

The Double Chooz reactor neutrino experiment

Rencontres IPhT-SPP

24.01.2012

The Double Chooz collaboration

Contents of this talk

- Brief reminder on mixing, oscillations and θ_{13}
- Double Chooz
 - Concept
 - Experimental site
 - Detection method
 - Expected signal and background
 - Double Chooz detector
 - Calibration
- Data analysis
 - Neutrino search
 - Background studies
 - Oscillation fit results
- Prospects
- What about RENO and Daya bay?

Mixing, oscillation and θ_{13}

5

• Neutrinos mixing and oscillation parametrization with $c_{ii} = \cos \theta_{ii}$ and $s_{ii} = \sin \theta_{ii}$

- Why measuring θ_{13} ?
 - Fundamental unknown physics parameter
 - > Necessary step before the search for CP violation in the leptonic sector (δ_{CP} scaled by $\sin^2 2\theta_{13}$)

Antineutrino disappearance at reactor

- $\overline{\nu}_e$ emitted through β -decay of fission products in N4-REP Chooz B 2 x 4.25 GW_{th} reactor core
 - > Pure, intense and MeV source
- Disappearance experiment
 - > Survival probability:

 $P(\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}) \sim 1 - \sin^{2}(2\theta_{13}) \sin^{2}(1.27 \Delta m_{31}^{2} \text{ L/E}) - \cos^{4}(\theta_{13}) \sin^{2}(2\theta_{12}) \sin^{2}(1.27 \Delta m_{21}^{2} \text{ L/E})$ with: $\sin^{2}(2\theta_{13}) = 0.1$ $\sin^{2}(2\theta_{12}) = 0.8$ $\Delta m_{31}^{2} = 2.5 \cdot 10^{3} \text{ eV}^{2}$ $\Delta m_{21}^{2} = 8 \cdot 10^{5} \text{ eV}^{2}$ $E_{\nu} = 3 \text{ MeV}$

- Choice of L/Ε: clean measurement of one parameter, sin²2θ₁₃
- → Simplified survival probability: $P(\overline{\nu}_e \rightarrow \overline{\nu}_e) \sim 1 \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m_{31}^2 L/E)$

The Double Chooz experiment

From CHOOZ to Double Chooz

Former experiment CHOOZ limited by stat. and syst.:

$$R = 1.01 \pm 2.8 \% \text{ (stat)} \pm 2.7 \% \text{ (syst)}$$

where R = $N_{\nu \text{ obs}} / N_{\nu \text{ exp w/o oscillation}}$ (R \neq 1 if oscillation)

Double Chooz concept:

> relative measurement btw 2 identical detectors E_{vis} (MeV) (cancel systematic uncertainties on v flux and detector response)

R

).75

bigger target volumes, longer data taking (work on liquid scintillator and material compatibility)

Experimental site

Detection method

Inverse β-decay in scintillator:
 (~20% PXE, 80% dodecane, 0.1% dissolved Gd + wavelength shifters)

$$\overline{\mathbf{v}}_{\mathbf{e}} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{e}^{+}$$

→ Correlated signals (time and space)

 $\Delta T \sim 30 \ \mu s$ and $\Delta R < 1 \ m$ seen by photomultipliers (PMT)

Expected backgrounds

Cosmic µ

Correlated background

- β-n decaying isotopes 9 Li and 8 He μ-produced by spallation processes
 - Perfectly mimic the ν signal
 - > Cannot be vetoed $t_{1/2} = 178 \text{ ms}$
 - $> 1.4 \pm 0.5 \,\mathrm{d}^{-1}$ expected

Expected backgrounds

Correlated background

- β-n decaying isotopes 9 Li and 8 He μ-produced by spallation processes
 - Perfectly mimic the ν signal
 - > Cannot be vetoed $t_{1/2} = 178 \text{ ms}$
 - $> 1.4 \pm 0.5 \,\mathrm{d}^{-1}$ expected
- $-\mu$ -induced **fast neutrons**
 - > Prompt signal = recoil proton
 - Delayed signal = n-capture on Gd
 - $> 0.2 \pm 0.2 \,\mathrm{d}^{-1}$ expected

