+ cσGκ

′

(r,s) , (3.6.13)

where cδ and cσ are unfixed structure constants, and κ′ is an unfixed coupling. We will see
in the next Chapter that these unfixed parameters can be completely fixed by imposing
the constraints from the degenerate fields.

Therefore, we have demonstrated that using derivatives of fields is convenient for com-
puting conformal blocks. Moreover, we were also able to compute all two-point functions
of the representations Wκ

(r,s), shown in (3.5.22). While our results in this section were ob-
tained by some sort of heuristic arguments such as comparing (3.6.5) to (3.6.6), some of
our results have also been checked to agree with the pedestrian computation. For instance,
the authors of [27] used the pedestrian computation to calculate the conformal blocks of
Wκ

(r,s) for the case rs = 2, and their results agree with our exact results in (3.6.12). These
closed formulae of logarithmic blocks are crucial ingredients for bootstrapping four-point
functions of the Potts and O(n) CFTs at arbitrary precision in Chapter 5.



CHAPTER 4

Degenerate fields

In this Chapter, we discuss consequences of the existence of the degenerate fields in
CFTs at generic central charge. We introduce the degenerate field V D

〈r,s〉, associated to the
degenerate states |〈r, s〉〉D in (2.3.17), as a diagonal primary field which has the conformal
dimension ∆(r,s) and also comes with a vanishing null vector:

L(r,s)V
D
〈r,s〉 = L̄(r,s)V

D
〈r,s〉 = 0 , (4.0.1)

where L(r,s) is a combination of negative Virasoro modes, defined by the equation (2.3.9).
That is to say V D

〈r,s〉 transforms as the highest-weight state in the degenerate representation
RD

(r,s). Notice that the degenerate field V D
〈1,1〉 has vanishing conformal dimensions and

satisfies L−1V
D
〈1,1〉 = L̄−1V

D
〈1,1〉 = 0. Therefore, V D

〈1,1〉 coincides with the identity field,

V D
〈1,1〉 = 1 . (4.0.2)

At generic central charge, the degenerate field V D
〈r,s〉 only has one vanishing null descendant

at level rs, unlike the case of rational central charge where each degenerate field can have
infinitely many null descendants. The latter case will be discussed in Chapter 6.

4.1 The degenerate fusion rules
The vanishing null descendants L(r,s)V

D
〈r,s〉 lead to highly-nontrivial constraints that com-

pletely determine the fusion rules of the degenerate fields V D
〈r,s〉. For any field O1 and O2,

using (4.0.1), we can write the following vanishing three-point functions,

〈L(r,s)V
D
〈r,s〉O1O2〉 = 0 . (4.1.1)

Now consider the case of rs = 1 in (4.1.1). Using (3.2.1), we write

〈L−1V
D
〈1,1〉O1O2〉 =

∂

∂z1

〈V D
〈1,1〉O1O2〉 ,

∼ (∆1 −∆2)〈V D
〈1,1〉O1O2〉 . (4.1.2)

Taking into account the right-moving part of (4.1.2), we then conclude that 〈V D
〈1,1〉O1O2〉

do not vanish if O1 = O2. In terms of the fusion rules, we have

V D
〈1,1〉 ×O1 = O1 . (4.1.3)

45
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For the null fields at level 2, we only consider three-point functions of diagonal fields
in details. We now parametrize primary fields with their momenta in (2.2.2), instead of
their conformal dimensions. Let V D

P1
and V D

P2
be diagonal primary fields with the momenta

P1 and P2, we consider the three-point function 〈L(1,2)V
D
〈1,2〉V

D
P1
V D
P2
〉. Using (2.3.12) and

(3.3.5) with this three-point function yields

〈L(1,2)V
D
〈1,2〉V

D
P1
V D
P2
〉 =

{
∂2

∂z2
1

− β−2
∑
i=2,3

(
1

z1i

∂

∂z1

− 1

z2
1i

∆i

)}
〈V D
〈1,2〉V

D
P1
V D
P2
〉 ,

∼
∏
±

(
P1 − P2 ±

β−1

2

)
〈V D
〈1,2〉V

D
P1
V D
P2
〉 . (4.1.4)

Using (4.1.1) with the above, we have

〈V D
〈1,2〉V

D
P1
V D
P2
〉 6= 0 =⇒ P1 − P2 = ± 1

2β
. (4.1.5)

We can then translate (4.1.5) into the fusion rule of V D
〈1,2〉 with any diagonal primary field

V D
P as follows:

V D
〈1,2〉 × V D

P = V D
P+ 1

2β
+ V D

P− 1
2β
. (4.1.6)

To obtain the fusion rules of V D
〈2,1〉, we simply apply the transformation β → β−1 to the

fusion rule (4.1.6). We have

V D
〈2,1〉 × V D

P = V D
P+β

2

+ V D
P−β

2

. (4.1.7)

Although there are infinitely many degenerate fields V D
〈r,s〉 since r and s can be any positive

integer, knowing the fusion rules of V D
〈r,s〉 up to rs = 2 already allows us to compute all

degenerate fusion rules by using associativity [5]. For example, we write V D
〈1,3〉 × V D

P as
follows:

V D
〈1,3〉 × V D

P =
(
V D
〈1,2〉 × V D

〈1,2〉 − V D
〈1,1〉
)
× V D

P ,

= V D
P+β−1 + V D

P−β−1 + V D
P . (4.1.8)

Therefore, we can repeatedly use the fusion rules (4.1.3), (4.1.6), and (4.1.7) to arrive at
the following general result:

V D
〈r,s〉 × V D

P =
r−1∑
i

2
=1−r

s−1∑
j

2
=1−s

V D
P+P(i,j)

. (4.1.9)

In other words, the product between the degenerate representation RD
(r,s) and the Verma

modules V∆ ⊗ V̄∆ with generic ∆ can always be decomposed into a direct sum of finitely
many Verma modules. We will see in Section 4.5 that the fusion rules (4.1.9) are no longer
valid for some special values of ∆ due to the poles in the OPE coefficients (3.3.28). For
the fusion rules of the degenerate fields with themselves, the fusion rules (4.1.9) become

V D
〈r,s〉 × V D

〈r′,s′〉 =
r+r′−1∑

i
2
=|r′−r|+1

s+s′−1∑
j

2
=|s′−s|+1

V D
〈i,j〉 , (4.1.10)
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where the constraint (4.0.1) requires any field with non-positive indices to vanish in
(4.1.10). Therefore, the degenerate representations are always closed under fusions with
themselves. Let us also display the product between V D

〈1,2〉 and non-diagonal primary
fields,

V D
〈1,2〉 × VP,P̄ = VP+ 1

2β
,P̄− 1

2β
+ VP− 1

2β
,P̄+ 1

2β
, (4.1.11)

where VP,P̄ denotes non-diagonal primary fields denote the left- and right-momenta P and
P̄ . In the case of V D

〈2,1〉, we have

V D
〈2,1〉 × VP,P̄ = VP+β

2
,P̄+β

2
+ VP−β

2
,P̄−β

2
. (4.1.12)

Similarly to (4.1.9), using associativity of the OPE with the fusion rules (4.1.11), (4.1.12)
and (4.1.3), one can also arrive at the general result for V〈r,s〉×VP,P̄ . Let us also translate
these two non-diagonal fusions into the Kac indices. Recall that the non-diagonal primary
fields V(r,s) come with the conformal dimensions (∆(r,s),∆(r,−s)) for rs ∈ Z. Using (4.1.11)
and (4.1.12), we can then write

V D
〈1,2〉 × V(r,s) = V(r,s+1) + V(r,s−1) , (4.1.13a)

V D
〈2,1〉 × V(r,s) = V(r+1,s) + V(r−1,s) . (4.1.13b)

Notice from the definition of P(r,s) in (2.3.8) that opposite signs in each subscript of fields
in (4.1.11) lead to shifts in the second Kac indices of (4.1.13a).

Furthermore, the degenerate fusion rules also allow us to distinguish non-diagonal fields
and diagonal fields more accurately. For example, consider the non-diagonal fields VP,0 and
the diagonal fields V D

P , both of which have the same conformal dimension and vanishing
conformal spins. However, these two fields behave differently under the degenerate fusion
rules. For instance, the product V D

〈1,2〉 × VP,0 yield a sum of two non-diagonal primary
fields with respect to (4.1.12) but V D

〈1,2〉 × V D
P is decomposed into a sum of two diagonal

primary fields as in (4.1.7).

4.2 The BPZ equations
Since we can always write the action of L(r,s) on correlation functions as linear differential
operators by using the local Ward identities (3.3.4) and (3.3.5), inserting the vanishing null
vector L(r,s)V

D
(r,s) into correlation functions of any field Oi then leads to linear differential

equations, also known as the the Belavin–Polyakov–Zamolodchikov (BPZ) equations of
order rs:

〈L(r,s)V
D
〈r,s〉

n−1∏
i=1

Oi〉 = 0 . (4.2.1)

As an example, we now discuss the second order BPZ equation for the four-point function
of diagonal primary fields: 〈V D

〈1,2〉
∏3

i=1 V
D
Pi
〉. As solutions to the Ward identities, this

four-point function can be factorized into the left- and right- moving parts as follows:

〈V D
〈1,2〉(z, z̄)V D

P1
(0)V D

P2
(∞)V D

P3
(1)〉 =

∑
i∈s,t,u

V(i)(z)V̄(i)(z̄) . (4.2.2)

With (3.3.5), acting on the degenerate field V D
〈1,2〉 in the above four-point function with

the operator L(1,2) gives us{
−β2z(1− z)

∂2

∂z2
+ (2z − 1)

∂

∂z
+ ∆(1,2) +

∆1

z
−∆2 +

∆3

1− z

}
V(i)(z) = 0 . (4.2.3)
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The natural ansatz for solving the equation (4.2.3) is to write V(i)(z) as an expansion in
z around the singular points z0. We now focus on the s-channel solution: V(s)(z). For
convenience, let us drop the channel indices whenever possible. We write

V(z) = (z − z0)λ(z0)

(
1 +

∞∑
n=1

(z − z0)n

)
, (4.2.4)

where λ(z0) is called the characteristic exponent of V(z), which depends on the choice
of z0. Recall our previous discussion on conformal blocks, V(z) then have three singular
points at z0 ∈ {0, 1,∞}, as four-point functions of CFTs on the Riemann sphere. Using
(4.2.3) with (4.2.4) at z0 = 0, we find

λ±(0) = ±βP1 +
1

2

(
β2 − 1

)
. (4.2.5)

The expansion of V(z) around z = 0 is then comparable with the s-channel expansion
in (3.4.11). Using the characteristic exponents (4.2.5), we can therefore compute the
conformal dimensions of chiral primary fields associated to V(z) in (4.2.4),

λ±(0) = ∆(1,2) + ∆1 −∆ =⇒ P∓ = P1 ±
1

2β
, (4.2.6)

Similarly, considering the cases z0 ∈ {1,∞} results in the characteristic exponents for the
t- and u-channels of the four-point functions 〈V D

〈1,2〉
∏3

i=1 V
D
Pi
〉, respectively.

Hypergeometric conformal blocks

Let us now rewrite the equation (4.2.3) as differential equations for the hypergeometric
functions 2F1(a, b; c; z). Recall that 2F1(a, b; c; z) satisfy the following equation,{

z(1− z)
∂2

∂z2
+ [c− (a+ b+ 1)z]

∂

∂z
− ab

}
2F1(a, b; c; z) = 0 . (4.2.7)

Comparing (4.2.7) to (4.2.3), we then choose the following values of a, b, and c:

a =
1

2
+ β−1(P1 + P2 + P3) , (4.2.8a)

b =
1

2
+ β−1(P1 − P2 + P3) , (4.2.8b)

c = 1 + 2β−1P1 . (4.2.8c)

Therefore, we can write down explicitly the two linearly-independent s-channel solutions
of (4.2.3) through the hypergeometric functions 2F1 as the following:

V(s)
P−

(z) = z
−P1

β
− 1

2

(
1− 1

β2

)
(1− z)

P3
β
− 1

2

(
1− 1

β2

)
2F1(a, b; c; z) , (4.2.9a)

V(s)
P+

(z) = z
P1
β
− 1

2

(
1− 1

β2

)
(1− z)

P3
β
− 1

2

(
1− 1

β2

)
2F1(c− a, c− b; 2− c; z) , (4.2.9b)

where the solutions V(s)
P±

correspond to the characteristic exponents λ∓(0) in (4.2.6) and
are also known as hypergeometric conformal blocks. Permuting 1↔ 3 simultaneously with
z ↔ 1− z in the s-channel solutions (4.2.9) then brings us to the t-channel solutions:

V(t)
P+

(z) = z
P1
β
− 1

2

(
1− 1

β2

)
(1− z)

P3
β
− 1

2

(
1− 1

β2

)
2F1(a, b; a+ b− c+ 1; 1− z) , (4.2.10a)

V(t)
P−

(z) = z
P1
β
− 1

2

(
1− 1

β2

)
(1− z)

−P3
β
− 1

2

(
1− 1

β2

)
2F1(c− a, c− b; c− a− b+ 1; 1− z) .

(4.2.10b)
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Indeed, one can also arrive at the u-channel from the s-channel solutions by 1 ↔ 2
simultaneously with z ↔ 1

z
. Since the s- and t- channels are just different bases of the

same linear space of solutions to (4.2.3), the two sets of solutions are then related by
linear transformation, known as the degenerate fusing matrix:(

V(s)
P−

(z)

V(s)
P+

(z)

)
=

(
F−− F−+

F+− F++

)(
V(t)
P−

(z)

V(t)
P+

(z)

)
, (4.2.11)

The elements of this fusing matrix are given by

Fε,ε̄ =
Γ(1 + 2β−1εP1)Γ(−2β−1ε̄P3)∏
± Γ
(

1
2

+ β−1(εP1 ±−ε̄P3)
) with det

(
F−− F−+

F+− F++

)
= −P1

P3

. (4.2.12)

Single-valued solutions

Taking into account the right-moving counterpart of (4.2.9), we write the s-channel de-
composition of the four-point function in (4.2.2) as follows:

〈V D
〈1,2〉(z, z̄)V D

P1
(0)V D

P2
(∞)V D

P3
(1)〉 =

∑
ε,ε̄=±

c(s)(Pε, Pε̄)V(s)
Pε

(z)V̄(s)
Pε̄

(z̄) , (4.2.13)

where c(s)(Pε, Pε̄) are structure constants. Since diagonal fields always have zero spins, the
four-point function in (4.2.13) must have trivial monodromies around the singular points
z ∈ {0, 1,∞}. Requiring the right-hand side of (4.2.13) to be single-valued around z = 0
gives us

c(s)(P−, P+) = c(s)(P+, P−) = 0 . (4.2.14)

In other words, the single-valuedness only allows (4.2.13) diagonal primary fields to prop-
agate in the s-channel of (4.2.13). This statement also holds for the t- and u- channels.
Moreover, with vanishing structure constants (4.2.14), we find that the expansion in
(4.2.13) is consistent with the degenerate fusion rules (4.1.6). Let us now applying the
crossing-symmetry constraint to (4.2.13). We have∑

ε=±
c(s)(Pε)V(s)

ε (z)V̄(s)
ε (z̄) =

∑
ε=±

c(t)(Pε)V(t)
ε (z)V̄(t)

ε (z̄) (4.2.15)

Using the fusing matrix (4.2.11) with (4.2.15), we can express c(t) in terms of c(s) and
then compute the ratio of structure constants in (4.2.13) as follows:

c(s)(P+)

c(s)(P−)
=

Γ(2β−1P1)

Γ(−2β−1P1)

Γ(1 + 2β−1P1)

Γ(1− 2β−1P1)

∏
±,± Γ

(
1
2

+ β−1P1 ± β−1P2 ± β−1P2

)∏
±,± Γ

(
1
2
− β−1P1 ± β−1P2 ± β−1P2

) . (4.2.16)

The result in (4.2.16) is an example of the degenerate-shift equation and can also be
generalized to non-diagonal four-point functions which have at least one degenerate field
as their external fields [42, 10]. Moreover, we can immediately obtain the degenerate-
shift equation for 〈V D

〈2,1〉
∏3

i=1 V
D
Pi
〉 by transforming (4.2.16) under β → β−1. In general,

ratios of four-point structure constants in the four-point functions 〈V D
〈r,s〉

∏3
i=1 V

D
Pi
〉 can be

completely determined by using only the degenerate-shift equation of V D
〈1,2〉 and V

D
〈2,1〉 [10].
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4.3 The degenerate-shift equations

In general, the existence of the degenerate fields V D
〈r,s〉 constrains four-point functions

of arbitrary fields through three-point functions of the type (4.1.1). That is to say the
existence of the degenerate fields V D

〈r,s〉 provides us access to the degenerate-shift equations
of four-point structure constants in generic four-point function, similarly to (4.2.16).

Let us begin with the four-point function 〈V D
〈1,2〉VP,P̄V1V2〉 where V1 and V2 are arbitrary

primary fields. The s-channel decomposition of this four-point function reads

〈V D
〈1,2〉VP,P̄V1V2〉 =

∑
ε=±

d(s)(V ε)

〈1, 2〉D
V ε

1

P, P̄ 2

, (4.3.1)

where d(s)(V ε) are four-point structure constants, and the diagram in (4.3.1) represents
the product of left- and right moving conformal blocks. Moreover, we simply write the
non-diagonal primary fields in the channel as follows:

V ε = VP+εβ−1,P̄−εβ−1 . (4.3.2)

Using (3.4.3), we express the ratio between the structure constants d(s)(V +) and d(s)(V −)
as their two- and three-point structure constants,

ρ(VP,P̄ |V1, V2) =
B(V −)

B(V +)

C(V〈1,2〉, VP,P̄ , V
+)

C(V〈1,2〉, VP,P̄ , V −)

C(V1, V2, VP,P̄ )

C(V1, V2, VP,P̄ )
. (4.3.3)

Since the four-point function in (4.3.1) satisfies the second-order BPZ equation, the ratio
of structure constants in (4.3.3) can been determined analytically and will be displayed
below [42, 10]. Now consider the s-channel of 〈V D

〈1,2〉VP,P̄V
D
〈1,2〉VP,P̄ 〉:

〈V D
〈1,2〉VP,P̄V

D
〈1,2〉VP,P̄ 〉 =

∑
ε=±

a(s)(V ε)

〈1, 2〉D
V ε

〈1, 2〉D

P, P̄ P, P̄

. (4.3.4)

Using (4.3.3), the ratio between the four-point structure constants a(s)(V +) and a(s)(V −)
is therefore given by

ρ(VP,P̄ ) = ρ(VP,P̄ |V D
〈1,2〉, VP,P̄ ) . (4.3.5)

Let us now introduce four-point functions of arbitrary primary fields, 〈
∏4

i=1 Vi〉, which
belong to CFTs where V D

〈1,2〉 exists. Assuming that V ε propagate in their s-channel, we
can then write down the degenerate-shift equation for the four-point structure constants
D(s)(V +) and D(s)(V −) in 〈

∏4
i=1 Vi〉 as follows:

D(s)(V +)

D(s)(V −)
=
ρ(VP,P̄ |V1, V2)ρ(VP,P̄ |V3, V4)

ρ(VP,P̄ )
, (4.3.6)

where the functions ρ(V1|V2, V3) can computed in a similar way as their diagonal counter-
part in (4.2.16) by solving the BPZ equation for the four-point function in (4.3.1) while
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taking into account also crossing symmetry and constraints from the single-valuedness.
Here we only display the results from [10],

ρ(V1|V2, V3)

= −(−1)2r2
Γ(−2β−1P1)

Γ(2β−1P1)

Γ(−2β−1P̄1)

Γ(2β−1P̄1)

∏
±,± Γ

(
1
2

+ β−1P1 ± β−1P2 ± β−1P3

)∏
±,± Γ

(
1
2
− β−1P̄1 ± β−1P̄2 ± β−1P̄3

) .
(4.3.7)

The index r2 in (4.3.7) is always zero if V2 is diagonal while r2 is simply the first Kac
index of V2 if V2 is non-diagonal. For instance,

r2 = 0 for V2 = V D
P

( 1
3 ,0)

, (4.3.8a)

r2 = 1 for V2 = V(1,1) . (4.3.8b)

Moreover, in the case of bosonic fields, the function ρ(V1|V2, V3) is always symmetric under
exchanging V2 and V3 [10]. Using (4.3.7) with (4.3.5), let us also write down the function
ρ(V ) explicitly,

ρ(VP,P̄ ) =
Γ(−2β−1P )Γ(−2β−1P̄ )

Γ(2β−1P )Γ(2β−1P̄ )

Γ(β−2 + 2β−1P )Γ(1− β−2 + 2β−1P )

Γ(β−2 − 2β−1P̄ )Γ(1− β−2 − 2β−1P̄ )
. (4.3.9)

Indeed, one can also arrive similar results for (4.3.6) in the t- and u-channels by simply
permuting external fields in (4.3.6). Furthermore, one can check that the degenerate-shift
equation (4.2.16) is the special case of (4.3.6) by specializing (4.3.7) for the four-point
function in (4.2.2). While the derivation of (4.3.6) relies on the existence of the degenerate
fields V D

〈1,2〉, one can also find that V D
〈1,3〉 provides comparable constraints, which yield

exactly the same results as in (4.3.6) [25]. More generally, the existence of V D
〈1,s〉 with

s ∈ N∗ + 1 leads to the degenerate-shift equation (4.3.6). Examples of CFTs with this
type of the degenerate-shift equations are the Potts and O(n) CFTs, which we will discuss
in Chapter 5. In the case of CFTs in which there exist the degenerate fields V D

〈s,1〉 instead
of V D

〈1,s〉, their four-point structure constants obey another type of the degenerate-shift
equation,

D(s)(Ṽ +)

D(s)(Ṽ −)
=
ρ̃(ṼP,P̄ |V1, V2)ρ̃(ṼP,P̄ |V3, V4)

ρ̃(ṼP,P̄ )
, (4.3.10)

where we have introduced the fields Ṽ ε and the functions ρ̃ as follows:

Ṽ ε = VP+εβ,P̄+εβ , (4.3.11a)
ρ̃(V1|V2, V3) = ρ(V1|V2, V3)

∣∣
β→β−1,r2→s2 , (4.3.11b)

ρ̃(ṼP,P̄ ) = ρ̃(VP,P̄ |V D
〈1,2〉, VP,P̄ ) . (4.3.11c)

Beware of the opposite signs in (4.3.11a) and (4.3.2). An example of CFTs which have
both types of the degenerate-shift equations (4.3.10) and (4.3.6) is Liouville theory. In
Liouville theory, the degenerate fields V D

〈1,2〉 and V
D
〈2,1〉 do not exist in the spectrum, however

correlation functions of these two degenerate fields exist in Liouville theory [5].
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Selection rules by the degenerate fields

From [10], the existence of the degenerate fields V D
〈1,s〉 does not only constrain four-point

structure constants but also impose the following selection rules on three-point function
functions. For Vi ∈ {VPi,P̄i , V D

Pi
}, we have

〈
3∏
i=1

Vi〉 6= 0 ⇐⇒
3∑
i=1

ri ∈ Z and ri ∈
Z
2

with risi ∈ Z , (4.3.12)

where ri is defined in the same way as in (4.3.7): ri = 0 for diagonal primary fields, ri are
the first Kac indices for non-diagonal primary fields. For instance, recall that we write
V(r,s) for non-diagonal primary fields come with the left- and right-conformal dimensions:
(∆(r,s),∆(r,−s)). With (4.3.12), for any value of P , the following three-point functions
vanish.

