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Titre : Matière noire scalaire auto-interagissante : Du freinage gravitationnel aux prédictions surles ondes gravitationnelles
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Résumé : L’absence d’observations directes dela matière noire froide motive une meilleurecompréhension des scénarios alternatifs. Enparticulier, les scénarios impliquant des bosonsultralégers de masse inférieure à 1 eV ontconnu un regain d’intérêt ces dernières an-nées. Ils préservent les succès du modèle stan-dard de matière noire froide à grande échelle,mais altèrent la dynamique aux échelles galac-tiques. L’ajout d’auto-interactions à de telsscénarios confère à la matière noire un com-portement semblable à celui d’un fluide avecune pression effective non négligeable, la dis-tinguant de la matière noire ultralégère con-ventionnelle. Nous avons étudié l’accrétion etla friction dynamique appliquée sur un trounoir se déplaçant dans un nuage de matièrenoire, tant dans le régime subsonique quesupersonique. Nos résultats révèlent que sile régime subsonique implique principalementl’accrétion, le régime supersonique introduitune friction dynamique supplémentaire carac-térisée par un terme similaire à celui obtenupar Chandrasekhar dans le cas de particulessans collisions. Néanmoins, dans les deuxrégimes, l’intensité de la force d’accrétion et de

la friction dynamique reste inférieure à celle ob-servée pour la matière noire froide ou ultra-légère sans collisions. En utilisant ces résul-tats, nous avons analysé les effets de ces forcessur les signaux d’ondes gravitationnelles émispar des binaires de trous noirs se trouvant àl’intérieur d’un nuage de matière noire scalaireauto-interagissant. En première approxima-tion, des termes de correction aux ordres -4PN et -5.5PN apparaissent, exerçant une influ-ence sur la phase du signal d’ondes gravitation-nelles. Les observations prospectives de LISAet de B-DECIGO ont le potentiel de détecter ceseffets sur un large spectre de masses scalaireset de couplages d’auto-interactions. Bien quedes détecteurs tels que ET et Advanced LIGOpuissent également identifier ces effets, leurscapacités de détection sont limitées à un es-pace de paramètres plus restreint. Notre anal-yse démontre que les cas où la détection de ceseffets est la plus probable sont les Inspiralesà Rapport de Mass Extrême (EMRIs) observéespar LISA. Actuellement, cette approche est laseule permettant de contraindre la matièrenoire scalaire auto-interagissante ayant des nu-ages de dimensions inférieures à 0,1 pc.



Title: Self-interacting scalar field dark matter: From gravitational drag to gravitational wave pre-dictions
Keywords: dark matter, scalar field, quartic self-interactions, dynamical friction, mass accretion,gravitational waves
Abstract: The absence of direct observationsof cold dark matter particles calls for a bet-ter understanding of alternative scenarios. Inparticular, scenarios involving ultralight bosonswith a mass below 1 eV have experienced aresurgence of interest in recent years. Theypreserve the successes of the standard colddark matter model at large scales but al-ter the dynamics at galactic scales. Includ-ing self-interactions to such scenarios endowsdark matter with fluid-like behavior with non-negligible effective pressure, distinguishing itfrom the conventional ultralight dark matter.We investigated the accretion and dynamicalfriction applied on a black holemoving in a darkmatter cloud, both in subsonic and supersonicregimes. Our findings reveal that while thesubsonic regime primarily involves accretion,the supersonic regime introduces additionaldynamical friction characterized by a term sim-ilar to the one obtained by Chandrasekhar for

collisionless particles. Nonetheless, in bothregimes, the magnitude of the accretion forceand dynamical friction remains lower than thatobserved for cold or collisionless ultralight darkmatter. In this framework, we analyzed the ef-fects of these forces on the gravitational-wavesignals emitted by binary black holes inside aself-interacting scalar field dark matter cloud.To a fist approximation, correction terms at -4PN and -5.5PN orders appear, exerting an in-fluence on the phase of the gravitational-wavesignal. Prospective observations by LISA and B-DECIGO have the potential to detect these ef-fects across a broad spectrum of scalar massesand self-interaction couplings. Our analysisdemonstrates that the instances in which thedetection of these effects is most probable areExtreme Mass Ratio Inspirals (EMRIs) observedby LISA. Presently, this approach stands as thesole means to constrain self-interacting scalardark matter with clouds smaller than 0.1 pc.
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Résumé de la thèse

Le contenu de cette thèse s’appuie sur trois articles de recherche issus des travaux
menés à l’Institut de Physique Théorique (IPhT), affilié à l’Université de Paris-Saclay. Les
travaux de recherche se sont déroulés d’octobre 2020 à juillet 2023 :

• A. Boudon, P. Brax and P. Valageas, Subsonic accretion and dynamical friction
for a black hole moving through a self-interacting scalar dark matter cloud,
Phys. Rev. D 106.4 (2022). [1]

• A. Boudon, P. Brax et P. Valageas, Supersonic accretion and dynamical friction
for a black hole moving through a self-interacting scalar dark matter cloud,
arXiv:2307.15391 [2]

• A. Boudon et al., Gravitational waves from binary black holes in a self-
interacting scalar dark matter cloud, arXiv:2305.18540 [3]

En ce qui concerne le statut de publication des articles de recherche, l’un d’entre eux, [1],
a été officiellement publié. Les deux autres articles, [2, 3], sont actuellement en cours de
processus de publication.

L’objectif principal de cette thèse est de fournir une analyse de l’accrétion de masse
et de la friction dynamique subies par un trou noir se déplaçant au sein de matière noire
scalaire auto-interagissante. Cela nous permettra d’explorer les applications pratiques
de ces calculs dans des systèmes contraints, offrant ainsi un moyen d’étudier la matière
noire à travers des phénomènes tels que la décroissance orbitale des objets célestes
dans les galaxies et les environnements gazeux contenant de la matière noire. De plus, la
thèse examine l’utilisation potentielle des ondes gravitationnelles émises par des binaires
de trous noirs entourés de matière noire, explorant spécifiquement le décalage de phase
induit par la force de freinage, composée de la force de freinage d’accrétion et de friction
dynamique. Ce décalage de phase peut servir de signature caractéristique de la matière
noire et permet de faire la distinction entre différents modèles de matière noire.

La motivation de cette recherche découle des défis rencontrés dans la détection
des particules massives faiblement interactives (WIMPs), qui ont été et sont encore con-
sidérées comme des candidates solides pour la matière noire. Malgré des recherches
approfondies, aucune preuve concluante de l’existence de WIMPs n’a été trouvée jusqu’à
présent, rendant la détection directe de plus en plus contrainte [4–7]. De plus, les
tentatives de simuler l’évolution de la matière noire froide ont révélé des problèmes
cosmologiques, notamment le problème de concentration des halos, le problème des
satellites manquants et le problème "too-big-to-fail", entre autres [8–12]. Bien que
l’incorporation d’effets baryoniques plus détaillés dans les simulations puisse résoudre
partiellement ces problèmes, cela reste insuffisant à l’heure actuelle [13–20]. En tant
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qu’approche alternative, la thèse explore la matière noire sous forme de champ scalaire,
considérant la matière noire comme des particules bosoniques.

La matière noire scalaire présente des caractéristiques propres qui la distinguent
de la matière noire froide. Une caractéristique notable est l’émergence de solitons [21–
48], également appelés étoiles de bosons, qui sont des configurations auto-gravitantes
stables du champ scalaire résultant de l’équilibre entre la pression quantique, ou les
auto-interactions, et les forces gravitationnelles. Cette propriété de la matière noire
scalaire a des implications significatives sur le profil de densité de la matière noire à dif-
férentes échelles. À petite échelle, la présence de solitons conduit à un profil de densité
différent du profil typique associé à la matière noire froide. Au lieu du profil en forme de
pic observé dans les simulations dematière noire froide, le profil de densité de la matière
noire scalaire présente une structure centrale en raison des configurations de solitons.
Cependant, à grande échelle, son profil de densité rejoint le profil deNavarro-Frenk-White
(NFW) attendu généralement pour la matière noire froide. Cette récupération assure la
cohérence avec les observations et les attentes théoriques à plus grande échelle tout en
fournissant les modifications nécessaires pour résoudre les problèmes à petite échelle
mentionnés précédemment. Ainsi, le modèle de matière noire scalaire introduit des
changements principalement à petite échelle tout en conservant les caractéristiques
familières de la matière noire froide à l’échelle cosmologique.

En raison de leur solution solitonique, les théories de champ scalaire, y compris la
théorie de lamatière noire "fuzzy", ont initialementmontré des promesses pour résoudre
les problèmes cosmologiques susmentionnés [8, 11, 49, 50]. Cependant, des contraintes
observationnelles récentes, telles que les courbes de rotation des galaxies et la forêt de
Lyman-α [51–53], ont imposé des limitations significatives sur lamasse de lamatière noire
"fuzzy", nécessitant généralement des masses supérieures à 10−21 eV. Ces contraintes
remettent en question la capacité du modèle à résoudre les problèmes cosmologiques
qu’il visait à résoudre, diminuant ainsi son attrait en tant que candidat alternatif. Par
conséquent, les physiciens ont commencé à explorer d’autres moyens de différencier
la matière noire scalaire de la matière noire froide, en se concentrant sur des échelles
plus petites. Cette nouvelle génération d’articles se réfère souvent à ce modèle en tant
que matière noire ultra-légère. Il englobe le même cadre théorique que la matière noire
"fuzzy", mais est généralement considéré à des masses plus élevées. Les physiciens étu-
diant la matière noire ultra-légère ont exploré les effets ondulatoires et cherché à révéler
des phénomènes exotiques, tels que la superradiance, les forces de marée et la réso-
nance avec les ondes gravitationnelles [54–58]. Ce domaine est en expansion rapide et
offre des perspectives pour unemeilleure compréhension de la dynamique de la matière
noire et de ses impacts. À cette fin, certains physiciens ont introduit des auto-interactions
parmi les particules de matière noire. En considérant ces interactions comme répulsives,
un modèle émerge qui a le potentiel d’expliquer les problèmes cosmologiques tout en
étant en accord avec les données observationnelles actuelles.
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Bien que l’étude de ces effets soit une voie de recherche fascinante, cette thèse, basée
sur les articles [1], [2] et [3], adopte une approche différente. L’accent principal est mis
sur l’étude des effets de la matière noire scalaire auto-interagissante sur les trous noirs
et sur son utilité pour sonder la matière noire tout en la différenciant des autres mod-
èles. Cette thèse s’efforce de fournir des calculs précis de l’accrétion de masse et de la
friction dynamique sur un trou noir en mouvement au sein d’un nuage de matière noire.
À travers ces calculs, cette thèse vise à éclaircir les caractéristiques et le comportement
de la matière noire autour des trous noirs et à faciliter son identification dans divers
scénarios astrophysiques.

Le chapitre 1 offre un aperçu concis de la cosmologie, de la matière noire et de la
physique des ondes gravitationnelles. Il couvre le développement historique de l’univers,
introduit lemodèleΛCDMet explore les défis de lamatière noire. Lesmodèles alternatifs,
y compris les théories de la matière noire scalaire, sont examinés en détail. Le chapitre
met également en évidence l’importance des ondes gravitationnelles en astrophysique
et expose les objectifs de recherche de la thèse.

Le chapitre 2 présente sur le modèle de matière noire scalaire soumise à une auto-
interaction quartique. Il introduit les concepts fondamentaux et les équations qui régis-
sent ce modèle, en considérant à la fois les régimes non relativiste et relativiste. Dans le
régime non relativiste, les solitons, qui sont des configurations d’équilibre statiques résul-
tant des auto-interactions, sont explorés. Le comportement des solitons est déterminé
par l’équation d’équilibre hydrostatique, ce qui permet d’identifier le potentiel d’auto-
interaction. Le chapitre discute de l’espace des paramètres dumodèle, en tenant compte
des contraintes sur les paramètres scalaires et en précisant les conditions pour les cal-
culs. L’accent est mis sur le régime de Thomas-Fermi, dans lequelle les auto-interactions
dominent la pression quantique. Enfin, nous examinons le régime d’accrétion radiale,
comme discuté en détail dans [59].

Le chapitre 3 se concentre sur le comportement d’un trou noir interagissant avec un
nuage de matière noire scalaire auto-interagissante dans le régime subsonique. Nous
commençons par une brève exploration de la solution d’un soliton en mouvement. En-
suite, nous intégrons un trou noir dans le cadre établi pour déduire les équations du
mouvement régissant le système. Nous analysons à la fois l’écoulement non linéaire à
grandes distances et le régime de petites distances, en incorporant des corrections à
l’approximation d’écoulement linéaire. Les expressions dérivées pour le taux d’accrétion
et la force de freinage fournissent des informations quantitatives sur l’interaction du
trou noir avec le nuage de matière noire. En comparant nos résultats avec d’autres
modèles de matière noire, tels que la matière noire froide et la matière noire "fuzzy",
nous mettons en évidence les caractéristiques distinctes du modèle de matière noire
scalaire auto-interagissante. Nos résultats révèlent notamment une réduction du taux
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d’accrétion et de la force de freinage par rapport à un gaz parfait, attribuable aux effets
d’auto-interaction. La friction dynamique se révèle négligeable dans ce régime, con-
trairement aux particules sans collision [60–62] ou à la matière noire "fuzzy" [63–65].
Ces résultats ont des implications pour des phénomènes tels que le déphasage de la
fréquence d’émission des ondes gravitationnelles et pourraient contribuer à résoudre le
problème de synchronisation des amas globulaires de Fornax.

Dans le chapitre 4, nous explorons le régime supersonique pour comprendre
l’interaction entre un trou noir et une matière noire scalaire auto-interagissante. En
nous appuyant sur notre analyse du régime subsonique, nous découvrons un écoule-
ment de vitesse plus complexe caractérisé par un front de choc. Ce front de choc
sépare les régions en amont et en aval, chacune ayant des conditions aux limites dis-
tinctes. L’écoulement en amont est uniquement déterminé par la condition initiale, et
l’écoulement en aval contient deux constantes d’intégration que nous déterminons en
les faisant correspondre à l’écoulement en amont. Cependant, il n’est pas possible de
relier les développements perturbatifs des écoulements en amont et en aval près du
front de choc en raison de leur divergence, ce qui conduit à une couche limite où les
effets non linéaires deviennent significatifs. Pour de faibles vitesses supersoniques, nous
retrouvons le même taux d’accrétion que dans le régime subsonique. Cependant, dans
le régime hautement supersonique, le débit d’accrétion devient similaire au résultat de
Hoyle-Lyttleton pour un gaz isentropique. De plus, notre analyse révèle un nouveau
terme similaire au résultat de Chandrasekhar pour le frottement dynamique [60], ce qui
indique l’efficacité de notre cadre dans la capture de la dynamique du système.

Enfin, dans le chapitre 5, nous explorons les effets de la force de freinage d’accrétion
et de la friction dynamique sur les trous noirs binaires et leur influence sur l’émission
des ondes gravitationnelles. En considérant des solitons de taille finie autour de trous
noirs binaires, nous étudions leur impact. Les perturbations dans les formes d’ondes
gravitationnelles peuvent provenir de différents environnements, et les différencier
peut fournir des informations précieuses sur l’environnement des systèmes binaires.
Les nuages scalaires affectent les orbites binaires par décélération due à l’accrétion de
matière noire et par un ralentissement supplémentaire dû à la friction dynamique dans
le régime supersonique. Ces effets introduisent des déviations dans les orbites binaires
et perturbent les signaux des ondes gravitationnelles. En analysant l’excentricité, le demi-
grand axe et le décalage de phase dans les signaux des ondes gravitationnelles, nous
quantifions les impacts de ces forces. À l’aide d’une analyse de Fisher, nous évaluons
la détectabilité de deux paramètres clés, ρ0 et ρa, avec des interféromètres futurs tels
que LISA et DECIGO [66, 67]. Des perspectives prometteuses pour la détection de ces
paramètres émergent, offrant des possibilités de recherche passionnantes. De plus,
nous étudions les tailles détectables des solitons dans ce contexte.

Notre étude de l’accrétion de masse et de la friction dynamique au sein des solitons
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de matière noire scalaire auto-interagissante a révélé plusieurs pistes de recherche pour
l’avenir. Celles-ci incluent l’incorporation des effets relativistes pour acquérir une com-
préhension plus complète des systèmes de matière noire, en explorant notamment les
effets de la force de freinage à des fréquences plus élevées près des fusions de trous
noirs. De plus, considérer des trous noirs de Kerr (avec spin) améliorerait la réalisme
de notre analyse, en accord avec les observations des systèmes de trous noirs binaires.
Élargir notre champ d’investigation pour inclure d’autres objets astrophysiques, tels que
les étoiles et les étoiles à neutrons, est également crucial. Ces objets offrent des carac-
téristiques uniques qui peuvent fournir des informations précieuses pour tester les mod-
èles de matière noire. Cependant, il devient important de prendre en compte les réac-
tions réciproques de la matière noire, car l’accrétion de masse n’est généralement pas le
facteur dominant dans le régime subsonique. De plus, il est essentiel de considérer des
scénarios où les trous noirs se trouvent à proximité des limites des solitons ou lorsque le
soliton lui-même est relativement petit. Élargir notre exploration pour englober une plus
large gamme de tailles de solitons améliorerait notre capacité à détecter et caractériser
les solitons, permettant l’identification de signatures distinctes associées aux modèles de
matière noire scalaire.
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Summary of the thesis

The content provided in this thesis builds upon three research papers derived from
the research conducted at the Institute of Theoretical Physics (IPhT), which is affiliated
with the University of Paris-Saclay. The research work took place from October 2020 to
July 2023:

• A. Boudon, P. Brax and P. Valageas, Subsonic accretion and dynamical friction
for a black hole moving through a self-interacting scalar dark matter cloud,
Phys. Rev. D 106.4 (2022). [1]

• A. Boudon, P. Brax et P. Valageas, Supersonic accretion and dynamical friction
for a black hole moving through a self-interacting scalar dark matter cloud,
arXiv:2307.15391 [2]

• A. Boudon et al., Gravitational waves from binary black holes in a self-
interacting scalar dark matter cloud, arXiv:2305.18540 [3]

Regarding the publication status of the research papers, one of them, [1], has been offi-
cially published. The two other papers, [2, 3], are currently undergoing the publication
process.

The main aim is to provide a comprehensive analysis of the mass accretion and dy-
namical friction experienced by a black hole moving within a self-interacting scalar field
dark matter. This will allow us to explore the practical applications of these calculations
in bounded systems, offering a means to probe dark matter through phenomena such as
orbital decay of celestial objects in galaxies and gas environments containing dark mat-
ter. Furthermore, the thesis investigates the potential use of gravitational waves emitted
by binary black holes surrounded by dark matter, specifically exploring the phase shift
induced by the drag force, made of accretion drag force and dynamical friction. This
phase shift can serve as a characteristic signature of dark matter and may differentiate
between various dark matter models.

The motivation behind this research stems from the challenges encountered in de-
tecting weakly interacting massive particles (WIMPs), which were initially and are still
considered strong candidates for dark matter. Despite extensive searches, no conclusive
evidence of WIMPs has been found yet, rendering direct detection increasingly constraint
and unlikely to happen [4–7]. Additionally, attempts to simulate the evolution of cold
dark matter have revealed cosmological problems, including the core-cusp problem, the
missing satellite problem, and the too-big-to-fail problem among others [8–12]. Although
incorporating more detailed baryonic effects in simulations may partially resolve these
issues, it remains insufficient at present [13–20]. As an alternative approach, the thesis
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explores scalar field dark matter, considering dark matter as bosonic particles.
Scalar field dark matter exhibits distinct characteristics that set it apart from cold dark

matter. One notable feature is the emergence of solitons [21–48], also called boson stars,
which are stable, self-gravitating configurations of the scalar field that form due to the
balance between quantum pressure, or self-interactions, and gravitational forces. This
property of scalar field dark matter has significant implications for the density profile
of dark matter at different scales. At small scales, the presence of solitons leads to a
departure from the typical density profile associated with cold dark matter. Instead of
the cusp-like profile observed in cold darkmatter simulations, the scalar field darkmatter
density profile exhibits a core-like structure due to the soliton configurations. However,
at large scales, the scalar field dark matter density profile recovers the expected Navarro-
Frenk-White profile commonly associated with cold dark matter. This recovery ensures
consistency with observations and theoretical expectations at larger scales while provid-
ing the necessary modifications to address the aforementioned small-scale issues. Thus,
the scalar field dark matter model introduces changes primarily at small scales while
maintaining the familiar characteristics of cold dark matter on cosmological scales.

Due to their solitonic solution, scalar field dark matter theories, including the fuzzy
dark matter theory, initially showed promise in resolving the aforementioned cosmolog-
ical problems [8, 11, 49, 50]. However, recent observational constraints, such as galaxy
rotation curves and the Lyman-α forest [51–53], have placed significant limitations on the
mass of fuzzy dark matter, typically requiring masses higher than 10−21 eV. These con-
straints have challenged the ability of the model to address the cosmological problems it
aimed to solve, diminishing its appeal as a alternative candidate. Consequently, physicists
started to explore other means to differentiate between scalar field dark matter and cold
dark matter, focusing on smaller scales. This new generation of papers often refer this
model to as ultralight dark matter. It encompasses the same theoretical framework as
fuzzy dark matter but is typically considered at higher masses. Physicists investigating
ultralight dark matter have explored wave-like effects and sought to unveil exotic phe-
nomena, such as superradiance, tidal forces, and resonance with gravitational waves
[54–58]. This field is rapidly expanding and holds promise for further understanding
dark matter dynamics and its impacts. To this end, some physicists have introduced self-
interactions among scalar field dark matter particles. By considering these interactions
as repulsive, a model emerges that has the potential to explain cosmological problems
while being in agreement with current observational data.

While the study of such effects is a fascinating avenue of research, this thesis, based
on papers [1], [2], and [3], takes a different approach. The primary focus is to investigate
the effects of self-interacting scalar field dark matter on black holes and explore its utility
in probing dark matter while differentiating it from other models. The thesis endeavors
to provide precise calculations of mass accretion and dynamical friction on a moving
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black hole within a dark matter cloud. Through these calculations, the thesis aims to shed
light on the characteristics and behavior of dark matter around black holes and facilitate
its identification in various astrophysical scenarios.

Chapter 1 provides a concise overview of cosmology, dark matter, and gravitational
wave physics. It covers the historical development of the universe, introduces the ΛCDM
model, and explores the challenges of dark matter. Alternative models, including scalar
field dark matter theories, are discussed in detail. The chapter also highlights the signif-
icance of gravitational waves in astrophysics and outlines the research objectives of the
thesis.

Chapter 2 offers a comprehensive investigation of the scalar field dark matter model
with a quartic self-interaction. It introduces the fundamental concepts and equations
governing this model, considering both nonrelativistic and relativistic regimes. In the
nonrelativistic regime, solitons, which are static equilibrium configurations arising from
self-interactions, are explored. The behavior of solitons is determined by the hydro-
static equilibrium equation, leading to the identification of the self-interaction potential.
The chapter discusses the parameter space of the model, considering constraints on
the scalar parameters and specifying the conditions for the computations. Emphasis is
placed on the Thomas-Fermi regime, where self-interactions dominate over quantum
pressure. Lastly, we examine the radial accretion regime, as extensively discussed in [59].

Chapter 3 focuses on the behavior of a black hole interacting with a cloud of self-
interacting dark matter in the subsonic regime. We begin by a concise exploration of the
solution of a moving soliton. Following this, we proceed to integrate a black hole into
the established framework to deduce the equations of motion governing the system. We
analyze both the nonlinear flow at large radii and the regime of small radii, incorporating
corrections to the linear flow approximation. The derived expressions for the accretion
rate and drag force provide quantitative insights into the interaction of the black hole with
the dark matter cloud. By comparing our results with other dark matter models, such as
cold and fuzzy dark matter, we highlight the distinct characteristics of the self-interacting
scalar field dark matter model. Notably, our findings reveal a reduction in the accretion
rate and drag force compared to a perfect gas, attributable to the self-interaction effects.
The dynamical friction is founded negligible in this regime, contrary to colissionless parti-
cles [60–62] or fuzzy dark matter [63–65]. These results have implications for phenomena
like the emission frequency dephasing of gravitational waves and could contribute to
resolving the Fornax globular cluster timing problem.

In chapter 4, we explore the supersonic regime to understand the interaction between
a black hole and self-interacting dark matter. Building upon our analysis of the subsonic
regime, we discover a more intricate velocity flow characterized by a shock front. This
shock front separates the upstream and downstream regions, each with distinct bound-
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ary conditions. The upstream flow is solely determined by the initial condition, and the
downstream flow contains two undetermined integration constants that we determine
through matching with the upstream flow. However, connecting the naive perturbative
expansions of the upstream and downstream flows near the shock front is not feasible
due to their divergence, resulting in a boundary layer where nonlinear effects become
significant. For small supersonic velocities, we recover the same accretion rate as in
subsonic regime. However, in the highly supersonic regime, the accretion rate becomes
similar to the Hoyle-Lyttleton result for isentropic gas. Moreover, our analysis reveals a
new term similar to the Chandrasekhar’s result for dynamical friction [60], indicating the
effectiveness of our framework in capturing the dynamics of the system.

Finally, in chapter 5, we explore the effects of the accretion drag force and dynam-
ical friction on binary black holes and their influence on gravitational wave emission.
By considering finite-sized solitons around binary black holes, we explore their impact.
Perturbations in gravitational waveforms can arise from various environments, and dif-
ferentiating between them can provide valuable information about the environment
of binary systems. Scalar clouds affect binary orbits through deceleration from dark
matter accretion and further slowing due to dynamical friction in the supersonic regime.
These effects introduce deviations in binary orbits and perturb gravitational wave signals.
Through analyses of eccentricity, semi-major axis, and phase shift in gravitational wave
signals, we quantify the impacts of these forces. Using a Fisher analysis, we assess the
detectability of two key parameters, ρ0 and ρa, with future interferometers like LISA and
DECIGO [66, 67]. Promising prospects for detecting these parameters emerge, offering
exciting possibilities for research. Additionally, we investigate the detectable sizes of
solitons in this context.

Our investigation into mass accretion and dynamical friction within self-interacting
scalar field darkmatter solitons has uncovered several avenues for future research. These
include incorporating relativistic effects to gain a more comprehensive understanding of
dark matter systems, particularly exploring the effects of the drag force at higher fre-
quencies near black hole mergers. Additionally, considering Kerr black holes with spin
would enhance the realism of our analysis, aligning with observations of binary black
hole systems. Expanding our scope to include other astrophysical objects, such as stars
and neutron stars, is also crucial. These objects offer unique characteristics that can pro-
vide valuable insights into testing dark matter models. However, it becomes important
to account for the back reactions of dark matter, as mass accretion is typically not the
dominant factor in the subsonic regime. Furthermore, it is essential to consider scenarios
where black holes reside closer to soliton boundaries or when the soliton itself is relatively
small. Broadening our exploration to encompass a wider range of soliton sizes would im-
prove our ability to detect and characterize solitons, enabling the identification of distinct
signatures associated with scalar field dark matter models.
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Conventions and definitions

• In this thesis, we adopt natural units by setting c = ℏ = 1 throughout, unless
explicitly stated otherwise. Additionally, we define the reduced Planck mass as
Mpl = 1/

√
8πG, where G is the Newton gravitational constant.

• To facilitate summation over repeated indices, we employ Einstein’s notation.
Greek indices µ, ν, . . . range from 0 to 3, while Latin indices i, j, . . . range from 1 to
3.

• The generic metric tensor gµν , conventioned as (−,+,+,+), determines the deter-
minant of the metric as g = det(gµν).

• Vectors are represented using bold symbols, such as x,y, . . . , while non-bold Latin
indices denote vector components, e.g., xi, yj , . . . . We often employ a dot notation
to denote temporal total derivatives and the number of dots corresponds to the
order of the derivative, for instance ẋ denotes the first derivative with respect to
time, ẍ = d2x/dt2 denotes the second derivative, and so on.

• The Legendre polynomialsPn are defined by the property that ∫ 1
−1 dxPn(x)Pm(x) =

0 if n ̸= m. and Pm
ℓ (x) = (−1)m(1 − x2)m/2 dm

dxm (Pℓ(x)). On the other hand, the
Spherical harmonics are given by Y m

ℓ (θ, ϕ) =
√

2l+1
4π

(l−m)!
(l+m)!e

imϕPm
ℓ (cos(θ)). The Kro-

necker delta is δij = 0 for i ̸= j and δij = 1 if i = j.
• Various functions play a significant role in this thesis, including:

– The Jacobi elliptic cosinus function
cn(u, k) = cos (A(u, k)) ,

where A(u, k) is the reciprocal of the incomplete elliptic integral of the first
kind defined as F (a, k) = ∫ a

0 dx/
√
1− k2 sin2(x).

– The hypergeometric function
2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

with (a)n = 1 if n = 0 and (a)n = a(a+ 1)× · · · × (a+ n− 1) if n ≥ 1.
– The gamma function

Γ(z) =
1

z

∞∏
n=1

(1 + 1/n)z

1 + z/n
.
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1 - Introduction

The chapter covers important topics in cosmology, darkmatter and gravitational wave
physics. It starts by exploring the history and properties of the universe, leading up to the
introduction of theΛCDMmodel. The focus then shifts to the study of darkmatter, includ-
ing its challenges and alternative models to the standard cold dark matter paradigm and
weakly interacting massive particles. Among the alternative dark matter models, special
attention is given to scalar field dark matter theories. We provide a detailed exploration
of these models, discussing their motivations, unique characteristics, and implications.
We then talk about gravitational waves, their historical significance, and the impact they
have on astrophysics. Then, we discuss the aims of this thesis, highlighting the specific
research objectives. Finally, an overview of the thesis structure is provided, offering a
roadmap for the upcoming chapters.

1.1 . Cosmology

The study of cosmology delves into understanding the universe on its grandest scales.
It seeks to uncover the origin, evolution, and fundamental nature of our cosmos. Exam-
ining the interactions between matter, energy, and spacetime, to gain a comprehensive
understanding of the workings of the universe throughout its history. The origins of cos-
mology can be traced back to the earliest civilizations that observed and contemplated
celestial phenomena. These ancient astronomers laid the groundwork for the scientific
pursuit we recognize today. However, it was during the early 20th century that cosmology
witnessed significant advancements, driven by the groundbreaking theories and discov-
eries of scientists such as Albert Einstein and his formulation of the theory of general
relativity in 1915 [68]. His theory revolutionized our understanding of gravity and its impli-
cations for the structure and dynamics of the universe.

At the core of cosmology lie the fundamental constituents that govern the behavior
and characteristics of the universe. Baryonic matter, comprising mainly protons, neu-
trons, and electrons, forms the familiar matter that constitutes stars, galaxies, and the
structures we observe. However, the observable features and dynamics of the universe
cannot be adequately explained by baryonic matter alone. Dark matter emerges as a
prominent enigma within cosmological investigations. Although imperceptible and non-
responsive to electromagnetic radiation, its gravitational influence manifests through its
impact on the observedmotions of galaxies and galaxy clusters and the cosmicmicrowave
background (CMB). While its energy fraction is around a fourth of the total energy in the
universe [69, 70], which is about 5 times more than baryonic matter, the true nature of
dark matter remains elusive, presenting a formidable challenge in cosmology and stim-
ulating ongoing research and theoretical inquiry. Similarly perplexing is dark energy, an
enigmatic energy that permeates the fabric of spacetime. Its intrinsic property of space
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is responsible for the observed accelerated expansion of the universe [71]. This property
was first observed frommeasurements of distant supernovae. Finally, Radiation, encom-
passing photons and other relativistic particles like neutrinos, assumes a vital role in cos-
mology. The CMB radiation, a remnant of the infancy of the universe when it was merely
380, 000 years old, provides a unique glimpse into its initial conditions and subsequent
evolution [69, 72–74].

The unfolding of the history of the universe is a captivating chronicle. It commences
with the Big Bang, an explosive event that initiated the expansion of space and the birth
of time. In its earliest moments, the universe experienced a period of rapid expansion
known as inflation, accounting for its remarkable uniformity on large scales. As the uni-
verse cooled, particles gradually coalesced, leading to transformative processes such as
the Big Bang nucleosynthesis, the process in which light atomic nuclei such as hydro-
gen and heliumwere formed, and baryogenesis, that established an asymmetry between
matter and antimatter. This asymmetry laid the groundwork for the formation of cosmic
structures that populate our cosmos today [75]. Over billions of years, the gravitational
interplay between dark matter, ordinary matter, and the influence of dark energy facili-
tated the assembly of galaxies, clusters, and superclusters, sculpting the vast cosmic web
we observe. Figure 1.1 illustrates the various stages in the evolution of the universe.

Figure 1.1: Illustration of the theorized stage in the evolution of the universe (Credit: NASA/ LAMBDA Archive / WMAP Science team [76]).
The universe possesses important properties that help us understand its nature. One

important property is isotropy, whichmeans the universe looks the same in all directions.
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This implies a uniform distribution of matter and energy on large scales. In addition to
isotropy, the universe also exhibits homogeneity, meaning it has a uniform distribution
of matter and energy on large scales. This implies that, on average, the universe appears
the same from any given location. The combined properties of isotropy and homogeneity
provide a framework for studying the overall structure and behavior of the universe. Ob-
servational evidence, such as the CMB radiation and large-scale galaxy surveys, supports
these properties [69, 77, 78]. Tomathematically describe the isotropic and homogeneous
universe, we usually consider the Friedmann-Lemaître-Robertson-Walker metric [79–85].
This metric incorporates the scale factor a, which represents the expansion of the uni-
verse with time, the spatial curvature k, and cosmic time t. This metric can be expressed
as

ds2 = −dt2 + a(t)2
[

dr2

(1− kr2)
+ r2(dθ2 + sin2(θ)dϕ2)

]
, (1.1)

with a (−,+,+,+) convention for the metric signature. Here, ds2 represents the space-
time interval, r represents the comoving radial distance, and θ and ϕ represent the an-
gular coordinates. This mathematical framework allows us to investigate the evolution
and geometry of the universe. The scale factor a illustrates how the universe expands or
contracts over time, influencing the distances between cosmic objects: an increase in a(t)
corresponds to an expanding universe, while a decrease indicates contraction. The spatial
curvature term k characterizes the overall shape of the universe, distinguishing between
a closed, positively curved universe (positive k), an open, negatively curved universe (neg-
ative k), or a flat universe (zero curvature). Observations indicate that the universe is
remarkably close to being flat. The spatial curvature term,if not zero, is to be very small.
One evidence comes from studies of the cosmic microwave background radiation, as de-
tailed measurements of the temperature fluctuations reveal a remarkable uniformity on
large scales (with an energy fraction of −10−3 ≲ Ωk ≲ 10−3, given by Planck [69]).

1.2 . The ΛCDMmodel

The standard model of cosmology, known as the ΛCDM model, incorporates the ex-
istence of dark matter and dark energy into the framework of general relativity. In this
model, dark matter, with its gravitational influence, provides the necessary mass to ex-
plain the observed rotation curves of galaxies, the dynamics of galaxy clusters, and the
large-scale distribution of matter. Dark energy, often attributed to the cosmological con-
stant Λ, is postulated to explain the accelerated expansion of the universe.

The dark matter is postulated to be composed of non-baryonic particles that interact
weakly, if at all, with electromagnetic radiation. These particles are believed to be colli-
sionless, meaning they do not experience significant interactions with each other or with
ordinary matter, but massive. Such properties explain why dark matter forms extended,
diffuse halos around galaxies, providing the gravitational scaffolding for the observed
galactic structures. it is also supposed to be "cold" (CDM), implying that the particlesmove
at relatively low velocities compared to the speed of light. This characteristic is crucial to
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have a bottom-up formation of cosmic structures [86], meaning that the small structures
such as dark matter haloes form first and subsequently merge to build larger structures
like galaxies and galaxy clusters, as observations of the large-scale distribution of matter
as well as computer simulations based on the ΛCDMmodel provide compelling evidence
for this bottom-up scenario [87–89]. The initial density fluctuations in the early universe,
imprinted in CMB radiation, served as the seeds for the formation of dark matter halos.
These halos, composed primarily of cold dark matter particles, gradually grew through
gravitational attraction and the accretion of surrounding matter. As dark matter halos
grew, their gravitational pull attracted ordinary matter, enabling the formation of galax-
ies and clusters within them. The cold dark matter dominated halos provided a gravita-
tional scaffold that helped to gather baryonic matter, allowing gas to condense and form
stars. The hierarchical assembly of structures, driven by the gravitational interactions of
dark matter, is consistent with the observed large-scale distribution of galaxies and the
clustering patterns revealed by galaxy surveys.

The dynamics of the universe, including its expansion and evolution, are governed by
fundamental equations derived from general relativity. The Einstein field equations [68],
written as

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.2)

describe the curvature of spacetime in the presence of matter and energy. Here, Rµνrepresents the Ricci curvature tensor,R is the scalar curvature, gµν is the metric tensor, Λ
is the cosmological constant, G is the gravitational constant, and Tµν denotes the stress-energy tensor that characterizes the distribution of matter and energy in the universe. In
addition, the Friedmann equations [79, 80] provide fundamental insights into the expan-
sion of the universe and its energy content. The first Friedmann equation, given by
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ȧ

a

)2

=
8πG
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ρ− k

a2
+

Λ

3
, (1.3)

relates the rate of change of the scale factor ȧ/a, which represents the expansion rate
of the universe and is defined as the Hubble parameter H(t)2, to the energy density ρ of
matter and energy, and the cosmological constant Λ. The scale factor is related to the ob-
served redshift (z) of distant objects through the equation 1 + z = a(tobserved/a(temitted),where tobserved and temitted are the times of observation and emission, respectively. The
redshift parameter z quantifies the stretching of light wavelengths due to cosmic expan-
sion. By measuring redshifts, we can infer the expansion rate of the universe at different
cosmic epochs, providing insights into its age, dynamics, and evolution. The second Fried-
mann equation, expressed as

Ḣ(t) +H(t)2 =
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.4)

relates the acceleration ä/a of the expansion to the combined effects of matter and en-
ergy pressure p on the cosmic scale factor, as well as the cosmological constant Λ. These

16



fundamental equations, derived from general relativity, form the cornerstone of cosmo-
logical investigations, providing a mathematical framework to study the dynamics of the
universe and its constituents.

1.3 . Cold dark matter and alternatives

Dark matter remains one of the most intriguing puzzles in cosmology and particle
physics. The first evidence of its existence appeared in the 1930s by Fritz Zwicky [90, 91],
who observed that the visible matter in galaxy clusters was insufficient to account for the
observed gravitational effects. Since then, numerous lines of evidence have bolstered
the case for the existence of dark matter. Observational evidence for dark matter spans
a wide range of cosmic scales. Rotation curves of spiral galaxies, such as the famous
measurements of Andromeda nebula by Vera Rubin [92], reveal that the velocity of stars
and gas remains constant at large distances from the galactic center, defying expecta-
tions based on visible matter alone. This discrepancy suggests the presence of additional
unseen matter, which we now attribute to dark matter. In galaxy clusters, gravitational
lensing studies, such as the observations of the Bullet Cluster [93–96], provide further evi-
dence. The gravitational lensing effect occurs when the path of light from distant sources
is bent by the gravitational field of intervening matter. By mapping the distribution of
visible matter through its gravitational lensing effect, it was found that the majority of
the mass in the cluster was concentrated away from the visible galaxies, indicating the
presence of a significant amount of dark matter. The concordance or ΛCDM model in-
corporates the existence of cold dark matter. In this model, dark matter is postulated to
bemade up of non-baryonic particles that interact weakly with electromagnetic radiation.
These particles are collectively referred to asWeakly InteractingMassive Particles (WIMPs)
and are a leading candidate in the search for dark matter.

From a particle physics perspective, the WIMP paradigm provides a compelling expla-
nation for the observed abundance of darkmatter. WIMPs are hypothesized to have been
produced in the early universe through processes such as thermal freeze-in or freeze-out
[97–102]. Under certain theoretical assumptions, the relic density of WIMPs matches the
observed abundance of dark matter inferred from cosmological measurements, lending
support to the idea that WIMPs could be the primary constituents of dark matter. How-
ever, despite extensive experimental efforts, the direct detection of dark matter particles,
particularly WIMPs, has remained unsuccessful to date [4–7]. Experiments such as the
Large Underground Xenon (LUX) [103–105] and XENON1T [106–109] have placed stringent
constraints on the interaction of WIMPs with ordinary matter, yet no conclusive detection
has been made. This absence of direct evidence poses challenges to the WIMP paradigm
and has led to a broader exploration of alternative dark matter candidates. New experi-
ments, such as the upcoming Large Hadron Collider (LHC) upgrades and the next genera-
tion of direct detection experiments [5, 6, 110–114], aim to explore new regions of param-
eter space and shed light on the nature of dark matter.

From a cosmological perspective, there are several challenges that arise when com-
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paring the predictions of CDM simulations with observational data. These challenges, of-
ten referred to as cosmological problems [8–12], shed light on the complexities of galaxy
formation and the properties of dark matter halos. One notable cosmological problem
is the "missing satellites problem" [115–118]. According to cold dark matter simulations,
there should be aplethora of small darkmatter halos hosting dwarf galaxies around larger
galaxies like the Milky Way. However, the observed number of dwarf galaxies is signifi-
cantly lower than predicted. The "too big to fail problem" is another challenge related to
the previous one [119–122]. In this case, the observed number of luminous satellites as-
sociated with galaxies is considerably lower than expected. This suggests that the most
massive subhalos predicted by simulations may not host visible galaxies. The "core-cusp
problem" pertains to the density profiles of dark matter halos [49, 50, 123–125]. Cold dark
matter simulations predict a central density profile with a steep cusp, while observations
of dwarf galaxies suggest a more constant, cored profile. Finally, the distribution of angu-
lar momentum in galaxies presents an additional challenge. Simulations tend to predict
galaxieswith excessive angularmomentum, resulting in extended and flattened disks that
do not align with observed galactic morphology.

In relation to the topic of Active Galactic Nuclei (AGN), it is worth noting that AGN are
powered by the accretion ofmatter onto supermassive black holes at the centers of galax-
ies. AGN can have a significant influence on the surrounding baryonic matter and can act
as a form of feedback. The energy released by AGN can affect the surrounding gas and
regulate the growth of galaxies, influencing their formation and structure. Exploring the
connection between AGN activity, baryons, and baryonic feedback is an active area of re-
search in understanding the complex processes shaping galaxies and their environments.

One possible explanation for this discrepancies is the inclusion of baryonic physics
in simulations [13–20]. Processes such as gas cooling and feedback mechanisms such as
supernovae or interactions with the intergalactic medium, which are not fully captured
in pure dark matter simulations, can suppress the formation of low-mass galaxies, re-
distribute the dark matter and lead to a flatter central density profile or even transfer
angular momentum. Active Galactic Nuclei (AGN), which are powered by the accretion of
matter onto supermassive black holes at the centers of galaxies, can have a significant
influence on the surrounding baryonic matter and can act as a form of feedback. Indeed,
the energy released by AGN can affect the surrounding gas and regulate the growth of
galaxies, influencing their formation and structure. However, further investigation into
the role of baryons and baryonic feedback are required to confirm this explanation. As of
today, simulations including such effects are not all in agreements and do not explain all
of these discrepancies.

Another avenue of exploration involves alternative dark matter models:
• Axions [127–132], initially proposed to resolve the strong CP problem in particle
physics, have emerged as compelling darkmatter candidates. Their ultralightmass,
weak interactions with ordinary matter, and potential abundance matching the ob-
served dark matter density.
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Figure 1.2: Visualization of possible solutions to the dark matter problem (from [126]).

• Ultralight dark matter, also called wave or scalar field dark matter [63, 133–136],
is a closely related candidate, which includes axion-like particles and scalar fields
with extremely low masses. Often called fuzzy dark matter when the mass is low
(< 10−21 eV). The motivation for studying ultralight dark matter arises from its po-
tential to address the core-cusp problem, the missing satellite problem and the
too-big-to fail problem [8, 11, 49, 50]. These candidates, with their wave-like be-
havior, could influence the formation and dynamics of cosmic structures on small
scales, resulting in cored density profiles and suppressing the abundance of small
substructures.

• Sterile neutrinos [137–142], hypothetical particles that do not participate in the weak
nuclear force, have gained attention as potential warmdarkmatter candidates. The
motivation for studying sterile neutrinos arises from their ability to address small-
scale structure problems associated with cold dark matter. If sterile neutrinos pos-
sess the right properties, they could explain the observed properties of dark mat-
ter while leaving distinct signatures in astrophysical observations and laboratory
experiments.

• Primordial black holes [143–147], hypothetical black holes that could have formed
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in the early universe, also offer an alternative explanation for darkmatter. Depend-
ing on their mass spectrum, primordial black holes could account for the observed
gravitational effects of dark matter without invoking new particle physics. Their
study is motivated by their potential role in explaining various cosmological phe-
nomena, such as the origin of supermassive black holes, the formation of galac-
tic structures, and the gravitational waves detected by LIGO/Virgo. Observational
searches for them, including microlensing events and other astrophysical signa-
tures, provide valuable avenues for testing their existence and properties. How-
ever, the range of masses in which primordial black holes can potentially explain
the entirety of dark matter is limited. In most scenarios studied today, primordial
black holes can only contribute a fraction of the total dark matter content.

In addition to alternative particle candidates, modified gravity theories have emerged
as serious contenders to explain the observed effects attributed to dark matter. These
theories propose modifications to the laws of gravity on cosmological scales as an alter-
native to the presence of non-baryonic dark matter particles. One prominent modified
gravity theory is Modified Newtonian Dynamics (MOND) [148–151], which suggests a mod-
ification to the law of gravity at low accelerations. Another modified gravity framework is
represented by modified gravity theories like f(R) gravity [152–154], where modifications
are introduced to the gravitational action by modifying the curvature scalar R in the field
equations. These theories propose changes to the gravitational dynamics on cosmolog-
ical scales and aim to reproduce the observed accelerated expansion. Modified gravity
theories as dark matter candidates offer appealing features, including the potential to
explain phenomena at galactic and cosmological scales while circumventing the need for
unknown dark matter particles. However, it is worth noting that modified gravity theo-
ries face their own set of challenges. These include the need to explain a wide range of
observations, including large-scale structure formation, CMB anisotropies, and gravita-
tional lensing, while remaining consistent with other well-established cosmological mea-
surements in the Solar System. Figure 1.2 provides a summary of numerous alternative
scenarios regarding dark matter models.

1.4 . Scalar field dark matter

Scalar field dark matter represents a diverse class of theoretical models that propose
the existence of a scalar field as the primary constituent of dark matter. These models
introduce a scalar field, a fundamental quantity that varies smoothly in space and time,
to explain the observed gravitational effects attributed to dark matter. The mass range
for scalar field dark matter typically spans from about 10−23 eV to 10 eV, covering an im-
pressive range of scales [63, 133, 135, 155, 156]. The lower limit is motivated by quantum
mechanics and the uncertainty principle. Quantummechanics dictates that particles with
smaller masses have larger de Broglie wavelengths. Therefore, for scalar field dark mat-
ter, a lower mass limit on the order of 10−23 eV is set to ensure that the de Broglie wave-
length remains sufficiently small to allow the formation of structures on galactic scales.

20



Figure 1.3: Comparison of cosmological large-scale structures formed by standard colddark matter (CDM) and by wavelike dark matter (ψDM) (from [22]).

If the mass were any smaller, the wave-like behavior of the scalar field would become
significant on larger scales, washing out the observed structures. On the other hand, the
upper limit is determined by several factors. Firstly, it is related to the requirement that
the Compton wavelength of the scalar field should be smaller than the size of the uni-
verse. If the mass of the scalar field were too large, its de Broglie wavelength would be
too small to produce structures on the scales we observe today. Furthermore, there is
another crucial factor that determines these upper limit - the maximum number occu-
pancy of the bosonic particles. Bosonic particles, like those proposed in scalar field dark
matter models, obey Bose-Einstein statistics, which allow multiple particles to occupy the
same quantum state. However, the quantum statistical limit, arising from the principles
of quantum mechanics and the Pauli exclusion principle, imposes a constraint on the
maximum number of particles that can occupy a single state. This limit depends on the
mass of the bosonic particles. The energy density of dark matter in these scenarios is
determined by the misalignment mechanism [157–160]. This mechanism involves the ini-
tial freezing of the field, followed by rapid oscillations once its mass surpasses the Hubble
rate. When considering scalar-field potentials primarily influenced by theirmass term, the
energy density declines with the cosmic scale factor, denoted as a(t), following a power
law of a(t)−3. This behavior is analogous to that of cold dark matter. Consequently, the
primary predictions of the standard cold dark matter paradigm on cosmological scales
are restored [133, 161–167], as shown in Figure 1.3.

Scalar field dark matter theories are motivated by various cosmological and particle
physics considerations. Froma cosmological perspective, thesemodels offer potential so-

21



lutions to long-standing challenges within the standard cold dark matter framework. For
instance, the ultralight nature of fuzzy dark matter can address the core-cusp problem,
where observed galactic density profiles differ from the predictions of CDM simulations
[63, 133–136]. From a particle physics viewpoint, scalar field dark matter models have
connections to fundamental theories beyond the Standard Model. For example, ultra-
light dark matter candidates often arise in the context of string theory or extensions of
the Standard Model [168–172], such as axion-like particles.

These models offer the possibility of the formation of solitonic structures, also called
soliton or boson stars, at the center of dark matter haloes [21–48]. They are localized,
stationary, and stable equilibrium configurations. This solitonic objects sustained by the
gravitational self-attraction of the scalar field and its internal pressure, this last one being
most of the time dominated by quantum pressure. The quantum pressure can be under-
stood as a consequence of the wave-like nature of the scalar field particles. The de Broglie
wavelength associated with the particles determines the extent to which they can be lo-
calized, in agreement with Heisenberg’s uncertainty principle. As the scalar field particles
becomemore localized, their momentum becomes less well-defined, resulting in a larger
uncertainty in their velocity. This uncertainty in velocity gives rise to a pressure that op-
poses gravitational collapse. This objects can be considered as the scalar field analogs of
compact astrophysical objects, such as neutron stars. They can have sizes ranging from
stellar scales (< 1 pc) to galactic scales (usually < 10 kpc) [23, 63, 173, 174]. The size of
a soliton is closely related to the Jeans scale, which represents the length scale at which
gravitational and pressure forces balance each other, and thus determines the minimum
size required for collapse to occur. When the size of a soliton is smaller than the Jeans
scale, quantum pressure dominates, resulting in stable structures. If the size exceeds the
Jeans scale, gravitational collapse prevails. Figure 1.4 showcases simulations depicting the
profile of wave-like dark matter at galactic scales, with solitonic profile at the core. The
formation mechanisms of solitonic structures in scalar field dark matter are the subject
of ongoing research. The precise conditions and mechanisms that give rise to solitons
are complex and depend on the detailed interplay between self-interactions, gravity, and
other factors, such as the initial conditions of the scalar field.

One prominent example of scalar field dark matter is the concept of fuzzy dark mat-
ter [133]. Fuzzy dark matter suggests that dark matter particles are ultralight bosons with
masses on the order of 10−23 eV to 10−21 eV [64, 175, 176]. These particles possess de
Broglie wavelengths on galactic scales, leading to a quantumwave-like behavior that sup-
presses small-scale structure formation and potentially resolves the core-cusp problem.
A subcategory of fuzzy dark matter is Bose-Einstein condensate dark matter [177–180],
which proposes that dark matter particles form a Bose-Einstein condensate at low tem-
peratures and densities. In this scenario, the scalar field associated with dark matter un-
dergoes a phase transition, leading to a macroscopic occupation of the lowest energy
state. This condensate behavior offers unique features, such as wave interference effects
and coherence on large scales, which could impact the formation of cosmic structures.
Superfluid dark matter [156, 181, 182] is another concept within scalar field dark matter
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Figure 1.4: Radial density profiles of haloes formed in the ψDM model, with various haloprofiles normalizations compared to Navarro-Frenk-White (NFW) profile of cold darkmat-ter (from [22]).

theories. It draws inspiration from the physics of superfluids, where a scalar field devel-
ops long-range coherence and exhibits quantum mechanical properties. Superfluid dark
matter models suggest that dark matter particles can form a superfluid state, character-
ized by zero viscosity and irrotational flow.

Unlike othermodels where the scalar field interacts weakly or non-gravitationally with
other matter, self-interacting scalar field dark matter involves interactions among the
scalar field particles themselves. The most knownmodels with self-interactions are axion
and axion-like particles [127–132], and repulsive scalar field dark matter particles [21, 183–
190]. Axions were originally proposed to solve the strong CP problem in particle physics,
but they have also emerged as potential dark matter candidates. Axions are character-
ized by their lowmass and their coupling to electromagnetism and hadronic interactions.
The mass of axions typically falls within the range of 10−6 eV to 10−3 eV, making them
significantly heavier than other scalar field dark matter candidates. Additionally, axions
exhibit attractive self-interactions. Axion-like particles, on the other hand, encompass a
broader class of scalar fields that exhibit similar properties to axions but may differ in
their mass, coupling strengths, and other characteristics. Some axion-like particles, such
as those in string theory compactifications, can have masses at the TeV scale or even
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higher. Axions and axion-like particles stand out from other scalar field dark matter mod-
els due to their unique coupling to electromagnetism and hadronic interactions. These
couplings allow them to interact with photons and nucleons, which can lead to distinct
observational signatures. Like axions, repulsive scalar field dark matter involves interac-
tions among the scalar field particles themselves. These repulsive interactions can arise
through self-interaction potentials, allowing for collective behavior and interactions on
different scales, introducing an additional pressure effects among the dark matter par-
ticles. The mass of repulsive scalar field dark matter typically encompass the totality of
the scalar field dark matter mass range. In this thesis, we will refer to this repulsive dark
matter as self-interacting scalar field dark matter.

Scalar field dark matter models undergo meticulous examination through a diverse
array of observational and experimental data. These constraints offer valuable insights
into the properties and nature of scalar field darkmatter. Experiments designed for direct
detection seek to measure the interactions between dark matter particles and ordinary
matter. In the context of scalar field dark matter, weak or feeble interactions are typ-
ically predicted for axions and axion-like particles. Consequently, experiments such as
XENON1T [106–108], LUX [103–105], and PandaX [191–193] have established stringent lim-
its on the dark matter-nucleon scattering cross section, ruling out significant portions of
the parameter space for specific masses and interaction strengths. The Lyman-α forest
[51–53], observed in the spectra of distant quasars, provides valuable insights into the
distribution of matter on cosmological scales. Detailed analyses, involving comparisons
between theoretical predictions and observational data from surveys like the Sloan Digi-
tal Sky Survey (SDSS) [52], have placed constraints on themass of scalar field dark matter.
Solitonic structures, have implications for the rotation curves of galaxies. The observed
flatness of galactic velocity curves [38, 194] contradicts the expectations solely based on
the distribution of luminous matter. Scalar field dark matter, including self-interacting
scenarios, can modify these curves. By comparing theoretical predictions with rotation
curve data, constraints on the parameters of scalar field darkmattermodels can be estab-
lished. Some constraints can also be obtained using large-scale observables, such as CMB
and the baryonic acoustic oscillations [195] The recent detection of gravitational waves
resulting from the merger of black holes and neutron stars presents another avenue for
constraining scalar field dark matter [196–200]. Dark matter can influence the formation
and evolution of black holes, potentially affecting the gravitational wave signals. Compar-
ing the gravitational wave observations from experiments with predictions derived from
scalar field dark matter models allows for the imposition of constraints on the relevant
parameters within the theory. Large-scale properties of the universe, including CMB radi-
ation and the distribution of large-scale structures like galaxies, offer significant insights
into scalar field dark matter. Surveys such as the Dark Energy Survey (DES) [201, 202] pro-
vide additional data for investigating the composition and distribution of dark matter.

The specific constraints on scalar field dark matter parameters, such as mass, self-
interactions, and other characteristics, depend on the combination of observational and
experimental techniques employed. Each constraint and observation targets different
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aspects of the models, contributing to a comprehensive understanding of their viability.

1.5 . Gravitational waves

The history of gravitational waves dates back to Einstein’s theory of general relativ-
ity. However, it took several decades for the theoretical understanding of gravitational
waves to mature and experimental detection to become feasible. In the 1960s, physicists
likeWeber [203–206] embarked on experimental endeavors to detect gravitational waves.
Weber conducted pioneering experiments using resonant bar detectors [207], although
his results faced skepticism and remained unconfirmed. A major breakthrough occurred
in 2015 when the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo
collaborations achieved the first direct detection of gravitational waves [208]. Figure 1.6
displays the frequency and strain variations over the time of detection of this historical
event. This monumental discovery confirmed a key prediction of Einstein’s theory and
opened a new window for observing the universe.

Figure 1.5: This illustration shows the merger of two black holes and the gravitationalwaves that ripple outward as the black holes spiral toward each other (Credit: R. Hurt(Caltech-IPAC) [209]).
Gravitational waves are ripples in the fabric of spacetime caused by the acceleration

of massive objects. According to general relativity, these waves propagate at the speed
of light, carrying energy away from their source. Mathematically, gravitational waves are
described by the linearized Einstein field equations, involving perturbations of the met-
ric tensor. The resulting wave equation highlights the wave-like nature of gravitational
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Figure 1.6: The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, leftcolumn panels) and Livingston (L1, right column panels) detectors (From [208]).

disturbances, characterized by amplitude, frequency, polarization, and propagation di-
rection. Gravitational wave sources can be classified into astrophysical and cosmological
categories (see [210, 211] for reviews). Astrophysical sources include binary systems like
merging black holes, neutron stars, or white dwarfs. This case is illustrated in Figure 1.5.
Cosmological sources originate from the early universe during cosmic inflation, for in-
stance.

The current generation of gravitational wave detectors primarily consists of ground-
based interferometers, prominently represented by the LIGO [212, 213] and Virgo [214,
215] collaborations. These interferometers employ laser interferometry to measure mi-
nuscule changes in spacetime induced by passing gravitational waves. LIGO features two
widely separated detectors located in Livingston, Louisiana, and Hanford, Washington.
Each LIGO detector comprises an L-shaped vacuum chamber with 4-kilometer-long arms.
A laser beam is split and sent down each arm, reflecting off mirrors and recombining
to form an interference pattern. When a gravitational wave passes through the detec-
tors, it causes minute differences in arm lengths, altering the interference pattern and
enabling gravitational wave detection. Virgo, situated near Pisa, Italy, follows a similar
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design as LIGO, with 3-kilometer-long arms. It operates in coordination with LIGO, en-
hancing the global network’s sensitivity to gravitational wave signals. Future prospects
in gravitational wave astronomy involve the development of next-generation detectors.
Prominent among these are the Laser Interferometer Space Antenna (LISA) [66] and the
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) [216, 217]. LISA, a col-
laboration between the European Space Agency (ESA) and the National Aeoronautics and
Space Administration (NASA), aims to detect lower-frequency gravitational waves. It com-
prises three spacecraft forming an equilateral triangle in space, separated by millions of
kilometers. LISA will be sensitive to gravitational waves emitted by massive black hole
mergers and other astrophysical sources. DECIGO, designed to operate between LISA
and ground-based detectors, targets the sub-hertz to kilohertz frequency range. It is ex-
pected to detect gravitational waves from sources like inflationary processes in the early
universe, providing insights into fundamental cosmic physics.

The current limitations on gravitational wave detection frequencies range from ap-
proximately 10 Hz to a few kHz for ground-based detectors like LIGO and Virgo. Within
this frequency range, the most significant gravitational wave sources that have been ob-
served are binary systems consisting of compact objects such as black holes and neutron
stars [208, 218–221]. For binary black hole mergers, the observed frequencies were typi-
cally in the tens to hundreds of hertz range. Binary neutron star mergers, on the other
hand, produced gravitational waves with characteristic frequencies in the range of several
tens of hertz. While LIGO and Virgo have made groundbreaking discoveries within their
frequency band, there is tremendous interest in exploring lower-frequency gravitational
waves. This is because lower-frequency gravitational waves can arise from astrophysical
phenomena that are not easily detectable within the current range. One crucial target
for lower-frequency observations is the inspiral and merger of supermassive black holes
in the centers of galaxies. These massive black holes, millions to billions of times more
massive than the sun, generate gravitational waves at lower frequencies, typically in the
millihertz band. Going to lower frequencies also allows for the study of other astrophysical
sources, such as extreme mass-ratio inspirals (EMRIs). EMRIs occur when a stellar-mass
compact object, such as a black hole or a neutron star, spirals into a much more massive
black hole. These systems produce gravitational waves at frequencies in the sub-hertz
range. Observing these waves will enable us to probe the strong gravity regime near the
massive black hole and test the predictions of general relativity. The detection and charac-
terization of these waves require space-based observatories, such as the upcoming LISA
or DECIGO [197, 222, 223].