Expected backgrounds

Correlated background

- β-n decaying isotopes 9Li and 8He μ-produced by spallation processes
 - Perfectly mimic the ν signal
 - > Cannot be vetoed $t_{1/2} = 178 \text{ ms}$
 - $> 1.4 \pm 0.5 \,\mathrm{d}^{-1}$ expected
- $-\mu$ -induced fast neutrons
 - > Prompt signal = recoil proton
 - Delayed signal = n-capture on Gd
 - $> 0.2 \pm 0.2 \,\mathrm{d}^{-1}$ expected

Accidental backgrounds

- Prompt = radioactivity γ emitted from a PMT (for instance)
- Delayed = μ-induced fast neutron captured on a Gd nucleus
- $> 2.0 \pm 0.9 \,\mathrm{d}^{-1}$ expected

14

E

7 m

Design:

- Neutrinos detection
- Protection against backgrounds (internal and external)

Outer Veto: 82 m² of 400 mm thick plastic scintillator strips

v-Target: 10.3 m³ liquid scintillator doped at 0.1 % in Gd, in a 8 mm thick acrylic vessel

γ-catcher: 22.3 m³ liquid scintillator in a 12 mm thick acrylic vessel

Buffer: 110 m³ mineral oil in a 3 mm stainless steel vessel, seen by 390 PMT

Inner Veto + steel shielding: 90 m³ of liquid scintillator, seen by 80 PMT

energie atomique • energies alternativ

Calibration

Z-axis system

+ articulated arm (not installed yet)

+ Lasers (UV and green)

+ Light injectors
(inner detector + inner veto)

Glove Box

Tube for radioactive sources (in GC)

Tube for radioactive sources (in Buffer)

(radioactive sources ⁶⁸Ge, ¹³⁷Cs, ⁶⁰Co, ²⁵²Cf)

18

Calibration

Charge correction: calibrate nonlinearity (charge reconstruction and electronics effects)

 Z correction: calibrate the Z-bias (geometrical effect)

→ Empirical energy correction function: removes MC and data discrepancies

→ ⁶⁸Ge source in a calibration tube: correction works well, spectrum well modeled

Double Chooz data analysis Neutrino search

Data Taking Efficiency

 Analysis performed on 102 days of physics runs, including 16 days of one reactor OFF (+ 1 day of two reactors OFF), with far detector only

Average data taking efficiency

- in total: 86.2 %

- in physics: 77.5 %

Neutrino search – An unexpected background...

- Called "Light-Noise"
- Parasitic light emitted by some PMT bases
 - > 15 were turned off
 - Offline rejection cuts based on anisotropic light collection Preliminary
- PMT sees its own light
 - → Qmax/Qtot cut

(v signals should be homogeneously spread across the PMTs)

- Large dispersion of start time of PMT signals
 - → RMS(Tstart) cut

(v signals should have small spread in arrival times)

Neutrino search – Analysis cuts

• Prompt event:

- > No Inner Veto Energy Deposition (i.e., "event is not a μ ")
- Light-Noise cuts: Qmax/Qtot < 0.09 and RMS(Tstart) < 40 ns</p>
- Energy in [0.7; 12] MeV

Delayed event:

- \rightarrow No Inner Veto Energy Deposition (*i.e.*, "event is not a μ ")
- Light-Noise cuts: Qmax/Qtot < 0.06 and RMS(Tstart) < 40 ns</p>
- Energy in [6; 12] MeV

Coincidence:

- No space coincidence cut applied
- > Time coincidence: $2 \mu s < \Delta T < 100 \mu s$

Multiplicity:

- No valid trigger in the 100 μs preceding the prompt
- > Time window from 2 µs to 100 µs following the prompt can only contain one valid trigger: the delayed event
- > No valid trigger in the time window 100 μs through 400 μs after prompt

Neutrino search – Vertices distributions

Neutrino search – ΔT and ΔR distributions

- keV neutrons thermalize within a few μs
- Then they get captured on Gd with
 τ ≈ 27 μs

- ΔR: 3D distance between prompt and delayed vertices
- Low level of accidental background:
 ΔR cut is not needed

Few background events passed the selection cuts

(called "accidental coincidences")

Double Chooz data analysis Backgrounds studies

Backgrounds studies – Singles

- [0.7; 3] MeV: radioactivity
- In Double Chooz Proposal: 10 Hz
 - Measured: 7.625 ± 0.001 Hz

