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Upcoming experiments will improve the sensitivity to µ → e processes by several orders of mag-
nitude, and could observe lepton flavour-changing contact interactions for the first time. In this
paper, we investigate what could be learned about New Physics from the measurements of these
µ → e observables, using a bottom-up effective field theory (EFT) approach and focusing on three
popular models with new particles around the TeV scale (the type II seesaw, the inverse seesaw and
a scalar leptoquark). We showed in a previous publication that µ → e observables have the ability
to rule out these models because none can fill the whole experimentally accessible parameter space.
In this work we give more details on our EFT formalism and present more complete results. We
discuss the impact of some observables complementary to µ → e transitions (such as the neutrino
mass scale and ordering, and LFV τ decays) and draw attention to the interesting appearance of
Jarlskog-like invariants in our expressions for the low-energy Wilson coefficients.

I. INTRODUCTION

The observed neutrino mass matrix [mν ] [1] requires New Physics beyond the Standard Model (SM) which is lepton
flavour-changing. Observing lepton flavour-changing processes other than neutrino oscillations, would therefore give
complementary information on New Physics in the lepton sector.

Flavour-changing contact interactions among charged leptons (which we refer to as LFV), have not yet been ob-
served, but upcoming experiments aim to improve the sensitivity to a few processes in the µ → e sector by orders
of magnitude, and to probe a wide palet of τ → l processes with lesser sensitivity. This is summarised in Table I; it
suggests that LFV could be discovered in µ → e, while τ → l is more promising for distinguishing among models. For
a review of µ → e LFV, see e.g. [2].

The aim of this project is to explore what can be learned about New Physics in the lepton sector from observations
of µ → eγ, µ → eēe and/or µA →eA. For instance, it would be ideal if the data could indicate properties of the New
Physics model, such as whether new particles interact with lepton doublets or singlets or both, whether LFV occurs
amoung SM particles at loop or tree level, or whether LFV is related to [mν ], baryogenesis or New Physics in the
quark flavour sector.

In order to quantify what µ → e data could tell us about models, we study these questions in a bottom-up EFT
approach, assuming ΛNP >∼ TeV. We translate the data from the experimental scale to ΛNP using EFT, then match
three “representative” models to the experimentally allowed Wilson coefficient space, and explore which differences
among the models can be identified by the data.

Model predictions for LFV have been widely studied; in particular, there is a large literature devoted to calculating
LFV rates in neutrino mass models (for a review, see e.g [3, 4]; or for example [5–39]) and other Standard Model
extensions such as leptoquarks [40–49]. We hope that our bottom-up EFT approach could give a complementary
perspective on the well-studied relations between models and observables. Our study differs from top-down analyses
in that firstly, we suppose that upcoming µ → e experiments will measure 12 Wilson coefficients, and not just three
rates. So we are using a more optimistic/futuristic parametrisation of the LFV observables, using as input everything
they could tell us. This allowed us to show in a previous publication [50], that the three models we consider could be
ruled out by upcoming data. Secondly, model studies frequently scan over the model parameter space; this allows to
estimate correlations among LFV observables, but the results depend on the choice of measure on model parameter

∗ E-mail address: marco.ardu@ific.uv.es
† E-mail address: s.davidson@lupm.in2p3.fr
‡ E-mail address: stephane.lavignac@ipht.fr

ar
X

iv
:2

40
1.

06
21

4v
1 

 [
he

p-
ph

] 
 1

1 
Ja

n 
20

24

mailto:E-mail address: marco.ardu@ific.uv.es
mailto:E-mail address: s.davidson@lupm.in2p3.fr
mailto:E-mail address: stephane.lavignac@ipht.fr


2

space. We circumvent the issue of measure and the need to scan by parametrising the models in terms of “Jarlskog-
like” invariants [51], which contribute to the observables. Also, the operator coefficients are allowed to be complex,
which is consistent with the hints of leptonic CP violation in neutrino observations [52].

This manuscript gives more complete results than presented in [50] — in particular highlighting the appearance
of model “invariants” in the coefficients at the experimental scale, and explores the impact of some complementary
observables on the model predictions for µ → e. Section II reviews µ → e observables and the EFT formalism
implemented here, then Section III summarises the three TeV-scale models that we consider, which are the type
II seesaw[19–22], an inverse seesaw [29–31], and a scalar leptoquark[40–49] which can fit the RD anomaly [53–57].
The matching of the models to the EFT is relegated to Appendix C. Section IV gives the twelve observable Wilson
coefficients at the experimental scale (including the coefficients for µA → eA on heavy targets, missing in [50]),
expressed in terms of “invariant” combinations of model and SM parameters. Section V explores the interplay of
µ → e flavour change with some complementary observables in the models we consider. Then we discuss what we
learned about bottom-up reconstruction in Section VI, and conclude in Section VII.

II. OBSERVABLES AND NOTATION

In a bottom-up perspective, one starts from data and how to parametrise it, which is reviewed in Section IIA.
Section II B reviews our EFT formalism; it allows to obtain expressions for the observable Wilson coefficients in terms
of operator coefficients at the weak scale, which are given in Appendix B.

A. Observables

Some models considered here generate a Majorana mass matrix for the three light neutrinos. At energies below the
weak scale (taken ≃ mW ), it can be included in the Lagrangian as [1]

δL<mW
= −να

[mν ]
αβ

2
νcβ + h.c. (II.1)

where greek indices indicate the charged lepton mass eigenstate basis, square brackets indicate a matrix, and [mν ]αβ =
UαimiUβi for mi real and positive. The leptonic mixing matrix U is parametrised as in [1] by three mixing angles, one
“Dirac” phase and two “Majorana” phases. In our study, we approximate the Dirac phase δ ≈ 3π/2 [58], and take the
Majorana phases as free parameters. The Majorana phases and the lightest neutrino mass mmin affect the elements
of [mν ], but not the flavour-changing elements of

[mνm
†
ν ]αβ = [UDmDmU†]αβ −m2

j [UU†]αβ (II.2)

for α ̸= β ∈ {e, µ, τ} and Dm = Diag (m1,m2,m3), because the Majorana phases cancel and the |m2
i − m2

j | are
determined in neutrino oscillations.

For LFV, we focus on µ → e interactions that are otherwise flavour diagonal (so we do not consider weak meson
decays such as K → µ±e∓). A feature of this sector is that there are very restrictive bounds on a handful of
processes, and the experimental sensitivity is planned to improve by several orders of magnitude in the next few years
(see Table I). This differs from the τ → l (l ∈ {µ, e}) sector, where a large variety of LFV τ decays currently have
BRs of order 10−8, and Belle II aims for sensitivities O(10−9 → 10−10). So from an EFT perspective, the τ → l
sector allows to independently measure almost every Wilson coefficient up to a New Physics scale >∼ 10 TeV (at
tree level)[59]; whereas in the µ → e sector, fewer coefficients are probed at greater accuracy, motivating the use of
Renormalization Group Equations (RGEs) in the µ → e sector.

The three processes we consider are µ → eγ, µ → eēe and µA →eA. In the latter, a µ− is captured by a nucleus,
where it can transform into an electron via various interactions; we restrict to those which are coherent across
the nucleus, or “spin-independent”1 (some details are given in Appendix A). At the experimental scale, these three
processes can be parametrised by the dimensionless operator coefficients {C} of the following Lagrangian [2, 75, 76, 78]:

δL<mW
=

1

v2

∑
X∈{L,R}

(
Ceµ
D,X(mµeσ

αβPXµ)Fαβ + Ceµee
S,XX(ePXµ)(ePXe) + Ceµee

V,LX(eγαPLµ)(eγαPXe)

+Ceµee
V,RX(eγαPRµ)(eγαPXe) + Ceµ

Al,XOAl,X + Ceµ
Au⊥,XOAu⊥,X

)
+ h.c. (II.3)

1 We neglect µeγγ operators which can contribute to µA →eA [74].
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Process Current bound on BR Upcoming Sensitivity
µ → eγ < 3.1× 10−13 [60] ∼ 10−14 [61]
µ → ēee < 1.0× 10−12 [62] 10−14 → 10−16 [63]
µTi → eT i < 6.1× 10−13 [64] ∼ 10−16 [65, 66]
µAu → eAu < 7× 10−13 [67] (? → 10−18) [68, 69])
τ → lγ < 3.3× 10−8 [70] <∼ 10−8[71]
τ → 3l < few × 10−8 [72] few×10−10[71]
... ... ...

TABLE I: Some µ → e processes, with current experimental bounds, and the estimated reach of upcoming (and
future) experiments. For µ → eγ, MEG II [61] aims to reach BR ∼ 6× 10−14. The Mu3e experiment [63] aims for

BR(µ → eēe) ∼ 10−14 with the current beam and data-taking starting in 2025, then ∼ 10−16 with a beam
upgrade [73]. The COMET [65] and Mu2e [66] experiments will search for µ → e conversion on light nuclei where
the µ-A bound state is long-lived; a different experimental approach, eg the PRISM/PRIME [68] or ENIGMA [69]

proposals would be required to improve also the sensitivity to heavy nuclei with shorter lifetimes. Some τ → l
processes are included for comparaison, with Belle II expectations for a luminosity of 50 ab−1 [71].

where OAl is the combination of operators contributing to SI µ → e conversion on light targets2 such as Titanium
(used by SINDRUM [64, 67]) or Aluminium(to be used by COMET [65] and Mu2e [66]), and OAu⊥ is an independent
combination probed by heavy targets such as Gold (used by SINDRUM [67]). At the experimental scale, these
operators would describe µ → e interactions with nucleons, which can be matched to operators involving quarks at a
scale ∼ 2 GeV. We use the quark basis here, because it is more convenient for comparing to models. At 2 GeV, the
operators are3

OAl,X ≃ (ePXµ)
(
0.692(uu) + 0.699(dd) + 0.0341(ss) + 0.00440(cc) + 0.00128(bb)

)
+(eγαPXµ)

(
0.125(uγαu) + 0.128(dγαd)

)
(II.4)

OAu,X ≃ cos θAOAl,X + sin θAOAu⊥,X (II.5)

OAu⊥,X ≃ −(ePXµ)
(
0.2(uu) + 0.1(dd) + 0.008(ss) + 0.001(cc) + 0.0003(bb)

)
+(eγαPXµ)

(
0.56(uγαu) + 0.8(dγαd)

)
(II.6)

where θA is the misalignement angle between Gold and Aluminium, and Appendix A briefly reviews these results.
The Branching Ratios (BRs) can be written as

BR(µ → eγ) = 384π2(|Ceµ
DL|

2 + |Ceµ
DR|

2) (II.7)

BR(µ → eēe) =
|Ceµee
S,LL|2 + |Ceµee

S,RR|2

8
+ 2|Ceµee

V,RR + 4eCeµ
D,L|

2 + 2|Ceµee
V,LL + 4eCeµ

D,R|
2 (II.8)

+(64 ln
mµ

me
− 136)(|eCeµ

D,R|
2 + |eCeµ

D,L|
2) + |Ceµee

V,RL + 4eCeµ
D,L|

2 + |Ceµee
V,LR + 4eCeµ

D,R|
2

BRSI(µAl → eAl) = BAl(|dAlCeµ
DR + CAl,L|2 + |dAlCeµ

DL + CAl,R|2) (II.9)
BRSI(µAu → eAu) = BAu(|dAuCeµ

DR + CAu,L|2 + |dAuCeµ
DL + CAu,R|2) (II.10)

where only the Spin Independent contribution to µA →eA is included based on the results of [75] (we do not use the
recent results of [79]), the BA are target-nucleus dependent constants discussed in Appendix A, and dA ≡ IA,D/(4|u⃗A|)
are given after Eqn (A.16). In all cases, the outgoing electrons are approximated as chiral because they are relativistic.
The final states containing electrons of different chirality therefore do not interfere, giving independent constraints
on the coefficients generating those final states. The experimental limits on µ → eγ and µ → eēe therefore constrain
eight coefficients — the two dipoles and six four-lepton coefficients— to be in the vicinity of zero. The correlation

2 These operators are refered to as OAlight and OAheavy in [50, 78].
3 Notice that the quark currents are not chiral, which introduces factors of 2 as given in Eq. (A.2).
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matrix and resulting bounds are discussed in [80] and we repeat the bounds here for completeness:

|CD,X |2 ≤ Bµ→eγ

384π2 + e2(64 ln
mµ

me
− 136)

Bµ→eγ

Bµ→eēe

|CV,XX |2 ≤ Bµ→eēe

2

(
1 +

32e2Bµ→eγ

205e2Bµ→eγ + 384π2Bµ→eēe

)
|CV,XY |2 ≤ Bµ→eēe

(
1 +

16e2Bµ→eγ

205e2Bµ→eγ + 384π2Bµ→eēe

)
(II.11)

where Bprocess is the experimental upper bound on the Branching Ratio for the process, and e2(64 ln
mµ

me
− 136) is

written as 205e2. Although the discussion of [80] implicitly supposed the coefficients were real, the same bounds apply
for complex coefficients, because the real and imaginary components of the coefficients are constrained to lie inside
the same ellipse around the origin.

The dipole coefficient is not constrained by µA → eA because it contributes in interference, but the bound on
|CAl,X |2 (and in principle |CAu⊥,X |2) is affected in the expected way by the independent bounds on the dipole:

|CAl,X |2 ≤ BµAl→eAl

BAl
+

d2AlBµ→eγ

384π2
.

In this work, we do not consider future improvements in the experimental reach for µA → eA on heavy targets, so
the current MEG bound on the dipole coefficient ensures that it is negligible in µAu → eAu. The current bound on
Gold therefore implies

|CAu⊥,X |2 ≤ BµAu→eAu

BAu sin
2 θA

+
cos2 θABµAl→eAl

BAl sin
2 θA

(II.12)

where θA is the misalignement angle between Gold and Aluminium and given after Eq. (A.15).
The current bounds on the twelve observable coefficients are given in Table II, as well as the bounds that could

be set, if upcoming experiments do not observe µ → e processes. The µA → eA bounds given here differ from our
previous paper [50] because OAu⊥,X is here defined in terms of operators with quarks, so differs from the nucleon
definition of [50]. The matching of quarks with nucleons is discussed in Appendix A.

current bound upcoming process
|CD,X | 9.0× 10−9 ∼ 10−9 µ → eēe
|CV,XX | 7.0× 10−7 ∼ 10−8 µ → eēe
|CV,XY | 1.0× 10−6 ∼ 10−8 µ → eēe
|CS,XX | 2.8× 10−6 ∼ 10−8 µ → eēe
CAl,X 4.3× 10−9 7× 10−11 µTi → eTi
CAu⊥,X 7.4× 10−8 7.4× 10−8 µAu → eAu

TABLE II: Current and possible future bounds on the observable coefficients, with X,Y ∈ {L,R}, X ̸= Y . The
current bound on CAl,X is from µTi → eTi [64], and the future bound assumes BR( µAl → eAl) ≤ 10−16. The

current and future bounds on CAu⊥,X are identical because we do not include the reach of the proposed
PRISM/PRIME and ENIGMA experiments among our upcoming results.

In this theoretical study, we optimistically consider that these twelve coefficients can be measured with the same
reach that they can be constrained, given in Table II. Polarising the muon could allow to distinguish between coeffi-
cients of operators with an L vs an R projector in the ē− µ bilinear in µ → eγ and µ → eēe[2] as well as in µA →eA
[81]. And in the case of µ → eēe, the angular distributions of the three-particle final state allow to determine the
magnitude of various coefficients and some phases, as discussed in [82]. Vector operators OV XX and scalar operators
OSY Y (for Y ̸= X) induce the same angular distributions, but could in principle be distinguished by measuring final
state helicities [82]. Our models do not generate the scalar operators within the reach of upcoming experiments (see
Subsection V C).

B. bottom-up EFT

For an introduction to EFT, see for instance [83–85]. Our EFT consists of an operator basis and Renormalisation
Group Equations (RGEs) to look after scale evolution. The previous section presented an operator basis describing
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the observables at low energy; a more complete set of operators is required in translating the observables from the
experimental to the New Physics scale, because the RGEs mix operators.

Our New Physics scale is at ΛNP ≈ TeV, so we need a QED×QCD invariant basis of operators below the weak
scale, included in the Lagrangian as

δL<mW
= −να

[mν ]
αβ

2
νcβ +

∑
n≥2

∑
A,ζ

Cζ
AO

(4+n)ζ
A

vn
+ h.c. (II.13)

where v = 174 GeV, the superscript ζ gives the flavour indices, and the operator subscripts indicate the Lorentz
structure and particle content. So for instance

Oeµuu
V,XY = (eγαPXµ)(uγαPY u) , X, Y ∈ {L,R}.

We write the SM Yukawa matrices as [Ye], [Yu] and [Yd], and the Yukawa eigenvalue of fermion f as yf .
As discussed in Appendix C 1, we did not find a simple and reliable recipe to express the coefficients of the

Lagrangian (II.13) in terms of model parameters, because a TeV is not so far from the weak scale. The SMEFT
operator basis [86, 87] and RGEs [88] are appropriate above the weak scale, but the EFT expansions (in operator
dimension and loop×logarithm) are not converging fast. In principle, we could match the model directly to the
Lagragian (II.13), but that requires to calculate many loop diagrams. Finally, we opt to present the matching results
in the basis of Eq. (II.13). So we will not be using the SMEFT basis, but for comparing to the literature, we implement
it as

δLSMEFT = −Cαβ
5

2v
(ℓαεH

∗)(ℓcβεH
∗) +

∑
A,ζ

Cζ
AO

ζ
A

v2
+ h.c. (II.14)

where [mν ]
αβ = Cαβ

5 v.
The low energy EFT includes all LFV operators of dimension six, and some relevant operators of dimension seven

(see [76] for a list). In this low-energy EFT, we ensure that operators appear only once by requiring ζ = eµ....
Operators of dimension five and six (n = 1, 2) are included in SMEFT, but without the +h.c. for hermitian operators.
In SMEFT, we follow the convention that each flavour index in ζ runs over all three generations (so some operators
are repeated in the SMEFT Lagrangian, causing some factor of 2 or 4 differences between coefficients in SMEFT vs
the low-energy EFT).

