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From graphs to labeled trees

Start with a planar quadrangulation with an origin
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End up with a planar well-labeled tree
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Well-labeled trees
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Well-labeled:

(i) positive integer labels;

(ii) labels vary by at most 1
between neighbors;

(iii) there is at least one label 1 ;

Generating function for rooted tree:

• Gn(g) with a weight g per edge and a root labeled n

• Rn(g) Gn(g) = Rn(g) − Rn−1(g), R0 ≡ 0
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Graph-tree correspondence

planar quadrangulation well-labeled tree
with an origin vertex

vertices at geodesic distance n vertices labeled n
from the origin

edges (n − 1) ↔ n half-edges incident to
vertices labeled n

n−1 n

marked edge (n − 1) ↔ n rooting at a vertex labeled n

Rn is the g.f. for quadrangulations with an origin and a
marked edge (m− 1) ↔ m with m ≤ n, and weight g per face
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Recursion relations

Rn =
1

1 − g(Rn+1 + Rn + Rn−1)

with R0 = 0 and Rn
n→∞→ R

Here R is the “combinatorial" solution of R = 1/(1 − 3 g R),
namely

R =
1 −√

1 − 12 g

6g
=
∑

N≥0

3N

(N + 1)

(

2N

N

)

gN

R is the g.f. of quadrangulations with an origin and a
marked edge
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Solution

Rn = R
unun+3

un+1un+2
, un ≡ 1 − xn, x +

1

x
=

1 − 4g R

g R

Integral of motion: F (Rn+1, Rn) = F (Rn, Rn−1)

F (X,Y ) ≡ X Y (1 − g(X + Y )) − X − Y

In particular:

F (R1, R0 = 0) = F (R,R) → R1 = R − g R3

R1|gN =
2

(N + 2)
R|gN = 2

3N

(N + 1)(N + 2)

(

2N

N

)

number of rooted (marked oriented edge) quadrangulations with
(N + 2) vertices
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Average properties

The average number 〈en〉 of edges at geodesic distance n
(i.e. n − 1 ↔ n) in infinite quadrangulations is given by

〈en〉
〈e1〉

= lim
N→∞

(Rn − Rn−1)|gN

R1|gN

with 〈e1〉 = 4 from Euler’s relation,

〈en〉 =
6

35

(n2 + 2n − 1)(5n4 + 20n3 + 27n2 + 14n + 4)

n(n + 1)(n + 2)

n→∞∼ 6

7
n3

→ fractal dimension dF = 4
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The average number 〈vn〉 of vertices at geodesic distance n
in infinite quadrangulations is given by

〈vn〉 =
3

35

(

(n + 1)(5n2 + 10n + 2) + δn,1

)

n→∞∼ 3

7
n3

first values:

〈e1〉 = 4 〈e2〉 = 19 〈e3〉 =
1234

25

〈v1〉 = 3 〈v2〉 =
54

5
〈v3〉 =

132

5
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Neighbor statistics

Beyond averages, what are the probabilities?

PN (e1, e2, · · · , ek; v1, v2, · · · , vl)

of having exactly ei edges at distance i and vj vertices at
distance j from the origin.

Introduce:
• weight αi per edge (i − 1) ↔ i
• weight ρj per vertex j

On the well-labeled tree:
• weight αi per half-edge incident to i
• weight ρj per vertex labeled j

Rn(g; {αi}, {ρj})
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The g.f. for the probabilities are

ΓN ({αi}, {ρj}) ≡
∑

{ei},{vj}

k
∏

i=1

αi
ei

l
∏

j=1

ρj
vjPN ({ei}, {vj})

=

∫ α1

0
dα
α R1(g; {α, α2, · · ·αk}, {ρj})|gN

∫ 1
0

dα
α R1(g; {α, 1, · · · 1}, {1})|gN

dα
α to get rid of the marking of a 0 ↔ 1 edge (rooting of the

tree)

for quadrangulations of size N
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The g.f. for the probabilities are

Γ∞ ({αi}, {ρj}) ≡
∑

{ei},{vj}

k
∏

i=1

αi
ei

l
∏

j=1

ρj
vjP∞({ei}, {vj})