As it is a subject of current interest, the European Pulsar Timing Array (EPTA), Parkes
Pulsar Timing Array (PPTA), the Chinese Pulsar Timing Array (CPTA) and North American
Nanohertz Observatory for Gravitational Waves (NANOGrav) collaborations have made
significant contributions in the search for stochastic gravitational wave background and
provided the first evidence of its existence [224–227]. Stochastic gravitational waves refer
to a random background of gravitational waves that originate from various astrophysical
and cosmological sources. They cover awide range of frequencies, with the low-frequency
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regime (around 10−9 to 10−6 Hz) being particularly intriguing. In this range, stochastic
gravitational waves can arise from events such as inspiralling supermassive black holes
or cosmic strings formed during the early stages of the universe. To detect these stochas-
tic gravitational waves, we employ pulsar timing arrays, including EPTA, PPTA, CPTA and
NANOGrav, that utilize precise timing measurements of signals from an array of pulsars
distributed across the sky. By monitoring the arrival times of these pulsar signals, we
can search for correlated deviations that could be caused by the passage of gravitational
waves. Physicists have begun the process of constraining various sources in their search
for the initial evidence of a stochastic gravitational wave background [228–233].

Figure 1.7 illustrates the complete frequency range investigated for gravitational
waves, showcasing the associated events and different detectors along with their respec-
tive frequency range of detection.

Figure 1.7: A plot of the square root of power spectral density against frequency for avariety of detectors and sources (From [234]).
Testing modified gravity using gravitational waves provides a unique opportunity to

investigate the fundamental properties of gravity, as they offer a window into extreme
gravitational environments that were previously inaccessible for empirical study. To test
modified gravity with gravitational waves, the precisemeasurements obtained from grav-
itational wave detectors play a crucial role. By carefully analyzing the gravitational wave
data, we can search for potential deviations from the predictions of general relativity [235–
238]. Such deviations could manifest as alterations in the waveforms or discrepancies in
the overall magnitude of the gravitational wave signals. The detection of such deviations
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would suggest the presence ofmodified gravity effects. Furthermore, the statistical analy-
sis of gravitational wave observations from diverse astrophysical sources allows for com-
parisons between theoretical predictions and empirical data [239, 240]. This approach
enables physicists to place constraints on the parameters of modified gravity theories,
either ruling out certain ranges or favoring specific modifications. Additionally, the polar-
ization patterns and dispersion properties of gravitational waves offer valuable insights
for probing modified gravity theories[241–246]. These theories often predict changes in
the polarization content or the propagation speed of gravitational waves. Precise mea-
surements of these properties can, therefore, serve as tests to verify the consistency of
modified gravity theories with observational data.

The detection of gravitational waves also provides a unique opportunity to not only
study astrophysical phenomena but also to search for potential imprints of dark mat-
ter [247]. While dark matter does not directly interact with light or ordinary matter, it
could leave subtle signatures in the gravitational wave signals originating from various
astrophysical sources. One possibility is the existence of dark matter halos and subha-
los. These are small-scale structures made up of dark matter particles, which could form
around galaxies orwithin galaxy clusters. As gravitational waves pass through these struc-
tures, theymay experience slight distortions or delays, lensing them, leading to detectable
modifications in the gravitational wave signal [248–255]. Such effects would depend on
the abundance,mass distribution, and interactions of darkmatter substructures. Another
potential imprint arises from interactions between dark matter and compact astrophysi-
cal objects, such as black holes or neutron stars. If darkmatter possesses self-interactions
or couplings with standard model particles, it could affect the dynamics and gravitational
wave emission of these objects [256–258]. Primordial black holes are another avenue
where dark matter imprints in gravitational waves is explored [146, 259–261]. They are
hypothetical black holes that may have formed in the early universe. If primordial black
holes exist and comprise a fraction of dark matter, their mergers with other astrophysi-
cal objects would generate gravitational waves with specific characteristics and statistical
appearance.

Finally, scalar field darkmatter can introduce various processes thatmay influence the
gravitational wave emission from astrophysical sources. These processes include orbital
decay resulting from mass accretion or dynamical friction [222, 262–265], superradiance
[54–56], and tidal forces [57, 58] are some examples. When scalar field dark matter ac-
cretes onto compact astrophysical objects, such as black holes or neutron stars, it can
lead to orbital decay. The gravitational interaction between the dark matter particles and
the object causes a gradual reduction in the orbital separation of the objects. This ef-
fect alters the inspiral dynamics and modifies the emitted gravitational wave signal. The
specific properties of the scalar field dark matter, including its density distribution and
self-interactions, play crucial roles in determining the magnitude and timescale of the
orbital decay. Superradiance, a quantummechanical phenomenon, can occur when a ro-
tating black hole interacts with a scalar field. Under certain conditions, the scalar field can
extract energy and angular momentum from the black hole, resulting in an amplification
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of the intensity of the gravitational wave signal. Understanding these processes requires
detailed theoretical modeling and simulations to fully comprehend their implications on
gravitational wave emission.

While these imprints of dark matter in gravitational waves hold great interest, de-
tecting and disentangling them from astrophysical noise pose significant challenges. To
search for dark matter imprints, future gravitational wave observatories like LISA and DE-
CIGO, with their extended frequency ranges and enhanced sensitivities, will play crucial
roles. These observatories will enable investigations into the interactions between dark
matter and astrophysical systems, the presence of dark matter substructures, and the
characteristics of dark matter particles themselves.

1.6 . Aims

1.6.1 . Mass accretion and dynamical friction
Mass accretion and dynamical friction play crucial roles in the dynamics and interac-

tions of astrophysical objects within a dense collection of compact bodies, such as dark
matter environment or fluid media. The concept of mass accretion refers to the process
by which a compact object gains mass through the accumulation of surrounding mate-
rial. In the context of astrophysics, mass accretion often occurs when an object, such as
a black hole, moves through a medium containing a cloud of lighter bodies. As the ob-
ject traverses the environment, it interacts with and captures nearby matter, leading to
an increase in its mass. Dynamical friction, initially studied by Chandrasekhar in 1943 for
the collisionless case [60] and later extended to gaseous media [266–269], describes the
deceleration of the motion of an object due to its interaction with surrounding particles.
When an astrophysical object moves through dark matter or a fluid it experiences a grav-
itational drag force known as dynamical friction. This force arises from the gravitational
interactions between the object and the individual particles in the environment. As a re-
sult, the kinetic energy of the object decreases, leading to a reduction in its velocity and
orbital separation.

The specific scenario of a black hole moving inside a dark matter soliton or fluid
medium presents interesting characteristics. While the collisionless and fuzzy dark mat-
ter [63, 64, 176, 270–276] cases have been extensively studied in nonrelativistic and
relativistic regimes, the case of a scalar field dark matter model with self-interactions
introduces distinct features. In this model, equilibrium configurations of solitons result
from a balance between gravity and scalar pressure associated with self-interactions.
This differs from fuzzy dark matter models, where equilibrium is achieved through the
balance between gravity and the quantum pressure determined by the de Broglie wave-
length. Moreover, the nature of drag force experienced by a black hole in this scalar field
dark matter model differs significantly from the case of cold dark matter. The behavior
of the scalar field in the nonlinear and relativistic regime close to the black hole horizon
alters the dynamics and the effects of drag force. These modifications arise from the in-
terplay between the gravitational attraction of the black hole and the specific properties
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of the scalar field, including its self-interactions.
One of the aims of this thesis is to calculate the mass accretion and dynamical fric-

tion experienced by a Schwarzschild black hole moving inside a self-interacting scalar
field dark matter soliton, particularly with relevance to current research on gravitational
waves. Specifically, we consider both subsonic and supersonic regimes. Previous studies
have extensively investigated the calculation of dynamical friction in fuzzy dark matter
systems. In the low-velocity regime, the mass accretion is found to be greater than that
for collisionless particles [60] or a perfect gas [269, 277]. Furthermore, we demonstrate
in this thesis that for self-interacting scalar field dark matter, the dynamical friction null
and that the drag force is composed solely of the accretion drag force, contrary to the
collisionless and fuzzy dark matter cases. The effect of drag force leads to a dephasing
in the emission frequency of gravitational waves, which has implications for the study of
binary black holes. Future gravitational wave detectors such as LISA and DECIGO have
the potential to detect the differences in dephasing between fuzzy dark matter and this
scenario. This distinction could serve as a distinguishing feature that may be experimen-
tally detectable. In another context, the timing problem observed in the orbital decay
of clusters of stars, as seen in the Fornax Dwarf Spheroidal galaxy, could be addressed
by this models. The discrepancy between the faster orbital decay predicted by cold dark
matter numerical simulations and the slower decay observed in these clusters, known as
the Fornax globular clusters timing problem, can potentially be resolved by the lower dy-
namical friction expected in scalar field dark matter compared to cold dark matter. This
work was done for BEC dark matter in [176]. For fuzzy dark matter, this tension dimin-
ishes for low dark matter masses (m < 10−21 eV), although this range of scalar masses
may introduce potential tensions with other observables. The lower dynamical friction
anticipated in self-interacting models offers a potential avenue for alleviating the tension
observed in the Fornax globular clusters timing problem.

1.6.2 . Gravitational wave predictions

The study of mass accretion and dynamical friction in the context of gravitational
waves provides valuable insights into probing the environments surrounding binary black
holes, especially the properties of their surrounding dark matter [222, 262–265, 278]. One
of the key ways to probe the environments of binary black holes is through the analysis of
gravitational wave signals. Drag force leaves imprints on the emitted gravitational waves.
The gravitational pull exerted on the compact object by the fluid overdensity formed in
its wake introduces modifications to the waveforms by adding a phase shift. The accre-
tion of matter onto the compact object affects the gravitational wave emission in a similar
fashion. However, to fully exploit these effects as probes of dark matter environments, it
is crucial to improve the sensitivity of gravitational wave detectors. Advanced detectors,
such as Advanced LIGO [279] or the Einstein Telescope (ET) [280], and future missions
like LISA [66] and DECIGO [67], offer promising avenues for enhancing our capabilities
to detect and analyze these effects. Moreover, studying the effects of dynamical friction
and mass accretion can help distinguish between different dark matter models. By care-
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fully analyzing the gravitational wave signatures, we can discern unique features that arise
from specific darkmatter scenarios. Comparing the observed waveforms with theoretical
models and simulations, we can gain insights into the nature of the darkmatter surround-
ing binary black holes.

We show in this thesis that in the context of binary systems, these effects result in a
higher rate of orbital decay compared to binary systems evolving solely due to the emis-
sion of gravitational waves. Using standard post-Newtonian (PN) terminology, we find
that accretion introduces contributions to the gravitational wave phase at the−4PN level,
while dynamical friction becomes a −5.5PN order effect. These additional effects have
important implications for the observed gravitational wave signals and the interpretation
of the dynamics of binary systems embedded within dark matter environments.

1.7 . Thesis outline

The thesis is organized as follows. In chapter 2.1, we provide an in-depth exploration of
the general properties of the self-interacting scalar field dark matter model. We discuss
the fundamental characteristics and theoretical framework of this model. This chapter
draws upon calculations presented in [59], as well as incorporating additional introduc-
tory material from [1, 2]. Moving forward, chapter 3 focuses on the calculation of mass
accretion and dynamical friction experienced by a Schwarzschild black holemoving within
a self-interacting scalar field dark matter soliton. Specifically, we examine these phe-
nomena in the subsonic regime, considering the detailed dynamics and interaction be-
tween the black hole and the scalar field soliton. This chapter builds upon the findings
and methodologies presented in [1]. Chapter 4 extends our investigation to the super-
sonic regime. By considering the unique dynamics and physical properties at supersonic
speeds, we gain a comprehensive understanding of the effects on the trajectory of a black
hole. This chapter draws upon the research from [2]. In chapter 5, we delve into the im-
pacts of the accretion drag force and dynamical friction on the motion of binary black
holes. Here, we investigate the interplay between these effects and the emission of grav-
itational waves, aiming to uncover distinct signatures that can be used to discern the in-
fluence of self-interacting scalar field dark matter. This chapter is primarily based on the
comprehensive analysis presented in [3]. Finally, we provide a general conclusion that
summarizes the key findings, contributions, and implications of our research.
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2 - Self-interacting scalar field dark matter

The aim of this chapter is to provide a comprehensive investigation of scalar field
dark matter model with a quartic self-interaction. The primary objectives are to introduce
and explore the fundamental concepts and equations that govern the behavior of this
model, and to introduce radial accretion as studied in [59]. The analysis encompasses
both nonrelativistic and relativistic regimes, with special emphasis on the large-mass limit,
in which the self-interaction dominates over quantum pressure [1, 2].

2.1 . Self-interacting scalar field action

We study the scalar-field dark matter model governed by the following action
Sϕ =

∫
d4x

√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (2.1)

The first term represents the kinetic energy of the scalar field, where gµν denotes the com-
ponents of the metric tensor and ∂µϕ represents the partial derivatives of the field ϕ withrespect to the spacetime coordinates. This term captures the interplay between the scalar
field and its derivatives, governing its evolution and behavior throughout spacetime. The
second term, V (ϕ), characterizes the potential energy associatedwith the scalar field. The
potential is further decomposed into two components

V (ϕ) =
m2

DM

2
ϕ2 + VI(ϕ) with VI(ϕ) =

λ4
4
ϕ4, λ4 > 0 . (2.2)

The quadratic term introduces a mass parameter mDM which influences the overall dy-
namics of the scalar field. Meanwhile, the quartic self-interaction term VI(ϕ) introduces acoupling constantλ4 The self-interaction coupling constant can be either attractive and re-pulsive, leading to different effects on dark matter dynamics. Attractive self-interactions,
usually considered for axion-like dark matter, tend to enhance the clustering of dark mat-
ter particles, resulting in the formation of dense structures. On the other hand, repulsive
self-interactions have the opposite effect, leading to a more diffuse distribution.

By studying the large-scale structure of the universe, such as structure formation [281],
the CMB [282], and nucleosynthesis [283], we can derive constraints on the coupling con-
stant of the self-interactions. The impact of self-interactions on the formation and evolu-
tion of large-scale structures can be quantified through numerical simulations and com-
pared with observational data. Current constraints indicate that the self-interaction cou-
pling constant should be small, as larger values would lead to deviations from observed
structures. On smaller scales, astrophysical observations provide additional constraints
on the self-interactions of scalar field dark matter. For example, studies of galactic ro-
tation curves [284], galactic mass [285], the Bullet Cluster [188, 286], and more recently,
the speed of gravitational waves [287], the environment of supermassive black holes [288,
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289], and superradiance [290] have been employed to investigate the self-interaction cou-
pling constant. Once again, current constraints suggest that the self-interaction coupling
constant should be relatively weak to maintain agreement with observed galactic dynam-
ics.

From now on, we will consider a positive coupling constant λ4 > 0, ensuring that the
self-interaction between scalar field particles is repulsive in nature.

Within the scalar field dark matter model, it becomes crucial to consider the oscilla-
tions of the scalar field on both cosmological and galactic scales. These oscillations are
primarily driven by the quadratic mass term and are required to dominate, imposing an
upper bound on the value of the coupling constant λ4. This dominance ensures that, at
the lowest order, the scalar field behaves like cold dark matter, exhibiting negligible pres-
sure. Consequently, the interaction term acts as a perturbation that subtly modifies the
harmonic oscillations of the scalar field, leading to the emergence of an effective pressure.
This pressure-induced deviation from the cold dark matter scenario becomes significant
on small scales.

A distinctive characteristic scale, denoted as ra, emerges as a consequence of these
considerations. The expression for ra, as established in previous works [59], is given by

ra =

√
3λ4
2

MPl

m2
DM

, (2.3)
where MPl represents the reduced Planck mass. This characteristic scale plays an im-
portant role in determining both the Jeans length and the size of hydrostatic equilibria,
commonly referred to as solitons. The Jeans length, independent of density and redshift
[21, 291], marks the scale below which density perturbations in the cosmological back-
ground cease to grow and oscillate. Furthermore, the size of hydrostatic equilibria, which
form after the collapse and decoupling from the Hubble expansion, is also dictated by this
characteristic scale. In the nonrelativistic regime, which governs large scales in the late
universe as well as astrophysical scales far from black hole horizons, a decomposition of
solutions becomes feasible. Specifically, solutions to the nonlinear Klein-Gordon equation
can be separated into fast oscillations at frequency mDM and a slowly varying envelope
that evolves over cosmological or astrophysical timescales. The dynamics of the envelope
are then effectively described by the Schrödinger equation. For a more comprehensive
analysis of these self-interacting scalar field dark matter scenarios from a cosmological
perspective, we refer interested readers to [59]. However, in the subsequent sections, our
focus will be directed towards subgalactic scales, where the expansion of the universe is
neglected.

2.2 . Nonrelativistic regime

In the regime characterized by Newtonian gravity (nonrelativistic weak gravity), a con-
venient approach is to express the real scalar field ϕ in terms of a complex field ψ. This
can be achieved through the following transformation
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ϕ =
1√

2mDM

(
e−imDMtψ + eimDMtψ⋆

)
, (2.4)

where ψ⋆ denotes the complex conjugate of ψ. In this particular regime, where the typ-
ical frequencies and momenta of ψ, represented by ψ̇/ψ and ∇ψ/ψ respectively, are
much smaller than the mass parameter mDM, the complex scalar field ψ satisfies the
Schrödinger equation.

i ψ̇ = − ∇2ψ

2mDM
+mDM(ΦN +ΦI)ψ , (2.5)

where ΦN corresponds to the Newtonian gravitational potential and ΦI represents thenonrelativistic self-interaction potential. For the quartic self-interaction, the expression
for ΦI is given by [59]

ΦI =
mDM|ψ|2

ρa
, with ρa =

4m4
DM

3λ4
. (2.6)

To facilitate further analysis, it is advantageous to expressψ in terms of its amplitude (and
density) ρ and phase s using the Madelung transform [292]. This transform is given by

ψ =

√
ρ

mDM
eis . (2.7)

By applying this transform, the real and imaginary parts of the Schrödinger equation (2.5)
yield two new equations

ρ̇+∇ ·
(
ρ

∇s
mDM

)
= 0 and ṡ

mDM
+

(∇s)2

2m2
DM

= −(ΦN +ΦI) . (2.8)
Furthermore, the nonrelativistic self-interaction potential can also be expressed in terms
of the amplitude ρ from (2.6) and (2.7)

ΦI =
ρ

ρa
=

3λ4ρ

4m4
DM

. (2.9)
To simplify the equations further, a curl-free velocity field v is defined as v = ∇s/mDM.Subsequently, from (2.8) the continuity and Euler equations can be written in the familiar
form

ρ̇+∇ · (ρv) = 0 and v̇ + (v · ∇)v = −∇(ΦN +ΦI) . (2.10)
Thus, in the nonrelativistic regime, we can transition from the Klein-Gordon equation to
the Schrödinger equation, and then to a hydrodynamical picture described by the conti-
nuity and Euler equations.

It is important to note that in the Hamilton-Jacobi and Euler equations (2.8) and (2.10),
the quantum pressure term

ΦQ = −
∇2√ρ

2m2
DM

√
ρ
, (2.11)
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has been neglected. The neglect of this term is motivated by the emphasis on a regime
where the self-interaction dominates over the quantum pressure. As a result, wavelike
effects such as interference patterns are considered negligible. The conditions of validity
of this approximation are discussed in section 5.5.2. However, it is crucial to highlight that
the dynamics of the system still differ from those of cold dark matter particles due to the
presence of self-interaction.

2.3 . Static equilibrium around a black hole

Contrary to cold dark matter, the formation of static equilibrium configurations with
zero velocities is possible due to the pressure arising from self-interactions [25, 184, 293].
These configurations are often referred to as Bose-Einstein condensates or boson stars
and are distinct from the behavior of cold dark matter. Specifically, in the case of fuzzy
dark matter, static solutions where gravity is balanced by the quantum pressure rather
than self-interaction are known as solitons [23, 27, 63]. These solitons correspond to
bound ground states of the linear Schrödinger equation (2.5) in the presence of the New-
tonian gravitational potential. However, in the case of self-interacting scalar field dark
matter, there is an additional non-linearity introduced to the Schrödinger equation due
to the self-interaction potential ΦI. This potential, along with the Newtonian potential
ΦN, contributes to the full potential, reading Φ = ΦN + ΦI, in the equation of motion.
To determine the properties of these solitons, we consider the equation of hydrostatic
equilibrium, from (2.10)

∇(ΦN +ΦI) = 0 . (2.12)
This equation can be integrated, leading to

ΦN +ΦI = α with α = ΦN(Rsol) , (2.13)
where α is an integration constant determined by the radius Rsol of the spherically sym-
metric soliton, where the density is zero and thus ΦI = 0. The Newtonian gravitational
potentialΦN is composed of contributions from the central black hole and the self-gravity
of the scalar cloud, reading ΦN = ΦBH +Φsg. This contributions are given by

ΦBH = −GmBH

r
= − rs

2r
, ∇2Φsg = 4πGρ , (2.14)

where G is the gravitational constant and mBH is the mass of the black hole, linked to
the Schwarzschild radius by rs = 2GmBH. By taking the divergence of the hydrostatic
equilibrium equation (2.10), and using (2.9) and (2.14), we obtain a differential equation for
the self-interaction potential

d2ΦI

dr2
+

2

r

dΦI

dr
+

1

r2a
ΦI = 0 , with ra =

1√
4πGρa

, (2.15)
where ra was also defined in (2.3).
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Introducing the dimensionless radiusx = r/ra, we can obtain the differential equationsatisfied by spherical Bessel functions of order zero. This leads to the expression for the
self-interaction potential ΦI = aj0(x) + by0(x), where a and b are constants. At small
radii, the gravitational potential is dominated by the black hole, and using (2.13) we obtain
ΦI ≃ rs/(2r). This determines the constant b. In the nonrelativistic regime, the solution
for the density ρ can be expressed as a sum of two terms

ρ(r) = ρ0
sin(r/ra)

(r/ra)
+ ρa

rs
2ra

cos(r/ra)

(r/ra)
. (2.16)

The first term dominates at large radii, where the soliton self-gravity is the main contri-
bution to the gravitational potential. On the other hand, the second term dominates at
small radii, where the gravitational potential of the black hole becomes significant. The
transition radius rsg represents the boundary between these two regimes and is typically
much smaller than the size of the soliton Rsol and much larger than the Schwarzschild
radius rs

Rsol ≃ πra , rsg = rs
ρa
ρ0
, rs ≪ rsg ≪ Rsol . (2.17)

In the region far inside the soliton, the density is approximately given by
rs ≪ r ≪ r1/3sg r2/3a : ρ = ρ0 + ρa

rs
2r
. (2.18)

Expressed in terms of the fields ψ and ϕ, the static soliton can be written as
ψ =

√
ρ

mDM
e−iαmDMt , ϕ =

√
2ρ

mDM
cos[(1 + α)mDMt] , (2.19)

where the phase is given by s = −αmDMt.In the case of fuzzy dark matter, where the soliton can reach kpc sizes, numerical sim-
ulations [23, 27, 63] have shown that outside the soliton core, the scalar field is out of
equilibrium and exhibits large density fluctuations. The mean falloff of the scalar field
follows the Navarro-Frenk-White (NFW) profile observed in cold dark matter simulations
[88]. It is expected that self-interacting scalar field dark matter behaves similarly, assum-
ing there is a unique soliton of kpc size within galaxies. However, we also considers sce-
narios with smaller values of ra, where multiple scalar clouds of smaller sizes may exist
within a galaxy. The behavior of the dark matter profile beyond the soliton radius is not
specified in this context, as our focus is on the interaction between the black hole and the
scalar cloud within the relevant radius range. Therefore, the derivation of the scalar flow
and its impact on black hole dynamics considers the hydrostatic profile within the bulk of
the soliton, specifically at rsg ≪ r ≪ Rsol, as the boundary condition at "large radius". Thebehavior at r ≳ Rsol is not addressed, as it is not relevant to the investigation of black holedynamics in this study. Additionally, the dynamics near the border or beyond the scalar
cloud do not significantly contribute to the accretion and dynamical friction of the black
hole, and the results presented in chapters 3 and 4 are not dependent on those regions.
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2.4 . Parameter space

Before going further, we will review the constraints on the scalar parameters mDMand λ4 and specify the regime in which our computation applies. Additionally, we intro-
duce the third parameter, the density ρ0, which characterizes the bulk of the soliton anddetermines various quantities within the soliton.

Figure 2.1: Domain in the parameter space (mDM, λ4) where our derivations apply, for ablack hole of mass 10M⊙ (left panel) and 107M⊙ (right panel). The region in white is theallowed part of the parameter space.
The density ρ0 in the bulk of the soliton is related to the transition radius rsg (defined in(2.17)), the values in the bulk of the soliton of the self-interaction potential ΦI0 (from (2.9))

and of the scalar-field gravitational potentialΦsg0. It also determines the sound speed c2s, 0(as seen in (3.10) and (3.42))
ρ0
ρa

∼ rs
rsg

∼ ΦI0 ∼ c2s . (2.20)
When in a virialized system, the sound speed is also the typical velocity scale in the soliton,
giving c2s ∼ v2 ≲ 1.

Throughout the following sections, we focus on the regime where ra ≫ λdB, with thede Broglie wavelength λdB = 2π
mDMv setting the scale at which quantum pressure becomes

significant. This regime is also called the Thomas-Fermi regime [294, 295], historically de-
veloped in the early 20th century, and is a simplified approach to understand the behav-
ior of quantum systems with many interacting particles. Initially applied to electrons in
metals, offering a simpler description of their collective properties, and later extended to
atomic nuclei and self-interacting darkmatter, this approximation offers a practical way to
describe collective behavior without complex quantum calculations. However, it is impor-
tant to acknowledge that the Thomas-Fermi approximation has limitations. It overlooks
quantum effects and assumes certain characteristics of the dark matter distribution.

In terms of the parameters, this condition can be expressed as
λ4 ≫

m2
DM

M2
Plv

2
, hence λ4 ≫ 10−55 v−2

(mDM

1 eV

)2
. (2.21)
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More generally, considering the self-interaction ΦI dominating over the quantum pres-
sure ΦQ, we find the condition λ4 ≫ m2

DM
ρr2

. Within the equilibrium scalar cloud, where
v2 ∼ ΦN ∼ ρr2

M2
Pl
, we recover (2.21). Near the Schwarzschild radius rs, the scalar field den-

sity is of the order of ρa ∼ m4
DM
λ4

[190], leading to the condition
mDM ≫

M2
Pl

mBH
, hence mDM ≫ 10−12

(
mBH

1M⊙

)−1

eV . (2.22)
Therefore, our computation applies to stellar-mass black holes formDM ≫ 10−12 eV and
to supermassive black holes formDM ≫ 10−18 eV.

The regime λ4 = 0, where self-interactions are negligible, corresponds to the fuzzy
dark matter scenario [63]. In this case, gravity can be balanced by quantum pressure
at the scale λdB. For galactic halos with v ≃ 10−3, in order to observe departures from
cold dark matter on galactic scales and address the core-cusp problem, we would require
mDM ∼ 10−22 eV. However, this conflicts with Lyman-α forest constraints [51, 296] and
the analysis of galactic rotation curves [194], which indicatemDM ≳ 10−20 eV.

In the regime (2.21), where self-interactions dominate over the quantum pressure, de-
partures from cold dark matter on galactic scales and potential implications for the core-
cusp problem can be achieved for a wide range of masses thanks to the additional pa-
rameter λ4. This parameter is related to the characteristic scale ra (defined in (2.3) and
(2.15)), and we have the following relation [59]

λ4 ≃
(

ra
20 kpc

)2 (mDM

1 eV

)4
. (2.23)

Here, we donot focus solely on the formation of solitons of galactic size thatwould directly
address the core-cusp problem. Instead, we consider the more general case of Thomas-
Fermi scalar field dark matter, regardless of its potential impact on ΛCDM galactic-scale
tensions. In this scenario, the cloud size ra can vary from sub-galactic to galactic scales.
Assuming the formation of scalar clouds similar tomolecular clouds that include stellar or
black hole systems, in chapters 3 and 4, we investigate the accretion rate and dynamical
friction of a black hole inside such a cloud.

To simplify the computation and the boundary condition at large distances, we as-
sume that ra ≫ rsg, meaning the cloud extends beyond the transition radius. This as-
sumption leads to the constraint

ra ≫ rsg : λ4 ≫
(
mBHm

2
DM

M3
Plv

2

)2

, (2.24)
and consequently

λ4 ≫ 10−20
( v

10−3

)−4
(
mBH

1M⊙

)2 (mDM

1 eV

)4
, (2.25)

where v2 ∼ ΦI ∼ ΦN represents the typical orbital velocity in the gravitational poten-
tial well of the scalar cloud, as in (2.20). However, this constraint is not critical, and it
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would be sufficient to require that the cloud extends well beyond the black hole horizon.
In this case, rs ≪ ra ≪ rsg, the self-gravity regime is never reached, and the density
profile remains dominated by the second term in (2.16). Thus, the scalar cloud radius is
approximately Rsol ≃ πra/2, which is of the same order as ra. This condition leads to theconstraint

ra ≫ rs : λ4 ≫
(
mBHm

2
DM

M3
Pl

)2

, (2.26)
and therefore

λ4 ≫ 10−32

(
mBH

1M⊙

)2 (mDM

1 eV

)4
. (2.27)

These constraints slightly modify the boundary conditions, but the main steps of the
derivation, especially the form (3.4) of the solution, remain valid. However, the dynamical
friction Fz will be reduced due to the smaller size of the scalar cloud, which is smaller than
the radius rsg where the contribution to Fz typically peaks, as discussed in chapters 3 and4 below.

Observations of cluster mergers impose an upper bound on the cross-section σ as
σ/mDM ≲ 1 cm2/g, resulting in the constraint [59]

λ4 ≲ 10−12
(mDM

1 eV

)3/2
. (2.28)

To ensure that the scalar field behaves like dark matter since matter-radiation equality, it
is required that VI ≪ V . This condition leads to the constraint λ4 ≲ (mDM/1 eV)4, which
is automatically satisfied for ra < 20 kpc, as given by Equation (2.23). For the classical
description of the scalar field to be valid, the occupation number N ≃ (ρ/mDM)λ3dB ∼
ρ/(m4

DMv
3) must be much greater than unity. Equilibrium in the scalar cloud between

gravity and self-interaction pressure yields ΦN ∼ ΦI ∼ ρλ4/m
4
DM, along with v2 ∼ ΦN for

the typical orbital velocity. This leads to the relation
N ∼ 1

λ4v
≫ 1 , hence λ4 ≪ v−1 . (2.29)

As long as v ≲ 1, the classical approximation remains valid as long as λ4 ≪ 1.
To solve the Klein-Gordon equation in curved spacetime in the limit of a large scalar

mass (3.4), where mDM is much greater than typical spatial gradients and frequencies, it
is required thatmDM ≫ 1/rs. Thus, the condition becomes

mDM ≫ 1

rs
, hence mDM ≫

M2
Pl

MBH
. (2.30)

This condition ensures that wave effects are negligible, and we are far from the regime of
fuzzy dark matter (as (2.22)).

The validity of our derivations in the parameter space (mDM, λ4) is represented by thecentral white area in Figure 2.1. The left panel corresponds to a black hole mass of 10M⊙,while the right panel corresponds to 107M⊙. The lower bound on the scalar massmDM is
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given by (2.22), represented by the vertical green solid line. At lowmDM, the upper boundon λ4 is determined by (2.23), considering ra ≤ 2 kpc, shown as the upper red solid line.
For highmDM, the upper bound on λ4 is given by (2.28), shown as the upper red dashedline. The lower bound on λ4 at lowmDM is obtained from (2.21) for v = 10−3, represented
by the lower blue solid line. At highmDM, the lower bound on λ4 is determined by (2.27),
shown as the lower blue dashed line. The condition (2.25) is depicted by the blue dotted
line for v = 10−3. It is worth noting that we assume to be above this threshold to apply
the boundary condition at large distance, although the form (3.4) of the solution remains
valid as long as we are above the blue dashed line (2.27). Overall, the allowed region in
the parameter space corresponds to a diagonal band λ4 ∼ m4

DM. ForMBH = 10,M⊙, thevalid range is approximately
10−12 eV ≲ mDM ≲ 107 eV , 10−75 ≲ λ4 ≲ 10−3 . (2.31)

ForMBH = 107 ,M⊙, the valid range is approximately
10−19 eV ≲ mDM ≲ 10 eV , 10−85 ≲ λ4 ≲ 10−10 . (2.32)

2.5 . Isotropic metric

As we neglect the gravitational back-reaction of the scalar cloud, we consider a spher-
ically symmetric metric associated with a black hole at the center of a large soliton. The
matching condition at large radii is given by (3.2). To simplify the matching with the
usual Newtonian gauge on large scales, a non-rotating black hole is considered, and the
isotropic radial coordinate r and time t are used. Thus, the static spherically symmetric
metric takes the isotropic form

ds2 = −f(r) dt2 + h(r) (dr2 + r2 dΩ2) . (2.33)
In the weak-gravity regime at large radii, far beyond the Schwarzschild radius, the metric
functions are given by

f = 1 + 2ΦN , h = 1− 2ΦN , (2.34)
where

ΦN = α− ΦI = α− ρ0
ρa

− rs
2r
, (2.35)

which agrees with (3.2). The first two terms in the last expression correspond to the self-
gravity of the scalar cloud, while the last term represents the gravitational potential of the
black hole in the Newtonian limit. At smaller scales, where the gravity of the black hole
dominates, and far inside the transition radius rsg, the isotropic metric functions f(r) and
h(r) are given by

rs
4
< r ≪ rsg : f(r) =

(
1− rs/(4r)

1 + rs/(4r)

)4

, h(r) =
(
1 +

rs
4r

)2
. (2.36)

In these coordinates, the black hole horizon is located at a radius r = rs/4.
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2.6 . Radial accretion

2.6.1 . Equations of motion
Using the metric (2.33), the Klein-Gordon equation for the scalar field ϕ is given by

∂2ϕ

∂t2
−
√

f

h3
∇ · (

√
fh∇ϕ) + f

∂V

∂ϕ
= 0 , (2.37)

and the system is spherically symmetric. Consequently as the velocity v = 0, the Klein-
Gordon equation (2.37) can be expressed as

∂2ϕ

∂t2
−
√

f

h3
1

r2
∂

∂r

[
r2
√
fh
∂ϕ

∂r

]
+ fm2

DMϕ+ fλ4ϕ
3 = 0 . (2.38)

The cubic non-linearity in (2.38) is of the same type as the Duffing equation [297]. This
allows for a solution of the form [59]

ϕ = ϕ0(r) cn[ω(r)t−K(r)β(r), k(r, θ)] . (2.39)
Here, cn(u, k) represents the Jacobi elliptic function [298, 299] with argument u, modulus
k, and period 4K, where K(k) =

∫ π/2
0 dθ/

√
1− k2 sin2 θ for 0 ≤ k < 1 is the complete

elliptic integral of the first kind [298, 299]. The quantity K(r, θ) is defined as K[k(r, θ)].
Equation (2.39) is a leading-order approximation in the limit mDM → ∞, where spatial
gradients of the amplitude ϕ0 and the modulus k are much smaller thanmDM, while both
ω and β are of the order of mDM. The amplitude ϕ0, angular frequency ω, phase β, andmodulus k are considered slow functions of space. This representation is a generalization
of nonrelativistic expressions such as (3.1), where the usual trigonometric functions are
replaced by the Jacobi elliptic function due to the strong cubic non-linearity. The nonrela-
tivistic regime is recovered for small modulus k, as cn(u, 0) = cos(u). Therefore, the mod-
ulus k measures the deviation from harmonic oscillations and the nonrelativistic limit.

The oscillations at different radii must be synchronized to avoid a secular growth with
time of spatial gradients. This implies that the functionω(r) is determined by themodulus
k(r) as follows

ω(r) =
2K(r)

π
ω0 , (2.40)

where ω0 is a constant fundamental frequency set by the boundary conditions. At leading
order in the large-mDM limit, the radial derivative is given by

∂ϕ

∂r
= −ϕ0K

dβ

dr
cn′ . . . , (2.41)

where the dots represent subleading terms, and cn′ = ∂cn
∂u . Substituting these expressioninto the Klein-Gordon equation (3.3) and using the differential equations satisfied by the

Jacobi elliptic functions, cn′′ = (2k2 − 1)cn− 2k2cn3, leads to two conditions(
dβ

dr

)2

=
h

f

(
2ω0

π

)2

−
hm2

DM

(1− 2k2)K2
and λ4ϕ

2
0

m2
DM

=
2k2

1− 2k2
, (2.42)
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which will be further interpreted below.
At each radius, (3.6) provide expressions for dβ/dr and ϕ0 in terms of the modulus

k, which remains to be determined. To determine the profile of k(r), a constant flux F
is imposed to ensure a steady-state solution. By enforcing a constant flux, the system
achieves a balance between the accretion and the outflow. At leading order, the conser-
vation equation∇µT

µ
0 = 0, where Tµ

ν is the energy-momentum tensor of the scalar field,
is automatically satisfied because the solution given by (3.4) satisfies the Klein-Gordon
equation. Each contribution to ∇µT

µ
0 at this order oscillates rapidly with time and has a

zero mean.
At leading order, the solution satisfies the Klein-Gordon equation, ensuring that the

conservation equation is automatically satisfied. However, when considering higher-
order terms, there is a possibility that new terms emerge that introduce slow time-
dependent behavior, as in the case of celestial mechanics or oscillatory systems with
damping. If these secular terms are present and not properly accounted for, they can
grow or change slowly over time, leading to violations of the steady-state condition. To
avoid such violations when going beyond the leading order, it is necessary to require
⟨∇µT

µ
0 ⟩ = 0, where ⟨. . . ⟩ represents the average over the oscillations of the solution

given by (2.39). This leads to the constraint
d

dr
· (ρeff∇

dβ

dr
) = 0 , (2.43)

with the effective density
ρeff =

√
fhϕ20ωK⟨cn′2⟩ . (2.44)

Here, (2.43) and the first equation in (2.42) generalize the continuity and Hamilton-Jacobi
equations (2.8), respectively, to the strong-field and strong-gravity regimes. The termπβ/2

plays the role of the phase s in the hydrodynamical equations. Similarly, they also gener-
alize the hydrodynamical continuity and Euler equations (2.10), respectively. In this case,
the term π∇β/(2mDM) plays the role of the curl-free velocity field v.

In addition to these continuity and Euler equations, the second equation of (2.42) is
introduced. This equation arises because there are now three fields to determine: the
amplitude ϕ0 (playing the role of the density), the phase β (playing the role of the velocitypotential), and themodulus k. Themodulus k is coupled to the amplitude through this last
equation. In the nonrelativistic low-amplitude regime, the degree of freedom represented
by k disappears as k → 0, and the scalar field ϕ follows harmonic oscillations, as described
in (3.1). On the other hand, in the large-field regime, the quantity k(r) determines the
degree of deviation of the nonlinear oscillator from the harmonic oscillator. This deviation
is described by the Jacobi elliptic function cn(u, k).

2.6.2 . Hydrodynamical infall
The results for radial accretion, as obtained by [59], are depicted in Figure 2.2. In the

case of radial accretion, the effective continuity equation (2.43) can be integrated imme-
diately as it only depends on radial derivatives, resulting in F = ρeff

dβ
dr , where F is the
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Figure 2.2: The moduli k1(x) and k2(x), where x = r/rs for a constant flux Fc/3 (dashedlines) and Fc (dotted lines). The critical modulus, kc(x) (solid line), equals k1 for x <⋆ and
k2 for x > x⋆, where F = Fc (from [59]).

constant flux of the scalar field. By using (2.42), it is possible to express ρeff dβ
dr in terms of

k and r. This leads to a condition of the form F (r, k). As discussed in [190], in this case the
range of k is constrained to be between 0 and k+(r) < 1/

√
2. At the boundaries, k = 0

and k = k+, the flux vanishes, while it exhibits a single maximum |Fmax(r)| at kmax(r),slightly below k+(r). As r increases, both the upper bound k+(r) and the peak at kmax(r)shift to lower values. The maximum |Fmax| displays growth at both small and large r,
reaching a minimum at r̂⋆ ≃ 2.43, where Fc ≡ Fmax(r) = F⋆ ×Fs with the minimum peak
value F⋆ ≃ 0.66 and the characteristic flux Fs ∼ −rsm4/λ4. At the transition radius rsg,the gravitational potential receives equal contributions from the central black hole and
the scalar cloud. Inside the soliton core, the potential remains nearly constant, matching
the soliton core value. Consequently, beyond rsg, the metric functions h(r) and f(r) be-
come almost constant, causing the flux function F (r, k) to maintain a constant shape in
k, multiplied by a simple factor r̂2. Hence, the peak value |Fmax| continues to increase.
This specific behavior of F (k, r) results in a unique value for the flux. When |F | < |Fc|,two distinct solutions, k1(r) and k2(r), exist at each radius on opposite sides of the peak
kmax(r). The function k(r)must remain on the same side of the peak throughout and can-
not cross it. Only when F = Fc, the function k(r) can switch from one branch, k1(r), tothe other, k2(r), at the radius r̂⋆ where both solutions coincide with the peak. The bound-ary conditions at the horizon favors the high-velocity solution k1(r), resembling free fall,
because self-interactions cannot prevent the free fall of dark matter into the black hole.
Conversely, the boundary condition at large radius selects the low-velocity branch k2(r),
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supported by the pressure generated by self-interactions, to match the static equilibrium
soliton. Consequently, the function k(r) must transition from one branch to another at
some intermediate radius. This selection process determines the only physically mean-
ingful flux value, F = Fc, and the corresponding solution kc(r), which smoothly connects
the low-velocity branch k2(r) for radii greater than rc and the high-velocity branch k1(r)for radii less than rc. The two branches meet at the critical radius rc. This selection pro-
cess is reminiscent of the hydrodynamical case discussed in [300, 301], where the only flux
value providing a transonic solution that connects the subsonic (i.e., low-velocity) branch
at large radii to the supersonic (i.e., high-velocity) branch at small radii is chosen.

For radii where the black hole gravity dominates, the radial profile according to [190]
is given by (2.45) as ρ ∼ ρa

rs
r and vr ∼ − rs

r . Here, rs represents the Schwarzschild radius.At larger radii, the boundary conditions give the profile [190]
rs ≲ r ≲ rsg : ρ ∼ ρa

rs
r
, vr ∼ −rs

r
, (2.45)

whereas at larger radii we have
r ≳ rsg : ρ ≃ ρ0, vr ∼ −ρar

2
s

ρ0r2
. (2.46)

2.7 . Summary of the chapter

In this chapter, we introduced the self-interacting scalar field dark matter model
via its action (2.1). The potential energy is decomposed into quadratic and quartic self-
interaction terms, which introduce a mass parameter and a coupling constant, respec-
tively. We consider repulsive interactions, leading to a more diffuse distribution. The
constraints on the self-interaction coupling constant are derived from studying the large-
scale structure of the universe and astrophysical observations [188, 281–290]. These
constraints indicate that the self-interaction coupling constant should be small to main-
tain agreement with observed structures and galactic dynamics.

We then focus on the nonrelativistic regime, where the Schrödinger equation de-
scribes the behavior of the scalar field. The hydrodynamical picture is introduced us-
ing continuity and Euler equations (2.10), neglecting the quantum pressure term. Static
equilibrium configurations known as solitons can be formed due to the pressure arising
from self-interactions. The behavior of solitons is determined by the hydrostatic equilib-
rium equation, which leads to the determination of the self-interaction potential (2.15).
The scalar field exhibits large density fluctuations outside the soliton core, following the
Navarro-Frenk-White profile observed in cold dark matter simulations [88].

The parameter space of the model is discussed, considering the constraints on the
scalar parameters and the regime in which the computations apply. The Thomas-Fermi
regime, where the self-interaction dominates over the quantum pressure, is emphasized.
The conditions for the parameters and the relevant black hole masses for the computa-
tions are specified.
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In the context of radial accretion, the scalar field flux is determined by F = ρeff
dβ
dr .As we approach the critical radius, a transition occurs from a high-velocity branch, near

the black hole, to a low-velocity branch, at larger radii, in the solutions for k(r). The two
branches smoothly connect at the critical radius, ensuring a continuous solution. The
radial profiles of density and velocity exhibit distinct behaviors depending on whether
the dominance lies with the black hole gravity or the scalar cloud pressure. At larger radii,
the density decreases inversely proportional to the radius, while the velocity follows an
inverse square root relationship. Moving to even larger radii, both the density and velocity
remain approximately constant.

Overall, this chapter provides a comprehensive overview of the self-interacting scalar
field action, including its implications for large-scale structures, solitons, and interactions
with black holes.
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3 - Subsonic accretion and dynamical friction for a
moving black hole

In this chapter, we study the accretion rate and dynamical friction experienced by a
black hole as it moves through a cloud of self-interacting dark matter in the subsonic
regime. Our study encompasses both the behavior of the nonlinear flow at large radii,
characterized by low velocities, and the regime of small radii with high velocities, as an-
alyzed in [190]. To begin, we provide a brief discussion regarding the field solution of a
moving soliton. Subsequently, we incorporate a black hole into the framework in order
to derive the equations of motion. Then, we introduce the linear flow approximation as a
baseline model. However, we go beyond this approximation by incorporating corrections
that account for the transition from the subsonic regime (at large radii) to the supersonic
regime (close to the black hole). We then incorporate these corrections into the continuity
and Euler equations and develop an iterative scheme to numerically determine the veloc-
ity and density profiles. Subsequently, we derive exact expressions for the accretion rate
of a black hole and the dynamical friction exerted on it within the subsonic regime. These
calculations provide quantitative insights into the interaction between the black hole and
the surrounding dark matter cloud. To validate our findings and provide a broader con-
text, we compare our results with previous studies conducted on other models, such as
the cold and fuzzy dark matter scenarios. By doing so, we assess the consistency and
implications of our subsonic analysis in relation to other theoretical frameworks. This
chapter is based on the paper "Subsonic accretion and dynamical friction for a black hole
moving through a self-interacting scalar dark matter cloud" [1].

3.1 . Moving soliton

If there is no black hole present, the equilibrium solution ρeq(r) under Galilean invari-ance can be mapped to a solution that moves at a uniform velocity v0. This is given by
ρv0(r, t) = ρeq(r − v0t). The phase s now becomes s = −(α + v20/2)mDMt +mDMv0z fora velocity along the z-axis, and the scalar field ϕ takes the form

ϕ =

√
2ρ

mDM
cos
[
(1 + α+ v20/2)mDMt−mDMv0z

]
. (3.1)

From now on, we will consider the scenario where a black hole is moving with velocity
−v0 through the soliton, or equivalently, a soliton is moving with velocity v0 with respectto a motionless black hole. Neglecting the gravitational back-reaction of the scalar cloud
and focusing on scales deep inside the soliton, we can approximate the density ρ, the
self-interaction potential ΦI, and the total gravitational potential ΦN using the expression
from (2.18)

r ≫ rs : ρ = ρ0 + ρa
rs
2r
, ΦI =

ρ

ρa
, ΦN = α− ΦI . (3.2)
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Together with v = v0, these expressions establish the boundary conditions at large-radiiin this scenario.

3.2 . Equations of motion

This section employs the same methodology as section 2.6.1.
Upon the inclusion of a black hole in the system, it becomes necessary to account

for the isotropic metric given by (2.33). Due to the spherically symmetric metric and the
uniform velocity v = v0 = v0, ez at large distances, the system exhibits axi-symmetry
around the z-axis. As a result, the Klein-Gordon equation (2.37) is modified as followed
∂2ϕ

∂t2
−
√

f

h3
1

r2
∂

∂r

[
r2
√
fh
∂ϕ

∂r

]
− f

hr2 sin θ

∂

∂θ

[
sin θ

∂ϕ

∂θ

]
+ fm2

DMϕ+ fλ4ϕ
3 = 0 , (3.3)

where the cubic non-linearity in (3.3) still shares the same form as the Duffing equation
[297]. This allows for a solution in the form of

ϕ = ϕ0(r, θ) cn[ω(r, θ)t−K(r, θ)β(r, θ), k(r, θ)] . (3.4)
Unlike the study of radial accretion presented in [190], where the scalar field configu-

ration is spherically symmetric, the presence of the incoming velocity v0 = v0 ez at largedistances makes the configuration only axi-symmetric. Consequently, ϕ0, ω, β, and k de-pend on both the radial distance r and the angle θ with respect to the z-axis.
The function ω now takes the form of ω(r, θ) = 2K(r,θ)

π ω0. In the limit of large mDM,the spatial derivatives yield
∂2ϕ

∂r2
= ϕ0

(
K
∂β

∂r

)2

cn′′ + . . . ,
∂2ϕ

∂θ2
= ϕ0

(
K
∂β

∂θ

)2

cn′′ + . . . , (3.5)
where the dots represent higher-order terms. Substituting these expressions into the
Klein-Gordon equation (3.3) and utilizing the differential equations satisfied by the Jacobi
elliptic functions lead to two conditions

(∇β)2 = h

f

(
2ω0

π

)2

−
hm2

DM

(1− 2k2)K2
and λ4ϕ

2
0

m2
DM

=
2k2

1− 2k2
. (3.6)

Similar to (2.43), the conservation equation can be written as
∇ · (ρeff∇β) = 0 , (3.7)

where ρeff is the same as defined in (2.44), but with angular dependencies.

3.3 . Velocity branches and hydrodynamical infall

3.3.1 . Low and high velocity branches
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Figure 3.1: Schematic representation of the examined system, where dark matter traveltowards a black hole with an initial velocity v0 (at z → −∞). The gravitational pull of theblack hole alters the darkmatter streamlines. Region (1) denotes the radial accretion zoneof the black hole, while region (2) corresponds to a distant area from the black hole wherethe flow characteristics are determined in this study. The empty circle positioned behindthe black hole indicates a point of zero velocity, marking the boundary between particlesfalling into the black hole and those that escape.

In the axi-symmetric case considered here, the conservation equation (3.7) becomes
a two-dimensional partial differential equation, which cannot be integrated immediately
contrary to the radial accretion case (2.43). However, if the homogeneous velocity v0at large radii is significantly smaller than the speed of light, it can be assumed that the
flow becomes nearly radial well before the critical radius rc, typically of the order of theSchwarzschild radius. In this case, the flow can be matched to the radial case at a radius
rm > rc, providing the inner boundary condition for the system. Consequently, the crit-
ical flux Fc selection and the transition from the low-velocity branch to the high-velocity
branch can be identified by computing the radial case as done in [190]. Then, the system
(3.6) and (3.7) can be solved at large radii along the low-velocity branch to complete the
analysis. This approach is valid for the subsonic regime, where the relative velocity v0 issmaller than the effective speed of sound cs, 0 of the scalar-field soliton at large radii. Fig-ure 3.1 provides an illustration of the problem. For higher velocities, discontinuities are
expected, and their study will be discussed in chapter4.

3.3.2 . Boundary condition at large radii
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At very large radii, when k ≪ 1 (meaning that the deviations from harmonic oscillator
are small), the solution (3.4) can be approximated as ϕ = ϕ0 cos(ω0t − πβ/2), where
K ≃ π/2. By comparing this with the nonrelativistic solution (3.1), we obtain the following
boundary conditions

r → ∞ : ϕ0 =

√
2ρ

mDM
, β =

2

π
mDMv0z . (3.8)

Furthermore, the value of the fundamental frequency ω0 is given by
ω0 = (1 + α+ v20/2)mDM . (3.9)

From the second equation of (3.6), the asymptotic behavior of k can be obtained as follows
r → ∞ : k2 =

λ4ϕ
2
0

2m2
DM

=
4ρ

3ρa
=

4

3
ΦI . (3.10)

The density ρ can be determined using (3.2).
3.3.3 . Comparison with fuzzy dark matter derivations

The behavior of scalar clouds around black holes has been extensively studied, par-
ticularly in the case without self-interactions. Previous works, such as [302], focused on
a free scalar field in the unperturbed Schwarzschild metric around a black hole. This
scenario leads to a linear Klein-Gordon equation in curved spacetime, which can be ex-
pandedusing spherical harmonics. The radial part of the equation follows a linear second-
order differential equation with coefficients that depend on the radius. In the regime
1/mDM ≫ rs, the problem can be solved by dividing the domain into three regions: close
to the black hole, intermediate radii, and large radii. Each region corresponds to a stan-
dard differential equation that can be solved using known special functions. By matching
the solutions at the inner boundaries, a global solution is obtained.

Recently, [303] revisited this problem by considering spherically symmetric solutions
in the Schwarzschild metric. They expressed the general solution for the scalar field in
terms of confluent Heun functions and derived various approximate solutions based on
the hierarchy between the Compton wavelength 1/mDM, the Schwarzschild radius rs, andthe self-gravity radius rsg. In our case, which corresponds to the large-mass regime (2.30),
wheremDM ≫ 1/rs, we enter regime IV (particle limit) as defined by [303]. In this regime,
there is no potential barrier for incoming waves, and the fluid falls into the black hole. At
intermediate radii within regime IV, the authors found for fuzzy dark matter (FDM) that

FDM, rs ≲ r ≲ rsg : ϕ ∼ r−3/4e−imDMt−i2mDM
√
rrs . (3.11)

This power-law behavior with an exponent of−3/4 leads to a corresponding density pro-
file of

FDM, rs ≲ r ≲ rsg : ρ ∼ r−3/2 . (3.12)
The authors of [303] explained that the free-fall velocity onto the black hole scales as
vr ∼ r−1/2. For a steady-state solution, the matter flux through a shell of radius r, given
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by 4πr2ρvr, must be independent of r. This condition implies ρ ∼ r−2v−1
r ∼ r−3/2, which

agrees with the derived density profile (3.12). However, these derivations do not apply to
our case due to the presence of self-interactions, which introduce a cubic non-linearity
to the Klein-Gordon equation (3.3). In contrast to [302], our scenario considers the limit
1/mDM ≪ rs, where the scalar field probes sub-horizon distances (2.30). Additionally, weaccount for the self-gravity of the scalar field at large radii, where it dominates over the
black hole gravity and converges to the static soliton solution.

To handle the cubic non-linearity, we take advantage of the large scalar mass limit
and express the solution in the form (3.4), utilizing the separation of scales from the black
hole horizon to the soliton radius. This allows us to treat the scalar field as a locally cubic
oscillator at each radius, which is solved exactly using the Jacobi elliptic function. The
radial dependence is incorporated through the amplitude ϕ0, the angular frequency ω,the phase β, the modulus k, and the conservation equation (3.7). In the radial case, the
set of coupled one-dimensional equations can be integrated as explained in section 3.3.1
and [190]. For the non-radial case, described in sections 3.4 and 3.5 below, we employ
the mapping to familiar hydrodynamical equations to track the behavior of the flow at
large nonrelativistic radii, where the transition from uniform incoming flow at velocity v0to radial infall occurs.

At large radii far from the black hole horizon, where the modulus k is small, the Ja-
cobi elliptic function (3.4) can be approximated by a cosine term: ϕ ∼ ϕ0(r)e

iω(r)t−Kβ(r).
Although harmonic oscillations with time are recovered, similar to the fuzzy dark matter
case (3.11), the self-interaction non-linearity remains significant. In the bulk of the soliton
at large radii, the scalar self-gravity is balanced by the self-interaction pressure. At inter-
mediate radii, this additional pressure support slows down the infall, causing the radial
velocity vr to follow the low-velocity branch discussed in section 3.3.1 instead of the high-
velocity branch associated with free-fall velocity vr ∼ r−1/2 in the fuzzy dark matter case.
Consequently, the density slope is different, with ρ ∝ r−1 in (2.45) compared to ρ ∝ r−3/2

in the fuzzy dark matter case (3.12).
In the fuzzy dark matter case, linear theory treatments [64, 65] can be considered us-

ing the Keplerian gravitational potential ΦN = −rs/(2r) as the background, looking forlinear perturbations to both the gravitational potential and the scalar field. However, this
approach is not applicable to our case. Due to the pressure induced by self-interactions,
the infall is slowed down near the Schwarzschild radius, creating a bottleneck. This bottle-
neck selects the transonic solution, leading to a density near the horizon of the order of ρaand a radial velocity close to the speed of light (vr ∼ −1) as shown in (2.45). Consequently,
the accretion rate onto the black hole and the infalling flux at all radii are determined by
conservation of matter. Therefore, the amplitude in the large-radius Newtonian regime is
primarily set by the boundary condition at the black hole horizon. Thus, a fully nonlinear
and relativistic treatment is required, and the global solution cannot be obtained through
a perturbative weak-gravity approximation alone.

3.4 . Description of the non-linear velocity flow
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3.4.1 . Low-k regime
At radii above rc, both the modulus k and the gravitational potential ΦN are small.

Indeed k ≃ 0.4 at rc and continue to decrease at larger radii, while ΦN is becoming small
at radii much beyond the Schwarzschild radius. In this regime, the first equation of (3.6)
and (3.7) can be simplified. The second equation of (3.6) and (2.44) provide expressions
for ϕ20 and ρeff in terms ofmDM, k, and λ4 as

ϕ20 =
2m2

DMk
2

λ4
and ρeff =

πm2
DMk

2

2λ4
ω0 ∝ k2 . (3.13)

Meanwhile, the first equation of (3.6) can be rewritten using (3.2)
π2(∇β)2

4m2
DM

= 2α+ v20 − 2ΦN − 3

2
k2 = 2

ρ0
ρa

+
rs
r
+ v20 −

3

2
k2 , (3.14)

and is consistent with the boundary conditions (3.8) and (3.10). To further simplify the
equations, the dimensionless radius r̂ and the rescaled phase β̂ are introduced

r̂ =
r

rs
, β̂ =

π

2mDMrs
β . (3.15)

This rescaling allows for a simpler form of (3.14)
(∇̂β̂)2 = 3

2
k20 + v20 +

1

r̂
− 3

2
k2 =

3

2

[
k+(r̂)

2 − k2
]
, (3.16)

involving the limiting value k+(r̂), introduced as
k+(r̂)

2 = k20 +
2

3
v20 +

2

3r̂
. (3.17)

In this last expression, k+(r̂) represents an upper bound on the modulus k at a given
radius r, as the left-hand side of (3.16) is always positive. The low-velocity branch charac-
terized by

low-velocity branch: k ≃ k+ , v2 ≪ k2+ , (3.18)
corresponds to a region where k is close to the upper bound k+ and the velocity, defined
as v = ∇̂β̂, is much smaller than the free-fall value of order 1/√r̂, in the weak-gravity
regime dominated by the black hole gravity. This is because the effective pressure due to
the self-interactions slows down the fall towards the black hole. The conservation equa-
tion (3.7) then yields the continuity equation

∇̂ · (k2∇̂β̂) = 0 . (3.19)
Using (3.16), this equation can be further simplified to

∇̂ ·
[(
k+(r̂)

2 − 2

3
(∇̂β̂)2

)
∇̂β̂
]
= 0 , (3.20)

which provides a closed partial differential equation for the phase β̂ of the field.
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At large radii, the modulus k2+ ≃ k20 + 2v20/3 and the uniform velocity ∇̂β̂ = v0 aresolutions of (3.20). The equation (3.20) has solutions equivalent to the radial solution at
matching radius rm, as explained in section 3.3.1.In summary, the simplified equations describe the behavior of the scalar field at radii
above the critical radius rc, where the modulus k is small. The continuity equation pro-
vides a closed partial differential equation for the phase β̂, which then determines the
density ρ and the modulus k of the scalar field, accounting for the departure from har-
monic oscillations.

3.4.2 . Isentropic potential flow
The expressions (3.19) and (3.16) can be interpreted as the steady-state continuity

equation and Bernoulli equation for an isentropic potential flow
∇̂ · (ρ̂v) = 0 and v2

2
+ V +H = 0 , (3.21)

with the curl-free velocity v = ∇̂β̂, the external-force potential V (r̂) and the enthalpy
H(ρ̂). In this potential flow interpretation, we have the mapping

ρ̂ =
3

2
k2 , V (r̂) = −3

4
k2+(r̂) , H(ρ̂) =

ρ̂

2
. (3.22)

The effective pressure P̂ (ρ̂), defined by dH = dP̂ /ρ̂, read
P̂ (ρ̂) = ρ̂2/4 , (3.23)

with a polytropic exponent of γad = 2. By rearranging the Bernoulli equation (3.21), the
density ρ̂ can be expressed in terms of the velocity v

ρ̂ = γ +
1

r̂
− v2 . (3.24)

Here, γ is a parameter given by
γ =

3

2
k20 + v20 , hence 3

2
k2+ = γ +

1

r̂
. (3.25)

Thus, the density, velocity, and external-force potential in the scalar field system corre-
spond to the density, velocity, and external potential of the potential flow. The effective
pressure follows a polytropic relation, and the density can be expressed in terms of the
velocity and a parameter γ related to the initial conditions.