The doublet and singlet leptons are in the charged lepton mass eigenstates {e, µ, τ}[89], which can differ from the
diagonal-Yukawa basis as discussed in Appendix C 2. The singlet quarks are labelled by their flavour, and the quark
doublets are in the u-type mass basis, with generation indices that run 1 → 3.

In quantum field theories, the coefficients of renormalizable and non-renormalizable operators evolve with scale. For
non-renormalisable operators, this evolution of the operator coefficients lined up in a row vector C⃗ can be described
as

µ
d

dµ
C⃗ ≡ d

dt
C⃗ = C⃗[Γ] + C⃗[X⃗]C⃗† + ... (II.15)

where t = logµ, the effects of renormalisable interactions on the non-renormalisable operators are described by the
matrix [Γ], and [X⃗] is a three-index tensor that schematically represents the effect of non-renormalisable interactions
on the evolution of other non-renormalisable interactions (for instance, the mixing of a pair of four-fermion operators
into another four-fermion operator via a fish diagram).

The RGEs we implement automatically for the QED× QCD-invariant EFT are an improved leading log approxima-
tion to [Γ] [90], where most of the anomalous dimension are at one-loop, augmented by the two-loop vector to dipole
mixing (because this mixing vanishes at one loop and is O(10−3) [91]). We also consider the mixing of two dimension
six operators into a dimension eight operator described by [X⃗], and when relevant, include these contributions by
hand in matching the model to EFT at ΛNP . Since the dimension eight operators have two additional Higgs legs,
they are particularily relevant when the Higgs has O(1) couplings to loop particles, such as the top quark in the
leptoquark model. These dimension eight contributions are discussed more fully in Section V C and Appendix C.

Solving the RGEs allows to translate operator coefficients from the experimental scale to the New Physics scale —
where the coefficients can be calculated in a model. We aim to resum the QCD running, and include the electroweak
effects in perturbation theory (O(α log) and occasionally O(α2 log2)). If the matrix [Γ] were scale-independent, then
the solution would be ∼ expΓt; however, [Γ] decribes SM loop corrections, and SM parameters run in various ways
with scale. For [Γ] scale-dependent, the RGEs can be solved by scale-ordering, analogous to the familiar time-ordering
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that allows to solve a similiar equation for the time-translation operator in quantum field theory. We include the
scale-dependence of αs (at one loop), and the associated running of quark Yukawas, but neglect the running due to
other SM couplings (including the top Yukawa). So the effect of QCD is to renormalise some coefficients and rescale
some electroweak anomalous dimensions, such that the first terms in the perturbative solution of the RGE (II.15) are

CJ(m) ≃ CJ(Λ)η
aJ
m − CK(Λ)ηaKm Γ̃KJ ln

Λ

m
(II.16)

where Γ̃KJ = fKJΓKJ(m) [92] with Γ the electroweak anomalous dimension matrix, no sum on J,K and :

fKJ =
(1− ηaJ−aK−aI+1

m )

(1 + aJ − aK − aI)(1− ηm)
, ηm =

αs(m(m))

αs(ΛNP )
, η =

αs(2GeV)

αs(ΛNP )
(II.17)

where aJ = −γsJ/2β0 for αsγ
s
J/4π the QCD anomalous dimension of the coefficients CJ (aT = −4/23, aS = aD =

12/23 with 5 flavours), β0 is the 1-loop QCD beta function coefficient, and the parameters in the electroweak anomalous
dimension cause it to run as ΓKJ(m) = ηaIΓKJ(Λ). Finally, once the RGEs have been solved, a coefficient at the
experimental scale (for instance CD,X(mµ)), can be written at ΛNP as a weighted sum of the coefficients of operators
that can contribute via loops to µ → eγ.

It can be shown [76] that almost every operator involving 3 or 4 legs that induces a µ → e interaction (but no
other flavour change) contributes to the amplitude for µ → eγ, µ → eēe and/or µA → eA suppressed at most by a
factor of order 10−3. This suggests that the RGEs are relevant to include, because they ensure that a small handful of
processes are sensitive to almost any µ → e operator. Despite that almost all operators can contribute, there remain
only 12 constraints. Rather than dealing with a large correlation matrix corresponding to the usual operator basis,
we use a scale-dependent basis that corresponds to the twelve experimentally probed directions. This was proposed
in [76], and the recipe we follow is outlined in [78].

The RGEs can be solved to express an operator coefficient at the experimental scale, eg the dipole coefficient, in
terms of operator coefficients at the NP scale:

CD(mµ) ≃ C⃗(ΛNP ) · e⃗D .

The directions in coefficient space corresponding to the twelve vectors {eO} then form a basis for the observable
subspace at ΛNP . The elements of most of these vectors at or just above the electroweak scale are given in [76] (the
coefficient combinations probed by (µAl → eAl) and (µAu → eAu) are given for completeness in Appendix B).

III. THE MODELS

The three TeV-scale New Physics models that we consider are the type II and inverse seesaw models, and a scalar
leptoquark. These models are selected for their diverse4 lepton-flavour-changing predictions: LFV is controlled by
the neutrino mass matrix in the type II seesaw, is independent of the neutrino mass matrix in the inverse seesaw, and
the leptoquark can mediate µA →eA at tree level, as well as addressing anomalies in the quark flavour sector.

The type II seesaw model [19–22] is an economical neutrino mass model, where the SM particle content is extended
with a colour-singlet, SU(2) triplet scalar ∆, of hypercharge Y = +1 (in the normalization where the lepton doublets
have Y = −1/2). The SM Lagrangian at the mass scale of the triplet is augmented by

δL∆ = (Dρ∆
I)†Dρ∆I −M2

∆|∆|2 + 1

2

(
fαβ ℓcα(iτ2)τIℓβ∆

I +M∆λH HT (iτ2)τIH∆∗I + h.c.
)

+λ3(H
†H)(∆I∗∆I) + λ4Tr(∆

I∗τIτJτK∆K)(H†τJH) + . . . , (III.1)

where ℓ are the left-handed SU(2) doublets, M∆ is the triplet mass which we take ∼ TeV, f is a symmetric complex
3 × 3 matrix proportional to the light neutrino mass matrix and whose indices α, β run over {e, µ, τ}, {τI} are the
Pauli matrices, and the λ’s are real dimensionless couplings. A feature of this model, that is shared with some other
neutrino mass models, is that the SU(2) singlet leptons do not acquire new interactions, so LFV is expected to involve
the doublet leptons. The phenomenology of the type II seesaw has been widely studied at colliders [93–98] and for
low-energy LFV [23–28, 99–101].

4 Ref. [77] makes an interesting classification of Majorana neutrino mass models into three sets, based on the flavour structures that are
multiplied in the definition of [mν ]. However, both seesaw models enter the same set.
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In Effective Field Theory, the neutrino mass matrix generated in the type II seesaw model can be obtained by
matching, at M∆, the tree-level diagram in the left panel of Figure 5 onto the dimension five neutrino mass operator
appearing in Eq. (II.14). This gives a neutrino mass matrix

[mν ]
αβ ≃ [f ]αβ∗λHv2

M∆
(III.2)

which can also be obtained in the model by minimising the potential for the Higgs and the electrically neutral
component of the triplet = (∆1 + i∆2)/

√
2 , which obtains a vev −λHv2/(

√
2M∆). This model is reputed to be

predictive for LFV, because the lepton flavour-changing couplings fαβ are proportional to the light neutrino mass
matrix. However, LFV is not suppressed by the small neutrino mass scale, because lepton number change involves
[f ]αβ∗λH , so for a sufficiently small Higgs to triplet coupling, λH ∼ 10−12, it is possible to have M∆ ∼ TeV and fαβ

of O(1).
The second model we consider is the inverse (type I) seesaw [29–31], which, like the type II seesaw, naturally

generates small Majorana neutrino masses from new particles that can be at the TeV-scale with O(1) LFV couplings.
In this model, n gauge singlet Dirac fermions, ΨTa = (Sa, Na), are added to the SM particle content, with approximately
lepton number conserving interactions. Lepton number changing interactions can be included via Yukawa couplings
and/or Majorana masses(see [102] for a “basis-independent” discussion of the options); we choose to allow small
Majorana masses for Sa and write the Lagrangian as

δLNS = iN /∂N + iS /∂S −
(
Y αa
ν (ℓαH̃Na) +MaSaNa +

1

2
µabSaS

c
b + h.c

)
, (III.3)

where a, b run from 1..n, Na and Sa are respectively right- and left-handed and in the eigenbases of M , Yν is a complex
3 × n dimensionless matrix, we take Ma of O(TeV), and µ is an n × n Majorana mass matrix with µab ≪ Mc. For
vanishing µ, lepton number is conserved, and the Na combine with the Sa into Dirac singlet neutrinos, which can
have lepton flavour changing interactions Yν with the SM doublets. Like the type II seesaw, this model is expected to
induce LFV among doublet leptons, but unlike the type II seesaw, it has several non-degenerate heavy new particles,
and will induce low energy LFV processes via loop diagrams because the flavour-changing Yν couples ℓ to two heavy
particles.

The inverse seesaw models induce LFV [32–39], they can lead to non-unitarity of the lepton mixing matrix [103–
106], and the singlets could be discovered at colliders for suitable mass ranges [107–113]. With small µab, the leading
contribution to the active neutrino mass matrix is

[mν ]
αβ ≃ [YνM

−1µM−1Y T
ν ]αβv2 . (III.4)

So the flavour-changing Yν can be O(1) because small µab gives small mν , and the flavour change is expected to be
independent of the active neutrino mass matrix as can be seen for n = 3 by solving Eq. (III.4) for µab.

Finally, our third model includes a leptoquark — for a review of this class of coloured and charged bosons, see e.g.
[41]— which is chosen to fit the anomalies in RD∗ and/or RD [53–57]. It is an SU(2)-singlet scalar denoted S1 in the
notation of [40] – not to be confused with the singlet fermions {Sa} of Eq. (III.3) – and has interactions

LS = (DρS1)
†DρS1 −m2

LQS
†
1S1 + (−λαjL ℓαiτ2q

c
j + λαjR eαu

c
j)S1 + (λαj∗L qcjiτ2ℓα + λαj∗R ucjeα)S

†
1

+λ4H
†HS†

1S1 + ... (III.5)

where the generation indices are α ∈ {e, µ, τ} and j ∈ {u, c, t}, and the sign of the doublet contraction is taken to
give +λαjL eL(uL)

cS1. The leptoquark mass is mLQ ≈ TeV, consistent with the CMS and ATLAS searches [114, 115]
which exclude leptoquarks with sub-TeV masses that are pair-produced via strong interactions, and decay to specific
final states. Some leptoquark-Higgs interactions are included in Eq. (III.5) because they appear in the matching
results of Appendix C 3 c, but their contributions to LFV observables are negligible assuming perturbative couplings.
This Lagrangian does not lead to neutrino masses (as mentioned in Appendix C 3 c), but features µA → eA at tree
level and LFV interactions for singlet and doublet leptons (so unlike the seesaw models, it induces scalar and tensor
operators).

The low-energy phenomenology of leptoquarks (see eg [42–49]) attracted attention in recent years due to various
B-physics anomalies. In particular, the excesses in the ratios [53–57]

RX =
BR(B → Xcτ̄ ν)

BR(B → Xcℓ̄ν)
(III.6)
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where Xc = D,D∗..., could indicate a new charged-current four-fermion interaction involving b and c quarks, a τ and
a (tau) neutrino. The S1 leptoquark can generate this interaction with various Lorentz structures, while preserving
lepton flavour (if S1 only interacts with τ ’s and ντ ’s, one could attribute τ flavour to the leptoquark.) So fitting RD
and/or RD∗ involves leptoquark coupling constants that differ from the λeqX , λµqX that are relevant for µ → e processes,
and in this manuscript, we neglect the λτqX couplings and possible correlations among µ → e and τ → l processes that
could arise in this model5. The LFV predictions of the S1 leptoquark have been discussed, for instance, in [116, 117].

IV. THE OBSERVABLES COEFFICIENTS IN TERMS OF MODEL PARAMETERS

In this section, we give the coefficients of the observable Lagrangian (II.3) as a function of model and SM parameters.
Some of these results were already presented in [50]. The coefficients are expressed in terms of µ → e flavour-changing
combinations of model and SM parameters, which we refer to as “invariants”. These are a convenient stepping-stone
between the models and the observables, because they concisely identify the masses and couplings constants that the
observables depend on, and give the functional dependance. We briefly discuss the invariants in Section IV A and list
the coefficients in Section IV B.

A. Comments on invariants

Invariants were introduced [51, 118] as products of Lagrangian coupling constants (or matrices), in order to have
a Lagrangian-basis-independent measure of symmetry breaking in a model. However, it may be unclear how these
elegant constructions relate to observable S-matrix elements for symmetry-violating processes, because the mass and
scale-dependence of S-matrix elements can be intricate.

For instance, the original invariant constructed to measure CP violation in the quark sector of the Standard Model
can be written in terms of Lagrangian Yukawa matrices as [51, 118, 119]

1

3
Tr
{[

YuY
†
u , YdY

†
d

]3 }
= 2iJ(y2t − y2c )(y

2
t − y2u)(y

2
c − y2u)(y

2
b − y2s)(y

2
b − y2d)(y

2
s − y2d) , (IV.1)

with J = Im{VusV ∗
csVcbV

∗
ub}

but it is unclear at what scale to evaluate the quark masses (or equivalently, yukawa couplings). This invariant can
be compared to the parameter ϵK (see eg [84] for a brief review) that contributes to CP-violation in K − K̄ mixing,
and for which the result at next-to or next-to-next-to leading log has been expressed in a rephasing invariant form in
[120]. Restricting to the leading log QCD corrections for simplicity, one can write

ϵK ∝ J
(
Re{VtdV ∗

tsV
∗
udVus}ηttS(xt) + 2|Vud|2|Vus|2ηut(S(xc)− S(xc, xt))

)
(IV.2)

where xQ = mQ(mQ)/mW , the Inami-Lim functions[121] are

S(xt) =
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x2

t

2(1− xt)3
lnxt

S(xc)− S(xc, xt) = xc

(
1− ln

xt
xc

)
+

3xcxt
4(1− xt)

+
3xcx

2
t

4(1− xt)2
lnxt ,

and ηpq are the appropriate QCD corrections for the Inami-Lim functions (see [120]). So one sees that there is only a
remote relation between the Lagrangian invariant of Eq. (IV.1), and Eq. (IV.2), which allows a numerically precise
prediction for the observable ϵK ,

In the models considered here, we obtain expressions for the observable coefficients at mµ (which are ≈ S-matrix
elements) in terms of “invariants” , which encode the dependence of LFV observables on running SM and model

5 It is clear that if the leptoquark has couplings λeq
X , λµq

X and λτq
X , then it can mediate τ → e, τ → µ and µ → e processes. Furthermore,

if |λτq
X | ∼ 0.2 to fit the B-physics anomalies, then experimental bounds B(τ→l) on τ → l processes could constrain λlq

X < B(τ→l)/λ
τq
X .

In all the cases we checked, we find
B(τ→e)

λτq
X

B(τ→µ)

λτq
X

> B(µ→e)

that is, that µ → e processes can probe smaller λlq
X couplings than τ → l can exclude.
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coupling constants and masses. For instance, in the type II seesaw model, photon penguin diagrams (contributing to
µ → eēe) generate the coefficient Ceµee

V,LR proportional to the invariant :

v2

M2
∆

[mν ln
[m̃em̃

†
e]

M2
∆

m†
ν ]
eµ =

v2

M2
∆

(
[mνm

†
ν ]
eµ ln

m2
µ

M2
∆

+ [mν ]
eτ [m∗

ν ]
µτ ln

m̃2
τ

m2
µ

+ [mν ]
ee[m∗

ν ]
µe ln

m̃2
e

m2
µ

)
, (IV.3)

where [m̃e] is the charged lepton mass matrix, but with its eigenvalues replaced by mα → m̃α = max{mα, q
2}, which

is the kinematic cutoff of the logarithm, with 4m2
e ≤ q2 <∼ m2

µ the (four-momentum)2 of the photon. (So the cutoff
of the τ loop is mτ , but m̃e ≈ mµ so the last term in the parentheses of Eq. (IV.3) vanishes, or equivalently there
is no long-distance contribution to the matrix element, because q2 ∼ m2

µ in most of the phase space [122].) Eq.
(IV.3) exemplifies our relatively simple invariants, constructed by multiplying matrices, which encode the correct
scale evolution of coupling constants and masses, provided that the scale separations are large enough for EFT to be
reliable6.

However, our simple invariants apply only for models with a single mass scale for LFV; for models with many heavy
LFV particles around the scale ΛNP , such as the inverse seesaw, the operator coefficients obtained in matching are
not linear products of matrices in flavour space (see eg Eq.s IV.10, IV.12). Constructions that involve Inami-Lim
functions of mass matrix eigenvalues are no doubt also “invariant” under Lagrangian basis transformations, but like
Eq. (IV.2), this invariance is not manifest.

