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Abstract: We examine the physical significance of torsion co-cycles in the cohomology of a

projective Calabi-Yau three-fold for the (2,2) superconformal field theory (SCFT) associated

to the non-linear sigma model with such a manifold as a target space. There are two indepen-

dent torsion subgroups in the cohomology. While one is associated to an orbifold construction

of the SCFT, the other encodes the possibility of turning on a topologically non-trivial flat

gerbe for the NS-NS B-field. Inclusion of these data enriches mirror symmetry by providing

a refinement of the familiar structures and points to a generalization of the duality symme-

try, where the topology of the flat gerbe enters on the same footing as the topology of the

underlying manifold.
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1 Introduction

Consider the compactification of type IIA string theory on a smooth projective Calabi-Yau

(CY) 3-fold X. It is a textbook fact that such a compactification preserves 8 supercharges

in 4 dimensions, and its massless spectrum is characterized by the Hodge numbers h1,2(X)

and h1,1(X). In the same hypothetical textbook we also find the statement that there may

be another CY 3-fold X◦, with h1,2(X◦) = h1,1(X) and h1,1(X◦) = h1,2(X), such that

compactification of IIB string theory on X◦ leads to an isomorphic theory in four dimensions.

At the heart of this remarkable duality is closed string mirror symmetry: an isomorphism

of two superconformal field theories: the (2,2) superconformal field theory (SCFT) C[X] based

on a non-linear sigma model (NLSM) with target space X and another (2,2) SCFT C[X◦]

based on a NLSM with target spaceX◦. The exchange of the Hodge numbers is the most basic

and familiar aspect of mirror symmetry. It has an immediate and satisfying reflection in the

SCFT: h1,2(X) encodes the number of exactly marginal operators with charges qL = qR = 1

with respect to the U(1)L×U(1)R R-symmetry of the SCFT (these are the “cc deformations”),

while h1,1(X) encodes the exactly marginal operators with charges −qL = qR = 1 (these are

the “ac deformations”). Integrating these deformations we obtain the conformal manifold
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M(X) = Mcc(X) × Mac(X) of the SCFT, where each factor is a special Kähler manifold

with respect to the Zamolodchikov metric.

The present work is devoted to topological invariants encoded in the integral cohomology

of X beyond the Hodge numbers: in particular the torsion subgroups. Poincaré duality and

the universal coefficient theorem reduce these to two independent groups. We follow [1] and

denote these by

A(X) = {H2(X,Z)}tor and B(X) = {H3(X,Z)}tor . (1.1)

Each of these has a clear role in the quantum field theory associated to the NSLM with target

space X: A(X) encodes an abelian global symmetry present for all points in M(X), while

B(X) encodes the possibility of turning on a topologically non-trivial gerbe for the B-field.

Our goal is to describe the role these groups play in closed string mirror duality, and our

main conclusion is that their inclusion requires us to broaden the framework for the mirror

correspondence: rather than being merely decorations on top of the textbook duality, their

presence can lead to new dual pairs.

Before describing the physics of the closed string sector associated to A(X) and B(X),

we point out what we might expect about their mirror duals. The intuition from Calabi-Yau

manifolds in higher dimension [2], as well as K3 mirror symmetry [3], is that we should think

of the mirror action not just on the Hodge numbers but rather on the total cohomology. At

the level of integral cohomology of CY 3-folds this suggests the isomorphism of abelian groups

Heven(X,Z) ≃ Hodd(X◦,Z), which implies

A(X)⊕B(X)∗ ≃ B(X◦)⊕A(X◦)∗ , (1.2)

where for any finite abelian group G we denote its Pontryagin dual—defined below—by G∗.

We will mostly work with examples where A(X) ≃ B(X◦) and B(X) ≃ A(X◦) separately,

and in fact one of the pairs is trivial, but such a refined isomorphism does not hold in

general [4, 5]. We will show that (1.2) is a consequence of open mirror symmetry for X and

X◦. This comes about through the relationship between A(X) and B(X) and the torsion

subgroups {K0(X)}tor and {K1(X)}tor of the K-theory groups, which classify the charges of

torsional D-branes on X [6–9].

Returning to the closed string sector, the significance of A(X) is fairly clear from its

interpretation as the Pontryagin dual of the abelianization of the fundamental group π1(X).

Since we can construct X as a quotient X/Γ, where X is an isometric universal cover of

X that admits the free action of a group Γ ≃ π1(X), C[X] is an orbifold conformal field

theory: C[X] = C[X]/Γ. If X has a known mirror X◦ we can find a theory C◦
with a global

symmetry Γ◦ isomorphic to Γ such that C◦
/Γ◦ = C[X◦]. When Γ is finite and abelian, this

follows from standard properties of the quantum symmetry associated to an abelian orbifold,

but for more general finite groups it requires a categorical symmetry construction—reviewed
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and axiomatized in [10, 11].1 In either case, however, there is no guarantee that C◦
can be

presented as C[Y ] for some CY Y ; as we show, even when it can be so presented, the action

of the group Γ◦ may not have a geometric interpretation.

The relationship between B(X) and the B-field flat gerbe is through the exact sequence

0 H2(X,R)/H2(X,Z) H2(X,U(1)) B(X) 0 . (1.3)

The middle term has the intuitive interpretation as a choice of phases assigned by the NLSM

path integral to topological sectors labeled by the homology classes [f(Σ)] ∈ H2(X,Z), where
f : Σ → X is the map from the worldsheet Σ to the target space X. Thus B(X) describes the

equivalence classes of flat gerbes with respect to shifts of B—the connection on the gerbe—by

closed 2-forms.

Such flat but topologically non-trivial gerbes deserve attention for a number of reasons.

First, they are examples of flux vacua where stringy effects are under control because a flat

B-field gerbe is naturally incorporated in the NLSM, and there is no issue in including it in a

Ramond–Neveu-Schwarz formulation of the string worldsheet. This should be contrasted with

Ramond-Ramond (RR) flux backgrounds, for which it is notoriously difficult to incorporate

stringy corrections. RR fluxes, even when they they are flat, play an important and yet

mysterious role in string duality [14, 15], as well as in fixing certain geometric parameters,

for instance in the context of frozen singularities in F/M theory [16–18]. In some situations

a choice of such flat RR flux can be understood as the S-dual of a flat B-field gerbe [19], and

the freezing of the geometric parameters shown explicitly in the worldsheet theory. We can

therefore hope that lessons from flat gerbes, combined with string duality, can shed light on

flat RR backgrounds. In addition, as shown in the recent work [20, 21], certain limiting points

in Mac(X) can be described as a singular space X ′ equipped with a flat B-field gerbe, and the

gerbe ensures that the SCFT remains smooth, despite the conifold singularities of X ′. Thus,

flat gerbes arise naturally in the context of (2,2) SCFTs with a geometric interpretation.

The flat gerbe also plays a dramatic role in mirror symmetry. Let us denote by C[X,β],
with β ∈ B(X), the theory obtained by turning on a flat gerbe. Given that C[X◦] is isomorphic

to C[X], is there an operation that can be performed on C[X◦] to obtain the mirror of C[X,β]?
If such an operation exists, it may not be possible to describe it in terms of geometric or non-

linear sigma model structures. For example, a mirror description of C[X,β] may be of the

form C[Y ◦, β◦], where Y ◦ is topologically distinct from the original mirror X◦.

The previous discussion involves two concepts in the original and mirror descriptions:

orbifold theories related to a non-trivial A(X), and flat gerbes related to a non-trivial B(X).

There are intriguing and partially–understood relations between these notions. For example,

turning on certain flat gerbes in a theory with an orbifold presentation can be associated to

a choice of discrete torsion in the orbifold construction. This observation and its relation to

1If Γ is of infinite order, then X is a quotient of T 6 or K3×T 2 by a freely–acting group, and the possibilities
are classified in [12]. These theories should be considered in its own right for many purposes, including mirror
symmetry, which is now inherited from simpler operations in the cover [13].
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mirror symmetry go back to [22], and efforts to explore and extend it to general mirror pairs

include [1, 23–28]. We will use the relationship between the flat gerbe and a choice of discrete

torsion to construct explicit mirror pairs C[X,β] and C[Y ◦, β◦] in the context of the classic

mirror construction of [29].

The rest of this article is organized as follows. In section 2 we review the essential

topology and geometry underlying our subsequent discussion, and we show that (1.2) follows

from the isomorphism of K-groups of the mirror manifolds. Next, in section 3 we tackle the

discussion of A(X) and its role in mirror symmetry. Section 4 deals with gerbes and mirror

constructions with discrete torsion, and we conclude with a discussion and further directions

in section 5.
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2 A review of topology and geometry

Let X be a Calabi-Yau manifold of complex dimension d.2 That is, X is a compact Kähler

manifold with H i(X,OX) = 0 for 0 < i < d, while H0(X,OX) and Hd(X,OX) are each

isomorphic to C. It follows from Yau’s theorem that X admits a Ricci-flat metric g with

holonomy group Hol(g) ⊆ SU(d).

We will now review some standard results from algebraic topology and geometry regarding

these spaces that are often omitted in discussions of mirror symmetry. Although no doubt

known to the experts, it is perhaps useful for many readers (and certainly for the authors) to

state these facts before we launch into an exploration of their significance in the NLSM, the

SCFT, and in mirror duality.

2.1 Holonomy and the fundamental group

The holonomy group Hol(g) has a normal subgroup Hol0(g) ⊂ Hol(g) generated by the null-

homotopic loops, and there is a surjective homomorphism π1(X) → Hol(g)/Hol0(g). The

2There are a few slightly different definitions of Calabi-Yau manifolds, and we choose one that is general
enough to cover the examples of interest to us, while excluding special cases like T 6. Our presentation of the
geometry mostly follows [30] and [31], to which we refer the reader for further discussion and references.
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topology of X is constrained by the Cheeger-Gromoll theorem—which applies to complete

manifolds with non-negative Ricci curvature (a pedagogic presentation is given in [31])—and

its specialization to the case of Kähler Ricci-flat metrics [32]. The results relevant for us are

as follows:

1. the fundamental group π1(X) has a finite normal subgroup F such that π1(X)/F is

a crystallographic group, i.e. a discrete co-compact subgroup of Rk ⋊ O(k) for some

k ≤ dimX;3

2. when (X, g) is Kähler and Ricci flat, its universal cover (X, g) is isomorphic, as a

Kähler manifold, to a product Ck ×
∏
i Yi ×

∏
j Zj , where each (Yi, gi) is a compact

Kähler simply-connected manifold with Hol(gi) = SU(ni), and each (Zj , gj) is a compact

hyper-Kähler simply-connected manifold with Hol(gj) = Sp(mj).

It follows that Calabi-Yau 3-folds can be organized in three distinct families.

i. X is a simply-connected Calabi-Yau 3-fold with Hol(g) = SU(3). In this case Hol(g) =

SU(3) as well, and π1(X) is a finite group. There are many constructions and a belief

that there is a finite number of topological types of such manifolds, but to date no proof

of such a finiteness result.

As an example we can take X to be quintic hypersurface in P4, where the defining

equation is tuned to be invariant under a G = Z5 action on the projective coordinates

with generator

g : [Z0 : Z1 : Z2 : Z3 : Z4] 7→ [Z0 : ζ5Z1 : ζ
2
5Z2 : ζ

3
5Z3 : ζ

4
5Z4] , (2.1)

with ζk = e2πi/k a primitive k-th root of unity. The action has 5 fixed points in P4, where

all but one of the projective coordinates Zi is zero, but these are missed by a generic

G–invariant hypersurface.4 Since the G-action on X is free, we have π1(X) = G = Z5.

The integral cohomology groups of X are given by [1]:

H0(X) = Z , H2(X) = Z⊕ Z5 , H4(X) = Z , H6(X) = Z ,

H1(X) = 0 , H3(X) = Z2+2×21 , H5(X) = Z5 , (2.2)

from which we also read off h1,1 = 1 and h1,2 = 21; the former is the Kähler deformation

inherited from the quintic, and the latter are 21 complex structure deformations, each

of which can be represented by a deformation of the G–invariant polynomial. With our

definition of the independent torsion subgroups we have A(X) = Z5, and B(X) = 0. We

will return to this example repeatedly in what follows.

3This statement is slightly different but equivalent to the one given in [31]. We find it more illuminating,
as it directly shows the role of the isometry group of Rk in the universal cover of X. Further details can be
found in [33].

4One does not have to look far for a representative smooth hypersurface: the Fermat quintic does the job.
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ii. X = K3×C. Unlike in the first class, π1(X) is infinite. This time Hol0(g) = SU(2), and

G = Hol(g)/Hol0(g) is a finite group. There is a classification of such quotients, and it is

known that there are 8 deformation families [12].