〈V D
P V( 1

2
,0)V(0, 1

2
)〉 = 0 , (4.3.13a)

〈V D
P V( 1

3
,0)V( 1

3
,0)〉 = 0 . (4.3.13b)

In the case of CFTs with V D
〈1,s〉, we have

〈
3∏
i=1

Vi〉 6= 0 ⇐⇒
3∑
i=1

si ∈ Z and si ∈
Z
2

with risi ∈ Z , (4.3.14)

Likewise to (4.3.12), in (4.3.14), we define si = 0 for diagonal primary fields, and we
use the second Kac indices as si for non-diagonal primary fields. The selection rules
(4.3.12) and (4.3.14) then imply that the existence of the degenerate fields do not allow
the conformal dimensions of non-diagonal fields to take continuous values.

4.4 Generalized minimal models

Generalized minimal models [13] are conformal field theories at non-rational central charge
whose spectra are made of diagonal degenerate representationsRD

(r,s) and can be infinite, in
contrast to the more well-known minimal models, which are only valid at rational central
charge and have finite spectra. We shall discuss the latter case in Chapter 6. Spectra
of generalized minimal models are then given by any set of degenerate fields which are
closed under the degenerate fusion rules (4.1.10). For the largest spectrum, we have

SGMM =
⊕
r,s∈N∗

RD
(r,s) . (4.4.1)

Indeed, there are many more subsets of (4.4.1) which are closed under the degenerate
fusion rules (4.1.10) by themselves, for example

⊕
s∈N∗RD

(1,s),
⊕

r∈N∗RD
(r,1), and RD

(1,1).
We refer to CFTs with those spectra as generalized minimal models as well. As CFT
data, generalized minimal models are completely solved since their three-point structure
constants can be completely determined analytically by solving the BPZ equations and
the crossing-symmetry equation [13]. Unlike the minimal models, generalized minimal
models are expected to be consistent only on the Riemann sphere but not on higher-
genus Riemann surface [5].
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Three-point structure constants

Three-point structure constants of generalized minimal models can be obtained by solving
the degenerate-shift equations (4.3.6) and (4.3.10). For the case of central charge c ∈
C− (−∞, 1], one finds [13]

CGMM(V D
〈r1,s1〉, V

D
〈r2,s2〉, V

D
〈r3,s3〉) =

∏3
i=1 Υ′β(2P(ri,si))∏

±Υ′β
(
Q
2

+ P(r1,s1) ± P(r2,s2) ± P(r3,s3)

) , (4.4.2)

where Υβ(x) is the Upsilon function. More details on this function exist in many liter-
atures, for instance [9] and [5]. Since the degenerate-shift equations (4.3.6) and (4.3.10)
are analytic on the whole complex plane, we should also be able to compute three-point
structure constants in the region c < 1 as well. We can analytically continue (4.4.2) to
c < 1 as follows [13]:

β → iβ with Υβ(x)→ 1

Υiβ(−ix+ iβ)
. (4.4.3)

Three-point structure constants of generalized minimal models are then analytic at generic
central charge, and generalized minimal models are consistent CFT for c ∈ C. The authors
of [9] have also numerically checked by showing that four-point functions of generalized
minimal models are crossing symmetric for c ∈ C.

4.5 Constraining logarithmic representations
We now discuss how the existence of the degenerate fields completely fixes the logarithmic
couplings κ of the representations Wκ

(r,s) and W̃κ
(r,s), as well as the unfixed coefficients in

their conformal blocks (3.6.12) and (3.6.13).

4.5.1 Constraining logarithmic couplings

To start, we introduce the non-degenerate diagonal primary fields V D
P(r,s)

with the mo-
menta P(r,s) defined in (2.3.8). Moreover, whenever r and s are positive integers, the null
descendants of V D

P(r,s)
do not vanish,

L(r,s)V
D
P(r,s)

6= 0 and L̄(r,s)V
D
P(r,s)

6= 0 . (4.5.1)

For simplicity, we consider the OPE between the degenerate fields V D
〈1,s〉 with s ∈ 2N∗

and V D
P(r,0)+ε

as ε → 0. The case of s ∈ 2N∗ + 1 also leads to the same conclusion but
is slightly more complicated since their OPE would contain fields with vanishing second
Kac indices. Using (4.1.9), (3.3.19), and (3.3.21), we write the OPE,

V D
〈1,s〉V

D
P(r,0)+ε

=
s−1∑

j
2
=−s+1

∑
L
fLP(r,j)+ε

CP(r,j)+εV
D
P(r,j)+ε

, (4.5.2)

where we write CP for OPE coefficients of primary fields V D
P , and fLP denotes the relative

coefficients for their descendant fields. From (3.3.28), the coefficients fLP with |L| = rj be-
come singular at P = P(r,j) for r and j being positive integers. Therefore, the OPE (4.5.2)
could diverge in the limit ε → 0. However, associativity of the OPE and the degenerate
fields V D

〈1,s〉 actually constrain the OPE coefficients (4.5.2) to cancel the divergences from
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fLP(r,j)
through the degenerate shift equation (4.3.6). To see these cancellation, we first

introduce some more compact notations:

C+
j (ε) = CP(r,j)+ε , C−j (ε) = CP(r,−j)+ε and fj(ε) = f

L(r,j)

P(r,j)+ε
. (4.5.3)

Now concentrate on the terms that become singular as ε→ 0,

V D
〈1,s〉V

D
P(r,0)+ε

∼ C+
j (ε)

(
fj(ε)L(r,j)V

D
P(r,j)

+ fj(ε)L(r,j)V
D
P(r,j)

+ fj(ε)
2L̄(r,j)L(r,j)V

D
P(r,j)

)
+ C−j (ε)V D

P(r,−j)
. . . . (4.5.4)

From (3.3.28), the coefficient fj(ε) has a simple pole at ε = 0. Therefore, the first two
descendant fields in the first line of (4.5.4) are subleading in this limit. For the second line
of (4.5.4), we recall the relation (4.2.16), therefore the degenerate field V D

〈1,s〉 constrains
the ratio of C+

j (ε) and C−j (ε) such that

lim
ε→0

(
C−j (ε)

C+
j (ε)

+ fj(ε)
2

)
= 0 . (4.5.5)

Hence the double pole from the coefficient of L̄(r,j)L(r,j)V
D
P(r,j)

is precisely cancelled by the
relation (4.5.5). Furthermore, one can check that associativity of the OPE also ensures
that poles at ε = 0 in subleading terms of (4.5.4) are always cancelled. Working out
explicitly the right-hand side of (4.5.4), one is left with a combination of the first-order
derivative of fields, generated by the logarithmic field:

W−
(r,s) =

(
1−

P(r,s)

P(r,s) − P(r,−s)

)
ηD

(1)

(r,s) +
P(r,s)

P(r,s) − P(r,−s)
µD

(1)

(r,s) , (4.5.6)

where the derivatives of null fields ηD(1)

(r,s) and µD(1)

(r,s) were introduced in (3.5.3). The non-
trivial coefficients in (4.5.6) come from translating the P -derivatives to the ∆-derivatives.
Comparing (4.5.6) with the definition of W κ

(r,s) in (3.5.4), we then find that (4.5.6) gener-
ates the logarithmic representations Wκ−

(r,s) whose logarithmic coupling is given by

κ−(r,s) =
P(r,s)

P(r,s) − P(r,−s)
=
s− rβ2

2s
. (4.5.7)

If we had considered the degenerate fields V D
〈s,1〉 instead of V D

〈1,s〉, we would have arrived at
a slightly different logarithmic field:

W+
(r,s) =

(
1−

P(r,s)

P(r,s) − P(−r,s)

)
ηD

(1)

(r,s) +
P(r,s)

P(r,s) − P(−r,s)
µD

(1)

(r,s) , (4.5.8)

which generate the representations Wκ+

(r,s) with

κ+
(r,s) =

P(r,s)

P(r,s) − P(−r,s)
=
r − sβ−2

2r
. (4.5.9)

Relating κ+ to κ−, we find the relation between to the representations Wκ−

(r,s) and Wκ+

(r,s):

Wκ+

(r,s) =Wκ−

(s,r)(β → β−1) . (4.5.10)

Indeed, we have calculated the couplings κ± by considering OPEs which include the
degenerate fields themselves. However, since the ratio of OPE coefficients in (4.5.5) only
relies on the existence of the degenerate fields, the logarithmic fields W±

(r,s) could actually
appear in other OPEs as well, provided that their corresponding degenerate fields exist
in the model’s spectrum.
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Second-order derivatives

Let us now consider the OPE of the degenerate fields V D
〈r,s〉 with r, s ∈ 2N∗ and the primary

field VP(0,0)+ε. Similarly to (4.5.4), the leading terms in this OPE are of the type:

V D
〈r,s〉V

D
P(0,0)+ε

∼ C+
j (ε)

(
fj(ε)

2L̄(r,j)L(r,j)V
D
P(r,j)

+
C−j (ε)

C+
j (ε)

V D
P(r,−j)

)

+ C+
j (−ε)

(
fj(−ε)2L̄(r,j)L(r,j)V

D
P(r,j)

+
C−j (−ε)
C+
j (−ε)

V D
P(r,−j)

)
+ . . . (4.5.11)

Likewise to (4.5.4), cancellations from each bracket lead to a combination of the first
derivatives of null fields, which then further cancel each other due to their opposite signs
of ε. In the end, one is left with the second derivatives of null fields:

W̃ 0
(r,s) =

1

2

(
1−

P 2
(r,s)

P 2
(r,s) − P 2

(−r,s)

)
νD

(2)

(r,s) +
1

2

(
1−

P 2
(r,s)

P 2
(r,s) − P 2

(−r,s)

)
µD

(2)

(r,s) , (4.5.12)

which generates the representation W̃ κ0

(r,s) with

κ0
(r,s) =

P 2
(r,s)

P 2
(r,s) − P 2

(−r,s)
=

1

2
− r

4s
β2 − s

4r
β−2 . (4.5.13)

Notice that the representation W̃κ0

(r,s) is invariant under transforming β → β−1, simulta-
neously with r ↔ s.

4.5.2 Constraining logarithmic blocks

Let us now write down explicitly logarithmic conformal blocks for the representation
Wκ±

(r,s) and W̃κ0

(r,s), constrained by the degenerate fields. We start with the case of Wκ−

(r,s)

by translating the leading fields on the right-handside of the OPE (4.5.4) into conformal
blocks as the following:

Zε = FP(r,s)+εF̄P(r,s)+ε +
D(V D

P(r,−s)+ε
)

D(V D
P(r,s)+ε

)
FP(r,−s)+εF̄P(r,−s)+ε , (4.5.14)

where we now label conformal blocks with momenta instead of conformal dimensions.
Recalling that V D

P(r,−s)
= V D

P(r,s)+2sβ−2 , the ratio of four-point structure constants in (4.5.14)
is then obtained by taking a product of (4.3.6). Computing the limit ε → 0 in (4.5.14)
yields

Zε ∝
ε→0
G−(r,s) = 2P(r,s)

[
F∆(r,−s)

F̄ reg
∆(r,s)

R̄r,s

+
F reg

∆(r,s)

Rr,s

F̄∆(r,−s)

]
− 2P(r,−s)

(
F∆(r,−s)F̄∆(r,−s)

)′
− `(1)−

(r,s)F∆(r,−s)F̄∆(r,−s) . (4.5.15)

Comparing (4.5.15) to (3.6.12), one then recovers the value of κ− in (4.5.9), ensuring us
that the resulting blocks in (4.5.15) are indeed conformal blocks of Wκ− . Furthermore,
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the unfixed coefficient α in (3.6.12) is now completely fixed and is given by the coefficient
`

(1)−
(r,s) in the expansion:

log

(
ε2
D(VP(r,−s)+ε)

D(VP(r,s)+ε)

)
=
∞∑
n=0

`
(n)−
(r,s) ε

n . (4.5.16)

More explicitly, we write

β`
(1)−
(r,s) = −4

s∑
j=1−s

{
ψ(−2β−1P(r,j)) + ψ(2β−1P(r,−j))

}
− 4π cot(πsβ−2)

+
s−1∑
j

2
=1−s

∑
±,±

{
ψ
(

1
2
− β−1(P(r,j) ± P1 ± P2)

)
+ ψ

(
1
2

+ β−1(P(r,j) ± P̄1 ± P̄2)
)}

+
s−1∑
j

2
=1−s

∑
±,±

{
ψ
(

1
2
− β−1(P(r,j) ± P3 ± P4)

)
+ ψ

(
1
2

+ β−1(P(r,j) ± P̄3 ± P̄4)
)}

,

(4.5.17)

where ψ(x) = Γ′(x)
Γ(x)

is the digamma function, regularized such that ψ(−r) = ψ(r + 1) for
r ∈ N. Using (4.5.10), we can write down conformal blocks of the representations Wκ+

(r,s)

by transforming G−(r,s) as follows:

G+
(r,s) = G−(s,r)(β → β−1) . (4.5.18)

Similarly to (4.5.15), the conformal blocks G+
(r,s) are constrained by the degenerate-shift

equation of V D
〈s,1〉 in (4.3.10). Let us also define the structure constants `(1)−

(s,r)(β → β−1) as
`

(1)+
(r,s) , which appears in G+

(r,s). We write

`
(1)+
(r,s) = `

(1)−
(s,r)(β → β−1) . (4.5.19)

For the representations W̃κ0

(r,s), their conformal blocks appear in the subleading order in
the ε-expansion of (4.5.14). Therefore, we have

Zε + Z−ε ∝
ε→0
G̃0

(r,s) =
(
FF̄

)′′
P(r,−s)

−
4P 2

(r,s)

Rr,sR̄r,s

(
(P − P(r,s))

2FF̄
)′′
P(r,s)

+
(
`

(1)−
(r,s) − `

(1)+
(r,s)

) (
FF̄

)′
P(r,−s)

+
4P 2

(r,s)

Rr,sR̄r,s

(
`

(1)−
(r,s) + `

(1)+
(r,s)

) (
(P − P(r,s))

2FF̄
)′
P(r,s)

+
(

2`
(2)
(r,s) − `

(1)+
(r,s)`

(1)−
(r,s)

) (
FF̄

)
P(r,−s)

, (4.5.20)

where we have used the prime derivative as the P -derivative in (4.5.20), and this notation
of the prime derivative is only used in this expression. Hence, we can again recover
the coupling κ0 by comparing (4.5.20) to (3.6.13). From (4.5.20), all free parameters in
(3.6.13) are now completely fixed by the degenerate fields. The structure constant `(2)

(r,s)
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is defined by the expansion (4.5.16),

`
(2)
(r,s) = `

(2)+
(r,s) = `

(2)−
(r,s) = −8

{
s∑

j=1−s

r∑
i=1−r

1

(2P(i,j))2
− 1

(2P(0,0))2

}

− 1

2

s−1∑
j

2
=1−s

r−1∑
j

2
=1−r

∑
±,±

{
1

(P1 ± P2 ± P(i,j))2
+

1

(P̄1 ± P̄2 ± P(i,j))2

+
1

(P3 ± P4 ± P(i,j))2
+

1

(P̄3 ± P̄4 ± P(i,j))2

}
. (4.5.21)

From the expansion (4.5.16) It may look a bit peculiar that there are no polygamma
functions in (4.5.21). However, in this case, the polygamma functions ψ(1) simplify to
rational functions in (4.5.21) because of the identitiy:

ψ(1)(x) + ψ(1)(−x) = − d2

dx2
log(x)− d

dx
π cotπx. (4.5.22)

Similarly to the representation W̃κ0

(r,s), it is also easy to see that the logarithmic block G̃0
(r,s)

is invariant under transforming β → β−1, simultaneously with r ↔ s.

4.6 Interchiral blocks
With the degenerate-shift equation (4.3.6), we can glue a tower of infinitely many confor-
mal blocks, corresponding to four-point structure constant related by (4.3.6) or (4.3.10),
into the so-called interchiral blocks[15]. Interchiral blocks are therefore universal objects
which can be completely determined by conformal symmetry and the degenerate fields.
The interchiral blocks were first found in the four-point connectivities of the critical Q-
state Potts model, in which the degenerate-shift equation has the interchiral symmetry
as its underlying symmetry, hence the name “interchiral blocks”.

Let us then discuss interchiral blocks associated to the degenerate-shift equation of
V D
〈1,s〉 explicitly since their results will also be used in Chapter 5. The selection rule (4.3.12)

implies that the existence of the degenerate fields V D
〈1,s〉 and the single-valuedness only

allow non-diagonal primary fields to have discrete conformal dimensions while conformal
dimensions of diagonal fields can take continuous values. Therefore, we consider four-point
functions of the form:

〈
4∏
i=1

V(ri,si)〉 for ri ∈
Z
2

with risi ∈ Z , (4.6.1)

where we will use V(ri,si) to parametrize diagonal primary fields V D
P(0,si)

by simply setting
ri = 0 in V(ri,si) while allowing si to take generic values. This way of writing diagonal
primary fields is only consistent if we consider CFTs which only have the degenerate fields
of the type V D

〈1,s〉 because fusion rules of V D
P(0,si)

and V(0,si) always coincide in such CFTs.
For instance,

V(0,si) × V D
〈1,s〉 = V D

P(0,si)
× V D

〈1,s〉 whereas V(0,si) × V D
〈s,1〉 6= V D

P(0,si)
× V D

〈s,1〉 . (4.6.2)

From now, we will always write primary fields with the Kac indices, let us then also label
four-point structure constants by the Kac indices. We denote D(V D

〈1,s〉) by D〈1,s〉D and
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write D(r,s) for D(V(r,s)). In particular, the left-handside of (4.3.6) becomes

D(V D
〈1,s+2〉)

D(V D
〈1,s〉)

=
D〈1,s+2〉D

D〈1,s〉D
and

D(V(r,s+2))

D(V(r,s))
=
D(r,s+2)

D(r,s)

. (4.6.3)

Using (4.3.6) with the above notations, let us now write infinitely many degenerate con-
formal blocks |F (x)

∆〈1,s〉
|2 as single interchiral block,

H(x)

〈1,s0〉D =
∑

s∈s0+2N

D〈1,s〉D

D〈1,s0〉D
|F (x)

∆(1,s)
|2 for s0 ∈ N∗ , (4.6.4)

where s0 is the smallest index that is allowed by the degenerate fusion rules:

V D
〈1,s〉 × V(r,s) =

s+s0+1∑
j

2
=s−s0+1

V(r,j) . (4.6.5)

More explicitly, we have

s0 = 1 + min(|s1 − s2|, |s3 − s4|) if

{
(r1, r3) = (r2, r4) ,

(s1, s3) ≡ (s2, s4) mod (2, 2) .
(4.6.6)

For the non-diagonal fields V(r,s) with non-integer indices, we simply write

H(x)
(r,s) =

∑
j∈s+2Z

D(r,j)

D(r,s)

F (x)
∆(r,s+j)

F̄ (x)
∆(r,−s−j)

for r, s ∈ Q− Z . (4.6.7)

In the case of V(r,s) with r and s being integers, we use the logarithmic blocks G−(r,s) in
(4.5.15) whenever both r and s are non-zero, whereas we simply use the conformal blocks
of Verma modules with V(r,0) and V(0,s). This assumption makes sense because using the
conformal blocks F∆(r,s)

F̄∆(r,−s) with V(r,s) could result in a divergence due to the pole at
degenerate conformal dimensions ∆(r,s) in (3.4.15). Let us now write

H(x)
(r,s) =

∑
j∈s+2Z

D(r,j)

D(r,s)

G(x)−
(r,s+j) for r, s ∈ Z , (4.6.8)

where we have defined

G(x)−
(r,0) = |F (x)

∆(r,0)
|2 and G(x)−

(0,s) = |F (x)
∆(0,s)
|2 . (4.6.9)

Furthermore, in the case of 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)〉, one can factorize the degenerate-shift
equation (4.3.6) into two shift equations as follows:

D(r,s+2)

D(r,s)

=
D(r,s+2)

D(r,s+1)

D(r,s+1)

D(r,s)

, (4.6.10)

where each ratio on the right-handside of (4.6.10) has been computed analytically in
[15]. Therefore, for this particular four-point function, we can combine the interchiral
blocks HD

〈1,s〉 and HD
〈1,s+1〉 into single interchiral block, as well as H(r,s+1) and H(r,s). We
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can also apply the transformations β → β−1 to (4.6.10) and obtain similar results for
〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉,

D(r,+2,s)

D(r+1,s)

=
D(r+2,s)

D(r+1,s)

D(r+1,s)

D(r,s)

, (4.6.11)

where the above ratio is now controlled by the degenerate fields V D
〈s,1〉, or more precisely

(4.3.10). However, to keep our formalism compatible with more general cases, we do not
use the factorizations (4.6.10) and (4.6.11) with any interchiral block for any computation
in this thesis. It is also still an open question if these factorizations also happen in some
of other four-point functions.

In general, for CFTs with the degenerate fields of the type V D
〈s,1〉, their interchiral blocks

can be obtained in a similar way by considering the degenerate-shift equation (4.3.10) and
using the logarithmic blocks G+

(r,s) in (4.5.18). In the case of CFTs in which there exist
both of the degenerate fields V D

〈1,s〉 and V
D
〈s,1〉, their interchiral blocks are then obtained by

taking into account both the degenerate-shift equation (4.3.6) and (4.3.10). For instance
the odd CFT of [10, 43] is a CFT at generic central charge, which comes with discrete
spectra and has interchiral blocks associated to both (4.3.6) and (4.3.10).
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CHAPTER 5

Solving the Potts and O(n) CFTs

Since spectra of the Potts and O(n) CFTs were recently completely determined in [30],
the next step in solving both CFTs is to compute their four-point structure constants.
In this Chapter, using the result of [30], we demonstrate in several examples of how to
compute four-point functions of arbitrary primary fields in both CFTs numerically. Let
us now review spectra of these two CFTs.