Our invariants have other attractive features, beyond the correct scale-dependence to parametrise S-matrix elements.
As expected they measure µ → e flavour change in the model, and they also identify the products of model parameters
relevant to observables. This second feature allows to circumvent the necessity of scanning over model parameters.
For instance, in the inverse seesaw model, [Yν ] is a 3×3 matrix of unknown complex numbers, so naively one must
scan over them all, and possibly impose some texture. However, in the case of degenerate singlets, there are only two
invariants — [YνY

†
ν ]eµ and [YνY

†
ν YνY

†
ν ]eµ — which are complex numbers of magnitude 0→1. This raises the question

whether one could reconstruct the model Lagrangian from a sufficient number of invariants?
Finally, the invariant of Eq. (IV.3) illustrates an interesting dynamical mechanism to break properties of the

model. Recall that [mνm
†
ν ]
eµ is a function only of neutrino oscillation parameters— which are measured — so the

second term of the second expression exhibits the log-induced dependence on the unknown Majorana phases and
neutrino mass scale. This logarithmic breaking of a relation between model-matrices is reminiscent of the “log-GIM”
mechanism in the quark sector [123], where ∆F = 1 FCNC operators can be mediated by similar penguin diagrams
at O(GFαe lnmW /mc), with a charm quark in the loop.7

B. Predictions at the experimental scale

This section lists the model predictions for the observable coefficients of the Lagrangian (II.3), partially presented in
Ref. [50]. The model parameters are given in the Lagrangians of Section III. The expressions given here occasionally
differ from [50], because we made numerically insignificant modifications of the lower cutoff of some logarithms, in
order to obtain more elegant invariants with the physically correct cutoffs.

1. µ → eγ

In the inverse seesaw model, the dipole coefficients are

Ceµ
D,R ≃ − e

32π2
[YνM

−1(M†)−1Y †
ν ]
eµv2

(
1− 16

αe
4π

ln
M

mµ

)
, (IV.4)

where the parentheses include the flavour-universal O(10%) QED running, and M is the singlet mass scale. The
couplings Y αa

ν can be of order one — which could be especially motivated in the τ sector—so O(Y 4) combinations
can be larger than O(Y 2), and could appear at dimension eight when two additional Higgs legs on the sterile neutrino
line are replaced by the Higgs vev, or at two-loop when the Higgs legs are closed. We estimate the O(Y 4) terms to

6 But notice the impact of phase space: the tilde on me is from kinematics that the Lagrangian does not know about, so the Lagrangian
invariant would include a “large” ln

mµ

me
that the coefficient does not contain because the large log is only relevant in a small phase space.

7 In the lepton sector below the weak scale, the (quadratic) GIM mechanism suppresses LFV amplitudes ∝ m2
ν/m

2
W , so implementing

log-GIM would be very interesting (ln(mν/mW ) ≫ m2
ν/m

2
W ). However, this appears difficult [124, 125], because there are no “penguin

diagrams” in the SM with a massless gauge boson attached to a neutrino loop, and because the logarithm in log-GIM is cutoff by the
largest of the mass in the loop, or the external momentum traversing the loop, and this latter is of order charged lepton masses in LFV
processes.
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be suppressed with respect to the coefficient in Eq. IV.4 by ∼ v2/M2 or ∼ 1/(16π2), and we therefore expect them
to not modify significantly the correlations between the µ → e observables that the model can predict [50].

For the type II seesaw,

Ceµ
D,R ≃ 3e

128π2

[ [mνm
†
ν ]eµ

λ2
Hv2

(
1− 16

αe
4π

ln
M∆

mµ

)
+

αe
π

116

27

(
ln

M∆

mµ

[mνm
†
ν ]eµ

λ2
Hv2

− ln
mτ

mµ

[m∗
ν ]µτ [mν ]eτ
λ2
Hv2

)]
(IV.5)

≃ 3e

128π2

[ [mνm
†
ν ]eµ

λ2
Hv2

(
1 +

32

27

αe
4π

ln
M∆

mτ

)
+

116αe
27π

ln
mτ

mµ

∑
α∈eµ

[m∗
ν ]µα[mν ]eα
λ2
Hv2

]
(IV.6)

where the second term in the bracket in Eq. (IV.5) arises from the two-loop vector to dipole mixing [91]. In both
seesaw models, the coefficient Ceµ

D,L is suppressed by a factor me/mµ, and can be obtained from Eq.s (IV.6,IV.4) by
multiplying by me/mµ.

For the leptoquark, which interacts with singlet and doublet leptons, the dipole coefficients are

m2
LQ

v2
Ceµ
D,X(mµ) ≃

e[λY λ
†
Y ]
eµ

128π2

(
1− 16

αe
4π

ln
mLQ

mµ

)
+

2α2
e

9π2e

[
λY ln

mLQ

m̃Q
λ†
Y

]eµ
− αe
2πeyµ

fTD

[
λY Yu

(
ηaTm̃Q

ln
mLQ

m̃Q
− 5

4

)
λ†
X

]eµ
(IV.7)

where X ̸= Y ∈ {L,R}, fTD, aT and η are related to the QCD running and defined at Eq. II.17, and the m̃Q serving
as lower cutoff for the logarithms (here and further in the manuscript) is

m̃Q = max{mQ(mQ), 2 GeV}

because the quarks are matched to nucleons at 2 GeV. The first term in Eq. (IV.7) is the matching contribution
(times its QED running),the second term is the 2-loop mixing of tree vector operators into the dipole, and the third
term is the one loop mixing of tensor operators to dipoles.

The last term of Eq. (IV.7) requires some discussion, because the first log-enhanced term in the parentheses arises
in the RGEs between mLQ → mµ, but the second “finite”, or not-log-enhanced term is formally of higher order in
EFT. It is included because it is of comparable magnitude to the log-enhanced term in the case of internal top quarks
— that is, as discussed in Appendix C 1, the scale ratio mLQ/mt is not large, so our matching conditions at ΛNP
are constructed to reproduce the results of matching to a QCD×QED invariant EFT at mW . And finally, although
the finite part is only required for the top quark, a quark-flavour-summed expression is given in order to retain the
“invariant” formulation. (The light quark contributions are numerically negligible in this expression, which is fortunate
because their QCD running is also not correct.)

We do not consider dimension 8 contributions to the dipole, because they are suppressed ∝ v2/M2, and do not
allow to circumvent the parametric suppression of the dimension six term. For instance, in the inverse seesaw, such
terms also have the loop and yµ suppression applying to (IV.4).

2. µ → eēe

The decay µ → eēe can be mediated at the experimental scale by the dipole operators, and vector and scalar four-
lepton operators (see Eq. (II.8). We do not give results for the scalar coefficients, because they are effectively vanishing:
in matching, all three models induce coefficients that are smaller than the upcoming experimental sensitivity, and
SM interactions that could transform some other LFV operator into a scalar are suppressed by lepton Yukawas, so
negligible as well. Unfortunately, scalar coefficients CS,XX are indistinguishable from vectors CV,Y Y in the angular
distribution of µ → eēe, so the absence of scalar coefficients in these models would be challenging to test.

For the type II seesaw, the vector four-lepton coefficients arise at tree level, as illustrated in the middle diagram of
Figure 5, and in the RGEs via QED penguin diagrams:

Ceµee
V,LL ≃ [m∗

ν ]µe[mν ]ee
2λ2

Hv2
+

αe
3πλ2

Hv2

[
m†
ν ln

(
M∆

m̃α

)
mν

]
µe

(IV.8)

Ceµee
V,LR ≃ αe

3πλ2
Hv2

[
m†
ν ln

(
M∆

m̃α

)
mν

]
µe

. (IV.9)

where α is the index of the intermediate charged lepton. The operators Oeµff
V,RR and Oeµff

V,RL, where the flavour-change
is among singlet leptons, have coefficients below upcoming experimental sensitivities because they are suppressed
∝ yeyµ. This is also the case for the inverse seesaw.
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In the case of the inverse seesaw, both vector operators arise via loop diagrams, with propagating singlets and
Higgses:

Ceµee
V,LL ≃ v2

αe
4π

(
− 1.8[YνM

−2
a

(
11

6
+ ln

(
m2
W

M2
a

))
Y †
ν ]eµ + 2.7[Yν(Y

†
ν Yν)ab

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
Y †
ν ]eµ

+2.5Y ea
ν Y ∗µa

ν Y eb
ν Y ∗eb

ν

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
+O

(αe
4π

))
(IV.10)

→ v2

M2

(
3.3× 10−3(YνY

†
ν )eµ(1 + 0.56(YνY

†
ν )ee) + 1.55× 10−3(YνY

†
ν YνY

†
ν )eµ

)
(IV.11)

Ceµee
V,LR ≃ v2

αe
4π

(
1.5[YνM

−2
a

(
11

6
+ ln

(
m2
W

M2
a

))
Y †
ν ]eµ − 2.7[Yν(Y

†
ν Yν)ab

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
Y †
ν ]eµ

+O
(αe
4π

))
(IV.12)

→ v2

M2

(
−2.8× 10−3(YνY

†
ν )eµ − 1.6× 10−3(YνY

†
ν YνY

†
ν )eµ

)
(IV.13)

where the first expression for a coefficient is for arbitrary singlet masses >∼ TeV , and after the arrow is the simplified
formula when the singlets mass2 differences are less than v2 [50]. In the first expression, the first two terms arise from
Z and γ penguins above the electroweak scale (the Higgs propagates in the loop), and the last one is from boxes.

Finally the leptoquark can generate flavour-changing lepton currrents involving either singlet or doublet leptons.
We give here the coefficient for left-handed leptons ; the result for singlets is obtained by interchanging L ↔ R:

m2
LQ

v2
Ceµee
V,LX(mµ) ≃ − Nc

64π2
[λLλ

†
L]
eµ[λXλ†

X ]ee
(
1∓ 12

αe
4π

ln
mLQ

mµ

)
+
αe
3π

[
λL ln

mLQ

mQ
λ†
L

]eµ
(IV.14)

−geX
Nc

16π2

[
λLYu

(
ln

mLQ

mQ
− 5

6

)
Y †
uλ

†
L

]eµ

where geL = −1 + 2 sin2 θW , geR = 2 sin2 θW , the first term represents the box diagram at mLQ (and its QED running
to mµ, with −/+ for X =/̸= L), the second term is the log-enhanced photon penguin that mixes the tree operators
OQQ
V LL (for Q ∈ {u, c, t}) into 4-lepton operators, and the last term is the contribution of the Z-penguins without the

negligible QED running. Since we only retain the part of the Z-penguin that is proportional to y2Q(see Appendix C 4),
the dominant contribution arises from the top quark, where the “finite” (not log-enhanced) part of the diagrams is
included because the logarithm is not large (see the discussion after Eq. (IV.7) or in Appendix C 1).

3. µAl → eAl

The SINDRUMII experiment searched for µA →eA on Titanium (Z = 22) and Gold (Z = 79), setting the bounds
listed in Table I. Upcoming experiments will start with an Aluminium target, which probes a similar combination
of coefficients as Titanium in the analysis of [75]. So this section gives expressions for the coefficient on Aluminium
CAl,X , expressed in the quark operator basis, where the conversion ratio on Aluminium is given in Eq. (A.16).

The photon penguin diagrams in the type II seesaw model generate a vector µ → e operator on u and d quarks,
giving

Ceµ
Al,L ≃ − αe

72πλ2
Hv2

[
m†
ν ln

(
M∆

m̃α

)
mν

]
µe

, (IV.15)

where m̃τ = mτ and m̃α = mµ for α ∈ {e, µ} because the logarithm is cut off by the momentum transfer from
the leptons to the nucleus[126], which is of order mµ. Notice that the penguin diagram of Figure 5 generates a
2-lepton-2-quark operator at scales above 2 GeV, where quarks are matched to nucleons, then it continues to mix into
a 2-lepton-2-proton operator, which is why the logarithm cuts off at mµ.
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The inverse seesaw generates vector operators, via Z and γ penguins above the weak scale:

Ceµ
Al,L ≃ v2

αe
4π

(
− 0.05[YνM

−2
a

(
11

6
+ ln

(
m2
W

M2
a

))
Y †
ν ]eµ + 0.09[Yν(Y

†
ν Yν)ab

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
Y †
ν ]eµ (IV.16)

+ O
(αe
4π

))
→ v2

M2

(
8.6× 10−5(YνY

†
ν )eµ + 5.6× 10−5(YνY

†
ν YνY

†
ν )eµ

)
(IV.17)

For the leptoquark, which induces scalar and vector 2l2q operators, we obtain

Ceµ
Al,L ≃

(
0.032λeuL λµu∗L .

(
1+

2α

π
ln

mLQ

2GeV

)
+ 0.033

(
g2

64π2
λeuL λµu∗L ln

mLQ

mW

)
−0.086

α

6π

[
λL ln

mLQ

m̃Q
λ†
L

]eµ
− 4.1× 10−4

[
λLYu

(
ln

mLQ

m̃Q
− 5

6

)
Y †
uλ

†
L

]eµ
(IV.18)

−ηaS
(
0.16λeuL λµu∗R +

0.035mN

27mc
λecL λµc∗R

)
(1 +

13α

6π
ln

mLQ

2GeV
) +

0.094mN

27mt
λetL λ

µt∗
R

)
× v2

m2
LQ

,

where are included the tree vector coefficient on u quarks with its QED running, the electroweak box contribution to
the d vector, the QED then Z penguin contributions to the u and d vectors (where we took Vud ≃ 1, sin2 θW ≃ 1/4),
and the scalar u, c and t contributions (where the QCD running of the top contribution is negligible). As in Eq.
IV.14, the Z-penguin contribution only includes the diagrams ∝ y2Q, with their “finite parts”.

4. µA →eA on heavy targets

Changing the target in µA → eA allows to probe a different combination of operator coefficients [75]. This is
discussed quantitatively in Appendix A, where Eq.s (A.12, A.13, A.14) give the operators probed by light and heavy
targets in the quark basis. The SINDRUM experiment searched for µA → eA on Gold (see Table I), and there are
plans based on the proposal of Ref. [68] to build experiments that could probe µA →eA on heavy targets (see Table I).
However, we consider these experiments to be to far in the future for the purposes of our study, so we suppose that
the data for Gold remains the bound of SINDRUM given in Table I. The operator probed by Gold can be decomposed
into the operator probed by light targets, plus the remaining part, approximately given in Eq (II.6). In this section,
we discuss the coefficient of this orthogonal part, which can be written as

CAu⊥,L ≃ −
(
0.2Ceµuu

SR + 0.1Ceµdd
SR + 0.0075Ceµss

SR + 0.001Ceµcc
SR + 0.0003Ceµbb

SR

)
+0.56Ceµuu

V L + 0.7956Ceµdd
V L . (IV.19)

The type II seesaw only generated a vector operator on protons, (no scalar operators, and no vector operator on
neutrons), so once the coefficient is measured on a first target, it can be predicted on any other. That is, Gold probes
approximately the same four-fermion operator as light targets, and since the dipole and proton vector coefficients are
weighted by approximately 1/4 and 1/2 in both the amplitudes on Gold and Aluminium, the ratio of the rates is

BR(µAu → eAu)

BR(µAl → eAl)
≈ B̃Au

B̃Al
≈ 2±O(10%) ,

where B̃Al and B̃Au are given after Eq. (A.5).
In the inverse seesaw, µA → eA on heavy targets could give complementary information, because the Z penguin

contribution generates vector µ → e operators on both protons and neutrons:

Ceµ
Au⊥,L ≃ v2

αe
4π

(
− 0.5[YνM

−2
a

(
11

6
+ ln

(
m2
W

M2
a

))
Y †
ν ]eµ + 0.8[Yν(Y

†
ν Yν)ab

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
Y †
ν ]eµ (IV.20)

+ O
(αe
4π

))
→ v2

M2

(
1.1× 10−4(YνY

†
ν )eµ + 4.9× 10−4(YνY

†
ν YνY

†
ν )eµ

)
(IV.21)
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The coefficient is nonetheless a combination of the same invariants that feature in the other µ → e operators, and so
can be predicted with a combination of µ → e observations. For instance, in the nearly degenerate limit, it can be
written as a linear combination of the light targets coefficient and the dipole.

In the leptoquark model, we neglect the scalar coefficients on d, s and b quarks, because the model does not generate
scalar operators with down-type quarks at tree level, and the estimates of Appendix C 3 c suggest that the loop-induced
coefficients are below experimental sensitivity. So we obtain

CAu⊥,L ≃
(
ηaS

(
0.1

λeuL λµu∗R

2
+ 0.001

λecL λµc∗R

2

)(
1 +

13α

6π
ln

mLQ

2GeV

)
+0.14λeuL λµu∗L (1 +

2α

π
ln

mLQ

2GeV
)

+0.4
g2

32π2
[λLV ]ed[V †λ†

L]
dµ − 0.32

α

9π
[λL log

mLQ

mQ
λ†
L]
eµ

− Nc

16π2

(
0.28(guL + guR) + 0.4(gdL + gdR)

)
[λLYu

(
log

mLQ

mQ
− 5

6

)
Y †
uλ

†
L]
eµ

)
× v2

m2
LQ

where the terms, in order, are the scalar up and charm quark contribution with their QED and QCD running, the
tree vector up quark contribution with its QED running, the leptoquark-W box matching onto the vector operator
for down quarks (neglecting the QED running), then the QED penguin contribution to the vector coefficients for u
and d quarks, and finally the Z penguin contributions to both u and d vector coefficients.