A familiar example is the Enriques manifold made famous in string theory by [14] and

studied in detail in [4]:

X2 = ((K3)× T2)/Z2 , (2.3)

where the action of G = Z2 on a point (p, z) ∈ K3×T is a combination of the freely-acting

Enriques involution σ on K3 and reflection in the T2:

(p, z) 7→ (σ(p),−z) . (2.4)

The fundamental group is π1(X2) = Z2 ⋊ Z2, and Hol(g) = SU(2)⋊ Z2.

The integral cohomology is [4]

H0(X2) = Z , H2(X2) = Z11 ⊕ (Z2)
3 , H4(X2) = Z11 ⊕ Z2 , H6(X2) = Z ,

H1(X2) = 0 , H3(X2) = Z2+2×11 ⊕ Z2 , H5(X2) = (Z2)
3 , (2.5)

leading to h1,1(X2) = h1,2(X2) = 11, A(X2) = (Z2)
3, and B(X) = Z2.

X2 is self-mirror, and we note that its cohomology is consistent with (1.2) .

iii. X = C3. Now X is a compact flat manifold with holonomy Hol(g) = G, a finite sub-

group of SU(3) with finite centralizer in SU(3). The properties and classification of such

manifolds are reviewed in [34], and a compact flat manifold necessarily has an infinite

fundamental group which cannot contain a finite subgroup [35]. Such manifolds are clas-

sified and come in 6 deformation families [12] (this result is also implicit in the orbifold

classification [36]).

As a working example we take the manifold studied in detail in [5]:

X3 = (T2 × T2 × T2)/(Z2 × Z2) , (2.6)

where the action of the generators of G = Z2 × Z2 on the three complex coordinates of

the elliptic curves is

g1 : (z0, z1, z2) 7→
(
z0 +

1
2 ,−z1,−z2

)
,

g2 : (z0, z1, z2) 7→
(
−z0, z1 + 1

2 ,−z2 +
1
2

)
. (2.7)

It is not hard to check that this action is free and projects out H1(T6,Z), leading to

h1,1(X3) = h1,2(X3) = 3, while π1(X3) = Γ is a crystallographic group that fits into the
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exact sequence

0 Z6 Γ G 0 , (2.8)

where Z6 ⊂ Γ is generated by elements k[m0,m1,m2] with action

k[m0,m1,m2] : (z0, z1, z2) 7→ (z0 +m0, z1 +m1, z2 +m2) , (2.9)

where ma ∈ Λa ⊂ C are lattice vectors of the form ma = ma1 + τama2, and τa specifies

the complex structure of the a-th elliptic curve.

The integral cohomology is given by

H0(X3) = Z , H2(X3) = Z3 ⊕ (Z4)
2 ⊕ (Z2)

3 , H4(X3) = Z3 ⊕ (Z2)
3 , H6(X3) = Z ,

H1(X3) = 0 , H3(X3) = Z2+2×3 ⊕ (Z2)
3 , H5(X3) = (Z4)

2 ⊕ (Z2)
3 , (2.10)

so that A(X3) = Z2+2×3 ⊕ (Z2)
3, while B(X3) = (Z2)

3.

Like X2, X3 is self-mirror, and its cohomology is consistent with (1.2).

Similar statements can be made for CY d-folds with d > 3, at the price of additional compli-

cations and increasing ignorance. At any rate, the 3-fold case is the first non-trivial situation,

since d = 2 is more properly considered as a hyper-Kähler geometry.

A comment on isometries

The isometry group of X is also strongly constrained. Suppose X is a compact manifold

with a smooth metric g. The group of isometries GX,g of (X, g) is a compact Lie group, and

its Lie algebra is isomorphic to the Lie algebra of Killing vector fields. If Ric(g) ≤ 0, then

every Killing vector field is parallel, and the identity component of GX,g is isomorphic to a

torus of dimension k ≤ dimX; the orbits foliate M into a parallel family of flat tori. When

k > 0 π1(X) is necessarily infinite because the first Betti number is b1(X) = k, and therefore

{H1(X,Z)}free ≃ Zk. The conditions are stronger if X is also Kähler [37]. In that case every

Killing vector field is automorphic, meaning it preserves the complex structure. Now the

Lie algebra of Killing vector fields is isomorphic to a complex torus T2k, and M is foliated

into a parallel family of flat complex tori; b1(X) = 2k, as it should be on a compact Kähler

manifold. While the existence of a Killing vector necessarily implies that π1(X) is infinite,

the converse need not be true.

2.2 Cohomology, duality, homotopy, and Wall’s theorem

Since all of our manifolds are compact and oriented, it follows that H2d(X,Z) = Z, and

{H2d−1(X,Z)}tor = 0, while their integral homology and cohomology groups are related by

Poincaré duality and the universal coefficients theorem [38]. The former yields the isomor-

phism

Hk(X,Z) ≃ H2d−k(X,Z) , (2.11)
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while the latter leads to a relationship between the torsion subgroups that involves Pontryagin

duality:

{Hk(X,Z)}tor ≃ {Hk−1(X,Z)}∗tor . (2.12)

Using these results and our definition, we find that the integral cohomology takes a universal

form for all CY 3-folds:

H0(X) = Z , H2(X) = Zh
1,1(X) ⊕A(X) , H4(X) = Zh

1,1(X) ⊕B(X)∗, H6(X) = Z ,

H1(X) = 0 , H3(X) = Z2+2×h1,2(X) ⊕B(X) , H5(X3) = A(X)∗ , (2.13)

so that the torsion subgroups satisfy

{Heven(X)}tor = A(X)⊕B(X)∗ , {Hodd(X)}tor = A(X)∗ ⊕B(X) . (2.14)

Pontryagin duals

We recall that the Pontryagin dual G∗ of a finite abelian group G is simply the set of ir-

reducible representations, with identity element corresponding to the trivial representation.

Equivalently,

G∗ = Hom(G,U(1)) . (2.15)

Any finite abelian group can be brought to the form G = Zk1 ⊕ Zk2 ⊕ · · · ⊕ ZkN , with ki
dividing ki+1. Denoting the elements of G by a = (a1, . . . , aN ), with ai ∈ Z/kiZ, we take

G∗ to have elements b∗ = (b∗1, . . . , b
∗
N ), with bi ∈ Z/kiZ, and the two are related through the

non-degenerate pairing

e2πi⟨b
∗,a⟩ : G∗ ×G→ U(1) , ⟨b∗,a⟩ =

N∑
i=1

(
b∗i ai
ki

−
[
b∗i ai
ki

])
, (2.16)

where [x] denotes the integer part of x. This pairing has the structure of a discrete Fourier

transform, and it is non-degenerate because∑
b∗∈G∗

e2πi⟨b
∗,a⟩ = |G|δa,0 . (2.17)

Higher homotopy groups

Recall the relationship between the fundamental group and integral homology: if Γ = π1(X),

and Γab = Γ/[Γ,Γ] is its abelianization, then H1(X,Z) = Γab. When X is simply connected,

we have the Hurewicz theorem: if πi(X) is trivial for all 0 < i < k, then πk(X) = Hk(X,Z).
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When X is not simply connected, there is a short exact sequence [39]

0 π2(X) H2(X,Z) H2(π1(X),U(1)) 1 , (2.18)

and this has an important implication for worldsheet instanton sums of the non-linear sigma

model path integral described in (3.1) below.

Wall’s theorem

The last classic result we wish to review is due to Wall [40], which characterizes the diffeomor-

phism classes of closed, oriented, simply-connected, smooth, spin manifolds M of dimension

6 and torsion-free homology. The statement is that the diffeomorphism classes of such M are

in bijection with isomorphism classes of systems of invariants that consist of the following

data:

1. two free abelian groups H = H2(M,Z) and G = H3(M,Z);

2. a symmetric trilinear map µ : H ×H ×H → Z;

3. a homomorphism p1 : H → Z ,

subject to, the requirement that for all x, y ∈ H

µ(x, x, y) = µ(x, y, y) mod 2 , p1(x) = 4µ(x, x, x) mod 24 . (2.19)

In applications to physics there are two aspects of this result that should be borne in mind.

First, it only applies to simply-connected CY 3-folds without torsion in homology, and does

not describe the diffeomorphism classes of the manifolds of interest to us in this work. While

we can always eliminate torsion in H1 by working with the universal cover X, there is not

an obvious way to eliminate torsion in H2. Second, we know that while two CY 3-folds X1

and X2 might belong to distinct diffeomorphism classes, the associated SCFTs may either be

isomorphic—for instanceX1 andX2 may be a mirror pair, or they may be smoothly connected

in the SCFT moduli space: there may be a path in Mac that connects C[X1] and C[X2] via

a finite length curve, even though the geometries have inequivalent triple pairings. The flop

transitions and their generalizations provide an example of the second phenomenon [41].

2.3 Torsion in K-theory

Our main interest in this work is in the closed string sector of the string theory compactified

on X and the associated worldsheet SCFT defined on compact Riemann surfaces without

boundary. It is not easy to understand the physical significance of a mirror relation such

as (1.2) from this point of view. But, there is much more to mirror symmetry in the full

string theory, where it is a conjectured equivalence of IIA string theory compactified on X

with IIB string theory compactified on X◦. In this section we will show that this stronger

equivalence implies (1.2).
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Consider the spectrum of D-branes—we think of these as particles in the four-dimensional

spacetime—in IIA on X, where the closed string background has no topologically non-trivial

gerbe for the B-field nor any topologically non-trivial Ramond-Ramond fluxes. In that sit-

uation a D-brane configuration is partially classified by an element in the K-theory group

K0(X) [6].5 That is, there is a D-brane for every element in K0(X), but in general to

completely describe the state requires more refined information.6 In particular, the torsion

subgroup {K0(X)}tor ⊂ K0(X) classifies the torsion branes, which should be stable (though

non-BPS) objects in the full string theory. Similarly, the torsion branes of the IIB string

theory on X◦ are classified by {K1(X◦)}tor, and therefore mirror symmetry implies

{K0(X)}tor ≃ {K1(X◦)}tor . (2.20)

In the rest of this section we will show that this statement, when combined with some standard

results from the algebraic topology of spin manifolds of dimension 6, leads to (1.2).

The starting point is the observation that when X is a Calabi-Yau 3-fold, the Atiyah-

Hirzebruch spectral sequence [44] can be used to relate the torsional cohomology subgroups

to the torsional K-theory subgroups [1, 8]:

0 A(X)∗ {K1(X)}tor B(X) 0 ,

0 B(X)∗ {K0(X)}tor A(X) 0 .
c1

(2.21)

We will now see that wheneverX is a spin manifold of dimension 6 there are also isomorphisms

{K0(X)}tor ≃ A(X)⊕B(X)∗ , {K1(X)}tor ≃ A(X)∗ ⊕B(X) ; (2.22)

in other words, both sequences in (2.21) split.

Observations on K0(X)

K0(X) classifies (virtual) complex vector bundles X, and its relation with even cohomology

Heven(X,Z) is given by the set-theoretic map

f : V ∈ K(X) → (rk(V ), c1(V ), c2(V ), c3(V )) ∈ ⊕3
i=0H

2i(X,Z) , (2.23)

where ci is the i-th Chern class, and rk(V ) is the rank of the bundle. Here we want to

understand the inverse by characterizing the elements in Heven(X,Z) that are in the image

of this map f , or, equivalently, by determining which elements in Heven(X,Z) could come

5To our knowledge there is still no complete understanding of how to generalize this statement in the
presence of topologically non-trivial (even if flat) Ramond-Ramond fluxes. A review of the proposal and its
generalization to backgrounds with a non-trivial B-field gerbe is given in [42].

6For example in topological string theory this refined information is encoded by the categorical objects of
homological mirror symmetry [43].
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from an element in K-theory. The result is (see eq 4.27 of [45]) : the image of f is given by

elements (r, c1, c2, c3) ∈ ⊕3
i=0H

2i(X,Z) that satisfy7

c1 ∪ c2 + Sq2c2 + c3 = 0 mod 2 . (2.24)

We now make the following observations.

• The elements (r ∈ Z, 0, 0, 0) ∈ Heven(X,Z) can be realized by a rank r trivial virtual

vector bundle, and hence belong to the image of f .

• The elements (0, ω ∈ H2(X,Z), 0, 0) can be realized by a virtual bundle of the form

Lω ⊖ O, where O a trivial line bundle and Lω is a line bundle with c1(Lω) = ω, and

since the classes satisfy (2.24), they belong to the image of f .

• The elements of (0, 0, υ ∈ H4(X,Z), 0) can be realized by a virtual bundle of the form

Eυ ⊖O⊕rk(Eυ), where Eυ is a vector bundle with c1(Eυ) = 0, c2(Eυ) = υ, and c3(Eυ) = 0.

Such a class is in the image of f because for X spin, Sq2υ = w2(X) ∪ υ = 0.