5.1 Spectra of the two models
The list of primary fields of the Potts and O(n) CFTs can be obtained from the torus
partition functions in [14],

ZPotts =
∑
s∈N∗

χD〈1,s〉(q) + (Q− 1)
∑
s∈N+ 1

2

χ(0,s)(q) +
∑
r∈N+2

∑
s∈Z

r

λ(r,s)(Q)χ(r,s)(q) , (5.1.1)

ZO(n) =
∑

s∈2N∗+1

χD〈1,s〉(q) +
∑
r∈ 1

2
N∗

∑
s∈Z

r

ξ(r,s)(n)χ(r,s)(q) , (5.1.2)

where the parameters Q and n are related to the central charge by the relation (1.3.1),
which also holds for β2 in (1.2.2). The functions χD〈r,s〉(q) are characters of the degenerate
representations RD, while χ(r,s)(q) denote characters of non-diagonal Verma modules with
the highest weight:(∆(r,s),∆(r,−s)). These two types of characters have the expressions:

χD〈r,s〉 =

∣∣∣∣∣qP
2
(r,s) − qP

2
(r,−s)

η(q)

∣∣∣∣∣
2

, (5.1.3a)

χ(r,s) =
qP

2
(r,s) q̄P

2
(r,−s)

η(q)η(q̄)
, (5.1.3b)

where q is an exponential of the torus modulus: e2πiτ , and η(q) is the Dedekind eta
function. That is to say what we call characters are products of characters of the left-
and right-moving algebras. Moreover, the non-diagonal characters χ(r,s) in (5.1.1) and
(5.1.2) also come with the non-trivial multiplicities: λ(r,s) and ξ(r,s), which reflect the fact
that the Potts and O(n) CFTs have global symmetries. For instance, it was first observed
in [44] that multiplicities of primary fields in the Potts CFT’s partition function (5.1.1)

61
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can always be written as a sum of the dimensions of irreducible representations of SQ
symmetry with positive integer coefficients. To write down the multiplicities λ(r,s) and
ξ(r,s), we first define the modified Chebyshev polynomials pd(x) by the recursion:

xpd(x) = pd−1(x) + pd+1(x) with p1(x) = x and p0(x) = 2 . (5.1.4)

For instance, we have

p1(x) = x , (5.1.5a)
p2(x) = x2 − 2 , (5.1.5b)
p3(x) = x(x2 − 3) , (5.1.5c)
p4(x) = x4 − 4x2 + 2 . (5.1.5d)

The multiplicities of non-diagonal characters in (5.1.2) then read

ξ(r,s)(n) = δr,1δs∈2Z+1 +
1

2r

2r−1∑
r′=0

eπir
′sp(2r)∧r′(n) , (5.1.6)

where r∧ r′ denotes the greatest common divisor of r and r′. For the Potts CFT, we have

λ(r,s)(Q) = (Q− 1)(−1)rδs∈Z+ r+1
2

+
1

r

r−1∑
r′=0

e2πir′spr∧r′(Q− 2) for r > 0 (5.1.7)

ξ(r,s) and λ(r,s) are symmetric under s→ −s and invariant under the shifts:

ξ(r,s) = ξ(r,s+2Z) and λ(r,s) = λ(r,s+Z) (5.1.8)

It is therefore sufficient to write down ξ(r,s) for 0 ≤ s < 2, while we need to compute λ(r,s)

for 0 ≤ s < 1. For example,

(r, s) ξ(r,s) λ(r,s)

(1
2
, 0) n −

(1, 0) 1
2
(n+ 2)(n− 1) −

(1, 1) 1
2
n(n− 1) −

(3
2
, 0) 1

3
n(n2 − 1) −

(3
2
, 2

3
) 1

3
n(n2 − 4) −

(2, 0) 1
4
n (n3 − 3n+ 2) Q

2
(Q− 3)

(2, 1
2
) 1

4
(n4 − 5n2 + 4) 1

2
(Q− 1)(Q− 2)

(2, 1) 1
4
(n− 2)n(n+ 1)2 Q

2
(Q− 3)

(2, 3
2
) 1

4
(n4 − 5n2 + 4) 1

2
(Q− 1)(Q− 2)

(3, 0) 1
6

(n6 − 6n4 + n3 + 11n2 − n− 6) 1
3
(Q− 1)(Q2 − 5Q+ 3)

(5.1.9)

Observe that examples in (5.1.9) are always polynomials in Q and n with rational coef-
ficients for λ(r,s)(Q) and ξ(r,s)(n). This is not apparent due to the phase factors in the
formulae (5.1.6) and (5.1.7). It was however recently shown in [30] that both λ(r,s)(Q)
and ξ(r,s)(n) are always polynomials with rational coefficients.
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5.1.1 Virasoro symmetry

At generic central charge, primary fields in the Potts and O(n) transform in the repre-
sentations of the Virasoro algebra as follows:

Virasoro reps Primary fields Logarithmic fields Characters

RD
(1,s) V D

〈1,s〉 − χD〈1,s〉
Wκ−

(r,s) with r, s ∈ N∗ V(r,±s) W−
(r,s) χ(r,s) + χ(r,−s)

V∆(r,s)
⊗ V̄∆(r,−s) with s ∈ Q− N∗ V(r,s) − χ(r,s)

(5.1.10)

where we recall that the diagonal degenerate fields V D
〈1,s〉 have the left- and right-conformal

dimensions (∆(1,s),∆(1,s)) and V(r,s) denote the non-diagonal primary fields with the con-
formal dimensions (∆(r,s),∆(r,−s)). Let us also give some remarks:

• The degenerate fields V D
〈1,s〉 come with one vanishing null descendant at level s, which

can be deduced from the missing multiplicity of their descendant fields at level s
in (5.1.3a) [26]. For example, the identity field V D

〈1,1〉 has L̄−1L−1V
D
〈1,1〉 = 0 as its

vanishing null descendant.

• The primary fields V(1,1) and V(1,−1) have the left- and right- conformal dimensions:
(0, 1) and (1, 0), respectively. These two fields are the current of the O(n) CFT [26]
and belong to the non-chiral logarithmic representations W−

(1,1).

• The existence of the degenerate fields V D
〈1,s〉 fixes the logarithmic coupling of the

logarithmic field W−
(r,s) to be κ−(r,s) in (4.5.9).

• Indeed, we cannot really see that the full structure ofW−(r,s) from the torus-partition
functions (5.1.1) and (5.1.2) since these torus-partition functions were obtained by
taking the trace of the generators L0 and L̄0 and do not carry information of any
field, on which these two generators act non-diagonally. Nevertheless, the existence
of W−(r,s) in the spectra of the Potts and O(n) CFTs will be confirmed by boot-
strapping several four-point functions in both CFTs with the logarithmic conformal
blocks G−(r,s).

5.1.2 Global symmetries

At generic Q and n, irreducible representations of both SQ and O(n) can be parametrized
by arbitrary size Young diagrams. We denote Young diagrams by decreasing sequences
of positive integers in which each integer indicates number of boxes in each row. For
example, the sequence [7, 5, 3, 2, 2] represents the following diagram,

[λ0] = [7, 5, 3, 2, 2] = [75322] = with |λ0| = 7 + 5 + 3 + 2 + 2 = 19 ,

(5.1.11)

where |λ0| is the size of the diagram [λ0]. Moreover, we always neglect writing commas
in Young diagrams, whenever there is no ambiguity.
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SQ symmetry of the Potts CFT

Irreducible representations of symmetric group SQ are parametrized by Young diagrams
with Q boxes [45]. We then label irreducible representations of SQ with generic Q by the
Young diagrams [λ], which are obtained by neglecting the first row of the Young diagrams
[Q− |λ|, λ] of symmetric group SQ. Thus, the resulting diagrams are Q-independent. For
instance, we have

SQ reps Integer Q Non-integer Q

singlet [Q] []

fundamental [Q− 1, 1] [1]

symmetric [Q− 2, 2] [2]

anti-symmetric [Q− 2, 1, 1] [11]

(5.1.12)

Moreover, let us also point out that while we have mathematical formulation of SQ rep-
resentation theory for generic Q, it is not clear how to make sense of the SQ group for
generic Q. From [14], the degenerate fields V D

〈1,s〉 transform as the singlet under SQ sym-
metry while the non-diagonal fields V(0,s) belong to the fundamental representations. We
write these representations as follows:

Λ〈1,s〉D = [] and Λ(0,s) = [1] (5.1.13)

From the twisted-torus partition function in [30], the action of SQ symmetry on the other
non-diagonal primary fields is given by

Λ(r,s) = (−1)rδs∈Z+ r+1
2

[1] +
1

r

r−1∑
r′=0

e2πir′spr∧r′(
∑

r′′| r
r∧r′

Λr′′ − 2[]) , (5.1.14)

where Λr are formal representations of SQ defined by

Λr = [] +
r−1∑
k=0

(−1)k[r − k, 1k] with dim(Λ1) = Q and dim(Λr≥2) = 0 . (5.1.15)

To compute (5.1.14), recall the tensor product for SQ with Q ∈ C [46]:

[λ]⊗SQ [µ] =
∑
ν

Mλ,µ,ν [ν] , (5.1.16)

where Mλ,µ,ν are the reduced Kronecker coefficients, which are strictly positive integers
[47]. Moreover, the multiplicity Mλ,µ,ν obeys the following constraint [48]:

Mλ,µ,ν 6= 0 =⇒ ||λ| − |µ|| ≤ |ν| ≤ |λ|+ |µ| . (5.1.17)

There are simple rules of computing a product [Q − 1, 1] × [µ] for symmetric group SQ
in [45], which can be rewritten for the case [λ] = [1] in (5.1.16) as follows: the product
is a sum of all possible Young diagrams obtained by removing one box from [µ], then
adding at most one box to the resulting diagram where the multiplicity for each diagram
is one except for the diagram [µ] itself whose coefficient is the number of different rows.
In practice, we have used a program written in SageMath by [49] to compute the product
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(5.1.16). Let us show a few more tensor products of SQ with Q ∈ C :

[1]⊗SQ [1] = [1] + [2] + [11] + [] , (5.1.18a)
[2]⊗SQ [1] = [1] + [2] + [11] + [21] + [3] , (5.1.18b)

[21]⊗SQ [1] = 2[21] + [31] + [22] + [211] + [3] + [111] + [2] + [11] , (5.1.18c)
[11]⊗SQ [1] = [1] + [2] + [11] + [21] + [111] , (5.1.18d)
[2]⊗SQ [2] = [4] + [31] + [22] + [3] + 2[21] + [111] + 2[2] + [11] + [1] + [] ,

(5.1.18e)

Likewise to λ(r,s), the representations Λ(r,s) are also invariant under (5.1.8). Thus, we only
need to compute Λ(r,s) for 0 ≤ s < 1. Let us now display some examples of Λ(r,s):

Λ(2,0) = [2] , (5.1.19a)
Λ(2, 1

2
) = [11] , (5.1.19b)

Λ(3,0) = [3] + [111] , (5.1.19c)
Λ(3, 1

3
) = [21] , (5.1.19d)

Λ(4,0) = [4] + [22] + [211] + [3] + [21] + 2[2] + [1] + [] , (5.1.19e)
Λ(4, 1

4
) = [31] + [211] + [21] + [111] + [11] , (5.1.19f)

Λ(4, 1
2

) = [31] + [22] + [1111] + [3] + [21] + [2] + [11] + [1] , (5.1.19g)

Λ(5,0) = [5] + [32] + 2[311] + [221] + [11111] + [4] + 3[31]

+ 2[22] + 3[211] + [1111] + 2[3] + 4[21] + 2[111] + 2[2] + 2[11] + [1] .
(5.1.19h)

The equation (5.1.14) then tells us how the primary fields V(r,s) transform under SQ
symmetry of the Potts CFT. In particular, we have

V(r,s) in the Potts CFT = V
Λ(r,s)

(r,s) . (5.1.20)

For instance, the representations Λ(3,0) in (5.1.19c) lead to two linearly independent pri-
mary fields

V
Λ(3,0)

(3,0) =⇒ V
[3]

(3,0), V
[111]

(3,0) . (5.1.21)

O(n) symmetry of the O(n) CFT

From (5.1.2), the degenerate fields V D
〈1,s〉 in the spectrum of the O(n) CFT come with

multiplicity one, therefore it is natural to say that V D
〈1,s〉 belong to the singlet representation

of O(n), denoted by

Ξ〈1,s〉D = [] . (5.1.22)

The action of O(n) symmetry on the other non-diagonal fields V(r,s) was first conjectured
in [25], which was recently proven in [30]. The primary fields V(r,s) transform under O(n)
as the representations Ξ(r,s), defined as follows:

Ξ(r,s) = δr,1δs,2Z+1 +
1

r

r−1∑
r′=0

eπir
′spr∧r′(Ξ 2r

(2r)∧r′
) , (5.1.23)
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where Ξr are formal representations of O(n) defined by

Ξr = δr∈2Z +
r−1∑
k=0

(−1)k[r − k, 1k] with dim(Ξr) = n for r ∈ N∗ . (5.1.24)

To compute (5.1.23), we recall the tensor products of O(n) representations at n ∈ C:

λ⊗ µ =
∑
ν

Nλ,µ,νν , (5.1.25)

where the coefficients Nλ,µ,ν are tensor multiplicities, also known as the Newell–Littlewood
numbers [50]. The sum of representations in (5.1.25) is subject to the constraint:

Nλ,µ,ν 6= 0 =⇒ ||λ| − |µ|| ≤ ν ≤ |λ|+ |µ| . (5.1.26)

Likewise to the tensor product of SQ symmetry, one way of computing (5.1.25) is to use
the Pieri-type rule: the product [k]⊗λ is a sum of all possible Young diagrams which are
obtained by removing k boxes from the Young diagram λ, then adding at most k boxes
to different columns of the resulting diagram. For instance, we have

[1]⊗O(n) [1] = [2] + [11] + [] . (5.1.27)

Together with associativity, we can determine any tensor product of O(n) in (5.1.25). Let
us also show more examples of (5.1.25):

[1]⊗O(n) [2] = [21] + [3] + [1] , (5.1.28a)
[1]⊗O(n) [11] = [111] + [21] + [1] , (5.1.28b)
[2]⊗O(n) [2] = [4] + [31] + [22] + [2] + [11] + [] , (5.1.28c)

[11]⊗O(n) [11] = [1111] + [211] + [22] + [2] + [11] + [] , (5.1.28d)
[2]⊗O(n) [11] = [31] + [211] + [2] + [11] , (5.1.28e)
[1]⊗O(n) [21] = [31] + [22] + [211] + [2] + [11] , (5.1.28f)

With (5.1.25), we are now ready to compute (5.1.23). Let us again display a few examples
of (5.1.23),

Ξ( 1
2
,0) = [1] , (5.1.29a)

Ξ(1,0) = [2] , (5.1.29b)
Ξ(1,1) = [11] , (5.1.29c)
Ξ( 3

2
,0) = [3] + [111] , (5.1.29d)

Ξ( 3
2
, 2
3

) = [21] , (5.1.29e)

Ξ(2,0) = [4] + [22] + [211] + [2] + [] , (5.1.29f)
Ξ(2, 1

2
) = [31] + [211] + [11] , (5.1.29g)

Ξ(2,1) = [31] + [22] + [1111] + [2] , (5.1.29h)
Ξ( 5

2
,0) = [5] + [32] + 2[311] + [221] + [11111] + [3] + 2[21] + [111] + [1] , (5.1.29i)

Ξ( 5
2
, 2
5

) = [41] + [32] + [311] + [221] + [2111] + [3] + 2[21] + [111] + [1] , (5.1.29j)

Ξ(3,0) = [6] + 2[42] + 2[411] + [33] + 2[321] + 2[3111] + 2[222] + [2211] + [21111]

+ 2[4] + 4[31] + 4[22] + 4[211] + 2[1111] + 4[2] + 2[11] + 2[] , (5.1.29k)



CHAPTER 5. SOLVING THE POTTS AND O(N) CFTS 67

Likewise to the Potts CFT, each non-diagonal primary field in the O(n) CFT transforms
under O(n) symmetry as the representations Ξ(r,s),

V(r,s) in the O(n) CFT = V
Ξ(r,s)

(r,s) , (5.1.30)

which in general leads to multiple numbers of linearly independent fields with the same
conformal dimensions. For instance, using (5.1.29d), one finds two linearly independent
fields: V [3]

( 3
2
,0)

and V [111]

( 3
2
,0)
, whose conformal dimensions coincide.

5.2 Solving the crossing-symmetry equation
We are interested in computing four-point functions of arbitrary non-diagonal primary
fields in the Potts and O(n) CFTs, while four-point functions, which involve at least one
degenerate field, satisfy the BPZ equations and therefore can be computed analytically,
as previously discussed in Chapter 4.

Since both CFTs have the degenerate fields of the type V D
〈1,s〉 in their spectra, we

decompose their four-point functions into a sum of the interchiral blocks H(x)
V , introduced

in Section 4.6. The crossing-symmetry equation of the four-point functions 〈
∏4

i=1 V(ri,si)〉
then reads∑

V ∈S(s)

D
(s)
V H

(s)
V (z, z̄) =

∑
V ∈S(t)

D
(t)
V H

(t)
V (z, z̄) =

∑
V ∈S(u)

D
(u)
V H

(u)
V (z, z̄) , (5.2.1)

where D(s)
V , D(t)

V and D
(u)
V are the unknown four-point structure constants. Let us also

stress here that it is necessary to solve all three channels of the crossing-symmetry equation
(5.2.1) simultaneously to avoid having infinitely many solutions [15, 29]. For each model,
we solve for 〈

∏4
i=1 V(ri,si)〉 from (5.2.1) by assuming that the spectrum of each channel

in (5.2.1) is the full spectrum of each model modulo the degenerate fusion rules (4.6.5).
For example, in the case of the Potts CFT, the initial spectra S(s), S(t), and S(u) for the
four-point function 〈V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)〉 are assumed to be

SPotts = {(r, s) ∈ (N + 2)× (−1, 1]|rs ∈ Z} ∪ {(0, 1/2)} ∪ {〈1, 1〉D, 〈1, 2〉D} , (5.2.2)

where we always denote primary fields in spectra of four-point functions by their indices:
〈r, s〉D for the degenerate fields V D

〈r,s〉 and (r, s) for the non-diagonal fields V(r,s). The
spectrum (5.2.2) is consistent with the fusion rules (4.6.5) because we have the coincidence:

V(0, 1
2

) = V(0,− 1
2

) , (5.2.3)

which allows us to write

V D
〈1,1〉 ∈ V(0, 1

2
) × V(0, 1

2
) , (5.2.4a)

V D
〈1,2〉 ∈ V(0, 1

2
) × V(0,− 1

2
) = V(0, 1

2
) × V(0, 1

2
) . (5.2.4b)

Moreover, with the relation (5.2.3), any primary field of the type V(0,s) in (5.1.1) is related
to V(0, 1

2
) by the shift: s→ s+ 2Z. For instance, we have

V(0, 3
2

) = V(0,− 1
2

+2) , (5.2.5a)

V(0, 5
2

) = V(0, 1
2

+2) , (5.2.5b)

V(0, 7
2

) = V(0,− 1
2

+4) (5.2.5c)
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Thus, the spectrum (5.2.2) is in fact the full spectrum of the Potts CFT modulo the shift
by two in the second Kac indices. Let us also write down the full spectrum of the O(n)
CFT modulo the shift by two in the second Kac indices,

J O(n) = {(r, s) ∈ 1

2
N∗ × (−1, 1]|rs ∈ Z} ∪ {〈1, 1〉D} . (5.2.6)

We shall always use the letter J to denote spectra for four-point functions of the O(n)
CFT and write S for the case of the Potts CFT. Moreover, notice from (4.6.8) that the
interchiral blocks of non-diagonal primary fields with integer indices in the spectra (5.2.2)
and (5.2.6) always contain the logarithmic blocks G−(r,s).

5.2.1 Numerical bootstrap

Because the interchiral blocks of any primary field in (5.2.2) and (5.2.6) have been com-
pletely determined [25], the crossing-symmetry equation (5.2.1) is then a linear system for
infinitely many unknown four-point structure constants, which can be numerically solved
by using the method of [31]. In each spectrum of (5.2.1), the tower of infinitely many
fields is truncated by an upper bound on their conformal dimensions,

<(∆ + ∆̄) ≤ ∆max , (5.2.7)

which led us to the truncated crossing-symmetry equation:

<(∆V +∆V )≤∆max∑
V ∈S(s)

D
(s)
V H

(s)
V (z, z̄) =

<(∆V +∆V )≤∆max∑
V ∈S(t)

D
(t)
V H

(t)
V (z, z̄) =

<(∆V +∆V )≤∆max∑
V ∈S(u)

D
(u)
V H

(u)
V (z, z̄) ,

(5.2.8)

where we have written ∆V for the total conformal dimensions of the primary field V .
Computing the truncated crossing-symmetry equation (5.2.8) at random positions then
gives us linear equations for the unknown structure constants. More precisely, after im-
posing the restriction (5.2.7) on the spectra in (5.2.1), we are left with a finite number
of unknown structure constants, denoted by Nunknowns. In practice, we also need to nor-
malize one structure in (5.2.8) to avoid having an indeterminate system, thus we are in
fact solving (5.2.8) for Nunknowns − 1 structure consants. Since computing the truncated
crossing-symmetry equation (5.2.8) at one position leads to two equations: differences
between each pair of two different channels, it is therefore sufficient to compute (5.2.8)
at
⌈
(Nunknowns − 1)/2

⌉
random positions, which results in at least Nunknowns − 1 linear

equations for Nunknowns − 1 four-point structure constants. Let us now write the linear
system for (5.2.8) explicitly. We first define the vector ~d with Nunkowns rows for four-point
structure constants in (5.2.8),

~d =


d(s)

d(t)

d(u)

 with d(x) =


D

(x)
V1

D
(x)
V2

D
(x)
V3

...

 , (5.2.9)

where we denote each field in the spectrum S(x) as Vi. We then organize the interchiral
blocks in each channel of (5.2.8), computed at

⌈
(Nunkowns− 1)/2

⌉
different positions, into
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the matrix b(x):

b(x) =


H(x)
V1

(z1) H(x)
V2

(z1) H(x)
V3

(z1) . . .

H(x)
V1

(z2) H(x)
V2

(z2) H(x)
V3

(z2) . . .
...

...
...

 . (5.2.10)

Using (5.2.9) and (5.2.10), we can write the truncated-crossing symmetry equation as
follows

B~d = 0 , (5.2.11)

where

B =

(
b(s) −b(t) 0
0 b(t) −b(u)

)
. (5.2.12)

Hence, with (5.2.10), the linear system (5.2.11) has indeed Nunkowns − 1 equations as
previously mentioned. Moreover, notice that the choice of (5.2.12) is not unique. For
instance, we could have chosen

B =

(
b(s) −b(t) 0
b(s) 0 −b(u)

)
or B =

(
0 b(t) −b(u)

b(s) 0 −b(u)

)
. (5.2.13)

However, the other choices of B in (5.2.13) are just different ways of grouping terms in
(5.2.8) and, of course, yield the results as in (5.2.10).

Numerical errors

Since four-point structure constants in (5.2.1) do not depend on position, the numerical
error for each four-point structure constant in (5.2.9), which we call the deviation, is
given by the relative difference among structure constants of the same field, computed
from different choices of positions. If the resulting four-point structure constants are
indeed solutions to (5.2.1), their deviations should behave as follows,

deviation→ 0 as ∆max →∞ . (5.2.14)

The above phenomenon will be demonstrated in several examples.

5.2.2 Counting crossing-symmetry solutions

In the Potts and O(n) CFTs, the crossing-symmetry equation can have non-trivial num-
ber of solutions due to their global symmetries [15, 25]. For instance, in the Potts CFT
[15], there are four different four-point connectivities in (1.3.2), equivalent to four linearly-
independent crossing symmetry solutions of the four-point function 〈V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)〉.

Let us then define the number of linearly-independent solutions to (5.2.1) for the four-
point functions 〈

∏4
i=1 V(ri,si)〉, according to the input of the crossing-symmetry equation

for each CFT,

N〈∏4
i=1 V(ri,si)

〉

= {dim of solutions to (5.2.1) with the input: ZPotts modulo (4.6.5) } , (5.2.15a)

Ñ〈∏4
i=1 V(ri,si)

〉

= {dim of solutions to (5.2.1) with the input: ZO(n) modulo (4.6.5) } . (5.2.15b)



70 CHAPTER 5. SOLVING THE POTTS AND O(N) CFTS

However, we stress here that each number of solution in (5.2.15) does not need to coincide
with the number of crossing-symmetry solutions that belong to its corresponding CFT
because crossing-symmetry solutions of the O(n) and Potts CFT must also be consistent
with their global symmetries. We will discuss this issue in Sections 5.3 and 5.4. Let us
now discuss how to compute (5.2.15) numerically by our approach in [25].

Singular values

The crossing-symmetry equation (5.2.1) is a linear system, whose number of vanishing
singular values can determine the number of linearly-independent crossing-symmetry so-
lutions. We are then interested in numerically computing singular values of the crossing
matrixB in (5.2.11). In practice, it is possible to distinguish vanishing singular values from
the other singular values by assuming that vanishing singular values move towards zero as
we increase the precision of the crossing matrix B, or equivalently increasing ∆max. For ex-
ample, we show the plot of some singular values of the crossing matrix B for the four-point
function 〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 whose spectra are given by S(s) = S(t) = S(u) = J O(n),

computed at the central charge β−1 = 0.8 + 0.1i,

(5.2.16)

Therefore, from (5.2.16), there are 3 singular values, which moves away from the others as
we increase ∆max. These 3 singular values then vanish at infinity precision. Thus, there are
3 solutions to the crossing-symmetry equation for this four-point function. Let also display
a more non-trivial example: the singular values of the crossing matrix B for the four-point
function 〈V( 1

2
,0)V( 1

2
,0)V( 3

2
,0)V( 3

2
,0)〉 whose spectra are given by S(s) = S(t) = S(u) = J O(n),
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computed at β−1 = 0.8 + 0.1i,

(5.2.17)

Hence, there are 5 crossing-symmetry solutions for this case. However, separating vanish-
ing singular values from the other singular values in general requires very high-precision
computations, which consume considerable amount of time. For instance, at ∆max = 90,
the crossing matrix B for the plot (5.2.17) has an accuracy of 70 digits, whose computation
takes a standard-Desktop computer around 3 days.