We claim that in this leptoquark model, CAu⊥,X is independent from CAl,X , implying that CAu⊥,X could be just
below the current SINDRUMII bound (see Table II) even if µ → e flavour change is not observed in upcoming exper-
iments. Furthermore, we anticipate that this will remain true, even if the definition of OAu⊥ changes as theoretical
calculations are updated (the definition of the OAs in References [75, 79] appears different.). The point is that can-
cellations can occur, for instance among vector and scalar coefficients in the coefficient on Aluminium, allowing the
coefficient on Gold to be relatively large.

V. PHENOMENOLOGY

The type II seesaw model is reputed to be predictive, because the lepton flavour-changing couplings of the scalar
boson ∆ are proportional to the observed neutrino mass matrix. However, we observed in [50] that knowing the
neutrino oscillation parameters does not predict the observable µ → e coefficients. So Sections VA and VB explore
the connections between µ → e processes and other lepton flavour- and number-changing observables in the type II
seesaw. The remaining two subsections respectively discuss how µ → eγ constraints suppress dimension eight operators
in the leptoquark model (Section V C), and the impact of allowing operator coefficients to be complex(Section VD).

A. The neutrino mass scale in the type II seesaw

In this section, we explore how the predictions of the type II seesaw model for µ → e observables are influenced by
the lightest neutrino mass scale, denoted as mmin.

The lightest neutrino mass plays a crucial role in determining the relevant coefficients in the model, namely Ceµ
D,R,

Ceµee
V,LL, and Ceµee

V,LR ∝ CAl,L, CAu⊥,L. The tau mass cut-off in the two-loop vector mixing and one-loop photon penguin
introduces a term ∝ [m∗

ν ]µτ [mν ]eτ (see Eq. IV.5 and IV.9) that gives rise to the dipole and Ceµee
V,LR dependence on

the unknown neutrino parameters. Additionally, the µ → 3eL vector depends on mmin from both the tree-level
∝ [mν ]ee[m

∗
ν ]µe and the photon penguin contributions.

The magnitude of these unknown terms increases with the lightest neutrino mass, making them more relevant when
mmin is large. For example, if we allow mmin ∼ 0.2 eV, the two-loop vector-to-dipole mixing can reach the size of the
one-loop matching contribution to the dipole, and certain choices of Majorana phases could allow for a cancellation
that suppresses the dipole coefficient. Although this has not been pointed out in the literature before (the dipole
cannot vanish in the type II seesaw at the leading order), the cancellation requires a high neutrino mass scale mmin.
Values mmin ∼ 0.2 eV are compatible with the laboratory constraint extracted from the tritium decay end-point,
which yields

√∑
im

2
i |Uei|2 < 0.8 eV (90% CL) [127], but are disfavored by the cosmological bounds on the neutrino

masses sum
∑

mi. Assuming ΛCDM, CMB data constrain the sum to be
∑

mi < 0.26 eV (95% CL), while combined
with the BAO measurements the constraint is stricter

∑
mi < 0.12 eV (95% CL) [128].
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FIG. 1:
|Ceµee

V,LR|
|Ceµ

D,R| and
|Ceµee

V,LL|
|Ceµ

D,R| as functions of mmin for normal and inverted ordering in blue and red respectively, for
all possible values of the Majorana phases. We consider only the one-loop matching contribution to the dipole since

for mmin ≲ 0.2 eV the two-loop vector to dipole mixing is negligible. The shaded blue region corresponds to the
values of mmin above the cosmology preferred upper bound mmin ≲ 0.04 eV.

By imposing the cosmological upper bound mmin ≲ 0.04 eV, the µ → e coefficients are also constrained. In this case,
the dipole is approximately unaffected by the two-loop contribution and is completely determined from the neutrino
oscillation parameters, apart from the overall LFV scale. When the dipole coefficient is non-vanishing, the ratios

|Ceµee
V,LL|

|Ceµ
D,R|

,
|Ceµee
V,LR|

|Ceµ
D,R|

, (V.1)

are finite for any value of the Majorana phases. Figures 1a and 1b illustrate that by imposing the upper-bound
mmin ≲ 0.04 eV and allowing the Majorana phases to vary freely, these ratios are bounded from above

mmin ≤ 0.04 eV →
|Ceµee
V,LL|

|Ceµ
D,R|

≤

{
4.3× 103 (IO)

2× 103 (NO)
,

|Ceµee
V,LR|

|Ceµ
D,R|

≤

{
28 (IO)

21 (NO)
(V.2)

The cosmological bound is generally insufficient to constrain the ratios from below, as there exist mmin values for
both µ → 3e vectors such that the operator coefficient can vanish. If mmin is measured, for instance by observing the
neutrinoless double beta decay, additional information can be obtained for the µ → e coefficients. The penguin cannot
vanish for mmin ≲ 0.02 eV regardless of the ordering, while the µ → 3eL vector is also non-vanishing for mmin ≲ 10−3

eV:

mmin ≲ 0.02 eV →

{
4.7 (IO)

8.5 (NO)
≤

|Ceµee
V,LR|

|Ceµ
D,R|

≤

{
15 (IO)

10 (NO)

mmin ≲ 10−3 eV →

{
17 (IO)

20 (NO)
≤

|Ceµee
V,LL|

|Ceµ
D,R|

≤

{
2.3× 103 (IO)

62 (NO)
(V.3)

Therefore, if the ratio of coefficients
|Ceµee

V,LR|
|Ceµ

D,R| or
|Ceµee

V,LL|
|Ceµ

D,R| were observed outside the ranges of Eq. (V.3), it would be
possible to infer a lower bound on the neutrino mass scale (if it originates from the type II seesaw mechanism). Since
these ranges are significantly narrower in the NO case, measuring the ordering (which is expected to be determined in
the upcoming years) would be particularly useful to pinpoint the interplay between the lightest neutrino mass and the
µ → e predictions in the type II seesaw. Furthermore, if the mass ordering is normal, future beta decay experiments
might be able to constrain mmin ≲ 0.02 eV (the Project 8 experiment [129] aims at a 90% C. L. sensitivity of 40meV
on the effective neutrino mass in beta decay, which corresponds to mmin ≃ 0.04 eV). In this case, measuring the ratio
of coefficients

|Ceµee
V,LR|

|Ceµ
D,R| outside the range [8.5, 10] would exclude the type II seesaw model.
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B. τ LFV in the type II seesaw

In this section, we explore whether the type II seesaw model can be predictive, when one considers flavour-changing
decays of muons and taus. In particular, we focus on observations of τ → 3l decays, if one does not see µ → e decays.
So in practise in this section, the Majorana phases are fixed to ensure that the tree contribution to µ → eēe vanishes,
and we study the τ → 3l rates as a function of the neutrino mass scale.

There are four ∆LF=1 τ → 3l decays (τ → µµ̄µ, → eēe, → eµ̄µ and → eēµ) and two that are ∆LF=2 (→ eµ̄e, and
→ µēµ), as given in [130]. They can all be mediated at tree level by ∆ exchange as illustrated in the middle diagram
of Figure 5. The branching ratios for the four ∆LF=1 decays are analogous to Eq (II.8)

BR(τ → lLll) = 0.18
{
2|Clτll

V,LL + 4eClτ
D,R|2 (V.4)

+(64 ln
mτ

ml
− 136)|eClτ

D,R|2 + |Clτll
V,LR + 4eClτ

D,R|2
}

BR(τ → l̃Lll) = 0.18
{
|C l̃τ ll
V,LL + 4eC l̃τ

D,R|2 (V.5)

+(64 ln
mτ

ml
− 136)|eC l̃τ

D,R|2 + |C l̃τ ll
V,LR + 4eC l̃τ

D,R|2
}

BR(τ → lL l̃l) = 0.18|Clτll̃
V,LL|2 (V.6)

where we restrict to a fixed chirality of the flavour-changing lepton bilinear, l, l̃ ∈ {e, µ}, l ̸= l̃ and the factor 0.18
accounts for the hadronic τ decays: Γ(τ → eν̄ν)/Γ(τ → all) ≃ 0.18. The final pair of branching ratios (Eq. V.6) are
∆LF=2; we assume such coefficients run with QED like other four-lepton vector operators. The current experimental
constraints (see Table I) are of order

BR(τ → 3l) <∼ few × 10−8 (now) → 10−10 (BelleII) .

The type II seesaw can predict τ → 3l within the reach of Belle II, in spite of the current bound BR(µ → eēe) ≤
10−12. For instance, in normal ordering with vanishing lightest neutrino mass m1

BR(µ → eēe)

BR(τ → µµ̄µ)
∼ 5

∣∣∣∣ s13∆sol√
2∆atm

∣∣∣∣2 ∼ 10−3

However, in the coming years, the Mu3e experiment will improve the sensitivity to µ → eēe, so the allowed range for
the τ → l rates will depend on the results of Mu3e. To be concrete, we suppose that µ → e flavour change is not
observed at MEG II or Mu3e. So in the following, we suppose that the Majorana phases (and the lightest neutrino
mass mmin) are fixed such that Ceµee

V LL vanishes at tree level, implying that the µ → eēe rate is suppressed by O(α2),
because it is mediated by the dipole and the penguin-induced Ceµee

V LR. Recall that the tree-level contribution to the
coefficient Ceµee

V LL, which is proportional to [m]∗µe[m]ee, can vanish with [m]ee in normal ordering (NO) for mmin <∼ ∆sol

(as is well known from neutrinoless double beta decay [131]), and it can also vanish with [m]eµ both in normal and
inverted ordering for mmin >∼ ∆sol.

There are six τ → 3l decays, whose tree-level amplitudes are proportional to products of only five neutrino mass
matrix elements. This suggests at least one relation among these decays for generic mmin and Majorana phases —but
this relation could be difficult to test in general, because mmin and the Majorana phases can accidentally suppress
almost any element of the neutrino mass matrix (as we saw for [mν ]eµ). This section considers a scenario where either
[mν ]eµ or [mν ]ee vanishes in order to suppress µ → e rates, so testable predictions can be expected.

For mee → 0, one of the ∆LF = 2 processes vanishes (at the order we calculate):

BR(τ → eµ̄e) → 0 , for [mν ]ee → 0 . (V.7)

Similarly, the tree contribution to τ → eēe vanishes, so that only the dipole and penguin contributions to this decay
remain. So a signature of the type II seesaw with vanishing [mν ]ee, is that these decays are suppressed simultaneously
with the matrix element for neutrinoless double beta decay.

In the case where µ → eēe is suppressed because [mν ]
eµ vanishes (and mmin >∼

√
∆2
sol), there are identities among

the tree-level coefficients Clτσρ
V,LL ∝ mlσm

∗
τρ ( which by default dominate the rates for the decays τ → lρσ) :

mee

mµµ
=

Ceτee
V,LL

Cµτµe
V,LL

=
Ceτeµ
V,LL

Cµτµµ
V,LL

,
m∗
τe

m∗
τµ

=
Cµτµe
V,LL

Cµτµµ
V,LL

=
Ceτee
V,LL

Ceτeµ
V,LL

=
Ceτµe
V,LL

Ceτµµ
V,LL

. (V.8)



16

0.1 0.15 0.2 0.25 0.3
 m1(eV) 

1−10

1

10

210

3
10

410

5
10

6
10

710

8
10

->
ee

e)
 

µ
B

R
 / 

B
R

(

e e->eτ

µµµ->τ

  µeµ->τ

e   µ->eτ

  µe->eτ

  µµ->eτ

 γ->eτ

γµ->τ

  γ->eµ

   

FIG. 2: Ratios BR(τ → 3l)/BR(µ → eēe) in the type II seesaw model as a function of m1 in inverted ordering (so
m1 ≥

√
∆2
atm) for vanishing [mν ]eµ. This illustrates that Belle II could observe specific τ → 3l decays, even if

µ → eēe and µ → eγ are not observed at upcoming experiments because the tree contribution to µ → eēe vanishes
with [mν ]eµ. Some τ → 3l processes (in black) also vanish at tree level, and we include τ → eγ and τ → µγ to

illustrate our claim that they are undetectable at Belle II in the Type II seesaw model(the BR(li → ljγ) are also
divided by BR(µ → eēe)).

As a result, for values of the Majorana phases fixed to suppress µ → eēe (and for compatible mmin), ratios of τ → 3l
decays are predicted. We plot in Figs. 3 (for normal ordering) and 2 (for inverted ordering) the rates of various τ → 3l
decays, normalised to the rate for µ → eēe8, for the case where µ → eēe is suppressed by [mν ]eµ → 0. This shows
[23, 25] that Belle II could see τ → 3l decays for BR(µ → eēe) <∼ 10−16 and BR(µ → eγ) <∼ 10−14. If several τ → 3l
decays are observed (including τ → eēe), we may compare their relative branching ratios with the predictions of the
type II seesaw shown in Figs. 2 and 3, and be able to either exclude the model or deduce some constraints on m1

and the mass ordering. Regarding µA → eA, we estimate that BR(µAl → eAl) ∼ 102 BR(µ → eēe) in the case of
vanishing [mν ]eµ in the type II seesaw, because Ceµee

V,LR and C̃Al,L are both induced by the photon penguin, see Eqs.
(IV.9,IV.15).

Finally, the decays τ → eγ and τ → µγ will not be observed at Belle II if neutrino masses arise via the type II
seesaw model, because this requires µ → eγ or µ → eēe larger than the current constraints (this conclusion is fully
general and does not assume that the tree-level contribution to µ → eēe vanishes). The dipole coefficients Clτ

D,R, at the
experimental scale mτ , can be written analogously to Eq. (IV.6), with the index replacement e → l and µ → τ , and
without the second term, because the RG running ends at mτ for all flavours in the loop. At the order we calculate,
the τ dipole coefficients are therefore given by [mνm

†
ν ]lτ , so are independent of the neutrino mass scale and Majorana

phases (see Eq. II.2), and the ratio

BR(τ → µγ)

BR(τ → eγ)
≃

∣∣∣∣∣ [mνm
†
ν ]µτ

[mνm
†
ν ]eτ

∣∣∣∣∣
2

∼ 1

2s213

is predicted. However, in order to be within the reach of Belle II (BR>∼ 10−9, see Table I), these branching ratios
need to be much larger than BR(µ → eγ), which can be engineered via a cancellation in Ceµ

D,R for specific Majorana

8 In the type II seesaw, the overall magnitude of LFV ∼ |f2v2/M2
∆| is unknown, so we plot ratios of rates. This unknown corresponds to

λH in our parametrisation.



17

0.05 0.1 0.15 0.2 0.25 0.3
 m1(eV) 

1−10

1

10

210

3
10

410

5
10

6
10

710

8
10

->
ee

e)
 

µ
B

R
 / 

B
R

(

e e->eτ

µµµ->τ

  µeµ->τ

e   µ->eτ

  µe->eτ

  µµ->eτ

 γ->eτ

γµ->τ

  γ->eµ

   

FIG. 3: Same as Fig. 2 for normal ordering in the case where µ → eēe is suppressed because [mν ]eµ vanishes (so
mmin = m1 >∼

√
∆2
sol).
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S1 S1

H

H
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H

H

µX

lY

eY

lX

x

x

FIG. 4: A diagram that generates the four-lepton scalar operator Oeµll
SXX in the model (on the left), in the RGEs of

SMEFT (centre) and in the RGEs of the QCD×QED invariant EFT (on the right). (There is another diagram with
lY ↔ eY .)

phases at a large neutrino mass scale. However, when this cancellation arises, the model predicts a larger branching
ratio for µ → eēe than τ → lγ, because the coefficient Ceµee

V LL ∝ m2
1 arises at tree level.

C. The dipole constraints on boxes for the leptoquark

The leptoquark Lagrangian of Eq. (III.5) allows the leptoquark to interact with doublet and singlet leptons, so
it can induce lepton flavour-changing dipole, tensor and scalar operators, without any suppression by the lepton
Yukawas. Nonetheless, we neglect four-lepton scalar operators in this model, because the coefficients are suppressed
below the upcoming experimental reach by the dipole constraint. This section aims to show that suppression.

We are interested in scalar four-lepton operators OS,XX , such as those in the observable Lagrangian of Eq. (II.3).
These operators occur at dimension eight in SMEFT with a pair of Higgs legs, for instance in the form (ℓeHµR)(ℓeHeR)
and can be generated in the leptoquark model via box diagrams with Higgs legs, as illustrated on the left in Figure
4. Equivalently, these operators are generated in the dimension six2 → dimension eight RGEs of SMEFT or the low
energy EFT, respectively by the fish diagrams at the centre or right of Figure 4. It is straightforward to see from the
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model diagram, that

Ceµee
SRR ∝ Nc[λLY

∗
u λ

†
R]
eµ[λLY

∗
u λ

†
R]
ee v4

32π2m4
LQ

log (V.9)

so that this coefficient could be ∼ 3 × 10−5 for leptoquark couplings of O(1) to the top quark. This is marginally
above the current experimental bound, which is |Ceµee

SRR| ≤ 2.8× 10−6 from SINDRUM [62]. So now we want to show
that the product λαtL λβt∗R is constrained to be <∼ 0.01 for almost any combination of lepton flavours α, β.

In the presence of both the λL and λR interactions, the leptoquark matches onto 2l2q tensor operators involving
the up-type quarks (see Eq C.11). These tensor operators then mix to the dipole (see the last term of Eq. IV.7),
generating an “invariant” that is not identical to the one appearing in Eq (V.9):

∆Cαβ
DR ∝ α

πyβ
[λLY

∗
u ηmQ

ln
mLQ

mQ
λ†
R]
αβ ∼ α

πyβ

(
O
(
λαtL ytλ

βt∗
R

)
+O

(
λαcL ycλ

βc∗
R

)
+ ...