=

∫ α1

0
dα
α R1(g; {α, α2, · · ·αk}, {ρj})|sing

∫ 1
0

dα
α R1(g; {α, 1, · · · 1}, {1})|sing

dα
α to get rid of the marking of a 0 ↔ 1 edge (rooting of the

tree)

for infinite quadrangulations
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Rn =
ρn

1 − gαn(αn+1Rn+1 + αnRn + αn−1Rn−1)

or, upon changing from Rn to R̃n = αnRn:

R̃n =
αnρn

1 − gαn(R̃n+1 + R̃n + R̃n−1)
(?)

Neighbors at a finite distance: αn = ρn = 1 for n > L
- use the above equations (?) for n ≤ L only
- complete by the integral of motion

F (R̃L, R̃L+1) = F (R,R)

L + 1 equations → algebraic equation for R̃1 (or for R1)

Distance statistics in graphs – p. 11/30



Nearest neighbors

Immediate neighbors (L = 1): α1 → α, ρ1 → ρ

(R1 − ρ)(R1(α − 1) + ρ − 1) + 2g2 α R3 R1

= gα R1(R
2
1α(α − 1) + α ρR1 + R(R − 2))

→ cubic equation for Γ∞:

α
(

2Γ∞(1 + 4Γ∞ + Γ2
∞) + 3ρ(1 + Γ∞)2(2 + Γ∞)

)

= 6Γ∞(1 + Γ∞)(3 + Γ∞)

with Γ∞ = 1 for α = ρ = 1.

Γ∞(1; ρ) =
2√

4 − 3ρ
− 1 =

∑

v≥1

ρv

(

3

16

)v (
2v

v

)
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P∞(v) =

(

3

16

)v (
2v

v

)

, 〈v1〉 = 3, 〈v2
1〉 =

33

2
, 〈v3

1〉 =
579

4

Incident edges:

Γ∞(α; 1) =
1

2

(

√

3(2 + α)

6 − 5α
− 1

)

=
1

3
α +

1

6
α2 +

13

108
α3 + · · ·

P∞(e = 1) =
1

3
, P∞(e = 2) =

1

6
, P∞(e = 3) =

13

108
, · · ·

〈e1〉 = 4, 〈e2
1〉 =

100

3
, 〈e3

1〉 =
1372

3
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In general, there are multiple nearest neighbors: e ≥ v

We may impose e = v by considering

Π(t) = lim
α→0

Γ∞(α,
t

α
) =

1

2

(

√

18 − t

2 − t
− 3

)

g.f. for the probability of having v neighbors, all simple.

The probability for having no multiple neighbors is

Π(1) =

√
17 − 3

2
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Next-nearest neighbors

Probabilities for next-nearest neighbor vertices

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

Nearest neighbors
Next nearest  neighbors

v

P(v)
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Scaling limit (1)

In the g.f. language

Rn = R
unun+3

un+1un+2
, R =

1

1 − 3gR
, un = 1 − xn, x +

1

x
=

1 − 4gR

gR

scaling limit: g = 1
12(1 − ε4), n = r

ε

gR =
1

6
(1 − ε2), x = e−

√
6ε + O(ε2)

→ continuum generating function F(r) for graphs with two
marked point at distance larger to r

F(r) = lim
ε→0

R − Rn

ε2R
=

3

sinh2(
√

3/2 r)
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Scaling limit (2)

In the probability language (fixed size N )

Rn|gN =

∮

dg

2iπgN+1
Rn(g)

for N large and n = αN1/4

Upon changing variable from g to V ≡ gR, we get

Rn|gN =

∮

dV (1 − 6V )

2iπ(V (1 − 3V ))N+1
Rn(g)

→ saddle point V = 1
6

(

1 + i ξ√
N

)

ε =
√

−iξ/N1/4
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g =
1

12

(

1 +
ξ2

N

)

, gRn = V

(

1 +
iξ√
N
F(α

√

−iξ)

)

Rn|gN ∼ 4
12N

πN3/2

∫ ∞

−∞
dξξ2e−ξ2

(

1 + F
(

α
√

−iξ
))