Method of excluding fields

Let us discuss another method of counting crossing-symmetry solutions. The confor-
mal bootstrap approach of [31] can easily detect if we have a unique solution to the
crossing-symmetry equation. Such solution comes with deviations of structure constants,
which decrease as one increases ∆max. This allows us to compute the number of crossing-
symmetry solutions by counting linear constraints imposed on structure constants till we
find a unique solution. In practice, these constraints amount to normalizing one structure
constants and setting some structure constants to be zero. More precisely, both of the
number of solutions N〈∏4

i=1 V(ri,si)
〉 and Ñ〈∏4

i=1 V(ri,si)
〉 are given by

#(linearly independent fields excluded from S(s), S(t), S(u) till we find a uniqe solution ) + 1

(5.2.18)

As an example, we again solve the crossing-symmetry equation (5.2.1) for the four-point
functions 〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 in which all three channels have the spectrum J O(n).

From the first table in (5.2.19), we see that the deviations of all structure constants are
large, except for DD

〈1,1〉 which is normalized to one. However, after removing the two fields:
V(1,0) and V(1,1), the deviations of the other fields become significantly small, which means
that we have found a unique solution. Hence, there are 3 = 2 + 1 solutions in this case,
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which agrees with the resulting from computing the singular values in (5.2.16).

Before After

(r, s) <D(s)
(r,s) Deviation

〈1, 1〉 1 0

(1, 0) 1.24 0.16

(1, 1) −0.029 0.15

(2, 0) −8.9× 10−4 0.14

(2,±1
2
) 0.3× 10−3 0.15

(2, 1) −2× 10−3 0.16

(3, 0) 2.8× 10−7 0.15

(3,±1
3
) −8.0× 10−8 0.15

(3,±2
3
) 2.8× 10−7 0.15

<D(s)
(r,s) Deviation

1 0

− −
− −

−1.5× 10−3 1.5× 10−19

−1.1× 10−21 0.21

−2.9× 10−22 0.24

1.3× 10−7 6.7× 10−11

−1.7× 10−18 2.6

8.3× 10−8 7.4× 10−11

(5.2.19)

Notice that after removing two fields in (5.2.19), we are left with some vanishing structure
constants, for instance (2,±1

2
). These vanishing structure constants always have very

small values of <(D
(s)
(r,s)) but come with large deviations. Indeed, from (5.2.19), we see

that one does not need to have very-high precision numerical results to count solutions
by the method of excluding fields, therefore we shall be using this method to count all
crossing-symmetry solutions throughout this thesis. Nevertheless, it can happen that
one accidentally remove fields which are linearly dependent, resulting in a miscount. In
practice, to avoid such problem, we compute (5.2.18) by excluding various sets of fields
and compare their outcomes.

5.3 Four-point functions of the O(n) CFT
The crossing-symmetry equation only knows about conformal symmetry: Virasoro repre-
sentations and their conformal blocks. Four-point functions of the O(n) CFT however also
transform in irreducible representations of O(n). These are two independent constraints.
Let us then discuss briefly how four-point functions of the O(n) CFT are subject to O(n)
symmetry. We begin with how O(n) symmetry constrains two- and three-point functions
of the O(n) CFT. The Schur orthogonality relations infer

ν 6= µ =⇒ 〈V µV ν〉 = 0 , (5.3.1)

where V λ is any field which transforms under O(n) symmetry as the representation λ.
For three-point functions, the tensor product (5.1.25) implies

ν /∈ λ⊗O(n) µ =⇒ 〈V λV µV ν〉 = 0 . (5.3.2)

Notice that reversing the statements (5.3.1) and (5.3.2) does not always leads to correct re-
sults since two- and three-point functions are also constrained by conformal symmetry and
OPE associativity. For instance, two-point functions of primary fields, which transform
in the same O(n) representations but have different conformal dimensions, vanish. Using
the OPE, vanishing three-point functions in (5.3.2) then put constraints on the spectra of
four-point functions of the O(n) CFT, which led us to define four-point functions of the
O(n) CFT as follows:
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The four-point functions 〈
∏4

i=1 V(ri,si)〉 of the O(n) CFT are solutions to the crossing-
symmetry equation (5.2.1) whose spectra satisfy the constraints:

J (s) ⊂ J Ξ(r1,s1)⊗O(n)Ξ(r2,s2) ∩ J Ξ(r3,s3)⊗O(n)Ξ(r4,s4) , (5.3.3a)

J (t) ⊂ J Ξ(r1,s1)⊗O(n)Ξ(r4,s4) ∩ J Ξ(r2,s2)⊗O(n)Ξ(r3,s3) , (5.3.3b)

J (u) ⊂ J Ξ(r1,s1)⊗O(n)Ξ(r3,s3) ∩ J Ξ(r2,s2)⊗O(n)Ξ(r4,s4) , (5.3.3c)

where we have defined

J
∑
i ξi =

⋃
i

J ξi with J ξ = {κ ∈ J O(n)|ξ ∈ Ξκ} . (5.3.4)

For example, we have

J [1]×[1] = J []+[11]+[2] = J [] ∪ J [11] ∪ J [2] . (5.3.5)

Using (5.1.23), let us display examples of J λ for |λ| ≤ 3. We first define

B0 = {(r, s) ∈ N∗ × (−1, 1]|rs ∈ Z} ∪ {〈1, 1〉D} , (5.3.6a)
B 1

2
= {(r, s) ∈ (N + 1/2)× (−1, 1]|rs ∈ Z} , (5.3.6b)

B1 = B0 − {〈1, 1〉D} . (5.3.6c)

Therefore, we have

J [] = B0 − {(1, 0), (1, 1), (2,±1/2), (2, 1), (3,±1/3), (3, 1)} , (5.3.7a)

J [1] = B 1
2
− {(3/2, 0), (3/2,±2/3)} , (5.3.7b)

J [11] = B1 − {(1, 0), (2, 0), (2, 1)} , (5.3.7c)

J [2] = B1 − {(1, 1), (2,±1/2)} , (5.3.7d)

J [3] = B 1
2
− {(1/2, 0), (3/2,±2/3)} , (5.3.7e)

J [21] = B 1
2
− {(1/2, 0), (3/2, 0)} , (5.3.7f)

J [111] = B 1
2
− {(1/2, 0), (3/2,±2/3)} . (5.3.7g)

Furthermore, we have used subsets rather than equalities in (5.3.3) because some of struc-
ture constants in these spectra could vanish non-trivially due to the crossing-symmetry
equation. With (5.3.3), we now define the number of crossing-symmetry solutions that
belong to O(n) CFT as follows:

ÑO(n)

〈∏4
i=1 V(ri,si)

〉 = dim{solutions to (5.2.1) modulo the constraints (5.3.3)} , (5.3.8)

On the other hand, O(n) symmetry can also predict the number of crossing-symmetry
solutions for the four-point functions 〈

∏4
i=1 V

λi〉. We write

〈
4∏
i=1

V λi〉 =
∑
i

T
O(n)
i Fi , (5.3.9)

where TO(n)
i are O(n) invariant tensors and Fi are solutions to the crossing-symmetry

equation (5.2.1). The dimension of the linear space spanned by Ti, denoted by IO(n), then
predicts the number of crossing-symmetry solutions that belong to the O(n) CFT. The
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invariant IO(n) can be computed by using the tensor product (5.1.25). From [25], we have

IO(n)

〈∏4
i=1 V

λi 〉 =
∑
ν

Nλ1,λ2,νNλ3,λ4,ν , (5.3.10)

where Nλ,µ,ν are multiplicities in the O(n) tensor product (5.1.25). From (5.3.3), the
number IOn

〈∏4
i=1 V

Λ(ri,si) 〉
then provides an upper bound for (5.3.8),

ÑO(n)

〈∏4
i=1 V(ri,si)

〉 ≤ I
O(n)

〈∏4
i=1 V

Ξ(ri,si) 〉
. (5.3.11)

From [25], we have checked in many examples that solutions of the crossing-symmetry
equation, whose input is the full spectrum of the O(n) CFT, always obey (5.3.3). Let us
then conjecture,

Ñ〈∏4
i=1 V(ri,si)

〉 = ÑO(n)

〈∏4
i=1 V(ri,si)

〉 , (5.3.12)

where the definition of Ñ〈∏4
i=1 V(ri,si)

〉 was given in (5.2.15). In contrast to the O(n) CFT,
we will see in the next section that the Potts CFT does not have similar relations as in
(5.3.12).

5.3.1 Examples

We numerically solve the crossing-symmetry equation for some four-point functions, which
involve the primary fields V( 1

2
,0), V(1,0), and V(1,1). Using these numerical results, we deduce

exact fusion rules among these three fields. Let us first define even- and odd-spin spectra
from the spectrum J O(n):

J odd = {(r, s) ∈ J O(n)|rs ∈ 2Z + 1} , (5.3.13a)

J even = {(r, s) ∈ J O(n)|rs ∈ 2Z} ∪ {〈1, 1〉D} . (5.3.13b)

Moreover, we only give examples of four-point functions wherein the number of solutions
ÑO(n) coincide with the prediction from O(n) symmetry: IO(n). However, in general,
we find that ÑO(n) is much smaller than IO(n). For example, we find ÑO(n) = 15 for
the four-point function 〈V(2,0)V(2,0)V(2,0)V(2,0)〉 whereas IO(n) ∼ O(103) for this four-point
function. We do not yet have clear explanations for this huge discrepancy and leave it for
future work.

The four-point function 〈V( 1
2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉

Using (5.1.29a), the field V( 1
2
,0) transforms as a vector under O(n) symmetry, let us then

write the O(n) vector indices of the four-point function 〈V( 1
2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 explicitly:

〈V i1
( 1

2
,0)
V i2

( 1
2
,0)
V i3

( 1
2
,0)
V i4

( 1
2
,0)
〉 = T

O(n)
[] A

(s)
[] + T

O(n)
[11] A

(s)
[11] + T

O(n)
[2] A

(s)
[2] , (5.3.14)

where

T
O(n)
[] = δi1i2δi3i4 , (5.3.15a)

T
O(n)
[11] = δi1i4δi2i3 − δi1i3δi2i4 , (5.3.15b)

T
O(n)
[2] = δi1i3δi2i4 + δi1i4δi2i3 −

2

n
δi1i2δi3i4 . (5.3.15c)
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Therefore, O(n) representation theory predicts 3 linearly-independent solutions in this
case, and we indeed find 3 crossing-symmetry solutions. To write down the solution
A

(s)
λ , we again impose 3 linear constraints on 3 linearly-independent structure constants

in (5.3.14) such that fields, which propagate in the resulting solution, only transform
under O(n) as the representation λ. For example, the solution A(s)

[] can be singled out by
requiring the structure constants D(s)

(1,1) and D
(s)
(1,0) to vanish and fixing the normalization

D〈1,1〉D = 1. Let us now display numerical results for A(s)
[] ,

A
(s)
[] at ∆max = 40 and β−1 = 0.8 + 0.1i

(r, s) <D(s)
(r,s) Deviation

〈1, 1〉D 1 0

(2, 0) −1.515508647813802768× 10−3 2.2× 10−19

(3, 0) 1.39468476197762× 10−15 6.6× 10−15

(3,±2
3
) 8.3751227046841× 10−8 1.2× 10−14

(4, 0) 3.7× 10−13 0.87

(5.3.16)

We find that the structure constants D(s)
(2N+2,1) vanish in the solutions A(s)

[] , therefore we
have excluded them. Therefore, we have computed the solution A(s)

[] at high precision.
Moreover, any structure constants with integer indices correspond to the interchiral blocks
(4.6.8), which contain the logarithmic blocks G−(r,s). Therefore, we have demonstrate G−(r,s)
indeed appear in a four-point function of the O(n) CFT, which confirms the existence of
the logarithmic representations Wκ−

(r,s) in (5.1.10). Let us also display numerical results
for the other two solutions:

A
(s)
[11] at ∆max = 40 and β−1 = 0.8 + 0.1i

(r, s) <D(s)
(r,s) Deviation

(1, 1) 1 0

(2,±1
2
) −1.136421079784788769× 10−3 4.7× 10−20

(3,±1
3
) 4.60859597460550× 10−7 4.1× 10−15

(3, 1) 2.43369637600654× 10−7 3.1× 10−15

(4,±1
4
) 5.8× 10−13 0.48

(5.3.17)

A
(s)
[2] at ∆max = 40 and β−1 = 0.8 + 0.1i

(r, s) <D(s)
(r,s) Deviation

(1, 0) 1 0

(2, 0) −6.249142617756265636× 10−3 2.1× 10−19

(2, 1) −1.4658809155406988148× 10−3 7.9× 10−20

(3, 0) 2.06056149998946× 10−7 7.1× 10−15

(3,±2
3
) 2.15149154275906× 10−8 3.9× 10−15

(4, 0) 6.1× 10−13 0.57

(5.3.18)
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Let us now summarize the spectra for each solution in (5.3.14).

Solutions Spectra
s t, u

A
(s)
[] J [] ∩ J even − (2N + 2, 1)

J O(n)
r∈N∗

A
(s)
[11] J [11] ∩ J odd

A
(s)
[2] J [2] ∩ J even

(5.3.19)

Indeed, one can also choose a different way of contracting the indices for the four-point
function in (5.3.14). For instance,

〈V i1
( 1

2
,0)
V i2

( 1
2
,0)
V i3

( 1
2
,0)
V i4

( 1
2
,0)
〉 = δi1i2δi3i4C1 + δi2i3δi1i4C2 + δi1i3δi2i4C3 (5.3.20)

From the lattice model, the choice of bases in (5.3.20) computes the probability of how
each pair of points belong on each line in the following diagrams:

i1 i4

i2 i3

δi1i2δi3i4C1 δi2i3δi1i4C2 δi1i3δi2i4C3 (5.3.21)

One can also relate the two sets of solutions in (5.3.14) and (5.3.20) and finds the following
linear transformations:

C1 = A
(s)
[] −

2

n
A

(s)
[2] , C2 = A

(s)
[2] + A

(s)
[11] , C3 = A

(s)
[2] − A

(s)
[11] . (5.3.22)

Furthermore, while the degenerate-shift equation for the first Kac index of four-point
structure constants does not exist in the O(n) CFT since its spectrum does not contain
the degenerate fields V D

〈s,1〉 with s > 1, similarly to the four-point connectivities of the
Potts CFT [15], we find that the four-point function 〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 satisfies a

renormalized version of the degenerate-shift equation (4.3.10). From [15], we write

D(r+1,s)

D(r,s)

= E(r,s)(n)

{
2
− 4s+2

β2
Γ(1−r

2
+ s

2β2 )

Γ(2−r
2

+ s
2β2 )

Γ(− r
2
− s

2β2 )

Γ(1−r
2
− s

2β2 )

Γ(1−r
2

+ s+1
2β2 )

Γ(− r
2

+ s+1
2β2 )

Γ(2−r
2
− s+1

2β2 )

Γ(1−r
2
− s+1

2β2 )

}
.

(5.3.23)

One can check that the quantity in the curly brackets of (5.3.23) satisfies the relation
(4.6.11) and is controlled by the degenerate-shift equation (4.3.10). With our numerical
results, we deduce some examples of the functions E (s)

(r,s)(n) in the s-channel of solutions
in (5.3.22). For instance,

Solutions (r, s) E (s)
(r,s)(n)

C1

(1, 0) −n2+3n+6
2(n+1)

(2, 0) −4(n−1)(2n3+4n2−n−8)
3n(n2−2)(n2+3n+6)

C2, C3

(1, 0) − n2

2(n+2)

(2, 0)
2(n−1)(n4+4n3+n2−8n+8)

3(n−2)n(n+1)(n+4)

(5.3.24)
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It is interesting to see that rational functions in (5.3.24) do not have zeroes at rational n
in general. Using the spectra in (5.3.19), let us now write the fusion rules:

V( 1
2
,0) × V( 1

2
,0) =

∑
k∈J []∩J even

V
[]
k +

∑
k∈J [11]∩J odd

V
[11]
k +

∑
k∈J [2]∩J even

V
[2]
k . (5.3.25)

Our approach of deduce fusion rules cannot yet extract multiplicity of each field on the
right-hand side of (5.3.25), as well as in other fusion rules. We hope to revisit this problem
in the near future.

The four-point functions 〈V( 1
2
,0)V( 1

2
,0)V(1,0)V(1,0)〉 and 〈V( 1

2
,0)V( 1

2
,0)V(1,1)V(1,1)〉

We find 3 crossing-symmetry solutions for both cases, which agree with the prediction
from O(n) symmetry. Summarizingly, we have

Four-point functions s-channel solutions t-channel solutions

〈V( 1
2
,0)V( 1

2
,0)V(1,0)V(1,0)〉 A

(s)
[] , A

(s)
[2] , A

(s)
[11] A

(t)
[1] , A

(t)
[21], A

(t)
[3]

〈V( 1
2
,0)V( 1

2
,0)V(1,1)V(1,1)〉 B

(s)
[] , B

(s)
[2] , B

(s)
[11] B

(t)
[1] , B

(t)
[21], B

(t)
[111]

(5.3.26)

Solutions in different channels on the table (5.3.26) are simply related by linear transfor-
mations, that is to say they are just different choices of bases. For the s-channel solutions,
each of them can be extracted by requiring two of the structure constants: D(s)

〈1,1〉D , D
(s)
(1,0),

and D(s)
(1,1) to vanish. For instance, we write down A(s)

[11] by imposing D(s)

〈1,1〉D = D
(s)
(1,0) = 0.

Using the constraints from the single-valuedness, we find that only fields with r ∈ N + 1
2

can propagate in the t- and u-channels of these two-point functions. Therefore, spectra
for the s-channel solutions are given by

Solutions Spectra
s t, u

A
(s)
[] , B

(s)
[] J [] ∩ J even − (2N + 2, 1)

J O(n)

r∈N+ 1
2

A
(s)
[2] , B

(s)
[2] J [2] ∩ J even − (2N + 2, 1)

A
(s)
[11] J [11] ∩ J odd − (2N + 3, 1)

B
(s)
[11] J [11] ∩ J odd J O(n)

r∈N+ 1
2

− {(5/2, 0)}

(5.3.27)

Likewise, for the t-channel solutions, imposing constraints on the structure constants
D

(t)

( 1
2
,0)
, D(t)

( 3
2
,0)
, D(t)

( 3
2
, 2
3

)
allows us to write down each solution. For example, we exact the

solution A(t)
[1] by imposing D(t)

( 3
2
,0)

= D
(t)

( 3
2
, 2
3

)
= 0 and choosing the normalization D( 1

2
,0) = 1.

Solutions Spectra
s t u

A
(t)
[21], B

(t)
[21]

J O(n)
r∈N∗ − {(N + 2, 1)}

J [21]

J O(n)

r∈N+ 1
2

A
(s)
[3] J [3]

B
(t)
[111] J [111]

A
(t)
[1] J [1]

B
(t)
[1] J [1] − {(5/2, 0)} J O(n)

r∈N+ 1
2

− {(5/2, 0)}
(5.3.28)
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It is interesting to see that, in the four-point function 〈V( 1
2
,0)V( 1

2
,0)V(1,1)V(1,1)〉, the following

structure constant vanishes non-trivially,

D
(t,u)

( 5
2
,0)

= 0 . (5.3.29)

Using the spectra in (5.3.27) and (5.3.33), we conclude the fusion rules:

V( 1
2
,0) × V(1,0) =

∑
k∈J [1]

V
[1]
k +

∑
k∈J [21]

V
[21]
k +

∑
k∈J [3]

V
[3]
k (5.3.30)

and

V( 1
2
,0) × V(1,1) =

∑
k∈J [1]−{(5/2,0)}

V
[1]
k +

∑
k∈J [21]

V
[21]
k +

∑
k∈J [111]

V
[111]
k . (5.3.31)

The four-point function 〈V(1,0)V(1,0)V(1,1)V(1,1)〉

We find 4 crossing-symmetry solutions, which again agrees with the prediction from O(n)
symmetry. They can be summarized as follows:

s-channel solutions A
(s)
[] , A

(s)
[2] , A

(s)
[11], A

(s)
[22]

t-channel solutions A
(t)
[2] , A

(t)
[11], A

(t)
[31], A

(t)
[211]

(5.3.32)

The spectra for the solutionsA(t)
[11], A

(t)
[31], andA

(t)
[211] can be easily written down as previously

explained for the other four-point functions. For the solution A(t)
[2] , we need to further take

into account the four-point function 〈V(1,0)V(1,1)V( 1
2
,0)V( 1

2
,0)〉 wherein the field V(2,0) does not

appear in the s-channel. Since V(2,0) appears in the product V( 1
2
,0)× V( 1

2
,0) and also comes

with multiplicity one in the full spectrum (5.1.2), this means that V(1,0) × V(1,1) does not
contain V(2,0). Therefore, we can single out A(t)

[2] by requiring D(2,0) = D〈1,1〉D = D(2, 1
2

) = 0
and normalizing one structure constant. Let us now summarize the spectra for the t-
channel solutions in (5.3.32):

Solutions Spectra
s t u

A
(t)
[2]

J O(n)
r∈N∗ − {(2, 1)}

J [2] − {(2, 0), (3, 0)}

J O(n)
r∈N∗

A
(t)
[11] J [11]

A
(t)
[31] J [31]

A
(t)
[211] J [211]

(5.3.33)

where the crossing-symmetry equation constrains the field V(3,0) to vanish non-trivially
in the solution A(t)

[2] , as well as the field V(2,1) in the s-channel of all solutions in (5.3.32).
Using (5.3.33), we now deduce the fusion rule:

V(1,0) × V(1,1) =
∑

k∈J [2]−{(2,0),(3,0)}
V

[2]
k +

∑
k∈J [11]

V
[11]
k +

∑
k∈J [31]

V
[31]
k +

∑
k∈J [211]

V
[211]
k . (5.3.34)
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The four-point functions 〈V(1,0)V(1,0)V(1,0)V(1,0)〉 and 〈V(1,1)V(1,1)V(1,1)V(1,1)〉

Using the O(n) tensor products (5.1.28c) and (5.1.28d), O(n) representation theory pre-
dicts 6 solutions for both cases, which agrees with the results by the conformal bootstrap:

Four-point functions s-channel solutions

〈V(1,0)V(1,0)V(1,0)V(1,0)〉 A
(s)
[] , A

(s)
[2] , A

(s)
[11], A

(s)
[22], A

(s)
[31], A

(s)
[4]

〈V(1,1)V(1,1)V(1,1)V(1,1)〉 B
(s)
[] , B

(s)
[2] , B

(s)
[11], B

(s)
[22], B

(s)
[211], B

(s)
[1111]

(5.3.35)

Therefore, to write down each solution, we need to impose 6 constraints on their structure
constants, including normalizing one structure constants. With this requirement, we can
only single out the solutions A(s)

[4] and B(s)
[1111] by setting

D
(s)

〈1,1〉D = D
(s)
(1,0) = D

(s)
(1,1) = D

(s)

(2, 1
2

)
= D

(s)
(2,1) = 0 . (5.3.36)

However, this does not stop us from writing down the fusion rules V(1,0) × V(1,0) and
V(1,1) × V(1,1). We may not be able to numerically fix four-point structure constants of
each solution in (5.3.35), but we can still see which fields appear in their spectra. For
example, we write down the spectra for A(s)

[] by requiring the structure constants D(s)

〈1,1〉D ,

D
(s)
(1,0), and D

(s)
(1,1) to vanish, then we observe which structure constants survive in the

resulting solution. Using this trick, we can write down the fusion rules:

V(1,0) × V(1,0) =
∑

k∈J []∩J even

V
[]
k +

∑
k∈J [2]∩J even−{(2,1))}

V
[2]
k +

∑
k∈J [11]∩J odd

V
[11]
k

+
∑

k∈J [4]∩J even

V
[4]
k +

∑
k∈J [31]∩J odd

V
[31]
k +

∑
k∈J [22]∩J even

V
[22]
k , (5.3.37)

and

V(1,1) × V(1,1) =
∑

k∈J []∩J even

V
[]
k +

∑
k∈J [2]∩J even−{(2,1))}

V
[2]
k +

∑
k∈J [11]∩J odd

V
[11]
k

+
∑

k∈J [1111]∩J even

V
[1111]
k +

∑
k∈J [211]∩J odd

V
[211]
k +

∑
k∈J [22]∩J even

V
[22]
k . (5.3.38)

Notice that the structure constant D(s)
(2,1) vanishes in both of the solutions A(s)

[2] and B(s)
[2] ,

which is consistent with the s-channel solutions of the four-point functions 〈V(1,0)V(1,0)V( 1
2
,0)V( 1

2
,0)〉

and 〈V(1,1)V(1,1)V( 1
2
,0)V( 1

2
,0)〉.