)
. (V.10)

However, the term ∝ yt in [λLY
∗
u ηmQ

ln
mLQ

mQ
λ†
R]
eµ is of comparable magnitude to the term ∝ yt of [λLY ∗

u λ
†
R]
eµ from

Eq (V.9).
Now we want to argue that this term <∼ yc, yτ , because if its larger it exceeds the experimental bound on ∆Cαβ

DR,
so must be small enough to cancel against next biggest term. In this argument, we assume that |λσQX | <∼ 1, and use a
different normalisation of the dipole operator:

Õαβ
D = ℓαHσρσPReβFρσ (V.11)

where the lepton Yukawa is removed. This is more convenient for comparing the experimental bounds [60, 132–137]
on NP contributions to the coefficient of the redefined dipole operator, expressed as a matrix in flavour space:

|[C̃D]αβ | ≤

 2.3× 10−6 6× 10−12 7× 10−8

6× 10−12 4× 10−7 7× 10−8

7× 10−8 7× 10−8 −

 (V.12)

where on the diagonal are the (g − 2)β constraints[134, 135] using |∆aβ | ≃ 2mβ |Cββ
D + Cββ∗

D |/(ev), and the EDM
constraints [136, 137] on Im{Cββ

D } ≃ −vdβ/2 [138] are |Cee
D | <∼ 2.5× 10−14, and |Cµµ

D | <∼ 3× 10−4. The contribution
of Eq. (V.10), with λαtL λαt∗R of order 1, is larger than the bounds of Eq. (V.12) on all the dipole coefficients, except
possibly [C̃D]

ττ . So the top contribution must cancel against the next largest contribution to the dipole, which is
relatively suppressed at least by the charm or τ Yukawa, because the dipole operator requires a single Higgs leg. So
this implies that

λαtX λαt∗Y
<∼ 10−2

for all flavour combinations αβ except ττ , so the scalar four-lepton coefficients are below upcoming experimental
sensiticity and can be neglected.

We also explored the possibility that constraints on vector four-quark operators[139] — for instance from meson-
antimeson oscillations— allow to set bounds on the vector four-lepton operators. Our hope was that the quark sector
could set bounds on the eigenvalues {λi} of the leptoquark coupling matrices

[λL] = V †
l DλVQ

where Dλ = diag{λ1, λ2, λ3}, and Vl and VQ are unitary matrices. K0−K0 and D0−D0 mixing constrain two
independent combinations of V †

QD
2
λVQ, but in order to set an upper bound on the eigenvalues, at least one more

constraint would be required, and we did not find useful constraints involving tops.

D. Complex Coefficients—what changes?

The coefficients of the observables operator are generally complex numbers, and it is not immediately clear whether
experiments can fully determine these coefficients when non-zero phases are present. When considering upper limits
on branching ratios, the only difference is that we have two identical 12-dimensional ellipses, each respectively in the
space of the real and imaginary parts of the coefficients. This happens because the branching fractions are functions
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of the absolute values of operator coefficient combinations, which result in a quadrature sum of the real and imaginary
components. Therefore, the two do not mix, and the rate is a combination of the same positive defined quadratic
forms, to which the upper limit can separately apply.

The complication arises when we consider the possibility of measuring the complex coefficients from data. Expanding
the branching ratios of Eq. (II.7)-(II.10) in terms of the (complex) coefficients of Eq. (II.3), we find9

BR(µ → eXγ) = 384π2|Ceµ
D,Y |

2 (V.13)

BR(µ → eXeXeX) = 2|Ceµee
V,XX |2 + 32e2

(
log

(
mµ

me

)
− 1

)
|Ceµ
D,Y |

2 + 16e|Ceµee
V,XXCeµ

D,Y | cos(ϕV,XX − ϕD,Y )(V.14)

BR(µ → eXeY eY ) = |Ceµee
V,XY |

2 + 32e2
(
log

(
mµ

me

)
− 3

2

)
|Ceµ
D,Y |

2 + 8e|Ceµee
V,XY C

eµ
D,Y | cos(ϕV,XY − ϕD,Y ) (V.15)

BR(µA → eXA) = BA

(
d2A|C

eµ
D,Y |

2 + |Ceµ
A |2 + 2dA|Ceµ

D,Y C
eµ
A | cos(ϕA − ϕD,Y )

)
(V.16)

where we have defined C□ = |C□|eiϕ□ , X ̸= Y and A can be Al or Au⊥. The observables only depend on relative
phases, so for brevity we relabel ϕ□ − ϕD,Y → ϕ□. We thus have 10 branching fractions that can generally depend
on 18 parameters: 10 absolute values and 8 relative phases. For example, observing µ → eXγ and µ → eXeXeX
(µ → eXeY eY ) would not be sufficient to measure the real and imaginary parts of the coefficient Ceµee

V,XX (Ceµee
V,XY ).

However, some observables may be directly related to the coefficient relative phases. For instance, it has been shown
in [82] that the T-odd asymmetry term

ATµ→3e ∝ −Im(CD,R(3C
∗
V,LL − 2C∗

V,LR) + (L ↔ R) = 3|Ceµee
V,LLC

eµee
D,R | sinϕV,LL − 2|Ceµee

V,LRC
eµee
D,R | sinϕV,LR + (L ↔ R)

(V.17)
is accessible via the angular distribution of the outgoing electrons/positrons, and could assist in determining the
relative phase of the µ → 3e vectors and dipole. In addition, interpreting data assuming specific models can help in
reducing the number of relevant parameters, and measurements may still be used to find regions of parameter space
that are incompatible with the model predictions. For the three models we considered here:

1. In the type II seesaw the observable coefficients are related to the neutrino mass matrix, which is complex
(given the hints of the CP violating Dirac phase δ ≃ 3/2π and due the potential presence of non-zero Majorana
phases). In our analysis of the type II seesaw in [50], we identified the region where the model can sit in the
space of the angular variables tan θ =

√
|CD|2 + |CV,LR|2/|CV,LL| and tanϕ = |CD/CV,LR|, which depend on the

absolute values of the observable coefficients. One may wonder whether experiments can identify a point in this
space despite having complex phases, which make three branching fractions depend on five parameters (three
absolute values and two phases). Since the flavour changing interactions with electron singlets are negligible, the
ATµ→3e asymmetry is given by the relative phases of the CV,LL, CV,LR vectors with the Ceµ

D,R dipole. Combined
with the measurements of the branching fractions for µ → eLγ, µ → eLeLeL and µ → eLeReR, one of five
physical parameters would still remain undetermined. Taking advantage of the fact that in the type II seesaw
CA ∝ CV,LR, a detection of µA → eA could be used to extract the value of the last unknown, resulting
in the complete knowledge of the relevant complex coefficients (modulo an overall phase). This also opens
the interesting possibility of taking advantage of µ → e observables to determine the unmeasured neutrino
parameters, i.e the lightest neutrino mass and the Majorana phases. Since the complex EFT coefficients depends
on these three unknown, measuring the coefficients could allow to infer their values. Additionally, since the
system is over-constrained, with three complex coefficients being a function of four parameters (including the
overall magnitude of LFV), we can use experimental results to check for consistency with the type II seesaw.

2. The operator coefficients in the inverse seesaw are given by the off-diagonal elements of Hermitian matrices,
which can be in general complex. In the case of nearly degenerate sterile neutrinos, we have found that the
coefficients satisfy linear relations of the following form [50]

Ceµee
V,XY = aXY C

eµ
A,L + bXY C

eµee
D,R (V.18)

where a and b are real numbers, and XY = LL,LR. These relations hold in general and do not assume real
coefficients. However, with non-vanishing phases, two observables are not sufficient to fully determine the µ → e

9 We assume that we can distinguish the processes with electron/positrons of different chiralities via the angular distributions. We do not
discuss the scalar operator Ceµee

S,XX because it is negligible in the models we consider.
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predictions of the inverse seesaw. Observing µ → eLγ would give the dipole absolute value, and measuring
µA → eLA would only yield a combination of |Ceµ

2q,L| and dipole-four fermion relative phase. Taking advantage
of Equation V.18, a µ → eLeReR signal could allow to solve for Ceµ

2q,L as a complex number. Then, again by
means of Equation V.18 for XY = LR, we could predict BR(µ → eLeReR) and compare it against experimental
results. We conclude that, despite the non-zero phases, the inverse seesaw with degenerate sterile neutrinos is
predictive enough that it could be ruled out by a combination of µ → e observations

3. In the leptoquark model the µ → e coefficients depend on a number of invariants that is larger than the number
of observables. This means that the model could already fill the experimental ellipse (with the exception of the
scalar four lepton directions) even in the case of real couplings. Allowing complex couplings would make the
model even less constrained, and thus we do not discuss this case further.

VI. DISCUSSION

The purpose of bottom-up EFT is to take low-energy experimental information to high-scale models. In this section,
we discuss various aspects of this process, in the light of the three models we considered.

1. What differences among models can be identified by the data?

We showed in [50] that the data could rule out the models we consider, because the models predict relations between
the Wilson coefficients, so are unable to fill the whole ellipse in coefficient space that is accessible to experiments. But
it would be more interesting to ask whether µ → e observations could identify properties of models.

A simple question is whether µ → e data could distinguish models with LFV couplings to either lepton doublets or
singlets, vs models that interact with both. It seems that the answer is yes. If LFV interactions involve only doublets
or singlets, the only lepton-chirality-changing interaction in the theory is the Higgs Yukawa. So the coefficients of
chirality-changing LFV operators must be proportional to the Yukawa couplnging to an odd power. For instance, the
dipole coefficients would satisfy

Ceµ
DR

Ceµ
DL

∝
(
me

mµ

)±1

.

If this relation is not satisfied, it suggests that LFV involves doublets and singlets. If it is satisfied with exponent −1,
then it is probable that LFV involves doublets but not singlets. If in addition, the coefficients of other singlet-LFV
operators are negligible, it becomes very probable that LFV involves only doublets —although it could result from
accidental cancellations in a model with LFV for doublets and singlets.

It would be interesting and useful if the data could also identify other model properties, such as the loop order at
which LFV occurs. But our models suggest this is not possible, because loops that occur in matching the model to the
EFT are indistinguishable from small couplings, and because coefficients that arise at tree level can be accidentally
small, as occured in the type II seesaw where Ceµee

V LL can vanish. For similar reasons, µ → e observables can not
distinguish NP that interacts only with leptons in its renormalisable Lagrangian, from NP that interacts with quarks
and leptons.

2. What is the role of the RGEs?

There are many reasons to use Renormalisation Group Equations in EFT, as is well-known in quark flavour physics.
However, the RGEs may not be motivated in the lepton sector, because LFV has yet to be discovered, so precise,
scheme-independent predictions are not crucial. Indeed, the RGEs are often not included in the τ → l sector, where
the data separately constrain most coefficients. In the µ → e sector where there are fewer restrictive bounds, an
EFT analysis suggests that the RGEs are relevant because they mix difficult-to-probe operators into well-constrained
processes. In this section, we explore whether this occurs in our models.

The inverse seesaw at the TeV-scale is an example of a model where the RGEs are unneccessary, because low-energy
LFV operators are generated via loop diagrams in matching, and the RGEs just contribute an O(10%) renormalisation.
A few properties of the model contribute to this behaviour: first, the new interactions couple one light SM particle
with a heavy new particle and a weak boson, so LFV occurs via loops that contribute in matching. Then, there is
no significant operator mixing via the RGEs, because the photon penguin vanishes below the weak scale at one loop;
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that is, LFV operators are vectors(or ∝ a lepton yukawa coupling) because only the lepton doublet interacts with new
particles, and vector operators only mix into each other via the penguins. But in the one-loop penguin diagrams, the
gauge boson attaches to the Higgs, so the penguins are only present above the weak scale, and generate 2l2q operators
in matching.

The type II seesaw is an example of a model where the leading contribution to some observables arises in matching,
and via the RGEs for others. This behaviour can be reproduced in EFT, and can also be obtained in model calculations
that judiciously include log-enhanced loops [26]. However, the correct lower limits of the logarithms are crucial to
obtain the dependence of LFV observables on the unknown parameters of the neutrino mass matrix in the type II
seesaw model. These lower limits should be implemented automatically in EFT, but to our knowledge were previously
missing from the literature. So it seems that the RGEs are required in this model, in order to identify the parameter
space the model cannot reach.

In the type II seesaw, a careful one-loop model calculation could include all the terms of our leading-log EFT,
because we do not resum (α lg)n for all n, but rather work to O(α log). However, our EFT also includes the “leading”
vector to dipole mixing at O(α2log), which we did not find in the literature about this model. This mixing causes the
dipole to depend on the unknown neutrino parameters (Majorana phases and mmin), thereby allowing it to vanish. It
is “well known” that the 2-loop electroweak contribution to (g − 2)µ is comparable to the one-loop part, but it seems
that the implications of this may not have been implemented in all model calculations. However, it is relatively simple
to implement in EFT [90], illustrating the first reason to do EFT: it is the simpler way to get a more precise result.

The leptoquark is our model where the RGEs are most useful, because they allow to simultaneously include the
multitude of relevant electroweak loops and large QCD effects in an organised fashion. The RGEs are required to
obtain model predictions, because they mix difficult-to-constrain coefficients— such as tensor operators involving top
quarks—into observable coefficients like the dipole, while simultaneously including the QCD running of the operators.
so are required to obtain model predictions.

3. Do cancellations among coefficients occur in models?

It is common to make tables listing the “sensitivity” of observables to operator coefficients (e.g. [76, 90]); these “one-
at-a-time-bounds” are simple to obtain by allowing a single operator to have a non-zero coefficient, and computing the
experimental constraint upon it. It can also be common to take these sensitivities as bounds, because it is generally
considered unlikely that models generate cancellations among operator coefficients, especially since these coefficients
run with scale. However, such cancellations can occur, for instance via the equations of motion, so these “sensitivities”
are not true upper bounds (instead, they are the value of the coefficient above which it could be detected).

The operator population in EFTs is often reduced via the equations of motion (as pedagogically discussed in
[87, 140]). This can sometimes impose “accidental” but precise cancellations among operator coefficients. An example
is discussed in Appendix C 4: in a model, the Z penguin diagrams can be ∝ q2 (= the momentum-transfer2 of the Z),
or ∝ v2. Both contributions could contribute to the decay Z → e±µ∓, but the part ∝ q2 gives a negligible contribution
to µ → eēe, due to the q2 ∼ m2

µ suppression. However if the model is matched to SMEFT, the equations of motion
are used to to transform the q2 part of the diagrams into four-fermion and penguin operators (Oeµ

HL3 and Oeµ
HL1),

with coefficients whose sum cancels in low-energy matrix elements where q2 → 0. The “one at a time bounds” on
penguin and four-fermion operators miss this cancellation, so would instead suggest that both are strictly constrained
by µ → eēe.

In the type II seesaw model, the Z-penguin diagrams give negligible contribution to µ → eēe because the ∝ v2 part
is suppressed by lepton Yukawas, and the ∝ q2 part is kinematically suppressed as discussed above. So experimental
observations do not exclude a ē Z/ µ interaction just below the sensitivity of the LHC, despite that the “one-at-a-time-
bounds” suggest that they do. Nonetheless, the model can not generate such interactions, because they are controlled
by the same model parameters as the photon penguin diagrams, which are constrained by µ → eēe.

So in summary, apparently accidental cancellations can occur among coefficients in EFT; whether this affects the
constraints on models is model-dependent.

4. Does it matter that coefficients are complex?

µ → e observables define an experimentally accessible 12-dimensional ellipse in the space of the Wilson coefficients,
but these are generally complex numbers. Although this does not complicate the analysis when imposing bounds
on the coefficients, because the ellipses for the real and imaginary components are identical, allowing for complex
phases could generally hinder the determination of the coefficients from data. If the muon polarization and the
electron/positron angular observables could in principle identify 12 real coefficients, unobservable directions will be
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present when considering the full parameter space spanned by coefficients with non-zero phases. Measuring for instance
the branching fraction for µ → eXγ would identify a circle with radius

√
BR(µ → eXγ)/384π2 centered at the origin

of the complex plane for the dipole coefficient CDX , but without further assumptions the real and imaginary parts
would remain undetermined. However, if our goal is to use data to exclude models, the model predictions can help
in reducing the number of unmeasurable direction. Interpreting data in light of a particular model can lead to the
determination of absolute values as well as relative phases for the coefficient. The neutrino mass models we considered
in this paper are an example where this determination is possible.

In the type II seesaw, the LFV operators are complex because their coefficients are directly related to the neutrino
mass matrix, which contains up to three phases in the case of Majorana neutrinos. We discussed in section V D how,
taking advantage of the model predictions and making use of observables directly related to the coefficient phases (see
Eq. (V.17)), one could interpret µ → e data to determine the (complex) coefficients predicted by the type II seesaw.

Similarly, in the inverse seesaw model, the predictions for flavour-changing observables are determined by the
magnitude of off-diagonal matrix elements, and the operators can be complex. In section V D, we showed that despite
the presence of operator phases, we can use the model predictions to identify points in the experimentally accessible
ellipse.