- [6; 12] MeV: thermal neutrons
- In Double Chooz Proposal: 100 h⁻¹
 - > Measured: 20 h⁻¹

Backgrounds studies – Singles

Backgrounds studies – Accidentals

- Accidentals search: same as neutrinos, but different coincidence window (delayed event 1 ms after the prompt: uncorrelated)
- Spectrum compatible with Singles one

• Rate:

- > Measured: **0.33** ± **0.03** d⁻¹
- > 5 times lower than in the proposal!
- > Stable in time

Backgrounds studies – Fast-neutrons

- Fast-neutrons search: same as neutrinos, but with upper energy bound at 30 MeV
- Two populations:
 - > Fast-neutrons
 - > Stopping-muons

Rate:

- Extrapolation from high energies to lower ones
- > Measured: **0.83** ± **0.38** d⁻¹

Spectrum:

> Flat

(+ stopping-\mu shape uncertainty)

Backgrounds studies – ⁹Li

⁹Li search:

- > Statistical
- Search for a triple delayed coincidence btw a showering-μ (E > 600 MeV) and a ν-like coincidence
- ΔT btw showering-µ and prompt event is given by the ⁹Li life time

• Rate:

> Estimated: **2.3** ± **1.2** d⁻¹

Spectrum:

> From nuclear database

Results

32

	# of events	Rate (d ⁻¹)	σ (d ⁻¹)
Neutrino candidates	4121	42.6	0.7
Accidentals	32.0	0.33	0.03
⁹ Li	227.3	2.3	1.2
Fast-neutrons	69.2	0.83	0.38

Oscillation fit

Reactor antineutrino flux prediction

238U 239Pu

235U

E, (MeV)

- One detector phase → need flux prediction
 - $> N_v^{exp}(E,t) = N_p \epsilon / 4\pi L^2 \times P_{th}(t) / \langle E_f \rangle \times \langle \sigma_f \rangle$
 - $-N_p$: number of target protons
 - ε: detector efficiency
 - L: distance reactor-detector
 - $-P_{th}(t)$: thermal power (from EDF)
 - $-\langle E_f \rangle = \sum \alpha_k(t) \langle E_f \rangle_k$: mean energy per fission with $k = {}^{235}U$, ${}^{238}U$, 239 Pu, 241 Pu, and $\alpha_k(t)$: fractional fission rate (from simulations)
 - $-<\sigma_f>$: mean cross-section per fission

$$\rightarrow <\sigma_f> = \int dE S_k(E) \sigma_{IBD}(E)$$

$$\rightarrow <\sigma_f> = <\sigma_f>^{\text{Bugey4}} + \sum \left[\alpha_k^{\text{DC}}(t) - \alpha_k^{\text{Bugey4}}(t)\right] <\sigma_f>_k$$

 Use of Bugey4 flux measurement ("anchor point") after correction for differences in core composition (same as CHOOZ)

10⁻²

• Two detectors phase → near detector data

Oscillation fit strategy and results

35

$$\chi^{2} = \left(N_{i} - \sum_{R}^{\text{Reactors}} N_{i}^{\nu,R*}\right) \times \left(M_{ij}^{\text{Reactors}} + M_{ij}^{\text{detector}} + M_{ij}^{\text{stat}} + \sum_{b}^{\text{bkgnds.}} M_{ij}^{b}\right)$$

$$\times \left(N_{j} - \sum_{R}^{\text{Reactors}} N_{j}^{\nu,R*}\right)^{\text{T}}$$

- Covariance matrices: uncertainties for:
 - > v-signal from reactors,
 - > detector response,
 - > signal and backgrounds stats,
 - > backgrounds spectral shape
- Fit using two types of information:
 - > Rate (number of events)
 - > **Shape** (spectra)

$$\rightarrow$$
 R = 0.944 ± 0.016 (stat) ± 0.040 (syst)

$$ie \sin^2 2\theta_{13} = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)}$$

or $0.015 < \sin^2 2\theta_{13} < 0.160$ at 90 % CL

Combined results on θ_{13}

Double Chooz and T2K results are consistent

• θ_{13} = 0 is excluded at 3σ from T2K+Double Chooz

What's next?