5.4 Four-point functions of the Potts CFT
Similarly to the O(n) CFT, in addition to conformal symmetry and OPE associativity, SQ
symmetry also constrains correlation functions of the Potts CFT. For instance, two-point
and three-point functions of the Potts CFT satisfy similar constraints as in (5.3.1) and
(5.3.2). Let us now define four-point functions of the Potts CFT as follows:

The four-point functions 〈
∏4

i=1 V(ri,si)〉 of the Potts CFT are solutions to the crossing-
symmetry equation (5.2.1) whose spectra satisfy the constraints:

S(s) ⊂ SΛ(r1,s1)⊗SQΛ(r2,s2) ∩ SΛ(r3,s3)⊗SQΛ(r4,s4) , (5.4.1a)

S(t) ⊂ SΛ(r1,s1)⊗SQΛ(r4,s4) ∩ SΛ(r2,s2)⊗SQΛ(r3,s3) , (5.4.1b)

S(u) ⊂ SΛ(r1,s1)⊗SQΛ(r3,s3) ∩ SΛ(r2,s2)⊗SQΛ(r4,s4) , (5.4.1c)
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where we have defined

S
∑
i λi =

⋃
i

Sλi with Sλ = {κ ∈ SPotts|λ ∈ Λκ} . (5.4.2)

The spectrum Sλ is a set of indices of primary fields in (5.2.2) which transform under SQ
as the irreducible representation λ. For example,

S [1]×[1] = S []+[1]+[11]+[2] = S [] ∪ S [1] ∪ S [11] ∪ S [2] (5.4.3)

To write down each spectrum in (5.4.3), we first define the follow set of indices:

A = {(r, s) ∈ (N + 5)× [−1, 1)|rs ∈ Z} . (5.4.4)

Using (5.1.14), we have

S [] = A ∪ {〈1, 1〉D, 〈1, 2〉D, (4, 0), (4, 1)} , (5.4.5a)

S [1] = A ∪ {(0, 1/2), (4, 0), (4,±1/2), (4, 1)} , (5.4.5b)

S [11] = A ∪ {(2,±1/2), (4, 0), (4,±1/4), (4,±2), (4, 1)} , (5.4.5c)

S [2] = A ∪ {(2, 0), (2, 1), (4, 0), (4,±1/4), (4,±2), (4, 1)} . (5.4.5d)

With the constraints (5.4.1), we can define the number of crossing-symmetry solutions
that belong to the Potts CFT as follows:

N Potts
〈∏4

i=1 V(ri,si)
〉 = dim{solutions to (5.2.1) modulo the constraints (5.4.1)} , (5.4.6)

In contrast to the conjecture (5.3.12) for the O(n) CFT, solving the crossing-symmetry
equation (5.2.1) with the spectrum SPotts does not always yield solutions that satisfy
(5.4.1). However, we have the following inequality:

N Potts
〈∏4

i=1 V(ri,si)
〉 ≤ N〈∏4

i=1 V(ri,si)
〉 , (5.4.7)

where N〈∏4
i=1 V(ri,si)

〉 was defined in (5.2.15). We shall see in a number of examples that
the inequality (5.4.7) does not always saturate. Similarly to 5.3.10 in the O(n) CFT, the
number of solutions N Potts can also be deduced by SQ symmetry. Let V λi be a field that
transforms under SQ symmetry as the representation λi, we then introduce the invariant
ISQ〈∏4

i=1 V
λi 〉 as the dimensions of the linear space spanned by SQ invariant tensors of the

four-point function 〈
∏4

i=1 V
λi〉. From [25], using the tensor product (5.1.16), we can write

ISQ〈∏4
i=1 V

λi 〉 =
∑
ν

Mλ1,λ2,νMλ3,λ4,ν , (5.4.8)

where Mλ,µ,ν are multiplicities in (5.1.16). From (5.4.1), the number ISQ
〈∏4

i=1 V
Λ(ri,si) 〉

then

provides an upper bound for (5.4.6),

N Potts
〈∏4

i=1 V(ri,si)
〉 ≤ I

SQ

〈∏4
i=1 V

Λ(ri,si) 〉
. (5.4.9)
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5.4.1 Examples

Let us now discuss solutions to the crossing-symmetry equation (5.2.1) for some four-point
functions of the Potts CFT in details. Let us start with rewriting the spectrum SPotts in
(5.2.2) with respect to their conformal spins:

Sodd = {(r, s) ∈ SPotts|rs ∈ 2Z + 1} , (5.4.10a)
Seven = {(r, s) ∈ SPotts|rs ∈ 2Z} ∪ Sdeg , (5.4.10b)

where Sdeg = {〈1, 1〉D, 〈1, 2〉D}. It is also useful to display more examples of Sλ in (5.4.2)
for |λ| ≤ 4. At |λ| = 3, we have

S [3] = A ∪ {(3, 0), (3, 1), (4, 0), (4,±1/2), (4, 1)} , (5.4.11a)

S [111] = A ∪ {(3, 0), (3, 1), (4, 0), (4,±1/4), (4,±3/4), (4, 1)} , (5.4.11b)

S [21] = A ∪ {(3,±1/3), (3,±2/3), (4, 0), (4,±1/4), (4,±1/2), (4,±3/4), (4, 1)} .
(5.4.11c)

For |λ| = 4, we write

S [4] = A ∪ {(4, 0), (4, 1)} , (5.4.12a)

S [22] = A ∪ {(4, 0), (4,±1/2), (4, 1)} , (5.4.12b)

S [211] = A ∪ {(4, 0), (4,±1/4), (4,±3/4), (4, 1)} , (5.4.12c)

S [1111] = A ∪ {(4,±1/2)} , (5.4.12d)

where A was introduced in (5.4.4).

〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)〉: The four-point connectivities

We consider how to solve for the four-point connectivities 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)〉 in (1.3.2)
from the crossing-symmetry equation and constraints of SQ symmetry. The field V(0, 1

2
)

belongs to the fundamental representation of SQ. Using (5.1.18a), we have the following
decomposition:

〈V [1]

(0, 1
2

)
V

[1]

(0, 1
2

)
V

[1]

(0, 1
2

)
V

[1]

(0, 1
2

)
〉 = T

SQ
[] F

(s)
[] + T

SQ
[1] F

(s)
[1] + T

SQ
[2] F

(s)
[2] + T

SQ
[11]F

(s)
[11] . (5.4.13)

To solve for this four-point function, we assume that the input to the crossing-symmetry
equation (5.2.1) is the spectrum SPotts in (5.1.1). We then find four linearly independent
solutions, which agree with the four-point connectivities in (1.3.2) and the decomposition
(5.4.13). In this case, the crossing-symmetry equation automatically excludes any field
that does not transform in irreducible representations of SQ in (5.4.13). To write down the
spectra for solutions in (5.4.13), since there are 4 solutions in (5.4.13), we single out the
solution F (s)

λ by excluding 3 linearly-independent structure constants of any field which
does not transform in the irreducible representation λ [25]. For instance, we separate the
solution F (s)

[2] from the others by requiring vanishing structure constants:

D
(s)

〈1,1〉D = 0 , D
(s)

(0, 1
2

)
= 0 , and D

(s)

(2, 1
2

)
= 0 . (5.4.14)

Applying these three constraints on (5.4.13) and normalizing one structure constant then
give us a unique solution to the crossing-symmetry equation (5.2.1). Moreover, the per-
mutation symmetry in the product V(0, 1

2
) × V(0, 1

2
) constrains F

(s)
[2] to have only fields with
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an even spin. Let us display the numerical results for some structure constants in the
s-channel of F (s)

[2] at β = 0.8 + 0.1i:

∆max = 30 ∆max = 60

(r, s) <D(s)
(r,s) deviation

(2, 1) 0.09662757185 1× 10−10

〈1, 2〉 −2× 10−10 0.50

(3, 0) 1× 10−12 0.38

(3,±2
3
) 1× 10−13 0.90

(4, 0) 6.9696038× 10−5 7.3× 10−8

(4,±1
2
) 3.5139509× 10−5 2.2× 10−8

<D(s)
(r,s) deviation

0.09662757185 . . . 7.5× 10−29

1.0× 10−27 0.13

1.0× 10−28 0.11

1.0× 10−30 1.0

6.9696038 . . .× 10−5 4.8× 10−26

3.5139509 . . .× 10−5 1.2× 10−26

(5.4.15)

where we have chosen the normalization: D(s)
(2,0) = 1. The structure constants D(s)

〈1,2〉D ,

D
(s)
(3,0), and D

(s)

(3,± 2
3)

in (5.4.15) vanish since they do not transform in the representation

[2]. Furthermore, all four-point structure constants in (5.4.13) with r ∈ 2N∗ + 1 vanish,
which agree with the results of [24]. The spectra for each solution in (5.4.13) can be
summarized as follows:

Solutions Spectra
s t, u

F
(s)
[] (S []

r ∈ 2N ∪ Sdeg) ∩ Seven

SPotts
r ∈ 2N ∪ SdegF

(s)
[1] S [1]

r ∈ 2N ∩ Seven

F
(s)
[11] S [11]

r ∈ 2N ∩ Sodd

F
(s)
[2] S [2]

r ∈ 2N ∩ Seven

(5.4.16)

The difference between the crossing-symmetry solutions (5.4.13) and the four-point con-
nectivities (1.3.2) is only a matter of changing bases. They are related by the linear
relations:

F
(s)
[] = Paaaa + Paabb +

1

Q− 1
(Pabab + Pabba) , (5.4.17a)

F
(s)
[1] = Paaaa +

1

Q− 2
(Pabab + Pabba) , (5.4.17b)

F
(s)
[2] =

1

2
(Pabab + Pabba) , (5.4.17c)

F
(s)
[11] =

1

2
(Pabab − Pabba) , (5.4.17d)

where we have normalized the four-point connectivities such that

Daabb
〈1,1〉D = 1 and Daabb

(0, 1
2

)
= −Daaaa

(0, 1
2

)
. (5.4.18)

The linear relations in (5.4.17) can be easily computed by comparing the spectra for
solutions in (5.4.13) with the spectra for the four-point connectivities in [24] and using
the analytic ratios in [32]:

Daaaa
(0, 1

2
)

Dabab
(0, 1

2
)

= −1 ,
Daaaa

(2,0)

Dabab
(2,0)

=
2

2−Q
, and

Daaaa
(2,0)

Daabb
(2,0)

= 1−Q . (5.4.19)
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Using our numerical resulting from the conformal bootstrap, it is easy to deduce similar
ratios of four-point structure constants. For example,

Daabb
(6, 1

3
)

Daaaa
(6, 1

3
)

=
2−Q

2
, (5.4.20a)

Dabab
(6, 1

3
)

Daaaa
(6, 1

3
)

=
1

4

(
Q5 − 9Q4 + 27Q3 − 28Q2 +Q+ 4

)
, (5.4.20b)

Daabb
(6,0)

Daaaa
(6,0)

=
2Q8 − 26Q7 + 134Q6 − 348Q5 + 479Q4 − 337Q3 + 112Q2 − 23Q+ 3

(1− 6Q+ 5Q2 −Q3) (3Q6 − 24Q5 + 64Q4 − 66Q3 + 24Q2 − 8Q+ 3)
,

(5.4.20c)
Dabab

(6,0)

Daaaa
(6,0)

=
(2−Q) (Q2 − 4Q+ 1) (Q6 − 9Q5 + 30Q4 − 40Q3 + 13Q2 + 4Q+ 3)

2 (3Q6 − 24Q5 + 64Q4 − 66Q3 + 24Q2 − 8Q+ 3)
.

(5.4.20d)

We also announce some new ratios of structure constants, which are not in any of our
articles:

Daabb
(8, 1

4
)

Daaaa
(8, 1

4
)

=−(Q2−5Q+5)(Q8−14Q7+77Q6−209Q5+285Q4−169Q3+18Q2+12Q−4)
4Q4−32Q3+82Q2−76Q+20

,

(5.4.21a)
Dabab

(8, 1
4

)

Daaaa
(8, 1

4
)

=
(Q−1)(Q11−22Q10+209Q9−1119Q8+3689Q7−7653Q6+9717Q5−6834Q4+1971Q3−4Q2+108Q−40)

4(2Q4−16Q3+41Q2−38Q+10)
,

(5.4.21b)
Daabb

(8, 1
2

)

Daaaa
(8, 1

2
)

=
(Q−2)(Q9−21Q8+182Q7−842Q6+2241Q5−3437Q4+2876Q3−1177Q2+232Q−32)

2(2Q8−32Q7+208Q6−704Q5+1322Q4−1360Q3+717Q2−184Q+32)
. (5.4.21c)

All of these ratios of structure constants hold for generic Q at high precision.

The selection rules

From the numerical results, we conjecture vanishing three-point functions:

〈V(0, 1
2

)V(0, 1
2

)V
λ,a

(r,s)〉 = 0 for r ∈ 2N∗ + 1 . (5.4.22)

The case of r = 3 in (5.4.22) vanishes since from (5.1.19c) and (5.1.19d), primary fields
with r = 3 only transform in SQ irreducible representations with three boxes, which do
not appear in [1] ⊗SQ [1]. Furthermore, the selection rules (5.4.22) do not immediately
follow from the spectra in [24] since four-point structure constants can be a sum of the
product of three-point structure constants due to non-trivial multiplicities in (5.1.14).
For instance, the field V

[2]
(5,0) has multiplicity 2 from (5.1.19h). Thus, assuming that the

two-point functions of V [2],1
(5,0) and V [2],2

(5,0) have the same normalization, we write

D
[2]
(5,0) ∼ (C

V
(0, 12 )

V
(0, 12 )

V
[2],1
(5,0)

)2 + (C
V

(0, 12 )
V

(0, 12 )
V

[2],2
(5,0)

)2 . (5.4.23)

Because these structure constants are complex numbers due to Q ∈ C, having the four-
point structure constants D[2]

(5,0) being zero does not imply that three-point structure
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constants in (5.4.23) vanish independently. Nevertheless, we have checked in the simplest
22 examples for the four-point functions 〈V(0, 1

2
)V(0, 1

2
)V1V2〉 that the conjecture (5.4.22)

always holds for crossing-symmetry solutions of the Potts CFT. From (5.4.22), we write
the fusion rule:

V(0, 1
2

) × V(0, 1
2

) =
∑

k∈(S[]
r ∈ 2N∪Sdeg)∩Seven

V
[]
k +

∑
k∈S[1]

r ∈ 2N∩Seven

V
[1]
k

+
∑

k∈S[2]
r ∈ 2N∩Seven

V
[2]
k +

∑
k∈S[11]

r ∈ 2N∩Sodd

V
[11]
k . (5.4.24)

〈V(0, 1
2

)V(0, 1
2

)V(2,0)V(2,0)〉 and 〈V(0, 1
2

)V(0, 1
2

)V(2, 1
2

)V(2, 1
2

)〉

Using (5.1.18b) and (5.1.18d), SQ symmetry predicts 5 solutions for both cases, which
agree with our findings from the conformal bootstrap. In this case, all crossing-symmetry
solutions belong to the Potts CFT. They can be summarized as

Four-point functions s-channel solutions t-channel solutions

〈V(0, 1
2

)V(0, 1
2

)V(2,0)V(2,0)〉 F
(s)
[1] , F

(s)
[] , F

(s)
[11], F

(s)
[2],0, F

(s)
[2],1 F

(t)
[1] , F

(t)
[2] , F

(t)
[11], F

(t)
[21], F

(t)
[3]

〈V(0, 1
2

)V(0, 1
2

)V(2, 1
2

)V(2, 1
2

)〉 G
(s)
[1] , G

(s)
[] , G

(s)
[11], G

(s)
[2],0, G

(s)
[2],1 G

(t)
[1] , G

(t)
[2] , G

(t)
[11], G

(t)
[21], G

(t)
[111]

(5.4.25)

where the s-channel and t-channel solutions are just different bases for the same space
of solutions. To singlet out each solution in (5.4.25), we again impose constraints on
their structure constants. Since there are 5 solutions for both four-point functions, we
can extract the solutions F (t)

[1] and G(t)
[1] from (5.4.25) by setting 4 structure constants of

any primary field that does not transform in the fundamental representation to zero. For
instance,

D
(t)
(2,0) = D

(t)

(2, 1
2

)
= D

(t)

(3, 1
3

)
= D

(t)
(3,0) = 0. (5.4.26)

Therefore, the spectra for each solution in (5.4.25) read

Solutions Spectra
t u s

F
(t)
[3] S [3]

SPotts − Sdeg SPotts
r∈2N ∪ {〈1, 1〉D}

G
(t)
[111] S [111]

F
(t)
[21], G

(t)
[21] S [21]

F
(t)
[2] , G

(t)
[2] S [2]

F
(t)
[11], G

(t)
[11] S [11]

F
(t)
[1] , G

(t)
[1] S [1]

F
(s)
[] , G

(s)
[]

SPotts − Sdeg SPotts − Sdeg

(S []
r ∈ 2N ∪ {〈1, 1〉D}) ∩ Seven

F
(s)
[1] , G

(s)
[1] S [1]

r ∈ 2N ∩ Seven

F
(s)
[11], G

(s)
[11] S [11]

r ∈ 2N ∩ Sodd

F
(s)
[2],0, G

(s)
[2],0 S [2]

r ∈ 2N ∩ Seven − {(2, 0)}
F

(s)
[2],1, G

(s)
[2],1 S [2]

r ∈ 2N ∩ Seven − {(2, 1)}

(5.4.27)
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From the fusion rules (4.6.5), only the degenerate fields with r ∈ 2N∗ + 1 are allowed in
the s-channel while all degenerate fields are subtracted from the t, u-channels. Moreover,
for each four-point function, solutions that transform in the representation [2] form a two-
dimensional subspace of solutions whose bases can be chosen arbitrarily. For example, we
write down each of their bases by excluding one of the fields V(2,0) and V(2,1). Let us now
deduce the fusion rules of V(0, 1

2
) × V(2,0) and V(0, 1

2
) × V(2, 1

2
),

V(0, 1
2

) × V(2,0) =
∑
k∈S[3]

V
[3]
k +

∑
k∈S[21]

V
[21]
k +

∑
k∈S[2]

V
[2]
k +

∑
k∈S[11]

V
[11]
k +

∑
k∈S[1]

V
[1]
k , (5.4.28)

and

V(0, 1
2

) × V(2, 1
2

) =
∑

k∈S[111]

V
[111]
k +

∑
k∈S[21]

V
[21]
k +

∑
k∈S[2]

V
[2]
k +

∑
k∈S[11]

V
[11]
k +

∑
k∈S[1]

V
[1]
k .

(5.4.29)

We have checked for several examples in Section (5.4.1) that the above fusion rules lead to
consistent crossing-symmetry solutions for the four-point functions 〈V(0, 1

2
)V(2,0)V1V2〉 and

〈V(0, 1
2

)V(2, 1
2

)V1V2〉.

More examples

We first define L =
∑4

i=1 ri for 〈
∏4

i=1 V(ri,si)〉. Let us then count the numbers of crossing-
symmetry solutions, N and N Potts, and compute the prediction from SQ symmetry in
(5.4.8) for the simplest 28 four-point functions of the Potts CFTs with L ≤ 6.

For convenience, these four-point functions are labelled as their indices. In 17 out of
28 cases, we find solutions that do not belong to the Potts CFT. Moreover, N Potts aways
obeys the inequality (5.4.9) and saturates the bound from SQ symmetry in 24 out of 28
cases.

0 ≤ L ≤ 2

Four-point functions N N Potts ISQ

(0, 1
2
)4 4 4 4

(0, 1
2
)3(2, 0) 3 3 3

(0, 1
2
)3(2, 1

2
) 3 3 3

(0, 1
2
)3(2, 1) 3 3 3

L = 3

Four-point functions N N Potts ISQ(
0, 1

2

)3
(3, 0) 5 2 2(

0, 1
2

)3
(3, 1

3
) 5 2 2
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L = 4

Four-point functions N N Potts ISQ

(0, 1
2
)3(4, 0) 12 6 14

(0, 1
2
)3(4, 1

2
) 12 6 13

(0, 1
2
)3(4, 1

4
) 12 6 6

(0, 1
2
)2(2, 0)2 5 5 5

(0, 1
2
)2(2, 1)2 5 5 5

(0, 1
2
)2(2, 1

2
)2 5 5 5

(0, 1
2
)2(2, 1

2
)(2,−1

2
) 5 5 5

(0, 1
2
)2(2, 0)(2, 1

2
) 4 4 4

(0, 1
2
)2(2, 1)(2, 1

2
) 4 4 4

(0, 1
2
)2(2, 0)(2, 1) 5 5 5

L = 5

Four-point functions N N Potts ISQ(
0, 1

2

)2
(2, 0)(3, 0) 9 5 5(

0, 1
2

)2
(2, 1

2
)(3, 0) 9 5 5(

0, 1
2

)2
(2, 0)(3, 1

3
) 9 5 5(

0, 1
2

)2
(2, 1

2
)(3, 1

3
) 9 5 5

L = 6

Four-point functions N N Potts ISQ

(0, 1
2
)(2, 0)3 8 7 7

(0, 1
2
)(2, 1

2
)3 8 7 7

(0, 1
2
)(2, 1

2
)2(2, 0) 8 7 7

(0, 1
2
)(2, 1

2
)2(2,−1

2
) 8 7 7

(0, 1
2
)(2, 0)2(2, 1

2
) 8 7 7

(0, 1
2
)(2,−1

2
)(2, 1

2
)(2, 0) 8 7 7

(0, 1
2
)2(3, 0)2 15 8 12

(0, 1
2
)2(3, 1

3
)2 15 8 11

Numbers of solutions and the degenerate fields

From our results for the O(n) CFT in [25], observe from several examples that the numbers
of solutions do not seem to depend on the second Kac indices of four-point functions,
whenever their spectra do not have any degenerate field. In the Potts CFT, the same
observations still hold. However, even if there are degenerate fields in some channels,
the numbers of solutions for four-point functions with the same ri but different si may
still coincide due to the degenerate field V D

〈1,2〉, which does not exist in the O(n) CFT. For
example, the numbers of solutions for 〈V(0, 1

2
)V(0, 1

2
)V(2, 1

2
)V(2, 1

2
)〉 and 〈V(0, 1

2
)V(0, 1

2
)V(2, 1

2
)V(2,− 1

2
)〉
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match because the fusion rules (4.6.5) allow the degenerate field V D
〈1,2〉 to propagate in the

s-channel of 〈V(0, 1
2

)V(0, 1
2

)V(2, 1
2

)V(2,− 1
2

)〉. Let us now propose the following conjecture:

Conjecture for both the Potts and O(n) CFTs: If there are no degenerate fields in
all three channels, the numbers of crossing-symmetry solutions for the four-point functions
〈
∏4

i=1 V(ri,si)〉 are independent of si.