• The element (0, 0, 0, ρ ∈ H6(X,Z)) can be realized by a virtual vector bundle if and

only if ρ = 0 mod 2; e.g. c3(Op) = 2 for a skyscraper sheaf on CY threefolds.

Putting together these observations, we see that the map f is almost surjective, with the

only subtlety being the restriction ρ = 0 mod 2. However, when we restrict to the torsion

subgroups, this subtlety disappears because {H6(X,Z)}tor = 0. For the same reason the

constraint (2.24) becomes trivial, so that restricting the map f to the torsion subgroups we

obtain the surjective set-theoretic map

f0 : {K0(X)}tor → A(X)⊕B(X)∗ . (2.25)

This is not yet enough to demonstrate that the sequence for {K0(X)}tor splits. The desired

splitting is equivalent to the existence of a group homomorphism h : A(X) → {K0(X)}tor
such that c1(h(ω)) = ω for all ω ∈ A(X). We have not succeeded in showing directly that

h exists, as it seems to depend on a certain quadratic refinement in torsional cohomology.

Instead, we will see that its existence follows from the properties of K1(X) and a perfect

pairing between the torsion K-groups.

Observations on K1(X)

Next, we turn to K1(X), which is by definition given by the reduced K̃0(ΣX),8 where ΣX

is the reduced suspension of X.9 The same condition (2.24) still constrains the map f :

7Here Sq2 is one of the Steenrod cohomology operations; see sect 4.1 of [45] for an excellent introduction.
8Roughly speaking, reduced K0(X) is given by virtual vector bundles on X with rank 0. A more precise

definition, closely related to that of reduced homology, is given in [46].
9ΣX is a standard construction in algebraic topology obtained as follows: starting with the space X× [0, 1]

and a point x0 ∈ X, we identify three classes of points: (x, 0) ∼ (y, 0), (x, 1) ∼ (y, 1), and (x0, a) ∼ (x0, b) for
all x, y ∈ X and all a, b ∈ [0, 1] [38].
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K̃0(ΣX) → Heven(ΣX,Z), and just as above we find that all elements of the form (0, ω, 0, 0)

in Heven(ΣX,Z) have a pre-image in K̃0(ΣX). The remaining elements require extra care,

and to handle these we use the Atiyah-Hirzebruch spectral sequence for K1(X):10

0 H5(X,Z) K1(X) H3(X,Z) 0 . (2.26)

Since Hk(X,Z) ≃ Hk+1(ΣX,Z) for k > 0, we obtain

0 H6(ΣX,Z) K1(X) H4(ΣX,Z) 0 .
c2 (2.27)

We want to argue that for every υ ∈ H4(ΣX,Z) there exists a virtual bundle Eυ ∈ K̃0(ΣX) ≃
K1(X) such that c2(Eυ) = υ, c1(Eυ) = 0, and c3(Eυ) = 0. We cannot just apply the previous

argument to reach this conclusion, because ΣX need not be a manifold, and therefore the

concept of spin need not be well-defined. Instead we consider the following diagram:

H3(X,Z) H4(ΣX,Z)

H5(X,Z2) H6(ΣX,Z2)

S

Sq2 Sq2

S

, (2.28)

where S is the isomorphism induced by the suspension. The desired result now follows from

two observations: (i) since X is spin Sq2 = 0 on H3(X,Z); (ii) the Steenrod square operation

is stable with respect to suspension [47].

Let h′ : H4(ΣX,Z) → K1(X) be the map h′(υ) = Eυ. Then

h′(υ1 + υ2) = Eυ1+υ2 , h′(υ1)⊕ h′(υ2) = Eυ1 ⊕ Eυ2 . (2.29)

But, now, since

c(Eυ1+υ2) = 1 + υ1 + υ2 = c(Eυ1 ⊕ Eυ2) , (2.30)

we see that h′(υ1) ⊕ h′(υ2) and h′(υ1 + υ2) are equivalent in K1(X). Thus, h′ is a group

homomorphism, and because c2(h
′(υ)) = υ, it gives the desired splitting of the sequence.

Taking the torsion subgroups, we therefore have

{K1(X)}tor = A(X)⊕B(X)∗ . (2.31)

Returning to our discussion of {K0(X)tor, we recall that there is a perfect pairing (see

section 3.1 of [48]):

{K0(X)}tor × {K1(X)}tor → U(1) . (2.32)

10We used H1(X,Z) = 0 to obtain this. More details are given in [8].
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This means {K0(X)}tor is the Pontryagin dual to K1(X), and therefore

{K0(X)}tor = A(X)∗ ⊕B(X) . (2.33)

3 Orbifolds, covers, and mirrors

In this section we examine the role of A(X) = {H2(X,Z)}tor in the SCFT C[X]. We will

show that it has a physical interpretation as the quantum symmetry of an orbifold SCFT.

3.1 Intuition from the non-linear sigma model

Let X be a simply-connected Calabi-Yau 3-fold equipped with a metric g and flat gerbe

β ∈ H2(X,U(1)). When X is smooth, we can hope to define the SCFT C[X], at least in a

large volume limit, by a NLSM of maps from the worldsheet Σ → X. At string tree-level

we take Σ = P1. The NLSM path integral then breaks up into topological sectors labeled

by π2(X), and since X is simply-connected, it follows from (2.18) that we can equivalently

label the topological sectors by classes in H2(X,Z). Formally, the NLSM partition function

is given by

Z[Σ;X, g, β] =
∑

C∈H2(X,Z)

∫
[f(Σ)]=C

[DfDψ]e−S[X,g;f,ψ]

× exp

[
2πi

(∫
Cf

f∗(βf) + ⟨Ct, βt⟩
)]

. (3.1)

Here ψ refers to the worldsheet fermion degrees of freedom, while S is the usual (2, 2) super-

symmetric action for a non-linear sigma model with Kähler target space.11 Our main interest

is the phase factor in the second line that encodes the dependence of the theory on the gerbe.

To give an explicit form of the gerbe phase factor we chose a basis for

H2(X,Z) = Zh
1,1(X)︸ ︷︷ ︸
∋Cf

⊕B(X)∗︸ ︷︷ ︸
∋Ct

, (3.2)

and a dual basis for H2(X,U(1)), so that β is represented by the pair β = (βf, βt), with

βf ∈ H2(X,R)/H2(X,Z), while βt ∈ B(X). The first term in the phase is the familiar

worldsheet coupling to a closed B-field, while the second one uses the Pontryagin pairing to

encode the additional phase that depends on the torsion cycle Ct ∈ H2(X,Z) and on βt.
12

Giving a rigorous definition of this path integral and showing that the resulting theory

is conformal remains an outstanding challenge. However, there is substantial circumstantial

11We will not need explicit details of this action, but they can be found in many reviews and textbooks,
e.g. [49, 50]. The references also review the evidence for the existence of these quantum field theories.

12This presentation that keeps track of the torsion cycles goes back to [25]. Recently it played a role in the
study and definition of refined Gopakumar-Vafa invariants and their relations to exotic gauged linear sigma
model phases [20, 21]. More generally such couplings should be understood in the language of differential
cohomology—see, for example, [51].
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evidence that the path integral exists, and it leads to families of SCFTs of central charge

c = c = 9 labeled by a choice of complexified Kähler class βf + iJ ∈ H2(X,C)/H2(X,Z) and
complex structure on X. When X is smooth, the NLSM becomes weakly coupled as J is

taken to be deep in the interior of the Kähler cone of X. This is the large volume limit.

Although so far we have only discussed the path integral with worldsheet Σ = P1, for our

closed string applications we need to define it more generally on any closed Riemann surface

Σg. This requires a choice of spin structure for the fermions, and by summing appropriate

combinations of these, we can obtain modular invariant partition functions. Of particular

importance is the theory on Σ1 = T2, where a modular-invariant partition function can be

obtained by taking the usual diagonal modular invariant with a non-chiral GSO projection

in the NS-NS and R-R sectors [52, 53].

3.2 A NLSM orbifold

If (X, g) has a non-trivial isometry group GX,g, then by the results reviewed above GX,g is

necessarily finite. Let Γ ⊂ GX,g be a freely-acting subgroup of Kähler isometries, i.e. Γ

preserves the metric and the complex structure on X. Although initially just defined on

the bosonic degrees of freedom, we can extend the action of Γ to the left- and right-moving

fermions in a symmetric fashion, and if we choose the gerbe to be trivial, i.e. βf = 0 and

βt = 0, then we expect that Γ will be a symmetry of the NLSM, and therefore of the SCFT

C[X]. We can then attempt to construct the orbifold SCFT C[X]/Γ by introducing twisted

sectors labeled by the conjugacy classes of Γ and projecting to Γ–invariant states. In doing

so, we encounter a number of potential subtleties:

1. Γ may have ‘t Hooft anomalies that prevent us from gauging it, but since our action is

defined symmetrically on the left- and right-moving degrees of freedom, we do not expect

to encounter this difficulty: there should be a regularization scheme that explicitly

preserves the Γ symmetry.

2. In order to embed this SCFT construction in a supersymmetric string theory we need

Γ to preserve (2,2) supersymmetry and integrality of the U(1)L × U(1)R charges in

the NS-NS sector. Because Γ preserves the Kähler structure, the preservation of (2,2)

supersymmetry is guaranteed, but the integrality of R-charges may indeed be violated.

For example, this happens if X is a K3 surface and Γ = Z2 is the group generated by

the Enriques involution. However, when X is a CY 3-fold every freely-acting Kähler

isometry preserves the holomorphic 3-form on X, and therefore we expect the orbifold

to maintain the requisite charge integrality. Further discussion of this point is given

in [54].

3. Although orbifold CFTs can be constructed quite generally at the abstract level [10, 11],

an explicit description of the twisted sectors is not straightforward. However, with

a path integral presentation, the twisted sectors amount to specifying the boundary

conditions on the NLSM fields, as was originally discussed in [53, 55, 56] .
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4. There is an ambiguity in the action of Γ on the twisted Hilbert spaces which can lead

to several inequivalent orbifold theories. This ambiguity is encoded in the choice of

discrete torsion [57]13 — a phase factor in the orbifold partition function defined on

the worldsheet Σ1 = T2, a torus with complex structure parameter τ and modular

parameter q = e2πiτ . Let Θ denote the set of conjugacy classes θ of Γ, and for each

θ ∈ Θ let N (θ) ⊂ Γ be the stabilizer subgroup. For each θ ∈ Θ we have a twisted

Hilbert space Hθ, and for each γ ∈ N (θ) a unitary operator Uθ(γ) that represents the

action of N (θ) on Hθ. The orbifold partition function takes the form

ZΓ(τ , τ ) =
∑
θ∈Θ

1

|N (θ)|
∑

γ∈N (θ)

ε(γ, γθ) TrHθ

(
Uθ(γ)q

L0−c/24qL0−c/24
)
, (3.3)

where L0 and L0 are the usual Virasoro generators, γθ is any group element in the

conjugacy class θ, and the phase ε(γ1, γ2) ∈ H2(Γ,U(1)) is the discrete torsion of [57],

which must satisfy

ε(γ1γ2, γ3) = ε(γ1, γ3)ε(γ2, γ3) , ε(γ1, γ2)ε(γ2, γ1) = 1 , ε(γ1, γ1) = 1 (3.4)

for all γ1, γ2, γ3 ∈ Γ. We see that ε(γ, γθ) only depends on the conjugacy class of γθ.

The expression simplifies considerably when Γ = G is abelian, and since that will be

our main focus, we give the expression now, using our notation for abelian groups from

above (2.16):

ZG(τ , τ ) =
1

|G|
∑

a,b∈G
ε(b,a)Zb

a(τ , τ ) ,

Zb
a(τ , τ ) = TrHa

(
Ua(b)q

L0−c/24qL0−c/24
)
. (3.5)

5. In the context of the orbifold of the NLSM for a target space X by a group of Kähler

isometries Γ, we should also discuss the role of the flat gerbe. The first point is that

if the gerbe is non-zero, then the Γ action should preserve the gerbe structure in order

to be a symmetry of the NLSM. Moreover, if the gerbe is topologically non-trivial, i.e.

βt ̸= 0, a more careful discussion of potential anomalies in gauging Γ is necessary. When

βt = 0 a sufficient condition for Γ to be a symmetry group of the NLSM is that for

every γ ∈ Γ, with corresponding diffeomorphism φγ : X → X, the gerbe connection βf
represented by a closed 2-form satisfies

φ∗
γ(βf)− βf ∈ H2(X,Z) . (3.6)

The second point is that in taking the orbifold we have the possibility of introducing a Γ-

13In modern terminology this can be understood as data needed to determine the “orbifolding defect” in
the language of [58] or including an additional TFT in the construction [11, 59].
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equivariant gerbe structure [19, 27, 28] to modify the orbifold theory. The modifications

include the introduction of discrete torsion, but they also go beyond it: for example,

the orbifold may admit a non-trivial equivariant gerbe even when H2(Γ,U(1)) is trivial.

