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The neutrino background



What masses ?

  

● Prediction of the standard hot big bang.

● Process of decoupling fixed by weak interactions. 

– Temperature today:

– Number density per flavour:

– Energy density per flavour:

Cosmic neutrino background...
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If mν > 1 meV
Neutrinos can be a significant component 
of the total dark matter content.

  

Neutrino dark matter...
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Fig. 5. Evolution of the background densities from the time when Tν = 1 MeV (soon
after neutrino decoupling) until now, for each component of a flat ΛMDM model
with h = 0.7 and current density fractions ΩΛ = 0.70, Ωb = 0.05, Ων = 0.0013 and
Ωcdm = 1 − ΩΛ − Ωb − Ων . The three neutrino masses are distributed according
to the Normal Hierarchy scheme (see Sec. 2) with m1 = 0, m2 = 0.009 eV and
m3 = 0.05 eV. On the left plot we show the densities to the power 1/4 (in eV units)
as a function of the scale factor. On the right plot, we display the evolution of the
density fractions (i.e., the densities in units of the critical density). We also show on
the top axis the neutrino temperature (on the left in eV, and on the right in Kelvin
units). The density of the neutrino mass states ν2 and ν3 is clearly enhanced once
they become non-relativistic. On the left plot, we also display the characteristic
times for the end of BBN and for photon decoupling or recombination.

where τeq = 2(
√

2 − 1)
√

aeq is the value of the conformal time at equality. At
low redshift (typically z < 0.5), the cosmological constant density takes over,
causing a departure from the above solution, with an acceleration of the scale
factor. Finally, if we include the effect of small neutrino masses, the solution
is also slightly modified, since the non-relativistic transition of each neutrino
species amounts in converting a fraction of radiation into matter. This can
be seen in Fig. 5, where we plot the evolution of background densities for a
ΛMDM model in which the three neutrino masses follow the Normal Hierarchy
scheme (see Sec. 2) with m1 = 0, m2 = 0.009 eV and m3 = 0.05 eV.

4.3 Gauge transformations and Einstein equations

In the real Universe all physical quantities (densities, curvature...) are func-
tions of time and space. Thanks to the covariance of general relativity, they
can be described in principle in any coordinate system, without changing the
physical predictions. The problem is that in order to obtain simple equa-

21

CMB



6000

5000

4000

3000

2000

1000

0
1400120010008006004002002

l(l
+1

) C
l /

 2
π 

 (µ
K)

2

l

no ν’s
fν=0

fν=0.1
104

103

102

10-110-210-3

P(
k)

   
(M

pc
/h

)3

k   (h/Mpc)

no ν’s
fν=0

fν=0.1

Fig. 14. CMB temperature anisotropy spectrum CT
l and matter power spectrum

P (k) for three models: the neutrinoless ΛCDM model of section 4.4.6, a more re-
alistic ΛCDM model with three massless neutrinos (fν ! 0), and finally a ΛMDM
model with three massive degenerate neutrinos and a total density fraction fν = 0.1.
In all models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept fixed.
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Fig. 15. CMB temperature anisotropy spectrum CT
l and matter power spectrum

P (k) for three models: the same ΛCDM model as in the previous figure, with three
massless neutrinos (fν ! 0); and two models with three massive degenerate neutri-
nos and a total density fraction fν = 0.1, sharing the same value of ωb and ωcdm as
the massless model, which implies a shift either in h (green dashed) or in ΩΛ (blue
dotted).

models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept fixed, with the
increase in ων being compensated by a decrease in ωcdm. There is a clear
difference between the neutrinoless and massless neutrino cases, caused by a
large change in the time of equality and by the role of the neutrino energy-
momentum fluctuations in the perturbed Einstein equation [91]. However our
purpose is to focus on the impact of the mass, i.e. on the difference between
the solid (red) and thick dashed (green) curves in Fig. 14.

Impact on the CMB temperature spectrum. For fν ≤ 0.1, the three
neutrino species are still relativistic at the time of decoupling, and the di-
rect effect of free-streaming neutrinos on the evolution of the baryon-photon
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Effects on LSS growth: an overview

Not as good as it seems!



The linear growth rate 
with neutrinos



on scales k ! knr, so that δρν does not contribute to the Poisson equation:
δρ = (ρ̄cdm + ρ̄b) δcdm, while the neutrino background density does contribute
to the expansion rate: 3 (ȧ/a)2 = 8πGa2(ρ̄cdm + ρ̄b + ρ̄ν). Let us assume that
ρ̄ν is dominated by non-relativistic neutrinos, so that it decays approximately
like a−3, and the number

fν ≡
ρν

(ρcdm + ρb + ρν)
=

Ων

Ωm
(129)

remains approximately constant. Then, the scale factor still evolves like τ 2

and the equation of evolution reads

δ̈cdm +
2

τ
δ̇cdm −

6

τ 2
(1 − fν) δcdm = 0 . (130)

Looking for solutions in δcdm ∝ τ 2p, we find two roots

p± =
−1 ±

√

1 + 24(1 − fν)

4
, (131)

and we conclude that the growing solution for the CDM density contrast reads

δcdm ∝ ap+ % a1− 3
5
fν , (132)

where in the last step we assumed fν & 1. As expected, the growth of δcdm is
reduced due to the fact that one of the component in the Universe contributes
to the homogeneous expansion rate but not to the gravitational clustering.
The Poisson equation gives

− k2ψ ∝ ap+−1 % a− 3
5
fν , (133)

showing that for the same reason the gravitational potential slowly decays
during matter domination.