3.5 . Scalar-field flow around the black hole

3.5.1 . Linear flow
Equations (3.18) and (3.20) describe the behavior of dark matter in the low-velocity ra-

dial accretion regime at small radii but far above the Schwarzschild radius. In this regime,
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the term (∇̂β̂)2 is small compared to k2+ in (3.20). However, at large radii where v ≃ v0,this is only true if v0 ≲ k0, meaning that the black holemoveswith a speed smaller than the
speed of sound of the soliton cloud. Here, we focus on this regime, and the high-velocity
supersonic casewill be studied in chapter 4. To analyze the flow in the low-velocity regime,
it is helpful to consider the "linear flow" associated with the linearized version of (3.20),
given by

∇̂ ·
[
k+(r̂)

2∇̂β̂
]
= 0 , (3.26)

as this is a good approximation at all radii. This linear equation can be explicitly solved
due to the simple form of the kernel k2+. The spherical symmetry of k2+ allows us to ex-
pand the angular part of the linearmodes in terms of spherical harmonics, specifically the
Legendre polynomialsPℓ(cos θ). Since the solutions sought are axially symmetric, only the
modes Y 0

ℓ (θ, φ) are needed. Thus, the independent axially symmetric modesGℓ(x, θ) canbe written as Gℓ(r̂, θ) = Gℓ(r̂)Pℓ(cos θ), where we separated the radial and angular de-
pendencies. The radial part of the equation for ℓ ̸= 0 is given by

d

dr̂

(
r̂2k2+

dGℓ

dr̂

)
− ℓ(ℓ+ 1)k2+Gℓ = 0 . (3.27)

By introducing the characteristic radius r̂γ = 1/γ, the growing and decaying modes for
ℓ = 0 are given by

G+
0 (r̂) = 1 and G−

0 (r̂) = ln

(
1 +

1

γr̂

)
. (3.28)

For ℓ ̸= 0, the modes are given by hypergeometric functions 2F1(x0, x1;x2;x3) as
G+

ℓ (r̂) = (γr̂)a−ν
2F1(a, 1− b; 1− b+ a;−γr̂) , (3.29)

G−
ℓ (r̂) = (γr̂)−ν

2F1(a, b; c;−1/(γr̂)) , (3.30)
where ν =

(
1 +

√
1 + 4ℓ(ℓ+ 1)

)
/2, a = ν +

√
ν(ν − 1), b = ν −

√
ν(ν − 1), and c = 2ν.

These mode functions exhibit specific behaviors at small and large radii. At small radii
(r̂ ≪ r̂γ ), the solutions behave as

ℓ = 0 : G+
0 (r̂) = 1 , G−

0 (r̂) ∼ ln(1/r̂) ,

ℓ ̸= 0 : G+
ℓ (r̂) ∼ r̂

√
ℓ(ℓ+1) , G−

ℓ (r̂) ∼ r̂−
√

ℓ(ℓ+1) , (3.31)
while at large radii (r̂ ≫ r̂γ ), they behave as

ℓ = 0 : G+
0 (r̂) = 1 , G−

0 (r̂) ∼ r̂−1 ,

ℓ ̸= 0 : G+
ℓ (r̂) ∼ r̂ℓ , G−

ℓ (r̂) ∼ r̂−ℓ−1 . (3.32)
In the large-radius limit, the usual Laplacian modes are recovered at leading order, as the
k2+ goes to a constant.

The boundary conditions for the linear flow are specified at large and inner radii. At
large radii, the condition v → v0 ez is imposed, leading to β̂ = v0r̂ cos θ. At the inner
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radius r̂m, the boundary condition sets the radial component, vr ≃ vr(r̂m), which can beexpressed as
r̂ = r̂m :

∂β̂

∂r̂
≃ vmr ,

∂β̂

∂θ
≃ 0 . (3.33)

At the linear level, denoted by the superscriptL, these boundary conditions only generate
the monopole and the dipole components of β̂, given by

β̂L = β̂L0 (r̂) + β̂L1 (r̂) cos(θ), (3.34)
with the monopole

β̂L0 (r̂) =
vmr

G−′
0 (r̂m)

G−
0 (r̂) , (3.35)

and the dipole, defined using gamma functions Γ(x),
β̂L1 (r̂) =

v0
γ

(γr̂)
√
2 Γ(−1 +

√
2) Γ(2 +

√
2)√

2Γ(1 + 2
√
2)

2F1(2 +
√
2,−1 +

√
2; 1 + 2

√
2;−γr̂) . (3.36)

In the range where the flow is approximately radial, it is found that the velocity decreases
as vr ∼ 1/r, which is consistent with the results obtained in [190] for purely radial accre-
tion. The modulus k also decreases, approximately given by k2 ≃ k2+ ≃ 2/(3r̂), while the
density ρ follows a similar trend, proportional to k2 and thus also proportional to 1/r. This
behavior leads to a constant radial flux F ∝ r2ρvr, which is a requirement for a steady
state.

The selection of the matching radius rm between the radial accretion regime and the
large radii resolution is a crucial decision. It is important to choose rm when we are still
in proximity to the black hole, within the range of the radial accretion regime. Although
this regime can extend up to tens of Schwarzschild radii, it is prudent to select a small
matching radius while making sure that the value of k remains sufficiently small to be on
the low-velocity branch. As a numerical example, let us consider r̂m ∼ 10 and vr(r̂m) ∼
0.1 (obtained from the radial accretion calculation), slightly beyond the critical radius r̂cassociated with the transition between the low and high-velocity branches. At small radii
(r̂ ≪ r̂γ ), we have the following approximations

β̂L0 ∼ ln(1/r̂) , β̂L1 ∼ v0
γ
(γr̂)

√
2 ,

∂β̂L0
∂r̂

∼ −1/r̂ ,
∂β̂L1
∂r̂

∼ v0(γr̂)
√
2−1 , (3.37)

while at large radii (r̂ ≫ r̂γ ), the behaviors are given by
β̂L0 ∼ (γr̂)−1 , β̂L1 ∼ v0r̂ ,

∂β̂L0
∂r̂

∼ −1/(γr̂2) ,
∂β̂L1
∂r̂

∼ v0 . (3.38)
Therefore, we find that the linear flow becomes radial at a transition radius r̂t greaterthan r̂γ if v0 ≪ γ. This condition can be expressed as

v0 ≪ k20 : r̂t =
1

√
γv0

≫ r̂γ . (3.39)
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In the case of larger velocities, the transition occurs below r̂γ ,
k20 ≪ v0 ≪ 1 : r̂t = γ−1(v0/γ)

−1/
√
2 ≪ r̂γ . (3.40)

In relaxed systems, it is expected that v20 ∼ k20 , meaning that the squared velocity is of
the order of the gravitational potential of the scalar soliton, with k20 ≪ 1. This leads to
v0 ∼ k0 ≫ k20 . Consequently, the linear flow typically becomes radial far inside the ra-
dius r̂γ . At that point, the amplitude of the dipole β̂L1 has already somewhat decreased
compared to the large-distance uniform flow v0, as indicated by the exponents in (3.37).Thus, the pressure associated with the self-interactions slows down the linear flow before
it becomes fully radial and accelerates towards the black hole

3.5.2 . Large-radius expansions
To go beyond the linear-flow approximation and examine the behavior at large radii,

we can expand the flow in terms of a large-radius expansion. This expansion allows us
to explicitly observe the transition from a subsonic to a supersonic regime as the relative
velocity v0 exceeds the sound speed. Additionally, we can determine the analytical ex-
pressions for the subleading odd corrections (of order r̂0) and even corrections (of order
1/r̂) to the uniform-flow potential β̂0 = v0r̂ cos θ.It is known that the hydrodynamical Euler equation can lead to discontinuous solu-
tions with shocks or contact discontinuities, which also applies to our case. A low ve-
locity v0 corresponds to a subsonic and continuous flow at large radii, while a high ve-
locity v0 leads to a supersonic flow with a bow shock. However, at small radii near the
Schwarzschild radius, there is always a supersonic high-velocity region, as explained in
section 3.3.1.

At large radii, where the velocity is close to v0, we can write β̂ = v0r̂ cos θ + δβ̂ and
linearize the equation of motion (3.20) with respect to δβ̂. This results in the following
equation

∂2δβ̂

∂x̂2
+
∂2δβ̂

∂ŷ2
+

(
1− 4v20

3k20

)
∂2δβ̂

∂ẑ2
=

2v0 cos θ

3k20 r̂
2

, (3.41)
where we use Cartesian coordinates {x̂, ŷ, ẑ} and assume v0 = v0 ez . The source term on
the right-hand side is due to the gravitational effect of the black hole, which causes the
flow to deviate from the homogeneous flow v0. By introducing the sound speed cs, 0 as

cs, 0 =

√
3

2
k0 and c2s, 0 =

dP̂0

dρ̂0
, (3.42)

the equation of motion (3.41) changes its character from elliptic to hyperbolic when v0equals the sound speed. This leads to the following classification
v0 < cs, 0 : elliptic subsonic flow ,
v0 > cs, 0 : hyperbolic supersonic flow .

It is important to note that this linear analysis of the perturbation δβ̂ is different from
the "linear flow" studied in section 3.5.1. In the linear flow analysis, we linearized the
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equation of motion (3.20) with respect to β̂ itself, assuming small velocities everywhere
compared to k2+(r̂), which implies v0 ≪ cs, 0 at large radii. On the other hand, in this
section, we consider linear perturbations with respect to the dominant uniform flow v0 atlarge distances, and we do not assume that v0 is small. Therefore, although the analysis
(3.41) is restricted to large radii, it allows us to study all regimes of v0. In particular, it
reveals that even at large distances, the cubic non-linearity in (3.20) introduces a more
diverse behavior than the "linear flow" (3.34), as the dynamics can transition from elliptic
(as in the low-velocity case) to hyperbolic.

For subsonic flows, the partial differential equation (3.41) becomes elliptic, indicating
a smooth flow. By introducing the parameter µ > 0 given by µ2 = 1− v20/c2s, 0 for 0 ≤ v0 <

cs, 0, and rescaling the coordinates from {x̂, ŷ, ẑ} to {x̃, ỹ, z̃} with x̃ = x̂, ỹ = ŷ, z̃ = ẑ/µ,
we recover the Laplace equation in the left-hand side of (3.41). Using the Green function
of the 3D Laplacian, the inhomogeneous solution is obtained as

δβ̂odd(x̂) = − v0
6πk20

∫
dx̂

′
ẑ′

r̂′ 3
√
µ2|x̂ ′−x̂|2 + (1−µ2)(ẑ ′−ẑ)2

, (3.43)
where we moved back to the coordinates {x̂, ŷ, ẑ}. Performing the integration, the solu-
tion for δβ̂odd is

δβ̂odd(x̂) =
1

2v0
ln

[
µ(1 + cos θ)

cos θ +
√
µ2 + (1− µ2) cos2 θ

]
. (3.44)

This solution is odd in cos θ and does not depend on r̂. The radial velocity component is
vanishing, and the angular velocity component δvθ is given by

δvθ(x̂) =
1

2v0r̂ sin θ

[
1√

µ2 + (1− µ2) cos2 θ
− 1

]
. (3.45)

This solution is even in cos θ and decays as 1/r̂. The homogeneous solutions of (3.41)
are solutions of the Laplace equation in the rescaled coordinates. Expanding in spherical
harmonics, we obtain growing and decaying modes. The leading-order decaying solution
is the monopole δβ̂ ∝ r̃−1, which gives the even component

δβ̂even =
B

r̂

[
µ2 + (1− µ2) cos2 θ

]−1/2
, (3.46)

where we moved back to the coordinates {x̂, ŷ, ẑ}. This solution decays as 1/r̂ and is
even in cos θ. The even components of the velocity potential decay faster than the odd
components and correspond to a subsubleading correction. The quadratic terms over
δβ̂2 are not necessary to obtain the even component because of the partial decoupling
of different parities in the nonlinear equation (3.20). Indeed, the odd term (3.44) only
generates an odd term at order 1/r̂3. Therefore, at order 1/r̂3 the even component is
fully determined by the linear operator on the left-hand side of (3.41), which gives (3.46).
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Figure 3.2: Linear perturbation δvθ to the angular velocity, from (3.45), normalized by v0.We show the cases v0 = 0.1cs, 0, 0.9cs, 0 and 0.99cs, 0, at the radius r̂γ .

The behavior of the solutions at large radii is analyzed by expanding δβ̂ in Legendre
polynomials. The large-radius behaviors are

r̂ ≫ r̂γ : δβ̂2ℓ+1 ∼ r̂0 , δβ̂2ℓ ∼ r̂−1 , (3.47)
while for v0 → 0, both odd and even multipoles decay as

v0 → 0 : δβ̂n ∼ vn0 . (3.48)
The angular velocity δvθ is shown in Figure 3.2. For small v0 (v0 → 0), the linear flow

(3.34) is recovered asmultipoles beyond the dipole become negligible as seen from (3.48),
we have δβ̂odd ∝ − cos θ and the angular velocity behaves as δvθ ∝ (sin θ)/r̂. By symmetry,
the angular velocity vanishes along the z-axis, when θ = 0 and θ = π. As v0 increases, thecentral peak grows, and it diverges for v0 → cs, 0 as 1/µ. The angular velocity is positive,indicating that for θ ≃ π/2 the first-order perturbation δv is opposite to the incoming
flow v0, causing a slowdown near the black hole, before turning and falling increasingly
fast into the black hole near the Schwarzschild radius. The singularity associated with the
transition to the supersonic regime appears very close to cs, 0, for v0 ≳ 0.9cs, 0. Comparing
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this behavior with that of linear flow (3.34), we see that they agree at large radii as
r ≫ rγ : βL0 ∝ 1/r , βL1 = v0r −

v0
2γ

+
v0

2γ2r
+ . . . . (3.49)

Here, the subleading term − v0
2γ in the dipole component generates a positive correction

to the angular velocity, given by v0 sin(θ)
2γr . The key difference between this behavior and

the linear flow (3.34) lies in the cubic non-linearity described by equation (3.20), which
generates non-zero contributions to all higher-order multipoles.

At large radii, the phase β̂ can be expanded as β̂ = v0r cos θ+δβ̂odd+δβ̂even where theexpansion is done over odd and even components with respect to u = cos θ. For r̂ ≫ r̂γ ,the odd and even components are
δβ̂odd = δ̂β

(0)
odd(θ) +

1

r̂
δ̂β

(1)
odd(θ) +O

(
1

r̂2

)
and δβ̂even =

1

r̂
δ̂β(1)even(θ) +O

(
1

r̂2

)
, (3.50)

where δ̂β(0)odd is given by (3.44) and δ̂β(1)even/r̂ is given by (3.46). These large-distance tails,
generated by nonlinear mode couplings, can be expanded in Legendre multipoles

δβ̂
(0)
odd(θ) =

∞∑
ℓ=0

a2ℓ+1P2ℓ+1(cos θ) and δβ̂(1)even(θ) =
∞∑
ℓ=0

b2ℓP2ℓ(cos θ) . (3.51)
The coefficients an and bn satisfy recursion relations. The order ofmagnitude of the coeffi-
cients an and bn depends on the velocity v0 relative to the speed of sound cs, 0. If v0 ∼ cs, 0,the coefficients remain of the same order as a1 and b0. However, if v0 ≪ cs, 0, the coeffi-
cients decay at higher orders as (v0/cs, 0)n. Thus, for small velocities v0 ≪ cs, 0, the linearflow is recovered as higher orders become negligible and the coefficients a1 and b0 taketheir linear flow values.

The velocity field v = ∇̂β̂ yields
vr = v0 cos θ −

1

r̂2

(
δβ̂

(1)
odd + δβ̂(1)even

)
+ . . . ,

vθ = −v0 sin θ +
1

r̂

dδβ̂
(0)
odd

dθ
+

1

r̂2

(
dδβ̂

(1)
odd

dθ
+
dδβ̂

(1)
even

dθ

)
+ . . . . (3.52)

The deviations from the uniform flow v0 decay as 1/r̂2 for the radial velocity and as 1/r̂
for the angular velocity. Furthermore, the angular velocity and the velocity squared are
even up to order 1/r̂. For the density, from (3.24) we have
ρ̂even = ρ̂0+

1

r̂
+
2v0 sin θ

r̂

dδβ̂
(0)
odd

dθ
+. . . and ρ̂odd =

2v0
r̂2

[
cos θδβ̂(1)even + sin θ

dδβ̂
(1)
even

dθ

]
+. . . ,

(3.53)
where ρ̂0 = 3k20

2 = γ − v20 . Thus, the density field is even up to order 1/r̂.When going back to physical coordinates, the explicit expressions for ρeven and ρoddare given using (3.44)
ρeven = ρ0+

GmBHρ0

cs, 0
√

(c2s, 0 − v20)r
2 + v20z

2
+ . . . and ρodd =

4Bρ0G2m2
BHv0cs, 0z

[(c2s, 0 − v20)r
2 + v20z

2]3/2
+ . . . .

(3.54)
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The even component agrees with the results for the linear density perturbation in an
isothermal gas caused by the motion of a star, as found in [266, 277]. The new odd com-
ponent, proportional to the coefficientB, is related to the accretion by the black hole and
is the source of accretion drag force.

Expanding ρ̂even in powers of v0, we have
ρ̂even = ρ̂0 +

1

r̂
+

v20
2c2s, 0r̂

sin2 θ + . . . . (3.55)
Thus, at large radii (r̂ ≫ r̂γ ) and for v0 ≪ cs, 0, the density correction due to the motion
of the black hole is much smaller than the static contribution associated with the black
hole, ρ̂0 ≫ 1/r̂ ≫ v20/(c

2
s, 0r̂). Therefore, it is reasonable to neglect this correction to theself-gravity of the dark matter perturbation. At smaller radii, the gravity of the black hole

dominates over the scalar-field background self-gravity and, consequently, over the scalar
perturbation as well.

3.5.3 . Numerical scheme
In the subsonic regime considered in this chapter, the flow remains close to the linear

solution given by (3.34). Importantly, there is no shock at large radii. Therefore, an itera-
tive approach starting from this linear approximation can be used to efficiently solve the
problem numerically. Practically, (3.20) is written as

∇̂ · (k2+∇̂β̂) = S , with S =
2

3
∇̂ · [(∇̂β̂)2∇̂β̂] . (3.56)

To solve this system (3.56), an iterative scheme is employed. First, starting from the linear
flow β̂L, the source term S is computed using the second equation. Then, an improved
flow β̂ is obtained by solving the first equation. The fields are expanded using Legen-
dre multipoles, and the Green’s function of the linear operator ∇̂ · [k2+∇̂(·)] is utilized, as
explained in Appendix A.1. These two steps (computing S and solving the equation) are
repeated iteratively until the flow converges.

3.5.4 . Numerical results
In our numerical computations, we choose the value k0 = 10−3, which corresponds to

the order of magnitude associated with the equilibrium between self-interactions of the
scalar field and gravity. This choice is motivated by the fact that in the bulk of the soli-
ton, far from the black hole horizon, we have k2 ∼ ΦI ∼ ΦN from (2.13) and (3.10), where
ΦN ∼ 10−6 represents the typical amplitude of the gravitational potential in astrophys-
ical and galactic systems. In these systems, which are dominated by gravity, the typical
velocities are also of the order of v2 ∼ ΦN, which is equivalent to the magnitude of the
speed of sound, given that c2s, 0 ∼ k20 . Since we focus on the subsonic regime, we choose
v0 = cs, 0/2 in the following numerical computations. This choice is consistent with the
expected order of magnitude and ensures that v0 remains below the sound speed. As
for the matching radius, we select r̂m = 80 to satisfy the constraints discussed in sec-
tion 3.3.1. It is important to note that the precise values of these parameters do not affect
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the behavior of the scalar field flow; rather, they only depend on the properties k0 ≪ 1

and v0 < cs, 0.
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Figure 3.3: First Legendre multipoles of the radial velocity vrℓ (upper panel) and of theangular velocity vθℓ (lower panel), as defined in (3.58). The solid lines show even indices ℓwhereas the dashed lines show odd ℓ.
The Legendre multipoles of the phase β are obtained through the iterative scheme

described in the previous section, as explained below (3.56). Further details can be found
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in Appendix. After a few iterations, the scheme converges, and the results shown in Fig-
ure 3.3 correspond to the values obtained after the 9th iteration. This convergence is
facilitated by the fact that the nonlinear flow remains close to the linear approximation
(3.34) in the subsonic regime v0 < cs, 0.Figure 3.3 illustrates the Legendre multipoles of the radial and angular velocities, de-
noted as vr and vθ, respectively. These quantities are defined as

vr =
∑
ℓ

vrℓPℓ(cos θ), vθ = − sin θ
∑
ℓ

vθℓP
′
ℓ(cos θ) , (3.57)

with the velocity components
vrℓ =

dβ̂ℓ
dr̂

and vθℓ =
β̂ℓ
r̂
. (3.58)

At small radii (r < rm), we utilize the radial monopole obtained from radial accretion
in [190] and the linear dipole obtained for the linear flow (3.34). This choice sets the inner
boundary condition, and we solve the nonlinear system (3.56) only for r > rm. Conse-quently, the higher-order multipoles are truncated at r̂m. This truncation is justified sincethese higher-order multipoles are negligible compared to the monopole at radius r̂m. Itis important to note that the radial velocity vr diverges at the Schwarzschild radius [190];however, this is an artifact resulting from the choice of coordinates and the interpretation
of dβ̂/dr̂ as a velocity is valid only in the nonrelativistic regime.

Figure 3.3 demonstrates the partial decoupling of odd and even components, which
is discussed in Appendix and section 3.5.2. The odd multipoles of the phase β̂ exhibit a
constant tail at large distances, in addition to the linear dipole associatedwith the uniform
flow v0. In contrast, the even multipoles decrease as 1/r̂, as described in (3.50) and (3.51).
Consequently, for the angular velocity vθ = (1/r̂)∂β̂/∂θ, the even multipoles decay as
1/r̂, while the odd multipoles decay as 1/r̂2, as indicated in (3.52). It is worth noting that
in the notation (3.57), even components of vθ correspond to odd ℓ. These distinct decay
rates can be observed in the lower panel of the figure, where solid lines represent odd
components and dashed lines represent even components. Additionally, it should be
noted that the constant odd tail of the phase β̂ does not contribute to the radial velocity
vr = ∂β̂/∂r̂. As a result, only the leading even tail and the subleading odd tail of order
1/r̂ in β̂ contribute to the radial velocity, and all multipoles of the radial velocity decay at
the same rate 1/r̂2, as shown in the upper panel and expressed in (3.52).

The asymptotic regime at large distances is only reached beyond r̂γ ∼ 106, and for
higher-ordermultipoles, it is attained at even larger radii. This radius rγ ∼ rsg correspondsto the point where the self-gravity and pressure of the scalar field become comparable to
the gravity of the black hole. At larger radii, the influence of black hole gravity is screened
by the collective response of the scalar field (its pressure), resulting in a rapid decay of
velocity corrections to the uniform flow v0. Furthermore, it should be noted that even for
the relatively large velocity v0 = cs, 0/2, the corrections to the linear flow (3.34) remain
small, as indicated by the magnitude of higher-order multipoles with ℓ ≥ 2. Thus, as will
be evident in Figure 3.5 below, the flow can be seen as a combination of amonopole radial
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accretion, which closely resembles the purely radial result, and a dipole term associated
with the uniform velocity v0 at infinity. These findings are consistent with the numerical
results obtained by [304, 305] for the motion of a black hole in a perfect gas, utilizing
either Newtonian or relativistic treatments.

In Figure 3.4, we present our results for the Legendremultipoles ρ̂ℓ of the density field,multiplied by a factor r̂. We can see that the monopole component dominates at all radii.
This dominance arises because the density approaches a constant value ρ̂0 associatedwith the soliton at large radii, while at small radii, the flow becomes radial, as shown in
Figure 3.3. This radial flow implies a spherically symmetric configuration. In agreement
with (3.53), the product r̂ρ̂rℓ approaches a constant value for the even multipoles beyond
ℓ = 0 as the radius increases, while it decreases as 1/r̂ for the odd multipoles. At small
values of r̂, the monopole component grows as 1/r̂, while the higher-order multipoles
either growmore slowly or decrease. Specifically, for the linear flow (3.34), using (3.37), we
obtain that the dipole component behaves as r̂√2−2 at small radii. Consequently, r̂ρ̂ℓ=1 ∝
r̂
√
2−1 → 0.

Figure 3.4: First Legendre multipoles of the density multiplied by a factor r̂, r̂ρ̂rℓ.
In Figure 3.5, we present maps of the scalar velocity and density fields. The black hole

is located at the center of the plots, and the scalar-field dark matter approaches from the
left with a uniform velocity v0 and density ρ0. The upper row of panels displays maps of
the velocity field, represented by arrows with unit length, at different scales. We zoom in
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on the black hole from left to right. Themiddle row shows the corresponding maps of the
magnitude |v| of the velocity.

In the left panels, which represent the largest scale, the flow is mostly unaffected by
the gravitational pull from the black hole and maintains its incoming velocity v0, mov-
ing from left to right. As shown in the panel below in the middle row, the flow exhibits
approximate symmetry under ẑ ↔ −ẑ, indicating that v2 is an almost even function of
cos θ. This is consistent with the large-radius expansions discussed in section 3.5.2 and
Appendix, as well as shown in Figure 3.3. According to (3.52), at large distances, the first
correction δv to the velocity, relative to the incoming velocity v0, is an even angular veloc-ity δvθeven ∝ 1/r̂. Consequently, this leads to an even correction to the velocitymagnitude,
δv2even ∝ 1/r̂. This behavior is in agreement with the pattern observed in the left panels,
where the streamlines slightly converge towards the black hole symmetricallywith respect
to ẑ ↔ −ẑ. This behavior is distinct from that of free point particles and resembles the
flow in a gas. It arises due to the pressure generated by self-interactions, which increases
near the black hole as the density grows. At large distances, the primary effect is that
dark matter particles are initially decelerated as they approach ẑ = 0 and subsequently
accelerated to regain the velocity v0 downstream.

In the middle-column panels, which represent intermediate scales, the deflection of
the streamlines towards the black hole becomes more evident. A turning point on the
ẑ-axis is visible somewhat behind the black hole. This demarcates the region, far from
the black hole, where the streamlines escape towards infinity to the right of the figure,
and the inner region where the streamlines fall into the black hole. Notably, there is no
corresponding turning point to the left of the black hole, as the dark matter approach-
ing from the left along the ẑ-axis continues moving straight towards the black hole until
it plunges into it. This asymmetry in the flow is a clear signature distinguishing it from
the case of potential flow around a compact object without accretion, such as the flow of
water around a hard ball. Mathematically, this disparity arises from the different bound-
ary conditions around the object: the radial infall at the black hole horizon in our case
or the vanishing normal velocity at the surface of the ball in the typical hydrodynamical
scenario. As demonstrated in previous sections, the boundary condition at infinity corre-
sponds to the dipole in (3.34), while the boundary condition near the center corresponds
to the monopole of this same equation. Consequently, the two boundary conditions pos-
sess different parity, indicating that the flow is neither purely odd nor even. The phase is
odd at large distances and transitions to even near the black hole, exhibiting a complex
pattern in the intermediate region. This asymmetry in the flow is also connected to the
accretion onto the black hole, which determines the inner boundary condition. Therefore,
the drag force experienced by the black hole, resulting from this asymmetry, is directly
related to the accretion rate. We will derive the explicit expression for drag force in sec-
tion 3.7.
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Figure 3.5: Flow (top panels), iso-velocities contours (middle panels) and odd-componentof the density field r̂ρ̂odd/ρ̂0 (bottom panels) for the scalar-field at different scales (106,
2.5 × 104 and 104 rs). The velocity and the density are computed from the multipoles of
β̂. The black hole is located at the center of the figures, at ẑ = x̂ = 0, where ẑ = z/rs and
x̂ = x/rs.

In the right-column panels, the flow becomes predominantly radial as we zoom in
closer to the black hole. This corresponds to the dominance of the monopole component
at small radii, as observed in Figure 3.3. The velocity magnitude increases as the flow
is accelerated by the gravitational pull of the black hole during its infall. As explained in
section 3.3.1, below a critical radius rc, the flow transitions to the high-velocity branch,
where the pressure from self-interactions can no longer counteract gravity, and the dark
matter reaches the black hole horizon in a free fall, similar to free particles.

The lower row in Figure 3.5 displays maps of the odd component of the density field,
specifically the ratio r̂ρ̂odd/ρ̂0. We highlight the odd component to emphasize the asym-
metry in the flowand the formation of awakebehind the black hole. The drag experienced
by the black hole arises from the asymmetry of the flow since a symmetric flow would not
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generate any drag force. However, it would be challenging to discern this effect in a map
of the total density, as the even component dominates on all scales, as observed in Fig-
ure 3.4. In the subsonic regime considered in this paper, the total density appears nearly
spherically symmetric at all scales, similar to the case of a perfect gas in both Newtonian
and relativistic numerical simulations [304, 305].

We introduce the factor r̂ to highlight the radii that primarily contribute to the gravi-
tational pull on the black hole through the overdense wake of dark matter, as the grav-
itational force is proportional to ∫ drρr/r3 ∼

∫
d ln r(rρ). According to (3.21), a decrease

in velocity corresponds to an increase in density, given by ρ̂ = 3k2+(r̂)/2 − v2. Thus, the
turning point in the velocity field, situated behind the black hole, corresponds to an en-
hanced density compared to the radial reference. This clearly illustrates the asymmetry
and the presence of a wake behind the black hole. As seen in the figure, in agreement
with Figure 3.4, the product r̂ρ̂odd reaches a peak at a large radius r̂γ ∼ 106. This radius
r̂sg also marks the point at which the self-gravity of the soliton becomes comparable to
the black hole gravity. Consequently, beyond r̂γ , the self-interaction pressure dominates
over the black hole gravity and screens its influence on the dark matter distribution. This
leads to a large-scale cutoff, which also eliminates the Coulomb logarithm from the dy-
namical friction encountered by collisionless particles in Chandrasekhar’s classical study
(see Appendix B.1).

3.6 . Mass accretion by the black hole

3.6.1 . Relationship with large-radius expansions
In a steady state, the accretion ofmatter by the black hole can be described by the flux

of matter through any closed surface surrounding it. Mathematically, this can be written
as

˙̂
MBH = −

∫
Ŝ
dŜ · ρ̂v , (3.59)

where ˙̂
MBH is the accretion rate and dŜ represents the surface element. This equation

holds as long as the radius of the surface Ŝ is large enough for the low-k nonrelativistic
regime (3.21) to be valid. Interestingly, it can be shown that the accretion rate ˙̂

MBH does
not depend on the specific choice of surface Ŝ. The difference between fluxes through
Ŝ and any smaller or larger surface Ŝ′ can be expressed as the integral of ∇̂ · (ρ̂v) over
the volume V̂Ŝ,Ŝ′ between the two surfaces. However, from (3.21), this integral evaluates
to zero. Therefore, the accretion rate can be obtained using the large-distance expansion
(3.50) by selecting a surface that is much larger than the radius r̂γ . Assuming the surface
Ŝ to be a sphere with radius r̂, the mass flux can be expressed as

˙̂
MBH = −2πr̂2

∫ 1

−1
du ρ̂vr , (3.60)

where u = cos θ. This equation indicates that only the monopole component of the radial
momentum ρ̂vr contributes to the mass flux. At leading order 1/r̂2, this component is
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Figure 3.6: The axi-symmetric cylinder following the streamlines used for the computationof (3.62).

determined by the even series b2ℓ in (3.51). Substituting these terms, the expression for
the accretion rate becomes

˙̂
MBH = 4π

[
b0

(
γ − 5

3
v20

)
+ b2

8v20
15

]
, (3.61)

which does not depend on the radius r̂, as expected.
Alternatively, the accretion of mass by the black hole can be computed by following

the scalar-field streamlines, similar to how the trajectories of free particles are tracked.
However, unlike the free case, the streamlines in this scenario do not escape to ẑ → ∞
with a non-zero deflection angle θ∞. Due to the effective pressure generated by self-
interactions, the flow remains smooth without shocks or caustics, as long as the subsonic
regime is maintained. At large distances downstream, the velocity again becomes v0, andthe streamlines align parallel to the z-axis. This behavior is depicted in the upper row of
the velocity field shown in Figure 3.5. To calculate the mass loss, a closed surface Ŝ is
chosen to be a cylinder with a varying transverse radius b̂(ẑ) that follows the streamlines,
as shown in Figure 3.6. The incoming impact parameter at ẑ− → −∞ is denoted as b̂−,and the outgoing transverse radius at ẑ+ → +∞ is denoted as b̂+. Due to the asymmetry
caused by the mass loss into the black hole, the streamlines are not perfectly symmetric,
and therefore, b̂+ ̸= b̂−. The mass loss can then be expressed as

˙̂
MBH = 2π

∫ b̂−

0
db̂ b̂ ρ̂vz|ẑ− − 2π

∫ b̂+

0
db̂ b̂ ρ̂vz|ẑ+ . (3.62)

This is the difference between the upstream and downstreammass fluxes, as there is no
mass flux through the transverse surface of the cylinder.

The streamlines r̂(θ) can be obtained by integrating
streamlines : dr̂

dθ
=
r̂vr
vθ

, (3.63)
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or from the stream function Ψ defined by
∂Ψ

∂θ
= ρr2 sin θ vr and ∂Ψ

∂r
= −ρr sin θ vθ , (3.64)

which ensures the continuity equation (3.21) is satisfied, as the streamlines correspond to
curves of constant Ψ. Using the expansions (3.51), the large-distance expansions of the
velocity and density fields, streamlines, and the stream function can be obtained. The
expression for r̂(θ) is

r̂(θ) =
b̂

sin θ
− 1

b̂v0 sin θ

∑
ℓ

b2ℓ(1 + cos θP2ℓ) + . . . , (3.65)

where only the leading orders in the impact parameter b̂ of the even and odd compo-
nents of the streamlines are considered. The first term gives the leading order r̂ sin θ = b̂,
which corresponds to an even straight line of constant transverse radius b̂ parallel to the
z-axis when neglecting black hole gravity. The second term gives the first asymmetric
contribution, which is a subleading correction. It is worth noting that the asymmetry only
appears at the next subleading order, as the leading correction to the flow is even in
ẑ ↔ −ẑ, as mentioned in section 3.5.2 and (3.52). The impact parameter upstream is
(r̂ sin θ)ẑ→−∞ = b̂, while the transverse radius downstream is given by

(r̂ sin θ)ẑ→+∞ = b̂− 2

b̂v0

∑
ℓ

b2ℓ +O
(

1

b̂2

)
, (3.66)

where the series in b2ℓ can be expressed in terms of b0 and b2 using the explicit expression(3.46) and noticing that δβ̂(1)even(θ = 0) = B =
∑

ℓ b2ℓ. This leads to the expression
B =

∑
ℓ

b2ℓ =
b0
3

3γ − 5v20
γ − v20

+
4b2
15

2v20
γ − v20

, (3.67)

where the multiplying factors for b0 and b2 where calculated using (A.15). Additionally,
using the explicit expression (3.46), b0 and b2 can be expressed in terms ofB. For instance,
b0 can be written as

b0 = B
cs, 0
2v0

ln

(
cs, 0 + v0
cs, 0 − v0

)
= B

[
1 +

v20
3c2s, 0

+ . . .

]
. (3.68)

Going back to the expression (3.62) for the accretion rate, we can choose the large-
distance limit of the cylinder such that |ẑ±| ≫ b̂± ≫ r̂γ . Then, the angles θ− and θ+ go
to π and 0, the density and velocity go to ρ̂0 = γ − v20 and v0, respectively. With these
considerations, the expression for the accretion rate can be simplified

˙̂
MBH = πρ̂0v0(b̂

2
− − b̂2+) = 4πρ̂0

∑
ℓ

b2ℓ = 4πρ̂0B . (3.69)
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We used (3.66), to obtain the relationship between the upstream and downstream trans-
verse radii b̂±, and the first equality in (3.67). As expected, using the second equality in
(3.67) makes us recover (3.61).

The expression (3.69) gives the even component of the phase β̂even in terms of the
black hole accretion rate, and B can be expressed as B =

˙̂
MBH/(4πρ̂0). The value of B is

determined by the boundary conditions close to the black hole, specifically at the match-
ing radius rm. This implies that the calculation performed to derive (3.69) remains valid
when considering radial accretion at least up to the distance rm. In the subsonic regime,
this condition is always satisfied. However, at supersonic velocities, it may not hold true in
certain scenarios. Specifically, if a shock front, which typically arises in supersonic flows, is
located sufficiently close to the black hole the accretion pattern can deviate from the radial
case due to distinct behavior exhibited by particles in the upstream region. As described in
section 3.3.1, at small radii, the flow is in the relativistic regimewith a radial pattern, where
the monopole radial velocity grows like 1/r, while higher multipoles decrease. At the crit-
ical radius rc, the flow smoothly transitions from the low-velocity branch v ≪ k+ to the
high-velocity branch v ≃ k+. This transition also sets the critical valueFc of the scalar-fieldflux, which is regulated by the pressure associated with scalar self-interactions. This con-
nection between the large-distance behavior (3.50) and the small-scale relativistic physics
near the black hole horizon is established. By returning to physical coordinates, the flux
obtained for the radial case is [190]

ṁBH = 4πF⋆
r2sm

4

λ4
= 3πF⋆ρar

2
s , (3.70)

whereF⋆ ≃ 0.66 is a numerical value obtained from the computation of the unique profile
extending from the Schwarzschild radius to the outer static soliton.

Comparing (3.69) and (3.70), we find
ṁBH = 4πρ0r

2
sB with B = F⋆

3ρa
4ρ0

=
F⋆

k20
, (3.71)

where B is now expressed in terms of ρa and ρ0. From (3.51), the monopole of the radial
velocity at large distances is given by vr0 = −b0r2s/r2. Using (3.71) and (3.68), this expres-sion agrees, in the limit v0 → 0, with the result vr = −F⋆m

4r2s/(λ4ρ0r
2) obtained in [190]

for the radial case.
As we focus on the subsonic case, v0 < cs, 0 ≪ 1, ensuring that v0 ≪ 1, the flow

becomes radial well before reaching the critical radius rc, and the self-regulated critical
flux Fc is identical to the one obtained in the purely radial case. Thus, the accretion rateby the black hole is given by (3.70), which does not depend on v0. However, the scalar-field flow at large radii does depend on v0, including its monopole component, as seen
from (3.68), which exhibits a singularity as v0 → cs, 0. As demonstrated in Figures 3.2
and 3.3, even at v0 = cs, 0/2, the flow remains close to the linear flow (3.34), with only
small nonlinear corrections. Numerical analysis confirms that the coefficient b0 for themonopole of β̂ in the large-distance regime agrees with the prediction (3.68)-(3.71).
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3.6.2 . Comparison with previous works and other systems
The expression (3.70) implies

ṁBH ∼ ρ0r
2
s/c

2
s, 0 ∼ ρ0G2M2

BH/c
2
s, 0 . (3.72)

This is different from the radial accretion of collisionless particles with an isotropic and
mono-energetic distribution at the characteristic velocity cs, 0 [306]

collisionless: ṁfree =
16πρ0G2M2

BH

cs, 0
. (3.73)

It is also different from the classical radial Bondi accretion rate [300] for an isothermal
gas, ṁBondi ∼ ρ0r

2
s/c

3
s, 0, which also corresponds to the subsonic limit of the so-called

"Bondi-Hoyle-Lyttleton accretion rate" [307, 308]
Bondi-Hoyle: ṁBondi−Hoyle =

2πρ0G2M2
BH

(c2s, 0 + v20)
3/2

. (3.74)
The hydrodynamical accretion rate (3.74) is much greater than the collisionless accretion
rate (3.73), by a factor (1/cs, 0)2 ∼ 106. This is because collisions restrict tangential mo-
tion and funnel particles in the radial direction [306]. The scalar-field accretion rate is in-
between these two cases. As expected, for the same hydrodynamical reason, it is higher
than the free rate, as the flow is more efficiently converted into a radial pattern at small
radii, but now by a factor 1/cs, 0 ≫ 1. However, it is much smaller than the accretion rate
of the perfect gas rate, by a factor cs, 0 ≪ 1. Thus, the scalar-field self-interactions are
much more efficient in resisting the black hole gravity and slowing down the infall. This
is because the scalar field has a different equation of state and deviates from a perfect
gas in the relativistic regime, which sets the critical flux Fc and the normalization of the
global profile [190]. This agrees with the fact that for a perfect gas with an adiabatic index
γad > 5/3, there is no Newtonian steady transonic solution, but one exists in General Rel-
ativity [305, 306]. This again shows the critical role of relativistic effects at small radii for
steep equations of state.

The expression (3.70) can be understood in simple terms. It means that close to the
black hole horizon rs, where the infall velocity is close to the speed of light, the scalar den-sity is of the order of ρa, as can be checked by an explicit computation of the scalar profile
(see [190] and (2.45)). From (2.6), this is the density where the self-interaction potential
ΦI is of order unity, and the self-interaction term VI = λ4ϕ

4/4 is of the order of the mass
termm2ϕ2/2. This characteristic density provides an upper bound on ρ, and hence on the
accretion rate, as the infall velocity cannot be greater than the speed of light.

3.7 . Drag force

3.7.1 . Relationship with large-radius expansions
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As the black hole moves through the scalar-field cloud, it is slowed down by a drag
force. By symmetry, this force F = Fzez is directed along the z-axis. As sketched in Fig-
ure 3.7, let us consider an open subsystem formed by the black hole and the scalar field
inside a surface Sin that encloses the black hole, far enough from the horizon for Newto-
nian dynamics to hold but close enough for its massM to be dominated by the black hole
massMBH. The surface Sin = ∂Vin bounds a volume Vin. Outside this volume, the scalar
cloud extends up to the soliton radius Rsol at a much greater distance. This defines the
outer volume Vout. Going back to physical coordinates, the change of momentum of this
subsystem, of volume Vin, reads

dpz
dt

= GMBH

∫
Vout

drρ(r)
r · ez
r3

−
∫
∂Vin

dS · Pez −
∫
∂Vin

dS · ρvvz . (3.75)
The first term, integrated over the volume Vout of the scalar cloud, is the usual dynamical
friction term due to the gravitational wake [309]. It represents the gravitational pull from
the scalar-field overdensity generated behind the black hole through the deflection of the
streamlines under the black hole gravity. The second term, which is absent in collisionless
media such as the stellar cloud considered by Chandrasekhar’s classical study [60], is the
pressure exerted by the outer cloud on the subsystem. The third term is the contribution
of the momentum flux through the surface Sin. This term is clearly related to the local in-
flux of matter and therefore the infall of mass into the black hole, i.e., accretion. However,
it vanishes if the flow is radial close to the black hole.

In the limit of an infinite constant-density scalar cloud, the first gravitational term suf-
fers from the same divergence as the Newtonian gravitational force in an infinite homo-
geneous universe, associated with the so-called "Jeans swindle". To address this, it is
common to integrate first over angles or regularize Newtonian gravity with a damping
factor e−κ|r−r′| and then take the limit κ → 0 at the end of the computations [310]. This
implies that a constant-density background does not contribute, and only the asymme-
try of the perturbed scalar density field contributes, associated with the wake behind the
black hole.

By considering the surface Sin as the inner boundary of the outer volume Vout (whichchanges the sign of dS) and introducing the external surface Sout of the scalar cloud itself,we can express the pressure term as
−
∫
∂Vin

dS · Pez =
∫
∂Vout

dS · Pez −
∫
Sout

dS · Pez =
∫
Vout

dr
∂P

∂z
−
∫
Sout

dS · Pez , (3.76)
where we used the divergence theorem in the right-hand terms. If the scalar cloud is
isolated in vacuum, the pressure term vanishes at the cloud boundary. However, this is
not the case if we choose a surface Sout that is inside the scalar cloud but large enough forthe drag force to have converged. Noticing that the first term in (3.75) is also the opposite
of the gravitational attraction by the black hole of the outer scalar cloud, we obtain

dpz
dt

=

∫
Vout

dr

[
ρ
∂ΦBH

∂z
+
∂P

∂z

]
−
∫
Sout

dS · Pez −
∫
∂Vin

dS · ρvvz. (3.77)
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Figure 3.7: Inner and outer surfaces used in (3.75).

Far inside the soliton boundary, the steady-state Euler equation associated with the con-
tinuity and Bernoulli equations (3.21) reads

∇ · (ρvvz) = ρv · ∇vz = −ρ∂ΦBH

∂z
− ∂P

∂z
. (3.78)

Substituting this into (3.77), we obtain the drag force on the black hole as
Fz =

dpz
dt

= −
∫
Sout

dS · ρvvz −
∫
Sout

dS · Pez . (3.79)
This expression no longer depends on the inner surface Sin or the bulk of the volume
Vout. Therefore, we can shrink the inner surface Sin towards the black hole. The first
term in (3.79) expresses the conservation of momentum as for collisionless systems: in
the steady state, the momentum that enters the external boundary Sout is equal to the
gain of momentum of the black hole (similar to (3.59), where the accretion of mass by
the black hole is equal to the mass inflow through any enclosing surface S). The second
term takes into account the impact of the pressure when the surface Sout is taken withinthe soliton cloud. The clear interpretation of (3.79) means that it could have been used
at once as the definition of the net drag force in a steady state, as in [277] for the case
of the isothermal gas. The interest of the derivation above is to clarify its link with the
expression (3.75), which contains the more familiar gravitational wake term associated
with the usual meaning of dynamical friction in the case of free particles.
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3.7.2 . Relationship with the accretion rate
Regarding the black hole accretion rate, we can observe that the drag force converges

to a finite value that does not depend on the shape of the surface Sout in the large-
distance limit. By choosing a distant sphere centered on the black hole as the surface
Sout, as shown in the upper panel of Figure. 3.6, in dimensionless variables, we obtain
the monopole contribution F̂z = −4πr̂2(ρ̂vrvz + cos θP̂ )ℓ=0. At large radius r, using thelarge-distance expansions derived from (3.51), the factors r̂ cancel out as expected, and
we obtain F̂z = v0

˙̂
MBH, where ˙̂

MBH is the black hole accretion rate obtained in (3.61).
Alternatively, choosing the elongated cylinder that follows the streamlines as the surface
Sout, as done in the computation (3.62) and shown in the lower panel of Figure 3.6, we find
that the first term in (3.79) gives F̂z = πρ̂0v

2
0(b̂

2
− − b̂2+) = v0

˙̂
MBH. An explicit computation

using the expansions derived from (3.51) shows that the pressure integral of the second
term vanishes as 1/b. Thus, both computations yield the same result

Fz = ṀBHv0 . (3.80)
Hence, the drag force can be expressed as the product of the accretion rate and the rela-
tive velocity, while the conventional dynamical friction vanishes. This is because, similar to
a gas in the subsonic regime, the medium has sufficient time to adjust and accommodate
the presence of the black hole. This holds true only when the relative velocity between
the black hole and the medium is lower than the speed of sound as will be discussed in
chapter 4. However, the situation differs for collisionless particles or fuzzy dark matter,
as they do not interact through collisions or direct interactions (in the case of fuzzy dark
matter, quantum pressure does not exert an effective pressure that would lead to colli-
sions and consequently dark matter remains relatively "free" in this scenario). Instead,
their gravitational interactions dominate. Consequently, dynamical friction can be signif-
icant even in the subsonic regime for these particles, as the absence of collisions allows
them to maintain their gravitational influence, resulting in the persistence of dynamical
friction. Using (3.72), we can approximate the drag force as

Fz ∼ ρ0r
2
sv0/c

2
s ∼ G2M2

BHρ0v0/c
2
s, 0 . (3.81)

The numerical computation of the scalar-field profile is consistent with the prediction
(3.80). As explained in section 3.3.1, the scalar-field cloud is matched to the radial flow at
thematching radius rm, slightly beyond the critical radius rc associated with the transitionfrom the low-velocity to the high-velocity branch. By choosing the sphere of radius rmas the inner surface Sin, the second and third terms of (3.75) vanish due to symmetry.
The first gravitational term is given by (4π/3)GMBH

∫∞
rm
drρℓ=1, representing the dipole ofthe scalar-cloud density field. The unperturbed background does not contribute, and the

density decays as 1/r2 at large distances, as seen in (3.54) and Figure 3.4. The numerical
computation agrees with (3.80).

3.7.3 . Comparison with previous works and other systems
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In the literature, there can be some confusion regarding the net drag force and the dy-
namical friction. In the collisionless case, as described in Chandrasekhar’s classical work
[60], the dynamical friction arises from the long-range gravitational interaction between
the perturber (in this case, the black hole) and the distant stars of the stellar cloud. The
summation of the velocity changes experienced during these distant encounters leads to
the well-known result (3.83), which is recalled below. This corresponds to the first term
in (3.75). An alternative approach is to compute the perturbation to the steady-state dis-
tribution of the stars caused by the perturber [309]. By bending the trajectories of the
distant stars, the perturber generates a gravitational wake behind it. The overdensity in
this wake is responsible for the deceleration of the perturber [62]. Computing the grav-
itational pull from this overdense wake reproduces Chandrasekhar’s result. This corre-
sponds to the first term in (3.75). Another source of momentum exchange arises when
there is accretion onto the perturber, whether it is a black hole or a massive star. This
additional source is associated with the momentum deposited by the accreted material
and is sometimes referred to as "capture drag" or "accretion drag" force. In some studies,
these two sources of momentum exchange are estimated separately and found to be of
the same order, typically given by the Chandrasekhar’s expression (3.83), and both con-
tributions are either added or the latter formula is used alone. However, naive estimates
can lead to confusion and result in double counting.

In our explicit computation (3.80), we find that the net drag force is actually equal to
a naive estimate of the momentum exchange associated with accretion. This raises the
question of where the contribution associated with the long-range gravitational interac-
tion has gone. Furthermore, we observe that the contribution from the long-range gravi-
tational interaction, given by the first term in (3.75), is nearly equal to (3.80). The explana-
tion becomes clear when examining (3.75), where the first term represents the dynamical
friction associated with the long-range gravitational interaction, and the third term repre-
sents the deposited momentum. However, the magnitude of the deposited momentum
is much smaller than the naive estimate ṀBHv0 because matter falls nearly radially onto
the black hole near the horizon due to the gravitational interaction that bends the flow
(combined with fluid pressure). Therefore, it is not possible to separate both effects. For-
tunately, (3.79) provides a simple expression for the net drag force that does not require
the separation of gravitational friction and accretion drag. Hence, we prefer to use the
term "net drag force" to describe the total force experienced by the black hole, which
is the relevant quantity for practical purposes. One advantage of the expression (3.79) is
that it allows us to obtain the analytical result (3.80) by leveraging the relationship with the
large-distance expansions. This is particularly useful as accretion rates and drag forces
can be challenging to compute accurately through numerical simulations, whichmay vary
by factors of a few or more depending on the numerical scheme [305]. Another crucial
point is that this expression enables us to understand the drag force from the perspective
of an effective theory. By performing the integral at large distances while accounting for
all the nonlinear and relativistic effects near the Schwarzschild radius, we can determine
the values of the accretion rate and drag force, as explained in section 3.3.1 and (3.54) and
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(3.71).
As mentioned in previous sections, the relationship (3.80) explicitly shows that the

drag force diminishes as the accretion rate approaches zero. The dynamical friction being
null, the drag force is only due to the accretion drag. In this scenario, the potential flow
exhibits symmetry with respect to the ẑ = 0 plane, resulting in no net force along the
ẑ axis. This observation aligns with the hydrodynamical analogy derived in section 3.4.2
for nonrelativistic subsonic motion of a star in an isothermal gas without accretion, as
demonstrated by linear steady-state analysis [266, 268, 269]. However, our result (3.80)
does not rely on a linear treatment. Instead, it utilizes Gauss’s theorem to express the
total drag force in terms of the asymptotic behavior of the fields at large distances (3.79).
This formulation simply reflects the conservation of mass and momentum in a steady
state. Moreover, the accretion rate itself (3.70) involves a fully nonlinear and relativistic
treatment that spans from large radii down to the Schwarzschild radius [190].

When the accretion rate is non-zero, the drag force no longer vanishes. This is because
the accretion onto the black hole, accompanied by a radial inward velocity flow near the
black hole horizon, breaks the symmetry with respect to the ẑ = 0 plane. This asymme-
try is evident from the presence of a turning point rturn slightly behind the black hole,
associated with a local maximum of the dark matter density field in the wake. A similar
relationship between accretion and the drag force, as given in (3.80), was found in [277]
for a black hole moving in an isothermal gas. The proportionality to ṁBH is not surprising
since the dynamical friction in a perfect fluid without accretion vanishes, and the relation-
ship’s form could be anticipated through dimensional analysis. However, the coefficient
being unity is not evident a priori (in the extreme case of free particles, as mentioned in
(3.84) below, the drag force is non-zero even in the absence of accretion). Despite this
formal similarity to the perfect gas case, as indicated in (3.72), the accretion rate for the
scalar field is much smaller compared to the isothermal gas case. Consequently, the drag
force is also significantly reduced. In the case of the isothermal gas, [277] obtains

Subsonic perfect gas: Fperfect gas = ṁBHv0 ∼ G2m2
BHρ0v0/c

3
s, 0 , (3.82)

and we find that both the accretion rate and the accretion drag are smaller for the scalar
field dark matter by a factor cs, 0 ≪ 1, as shown in our result (3.81). The result (3.82) was
also obtained by [269] using linear theory, without accretion but considering finite-time
effects. It is consistent with hydrodynamic simulations [311]. The accretion drag force
exhibits a similar behavior in the case of collisionless particles and fuzzy dark matter. It is
proportional to the accretion rate multiplied by the velocity in both scenarios.

Now, we will compare the null dynamical friction we found in the subsonic regime
with other established research findings. Our dynamical friction significantly differs from
the one obtained by Chandrasekhar [60] for free particles, which has been confirmed by
numerical simulations [61, 62]

Collisionless: Ffree ≃ 16π2CG2m2
BHρ0/v

2
0

∫ v0

0
dv v2f(v) , (3.83)

where the particle velocity distribution f(v) is normalized to unity and assumed to be
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isotropic. Here, C represents the Coulomb logarithm C ≈ ln(bmax/bmin), with bmin ∼
GmBH/v

2
0 and bmax is an infrared cutoff on the impact parameter bmax, typically takenas the size of the cloud. For a relative velocity v0 smaller than the stellar cloud velocity

dispersion cs, 0, the expression becomes
v0 < cs, 0 : Ffree ∼ CG2m2

BHρ0v0/c
3
s, 0 . (3.84)

Another notable scalar-field scenario is the fuzzy dark matter model [133], where the self-
interactions are negligible, but the de Broglie wavelength is significantly large. This choice
corresponds to a scalar mass of approximately 10−22 eV, allowing for wavelike effects
to extend up to galactic scales and potentially mitigate small-scale tensions present in
the cold dark matter framework. In the model, the dynamical friction in the presence
of an 1/r potential [312], corresponding to Coulomb scattering of a plane wave by the
external Newtonian gravity of the black hole black hole, has been studied by [63]. As in
our case, the calculations are performed in a reference frame where the test object, here
a black hole mBH, is stationary at the origin while the dark matter fluid flows past with
velocity v and uniform density ρ before perturbation by the test object. The gravitational
interaction between the darkmatter and the test object is considered, while self-gravity of
the dark matter is neglected for simplicity. The time-independent Schrödinger equation
for the wavefunction ψ has a solution in terms of a confluent hypergeometric function
M [a, b, z]. The wavefunction depends on the coordinate z parallel to the velocity, the
associated momentum k = mDMv, and the radial distance r from the point mass as ψ =

ReikzM [iβ, 1, ik(r − z)]. The dimensionless parameter β, defined as β = GmBHm
2
dm/k,is introduced. It represents the ratio of the characteristic length scale to the de Broglie

wavelength. The regime of interest is β ≫ 1. The dynamical friction force is then obtained
by integrating the momentum flux density tensor of the fluid over a surface, resulting in
a surface integral of the form FFDM =

∮
ρ ∂ΦN/∂z dr when considering a steady-state

system, whereΦN is the gravitational potential and ρ = |ψ|2. Finally, the dynamical friction
can be expressed as

FDM: FFDM ∼
G2m2

BHρ0
v20

C(β, kR) , (3.85)
where R denotes the size of the scalar cloud, and C(β, kR) is a function involving con-
fluent hypergeometric functions. Assuming the size of the soliton is much larger than
the self-gravity radius rsg, typically, we have β ≪ 1 and kR ≲ 1 in the subsonic regime
considered in this paper. In this limit, [63] finds that C ∼ (kR)2, leading to the following
expression for the dynamical friction

rsg
R
cs, 0 ≪ v0 < cs, 0 : FFDM ∼

G2m2
BHρ0

c2s, 0
, (3.86)

where cs, 0 is a velocity scale defined as c2s, 0 = |ΦN| (analogous to the virial velocity in
a classical system). This result is also supported by related studies [64, 65]. Comparing
this expression (3.86) with the classical result (3.84) obtained from Chandrasekhar’s for-
mula, we observe that the dynamical friction for fuzzy dark matter is larger by a factor of
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cs, 0/v0 > 1. Unlike the classical result, the fuzzy darkmatter case does not involve an inte-
gration over a distribution function f(v) with a cutoff at v0, representing the exclusion ofhigher-velocity stars contributing to the dynamical friction. Within the soliton, which acts
as a coherent state with a vanishing phase, all scalar-cloud velocities are zero (similar to
a Bose-Einstein condensate) and below the black hole velocity v0. However, there is still amilder cutoff proportional to (kR)2 ∝ (v0/cs, 0)

2, resulting in the aforementioned expres-
sion (3.86), which is related to the number of available modes in the vibration spectrum
of the scalar field. The expression (3.86) aligns with the findings of [270] (based on a dif-
ferent approach, their equation (4.12), considering the scalar cloud radius comparable to
the Jeans length) and [176] employing a hydrodynamical approach that also incorporates
weak quartic self-interactions). It also roughly agrees with numerical simulations [272].
Thus, we conclude that scalar field dark matter with self-interactions results in a smaller
dynamical friction compared to fuzzy dark matter, by a factor of v0 ≪ 1. If the size of the
fuzzy dark matter cloud is significantly greater than the de Broglie wavelength (kR ≫ 1),
the classical scaling (3.84) is recovered [40]. In this case, the scalar field behaves like a
collection of particles with a size of λdB.

It is important to note that the result (3.85) was derived using linear perturbation the-
ory and Newtonian gravity [63, 64], but it is expected to be a reasonable approximation
for fuzzy dark matter as long as the Compton wavelength of the scalar cloud is much
greater than the black hole horizon, see also [275]. Additionally, the large-mass limit ex-
amined in this paper assumes 1/mDM ≪ rs. In contrast, our result (3.81), obtained for themotion of a black hole within the scalar cloud, incorporates fully nonlinear and relativistic
effects near the Schwarzschild radius, which determine the accretion rate and drag force.
Hence, we are exploring different systems and regimes in our study. In our case, the self-
interactions dominate over quantum pressure, and the Compton wavelength 1/mDM is
much smaller than all astrophysical scales, including the size of the scalar cloud and the
black hole horizon.

3.8 . Summary of the chapter

In the chapter, the focus was on the subsonic regime, where the relative velocity be-
tween the compact object (Schwarzschild black hole) and the scalar-field dark matter soli-
ton is smaller than the speed of sound. We examined the flow of dark matter in this
regime for a system with a quartic self-interacting potential. In the nonrelativistic regime,
it is found that the dark matter behaves as an isentropic potential flow with a polytropic
index of γad = 2. This behavior indicates the collective effects associated with the self-
interactions, and the system in the subsonic regime resembles a perfect gas more than
a collection of individual particles. The flow in the low-velocity regime remains close to
a simple linear approximation, described by a monopole (determined by radial accretion
at the Schwarzschild radius) and a dipole (resulting from uniform flow at large distances).
The nonlinear equations of motion are solved beyond this linear approximation using
an iterative numerical scheme. Large-distance expansions up to subleading order are
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derived, providing explicit results for the accretion by the black hole and its dynamical
friction. The nonlinear and relativistic effects near the black hole horizon are taken into
account, as they play a crucial role in the analysis.