Suppose now that we have a NLSM for a simply-connected target space X with βt = 0 and a

finite freely-acting symmetry Γ just as above. Then, starting with the SCFT C[X] with the

global symmetry Γ, we construct the orbifold C[X]/(Γ, ε). When X is large and smooth, the

resulting theory has a geometric interpretation as C[X,βt], where X = X/Γ is the smooth

geometric quotient, and βt is the topologically non-trivial gerbe on X that encodes the choice

of discrete torsion ε.

The orbifold SCFT is naturally equipped with a global symmetry—the so-called quantum

symmetry [60], which acts by phases on the twisted sectors. This group is Γq ≃ (Γab)
∗, where

Γab = Γ/[Γ,Γ], and comparing to our geometric discussion from above, we recognize its

geometric significance. Since π1(X) ≃ Γ, it follows that H1(X,Z) ≃ Γab, and the torsion

subgroup A(X) ⊂ H2(X,Z) is the quantum symmetry

A(X) = Γq . (3.7)

When Γ = G is abelian, in which case Gq = G∗, the action on the twisted sectors is expressed

via the Pontryagin pairing of (2.16): for every b∗ ∈ G∗ we have the action

b∗ : |ψ⟩ → e2πi⟨b
∗,a⟩|ψ⟩ , for all |ψ⟩ ∈ Ha . (3.8)

The quantum symmetry puts the orbifold theory on the same footing as the parent

theory: we can recover C[X] as C[X] = (C[X]/G)/Gq by gauging the quantum symmetry Gq

of the orbifold C[X]/G. The equivalence can be seen at the level of the partition function as

a consequence of a discrete Fourier transform. Starting with (3.5), the partition function for

(C[X]/G)/Gq is

Z ′ =
1

|Gq|
∑

a∗,b∗∈Gq

1

|G|
∑

a,b∈G
e2πi(⟨a

∗,a⟩+⟨b∗,b⟩)ε(b,a)Zb
a = Z , (3.9)

and the last equality follows by exchanging the order of summation. Note that we recover the

original partition function for any choice of discrete torsion in the original quotient because

ε(0, 0) = 1. It is also possible to recover the original theory for a general non-abelian quotient

by Γ by gauging a suitable categorical symmetry in the orbifold [11].

Moduli and twisted strings in CY orbifolds

Our discussion so far has not touched on aspects of the quotient particular to theories with

(2,2) superconformal invariance preserved by the gauging. Because the action is free, the

orbifold twisted sectors do not introduce new marginal deformations, and instead the moduli

space Mcc(X) × Mac(X) is obtained by restricting Mcc(X) × Mac(X) to the Γ–invariant
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locus. Moreover, the correlation functions on Σ = P1 of the Γ–invariant operators from the

untwisted sector remain unmodified.14 Thus, the chiral ring structure is also inherited from

the parent theory.15 We also note that since all marginal deformations are uncharged with

respect to Γq, the quantum symmetry remains unbroken for all points in the moduli space.

Since Γ acts freely, we also have the relationship between the dimensions of the spaces

given by the Euler number, which satisfies

χ(X) = 2(h1,1(X)− h1,2(X)) = |Γ|χ(X) = 2|Γ|(h1,1(X)− h1,2(X)) . (3.10)

This implies that such orbifolds can lead to CY 3-folds with small Hodge numbers, and ever

since [62] there has been a substantial effort to characterize these free quotients. Some results

and classifications are given in [63–66].

While the twisted sectors do not contain additional marginal deformations, they do con-

tain non-BPS states that describe strings that wrap the non-contractible cycles of π1(X).

These “winding modes” are charged under the quantum symmetry of the orbifold, and of

course they are very massive when X is large, with a mass proportional to the R/ℓ2s, where

R is the length of the cycle and ℓs is the string length.

So, the upshot is that we understand the significance of the torsion subgroup A(X) ∈
H2(X,Z). Its presence indicates that the SCFT C[X] has a global symmetry at every point

in its moduli space, and gauging this symmetry recovers the SCFT based on the universal

cover X. Note that the symmetry action is intrinsically stringy because only winding strings

are charged with respect to it.

3.3 Mirror symmetry

Having described the role of the group A(X) in C[X], we now turn to its interpretation in the

mirror description, and we begin with an example: a Z5 quotient of the quintic described in

section 2.1, and its mirror.

A glimpse of toric geometry and linear sigma models

Let X be a generic hypersurface in V = P4. Its mirror X
◦
is a quintic hypersurface in a toric

variety V ◦ obtained by a resolution of singularities in P4/(Z5)
3. The relationship between

the SCFTs can be understood in terms of the Batyrev construction [67] nicely reviewed

in [68], which specifies the data for a pair of two-dimensional gauged linear sigma models

(GLSMs) [69, 70] that flow at low energy to isomorphic SCFTs.16 After recalling the key

14This “orbifold inheritance principle” is reviewed in [61].
15This has the implication that “chiral rings do not suffice” to distinguish (2,2) SCFTs [23]. When

H2(π1(X),U(1)) ̸= 1 the sequence (2.18) implies that there are homology cycles that cannot be represented
by spheres embedded in X. And thus, even though the chiral ring of X is just inherited by restricting that of
X, there can be higher genus correlation functions that distinguish the C[X] from the parent theory.

16We resist the temptation to launch into a detailed review of toric geometry. Additional details and
references can be found in [71], whose notation we follow closely in what follows. A comprehensive and
comprehensible treatment of toric geometry is given in [72].
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aspects of that construction, we will see that it also allows us to understand the quotient and

its mirror.

The combinatorial data for the gauge theory is encoded in a dual pair of reflexive poly-

topes ∆◦ ⊂ NR and ∆ ⊂MR, where N andM are dual lattices, each isomorphic to Zd (for our
3-fold examples d = 4) and embedded in a Euclidean space NR = N ⊗ZR and MR =M ⊗ZR.
For our quintic example these polytopes have vertices given by the columns of Vert∆◦ and

the rows of Vert∆, with

Vert∆◦ =
(
ρ0 ρ1 · · · ρ4

)
=


−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

 , Vert∆ =


v0
v1
v2
v3
v4

 =


−1 −1 −1 −1

4 −1 −1 −1

−1 4 −1 −1

−1 −1 4 −1

−1 −1 −1 4

 . (3.11)

∆◦ has no additional non-zero lattice points, while ∆ has a total of 126 lattice points.

We obtain a fan ΣV for a toric variety V by taking the cones over the faces of ∆◦

and choosing a maximal projective subdivision. Such a subdivision requires that the one-

dimensional cones, i.e. the rays in ΣV , include every non-zero lattice point in ∆◦. We denote

those lattice points by ρ ∈ (∆◦∩N)\{0}. The toric variety V can be presented as a quotient

V =
Cn \ F
GC

, (3.12)

where n = |(∆◦ ∩N)| − 1. The exceptional set F is fixed by the choice of maximal projective

subdivision, and the quotient group GC is determined by the short exact sequence

1 GC (C∗)n TN 1 ,R (3.13)

where TN = N ⊗Z C∗ ≃ HomZ(M,C∗) can be identified with the algebraic torus contained

as a dense subset in V , and the map R is determined by the lattice points ρ. It follows that

GC is the complexification of an abelian group G ≃ U(1)n−d ×K, where K is a finite abelian

group.

The linear sigma model is obtained as follows. There are n (2,2) chiral superfields Zρ,

and these are minimally coupled to n− d abelian vector multiplets, with charges determined

by G. We introduce an additional chiral superfield Φ0 with gauge charges chosen such that

Φ0
∏
ρ Zρ is gauge-invariant, and we set the chiral superpotential to be

W = Φ0P (Z) , P (Z) =
∑

m∈∆∩M
αm

∏
ρ

Z⟨m,ρ⟩+1
ρ . (3.14)

The αm are generic complex coefficients, and ⟨m, ρ⟩ denotes the pairing between the M and

N lattices. The remaining term in the Lagrangian is the twisted chiral superpotential, which

is linear in the gauge-field strengths of the vector multiplets and introduces n − d Fayet-
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Iliopoulos parameters rα complexified by n− d θ-angles θα. The theory has a non-anomalous

U(1)L × U(1)R R-symmetry, and for a suitable choice of the rα, it is believed to flow at low

energy to the same fixed point as the NLSM based on the CY hypersurface X defined by the

locus

X = {P (Z) = 0} ⊂ V . (3.15)

Mirror symmetry is the assertion that an isomorphic SCFT arises as the low energy limit

of the linear sigma model obtained by exchanging the roles of ∆◦ and ∆. In the mirror theory

the non-zero lattice points of ∆ determine the toric variety V ◦, while the lattice points of

∆◦ determine the monomials used to construct the mirror hypersurface X
◦
= {P ◦ = 0} ⊂

V ◦. The construction naturally incorporates the monomial–divisor mirror map [73], which

identifies a subset of complexified Kähler deformations—the “toric” deformations obtained

by varying the complexified FI parameters of the linear sigma model, with a subset of the

complex structure deformations of the mirror—the “polynomial” deformations obtained by

varying the coefficients of monomials in the chiral superpotential.17

An example of a quotient and its mirror

Having glanced at the essential features of the Batyrev mirror symmetry, we proceed to

study our example. Starting with the mirror pair X, X
◦
, we observe that we can tune the

coefficients αm for the quintic polynomial in P4 so that the linear sigma model (and the

geometry) acquires an additional G = Z5 symmetry, which acts by phases as in (2.1). The

action on a monomial corresponding to lattice pointm ∈ ∆ is to multiply it by a phase ζ
⟨m,ρg⟩
5 ,

where ρg = ρ1+2ρ2+3ρ3+4ρ4. We saym is a G–invariant lattice point if ⟨m, ρg⟩ = 0 mod 5,

and it is not hard to see that there are 26 of these. They consist of the origin, the vertices

v0, . . . , v4, as well points contained in the relative interior of dimension 2 faces Fabc

Fabc = {tava + tbvb + tcvc | ta,b,c ≥ 0 , ta + tb + tc = 1} , (3.16)

17A recent discussion of these deformations and the fate of the remaining non-toric/non-polynomial ones
can be found in [74].
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with each Fabc containing precisely 2 invariant lattice points in the interior. For example, we

have the face F012

••••••

•••••

••••

•••

••

•

•v0

•v2

• v1

•x012

•
y012

(3.17)

where we marked in red the invariant lattice points, and the blue indicates a triangulation

that we will discuss presently.

Once we set αm = 0 for all non-invariant lattice points and keep the remaining αm generic,

we obtain a family of quintic hypersurfaces X ⊂ P4, each with a freely-acting isometry G.

The moduli space of these theories has the form Mac(X) × Mcc(X)G, where the subscript

indicates that we restrict to the G–invariant locus in the quintic moduli space. Note that

this places no restriction on the complexified Kähler parameter. Taking the quotient, we

obtain our example X with h1,1(X) = 1, h1,2(X) = 21, A(X) = G∗, and B(X) = 0. By the

arguments in the previous section the SCFT moduli space is given by Mac(X)×Mcc(X) =

Mac(X)×Mcc(X)G.

To understand the mirror of this procedure, we follow the same steps. First, mirror sym-

metry implies that there is a locus in the complexified Kähler moduli space of X
◦
, where the

SCFT acquires an additional global symmetry G◦ ≃ G, and we have the mirror isomorphism

Mac(X
◦
)G◦ ≃ Mcc(X)G. The variety X is necessarily singular, as can be seen from (3.17).

This follows because now that we interpret ∆ as the polytope that leads to the fan ΣV ◦ , we

see that this fan includes many full-dimensional cones that do not generate the full lattice:

each non-zero lattice point in ∆◦ corresponds to a toric divisor, and by restricting to the

invariant lattice points we have blown down all but the ones associated to the red points

in (3.17). Nevertheless, mirror symmetry implies that the SCFT remains smooth, and the

orbifold by G◦ leads to the mirror X◦.

As we will see, the action of G◦ does not have a simple geometric interpretation. In a

sense this is perhaps to be expected, since the action is defined on X
◦
— a singular space

on the G◦–invariant locus in Mac(X). However, we will now show that it can be understood

as a quantum symmetry of an orbifold that does have a simple geometric interpretation. To

see this, we will use toric morphisms to describe the mirror dual of the quantum symmetry

(Gq)
◦.
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An aside on toric morphisms

We follow the presentation in chapter 3 of [72] but express the results in homogeneous coor-

dinates which are more appropriate for our discussion.