At the end of matter domination and during Λ domination, we have already
seen that in absence of neutrinos φ decays like g(a) and δcdm grows like a g(a)
(we recall that the damping factor g(a) is normalized to g = 1 for a & aΛ).
The combined effect of Λ and of neutrinos on the growth of δcdm can be well
approximated by [93]

δcdm ∝ [a g(a)]p+ % [a g(a)]1−
3
5
fν . (134)

Matter power spectrum for massive versus massless neutrinos.
Let us try to predict analytically the difference between the power spectrum
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Matter power spectrum for massive versus massless neutrinos.
Let us try to predict analytically the difference between the power spectrum
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Regions where the growth of neutrino 
density contrast (for each species) is 

suppressed

Free-Streaming horizon
a=aeq

small scales

large scales

k=0.001 h Mpc-1

k=0.01 h Mpc-1

k=0.1 h Mpc-1

4.5.2 Free-streaming

We have seen that in perfect fluids, sound waves can propagate at the sound
speed on scales smaller than the sound horizon. Sound waves cannot prop-
agate in a collisionless fluid, but the individual particles free-stream with a
characteristic velocity –for neutrinos, in average, the thermal velocity vth. So,
it is possible to define an horizon as the typical distance on which particles
travel between time ti and t. During MD and RD and for t ! ti, this horizon
is, as usual, asymptotically equal to vth/H , up to a numerical factor of order
one (see section 4.4.2). Exactly as we defined the Jeans length, we can define
the free-streaming length by taking Eq. (48) and replacing cs by vth

kFS(t) =

(

4πGρ̄(t)a2(t)

v2
th(t)

)1/2

, λFS(t) = 2π
a(t)

kFS(t)
= 2π

√

2

3

vth(t)

H(t)
. (93)

As long as neutrinos are relativistic, they travel at the speed of light and their
free-streaming length is simply equal to the Hubble radius. When they become
non-relativistic, their thermal velocity decays like

vth ≡
〈p〉
m

%
3Tν

m
=

3T 0
ν

m

(

a0

a

)

% 150(1 + z)
(

1 eV

m

)

km s−1 , (94)

where we used for the present neutrino temperature T 0
ν % (4/11)1/3T 0

γ and
T 0

γ % 2.726 K. This gives for the free-streaming wavelength and wavenumber
during matter or Λ domination

λFS(t) = 7.7
1 + z

√

ΩΛ + Ωm(1 + z)3

(

1 eV

m

)

h−1Mpc , (95)

kFS(t) = 0.82

√

ΩΛ + Ωm(1 + z)3

(1 + z)2

(

m

1 eV

)

h Mpc−1, (96)

where ΩΛ (resp. Ωm) is the cosmological constant (resp. matter) density frac-
tion evaluated today. So, after the non-relativistic transition and during mat-
ter domination, the free-streaming length continues to increase, but only like
(aH)−1 ∝ t1/3, i.e. more slowly than the scale factor a ∝ t2/3. Therefore, the
comoving free-streaming length λFS/a actually decreases like (a2H)−1 ∝ t−1/3.
As a consequence, for neutrinos becoming non-relativistic during matter dom-
ination, the comoving free-streaming wavenumber passes through a minimum
knr at the time of the transition, i.e. when m = 〈p〉 = 3Tν and a0/a = (1+z) =
2.0 × 103(m/1 eV). This minimum value is found to be

knr % 0.018 Ω1/2
m

(

m

1 eV

)1/2

h Mpc−1 . (97)
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Fig. 13. Ratio of the matter power spectrum including three degenerate massive
neutrinos with density fraction fν to that with three massless neutrinos. The pa-
rameters (ωm, ΩΛ) = (0.147, 0.70) are kept fixed, and from top to bottom the curves
correspond to fν = 0.01, 0.02, 0.03, . . . , 0.10. The individual masses mν range from
0.046 eV to 0.46 eV, and the scale knr from 2.1×10−3hMpc−1 to 6.7×10−3hMpc−1

as shown on the top of the figure. keq is approximately equal to 1.5× 10−2hMpc−1.

Looking now at all wavenumbers, we plot in Fig. 12 the ratio of the matter
power spectrum for ΛMDM over that of ΛCDM, for different values of fν ,
but for fixed parameters (ωm, ΩΛ). Here again, the ΛMDM model has three
degenerate massive neutrinos. As expected from the analytical results, this
ratio is a step-like function, equal to one for k < knr and to a constant for
k " keq. The value of the small-scale suppression factor is plotted in Fig. 13
as a function of fν and of the number Nν of degenerate massive neutrinos, still
for fixed (ωm, ΩΛ). The numerical result is found to be in excellent agreement
with the analytical prediction of Eq. (141). For simplicity, the growth factor
g(a0) # 0.8 can even be replaced by one in Eq. (141) without changing the
result significantly. The well-known formula P (k)fν/P (k)fν=0 # −8 fν is a
reasonable first-order approximation for 0 < fν < 0.07.