In comparison to a perfect gas, the accretion rate in the self-interacting scalar field
dark matter scenario is much smaller, by a factor of cs, 0 ≪ 1. This is because the
scalar field departs from a perfect gas in the relativistic regime, and the accretion rate is
determined by the large-field regime close to the Schwarzschild radius, where the self-
interactions significantly slow down the infall. The relationship between the accretion
rate and the drag force (Fz = ṁBHv0) is recovered. However, unlike collisionless particlesand fuzzy dark matter, but similar to a perfect gas, the dynamical friction in our case is
nonexistent in the subsonic regime.

The presence of self-interacting scalar field dark matter with reduced drag force can
have significant implications for various astrophysical phenomena. One such implica-
tion is the potential decrease in the dephasing of the emission frequency of gravitational
waves compared to fuzzy dark matter and cold dark matter. This effect could be relevant
to addressing the Fornax globular cluster timing problem if the system is influenced by the
reduced drag force [313]. However, it is important to note that the analysis presented in
this study specifically applies to the case of a black hole with its boundary condition at the
Schwarzschild radius. In the case of globular clusters and stellar objects with negligible
accretion, the leading-order result predicts zero drag force, as observed in the subsonic
regime for perfect fluids [269]. Nonetheless, amore accurate treatment that considers the
perturbation to the fluid self-gravity is expected to reveal a small but nonzero dynamical
friction, as demonstrated by [270].
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4 - Supersonic accretion and dynamical friction for a
moving black hole

In this Chapter, we investigate the influence of a cloud of self-interacting dark matter
on the accretion rate and dynamical friction experienced by a black hole. Building upon
the exploration of the subsonic regime of the chapter 3 , we now delve into the supersonic
regime. We reveal that the velocity flow exhibits amore intricate behavior than in the sub-
sonic case. The presence of a shock front, induced by the transonic solution, necessitates
a differentiated treatment of the upstream and downstream regions. We examine this
phenomenon and elucidate the associated boundary conditions at the shock front. With
the foundations laid, we proceed to quantify the mass accretion and dynamical friction
of the black hole within the self-interacting system. Our analysis reveals similarities to
the Chandrasekhar’s result [60], suggesting that our framework effectively captures the
essential dynamics of the system. This chapter is based on the paper "Supersonic accre-
tion and dynamical friction for a black hole moving through a self-interacting scalar field dark
matter cloud" [2].

4.1 . Description of the non-linear velocity flow

4.1.1 . Supersonic regime
In the context of hydrodynamical flows around moving bodies, such as airplanes, the

behavior of acoustic waves depends on the velocity of the body. In the subsonic regime
studied in chapter 3, where the velocity of the body is lower than the speed of sound,
acoustic waves can propagate to all points in space after a long time, reaching a steady
state. This means that the fluid at any point adapts to the presence of the moving body,
and the flow is smooth, determined by the boundary conditions at infinity and at the
surface of the body (in this case, the Schwarzschild radius).

At supersonic velocities, however, acoustic waves cannot catch up with the speed of
the body. Instead, they are pushed downstream, confined within the Mach cone. As a re-
sult, the flowupstream remains unperturbed or at rest, and thematching to the boundary
conditions on the surface of the body is facilitated by the formation of a shock wave orig-
inating at the front tip of the body or slightly before it. The shock discontinuity enables
the flow to transition to a new pattern downstream, which can then satisfy the boundary
conditions on the body’s surface. In the case of a black hole moving at supersonic speeds
within a darkmatter cloud, a similar behavior arises. However, an additional complication
appears due to the presence of nonlinear effects and boundary layers on both sides of
the shock. Consequently, it is not possible to apply perturbative treatments as in chap-
ter 3 on both sides of the shock and impose junction conditions on the shock itself. In
the supersonic regime, a more intricate analysis is required, involving the division of the
large-distance expansions into four distinct domains:
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• The upstream region located far before the shock.
• The boundary layer situated just before the shock.
• The boundary layer positioned just after the shock.
• The downstream region far behind the shock.

Figure 4.1: Schematic illustration of the investigated system, showcasing the motion ofdark matter with an initial velocity v0 (at z → −∞) towards a black hole. Two shock frontsare depicted as solid lines: (a) represents a small initial supersonic velocity v0 ≃ cs, 0, while(b) corresponds to a somewhat larger initial supersonic velocity v0 ≫ cs, 0 but for which
we can still consider radial accretion close to the black hole (v0 < c

2/3
s, 0/(3F⋆)

1/3). Thenomenclature used is valid for both (a) and (b). Region (1) indicates the radial accretionzone of the black hole. Then, for the case (a): Region (2) indicates the upstream regionlocated far ahead of the shock. Region (3) corresponds to the upstream region in closeproximity to the shock (upstream boundary layer). Region (4) represents the downstreamregion near the shock (downstream boundary layer). Region (5) denotes the downstreamregion situated far beyond the shock. The empty circle positioned behind the black holerepresents a point of zero velocity.
The far upstream and downstream regimes can still be studied using large-distance

expansions similar to the one in chapter 3. This approach allows for a standard pertur-
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bative treatment, where each order β̂n satisfies a linear differential equation with a right-hand side that depends on the lower-order terms β̂m withm < n. However, the functions
β̂n take different forms in the upstream and downstream regions and may include loga-
rithmic contributions involving ln(r̂). The presence of boundary layers necessitates new
expansions that account for nonlinear effects. The complete solution requires thematch-
ing of these four regions. This matching process involves two asymptotic matchings: one
between each boundary layer and either the upstream or downstream bulk flow, and an-
other junction condition along the shock between the two boundary layers. Additionally,
the solution must be matched with the uniform velocity v0 at infinity, and the location ofthe shock must be determined. The matching to the radial inflow at the Schwarzschild ra-
dius naturally emerges as a constant of integration. The problem is depicted in Figure 4.1
for visual representation.

4.1.2 . Upstream region
Unlike the subsonic case, where we deal with a boundary-value problem, in the su-

personic regime, we encounter a Cauchy problem. This means that instead of specifying
boundary conditions, we have an initial condition upstream at ẑ → −∞. Expanding (3.20)
over 1/r̂ and collecting the leading-order terms of order 1/r̂2 as in (3.41) for the subsonic
regime, the equation of motion now takes the form of a wave equation

∂2β̂0
∂x2

+
∂2β̂0
∂y2

− 1

c2z

∂2β̂0
∂z2

=
v0u

ρ0

1

r̂2
, (4.1)

where we use the notation cz to represent the propagation speed and introduced u =

cos(θ). The parameter v0 is chosen such that v0 > cs, 0, with
1

c2z
=

v20
c2s, 0

− 1 , cz > 0 . (4.2)
In the far region away from the boundary layer, the flow remains smooth, allowing us
to employ a large-distance expansion as in chapter 3. However, we will observe that the
terms β̂n may include logarithmic factors ln(r̂).

Let us consider the case of large velocities v0, where the effective pressure in the soli-ton becomes negligible, and we expect to recover the collisionless case. To find a solution
at first order, we assume the form

β̂0 = a ln(r̂) + f0(u) , (4.3)
where a is a parameter to be determined. Substituting this into (3.20) and collecting the
terms of order 1/r̂2, we obtain the differential equation
(1−u2)

[
(1 + c2z)u

2 − 1
]
f ′′0 +u

[
3 + c2z − 3(1 + c2z)u

2
]
f ′0 = 1+

c2z
2v0u

+a
[
1− 2(1 + c2z)u

2
]
,

(4.4)
which is a first-order equation over f ′0. The general solution is given by

f ′0 =
1− 2v0au

2

2v0(1− u2)
+

b

(1− u2)
√
(1 + c2z)u

2 − 1
, (4.5)
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where b is an integration constant.
To avoid an unphysical singularity at the upstreamMach cone θ = π−θc, the constant

b must be zero. Defining the Mach angle θc by 0 < θc < π/2 as sin(θc) = cz/
√

1 + c2z =

cs, 0(t)/v0 = 1/M, whereM is theMach number and cs = ρ/ρa is the local speed of sound(not to confuse it with the constant speed of sound at bulk density cs, 0 = ρ0/ρa), we have
uc = cos(θc) = 1/

√
1 + c2z , and tan(θc) = cz . The singular behavior of the second term

in (4.5) occurs on the upstream and downstream Mach cones θ = π − θc and θ = θc. Toavoid an upstream singularity at π − θc, we must have a = −1/(2v0). This nonzero valuefor a indicates that the logarithmic term a ln(r̂) cannot be ignored. Therefore, we find
f ′0(u) =

1

2v0(1− u)
, f0(u) = − ln(1− u)

2v0
. (4.6)

Here, we disregard the integration constant in f0, as it only affects the constant of inte-gration in the velocity potential β̂, which plays no role in the equations of motion. This
yields the upstream solution

β̂0 = − ln(r̂(1− u))

2v0
, (4.7)

and the velocity components at first order are
vr ,1 = − 1

2v0r̂
, vθ ,1 = − 1 + u

2v0r̂
√
1− u2

, v21 =
1

r̂2
, ρ1 = 0 . (4.8)

Therefore, at this first order, we recover the long-distance solution of the collisionless
case. This is because, at this order, the density is not modified by the deflection of the
particle trajectories by the black hole, resulting in ρ1 = 0. In this case, there are no pres-
sure effects due to the absence of density gradients.

Unlike the subsonic case, the solution (4.7) is neither odd nor even. This is due to
the logarithmic term introducing the factor au in (4.5). Physically, this loss of parity is
manifested by the bow shock, which breaks parity. This behavior is also related to the
hyperbolic nature of the equation of motion (4.7), which distinguishes between the limits
ẑ → ±∞, with the far upstream region ẑ → −∞ associated with the initial condition of
the Cauchy problem. Two other differences from the subsonic case, where vr ,1 = 0 and
vθ ,1 > 0, are that we now have vr ,1 < 0 and vθ ,1 < 0. In the supersonic case, the dominant
gravitational effect of the black hole accelerates the dark matter fluid, with v2 > v20 .Let us now examine the second-order correction β̂1, which is of order 1/r̂, obtained bycollecting the terms of order 1/r̂3 in (3.20) and using the expression (4.7) for the first-order
term β̂0. This gives the linear differential equation

∂2β̂1
∂x2

+
∂2β̂1
∂y2

− 1

c2z

∂2β̂1
∂z2

=
1

2ρ̂0v0r̂3
. (4.9)

In the upstream supersonic regime, the fields at a point r only depend on the properties
of the flow in the upwindMach cone. To solve (4.9), wemust use the retarded propagator
of the linear wave equation. We have

β̂1 =
c2z

2ρ̂0v0

∫
dx̂′dŷ′dẑ′

(r̂′2 + a2)3/2

∫
dpxdpydω

(2π)3
eipx(x̂−x̂′)+ipy(ŷ−ŷ′)−iω(ẑ−ẑ′)

(ω + iϵ)2 − c2z(p
2
x − p2y)

. (4.10)
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Here, we have used the Fourier-space expression of the retarded propagator and intro-
duced a smoothing cutoff a > 0 to regularize the small-scale divergence of the source
1/r̂3, replacing 1/r̂3 with 1/(r̂2+a2)3/2. After performing the integrals and taking the limit
a→ 0+, we obtain

β̂1 = − c2z
2ρ̂0v0r̂

∫ ∞

1

dy

(c2z + y2)
√
sin2 θ + y2 cos2 θ

, (4.11)
which behaves as 1/r̂. It is important to note that this expression only applies to the half-
plane ẑ < 0. This integral is even over ẑ (i.e., over u), but its first derivative is discontinuous
at u = 0. Therefore, we need to use the analytic continuation of (4.11) to extend this result
to u > 0. Alternatively, we can return to the differential equation (4.9) and assume the
ansatz

β̂1 =
f1(u)

r̂
, (4.12)

ensuring that there are no logarithmic corrections. This leads to a second-order differen-
tial equation over f1
(1− u2)

[
(1 + c2z)u

2 − 1
]
f ′′1 + u

[
5 + 3c2z − 5(1 + c2z)u

2
]
f ′1 + (1 + c2z)(1− 3u2)f1 =

1 + c2z
4v30

.

(4.13)
The two integration constants are determined by the requirement that both f1(−1) and
f1(−uc) are finite. The resulting expressions are
−1 ≤ u ≤ −uc : f1(u) =

1 + c2z

8v30
√

(1 + c2z)u
2 + 1

ln

(
1− (1 + c2z)u− cz

√
(1 + c2z)u

2 − 1

1− (1 + c2z)u+ cz
√
(1 + c2z)u

2 − 1

)
,

(4.14)
−uc ≤ u ≤ uc : f1(u) =

1 + c2z

4v30
√

1− (1 + c2z)u
2

(
π/2− arctan

1− (1 + c2z)u√
1− (1 + c2z)u

2

)
,

(4.15)
which agree with (4.11). The analytic continuation from u < −uc to u > −uc is obtained byusing the property arctan(x) = i ln [(1− ix)/(1 + ix)] /2. To derive (4.15) from (4.14), we
utilize the property arctan(1/x) = π/2− arctan(x) for x > 0, ensuring an expression that
is regular at u = ±1/(1 + c2z). The appropriate form of arctanmust be used to achieve a
regular expression over the desired range of u. Close to the shock at u → uc, we obtainthe Taylor expansion

u→ u−c : f1(u) = − π(1 + c2z)
3/4

4v30
√

2(uc − u)
+ . . . . (4.16)

The singularity at uc, where the second-order velocities vr ,2 and vθ ,2 diverge, indicates thebreakdown of this perturbative approach near the shock, close to the downwind Mach
cone.
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In the supersonic regime, the equations of motion exhibit a hyperbolic nature. In this
region, the solution is solely determined by the local properties of the fluid, including the
sound speed cs, the relative velocity v0, and the gravitational influence of the long-rangegravity of the black hole. Remarkably, the solution in the upstreamdomain is independent
of the boundary conditions at the Schwarzschild radius and does not involve any free
integration constants.

4.1.3 . Downstream region
In the far downstream region, we can once again employ a large-distance expansion,

which may include logarithmic factors such as ln(r̂). However, we need to be cautious as
the first-order upstream solution (4.7) is singular on the ẑ-axis downstream, specifically
at θ = 0 and u = 1. This singularity indicates that the upstream solution does not hold
true in the downstream region for θ < θs, where θs(r̂) represents the polar angle of theaxi-symmetric shock front at radius r̂. To find the downstream solution, we still use the
general form (4.3) for the velocity potential β̂, and we ensure continuity across the shock.
Thismeans that the term a ln(r̂)must be the same in both the upstream and downstream
functions, resulting in a = −1/(2v0) once again. However, the solution must now be
regular at u = 1, which determines the value of b. The second integration constant for f0is set by continuity at u = uc. The resulting downstream solution is given by

f0(u) = − ln(1 + u)

2v0
+

1

2v0
ln

(
1 + (1 + c2z)u− cz

√
(1 + c2z)u

2 − 1

−1 + (1 + c2z)u+ cz
√

(1 + c2z)u
2 − 1

)
, (4.17)

which in return gives

vr ,1 = − 1

2v0r̂
, vθ ,1 = − 1

2v0r̂
√
1− u2

1 + u− 2cz√
u2

u2
c
− 1

 ,

v21 =
1

r̂
− 2cz

r̂
√

u2

u2
c
− 1

, ρ̂1 =
2cz

r̂
√

u2

u2
c
− 1

. (4.18)

We can observe that the scalar-field density ρ̂ is increased behind the shock, with the
increment decreasing as 1/r̂ at larger distances. In contrast, the upstream density (4.8)
remains unmodified at this order. The radial velocity vr is continuous across the shock,which is consistent with the continuity of β̂ for a shock that maintains a fixed direction θsat leading order in the far distance.

The jump conditions for an isentropic potential flow across a shock differ from the
Rankine-Hugoniot jump conditions applicable to the Navier-Stokes equations. Indeed,
the Navier-Stokes equations incorporate viscous effects and thermal conduction. The
Rankine-Hugoniot jump conditions derived from these equations encompass conserva-
tion of mass, momentum, and energy, capturing the alterations in density, velocity, and
thermodynamic quantities across the shock front. On the other hand, for an isentropic
potential flow the fluid flows without dissipative effects, such as viscosity and thermal
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conduction. This simplified model enables a streamlined analysis of fluid dynamics, par-
ticularly for compressible flows. However, when a shock is encountered, the jump condi-
tions for an isentropic potential flow deviate from the Rankine-Hugoniot jump conditions.
In isentropic potential flow, the jump conditions only consider conservation of mass and
momentum. There is no energy equation or entropy. The jump conditions entail the conti-
nuity of the velocity potential β̂, which also implies the continuity of the tangential velocity
vt, and the continuity of the transverse mass flow ρ̂vn, where vn is the normal velocity. At
a large distance, vt = vr and vn = vθ at leading order, thus preserving the continuity of vr.Furthermore, the condition of continuity of ρ̂vθ at order 1/r̂ yields the angle of the shock,confirming that the shock follows the Mach cone at large distances (θs → θc).It is worth noting that the first-order angular velocity vθ ,1 and density ρ̂1 of diverge at
uc, precisely on the downwind Mach cone. This divergence arises from the expansion of
the function f0(u) as u approaches uc

u→ u+c : f0(u) = − ln(1− uc)

2v0
− (1 + c2z)

3/4

czv0

√
2(u− uc) + . . . , (4.19)

indicating the breakdown of the perturbative analysis near the shock. To properly ac-
count for the effects, nonlinear considerations in a boundary layer just behind the shock
become necessary. Notably, this singularity manifests at the first-order f0, in contrast tothe upstream case where it emerged at the second order f1 in (4.16).In the forthcoming section below, we will explore the matching conditions that arise
along the boundary layers and the shock, which give rise to logarithmic contributions that
affect the downstream bulk flow. Consequently, the second-order expression of the ve-
locity potential undergoes modification from (4.12) through the inclusion of an additional
logarithmic term. Thus, we can write it as

β̂1 =
f1(u) + g1(u) ln(r̂)

r̂
. (4.20)

To obtain thesemodified expressions, we substitute the above equation into the equation
of motion and consider the first-order result (4.17). By collecting terms of order 1/r̂3 and
ln(r̂)/r̂3, we arrive at two coupled linear second-order differential equations involving f1and g1. In order to ensure regularity at u = 1, we determine an integration constant for
each of these two functions. This leads to the following solutions

g1 =
C2√

(1 + c2z)u
2 − 1

, (4.21)
and

f1 =− 3(1 + c2z)
2u

2v30[(1 + c2z)u
2 − 1]

+
1√

(1 + c2z)u
2 − 1

{
(1 + c2z)

3/2

2czv30
ln

[√
1 + c2zu+ 1√
1 + c2zu− 1

]

+C1 +
C2

2
ln

[
[(1 + c2z)u

2 − 1]2[1 + (1 + c2z)u− cz
√

(1 + c2z)u
2 − 1]

(1 + u)2[−1 + (1 + c2z)u+ cz
√
(1 + c2z)u

2 − 1]

]

+
1 + c2z
4czv30

ln

[
(1 + u)3[−1 + (1 + c2z)u+ cz

√
(1 + c2z)u

2 − 1]4

[(1 + c2z)u
2 − 1]2[1 + (1 + c2z)u− cz

√
(1 + c2z)u

2 − 1]3

]}
, (4.22)
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where C1 and C2 are two integration constants to determine.
4.1.4 . Shock front and boundary layers

In our previous analysis, we observed that the large-distance expansions of the up-
stream and downstream bulk flows diverge as u approaches uc. This divergence indi-
cates that the zeroth-order approximation becomes insufficient in describing the dynam-
ics close to uc. Consequently, boundary layers emerge on both sides of the shock, where
nonlinear effects become significant, necessitating a departure from the polynomial ex-
pansion of chapter 3.

A thorough examination reveals that these boundary layers possess a width of ap-
proximately ∆u ∼ r̂−2/3. This suggests that the variations in flow properties are better
described by powers of r̂−1/3 instead of solely relying on a 1/r̂ dependence. Moreover,
logarithmic contributions reappear. To begin, we must determine the location θs(r̂) ofthe shock front, which can be expressed through the large-distance expansion

θs(r̂) = θc +
θ1

r̂2/3
+
θ2 + ψ2 ln (r̂)

r̂
+
θ3 + ψ3 ln (r̂)

r̂4/3
+ . . . . (4.23)

This expansion, in turn, determines the expansion of us(r̂) = cos (θs(r̂)).Considering that the boundary layer has a width of order r̂−2/3, we introduce the
boundary-layer coordinate

U = r̂2/3[u− us(r̂)] . (4.24)
We observe from (4.16) that the upstreambulk flow diverges as vθ ∼ r̂−2(uc−u)−3/2, while
(4.19) demonstrates that the downstream bulk flow diverges as vθ ∼ r̂−1(u − uc)

−1/2.
Consequently, the singularity close to the shock occurs at a lower order in 1/r̂ on the
downstream side. This asymmetry gives rise to two distinct expansions. For the upstream
boundary layer just before the shock, we have

U < 0 : β̂ = v0r̂u− 1

2v0
ln (r̂(1− u)) +

F2(U)

r̂2/3
+
F3(U)

r̂
+ . . . . (4.25)

For the downstream boundary layer just after the shock, we have
U > 0 : β̂ = v0r̂u− 1

2v0
ln (r̂(1− uc)) +

F1(U)

r̂1/3
+
F2(U)

r̂2/3
+
F3(U) + F3(U) ln (r̂)

r̂
+ . . . .

(4.26)
In both cases, the regular part of the bulk flow over u is retained. In the upstream case
(4.25), this includes the first two terms of order r̂ and r̂0, while in the more singular down-
stream case (4.26), it includes only the first term of order r̂ (along with the constant asso-
ciated with the second term). Consequently, the boundary-layer expansion over U com-
mences at order r̂−2/3 in the upstream case, while it starts at an earlier order of r̂−1/3 in
the downstream case. Notably, the upstreamboundary layer does not exhibit logarithmic
terms (ln(r̂)), just like the upstream second-order bulk flow (4.12). However, logarithmic
terms arise due to nonlinear effects in both the shock curve (4.23) and the downstream
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boundary layer (4.26). In comparison to standard one-dimensional boundary-layer the-
ory, r̂−1/3 assumes the role of the small parameter, and U serves as the boundary-layer
coordinate stretched to account for the infinitesimal width∆u ∼ r̂−2/3.

In the upcoming sections 4.2 and 4.3, we will calculate the accretion rate onto the
black hole and its dynamical friction. This computation involves surface integrals over a
sphere with radius R, where we take the limit R → ∞ to utilize the large-distance ex-
pansions described earlier. These integrals incorporate a geometric area prefactor of r̂2.
Consequently, wemust compute velocity and density fields up to order 1/r̂2 to determine
the constant term governing the accretion rate and dynamical friction. This necessitates
reaching order 1/r̂ in both the bulk flows and the boundary layers (4.25) and (4.26).

We proceed by simultaneously computing the boundary-layer expansions and the
shock front order by order over r̂−1/3. At zeroth order, no boundary layers are present,
and we extend the upstream and downstream bulk flows β̂0 up to the shock front. As de-termined by the Mach cone at large distances, the matching condition at the shock front
also determines the zeroth-order term θc in the shock expansion (4.23).The next order is associated with the term θ1/r̂

2/3 in the shock expansion (4.23) and
the terms F1/r̂

1/3 in the boundary-layer expansions (4.25) and (4.26). Notably, the term
F1 is absent in the upstream boundary layer. As previously noted, this is because the
singularity of the upstream bulk flow appears at a higher order in 1/r̂ compared to the
downstream bulk flow. Therefore, at this order, we truncate the shock expansion (4.23)
at the term θ1/r̂

2/3, the upstream bulk flow obtained in section 4.1.2 extends down to the
shock θs, and there is only one boundary layer behind the shock, given by the expansion(4.26) truncated at the term F1/r̂

1/3.
The upstream bulk flow, given by (4.6) and (4.15), provides the boundary conditions at

the angular location θs, i.e., at U = 0. Using the downstream boundary-layer expression
(4.26), the continuity of the velocity potential ˆ̂β and the normal momentum ρ̂vn gives

F1(0) = 0 , F ′
1(0) = −4v0θ1

9cz
. (4.27)

By substituting the expansion (4.26) into the equation of motion and collecting terms of
order r̂−5/3, we obtain the nonlinear differential equation(

U − czθ1√
1 + c2z

)
F ′′
1 +

1

2

(
1− 9c2z

v0
√
1 + c2z

F ′′
1

)
F ′
1 = 0 . (4.28)

This nonlinear differential equation highlights the significance of nonlinear effects in the
boundary layer, which were not captured in the perturbative treatment of section 4.1.3.
The solution can be expressed parametrically in terms of the auxiliary variable Y

U =
czθ1√
1 + c2z

+
16v30θ

3
1 − 729c3zY

3

243v0cz
√

1 + c2zY
2
, F1 =

−64v30θ
3
1 + 729c3zY

3

486v0cz
√
1 + c2zY

, (4.29)
where 0 < Y < 4v0θ1/(9cz), and we used the boundary conditions (4.27) to determine
two integration constants. Then, we expand this result at large U , in terms of 1/U , in the
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rear of the boundary layer. Expressed in terms of u, we obtain the expansion

β̂ ≃ r̂v0u+

[
− ln(r̂(1− uc))

2v0
− 8v0θ

3/2
1

√
u− uc

35/2c
1/2
z (1 + c2z)

1/4
+ . . .

]
+
1

r̂

[
− 8czv0θ

3
1

81(1 + c2z)(u− uc)
+ . . .

]
.

(4.30)
The dots in the brackets correspond to higher orders over u − uc generated by higher
orders in the boundary-layer expansion (4.26) (the functions F2, F3, . . .), while the dots atthe end correspond to higher orders over 1/r̂. This expansion must be matched with the
expansion of the downstream bulk flow (4.17) and (4.22) as u→ u+c

β̂ ≃ r̂v0u+

[
− ln(r̂(1− uc))

2v0
−

(1 + c2z)
3/4
√
2(u− uc)

v0cz
+ . . .

]
+

1

r̂

[
− 3(1 + c2z)

4v30(u− uc)
+ . . .

]
.

(4.31)
The matching of both terms in θ1 between (4.30) and (4.31) gives

θ1 =

(
3

2

)5/3
(
1 + c2z

v0c
1/2
z

)2/3

. (4.32)

This determination of the coefficient θ1 also fixes the location of the shock (4.23) at this
order. The successful matching of both θ1 terms in (4.30) serves as validation for our
computation. This asymptotic matching procedure, which involves aligning the large-U
behavior of the boundary layer with the small u − uc behavior of the downstream bulk
flow, allows us to obtain a global solution that spans across all regions of space.

The width of the boundary layer, characterized by r̂−2/3, is determined through (4.28).
This scaling ensures a balance between the linear and nonlinear terms in (4.28) as the
powers of r̂ cancel each other out. It is this non-linearity that permits the regularization
of the divergences at the shock, as observed in the perturbative treatment of the bulk
flow in section 4.1.3.

Moving on to higher orders, specifically F2 and F3, we employ the same method to
compute the shock and theboundary layers at these orders: {θ2, ψ2;F2} and {θ3, ψ3;F3,F3}.However, we now encounter the presence of two boundary layers. The functional form
of F2, F3,F3 is obtained by substituting into the equation of motion, while the integration
constants are determined through the junction conditions. At this stage, we perform
two separate asymptotic matchings: one between the rear of each boundary layer and
the bulk flow, and another involving simple junction conditions between the two bound-
ary layers at the shock. A detailed computation reveals that introducing logarithmic
terms in the expansions (4.23) and (4.26) is necessary to satisfy these junction conditions.
Consequently, this complete procedure fully determines the coefficient ψ2 in the shock
expansion (4.23) and the integration constant C2 in the bulk downstream solution (4.21)
and (4.22). However, the integration constant C1 in (4.22) remains undetermined and
is expressed in terms of θ2. Due to their lengthiness and limited illustrative value, the
expressions for these higher-order results are not provided here.
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4.2 . Mass accretion by the black hole

We now have the global solution for the flow at large distances, except for the un-
known parameter θ2. This parameter will be determined by the accretion rate onto the
black hole, which corresponds to the boundary condition at the Schwarzschild radius, a
factor we have not yet considered. In a steady state, the accretion rate onto the black
hole is given by the matter flux through any closed surface surrounding the black hole.
Choosing a sphere of radius r̂, the accretion rate can be expressed as in (3.60)

ṁBH = −2πr̂2
∫ −1

1
du ρ vr . (4.33)

Hence, we can determine ṁBH from the large-distance expansion by calculating the radial
momentum ρ̂vr up to the order of 1/r̂. Since we obtained separate expressions for the
scalar field profile in four different regions (the upstream and downstream bulk flows and
the boundary layers), with two asymptotic matchings in between, we define the angular
function

ṁBH(u) = −2πr̂2
∫ −1

u
du ρ̂ vr , (4.34)

which gives us the accretion rate in each domain based on the appropriate expression for
the scalar field flow. We determine the integration constants by considering the asymp-
totic matchings at the rear of the two boundary layers and the continuity at the shock
location. This allows us to determine the global function ṁBH(u) and the total accretionrate ṁBH(1). The result is

ṁBH =− 4πczv0θ2√
1 + c2z

− π(20 + 12c2z +
√
3π)

3v0
−

4π
√
1 + c2z
3v0

× ln

[
16(
√
1− c2z − 1)3v20

3c4z(1 + c2z)

]
− 2π

9v0
ln

[
(
√

1− c2z − 1)18v160
216318c20z (1 + c2z)

11

]
, (4.35)

which determines θ2 as a function of ṁBH. It is worth noting that the result (4.35) does
not depend on the radius r̂. Any terms involving higher powers of r̂ eventually cancel out,
resulting in a finite value as r̂ approaches infinity. This agrees with the fact that thematter
flux is independent of the choice of surface enclosing the black hole in the stationary
regime.

As previously mentioned, equation (4.35) establishes a connection between the
unidentified parameter θ2 at significant distances and the rate of accretion. It is impor-
tant to note that the large-distance expansion, by design, does not possess knowledge
pertaining to the inner boundary conditions, as these fall outside its realm of applicabil-
ity. Consequently, it cannot ascertain the value of the accretion rate. Nevertheless, the
flow at significant distances continues to be influenced by the accretion rate due to the
constant-flux condition in the steady state. This influence is explicitly demonstrated in
equation (4.35). In this study, we abstain from engaging in a numerical computation of
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axisymmetric relativistic flow down to the event horizon. Instead, we opt to present a
simplified approximation that is expected to encapsulate the primary behavioral aspects.

In the case of radial accretion, the expression for the accretion rate is provided by
equation (3.70). In Chapter 3, we demonstrated the validity of this accretion rate in the
subsonic regime v0 ≲ cs, 0. This validity holds true until we approach the transition ra-
dius, where rsg ≫ rs, and the flow rapidly adopts an approximately radial configura-
tion, effectively reverting to the radial solution. It is important to note that this accre-
tion rate is significantly lower than the spherical Bondi accretion rate [300], denoted as
ṀBondi ∼ ρ0r

2
s/c

3
s, 0, primarily due to the steep effective adiabatic index γ = 2.

In the supersonic regime, one would typically anticipate the Hoyle-Lyttleton accretion
rate [308, 314] to manifest as follows

ṀHL =
4πρ0G2m2

BH

v30
=
πρ0r

2
s

v30
. (4.36)

However, for situations characterized by moderate Mach numbers, this accretion rate
closely aligns with the Bondi prediction and remains significantly higher than the radial
accretion rate (3.70). The latter represents the maximum achievable flux for radial sym-
metry, constrained by the effective pressure linked to the self-interactions [190]. Lower
accretion rates are associated with solutions that are either entirely subsonic (an infeasi-
ble outcome due to the boundary condition at the black hole horizon) or completely su-
personic. Hence, in the regime where ṀHL > ṀBH,radial, a bow shock materializes. This
shock serves to decelerate and deflect the dark matter, facilitating the alignment with the
boundary conditions at the black hole horizon, where the accretion rate is substantially
lower. This gives rise to a subsonic region surrounding the black hole, wherein the flow
transitions to an approximately radial configuration in close proximity to the black hole
horizon, subsequently matching the accretion rate. In a somewhat analogous manner,
due to the vast difference between the maximum possible accretion rate (3.70) and the
incoming flow (4.36), the black hole, adorned with the surrounding scalar cloud featuring
substantial self-interactions, behaves akin to an obstacle. This analogy draws parallels to
a solid sphere moving through a fluid or a space shuttle navigating through the atmo-
sphere.

At high velocities, characterized by v30 > c2s, 0/(3F⋆), the Hoyle-Lyttleton accretion rateas expressed in equation (4.36) becomes smaller in magnitude when compared to the
value defined by equation (3.70), which corresponds to the upper limit of achievable flux.
This implies thatmatter can directly plunge into the black hole along a trajectory described
by a fully supersonic solution. Consequently, the black hole ceases to function as an ob-
stacle and instead acts as a gravitational sink, freely capturing infalling matter. However,
on the z-axis situated behind the black hole, a wake and a conical shock still persist. This
phenomenon arises because streamlines originating from all directions converge toward
the symmetry axis but are unable to traverse it. Additionally, a stagnation point material-
izes on the z-axis behind the black hole, where the velocity becomes zero. This is due to
the fact that the radial velocitymust exhibit a negative value close to the horizon and be on
the order of the speed of light, while it tends toward a positive value close to v0 at greater
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radial distances. This turning point effectively separates the streamlines that eventually
fall into the black hole from those that escape to infinity. Clearly, this region behind the
black hole is characterized by subsonic conditions. Therefore, a subsonic region always
persists behind the black hole, regardless of the velocity conditions. Consequently, for
high velocities, it is reasonable to expect that the shock becomes attached to the black
hole. This configuration comprises an upstream supersonic region that extends all the
way down to the horizon on the front side of the black hole, while on the back side, a nar-
row shock cone emerges, encompassing a subsonic region. This observation aligns with
the characteristics of the accretion column as described in the Hoyle-Lyttleton analysis
[308, 314]. For a more comprehensive examination of this regime, we delve into further
details in the Appendix C. Upon closer investigation, we find that pressure forces do not
significantly alter the core properties of Hoyle-Lyttleton accretion. Consequently, for ve-
locities surpassing c2/3s, 0 , a narrow accretion column forms on the rear side of the black
hole.

In summary, we can categorize the behaviors into two regimes
v0 <

c
2/3
s, 0

(3F⋆)1/3
: ṁBH =

12πF⋆ρ0G2m2
BH

c2s, 0
, (4.37)

v0 >
c
2/3
s, 0

(3F⋆)1/3
: ṁBH =

4πρ0G2m2
BH

v30
. (4.38)

4.3 . Drag force

In chapter 3, using the Euler equation ofmotion associatedwith theBernoulli equation
(3.21), we derived the expression for the drag force on the black hole

F̂z = −2πr̂2
∫ −1

1
du (ρ̂v̂rv̂z + P̂ u) , (4.39)

where we chose the integration surface to be a sphere of radius r̂. Similar to the accretion
rate in (4.34), we define a function F̂z(u) to compute the drag force in each angular do-
main, up to integration constants. By applying junction conditions and asymptotic match-
ing, we obtain the global function, and the full drag force can be obtained from F̂z(u = 1).
Using (4.35) to express θ2 in terms of ṁBH, we find

F̂z =
˙̂
MBHv0 +

2πc2z
3(1 + c2z)

ln

(
e

4v40cz r̂
2

18(1 + c2z)
2

)
. (4.40)

In dimensional units, this can be expressed as follows
Fz = ṁBHv0 +

π

3
ρar

2
s

c2s, 0
v20

ln

[
ev40czr

2

18(1 + c2z)
2r2s

]
. (4.41)

In this manner, our computation encompasses and combines two distinct components
contributing to the overall drag force, which can be written as

Fz = Facc + Fdf . (4.42)
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The first term in this expression is directly linked to the accretion of matter by the black
hole, and as a result, it pertains to the momentum transfer associated with this accretion
process. Conversely, the second term represents the classical dynamical friction, which is
associated with the long-range gravitational attraction emanating from the wake formed
behind the black hole. This phenomenon becomes particularly relevant when pressure
forces exert their influence.

4.4 . Numerical computation

To confirm the behaviour of the system for moderate Mach numbers, we conducted
a numerical calculation to analyze the flow of dark matter around a black hole using the
publicly available AMRVAC code [315, 316]. This code is designed for solving partial differ-
ential equations in computational hydrodynamics and astrophysics, employing a parallel
adaptive mesh refinement framework. Previous studies on the Bondi-Hoyle accretion of
a polytropic gas [317, 318] have also utilized the AMRVAC code. These studies focused on a
polytropic gas with a polytropic index γ = 5/3. In contrast to our case, they needed to in-
clude the energy equation in addition to the continuity and Euler equations since entropy
is not conserved at the shock. However, since our fluid represents a scalar field rather
than a perfect gas, we do not require the energy equation.

To solve the problem, we employed the continuity and Euler equations for an isen-
tropic polytropic gas with a polytropic index γ = 2, as described in chapter 3 in the non-
relativistic regime. The boundary condition at large radii was determined by the uniform
flow with density ρ0 and velocity v0. The matching radius rm was defined by the radial
solution (3.71), recovered in (4.37). As for the initial conditions, we approximated the den-
sity ρ by ρ = ρ0max(1, rsg/(2r)), which is an approximation of the radial solution. For the
initial velocity, we considered vr = ṁBH/(4πρr

2) + v0 and vθ = −v0 sin(θ) representing acombination of the uniform flow v0 and radial infall. We then solved the dynamics over
time until the results reached a steady state.

To facilitate our calculations, we employed a two-dimensional spherical mesh (with
no dependence on the azimuthal angle ϕ) that exhibited uniform stretching in the radial
direction. The upper radius was set to 50 times the self-gravity radius (50rsg), while thelower radius was set to 0.005 times this radius (0.005rsg). We used a temporally first-order
scheme since we were solely interested in obtaining a steady state. The hllc flux scheme
was employed. To work with quantities of order unity in the transition region, we used
dimensionless coordinates and fields, namely r/rsg, ρ/ρ0, and v/cs, 0. Throughout the
computational domain, we verified that the Bernoulli invariant (3.21) remained constant.
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Figure 4.2: Numerical computation of the scalar dark matter flow around a black hole, asviewed in the black hole frame with the dark matter coming from the left at the uniformvelocity v0 parallel to the horizontal axis. We take M0 = v0/cs, 0 = 1.2 and cs, 0 = 0.05.The coordinates are in units of the transition radius rsg. The panels show maps of theMach numberM = v/cs as we zoom closer to the black hole going from the upper to thelower panel. 95



Figure 4.3: Same as Figure 4.2, but shows a map of the velocity field

Figure 4.2 and 4.3 illustrates our results for the case where v0/cs, 0 = 1.2 and cs, 0 =

0.05, with the aid of the visualization tool VisIt [319]. In the twoupper panels, the formation
of a bow shock upstream of the black is clearly observed, occurring at a distance of ap-
proximately 0.8rsg along the z-axis. Following the shock, the velocity decreases while thedensity and local sound speed increase, resulting in a distinct drop in the Mach number
M = v/cs. This drop is more evident in the velocity maps than in the density maps, which
are primarily influenced by the radial increase in the vicinity of the black hole. Initially, the
Mach number continues to decrease closer to the black hole until reaching a radius of
0.2rsg, after which it increases as we approach the supersonic regime beyond the compu-
tational domain. The lower-left panel reveals that the Mach number has not yet reached
unity at the inner radius of the grid due to the imposition of boundary conditions at a
matching radius that is still in the nonrelativistic regime. However, it is noticeable that the
system becomes spherically symmetric near the black hole, as evidenced by the spherical
color contours representing the Mach number.

Previous studies [317, 318] focusing on a perfect gas with a polytropic index γ = 5/3

found that the shock is attached to the black hole (in their case, a point mass considering
Newtonian gravity). In our study, it is evident that the bow shock is detached from the
black hole horizon and located at a radius approximately equal to rsg for v0 ∼ cs, 0. Thisdiscrepancy arises due to the stiffer equation of state (γ = 2) we adopted, which signifi-
cantly reduces the radial accretion rate (4.37) compared to the conventional Bondi result.
Consequently, the flow becomes more radial near the black hole, justifying our approxi-
mation. However, this approximation would not be valid for a perfect gas with γ = 5/3. In
that case, since the shock is attached to the point mass, the flow remains strongly asym-
metric near the central object, rendering the radial approximation unreliable. The flow
pattern is clearly visible in the velocity field depicted in the lower-right panel, exhibiting
a radial infall near the back hole and a stagnation point behind the black hole along the
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z-axis. The flow remains close to the uniform velocity v0 at large distances.
In the upper panel, the black solid straight line originating from the origin represents

the Mach angle, as given by θc = arcsin(cs, 0/v0). It is evident that this line aligns with
the slope of the shock front at large distances. The blue solid line indicates the sonic
line, where the Mach number crosses unity (M = 1). The left segment of this line,
which follows the shock, corresponds to the shock discontinuity where M drops from
Mupstream > 1 to Mdownstream < 1. Therefore, although the contour plot displays this
line, the Mach number does not reach unity continuously along the line but undergoes a
discontinuous transition. The right segment of the sonic line extends from the shock to
the z-axis in the downstream region and represents a genuine sonic line, whereM = 1.
While the shock effectively decelerates the incoming flow in proximity to the black hole,
the velocity remains close to v0 at large distances in the transverse plane. Consequently,the flow becomes subsonic after the shock near the z-axis while remaining supersonic at
larger distances. Furthermore, far downstream behind the black hole, the flow converges
to the bulk velocity v0 and becomes supersonic again. As a result, there exists a finite-size
region behind the shock, encompassing the black hole, where the flow is subsonic. This
region is demarcated by the sonic line represented by the blue solid line in the upper-left
panel. Within this subsonic region, the flow decelerates and becomes approximately ra-
dial as it approaches the black hole. The plots do not depict the region below thematching
radius rm and slightly above the black hole horizon, but in that region, the flow becomes
supersonic once again and relativistic. Consequently, there are effectively two sonic lines.

As explained in Section 4.2, we anticipate a pronounced asymmetry as velocity in-
creases, extending all the way down to the black hole horizon. This results in a shock that
is no longer detached, along with a fully supersonic flow on the front side of the black
hole. However, it is important to note that this high-Mach regime surpasses the capabili-
ties of our numerical code. Consequently, we defer a comprehensive investigation of the
accretion flow near the black hole at these elevatedMach numbers to future research en-
deavors. For an in-depth examination of this regime, please refer to Appendix C, where
we adapt the standard Bondi-Hoyle-Lyttleton analysis [308, 314, 320] to our specific case.

4.5 . Comparison of accretion drag and dynamical friction

Referring to (4.41) and (4.37)-(4.38), we observe that the accretion drag on the black
hole displays distinct behaviors for low and high velocities

v0 <
c
2/3
s, 0

(3F⋆)1/3
: Facc =

12πF⋆ρ0G2m2
BHv0

c2s, 0
, (4.43)

v0 >
c
2/3
s, 0

(3F⋆)1/3
: Facc =

4πρ0G2m2
BH

v20
. (4.44)

For velocities in the range v0 ≳ cs, 0, the dynamical friction term in (4.41) assumes the
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form
Fdf =

8πρ0G2m2
BH

3v20
ln

(
ra
rUV

)
. (4.45)

Here, rUV is determined by

rUV ≃
√

18

e
rsgM−3/2

0 =

√
18

e
rsv

−3/2
0 c

−1/2
s, 0 . (4.46)

This effective small-scale cutoff is explicitly derived from the analytical computation in
(4.41). Notably, the pressure stemming from the self-interactions moderates the contri-
butions from small scales to the dynamical friction. Unlike the collisionless scenario, the
Coulomb logarithm does not exhibit a divergence at small scales. However, a logarithmic
divergence at large scales persists, reminiscent of Chandrasekhar’s seminal calculation
for a stellar cloud [60]. In our case, the large-scale cutoff is not a free parameter but cor-
responds to the soliton radius Rsol = πra as defined in (2.17). It is worth noting that the
radius rUV consistently exceeds the Schwarzschild radius, as both v0 and cs, 0 are smaller
than the speed of light.

Consequently, we can conclude that at low velocities, the accretion drag is substan-
tially smaller than the dynamical friction

v0 ≪
c
2/3
s, 0

(3F⋆)1/3
: Facc ≪ Fdf . (4.47)

On the other hand, at high velocities, the accretion drag becomes comparable to the dy-
namical friction

v0 >
c
2/3
s, 0

(3F⋆)1/3
: Facc ∼ Fdf . (4.48)

These observations are based on the behaviors described in (4.37)-(4.38), as elaborated
further in the Appendix C.

4.6 . Comparison to other models

We often compute Bondi and Hoyle-Lyttleton accretion rates for a perfect gas using
the formula [300, 308, 314]

ṁBHL =
4πρ0G2m2

BH

(c2s, 0 + v20)
3/2

. (4.49)
This formula balances between subsonic and supersonic regimes. At low velocities, the
accretion rate drops because of efficient self-interactions. But at higher velocities, it aligns
with the Hoyle-Littleton prediction

v0 ≪ c
2/3
s, 0 : ṁBH ≪ ṁBHL , v0 ≫ c

2/3
s, 0 : ṁBH ≃ ṁBHL . (4.50)
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For systems without collisions, when a black hole moves significantly faster than the
average speed of the surrounding cloud particles, Chandrasekhar’s dynamical friction ex-
pression becomes relevant [60–62]

collisionless: Ffree ≃
4πρ0G2m2

BH

v20
ln

(
bmax

bmin

)
. (4.51)

Here, bmax and bmin are respectively large-scale and small-scale cutoffs. One usually takes
bmax = R given by the size of the cloud, while bmin = 2GmBH/v

2
0 refers to the critical impact

parameter associated with bound orbits if their angular velocity is assumed to vanish
when theymeet the z−axis behind the black hole [308]. More generally, bmin correspondsto orbits with a deflection angle of order unity.

In the context of a perfect gas, within the supersonic domain, dynamical friction is
described as [269, 316, 321–323]

Perfect gas: Fgas =
4πρ0G2m2

BHI
v20

, (4.52)
with I = ln(1 − 1/M2)/2 + ln(bmax/bmin). At very high Mach numbers M ≫ 1, this ex-
pression further refines. The first term of I vanishes while only the second term remains.
In this regime, this result is the same as (4.51).

For Fuzzy Dark Matter (FDM), characterized by scalar masses about 10−22 eV and
where dark matter self-interactions are neglected, the dynamical friction is [63]

FDM: FFDM =
4πρ0G2m2

BHC(β, kr)

v20
, (4.53)

where C(β, kr) is the confluent hypergeometric functions. The parameters β and k are
defined as β = GmBHmDM/v0 and k = mDMv0, respectively. Under the conditions β ≪ 1

and kr ≫ 1, this also aligns closely with Chandrasekhar’s outcome as C ∼ ln(kr).
In the domain of supersonic interactions, these systems predominantly exhibit dy-

namical friction reminiscent of the Chandrasekhar model, as indicated by (4.51). How-
ever, variations in the Coulomb logarithm are noteworthy. The prefactor, complex in its
nature, frequently leans on intuitive assumptions rather than rigorous derivations for its
determination. Uniquely, our analysis deduces the ultraviolet cutoff directly from (4.46),
anchored on the analytical result from (4.41). The principle of momentum conservation
in a steady state, linking drag force to momentum flux over extended distances, under-
pins this derivation. Consequently, the radius rUV materializes as a region experiencing
notable deviations in the incoming velocity of dark matter, essentially mirroring the role
of the critical impact parameter bmin ∼ GmBH/v

2
0 in a collisionless environment. Yet, the

system’s intrinsic physics and self-interactions significantly influence rUV, as its depen-dence on cs, 0 from (4.46) exemplifies. Certainly! Here’s a rephrased version: Adopting
the size of the cloud as the infrared cutoff is common across various systems. A distinc-
tive feature of scalar dark matter is its independence from the mass of the cloud. The
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comparison between the radius rUV from (4.46) and the collisionless critical impact pa-
rameter bmin ∼ GmBH/v

2
0 is best expressed as

rUV ∼ bmin

√
v0
cs, 0

. (4.54)
Such a relationship emerges from the collective pressure effects significantly altering ve-
locity fields at minuscule scales, diverging from collisionless models as explored in Sec-
tion. 4.5. Consequently, the resulting Coulomb logarithm in (4.45) is diminished compared
to its counterpart in (4.51). Beyond its logarithmic component, the prefactor in (4.45) is di-
minished by a 2/3 factor compared to (4.51).

4.7 . Summary of the chapter

In hyperbolic systems like supersonic flows, conflicting boundary conditions upstream
and downstream (or at the surface of the perturber) give rise to discontinuities known as
shock fronts. In section 4.1.2, we showed that the upstream bulk flow is fully determined
by the initial condition at ẑ → −∞, and there are no free parameters remaining in (4.6),
(4.14) and (4.14) to satisfy the inner boundary conditions at the Schwarzschild radius. This
is because, in the supersonic regime, information from the perturber cannot propagate
beyond the Mach cone. In our case, unlike traditional hydrodynamic systems such as
airplanes, the black hole’s long-range gravity has an impact at all distances upstream. It
causes the streamlines to bend towards the black hole through the 1/r̂ term in the equa-
tion of motion (3.20), which corresponds to the gravitational effect. However, there is no
advanced information about the geometry and properties at the Schwarzschild radius.
Similarly, the upstream flow is unaware of the need to ensure a smooth flow downstream
along the θ = 0 axis. This leads to a singularity at u = 1 in the upstream solution (4.6).
In the case of collisionless particles, downstream crossing and the development of a mul-
tistreaming flow are possible. However, in our self-interacting scalar field model, such
behavior cannot occur.

The matching of the boundary conditions at the Schwarzschild radius and down-
stream along the θ = 0 axis is permitted by a shock front, which separates the upstream
bulk flow of section 4.1.2 from the downstream bulk flow of section 4.1.3. While the up-
stream bulk flow obtained earlier is completely determined by the initial conditions at
ẑ → −∞, the downstream bulk flow, which depends partially on the boundary conditions
at ẑ → ∞ along θ = 0, still has two undetermined integration constants C1 and C2 atthe second order (4.21) and (4.22). These constants will be determined through match-
ing with the upstream flow. However, it is not possible to connect the upstream and
downstream bulk flows up to the shock front because both solutions diverge as u → uc.This implies that near uc, the first or second-order velocity terms become larger than
the zeroth-order velocity v0, causing the breakdown of the large-distance expansion. As
a result, a boundary layer emerges on both sides of the shock, where nonlinear effects
play a crucial role.
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A dynamical friction term that closely aligns with the Chandrasekhar result emerges
due to the shock front restricting the ability of dark matter to adapt to the black hole at
large scales. Owing to the pressure induced by the self-interactions of the dark matter,
we observe a factor of 2/3 to this force. This results in a reduced dynamical friction in our
study, in comparison to the scenarios involving collisionless particles, fuzzy dark matter,
and the perfect gas. Additionally, the self-interactions dictate the small-scale cutoff and
we still observe a divergence at large scales, analogous to Chandrasekhar result. In our
analysis, the large-scale cutoff corresponds to the size of the soliton.

For moderate Mach numbers (cs, 0 < v0 < c
2/3
s, 0 ), our findings indicate that the accre-tion rate continues to adhere to the radial prediction, which is notably lower than the

Bondi-Hoyle-Lyttleton projection. This discrepancy can be attributed to the presence of
a stiff effective equation of state characterized by an adiabatic index γ = 2. This stiff
equation of state regulates the infall of matter onto the black hole in the vicinity of the
Schwarzschild radius. In this scenario, the bow shock remains detached from the black
hole and is situated upstream of it. On the far side of the shock, a subsonic region encap-
sulates the black hole, culminating in a stagnation point downstream. Within this region,
the flow tends to adopt an approximately radial configuration in proximity to the black
hole. As we approach the Schwarzschild radius, the flow reverts to a supersonic state,
mirroring the behavior observed in the radial case. Numerical simulations, for instance,
those with M0 = 1.2, affirm these dynamics. For high Mach numbers (v0 > c

2/3
s, 0 ), theaccretion rate is closer to the Hoyle-Lyttleton accretion rate, which is then smaller than

what is obtained in the radial case. As in the classical Hoyle-Lyttleton analysis, the major-
ity of the accretion takes place in the accretion column positioned behind the black hole.
This configuration results in a persistent strong asymmetry in the accretion flow all the
way down to the Schwarzschild radius. The shock is now attached to the rear of the black
hole, forming the boundary of this narrow accretion column.
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5 - Gravitational waves from binary black holes in a
soliton

In this chapter, we explore the impacts of the accretion drag force and dynamical fric-
tion on the motion of binary black holes. Specifically, we investigate how these forces
affect the emission of gravitational waves. We begin by deriving the precise effects of the
accretion drag force, the dynamical friction and the dark matter halo gravity on the dy-
namics of binary black holes. By analyzing the resulting changes in eccentricity and semi-
major axis. Building upon these findings, we then examine the phase shift induced by the
forces in the emitted gravitational waves from binary black holes. Through detailed cal-
culations, we quantify the contributions of these forces to the phase shift, shedding light
on their influence on the observed gravitational wave signals. Then, we employ a Fisher
analysis to extract information from the model. We focus on two key parameters, ρ0 and
ρa, and investigate their detectability using different future interferometers such as LISA,
B-DECIGO, ET, and Adv-LIGO, and by considering various events. The results obtained
from the Fisher analysis reveal promising prospects for detecting these parameters. Par-
ticularly, LISA and B-DECIGO show strong potential for uncovering the dynamics of binary
black holes, offering exciting possibilities for future research in the field. Finally, we ex-
plore the detectable soliton sizes. This chapter is based on the paper "Gravitational waves
from binary black holes in a self-interacting scalar field dark matter cloud" [3].

5.1 . Reminder of the forces considered

5.1.1 . Accretion drag force
For the model described by the equations (2.1) and (2.2), it was demonstrated in [190],

and recovered in chapters 3 and 4, that the accretion rate of scalar field dark matter onto
a black hole can be categorized into two distinct regimes

vBH < vaccṁBH = ṁmax , (5.1)
vBH > vaccṁBH = ṁBHL . (5.2)

These regimes are further characterized as
vacc =

c
2/3
s, 0

(3F⋆)1/3
, ṁmax = 3πF⋆ρar

2
s =

12πF⋆ρ0G2m2
BH

c2s, 0
, ṁBHL =

4πρ0G2m2
BH

v3BH

, (5.3)
where a dot above a variable represents its time derivative. The value F⋆ ≈ 0.66 arises
from a numerical analysis of the critical flux [190]. This flux is linked to the sole radial
transonic solution that bridges the supersonic infall at the Schwarzschild radius with the
static equilibrium soliton at extensive ranges. Such a critical behavior echoes findings
from traditional hydrodynamic flow studies, as presented in Refs. [300, 301]. It closely
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aligns with a polytropic gas scenario having an index γ = 2 [1, 190]. Nevertheless, as one
approaches the black hole, the behavior deviates from standard polytropic gas dynam-
ics, transitioning into the relativistic domain. Close to the Schwarzschild radius, the scalar
field is better represented by the nonlinear Klein-Gordon equation rather than traditional
hydrodynamics [190]. This deviation indicates a disparity between the critical flux, ṁmax,and the conventional Bondi result ṁBondi ∼ ρ0G2m2

BH/c
3
s, 0. This difference becomes evi-

dent when considering the reliance of ṁmax on the speed of light, a feature absent in thetypical Bondi outcome.
For higher velocities, the scenario aligns with the conventional accretion column de-

piction [314, 320], and the Bondi-Hoyle-Lyttleton accretion rate, ṁBHL, is realized. Here,themajority of accretion originates from the slimwake trailing the BH, defined by a conical
shock within the Mach angle sin θc = 1/M ≪ 1, whereM = vBH/cs, 0 denotes the blackhole Mach number. Conversely, in the low-velocity regime, the Bondi-Hoyle-Lyttleton ac-
cretion rate surpasses the maximum allowable accretion rate, ṁmax, restricted by the
effective pressure resulting from self-interactions. Here, the accretion column expands
beyond a slender cone to encompass the black hole from all directions. A prominent bow
shock forms ahead of the black hole, leading to a subsonic area that encircles the black
hole and diverts the bulk of the dark matter flux. Proximate to the horizon, the flow turns
nearly radial, reverting to the accretion rate ṁmax.Let us now consider a scenario where a black hole, with velocity vBH, traverses thisscalar cloud. Under the nonrelativistic condition vBH ≡ |vBH| ≪ 1, and from the cloud’s
reference frame, the accretion of zero-momentum dark matter does not alter the mo-
mentum of the black hole. Instead, it decelerates its velocity following

mBHv̇BH|acc = −ṁBHvBH . (5.4)
5.1.2 . Dynamical friction

Dynamical friction also plays a role in decreasing the velocity of the black hole. Sim-
ilar to what is described in hydrodynamics [266, 268, 269], the dynamical friction force
becomes null for subsonic speeds (vBH < cs, 0). However, it is important to note that
this threshold is only an approximation. A perturbative treatment to higher orders, which
takes the back-reaction of the scalar field onto the black hole into account, should smooth
out the transition at cs, 0 and give a small but non-zero force in the subsonic regime [270].
Nevertheless, using a sharp transition at vc provides a conservative estimate for the im-
pact of dynamical friction on themotion of a black hole. In this supersonic context, studied
in Chapter 4, the added force acting on the black hole is depicted as

mBHv̇BH|df = −
8πG2m2

BHρ0
3v3BH

ln

(
rIR
rUV

)
vBH . (5.5)

Here, rIR represents the conventional large-radius cutoff, while rUV serves as the small-
radius cutoff for the logarithmic Coulomb factor and is defined as

rUV = 6

√
2

e

GmBH

c2s, 0

(
cs, 0
vBH

)3/2

, (5.6)
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where e denotes Euler’s number (distinct from the orbital eccentricity, e.
Interestingly, (5.5) mirrors the collisionless model presented by Chandrasekhar [60],

but it comes with a multiplied factor of 2/3. Additionally, in this scenario, rUV is deter-
mined by the scalar field’s physics and its inherent pressure, as opposed to the minimum
impact parameter, bmin ∼ GmBH/v

2
BH. Considering rUV ∼ bmin

√
vBH/cs, 0 > bmin, thedynamical friction (5.5) appears to be less than the collisionless outcome, exhibiting a

damping ratio less than 2/3.
In the context of a consistent linear trajectory, the infra-red cutoff can be defined by

the size of the soliton, which is dependent on mDM and λ4 as illustrated by (2.3). How-
ever, for objects following circular orbits with a radius of rorb, both numerical models and
analytical evaluations propose that for a gaseous medium, a fitting approximation can be
achieved with rIR = 2rorb [324, 325]. A logical deduction can be drawn from this: by es-
timating dynamical friction through the momentum interchange with distant encounters
or impact parameter streamlines b, as highlighted in [60], the duration of the encounter
is ∆t ∼ b/vBH. This time must be shorter than the orbital period Porb ∼ rorb/vBH to
ensure that the black hole does not alter its course during the encounter, leading to the
conclusion that b ≲ rorb. If we gauge the dynamical friction from the gravitational pull
by the black hole’s aftermath, at a significant distance in the resting frame of the black
hole, matter diverges at a radial velocity vBH. Thus, the wake remains consistent behind
the black hole up to a distance of d ∼ vBHPorb/2, which reaffirms the large-radius cutoff
d ≲ rorb. Consequently, we adopt

rIR = 2rorb . (5.7)
This is aligned with the norm observed for gaseous mediums [324].

5.1.3 . Dark matter halo gravity
If we simplify the primary part of the soliton to be a spherical halo with density ρ0 andradiusRsol, placed at the point x0, the gravitational potential of this halo can be describedas:

Φhalo(x) =

{
2π
3 Gρ0|x− x0|2 , if |x− x0| < Rsol ,

undefined otherwise. (5.8)
From this, the gravitational acceleration resulting from the halo is derived as

mBHv̇BH|halo = −4π

3
GmBHρ0(x− x0) . (5.9)

This last equation reveals the force exerted by the dark matter halo on the black hole
within its domain.