VII. SUMMARY

The µ → e sector is promising for the discovery of LFV, due to the exceptional upcoming experimental sensitivity
— to three processes. So this project explored what could be learned about the New Physics in the lepton sector
from µ → e observations, by studying some “representative” TeV-scale models described in Section III. We take the
data to be 12 Wilson coefficients, which can be individually constrained and distinguished in measurements (with the
exception of vector and scalar four-lepton operators which have indistinguishable angular distributions in µ → eēe,
see Section II).

Bottom-up EFT is an appropriate formalism to compare data with models, because data improves slowly while
models can evolve more rapidly. It also gave some relevant effects (such as the two-loop vector to dipole mixing in
the type II seesaw, see Eq. IV.6) which we did not find in the literature. Our analysis is at leading order in EFT,
meaning that we attempt to include the largest contribution of the model to all the operators to which the data
can be sensitive. This includes some 2-loop anomalous dimensions and some operators which are dimension eight in
SMEFT. Our notation and assumptions are summarised in section II. Our models are located at the TeV scale in
order to profit from many complementary observables, but the ratio mW /TeV is not large, which implies that EFT
is poorly motivated between mW → TeV (see the discussion in Appendix C 1), so in practise we match our models to
the QCD×QED-invariant EFT that is relevant below mW .

The observable operator coefficients are given in Section IV in terms of model parameters at the TeV, which
usually appear with SM parameters in elegant combinations that recall Jarlskog invariants. This unforeseen curiosity
(discussed in Section IVA) may be an accident of our simple leading order analysis, which allows analytic expressions.
Or possibly it indicates an interesting new role for invariants as stepping stones in the reconstruction of models from
EFT coefficients. For instance, our models did not fulfill our expectations: we anticipated that the type II seesaw
was predictive because the flavour-changing couplings fαβ (Eq.III.1) are determined by the neutrino mass matrix,
and that the inverse seesaw was unpredictive because the Y αa couplings (Eq. III.3) are unknown. However, Section
IV B shows that µ → e flavour change is controlled by two invariants in the inverse seesaw with degenerate singlets,
whereas three invariants are needed in the type II model. In any case, it is interesting that µ → e flavour change in
these models is controlled by a few complex numbers of magnitude <∼ 1, which could be obtained for a wide variety
of flavour structures in Lagrangians.

We showed in [50] that µ → e data has the ability to exclude the models we consider, because they cannot fill the
whole ellipse in coefficient space accessible to upcoming experiments. In Section V, we explored the more interesting
question of whether observations could indicate a model— specifically, the type II seesaw model — by including some
complementary observables. In Section V A we showed that, in the type II seesaw model, some ratios of µ → e Wilson
coefficients can be confined to relatively narrow intervals (depending on the mass ordering, see Eq. V.3) if the lightest
neutrino mass is small enough. Therefore, if these ratios where observed outside the ranges quoted in Section VA,
a lower bound on the neutrino mass scale could be inferred (assuming that neutrino masses arise from the type II
seesaw mechanism). In Section V B, we considered τ -LFV at Belle II — still in the type II seesaw model—in the case
where neither µ → eγ nor µ → eēe are observed in upcoming experiments (see table I). In this case, the model makes
specific predictions for τ -LFV ratios that could be observed at Belle II, as a function of the neutrino mass scale and
ordering. As a result, Belle II could contribute to constraining the neutrino mass scale and ordering or rule out the
type II seesaw model.

Finally, in the discussion section VI, we addressed some questions that arise in a bottom-up EFT attempt to
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reconstruct New Physics from (low-energy) data.
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Appendix A: µA →eA operators

References [75, 141] observed that the target-dependence of the µA → eA rate could give information about the
contributing operators. So the aim of this Appendix is to identify the independent four-fermion operators OAl,X

and OAu⊥,X , probed by Spin-Independent (SI) µA → eA on light and heavy targets. We use the formalism of [74]
and use the nuclear calculation of [75]. The operators OAl,X and OAu,X can be constructed in the nucleon basis
relevant at the experimental scale, or in a quark basis more relevant for comparing to models. In the following, we
first construct these operators in the nucleon basis, where operators, coefficients and parameters wear “tildes”, then
express them in the quark basis without tildes. Notice that normalisations change between the bases, so there are
numerical differences between, eg, B̃A and BA.

The results in this Appendix have two peculiarities, arising in the matching of nucleons with quarks. The first is
that there is a “loss of information” in going from nucleons to quarks, because the scalar u and d content of a nucleon
are comparable: ⟨N |ūu|N⟩ ≈ ⟨N |d̄d|N⟩ (Or in the notation of Eq (A.8), GN,u

S ≈ GN,d
S , which is obtained both with

lattice and χPT methods[142]). As a result, the coefficients of scalar p and n operators need to be measured accurately,
in order to distinguish scalar coefficients involving us vs ds. The second curiosity is that OAu⊥,X is different, when
calculated in the quark or nucleon bases. That is, Ref. [80] obtained an orthonormal basis of nucleon operators for
the two-dimensional space probed by Gold and Titanium. When these nucleon operators are matching to quarks,
they are no longer orthogonal. In Ref. [78], the operators probed by Gold and Titanium were first matching to
quarks, then decomposed into orthonormal components. We follow the second approach here, because the aim is to
identify the independent information available about models, and that is expressed in the quark basis in our bottom-up
perspective.

In the nucleon basis at the experimental scale, the lepton-nucleon operators relevant for Spin-Independent µA →eA
can be added to the Lagrangian as [75]

δL = 2
√
2GF

∑
N∈{n,p}

∑
X∈{L,R}

(
C̃

(NN)
S,X Õ(NN)

S,X + C̃
(NN)
V,X Õ(NN)

V,X + h.c.
)

(A.1)

where Õ(NN)
S,X = (ePXµ)(NN) and Õ(NN)

V,X = (eγαPXµ)(NγαN). Notice that the nucleon currents are not chiral:

Õ(NN)
V,X = Õ(NN)

V,XL + Õ(NN)
V,XR, so

C̃
(NN)
V,X =

1

2

(
C̃

(NN)
V,XL + C̃

(NN)
V,XR

)
. (A.2)

A similar relation holds for the coefficients on quarks used in µA →eA.
The Spin-Independent conversion rate, normalised to the µ capture rate10 (µ+A → ν +A′), can be written [75]

BRSI(µA → eA) =
32G2

Fm
5
µ

Γcap

(∣∣C̃pp
V,RI

(p)
A,V + C̃pp

S,LI
(p)
A,S + C̃nn

V,RI
(n)
A,V + C̃nn

S,LI
(n)
A,S + CD,L

IA,D
4

∣∣2 + {L ↔ R}
)

.(A.3)

The nucleus(A) and nucleon(N) -dependent “overlap integrals” I
(N)
A,V , I(N)

A,S , IA,D correspond to the integral over the
nucleus of the lepton wavefunctions and the appropriate nucleon density; we use here the results of [75]. We neglect
smaller contributions to the µ → e conversion amplitude, such as the Spin-Dependent part [144–146] which is not

10 Some capture rates are given in [75, 143]; the capture rates in Aluminium, Titanium and Gold are respectively 0.7054, 2.59, and 13.07
×106 sec−1
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coherently enhanced by the numerous nucleons, and subdominant Spin-Independent contributions arising from, eg
µeγγ operators [74], or from tensor contributions to the scalar coefficient [144].

Focusing on an outgoing electron of left helicity, the Branching Ratio can be re-expressed as [78, 80] (B̃A here is
written BA in [80])

BRSI(µA → eLA) = B̃A| ⃗̃CL · v̂A,5|2 (A.4)

where the coefficients (of operators with outgoing eL) are lined up in a vector ⃗̃CL, the overlap integrals are lined up
in a five-component vector v⃗A5 = (I

(p)
A,S , I

(p)
A,V , I

(n)
A,S , I

(n)
A,V ,

1
4IA,D), and the target-dependent constants B̃A are

B̃A =
6144π3|v⃗A5|2

2.197Γcapt,A10−6sec
(A.5)

with B̃Al = 142,B̃Ti = 250, and B̃Au = 300.
In order to identify the four-fermion operator probed by a target A (as opposed to the combination of coefficients),

it is convenient to temporarily neglect the dipole. This implies that µA → eA on the target nucleus A probes the
combination of coefficients C̃A,L ≡ ⃗̃CL · v̂A4 where v⃗A4 contains only the four-fermion overlap integrals (so neglects
the dipole). So C̃A,L is the coefficient of the operator

ÕA,L ≡ v̂A4 · (Õ(p)
S,R, Õ

(p)
V,L, Õ

(n)
S,R, Õ

(n)
V,L) (A.6)

because the Branching Ratio resulting from δL = C̃A,LÕA,L will be

BRSI(µA → eLA) = B̃A|C̃A,L|2
|v⃗A4|2

|v⃗A5|2

in agreement with eqn (A.4). In general,

BRSI(µA → eLA) = B̃Al

∣∣∣∣ IDA
4|vA5|

Ceµ
DR +

|vA4|
|vA5|

C̃Al,L

∣∣∣∣2 + L ↔ R (A.7)

where on light targets like Aluminium, IDA /(4|vA5|) = 0.27 and |vA4|/|vA5| ≃0.96.
In order to express the Al and Au operators in the quark basis, there is one more step. The nucleon operators of

eqn (A.1) can be matched at 2 GeV onto light quark operators Oqq
S,X = (ePXµ)(qq), Oqq

V,X = (eγαPXµ)(qγαq) using

⟨N(Pf )|q̄(x)ΓOq(x)|N(Pi)⟩ ≃ GN,q
O ⟨N(Pf )|N̄(x)ΓON(x)|N(Pi)⟩ = GN,q

O uN (Pf )ΓOuN (Pi)e
−i(Pf−Pi)x . (A.8)

where the parameters GN,q
O can be determined from sum rules, lattice calculations or experiment, and we use the

values summarised in [78]. Below the heavy quark (b and c) mass scales, there is also a two-step contribution to scalar
nucleon operators from scalar quark operators [147, 148], via matching first onto the gluon operator (ēPRµ)GG, then
onto nucleons11. As a result, the nucleon and quark coefficients are related as

C̃N
O,X =

∑
q

GNq
O Cqq

O,X , (A.9)

for q ∈ {u, d, s, c, b, t}, and O ∈ {S, V }. This allows to define quark “overlap integrals” for target A as

IqA,S = Gpq
S IpA,S +Gnq

S InA,S

IqA,V = Gpq
V IpA,V +Gnq

V InA,V (A.10)

11 The scalar operator with top quarks also matches at mt onto (ēPRµ)GG, whose QCD running we suppose is accounted for by the
wavefunction contributions, and which at 2 GeV matches onto nucleons like for the b and c:

GNQ
S ≃ 0.9

2mN

27mQ(mQ)

αs(mQ)

αs(2GeV)
.

However, we do not write the top contribution because it is absent from the EFT below the weak scale, so we include it at mt
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which can be assembled into a “target vector” u⃗A in the space of operators describing µ → e conversion on quarks:

u⃗A = (IuA,S , I
d
A,S , I

s
A,S , I

c
A,S , I

b
A,S , I

t
A,S , I

u
A,V , I

d
A,V ) , (A.11)

ûAl = (0.692, 0.699, 0.0341, 0.00400, 0.00121, 0.0000118, 0.125, 0.128) , |u⃗Al| = 0.397 (A.12)
ûTi = (0.690, 0.699, 0.0340, 0.00398, 0.00121, 0.0000118, 0.127, 0.134) , |u⃗Ti| = 0.991 (A.13)
ûAu = (0.672, 0.689, 0.0334, 0.00380, 0.00118, 0.0000115, 0.177, 0.202) , |u⃗Au| = 1.923 (A.14)

Analogously to eqn (A.6), we use ûAl ≈ ûTi to define OAl in eqn (II.4). The orthogonal direction probed by Gold,
ûAu⊥ is defined as

u⃗Au = |u⃗Au|(cos θAûAl + sin θAû⊥)

⇒ û⊥ =
ûAu − cos θAûAl

sin θA
û⊥ = (−0.21,−0.099,−0.0075,−0.001,−0.0003,−0.000003, 0.558, 0.7956) (A.15)

where the operators are in the order given in Eq. (A.11), sinθA ≈ 0.093 and θA is ≈ 5.3 degrees[78]. This gives the
definition of OAu⊥ in eqn (II.6).

Finally, it can be convenient, in the quark operator basis, to write

BR(µA →eLA) = BA

∣∣∣C⃗L · ûA + CD,R
ID

4|u⃗A|

∣∣∣2 (A.16)

where BA is defined as is eqn (A.5) but with v⃗A5 → u⃗A, BAl = 19363, BTi = 32860, BAu = 24519, and dA =
ID/(4|u⃗A|) = 0.0228, 0.0219, 0.0246 respectively for Al, Ti and Au.

Appendix B: observable coefficients at ΛNP

The coefficients of the Lagrangian of Eq (II.3), which are at the experimental scale mµ, are written in [76] as linear
combinations of coefficients at some higher scale taken to be mW . These formulae allows to identify what magnitude
of which coefficients needs to be retained in matching to the models. This Appendix gives the linear combination of
coefficients probed by µA →eA on Aluminium, not given in [76] and also on Gold for completeness.

Using the results of [75], the combination of coefficients at the scale Λ which is probed by µA →eA on Aluminium,
for outgoing eL, is:√

BRexpAl

B̃Al
>∼
∣∣∣0.266CD,R(mµ) + 1.454Cuu

V,L + 1.490Cdd
V,L − 0.86

8πmN

9αsmt
CGG,R

− α

3π

(
2(Cuu

V,L + Ccc
V,L)− (Cdd

V,L + Css
V,L + Cbb

V,L)− (Cee
V,L + Cµµ

V,L + Cττ
V,L)

)
l̃n

+
α

π

(
(1.5Cdd

A,L − 3Cuu
A,L) +

1

6
(Cee

V,L + Cµµ
V,L − Cee

A,L − Cµµ
A,L)

)
l̃n

+ηaS
(
1 +

13α

6π
l̃n

)
(8.06Cuu

S,R +
1.7mN

27mc
Ccc
S,R) + ηaS

(
1 +

5α

3π
l̃n

)
(8.14Cdd

S,R + 0.405Css
S,R +

1.7mN

27mb
Cbb
S,R)

−ηaT fTS
4α

π

(
16.12Cuu

T,RR +
3.4mN

27mc
Ccc
T,RR − 8.14Cdd

T,RR − 0.405Css
T,RR − 1.7mN

27mb
Cbb
T,RR)

)
l̃n
∣∣∣ (B.1)

where the result for Titanium can be approximately obtained by replacing B̃Al = 142 −→ B̃Ti = 250. The constraint
from µA →eA on Gold is:

4.9× 10−8 >∼
∣∣∣ (0.222CD,R(mµ) + 1.602Cuu

V,L + 1.830Cdd
V,L − 0.721fGGN

8πmN

9αsmt
CGG,R

)
(B.2)

− α

2π
l̃n
(
6.41Cuu

A,L−3.66Cdd
A,L − 0.305(Cee

V,L + Cµµ
V,L−Cee

A,L − Cµµ
A,L) + 0.228Cping,1

)
+ηaS

(
1 +

α

4π

26

3
l̃n
)(

6.10Cuu
S,R +

1.30mN

27mc
Ccc
S,R

)
+ηaS

(
1 +

α

4π

20

3
l̃n
)(

6.26Cdd
S,R + 0.303Css

S,R +
1.30mN

27mb
Cbb
S,R

)
−fTSη

aT
4α

π
l̃n

(
2(6.100Cuu

T,RR +
1.30mN

27mc
Ccc
T,RR)− 6.258Cdd

T,RR − 0.303Css
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27mb
Cbb
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) ∣∣∣
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where we used the scalar quark densities in the nucleon of Ref. [149], the coefficients are at Λ, mf = mf (mf ),

Cff
V,L ≡ 1

2
(Ceµff

V,LR + Ceµff
V,LL) , Cff

A,L ≡ 1

2
(Ceµff

V,LR − Ceµff
V,LL) , Cff

S,L ≡ 1

2
(Ceµff

S,LR + Ceµff
S,LL)

η and fTS are defined in Eq.(II.17), l̃n ≡ ln(Λ/mψ) where mψ ∈ {mb, 2 GeV,mµ} is a suitably chosen lower cutoff for
the logarithm, and the dipole contribution is given at the experimental scale (it can be written in terms of coefficients
at Λ as given in [76]). A similar bound applies with L and R interchanged.

.

Appendix C: Matching the models with the EFT

This section summarises the matching of the models with EFT. We first discuss which EFT to match onto in Section
C 1, and how we define the lepton flavour basis in Section C 2, then give the matching of our three models onto a
QED×QCD-invariant EFT in section C 3. In section C 4, we discuss some curiosities related to the EFT description
of penguin diagrams in the models.

1. Which EFT to match to?

The models we study contain new particles with masses around the TeV, so we need a recipe to match these models
onto the QCD×QED-invariant EFT appropriate below the weak scale.

A formally correct approach would be to match the models to the EFT at mW . Indeed, this would be similar to the
weak-scale matching in the SM, where one removes the t,W,Z and h at mW , because there is no “large log” argument
for sequential matching out of t, h, Z then W . However, this approach has two drawbacks: first, it implies calculating
many loop diagrams involving SM particles and New Physics in the broken SM, and second, resumming QCD from
the TeV to the weak scale is unobvious because the loops one calculates are electroweak. (But the QCD issue may
be minor, because αs <∼ .12 varies by ∼ 30% from mZ →TeV.) We will follow this approach for the inverse seesaw,
where the leading contributions arise in electroweak loops(that induce no field bilinears running under QCD), and
below mW the RGEs of QED only modify the magnitude of the coefficients.