Probability Φ(α) for a point (vertex or edge) to be at
geodesic distance less than α:

Φ(α) =
2√
π

∫ ∞

0
dξξ2e−ξ2 ×

cosh(2α
√

3ξ) + cos(2α
√

3ξ) + 8 cosh(α
√

3ξ) cos(α
√

3ξ) − 10
(

cosh(α
√

3ξ) − cos(α
√

3ξ)
)2

Distance statistics in graphs – p. 18/30



ρ(α): point at distance equal to α

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

α

Φ(α) ρ(α)

α

ρ(α)
α→0∼ 3

7
α3, ρ(α)

α→∞∼ exp
(

−3(3/8)2/3α4/3
)

in agreement with 〈vn〉 and with Fisher’s law δ = 4
3 = 1

1−ν

with ν = 1
4 = 1

dF
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Generalization

Graphs with faces of even valences 4, 6, · · · 2(m + 1),
weights gk per face of valence 2k → well-labeled mobiles

g.f. for mobiles with a root-label n

Rn = R
Un(w1, ..., wm)Un+3(w1, ..., wm)

Un+1(w1, ..., wm)Un+2(w1, ..., wm)

with R = 1/(1 −
∑m

k=1 gk+1

(2k+1
k+1

)

Rk)

Un(w1, ..., wm) ≡ det [Un+2j−2(wi)]1≤i,j≤m

in terms of Chebyshev polynomials

w =
√

x + 1√
x

roots of
m
∑

k=0
gk+1R

k
k
∑

l=0

(2k+1
l

)

U2k−2l(w) = 1
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Multicritical points

Fine tuning: gk = gk−1(−1)k
1

m+1

(m+1
k

)

(2k−1
k−1

)

(

6

m

)k−1

with g = g2

approaching the critical value gc = m
6(m+1)

Scaling function: Wronskian determinant

F(r) = −2
d2

dr2
LogW

(

sinh
(

a1
r

2

)

, sinh
(

a2
r

2

)

, ..., sinh
(

am
r

2

))

r ≡ n

ε
, ε =

(

gc − g

gc

)ν

,
m
∑

l=0

(−a2)l
l!

(2l + 1)!

m!

(m − l)!
= 0

with ν = 1/dF and dF = 2m + 2
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Probability distribution for a point to be at rescaled geodesic

distances less than α with α = n/N
1

2(m+1)

Φ(α) =
(m + 1)2

cos
(

π(m−1)
2(m+1)

)

Γ( 1
m+1)

∫ ∞

0
dξξm+1e−ξm+1

Re
(

e−iπ(m−1)
2(m+1) (1 + F(αei π

2(m+1)

√

ξ)
)

)

distances equal to α: ρ(α) = Φ′(α)

ρ(α)
α→0∼ α2m+1, ρ(α)

α→∞∼ exp(−Cα2(m+1)/(2m+1))
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Tree vs labels

In the simple critical case, the fractal dimension 4 for the
graph is the product of:

• the dimension 2 for the tree

• the dimension 2 for the labels

- mass N (number of edges of the tree ≡ number of faces of the graph)
- generation T along the tree
- position n (label n on the tree ≡ distance on the graph)

T ∼ N1/2, n ∼ T 1/2, n ∼ N1/4
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multicritical case:

both the tree and the labels are multicritical

T ∼ N
m

m+1 , n ∼ T
1

2m , n ∼ N
1

2(m+1)

dF = 2(m + 1) =
m + 1

m
× 2 m

tree labels

continuum limit → multicritical continuous random tree
(CRT)
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Generation T = t/N
m

m+1

Density profile (density of points at generation t)

ρ(t) = AmIm

[
∫ ∞

0
dξξme

ξm+1

m+1
+ωξmt

]