5.2 . Binary motion

We focus on a binary system of two black holes and study their dynamics during the
inspiraling phase in the Newtonian regime. In this regime, the Keplerian orbital motion
of the black holes is perturbed by the accretion of dark matter, the dynamical friction, the
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darkmatter halo, aswell as by the emission of gravitational waves. Both effects contribute
to a reduction in the separation between the black holes until they eventually merge. The
system under consideration is depicted in Figure 5.1 for visual reference. It is important
to note that in a more realistic framework, other effects, such as baryonic feedback, may
also come into play. However, for the purpose of this study, we do not consider these
effects and solely focus on the drag forces caused by dark matter. Additionally, it should
be mentioned that exotic effects, such as superradiance or ionization, which can arise in
the case of self-interacting dark matter, have not been studied here. These effects, while
intriguing, are beyond the scope of our current analysis.

Figure 5.1: Conceptual depiction of the investigated system, not to scale. The illustrationshowcases the inspiral of two black holes within a dark matter cloud around their centerof mass. One black hole is characterized by the following quantities: mass (m1), position(x1), and velocity (v1), while the other black hole possesses the following quantities: mass(m2), position (x2), and velocity (v2).
During the inspiraling phase at large distances, we can analyze the perturbations of
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the Keplerianmotion at the first order. This allows us to separately consider the influence
of the scalar cloud and the effect of gravitational waves on the dynamics of the binary
system. By treating these perturbations, we can examine the impact of the scalar cloud,
which arises from the accretion of dark matter, and the influence of GW emission on the
orbital motion of the black holes.

5.2.1 . Keplerian motion
To compute the perturbation of the orbits at first order, we employ the standard

method of osculating orbital elements [326]. This method allows us to derive the drift
of the orbital elements that determine the shape of the orbits. To define our notations,
let us first recall the properties of Keplerian orbits. At zeroth order, the binary system con-
sists of two black holes with masses {m1,m2}, positions {x1,x2}, and velocities {v1,v2}.By introducing the relative distance r and the relative velocity v, defined as

r = x1 − x2, v = v1 − v2 , (5.10)
we can reduce the problem to a one-body problem. We also define the total mass m =

m1 + m2 and the reduced mass µ = m1m2/m. The equation of motion for the relative
separation is given by

r̈ = −Gm
r3

r . (5.11)
The center of mass remains at rest if its initial velocity vanishes. Furthermore, we have
the following expressions for the positions of the black holes

x1 =
m2

m
r, x2 = −m1

m
r , (5.12)

with the origin of the coordinates chosen as the barycenter of the binary system. The
solution for bound orbits in the Keplerian regime is described by an ellipse. The radial
distance r is given by

r =
p

1 + e cos(ϕ− ω)
, (5.13)

where p = (1− e2)a is the semi-latus rectum, a is the semi-major axis, e is the eccentricity,
and ω is the longitude of the pericenter. The orbital motion occurs in the plane defined
by the orthogonal unit vectors (ex, ey), perpendicular to the axis defined by ez . In spher-ical coordinates, the polar angle θ = π/2 remains constant, while the azimuthal angle ϕ
evolves. The total angular momentum L is conserved and given by

L = m1x1 × v1 +m2x2 × v2 = µh , (5.14)
where h = r × v = h ez represents the specific angular momentum, h = r2ϕ̇, and p =

h2/(GM). The constancy of ω is related to the conservation of the Runge-Lenz vector
A =

v × h

Gm
− er = e(cosω ex + sinω ey) . (5.15)
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We can also define the true anomaly φ as the azimuthal angle measured from the direc-
tion of the pericenter φ = ϕ − ω. The rate of change of φ with respect to time is given
by

φ̇ =

√
Gm
p3

(1 + e cosφ)2 . (5.16)
The period P of the orbital motion is determined by Kepler’s third law

P = 2π

√
a3

Gm
, forb =

1

2π

√
Gm
a3

. (5.17)
5.2.2 . Drag force from dark matter

As mentioned in section 5.1, the equations of motion for the two black holes are given
by

m1ẍ1 = Gm1m2
x2 − x1

|x2 − x1|3
− ṁ1ẋ1 − f1ẋ1 − g1(x1 − x0) ,

m2ẍ2 = Gm1m2
x1 − x2

|x1 − x2|3
− ṁ2ẋ2 − f2ẋ2 − g2(x2 − x0) ,

(5.18)
where we take into account the Newtonian gravity of the binary, the accretion of dark
matter, the dynamical friction and the halo gravity, with

fi(t) = Θdf,i
8πG2m2

i ρ0
3v3i

ln

(
rIR,i

rUV,i

)
, gi =

4π

3
Gmiρ0 . (5.19)

Here, Θdf,i is a Heaviside factor associated with the two conditions vi > cs, 0 and rIR,i >

rUV,i. We expect our use of a sharp transition to provide a conservative estimate for the
impact of the dynamical friction on the motion of a black hole.

This gives for the separation r the equation of motion
r̈ = −Gm

r3
r−

(
µ̇

µ
+
m2f1
m1m

+
m1f2
m2m

)
ṙ− 4πGρ0

3
r . (5.20)

Here we used (5.12) to express xi in terms of r in the last two terms, as we work at first
order in the perturbations ṁi, fi and gi. Thus, we obtain an equation of motion of the
form

r̈ = −Gm(t)

r3
r− F (t)ṙ−Gr . (5.21)

Here and in the following, we assumed that at zeroth-order the center of mass of the
binary is at rest in the scalar cloud, ormore generally that its velocity is small as compared
with the binary orbital velocity v.

For circular orbits with v =
√

Gm/a, we obtain
rIR,i

rUV,i
=

√
ecs, 0m2µ5

18vm7
i

,
vi
cs, 0

=
µv

mics, 0
, (5.22)
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and the Heaviside factor in (5.19) reads
Θdf,i = Θ

(
mi

µ
<

v

cs, 0
<
em2µ5

18m7
i

)
, (5.23)

which is unity when the conditions are satisfied and zero otherwise. We can see that the
conditions rIR,i > rUV,i and vi > cs, 0 can only be simultaneously satisfied by the smaller
black hole of the binary, when the symmetric mass ratio ν defined by

ν = µ/m = m1m2/m
2 (5.24)

is below
ν ≲ 0.16 . (5.25)

Following the method of the osculating orbital elements [326], we obtain the impact of
the accretion and of the dynamical friction by computing the perturbations to the orbital
elements. It is clear from (5.21) that the orbital plane remains constant. In particular, the
specific angular momentum h remains parallel to ez and evolves as

ḣ = −F (t)h , (5.26)
whereas the Runge-Lenz vector evolves as

Ȧ = −
(
ṁ

m
+ 2F (t)

)
(A+ er) +

Ghr

Gm
eϕ . (5.27)

This gives next the evolution of the eccentricity and of the semi-major axis
ė = −

(
ṁ

m
+ 2F (t)

)
(e+ cosφ)− Gha(1− e2) sinφ

Gm(1 + e cosφ)
, (5.28)

ȧ = −2a2

h

[
ṁ

m
+ F (t)

]
(1− e cosφ), (5.29)

where e is the eccentricity and a the semi-major axis, and φ is the true anomaly. Using the
expression from (5.16), the differentiation in terms of the true anomaly can be written, at
first order, as
de

dφ
= −

√
p3

Gm

{(
ṁ

m
+ 2F (t)

)
e+ cosφ

(1 + e cosφ)2
+
Gha(1− e2)

Gm
sinφ

(1 + e cosφ)3

}
, (5.30)

da

dφ
= −

√
p3

Gm

{(
ṁ

m
+ 2F (t)

)
a

1− e2
1 + e2 + 2e cosφ

(1 + e cosφ)2
+

2Ghea2

Gm
sinφ

(1 + e cosφ)3

}
. (5.31)

The perturbations induced by the dark matter cause oscillations and secular changes in
the orbital elements. To determine the cumulative drift associated with the secular ef-
fects, we average over one orbital period P using the formula

⟨ȧ⟩ = 1

P

∫ P

0
dt ȧ =

1

P

∫ 2π

0
dφ

da

dφ
, (5.32)

where ⟨ȧ⟩ represents the average change in the semi-major axis over one period.
109



5.2.3 . Accretion impact on orbital motion
Initially, we examine the effect of dark matter accretion on orbital behavior. This can

be characterized by the term ṁ/m and the contribution Facc = µ̇/µ to F (t). Our attention
is on scenarios where accretion rates have minimal variations relative to orbital move-
ments, thereby approximating them as constant throughout a single period. As indicated
in (5.2), the accretion rate remains constant at low velocities and declines proportional to
v−3
i at greater velocities. Hence, we deduce

ṁ

m
+ 2

µ̇

µ
= Aacc +

Bacc

v3
, (5.33)

where
Aacc =

12πF⋆G2ρ0µ

c2s, 0c

2∑
i=1

Θ(vi < vacc)

(
2 +

m2
i

mµ

)
,

Bacc = 4πG2ρ0µ

2∑
i=1

Θ(vi > vacc)
m3

i

µ3

(
2 +

m2
i

mµ

)
. (5.34)

When we consider lower orders of eccentricity e, from (5.30) and (5.31) we find
⟨ė⟩acc =

3e

2

(
a

Gm

)3/2

Bacc , ⟨ȧ⟩acc = −aAacc − a

(
a

Gm

)3/2

Bacc . (5.35)
In scenarios of low velocity, eccentricity remains unchanged, while it rises at high velocities
given e > 0. Orbital size consistently decreases. The result in (5.35) for the semi-major
axis is evident for circular orbits when considering the persistence of the total angular
momentum.

5.2.4 . Dynamical friction impact on orbital motion
Dynamical friction can be represented as

Fdf =
m2f1
m1m

+
m1f2
m2m

, (5.36)
leading us to

2Fdf(t) =
Bdf

v3
+
Cdf

v3
ln

(
v

cs, 0

)
, (5.37)

with
Bdf =

8πG2ρ0µ

3

2∑
i=1

Θdf,i
m3

i

µ3
ln

(
em2µ5

18m7
i

)
, Cdf = −8πG2ρ0µ

3

2∑
i=1

Θdf,i
m3

i

µ3
. (5.38)

At the lower order of eccentricity e, we derive
⟨ė⟩df =

3e

2

(
a

Gm

)3/2
[
Bdf + Cdf ln

(√
Gm
a

1

cs, 0

)
− Cdf

3

]
,

⟨ȧ⟩df = −a
(

a

Gm

)3/2
[
Bdf + Cdf ln

(√
Gm
a

1

cs, 0

)]
. (5.39)
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Consequently, dynamical friction tends to boost eccentricity when e > 0, while constrict-
ing the size of the orbit. The increase of the eccentricity is directly connected to the ex-
pression of the force (5.37), as the dominant term is proportional to 1/v3. As explained
in [327] in the case of dynamical friction for a gaseous medium, because forces at peri-
apse tend to circularize the orbit while those at apoapse tend to make it more eccentric,
the dynamical friction, which is stronger at the periapse have the effect of increasing the
eccentricity.

5.2.5 . Effect of gravitational waves emission
The emission of gravitational waves is well known to cause the orbits to becomemore

circular and tighter until the black holes merge. At the lowest order in a post-Newtonian
expansion and using the quadrupole formula, the drifts of the eccentricity and semi-major
axis are given by the standard results [326]. The drift of eccentricity is

⟨ė⟩gw = −304ν

15a
e

(
Gm
a

)3

(1− e2)−5/2

(
1 +

121

304
e2
)
, (5.40)

and the drift of semi-major axis is
⟨ȧ⟩gw = −64ν

5

(
Gm
a

)3 1 + 73
24e

2 + 37
96e

4

(1− e2)7/2
. (5.41)

Throughout this chapter, the lowest post-Newtonian order (5.41) is considered. This
order is sufficient for the purpose of estimating the dark matter density thresholds as-
sociated with a significant impact on the gravitational wave signal. As discussed in Sec-
tion 5.3, the dark matter corrections are most important in the early inspiral and behave
as negative post-Newtonian orders. Consequently, they are not degenerate with higher
post-Newtonian orders. See Appendix D for more details on the calculation of the gravi-
tational wave contribution.

In our analysis, we operate under the assumption that the influence of dark matter
on the binary system is less pronounced than the effects of gravitational wave emissions,
which are known to reduce eccentricity. Consequently, we focus our attention on circular
orbits, denoted by e = 0.

5.2.6 . Influence of halo gravity
Upon examining (5.30) and (5.31), it becomes evident that the G-term, related to halo

gravitation, does not affect the eccentricity of the orbit or its size over one complete pe-
riod, yielding ⟨ė⟩halo = 0 and ⟨ȧ⟩halo = 0. In the context of the approximation described in
(5.9), where the halo gravitational potential is constant over time, this force is conserved.
This alteration of the standard Keplerian potential does lead to a shift in both the orbital
frequency and the emanation of gravitational waves. When we consider only the effects
of the binary system and halo gravitation, the motion equation defined in (5.20) aligns
with the energy equation given by

E =
1

2
µv2 − Gµm

r
+

2πGρ0µr2

3
. (5.42)
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Applying the Euler-Lagrange motion equations, the velocity for circular orbits with radius
a is

vϕ =

√
Gm
a

(
1 +

2πρ0a
3

3m

)
. (5.43)

For simplicity, all subsequent discussions will involve calculations to the linear order in
ρ0. This allows us to infer that relative adjustments to standard Keplerian findings are
influenced by the proportion of the dark matter within the orbital radius to the aggregate
mass of the binary system. This yields the orbital frequency and energy equations

forb =
1

2π

√
Gm
a3

(
1 +

2πρ0a
3

3m

)
, (5.44)

and
E = −Gmµ

2a
+

4πGρ0µa2

3
. (5.45)

As anticipated, increased systemmass, and therefore enhanced gravitation, results in
an uptick in orbital frequency. Applying the quadrupole formula, sourced from [326]

P =
G
5

...
I

(jk) ...
I

(jk)
, I(jk) = νmrjrk , (5.46)

whereP denotes the gravitational wave energy loss rate and I(jk) is themass quadrupole
moment. For circular orbits

P =
32ν2G4m5

5a5

(
1 +

4πρ0a
3

m

)
. (5.47)

Considering the equilibrium equation, dE
dt = −P , the evolution rate of the orbital radius

is
⟨ȧ⟩gw = −64νG3m3

a3

(
1− 4πρ0a

3

3m

)
. (5.48)

This result is congruent with (5.41) for e = 0 when dark matter halo effects are deemed
insignificant. It’s noteworthy that while the augmented halo gravitation intensifies the
radiative loss, as per (5.47), this intensification is offset by the greater energy, as demon-
strated in (5.45), thereby diminishing the rate of orbital drift.

5.3 . Gravitational wave phase and the impact of dark matter

5.3.1 . Constant mass approximation
By considering first-order perturbations, we can combine the contributions from dark

matter accretion, dynamical friction, and gravitational wave emission to obtain the total
drift of the orbital radius

⟨ȧ⟩ = ⟨ȧ⟩acc + ⟨ȧ⟩df + ⟨ȧ⟩gw . (5.49)
The drift in position is contingent upon the individual masses of the two black holes

as well as their respective rates of accretion. For lower accretion rates, it is permissible
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to assume that both mi and ṁi remain unchanged throughout the duration of observa-
tion. If this observation encompasses N orbital cycles, with an average N ≈ 100, then it
becomes necessary for ṁiNP ≪ mi. Given the peak accretion rate as per (5.2), we obtain

ρa ≪ c3f

24πF⋆G2m>N
, (5.50)

Here, f = 2/Porb represents the gravitational wave frequency, which is precisely doublethe orbital frequency, andm> = max(m1,m2). From this, we derive
ρa ≪ 6× 1010N−1

(
m>

1M⊙

)−1( f

1Hz

)
g · cm−3 . (5.51)

The most stringent constraint is related to the prospective detection of Massive Bi-
nary Black Holes (MBBH) using the LISA space interferometer at frequencies f ≳ 10−4Hz.
This establishes an upper limit of ρa ≪ 0.01 g/cm3. This value considerably surpasses
anticipated dark matter densities. As a reference, the dark matter density in the Solar
system approximates 10−24g/cm3 [328–336]. Conversely, the baryonic densities of accre-
tion disks around supermassive black holes can reach up to 10−9g/cm3 for thick accretion
disks and 10−1g/cm3 for thin accretion disks [197]. Therefore, the limit imposed by equa-
tion (5.51) remains valid up to the baryonic densities observed in accretion disks. Beyond
these densities, it becomes imperative to factor in the temporal variation of black hole
masses and their accretion rates. This inclusion will amplify the deviation from the signal
typically associated with a binary system in a vacuum, thereby accentuating the influence
of dark matter on the waveform. Thus, our calculations offer a modest estimation of the
detection threshold. Numerical checks confirm that consideringmi(t) = mi(t0)+ṁi(t−t0)with a constant accretion rate does not alter the results presented in section 5.5.1.

5.3.2 . Phase and coalescence time
In the limit of small eccentricity e ≪ 1, the drift (5.49) can be expressed as

ȧ = −64νc

5

(
Gm
a

)3(
1− 4πρ0a

3

3m

)
−aAacc−a

(
a

Gm

)3/2
[
Bacc +Bdf + Cdf ln

(√
Gm
a

1

cs, 0

)]
.

(5.52)
The gravitational wave frequency, denoted as f, is double the orbital frequency as repre-
sented by (5.44). This relationship can be formally expressed as

f =
1

π

√
Gm
a3

(
1 +

2πρ0a
3

3m

)
. (5.53)

For clarity in this section, we employ a gothic font for f. This is to differentiate between f,
which represents the time-varying frequency sweep, and f , a variable designated for the
Fourier-transform in the ensuing analysis of time-sequence data in the Fourier space.

Incorporating first-order dark matter perturbations, the rate of change of f with re-
spect to time is

ḟ =
1

π

√
Gm
a3

(
ṁ

2m
− 3ȧ

2a

)
+ Gρ0

(
a3

Gm

)1/2
ȧ

a
. (5.54)
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When we integrate this with the relationships from (5.52) and (5.53), and factor in the
accretion terms as defined by (5.2) and (5.34), it results in

ḟ

f
= Dgw +Dhalo +Dacc +Ddf , (5.55)

where the terms on the right side are detailed as
Dgw = f 8/3

96π8/3ν

5
(Gm)5/3 ,

Dhalo = −f 2/3
256π5/3νρ0G8/3m5/3

3
,

Dacc =
12πF⋆G2ρ0µ

c2s, 0

2∑
i=1

Θ(f < facc,i)

(
3 + 2

m2
i

mµ

)

+ f−14Gρ0
2∑

i=1

Θ(f > facc,i)
m3

i

µ2m

(
3 + 2

m2
i

mµ

)
,

Ddf = −f−1 4Gρ0
3

2∑
i=1

Θ(f−df,i < f < f+df,i)
m3

i

µ2m
ln

(
f

f+df,i

)
.

Furthermore, the accretion and drag forces are expressed as
facc,i =

c2s, 0m
3
i

3πF⋆Gmµ3
, f−df,i =

c3s, 0m
3
i

πGmµ3
, f+df,i =

e3c3s, 0m
5µ15

5832πGm21
i

. (5.56)
In (5.55), we have dissected the contributions from gravitational waves. Specifically,

we have divided these into the standard term, f 8/3, related to Keplerian orbits, and a cor-
rection term, f 2/3, attributed to the influence of the dark matter halo. Let us consider the
phase integration, represented as Φ(t) = 2π

∫
df (f/ḟ), and the time integration, symbol-

ized by t = ∫ df (1/ḟ) over the gravitational wave frequency [337]. This gives us
Φ(f) = Φc +Φgw +Φhalo +Φacc +Φdf , (5.57)
t(f) = tc + tgw + thalo + tacc + tdf . (5.58)

Here, Φc and tc denote the phase and time at coalescence, respectively. The following
introduces some specific contributions

Φgw = −2π

∫ ∞

f
df

1

Dgw
, . . . (5.59)

and so forth.
Equations (5.57) and (5.58) implicitly articulate the function Φ(t), which delineates the

GW phase against time. We have assumed a linear approximation over the dark mat-
ter contributions to frequency drift, hypothesizing that they are lesser in magnitude than
the Keplerian gravitational wave input. Our findings in Section 5.3.3 corroborate this as-
sumption in practical scenarios. This assumption is also sufficient for gauging the requi-
site dark matter density thresholds for detection. At exceedingly high densities, our drift
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frequency calculations may be questionable, but the manifestation of dark matter in the
data remains unambiguous. It is worth noting that the influence of dark matter is more
pronounced during the early inspiral stages, specifically at lower frequencies. Thus, rela-
tivistic adjustments to the orbital motionwon’t significantly affect our evaluations for dark
matter detection thresholds.

For the gravitational wave signal represented as h(t) = A(t) cos[Φ(t)], where Φ(t) is
implicitly described by (5.57) and (5.58), and A(t) ∝ f 2/3 when neglecting dark matter
amplitude corrections [326], the Fourier-space data analysis considers the transform

h̃(f) =

∫
dt ei2πfth(t) . (5.60)

Using the stationary phase approximation [337], the resultant is h̃(f) = A(f)eiΨ(f), de-
tailed as

A(f) ∝ f−7/6,Ψ(f) = 2πft⋆ − Φ(t⋆)− π/4 , (5.61)
where the saddle-point t⋆ is established by f(t⋆) = f as Φ̇ = 2πf. Utilizing the relationships
presented in (5.57) and (5.58), the expression for Ψ(f) is formulated as

Ψ(f) = 2πftc − Φc −
π

4
+ Ψgw +Ψhalo +Ψacc +Ψdf . (5.62)

Here, the various components are delineated as follows
Ψgw = 2π

[∫ ∞

f
df

1

Dgw
− f

∫ ∞

f

df

f

1

Dgw

]
,

Ψhalo = 2π

[
f

∫ ∞

f

df

f

Dhalo

D2
gw

−
∫ ∞

f
df
Dhalo

D2
gw

]
, . . . . (5.63)

As referenced by [337]
Ψgw =

3

128
(πGMf)−5/3

[
1 +

20

9

(
743

336
+

11

4
ν

)
× (πGmf)2/3

]
, (5.64)

where the chirp massM is defined as
M = ν3/5m. (5.65)

Subsequently, other contributions are defined as
Ψhalo =

25π

924
ρ0G3M2(πGMf)−11/3 , (5.66)

Ψacc = −25πG3M2ρ0
38912

(πGMf)−16/3
2∑

i=1

Θ(f > facc,i)×
m3

i

µ2m

(
3 + 2

m2
i

mµ

)

− 75πF⋆ν
2/5G3M2ρa
26624

(πGMf)−13/3 ×
2∑

i=1

Θ(f < facc,i)

×
(
3 + 2

m2
i

mµ

)[
1−

(
f

facc,i

)13/3

+
13

19

(
f

facc,i

)16/3
]
, (5.67)
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Ψdf =
875πG3M2ρ0
11829248

(πGMf)−16/3
2∑

i=1
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i

µ2m
Θ(f−df,i < f+df,i)
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f
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)16/3

ln
f−df,i

f+df,i
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256

105

(
f

f+df,i

)19/3

− 256

105

(
f

f−df,i

)19/3
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(
f

f−df,i

)19/3

ln
f−df,i

f+df,i

 , (5.68)

Lastly, the inclusion of the factorsΘ denotes that solely the smaller black hole contributes
to dynamical friction when a specific range is encountered where both conditions, vi > V⋆and vi < Vrel are met.

In the gravitational phase (5.64), the inclusion of the first post-Newtonian 1 PN order
[337] disrupts the degeneracy between the black holemassesm1 andm2. This is indicatedby the leading term exclusively depending on the chirp massM. Thus, the phase in (5.64)
is dependent on bothm1 andm2, allowing the gravitational wave signal to constrain bothblack hole masses. Although higher-order 1.5 PN and 2 PN terms can constrain the black
hole spins as per [337], this paper does not account for spins.

5.3.3 . Comparative significance of the contributions
Referring to (5.64) and (5.66), we derive

Ψhalo

Ψgw
=

800ρ0G
693πf2

≈ 2× 10−8 ρ0
1 g · cm−3

(
f

1Hz

)−2

, (5.69)

maintaining only the predominant term in Ψgw. It is noteworthy that this ratio remains
unaffected by black hole masses and is rather small. Thus, the gravitational potential of
the dark matter cloud can often be overlooked.

Now for the accretion impact, let us definem> = max(m1,m2) andm< = min(m1,m2)as the larger and smaller masses of the binary respectively. Drawing from (5.56), we get

facc,< ≈ 3× 104
ρ0
ρa

(
m>

1M⊙

)−1

Hz ,

facc,> ≈ 3× 104
ρ0
ρa

(
m>

m<

)3( m>

1M⊙

)−1

Hz . (5.70)
Given that ρ0 ≪ ρa, these frequencies usually lie below 1 Hz. Consequently, the lesser
mass black holemay encounter both accretion scenarios within the observable frequency
range. The impact of accretion is predominantly noticeable for themore substantial black
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hole due to the factors in (5.67). Emphasizing on this aspect, we determine
f > facc,> :

Ψacc,>

Ψgw
≈ 0.1

(
m>

m<

)4 ρ0
1 g · cm−3

(
m>

1M⊙

)−5/3( f

1Hz

)−11/3

, (5.71)
f < facc,> :

Ψacc,>

Ψgw
≈ 5× 10−6

(
m>

m<

)
ρa

1 g · cm−3

(
m>

1M⊙

)−2/3( f

1Hz

)−8/3

. (5.72)
Clearly, accretion has a more pronounced effect on the phase than the influence from
the gravity of the cloud. Yet, when juxtaposed with the regular gravitational waves con-
tributionΨgw, it is relatively minor. Interestingly, this effect is more pronounced for small
masses and lower frequencies, suggesting its heightened significance during the initial
phases of inspiral.

Finally, for the dynamical fiction impact, based on (5.56), we compute
f−df,< ≈ 6× 104

(
ρ0
ρa

)3/2( m>

1M⊙

)−1

Hz ,

f−df,> ≈ 6× 104
(
ρ0
ρa

)3/2(m>

m<

)3( m>

1M⊙

)−1

Hz , (5.73)
and

f+df,< ≈ 2× 102
(
ρ0
ρa

)3/2(m>

m<

)6( m>

1M⊙

)−1

Hz ,

f+df,> ≈ 2× 102
(
ρ0
ρa

)3/2(m<

m>

)15( m>

1M⊙

)−1

Hz . (5.74)
This reveals that predominantly, the smaller black hole experiences a strong dynamical
friction, especially when the mass ratio is large. Further calculations show

f−df,< < f < f+df,< :
Ψdf

Ψgw
≈ 7× 10−3 ρ0

1 g · cm−3

(
m>

1M⊙

)−5/3( f

1Hz

)−11/3

. (5.75)
In comparison to the accretion effect, this is scaled downby a factor of (m</m>)

4. This oc-
curs because the larger black hole dominates accretion, whereas, based on our assump-
tions, only the smaller black hole undergoes significant dynamical friction. Once more,
this difference is less prominent when compared to the primary gravitational waves ef-
fect, Ψgw. Similar to the accretion effect, its significance rises during the initial inspiral
phase, thanks to the inverse relation with frequency.

5.3.4 . Effective post-Newtonian orders
The phase Ψ elements scaling with fα can be attributed an effective post-Newtonian

order n = 3α/2 + 5/2. For instance, the gravitational influence of the cloud is character-
ized by a -3 PN tier, as in (5.66). The accretion process contributes -4 PN at lower frequen-
cies and -5.5 PN at upper ones when dominant terms are isolated. Within the frequency
bounds f−df < f < f+df , dynamical friction also imparts a -5.5 PN tier. These negative tiers
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underscore the heightened significance of darkmatter contributions at lower frequencies
during the earlier inspiral stages. Notably, these are non-synonymous with conventional
relativistic adjustments, which are linked with positive post-Newtonian orders.

The back-reaction of the scalar field is not considered in this analysis. Studies of
the fuzzy dark matter scenario have shown that the scalar field back-reaction gives a -6
PN effect contribution, which is too small to be observed [271, 338]. However, the dy-
namical friction can heat the gas and lead to a depletion of dark matter in the vicinity
of the orbital radius, reducing the actual amount of dynamical friction [264, 339]. The
effect of self-interactions on dynamical friction is lessened by the effective pressure in
the self-interacting case considered in this analysis. Additionally, the small-scale cutoff
given by (4.46) makes the dynamical friction insensitive to the local dark matter den-
sity. Worthy of mention at the 5 PN order are deformability influences stemming from
non-zero Love numbers for black holes increased by scalar fields, as elaborated in [57,
58]. Focusing on the lower scalar-mass threshold in fuzzy dark matter paradigms, where
α = mDMmBHG ≪ 1, findings suggest these influences intensify at α−8 and gain promi-
nence for α ≲ 0.1. This research, however, narrows down to the higher scalar-mass spec-
trum, where α≫ 1 as depicted in (2.30). Consequently, we anticipate negligible tidal Love
numbers. Another important difference is the predominance of the self-interactions in
our case.

5.3.5 . Characteristics of dark matter: Parameters ρa and ρ0
From prior discussions, it is evident that the gravitational wave signal is influenced by

the surrounding dark matter environment through two distinct parameters: ρa and ρ0.Specifically, ρa is associated with the characteristic density as detailed in equation (2.3),
which arises from the self-interaction of dark matter. On the other hand, ρ0 representsthe overall density of the dark matter cloud.

Considering the gravitational influence of the cloud, detailed in equation (5.66), as well
as the high-frequency accretion (5.67) and the dynamic friction (5.68), these properties
scale with ρ0. Conversely, low-frequency accretion, as indicated in (5.67), scales with ρa.Moreover, the thresholds presented in equation (5.56) are contingent on cs, 0 ∝

√
ρ0/ρa.Given these relationships, it is theoretically possible to deduce both parameters if obser-

vational data encompasses the low-frequency accretion phase or at aminimum, captures
one of the mentioned frequency thresholds.

5.4 . Fisher information matrix

5.4.1 . Fisher analysis
We employ a Fisher analysis to estimate the detectable dark matter densities, namely

ρa and ρ0, through themeasurement of gravitational waves emitted by binary black holes
during their inspiral phase. The Fisher matrix, denoted by Γij , is given by [337, 340]

Γij = 4Re

∫ fmax

fmin

df

Sn(f)

(
∂h̃

∂θi

)⋆(
∂h̃

∂θj

)
, (5.76)
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where {θi} represents the parameters to bemeasured and Sn(f) denotes the noise spec-tral density, which relies on the specific gravitational wave interferometer utilized. The
quantities fmin and fmax denote the lower and upper boundaries of the frequency spec-trum associated with each event. These boundaries are influenced by the characteristics
of the interferometer, as outlined in section 5.4.3, as well as by potential constraints such
as the nonrelativistic cutoff discussed in section 5.4.5. The signal-to-noise ratio is defined
as

(SNR)2 = 4

∫ fmax

fmin

df

Sn(f)
|h̃(f)|2 . (5.77)

By expressing the gravitational waveform as h̃(f) = A0f
−7/6eiΨ(f), analogous to (5.61)

and (5.62), we derive the expression for Γij as
Γij =

(SNR)2∫ fmax

fmin

df
Sn(f)

f−7/3

∫ fmax

fmin

df

Sn(f)
f−7/3∂Ψ

∂θi

∂Ψ

∂θj
, (5.78)

where the parameters considered are {θi} = {tc,Φc, ln(m1), ln(m2), ρ0, ρa}. It is worthnoting that the amplitudeA0 represents an additional parameter, but it is not considered
further as the Fisher matrix is block-diagonal and the amplitude is decorrelated from the
other parameters {θi} [337].In comparison to the study presented in [222], we disregard the effective spin χeff ,defined as χeff = (m1χ1 +m2χ2)/M , which was taken into account solely for calculating
the last stable orbit using the analytical PhenomB templates [341]. This omission is due to
the fact that our results for the accretion rate and dynamical friction have been derived
specifically for Schwarzschild black holes. However, we anticipate that the order of mag-
nitude obtained for the dark matter densities will remain valid even for moderate spins.
Another distinction from [222] is that, in addition to the dark matter density ρ0, which de-scribes the bulk of the cloud, we introduce a second characteristic density ρa. This densitycharacterizes the dark matter density near the Schwarzschild radius and is directly linked
to the strength of darkmatter self-interaction. By utilizing the Fishermatrix, we obtain the
covariance Σij =

(
Γ−1

)
ij
, providing the standard deviation on the various parameters as

σi = ⟨(∆θi)2⟩1/2 =
√
Σii. See Appendix E for more details on Fisher analysis.

5.4.2 . Exploring the (ρ0, ρa) parameter space
In our study, we analyze detection thresholds within a dark matter medium. We ap-

proximate that the influence of dark matter is small, enabling us to linearize its effects.
Consequently, the phase changes represented by equations (5.66) to (5.68) are directly re-
lated to the densities ρ0 or ρa at fixed speed of sound cs, 0. The gravitational influences dueto halo effects (5.66), high-frequency or high-velocity accretion (5.67), and dynamical fric-
tion (5.68) scale with the bulk density ρ0. In contrast, the accretion during low-frequencyor low-velocity conditions (5.67) scales with the characteristic density ρa, associated withthe maximum allowed accretion rate. In the absence or minimal presence of a dark mat-
ter halo, the standard waveform parameters given by {θi}i=1,4 = {tc,Φc, ln(m1), ln(m2)}are shaped by the primary four components of the phase (5.62). This includes the tc,
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Φc elements, and the gravitational wave component Ψgw. This configuration mirrors the
routine assessment for binary systems in a vacuum setting. For a small dark matter halo,
especially when ρ0 and ρa are zero, this provides the 4×4 elementsΓij (where 1 ≤ i, j ≤ 4)
of the Fisher matrix. The existence of a dark matter background becomes relevant in the
phase from equations (5.66) to (5.68). These effects possess amplitudes that are func-
tions of ρ0 or ρa and include other factors like the Heaviside functionΘ and more gradual
variations represented by 1 + (f/facc)

13/3 or ln(f/f+df). The frequency set (5.56) hingesnot on ρ0 and ρa separately, but on the sound speed cs, 0. This is represented by the ratio
y given by

y =
ρa
ρ0

=
1

c2s, 0
≥ 1 . (5.79)

Hence, the various accretion and dynamical friction conditions are bounded by certain
values of y, which carve out specific angular regions in the (ρ0, ρa) parameter space. The
physical region of the positive quadrant, characterized by {ρ0 ≥ 0, ρa ≥ 0}, is confined to
the upper diagonal where ρa ≥ ρ0, owing to the limitation cs, 0 ≤ 1. For a specified binary
system with an observational frequency range denoted as [fmin, fmax], we can introduceaccretion thresholds based on y as follows

fmin < facc,i : y < y+acc,i , y+acc,i =
m3

i

3πF⋆Gmµ3fmin
, (5.80)

fmax < facc,i : y < y−acc,i , y−acc,i =
m3

i

3πF⋆Gmµ3fmax
. (5.81)

Additionally, dynamical friction thresholds can be defined as
fmin < f+df,i : y < y+df,i , y+df,i =

(
e3m5µ15

5832πGm21
i fmin

)2/3

, (5.82)
fmax > f−df,i : y > y−df,i , y−df,i =

(
m3

i

πGmµ3fmax

)2/3

. (5.83)
If we arrange the black hole masses such thatm1 ≥ m2, the following relations hold

m1 ≥ m2 : y+acc,1 ≥ y+acc,2 and y−acc,1 ≥ y−acc,2 . (5.84)
It is worth noting that only the smaller black hole, m2, undergoes significant dynamical
friction. The behavior of the accretion term Ψacc is divided as:

• For y > y+acc,1: There is no accretion dependence on ρa.
• For y < y−acc,2: Accretion is independent of ρ0.

The dependence on cs, 0 in the terms inside (5.67) converges quickly to one below the
threshold facc,i. Similarly, the behavior of the dynamical friction term Ψdf can be seg-
mented as:

• For y > y+df,2: No dynamical friction is observed.
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• For y−df,2 < y < y+df,2: The system experiences dynamical friction.
• When y < y−df,2: Dynamical friction overlaps with tc and Φc.

Furthermore, the terms inside (5.68) disregard the dependence on cs, 0.In the domain of high-y
y > max(y+acc,1, y

+
df,2) , (5.85)

the phase Ψ predominantly responds to ρ0, mediated by the halo gravity as illustrated in
(5.66) and the high-frequency spectrum of the accretion as depicted in (5.67). This indi-
cates an absence of constraints on ρa, and that the gravitational wave data solely yield anupper limit for the ambient density ρ0. Consequently, the Fisher matrix, given by (5.76),
materializes as a 5 × 5 matrix. From this, the covariance matrix can be represented as
Σij =

(
Γ−1

)
ij
, and the standard deviation of ρ0 is defined as σρ0 =

√
Σρ0ρ0 . This alignswith the detection threshold ρ0⋆ = σρ0 : halos possessing an large dark matter density

can be discerned using gravitational wave data, but halos with lesser density remain in-
distinguishable from vacuum binaries. As observed in Section 5.3.3, the influence of halo
gravity is minor when comparedwith the impact of accretion. When correlations between
binary parameters {tc,Φc, ln(m1), ln(m2)} and ρ0 are negligible, the detection threshold,
ρ0⋆, can be approximated using the expression

ρ0⋆ ≳
1

SNR

19456c6

25πG3m2
1

(πGm1fmin)
16/3

(
m2

m1

)5

, (5.86)
which can be further refined to

ρ0⋆ ≳
3× 10−6

SNR

(
m2

m1

)5( m1

1M⊙

)10/3(fmin

1Hz

)16/3

g/cm3 . (5.87)
This suggests that this lower boundary improves for instruments sensitive to lower fre-
quencies and for binaries exhibiting a larger mass ratio. However, when engaging in a
comprehensive Fisher analysis, partial overlaps between various parameters combined
with the restricted frequency range [fmin, fmax] designate a detection threshold slightly
exceeding the one described by (5.87).

In the subsequent discussion on IMRI and EMRI cases in Section 5.5.1, we identify an
intermediate rangewhere dynamical friction becomes significant, while accretion remains
unaffected by ρa

y−df,2 < y+acc,1 < y < y+df,2 . (5.88)
When we simplify our analysis by not considering the cs, 0 dependence in the terms of
(5.68), the function Ψdf is viewed as linearly dependent on ρ0 for a set density ratio y.
Consequently, the Fishermatrix (5.76) remains a 5×5matrix. Using the standard deviation
σρ0 =

√
Σρ0ρ0 , we deduce the point (ρ0⋆ = σρ0 , ρa⋆ = yσρ0). This point establishes aboundary in the (ρ0, ρa) plane, indicating the detection threshold.Finally, for small values of y defined as

1 ≤ y < y+acc,1 , (5.89)
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the accretion influence is a function of ρa, whereas the gravitational impact of the halo
consistently depends on ρ0. Given this, we are working with two dark matter parameters,
rendering the Fisher matrix as a 6× 6 entity. To further this analysis, for a specific density
ratio y, we evaluate the corresponding Fisher ellipse in the (ρ0, ρa) plane. Its intersectionwith the direction ρa/ρ0 = y is also assessed. Consequently, from the 6× 6 Fisher matrix
Γij , we deduce the equivalent 6× 6 covariance matrix Σij . Marginalizing over the binary
parameters {tc,Φc, ln(m1), ln(m2)}, we then establish a new 2× 2 covariance matrix Σ̂ij ,pertinent to the rows and columns of the remaining parameters ρ0 and ρa. This results inthe 2 × 2 Fisher matrix Γ̂ = Σ̂−1, determining the Fisher ellipse in the (ρ0, ρa) plane. Theboundary point becomes

ρ0⋆ =
(
Γ̂ρ0ρ0 + 2yΓ̂ρ0ρa + y2Γ̂ρaρa

)−1/2
, ρa⋆ = yρ0⋆ . (5.90)

Notably, most of the dark matter signal emerges from the accretion influence at low fre-
quencies, leading to a near constant threshold for ρa. Ignoring parameter correlations,
we deduce

ρa⋆ ≳
1

SNR

∣∣∣∣∂Ψacc

∂ρa

∣∣∣∣−1

, (5.91)

ρa⋆ ≳
1

SNR

13312c6

75πF⋆G3m2
1

(πGm1fmin)
13/3

(
m2

m1

)2

, (5.92)
that can finally be expressed as

ρa⋆ ≳
0.08

SNR

(
m2

m1

)2( m1

1M⊙

)7/3(fmin

1Hz

)13/3

g/cm3 . (5.93)
This lower boundary is more pronounced for instruments that probe low frequencies
and binaries exhibiting a larger mass ratio. Nevertheless, owing to some overlap and the
confined frequency range, the detection limit derived from the Fisher matrix inversion
slightly exceeds the given estimate.

5.4.3 . Gravitational-wave detectors
The gravitational-wave detectors considered in our analysis are as follows:

• LISA (Laser Interferometer Space Antenna) [66]: a space-based gravitational-wave
observatory designed to detect low-frequency gravitational waves in the millihertz
range. It consists of three spacecraft forming an equilateral triangle with laser
interferometry to measure the minute changes in distance caused by passing grav-
itational waves.

• B-DECIGO (Deci-hertz Interferometer Gravitational wave Observatory) [67]: a pre-
liminary test for the technologies planned to be used in DECIGO, a future proposed
detector concept aiming to detect gravitational waves in the frequency range from
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0.1 hertz to 10 hertz. It utilizes a pair of satellites connected by a long arm to mea-
sure the gravitational wave-induced changes in the arm length.

• ET (Einstein Telescope) [280]: a third-generation ground-based gravitational-wave
detector. It aims to operate at lower frequencies compared to current detectors
like Advanced LIGO. ET would employ an underground triangular configuration of
interferometers with arms of several tens of kilometers in length.

• Adv-LIGO (Advanced Laser Interferometer Gravitational wave Observatory) [279]:
an upgraded version of the LIGO detector. It operates on Earth and is designed to
detect gravitational waves in the frequency range from a few tens of hertz to a few
kilohertz. Adv-LIGO consists of multiple kilometers-long interferometer arms with
high-precision optical components.

For our analysis, we utilize the noise spectral densities provided in the following refer-
ences: Adv-LIGO: Barsotti et al. [342], ET: Hild et al. [343], LISA: LISA Consortium [344],
B-DECIGO: Isoyama et al. [345].

The frequency ranges relevant to our analysis are detailed in Table 5.1. Additionally,
we define the PhenomB inspiral-merger transition value as f1 following the formulation in
[341]. Moreover, we introduce fobs = 4.149×10−5

(
M

106M⊙

)− 5
8
(
Tobs
1 yr
)− 3

8 , which represents
the frequency at a given observational time before the merger, as defined in [346]. In our
computations, we consider Tobs = 4 years as the observational duration.

Detector Frequency
fmin(Hz) fmax(Hz)

LISA max (2× 10−5, fobs) min (102, f1)

B-DECIGO 10−2 min (1, f1)

ET 3 f1

Adv-LIGO 10 f1

Table 5.1: Gravitational waves frequency band considered for the LISA, B-DECIGO,ET and Adv-LIGO interferometers, where fobs is the frequency of the binary 4 yearsbefore the merger [346] and f1 is the PhenomB inspiral-merger transition value[341].

5.4.4 . Events
We focus on the description of six events, consisting of two ground-based (taking the

mean detected values for two famous events, which are the first detected gravitational
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waves GW150914 [347] and GW170608 [348]) and four space-based events. The latter four
events specifically pertain to the LISA detector, given its distinct detection range compared
to the others. All the events under consideration involve binary black holes. The space-
based events encompass various types of binaries, including Massive Binary Black Holes
(MBBH), Intermediate Binary Black Holes (IBBH), Intermediate Mass Ratio Inspiral (IMRI),
and Extreme Mass Ratio Inspiral (EMRI). It is important to note that all of these events
fall under the same classification as the events considered by [222]. We specifically focus
on black hole binaries and do not consider binaries involving neutron stars. The specific
details of these events, including relevant parameters, are provided in Table 5.2. Addition-
ally, to provide a comprehensive overview, we include information about the spins and
χeff (which determines the upper frequency cutoff of the data analysis) for each event.

Event Properties
m1 (M⊙) m2 (M⊙) χ1 χ2 χeff

MBBH 106 5× 105 0.9 0.8 0.87

IBBH 104 5× 103 0.3 0.4 0.33

IMRI 104 10 0.8 0.5 0.80

EMRI 105 10 0.8 0.5 0.80

GW150914 35.6 30.6 0.13 0.05 0.09

GW170608 11 7.6 0.13 0.50 0.28

Table 5.2: Details on masses and spins of the considered events. The informationon GW150914 and GW170608 are taken from [221].
The Signal-to-Noise Ratio (SNR) values for these events are obtained from [222] and

summarized in Table 5.3.

Event Detector LISA B-DECIGO ET Adv-LIGO
MBBH 3× 104 × × ×
IBBH 708 × × ×
IMRI 22 × × ×
EMRI 64 × × ×
GW150914 × 2815 615 40

GW170608 × 2124 502 35

Table 5.3: Value of the signal-to-noise ratio (SNR) of the considered events foreach detector, taken from [222].
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5.4.5 . Relativistic corrections
The dynamical friction formulae utilized in this analysis are valid under the nonrela-

tivistic limit v ≪ 1. In the case of relativistic corrections, a corrective prefactor of γ2(1+v2)2
is typically introduced to the dynamical friction [273, 349, 350]. This prefactor can be de-
rived in the collisionless scenario by considering the relativistic formula for the deflection
angle in scattering and the relativistic Lorentz boost between the fluid and black hole
frames [349]. It is important to note that this approximation remains valid in the highly
supersonic case, where streamlines at large radii follow collisionless trajectories due to
the negligible impact of pressure effects.

For velocities as high as v2 ∼ 0.137, the relativistic correction only introduces a mul-
tiplicative factor of approximately 1.5. Since dark matter contributions are most signif-
icant during the early inspiral phase, it can be observed that relativistic corrections can
be neglected without significantly altering the order of magnitude of the results. To en-
sure that relativistic corrections remain modest, the analysis is typically truncated below
the frequency fγ , where v2 = 0.137. This truncation guarantees that relativistic correc-
tions remain within an acceptable range. By considering these factors, we can affirm that
relativistic corrections do not significantly impact the overall magnitude of the results,
especially during the early inspiral phase where the dark matter contributions are most
relevant.

5.5 . Detection and constraints

5.5.1 . Detection prospects
The results for the detection thresholds in the (ρ0, ρa) plane, following the Fisher ma-

trix analysis outlined in Section 5.4, are presented in Figures 5.2 and 5.3.
In the context of the LISA-MBBH scenario, which is depicted in the upper left quadrant

of Figure 5.2, several pertinent observations can be made:
• The black dashed line sloping downwards represents the physical boundary, spec-
ified by the condition y = 1 (where cs, 0 = 1).

• The blue dotted lines correspond to the thresholds y+acc,1 and y−acc,1, whereas thegreen dot-dashed lines denote the thresholds y+acc,2 and y−acc,2. For reference, linesof constant-y are parallel to the diagonal y = 1 in the logarithmic (log(ρ0), log(ρa))plane. Notably, due to ν > 0.16, dynamical friction is absent.
Above the threshold line y+acc,1, we enter the large-y regime, as specified by (5.85). Within
this regime, ρa remains unconstrained, leading to a defining boundary ρ0 > ρ0⋆, with
ρ0⋆ ≈ 8 × 10−13g/cm3. When juxtaposed with the approximation in (5.87), which pre-
dicts ρ0⋆ ≳ 10−14g/cm3 (given fmin ≈ 6 × 10−5Hz), it’s evident that the Fisher analysis,
being more refined, returns a higher value—yet both remain in the same order of mag-
nitude. Consequently, the area bounded by ρ0⋆ on the right and above the line y+acc,1 ismarked as a potential detection region for dark matter, predominantly due to the accre-
tion influence Ψacc,1 on the larger black hole. In the space between y+acc,1 and y = 1,
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the dynamics operate in the low-y regime (5.89). Here, the phase is influenced by both
ρ0 and ρa. The Fisher analysis gives a nearly horizontal boundary of ρa > ρa⋆, with
ρa⋆ ≈ 5 × 10−9g/cm3. This is to be compared with the rudimentary calculation in (5.93)
which suggests ρa⋆ ≳ 10−11g/cm3. Even though the refined Fisher analysis provides a
superior value, both assessments are broadly in agreement in terms of magnitude. This
harmonization especially holds for the estimates (5.87) and (5.93), which cohesively signal
the significant disparity between the thresholds ρ0⋆ and ρa⋆. The resultant shaded regionbetween y+acc,1 and y = 1, and above ρa⋆, is hence demarcated as another dark matter
detection zone, predominantly due to the accretion effect of Ψacc,1 on the larger black
hole, albeit in a low-velocity self-regulated mode. For the LISA-IBBH scenario, portrayed
in the lower left quadrant of Figure 5.2, similar behavioral patterns are shown. Notably,
for fmin ≈ 6 × 10−4Hz, the simple approximations from (5.87) and (5.93) project values
of ρ0⋆ ≳ 10−14g/cm3 and ρa⋆ ≳ 10−9g/cm3. These are further fine-tuned by the detailed
Fisher analysis to ρ0⋆ ≈ 5× 10−13g/cm3 and ρa⋆ ≈ 3× 10−8g/cm3.

Figure 5.2: Maps of the detection prospects with LISA for different events, in terms of thedarkmatter parameters ρ0 and ρa. The lower right area below the black dashed line is notphysical. The shaded upper right area shows the region of the parameter space wherethe dark matter environment can be detected.
Consider now the LISA-IMRI scenario as displayed in the upper right section of Fig-
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ure 5.2. Beyond the thresholds {y+acc,1, y−acc,1} and {y+acc,2, y
−
acc,2}, the red solid lines indi-

cate dynamical friction thresholds {y+df,2, y
−
df,2}. Above the line y+df,2, the system enters

the large-y regime, described by (5.85), with a constraint at ρ0⋆ = 3 × 10−20g/cm3. This
value is consistent, within a factor of 100, with the approximation given by (5.87), yielding
ρ0⋆ ≳ 10−21g/cm3 when fmin ≈ 6 × 10−3Hz. Within the band y+acc,1 < y < y+df,2, the sys-tem operates in the intermediate regime (5.88). Here, a minimal dependence on ρa via
cs, 0 is observed as per (5.68), rendering the boundary approximately vertical. For values
below y+acc,1, the low-y regime (5.89) prevails, with the accretion term now significantly in-
fluenced by ρa, resulting in an approximate horizontal constraint at ρa⋆ ≈ 2× 10−8g/cm3.
The basic prediction from (5.93) suggests ρa⋆ ≳ 10−9g/cm3, which aligns, within a factor of
100, with the precise Fisher analysis, reflecting the substantial disparity between ρ0⋆ and
ρa⋆. The LISA-EMRI scenario, depicted in the lower right section of Figure 5.2, offers anal-
ogous patterns. Given fmin ≈ 3× 10−3Hz, rudimentary predictions from (5.87) and (5.93)
propose ρ0⋆ ≳ 10−24g/cm3 and ρa⋆ ≳ 10−10g/cm3. In contrast, the precise Fisher analy-
sis computation yield ρ0⋆ ≈ 10−22g/cm3 and ρa⋆ ≈ 10−8g/cm3. Analogous patterns are
evident in Figure 5.3 for B-DECIGO, ET, and Adv-LIGO detectors when considering stellar-
mass binaries. Notably, the MBBH and IBBH scenarios lack a dynamical friction regime.
The B-constraints from B-DECIGO on dark matter environments mirror those from LISA.
However, neither ET nor Adv-LIGO can detect dark matter clouds at realistic densities.

Figure 5.3: Maps of the detection prospects for three different interferometers (fromleft-to-right: B-DECIGO, ET, and Adv-LIGO), for the two events GW150914 (top line) andGW170608 (bottom line). The color convention is the same scheme as for Figure 5.2.
In every instance, the domain of detection encompasses an upper right region, de-

fined on the left by ρ0⋆, beneath by ρa⋆, and to the right by the diagonal ρa = ρ0. Therudimentary estimates from (5.87) and (5.93) generally fall below the exact ρ0⋆ and ρa⋆
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thresholds by a factor of roughly 100. Yet, they capture the main patterns and the differ-
ential between ρ0⋆ and ρa⋆. Dark matter detection is mainly influenced by the accretion
contribution, Ψacc, on the larger black hole. Above the diagonal y+acc,1, which traverses
the bottom-left segment of this domain, the accretion rate scales with ρ0. Conversely, be-neath the diagonal y+acc,1, it scales with ρa. Thus, above y+acc,1, we evaluate ρ0, while belowit, we assess ρa.

Event
Detector LISA B-DECIGO ET Adv-LIGO

MBBH (ρa⋆ in g/cm3) 5× 10−9
Ś Ś Ś

IBBH 3× 10−8
Ś Ś Ś

IMRI 2× 10−8
Ś Ś Ś

EMRI 10−8
Ś Ś Ś

GW150914 Ś

2× 10−8 103 5× 106

GW170608 Ś

2× 10−9 101 2× 105

Table 5.4: Value ρa⋆ of the minimum density parameter ρa (in g/cm3) that can bemeasured and enables a detection of the presence of a dark matter cloud. Weshow our results for all events presented in Figures 5.2 and 5.3.

Event
Detector LISA B-DECIGO ET Adv-LIGO

MBBH (ρ0⋆ in g/cm3) 8× 10−13
Ś Ś Ś

IBBH 5× 10−13
Ś Ś Ś

IMRI 3× 10−20
Ś Ś Ś

EMRI 10−22
Ś Ś Ś

GW150914 Ś

8× 10−14 0.9 104

GW170608 Ś

10−15 0.02 120

Table 5.5: Value ρ0⋆ of the minimum density parameter ρ0 (in g/cm3) that can bemeasured. We show our results for all events presented in Figures 5.2 and 5.3
Tables 5.4 and 5.5 present theminimumdetectable densities ρa and ρ0 for each event.Except, for the LISA-EMRI scenario, themeasurement of ρ0 is only possible atmuch higher

densities than the typical dark matter density on galaxy scales, which is about 10−26 to
10−23 g/cm3 [88, 89, 351, 352]. For comparison, it is noted that accretion disks have a
baryonic matter density below ∼ 0.1 g/cm3 for thin disks and below 10−9g/cm3 for thick
disks [197], with a lower bound around 10−16g/cm3. Gravitational waveforms can there-
fore only probe ρ0 for densities that are significantly above themeandarkmatter densities
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but below those of baryonic accretion disks. However, because of the lack of dissipative
and radiative processes, the mechanisms enabling dark matter to reach such high densi-
ties must be different from those of baryonic disks. It is suggested that such dark matter
clouds could instead form in the early universe, as discussed in scenarios like [353, 354],
where the darkmatter density field would be extremely clumpy, resembling a distribution
of small and dense clouds, similar to primordial black holes or macroscopic dark matter
scenarios but with larger-size objects. Hence, the studied scenarios suggests that detec-
tion is plausible for LISA and B-DECIGO, though not guaranteed. Conversely, it is evident
that ET and Adv-LIGO are not conducive to the detection of this specific dark matter, as
their detection thresholds exceed themaximumdensities expected in thin baryonic disks.

Our results indicate that the minimal value ρ0⋆ of the bulk density ρ0, which repre-
sents the detection threshold, is in close agreement with the results obtained for σ0 in[222] using collisionless dynamical friction. The expression (5.5) for the drag force due to
dynamical friction is quite general and applies to variousmedia, ranging from collisionless
particles to gaseous and scalar-field dark matter scenarios, up to a multiplicative factor.
This is not surprising since, in the supersonic regime, pressure forces and self-interactions
are negligible. However, the Coulomb logarithm and validity criteria depend on the spe-
cific properties of the medium. For instance, in the case of collisionless particles with a
monochromatic velocity distribution characterized by a Dirac peak at velocity vc (equiva-lent to cs, 0), the classical result for dynamical friction [60] vanishes if the compact object
moves at a velocity v < vc. In our case, dynamical friction vanishes when v < cs, 0 [1]. Forthe B-DECIGO, ET, and Adv-LIGO events, as well as the MBBH and IBBH cases observed
by LISA, the threshold ρ0⋆ obtained from Figures 5.2 and 5.3 lies within the region where
dynamical friction is efficient for both black holes, leading to results similar to those in
[222] (where the Coulomb logarithm is assumed to be of order unity).

5.5.2 . Detection threshold for ρa and parameter space

In this section, the detection threshold ρa⋆ obtained in Table 5.4 is compared with the
allowed parameter space of the dark matter model in the (mDM, λ4) plane. This compar-
ison aims to determine whether the scenario of black hole binary systems embedded in
dark matter clouds can be efficiently probed by the measurement of gravitational waves
emitted by such systems. The results are displayed in Figures 5.4 and 5.5, representing
the outcomes for LISA and B-DECIGO experiments, respectively. We exclude ET and Adv-
LIGO from consideration due to their requisite bulk densities, which are likely higher than
realistic densities.

The colored regions in the figures correspond to distinct limits based on observational
constraints or the regime considered in the calculations. As observed in Figures 5.2 and
5.3, the detection threshold for ρa is mostly independent of ρ0, although it can vary some-
what between domains where dynamical friction is important or not. To provide a specific
threshold for ρa, the values ρ0⋆ presented in Table 5.5 are adopted. From (2.3), a constant
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Figure 5.4: Domain over the parameter space (mDM, λ4) where our derivations are ap-plicable, in the case of the LISA interferometer and assuming a bulk dark matter density
ρ0⋆ as in Table 5.5. The white area represents the allowed parameter space. The upperleft red region is excluded by observational constraints. In the lower right blue region thescalar field dark matter model is allowed but the assumptions used in our computationsmust be revised. The black line corresponds to the detection limit obtained in Figure 5.2.Parameter values above this line are beyond the detectability range of the interferome-ter.
detection threshold ρa⋆ for ρa corresponds to an upper limit for λ4 that scales asm4

DM

ρa is measured if λ4 < 4m4
DM

3ρa⋆
. (5.94)

This can be rewritten as
λ4 < 3× 10−19

(
ρa⋆

1 g/cm3

)−1 (mDM

1 eV

)4
. (5.95)

The black solid line labeled ρa = σa in Figures 5.4 and 5.5 represents this upper limit,
indicating the maximum value of λ4 for which ρa can be measured.

The constraints that determine the parameter space of the model are described, and
these constraints are represented by the colored regions in the plots. Firstly, the large
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Figure 5.5: Domain over the parameter space (mDM, λ4) where our derivations are appli-cable and detection threshold, as in Figure 5.4 but for the B-DECIGO interferometer.
scalar mass limit condition(2.30) is required for the larger of the two black holes embed-
ded in the soliton. This is because we assumed that the de Broglie and Compton wave-
lengths of the scalar field are smaller than the horizon of the black hole. This condition
can also be expressed as

mDM >
1

2Gm<
. (5.96)

This condition ensures the validity of the accretion rate (5.2) and the dynamical friction
(5.5), which were derived in [1, 2, 190] under the assumption of a large-mass limit, where
∂r ≪ mDM. The exclusion of the parameter space due to this condition is indicated by
the green area marked by a vertical line on the left side of the figures.

Observations of cluster mergers, such as the bullet cluster, provide an upper bound
on the dark matter cross-section, σ/mDM ≲ 1 cm2/g [355]. This upper bound translates
to the constraint

λ4 < 10−12
( m

1 eV

) 3
2
, (5.97)

which is represented by the dashed red line in the upper left corner of the figures.
Another observational limit is shown by the upper left red solid line, which represents

themaximumsize of darkmatter solitons. To ensure that these solitons fit inside galaxies,
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a condition of Rsol < 10 kpc is imposed. This condition leads to an upper bound on λ4given by
λ4 < 0.03

(
Rsol

10 kpc

)2 (mDM

1 eV

)4
. (5.98)

This condition is parallel to the detection threshold (5.95) and is somewhat above it in
Figures 5.2 and 5.3. Therefore, the largest solitons would not be detected by gravitational
waves. This will be further discussed in section 5.5.3.