For the Potts CFT, the conjecture is for both N and N Potts. For example, observe that
the four-point functions 〈V(0, 1

2
)

∏3
i=1 V(2,ji)〉 come with N = 8 and N Potts = 7, regardlessly

of ji.

5.4.2 Examples with extra solutions

We discuss some examples in Section 5.4.1 with N Potts < N and show how to pin down
which solutions belong to the Potts CFT.

The four-point functions: 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V(3,0)〉 and 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V(3, 1
3

)〉

These are the simplest cases where we have extra solutions. In both cases, we find
5 linearly-independent solutions to the crossing-symmetry equation (5.2.1), whereas SQ
representation theory predicts only two solutions.

For the case V(3,0), there are in fact two different fields: V [3]
(3,0) and V

[111]
(3,0) from (5.1.19c).

We then write

[3]⊗SQ [1] = [4] + [31] + [3] + [21] + [2] , (5.4.30a)
[111]⊗SQ [1] = [1111] + [211] + [111] + [11] . (5.4.30b)

Therefore, using (5.4.30) with (5.1.18a), the four-point functions 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[3]

(3,0)〉
and 〈V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)V

[111]
(3,0) 〉 transform under SQ symmetry as [2]+[11] in all three channels.

These two four-point functions can then be built from solutions of which spectra contains
only fields that can be decomposed into [2] or [11]. There are only two of these solutions,
which can be obtained by requiring vanishing structure constants:

D
(s)
(3,0) = D

(t)
(3,0) = D

(u)
(3,0) = 0 . (5.4.31)

In other words, there are three other solutions, in which structure constants in (5.4.31)
do not vanish and will be discussed in Section 7.2.2. The two solutions that belong to the
Potts CFT have the following spectra:

〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
λ

(3,0)〉

λ Spectra for s, t, u

[111] S [11]
r ∈ 2N ∩ Sodd

[3] S [2]
r ∈ 2N ∩ Seven

(5.4.32)

The field V(3, 1
3

) transforms under SQ as the irreducible representation [21]. Therefore,

using (5.1.18c) and (5.1.18a), the four-point function 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[21]

(3, 1
3

)
〉 can be de-

composed into [2] + [11] in all three channels. Similarly, we find that there are 2 out of 5
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solutions which fit with such decomposition. They again satisfy (5.4.31) and come with
the spectra:

〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[21]

(3, 1
3

)
〉

Solutions
Spectra

s t, u

F
(s)
[11] S [11]

r ∈ 2N ∩ Sodd

S [11]
r ∈ 2N ∪ S

[2]
r ∈ 2N

F
(s)
[2] S [2]

r ∈ 2N ∩ Seven

(5.4.33)

〈V(0, 1
2

)V(2,0)V(2,0)V(2,0)〉

Using (5.1.18e) and (5.1.18b), all three channels of this four-point function can be decom-
posed into

[3] + 2[21] + 2[2] + [11] + [1] . (5.4.34)

That is to say SQ symmetry predicts 7 linearly-independent solutions. However, the
bootstrap approach finds 8 solutions. It turns out that only 7 out of 8 solutions have
spectra which fit with the decomposition (5.4.34). The spectra of these 7 solutions are
given by

Solutions Spectra
s t, u

F
(s)
[3] S [3] ∩ Seven

SPotts − Sdeg − {(3, 1)}

F
(s)
[21],even S [21] ∩ Seven

F
(s)
[2],0 S [2] ∩ Seven − {(2, 0)}
F

(s)
[2],1 S [2] ∩ Seven − {(2, 1)}
F

(s)
[1] S [1] ∩ Seven

F
(s)
[11] S [11] ∩ Sodd SPotts − Sdeg − {(3, 1), (3,±1/3)}

F
(s)
[21],odd S [21] ∩ Sodd SPotts − Sdeg − {(3, 1), (2,±1/2)}

(5.4.35)

where the degenerate fields are subtracted due to the fusion rules (4.6.5). In other words,
7 solutions in (5.4.35) can be exacted from requiring

D
(s)
(3,1) = D

(t)
(3,1) = D

(u)
(3,1) = 0 . (5.4.36)

Vanishing structure constants in (5.4.36) do not contradict with the fusion rule (5.4.28)
but are consequences of the permutation symmetry of the OPE, V(2,0) × V(2,0), which
allows each spectrum in (5.4.35) to have either odd or even spins [25]. In this case, the
crossing-symmetry equation prefers the spectrum S[3]∩Seven, over the spectrum S[3]∩Sodd.
Moreover, the eighth solution comes with the spectra:

S(s) = SPotts ∩ Sodd − {(2, 1/2), (3, 1/3)} , (5.4.37)

S(t,u) = SPotts − Sdeg . (5.4.38)

Let us also stress here that while the fields V(2, 1
2

) and V(3, 1
3

) are excluded in (5.4.37), the
fields V(2,− 1

2
) and V(3,− 1

3
) indeed appear in (5.4.37). That is to say, structure constants
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in the solution with the spectra (5.4.37) and (5.4.38) do not obey the relation, D(r,−s) =
D(r,s), in contrast to the other 7 solutions in (5.4.35) where such relation always holds.

Since solutions in different channels are different choices of bases for the same space of
solutions to the crossing-symmetry equation (5.2.1), one can then check that all solutions
in (5.4.35) belong to the same space of solutions by numerically computing the linear
relations of solutions in the s- and t- channel on the table (5.4.35),

F
(t)
λ =

∑
µ

α µ
λ F

(s)
µ . (5.4.39)

We find that α µ
λ exist for any solution in (5.4.35) and do not vanish, except for α [21],odd

[11]

which is consistent with the t- and u- channel spectra of the solutions F (s)
[11] and F

(s)
[21],odd.

This ensures us that the eighth solution lives in a different space of solution, and all of 7
solutions in (5.4.35) are indeed in the same space of solutions of the Potts CFT.

The four-point function 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V(4,0)〉

In this case, SQ symmetry predicts 14 solutions, and we find 12 solutions to the crossing-
symmetry equation. However, only 6 out of these 12 solutions belong to the Potts CFT.

For this example, there are 9 four-point functions from (5.1.19e). However, since the
tensor products [1] ⊗SQ [4], [1] ⊗SQ [211], and [1] ⊗SQ [22] can only be decomposed into
representations with more than three boxes, which do not appear in [1]⊗SQ [1], we have

〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[4]

(4,0)〉 = 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[211]

(4,0) 〉 = 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[22]

(4,0)〉 = 0 . (5.4.40)

The other 6 four-point functions can be decomposed into SQ representations as follows:

〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
λ

(4,0)〉

λ Mul SQ representations in s, t, u

[3] 1 [2]

[21] 1 [2] + [11]

[2] 2 [2] + [11] + [1]

[1] 1 [2] + [11] + [1] + []

[] 1 [1]

(5.4.41)

Only 6 out of 12 solutions fit with the decompositions in (5.4.41). We extract these 6
solutions by imposing 6 constraints on 12 solutions,

D
(s)
(3,0) = D

(t)
(3,0) = D

(u)
(3,0) = 0 and D

(s)

(3, 1
3

)
= D

(t)

(3, 1
3

)
= D

(u)

(3, 1
3

)
= 0 . (5.4.42)

The total spectra for these 6 solutions are SPotts
r∈2N . To single out each solution, we introduce

S(r,s) = SPotts
r∈2N+6 ∪ {(r, j)|j = ±s,±(s− 1) and j ∈ (−1, 1]} . (5.4.43)

The above is equivalent to removing 5 linearly-independent structure constants with r ≤ 4
in the spectrum SPotts

r∈2N . We then introduce the crossing-symmetry solutions F (s)
(r,s) which

have S(r,s) for the s-channel spectrum and SPotts
r∈2N for the t- and u-channel spectra. As
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an example, let us also display the deviation of some structure constants for F (s)

(4, 1
4

)
at

β = 0.8 + 0.1i:

∆max = 20 ∆max = 40

(r, s) ch deviation

(0, 1
2
) t 4.1× 10−6

(2, 0) t 5.9× 10−6

(2, 1) t 5.9× 10−6

(4,±1
4
) s 4.4× 10−6

(4,±3
4
) s 5.2× 10−7

deviation

2.6× 10−14

6.3× 10−14

6.1× 10−14

2.3× 10−14

7.3× 10−14

(5.4.44)

The 6 linearly-independent solutions in (5.4.42) are

F
(s)

(0, 1
2

)
, F (s)

(2,0), F
(s)

(2, 1
2

)
, F (s)

(4,0), F
(s)

(4, 1
2

)
, and F (s)

(4, 1
4

)
. (5.4.45)

Four-point functions in (5.4.41) can then be written as linear combinations of solutions
in (5.4.45) by imposing constraints on some of their structure constants:

〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
λ

(4,0)〉

λ Mul Vanishing D(r,s)

[3] 1 D
(s)

(0, 1
2

)
, D

(s)

(2, 1
2

)
, D

(s)

(4, 1
4

)
, D

(t,u)

(0, 1
2

)
, D

(t,u)

(2, 1
2

)

[21] 1 D
(s)

(0, 1
2

)
, D

(t,u)

(0, 1
2

)

[2] 2 −
[1] 1 −
[] 1 D

(s)
(2,0), D

(s)

(2, 1
2

)
, D

(s)

(4, 1
4

)
, D

(t,u)
(2,0), D

(t,u)

(2, 1
2

)

(5.4.46)

The four-point functions 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[3]

(4,0)〉 and 〈V(0, 1
2

)V(0, 1
2

)V(0, 1
2

)V
[]

(4,0)〉 can then be
completely fixed up to a normalization factor because they are linear combinations of 6
solutions in (5.4.45) in which we require 5 vanishing structure constants, while the linear
combination of solutions for the four-point function 〈V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)V

[21]
(4,0)〉 has 3 unfixed

coefficients since we only need 2 structure constants to vanish. For the cases of λ = [2]
and [1], the three linear combinations are linearly dependent and cannot be fixed with
our current method.

Logarithmic blocks and precision

Using the conformal bootstrap, we have provided very strong evidence that the logarithmic
representationsWκ−

(r,s) indeed appear in spectra of the Potts and O(n) CFTs. In particular,
the logarithmic blocks G−(r,s) in (4.5.15) are the crucial ingredients which lead to numerical
outputs at very high precision. For instance, the precision for structure constants on the
tables in (5.3.16)-(5.3.18) are around 20 digits. Without the correct logarithmic blocks,
such precision can never be obtained. For example, the authors of [15] bootstrapped the
four-point connectivities in (1.3.2) by neglecting logarithmic blocks. Their results are only
accurate up to around 5-10 digits whereas the precision of our results for the four-point
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connectivities is around 30 digits, shown in (5.4.15). With our logarithmic blocks, we can
actually compute four-point functions of arbitrary primary fields in both CFT at arbitrary
precision by increasing the cutoff ∆max.
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CHAPTER 6

Rational limits

We begin with a quick review on the structure of Verma modules at rational central
charge and minimal models, then discuss the less well-known logarithmic minimal models
of [35] which shall be compared with the results of taking rational limits of the generalized
minimal models.

6.1 Rational central charge
Recalling (1.2.1), the central charge c with rational values can then be conveniently rep-
resented by choosing the following parametrization:

β2 =
q

p
=⇒ c = cp,q = 1− 6(p− q)2

pq
for

q

p
∈ Q , (6.1.1)

where we also allow pq < 0. Therefore, the central charge c = cp,q takes values of the
dense line in the interval: (−∞, 1] ∪ [25,∞). Moreover, it is obvious that the central
charge cp,q is symmetric under p↔ q. For example, we have

c2,1 = c1,2 = −2 , (6.1.2a)
c3,2 = c2,3 = 0 , (6.1.2b)

c4,3 = c3,4 =
1

2
. (6.1.2c)

Kac indices and Verma modules

The structure of Verma modules of the Virasoro algebra at rational central charge was
studied in great details by the authors of [51]. Here, we only discuss it very briefly.
Rational values of β2 results in another reflection of the Kac indices in (2.3.8), in addition
to ∆(r,s) = ∆(−r,−s). More precisely, at the central charge c = cp,q, the momenta P(r,s) and
the conformal dimensions ∆(r,s) obey the relation:

P(r,s) = ±P(p−r,q−s) ⇐⇒ ∆(r,s) = ∆(p−r,q−s) , (6.1.3)

which hold for any value of r and s. Consequently, for (p−r)(q−s) ∈ N∗, the coincidence
of the conformal dimensions in (6.1.3) led us to an extra null vector in the Verma module

93
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V∆(r,s)
. This additional null vector has the conformal dimension:

∆(p−r,q−s) + (p− r)(q − s) = ∆(r,s) + (p− r)(q − s) . (6.1.4)

With (6.1.4), the Verma module V∆(r,s)
at the central charge cp,q therefore has the following

non-trivial subrepresentations:

V∆(r,−s) and V∆(2p−r,s) . (6.1.5)

Using the reflection relations (6.1.3), these two subrepresentations then generate infinitely
many non-trivial subrepresentations. Hence, V∆(r,s)

at the central charge cp,q comes with
infinitely many null vectors generated by the highest weight states of (6.1.5). To build
irreducible representations from V∆(r,s)

, we require that all of these null vector vanish.
Let us then introduce the degenerate representation M(p,q)

(r,s) at the central charge cp,q as
follows:

M(p,q)
(r,s) = R(r,s)

∣∣
c=cp,q

=
V∆(r,s)

V∆(r,−s) + V∆(2p−r,s)

, (6.1.6)

where the sum in the denominator of (6.1.6) is not a direct sum since the two represen-
tations in (6.1.5) share non-trivial subrepresentations. For more details, see [51, 4]. Let
us also stress here that, in terms of representation theory, the degenerate representations
M(p,q)

(r,s) are well-defined for any value of r and s at the central charge cp,q in (6.1.1).

6.2 Minimal models
Minimal models are rational CFTs whose spectra are made of finite numbers of the degen-
erate fields. For simplicity, we restrict ourselves to the case of diagonal minimal models,
namely the A-series minimal models while their non-diagonal counterparts are known as
the D-series minimal models and the E-series minimal models. These three families arise
as an ADE classification of minimal models. In particular, their torus-partition functions
are in one-to-one correspondence with simply laced Dynkin diagrams [4].

The A-series minimal models can be characterized by their central charge: we write
(p, q)-minimal model for a diagonal minimal model with the central charge cp,q. The
spectra of the (p, q)-minimal models are given by

SA-series
p,q =

1

2

p−1⊕
i=1

q−1⊕
j=1

M(p,q)
(i,j) ⊗ M̄

(p,q)
(i,j) for p, q ∈ N + 2 and p ∧ q = 1 , (6.2.1)

where the factor of 1
2
is for avoiding overcounting due to the symmetry:

M(p,q)
(r,s) =M(p,q)

(p−r,q−s) . (6.2.2)

Notice that the A-series minimals are invariant under exchanging p and q since the spectra
(6.2.1) remain unchanged under such permutation. Moreover, the case of |p − q| = 1 is
known as the unitary series, wherein the minimal models are unitary. However, the
spectra (6.2.1) with |p− q| 6= 1 contain fields with negative dimensions and are therefore
non-unitary. The fusion rules of the (p, q)-minimal model can be obtained by applying the
identification (6.1.3) to the degenerate fusion rules (4.1.10). We consider the intersection
of the following products,

V D
〈r,s〉 × V D

〈r′,s′〉 , (6.2.3)

V D
〈p−r,q−s〉 × V D

〈r′,s′〉 , (6.2.4)

V D
〈p−r,q−s〉 × V D

〈p−r′,q−s′〉 , (6.2.5)
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which brings us to

V D
〈r,s〉 × V D

〈r′,s′〉 =

min(2p−r−r′,r+r′)−1∑
i

2
=|r−r′|+1

min(2q−s−s′,s+s′)−1∑
i

2
=|s−s′|+1

V D
〈i,j〉 . (6.2.6)

We immediately see that the degenerate fields in (6.2.1) are closed under the fusion rules
(6.2.6). Likewise to the generalized minimal models, OPE coefficients of fields in (6.2.6)
can be determine completely by using the BPZ equations, the crossing-symmetry equa-
tion, and the single-valuedness. However, minimal models are not only consistent on
the Riemann sphere but also on higher-genus Riemann surfaces. Furthermore, while the
A-series minimal models can be defined without Lagrangian by using only the spectrum
(6.2.1) and the fusion rules (6.2.6), it is also possible to write down effective Lagrangians
corresponding to (6.2.1) by using the Landau-Ginzburg description [14].

6.2.1 Examples

We now discuss the first few examples of (p, q)-minimal models.

(p, q) = (3, 2): A trivial example

In this case, we have vanishing central charge c2,3 = 0. The spectrum of the (3, 2)-minimal
model only contains the identity field. In particular, we have

V D
〈1,1〉 = V D

〈1,2〉 = 1 , (6.2.7)

The fusion rule of the above is simply

1× 1 = 1 , (6.2.8)

whose OPE coefficient is one. Therefore, this case is a trivial CFT

(p, q) = (4, 3): The Ising model

This minimal model is one the most well-known minimal models. The (4, 3)-minimal
model comes with the central charge c4,3 = 1

2
and is well-known to describe the spin

representation of the critical two-dimensional Ising model.
Now consider the spectrum (6.2.1) at (p, q) = (4, 3). Taking into account the factor

1
2
in (6.2.1) we have 3 independent fields in this case. These 3 fields correspond to the

spin operator σ, the energy operator ε, and the identity field 1. Using the Kac indices,
we write them as the following:

V D
〈1,1〉 = V D

〈2,3〉 = 1 , (6.2.9a)

V D
〈1,2〉 = V D

〈3,2〉 = ε , (6.2.9b)

V D
〈2,1〉 = V D

〈2,2〉 = σ . (6.2.9c)

Let us also display the conformal dimensions ∆(r,s) of primary fields in (6.2.9) on the
so-called Kac tables:

s

r
1 2 3

1 0 1
16

1
2

2 1
2

1
16

0

(6.2.10)
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Using (6.2.6), we can write the fusion rules of fields in (6.2.9) as follows:

ε× ε = 1 , (6.2.11a)
ε× σ = σ , (6.2.11b)
σ × σ = 1 + ε . (6.2.11c)

The only OPE coefficient, which is not one, is

Cσσε =
1

2
. (6.2.12)

Let us also stress here that the (4, 3)-minimal model does not coincide with the limits Q→
2 and n → 1 of the Potts CFT and O(n) CFT, which result in much more complicated
CFTs describing other observables of the Ising model. For instance, while we have the
coincidence ∆(2,1) = ∆(0, 1

2
) at β2 = 3

4
, the four-point function 〈σσσσ〉 does not coincide

with the four-point connectivities at Q = 2 in (1.3.2). However, they satisfy a simple
relation [52]:

〈σσσσ〉 = (Paaaa + Pabab + Paabb + Pabab)
∣∣∣
Q=2

, (6.2.13)

where the authors of [52] wrote down the above relation by using arguments from the
lattice model. From the view of CFTs, the relation (6.2.13) is highly non-trivial. For
example, we do not yet know how to compute the limit Q→ 2 of each four-point connec-
tivity in (1.3.2) explicitly but we expect them to be a sum of infinitely many interchiral
blocks. From (6.2.11c), the four-point function 〈σσσσ〉 is however simply a sum of two
degenerate conformal blocks corresponding to 1 and ε. Let us also point it out that the
limits n→ 1 or Q→ 2 of the partition functions (5.1.1) and (5.1.2) indeed reproduce the
partition function of the (4, 3)-minimal model [14]. However, the resulting spectrum does
not have a smooth limit and therefore are not the spectrum of the (4, 3)-minimal model.

6.3 Logarithmic minimal models
Let us now consider an extension of minimal models, known as the logarithmic minimal
models proposed by Mathieu and Ridout in [35], first appearing in [53]. Their general idea
is to relax the requirement on the irreducibility of Verma modules by allowing one of the
two null vectors in (6.1.5) to be non-vanishing. Consequently, spectra of these logarithmic
minimal models contain infinitely many fields living beyond the Kac table. There are also
other extensions of minimal models, which are known as logarithmic minimal models as
well, for instance [54, 55, 56]. However, we do not discuss them here.

6.3.1 Spectra of the models

Likewise to minimal models, logarithmic minimal models are characterized by their central
charge. The (2, p)-logarithmic minimal model is a chiral CFT that has the central charge
c = c2,p and comes with the spectrum:

S(2,p)
LMM =

∞⊕
i=1

M(2,p)
(1,pi) ⊕

∞⊕
i=1

p−1⊕
j=1

K(p)
(i,j) . (6.3.1)

More specifically, these logarithmic minimal models belong to a class of boundary CFTs,
which are expected to live on the upper-half of the complex plane and therefore contain



CHAPTER 6. RATIONAL LIMITS 97

only one copy of the Virasoro algebra. However, we do not know yet their corresponding
bulk CFTs, whose existence will be only speculated in the next section. Furthermore, it
was shown in [35] that one can also add the representationsM(2,p)

(1,i) for i < p and still finds
consistent CFTs for p ∈ {3, 5}. However, we shall only restrict ourselves to the spectra
(6.3.1).

At the central charge c2,p, null vectors in the degenerate representationsM(2,p)
(1,pi) come

with the chiral degenerate fields v〈1,pi〉, which have the conformal dimension: ∆(1,pi).
From (6.1.5), infinitely many null vectors inM(2,p)

(1,pi) are generated by the null descendant:
L(1,pi)v〈1,pi〉 = 0. Therefore, we can write

M(2,p)
(1,pi) =

V∆(1,pi)

V∆(1,−pi)

. (6.3.2)

The logarithmic representation K(p)
(i,j) is the chiral staggered module at the central charge

c = c2,p and will now be discussed.