4.6 Summary of the neutrino mass effects

4.6.1 Effects on CMB and LSS power spectra for fixed (ωm, ΩΛ) and degen-
erate masses

In Fig. 14, we show CT
l and P (k) for two models: ΛCDM with fν = 0 and

ΛMDM with Nν = 3 massive neutrinos and a total density fraction fν = 0.1.
We also display for comparison the neutrinoless model of Sec. 4.4.6. In all
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and shape is z-dependent !



  

Present status...
WMAP7 only* 
Komatsu et al. 2010

WMAP7+SDSS-HPS *
Hannestad, Mirizzi, Raffelt
& Y3W 2010

WMAP5+SDSS-HPS 
+SN+HST
Reid et al. 2009

95% C.L. upper limit                   

WMAP5+Weak lensing*
Tereno et al. 2008 
Ichiki et al. 2008

(extended models)

* ΛCDM+m
ν



  
Abazajian et al. 1103.5083in combination with WMAP; 95% upper limits

A bit of forecast 

k=0.001–1Mpc−1 for weak lensing !

Planck     --    CMBPol
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a critical reading: beyond 
the linear theory...



From the Euclid red book

6. Performance 
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Euclid Consortium are involved in code development in two ways, (i) in-house simulations such the ones 
described in (Dobke et al., 2010; Meneghetti et al., 2009, 2011) and (ii) through the GRavitational lEnsing 
Accuracy Testing (GREAT) challenges (Bridle et al., 2009; Kitching et al, 2010).  
Effects of incomplete survey coverage: To verify the robustness of the requirements on the sky coverage and 
masking, simulations are used to generate realistic cosmological models and weak lensing maps are created 
from these models (Kiessling et al., 2011a, 2011b). These simulations cover a field-of-view of 100 square 
degrees and we simulate 100 independent lines of sight to generate a Monte Carlo suite of simulations, such 
that data covariances can be estimated. This analysis does not take into account methods that exist in the 
CMB (pseudo-Cl's for example) that can account for masking in the power spectrum analysis. We expect to 
implement these algorithms on Euclid data, and hence what is presented here is conservative. 

    
Figure 6.14: Left: Unmasked shear power spectrum and masked power spectra for a survey with 1, 2 and 3% masking. 
The lower panel shows the percentage difference between the unmasked and masked power spectra as compared with 
the theoretically expected power spectrum. The grey region shows the 1-sigma error on the unmasked power spectrum 
Right: Simulated shear field where the colour represents the matter over density at a particular position (red is more 
dense) and the small whisker lines represent the shear amplitude and direction at each position. The masked regions 
can be seen as small black circular patches 

Figure 6.14 shows an example of the simulation. The simulations are used to determine the impact of small, 
star masks, glitches and cosmic rays, on cosmic shear power spectra. Star masks are simulated by placing 
circular masks across the shear field with a random distribution of sizes less than or equal to 5 arcmin2, see 
Figure 6.14. Masking by up to 3% of the area does not bias the shear power spectrum by more than the error 
on the power spectrum. The amplitude of the difference between the masked and unmasked spectra is for 3% 
masked is always less than 2% over all scales which meets requirements for small masked areas less of less 
than 5 arcmin2 (see previous sections). This is a test of the effects of small area-loss. Large area loss (for 
example entire fields or chips missing) in the data simply acts to decrease number counts (the inter-chip and 
inter-field cosmic shear signal has a subdominant contribution to the dark energy FoM) and the requirement 
of less than 15% of the survey lost in this manner is also met (see previous sections). 
Expected Performance: Figure 6.15 provides the final expected performance by plotting realistic power 
spectra with associated error bars as expected from Euclid. Figure 6.15 shows an example of the auto-power 
(within a redshift bin) and cross-power (between bins) weak lensing tomographic power spectrum for 
realistic mock galaxy shear catalogues generated from dark matter-only N-body simulations (Kiessling et al., 
2011). The reconstructed power spectrum from simulations described above (including a realistic level of 
shot noise) is compared with the input power spectrum from theory. The figure shows that the signal is 
modelled accurately as a function of redshift. The power spectrum is recovered to sub-percent accuracy over 
signal-dominated scales and the integrated mean difference between the true and recovered power is ı2

sys < 
10-7, which meets the requirements discussed in Section 3. At small scales the shot noise in the simulations 
begins to dominate – this is not a limitation of the technique and higher resolution simulations will enable the 
reconstruction over fully non-linear scales. 

... in the non-linear regime

Cosmic shear BAO



State of the art for Perturbation 
Theory calculations
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Conclusions
• Constraints from linear regime calculations 

(CMB) are solid;

• local LSS observations offer a potential for 
important discoveries - provided theoretical 
constraints are well controlled (NL evolution);

• z-evolution is key to separate from other 
parameters;