The derivation of the accretion rate (5.2) and dynamical friction (5.5) assumes that self-
interactions dominate over quantum pressure [1, 2, 190], in contrast to scenarios involving
fuzzy dark matter where the latter dominates and self-interactions are neglected. The
self-interaction potential is given by ΦI = ρ/ρa, while the quantum pressure is given by
ΦQ = −∇2√ρ/(2m2

DM

√
ρ). This results in the condition ρ/ρa > /(r2m2

DM), where ρ and
r represent the density and length scale of interest. This condition, which holds near the
black hole horizon with ρ ∼ ρa and r ∼ rs, coincides with the condition (5.96) and is
already enforced. Requiring that this condition also holds over the bulk of the soliton, at
density ρ0 and radius r ∼ Rsol, gives an additional constraint

λ4 >
8m3

DM

√
G

3
√
π
√
ρ0

. (5.99)
This constraint can be rewritten as

λ4 > 7× 10−26

(
ρ0

7× 10−25 g/cm3

)− 1
2 (mDM

1 eV

)3
. (5.100)

The blue region in the bottom right corner of the figures, below the blue solid line, is
excluded by this constraint. It is important to note that this constraint is the only one
that depends on the density parameter ρ0, and it becomes less stringent as ρ0 increases.Therefore, if ρ0 is much larger than the mean dark matter density of the Milky Way, this
constraint is less restrictive andmoves down in the (mDM, λ4) plane. While this constraint
excludes the region below it, it does not exclude the entire model. However, it does indi-
cate that our derivation of the dynamical friction needs revision as the bulk of the soliton
is now governed by quantum pressure instead of self-interactions. Nevertheless, this re-
vision is not expected to significantly alter our results because the dynamical friction form
(5.5) is quite general and applies tomostmodels in the supersonic regime, resembling the
classical result by Chandrasekhar for collisionless particles [60]. In the supersonic regime,
the details of self-interactions and pressure terms are not crucial, and only the Coulomb
logarithm may change, depending on the specifics of the physics involved. Therefore,
this line does not exclude the model itself, nor does it change the fact that the region
below it in the (mDM, λ4) plane leads to the measurement of ρa by the gravitational waveinterferometer, through the accretion effects where our assumptions still hold.

The area below the dashed blue line in the figures represents the parameter space
where the size of the soliton is smaller than the initial orbit of the binary system during
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the measurement. To ensure the validity of our calculation across all frequencies, we
must consider the constraint

λ4 >
16Gm4

DMr
2
orbit

3π
, (5.101)

which can be expressed as

λ4 > 3× 10−10
(mDM

1 eV

)4(rorbit
1 pc

)2

. (5.102)

For rorbit, the maximum orbital radius is considered, computed using Kepler’s third law at
the earliest measurement time associated with the frequency fobs(4 yr). This constraintis parallel to the soliton-size condition (5.98) and the detection threshold ρa⋆ in (5.95).

Hence, the white area in the parameter space indicates where the dark matter model
is realistic and all our calculations successfully apply. More precisely, the upper bounds
associated with the red exclusion regions correspond to unphysical regions of the param-
eter space, whereas the lower bounds associated with the blue exclusion regions indicate
regions where some of our computations need revision. However, even within the detec-
tion domain below the black solid line, it should still be possible to measure ρa.

Figures 5.4 and 5.5 show that the detection threshold ρa⋆ runs through the white areain all cases. Particularly, it is parallel but below the upper bound associated with the soli-
ton size limit and above the lower bound associated with the orbital radius limit. There-
fore, while the largest solitons cannot be detected, a significant portion of the available
parameter space could lead to detection by interferometers such as LISA and B-DECIGO.

5.5.3 . Constraints on the soliton radius

The parameters mDM and λ4 also determine the size of the soliton, denoted as Rsol,as shown in (2.3) and (2.16). Since Rsol is more relevant for observational purposes than
the coupling parameter λ4, the application domain of our computations and the detec-
tion threshold ρa⋆ are shown in Figures 5.6 and 5.7 in the parameter space (mDM, Rsol)instead of the (mDM, λ4) plane shown in Figures 5.4 and 5.5. It can be observed that no
experiment can probe solitons on galactic scales, where Rsol ≳ 1 kpc, which have been
proposed as a solution to the small-scale problems encounteredby the standard cold dark
matter scenario. Typically, LISA can probe models associated with 10−10 ≲ Rsol ≲ 10−3

kpc, while B-DECIGO can probes soliton as small asRsol ∼ 10−11 kpc. These astrophysical
scales range from hundreds of thousands of kilometers to distances around the typical
distance between stars in the Milky Way (∼ 5 light years). Once again, LISA and B-DECIGO
cover a significant fraction of the parameter space. LISA can probe models with a scalar
mass in the range 10−16 ≲ mDM ≲ 1 eV. On the other hand, B-DECIGO is restricted to
10−12 ≲ mDM ≲ 1 eV.
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Figure 5.6: Domain over the parameter space (mDM, Rsol) where our derivations are ap-plicable and detection threshold, in the case of the LISA interferometer and assuming abulk dark matter density ρ0⋆ as in Figure 5.4. The white area below the solid black line isthe area where effects of drag force are detectable.
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Figure 5.7: Domain over the parameter space (mDM, Rsol) where our derivations are ap-plicable and detection threshold, in the case of the B-DECIGO events, as in Figure 5.5.

5.6 . Summary of the chapter

The detection of gravitational waves has already provided significant results for funda-
mental physics, such as confirming the near equality between the speed of gravitational
waves and the speed of light [220, 235, 244]. In this study, we propose that future experi-
ments could shed light on key properties of dark matter. Specifically, we focus on scalar
field dark matter models with quartic self-interactions and assume that the overall den-
sity of dark matter in the Universe arises from the misalignment mechanism of the scalar
field. Within galaxies, these models can give rise to finite-sized solitons of dark matter,
where gravity and the repulsive self-interaction pressure balance precisely. This regime
is applicable when the size of the solitons ismuch larger than the de Broglie wavelength of
the scalar particles. Consequently, these solitons could potentially exist throughout each
galaxy, and black holes could naturally become embedded within these scalar clouds as
they inspiral towards each other in binary systems.

The scalar clouds have two effects on the orbits of binary systems. First, the dark
matter accretes onto the black holes, causing them to slow down. Second, in the super-
sonic regime, dynamical friction resulting from the gravitational interaction between the
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black holes and distant streamlines further decelerates the black holes. Both effects can
introduce significant deviations in the binary orbits and, consequently, perturbations in
the GW signals emitted by the black hole pair. The accretion effect contributes at the -
4PN level in the low-velocity regime (subsonic regime and moderate Mach numbers) and
at the -5.5PN level in the hig-velocity regime (high Mach numbers), while dynamical fric-
tion contributes at the -5.5PN level. Therefore, these effects are not degenerate with the
relativistic corrections appearing at higher post-Newtonian orders.

For a significant portion of the parameter space in scalar field dark matter models,
future experiments such as LISA, B-DECIGO, ET, or Adv-LIGO should be capable of ob-
serving the impact of these dark matter environments on gravitational waves, provided
that binary systems are indeed embedded within such scalar clouds. This would provide
valuable insights into the nature of dark matter. Within the framework of the scalar field
models with quartic self-interactions explored here, these observations would yield indi-
cations regarding the values of the bulk darkmatter density ρ0 and the characteristic den-sity ρa of (2.3), which corresponds to the combination m4

DM/λ4. Additionally, this wouldindirectly provide an estimate of the sizeRsol of the solitons, as given by (2.16). Measuring
the bulk density of dark matter ρ0 appears achievable with upcoming gravitational wave
experiments within a substantial portion of the parameter space associated with these
dark matter models. This is particularly evident for detection of events from LISA and
B-DECIGO. As for ρa, forecasting this parameter poses challenges due to its primary asso-
ciation with peak dark matter density proximate to black holes. Nonetheless, the values
discernible by LISA and B-DECIGO align with anticipated ranges, even though they con-
siderably exceed the typical dark matter density observed on galactic scales. Such high
densities could be reached in scenarios where the dark matter clumps are significantly
smaller and denser than the average galactic halos, which would correspond to models
where these clumps formed at high redshifts, resulting in a highly clumpy distribution of
dark matter. The absence of detection of such dark matter effects in ET and LIGO events
suggests that either these dark matter clouds are rare or absent, or that ρa is below 0.01
g/cm3, as shown in Table 5.4.

Perturbations to the gravitational waveforms may arise from various environments,
including gaseous clouds or darkmatter halos associated with different darkmattermod-
els. In all cases where such environments are present, we can expect both accretion and
dynamical friction to occur and slow down the orbital motion. It would be interesting
to investigate whether one can distinguish between these different environments. As
demonstrated in this paper, one could potentially utilize the magnitude of these two ef-
fects, as well as the regions in the data sequence where dynamical friction appears to be
active or not, to discriminate between scenarios. Specifically, depending on the medium,
dynamical friction is expected to be negligible in certain regimes, such as subsonic veloc-
ities. If it is possible to extract such conditions from the data, valuable information about
the environment of the binary systems could be gained.
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Conclusions

In this thesis, our primary aims were to calculate the mass accretion and dynamical
friction experienced by a Schwarzschild black hole moving inside a self-interacting scalar
field dark matter soliton. Additionally, we sought to investigate the subsonic and super-
sonic regimes and quantify the effects of mass accretion and dynamical friction in gravita-
tional wave emissions by binary black holes, providing a possible probe for dark matter.

To achieve these aims, we first introduced the self-interacting scalar field dark matter
model in chapter 2, providing an overview of its implications for large-scale structures,
solitons, and interactions with black holes. We discussed the constraints on the self-
interaction coupling constant derived from astrophysical observations and outlined the
parameter space relevant to our computations.

In chapter 3, we focused on the subsonic regime, studying the behavior of darkmatter
flow in the presence of a Schwarzschild black hole and a self-interacting scalar field dark
matter soliton. Our results demonstrated that the dark matter behaves as an isentropic
potential flow, characterized by a polytropic index of γad = 2. Notably, we compared the
accretion rate and drag force with those of collisionless particles [60–62] and fuzzy dark
matter [63–65], revealing that our model exhibits null dynamical friction in the subsonic
regime, resembling the behavior of a gas [277]. However, we found the accretion rate to
be significantly smaller than that predicted by Bondi’s result for a perfect gas [300].

In chapter 4, we explored the supersonic regime, which is characterized by conflicting
boundary conditions. We examined the emergence of shock fronts in hyperbolic systems
such as supersonic flows, as they play a crucial role in matching the upstream bulk flow
(determined by initial conditions) with the downstream bulk flow (influenced by bound-
ary conditions at the black hole horizon). The dynamics in the upstream and downstream
regions require a more detailed treatment than that employed in the subsonic regime.
Notably, we found that while the mass accretion exhibited similarities to previous re-
sults, a new regime similar to Hoyle-Lyttleton result for isentropic gas appeared in the
case of high Mach number. Furthermore, a dynamical friction term analogous to Chan-
drasekhar’s result [60] appeared in this regime, supplementing the drag force and intro-
ducing a discontinuity between the subsonic and supersonic regime forces.

In chapter 5, we explored the potential of gravitational wave detection for studying
dark matter. Specifically, we investigated self-interacting scalar field dark matter mod-
els and their impact on binary black holes and gravitational wave signals. Our findings
revealed that mass accretion and dynamical friction contribute to deviations in binary or-
bits and perturbations in emitted gravitational wave signals. While accretion drag force
leave a−4PN signature on gravitational wave signals in low velocity regime and a−5.5PN
signature in high velocity regime, dynamical friction leave a−5.5PN signature, hardly per-
mitting to distinguish between both effects. Future experiments such as LISA, B-DECIGO,
ET, or AdvLIGO [66, 67, 279, 280] hold promise in observing these effects, offering valu-
able insights into dark matter parameters and their influence on gravitational waves. Fur-
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thermore, we discussed the potential for distinguishing between different environments,
such as gaseous clouds or alternative dark matter models, based on the magnitude and
characteristics of these effects.

Several points warrant further investigation and serve as intriguing avenues for future
research:

• Firstly, while our calculations focused on the nonrelativistic regime, incorporating
relativistic effects would be valuable to provide amore comprehensive understand-
ing of dark matter systems. This extension would allow us to study the effects of
the drag force at higher frequencies, closer to the merging of black holes. Addition-
ally, our study predominantly considered non-spinning Schwarzschild black holes.
Incorporating Kerr black holes with angular momentum or spin would enhance the
realism of our models, particularly considering the presence of spin in observed bi-
nary black hole systems [208, 218, 220, 221]. This work was done for ultralight dark
matter [275].

• Expanding our scope beyond black holes to include other astrophysical objects,
such as stars and neutron stars, is crucial. These objects offer unique character-
istics that can provide valuable insights into testing dark matter models. However,
accounting for the back reactions of dark matter becomes important for such ob-
jects, as mass accretion is typically not the dominant factor in the subsonic regime.

• Furthermore, it is essential to consider scenarios where black holes reside closer
to the boundaries of a soliton or when the soliton itself is relatively small. Broad-
ening our exploration to encompass a wider range of soliton sizes would expand
our ability to detect and characterize solitons, enabling the identification of distinct
signatures associated with scalar field dark matter models.

In summary, this thesis investigated the mass accretion, dynamical friction, and their
combined effects on binary systems within self-interacting scalar field dark matter soli-
tons. The findings contribute to our understanding of the dynamics of black holes in the
presence of darkmatter and open up avenues for future research. Incorporating relativis-
tic effects, considering spinning black holes, exploring the influence of stars and neutron
stars, and investigating a broader range of soliton sizes are all promising directions for
advancing our knowledge and uncovering stronger signatures in the exploration of scalar
field dark matter models.
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Appendices

A . Subsonic regime

A.1 . Green functions
In the appendices that follow we drop the hats for simplicity of notation.
In order to go beyond the linear flow described in section 3.5.1, the nonlinear equa-

tion (3.20) is split into a system of two equations (3.56). This system is then solved using
an iterative scheme. The source term S is obtained directly from the flow β using the
second equation in the system. To determine the flow β from the source S, the first
equation is solved with the aid of the appropriate Green functionG(r, r ′

), which satisfies
∇ · (k2+∇G) = δD(r− r

′
). By solving the first equation in (3.56), the following expression

for β is obtained
β = βL +

∫
dr

′
G(r, r

′
)S(r

′
) . (A.1)

Here, βL represents the linear flow (3.34). Expanding theGreen function in termsof spher-
ical harmonics and decomposing the phase β and the source S in terms of Legendre poly-
nomials, the following expressions are obtained

β(r, θ) =
∑
ℓ

βℓ(r)Pℓ(cos θ) , (A.2)

G(r, r
′
) =

∑
ℓ,m

Gℓ(r, r
′)Y m

ℓ (θ′, φ′)∗Y m
ℓ (θ, φ) . (A.3)

Using these decompositions, the expression for βℓ becomes
βℓ = βLℓ +

∫ ∞

rm

dr′ r′2Gℓ(r, r
′)Sℓ(r

′) . (A.4)
As βL already satisfies the boundary conditions, the Green function must approach zero
at both rm and large radii. Therefore, the following expressions are used for the Green
function:

r < r′ : Gℓ(r, r
′) = wℓG

+
ℓ (r)G

−
ℓ (r

′) ,

r > r′ : Gℓ(r, r
′) = wℓG

−
ℓ (r)G

+
ℓ (r

′) , (A.5)
where

wℓ =
3

2(r + γr2)[G+
ℓ (r)G

−′

ℓ (r)−G+′

ℓ (r)G−
ℓ (r)]

. (A.6)
This constant is determined by the Wronskian theorem. At the inner boundary rm, thecondition ∂G0

∂r (rm) = 0 is enforced, allowing for the recovery of the radial velocity. For
modes ℓ ̸= 0, the radial and angular velocities are not exactly zero at rm. However, it is
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sufficient for them to be negligible. This approximation is made because the numerical
solution is truncated at the radius rm, slightly above the Schwarzschild radius, where theflow is already dominated by radial accretion while angular velocities are not precisely
zero. The accuracy of this approximation can be verified by referring to Figure 3.3.

A.2 . Odd multipoles
The cubic non-linearity in β given by (3.20) introduces mode coupling between Leg-

endre multipoles. This effect can be estimated at large radii, where the velocity is nearly
equal to v0 and β is dominated by the dipole term in expression (3.34). At large radii,
the linear solution (3.34) behaves according to (3.49). As r approaches infinity, the source
term S in (3.56) is primarily contributed by two powers of the leading term v0r and one
power of the subleading term−v0/2γ from βL1 . This results in a contribution of order 1/r2to S. Terms of order 1/r2 are also generated on the left-hand side of the first equation in
(3.56) due to constant terms in β and the contribution from the leading v0r term paired
with the contribution 2/(3r) to the kernel k2+ in (3.25). Consequently, mode couplings pro-
duce a constant tail for all odd multipoles as the cubic non-linearity repeatedly transfers
power from the dipole to higher-order odd multipoles. Therefore, we can express the
odd part of the phase βodd as a large-distance expansion of the form (3.50)-(3.51). In the
linear flow, a1 = −v0/(2γ), and all other multipoles are zero.

Collecting terms of order 1/r2 in (3.20), we obtain the following expression
− γ

r2

∑
n odd

ann(n+ 1)Pn − v0 cos θ

r2
= −v

2
0

r2

∑
n odd

ann(n+ 1)Pn +
2v20
r2

∑
n odd

ann(n+ 1)

×
[

(n+ 2)2

(2n+ 1)(2n+ 3)
Pn+2 +

(n− 1)2

(2n− 1)(2n+ 1)
Pn−2 −

2n2 + 2n− 1

(2n− 1)(2n+ 3)
Pn

]
, (A.7)

where Pn corresponds to the Legendre Polynomial of degree n. For the linear flow, ne-
glecting the right-hand side, we recover a1 = −v0/(2γ). By collecting the coefficient of
each Legendre polynomial Pn, we obtain the recursion relation for odd integers n ≥ 1

−3k20an − v0δn,1 =4v20

[
n(n− 2)(n− 1)

(n+ 1)(2n− 3)(2n− 1)
an−2

+
(n+ 1)(n+ 2)(n+ 3)

n(2n+ 3)(2n+ 5)
an+2 −

2n2 + 2n− 1

(2n− 1)(2n+ 3)
an

]
. (A.8)

Consequently, due to the mode couplings induced by the cubic non-linearity, a nonzero
a1 generates nonzero values for all odd multipoles. By defining the parameter

ξ =
3k20
v20

= 4
c2s, 0
v20

, (A.9)
where cs, 0 was defined in (3.42), the recursion relation simplifies at large n to

n≫ 1 : −ξan = an−2 + an+2 − 2an . (A.10)
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This equation has two independent solutions of the form
an = y

n/2
+ and an = y

n/2
− , (A.11)

with
0 < ξ < 4 : y± =

−(ξ − 2)± i
√
4− (ξ − 2)2

2
hence y± = e±iζ ,

ξ > 4 : y± =
−(ξ − 2)±

√
(ξ − 2)2 − 4

2
, (A.12)

where we defined ζ = arccos(1− ξ/2).
For small velocities, ξ > 4, corresponding to v0 < cs, 0, where cs, 0 is defined in (3.42),

the solution yn/2+ decaysmore rapidly compared to yn/2− . Therefore, in order to have awell-
definedmultipole expansion, the decaying solution yn/2+ is selected. The recursion relation
(A.8), starting from the second equation at n = 3, determines all an with n ≥ 5, while a1and a3 remain undetermined. This recursion relation is a linear difference equation of
second order, also known as a three-term recursion, with two independent solutions. The
selection of the decaying solution yn/2+ then determines the ratio a3/a1. By substituting a3in terms of a1 in the first equation of (A.8) with n = 1, the value of a1 can be determined.
Hence, all coefficients an are uniquely determined.

In the limit of v0 → 0, the amplitude of the coefficients an shows a rapid decrease
with n, as |an| ∼ |y+|n/2 ∼ vn0 . In this limit, the right-hand side of the first equation in (A.8)
becomes negligible. Thus, the linear flow given by (3.49) is recovered, which is expected.
The expressions are as follows

v0 ≪ cs, 0 : a1 ≃ − v0
3k20

≃ − v0
2γ

, an ∼ vn0 . (A.13)
These results are consistent with the explicit expression given in (3.44).

In contrast to the linear flow where multipoles beyond the dipole are exactly zero,
the mode couplings induced by the cubic non-linearity lead to a constant value for these
oddmultipoles at large r. Consequently, the multipoles of the angular velocity decay only
as 1/r and not with a power of 1/r that grows with n. This behavior differs from the
large-distance behavior of the linear modes G−

n in (3.32) of the operator ∇[k2+∇(·)]. The
difference arises because the source S is not strongly peaked at a specific scale, such as
rγ , resulting in the integral over the Green function in (A.4) not being peaked around a
finite range of r′. Instead, significant contributions arise up to r′ ∼ r. As a result, the
results given by (3.44) and (A.8) are robust, and the large-distance behavior of the phase
β is not sensitive to its behavior at small radii.

Consistent with the change in flow properties from the subsonic to the supersonic
regime, we note that the threshold cs, 0 can be recovered from the result given in (A.8).
For velocities v0 > cs, 0, at large values of n, the two independent real solutions are given
by Re(yn/2+ ) = cos(nζ/2) and Im(y

n/2
+ ) = sin(nζ/2). In the limit of large n, the Legendre

polynomials take the following asymptotic form
n→ ∞ : Pn(cos θ) =

√
2

πn sin θ
cos

[(
n+

1

2

)
θ − π

4

]
, (A.14)
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for 0 < θ < π. When θ = ζ/2, both solutions cos(nζ/2) and sin(nζ/2) lead to divergent
series in n. This agrees with the singularity of (3.44) at the threshold cs, 0, specifically at
µ = 0. Therefore, for v0 > cs, 0, a shock appears and the flow is no longer a smooth
perturbation around the linear flow given by (3.34). The study of this regime is done in
chapter 4.

A.3 . Even multipoles
As discussed in the previous appendix, at large radii, the nonlinear mode couplings

generate contributions to all odd multipoles as long as the dipole is nonzero. This par-
tial decoupling between odd and even multipoles arises from the properties of the linear
operator and the cubic source term in the nonlinear system (3.56). The linear operator
∇[k2+∇β] preserves the parity of β, while the cubic source term ∇ · [(∇β)2∇β] requires
one or three odd multipoles to generate an odd multipole, and one or three even mul-
tipoles to generate an even multipole. Consequently, if we start with a phase β that has
no even component, the cubic source term will never generate even multipoles. On the
other hand, if there is an initial seed for even multipoles, all even-order multipoles will be
generated by the cubic non-linearity and will mix with the odd multipoles through prod-
ucts of two odd terms with one even term. However, due to the partial decoupling, the
final amplitude of the even terms will be proportional to the initial seed.

Since the linear flow (3.35) has an even component β0 that decays as 1/r at large radii,we can write the even part of the phase βeven using a large-distance expansion in the form(3.50)-(3.51). The even components decay faster than the odd components (except for the
leading growing dipole term) due to the partial decoupling explained earlier. For the linear
flow, only b0 is non-zero and proportional to 1/γ, while all other multipoles are zero. By
collecting all terms of order 1/r3 in (3.20), we obtain
− γ

r3

∑
n even

bnn(n+ 1)Pn = −v
2
0

r3

∑
n even

bnn(n+ 1)Pn
2v20
r3

∑
n even

bn

×
[
(n+ 1)2(n+ 2)(n+ 3)

(2n+ 1)(2n+ 3)
Pn+2 +

n2(n− 2)(n− 1)

(2n− 1)(2n+ 1)
Pn−2 −

n(n+ 1)(2n2 + 2n− 1)

(2n− 1)(2n+ 3)
Pn

]
.

(A.15)
For the linear flow, neglecting the right-hand side, we find that bn = 0 for n ≥ 2, while

b0 can take any value determined by the small-radius boundary condition. Collecting the
coefficient of each Legendre polynomial Pn, this gives the recursion for even integers
n ≥ 2

−3k20bn = 4v20

[
(n− 1)2

(2n− 3)(2n− 1)
bn−2 +

(n+ 2)2

(2n+ 3)(2n+ 5)
bn+2 −

2n2 + 2n− 1

(2n− 1)(2n+ 3)
bn

]
.

(A.16)
The equation obtained from (A.15) at n = 0 is automatically satisfied because all terms

include the prefactor n(n+1), which canceled out in (A.16) for n ≥ 2. As a result, a nonzero
b0 generates nonzero values for all even multipoles. At large n, we recover the same
recursion as in (A.10) and the two independent solutions given in (A.11).
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At low velocities, v0 < cs, 0, we recover the decaying solution yn/2+ from (A.12). However,
because the relation (A.16) at n = 0 was automatically satisfied as 0 = 0, the series of
evenmultipoles is not uniquely determined anddepends on the unconstrainedmonopole
coefficient b0, which is determined by the matching to the behavior at small radii. For
v0 → 0, we recover the linear flow (3.35) with the even multipoles given by

v0 ≪ cs, 0 : bn ∼ vn0
γ
. (A.17)

Once again, this 1/r tail is not sensitive to the behavior of the phase β at small radii, except
for its overall normalization.

At large velocities, v0 > cs, 0, we recover the oscillatingmodes (A.12) and the singularity
analyzed in Appendix A.2. This singularity agrees with the singularity at µ → 0 of the
explicit expression (3.46) and indicates the appearance of a shock, as well as the fact that
the flow is no longer a smooth perturbation of the linear flow.

B . Drag force calculation for different models

B.1 . Chandrasekhar’s calculation of dynamical friction
In this appendix, we provide a step-by-step explanation of the Chandrasekhar’s cal-

culation of dynamical friction in the case of nonrelativistic collisionless particles. As a
reminder, dynamical friction refers to the deceleration experienced by a massive object
moving through a medium composed of lighter particles, resulting in its gradual orbital
decay. We outline themain equations and elucidate the calculation process, starting from
the gravitational force and culminating in the formulation of the dynamical friction equa-
tion.

The gravitational force acting on the test particle p due to one field particle ϕ is de-
scribed by Newton’s law of gravitation

F =
GMpMϕ

r2
, (B.18)

whereMp andMϕ are the masses of the test particle and field particles, respectively, and
r = |r| = |rp − rϕ| is the separation distance between them (with rp and rϕ the positionsof the test particle and the field particle respectively).

To account for the cumulative effect of all field particles on the test particle, we in-
tegrate the force over the velocity distribution of the field particles. In the case where
Mp ≫Mϕ and assuming a Maxwellian velocity distribution for the field particles, charac-
terized by f(v) = N

(2πσ2)3/2
e−

v2

2σ2 , where σ represents the velocity dispersion of the field
particles and N the total number of field particles, we obtain the following formula

v̇p = −
16π2G2Mϕ(Mϕ +Mp)

v3p
C

∫ vp

0
f(v)dvvp . (B.19)
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In this last expression, vp represents the velocity of the test particle and C = ln(Λ) is the
so-called Coulomb logarithm accounting for the logarithmic divergence arising from con-
sidering both small-scale and large-scale gravitational interactions. It is usually defined
as Λ = bmax/bmin where bmax and bmin represent the maximum and minimum impact pa-
rameters for which gravitational interaction is considered significant. The determination
of bmax depends on the specific context of the problem. In contrast, the minimum impact
parameter, represented by bmin, is typically set to the size of the test particle, although itsprecise definition may vary depending on the nature of the object under consideration
(i.e. as black holes). To provide a concrete example, when dealing with a test particle
situated within a dark matter halo, different peoples may adopt distinct approaches for
defining bmax. While some might encompass the entire extent of the halo, others may
restrict themselves to considering the region within the light cone of the test particle.

To simplify the integration process in (B.19), we introduce a dimensionless quantity
X = v/(

√
2σ) Then, we use the error function erf(x) defined as

erf(X) =
2√
π

∫ X

0
e−t2dt , (B.20)

capturing the cumulative effect of all field particles on the test particle. By integrating the
force over the velocity distribution, incorporating the Coulomb logarithm and the error
function, we derive the equation for dynamical friction

v̇p = −
4πG2M2

pρϕ

v3p
C

(
erf(X)− 2X√

π
e−X2

)
vp , (B.21)

where ρϕ is the density of the field particles. Solving this differential equation provides
insights into the time evolution of the velocity of the test particle, allowing us to under-
stand the orbital decay caused by dynamical friction. This last equation can be further
simplified as

F ≃
G2M2

pρϕ

v2p
C . (B.22)

It is interesting to note that the calculation of dynamical friction can be complex, often
requiring numerical techniques for accurate solutions. The steps outlined in this appendix
offer a logical progression through the fundamental equations and principles underlying
the Chandrasekhar’s calculation. For a comprehensive mathematical treatment and fur-
ther details, we recommend referring to the original works by Chandrasekhar [60].

B.2 . Calculation of drag force for fuzzy dark matter
In this Appendix, keeping the systemof a black holemoving inside a darkmatter cloud,

we will calculate the drag force in the free case. To do so, we set λ4 = 0 to eliminate
the effects of self-interactions. Consequently, the potential term simplifies to V (ϕ) =

m2
dmϕ

2/2.
To analyze the system in the absence of self-interaction, we adopt a similar ap-

proach as in [190]. From the madelung transformation (2.7), we obtain the scalar field
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ϕ =
√
2ρ cos(mdmt− s)/mdm. The equations of motion, derived from the Euler-Lagrange

equations, can be expressed as follows (2.8)
ρ̇+

√
f

h3
∇ ·
(√

fhρ
∇s
mdm

)
= 0 ,

ṡ

mdm
+

f

mdm

(
∇s
)2

2m2
dm

=
1− f

2
. (B.23)

These equations govern the evolution of the density ρ and the phase s of the scalar field,
respectively. To find a stationary solution for s, we consider a planar system in (r, θ) and
assume that s can be written as s = −Et + ŝ, where ŝ is time-independent, the kinetic
energy E = k2/(2mdm), and the momentum k = mdmv0 (v0 being the relative velocity at
z → −∞). After substituting this solution into the second equation of (B.23), and identi-
fying it with the Hamilton-Jacobi equation dS

dt +H(p, r) = 0 (giving S → ŝ and H = f(ŝ)),
we obtain

dŝ

dt
+

(∇ŝ)2

2mdm
− h

f

(
E +

1− f

2
mdm

)
= 0 . (B.24)

From this equation, we derive the equations of Hamilton
ṙ =

∂H

∂p
=

p

mdm
, ṗ = −∂H

∂r
= −∂V (r)

∂r
. (B.25)

These equations allow us to obtain the total time derivative of ŝ. Considering a central
force potential, we can express the momentum components as
pθ = L = kb , |pr| =

√
−
(

L2

m2
dmr

2
+

2

mdm
V (r)

)
= mdm

√
h

f

√
1− f + v20

(
1− b2

r2
f

h

)
,

(B.26)
where b = √

x2 + y2 = r sin(θ) is the impact parameter. With this, we can obtain a final
expression for s as

s = ŝ0 + (θ − θ0)L+

∫ t

t0

dtṙpr , (B.27)
where ŝ0 = kz0, and θ0 and z0 are the angle and position at initial time t0.To account for the transition of dark matter particles from pr = −|pr| to pr = +|pr| atthe minimum radius rmin of their trajectories, we divide the phase s and the angle θ intotwo cases:

• t ≤ tmin:
s = ŝ0 + (θ − θ0)L−

∫ r

r0

dr|pr| , (B.28)
θ = θ0 − L

∫ r

r0

dr

r2|pr|
. (B.29)

• t > tmin:
s = ŝ0 + (θ − θ0)L−

∫ rmin

r0

dr|pr|+
∫ r

rmin

dr|pr| , (B.30)
θ = θ0 − L

∫ rmin

r0

dr

r2|pr|
+ L

∫ r

rmin

dr

r2|pr|
. (B.31)
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Now, to evaluate the density at a certain time ρ relative to the soliton density ρ0, we intro-duce the yield defined as
ρ

ρ0
=
r20 sin(θ0)

r2 sin(θ)
J−1 , (B.32)

where J = ∂r
∂r0

∂θ
∂θ0

− ∂r
∂θ0

∂θ
∂r0

is the Jacobian. Considering the initial conditions θ0 = π and
r0 = ∞, we can determine both θmin = θ(tmin) and the deflection angle at infinity θdeffrom (B.31))

θmin = π + L

∫ ∞

rmin

dr

r2|pr|
, θdef = π + 2L

∫ ∞

rmin

dr

r2|pr|
, (B.33)

giving the relation θdef − π = 2(θmin − π). For convenience, we can define J̃ =

J/(r20 sin(θ0)), that is giving at infinity, the Jacobian
J̃∞ =

1

b

∂θdef
∂b

, (B.34)
where we introduced the impact parameter b =√x2 + y2 = r sin(θ), as themotion is one
the z-axis. Using (B.34), we can rewrite (B.32) as

ρ

ρ0

∣∣∣∣
∞

=

(
r2 sin(θdef)

b

∂θdef
∂b

)−1

. (B.35)
As their is no internal pressure in the free case, the drag force formula (3.79) can be

expressed as [63]
Fz = −

∮
dSjTjz = −

∮
dxdyTzz , (B.36)

where dS = dSzez = dxdyez . However, integrating over dx and dy is not convenient
due to the deviation of trajectories. An alternative parameter correlated to x and y that
follows the trajectories is the impact parameter b. We will evaluate this integral at infinity,
far from the black hole, allowing us to use aMinkowskimetric and Kepler’s approximation.
Using the hydrodynamics approximation (v4 ≪ v2z ), we find the energy-momentum tensor
component Tzz is

Tzz ≈ ρv2z . (B.37)
Initially, we have the relations b = r sin(θ), x = b cos(φ) and y = b sin(φ), where

we introduce the angle ϕ between the impact parameter and the x and y-axis. We can
perform the change (dx, dy) → (db, dφ), which results in dx · dy = bdbdφ. At an in-
finite radius after the black hole, we can define b in terms of θdef . Indeed, we know
that at infinity vz = v0 cos(θdef), and the previous relations become z∞ = r cos(θdef),
x = z∞ tan(θdef) cos(φ), y = z∞ tan(θdef) sin(φ). Thus, a natural change of units to do is
(dx, dy) → (dθdef , dφ), resulting in

dx · dy = z2∞
sin(θdef)

cos3(θdef)
dθdef · dφ . (B.38)
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Since the surface integral (B.36) can be evaluated at infinity both before and after the
black hole, we can use Kepler’s approximation

r → ∞ : |pr| =
√
k2 +

2GmBHmdm

r
− L2

r2
, (B.39)

which, combined with (B.33), gives
θdef = −2 sin−1

(
1√

1 + α2

)
, (B.40)

where α = bv20/(GmBH). Finally, the drag force can be expressed as

Fz = 2πρ0v
2
0

(GmBH

v20

)2

ln

(b+)2 +
(
GmBH

v20

)2
(b−)2 +

(
GmBH

v20

)2
+

(b−)2

2

 , (B.41)

where b− represents the minimum impact parameter for a particle of massmdm to avoid
being absorbed by the black hole, and b+ is the chosenmaximum impact parameter. This
result matches the one from [63, 275]. In the equation (B.41), the first term can be likened
to Chandrasekhar’s classical result [60], whereas the second term is directly linked to the
accretion drag force. This is because the value of b− depends on the radius of the black
hole (as it the the minimum impact parameter for which dark matter particles can escape
the black hole), which is also determined by its mass by rs = 2GmBH.

C . Accretion Column Analysis

C.1 . Hoyle-Lyttleton Accretion Rate Framework
This appendix delves into the accretion behavior of black holes during highMach num-

ber scenarios as denoted by (4.38). In this context, accretion occurs via a columnar struc-
ture situated on the trailing end of the black hole, consistent with the traditional Hoyle-
Lyttleton model. Drawing from [308] as a basis, we employ dimensional coordinates to
align with our study’s specifics. In scenarios characterized by extreme speeds (hypersonic
regime), the pressure upstream of the shock front is essentially inconsequential, lead-
ing the dynamics to adhere to Keplerian orbits typical of the collisionless model. Conse-
quently, for a streamline with an impact parameter b, the hyperbolic orbit is represented
by

r =
b2v20

GmBH(1 + cos θ) + bv20 sin θ
, (C.42)

where the respective radial and angular velocities are given by
vr = ±

√
v20 +

2GmBH

r
− b2v20

r2
, (C.43)

vθ = −bv0
r
, (C.44)
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and the density is
ρ =

ρ0b
2

r sin θ(2b− r sin θ)
. (C.45)

With high v0 values, the accretion column approximates a slender conical structure,
oriented around the downstream z-axis, positioned post the shock front. This structure,
at extended distances, narrows to an angle θs ≪ 1, aligning with the Mach angle θc as ex-pressed in Section 4.1.2. Based on (C.42), the orbit corresponding to the impact parameter
b intersects the downstream z-axis (θ = 0) at a radius of

r1 =
b2v20

2GmBH
, (C.46)

associated with the velocities
vr1 = v0, (C.47)
vθ1 = −2GmBH

bv0
. (C.48)

Here, the boundary conditions, placed before the shock front, can be approximated by
θs ≃ 0. The density in this region is

ρ1 =
ρ0GmBH

sin θsbv20
. (C.49)

Post the shock front, continuity conditions necessitate consistent tangential velocities and
transverse momentum. With an approximation of θs ≃ 0, immediate conditions past the
shock yield

vr2 = v0 , (C.50)
vθ2 = −

c2s, 0
sin θsv0

, (C.51)
ρ2 =

ρaGmBH

r
(C.52)

=
ρ02G2m2

BH

b2v20c
2
s, 0

, (C.53)
derived from the Bernoulli equation

v2

2
+

ρ

ρa
− GmBH

r
=
v20
2

+
ρ0
ρa
. (C.54)

In a slower flow region situated directly behind the black hole, where v2 ≪ c2s, 0 = ρ/ρa,the density approximation is given by ρ ≃ ρaGmBH/r, valid for r ≲ GmBH/v
2
0 . For θscomparable to θc, we deduce

ρ1 ∼
ρ0GmBH

bv0cs, 0
, (C.55)

vθ2 ∼ −cs, 0 . (C.56)
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Assuming negligible vθ2 and postulating that dark matter gets accreted when bound to
the black hole (given by v20/2 − GmBH/r < 0), the resultant Hoyle-Lyttleton radius and
impact parameter as proposed by [308] are

rHL =
2GmBH

v20
, bHL =

2GmBH

v20
, (C.57)

which subsequently defines the Hoyle-Lyttleton accretion rate as
ṀHL = ρ0v0πb

2
HL , (C.58)

corresponding to (4.36).
C.2 . Estimation of the Lower Limit for Accretion Rate

Recent detailed investigations into the accretion column hint that the accretion rate
might be somewhat reduced compared to initial assumptions [308]. Given (C.46), the
quantity ofmass influx joining the accretion column via the shockwithin the radial interval
r to r + dr can be represented as

Fdr = ρ0v02πbdb = 2π
GmBHρ0

v0
dr . (C.59)

Consider µdr as the mass located in the accretion column between the radial intervals r
and r+dr, and let v symbolize the average longitudinal speed in the column. The principle
of mass conservation translates to

d

dr
(µv) = F . (C.60)

Simultaneously, longitudinal momentum conservation can be expressed as
d

dr
(µv2) = −GmBHµ

r2
+

d

dr
(πr2⊥P ) + Fv0, (C.61)

Here, the gravitational pull of the black hole is depicted by the first term on the right,
the second term illustrates the pressure force, and the momentum influx is represented
by the third term since v2 = v0 on the shock. Given that P = ρ2/(2ρa), contrary to the
Bondi-Hoyle framework [308, 320], it is evident that the pressure is potentially compara-
ble to the gravitational energy, expressed as r2⊥P . Nevertheless, for a cone-shaped shockwith a fixed angle θs, the derivative of the pressure term becomes null due to the propor-
tionalities r⊥ to r and P to ρ2. This causes the pressure term to diminish relative to the
gravitational term, allowing the analysis to follow the approach in [308, 320]. From the
mass conservation equation (C.60), we deduce

µv = F (r − r0) , (C.62)
where r0 denotes the point of stagnation behind the black hole. The momentum conser-
vation equation (C.61) can be restructured to

v
dv

dr
= −GmBH

r2
+
v(v0 − v)

r − r0
. (C.63)

149



A necessary condition for the velocity to vary consistently from −1 near the black hole to
v0 at infinity was recognized by [308]

r0 >
GmBH

v20
. (C.64)

Finally, the lowest possible accretion rate becomes
ṁBH =

∫ r0

0
drF = Fr0 >

2πρ0G2m2
BH

v30
. (C.65)

This rate is half of the Hoyle-Lyttleton accretion rate (4.36).
C.3 . Determining the Accretion-Column Velocity Boundary

Within the accretion column, for radii approaching the Schwarzschild radius, the val-
ues for density and velocity converge to ρ ≈ ρa and v ≈ −1, respectively. According to the
Bernoulli equation (C.54), these values represent the maximum achievable density and
velocity in the Newtonian frame. Notably, these limits are also evident in radial accretion
scenarios. The accretion rate at this Schwarzschild radius is connected to the solid angle
Ω of the accretion column as

Ωr2sρa ≈ ṁBH ≈ ρ0G2m2
BH/v

3
0 . (C.66)

This relationship implies
Ω ≈

c2s, 0
v30

, (C.67)
from which we can deduce

Ω ≥ 1 when v0 ≤ c
2/3
s, 0 . (C.68)

From here, we can identify the two regimes (4.37) and (4.38):
• In scenarios where v0 > c

2/3
s, 0 , the accretion column narrows behind the black hole,

and the accretion rate aligns closely with the forecast of Hoyle-Lyttleton.
• For v0 < c

2/3
s, 0 , the accretion column broadens to envelop the black hole from every

side. A prominent bow shock is now formed before the black hole, as visualized in
Figure. 4.2. The resultant accretion rate drops significantly below the Bondi-Hoyle-
Lyttleton projection. This decrease arises from the pronounced influence of self-
interactions in the subsonic area.

In high Mach number settings, where v0 > c
2/3
s, 0 , the analysis of equations (C.42) to (C.45)reveals that both density and velocity around r ≈ rs on the leading edge of the black hole(at θ = π) are

vr ≈ 1 , ρ ≈ ρa
c2s, 0
v0

< ρac
4/3
s, 0 ≪ ρa . (C.69)

This outcome highlights the asymmetry of this regime. With reduced density andminimal
self-interactions, the inflow rate on the forward face of the black hole is quite low. This
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allows matter to plunge directly into the black hole, maintaining its supersonic state with-
out undergoing a shock for a vast portion of the surface of the black hole. However, the
primary source of the accretion rate is the confined accretion column behind the black
hole, which is coupled with an attached shock and a localized subsonic zone.

D . Calculation of the gravitational wave contribution

In this appendix, wewill derive the expression for the rate of change of velocity, specif-
ically the radiation-reaction acceleration, for binary black holes. The following discussion
is based on chapter 12.7 of [326], and include possible mass accretion.

The expression for the radiation-reaction acceleration is given by
r̈j [rr] ≃ G

[
−GM
r2

(
3
...
I
pq
npnq +

1

3

...
I
pp
)
nj + 2I(4)jkvk +

3

5
I(5)jkrk − 1

5
I(5)pprj

]
. (D.70)

Here, r := |r| and n := r/r and the mass quadrupole moment is Ijk = µrjrk. The change
in in Ijk due to the change inmasses is taken into account at order µ̇ by defining a function
gjk = rjrk. Thus,

İjk = µ̇gjk + µġjk ,

Ïjk = 2µ̇ġjk + µg̈jk ,...
I
jk

= 3µ̇g̈jk + µ
...
g jk ,

I(4)jk = 4µ̇
...
g jk + µg(4)jk ,

I(5)jk = 5µ̇g(4)jk + µg(5)jk . (D.71)
where µ := m1m2/(m1 +m2)

2. The initial terms of each derivative provide no change in
the value of the radiation-reaction acceleration due to their parity. The second terms
demonstrate the usual contribution of gravitational waves to the equation of motion
r̈j = −GM

r2
r̂j (normally utilized as a perturbation of Keplerian dynamics). To account for

the terms in µ̇, one must alter the equation of motion to incorporate contributions from
mass accretion and Chandrasekhar’s force. However, since the hypothesis states that
the contributions frommass accretion and Chandrasekhar’s force are much less than the
gravitational waves contribution, these terms can be considered negligible.

After considering these factors, the result for the rate of change of velocity is given by
v̇ =

8

5
µ
G2M

r3

[(
3v2 +

17

3

GM
r

)
ṙr̂ −

(
v2 + 3

GM
r

)
v

]
. (D.72)

This expression describes the radiation-reaction acceleration experienced by the binary
black hole system due to the emission of gravitational waves, and does not depends on
the mass rate of change of the black holes. Then, by using equations (5.30), (5.31) and
(5.32), we recover the expressions (5.40) and (5.41).
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E . Fisher analysis - principles and procedures

The Fisher analysis is a widely used statistical method in physics for estimating model
parameters and assessing their uncertainties. Developed by Fisher [356], this approach
allows to understand how variations in observed data impact the estimation of model
parameters. In this appendix, we provide a comprehensive explanation of the Fisher
analysis, emphasizing its fundamental principles, procedural steps, and the mathemat-
ical assumptions behind it.

In order to apply the Fisher analysis, we first establish a mathematical model that
describes the relationship between the observed data and the parameters of interest.
This model is typically based on a probabilistic framework, where the observed data is
governed by a probability distribution conditioned on the model parameters. To quantify
the likelihood of obtaining the observed data given specific parameter values, we define
the likelihood function

L(θ) = P (x|θ) , (E.73)
where x represents the observed data, θ denotes the model parameters and P (D|θ) the
probability to have x knowing the parameters θ. It assumes that the likelihood function
is approximately Gaussian in shape. This assumption is valid when the observed data
follows a well-behaved distribution and the sample size is sufficiently large, as per the
central limit theorem. The likelihood function can be expressed as

L(θ) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (E.74)

where µ is the model prediction, and σ represents the standard deviation. The sensitivity
of the likelihood function to changes in the model parameters is assessed through the
computation of the score function. This function provides information about the gradient
of the log-likelihood function with respect to the parameters, indicating the direction and
magnitude of the parameter effects on the likelihood

S(θ) = ∂ lnL(θ)

∂θ
. (E.75)

Additionally, the Fisher analysis assumes that themodel is correctly specified and that the
observed data is generated from the assumed probabilistic model. Deviations from the
model assumptions can lead to biased parameter estimates and unreliable uncertainties.
Therefore, it is crucial to carefully evaluate the appropriateness of the chosen model for
the given data.

The Fisher information matrix is a key element in the Fisher analysis. It measures the
precision or uncertainty associated with the parameter estimates. The Fisher information
matrix is determined by taking the negative expected value of the Hessian matrix, which
consists of the second-order partial derivatives of the log-likelihood function with respect
to the parameters

Γij(θ) = −E
[
∂2 lnL(θ)

∂θi∂θj

]
. (E.76)
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By examining the curvature of the log-likelihood function, the Fisher information matrix
provides insights into the uncertainties in parameter estimation. The inverse of the Fisher
information matrix (Γij(θ))

−1, known as the inverse Fisher information matrix, is partic-
ularly significant. It offers valuable information regarding the precision of the parameter
estimates and facilitates the derivation of the variances and covariances for these esti-
mates. To obtain the most likely values of the model parameters, we employ numerical
optimization techniques tomaximize the likelihood function orminimize the negative log-
likelihood function. These optimal values, known as maximum likelihood estimates, rep-
resent the best estimates of the model parameters based on the observed data. In order
to assess the statistical significance of the estimated parameters, we conduct hypothesis
testing. This involves comparing the estimated parameters with their expected values un-
der the null hypothesis or employing likelihood ratio tests to evaluate the significance of
nested models. To quantify the uncertainty surrounding the estimated parameters, we
calculate confidence intervals. These intervals provide a range of plausible values for the
parameters based on the observed data. The standard errors of the parameter estimates,
derived using the inverse Fisher information matrix, indicate the uncertainties associated
with each parameter estimate.

The resulting parameter estimates represent the best estimates of the model param-
eters based on the observed data. To assess the statistical significance of the estimated
parameters, hypothesis testing can be conducted. This involves comparing the estimated
parameters with their expected values under the null hypothesis or employing likelihood
ratio tests to evaluate the significance of nestedmodels. Confidence intervals are used to
quantify the uncertainty surrounding the estimated parameters. These intervals provide
a range of plausible values for the parameters based on the observed data.

While the Fisher analysis is a widely used and computationally efficientmethod, it may
not always be the most suitable approach, especially in complex models or situations
with limited data. In such cases, more sophisticated techniques like Markov Chain Monte
Carlo (MCMC)methods can be advantageous. Thesemethods allow for the exploration of
high-dimensional parameter spaces and provide amore complete characterization of the
posterior distribution of parameters. However, they are computationally expensive and
require significant computational resources and time. The choice of the appropriate sta-
tistical method depends on the specific requirements and characteristics of the problem
at hand.

153



154



Bibliography

[1] Alexis Boudon, Philippe Brax, and Patrick Valageas. “Subsonic accretionand dynamical friction for a black hole moving through a self-interactingscalar dark matter cloud”. In: Phys. Rev. D 106.4 (2022), p. 043507. doi: 10.
1103/PhysRevD.106.043507. arXiv: 2204.09401 [astro-ph.CO].

[2] Alexis Boudon, Philippe Brax, and Patrick Valageas. “Supersonic friction ofa black hole traversing a self-interacting scalar dark matter cloud”. In: (July2023). arXiv: 2307.15391 [astro-ph.CO].
[3] Alexis Boudon et al. “Gravitational waves from binary black holes in a self-interacting scalar dark matter cloud”. In: (May 2023). arXiv: 2305 . 18540

[astro-ph.CO].
[4] Jianglai Liu, Xun Chen, and Xiangdong Ji. “Current status of direct darkmat-ter detection experiments”. In: Nature Phys. 13.3 (2017), pp. 212–216. doi:

10.1038/nphys4039. arXiv: 1709.00688 [astro-ph.CO].
[5] Julien Billard et al. “Direct Detection of Dark Matter – APPEC CommitteeReport”. In: (Apr. 2021). arXiv: 2104.07634 [hep-ex].
[6] Leszek Roszkowski, Enrico Maria Sessolo, and Sebastian Trojanowski.“WIMP dark matter candidates and searches—current status and futureprospects”. In: Rept. Prog. Phys. 81.6 (2018), p. 066201. doi: 10.1088/1361-

6633/aab913. arXiv: 1707.06277 [hep-ph].
[7] Giorgio Arcadi et al. “The waning of the WIMP? A review of models,searches, and constraints”. In: Eur. Phys. J. C 78.3 (2018), p. 203. doi:

10.1140/epjc/s10052-018-5662-y. arXiv: 1703.07364 [hep-ph].
[8] David H. Weinberg et al. “Cold darkmatter: Controversies on small scales”.In: Proc. Nat. Acad. Sci. 112.40 (2015), pp. 12249–12255.
[9] Philip Bull et al. “BeyondΛCDM: Problems, solutions, and the road ahead”.In: Phys. Dark Univ. 12 (2016), pp. 56–99. doi: 10.1016/j.dark.2016.02.001.arXiv: 1512.05356 [astro-ph.CO].
[10] James S. Bullock and Michael Boylan-Kolchin. “Small-Scale Challenges tothe ΛCDM Paradigm”. In: Ann. Rev. Astron. Astrophys. 55 (2017), pp. 343–387. doi: 10.1146/annurev- astro- 091916- 055313. arXiv: 1707.04256

[astro-ph.CO].
[11] Antonino Del Popolo and Morgan Le Delliou. “Small scale problems of the

ΛCDM model: a short review”. In: Galaxies 5.1 (2017), p. 17. doi: 10.3390/
galaxies5010017. arXiv: 1606.07790 [astro-ph.CO].

155

https://doi.org/10.1103/PhysRevD.106.043507
https://doi.org/10.1103/PhysRevD.106.043507
https://arxiv.org/abs/2204.09401
https://arxiv.org/abs/2307.15391
https://arxiv.org/abs/2305.18540
https://arxiv.org/abs/2305.18540
https://doi.org/10.1038/nphys4039
https://arxiv.org/abs/1709.00688
https://arxiv.org/abs/2104.07634
https://doi.org/10.1088/1361-6633/aab913
https://doi.org/10.1088/1361-6633/aab913
https://arxiv.org/abs/1707.06277
https://doi.org/10.1140/epjc/s10052-018-5662-y
https://arxiv.org/abs/1703.07364
https://doi.org/10.1016/j.dark.2016.02.001
https://arxiv.org/abs/1512.05356
https://doi.org/10.1146/annurev-astro-091916-055313
https://arxiv.org/abs/1707.04256
https://arxiv.org/abs/1707.04256
https://doi.org/10.3390/galaxies5010017
https://doi.org/10.3390/galaxies5010017
https://arxiv.org/abs/1606.07790


[12] Leandros Perivolaropoulos and Foteini Skara. “Challenges for ΛCDM: Anupdate”. In: New Astron. Rev. 95 (2022), p. 101659. doi: 10.1016/j.newar.
2022.101659. arXiv: 2105.05208 [astro-ph.CO].

[13] Alan R. Duffy et al. “Impact of baryon physics on dark matter structures: adetailed simulation study of halo density profiles”. In:Mon. Not. Roy. Astron.
Soc. 405 (2010), p. 2161. doi: 10.1111/j.1365-2966.2010.16613.x. arXiv:
1001.3447 [astro-ph.CO].

[14] Alyson M. Brooks et al. “A Baryonic Solution to the Missing Satellites Prob-lem”. In: Astrophys. J. 765 (2013), p. 22. doi: 10.1088/0004-637X/765/1/22.arXiv: 1209.5394 [astro-ph.CO].
[15] Shea Garrison-Kimmel et al. “Can Feedback Solve the Too Big to Fail Prob-lem?” In:Mon. Not. Roy. Astron. Soc. 433 (2013), p. 3539. doi: 10.1093/mnras/

stt984. arXiv: 1301.3137 [astro-ph.CO].
[16] Matthieu Schaller et al. “Baryon effects on the internal structure of ΛCDMhaloes in the EAGLE simulations”. In: Mon. Not. Roy. Astron. Soc. 451.2(2015), pp. 1247–1267. doi: 10 . 1093 / mnras / stv1067. arXiv: 1409 . 8617

[astro-ph.CO].
[17] Jose Oñorbe et al. “Forged in FIRE: cusps, cores, and baryons in low-massdwarf galaxies”. In: Mon. Not. Roy. Astron. Soc. 454.2 (2015), pp. 2092–2106.doi: 10.1093/mnras/stv2072. arXiv: 1502.02036 [astro-ph.GA].
[18] Andrew R. Wetzel et al. “Reconciling dwarf galaxies with ΛCDM cosmol-ogy: Simulating a realistic population of satellites around aMilkyWay-massgalaxy”. In: Astrophys. J. Lett. 827.2 (2016), p. L23. doi: 10.3847/2041-8205/

827/2/L23. arXiv: 1602.05957 [astro-ph.GA].
[19] Aaron A. Dutton et al. “NIHAO XX: the impact of the star formation thresh-old on the cusp–core transformation of cold dark matter haloes”. In: Mon.

Not. Roy. Astron. Soc. 486.1 (2019), pp. 655–671. doi: 10.1093/mnras/stz889.arXiv: 1811.10625 [astro-ph.GA].
[20] Aaron A. Dutton et al. “NIHAO – XXV. Convergence in the cusp-coretransformation of cold dark matter haloes at high star formation thresh-olds”. In: (Nov. 2020). doi: 10.1093/mnras/staa3028. arXiv: 2011.11351

[astro-ph.GA].
[21] Jeremy Goodman. “Repulsive dark matter”. In: New Astron. 5 (2000), p. 103.doi: 10.1016/S1384-1076(00)00015-4. arXiv: astro-ph/0003018.
[22] Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst. “Cosmic Struc-ture as the Quantum Interference of a Coherent Dark Wave”. In: Nature

Phys. 10 (2014), pp. 496–499. doi: 10.1038/nphys2996. arXiv: 1406.6586
[astro-ph.GA].

156

https://doi.org/10.1016/j.newar.2022.101659
https://doi.org/10.1016/j.newar.2022.101659
https://arxiv.org/abs/2105.05208
https://doi.org/10.1111/j.1365-2966.2010.16613.x
https://arxiv.org/abs/1001.3447
https://doi.org/10.1088/0004-637X/765/1/22
https://arxiv.org/abs/1209.5394
https://doi.org/10.1093/mnras/stt984
https://doi.org/10.1093/mnras/stt984
https://arxiv.org/abs/1301.3137
https://doi.org/10.1093/mnras/stv1067
https://arxiv.org/abs/1409.8617
https://arxiv.org/abs/1409.8617
https://doi.org/10.1093/mnras/stv2072
https://arxiv.org/abs/1502.02036
https://doi.org/10.3847/2041-8205/827/2/L23
https://doi.org/10.3847/2041-8205/827/2/L23
https://arxiv.org/abs/1602.05957
https://doi.org/10.1093/mnras/stz889
https://arxiv.org/abs/1811.10625
https://doi.org/10.1093/mnras/staa3028
https://arxiv.org/abs/2011.11351
https://arxiv.org/abs/2011.11351
https://doi.org/10.1016/S1384-1076(00)00015-4
https://arxiv.org/abs/astro-ph/0003018
https://doi.org/10.1038/nphys2996
https://arxiv.org/abs/1406.6586
https://arxiv.org/abs/1406.6586


[23] Hsi-Yu Schive et al. “Understanding the Core-Halo Relation of QuantumWave Dark Matter from 3D Simulations”. In: Phys. Rev. Lett. 113.26 (2014),p. 261302. doi: 10 . 1103 / PhysRevLett . 113 . 261302. arXiv: 1407 . 7762
[astro-ph.GA].

[24] Alexandre Arbey, Julien Lesgourgues, and Pierre Salati. “Quintessentialhaloes around galaxies”. In: Phys. Rev. D64 (2001), p. 123528. doi: 10.1103/
PhysRevD.64.123528. arXiv: astro-ph/0105564 [astro-ph].

[25] Pierre-Henri Chavanis. “Mass-radius relation of Newtonian self-gravitatingBose-Einstein condensates with short-range interactions: I. Analytical re-sults”. In: Phys. Rev. D84 (2011), p. 043531. doi: 10 .1103 /PhysRevD .84 .
043531. arXiv: 1103.2050 [astro-ph.CO].

[26] P. H. Chavanis and L. Delfini. “Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II.Numerical results”. In: Phys. Rev. D84 (2011), p. 043532. doi: 10 . 1103 /
PhysRevD.84.043532. arXiv: 1103.2054 [astro-ph.CO].

[27] David J. E.Marsh andAna-Roxana Pop. “Axion darkmatter, solitons and thecusp–core problem”. In: Mon. Not. Roy. Astron. Soc. 451.3 (2015), pp. 2479–2492. doi: 10.1093/mnras/stv1050. arXiv: 1502.03456 [astro-ph.CO].
[28] Erminia Calabrese and David N. Spergel. “Ultra-Light Dark Matter in Ultra-Faint Dwarf Galaxies”. In:Mon. Not. Roy. Astron. Soc. 460.4 (2016), pp. 4397–4402. doi: 10.1093/mnras/stw1256. arXiv: 1603.07321 [astro-ph.CO].
[29] Shu-Rong Chen, Hsi-Yu Schive, and Tzihong Chiueh. “Jeans Analysis forDwarf Spheroidal Galaxies in Wave Dark Matter”. In: Mon. Not. Roy. As-

tron. Soc. 468.2 (2017), pp. 1338–1348. doi: 10.1093/mnras/stx449. arXiv:
1606.09030 [astro-ph.GA].

[30] Bodo Schwabe, Jens C. Niemeyer, and Jan F. Engels. “Simulations of soli-tonic core mergers in ultralight axion dark matter cosmologies”. In: Phys.
Rev. D94.4 (2016), p. 043513. doi: 10.1103/PhysRevD.94.043513. arXiv:
1606.05151 [astro-ph.CO].

[31] Jan Veltmaat and Jens C. Niemeyer. “Cosmological particle-in-cell sim-ulations with ultralight axion dark matter”. In: Phys. Rev. D94.12 (2016),p. 123523. doi: 10 . 1103 / PhysRevD . 94 . 123523. arXiv: 1608 . 00802
[astro-ph.CO].

[32] Alma X. González-Morales et al. “Unbiased constraints on ultralight axionmass from dwarf spheroidal galaxies”. In: Mon. Not. Roy. Astron. Soc. 472.2(2017), pp. 1346–1360. doi: 10.1093/mnras/stx1941. arXiv: 1609.05856
[astro-ph.CO].