The staggered modules K(p)
(i,j)

Since the staggered modules K(p)
(i,j) of [35] are usually introduced algebraically without

relying on the use of derivatives with respect to the conformal dimensions, let us then
alternatively describe K(p)

(i,j) by using these derivatives. The results of two approaches are
of course exactly the same. The module K(p)

(i,j) is defined at the central charge c2,p and can
be generated by the following combination of derivatives of null fields,

w(1,pi+j) = κ−(2i−1,j)v
′
∆(1,pi+j)

+ (1− κ−(2i−1,j))L(2i−1,j)v
′
∆(1,pi−j)

, (6.3.3)

where we write v∆(1,pi±j) for chiral primary fields with the conformal dimensions ∆(1,pi±j),
and κ−(2i−1,j), to be discussed below, is related to the logarithmic coupling of K(p)

(i,j). In
fact, the chiral primary field v∆(1,pi+j)

is a null descendant of v∆(1,pi−j) since we have the
coincidence:

∆(1,pi+j) = ∆(2i−1,−j) and ∆(1,pi+j) −∆(1,pi−j) = (2i− 1)j . (6.3.4)

From [35], v∆(1,pi−j) has the non-vanishing null descendant:

L(2i−1,j)v∆(1,pi−j) = v∆(1,pi+j)
6= 0 , (6.3.5)

whereas we require

L(1,pi−j)v∆(1,pi−j) = 0 . (6.3.6)

The two null fields in (6.3.5) and (6.3.6) then generate infinitely many null vectors in
the staggered modules K(p)

(i,j). With (6.3.5) and (6.3.3), the logarithmic field w(1,pi+j) then
leads to a second-rank Jordan block of L0, in which the null field v∆(1,pi+j)

is its Jordan
partner. From (6.3.3), it is easy to see that w(1,pi+j) satisfies the relation:

L†(2i−1,j)L(2i−1,j)w(1,pi+j) = γ(2i−1,j)v∆(1,pi+j) , (6.3.7)

where the logarithmic coupling γ(2i−1,j) is given by γ(2i−1,j) = ρ(2i−1,j)κ
−
(2i−1,j)

∣∣
β2= p

2

. The
factor κ−(2i−1,j) is given in (4.5.9), and ρ(2i−1,j) was defined in (3.5.23b) and arises from the
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commutation relation between L†(2i−1,j) and L(2i−1,j). For i = 1, the coupling γ(1,j) takes
a simple form:

γ(1,j) =
4(j − 1)!2

p2j
(−1)j

p

8

j−1∏
i=−j

(p+ 2i) . (6.3.8)

Let us now compare the couplings in (6.3.8) with the coupling β̂1,p+j of [10], we need
to beware of the following subtleties. We always normalize the operator L(r,s) such that
L(r,s) = Lrs−1 + . . . while the authors of [35] chose the normalization: L(r,s) = L−rs + . . ..
Secondly, the authors of [35] label their couplings by the indices of vanishing null vectors
whereas we denote them by the indices of non-vanishing null vectors. Taking into account
these differences, we find

β̂1,p+j =
p2j

4(j − 1)!2
γ(1,j) , (6.3.9)

where different normalizations of L(r,s) lead to a non-trivial factor in front of γ(1,j) in
the above. The two couplings in (6.3.9) nevertheless describe the same representation
K(p)

(1,j). We have also done similar comparisons in some examples for K(p)
(i,j) with i > 1. For

example at p = 3, we have

Coupling from eq. (3.9) in [35] Normalization factor γ−(r,s)

β1,4 = −1
2

1 γ−(1,1) = −1
2

β1,5 = −5
8

4
9

γ−(1,2) = − 5
18

β1,7 = −35
3

36 γ−(3,1) = −420

(6.3.10)

From (6.3.6) and (6.3.5), the staggered module K(p)
(i,j) therefore has

V∆(1,pi+j)

V∆(1,−pi−j)
as a subrep-

resentation, and the quotient of K(p)
(i,j) with this subrepresentation is given by

V∆(1,pi−j)
V∆(1,−pi+j)

,
vice versa. We summarize this sequence in the figure 6.1. While the staggered module
K(p)

(i,j) is indecomposable but reducible as representation of the Virasoro algebra, K(p)
(i,j) is

decomposable as a vector space. That is to say we can write the vector space of K(p)
(i,j) as

V∆(1,pi−j)
V∆(1,−pi+j)

⊕
V∆(1,pi+j)

V∆(1,−pi−j)
.

L0
v∆(1,pi+j)

w(1,pi+j)

v∆(1,pi−j)

L†(2i−1,j)
L(2i−1,j)

Figure 6.1: non-vanishing null vectors in the chiral stagger modules K(p)
(i,j)

Computing the fusion rules

The fusion rules of the representations in (6.3.1) can be computed by using the so-called
Nahm-Gaberdiel-Kausch alogrithm [37], which allows us to determine how the Virasoro
algebra acts on the vector space of these fusion products. The authors of [35] used this
algorithm and proposed simple rules of writing the fusion rules of (6.3.1) as follows:
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1. Replace the staggered modules K(p)
(i,j) with the degenerate representations R(1,pi−j)⊕

R(1,pi+j) at generic central charge, while also liftingM(2,p)
(1,pi) to R(1,pi). Then compute

the resulting products by using the degenerate fusion rules (4.1.10). For instance,
we write

M(2,3)
(1,3) ⊗K

(3)
(1,2) → R(1,3) ⊗ (R(1,1) ⊕R(1,5)) ,

= 2R(1,3) ⊕R(1,5) ⊕R(1,7) . (6.3.11)

Let us display one more example:

K(3)
(1,2) ⊗K

(3)
(1,2) → (R(1,1) ⊕R(1,5))⊗ (R(1,1) ⊕R(1,5)) ,

= 2R(1,1) ⊕ 3R(1,5) ⊕R(1,7) ⊕R(1,9) . (6.3.12)

2. Afterwards, replace the combination R(1,pi−j)⊕R(1,pi−j) with the staggered modules
K(p)

(i,j) and rewrite R(1,pi) as M(2,p)
(1,pi). There is always only one way of such replace-

ments. For example, applying these rules to (6.3.12) and (6.3.11) gives us the fusion
rules:

M(2,3)
(1,3) ⊗K

(3)
(1,2) = 2M(2,3)

(1,3) ⊕K
(3)
(2,1) , (6.3.13a)

K(3)
(1,2) ⊗K

(3)
(1,2) = 2K(3)

(1,2) ⊕K
(3)
(2,1) ⊕M

(2,3)
(1,9) . (6.3.13b)

It has been checked in [35] extensively that these rules always always agree with direct
computations from the Nahm-Gaberdiel-Kausch algorithm.

6.3.2 Example at c = 0

We consider the simplest case of (6.3.1): the (2, 3)-logarithmic minimal model, which
comes with vanishing central charge. This model was actually the first of its kind and
is expected to underlie some observables of the continuum limit of percolation theory on
the upper-half plane [53].

Let us start by displaying some conformal dimensions in the spectrum of this loga-
rithmic minimal model,

∆(r,s) =
(3s− 2r)2 − 1

24
=⇒

r

s
1 2 3 4 5 6 7 8

1 0 0 1
3

1 2 10
3

5 7

2 5
8

1
8
− 1

24
1
8

5
8

35
24

21
8

33
8

(6.3.14)

Therefore, we see that ∆(1,1) = ∆(1,2) = 0. However, the chiral primary fields v∆(1,1)
and

v∆(1,2)
do not coincide since v∆(1,1)

belong to the staggered modules K(3)
(1,2) whereas v∆(1,2)

belong to K(3)
(1,1). In other words, the symmetry of the Kac indices in (6.1.3) no longer

holds at the level of representations in logarithmic minimal models, in contrast to (6.2.2)
in minimal models. To see which one of v∆(1,1)

and v∆(1,2)
is the identity field, we consider

their null descendants at level one. Using (6.3.5) and (6.3.6), we find

L−1v∆(1,1)
= 0 but L−1v∆(1,2)

6= 0 . (6.3.15)

Since the identity field is required to be translational invariant, v∆(1,1)
is then the identity

field and K(3)
(1,2) is the vacuum module of the (2, 3)-logarithmic minimal model.
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Fusion rules

Let us now write down the fusion rules for the (2, 3)-logarithmic minimal model explicitly
by using the rules discussed in the previous subsection. It is convenient to first introduce
the following notations:

Bk =M(3,2)
(1,3k) , (6.3.16a)

Pk = K(3)
(k,1) , (6.3.16b)

Qk = K(3)
(k,2) . (6.3.16c)

These three families of representations have the following fusion products:

Bk1 ⊗ Bk2 =

k1+k2−1⊕
k

2
=|k1−k2|+1

(Bk ⊕Qk) , (6.3.17a)

Bk1 ⊗ Pk2 = B|k1−k2| ⊕
k1+k2−2⊕

k
2
=|k1−k2|+2

2Bk ⊕ Bk1+k2 ⊕
k1+k2−1⊕

k
2
=|k1−k2|+1

2Pk , (6.3.17b)

Bk1 ⊗Qk2 = P|k1−k2| ⊕
k1+k2−2⊕

k
2
=|k1−k2|+2

2Pk ⊕ Pk1+k2 ⊕
k1+k2−1⊕

k
2
=|k1−k2|+1

2Bk , (6.3.17c)

Pk1 ⊗ Pk2 = P|k1−k2| ⊕
k1+k2−2⊕

k
2
=|k1−k2|+2

2Pk ⊕ Pk1+k2 ⊕
k1+k2−1⊕

k
2
=|k1−k2|+1

(2Qk ⊕ 4Bk) , (6.3.17d)

Pk1 ⊗Qk2 = Q|k1−k2| ⊕
k1+k2−2⊕

k
2
=|k1−k2|+2

2Qk ⊕Qk1+k2 ⊕
k1+k2⊕

k
2
=|k1−k2|

2Bk ⊕
k1+k2−1⊕

k
2
=|k1−k2|+1

2Pk .

(6.3.17e)

For sufficiently large k1 and k2, we can write

Qk1 ⊗Qk2 = B|k1−k2|−1 ⊕ 3B|k1−k2|+1 ⊕
k1+k2−3⊕

k
2
=|k1−k2|+3

4Bk ⊕ 3Bk1+k2−1 ⊕ Bk1+k2+1

⊕ P|k1−k2| ⊕
k1+k2−2⊕

k
2
=|k1−k2|+2

2Pk ⊕ Pk1+k2 ⊕
k1+k2−1⊕

k
2
=|k1−k2|+1

2Qk (6.3.18)

Let us also write down explicitly examples of these complicated fusion rules,

B1 ⊗ B1 = B1 ⊕Q1 , (6.3.19a)
B1 ⊗ P1 = B2 ⊕ 2P1 , (6.3.19b)
B1 ⊗Q1 = P2 ⊕ 2B1 , (6.3.19c)
P1 ⊗ P1 = P2 ⊕ 2Q1 ⊕ 4B1 , (6.3.19d)
P1 ⊗Q1 = 2B2 ⊕ 2P1 ⊕Q1 , (6.3.19e)
Q1 ⊗Q1 = B1 ⊕ B3 ⊕ P2 ⊕ 2Q1 . (6.3.19f)

6.4 Rational limits of generalized minimal models
It is now tempting to ask whether there exist a non-chiral extension of the (2, p)-logarithmic
minimal models, which live on the Riemann sphere. We refer to such non-chiral extension
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as bulk-logarithmic minimal models. We do not yet have a precise definition for bulk-
logarithmic minimal models, but we expect bulk-logartihmic minimal models to be an
extension of minimal models on the Riemann sphere, wherein reducible Verma modules
are allowed, that is to say we allow some null vectors to be non-vanishing.

Building logarithmic CFTs in the bulk is however a very complicated problem due to
constraints from the single-valuedness [37]. Therefore, we attempt to find bulk logarithmic
minimal models by taking rational limits of some completely solved CFTs at generic
central charge, whose spectra are characterized in a similar way as (6.3.1), since rational
limits of single-valued objects remain single-valued. The natural start is then a subsector
of generalized minimal models with the following spectrum:

SGMM
sub =

∞⊕
i=1

RD
(1,s) . (6.4.1)

It is easy to see that the above spectrum come with the same Kac indices as in (6.3.1). In
particular, we want to know whether the the following limit leads to any consistent CFT,

lim
β2→ p

2

SGMM
sub =? (6.4.2)

More precisely, taking rational limits of this generalized minimal model amounts to know-
ing how the degenerate fields in (6.4.1) and their fusion rules behave under the limits.
To answer this question, we consider the limit β2 → p

2
in the s-channel of the four-point

functions:

lim
β2→ p

2

〈V D
〈1,s〉V

D
〈1,s′〉V

D
〈1,s〉V

D
〈1,s′〉〉 , (6.4.3)

which allows us to write down the fusion rules:

lim
β2→ p

2

RD
(1,s) ×RD

(1,s′) . (6.4.4)

As we shall see in the next subsection, it turns out that spectra of the resulting four-point
functions in (6.4.3) contain the non-chiral logarithmic representations limβ2→ p

2
Wκ−

(2i−1,j)

whose chiral projections coincide with the chiral staggered modules K(p)
(i,j). In other

words, we find that neglecting the right-moving quantities in the resulting representations
limβ2→ p

2
Wκ−

(2i−1,j) gives us K(p)
(i,j). This suggests that the limit β2 → p

2
of the generalized

minimal model (6.4.1) could be a good candidate for study non-chiral extensions of the
(2, p)-logarithmic minimal models. Let us now discuss results from computing (6.4.3).

6.4.1 Emergence of the logarithmic blocks

We consider the limit β2 → p
2
of the four-point function 〈V D

〈1,ps〉V
D
〈1,ps′〉V

D
〈1,ps〉V

D
〈1,ps′〉〉 where

our logarithmic blocks emerge. Using (4.1.10), the s-channel decomposition of this four-
point function reads

lim
β2→ p

2

〈V D
〈1,ps〉V

D
〈1,ps′〉V

D
〈1,ps〉V

D
〈1,ps′〉〉 = lim

β2→ p
2

s+s′+1∑
j=|s−s′|+1

D(1,pj)|FP(1,pj)
|2 , (6.4.5)

where we label conformal blocks by their momenta, and four-point structure constants in
(6.4.5) can be completely determined by using the degenerate-shift equation (4.3.6) with
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the normalization D(1,1) = 1. Nevertheless, computing the limit of the right-hand side
of (6.4.5) is in general very complicated due to zeroes and poles at rational values of β2

from both the conformal blocks and the structure constants. We bypass this difficulty
by studying the limit in (6.4.5) numerically for many examples, whose results strongly
suggest us that the resulting four-point function in (6.4.5) is finite and could also contain
the logarithmic blocks G−(1,j). To see how these logarithmic blocks emerge, recall the
coincidence of momenta at β2 = p

2
,

P(1,pi∓j) = −P(2i−1,±j) , (6.4.6)

where i are integers and j ∈ {1, . . . , p − 1}. Now it is easy to check that the follow-
ing residues in (3.4.15) of the conformal blocks FP(1,pi−j) in (6.4.5) satisfy the following
conditions:

R1,pi±j = 0 , (6.4.7a)
R2i−1,j 6= 0 . (6.4.7b)

Since the conformal blocks FP(1,pi−j) depend quadratically on the momenta P(1,pi−j), we
can write

lim
β2→ p

2

|FP(1,pi−j) |
2 = lim

β2→ p
2

|FP(2i−1,j)
|2 ,

∼
(
R2i−1,j

β2 − p
2

)2

lim
β2→ p

2

|F(2i−1,−j)|2 + . . . ,

∼
(
R2i−1,j

β2 − p
2

)2

lim
β2→ p

2

|FP(1,pi+j)
|2 + . . . . (6.4.8)

Nevertheless, the pole in (6.4.8) is precisely cancelled by the ratio of four-point structure
constants in (6.4.5) [12],

lim
β2→ p

2

D(1,pi+j)

D(1,pi−j)
∼ −

(
R2i−1,j

β2 − p
2

)2

+ . . . . (6.4.9)

After studying many examples of (6.4.5) numerically, we find that the cancellation of
poles in (6.4.9) and (6.4.8) leave us with the following logarithmic block:

lim
β2→ p

2

(
D(1,pi−j)
D(1,pi+j)

|FP(1,pi−j)|
2 + |FP(1,pi+j)

|2
)
∝ lim

β2→ p
2

G−(2i−1,j) . (6.4.10)

The relation (6.4.10) is then valid, provided that the conditions (6.4.7) hold. Thus,
whenever the latter requirement is met, the conformal blocks |FP(1,pi−j)|2 and |FP(1,pi+j)

|2
appearing in (6.4.5) should be replaced with the logarithmic blocks in (6.4.10). For
example, we have

lim
β2→ 3

2

〈V D
〈1,3〉V

D
〈1,3〉V

D
〈1,3〉V

D
〈1,3〉〉

= lim
β2→ 3

2

D(1,3)|FP(1,3)
|2 + lim

β2→ 3
2

D(1,5)

(
D(1,1)

D(1,5)

|FP(1,1)
|2 + |FP(1,5)

|2
)
,

= lim
β2→ 3

2

D(1,3)|FP(1,3)
|2 + lim

β2→ 3
2

D(1,5)G−(1,2) . (6.4.11)

We have also checked numerically that the last line of the above example is indeed a
crossing symmetry four-point function at high precision. Moreover, each conformal block
in the last line of (6.4.11) is finite by itself.
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Null vectors

Let us now define the logarithmic representation K̃(p)
(i,j) associated to the conformal blocks

in (6.4.10) as follows:

K̃(p)
(i,j) = lim

β2→ p
2

W−(2i−1,j). (6.4.12)

To see the structure of this representation, we need to know whether the two null vec-
tors: L(2i−1,j)V(2i−1,j) and L(1,pi−j)V(2i−1,j) vanish in this limit where we recall that the
non-diagonal fields V(r,s) have the conformal dimensions (∆(r,s),∆(r,−s)). This question is
equivalent to figuring out whether these two null vectors decouple from all three-point
functions. This can be traced from the residues of conformal blocks Rr,s in the Zamolod-
chikov recursion (3.4.15). For any positive integer r and s, we have the following reasoning:

∀〈V1V2V1V2〉 Rr,s in FP(r,s)
and Rr,s = 0 =⇒ 〈L(r,s)V(r,s)V1V2〉 = 0 . (6.4.13)

Using (6.4.7) with the above and recalling that ∆(2i−1,±j) = ∆(1pi∓j) for β2 = p
2
, the limit

in (6.4.12) is therefore taken such that

lim
β2→ p

2

L(1,pi−j)V(2i−1,j) = lim
β2→ p

2

L̄(1,pi−j)V(2i−1,−j) = 0 , (6.4.14)

while keeping

lim
β2→ p

2

L(2i−1,j)V(2i−1,j) = lim
β2→ p

2

L̄(2i−1,j)V(2i−1,−j) = ηD(2i−1,j) 6= 0 , (6.4.15)

The structure of generating states in K̃(p)
(i,j) is shown in (6.2). If we normalized operators

in (3.5.6) in the same way as operators in (6.3.7), the logarithmic couplings of K̃(p)
(i,j) are

precisely given by γ−(i,j). Taking into account (6.4.14) with (6.4.6) then comparing (6.2)
with (6.1), the chiral projection of K̃(p)

(i,j) therefore equals to the chiral staggered module
K(p)

(i,j).

L0 ηD(2i−1,j)W−
(2i−1,j)

V(2i−1,j)

V(2i−1,−j)

L†(2i−1,j)
L(2i−1,j)

L̄†(2i−1,j) L̄(2i−1,j)

Figure 6.2: non-vanishing null vectors in K̃(p)
(i,j)

However, we also stress here that K̃(p)
(i,j) does not fit with the definition of non-chiral

staggered modules in [38]. For example, non-chiral staggered modules of [38] contain di-
agonal primary fields with no logarithmic partners whereas the only diagonal field ηD(2i−1,j)

in K̃(p)
(i,j) is always accompanied by its logarithmic partner W−

(2i−1,j).
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6.4.2 Fusion rules at c = 0

As an example, we consider the case p = 3 of four-point functions in (6.4.3), from which
we deduce fusion rules of the type (6.4.4). Let us start with four-point functions involving
only the degenerate fields, which live on the Kac table at β2 = 3

2
. There are only two of

them: V D
〈1,1〉 and V

D
〈1,2〉. For example, we have

lim
β2→ 3

2

〈V D
〈1,2〉V

D
〈1,2〉V

D
〈1,2〉V

D
〈1,2〉〉 = lim

β2→ 3
2

|FP(1,1)
|2 , (6.4.16)

where the contribution from |FP(1,3)
|2 vanishes in this limit, and the conformal block on

the right-hand side is simply the identity block. Taking into account also other four-point
functions of V D

〈1,1〉 and V
D
〈1,2〉, we find

lim
β2→ 3

2

RD
(1,2) ⊗RD

(1,2) = lim
β2→ 3

2

RD
(1,1) ⊗RD

(1,1) = lim
β2→ 3

2

RD
(1,1) ⊗RD

(1,1) = 1 , (6.4.17)

Therefore, we have recovered the fusion rules of the (3, 2)-minimal model. While it seems
that we can recover the (3, 2)-minimal model by taking the rational limit of (6.4.1), let
us also point it out that relations among the other minimal models in the A-series and
the generalized minimal models have not yet been completely found [12].

Beyond the Kac table

For k, j ∈ N∗, we consider the s-channel of the following four-point functions:

lim
β2→ 3

2

〈V D
〈1,3k〉V

D
〈1,3j〉V

D
〈1,3k〉V

D
〈1,3j〉〉 , (6.4.18)

whose spectra at generic central charge are given by (6.4.5). First, it is convenient to
introduce the diagonal counterpart of (6.3.16a),

BDi = Bi ⊗ B̄i . (6.4.19)

The degenerate representation BDi can then be obtained as rational limits as follows,

BDi = lim
β2→ 3

2

RD
(1,3i) with lim

β2→ 3
2

L(1,3i)V
D
〈1,3i〉 = 0 . (6.4.20)

Our numerical results for the limit (6.4.18) imply the fusion rules:

lim
β2→ 3

2

RD
(1,3k) ⊗RD

(1,3j) =

k+j−1⊕
i

2
=|k−j|+1

(
BDi ⊕ K̃

(3)
(i,2)

)
. (6.4.21)

Now it is interesting to notice that the fusion rules (6.4.21) look like non-chiral counter-
parts of (6.3.17a), which then suggest that it may be possible to build a bulk logarithmic
minimal model whose spectrum contain the representations BDi and K̃(3)

(i,2). The next task
of reaching such goal is of course computing all fusion products among these two types
of representations. We have also considered more general cases of the limit (6.4.18) but
their results do not seem to be analogous to any known results and do not yet have clear
interpretations.
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6.4.3 Bulk-logarithmic minimal models?

Let us then assume that bulk-logarithmic minimal models are consistent CFTs on the
Riemann sphere, whose spectra may contain infinitely many fields, including logarithmic
fields. However, fusion products of these fields should always have finite spectra. For
instance, observe that the chiral projection of the fusion rules (6.4.21) give us the fusion
rules (6.3.17a) of the (2, 3)-logarithmic minimal model. It is now tempting to build a
bulk-logarithmic minimal model at c = 0 by assuming that its spectrum contain at least
the representations:

BDi , K̃(3)
(i,1) , and K̃(3)

(i,2) for i ∈ N∗ . (6.4.22)

It is also interesting to see that the chiral projection of the above coincides with the
spectrum (6.3.1) at p = 3. Assuming that fusion products of BDi with themselves are
given by the right-hand side of (6.4.21), let us now demonstrate how to compute sone of
the other fusion products of representations in (6.4.22) without using the Nahm-Gaberdiel-
Kausch algorithm. Recall the equations (4.5.2) and (4.5.4), we then have the following
fusion products at generic central charge

RD
(1,3) ⊗ VDP(1,0)

= VDP(1,0)
⊕W−(1,2) . (6.4.23)

Now further multiplying RD
(1,3) to both sides of (6.4.23) and using the associativity of the

fusion product, we find

RD
(1,3) ⊗W−(1,2) = VDP(1,0)

⊕W−(1,2) ⊕W
−
(1,4) . (6.4.24)

Now consider the limit β2 → 3
2
of the fusion product (6.4.24) with respect to (6.4.12) and

(6.4.20). As OPE, such limit can then results in divergence because of the coincidence
of conformal dimensions. In particular, as β2 → 3

2
, the representation W−(1,2) contains a

diagonal field with dimension ∆(1,−2) → ∆(3,1), whileW−(1,4) comes with ∆(1,−4) → ∆(3,−1).
Therefore, there is a resonance between these diagonal fields in this limit. We then
conjecture the following results:

lim
β2→ 3

2

(W−(1,2) ⊕W
−
(1,4)) = lim

β2→ 3
2

W−(3,1) = K̃(3)
(2,1) . (6.4.25)

The above limit only makes for four-point functions in which the residues R3,1 do not
vanish, and we indeed find that R3,1 is non-zero in four-point functions corresponding to
(6.4.24). Thus, the limit of (6.4.24) reads

BD1 ⊗ K̃i(1,1) = BD1 ⊕ K̃
(3)
(2,1) , (6.4.26)

which looks almost identical to its chiral version (6.3.19c), which has a multiplicity 2
for B1. In general, it is possible to predict the fusion rules of the types: BDi ⊗ K̃

(3)
(i,1)

and BDi ⊗ K̃
(3)
(i,2) by using the rational limit of four-point functions and associativity of

the fusion products. However, we do not know yet how this approach can deduce the
following fusion products:

K̃(3)
(i,1) ⊗ K̃

(3)
(j,1) , (6.4.27a)

K̃(3)
(i,1) ⊗ K̃

(3)
(j,2) , (6.4.27b)

K̃(3)
(i,2) ⊗ K̃

(3)
(j,2) . (6.4.27c)

Since we do not yet whether the above fusion products always return fields that belong
to the assumption (6.4.22). The validity of the spectrum (6.4.22) remains unclear, as well
as the existence of bulk-logarithmic minimal models.
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CHAPTER 7

Conclusion and outlook

7.1 Logarithmic representations
We build logarithmic representations of the Virasoro algebra by using derivatives of fields
with respect to the conformal dimensions. Our main results are the case of derivatives of
null fields, which generate non-chiral logarithmic representations that lead to second- or
third-rank Jordan blocks of L0 and L̄0. These representations are parametrized by loga-
rithmic couplings which take fixed values, provided that the degenerate fields exist. The
main advantage of using these derivatives is the computation of conformal blocks of loga-
rithmic representations. This formalism allows us to simply write down closed expression
for their conformal blocks as combinations of derivatives or residues of the Zamolodchikov
recursion. As an application, our logarithmic representationsWκ−

(r,s), generated by the log-
arithmic fields in (4.5.6), describe the logarithmic structure of the Potts and O(n) CFT
[29, 25] and also appear in the rational limits of some four-point functions of generalized
minimal models. In particular, this completes the determination of representations of
the Virasoro algebra in the Potts and O(n) CFTs at generic central charge. Let us now
suggest some future directions.