Let V be a toric variety determined by a fan Σ ⊂ N , but suppose that the generators

of Σ in fact belong to a finite index sub-lattice N ′ ⊂ N , with |N/N ′| > 1. The embedding

L : N ′ → N determined by writing the generators of N ′ in terms of those of N gives a map

Λ : TN ′ → TN , and this leads to a relationship between the toric varieties V = VΣ⊂N and

V ′ = VΣ⊂N ′ . Each of these has a presentation as a holomorphic quotient of the form (3.12),

and the two quotients only differ in the group actions, which are related by

1 G′
C (C∗)n, TN ′ 1

1 GC (C∗)n TN 1 .

R′

id Λ

R=ΛR′

(3.18)

We see that GC = G′
C×kerΛ, and therefore the two toric varieties are related by V = V ′/ kerΛ.

The dual of A(X) = Gq

Applying this now to our example, we observe that by restricting m to the invariant lattice

points, we obtain a polytope ∆′ ⊂M ′ ⊂M , where the lattice M ′ is generated by the lattice

points v0, v1, v2 and the y012 and x012 marked in (3.17). This is an index 5 embeddingM ′ ⊂M

given by

L =


v0
v1
x012
y013

 =


−1 −1 −1 −1

4 −1 −1 −1

2 0 −1 −1

1 −1 0 −1

 . (3.19)

It is easy to see that the vertices of ∆′ belong to M ′ since

Vert∆L
−1 =


1 0 0 0

0 1 0 0

−1 −3 5 0

−2 −2 0 5

2 4 −5 −5

 (3.20)

is an integral matrix, and it is also possible to check that a lattice point in ∆ is invariant if

and only if it belongs to M ′.18 Setting N ′ to be the dual lattice to M ′, we now obtain the

dual polytope ∆′◦ ⊂ N ′
R, and it turns out to be a lattice polytope with 6 lattice points and

18To carry our this computation we used the LatticePolytope package in SageMath [75].
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vertices given by the columns of

Vert∆′◦ =


−1 4 −1 −1 −1

−1 −1 4 −1 −1

−1 0 2 0 −1

−1 1 1 −1 0

 . (3.21)

Thus, ∆′ ⊂M ′ and ∆′◦ ⊂ N ′ are a reflexive polytope pair, from which we can again construct

a pair of GLSMs for the mirror pair of theories. These turn out to be our example X from

section 2.1, and its mirror X◦. Moreover, we gave the explicit toric morphism associated to

the embedding L :M ′ →M which shows X
◦
= X◦/ kerΛ.

To summarize, X◦ is a smooth Calabi-Yau hypersurface, and the group kerΛ ≃ Z5 is

a Kähler isometry of X◦. This action has a non-empty fixed locus, and quotient is the

orbifold space X
◦
obtained from a generic mirror quintic X by tuning the complexified Kähler

parameters to the G◦–invariant locus. In the SCFT this is the statement

C[X◦]/(Gq)
◦ = C[X◦

] . (3.22)

This orbifold has additional 80 marginal (a,c) deformations in the twisted sectors charged

with respect to the quantum symmetry of C[X◦]/(Gq)
◦, and by our general orbifold discussion

above, this symmetry is G◦.

The mirror of A(X)—general story

Our example is an explicit realization of a general phenomenon, where mirror symmetry can

be used to relate the torsion group A(X) to a global symmetry in the mirror description.

Suppose X and X◦ are a mirror pair of smooth Calabi-Yau 3-folds, and π1(X) = G is a finite

abelian group. X has a universal cover X with a group G of Kähler isometries such that

C[X] has G as a global symmetry group on an appropriate locus in the SCFT moduli space.

We denote this restriction by the notation C[XG]. If we suppose further that X has a known

mirror X
◦
, we can use the mirror isomorphism to obtain a family of mirror theories C[(XG)

◦]

with a global symmetry G◦ ≃ G.19 We then obtain the following diagram relating various

SCFTs:

C[XG] S[(XG)
◦] ≃ C[X◦]/(Gq)

◦

C[X] C[X◦]

µ

/G /G◦

µ

Gq=A(X) (Gq)◦

(3.23)

19Our abstruse notation C[(XG)
◦] denotes the family of SCFTs mirror to the family C[XG]. As the example

already shows, it need not correspond to any smooth geometry, and, indeed, it need not have a geometric
interpretation at all, since the G—invariant locus may not contain a large complex structure point.
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Here µ and µ denote the mirror maps, and we have the relationships

G◦ = {µgµ−1 | g ∈ G} , (Gq)
◦ = {µgµ−1 | g ∈ Gq} . (3.24)

In our explicit example we found that the mirror dual of A(X)—a non-geometric sym-

metry of C[X]—is a geometric symmetry of C[X◦]. The general structure and the special

features of the example lead to a number of additional questions. For instance, the states

charged with respect to A(X) are string winding modes, and intuition from T-duality would

suggest that their duals are some “momentum” states that could perhaps be represented by

eigenmodes of an appropriate Laplace operator defined on X◦ and graded by representations

of the geometric symmetry (Gq)
◦. It would be useful to make this correspondence precise;

perhaps it can be explored using recent advances in numeric methods for CY geometry such

as [76, 77]. Further work is also needed to study the correspondence when π1(X) is non-

abelian, where more sophisticated categorical methods would need to be used to recover the

“upstairs” SCFTs from C[X] and C[X◦].

4 Flat gerbes and discrete torsion

In this section we turn to the situation whereX is simply connected butB(X) = {H3(X,Z)}tor
is non-trivial. As a working example we can take the CY X◦ of the previous section with

h1,1(X◦) = 21 and h1,2(X◦) = 1, for which B(X◦) = Z5. The computation of B(X◦) was

carried out in [1] as part of a study of integral cohomology of CY 3-fold hypersurfaces in toric

varieties.20 We saw that B(X◦) ̸= 0 means that the theory can be deformed by turning on a

non-trivial gerbe, a choice of βt ∈ B(X◦). The intuition from the path integral suggests that

in the large radius limit we might think of a number of distinct complexified Kähler cones

with continuous parameters βf + iJ ∈ H2(X◦,C) and distinguished by βt [25]. This leads to

a number of questions, including:

1. if we have an orbifold construction as in (3.23), can we understand the choice of βt as

a modification of the orbifold C[X◦
]/G◦?

2. more generally, given a mirror pair X,X◦, what is a mirror description of (X◦, βt ̸= 0)?

Perhaps the first thought that comes to mind regarding the first question is the introduc-

tion of discrete torsion in the orbifold. This cannot be the case for our example because

H2(Z5,U(1)) = 1. Another possible answer to the first question can be given in the context

of a GLSM construction: we might guess that there is a choice of discrete θ-angle that could

account for the introduction of βt. This possibility was recently discussed in [21], and there

20In that reference it was observed that hypersurfaces with non-trivial torsion subgroups are quite sparse,
and in the enormous list of 473 800 776 families there are just 32 examples with torsion subgroups. Moreover,
these come in 16 mirror pairs, where each pair (X,X◦) consists of a manifold with A(X) ̸= 0 and B(X) = 0,
while A(X◦) = 0 and B(X◦) ≃ A(X). The examples of section 2.1 show that this kind of simple relationship
does not hold in general for CY 3-folds.
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are certainly examples that involve GLSM orbifolds where this is indeed realized [78]. In the

latter case, these angles arise as follows. Let tα be the complexified FI parameters of the

GLSM, and suppose that the theory is invariant under an action of g ∈ G provided that we

transform the tα by a linear transformation

g : tα →
∑

β R(g)
β
αtβ . (4.1)

By tuning the tα to the locus preserved by all g ∈ G we ensure that G is a symmetry of

the theory, and we can take the quotient of the GLSM by G. However, because the tα are

periodic with tα ∼ tα+2πNα, for Nα ∈ Z, we can potentially obtain a number of inequivalent

solutions by finding integers Tα(g) such that for each g we have

tα −
∑

β R(g)
β
αtβ = Tα(g) , (4.2)

where Tα(g) is defined modulo the equivalence

Tα(g) ∼ Tα(g) +Nα −
∑

β R(g)
β
αNβ . (4.3)

We applied this idea to the specific example of the X
◦
GLSM, where we used the monomial–

divisor mirror map to give an explicit action of G◦ = Z5 on the complexified FI parameters,

and we found that, at least in this example, there are no non-trivial solutions for the Tα. If

there is indeed a choice of discrete θ–angle, its appearance must be a more subtle phenomenon.

To tackle the second question we will turn to a specific mirror construction relevant for

X and X◦: the original Greene-Plesser duality [29], where the SCFTs for X and X◦ are

realized as an isomorphic pair of (2,2) Gepner models. We will see that C[X◦] is presented as

a Z5×Z5 orbifold of the quintic theory, and the choice of βt can be identified with the choice

of discrete torsion. Our next steps therefore are to review [29] and to generalize those results

to include non-trivial discrete torsion phases.

4.1 Greene-Plesser mirrors via Landau-Ginzburg orbifolds

Recall that (2,2) Gepner models [79, 80] are orbifolds of products of (2,2) minimal models

taken so as to preserve modular invariance and the U(1)L × U(1)R charge integrality in the

NS-NS sector necessary for spacetime supersymmetry.21

A single minimal model

Rather than working directly with the abstract SCFT, we find it convenient to phrase the

construction in terms of a Landau-Ginzburg orbifold (LGO) by using the correspondence

between the Ad−2 minimal model and a (2,2) Landau-Ginzburg theory [82, 83] with a single

chiral superfield X and superpotential interaction W = Xd. This theory is believed to flow

21While we will only discuss the A-series, the extension to all minimal models is known, and there are
classification results relevant for string compactification going back to [81].
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to the Ad = Ad−2 minimal model22 with central charges c = c = 3(1 − 2/d), and it has

a symmetry G = Zd, which acts non-chirally in the NS-NS sector by a · X = e2πia/dX.

The SCFT has a trivial (a,c) ring, while the (c,c) ring is isomorphic to the quotient ring

R = C[X]/⟨Xd−1⟩ determined by the superpotential.

For any (2,2) SCFT with c = c and dqL, dqR ∈ Z we define the Poincaré polynomial as a

trace over the Hilbert space of (c,c) operators Hcc [84]:

M cc(t, t) = TrHcc

(
tdJ0t

dJ0

)
. (4.4)

For the single minimal model

M cc(t, t) = 1 + (tt) + · · ·+ (tt)d−2 =
1− (tt)d−1

1− (tt)
. (4.5)

Using the (non-chiral) spectral flow we obtain the Poincaré polynomial for the RR ground

states, which we denote by M(t, t), as

M(t, t) = (tt)−dc/6M cc(t, t) . (4.6)

The duality of [29] is based on the observation that the minimal model Ad has a discrete

Zd symmetry, and taking an orbifold by this symmetry leads to an isomorphic SCFT, denoted

by Aorb
d , with the isomorphism being exactly the reversal of the sign of U(1)L charge. Using

the results of [85] we obtain the Poincaré polynomials of the LG orbifold by the symmetry G:

Morb(t, t) =
1

d

∑
a,b∈G

M b
a(t, t) , (4.7)

where the twisted Poincaré polynomials defined by

M b
a = TrHrr

a
Ua(b)t

dJ0t
dJ0 (4.8)

have the explicit expressions23

M b
0 = (tt)−dc/6ζbd

1− (ttζbd)
d−1

1− ttζbd
, M b

a̸=0 = (tt)−dc/6(tt
−1

)a−d[a/d]t−1t
d−1

. (4.9)

Using these expressions it is easy to see that

Morb(t
−1, t) =M(t, t) , (4.10)

and this is the realization at the level of Poincaré polynomials of the isomorphism Ad ≃ Aorb
d ,

which flips the sign of the left-moving R-charge, and identifies the symmetry Zd of Ad with

22We denote the Ad−2 model by Ad to avoid the −2 offset in the usual minimal model notation.
23We recall our notation: ζd is a primitive d-th root of unity, and [x] denotes the integer part of x.
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the quantum symmetry of Aorb
d = Ad/Zd.