, ω = e
iπ

m+1

t

1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

t

(t)ρ

m=1

m=2
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The multicritical CRT has vertices
of valence 1, 2, · · · , up to (m + 2)

with fine tuned couplings

with both signs and derivatives

t0

t1
t2

t3

t4 t5

t6
t7

t9 t10

t
t11 t12

t13

8

t14

ρp3,··· ,pm+2({tl}) =

m+2
∏

i=3

[

(

− d

dt

)
m+2−i

m

(−1)i−1

(m+1
i−1

)

m + 1

]pi

ρ(t)

with t =
∑

tl
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Branching processes

A random graph is the “superposition" of

• a random planar tree → genealogical tree

• integer labels on the tree → diffusion process in 1D

• boundary condition (positive labels) → walls, forbidden zone

A parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

The child of a parent at position n lives at position n, n ± 1

What is the probability Pn(p) for the population whose germ
is at position n to reach position 0 ?
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Branching processes

A random graph is the “superposition" of

• a random planar tree

→ genealogical tree

• integer labels on the tree → diffusion process in 1D

• boundary condition (positive labels) → walls, forbidden zone

A parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

The child of a parent at position n lives at position n, n ± 1

What is the probability Pn(p) for the population whose germ
is at position n to reach position 0 ?

Distance statistics in graphs – p. 27/30



Branching processes

A random graph is the “superposition" of

• a random planar tree

→ genealogical tree

• integer labels on the tree

→ diffusion process in 1D

• boundary condition (positive labels) → walls, forbidden zone

A parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

The child of a parent at position n lives at position n, n ± 1

What is the probability Pn(p) for the population whose germ
is at position n to reach position 0 ?

Distance statistics in graphs – p. 27/30



Branching processes

A random graph is the “superposition" of

• a random planar tree

→ genealogical tree

• integer labels on the tree

→ diffusion process in 1D

• boundary condition (positive labels)

→ walls, forbidden zone

A parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

The child of a parent at position n lives at position n, n ± 1

What is the probability Pn(p) for the population whose germ
is at position n to reach position 0 ?

Distance statistics in graphs – p. 27/30



Branching processes

A random graph is the “superposition" of

• a random planar tree → genealogical tree

• integer labels on the tree

→ diffusion process in 1D

• boundary condition (positive labels)

→ walls, forbidden zone

A parent individual gives rise to k children with probability
p(k) = (1 − p)pk, (average number of children p

1−p)

The child of a parent at position n lives at position n, n ± 1

What is the probability Pn(p) for the population whose germ
is at position n to reach position 0 ?
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Pn(p) = 1 − (1 − p)Rn(g) with g = p(1−p)
3

Pn(p) = 1 − 1 − |2p − 1|
2p

(1 − xn)(1 − xn+3)

(1 − xn+1)(1 − xn+2)

with x =
1+2|1−2p|−

√
3|1−2p|

√
2+|1−2p|

1−|1−2p|

Pn(p)
n→∞∼ S(p): survival probability

n position

ge
ne

ra
tio

n

0

S(p) = 1 − 1 − |2p − 1|
2p

=

{

0 p ≤ 1
2

2p−1
p p ≥ 1

2
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Summary

Quadrangulations as well labeled trees

Statistics of distances

Probabilities for immediate neighbors

Scaling limit

Generalization to multicritical points

(Multicritical) continuous random trees

Application to branching processes

More to come:

Ising model, hard objects, ...

Distance statistics in graphs – p. 30/30


	From graphs to labeled trees
	From graphs to labeled trees
	From graphs to labeled trees
	From graphs to labeled trees

	Well-labeled trees
	Well-labeled trees
	Well-labeled trees
	Well-labeled trees
	Well-labeled trees
	Well-labeled trees

	Graph-tree correspondence
	Graph-tree correspondence
	Graph-tree correspondence
	Graph-tree correspondence
	Graph-tree correspondence

	Recursion relations
	Solution
	Solution
	Solution

	Average properties
	 
	Neighbor statistics
	 
	 

	 
	Nearest neighbors
	 
	 
	Next-nearest neighbors
	Scaling limit (1)
	Scaling limit (2)
	 
	 
	Generalization
	Multicritical points
	 
	Tree vs labels
	Tree vs labels
	Tree vs labels
	Tree vs labels

	 
	 
	 
	Branching processes
	Branching processes
	Branching processes
	Branching processes
	Branching processes
	Branching processes
	Branching processes

	 
	 
	 

	Summary