157

https://doi.org/10.1103/PhysRevLett.113.261302
https://arxiv.org/abs/1407.7762
https://arxiv.org/abs/1407.7762
https://doi.org/10.1103/PhysRevD.64.123528
https://doi.org/10.1103/PhysRevD.64.123528
https://arxiv.org/abs/astro-ph/0105564
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043531
https://arxiv.org/abs/1103.2050
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1103/PhysRevD.84.043532
https://arxiv.org/abs/1103.2054
https://doi.org/10.1093/mnras/stv1050
https://arxiv.org/abs/1502.03456
https://doi.org/10.1093/mnras/stw1256
https://arxiv.org/abs/1603.07321
https://doi.org/10.1093/mnras/stx449
https://arxiv.org/abs/1606.09030
https://doi.org/10.1103/PhysRevD.94.043513
https://arxiv.org/abs/1606.05151
https://doi.org/10.1103/PhysRevD.94.123523
https://arxiv.org/abs/1608.00802
https://arxiv.org/abs/1608.00802
https://doi.org/10.1093/mnras/stx1941
https://arxiv.org/abs/1609.05856
https://arxiv.org/abs/1609.05856


[33] Victor H. Robles and TonatiuhMatos. “Flat Central Density Profile and Con-stant DM Surface Density in Galaxies from Scalar Field Dark Matter”. In:
Mon. Not. Roy. Astron. Soc. 422 (2012), pp. 282–289. doi: 10.1111/j.1365-
2966.2012.20603.x. arXiv: 1201.3032 [astro-ph.CO].

[34] Tula Bernal et al. “Rotation curves of high-resolution LSB and SPARC galax-ies with fuzzy andmultistate (ultralight boson) scalar field dark matter”. In:
Mon. Not. Roy. Astron. Soc. 475.2 (2018), pp. 1447–1468. doi: 10.1093/mnras/
stx3208. arXiv: 1701.00912 [astro-ph.GA].

[35] Philip Mocz et al. “Galaxy formation with BECDM – I. Turbulence andrelaxation of idealized haloes”. In: Mon. Not. Roy. Astron. Soc. 471.4 (2017),pp. 4559–4570. doi: 10.1093/mnras/stx1887. arXiv: 1705.05845 [astro-ph.CO].
[36] Kyohei Mukaida, Masahiro Takimoto, and Masaki Yamada. “On Longevityof I-ball/Oscillon”. In: JHEP 03 (2017), p. 122. doi: 10.1007/JHEP03(2017)122.arXiv: 1612.07750 [hep-ph].
[37] Jorge Vicens, Jordi Salvado, and Jordi Miralda-Escudé. “Bosonic darkmatterhalos: excited states and relaxation in the potential of the ground state”.In: (2018). arXiv: 1802.10513 [astro-ph.CO].
[38] Nitsan Bar et al. “Galactic rotation curves versus ultralight dark mat-ter: Implications of the soliton-host halo relation”. In: Phys. Rev. D98.8(2018), p. 083027. doi: 10.1103/PhysRevD.98.083027. arXiv: 1805.00122

[astro-ph.CO].
[39] Joshua Eby et al. “Classical nonrelativistic effective field theory and the roleof gravitational interactions”. In: Phys. Rev.D99.12 (2019), p. 123503. doi: 10.

1103/PhysRevD.99.123503. arXiv: 1807.09795 [hep-ph].
[40] Ben Bar-Or, Jean-Baptiste Fouvry, and Scott Tremaine. “Relaxation in aFuzzy Dark Matter Halo”. In: Astrophys. J. 871.1 (2019), p. 28. doi: 10.3847/

1538-4357/aaf28c. arXiv: 1809.07673 [astro-ph.GA].
[41] David J. E. Marsh and Jens C. Niemeyer. “Strong Constraints on Fuzzy DarkMatter from Ultrafaint Dwarf Galaxy Eridanus II”. In: (2018). arXiv: 1810.

08543 [astro-ph.CO].
[42] Pierre-Henri Chavanis. “A predictivemodel of BEC darkmatter halos with asolitonic core and an isothermal atmosphere”. In: (2018). arXiv: 1810.08948

[gr-qc].
[43] Razieh Emami et al. “A Soliton Solution for the Central Dark Masses in 47-Tuc Globular Cluster and Implications for the Axiverse”. In: (2018). arXiv:

1806.04518 [astro-ph.CO].
[44] D. G. Levkov, A. G. Panin, and I. I. Tkachev. “Gravitational Bose-Einstein con-densation in the kinetic regime”. In: Phys. Rev. Lett. 121.15 (2018), p. 151301.doi: 10.1103/PhysRevLett.121.151301. arXiv: 1804.05857 [astro-ph.CO].

158

https://doi.org/10.1111/j.1365-2966.2012.20603.x
https://doi.org/10.1111/j.1365-2966.2012.20603.x
https://arxiv.org/abs/1201.3032
https://doi.org/10.1093/mnras/stx3208
https://doi.org/10.1093/mnras/stx3208
https://arxiv.org/abs/1701.00912
https://doi.org/10.1093/mnras/stx1887
https://arxiv.org/abs/1705.05845
https://doi.org/10.1007/JHEP03(2017)122
https://arxiv.org/abs/1612.07750
https://arxiv.org/abs/1802.10513
https://doi.org/10.1103/PhysRevD.98.083027
https://arxiv.org/abs/1805.00122
https://arxiv.org/abs/1805.00122
https://doi.org/10.1103/PhysRevD.99.123503
https://doi.org/10.1103/PhysRevD.99.123503
https://arxiv.org/abs/1807.09795
https://doi.org/10.3847/1538-4357/aaf28c
https://doi.org/10.3847/1538-4357/aaf28c
https://arxiv.org/abs/1809.07673
https://arxiv.org/abs/1810.08543
https://arxiv.org/abs/1810.08543
https://arxiv.org/abs/1810.08948
https://arxiv.org/abs/1810.08948
https://arxiv.org/abs/1806.04518
https://doi.org/10.1103/PhysRevLett.121.151301
https://arxiv.org/abs/1804.05857


[45] Tom Broadhurst et al. “Ghostly Galaxies as Solitons of Bose-Einstein DarkMatter”. In: (2019). arXiv: 1902.10488 [astro-ph.CO].
[46] Kohei Hayashi and Ippei Obata. “Non-sphericity of ultra-light axion darkmatter halos in the Galactic dwarf spheroidal galaxies”. In: (2019). arXiv:

1902.03054 [astro-ph.CO].
[47] Nitsan Bar et al. “Ultralight dark matter in disk galaxies”. In: Phys. Rev.D99.10 (2019), p. 103020. doi: 10 . 1103 / PhysRevD . 99 . 103020. arXiv:

1903.03402 [astro-ph.CO].
[48] Raquel Galazo García, Philippe Brax, and Patrick Valageas. “Solitons andhalos for self-interacting scalar dark matter”. In: (Apr. 2023). arXiv: 2304.

10221 [astro-ph.CO].
[49] Lam Hui. “Unitarity bounds and the cuspy halo problem”. In: Phys. Rev.

Lett. 86 (2001), pp. 3467–3470. doi: 10.1103/PhysRevLett.86.3467. arXiv:
astro-ph/0102349.

[50] W. J. G. de Blok. “The Core-Cusp Problem”. In: Adv. Astron. 2010 (2010),p. 789293. doi: 10.1155/2010/789293. arXiv: 0910.3538 [astro-ph.CO].
[51] Vid Iršič et al. “First constraints on fuzzy dark matter from Lyman-α for-est data and hydrodynamical simulations”. In: Phys. Rev. Lett. 119.3 (2017),p. 031302. doi: 10.1103/PhysRevLett.119.031302. arXiv: 1703.04683

[astro-ph.CO].
[52] Eric Armengaud et al. “Constraining the mass of light bosonic dark mat-ter using SDSS Lyman-α forest”. In: Mon. Not. Roy. Astron. Soc. 471.4(2017), pp. 4606–4614. doi: 10.1093/mnras/stx1870. arXiv: 1703.09126

[astro-ph.CO].
[53] Jiajun Zhang et al. “The Importance of Quantum Pressure of Fuzzy DarkMatter on Lyman-Alpha Forest”. In: Astrophys. J. 863 (2018), p. 73. doi: 10.

3847/1538-4357/aacf3f. arXiv: 1708.04389 [astro-ph.CO].
[54] Helvi Witek et al. “Superradiant instabilities in astrophysical systems”. In:

Phys. Rev. D 87.4 (2013), p. 043513. doi: 10.1103/PhysRevD.87.043513.arXiv: 1212.0551 [gr-qc].
[55] Richard Brito, Vitor Cardoso, and Paolo Pani. “Black holes as particle de-tectors: evolution of superradiant instabilities”. In: Class. Quant. Grav. 32.13(2015), p. 134001. doi: 10.1088/0264-9381/32/13/134001. arXiv: 1411.0686

[gr-qc].
[56] Richard Brito, Vitor Cardoso, and Paolo Pani. “Superradiance: New Fron-tiers in Black Hole Physics”. In: Lect. Notes Phys. 906 (2015), pp.1–237. doi:

10.1007/978-3-319-19000-6. arXiv: 1501.06570 [gr-qc].

159

https://arxiv.org/abs/1902.10488
https://arxiv.org/abs/1902.03054
https://doi.org/10.1103/PhysRevD.99.103020
https://arxiv.org/abs/1903.03402
https://arxiv.org/abs/2304.10221
https://arxiv.org/abs/2304.10221
https://doi.org/10.1103/PhysRevLett.86.3467
https://arxiv.org/abs/astro-ph/0102349
https://doi.org/10.1155/2010/789293
https://arxiv.org/abs/0910.3538
https://doi.org/10.1103/PhysRevLett.119.031302
https://arxiv.org/abs/1703.04683
https://arxiv.org/abs/1703.04683
https://doi.org/10.1093/mnras/stx1870
https://arxiv.org/abs/1703.09126
https://arxiv.org/abs/1703.09126
https://doi.org/10.3847/1538-4357/aacf3f
https://doi.org/10.3847/1538-4357/aacf3f
https://arxiv.org/abs/1708.04389
https://doi.org/10.1103/PhysRevD.87.043513
https://arxiv.org/abs/1212.0551
https://doi.org/10.1088/0264-9381/32/13/134001
https://arxiv.org/abs/1411.0686
https://arxiv.org/abs/1411.0686
https://doi.org/10.1007/978-3-319-19000-6
https://arxiv.org/abs/1501.06570


[57] Valerio De Luca and Paolo Pani. “Tidal deformability of dressed black holesand tests of ultralight bosons in extended mass ranges”. In: JCAP 08 (2021),p. 032. doi: 10.1088/1475-7516/2021/08/032. arXiv: 2106.14428 [gr-qc].
[58] Valerio De Luca, Andrea Maselli, and Paolo Pani. “Modeling frequency-dependent tidal deformability for environmental black hole mergers”. In:

Phys. Rev. D 107.4 (2023), p. 044058. doi: 10.1103/PhysRevD.107.044058.arXiv: 2212.03343 [gr-qc].
[59] Philippe Brax, Jose A. R. Cembranos, and Patrick Valageas. “Impact of ki-netic and potential self-interactions on scalar dark matter”. In: Phys. Rev.D100 (2019), p. 023526. doi: 10.1103/PhysRevD.100.023526. arXiv: 1906.

00730 [astro-ph.CO].
[60] Subrahmanyan Chandrasekhar. “Dynamical Friction. I. General Consider-ations: the Coefficient of Dynamical Friction”. In: Astrophys. J. 97 (1943),p. 255. doi: 10.1086/144517.
[61] J. Binney and S. Tremaine.Galactic dynamics. Princeton, N.J. : PrincetonUni-versity Press, 1987.
[62] Fabio Antonini and DavidMerritt. “DYNAMICAL FRICTION AROUND SUPER-MASSIVE BLACK HOLES”. In: The Astrophysical Journal 745.24pp (2011), p. 83.doi: 10.1088/0004-637X/745/1/83.
[63] Lam Hui et al. “Ultralight scalars as cosmological dark matter”. In: Phys.

Rev. D 95.4 (2017), p. 043541. doi: 10.1103/PhysRevD.95.043541. arXiv:
1610.08297 [astro-ph.CO].

[64] Lachlan Lancaster et al. “Dynamical Friction in a Fuzzy Dark Matter Uni-verse”. In: JCAP 01 (2020), p. 001. doi: 10.1088/1475-7516/2020/01/001.arXiv: 1909.06381 [astro-ph.CO].
[65] Lorenzo Annulli, Vitor Cardoso, and Rodrigo Vicente. “Response of ultra-light dark matter to supermassive black holes and binaries”. In: Phys. Rev.

D 102.6 (2020), p. 063022. doi: 10.1103/PhysRevD.102.063022. arXiv: 2009.
00012 [gr-qc].

[66] Pau Amaro-Seoane et al. “Laser Interferometer Space Antenna”. In: (Feb.2017). arXiv: 1702.00786 [astro-ph.IM].
[67] Seiji Kawamura et al. “Current status of space gravitational wave antennaDECIGO and B-DECIGO”. In: PTEP 2021.5 (2021), 05A105. doi: 10.1093/ptep/

ptab019. arXiv: 2006.13545 [gr-qc].
[68] Albert Einstein. “The Field Equations of Gravitation”. In: Sitzungsber. Preuss.

Akad. Wiss. Berlin (Math. Phys. ) 1915 (1915), pp. 844–847.
[69] N. Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”. In: As-

tron. Astrophys. 641 (2020). [Erratum: Astron.Astrophys. 652, C4 (2021)], A6.doi: 10.1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.CO].
160

https://doi.org/10.1088/1475-7516/2021/08/032
https://arxiv.org/abs/2106.14428
https://doi.org/10.1103/PhysRevD.107.044058
https://arxiv.org/abs/2212.03343
https://doi.org/10.1103/PhysRevD.100.023526
https://arxiv.org/abs/1906.00730
https://arxiv.org/abs/1906.00730
https://doi.org/10.1086/144517
https://doi.org/10.1088/0004-637X/745/1/83
https://doi.org/10.1103/PhysRevD.95.043541
https://arxiv.org/abs/1610.08297
https://doi.org/10.1088/1475-7516/2020/01/001
https://arxiv.org/abs/1909.06381
https://doi.org/10.1103/PhysRevD.102.063022
https://arxiv.org/abs/2009.00012
https://arxiv.org/abs/2009.00012
https://arxiv.org/abs/1702.00786
https://doi.org/10.1093/ptep/ptab019
https://doi.org/10.1093/ptep/ptab019
https://arxiv.org/abs/2006.13545
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209


[70] C. Doux et al. “Dark Energy Survey Year 3 results: cosmological constraintsfrom the analysis of cosmic shear in harmonic space”. In: (Mar. 2022). arXiv:
2203.07128 [astro-ph.CO].

[71] P. J. E. Peebles and Bharat Ratra. “The Cosmological Constant and DarkEnergy”. In: Rev. Mod. Phys. 75 (2003). Ed. by Jong-Ping Hsu and D. Fine,pp. 559–606. doi: 10.1103/RevModPhys.75.559. arXiv: astro-ph/0207347.
[72] R. B. Partridge and David T. Wilkinson. “Isotropy and Homogeneity of theUniverse from Measurements of the Cosmic Microwave Background”. In:

Phys. Rev. Lett. 18.14 (1967), p. 557. doi: 10.1103/PhysRevLett.18.557.
[73] A. A. Penzias and R. W. Wilson. “A Measurement of Excess Antenna Tem-perature at 4080Mc/s.” In: 142 (July 1965), pp. 419–421. doi: 10.1086/148307.
[74] R. A. Sunyaev. “The Thermal History of the Universe and the Spectrumof Relic Radiation”. In: Confrontation of Cosmological Theories with Obser-

vational Data. Ed. by M. S. Longair. Dordrecht: Springer Netherlands, 1974,pp. 167–173. isbn: 978-94-010-2220-0. doi: 10.1007/978- 94-010-2220-
0_14. url: https://doi.org/10.1007/978-94-010-2220-0_14.

[75] John D. Barrow and Michael S. Turner. “Baryosynthesis and the Origin ofGalaxies”. In: Nature 291 (1981), pp. 469–472. doi: 10.1038/291469a0.
[76] LambdaCDM Model of Cosmology, https: // lambda. gsfc. nasa. gov/

education/ graphic_ history/ univ_ evol. html , Accessed: 2023-07-15.
[77] Shadab Alam et al. “The clustering of galaxies in the completed SDSS-IIIBaryonOscillation Spectroscopic Survey: cosmological analysis of the DR12galaxy sample”. In: Mon. Not. Roy. Astron. Soc. 470.3 (2017), pp. 2617–2652.doi: 10.1093/mnras/stx721. arXiv: 1607.03155 [astro-ph.CO].
[78] H. Hildebrandt et al. “KiDS-450: Cosmological parameter constraints fromtomographic weak gravitational lensing”. In: Mon. Not. Roy. Astron. Soc.465 (2017), p. 1454. doi: 10 . 1093 / mnras / stw2805. arXiv: 1606 . 05338

[astro-ph.CO].
[79] A. Friedmann. “Über die Krümmung des Raumes”. In: Zeitschrift fur Physik10 (Jan. 1922), pp. 377–386. doi: 10.1007/BF01332580.
[80] A. Friedmann. “On the Possibility of a world with constant negative curva-ture of space”. In: Z. Phys. 21 (1924), pp. 326–332. doi: 10.1007/BF01328280.
[81] Georges Lemaitre. “AHomogeneousUniverse of ConstantMass andGrow-ing Radius Accounting for the Radial Velocity of Extragalactic Nebulae”. In:

Annales Soc. Sci. Bruxelles A 47 (1927), pp. 49–59. doi: 10.1007/s10714-013-
1548-3.

[82] H. P. Robertson. “Kinematics and World-Structure”. In: Astrophys. J. 82(1935), pp. 284–301. doi: 10.1086/143681.

161

https://arxiv.org/abs/2203.07128
https://doi.org/10.1103/RevModPhys.75.559
https://arxiv.org/abs/astro-ph/0207347
https://doi.org/10.1103/PhysRevLett.18.557
https://doi.org/10.1086/148307
https://doi.org/10.1007/978-94-010-2220-0_14
https://doi.org/10.1007/978-94-010-2220-0_14
https://doi.org/10.1007/978-94-010-2220-0_14
https://doi.org/10.1038/291469a0
https://lambda.gsfc.nasa.gov/education/graphic_history/univ_evol.html
https://lambda.gsfc.nasa.gov/education/graphic_history/univ_evol.html
https://doi.org/10.1093/mnras/stx721
https://arxiv.org/abs/1607.03155
https://doi.org/10.1093/mnras/stw2805
https://arxiv.org/abs/1606.05338
https://arxiv.org/abs/1606.05338
https://doi.org/10.1007/BF01332580
https://doi.org/10.1007/BF01328280
https://doi.org/10.1007/s10714-013-1548-3
https://doi.org/10.1007/s10714-013-1548-3
https://doi.org/10.1086/143681


[83] H. P. Robertson. “Kinematics and World-Structure. 2”. In: Astrophys. J. 83(1935), pp. 187–201. doi: 10.1086/143716.
[84] H. P. Robertson. “Kinematics and World-Structure. 3”. In: Astrophys. J. 83(1936), pp. 257–271. doi: 10.1086/143726.
[85] A. G. Walker. “On Milne’s Theory of World-Structure”. In: Proceedings of the

London Mathematical Society 42 (Jan. 1937), pp. 90–127. doi: 10.1112/plms/
s2-42.1.90.

[86] P. J. E. Peebles. “Large scale background temperature and mass fluctua-tions due to scale invariant primeval perturbations”. In: Astrophys. J. Lett.263 (1982). Ed. by M. A. Srednicki, pp. L1–L5. doi: 10.1086/183911.
[87] MarcDavis et al. “The Evolution of Large Scale Structure in aUniverseDom-inated by Cold Dark Matter”. In: Astrophys. J. 292 (1985). Ed. by M. A. Sred-nicki, pp. 371–394. doi: 10.1086/163168.
[88] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “The Structureof cold dark matter halos”. In: Astrophys. J. 462 (1996), pp. 563–575. doi:

10.1086/177173. arXiv: astro-ph/9508025 [astro-ph].
[89] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “A Universal den-sity profile fromhierarchical clustering”. In: Astrophys. J. 490 (1997), pp. 493–508. doi: 10.1086/304888. arXiv: astro-ph/9611107.
[90] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Helv.

Phys. Acta 6 (1933), pp. 110–127. doi: 10.1007/s10714-008-0707-4.
[91] F. Zwicky. “On the Masses of Nebulae and of Clusters of Nebulae”. In: As-

trophys. J. 86 (1937), pp. 217–246. doi: 10.1086/143864.
[92] Vera C. Rubin and W. Kent Ford Jr. “Rotation of the Andromeda Nebulafrom a Spectroscopic Survey of Emission Regions”. In: Astrophys. J. 159(1970), pp. 379–403. doi: 10.1086/150317.
[93] Eric Hayashi and Simon D. M. White. “How Rare is the Bullet Cluster?” In:

Mon. Not. Roy. Astron. Soc. 370 (2006), pp. L38–L41. doi: 10.1111/j.1745-
3933.2006.00184.x. arXiv: astro-ph/0604443.

[94] Douglas Clowe et al. “A direct empirical proof of the existence of dark mat-ter”. In: Astrophys. J. Lett. 648 (2006), pp. L109–L113. doi: 10.1086/508162.arXiv: astro-ph/0608407.
[95] Garry W. Angus et al. “On the Law of Gravity, the Mass of Neutrinos andthe Proof of Dark Matter”. In: Astrophys. J. Lett. 654 (2007), pp. L13–L16. doi:

10.1086/510738. arXiv: astro-ph/0609125.
[96] Douglas Clowe, S. W. Randall, and M. Markevitch. “Catching a bullet: Directevidence for the existence of dark matter”. In: Nucl. Phys. B Proc. Suppl. 173(2007). Ed. by David B. Cline, pp. 28–31. doi: 10.1016/j.nuclphysbps.

2007.08.150. arXiv: astro-ph/0611496.
162

https://doi.org/10.1086/143716
https://doi.org/10.1086/143726
https://doi.org/10.1112/plms/s2-42.1.90
https://doi.org/10.1112/plms/s2-42.1.90
https://doi.org/10.1086/183911
https://doi.org/10.1086/163168
https://doi.org/10.1086/177173
https://arxiv.org/abs/astro-ph/9508025
https://doi.org/10.1086/304888
https://arxiv.org/abs/astro-ph/9611107
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1086/143864
https://doi.org/10.1086/150317
https://doi.org/10.1111/j.1745-3933.2006.00184.x
https://doi.org/10.1111/j.1745-3933.2006.00184.x
https://arxiv.org/abs/astro-ph/0604443
https://doi.org/10.1086/508162
https://arxiv.org/abs/astro-ph/0608407
https://doi.org/10.1086/510738
https://arxiv.org/abs/astro-ph/0609125
https://doi.org/10.1016/j.nuclphysbps.2007.08.150
https://doi.org/10.1016/j.nuclphysbps.2007.08.150
https://arxiv.org/abs/astro-ph/0611496


[97] Jonathan L. Feng, Huitzu Tu, and Hai-Bo Yu. “Thermal Relics in Hidden Sec-tors”. In: JCAP 10 (2008), p. 043. doi: 10.1088/1475-7516/2008/10/043.arXiv: 0808.2318 [hep-ph].
[98] Dan Hooper. “Particle Dark Matter”. In: Theoretical Advanced Study Institute

in Elementary Particle Physics: The Dawn of the LHC Era. 2010, pp. 709–764.doi: 10.1142/9789812838360_0014. arXiv: 0901.4090 [hep-ph].
[99] Dominik J. Schwarz. “The first second of the universe”. In: Annalen Phys.12 (2003), pp. 220–270. doi: 10.1002/andp.200310010. arXiv: astro-ph/

0303574.
[100] Spencer Chang et al. “EffectiveWIMPs”. In: Phys. Rev. D 89.1 (2014), p. 015011.doi: 10.1103/PhysRevD.89.015011. arXiv: 1307.8120 [hep-ph].
[101] Marcos A. G. Garcia et al. “Freeze-in from preheating”. In: JCAP 03.03 (2022),p. 016. doi: 10.1088/1475-7516/2022/03/016. arXiv: 2109.13280 [hep-ph].
[102] Jonathan L. Feng. “The WIMP Paradigm: Theme and Variations”. In: Les

Houches summer school onDarkMatter. Dec. 2022. doi: 10.21468/SciPostPhysLectNotes.
71. arXiv: 2212.02479 [hep-ph].

[103] D. S. Akerib et al. “The Large Underground Xenon (LUX) Experiment”. In:
Nucl. Instrum. Meth. A 704 (2013), pp. 111–126. doi: 10.1016/j.nima.2012.
11.135. arXiv: 1211.3788 [physics.ins-det].

[104] D. S. Akerib et al. “First results from the LUX dark matter experiment atthe Sanford Underground Research Facility”. In: Phys. Rev. Lett. 112 (2014),p. 091303. doi: 10 . 1103 / PhysRevLett . 112 . 091303. arXiv: 1310 . 8214
[astro-ph.CO].

[105] D. S. Akerib et al. “Results from a search for dark matter in the completeLUX exposure”. In: Phys. Rev. Lett. 118.2 (2017), p. 021303. doi: 10 . 1103 /
PhysRevLett.118.021303. arXiv: 1608.07648 [astro-ph.CO].

[106] E. Aprile et al. “Physics reach of the XENON1T dark matter experiment”.In: JCAP 04 (2016), p. 027. doi: 10.1088/1475-7516/2016/04/027. arXiv:
1512.07501 [physics.ins-det].

[107] E. Aprile et al. “First Dark Matter Search Results from the XENON1T Experi-ment”. In: Phys. Rev. Lett. 119.18 (2017), p. 181301. doi: 10.1103/PhysRevLett.
119.181301. arXiv: 1705.06655 [astro-ph.CO].

[108] E. Aprile et al. “Dark Matter Search Results from a One Ton-Year Expo-sure of XENON1T”. In: Phys. Rev. Lett. 121.11 (2018), p. 111302. doi: 10.1103/
PhysRevLett.121.111302. arXiv: 1805.12562 [astro-ph.CO].

[109] Daniel A. Camargo, Yann Mambrini, and Farinaldo S. Queiroz. “XENON1Ttakes a razor to a dark E6-inspired model”. In: Phys. Lett. B 786 (2018),pp. 337–341. doi: 10.1016/j.physletb.2018.09.057. arXiv: 1805.12162
[hep-ph].

163

https://doi.org/10.1088/1475-7516/2008/10/043
https://arxiv.org/abs/0808.2318
https://doi.org/10.1142/9789812838360_0014
https://arxiv.org/abs/0901.4090
https://doi.org/10.1002/andp.200310010
https://arxiv.org/abs/astro-ph/0303574
https://arxiv.org/abs/astro-ph/0303574
https://doi.org/10.1103/PhysRevD.89.015011
https://arxiv.org/abs/1307.8120
https://doi.org/10.1088/1475-7516/2022/03/016
https://arxiv.org/abs/2109.13280
https://doi.org/10.21468/SciPostPhysLectNotes.71
https://doi.org/10.21468/SciPostPhysLectNotes.71
https://arxiv.org/abs/2212.02479
https://doi.org/10.1016/j.nima.2012.11.135
https://doi.org/10.1016/j.nima.2012.11.135
https://arxiv.org/abs/1211.3788
https://doi.org/10.1103/PhysRevLett.112.091303
https://arxiv.org/abs/1310.8214
https://arxiv.org/abs/1310.8214
https://doi.org/10.1103/PhysRevLett.118.021303
https://doi.org/10.1103/PhysRevLett.118.021303
https://arxiv.org/abs/1608.07648
https://doi.org/10.1088/1475-7516/2016/04/027
https://arxiv.org/abs/1512.07501
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://arxiv.org/abs/1705.06655
https://doi.org/10.1103/PhysRevLett.121.111302
https://doi.org/10.1103/PhysRevLett.121.111302
https://arxiv.org/abs/1805.12562
https://doi.org/10.1016/j.physletb.2018.09.057
https://arxiv.org/abs/1805.12162
https://arxiv.org/abs/1805.12162


[110] D. S. Akerib et al. “LUX-ZEPLIN (LZ) Conceptual Design Report”. In: (Sept.2015). arXiv: 1509.02910 [physics.ins-det].
[111] D. S. Akerib et al. “Projected WIMP sensitivity of the LUX-ZEPLIN dark mat-ter experiment”. In: Phys. Rev. D 101.5 (2020), p. 052002. doi: 10 . 1103 /

PhysRevD.101.052002. arXiv: 1802.06039 [astro-ph.IM].
[112] R. Agnese et al. “Search for Low-Mass Weakly Interacting Massive Particleswith SuperCDMS”. In: Phys. Rev. Lett. 112.24 (2014), p. 241302. doi: 10.1103/

PhysRevLett.112.241302. arXiv: 1402.7137 [hep-ex].
[113] R. Agnese et al. “New Results from the Search for Low-Mass Weakly Inter-acting Massive Particles with the CDMS Low Ionization Threshold Experi-ment”. In: Phys. Rev. Lett. 116.7 (2016), p. 071301. doi: 10.1103/PhysRevLett.

116.071301. arXiv: 1509.02448 [astro-ph.CO].
[114] A. Abada et al. “FCC-ee: The Lepton Collider: Future Circular Collider Con-ceptual Design Report Volume 2”. In: Eur. Phys. J. ST 228.2 (2019), pp. 261–623. doi: 10.1140/epjst/e2019-900045-4.
[115] Anatoly A. Klypin et al. “Where are the missing Galactic satellites?” In: As-

trophys. J. 522 (1999), pp. 82–92. doi: 10.1086/307643. arXiv: astro-ph/
9901240.

[116] Louis E. Strigari et al. “Redefining the Missing Satellites Problem”. In: Astro-
phys. J. 669 (2007), pp. 676–683. doi: 10.1086/521914. arXiv: 0704.1817
[astro-ph].

[117] Qi Guo et al. “From dwarf spheroidals to cDs: Simulating the galaxy pop-ulation in a LCDM cosmology”. In: Mon. Not. Roy. Astron. Soc. 413 (2011),p. 101. doi: 10 . 1111 / j . 1365 - 2966 . 2010 . 18114 . x. arXiv: 1006 . 0106
[astro-ph.CO].

[118] Jorge Penarrubia et al. “The coupling between the core/cusp and missingsatellite problems”. In: Astrophys. J. Lett. 759 (2012), p. L42. doi: 10.1088/
2041-8205/759/2/L42. arXiv: 1207.2772 [astro-ph.GA].

[119] Michael Boylan-Kolchin, James S. Bullock, and Manoj Kaplinghat. “Too bigto fail? The puzzling darkness of massive Milky Way subhaloes”. In: Mon.
Not. Roy. Astron. Soc. 415 (2011), p. L40. doi: 10.1111/j.1745-3933.2011.
01074.x. arXiv: 1103.0007 [astro-ph.CO].

[120] Shea Garrison-Kimmel et al. “Too Big to Fail in the Local Group”. In: Mon.
Not. Roy. Astron. Soc. 444.1 (2014), pp. 222–236. doi: 10 . 1093 / mnras /
stu1477. arXiv: 1404.5313 [astro-ph.GA].

[121] Manoj Kaplinghat, Mauro Valli, and Hai-Bo Yu. “Too Big To Fail in Light ofGaia”. In:Mon. Not. Roy. Astron. Soc. 490.1 (2019), pp. 231–242. doi: 10.1093/
mnras/stz2511. arXiv: 1904.04939 [astro-ph.GA].

164

https://arxiv.org/abs/1509.02910
https://doi.org/10.1103/PhysRevD.101.052002
https://doi.org/10.1103/PhysRevD.101.052002
https://arxiv.org/abs/1802.06039
https://doi.org/10.1103/PhysRevLett.112.241302
https://doi.org/10.1103/PhysRevLett.112.241302
https://arxiv.org/abs/1402.7137
https://doi.org/10.1103/PhysRevLett.116.071301
https://doi.org/10.1103/PhysRevLett.116.071301
https://arxiv.org/abs/1509.02448
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1086/307643
https://arxiv.org/abs/astro-ph/9901240
https://arxiv.org/abs/astro-ph/9901240
https://doi.org/10.1086/521914
https://arxiv.org/abs/0704.1817
https://arxiv.org/abs/0704.1817
https://doi.org/10.1111/j.1365-2966.2010.18114.x
https://arxiv.org/abs/1006.0106
https://arxiv.org/abs/1006.0106
https://doi.org/10.1088/2041-8205/759/2/L42
https://doi.org/10.1088/2041-8205/759/2/L42
https://arxiv.org/abs/1207.2772
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://arxiv.org/abs/1103.0007
https://doi.org/10.1093/mnras/stu1477
https://doi.org/10.1093/mnras/stu1477
https://arxiv.org/abs/1404.5313
https://doi.org/10.1093/mnras/stz2511
https://doi.org/10.1093/mnras/stz2511
https://arxiv.org/abs/1904.04939


[122] Marcel S. Pawlowski et al. “On the persistence of two small-scale problemsin ΛCDM”. In: Astrophys. J. 815.1 (2015), p. 19. doi: 10.1088/0004-637X/815/
1/19. arXiv: 1510.08060 [astro-ph.GA].

[123] Se-HeonOh et al. “The central slope of darkmatter cores in dwarf galaxies:Simulations vs. THINGS”. In: Astron. J. 142 (2011), p. 24. doi: 10.1088/0004-
6256/142/1/24. arXiv: 1011.2777 [astro-ph.CO].

[124] Romain Teyssier et al. “Cusp-core transformations in dwarf galaxies: ob-servational predictions”. In: Mon. Not. Roy. Astron. Soc. 429 (2013), p. 3068.doi: 10.1093/mnras/sts563. arXiv: 1206.4895 [astro-ph.CO].
[125] J. I. Read, O. Agertz, and M. L. M. Collins. “Dark matter cores all the waydown”. In: Mon. Not. Roy. Astron. Soc. 459.3 (2016), pp. 2573–2590. doi: 10.

1093/mnras/stw713. arXiv: 1508.04143 [astro-ph.GA].
[126] Gianfranco Bertone and Tim Tait M. P. “A new era in the search for darkmatter”. In: Nature 562.7725 (2018), pp. 51–56. doi: 10.1038/s41586-018-

0542-z. arXiv: 1810.01668 [astro-ph.CO].
[127] Leanne D. Duffy and Karl van Bibber. “Axions as Dark Matter Particles”. In:

New J. Phys. 11 (2009), p. 105008. doi: 10.1088/1367-2630/11/10/105008.arXiv: 0904.3346 [hep-ph].
[128] David J. E. Marsh. “Axion Cosmology”. In: Phys. Rept. 643 (2016), pp. 1–79.doi: 10.1016/j.physrep.2016.06.005. arXiv: 1510.07633 [astro-ph.CO].
[129] Jihn E. Kim and Gianpaolo Carosi. “Axions and the Strong CP Problem”.In: Rev. Mod. Phys. 82 (2010). [Erratum: Rev.Mod.Phys. 91, 049902 (2019)],pp. 557–602. doi: 10 . 1103 / RevModPhys . 82 . 557. arXiv: 0807 . 3125

[hep-ph].
[130] Peter W. Graham et al. “Experimental Searches for the Axion and Axion-Like Particles”. In: Ann. Rev. Nucl. Part. Sci. 65 (2015), pp. 485–514. doi: 10.

1146/annurev-nucl-102014-022120. arXiv: 1602.00039 [hep-ex].
[131] IgorG. Irastorza and Javier Redondo. “Newexperimental approaches in thesearch for axion-like particles”. In: Prog. Part. Nucl. Phys. 102 (2018), pp. 89–159. doi: 10.1016/j.ppnp.2018.05.003. arXiv: 1801.08127 [hep-ph].
[132] LucaDi Luzio et al. “The landscape ofQCDaxionmodels”. In: Phys. Rept. 870(2020), pp. 1–117. doi: 10.1016/j.physrep.2020.06.002. arXiv: 2003.01100

[hep-ph].
[133] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. “Cold and fuzzy darkmatter”. In: Phys. Rev. Lett. 85 (2000), pp. 1158–1161. doi: 10.1103/PhysRevLett.

85.1158. arXiv: astro-ph/0003365 [astro-ph].
[134] Simon Knapen, Tongyan Lin, and Kathryn M. Zurek. “Light Dark Matter:Models and Constraints”. In: Phys. Rev. D 96.11 (2017), p. 115021. doi: 10 .

1103/PhysRevD.96.115021. arXiv: 1709.07882 [hep-ph].
165

https://doi.org/10.1088/0004-637X/815/1/19
https://doi.org/10.1088/0004-637X/815/1/19
https://arxiv.org/abs/1510.08060
https://doi.org/10.1088/0004-6256/142/1/24
https://doi.org/10.1088/0004-6256/142/1/24
https://arxiv.org/abs/1011.2777
https://doi.org/10.1093/mnras/sts563
https://arxiv.org/abs/1206.4895
https://doi.org/10.1093/mnras/stw713
https://doi.org/10.1093/mnras/stw713
https://arxiv.org/abs/1508.04143
https://doi.org/10.1038/s41586-018-0542-z
https://doi.org/10.1038/s41586-018-0542-z
https://arxiv.org/abs/1810.01668
https://doi.org/10.1088/1367-2630/11/10/105008
https://arxiv.org/abs/0904.3346
https://doi.org/10.1016/j.physrep.2016.06.005
https://arxiv.org/abs/1510.07633
https://doi.org/10.1103/RevModPhys.82.557
https://arxiv.org/abs/0807.3125
https://arxiv.org/abs/0807.3125
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://arxiv.org/abs/1602.00039
https://doi.org/10.1016/j.ppnp.2018.05.003
https://arxiv.org/abs/1801.08127
https://doi.org/10.1016/j.physrep.2020.06.002
https://arxiv.org/abs/2003.01100
https://arxiv.org/abs/2003.01100
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://arxiv.org/abs/astro-ph/0003365
https://doi.org/10.1103/PhysRevD.96.115021
https://doi.org/10.1103/PhysRevD.96.115021
https://arxiv.org/abs/1709.07882


[135] Elisa G. M. Ferreira. “Ultra-light dark matter”. In: Astron. Astrophys. Rev.29.1 (2021), p. 7. doi: 10.1007/s00159-021-00135-6. arXiv: 2005.03254
[astro-ph.CO].

[136] Lam Hui. “Wave Dark Matter”. In: Ann. Rev. Astron. Astrophys. 59 (2021),pp. 247–289. doi: 10 . 1146 / annurev - astro - 120920 - 010024. arXiv:
2101.11735 [astro-ph.CO].

[137] Scott Dodelson and Lawrence M. Widrow. “Sterile-neutrinos as dark mat-ter”. In: Phys. Rev. Lett. 72 (1994), pp. 17–20. doi: 10.1103/PhysRevLett.72.
17. arXiv: hep-ph/9303287.

[138] Xiang-Dong Shi and George M. Fuller. “A New dark matter candidate: Non-thermal sterile neutrinos”. In: Phys. Rev. Lett. 82 (1999), pp. 2832–2835. doi:
10.1103/PhysRevLett.82.2832. arXiv: astro-ph/9810076.

[139] Alexey Boyarsky, Oleg Ruchayskiy, and Mikhail Shaposhnikov. “The Role ofsterile neutrinos in cosmology and astrophysics”. In: Ann. Rev. Nucl. Part.
Sci. 59 (2009), pp. 191–214. doi: 10.1146/annurev.nucl.010909.083654.arXiv: 0901.0011 [hep-ph].

[140] Alexander Kusenko. “Sterile neutrinos: TheDark side of the light fermions”.In: Phys. Rept. 481 (2009), pp. 1–28. doi: 10.1016/j.physrep.2009.07.004.arXiv: 0906.2968 [hep-ph].
[141] Jonathan L. Feng. “Dark Matter Candidates from Particle Physics andMethods of Detection”. In: Ann. Rev. Astron. Astrophys. 48 (2010), pp. 495–545. doi: 10 . 1146 / annurev - astro - 082708 - 101659. arXiv: 1003 . 0904

[astro-ph.CO].
[142] K. N. Abazajian et al. “Light Sterile Neutrinos: AWhite Paper”. In: (Apr. 2012).arXiv: 1204.5379 [hep-ph].
[143] P. Ivanov, P. Naselsky, and I. Novikov. “Inflation and primordial black holesas dark matter”. In: Phys. Rev. D 50 (1994), pp. 7173–7178. doi: 10.1103/

PhysRevD.50.7173.
[144] Sébastien Clesse and Juan García-Bellido. “Massive Primordial Black Holesfrom Hybrid Inflation as Dark Matter and the seeds of Galaxies”. In: Phys.

Rev. D 92.2 (2015), p. 023524. doi: 10.1103/PhysRevD.92.023524. arXiv:
1501.07565 [astro-ph.CO].

[145] Bernard Carr, Florian Kuhnel, and Marit Sandstad. “Primordial Black Holesas Dark Matter”. In: Phys. Rev. D 94.8 (2016), p. 083504. doi: 10 . 1103 /
PhysRevD.94.083504. arXiv: 1607.06077 [astro-ph.CO].

[146] Bernard Carr and Florian Kuhnel. “Primordial Black Holes as Dark Mat-ter: Recent Developments”. In: Ann. Rev. Nucl. Part. Sci. 70 (2020), pp. 355–394. doi: 10 . 1146 / annurev - nucl - 050520 - 125911. arXiv: 2006 . 02838
[astro-ph.CO].

166

https://doi.org/10.1007/s00159-021-00135-6
https://arxiv.org/abs/2005.03254
https://arxiv.org/abs/2005.03254
https://doi.org/10.1146/annurev-astro-120920-010024
https://arxiv.org/abs/2101.11735
https://doi.org/10.1103/PhysRevLett.72.17
https://doi.org/10.1103/PhysRevLett.72.17
https://arxiv.org/abs/hep-ph/9303287
https://doi.org/10.1103/PhysRevLett.82.2832
https://arxiv.org/abs/astro-ph/9810076
https://doi.org/10.1146/annurev.nucl.010909.083654
https://arxiv.org/abs/0901.0011
https://doi.org/10.1016/j.physrep.2009.07.004
https://arxiv.org/abs/0906.2968
https://doi.org/10.1146/annurev-astro-082708-101659
https://arxiv.org/abs/1003.0904
https://arxiv.org/abs/1003.0904
https://arxiv.org/abs/1204.5379
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1103/PhysRevD.92.023524
https://arxiv.org/abs/1501.07565
https://doi.org/10.1103/PhysRevD.94.083504
https://doi.org/10.1103/PhysRevD.94.083504
https://arxiv.org/abs/1607.06077
https://doi.org/10.1146/annurev-nucl-050520-125911
https://arxiv.org/abs/2006.02838
https://arxiv.org/abs/2006.02838


[147] Anne M. Green and Bradley J. Kavanagh. “Primordial Black Holes as a darkmatter candidate”. In: J. Phys. G 48.4 (2021), p. 043001. doi: 10.1088/1361-
6471/abc534. arXiv: 2007.10722 [astro-ph.CO].

[148] Robert H. Sanders and Stacy S. McGaugh. “Modified Newtonian dynamicsas an alternative to dark matter”. In: Ann. Rev. Astron. Astrophys. 40 (2002),pp. 263–317. doi: 10.1146/annurev.astro.40.060401.093923. arXiv:
astro-ph/0204521.

[149] JacobD. Bekenstein. “Relativistic gravitation theory for theMONDparadigm”.In: Phys. Rev. D 70 (2004). [Erratum: Phys.Rev.D 71, 069901 (2005)], p. 083509.doi: 10.1103/PhysRevD.70.083509. arXiv: astro-ph/0403694.
[150] Benoit Famaey and James Binney. “Modified Newtonian dynamics in theMilky Way”. In:Mon. Not. Roy. Astron. Soc. 363 (2005), pp. 603–608. doi: 10.

1111/j.1365-2966.2005.09474.x. arXiv: astro-ph/0506723.
[151] Benoit Famaey and Stacy McGaugh. “Modified Newtonian Dynamics(MOND): Observational Phenomenology and Relativistic Extensions”. In:

Living Rev. Rel. 15 (2012), p. 10. doi: 10.12942/lrr-2012-10. arXiv: 1112.3960
[astro-ph.CO].

[152] Gonzalo J. Olmo. “Palatini Approach to Modified Gravity: f(R) Theoriesand Beyond”. In: Int. J. Mod. Phys. D 20 (2011), pp. 413–462. doi: 10.1142/
S0218271811018925. arXiv: 1101.3864 [gr-qc].

[153] Salvatore Capozziello andMariafelicia De Laurentis. “Extended Theories ofGravity”. In: Phys. Rept. 509 (2011), pp. 167–321. doi: 10.1016/j.physrep.
2011.09.003. arXiv: 1108.6266 [gr-qc].

[154] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou. “Modified Gravity Theorieson aNutshell: Inflation, Bounce and Late-time Evolution”. In: Phys. Rept. 692(2017), pp. 1–104. doi: 10.1016/j.physrep.2017.06.001. arXiv: 1705.11098
[gr-qc].

[155] Marco Battaglieri et al. “US Cosmic Visions: New Ideas in Dark Matter 2017:Community Report”. In: U.S. Cosmic Visions: New Ideas in Dark Matter. July2017. arXiv: 1707.04591 [hep-ph].
[156] Justin Khoury. “Dark Matter Superfluidity”. In: SciPost Phys. Lect. Notes 42(2022), p. 1. doi: 10.21468/SciPostPhysLectNotes.42. arXiv: 2109.10928

[astro-ph.CO].
[157] John Preskill, Mark B. Wise, and Frank Wilczek. “Cosmology of the InvisibleAxion”. In: Phys. Lett. B 120 (1983). Ed. by M. A. Srednicki, pp. 127–132. doi:

10.1016/0370-2693(83)90637-8.
[158] L. F. Abbott and P. Sikivie. “A Cosmological Bound on the Invisible Axion”.In: Phys. Lett. B 120 (1983). Ed. by M. A. Srednicki, pp. 133–136. doi: 10.1016/

0370-2693(83)90638-X.
167

https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1088/1361-6471/abc534
https://arxiv.org/abs/2007.10722
https://doi.org/10.1146/annurev.astro.40.060401.093923
https://arxiv.org/abs/astro-ph/0204521
https://doi.org/10.1103/PhysRevD.70.083509
https://arxiv.org/abs/astro-ph/0403694
https://doi.org/10.1111/j.1365-2966.2005.09474.x
https://doi.org/10.1111/j.1365-2966.2005.09474.x
https://arxiv.org/abs/astro-ph/0506723
https://doi.org/10.12942/lrr-2012-10
https://arxiv.org/abs/1112.3960
https://arxiv.org/abs/1112.3960
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1142/S0218271811018925
https://arxiv.org/abs/1101.3864
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://arxiv.org/abs/1108.6266
https://doi.org/10.1016/j.physrep.2017.06.001
https://arxiv.org/abs/1705.11098
https://arxiv.org/abs/1705.11098
https://arxiv.org/abs/1707.04591
https://doi.org/10.21468/SciPostPhysLectNotes.42
https://arxiv.org/abs/2109.10928
https://arxiv.org/abs/2109.10928
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X


[159] Michael Dine and Willy Fischler. “The Not So Harmless Axion”. In: Phys.
Lett. B 120 (1983). Ed. by M. A. Srednicki, pp. 137–141. doi: 10.1016/0370-
2693(83)90639-1.

[160] Asimina Arvanitaki et al. “Large-misalignment mechanism for the for-mation of compact axion structures: Signatures from the QCD axion tofuzzy dark matter”. In: Phys. Rev. D 101.8 (2020), p. 083014. doi: 10.1103/
PhysRevD.101.083014. arXiv: 1909.11665 [astro-ph.CO].

[161] Matthew C. Johnson and Marc Kamionkowski. “Dynamical and Gravita-tional Instability of Oscillating-Field Dark Energy and Dark Matter”. In:
Phys. Rev. D78 (2008), p. 063010. doi: 10.1103/PhysRevD.78.063010. arXiv:
0805.1748 [astro-ph].

[162] Jai-chan Hwang and Hyerim Noh. “Axion as a Cold Dark Matter candidate”.In: Phys. Lett. B680 (2009), pp. 1–3. doi: 10.1016/j.physletb.2009.08.031.arXiv: 0902.4738 [astro-ph.CO].
[163] Chan-Gyung Park, Jai-chan Hwang, and Hyerim Noh. “Axion as a cold darkmatter candidate: low-mass case”. In: Phys. Rev. D86 (2012), p. 083535. doi:

10.1103/PhysRevD.86.083535. arXiv: 1207.3124 [astro-ph.CO].
[164] Renée Hlozek et al. “A search for ultralight axions using precision cosmo-logical data”. In: Phys. Rev. D91.10 (2015), p. 103512. doi: 10.1103/PhysRevD.

91.103512. arXiv: 1410.2896 [astro-ph.CO].
[165] J. A. R. Cembranos, A. L. Maroto, and S. J. Núñez Jareño. “Cosmological per-turbations in coherent oscillating scalar field models”. In: JHEP 03 (2016),p. 013. doi: 10.1007/JHEP03(2016)013. arXiv: 1509.08819 [astro-ph.CO].
[166] L. Arturo Ureña-López and Alma X. Gonzalez-Morales. “Towards accuratecosmological predictions for rapidly oscillating scalar fields as dark mat-ter”. In: JCAP 1607.07 (2016), p. 048. doi: 10.1088/1475-7516/2016/07/048.arXiv: 1511.08195 [astro-ph.CO].
[167] L. Arturo Ureña-López. “Brief Review on Scalar Field Dark Matter Models”.In: Front. Astron. Space Sci. 6 (2019), p. 47. doi: 10.3389/fspas.2019.00047.
[168] James Halverson et al. “Dark Glueballs and their Ultralight Axions”. In: Phys.

Rev. D 98.4 (2018), p. 043502. doi: 10.1103/PhysRevD.98.043502. arXiv:
1805.06011 [hep-ph].

[169] Michele Cicoli et al. “Fuzzy Dark Matter candidates from string theory”. In:
JHEP 05 (2022), p. 107. doi: 10.1007/JHEP05(2022)107. arXiv: 2110.02964
[hep-th].

[170] Manuel Wittner. “The universe from a string-theoretic and cosmologicalperspective.” PhD thesis. Heidelberg U., Aug. 2022. doi: 10.11588/heidok.
00032036.

168

https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevD.101.083014
https://doi.org/10.1103/PhysRevD.101.083014
https://arxiv.org/abs/1909.11665
https://doi.org/10.1103/PhysRevD.78.063010
https://arxiv.org/abs/0805.1748
https://doi.org/10.1016/j.physletb.2009.08.031
https://arxiv.org/abs/0902.4738
https://doi.org/10.1103/PhysRevD.86.083535
https://arxiv.org/abs/1207.3124
https://doi.org/10.1103/PhysRevD.91.103512
https://doi.org/10.1103/PhysRevD.91.103512
https://arxiv.org/abs/1410.2896
https://doi.org/10.1007/JHEP03(2016)013
https://arxiv.org/abs/1509.08819
https://doi.org/10.1088/1475-7516/2016/07/048
https://arxiv.org/abs/1511.08195
https://doi.org/10.3389/fspas.2019.00047
https://doi.org/10.1103/PhysRevD.98.043502
https://arxiv.org/abs/1805.06011
https://doi.org/10.1007/JHEP05(2022)107
https://arxiv.org/abs/2110.02964
https://arxiv.org/abs/2110.02964
https://doi.org/10.11588/heidok.00032036
https://doi.org/10.11588/heidok.00032036


[171] Michele Cicoli, Kuver Sinha, and Robert Wiley Deal. “The dark universe af-ter reheating in string inflation”. In: JHEP 12 (2022), p. 068. doi: 10.1007/
JHEP12(2022)068. arXiv: 2208.01017 [hep-th].

[172] Michele Cicoli et al. “String Cosmology: from the Early Universe to Today”.In: (Mar. 2023). arXiv: 2303.04819 [hep-th].
[173] Philippe Jetzer. “Boson stars”. In: Phys. Rept. 220 (1992), pp. 163–227. doi:

10.1016/0370-1573(92)90123-H.
[174] Jens C. Niemeyer. “Small-scale structure of fuzzy and axion-like dark mat-ter”. In: (Dec. 2019). doi: 10.1016/j.ppnp.2020.103787. arXiv: 1912.07064

[astro-ph.CO].
[175] Mohammadtaher Safarzadeh and David N. Spergel. “Ultra-light Dark Mat-ter is Incompatible with the Milky Way’s Dwarf Satellites”. In: (June 2019).doi: 10.3847/1538-4357/ab7db2. arXiv: 1906.11848 [astro-ph.CO].
[176] S. T. H. Hartman, H. A. Winther, and D. F. Mota. “Dynamical friction in Bose-Einstein condensed self-interacting dark matter at finite temperatures,and the Fornax dwarf spheroidal”. In: Astron. Astrophys. 647 (2021), A70.doi: 10.1051/0004-6361/202039865. arXiv: 2011.00116 [astro-ph.CO].
[177] Jae-Weon Lee. “Is dark matter a BEC or scalar field?” In: J. Korean Phys.

Soc. 54 (2009), p. 2622. doi: 10.3938/jkps.54.2622. arXiv: 0801.1442
[astro-ph].

[178] P. Sikivie andQ. Yang. “Bose-Einstein Condensation ofDarkMatter Axions”.In: Phys. Rev. Lett. 103 (2009), p. 111301. doi: 10.1103/PhysRevLett.103.
111301. arXiv: 0901.1106 [hep-ph].

[179] Abril Suárez, Victor H. Robles, and TonatiuhMatos. “A Review on the ScalarField/Bose-Einstein Condensate Dark Matter Model”. In: Astrophys. Space
Sci. Proc. 38 (2014). Ed. by Claudia Moreno González, José Edgar MadrizAguilar, and Luz Marina Reyes Barrera, pp. 107–142. doi: 10.1007/978-
3-319-02063-1_9. arXiv: 1302.0903 [astro-ph.CO].

[180] JiJi Fan. “Ultralight Repulsive Dark Matter and BEC”. In: Phys. Dark Univ. 14(2016), pp. 84–94. doi: 10.1016/j.dark.2016.10.005. arXiv: 1603.06580
[hep-ph].

[181] M. P. Silverman and Ronald L. Mallett. “Dark matter as a cosmic Bose-Einstein condensate and possible superfluid”. In: Gen. Rel. Grav. 34 (2002),pp. 633–649. doi: 10.1023/A:1015934027224.
[182] Lasha Berezhiani and Justin Khoury. “Dark Matter Superfluidity and Galac-tic Dynamics”. In: Phys. Lett. B 753 (2016), pp. 639–643. doi: 10.1016/j.

physletb.2015.12.054. arXiv: 1506.07877 [astro-ph.CO].

169

https://doi.org/10.1007/JHEP12(2022)068
https://doi.org/10.1007/JHEP12(2022)068
https://arxiv.org/abs/2208.01017
https://arxiv.org/abs/2303.04819
https://doi.org/10.1016/0370-1573(92)90123-H
https://doi.org/10.1016/j.ppnp.2020.103787
https://arxiv.org/abs/1912.07064
https://arxiv.org/abs/1912.07064
https://doi.org/10.3847/1538-4357/ab7db2
https://arxiv.org/abs/1906.11848
https://doi.org/10.1051/0004-6361/202039865
https://arxiv.org/abs/2011.00116
https://doi.org/10.3938/jkps.54.2622
https://arxiv.org/abs/0801.1442
https://arxiv.org/abs/0801.1442
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevLett.103.111301
https://arxiv.org/abs/0901.1106
https://doi.org/10.1007/978-3-319-02063-1_9
https://doi.org/10.1007/978-3-319-02063-1_9
https://arxiv.org/abs/1302.0903
https://doi.org/10.1016/j.dark.2016.10.005
https://arxiv.org/abs/1603.06580
https://arxiv.org/abs/1603.06580
https://doi.org/10.1023/A:1015934027224
https://doi.org/10.1016/j.physletb.2015.12.054
https://doi.org/10.1016/j.physletb.2015.12.054
https://arxiv.org/abs/1506.07877


[183] M. C. Bento et al. “Selfinteracting darkmatter and invisibly decaying Higgs”.In: Phys. Rev. D 62 (2000), p. 041302. doi: 10.1103/PhysRevD.62.041302.arXiv: astro-ph/0003350.
[184] Antonio Riotto and Igor Tkachev. “What if dark matter is bosonic and self-interacting?” In: Phys. Lett. B484 (2000), pp. 177–182. doi: 10.1016/S0370-

2693(00)00660-2. arXiv: astro-ph/0003388 [astro-ph].
[185] Douglas Fregolente and Mauro D. Tonasse. “Selfinteracting dark matterfrom an SU(3)(L) x U(1)(N) electroweak model”. In: Phys. Lett. B 555 (2003),pp. 7–12. doi: 10.1016/S0370-2693(03)00037-6. arXiv: hep-ph/0209119.
[186] Bohua Li, Tanja Rindler-Daller, and Paul R. Shapiro. “Cosmological Con-straints on Bose-Einstein-Condensed Scalar Field Dark Matter”. In: Phys.

Rev. D89.8 (2014), p. 083536. doi: 10.1103/PhysRevD.89.083536. arXiv:
1310.6061 [astro-ph.CO].

[187] Abril Suárez and Pierre-Henri Chavanis. “Hydrodynamic representation ofthe Klein-Gordon-Einstein equations in the weak field limit: General for-malism and perturbations analysis”. In: Phys. Rev.D92 (2015), p. 023510. doi:
10.1103/PhysRevD.92.023510. arXiv: 1503.07437 [gr-qc].

[188] Abril Suárez and Pierre-Henri Chavanis. “Cosmological evolution of a com-plex scalar field with repulsive or attractive self-interaction”. In: Phys. Rev.D95.6 (2017), p. 063515. doi: 10.1103/PhysRevD.95.063515. arXiv: 1608.
08624 [gr-qc].

[189] Abril Suárez and Pierre-Henri Chavanis. “Jeans type instability of a complexself-interacting scalar field in general relativity”. In: Phys. Rev. D98.8 (2018),p. 083529. doi: 10.1103/PhysRevD.98.083529. arXiv: 1710.10486 [gr-qc].
[190] Philippe Brax, Patrick Valageas, and Jose A. R. Cembranos. “Fate of scalardark matter solitons around supermassive galactic black holes”. In: (2019).arXiv: 1909.02614 [astro-ph.CO].
[191] Andi Tan et al. “Dark Matter Results from First 98.7 Days of Data from thePandaX-II Experiment”. In: Phys. Rev. Lett. 117.12 (2016), p. 121303. doi: 10.

1103/PhysRevLett.117.121303. arXiv: 1607.07400 [hep-ex].
[192] Xiangyi Cui et al. “Dark Matter Results From 54-Ton-Day Exposure ofPandaX-II Experiment”. In: Phys. Rev. Lett. 119.18 (2017), p. 181302. doi:

10.1103/PhysRevLett.119.181302. arXiv: 1708.06917 [astro-ph.CO].
[193] Yue Meng et al. “Dark Matter Search Results from the PandaX-4T Com-missioning Run”. In: Phys. Rev. Lett. 127.26 (2021), p. 261802. doi: 10.1103/

PhysRevLett.127.261802. arXiv: 2107.13438 [hep-ex].

170

https://doi.org/10.1103/PhysRevD.62.041302
https://arxiv.org/abs/astro-ph/0003350
https://doi.org/10.1016/S0370-2693(00)00660-2
https://doi.org/10.1016/S0370-2693(00)00660-2
https://arxiv.org/abs/astro-ph/0003388
https://doi.org/10.1016/S0370-2693(03)00037-6
https://arxiv.org/abs/hep-ph/0209119
https://doi.org/10.1103/PhysRevD.89.083536
https://arxiv.org/abs/1310.6061
https://doi.org/10.1103/PhysRevD.92.023510
https://arxiv.org/abs/1503.07437
https://doi.org/10.1103/PhysRevD.95.063515
https://arxiv.org/abs/1608.08624
https://arxiv.org/abs/1608.08624
https://doi.org/10.1103/PhysRevD.98.083529
https://arxiv.org/abs/1710.10486
https://arxiv.org/abs/1909.02614
https://doi.org/10.1103/PhysRevLett.117.121303
https://doi.org/10.1103/PhysRevLett.117.121303
https://arxiv.org/abs/1607.07400
https://doi.org/10.1103/PhysRevLett.119.181302
https://arxiv.org/abs/1708.06917
https://doi.org/10.1103/PhysRevLett.127.261802
https://doi.org/10.1103/PhysRevLett.127.261802
https://arxiv.org/abs/2107.13438


[194] Nitsan Bar, Kfir Blum, and Chen Sun. “Galactic rotation curves versus ul-tralight dark matter: A systematic comparison with SPARC data”. In: Phys.
Rev. D 105.8 (2022), p. 083015. doi: 10.1103/PhysRevD.105.083015. arXiv:
2111.03070 [hep-ph].