Gepner orbifolds

Consider now a product of d copies of the LG theory just discussed. This will have central

charge

c = c = 3(d− 2) , (4.11)

so that for d = 5 we obtain the c = c = 9. Although this is our ultimate interest, we will keep

d general with the hope of clarifying aspects of the construction. With the superpotential

W =

d∑
i=1

Xd
i (4.12)

the theory has a global symmetry group that includes G0 = (Zd)d, the group of all phase

symmetries with action

a ·Xi = ζaid Xi (4.13)

for a = (a1, . . . , ad). G0 contains the subgroup F1 ≃ Zd generated by f1 = (1, 1, . . . , 1) ∈ G0,

and taking the orbifold by F1 leads to a (2,2) theory with integral U(1)L ×U(1)R charges in

the NS-NS sector—for d = 5 this is the quintic theory at the Gepner point. From [29] we also

know that there is a larger subgroup G ≃ (Zd)d−1 with F1 ⊂ G ⊂ G0, such that the orbifold of

the theory by any subgroup of G leads to a (2,2) theory with integral U(1)L×U(1)R charges,

and for d = 5 these correspond to different quotients of the quintic and their mirrors. A way

to characterize G is as the largest subgroup of G0 such that all elements a = (a1, a2, . . . , ad)

satisfy ∑
i ai = 0 mod d . (4.14)

For our purposes it will be useful to characterize G by using an explicit isomorphism between

the group G0 and its Pontryagin dual, given by

φ : G0 → G∗
0 , φ(a1, . . . , ad) = (a1, . . . , ad) . (4.15)

For any subgroup F ⊂ G0 we have the image φ(F ) ⊂ G∗
0. The group G can then be defined

as

G = {a ∈ G0 | ⟨φ(f1),a⟩ = 0} . (4.16)

More generally, for any F ⊂ G0 we define F ◦ ⊂ G0 by

F ◦ = {a ∈ G0 | ⟨φ(b),a⟩ = 0 for all b ∈ F} , (4.17)
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and whenever F obeys the inclusions F1 ⊆ F ⊆ G, F ◦ also satisfies the same inclusions.

Thus, the orbifolds by phase symmetries that lead to (2,2) SCFTs with integral U(1)L×U(1)R
charges come in pairs F, F ◦, and mirror symmetry is the isomorphism Ad/F

◦ ≃ Ad/F .

We now review the proof of this isomorphism, using the RR Poincaré polynomials as a

proxy for the full partition function of the SCFT. The essential step is to establish the identity

(Aorb
d )d/φ(F ) = (Ad)

d/F ◦ . (4.18)

Because G∗
0 is the quantum symmetry of the orbifold theory (Aorb

d )d, the Poincaré poly-

nomial for (Aorb
d )d/φ(F ) is

Zorb
φ(F )(t, t) =

1

|φ(F )|
∑

a∗,b∗∈φ(F )

1

|G0|
∑

a,b∈G0

ζ
⟨a∗,a⟩+⟨b∗,b⟩
d

d∏
i=1

M bi
ai (t, t) . (4.19)

Performing the sum on the elements of φ(F ) and using (4.17), we see that the only terms

with non-zero contributions are those with a, b ∈ F ◦, and each non-zero term comes with a

multiplicity of |φ(F )|2. Since |φ(F )| = |G0|/|F ◦|, we obtain

Zorb
φ(F )(t, t) =

1

|F ◦|
∑

a,b∈F ◦

d∏
i=1

M bi
ai (t, t) , (4.20)

but this is exactly the Poincaré polynomial for (Ad)
d/F ◦, so that (4.18) holds.

Mirror symmetry now follows because of the minimal model isomorphism Ad ≃ Aorb
d ,

and we obtain

ZF (t
−1, t) = ZF ◦(t, t) . (4.21)

4.2 Quintic quotients

Applying this to the case of the quintic with d = 5, we obtain the following table of Hodge

numbers and symmetry actions. For each symmetry F ⊂ G0 we list the generators as rows,

and the Hodge numbers in the left-hand column are relative to the quotient (A5)
5/F . Of

course the quotient with respect to F ◦ yields the reversed Hodge numbers.

A comment on symmetries

The last column in the table describes a part of the global symmetry of the orbifold theory.

The parent LG theory has a global discrete symmetry G = S5⋉G0, with G0 = (Z5)
5. Taking

the quotient by F reduces these symmetries to N (F )/F , where N (F ) is the normalizer

subgroup

N (F ) =
{
g ∈ G | gfg−1 ∈ F for all f ∈ F

}
. (4.22)
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h1,2, h1,1 F F ◦ K(F ) = K(F ◦)

101, 1 F1 :
(
1 1 1 1 1

)
F ◦
1 :


1 1 1 1 1
4 1 0 0 0
4 0 1 0 0
4 0 0 1 0

 S5

49, 5 F2 :

(
1 1 1 1 1
0 0 0 1 4

)
F ◦
2 :

1 1 1 1 1
4 0 1 0 0
3 0 0 1 1

 S3 × Z2

21, 1 F3 :

(
1 1 1 1 1
0 1 2 3 4

)
F ◦
3 :

1 1 1 1 1
1 3 1 0 0
3 1 0 0 1

 Z5 ⋊ Z4

17, 21 F4 :

(
1 1 1 1 1
0 1 1 4 4

)
F ◦
4 :

1 1 1 1 1
0 4 1 0 0
3 1 0 0 1

 Z4 ⋊ Z2

Table 1. Quintic Gepner quotients and their symmetries. The first column lists the Hodge numbers
for the quotient by F , and the last column lists the subgroup of the permutation group of the parent
theory that survives as a global symmetry in the orbifold. Notice that F ◦

1 = G—the maximal group
of phase symmetries consistent with integral U(1)L ×U(1)R charges.

Let R(σ) : S5 → GL(5,Z) be the standard 5-dimensional representation of the symmetric

group, so that the group product on G has the form (σ1,a1)(σ2,a2) = (σ1σ2,a2 + a1R(σ2)).

Because S5 has trivial center, we find

N (F ) = K(F )⋉G0 , (4.23)

where

K(F ) = {σ ∈ S5 | fR(σ) ∈ F for all f ∈ F} . (4.24)

We then see that N (F )/F ≃ K(F )⋉G0/F . We determined K(F ) for each of the quotients

in the table, and we verified that, as might expected by mirror symmetry, K(F ) ≃ K(F ◦).

What is the discrete symmetry of the orbifold theory? A naive guess is that it is simply

the product of the symmetry group that survives the quotient, i.e. N (F )/F , and the quantum

symmetry F ∗:

Gorb(F )
??
= (K(F )⋉G0/F )× F ∗ . (4.25)

Taking a look at the definitions above, we see that F ∗ = G∗
0/φ(F

◦). Since we have K(F ) ≃
K(F ◦), the result is almost mirror symmetric, except that the permutation action commutes

with the quantum symmetry in our naive guess. A simple way to obtain a mirror-symmetric
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expression is to modify the guess to

Gorb(F )
?
= K(F )⋉ (G0/F × F ∗) = K(F )⋉ (G0/F ×G∗

0/φ(F
◦)) . (4.26)

Let a∗, b∗ ∈ F ∗ be a background for the quantum symmetry, so that

ZF (t, t;a
∗, b∗) =

1

|F |
∑

a,b∈F
ζ
⟨a∗,a⟩+⟨b∗,b⟩
5

d∏
i=1

M bi
ai (t, t) . (4.27)

We then see that σ ∈ K(F ) does induce an action on the pair (a∗, b∗) as implied by (4.26).

As pointed out in [86], the symmetry of the orbifold theory can be very intricate, and

the Gepner quotients, together with their mirrors, provide a rich set of examples where this

symmetry structure can be explored in some detail. A detailed study of some Gepner models

has been carried out recently in [87], with intriguing applications to other SCFTs obtained

by deforming away from the Gepner point by marginal deformations. It should be possible

to extend that treatment to other Gepner quotients, such as the ones described here, and to

study implications of Gorb(F ) and its non-invertible extensions for the deformed theory. We

leave that extension for future work.

Discrete torsion

Returning now to our main thread, we observe that for most of the quotients in our table

H2(F,U(1)) ̸= 1, and there is a possibility of turning on discrete torsion ε(b,a), which we

parameterize as

ε(b,a) = ζ
λ(b,a)
5 , (4.28)

where λ(b,a) is an integer satisfying

λ(b,a) = −λ(a, b) mod 5 ,

λ(b1 + b2,a) = λ(b1,a) + λ(b2,a) mod 5 ,

λ(a,a) = 0 mod 5 , (4.29)

The discrete torsion is constrained because the orbifold theory must have integral U(1)L ×
U(1)R charges in the NS-NS sector. This requires [24, 85]

ε(f1,a) = 1 (4.30)

for all a ∈ F , where f1 is the generator of F1 ⊂ F , or, equivalently,

λ(f1,a) = 0 mod 5 for all a ∈ F . (4.31)
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Thus, in fact only the F ◦
i groups in the table allow for a non-trivial discrete torsion, and the

possibilities are characterized by

Λ ∈ Z3
5 ⊂ H2(F ◦

1 ,U(1)) , p ∈ Z5 ⊂ H2(F ◦
2,3,4,U(1)) . (4.32)

The 125 possibilities in the first group can be substantially reduced, since many choices turn

out to be equivalent up to permutations, and moreover, they naturally come in Z5 orbits.

Still, this leaves us with 9 non-trivial classes. On the other hand, for the last three groups we

just have a single Z5 orbit for each, labeled by an integer p ∈ Z/5Z.
Taking the orbifolds with p ̸= 0, we find that the Hodge pairs (h1,2, h1,1) change as

follows:

(A5)
5/(F ◦

2 , p ̸= 0) :(5, 49) → (23, 7) ,

(A5)
5/(F ◦

3 , p ̸= 0) :(1, 21) → (1, 21) ,

(A5)
5/(F ◦

4 , p ̸= 0) :(21, 17) → (13, 9) . (4.33)

There is exactly one case when the Hodge numbers do not jump, and this is the only situation

where the Gepner quotient with p = 0 can be deformed to a smooth CY geometry with

B(X) ̸= 0: in fact, this is the manifold X◦ with B(X◦) = Z5 that we described above. For

each of the other two cases there is also a smooth CY hypersurface geometry associated to

the Gepner orbifold with p = 0, but neither one has a torsion subgroup in H3.

What are the mirrors for these Gepner orbifolds with p ̸= 0? A hint is provided by the

Hodge number pairs that arise from the quotients (A5)
5/(F ◦

1 ,Λ ̸= 0). Examining the possi-

bilities in detail, we obtain the Hodge number pairs (h1,2, h1,1) ∈ {(7, 23), (21, 1), (9, 13)},
which are mirror to those that arise from the F ◦

2,3,4 orbifolds with p ̸= 0. As we will now show,

a generalization of the Greene-Plesser duality allows us to identify the mirror pairs explicitly.

Discrete torsion mirrors

Our goal is to describe the mirror to the quotient (A5)
5/(F, λ), with F = F ◦

2,3,4, which has

the Poincaré polynomial

ZF,λ(t, t) =
1

|F |
∑

a,b∈F
ζ
λ(b,a)
5

5∏
i=1

M bi
ai (t, t) , (4.34)

where ε(b,a) = ζ
λ(b,a)
5 , and λ(f1,a) = 0 mod 5 for all a ∈ F .

Using the isomorphism (Ad)
d ≃ (Aorb

d )d, we find

ZF,λ(t
−1, t) = Zorb

φ(F ),λ(t, t) , (4.35)
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where

Zorb
φ(F ),λ(t, t) =

1

|φ(F )|
∑

a∗,b∗∈φ(F )

ζ
λ(b∗,a∗)
5

1

|G0|
∑

a,b∈G0

ζ
⟨a∗,a⟩+⟨b∗,b⟩
5

5∏
i=1

M bi
ai (t, t) . (4.36)

Because there is no discrete torsion between F1 ⊂ F and any other element in F , we can

carry out the sum over b∗,a∗ ∈ F1 and arrive at the slightly simpler expression

Zorb
φ(F ),λ(t, t) =

|φ(F1)|
|φ(F )|

∑
a∗,b∗∈φ(F )/φ(F1)

ζ
λ(b∗,a∗)
5

1

|G|
∑

a,b∈G
ζ
⟨a∗,a⟩+⟨b∗,b⟩
5

5∏
i=1

M bi
ai (t, t)

=
1

|G|
∑

a,b∈G
S(b,a)

5∏
i=1

M bi
ai (t, t) , (4.37)

where

S(b,a) =
1

25

∑
a∗,b∗∈φ(F )/φ(F1)

ζ
X(b,a;b∗,a∗)
5 ,

X(b,a; b∗,a∗) = λ(b∗,a∗) + ⟨a∗,a⟩+ ⟨b∗, b⟩ . (4.38)

We will now show that S(b,a) is a discrete torsion phase for the Gepner orbifold (A5)
5/G.