If we match to an EFT at ΛNP , there could be fewer diagrams to calculate, and QCD can be resummed. However,
the scale ratio TeV/v is not large, so higher order contributions in the EFT expansions in log-enhanced loops and
operator dimension can be relevant. For instance, ln(TeV/mW ) ≃2.5 and ln(TeV/mt) ≃1.75, so one-loop model
diagrams with weak-scale particles in the loop can have finite parts comparable to the log-enhanced part — despite
that in EFT power-counting, these finite parts should be included at NLL, and not at LL where they can give
undesirable dependence on the renormalisation scheme of the operators. Also, by power-counting, dimension eight
operators are only suppressed with respect to dimension six by a factor v2/TeV2 ∼ 0.03.

The obvious EFT to use at a TeV is SMEFT, which can then be matched at mW to the low-energy EFT. This
two-step matching should allow to correctly resum QCD at all scales. Some of the four-fermion operators present in
the low-energy EFT, first arise in SMEFT at dimension eight — an example is the Oeµee

S,XX operator that contributes at
tree level to µ → eēe (see Eq. II.3). Matching the models to SMEFT then the low-energy EFT generates contributions
to these additional operators at O(v2/(Λ2

NP v
2)) via the “penguin” operators (see Eq.s C.26-C.28) or OEH , but in

order to recover contributions at O(v2/Λ4
NP ), we need to match onto dimension eight operators, and include the

dimension six2 → dimension eight mixing in the RGEs. Dimension eight operators are legion in SMEFT [150, 151],
so this requires cherry-picking the relevant operators.

We also tried matching out the new particles and the electroweak bosons at ΛNP , such that below ΛNP , we use
the RGEs of QCD and QED. In this approach, there are four-fermion operators induced by the Higgs and the Z in
our EFT, and including the dimension six2 → dimension eight mixing in the RGEs reproduces the O(α log) terms
obtained in SMEFT at dimension six, as well as the O(1/Λ4

NP ) terms. This is simpler than using SMEFT, because
there is no intermediate matching, and its easier to pick out the relevant dimension eight operators. However, this
approximation of treating electroweak particles as contact interactions when they are dynamical, can in some cases 12

12 In matching the leptoquark to SMEFT at ΛNP , the “higgs-penguin” diagrams of the model correspond to the mixing of the tree-induced
scalar OLEQU into OEH . Similarly, the ∝ v2-Z-penguin diagrams correspond to the mixing of 2l2q vector operators into the penguin
operators OHL1, OHL3, and/or OHE . All the operators are of dimension six and involve at most two quarks, so the effect of QCD is as
discussed around Eq. (II.17). It is straightforward to see that, for η ≃ 1 + δ, this modification of the electroweak anomalous dimension
is O(δ2), so we neglect this effect.

In the QED×QCD-invariant EFT, the log-enhanced contribution of box and Z-penguin diagrams arises in the dimension six2 →
dimension eight RGEs via “fish diagrams” (see eg Figure 17) combining a Z- or Higgs-induced four-quark operator with a leptoquark-
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give the wrong QCD and/or QED running from ΛNP → mW . And unfortunately, numerous loop calculations must
be performed in the model to obtain the potentially relevant finite part of electroweak loops.

In summary, we aim for the first, correct, approach, augmented by resummed one-loop QCD corrections. But
sometimes we neglect finite matching contributions. For conciseness, we give the matching results at ΛNP (rather
than mW ), because the RGEs we implement automatically will include the log-enhanced QED and QCD loops. The
finite and log(Λ/mW )-enhanced loops involving h,Z and W , and the dimension six2 → dimension eight mixing are
included in the matching. In resumming QCD, we use five flavour anomalous dimensions at all scales.

2. The Yukawa correction OEH

When lepton flavour is not conserved, the charged lepton mass eigenstate basis provides a pragmatic and unam-
biguous definition of lepton flavour. It is a significant simplification to always work in this basis, not only in the EFT,
but also in models. This circumvents a problem that could arise in matching models onto EFT: if the model induces
the SMEFT “Yukawa correction” operator

OEH = H†HℓHe

then the mass eigenstate basis that defines lepton flavour is rotated with respect to the Yukawa eigenbasis, which
seems the obvious definition of flavour in a model. If the rotation from Yukawa to mass eigenbases is performed in
matching, the resulting corrections are at dimension 8 in the EFT(∝ CEH×Cother), to which some µ → e observables
can be sensitive [89]. However, to obtain self-consistent results at dimension 8 requires including dimension 6 operators
in the equations of motion when reducing the operator basis (this is particularily relevant for the mass correction
OEH). In addition, performing this basis rotation appears daunting.

The simplest solution is define the charged lepton flavours as the “mass” eigenstates also in the model. This means
that the Yukawa matrix Ye is not quite diagonal, and that the flavour eigenstates cannot be simply obtained from the
Lagrangian of the model. Instead, the matrix [CEH ]αβ must be calculated, then one diagonalises

[me] ≃ [Ye]v + [CEH ]v .

However, since the Lagrangian is invariant under flavour basis transformations, an explicit calculation of the basis is
rarely required. And current LHC constraints on flavour-changing Higgs decays impose that renormalisation group
effects of the off-diagonals of [Ye] are below the sensitivity of upcoming experiments [89]. Following this approach, we
include the OEH operator in the lepton equations of motion in our EFT, so that we distinguish [Ye] which appears at
Higgs vertices from [me]/v which arises from the equations of motion.

3. Matching Results

The matching results are given in the usual theory-motivated operator basis of the EFT, where there are a large
number of operators. However, µ → eγ, µ → eēe and µA → eA can only probe the coefficients of the 12 operators
in the experimentally-observable subspace, which are given in section B. Since the 12 observables have wildly varying
overlaps with many high-scale operators, its important to estimate the magnitude of all coefficients obtained in
matching. So we list the coefficients that we include in our results, and also estimate subleading corrections to those
coefficients, and contributions to coefficients we took to be vanishing.

.

a. type II matching-to-QED summary

The type II seesaw model and its Lagrangian are discussed in Section (III). At tree level in the model, one obtains
the neutrino mass matrix

[mν ]ρσ
v

≃ [f∗]ρσλHv

M∆
. (C.1)

induced two-lepton-two-quark operator. The QCD running for these diagrams is more complicated (four-quark operators mix under
QCD), and includes the wrong diagrams. So using the RGEs of QCD and QED between the weak scale and ΛNP , would resum the
wrong QCD for penguins and boxes. It gives the correct QCD running below mW , but such fish diagrams have a light ( ̸= t) quark in
the loop, so are negligible due to the Yukawa suppression (We nonetheless include the light quarks in the formulae, in order to construct
attractive “invariants”).
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H

∆

Hν

ν e

∆

eµ

e

∆

eLµR

H

FIG. 5: Diagrams matching the type II seesaw model onto, from left to right, the neutrino mass operator, the
four-doublet-lepton operator, and the dipole.

Above the weak scale, the lepton number changing neutrino mass matrix operator runs, and mixes with itself to
generate LFV operators [152] with coefficients ∝ m2

ν/v
2. We neglect the running because TeV → mW is not far, and

and the dimension five2 → dimension six mixing because the effect is tiny.
There are also four-doublet-lepton vector operators with coefficient

Cαβll
V LL ≃ [m∗

ν ]βl[mν ]αl
(1 + δαl + δβl)|λH |2v2

(C.2)

where α, β, l ∈ {e, µ, τ} and α ̸= β. Then at one-loop in the model, there is a contribution to the dipole coefficients:

(Ceµ
DL, C

eµ
DR) ≃

(
me

mµ

3e

128π2
,

3e

128π2

)
× [mνm

∗
ν ]eµ

|λH |2v2
(C.3)

where we recall that our dipole operator includes a factor mµ.
In practise, we neglect Ceµ

DL ∝ me, and the matching contributions to all the other operators; we estimate below
the largest matching contributions we neglected for each coefficient.

lα

lρ

lβ

lσ
∆ ∆

ℓα

ℓρ

eβ

eσ
∆ H

µL eL
∆

f f

Z

FIG. 6: Representative diagrams of matching contributions that we neglect, because they are subdominant or below
upcoming experimental sensitivity: from left to right, a box with two triplets ∆ that contributes to vector

four-lepton operators, a box with a ∆ and a Higgs, and the Z penguin. ℓ are doublet leptons, and e are singlets.

1. Vector four-fermion operators OV LX will be generated with log-enhanced coefficients by the photon penguin
in renormalisation group running. We list here some other one-loop matching contributions to four lepton
operators (illustrated in the first three diagrams of Figure 6): there are boxes exchanging two ∆s (first line of
the expression below), or a Higgs and a ∆ (second line where mδ = max{mα,mβ}) and finally the Z-penguins
which are discussed in Appendix C 4:

(Cαβll
V LL, C

αβll
V LR, C

αβll
V RR, C

eαβll
V RL ) ∼ −

(
5([mνm

†
ν ]
αβ [f∗f ]ll + [mνm

∗
ν ]
αl[f∗f ]lβ)

64π2|λH |2v2
, 0, 0, 0

)
+

(
0, [Y †

e m
∗
ν ]
lβ [Y T

e mν ]
lα log

M∆

ml
, 0, [m∗

νYe]
lβ [mνY

∗
e ]
lα log

M∆

mδ

)
× 3

32π2|λH |2v2

+
(
2geL, 2g

e
R, 0, 0

)
× 1

(16π2)|λH |2v4
[
mνm

∗
e log

M∆

me
mT
em

∗
ν

]
αβ

where recall that [mνm
∗
ν ]
αβ that appears in the triplet-triplet boxes is determined by the neutrino oscillation

parameters so is independent of the neutrino mass scale or Majorana phases. In the Z-penguin diagrams,
there are mass insertions on the internal lepton lines, for which we use a Feynman rule −i[me]αα/v rather
than −i[Ye]αα, as discussed in Section C 2. The gfX couplings here and in the following equations refer to the
interactions of the Z boson with a fermion f vector current of chirality X. For instance, the Feynman rule for
the Z couplings to leptons reads −ig/(2cW )γα(geLPL + geRPR)
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2. vector operators with a quark bilinear can also be generated by the Z-penguin:

(CeµQQ
V LL , CeµQQ

V LR , CeµQQ
V RR , CeµQQ

V RL ) ∼
(
2gQL , 2g

Q
R , 0, 0

)
× 1

(16π2)|λH |2v4
[
mνm

∗
e log

M∆

me
mT
em

∗
ν

]
eµ

(C.4)

3. Scalar four-lepton operators involving a τ bilinear can be generated by a box where the Higgs and the triplet
scalar ∆ are exchanged, as illustrated in the middle diagram of Figure 6. This gives Oeττµ

V XY operators, which
can be Fiertz-transformed to LR and RL scalars, given on the first line below:

(Ceµττ
SLL , Ceµττ

SRR , C
eµττ
SLR , Ceµττ

SRL ) ∼
(
0, 0, [Y T

e m∗
ν ]
τµ[mνY

∗
e ]
τe, [m∗

νYe]
τµ[Y †

e mν ]
τe
)
× 3

32π2|λH |2v2
log

m∆

mδ

−yτ

(
[mνm

∗
ν ]µeye, [mνm

∗
ν ]eµyµ, [mνm

∗
ν ]µeye, [mνm

∗
ν ]eµyµ

) 3λ4

32π2|λH |2v2

where on the first line mδ that provides the lower cutoff of the logarithm is the heaviest internal lepton. The
scalar operators on the second line are mediated by “Higgs penguins”, or Higgs exchange with a flavour-changing
vertex corresponding to the loop-induced SMEFT coefficient Ceµ

EH ≃ −3λ4[mνm
∗
νYe]

eµ/(64π2|λH |2v2), and we
used m2

h/v
2 ≃ 1/2 and a Higgs-triplet interaction δL ⊃ λ4∆

†∆H†H.

µL eR

∆

fR fL

H

H H

µL eR

∆

fR fL

H

H H

FIG. 7: Representative diagrams generating scalar four-fermion operators via Higgs exchange. If the model is
matched to SMEFT, the external fermion current f̄f should not be included and the diagrams match onto the

operator O†
EH = H†HēH†ℓ, which generates LFV Higgs couplings. Or the diagrams can be matched directly to a

QED×QCD invariant four-fermion operator.

4. Higgs “penguin diagrams”, as illustrated in Figure 7 and which generated the second line of the previous equation,
can also generate scalar operators involving quarks Q ∈ {d, u, s, c, b}, and other flavours of lepton l ∈ {e, µ}.
They are all suppressed by two Yukawa couplings and a loop:

(Ceµll
SLL, C

eµll
SRR) ∼ −yl

(
[mνm

∗
ν ]µeye, [mνm

∗
ν ]eµyµ

) 3λ4

32π2|λH |2v2

(CeµQQ
SLL , CeµQQ

SRR , CeµQQ
SLR , CeµQQ

SRL ) −yQ

(
[mνm

∗
ν ]µeye, [mνm

∗
ν ]eµyµ, [mνm

∗
ν ]µeye, [mνm

∗
ν ]eµyµ

) 3λ4

32π2|λH |2v2
.

5. Finally, we neglect the tensor operators in this model. The τ -tensors can be induced at two loop, suppressed
by two lepton Yukawas, via Higgs exchange with τ → {e, µ} flavour-changing couplings at both vertices [153]
(e.g. as illustrated in Figure 7).

b. Inverse seesaw matching-to-QED summary

The inverse seesaw is introduced in Section III and the Lagrangian is written in Eq. (III.3). At tree-level, the left
diagram of Fig. 8 gives the following neutrino mass matrix

[mν ]
αβ ≃ [YνM

−1µM−1Y T
ν ]αβv2. (C.5)

In the following we neglect the matching contributions that are ∝ mν , thus suppressed by the small neutrino masses,
and we only consider the insertion of lepton number conserving interactions. The right diagram in Fig. (8) gives
tree-level matching contribution to the SMEFT penguins CHL1,3, contributing to the difference CHL1 − CHL3 but
without modifying the fermion Z couplings ∝ (CHL1 + CHL3). Including the one-loop corrections arising from the
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FIG. 8: Tree level matching diagrams in the inverse seesaw. The left diagram contributes to the Weinberg operator
and gives neutrino masses, while the diagram on the right matches onto the penguin operators OHL1,3.
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FIG. 9: Representative one-loop diagrams contributing to the Z fermion couplings in the inverse seesaw. Additional
topologies are possible.

(representative) diagrams in Fig. 9, we find

(CHL1 − CHL3)αβ =
v2

2
(YνM

−2
a Y †

ν )αβ + one− loop (C.6)

(CHL1 + CHL3)αβ =
v2

384π2
(g′2 + 17g2)(YνM

−2
a Y †

ν )αβ

(
log

(
mW

Ma

)
+

11

6

)
− v2

32π2

(
Yν(Y

†
ν Yν)ab

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
Y †
ν

)
αβ

(C.7)

where g′, g are respectively the hypercharge and SU(2) gauge couplings. The vector four lepton operators get con-

ℓβ

H

H

f f

ℓαN

Z

ℓβ

f f

ℓαN

H−

γ

(a) Z, γ penguin diagram contributing to four-vector operators.

ℓβ

H H

f f

ℓαN N

Z

(b) Penguin diagram proportional to
four neutrino Yukawas contributing

to the four-fermion operators

ℓβ
H

lL

ℓα
H

lL

N N

(c) Box diagrams matching onto
vectors with left-handed leptons

FIG. 10: Matching contributions to flavour changing vector operators in the inverse seesaw. The diagrams are
illustrative and we do not draw all possible topologies

tribution from the γ and Z penguins (Figs 10a and 10b), as well as from box diagrams (Fig 10c) when the external
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FIG. 11: One-loop diagrams matching onto the µ → e dipole in the inverse seesaw. In the right diagram a flavour
changing W coupling arising from the OHL3 operator is inserted between the charged lepton and an active neutrino
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FIG. 12: Diagrams featuring four insertion of the neutrino Yukawas matching on the µ → e dipole. At the leading
order, these arise at dimension eight (left) or at the two-loop level (right)

leptons are left-handed

(Cαβll
V LL, C

αβll
V LR, C

αβll
V RR, C

αβll
V RL) =

1

192π2

(
g′2 + g2

(1 + δαl + δβl)
, g′2, 0, 0

)
× (YνM

−2
a Y †

ν )αβ

(
log

(
mW

Ma

)
+

11

6

)
+ (CHL1 + CHL3)αβ (g

e
L, g

e
R, 0, 0)

+ (1, 0, 0, 0)× 1

64π2

[
Y αa
ν Y ∗βa

ν Y lb
ν Y ∗lb

ν + (1− δαl)(1− δβl)Y
la
ν Y ∗βa

ν Y αb
ν Y ∗lb

ν

]
1

M2
a −M2

b

ln

(
M2
a

M2
b

)
(C.8)

where α, β, l ∈ {e, µ, τ} and α ̸= β. Similarly, the two-lepton two-quark vectors matching conditions are

(CαβQQ
V LL , CαβQQ

V LR , CαβQQ
V RR , CαβQQ

V RL ) =
1

384π2

(
−g′2

3
+ ηQg

2,−2qQg
′2, 0, 0

)
× (YνM

−2
a Y †

ν )αβ

(
log

(
mW

Ma

)
+

11

6

)
+ (CHL1 + CHL3)αβ

(
gQL , g

Q
R , 0, 0

)
(C.9)

where qQ is the electric charge of the Q = u, d quark and ηu = −ηd = 1. We neglect all vectors with right-handed
flavour changing currents because they are suppressed by two insertions of the lepton Yukawas, and arise at dimension
eight or at higher-loops

(CαβQQ
V RR , CαβQQ

V RL ) ∼ (CαβQQ
V LR , CαβQQ

V LL )× yαyβ

{
v2

M2
,

1

16π2

}
(Cαβll

V RR, C
αβll
V RL) ∼ (Cαβll

V LR, C
αβll
V LL)× yαyβ

{
v2

M2
,

1

16π2

}
giving contributions below the future experimental sensitivities. Similar Yukawa suppressions are expected for the
scalar operators, which we neglect.