[195] S. T. H. Hartman, H. A. Winther, and D. F. Mota. “Constraints on self-interacting Bose-Einstein condensate dark matter using large-scale ob-servables”. In: JCAP 02.02 (2022), p. 005. doi: 10.1088/1475-7516/2022/
02/005. arXiv: 2108.07496 [astro-ph.CO].

[196] Caio F. B. Macedo et al. “Into the lair: gravitational-wave signatures of darkmatter”. In: Astrophys. J. 774 (2013), p. 48. doi: 10.1088/0004-637X/774/1/
48. arXiv: 1302.2646 [gr-qc].

[197] Enrico Barausse, Vitor Cardoso, and Paolo Pani. “Can environmental ef-fects spoil precision gravitational-wave astrophysics?” In: Phys. Rev. D 89.10(2014), p. 104059. doi: 10.1103/PhysRevD.89.104059. arXiv: 1404.7149
[gr-qc].

[198] Leor Barack et al. “Black holes, gravitational waves and fundamentalphysics: a roadmap”. In: Class. Quant. Grav. 36.14 (2019), p. 143001. doi:
10.1088/1361-6382/ab0587. arXiv: 1806.05195 [gr-qc].

[199] Vitor Cardoso and Paolo Pani. “Testing the nature of dark compact objects:a status report”. In: Living Rev. Rel. 22.1 (2019), p. 4. doi: 10.1007/s41114-
019-0020-4. arXiv: 1904.05363 [gr-qc].

[200] Pierre Auclair et al. “Cosmology with the Laser Interferometer Space An-tenna”. In: (Apr. 2022). arXiv: 2204.05434 [astro-ph.CO].
[201] E. O. Nadler et al. “Milky Way Satellite Census. III. Constraints on Dark Mat-ter Properties from Observations of Milky Way Satellite Galaxies”. In: Phys.

Rev. Lett. 126 (2021), p. 091101. doi: 10.1103/PhysRevLett.126.091101.arXiv: 2008.00022 [astro-ph.CO].
[202] Mona Dentler et al. “Fuzzy dark matter and the Dark Energy Survey Year1 data”. In: Mon. Not. Roy. Astron. Soc. 515.4 (2022), pp. 5646–5664. doi: 10.

1093/mnras/stac1946. arXiv: 2111.01199 [astro-ph.CO].
[203] J. Weber. “Detection and Generation of Gravitational Waves”. In: Phys. Rev.117 (1960), pp. 306–313. doi: 10.1103/PhysRev.117.306.
[204] Richard L. Arnowitt, Stanley Deser, and Charles W. Misner. “Wave zone ingeneral relativity”. In: Phys. Rev. 121 (1961), p. 1556. doi: 10.1103/PhysRev.

121.1556.
[205] Asher Peres. “Classical Radiation Recoil”. In: Phys. Rev. 128 (1962), pp. 2471–2475. doi: 10.1103/PhysRev.128.2471.

171

https://doi.org/10.1103/PhysRevD.105.083015
https://arxiv.org/abs/2111.03070
https://doi.org/10.1088/1475-7516/2022/02/005
https://doi.org/10.1088/1475-7516/2022/02/005
https://arxiv.org/abs/2108.07496
https://doi.org/10.1088/0004-637X/774/1/48
https://doi.org/10.1088/0004-637X/774/1/48
https://arxiv.org/abs/1302.2646
https://doi.org/10.1103/PhysRevD.89.104059
https://arxiv.org/abs/1404.7149
https://arxiv.org/abs/1404.7149
https://doi.org/10.1088/1361-6382/ab0587
https://arxiv.org/abs/1806.05195
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://arxiv.org/abs/1904.05363
https://arxiv.org/abs/2204.05434
https://doi.org/10.1103/PhysRevLett.126.091101
https://arxiv.org/abs/2008.00022
https://doi.org/10.1093/mnras/stac1946
https://doi.org/10.1093/mnras/stac1946
https://arxiv.org/abs/2111.01199
https://doi.org/10.1103/PhysRev.117.306
https://doi.org/10.1103/PhysRev.121.1556
https://doi.org/10.1103/PhysRev.121.1556
https://doi.org/10.1103/PhysRev.128.2471


[206] J. Weber. “Anisotropy and polarization in the gravitational-radiation ex-periments”. In: Phys. Rev. Lett. 25 (1970), pp. 180–184. doi: 10 . 1103 /
PhysRevLett.25.180.

[207] J. Weber. “Evidence for discovery of gravitational radiation”. In: Phys. Rev.
Lett. 22 (1969), pp. 1320–1324. doi: 10.1103/PhysRevLett.22.1320.

[208] B. P. Abbott et al. “GW151226: Observation of Gravitational Waves froma 22-Solar-Mass Binary Black Hole Coalescence”. In: Phys. Rev. Lett. 116.24(2016), p. 241103. doi: 10.1103/PhysRevLett.116.241103. arXiv: 1606.
04855 [gr-qc].

[209] Two black holes merging, https: // www. ligo. caltech. edu/ image/
ligo20160211f , Accessed: 2023-07-15.

[210] H. Bondi,M. G. J. van der Burg, andA.W. K.Metzner. “Gravitational waves ingeneral relativity. 7. Waves from axisymmetric isolated systems”. In: Proc.
Roy. Soc. Lond. A 269 (1962), pp. 21–52. doi: 10.1098/rspa.1962.0161.

[211] J. B. Hartle and S. W. Hawking. “Wave Function of the Universe”. In: Phys.
Rev. D 28 (1983). Ed. by Li-Zhi Fang and R. Ruffini, pp. 2960–2975. doi: 10.
1103/PhysRevD.28.2960.

[212] Alex Abramovici et al. “LIGO: The Laser interferometer gravitational waveobservatory”. In: Science 256 (1992), pp. 325–333. doi: 10.1126/science.
256.5055.325.

[213] B. P. Abbott et al. “LIGO: The Laser interferometer gravitational-wave ob-servatory”. In: Rept. Prog. Phys. 72 (2009), p. 076901. doi: 10.1088/0034-
4885/72/7/076901. arXiv: 0711.3041 [gr-qc].

[214] T. Accadia et al. “Virgo: a laser interferometer to detect gravitationalwaves”. In: JINST 7 (2012), P03012. doi: 10.1088/1748-0221/7/03/P03012.
[215] F. Acernese et al. “Increasing the Astrophysical Reach of the AdvancedVirgo Detector via the Application of Squeezed Vacuum States of Light”.In: Phys. Rev. Lett. 123.23 (2019), p. 231108. doi: 10.1103/PhysRevLett.123.

231108.
[216] S. Kawamura et al. “The Japanese space gravitational wave antenna DE-CIGO”. In: Class. Quant. Grav. 23 (2006). Ed. by N. Mio, S125–S132. doi: 10.

1088/0264-9381/23/8/S17.
[217] Seiji Kawamura et al. “The Japanese space gravitational wave antenna: DE-CIGO”. In: Class. Quant. Grav. 28 (2011). Ed. by Sasha Buchman and Ke-XunSun, p. 094011. doi: 10.1088/0264-9381/28/9/094011.
[218] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from aBinary Neutron Star Inspiral”. In: Phys. Rev. Lett. 119.16 (2017), p. 161101. doi:

10.1103/PhysRevLett.119.161101. arXiv: 1710.05832 [gr-qc].

172

https://doi.org/10.1103/PhysRevLett.25.180
https://doi.org/10.1103/PhysRevLett.25.180
https://doi.org/10.1103/PhysRevLett.22.1320
https://doi.org/10.1103/PhysRevLett.116.241103
https://arxiv.org/abs/1606.04855
https://arxiv.org/abs/1606.04855
https://www.ligo.caltech.edu/image/ligo20160211f
https://www.ligo.caltech.edu/image/ligo20160211f
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1088/0034-4885/72/7/076901
https://arxiv.org/abs/0711.3041
https://doi.org/10.1088/1748-0221/7/03/P03012
https://doi.org/10.1103/PhysRevLett.123.231108
https://doi.org/10.1103/PhysRevLett.123.231108
https://doi.org/10.1088/0264-9381/23/8/S17
https://doi.org/10.1088/0264-9381/23/8/S17
https://doi.org/10.1088/0264-9381/28/9/094011
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832


[219] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron StarMerger”. In: Astrophys. J. Lett. 848.2 (2017), p. L12. doi: 10.3847/2041-8213/
aa91c9. arXiv: 1710.05833 [astro-ph.HE].

[220] Benjamin P. Abbott et al. “GW170104: Observation of a 50-Solar-MassBinary Black Hole Coalescence at Redshift 0.2”. In: Phys. Rev. Lett. 118.22(2017). [Erratum: Phys.Rev.Lett. 121, 129901 (2018)], p. 221101. doi: 10.1103/
PhysRevLett.118.221101. arXiv: 1706.01812 [gr-qc].

[221] B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of Com-pact Binary Mergers Observed by LIGO and Virgo during the First and Sec-ond Observing Runs”. In: Phys. Rev. X 9.3 (2019), p. 031040. doi: 10.1103/
PhysRevX.9.031040. arXiv: 1811.12907 [astro-ph.HE].

[222] Vitor Cardoso and Andrea Maselli. “Constraints on the astrophysical envi-ronment of binaries with gravitational-wave observations”. In: Astron. As-
trophys. 644 (2020), A147. doi: 10.1051/0004-6361/202037654. arXiv: 1909.
05870 [astro-ph.HE].

[223] Gen-Liang Li, Yong Tang, and Yue-Liang Wu. “Probing Dark Matter Spikesvia Gravitational Waves of Extreme Mass Ratio Inspirals”. In: (Dec. 2021).arXiv: 2112.14041 [astro-ph.CO].
[224] Clemente Smarra et al. “The second data release from the European PulsarTiming Array: VI. Challenging the ultralight darkmatter paradigm”. In: (June2023). arXiv: 2306.16228 [astro-ph.HE].
[225] Daniel J. Reardon et al. “Search for an Isotropic Gravitational-wave Back-ground with the Parkes Pulsar Timing Array”. In: Astrophys. J. Lett. 951.1(2023), p. L6. doi: 10 . 3847 / 2041 - 8213 / acdd02. arXiv: 2306 . 16215

[astro-ph.HE].
[226] Heng Xu et al. “Searching for the Nano-Hertz Stochastic GravitationalWaveBackground with the Chinese Pulsar Timing Array Data Release I”. In: Res.

Astron. Astrophys. 23.7 (2023), p. 075024. doi: 10.1088/1674-4527/acdfa5.arXiv: 2306.16216 [astro-ph.HE].
[227] Gabriella Agazie et al. “The NANOGrav 15 yr Data Set: Evidence for aGravitational-wave Background”. In: Astrophys. J. Lett. 951.1 (2023), p. L8.doi: 10.3847/2041-8213/acdac6. arXiv: 2306.16213 [astro-ph.HE].
[228] J. Antoniadis et al. “The second data release from the European Pulsar Tim-ing Array: V. Implications formassive black holes, darkmatter and the earlyUniverse”. In: (June 2023). arXiv: 2306.16227 [astro-ph.CO].
[229] Yann Gouttenoire. “First-order Phase Transition interpretation of PTA sig-nal produces solar-mass Black Holes”. In: (July 2023). arXiv: 2307.04239

[hep-ph].

173

https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://arxiv.org/abs/1710.05833
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://arxiv.org/abs/1706.01812
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://arxiv.org/abs/1811.12907
https://doi.org/10.1051/0004-6361/202037654
https://arxiv.org/abs/1909.05870
https://arxiv.org/abs/1909.05870
https://arxiv.org/abs/2112.14041
https://arxiv.org/abs/2306.16228
https://doi.org/10.3847/2041-8213/acdd02
https://arxiv.org/abs/2306.16215
https://arxiv.org/abs/2306.16215
https://doi.org/10.1088/1674-4527/acdfa5
https://arxiv.org/abs/2306.16216
https://doi.org/10.3847/2041-8213/acdac6
https://arxiv.org/abs/2306.16213
https://arxiv.org/abs/2306.16227
https://arxiv.org/abs/2307.04239
https://arxiv.org/abs/2307.04239


[230] Yu-Mei Wu, Zu-Cheng Chen, and Qing-Guo Huang. “Cosmological Inter-pretation for the Stochastic Signal in Pulsar Timing Arrays”. In: (July 2023).arXiv: 2307.03141 [astro-ph.CO].
[231] Daniel G. Figueroa et al. “Cosmological Background Interpretation of Pul-sar Timing Array Data”. In: (July 2023). arXiv: 2307.02399 [astro-ph.CO].
[232] Caner Unal, Alexandros Papageorgiou, and Ippei Obata. “Axion-Gauge Dy-namics During Inflation as the Origin of Pulsar Timing Array Signals andPrimordial Black Holes”. In: (July 2023). arXiv: 2307.02322 [astro-ph.CO].
[233] Bo-Qiang Lu and Cheng-Wei Chiang. “Nano-Hertz stochastic gravitationalwave background from domain wall annihilation”. In: (July 2023). arXiv:

2307.00746 [hep-ph].
[234] C. J. Moore, R. H. Cole, and C. P. L. Berry. “Gravitational-wave sensitivitycurves”. In: Class. Quant. Grav. 32.1 (2015), p. 015014. doi: 10.1088/0264-

9381/32/1/015014. arXiv: 1408.0740 [gr-qc].
[235] B. P. Abbott et al. “Tests of General Relativity with the Binary Black HoleSignals from the LIGO-Virgo Catalog GWTC-1”. In: Phys. Rev. D 100.10 (2019),p. 104036. doi: 10 . 1103 / PhysRevD . 100 . 104036. arXiv: 1903 . 04467

[gr-qc].
[236] R. Abbott et al. “Tests of general relativity with binary black holes fromthe second LIGO-Virgo gravitational-wave transient catalog”. In: Phys. Rev.

D 103.12 (2021), p. 122002. doi: 10.1103/PhysRevD.103.122002. arXiv: 2010.
14529 [gr-qc].

[237] R. Abbott et al. “Tests of General Relativity with GWTC-3”. In: (Dec. 2021).arXiv: 2112.06861 [gr-qc].
[238] Dimitrios Psaltis et al. “Gravitational Test Beyond the First Post-NewtonianOrder with the Shadow of the M87 Black Hole”. In: Phys. Rev. Lett. 125.14(2020), p. 141104. doi: 10.1103/PhysRevLett.125.141104. arXiv: 2010.

01055 [gr-qc].
[239] R. Abbott et al. “Population of Merging Compact Binaries Inferred UsingGravitational Waves through GWTC-3”. In: Phys. Rev. X 13.1 (2023), p. 011048.doi: 10.1103/PhysRevX.13.011048. arXiv: 2111.03634 [astro-ph.HE].
[240] Michele Bosi, Nicola Bellomo, and Alvise Raccanelli. “Constraining ex-tended cosmologies with GW×LSS cross-correlations”. In: (June 2023).arXiv: 2306.03031 [astro-ph.CO].
[241] B. P. Abbott et al. “Tests of General Relativity with GW170817”. In: Phys. Rev.

Lett. 123.1 (2019), p. 011102. doi: 10.1103/PhysRevLett.123.011102. arXiv:
1811.00364 [gr-qc].

174

https://arxiv.org/abs/2307.03141
https://arxiv.org/abs/2307.02399
https://arxiv.org/abs/2307.02322
https://arxiv.org/abs/2307.00746
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://arxiv.org/abs/1408.0740
https://doi.org/10.1103/PhysRevD.100.104036
https://arxiv.org/abs/1903.04467
https://arxiv.org/abs/1903.04467
https://doi.org/10.1103/PhysRevD.103.122002
https://arxiv.org/abs/2010.14529
https://arxiv.org/abs/2010.14529
https://arxiv.org/abs/2112.06861
https://doi.org/10.1103/PhysRevLett.125.141104
https://arxiv.org/abs/2010.01055
https://arxiv.org/abs/2010.01055
https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://arxiv.org/abs/2306.03031
https://doi.org/10.1103/PhysRevLett.123.011102
https://arxiv.org/abs/1811.00364


[242] Neil Cornish, Diego Blas, and Germano Nardini. “Bounding the speedof gravity with gravitational wave observations”. In: Phys. Rev. Lett. 119.16(2017), p. 161102. doi: 10.1103/PhysRevLett.119.161102. arXiv: 1707.06101
[gr-qc].

[243] Alexander Bonilla et al. “Forecasts on the speed of gravitational waves athigh z”. In: JCAP 03 (2020), p. 015. doi: 10.1088/1475-7516/2020/03/015.arXiv: 1910.05631 [gr-qc].
[244] Xiaoshu Liu et al. “Measuring the speed of gravitational waves from thefirst and second observing run of Advanced LIGO and Advanced Virgo”. In:

Phys. Rev. D 102.2 (2020), p. 024028. doi: 10.1103/PhysRevD.102.024028.arXiv: 2005.03121 [gr-qc].
[245] William Giarè and Fabrizio Renzi. “Propagating speed of primordial grav-itational waves”. In: Phys. Rev. D 102.8 (2020), p. 083530. doi: 10 . 1103 /

PhysRevD.102.083530. arXiv: 2007.04256 [astro-ph.CO].
[246] Konstantin Leyde et al. “Current and future constraints on cosmology andmodified gravitational wave friction from binary black holes”. In: JCAP 09(2022), p. 012. doi: 10.1088/1475-7516/2022/09/012. arXiv: 2202.00025

[gr-qc].
[247] Shreya Banerjee, Sayantani Bera, and David F. Mota. “Prospects of prob-ing dark matter condensates with gravitational waves”. In: JCAP 03 (2023),p. 041. doi: 10.1088/1475-7516/2023/03/041. arXiv: 2211.13988 [gr-qc].
[248] Ryuichi Takahashi and Takashi Nakamura. “Wave effects in gravitationallensing of gravitational waves from chirping binaries”. In: Astrophys. J. 595(2003), pp. 1039–1051. doi: 10.1086/377430. arXiv: astro-ph/0305055.
[249] C. G. Boehmer and T. Harko. “Can dark matter be a Bose-Einstein conden-sate?” In: JCAP 06 (2007), p. 025. doi: 10.1088/1475-7516/2007/06/025.arXiv: 0705.4158 [astro-ph].
[250] Pedro V. P. Cunha and Carlos A. R. Herdeiro. “Shadows and strong grav-itational lensing: a brief review”. In: Gen. Rel. Grav. 50.4 (2018), p. 42. doi:

10.1007/s10714-018-2361-9. arXiv: 1801.00860 [gr-qc].
[251] Paolo Cremonese, David FonsecaMota, and Vincenzo Salzano. “Character-istic Features of Gravitational Wave Lensing as Probe of LensMassModel”.In: Annalen Phys. 535.6 (2023), p. 2300040. doi: 10.1002/andp.202300040.arXiv: 2111.01163 [astro-ph.CO].
[252] Mihael Petač, Julien Lavalle, and Karsten Jedamzik. “Microlensing con-straints on clustered primordial black holes”. In: Phys. Rev. D 105.8 (2022),p. 083520. doi: 10 . 1103 / PhysRevD . 105 . 083520. arXiv: 2201 . 02521

[astro-ph.CO].

175

https://doi.org/10.1103/PhysRevLett.119.161102
https://arxiv.org/abs/1707.06101
https://arxiv.org/abs/1707.06101
https://doi.org/10.1088/1475-7516/2020/03/015
https://arxiv.org/abs/1910.05631
https://doi.org/10.1103/PhysRevD.102.024028
https://arxiv.org/abs/2005.03121
https://doi.org/10.1103/PhysRevD.102.083530
https://doi.org/10.1103/PhysRevD.102.083530
https://arxiv.org/abs/2007.04256
https://doi.org/10.1088/1475-7516/2022/09/012
https://arxiv.org/abs/2202.00025
https://arxiv.org/abs/2202.00025
https://doi.org/10.1088/1475-7516/2023/03/041
https://arxiv.org/abs/2211.13988
https://doi.org/10.1086/377430
https://arxiv.org/abs/astro-ph/0305055
https://doi.org/10.1088/1475-7516/2007/06/025
https://arxiv.org/abs/0705.4158
https://doi.org/10.1007/s10714-018-2361-9
https://arxiv.org/abs/1801.00860
https://doi.org/10.1002/andp.202300040
https://arxiv.org/abs/2111.01163
https://doi.org/10.1103/PhysRevD.105.083520
https://arxiv.org/abs/2201.02521
https://arxiv.org/abs/2201.02521


[253] Valeria Rodriguez-Fajardo et al. “Einstein beams and the diffractive as-pect of gravitationally-lensed light”. In: (June 2023). arXiv: 2306 . 11852
[astro-ph.IM].

[254] Anuj Mishra et al. “Exploring the Impact of Microlensing on GravitationalWave Signals: Biases, Population Characteristics, and Prospects for Detec-tion”. In: (June 2023). arXiv: 2306.11479 [astro-ph.CO].
[255] R. Abbott et al. “Search for gravitational-lensing signatures in the full thirdobserving run of the LIGO-Virgo network”. In: (Apr. 2023). arXiv: 2304.08393

[gr-qc].
[256] Ankit Beniwal et al. “Gravitational wave, collider and dark matter signalsfrom a scalar singlet electroweak baryogenesis”. In: JHEP 08 (2017), p. 108.doi: 10.1007/JHEP08(2017)108. arXiv: 1702.06124 [hep-ph].
[257] John Ellis, Marek Lewicki, and José Miguel No. “On the Maximal Strengthof a First-Order Electroweak Phase Transition and its Gravitational WaveSignal”. In: JCAP 04 (2019), p. 003. doi: 10.1088/1475-7516/2019/04/003.arXiv: 1809.08242 [hep-ph].
[258] Chiara Caprini et al. “Detecting gravitational waves from cosmologicalphase transitions with LISA: an update”. In: JCAP 03 (2020), p. 024. doi:

10.1088/1475-7516/2020/03/024. arXiv: 1910.13125 [astro-ph.CO].
[259] Misao Sasaki et al. “Primordial black holes—perspectives in gravitationalwave astronomy”. In: Class. Quant. Grav. 35.6 (2018), p. 063001. doi: 10 .

1088/1361-6382/aaa7b4. arXiv: 1801.05235 [astro-ph.CO].
[260] Z. Arzoumanian et al. “The NANOGrav 11-year Data Set: Pulsar-timing Con-straints On The Stochastic Gravitational-wave Background”. In: Astrophys.

J. 859.1 (2018), p. 47. doi: 10.3847/1538-4357/aabd3b. arXiv: 1801.02617
[astro-ph.HE].

[261] Bernard Carr et al. “Constraints on primordial black holes”. In: Rept. Prog.
Phys. 84.11 (2021), p. 116902. doi: 10.1088/1361-6633/ac1e31. arXiv: 2002.
12778 [astro-ph.CO].

[262] Kazunari Eda et al. “Gravitational waves as a probe of dark matter min-ispikes”. In: Phys. Rev. D 91.4 (2015), p. 044045. doi: 10.1103/PhysRevD.91.
044045. arXiv: 1408.3534 [gr-qc].

[263] L. Gabriel Gómez and J. A. Rueda. “Dark-matter dynamical friction versusgravitational-wave emission in the evolution of compact-star binaries”. In:
Phys. Rev. D 96.6 (2017), p. 063001. doi: 10.1103/PhysRevD.96.063001.arXiv: 1706.06801 [astro-ph.GA].

176

https://arxiv.org/abs/2306.11852
https://arxiv.org/abs/2306.11852
https://arxiv.org/abs/2306.11479
https://arxiv.org/abs/2304.08393
https://arxiv.org/abs/2304.08393
https://doi.org/10.1007/JHEP08(2017)108
https://arxiv.org/abs/1702.06124
https://doi.org/10.1088/1475-7516/2019/04/003
https://arxiv.org/abs/1809.08242
https://doi.org/10.1088/1475-7516/2020/03/024
https://arxiv.org/abs/1910.13125
https://doi.org/10.1088/1361-6382/aaa7b4
https://doi.org/10.1088/1361-6382/aaa7b4
https://arxiv.org/abs/1801.05235
https://doi.org/10.3847/1538-4357/aabd3b
https://arxiv.org/abs/1801.02617
https://arxiv.org/abs/1801.02617
https://doi.org/10.1088/1361-6633/ac1e31
https://arxiv.org/abs/2002.12778
https://arxiv.org/abs/2002.12778
https://doi.org/10.1103/PhysRevD.91.044045
https://doi.org/10.1103/PhysRevD.91.044045
https://arxiv.org/abs/1408.3534
https://doi.org/10.1103/PhysRevD.96.063001
https://arxiv.org/abs/1706.06801


[264] Bradley J. Kavanagh et al. “Detecting dark matter around black holes withgravitational waves: Effects of dark-matter dynamics on the gravitationalwaveform”. In: Phys. Rev. D 102.8 (2020), p. 083006. doi: 10.1103/PhysRevD.
102.083006. arXiv: 2002.12811 [gr-qc].

[265] Anish Ghoshal and Alessandro Strumia. “Probing the Dark Matter densitywith gravitational waves from super-massive binary black holes”. In: (June2023). arXiv: 2306.17158 [astro-ph.CO].
[266] V. P. Dokuchaev. “Emission of Magnetoacoustic Waves in the Motion ofStars in Cosmic Space.” In: SvA 8 (1964), p. 23.
[267] M. A. Ruderman and E. A. Spiegel. “Galactic Wakes”. In: 165 (Apr. 1971), p. 1.doi: 10.1086/150870.
[268] Y. Rephaeli and E. E. Salpeter. “Flow past a massive object and the gravita-tional drag”. In: ApJ 240 (Aug. 1980), pp. 20–24.
[269] Eve C. Ostriker. “Dynamical friction in a gaseous medium”. In: Astrophys. J.513 (1999), p. 252. doi: 10.1086/306858. arXiv: astro-ph/9810324.
[270] Lasha Berezhiani, Benjamin Elder, and Justin Khoury. “Dynamical Frictionin Superfluids”. In: JCAP 10 (2019), p. 074. doi: 10.1088/1475-7516/2019/

10/074. arXiv: 1905.09297 [hep-ph].
[271] Lorenzo Annulli, Vitor Cardoso, and Rodrigo Vicente. “Response of ultra-light dark matter to supermassive black holes and binaries”. In: Phys. Rev.

D 102.6 (2020), p. 063022. doi: 10.1103/PhysRevD.102.063022. arXiv: 2009.
00012 [gr-qc].

[272] Yourong Wang and Richard Easther. “Dynamical Friction From UltralightDark Matter”. In: (Oct. 2021). arXiv: 2110.03428 [gr-qc].
[273] Dina Traykova et al. “Dynamical friction from scalar dark matter in therelativistic regime”. In: Phys. Rev. D 104.10 (2021), p. 103014. doi: 10.1103/

PhysRevD.104.103014. arXiv: 2106.08280 [gr-qc].
[274] DhrubaDutta Chowdhury et al. “On theRandomMotionofNuclearObjectsin a FuzzyDarkMatterHalo”. In: Astrophys. J. 916.1 (2021), p. 27. doi: 10.3847/

1538-4357/ac043f. arXiv: 2105.05268 [astro-ph.GA].
[275] Rodrigo Vicente and Vitor Cardoso. “Dynamical friction of black holes inultralight dark matter”. In: (Jan. 2022). arXiv: 2201.08854 [gr-qc].
[276] Dina Traykova et al. “Relativistic drag forces on black holes from scalar darkmatter clouds of all sizes”. In: (May 2023). arXiv: 2305.10492 [gr-qc].
[277] Aaron T. Lee and Steven W. Stahler. “Dynamical Friction in a Gas: The Sub-sonic Case”. In: Mon. Not. Roy. Astron. Soc. 416 (2011), p. 3177. doi: 10.1111/

j.1365-2966.2011.19273.x. arXiv: 1106.4820 [astro-ph.GA].

177

https://doi.org/10.1103/PhysRevD.102.083006
https://doi.org/10.1103/PhysRevD.102.083006
https://arxiv.org/abs/2002.12811
https://arxiv.org/abs/2306.17158
https://doi.org/10.1086/150870
https://doi.org/10.1086/306858
https://arxiv.org/abs/astro-ph/9810324
https://doi.org/10.1088/1475-7516/2019/10/074
https://doi.org/10.1088/1475-7516/2019/10/074
https://arxiv.org/abs/1905.09297
https://doi.org/10.1103/PhysRevD.102.063022
https://arxiv.org/abs/2009.00012
https://arxiv.org/abs/2009.00012
https://arxiv.org/abs/2110.03428
https://doi.org/10.1103/PhysRevD.104.103014
https://doi.org/10.1103/PhysRevD.104.103014
https://arxiv.org/abs/2106.08280
https://doi.org/10.3847/1538-4357/ac043f
https://doi.org/10.3847/1538-4357/ac043f
https://arxiv.org/abs/2105.05268
https://arxiv.org/abs/2201.08854
https://arxiv.org/abs/2305.10492
https://doi.org/10.1111/j.1365-2966.2011.19273.x
https://doi.org/10.1111/j.1365-2966.2011.19273.x
https://arxiv.org/abs/1106.4820


[278] Alessandra De Rosa et al. “The quest for dual and binary supermas-sive black holes: A multi-messenger view”. In: New Astron. Rev. 86 (2019),p. 101525. doi: 10 . 1016 / j . newar . 2020 . 101525. arXiv: 2001 . 06293
[astro-ph.GA].

[279] J. Aasi et al. “Advanced LIGO”. In: Class. Quant. Grav. 32 (2015), p. 074001.doi: 10.1088/0264-9381/32/7/074001. arXiv: 1411.4547 [gr-qc].
[280] M. Punturo et al. “The Einstein Telescope: A third-generation gravitationalwave observatory”. In: Class. Quant. Grav. 27 (2010). Ed. by Fulvio Ricci,p. 194002. doi: 10.1088/0264-9381/27/19/194002.
[281] Vincent Desjacques, Alex Kehagias, and Antonio Riotto. “Impact of ultra-light axion self-interactions on the large scale structure of the Universe”.In: Phys. Rev. D97.2 (2018), p. 023529. doi: 10.1103/PhysRevD.97.023529.arXiv: 1709.07946 [astro-ph.CO].
[282] J. A. R. Cembranos et al. “Constraints on anharmonic corrections of FuzzyDark Matter”. In: JHEP 08 (2018), p. 073. doi: 10.1007/JHEP08(2018)073.arXiv: 1805.08112 [astro-ph.CO].
[283] L. Arturo Ureña-López. “Scalar field dark matter with a cosh potential, re-visited”. In: JCAP 06 (2019), p. 009. doi: 10.1088/1475-7516/2019/06/009.arXiv: 1904.03318 [astro-ph.CO].
[284] Vicente Delgado and Antonio Muñoz Mateo. “Self-interacting superfluiddark matter droplets”. In:Mon. Not. Roy. Astron. Soc. 518.3 (2022), pp. 4064–4072. doi: 10.1093/mnras/stac3386. arXiv: 2201.12418 [astro-ph.CO].
[285] Sayan Chakrabarti et al. “Constraints on the mass and self-coupling ofultra-light scalar field dark matter using observational limits on galacticcentral mass”. In: JCAP 09 (2022), p. 074. doi: 10.1088/1475-7516/2022/

09/074. arXiv: 2202.11081 [astro-ph.CO].
[286] Pierre-Henri Chavanis. “Jeansmass-radius relation of self-gravitating Bose-Einstein condensates and typical parameters of the dark matter particle”.In: Phys. Rev. D 103.12 (2021), p. 123551. doi: 10.1103/PhysRevD.103.123551.arXiv: 2011.01038 [gr-qc].
[287] P. S. Bhupal Dev, Manfred Lindner, and Sebastian Ohmer. “Gravitationalwaves as a new probe of Bose–Einstein condensate Dark Matter”. In: Phys.

Lett. B773 (2017), pp. 219–224. doi: 10.1016/j.physletb.2017.08.043.arXiv: 1609.03939 [hep-ph].
[288] Nitsan Bar et al. “Looking for ultralight dark matter near supermassiveblack holes”. In: (2019). arXiv: 1905.11745 [astro-ph.CO].
[289] Elliot Yarnell Davies and Philip Mocz. “Fuzzy Dark Matter Soliton Coresaround Supermassive BlackHoles”. In: (2019). arXiv: 1908.04790 [astro-ph.GA].

178

https://doi.org/10.1016/j.newar.2020.101525
https://arxiv.org/abs/2001.06293
https://arxiv.org/abs/2001.06293
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1103/PhysRevD.97.023529
https://arxiv.org/abs/1709.07946
https://doi.org/10.1007/JHEP08(2018)073
https://arxiv.org/abs/1805.08112
https://doi.org/10.1088/1475-7516/2019/06/009
https://arxiv.org/abs/1904.03318
https://doi.org/10.1093/mnras/stac3386
https://arxiv.org/abs/2201.12418
https://doi.org/10.1088/1475-7516/2022/09/074
https://doi.org/10.1088/1475-7516/2022/09/074
https://arxiv.org/abs/2202.11081
https://doi.org/10.1103/PhysRevD.103.123551
https://arxiv.org/abs/2011.01038
https://doi.org/10.1016/j.physletb.2017.08.043
https://arxiv.org/abs/1609.03939
https://arxiv.org/abs/1905.11745
https://arxiv.org/abs/1908.04790


[290] Hooman Davoudiasl and Peter B Denton. “Ultra Light Boson Dark Matterand Event Horizon Telescope Observations of M87*”. In: Phys. Rev. Lett.123.2 (2019), p. 021102. doi: 10.1103/PhysRevLett.123.021102. arXiv: 1904.
09242 [astro-ph.CO].

[291] Pierre-Henri Chavanis. “Growth of perturbations in an expanding uni-verse with Bose-Einstein condensate dark matter”. In: Astron. Astrophys.537 (2012), A127. doi: 10.1051/0004-6361/201116905. arXiv: 1103.2698
[astro-ph.CO].

[292] E. Madelung. “Quantentheorie in hydrodynamischer Form”. In: Zeitschrift
für Physik 40.3-4 (Mar. 1927), pp. 322–326.

[293] T. Harko. “Evolution of cosmological perturbations in Bose-Einstein con-densate dark matter”. In: Mon. Not. Roy. Astron. Soc. 413 (2011), pp. 3095–3104. doi: 10 . 1111 / j . 1365 - 2966 . 2011 . 18386 . x. arXiv: 1101 . 3655
[gr-qc].

[294] L. H. Thomas. “The calculation of atomic fields”. In: Mathematical Proceed-
ings of the Cambridge Philosophical Society 23.5 (1927), pp. 542–548. doi: 10.
1017/S0305004100011683.

[295] E. Fermi. “Un Metodo Statistico per la Determinazione di alcune Prioprietàdell’Atomo”. In: Rend. Accad. Naz. Lincei. 6 (1927), pp. 602–607.
[296] Keir K. Rogers and Hiranya V. Peiris. “Strong Bound on Canonical UltralightAxion Dark Matter from the Lyman-Alpha Forest”. In: Phys. Rev. Lett. 126.7(2021), p. 071302. doi: 10.1103/PhysRevLett.126.071302. arXiv: 2007.

12705 [astro-ph.CO].
[297] Ivana Kovacic and Michael Brennan. The Duffing Equation: Nonlinear Oscil-

lators and their Behaviour. Wiley, Mar. 2011. doi: 10.1002/9780470977859.
[298] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products.4th ed. prepared by Yu. V. Geronimus [and] M. Yu. Tseytlin. Translatedfrom the Russian by Scripta Technika, inc. Translation edited by Alan Jef-frey. New York Academic Press, 1965.
[299] P.F Byrd andM.D. Friedman. Handbook of Elliptic Integrals for Engineers and

Scientists. Springer, Berlin, Heidelberg, 1971.
[300] H. Bondi. “On spherically symmetrical accretion”. In: Mon. Not. Roy. Astron.

Soc. 112 (1952), p. 195.
[301] F. C. Michel. “Accretion of Matter by Condensed Objects”. In: Astrophysics

and Space Science 15 (1972), p. 153.
[302] W. G. Unruh. “Absorption cross section of small black holes”. In: 14.12 (Dec.1976), pp. 3251–3259. doi: 10.1103/PhysRevD.14.3251.

179

https://doi.org/10.1103/PhysRevLett.123.021102
https://arxiv.org/abs/1904.09242
https://arxiv.org/abs/1904.09242
https://doi.org/10.1051/0004-6361/201116905
https://arxiv.org/abs/1103.2698
https://arxiv.org/abs/1103.2698
https://doi.org/10.1111/j.1365-2966.2011.18386.x
https://arxiv.org/abs/1101.3655
https://arxiv.org/abs/1101.3655
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1103/PhysRevLett.126.071302
https://arxiv.org/abs/2007.12705
https://arxiv.org/abs/2007.12705
https://doi.org/10.1002/9780470977859
https://doi.org/10.1103/PhysRevD.14.3251


[303] Lam Hui et al. “Black Hole Hair from Scalar Dark Matter”. In: JCAP 1906.06(2019), p. 038. doi: 10.1088/1475-7516/2019/06/038. arXiv: 1904.12803
[gr-qc].

[304] R. Hunt. “A Fluid Dynamical Study of the Accretion Process”. In: Monthly
Notices of the Royal Astronomical Society 154.2 (Oct. 1971), pp. 141–165.

[305] Loren I. Petrich et al. “Accretion onto a Moving Black Hole: A Fully Relativis-tic Treatment”. In: ApJ 336 (Jan. 1989), p. 313.
[306] S. L. Shapiro and S. A. Teukolsky. Black holes, white dwarfs, and neutron

stars: The physics of compact objects. New York, USA: Wiley, 1983. isbn:9780471873167.
[307] F. Hoyle and R. A. Lyttleton. “The effect of interstellar matter on climaticvariation”. In: Mathematical Proceedings of the Cambridge Philosophical So-

ciety 35.3 (1939), pp. 405–415.
[308] Richard G. Edgar. “A Review of Bondi-Hoyle-Lyttleton accretion”. In: New

Astron. Rev. 48 (2004), pp. 843–859. doi: 10.1016/j.newar.2004.06.001.arXiv: astro-ph/0406166.
[309] W. A. Mulder. “Dynamical friction on extended objects”. In: Astron. Astro-

phys. 117.1 (1983), pp. 9–16.
[310] Michael K. H. Kiessling. “Mathematical Vindications of the Jeans Swindle”.In: Adv. Appl. Math. 31 (2003), pp. 132–149. doi: 10.1016/S0196-8858(02)

00556-0. arXiv: astro-ph/9910247.
[311] Hyosun Kim and Woong Tae Kim. “Nonlinear dynamical friction in agaseous medium”. In: Astrophysical Journal 703.2 (2009), pp. 1278–1293.
[312] Nevill Francis Mott and Harrie Stewart Wilson Massey. The theory of atomic

collisions. Vol. 35. Clarendon Press Oxford, 1965.
[313] Nitsan Bar et al. “Assessing the Fornax globular cluster timing problem indifferentmodels of darkmatter”. In: Phys. Rev. D 104.4 (2021), p. 043021. doi:

10.1103/PhysRevD.104.043021. arXiv: 2102.11522 [astro-ph.GA].
[314] F. Hoyle and R. A. Lyttleton. “The effect of interstellar matter on climaticvariation”. In: Proceedings of the Cambridge Philosophical Society 35.3 (Jan.1939), p. 405. doi: 10.1017/S0305004100021150.
[315] Rony Keppens et al. “MPI-AMRVAC: A parallel, grid-adaptive PDE toolkit”.In: Computers & Mathematics with Applications 81 (2021). Development andApplication of Open-source Software for Problems with Numerical PDEs,pp. 316–333. issn: 0898-1221. doi: https://doi.org/10.1016/j.camwa.

2020.03.023. url: https://www.sciencedirect.com/science/article/
pii/S0898122120301279.

180

https://doi.org/10.1088/1475-7516/2019/06/038
https://arxiv.org/abs/1904.12803
https://arxiv.org/abs/1904.12803
https://doi.org/10.1016/j.newar.2004.06.001
https://arxiv.org/abs/astro-ph/0406166
https://doi.org/10.1016/S0196-8858(02)00556-0
https://doi.org/10.1016/S0196-8858(02)00556-0
https://arxiv.org/abs/astro-ph/9910247
https://doi.org/10.1103/PhysRevD.104.043021
https://arxiv.org/abs/2102.11522
https://doi.org/10.1017/S0305004100021150
https://doi.org/https://doi.org/10.1016/j.camwa.2020.03.023
https://doi.org/https://doi.org/10.1016/j.camwa.2020.03.023
https://www.sciencedirect.com/science/article/pii/S0898122120301279
https://www.sciencedirect.com/science/article/pii/S0898122120301279


[316] Keppens, R. et al. “MPI-AMRVAC 3.0: Updates to an open-source simulationframework”. In: A&A 673 (2023), A66. doi: 10.1051/0004-6361/202245359.url: https://doi.org/10.1051/0004-6361/202245359.
[317] Ileyk El Mellah and Fabien Casse. “Numerical simulations of axisymmetrichydrodynamical Bondi–Hoyle accretion on to a compact object”. In: Mon.

Not. Roy. Astron. Soc. 454.3 (2015), pp. 2657–2667. doi: 10.1093/mnras/
stv2184. arXiv: 1509.07700 [astro-ph.HE].

[318] C. Xia et al. “MPI-AMRVAC 2.0 for Solar and Astrophysical Applications”. In:
The Astrophysical Journal Supplement Series 234.2 (Feb. 2018), p. 30. doi: 10.
3847/1538- 4365/aaa6c8. url: https://dx.doi.org/10.3847/1538-
4365/aaa6c8.

[319] Hank Childs et al. “VisIt: An End-User Tool For Visualizing and AnalyzingVery Large Data”. In: High Performance Visualization–Enabling Extreme-Scale
Scientific Insight. Oct. 2012, pp. 357–372. doi: 10.1201/b12985.

[320] H. Bondi and F. Hoyle. “On the Mechanism of Accretion by Stars”. In:
Monthly Notices of the Royal Astronomical Society 104.5 (Oct. 1944), pp. 273–282. issn: 0035-8711. doi: 10.1093/mnras/104.5.273. eprint: https://
academic.oup.com/mnras/article-pdf/104/5/273/8072203/mnras104-
0273.pdf. url: https://doi.org/10.1093/mnras/104.5.273.

[321] M. A. Ruderman and E. A. Spiegel. “Galactic Wakes”. In: The Astrophysical
Journal 165 (Apr. 1971), p. 1. doi: 10.1086/150870. url: https://doi.org/
10.1086%2F150870.

[322] F. J. Sánchez-Salcedo andA. Brandenburg. “DecelerationbyDynamical Fric-tion in a Gaseous Medium”. In: The Astrophysical Journal 522.1 (Aug. 1999),p. L35. doi: 10.1086/312215. url: https://dx.doi.org/10.1086/312215.
[323] Cristian G. Bernal and F. J. Sanchez-Salcedo. “The gravitational drag forceon an extended object moving in a gas”. In: Astrophys. J. 775 (2013), p. 72.doi: 10.1088/0004-637X/775/1/72. arXiv: 1308.4370 [astro-ph.CO].
[324] Hyosun Kim and Woong-Tae Kim. “Dynamical Friction of a Circular-OrbitPerturber in a Gaseous Medium”. In: Astrophys. J. 665 (2007), pp. 432–444.doi: 10.1086/519302. arXiv: 0705.0084 [astro-ph].
[325] Robin Buehler and Vincent Desjacques. “Dynamical friction in fuzzy darkmatter: Circular orbits”. In: Phys. Rev. D 107.2 (2023), p. 023516. doi: 10 .

1103/PhysRevD.107.023516. arXiv: 2207.13740 [astro-ph.CO].
[326] Eric Poisson and Clifford M. Will. Gravity: Newtonian, Post-Newtonian, Rela-

tivistic. Cambridge University Press, 2014. doi: 10.1017/CBO9781139507486.

181

https://doi.org/10.1051/0004-6361/202245359
https://doi.org/10.1051/0004-6361/202245359
https://doi.org/10.1093/mnras/stv2184
https://doi.org/10.1093/mnras/stv2184
https://arxiv.org/abs/1509.07700
https://doi.org/10.3847/1538-4365/aaa6c8
https://doi.org/10.3847/1538-4365/aaa6c8
https://dx.doi.org/10.3847/1538-4365/aaa6c8
https://dx.doi.org/10.3847/1538-4365/aaa6c8
https://doi.org/10.1201/b12985
https://doi.org/10.1093/mnras/104.5.273
https://academic.oup.com/mnras/article-pdf/104/5/273/8072203/mnras104-0273.pdf
https://academic.oup.com/mnras/article-pdf/104/5/273/8072203/mnras104-0273.pdf
https://academic.oup.com/mnras/article-pdf/104/5/273/8072203/mnras104-0273.pdf
https://doi.org/10.1093/mnras/104.5.273
https://doi.org/10.1086/150870
https://doi.org/10.1086%2F150870
https://doi.org/10.1086%2F150870
https://doi.org/10.1086/312215
https://dx.doi.org/10.1086/312215
https://doi.org/10.1088/0004-637X/775/1/72
https://arxiv.org/abs/1308.4370
https://doi.org/10.1086/519302
https://arxiv.org/abs/0705.0084
https://doi.org/10.1103/PhysRevD.107.023516
https://doi.org/10.1103/PhysRevD.107.023516
https://arxiv.org/abs/2207.13740
https://doi.org/10.1017/CBO9781139507486


[327] Ákos Szölgyén, Morgan MacLeod, and Abraham Loeb. “Eccentricity evo-lution in gaseous dynamical friction”. In: Monthly Notices of the Royal As-
tronomical Society 513.4 (May 2022), pp. 5465–5473. issn: 0035-8711. doi:
10.1093/mnras/stac1294. eprint: https://academic.oup.com/mnras/
article-pdf/513/4/5465/45904611/stac1294.pdf. url: https://doi.
org/10.1093/mnras/stac1294.

[328] Riccardo Catena and Piero Ullio. “A novel determination of the local darkmatter density”. In: JCAP 08 (2010), p. 004. doi: 10.1088/1475-7516/2010/
08/004. arXiv: 0907.0018 [astro-ph.CO].

[329] Markus Weber and Wim de Boer. “Determination of the Local Dark MatterDensity in our Galaxy”. In: Astron. Astrophys. 509 (2010), A25. doi: 10.1051/
0004-6361/200913381. arXiv: 0910.4272 [astro-ph.CO].

[330] P. Salucci et al. “The dark matter density at the Sun’s location”. In: Astron.
Astrophys. 523 (2010), A83. doi: 10 . 1051 / 0004 - 6361 / 201014385. arXiv:
1003.3101 [astro-ph.GA].

[331] Jo Bovy and Scott Tremaine. “On the local dark matter density”. In: Astro-
phys. J. 756 (2012), p. 89. doi: 10.1088/0004-637X/756/1/89. arXiv: 1205.
4033 [astro-ph.GA].

[332] Miguel Pato, Fabio Iocco, and Gianfranco Bertone. “Dynamical constraintson the dark matter distribution in the Milky Way”. In: JCAP 12 (2015), p. 001.doi: 10.1088/1475-7516/2015/12/001. arXiv: 1504.06324 [astro-ph.GA].
[333] P. F. de Salas et al. “On the estimation of the Local Dark Matter Densityusing the rotation curve of the Milky Way”. In: JCAP 10 (2019), p. 037. doi:

10.1088/1475-7516/2019/10/037. arXiv: 1906.06133 [astro-ph.GA].
[334] Hai-Nan Lin and Xin Li. “The DarkMatter Profiles in theMilkyWay”. In:Mon.

Not. Roy. Astron. Soc. 487.4 (2019), pp. 5679–5684. doi: 10.1093/mnras/
stz1698. arXiv: 1906.08419 [astro-ph.GA].

[335] Marius Cautun et al. “The Milky Way total mass profile as inferred fromGaia DR2”. In: Mon. Not. Roy. Astron. Soc. 494.3 (2020), pp. 4291–4313. doi:
10.1093/mnras/staa1017. arXiv: 1911.04557 [astro-ph.GA].

[336] Yoshiaki Sofue. “Rotation Curve of theMilkyWay and the DarkMatter Den-sity”. In: Galaxies 8.2 (2020), p. 37. doi: 10.3390/galaxies8020037. arXiv:
2004.11688 [astro-ph.GA].

[337] Eric Poisson and Clifford M. Will. “Gravitational waves from inspiralingcompact binaries: Parameter estimation using second postNewtonianwave forms”. In: Phys. Rev. D 52 (1995), pp. 848–855. doi: 10 . 1103 /
PhysRevD.52.848. arXiv: gr-qc/9502040.

182

https://doi.org/10.1093/mnras/stac1294
https://academic.oup.com/mnras/article-pdf/513/4/5465/45904611/stac1294.pdf
https://academic.oup.com/mnras/article-pdf/513/4/5465/45904611/stac1294.pdf
https://doi.org/10.1093/mnras/stac1294
https://doi.org/10.1093/mnras/stac1294
https://doi.org/10.1088/1475-7516/2010/08/004
https://doi.org/10.1088/1475-7516/2010/08/004
https://arxiv.org/abs/0907.0018
https://doi.org/10.1051/0004-6361/200913381
https://doi.org/10.1051/0004-6361/200913381
https://arxiv.org/abs/0910.4272
https://doi.org/10.1051/0004-6361/201014385
https://arxiv.org/abs/1003.3101
https://doi.org/10.1088/0004-637X/756/1/89
https://arxiv.org/abs/1205.4033
https://arxiv.org/abs/1205.4033
https://doi.org/10.1088/1475-7516/2015/12/001
https://arxiv.org/abs/1504.06324
https://doi.org/10.1088/1475-7516/2019/10/037
https://arxiv.org/abs/1906.06133
https://doi.org/10.1093/mnras/stz1698
https://doi.org/10.1093/mnras/stz1698
https://arxiv.org/abs/1906.08419
https://doi.org/10.1093/mnras/staa1017
https://arxiv.org/abs/1911.04557
https://doi.org/10.3390/galaxies8020037
https://arxiv.org/abs/2004.11688
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.52.848
https://arxiv.org/abs/gr-qc/9502040


[338] Lorenzo Annulli, Vitor Cardoso, and Rodrigo Vicente. “Stirred and shaken:Dynamical behavior of boson stars and dark matter cores”. In: Phys. Lett.
B 811 (2020), p. 135944. doi: 10.1016/j.physletb.2020.135944. arXiv:
2007.03700 [astro-ph.HE].

[339] Hyungjin Kim et al. “Adiabatically compressed wave dark matter halo andintermediate-mass-ratio inspirals”. In: Phys. Rev. D 107.8 (2023), p. 083005.doi: 10.1103/PhysRevD.107.083005. arXiv: 2212.07528 [astro-ph.GA].
[340] Michele Vallisneri. “Use and abuse of the Fisher information matrix in theassessment of gravitational-wave parameter-estimation prospects”. In:

Phys. Rev. D 77 (2008), p. 042001. doi: 10.1103/PhysRevD.77.042001. arXiv:
gr-qc/0703086.

[341] P. Ajith et al. “Inspiral-Merger-Ringdown Waveforms for Black-Hole Bina-ries with Nonprecessing Spins”. In: Phys. Rev. Lett. 106 (24 2011), p. 241101.doi: 10.1103/PhysRevLett.106.241101. url: https://link.aps.org/doi/
10.1103/PhysRevLett.106.241101.

[342] L. Barsotti et al. “The updated Advanced LIGO design curve”. In: (2018). url:
https://dcc.ligo.org/LIGO-T1800044/public.

[343] S. Hild et al. “Sensitivity Studies for Third-Generation Gravitational WaveObservatories”. In: Class. Quant. Grav. 28 (2011), p. 094013. doi: 10.1088/
0264-9381/28/9/094013. arXiv: 1012.0908 [gr-qc].

[344] K. G. Arun et al. “Newhorizons for fundamental physicswith LISA”. In: Living
Rev. Rel. 25.1 (2022), p. 4. doi: 10.1007/s41114-022-00036-9. arXiv: 2205.
01597 [gr-qc].

[345] Soichiro Isoyama, Hiroyuki Nakano, and Takashi Nakamura. “MultibandGravitational-Wave Astronomy: Observing binary inspirals with a decihertzdetector, B-DECIGO”. In: PTEP 2018.7 (2018), 073E01. doi: 10.1093/ptep/
pty078. arXiv: 1802.06977 [gr-qc].

[346] Emanuele Berti, Alessandra Buonanno, and Clifford M. Will. “Estimatingspinning binary parameters and testing alternative theories of gravity withLISA”. In: Phys. Rev. D 71 (8 2005), p. 084025. doi: 10.1103/PhysRevD.71.
084025. url: https://link.aps.org/doi/10.1103/PhysRevD.71.084025.

[347] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary BlackHole Merger”. In: Phys. Rev. Lett. 116.6 (2016), p. 061102. doi: 10 . 1103 /
PhysRevLett.116.061102. arXiv: 1602.03837 [gr-qc].

[348] B. . P. . Abbott et al. “GW170608: Observation of a 19-solar-mass BinaryBlack Hole Coalescence”. In: Astrophys. J. Lett. 851 (2017), p. L35. doi: 10.
3847/2041-8213/aa9f0c. arXiv: 1711.05578 [astro-ph.HE].

183

https://doi.org/10.1016/j.physletb.2020.135944
https://arxiv.org/abs/2007.03700
https://doi.org/10.1103/PhysRevD.107.083005
https://arxiv.org/abs/2212.07528
https://doi.org/10.1103/PhysRevD.77.042001
https://arxiv.org/abs/gr-qc/0703086
https://doi.org/10.1103/PhysRevLett.106.241101
https://link.aps.org/doi/10.1103/PhysRevLett.106.241101
https://link.aps.org/doi/10.1103/PhysRevLett.106.241101
https://dcc.ligo.org/LIGO-T1800044/public
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013
https://arxiv.org/abs/1012.0908
https://doi.org/10.1007/s41114-022-00036-9
https://arxiv.org/abs/2205.01597
https://arxiv.org/abs/2205.01597
https://doi.org/10.1093/ptep/pty078
https://doi.org/10.1093/ptep/pty078
https://arxiv.org/abs/1802.06977
https://doi.org/10.1103/PhysRevD.71.084025
https://doi.org/10.1103/PhysRevD.71.084025
https://link.aps.org/doi/10.1103/PhysRevD.71.084025
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://arxiv.org/abs/1711.05578


[349] D. Syer. “Relativistic dynamical friction in theweak scattering limit”. In:Mon.
Not. Roy. Astron. Soc. 270 (1994), p. 205. doi: 10.1093/mnras/270.1.205.arXiv: astro-ph/9404063.

[350] Enrico Barausse. “Relativistic dynamical friction in a collisional fluid”. In:
Mon. Not. Roy. Astron. Soc. 382 (2007), pp. 826–834. doi: 10.1111/j.1365-
2966.2007.12408.x. arXiv: 0709.0211 [astro-ph].

[351] Thomas P. K. Martinsson et al. “The DiskMass Survey. VII. The distribu-tion of luminous and dark matter in spiral galaxies”. In: Astron. Astrophys.557 (2013), A131. doi: 10.1051/0004-6361/201321390. arXiv: 1308.0336
[astro-ph.CO].

[352] Paolo Salucci. “The distribution of dark matter in galaxies”. In: Astron. As-
trophys. Rev. 27.1 (2019), p. 2. doi: 10.1007/s00159- 018- 0113- 1. arXiv:
1811.08843 [astro-ph.GA].

[353] V. S. Berezinsky, V. I. Dokuchaev, and YuN. Eroshenko. “Small-scale clumpsof dark matter”. In: Phys. Usp. 57 (2014), pp. 1–36. doi: 10.3367/UFNe.0184.
201401a.0003. arXiv: 1405.2204 [astro-ph.HE].

[354] Philippe Brax, Jose A. R. Cembranos, and Patrick Valageas. “Nonrelativisticformation of scalar clumps as a candidate for dark matter”. In: Phys. Rev. D102.8 (2020), p. 083012. doi: 10.1103/PhysRevD.102.083012. arXiv: 2007.
04638 [astro-ph.CO].

[355] Scott W. Randall et al. “Constraints on the Self-Interaction Cross-Section ofDark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E0657-56”. In: Astrophys. J. 679 (2008), pp. 1173–1180. doi: 10.1086/587859.arXiv: 0704.0261 [astro-ph].
[356] R. A. Fisher. “Statistical Methods for Research Workers”. In: Breakthroughs

in Statistics: Methodology and Distribution. Ed. by Samuel Kotz and NormanL. Johnson. New York, NY: Springer New York, 1992, pp. 66–70. isbn: 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_6. url: https://doi.org/
10.1007/978-1-4612-4380-9_6.

184

https://doi.org/10.1093/mnras/270.1.205
https://arxiv.org/abs/astro-ph/9404063
https://doi.org/10.1111/j.1365-2966.2007.12408.x
https://doi.org/10.1111/j.1365-2966.2007.12408.x
https://arxiv.org/abs/0709.0211
https://doi.org/10.1051/0004-6361/201321390
https://arxiv.org/abs/1308.0336
https://arxiv.org/abs/1308.0336
https://doi.org/10.1007/s00159-018-0113-1
https://arxiv.org/abs/1811.08843
https://doi.org/10.3367/UFNe.0184.201401a.0003
https://doi.org/10.3367/UFNe.0184.201401a.0003
https://arxiv.org/abs/1405.2204
https://doi.org/10.1103/PhysRevD.102.083012
https://arxiv.org/abs/2007.04638
https://arxiv.org/abs/2007.04638
https://doi.org/10.1086/587859
https://arxiv.org/abs/0704.0261
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6

	Résumé de la thèse
	Summary of the thesis
	Conventions and definitions
	Introduction
	Cosmology
	The LgCDM model
	Cold dark matter and alternatives
	Scalar field dark matter
	Gravitational waves
	Aims
	Mass accretion and dynamical friction
	Gravitational wave predictions

	Thesis outline

	Self-interacting scalar field dark matter
	Self-interacting scalar field action
	Nonrelativistic regime
	Static equilibrium around a black hole
	Parameter space
	Isotropic metric
	Radial accretion
	Equations of motion
	Hydrodynamical infall

	Summary of the chapter

	Subsonic accretion and dynamical friction for a moving black hole
	Moving soliton
	Equations of motion
	Velocity branches and hydrodynamical infall
	Low and high velocity branches
	Boundary condition at large radii
	Comparison with fuzzy dark matter derivations

	Description of the non-linear velocity flow
	Low-Lg regime
	Isentropic potential flow

	Scalar-field flow around the black hole
	Linear flow
	Large-radius expansions
	Numerical scheme
	Numerical results

	Mass accretion by the black hole
	Relationship with large-radius expansions
	Comparison with previous works and other systems

	Drag force
	Relationship with large-radius expansions
	Relationship with the accretion rate
	Comparison with previous works and other systems

	Summary of the chapter

	Supersonic accretion and dynamical friction for a moving black hole
	Description of the non-linear velocity flow
	Supersonic regime
	Upstream region
	Downstream region
	Shock front and boundary layers

	Mass accretion by the black hole
	Drag force
	Numerical computation
	Comparison of accretion drag and dynamical friction
	Comparison to other models
	Summary of the chapter

	Gravitational waves from binary black holes in a soliton
	Reminder of the forces considered
	Accretion drag force
	Dynamical friction
	Dark matter halo gravity

	Binary motion
	Keplerian motion
	Drag force from dark matter
	Accretion impact on orbital motion
	Dynamical friction impact on orbital motion
	Effect of gravitational waves emission
	Influence of halo gravity

	Gravitational wave phase and the impact of dark matter
	Constant mass approximation
	Phase and coalescence time
	Comparative significance of the contributions
	Effective post-Newtonian orders
	Characteristics of dark matter: Parameters Lg and Lg

	Fisher information matrix
	Fisher analysis
	Exploring the Lg parameter space
	Gravitational-wave detectors
	Events
	Relativistic corrections

	Detection and constraints
	Detection prospects
	Detection threshold for Lg and parameter space
	Constraints on the soliton radius

	Summary of the chapter

	Conclusions
	Appendices
	Subsonic regime
	Green functions
	Odd multipoles
	Even multipoles

	Drag force calculation for different models
	Chandrasekhar's calculation of dynamical friction
	Calculation of drag force for fuzzy dark matter

	Accretion Column Analysis
	Hoyle-Lyttleton Accretion Rate Framework
	Estimation of the Lower Limit for Accretion Rate
	Determining the Accretion-Column Velocity Boundary

	Calculation of the gravitational wave contribution
	Fisher analysis - principles and procedures

	Bibliography