To do this, we specialize to F = F ◦
2,3,4, so that φ(F ) has generators f∗

1,f
∗
2,f

∗
3, with the first

one generating the subgroup φ(F1) ⊂ φ(F ). We now expand the elements of φ(F )/φ(F1) as

a∗ = ℓ2f
∗
2 + ℓ3f

∗
3 , b∗ = m2f

∗
2 +m3f

∗
3 , (4.39)

where ℓα,mα ∈ Z/5Z . The discrete torsion phase is parameterized by the integer p:

λ(b∗,a∗) = p(m2ℓ3 −m3ℓ2) . (4.40)

We also introduce the notation

⟨a⟩α = ⟨f∗
α,a⟩ , (4.41)

so that

X(b,a; b∗,a∗) = p(m2ℓ3 −m3ℓ2) + ℓ2⟨a⟩2 + ℓ3⟨a⟩3 +m2⟨b⟩2 +m3⟨b⟩3
= m2 (⟨b⟩2 + ℓ3p) +m3 (⟨b⟩3 − ℓ2p) + ℓ2⟨a⟩2 + ℓ3⟨a⟩3 . (4.42)
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Carrying out the sums on m2 and m3, we find

S(b,a) =

4∑
ℓ2,ℓ3=0

∑
s2,s3∈5Z

δ(⟨b⟩2 + ℓ3p− s2)δ(⟨b⟩3 − ℓ2p− s3)ζ
ℓ2⟨a⟩2+ℓ3⟨a⟩3
5 . (4.43)

When p = 0, we carry out the remaining sums on ℓα, and these restrict the elements a, b ∈ F ◦,

just as in our discussion above. On the other hand, when p ̸= 0, let p̃ be the multiplicative

inverse of p in Z/5Z. Then the sums on ℓ2 and ℓ3 only receive contributions from ℓ2 = p̃⟨b⟩3
and ℓ3 = −p̃⟨b⟩2, leading to

S(b,a) = ζ
Λp(b,a)
5 , (4.44)

with

Λp(b,a) = p̃ (⟨f∗
3, b⟩⟨f∗

2,a⟩ − ⟨f∗
3,a⟩⟨f∗

2, b⟩) . (4.45)

This phase satisfies the defining properties of discrete torsion (4.29), as well as the integral

R-charge constraint (4.31) because φ(F ) ⊂ φ(G), and ⟨b∗,f1⟩ = 0 for every b∗ ∈ φ(G). Thus,

we have shown

ZF,p(t
−1, t) = ZG,Λp(t, t) , (4.46)

where F is one of F ◦
2,3,4, and p ̸= 0 specifies the discrete torsion, while G = F ◦

1 , and Λp is

the discrete torsion in the mirror description. Since identical manipulations can be carried

out for the full minimal model partition functions, we have established, at least at the level

of partition functions, the mirror isomorphism

(A5)
5/(F, p) ≃ (A5)

5/(G,Λp) . (4.47)

It is straightforward to repeat the argument by starting with the orbifold (A5)
5/(G,Λ), where

Λ is a generic discrete torsion, now labeled by three parameters p′, q′, r′ ∈ Z/5Z. For each

such choice, the mirror is again an orbifold of the form (A5)
5/(F, p), where F satisfies the

inclusions F1 ⊂ F ⊂ G, and both F and p are determined by p′, q′, r′.

4.3 Discrete torsion and flat gerbes

By studying the Z5 × Z5 orbifolds of the quintic Gepner model we observed that turning

on discrete torsion for Z5 × Z5 leads to a jump of Hodge numbers (i.e. a change in the

number of (a,c) and/or (c,c) ring elements relative to the orbifold without discrete torsion)

for all possibilities with the exception of the quotient by the group F ◦
3 . When taken without

discrete torsion that orbifold appeared in section 4 of [1] as the Gepner point for the unique

CY hypersurface in a toric variety with B(X) = Z5. It was conjectured in [1] that the discrete

torsion in this case should be in one-to-one correspondence to the flat B field classified by
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B(X). Our study of the Z5 × Z5 orbifolds provides evidence for this conjecture: the Hodge

numbers should not jump if the discrete torsion on the worldsheet construction is identified

with flat B-field on the CY3-fold,24 and, indeed, they do not. For the remaining orbifolds in

table 4.2 the large radius geometry has a description as a toric hypersurface, but in each case

by the classification of [1] B(X) = 0, and thus there is no way to identify the discrete torsion

with a flat gerbe; the spectrum jumps as soon as we turn on the discrete torsion.

In this section we will explore the relationship between discrete torsion at the Gepner

point and flat gerbes in more detail. We will argue that while some choices of discrete torsion

can be plausibly identified with a flat gerbe over the smooth geometry, in general the set of

possible discrete torsions at the Gepner point is larger. The relationship between discrete

torsion and flat gerbes depends on the combinatoric details of the hypersurface in the toric

variety. In some sense this is not surprising, since B(X) is determined by the combinatorics

of the toric resolution of the singular ambient space. It would be nice to understand the

relationship more intrinsically in terms of the local geometry of the resolution, but we will

leave that study for future work. Before diving into the further examples, we will discuss the

combinatorics of the Z5 ×Z5 orbifolds in more detail to motivate a guess for the relationship

between discrete torsion and flat gerbes. We will then check our guess in the examples from

the classification of [1].

Observations on the quintic quotients

For each of the Gepner quotients F ◦
2,3,4 we have the corresponding orbifold of the Fermat

hypersurface in P4, where the action on the projective coordinates of P4 is encoded by the

last two generators of F ◦
2,3,4 [29].25 Since the first generator acts trivially by rescaling all of

the homogeneous coordinates, we will just denote the ambient toric orbifold variety V by

P4/F ◦
2,3,4. We observe that:

i. for P4/F ◦
3 the fixed locus consists of curves in P4, which intersect the Fermat hypersurface

in isolated points;

ii. for P4/F ◦
2,4 the fixed locus includes surfaces, which intersect the hypersurface along curves.

We have the following facts for a CY 3-fold hypersurface X in a toric ambient space V [1, 68]

with a polytope ∆◦ ⊂ NR.

1. There is a toric resolution of singularities V̂ → V obtained by refining the fan ΣV through

the introduction of one-dimensional cones ρ for the non-zero lattice points in ∆◦ ⊂ NR,

such that the resulting CY variety X̂ ⊂ V̂ is smooth.

24The physical intuition for this is simple: when X is smooth and at large volume, turning on a flat gerbe
amounts to assigning different weights to instanton sums, but it should not alter the spectrum of marginal
operators. The situation is very different when X is singular, as can be seen already in torus orbifolds [19].

25The verification that the resolved geometry has precisely the Hodge numbers to match the chiral rings
of obtained at the Gepner point was an important step in establishing the mirror duality, and has also been
understood and generalized in various studies of stringy Hodge numbers [68, 88] and the LG/CY correspon-
dence [69].
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2. The resolution of singular curves in V (and thus of points in X) involves ρ contained in

the relative interior of codimension 2 faces Θ2 ⊂ ∆◦.

3. The resolution of singular surfaces in V (and thus of curves in X) involves ρ contained in

the relative interior of codimension 3 faces Θ3 ⊂ ∆◦.

4. When X ⊂ V is smooth, corollary 3.9 of [1] determines B(X) as

B(X) = Hom
(
∧2N/{N ∧N ′′},U(1)

)
, (4.48)

where N ′′ ⊂ N is the sublattice generated by the lattice points contained in all faces

Θ ⊂ ∆◦ with codimension ≥ 3. It is also shown that B(X) is a cyclic group.

We also have the SCFT perspective on the resolution: the marginal (a,c) deformations corre-

sponding to the blow-up modes reside in the twisted sector of the orbifold, which are in turn

labeled by group elements a ∈ F . If a blow-up mode for the resolution of a singular curve in

X resides in such a twisted sector, and the discrete torsion phase ε(b,a) is non-trivial, then

we expect the spectrum to be affected by turning on discrete torsion.

Taken together, these observations and the quintic results lead to the following guess:

when the discrete torsion phases at the Gepner point do not affect the (a,c) ring elements

associated to ρ contained in Θ3, we do not expect a jump in the Hodge numbers, and such

choices of discrete torsion should correspond to turning on a non-trivial gerbe βt ∈ B(X) in

the smooth geometry. Next we will analyze several Gepner points for the CY hypersurfaces

with B(X) ̸= 0 that appear in [1] and examine the fixed loci for the orbifold action on the

related weighted projective space.26 We will see that discrete torsion is more general than

the choice of gerbe in B(X). More precisely, suppose we have a Gepner orbifold with orbifold

group F , and let Gdt ⊂ H2(F,U(1)) be the group of discrete torsion phases that are consistent

with spacetime supersymmetry, i.e. those phases that satisfy (4.31). Our examples suggest

that whenever the theory can be deformed to an SCFT C[X,βt] based on a smooth geometry

X, B(X) ⊆ Gdt, and in general the inclusion is proper.

A Gepner model for X with B(X) = Z3

Our first case is the mirror to example 3 from the classification of [1]. The Gepner model is

realized as a LG orbifold with superpotential

W = X3
1 +X3

2 +X9
3 +X9

4 +X9
5 . (4.49)

26Among the 16 hypersurfaces classified in [1] there are 5 cases where the polytope ∆ is a simplex, which
guarantees that the mirror theory has B(X) ̸= 0 and also has a Gepner point. These are the cases we study
in this paper. The first one is the quotient P4/F ◦

3 with B(X) = Z5 that we considered already, while the
remaining 4 we discuss next. Of course it may well be that there are other examples in the list with a Gepner
point or LGO locus.
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The projection to integral R-charge requires gauging the R-symmetry

σR ∈ ZR9 : (X1, X2, X3, X4, X5) → (ζ39X1, ζ
3
9X2, ζ9X3, ζ9X4, ζ9X5) , (4.50)

and we consider a further quotient by Z3 × Z9 with generators

σ2 ∈ Z3 : (X1, X2, X3, X4, X5) → (ζ39X1, ζ
3
9X2, ζ

3
9X3, X4, X5) , (4.51)

σ3 ∈ Z9 : (X1, X2, X3, X4, X5) → (X1, ζ
6
9X2, ζ9X3, ζ

2
9X4, X5) . (4.52)

The possible discrete torsion is valued in Gdt = Z3, with the phase given by:

ε(b,a) = ζ
pλ(b,a)
9 , b,a ∈ Z3 × Z9, p ∈ Z3 , (4.53)

and λ(b,a) is given by:

λ(b,a) = 3b2a3 − 3b3a2 mod 9 (4.54)

for b = (b1, b2, b3), a = (a1, a2, a3) ∈ F = ZR9 × Z3 × Z9 .

The geometric description is based on the orbifold of V = P4
33111 by (4.51) and (4.52),

and to study the singularity structure we begin by analyzing the locus of fixed points with

respect to the generators of Z3 × Z9.

For (4.51) this amounts to finding the points in V that satisfy

(ζ39X1, ζ
3
9X2, ζ

3
9X3, X4, X5) = (µ3X1, µ

3X2, µX3, µX4, µX5) (4.55)

for some µ ∈ C∗. The fixed locus intersects (C∗)4 ⊂ V along the C∗ parameterized by

(0, 0, 0, X4, X5) with X4,5 ̸= 0, and this is compactified to P1 in V . Now suppose that

X4 = X5 = 0. This leaves just two possibilities for the fixed locus:

1. if X4 = X5 = 0 and X3 ̸= 0, then the action on the affine coordinates is

(ζ39x1, ζ
3
9x2) = (x1, x2) , (4.56)

which leads to the fixed point (0, 0, 1, 0, 0) ∈ V ;

2. if X4 = X5 = X3 = 0, then (X1, X2, 0, 0, 0) parameterizes another P1 ⊂ V fixed by σ2. So,

every component of the fixed point locus of σ2 has dimension ≤ 1.

Now we turn to (4.52). Consider first the action of the generator σ3. We again see

that the fixed locus intersects the dense torus in a C∗ orbit, this time parameterized by

(X1, 0, 0, 0, X5), and this is compactified to a P1
31 ⊂ V by the inclusion of the X1 = 0 and

X5 = 0 points. Setting X1 = X5 = 0, we see that the generic (C∗)2 orbit does not contain

any fixed points. The remaining components of the fixed point locus consist of the orbits P1
31

parameterized by the points (0, X2, 0, X4, 0), as well as the point (0, 0, X3, 0, 0). All in all, we

see that all components of the fixed locus of σ3 have dimension ≤ 1. However, there is an
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additional subtlety, since σ33 generates a non-trivial Z3 ⊂ Z9 subgroup which fixes a surface

P2
331 ⊂ V , parameterized by (X1, X2, 0, 0, X5). By extending this analysis to the remaining

elements of a ∈ Z3 × Z9 it is possible to show that the only elements that fix a surface in V

have the form a = σk2σ
3ℓ
3 , with ℓ = 1, 2.

The divisors introduced in the resolution of singularities correspond to marginal (a,c)

operators in the twisted sector of the orbifold CFT. Applying our general discussion to this

example, we see that the twisted sector marginal (a,c) operators associated to resolving curves

of singularities in X reside in twisted sectors labeled by a = σk2σ
3ℓ
3 , with ℓ = 1, 2. However,

taking a look at the discrete torsion in (4.53,4.54) we see that for every such a, we have

ε(b,a) = 1 for all b ∈ F . Thus, we do not expect a jump in the Hodge numbers, and

performing the computation of the spectrum we find that h1,2 = 2 and h1,1 = 38 for all

p ∈ Gdt.