The dipole receive matching contributions from diagrams involving virtual sterile neutrinos (Fig 11a), as well as
from the exchange of a virtual active neutrino between flavour conserving and flavour changing (∝ CHL3) W couplings
(Fig 11b). The resulting dipole coefficients are

(Ceµ
DL, C

eµ
DR) = −

(
me

mµ

e

32π2
,

e

32π2

)
× v2(YνM

−2
a Y †

ν )eµ (C.10)

As depicted in Fig 12, matching contributions featuring four neutrino Yukawa matrices can emerge either at dimension
eight or via higher-loops. To estimate their magnitude we consider the dimension-six results and account for the
appropriate suppression factors, leading to

(Ceµ
DL, C

eµ
DR)

∣∣∣∣
Y 4
ν

∼
(
me

mµ

e

32π2
,

e

32π2

)
× v2

(
Yν(Y

†
ν Yν)ab

1

M2
a −M2

b

ln

(
M2
a

M2
b

)
Y †
ν

)
αβ

×
{

v2

M2
,

1

16π2

}
.
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Although the dimension-eight and two-loop suppressions are insufficient to push these contributions beyond the reach
of experiments with no further assumption on the neutrino Yukawas, they nonetheless have a negligible impact on
the correlations between µ → e observables that the model can predict.

c. Leptoquark matching-to-QED summary

The leptoquark model is introduced in Section III, and the Lagrangian is given in Eq. (III.5). The S1 leptoquark
alone does not induce neutrino masses; for instance, adding another leptoquark [154], such as an SU(2)-doublet
leptoquark of hypercharge Y=1/6, could generate neutrino masses at one loop via diagrams familiar from R-parity-
violating Supersymmetry [155, 156]. Or, in the presence of a colour-octet Majorana fermion, the S1 leptoquark can
generate neutrino masses at two-loop [44].

At tree level in the model, the leptoquark induces vector, scalar and tensor flavour-changing operators involving
u-type quarks and charged leptons of both chiralities. Then at one-loop, there are various penguin and box diagrams,
which match onto dimension six operators of SMEFT and dimension eight four-fermion operators in SMEFT.

uX

S1

uYµX

uY

µX eX
S1

uY uY

Z

γ

S1

eXµY

H

eXµY

γ

H

FIG. 13: Diagrams matching the S1 leptoquark onto, from left to right, two-lepton two-quark operators (vector for
X = Y , scalar and tensor for X ̸= Y , where X,Y ∈ {L,R}), a Z-penguin contribution to the 2l2u vector operators,
and two diagrams that contribute to the dipole: a finite matching part ∝ λXλ†

Xyµ, and the tensor→ dipole mixing
∝ λY yQλ

†
X .

At tree level in the model, tensor and scalar coefficients involving leptons and up-type quarks arise as
illustrated in Figure 13:

(CeµQQ
TLL , CeµQQ

TRR ) ≃

(
λeQR λµQ∗

L

8
,
λeQL λµQ∗

R

8

)
× v2

m2
LQ

, Q ∈ {u, c, t} (C.11)

(CeµQQ
SLL , CeµQQ

SRR , CeµQQ
SLR , CeµQQ

SRL ) ≃ −

(
λeQR λµQ∗

L

2
,
λeQL λµQ∗

R

2
, 0, 0

)
× v2

m2
LQ

, Q ∈ {u, c, t} (C.12)

The vector 2l2u operators, for Q ∈ {u, c, t}, are

(CeµQQ
V LL , CeµQQ

V RR , CeµQQ
V RL , CeµQQ

V LR ) ≃

(
λeQL λµQ∗

L

2
,
λeQR λµQ∗

R

2
, 0, 0

)
× v2

m2
LQ

(C.13)

+
(
guL(C

eµ
HL1 + Ceµ

HL3), g
u
RC

eµ
HE , guR(C

eµ
HL1 + Ceµ

HL3) , g
u
LC

eµ
HE

)
, (C.14)

where the second line gives the contribution of the Z-penguin for Q ∈ {u, c}(illustrated in Figure 13, and discussed
further in Section C 4), and

∆Ceµ
HL1 = ∆Ceµ

HL3 ≃ − Ncv
2

32π2m2
LQ

(
[λLYu ln

mLQ

mQ
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†
L]
eµ − 5

6
[λLYuY
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†
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)
(C.15)

∆Ceµ
HE ≃ − Ncv

2

16π2m2
LQ

(
[λRY

†
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mQ
YuλR]

eµ − 5

6
[λRY

†
uYuλ

†
R]
eµ

)
. (C.16)
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There is a finite matching contribution to the dipole coefficients, illustrated in Figure 13:

Ceµ
DL ≃

(
e[λRλ

†
R]eµ

128π2
+

3eNcQu

64π2yµ

[
λRYu(mQ)λ

†
L

]
eµ

)
× v2

m2
LQ

(C.17)

Ceµ
DR ≃

(
e[λLλ

†
L]eµ

128π2
+

3eNcQu

64π2yµ

[
λLYu(mQ)λ

†
R

]
eµ

)
× v2

m2
LQ

(C.18)

where the second term is the finite part of the tensor to dipole mixing (represented in the last diagram of Figure 13),
which will be included via the QED RGEs evolving down from mLQ.

µX eX
S1

lY lY

Z

µX

eY

eX

eY
S1 S1

µL

eL

eβ

eσ
∆ H

FIG. 14: Representative diagrams illustrating the Z-penguin and box contribution to vector four-lepton operators,
and the leptoquark-Higgs box that can generate 2l2d operators.

Vector four-lepton operators OV,XY can arise via Z-penguins and boxes, as illustrated in Figure 14, and give

(Ceµll
V LL, C

eµll
V RR, C

eµll
V RL, C

eµ
V LR) ≃

(
geL(C

eµ
HL1 + Ceµ

HL3), g
e
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eµ
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eµ
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HL3) , g
e
LC

eµ
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)
(C.19)

− Ncv
2
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†
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†
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†
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†
R]ll

)
(C.20)

where l ∈ {e, µ, τ}, the first line is the Z-penguin, and the second is the boxes.
Finally, vector operators involving leptons and d-type quarks can arise via Z-penguins and boxes with a

leptoquark and an electroweak boson, which give

(CeµFF
V LL , CeµFF

V RR , CeµFF
V RL , CeµFF

V LR ) ≃
(
g2[λLV ]eF [λLV ]µF∗

32π2
, 0, 0, 0

)
× v2

m2
LQ

ln
mLQ
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(C.21)

+
(
gdL(C

eµ
HL1 + Ceµ

HL3), g
d
RC

eµ
HE , gdR(C

eµ
HL1 + Ceµ

HL3) , g
d
LC

eµ
HE

)
, (C.22)

where F ∈ {d, s, b} and the box has no finite part at dimension six.
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H

H

FIG. 15: Representative diagrams of matching contributions that we neglect, because they are subdominant or
below upcoming experimental sensitivity: from left to right, a Higgs penguin for u quarks (no Higgs self-interaction

is required on the Higgs line for d quarks), and a scalar four-lepton box.

Scalar 2l2d operators can be generated by “Higgs-penguin” diagrams, as illustrated for instance in the first
diagram of Figure 15. There could also be boxes with a leptoquark and a Higgs, but these would be suppressed by a
small quark Yukawa squared, so appear relatively suppressed with respect to the Higgs penguins. Such diagrams can
also contribute to scalar 2l2u operators, which already arise at tree level as given in Eq. (C.12):
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(
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SLR , CeµFF

SRL ) ∼ −2yF
(
Cµe∗
EH , Ceµ

EH , Cµe∗
EH , Ceµ

EH

)
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where F ∈ {d, s, b}, and the lepton-flavour-changing vertex of the Higgs is ∝ Ceµ
EH . This SMEFT coefficient can be

generated at one-loop in the model via various diagrams, and is of order:

Ceµ
EH ≃ Ncv

2

64π2m2
LQ

(
λ4[λLλ

†
LYe]eµ + 4λ4[λLYuλ

†
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LYe]eµ + 4[λLYuY

†
uYuλ

†
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[
1− 2 ln

mLQ

mQ

])
(C.23)

where the final log-enhanced term could apparently be large for top quarks in the loop, but µ → eγ imposes λetL λ
µt
R

<∼
10−2, as discussed in section VC. As a result the Higgs penguin contributions to the scalar 2l2q operators are negligible.

Scalar four-lepton operators also receive contributions from Higgs penguins, which are simple to extrapolate
from the quark results, but not listed because they are negligible due to the lepton Yukawa coupling. For instance, in
the case of Ceµee

S,XX — the scalar four-lepton operator appearing in the Lagrangian of “observables” (II.3) — the Higgs
penguin contribution is ∝ ye so suppressed below the reach of upcoming experiments.

At O(1/m4
LQ), there are log-enhanced box diagrams that generate scalar four-lepton operators (see the right diagram

of Figure 15), with no suppression by small Yukawa couplings when the internal quarks are tops. However, the resulting
coefficients are below the sensitivity of upcoming experiments due to dipole constraints, as discussed in section V C.
Finally, there could be two-loop penguin2 contributions to XY scalars with a τ -bilinear, which are not listed because
they seem suppressed with respect to the “Higgs penguin” contribution in this leptoquark model.

We neglect tensor operators involving a pair of τs, or down-type quarks, because they seem at least as
suppressed as the scalar operators.

4. Penguins

“Penguin” is a widely used word in physics. In this manuscript, “penguin diagrams” are broadly understood to
have the shape illustrated in figure 16: there is a 4-particle interaction mediated by a contact interaction or heavy
particle exchange(illustrated as a grey ellipse), then two of the four legs are closed to a loop. One or several boson
propagator(s) attach to the loop (drawn as an ellipse surrounding a dashed line), and may connect to an external
particle line. This definition includes LFV “Higgs penguins”, which could contribute to the OEH SMEFT operator
which gives flavour-changing Higgs couplings.

FIG. 16: A schematic representation of a “penguin” diagram: the grey ellipse is a heavy particle exchange, the solid
lines are light bosons or fermions,the ellipse containing a dashed line is a SM boson (γ,Z,h), and the dashed lines are

possibly-present light particles.

“Penguin” diagrams are often contributions to Z or γ vertices, in which case the external currents must be vector.
In the case of photon penguins, the loop is ∝ q2 = the four-momentum2 of the off-shell photon, which has a vector
current bilinear at the other end of its propagator, so the diagram contributes to a vector four-particle operator. For
Z penguins, there are two types of diagrams: those ∝ v2, where v = ⟨H0⟩ is the Higs vev, and those ∝ q2.

The curiosity we discuss here arises in SMEFT, where the equations of motion of the Z boson are used to match
the ∝ q2 part of the penguin diagrams onto momentum-independent operators; the coefficients of these operators
must then cancel precisely in low-energy processes to mimic this kinematic suppression as q2 → 0. This occurs in the
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type II seesaw model, where the q2-Z-penguin diagrams give the dominant contribution to flavour-changing Z decays
at the electroweak scale (eg Z → e±µ∓), but a negligible contribution to low-energy observables. This is generically
expected in models where the Z penguin diagrams are ∝ q2, and motivates LHC searches for Z → e±µ∓ [157].

We aim to calculate in EFT the Z-penguin contribution to the low-energy matrix element M(µLuR → eLuR), that
could arise in the leptoquark model or the type II seesaw and contributes to µA →eA. We calculate in three ways: in
the model, by matching directly onto the low-energy QCD×QED-invariant EFT at ΛNP , and by matching to SMEFT
at ΛNP then to the low-energy EFT at the weak scale. The diagrams are illustrated in Figures 17 and 18.

µ e

f

uR
uR

µ e

f

uR
uR

FIG. 17: penguin diagrams in the model and QCD×QED invariant EFT

In the models, there are in principle four diagrams contributing to the “Z-penguin”: the Z attached to either
external fermion, to the internal scalar or to the internal fermion(as illustrated on the left in Figure 17). They give a
log-enhanced contribution to the coefficient of (ēγPLµ)(ūγPRu):

Z−Penguin ∼
∑
f

NcC
eµff
V XY

8π2
[m2

f +O(gfY
q2

2
)] log

ΛNP
mf

g2guR
4 cos2 θW (q2 −m2

Z)
(C.24)

where Nc = 3 for the leptoquark and Nc = 1 for type II, the mass and couplings of the heavy boson are represented
via the vector four-fermion coefficient induced at tree-level Ceµff

V XY , and q2 is the momentum transfer on the Z line. A
better approximation for the lower cutoff of the logarithm would be max{m2

f , q
2
min}, where q2min for µA →eA is m2

µ
13. However, putting mf gives a nicer invariant, and the difference is numerically irrelevant for current experimental
sensitivities. The ∝ q2 part of the matrix element is negligible for low-energy muon processes where q2 ∼ m2

µ, because
m2
µ/(16π

2v2) <∼ 10−8 suppresses the coefficients beneath the reach of upcoming experiments.
In matching the models directly to the QCD×QED invariant EFT, four-fermion operators can be generated by the

heavy New Physics, and also by electroweak bosons of the SM (Z and h). The (log-enhanced part of the) model
amplitude arises in the [dimension 6]2 → dimension eight running of the EFT is represented in the fish diagram to
the right in figure 17. Calculating the fish at zero-external-momentum (because q2 is negligible) gives [158]:

∆Ceµuu
V XR ∼

NcC
eµff
V XYm

2
fg
u
R

8π2m2
LQ

log
ΛNP
mf

(C.25)

where there is a contribution with an mf insertion on both lines connecting the grey bubble to a Higgs, as well as
contributions with two mass insertions on one of the f lines, which combine ∝ |gfR − gfL| = 1.

µ e

f

H H

µ e

f

H H

µ e

f

uR
uR

FIG. 18: SMEFT penguin diagrams.

13 The lower cutoff for the diagram of Figure 17) is neccessarily 2 GeV, because the quarks are matching to hadrons at that scale. However,
below 2 GeV, the u quark can be replaced in the diagram by a proton, and this is equivalent to retaining the u quark, given that the
matching of quark onto nucleon vector currents in the nucleus respects charge conservation.
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Alternatively, one could match the model to SMEFT at ΛNP , run to mW , then match to the QED×QCD-invariant
EFT. The penguin diagrams arise in the SMEFT RGEs as illustrated in Figure 18: the grey blob is a New-Physics
induced vector four-fermion operator which mixes via the first two diagrams into the “penguin operators”, defined as

Oeµ
HL1 = i[(H†DµH)− (DµH)†H](ℓeγ

µℓµ) (C.26)

→
√

g2 + g′2v2Zµ(ℓeγ
µℓµ)

Oeµ
HL3 = i[(H†τaDµH)− (DµH)†τaH](ℓeγ

µτaℓµ) (C.27)

→ −
√

g2 + g′2v2Zµ(ℓeγ
µτ3ℓµ)

Oeµ
HE = i[(H†DµH)− (DµH)†H](eeγ

µeµ) (C.28)

→
√

g2 + g′2v2Zµ(eeγ
µeµ)

where after the arrows are the flavour-changing Z vertices to which the operators reduce when the Higgs gets a vev
(so a = 3 in the triplet case, where ⟨H†τ3H⟩ = −v2), and we used Zµ = −sWBµ + cWWµ

3 , where sW = sin θW =

g′/
√
g2 + g′2 and 2m2

Z = (g2 + g
′2)v2. In the SMEFT RGEs, the grey blob also mixes via B and W0 exchange

(which can be written as γ and Z exchange by a basis rotation) into other four-fermion operators, as illustrated by
the last diagram of figure 18. Then at the weak scale, the penguin and four-fermion operators of SMEFT match onto
four-fermion operators in the low-energy theory. The component ∝ m2

f of the penguin matrix element of Eqn (C.24)
corresponds to the first diagram of Figure 18, induces the SMEFT penguin operators, and therefore a four-fermion
operator at low-energy. However, the ∝ q2 component of matrix element in the model generates both the penguin
operators and four-fermion operators. These coefficients will cancel in low energy four-fermion processes, as one can
see by using the equations of motion for the Z :(q2 − m2

Z)Z
µ = − g

2cW

∑
f g

f
X(fXγµfX) (which apply in “on-shell”

bases such as SMEFT) in calculating the contribution of a Z vertex ∝ q2 to the S-matrix element ⟨eff̄ |S|µ⟩:

(ēγµµ)q
2 −i

q2 −m2
Z

−igfXg

2cW
(fXγµfX) = (ēγµµ)

{
m2
Z

−i

q2 −m2
Z

−igfXg

2cW
−

gfXg

2cW

}
(fXγµfX)

where fX is a chiral SM fermion.
So all the calculations give the same result, but in SMEFT, the kinematics of the matrix element is modified by

using the equation of motion to reduce the operator basis. That is, the ∝ q2 part of the Z penguin diagrams vanishes
as q2 → 0 via an increasingly precise cancellation between the penguin and four-fermion operators. This illustrates
that models can “naturally” engineer very precise cancellations among operator coefficients.
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