Prospects

- First Double Chooz results can be improved by a better understanding of the ⁹Li background and the detector
- Analyzed more data and take advantage of one reactor OFF and two reactors OFF periods
- Near detector expected in 2013
 - > Relative comparison of both detectors, lower systematic errors

39

Double Chooz – sensitivity, no oscillations

What about the two other reactor neutrino experiments?

- Two 16 tons identical detectors close to (290 m and 1,380 m) the 6 x 2.73 GW_{th} YongGwang nuclear plant in South Korea
 - > Double Chooz concept
- Both detectors constructed from end of 2009 until July 2011
- Commissioning: July 2011
- Start of data taking: August 1st 2011 (DAQ efficiency > 90 %)

Goal: $\sin^2 2\theta_{13}$ value or new limit available for Neutrino 2012 @ Kyoto, June 2012 **Discovery potential:** $\sin^2 2\theta_{13} \sim 0.05$ for March 2012

- Eight 20 tons identical detectors close to the 6 x 2.9 GW_{th}
 Shenzen nuclear plant in China
 - Two near site with two detectors
 - For at far site
- Hall 1 takes data since Aug, 2011
- Hall 2 installation underway
- Hall 3 soon ready for installation
 - > 4 detectors finished, #5 and 6 nearly finished, #7 and 8 for Spring 2012
- Full experiment running: Summer 2012
- Expected sensitivity after 3 years of data taking: $\sin^2 2\theta_{13} < 0.01 @ 90 \% C.L.$

Thank you very much for your attention!

Any questions?

References:

- CHOOZ final paper, Search for neutrino oscillation on a long base-line at the CHOOZ nuclear power station, M. Apollonio et al., arXiv:hep-ex/0301017v1 13 Jan 2003
- **Double Chooz proposal**, *Double Chooz: A Search for the Neutrino Mixing Angle \theta13*, F. Ardellier *et al.*, **arXiv:hep-ex/0606025v4 30 Oct 2006**
- **Double Chooz first physics paper**, *Indication of the disappearance of reactor e in the Double Chooz experiment*, Y. Abe *et al.*, **arXiv:hep-ex/1112.6353v1 29 Dec 2011**
- RENO proposal and TDR, RENO: An Experiment for Neutrino Oscillation Parameter θ_{13} Using Reactor Neutrinos at YongGwang, J. K. Ahn et al., arXiv:hep-ex/1003.1391v1 6 Mar 2010
- Daya Bay proposal, A Precision Measurement of the Neutrino Mixing Angle θ_{13} using Reactor Antineutrinos at Daya Bay, Daya Bay Collaboration, arXiv:hep-ex/0701029v1 15 Jan 2007
- New reactor antineutrino flux, *Improved Predictions of Reactor Antineutrino Spectra*, Th. A. Mueller *et al.*, arXiv:hep-ex/1101.2663v1 13 Jan 2011

Backup slides

Bugey4 anchor point and reactor v_e anomaly

- Possible **short baseline oscillation** (*cf.* Reactor Neutrino Anomaly, G. Mention *et al.*,), Double Chooz phase I normalized to the Bugey4 measurement, and uses the reference electron spectra from ILL irradiation experiment
 - accounting for differences in core inventories (btw Double Chooz and Bugey4)
 - taking into account long-lived fission products (off-equilibrium effects)
- Bugey4: most precise measurement of the IBD cross section per fission

E_{prompt} and trigger efficiency

- trigger threshold at 350 keV
- trigger efficiency: (100 + 0 0.4) % for E > 700 keV

6 MeV cut efficiency

- calibration with ^{252}Cf source in $\nu\text{-target}$, along the Z-axis
- computation of GD/(H+Gd) capture rate: (86.0 ± 0.5) %
 - 2 % correction between data and MC
 - > (94.5 ± 0.5) %

ΔT efficiency

- Simulation and ²⁵²Cf in good agreement
- $-(96.5 \pm 0.5)$ %

Detector and reactor systematics

Detector (in %)		Reactor (in %)	
Energy response	1.7	Bugey4 measurement	1.4
E _{delay} containement	0.6	Fuel composition	0.9
Gd fraction	0.6	Thermal power	0.5
ΔΤ	0.5	Reference spectra	0.5
Spill in/out	0.4	Energy per fission	0.2
Trigger efficiency	0.4	IBD cross section	0.2
Target H	0.3	Baseline	0.2
Total	2.1	Total	1.8