Although in this case the ambient toric orbifold has fixed surfaces, the example is rather

like the quintic quotient P4/F ◦
3 : the choice of discrete torsion appears to be in one-to-one

correspondence with B(X) = Gdt = Z3, and the Hodge numbers do not jump because the

twisted sectors that contain the marginal deformations that resolve the fixed surfaces are not

affected by the discrete torsion. The next few examples display more elaborate possibilities,

but all of them remain consistent with our proposal laid out above.27

A Gepner model for B(X) = Z2

We now turn to example 15 from [1]. The Gepner model is realized as LG orbifold with

superpotential

W = X4
1 +X4

2 +X4
3 +X8

4 +X8
5 , (4.57)

and we quotient by F = ZR8 × Z4 × Z4 with generators

σ1 ∈ ZR8 :(X1, X2, X3, X4, X5) → (ζ28X1, ζ
2
8X2, ζ

2
8X3, ζ8X4, ζ8X5) ,

σ2 ∈ Z4 :(X1, X2, X3, X4, X5) → (ζ24X1, ζ4X2, ζ4X3, X4, X5) ,

σ3 ∈ Z4 :(X1, X2, X3, X4, X5) → (ζ4X1, ζ
2
4X2, X3, ζ4X4, X5) . (4.58)

The possible discrete torsion, now valued in Gdt = Z4, is given by

ε(b,a) = ζ
pλ(b,a)
4 , (4.59)

with

λ(b,a) = b2a3 − b3a2 mod 4 . (4.60)

27Note that the phase ambiguities in a Landau-Ginzburg orbifold include an additional factor beyond the
choice of discrete torsion. This factor arises as mod 2 ambiguity in the G–action on the Ramond-Ramond
sector and is related to the Arf invariant and worldsheet spin structures [52, 85, 89]. When the projection to
integral charges has an even order, this additional phase can lead to new possibilities of (2,2) orbifolds. In this
work we set this phase to +1 and do not consider it further. It would be interesting to explore its implications
for mirror symmetry and stringy geometry in detail.
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The associated geometry is a degree 8 Fermat hypersurface in V = P4
11222/F , and carrying

out the analysis of the fixed locus, we find that there is a Z2 × Z2 ⊂ F subgroup generated

by σ22 and σ23 that fixes a surface in V . The corresponding twisted sectors are unaffected

by taking p = 2 in the discrete torsion phase, but they are affected when p = 1 or p = 3.

Calculating the spectra, we again verify our guess: the Hodge numbers jump when p = 1, 3,

and they do not jump when p = 2:

p = 0 : h1,2 = 5 , h1,1 = 29 ,

p = 1 : h1,2 = 4 , h1,1 = 16 ,

p = 2 : h1,2 = 5 , h1,1 = 29 ,

p = 3 : h1,2 = 4 , h1,1 = 16 . (4.61)

This suggests that B(X) = Z2 should be identified with the Z2 ⊂ Gdt subgroup generated by

p = 2.

Additional Gepner models with B(X) = Z2

There are two more examples from [1] with an obvious Gepner point. As their features are

much like the case we just analyzed, we will simply summarize the results.

1. Example 4. Here the LGO has F = ZR8 × Z4 × Z8 and superpotential

W = X2
1 +X8

2 +X8
3 +X8

4 +X8
5 . (4.62)

The associated geometry is a degree 8 hypersurface in the ambient toric variety is

V = P4
41111/F , and the generators of F are

σ1 ∈ ZR8 :(X1, X2, X3, X4, X5) → (ζ48X1, ζ
2
8X2, ζ

2
8X3, ζ8X4, ζ8X5) ,

σ2 ∈ Z4 :(X1, X2, X3, X4, X5) → (ζ48X1, ζ
2
8X2, ζ

2
8X3, X4, X5) ,

σ3 ∈ Z8 :(X1, X2, X3, X4, X5) → (ζ48X1, ζ
3
8X2, X3, ζ8X4, X5) . (4.63)

The discrete torsion group is Gdt = Z4, while the subgroup of F that fixes a surface is

Z2 ×Z4 ⊂ F generated by σ22 and σ23. Turning on discrete torsion for Z2 ⊂ Z4 does not

affect the twisted sectors that contain the divisors that resolve the fixed surface, and so

again, the Hodge numbers only jump when p = 1, 3:

p = 0 : h1,2 = 3 , h1,1 = 43 ,

p = 1 : h1,2 = 3 , h1,1 = 19 ,

p = 2 : h1,2 = 3 , h1,1 = 43 ,

p = 3 : h1,2 = 3 , h1,1 = 19 . (4.64)

This is consistent with the identification B(X) = Z2 ⊂ Gdt.
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2. Example 7. The LGO orbifold group is F = ZR16 × Z4 × Z8, and the superpotential is

W = X2
1 +X4

2 +X8
3 +X16

4 +X16
5 . (4.65)

The associated geometry is a degree 16 hypersurface in P4
84211/F , and F has generators

σ1 ∈ ZR16 :(X1, X2, X3, X4, X5) → (ζ816X1, ζ
4
16X2, ζ

2
16X3, ζ16X4, ζ16X5) ,

σ2 ∈ Z4 :(X1, X2, X3, X4, X5) → (ζ48X1, ζ
2
8X2, ζ

2
8X3, X4, X5) ,

σ3 ∈ Z8 :(X1, X2, X3, X4, X5) → (X1, ζ
6
8X2, ζ8X3, ζ8X4, X5) . (4.66)

The discrete torsion group is Gdt = Z4, and, as in the previous example, the subgroup

of F that fixes a surface is Z2×Z4 ⊂ Z4×Z8 generated by σ22 and σ23. So, once again we

expect that for the discrete torsion subgroup Z2 ⊂ Z4, which we would like to identify

with B(X), the Hodge numbers do note jump. This expectation is borne out by explicit

calculation:

p = 0 : h1,2 = 3 , h1,1 = 75 ,

p = 1 : h1,2 = 3 , h1,1 = 27 ,

p = 2 : h1,2 = 3 , h1,1 = 75 ,

p = 3 : h1,2 = 3 , h1,1 = 27 . (4.67)

Our examples are consistent with the inclusion B(X) ⊆ Gdt, and the jump in the Hodge

numbers for p ̸∈ B(X) is correlated with resolution of surface singularities in the ambient

toric variety. We also note that for all of these examples we have known mirrors when p = 0—

these are manifolds with π1(X
◦) ≃ B(X) described in [1]. When p ̸= 0, it is straightforward

to extend the construction presented in section 4.2 to find explicit mirror SCFTs.

5 Discussion

The discovery, exploration, and applications of mirror symmetry have enriched a number of

fields in physics and mathematics in the last thirty years,28 but many fundamental questions

remain, and finding the answers to these will lead to significant progress in our understanding

of duality in quantum field theory and string theory. Perhaps the most difficult yet funda-

mental task that remains is to define precisely in what category of quantum field theories

mirror duality operates.29 The progress in mirror symmetry at the level of topological field

theory—i.e. the homological mirror symmetry program—and the categorical structures that

emerge in that approach all suggest that we have much to learn before we can give a fully

28Pedagogical reviews of some of the most important developments can be found in [43, 50, 68, 90].
29IVM thanks Ronen Plesser for emphasizing this point in many discussions over the years. An instructive

attempt at tackling this question in the context of linear sigma models was made in [91], but further work is
required even in that setting.

– 38 –



satisfactory answer to this seemingly basic question. Our work, based on the earlier efforts

in [1, 22–25], suggests that both orbifolds and flat gerbes should be included in the answer,

and we hope that some of the methodology and ideas developed herein will be useful in

establishing a suitable framework.

A natural follow-up to our study would be to consider the relationship between discrete

torsion at Gepner points (and more generally Landau-Ginzburg orbifold loci) and B(X) more

closely and systematically. Some efforts in this direction have been made many years ago. For

example, there is a classification of all Landau-Ginzburg orbifolds with discrete torsion [24],

but the results obtained therein are limited to the computation of dimensions of (a,c) and

(c,c) rings. Those findings are already intriguing: for instance, there are many entries with

relatively small dimensions, and even one example without marginal (2,2) deformations! It is

quite likely that some of these are related to Calabi-Yau manifolds with small Hodge numbers

described in [65], and the relation probably involves identification of B(X) with a subgroup

of the discrete torsion. It should be useful to study this class of examples along the lines

developed in this work by focusing on the relationship between the solvable CFT locus and

the resolved geometry. Such an effort will lead to a better understanding of aspects of the

problem that appear obscure (at least to us): for instance, how universal is the relationship

between resolution of fixed curves in the Calabi-Yau geometry and the jumping in the Hodge

numbers in the presence of discrete torsion? First steps in this direction involve re-examining

the classification of [24] with an eye to geometric interpretation, and also a closer study of the

examples in [65, 92] to determine the A(X) and B(X) torsion groups. It will also be useful

to study self-mirror examples, such X2 and X3 described in section 2.1.

We also envision a more detailed study of mirror symmetry in the presence of discrete

torsion at special orbifold points and related flat gerbes over a smooth geometry. It will be

useful to construct additional examples of mirror pairs with flat gerbes and to elucidate the

relationship between the geometries on both sides of the mirror. In the context of Gepner

models we have shown how to construct mirror pairs with the inclusion of discrete torsion.

Can this be extended to other mirror constructions, such as that of Berglund-Hübsch for

Landau-Ginzburg orbifolds [93]?

There are also more general and perhaps more speculative questions concerning the SCFT

associated to a smooth CY X with non-zero A(X) or B(X):

1. Can we identify a flat gerbe on X with a choice of discrete torsion for an orbifold at

some point in the moduli space?

2. If X has multiple orbifold points in the moduli space, what are the relations between

the discrete torsions at various points?

3. Is there always a “parent” geometry X with A(X) = B(X) = 0, such that on a suitable

locus in the moduli space of C[X] we can obtain C[X,βt] by an orbifold of C[X]?

4. We have seen that given a mirror pair X, X◦, there is in general a finite set of SCFTs

C[Y ◦, β◦t ] that are mirror to the discrete family C[X,βt], βt ∈ B(X), with C[X, 0] ≃
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C[X◦] = C[Y ◦, 0]. Which C[Y ◦, β◦t ] have a geometric description? Can we describe the

discrete family C[Y ◦, β◦t ] directly, without appealing to the mirror?

5. There are additional topological invariants encoded in the cup product on {H(X,Z)}tor.
Do these have an interpretation in the SCFT C[X] and its mirror?

Coming back to our discussion of A(X) and its relation to a quantum symmetry of the

SCFT, we can also imagine extending the analysis to the situation where π1(X) is non-abelian.

It will be interesting to understand the categorical symmetry structure in such a situation

and to relate it to the geometry and topology of X, as well as to interpret it on the mirror

X◦. This is one of the directions where these old questions can benefit from the relatively new

categorical symmetry methods, and at the same time provide concrete examples to develop

further intuition for these remarkable structures. Our work also motivates a closer study of

the relationship between discrete torsion and gauged linear sigma models: are there useful

ways to lift this phase to the UV description? A related point concerns the suggestions—see,

e.g. [21, 25, 78], that certain flat gerbes can be interpreted as a discrete θ-angle in the gauged

linear sigma model. It would be useful to study these notions systematically, as they will

certainly have important ramifications for explicit mirror constructions.

We concentrated almost exclusively on the worldsheet SCFT, but the structures we dis-

cussed have important implications for the effective spacetime theory. At the most basic level,

we expect that A(X) should be interpreted as a spacetime gauge symmetry, while turning on

a non-trivial gerbe βt ⊂ B(X) should affect the geometry of Mac(X)—the moduli space of

vector multiplets in a IIA compactification on X. What, precisely, are the consequences of

these features for the effective theory? There should also be consequences for the spectrum of

BPS and non-BPS D-brane states, and the study of the interplay between twisted K-theory

and the Freed-Witten anomaly in these concrete examples will surely have important general

lessons and perhaps shed light on open problems concerning the spectrum of branes in the

presence of topologically non-trivial fluxes.

The most speculative further directions concern generalizations to higher dimensions.

What are the consequences of these discrete topological features for G2 mirror symmetry or for

mirror symmetry of CY 4-folds? While the former has a reasonable spacetime interpretation

as a 3-dimensional string compactification, the worldsheet physics is more difficult, since it

involves a theory without extended supersymmetry. For the latter, although the worldsheet

theory is still a (2,2) SCFT, the spacetime interpretation is subtle: it is a “compactification”

to 1+1 dimensions with a non-trivial tadpole for the Ramond-Ramond flux.
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