7.1.1 Higher-order derivatives

It should be straightforward to generalize our constructions for the representations Wκ
(r,s)

and W̃κ
(r,s) to logarithmic representations, which include higher-order derivatives of null

fields. More precisely, one should start with the combination:

(1− κ)ηD
(n)

∆(r,s)
+ κµD

(n)

∆(r,s)
, (7.1.1)

where ηD(n)

∆(r,s)
and ηD(n)

∆(r,s)
were defined in (3.5.3), and κ is expected to parametrize represen-

tations generated by the above field. This would result in arbitrary-rank Jordan blocks
of L0 and L̄0. While it is not clear if there exist higher-rank Jordan blocks of L0 and
L̄0 in any consistent CFT at generic central charge, it is well-known that they exist at
rational central charge, for instance at c = 0 [57]. It may also be interesting to find if
the fields (7.1.1) with n > 2 lead to some known representations. Moreover, using deriva-
tives of fields will also allows us to determine the logarithmic conformal blocks for (7.1.1)
analytically, similarly to the case of the logarithmic fields W κ

(r,s) and W̃
κ
(r,s).

107



108 CHAPTER 7. CONCLUSION AND OUTLOOK

7.1.2 Logarithmic minimal models

Our results from rational limits of generalized minimal models suggest the possiblity of
consistent logarithmic minimal models in the bulk. Let us now suggest what can be done
in the future.

1. Since we could not compute all fusion products of bulk representations in (6.4.22)
by taking rational limits, it may be interesting to use the Nahm-Gaberdiel-Kausch
alogrithm to compute fusion products of these bulk representations, which is ex-
pected to quite complicated.

2. The algebraic structure of chiral logarithmic minimal models [35] has been studied
extensively, while their correlation functions seem to be left uninvestigated. Since we
can describe their staggered modules by using derivatives as in (6.3.3), computing
correlation functions of fields in (6.3.1) should not be too complicated, while keeping
in mind that these chiral logarithmic minimal models are expected to be consistent
on the upper-half plane. For instance, one may start with writing down conformal
blocks for the staggered modules K(p)

(i,2).

7.2 The Potts and O(n) CFTs
We demonstrate how to numerically solve the crossing-symmetry equation for several
four-point functions of primary fields in the Potts and O(n) CFTs, from which we infer
some exact results such as their numbers of crossing-symmetry solutions, their spectra,
and some of their fusion rules. Moreover, our results also support that both CFTs are
consistent with the spectra, recently proposed by [30]. For instance, in the case of the
Potts CFT, the number of crossing-symmetry solution N Potts is always consistent with the
prediction from SQ symmetry in all of our examples wherein the inequality N Potts ≤ ISQ
always holds and becomes saturated in 24 out of 28 cases. Moreover, the discrepancy
between N Potts and ISQ suggests the Potts CFT may have a larger global symmetry than
SQ. The same signal of large global symmetry also appears in the O(n) CFT [25].

We have also computed several analytic ratios of structure constants for some four-
point functions of the Potts and O(n) CFTs, similarly to [32, 15]. However, we have not
found an analytic expression for structure constants, like the three-point connectivity in
[58]. Let us now point out some plausible future directions:

7.2.1 Crossing-symmetry solutions ↔ Physical Observables?

For the Potts CFT, the field V(0, 1
2

)(z) inserts a Fortuin-Kasteleyn cluster at point z, as
shown in (1.3.2) for the four-point connectivities, whereas the other non-diagonal fields
V(r,s)(z) with r 6= 0 insert 2r lines at point z , as boundaries for clusters [24]. In the case
of the O(n) CFT, we only have the latter type of fields, which is expect to insert 2r lines
at each point as well. For instance V( 1

2
,0) inserts one line at each point in the figure 5.3.21.

Let us also display the two-point function of V(1,0), which inserts two lines at each point,〈
V(1,0)V(1,0)

〉
(7.2.1)

This gives us a glimpse that more general four-point functions of both CFTs should de-
scribe physical observables on the lattice with more complicated configurations. However,
in general, we do not know yet precise relations between crossing-symmetry solutions and
these observables of the lattice model.
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A first step towards such relations is perhaps to assume that there is always a one-to-
one correspondence between solutions to the crossing-symmetry equation and observables
on the lattice models, similarly to the case of the four-point connectivities in (5.4.17).
Then try to look for rules of drawing clusters or diagrams for four-point functions in each
model such that the numbers of their configurations are always consistent with N Potts

and ÑO(n).

7.2.2 Extra solutions → New CFT ?

In the case of the Potts CFT, there is a significant number of extra solutions to the
crossing-symmetry equation, which are inconsistent with SQ symmetry of the Potts CFT.
Let us now display the simplest examples of these extra solutions. The four-point function
〈V(0, 1

2
)V(0, 1

2
)V(0, 1

2
)V(3,0)〉 in Subsection 5.4.2 comes with three extra solutions:

Solutions Spectra for s, t, u

X 1 Sex − {(2, 0)}
X 2 Sex − {(2, 1)}
X 3 Sex − {(4, 0)}

(7.2.2)

where Sex = SPotts ∩ Seven − Sdeg. Similarly to (7.2.2), by our set-up, the other extra
solutions on the tables in Section 5.4.1 always have spectra which are subsets of the
spectrum of the Potts CFT and also have vast intersections with the spectrum of the
O(n) CFT. Nevertheless, these extra solutions belong to neither CFTs since they do not
fit with the constraints from SQ symmetry in (5.4.1) and also come with the field V(0, 1

2
)

that does not exist in the O(n) CFT. Let us suggest some plausible explanations.

Combining the Potts and O(n) CFTs?

It could be that some of these extra solutions belong to a bigger CFT whose spectrum
contains the spectra of the Potts and O(n) CFTs as subsets. For example, we find solutions
to the crossing-symmetry equation for four-point functions which mix primary fields from
both the Potts and O(n) CFT. For example, we find soultions from solving the crossing-
symmetry equation for the four-point functions 〈V PottsV PottsV O(n)V O(n)〉. The field V Potts

and V O(n) are defined as follows:

V Potts ∈ ZPotts − ZO(n) , (7.2.3a)

V O(n) ∈ ZO(n) − ZPotts . (7.2.3b)

In other words, V Potts are primary fields which appear in the spectrum of the Potts
CFT but not in the spectrum of the O(n) CFT, and vice versa for V O(n). Let us
now display some numbers of crossing-symmetry solutions for the four-point functions
〈V PottsV PottsV O(n)V O(n)〉. The spectrum for each channel in these four-point functions is
assumed to be SPotts ∪ J O(n), which were introduced in (5.2.2) and (5.2.6) respectively.
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Four-point functions Numbers of solutions

(0, 1
2
)2(1

2
, 0)2 2

(0, 1
2
)3(1, 0) 3

(0, 1
2
)2(1, 0)2 5

(0, 1
2
)(1, 0)3 5

(0, 1
2
)2(1, 0)(1, 1) 4

(0, 1
2
)2(3

2
, 0)2 8

(0, 1
2
)2(3

2
, 2

3
)(3

2
,−2

3
) 7

Therefore, combining the spectra of both CFTs indeed gives us new crossing-symmetric
solutions. From the view of the lattice model, this idea also makes sense since we know
that operators from the O(n) loop model also exist in the Potts model by using the loop
representations of the Potts model [24]. It should therefore be interesting to investigate
further to see if this kind of CFT exists.

Of course, it is also not clear whether four-point structure constants of new crossing-
symmetry solutions always factorize into products of three-point structure constants since
we are solving the crossing-symmetry equation for four-point structure constants. If not,
they do not belong to a consistent CFT. One way of clarifying this issue is to consider the
crossing-symmetry equation as a system of quadratic equations for three-point structure
constants.

7.2.3 Integer Q and n

We have thus far considered only the Potts and O(n) CFTs at generic central charge, that
is to say generic Q and n. Integer values of Q and n are however actually more notable
due to their applications in statistical physics. For instance, at the central charge c = 0,
the Potts model with Q = 1 is equivalent to the bond percolation in two dimensions
while the O(n) model with n = 0 describes the problem of self-avoiding random walk.
Nevertheless, some of our results at generic central charge do not hold for the case of
integers Q and n. For example. the action of Virasoro algebra on the spectra of both
CFTs has not been completely determined for these special cases.

At the moment, we have preliminary numerical results indicating that the Potts and
O(n) CFTs are consistent at integers Q and n. For instance, we have checked numerically
that the limit n→ 0 of the four-point functions 〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 in the O(n) CFT

exists. Let us now discuss briefly our numerical results for the s-channel of the solution
C3 in the figure 5.3.21. We have also considered the other two solution in the figure
5.3.21, whose results are comparable to this case. Using (5.3.22) with (5.3.19), C3 has the
following s-channel spectrum:

S(s)
C3

= {(r, s) ∈ N∗ × (−1, 1]|rs ∈ Z} . (7.2.4)

While the interchiral block of each field in the spectrum S(s)
C3

can diverge in the limit
n → 0, however we find that the following combinations of leading interchiral blocks are
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Figure 7.1: The x-axis represents the real part of the cross ratio while the y-axis shows
the numerical values of Ccolor

3 with n ≈ 10−20 at each position

always finite,

I1 = lim
n→0
H(1,0) , (7.2.5a)

I2 = lim
n→0

(
H(s)

(1,1) +H(s)

(2, 1
2

)
+H(s)

(2,− 1
2

)
+H(s)

(3,1)

)
, (7.2.5b)

I3 = lim
n→0

(
H(s)

(3, 1
3

)
+H(s)

(3,− 1
3

)

)
, (7.2.5c)

I4 = lim
n→0

(
H(s)

(3, 2
3

)
+H(s)

(3,− 2
3

)

)
, (7.2.5d)

where H(s)
(r,s) are interchiral blocks of the non-diagonal primary fields V(r,s), introduced in

(4.6.7) and (4.6.8) . From (7.2.4), the sum of all interchiral blocks in (7.2.5) is then the
leading contribution for the s-channel expansion of limn→0C3. Let us now consider how
each interchiral block in (7.2.5) contribute to C3. We first define

Cred
3 = I1 , (7.2.6a)

Cblue
3 = I1 + I2 , (7.2.6b)

Cblack
3 = I1 + I2 + I3 , (7.2.6c)

Cyellow
3 = I1 + I2 + I3 + I4 (7.2.6d)

We then plot each Ccolor
3 according to their color in the plot (7.1), which shows that

the solution C3 is finite the limit n → 0. Notice that Cblack
3 and Cyellow

3 cannot be
distinguished in the plot (7.1). Similar situations also happen in the t- and u-channel
of C3, and we also have checked that limn→0C3 is crossing symmetric. Like (7.2.5), in
general, we expect that there are always cancellations of divergences from infinitely many
interchiral blocks in limn→0〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉. These cancellations also imply that

representations of the Virasoro algebra at generic central charge combine into much more
complicated representations at n = 0, which we do not yet know. There are at least a few
future directions for these results:

1. It would surely interesting to know representations of the Virasoro algebra, which
underly the combinations of interchiral blocks in (7.2.5). For instance, one may
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start by investigating the current modules of the primary fields V(1,1) and V(1,−1),
whose conformal blocks appear in I2 in (7.2.5).

2. At n = 0, the four-point function 〈V( 1
2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 compute the probability of

how self-avoiding random walk connects each pair of two points, and there are three
configurations of these walks, as shown in the figure 5.3.21. Therefore, it would be
certainly interesting to compare our numerical results of this four-point functions
to experimental measurements such as the Monte Carlo method.

3. It would also be interesting to consider the limit n → 0 of more general four-point
functions in the O(n) CFT. Right now, we find that the precision of more general
four-point functions are more difficult to control in this limit.

7.2.4 Spin clusters

The authors of [59] considered another kind of physical observables in the critical Potts
model, the spin-cluster connectivities. The four-point spin connectivities can be de-
scribed by the four-point function 〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 whose channels can have a non-

degenerate diagonal field with the dimensions (∆(1,2),∆(1,2)) propagating. With our best
knowledge, the only representation of Virasoro algebra at generic central charge, which
has such properties, is our logarithmic representation W̃ κ0

(1,2) since W̃ κ0

(1,2) comes with the
diagonal primary field V D

∆1,2)
which does not have any vanishing null descendant. To

check if our guess is correct, we need to solve the crossing-symmetry equation for the
four-point function 〈V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)〉 with the conformal blocks of W̃ κ0

(1,2), namely
G̃κ0

(1,2) in (4.5.20). If we find a solution, this would also be a discovery of a higher-rank of
Jordan block of L0 at generic central charge.



CHAPTER 8

Synthèse en français

Cette thèse concerne la résolution de theorie conforme à charge centrale générique sur la
sphère de Riemann en utilisant l’approche de bootstrap conforme de [31]. Nos intérêts
principaux sont les theories conformes de Potts et O(n) [14]. Pour les deux theories con-
formes, on complète la détermination des représentations conformes dans leurs spectres
et calcule numériquement plusieurs exemples de leurs fonctions à quatre points en util-
isant le bootstrap conforme. On commençe par une trés brève révision sur le theorie
conforme. Ensuite, on discute de notre construction de la représentation logarithmique
et nos résultats pour les theories conformes de Potts et O(n).

8.1 Que sont les theories conformes?

La théorie conforme est une théorie des champs à symétrie conforme. Contrairement
à les autres théories, les theories conformes n’ont pas besoin de lagrangien pour leurs
définitions. La symétrie conforme est suffisamment puissante pour fournir aux theories
conformes une définition simple, connue sous le nom de le donnée de theorie conforme.
le donnée de theorie conforme data est une collection de champs primaires et leurs co-
efficients d’expansion opérateur-produit qui satisfont les conditions, imposées par toutes
les conséquences des symétries du modéle [1]. En pratique, toutes les conséquences de la
symétrie conforme se manifestent dans l’équation de la symétrie de croisement,

∑
V ∈S(s)

D
(s)
V

2
V

3

1 4

s-channel

=
∑
V ∈S(t)

D
(t)
V

2

V

41

3

t-channel

=
∑

V ∈S(u)

D
(u)
V

2

V

41

3

u-channel

,

(8.1.1)

óu V representent des champs primaires. De plus, D(s)
V , D(t)

V , et D(u)
V sont les coefficients

a quatre points. Avec le donnée de theorie conforme seulment, on peut calculer toutes les
observables physiques dans les theories conformes. Cette methode de résoudre la theorie
conforme est connue sous le nom de le bootstrap conforme [2].

113
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En deux dimensions, l’algébre conforme est infinie, égalment sous le nom de l’algébre
de Virasoro. l’algébre de Virasoro s’accompagne d’un paramétre supplémentaire, connu
sous le nom de charge centrale. Par conséquent, les données de theorie conforme des
theories conformes bidimensionnels dépendent explicitement de la charge centrale, et dif-
férentes valeurs de la charge centrale nous donnent theories conformes différents. Avec la
structure riche de la symétrie conforme, les theories conformes bidimensionnels sont alors
plus contraints et plus réalisables pour avoir des solutions exactes que ceux de dimen-
sions supérieures. Par exemple, la théorie de Liouville et les modéles minimaux sont des
exemples de theorie conforme complétement résolus en deux dimensions [4, 5]. De plus,
les theories conformes en deux dimensions ont également de nombreuses applications en
physique théorique, de la description de la feuille de monde en théorie des cordes à de
nombreux systèmes critiques. Avec ces phénomènes particuliers, les theories conformes
bidimensionnels méritent donc une attention particulière.

8.2 Représentations logarithmiques
Les représentations de l’algèbre de Virasoro qui conduisent aux blocs de Jordan des généra-
teurs de dilatation sont en général appelées représentations logarithmiques. Puisque les
fonctions de corrélation de ces représentations logarithmiques dépendent logarithmique-
ment des positions.

On construit des représentations logarithmiques de l’algèbre de Virasoro en utilisant
les dérivées des champs primaires par rapport à leurs dimensions conformes. Dans le
cas des dérivées de champs nuls, on constate que les représentations résultantes sont non
chirales et sont paramétrées par des couplages logarithmiques. Par exemple, considérons
la dérivée du premier ordre des champs nuls au niveau 1. On écrit leurs combinaisons
linéaires comme suit :

W κ
(1,1) = (1− κ)V ′1 + κL−1L̄−1V

′
0 (8.2.1)

où prime désigne la dérivée par rapport aux dimensions conformes et, uniquement dans
cette section, le champ V1 représente un champ nul de niveau 1 dont la dimension conforme
est 1. De plus, cette construction ne donne des résultats non triviaux que si l’on suppose
que le vecteur nul V1 = L−1L̄−1V0 ne s’annule pas. Le paramètre κ est défini par l’équation:

L̄−1L̄1W
κ
1 = L−1L1W

κ
1 = κ(L0 − 1)W κ

1 . (8.2.2)

Le paramètre κ est connu sous le nom de couplage logarithmique, qui caractérise les
représentations générées par les champs logarithmiques W κ

(1,1). En d’autres termes, dif-
férents κ nous donnent des représentations différentes. Dessinons la structure des représen-
tations générées par W κ

(1,1),

W κ
(1,1)

L1 L̄1

L−1 L̄−1

V1

(0, 1) (1, 0)L0 (8.2.3)
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Par conséquent, les représentations de W κ
(1,1) contiennent deux champs primaires non

diagonaux avec des dimensions conformes à gauche et à droite : (1, 0) et (0, 1) , le champ
nul V1 et le champ logarithmique W κ

(1,1). Dans le cas theories conformes avec champs
dégénérés, le paramètre κ prend des valeurs fixes selon les types des champs dégénérés„

κ− =
1

2
− β2

s
for V D

〈1,s〉 , (8.2.4)

κ+ =
1

2
− 1

2β2
for V D

〈s,1〉 . (8.2.5)

Cette construction peut être étendue à des champs nuls de niveau supérieur ainsi qu’à leurs
dérivées d’ordre supérieur. En particulier, des représentations logarithmiques, générées
par la dérivée première de champs nuls, complètent la détermination de l’action de
l’algèbre de Virasoro sur les spectres de theorie conforme décrivant les points critiques du
modèle de Potts et du modèle O(n) en deux dimensions, également connu sous le nom
des theories de Potts et O(n).

8.3 Theories conformes de Potts and O(n) en bref
Le modéle critique de Potts Q-state avec Q ∈ [0, 4] et le modéle critique O(n) avec
n ∈ [−2, 2] sont bien connus pour être décrits par theorie conforme dont la charge centrale
c est liée à Q et n comme suit :

c = 13− 6β2 − 6β2 avec Q = 4 cos(πβ2)2 et n = −2 cos(πβ−2) , (8.3.1)

où β2 prend des valeurs dans [1
2
, 1]. Bien que ces deux modèles soient remarquables en

tant que généralisations du modèle d’Ising bidimensionnel dans lequel Q ∈ N∗ + 1 et
n ∈ N∗, ils ont également des descriptions qui permettent Q et n doivent être non entiers.
En termes de physique statistique, le modéle de Potts avec Q non entier décrit le cluster
aléatoire dit de Fortuin-Kesteleyn [23] tandis que le modèle O(n) avec n générique est
équivalent au dilué phase du modèle de boucle [4]. Avec ces descriptions, la corrélation
des deux modèles de réseau existe même pour des valeurs complexes de Q et n [24]. Avec
la relation (8.3.1), il est donc logique de s’attendre è ce que les CFT décrivant ces deux
modèles soient également valables pour la charge centrale générique. Cela nous a conduit
aux définitions des theories conformes de Potts et O(n) [25, 11] comme suit :

theories conformes de Potts et O(n) sont des prolongements analytiques dans la charge
centrale c du modèle critique de Potts Q-state et du modèle critique O(n) tels que

<(c) ≤ 13 ⇐⇒ <(β2) > 0 . (8.3.2)

Vers la résolution des deux theories conformes

Theories conformes de Potts et O(n) n’ont pas seulement une symétrie conforme mais
aussi des symétries globales : respectivement SQ et O(n). Les théories de représentation
de ces deux symétries peuvent être formulées sous forme de catégories tensorielles pour
Q et n [28] génériques. Comme le donneé de theorie conforme, résoudre ces deux theories
conformes revient à écrire leurs spectres et à résoudre leurs coefficients OPE á partir
des conditions de cohérence : l’équation de la symétrie croisément et les contraintes de
leurs symétries globales. Les spectres des theories conformes de Potts et O(n) ont été
complàtement déterminés récemment dans [30, 29]. La prochaine étape dans la résolution



116 CHAPTER 8. SYNTHÈSE EN FRANÇAIS

des theories conformes de Potts et O(n) consiste donc à résoudre leurs coefficients à quatre
points en résolvant l’équation de la symétrie croisé. Cela peut être fait numériquement
en utilisant notre méthode dans [25], proposée à l’origine pour la theorie conforme O(n)
et utilisée plus tard pour la theorie conforme de Potts.

Résultats du bootstrap conforme

Résumons les résultats du bootstrap conforme pour les deux theories conformes.

• Dans les deux theories conformes, on soutient que les théories de représentation de
leur symétrie globale fournissent des limites supérieures sur le nombre de solutions
de a symétrie de croisément pour toute fonction à quatre points donnée. Ces limites
sont toujours respectées (saturées dans certains cas) par les résultats de la résolution
de l’équation de la symétrie de croisement.

• Dans [25, 33], on résout numériquement l’équation de la symétrie croisément pour
plusieurs fonctions à quatre points des deux theories conformes. De nos résultats
numériques, on conclut plusieurs résultats exacts tels que leurs nombres de solutions
de la symétrie de croisement, les spectres exacts, les fonctions á trois points nulles,
et les régles de fusion.

• Dans le cas de la theorie conforme O(n) , nous constatons que les solutions de
l’équation de la symétrie croisément sont toujours cohérentes avec la symétrie O(n)
, contrairement à la theorie conforme de Potts oú nous trouvons des solutions sup-
plémentaires, qui sont incompatibles avec la symétrie SQ de la theorie conforme de
Potts et n’ont pas encore d’interprétation claire.

La prochaine étape évidente de la résolution des theories conformes de Potts et O(n)
consiste alors à trouver une expression analytique pour leurs constantes de structure à
quatre points. Récemment, les auteurs de [15] ont trouvé des rapports analytiques exacts
pour certaines coefficients à quatre points dans la theorie conforme de Potts, et on a
également trouvé des rapports similaires pour certaines fonctions à quatre points de la
theorie conforme O(n) . Cela suggère fortement la possibilité de solutions exactes aux
deux theories conformes. Cependant, on n’a pas encore trouvé d’expression analytique
pour une constante de structure unique, comme la connectivité à trois points dans [58].
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