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From graphsto labeled trees
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Well-labeled trees
-

Well-labeled:
() positive integer labels;

(1) labels vary by at most 1
between neighbors;

(i) there is at least one label 1 ;
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Well-labeled trees
-

Well-labeled:
() positive integer labels;

(1) labels vary by at most 1
between neighbors;

(i) there is at least one label 1 ;

Generating function for rooted tree:

e (G, (g) with a weight ¢ per edge and a root labeled »
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Well-labeled trees
-

Well-labeled:
() positive integer labels;

(1) labels vary by at most 1
between neighbors;

(i) there-ts—atteast-eretabell-;

Generating function for rooted tree:

e (G, (g) with a weight ¢ per edge and a root labeled »

L’ m Gn(g) = Ru(g) — Rn-1(9), Ro =0 J
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Graph-tree correspondence

. -

planar quadrangulation well-labeled tree
with an origin vertex



Graph-tree correspondence
-

fplanar guadrangulation well-labeled tree
with an origin vertex

vertices at geodesic distance n vertices labeled n
from the origin
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Graph-tree correspondence

-

fplanar guadrangulation well-labeled tree
with an origin vertex

vertices at geodesic distance n vertices labeled n
from the origin - -
edges (n—1) < n half-edges incident to
‘7\ vertices labeled n
n-1 n
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Graph-tree correspondence
- -

planar quadrangulation well-labeled tree
with an origin vertex

vertices at geodesic distance n vertices labeled n
from the origin

[] (]
half-edges incident to

‘7\ vertices labeled n
n-1 n

marked edge (n — 1) < n rooting at a vertex labeled n

edges (n—1) < n

o |

Distance statistics in graphs — p. 4/30



Graph-tree correspondence

. -

planar quadrangulation well-labeled tree
with an origin vertex

vertices at geodesic distance n vertices labeled n
from the origin

L] L]

edges (n—1) < n half-edges incident to

‘7\ vertices labeled n
n-1 n

marked edge (n — 1) < n rooting at a vertex labeled n

R, I1s the g.f. for quadrangulations with an origin and a
marked edge (m —1) « m with m < n, and weight ¢ per face
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Recursion relations

o N

1
R, =
1 — g(Rn+1 + Ry, + Rn—l)
with Ry =0and R, "= R
Here R is the “combinatorial” solution of R =1/(1 — 3¢ R),
namely

1—1I=12¢ 3V /2N
ft= \/6 :Z(NH)(N)gN
9 N>0

R 1s the g.f. of quadrangulations with an origin and a
marked edge
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Solution

B 1 —4g R T
Rn:R , un: 1—33 , :C—'—— —
Un+1Un+-2 L g R




Solution

1 —-49 R T
Rn:R , unEl—CIZ , :C—'——:
Un+1Un+-2 L g R

Integral of motion:  F(R,11,R,) = F(Ry, Rp—1)

FIX,2Y)=XY(1—-g(X+Y)—-X-Y
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Solution
f 1:1—4gR T

Up, W3
R, = R —2"% : U, =1— 2", x +

Up41Un+2 x gR

Integral of motion:  F(R,11,R,) = F(Ry, Rp—1)
FIX,2Y)=XY(1—-g(X+Y)—-X-Y
In particular:

F(Ri,Ry=0)=F(R,R) — Ri=R—-gR’
2 3 2N

p— :2
Ry gn (N+2)R|9N (N+1)(N+2)(N)

number of rooted (marked oriented edge) quadrangulations with

L(N + 2) vertices J

Distance statistics in graphs — p. 6/30




Aver age properties

-

The average number (e, ) of edges at geodesic distance n
(i.e. n — 1 «» n) In infinite quadrangulations is given by

-

. (Rn — Rn—1)|gN
— lim
<81> N —o0 Rl |gN

with (e;) = 4 from Euler’s relation,

(o) 6 (n?+2n — 1)(5n* + 20n3 4 27n? + 14n + 4)
(& p—
" 35 n(n+1)(n+ 2)

n—aoo 6
~Y —’]’L3

— fractal dimension dp = 4
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-

The average number (v,) of vertices at geodesic distance nT
In infinite quadrangulations is given by

(1) = % ((n+1)(5n% + 100 +2) + 6,1)

3
n—>00 _ng

7
first values:
1234
<€1> p— 4 <€2> — 19 <€3> — 7
54 132
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Neighbor statistics
-

Beyond averages, what are the probabilities?

PN(€17627”' y €Ly U1, U2, " - 7Ul)

of having exactly e; edges at distance 7 and v; vertices at
distance j from the origin.

e Weight o; peredge (i — 1) < 4

Introduce: weight p; per vertex j

On the well-labeled tree:
e Weight «; per half-edge incident to i
o weight p; per vertex labeled j

Rn(QS {ai}v {pj})
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-

The g.f. for the probabilities are

N ({ait, {pi}) = Z HO"L HPJUJPN ({eit {vi})
{ei},{vs} =1 J=1
Jo R (g {0, oo, - gt {pi Pl g
Jo “Ri(g; {0, 1, 13, (1))

to get rid of the marking of a 0 <+ 1 edge (rooting of the
tree)

for qguadrangulations of size NV
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-

The g.f. for the probabilities are

o ({a@i}, {pit) Z HO"L HPJ ~o({eit {vi})

{6}{%}Z L=l

f()oz1 Rl(g;{ 70427"'04k}7{10j})|8ing
fOl Rl(QS{ 717”'1}7{1})’57%9

to get rid of the marking of a 0 <~ 1 edge (rooting of the
tree)

for infinite quadrangulations
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o N

R, = Pr
" 1 — g&n(OQH—anqu + ap Ry + CVn—an—l)

or, upon changing from R,, t0 R,, = a,, Ry

R, = b (%)
1 — gan(Rpt1 + Ry + Ry—1)

Neighbors at a finite distance: o, = p, = 1 forn > L
- use the above equations (x) for n < L only
- complete by the integral of motion

F(Rp, Rp41) = F(R, R)

LL + 1 equations — algebraic equation for R; (or for R;) J

Distance statistics in graphs — p. 11/30



Nearest neighbors
5

Immediate neighbors (L =1): a1 — «a, p1 — p

(R —p)(Ri(e—=1)+p—1)+2¢°a R’ Ry
= ga Ri(Ria(a — 1)+ apRy + R(R — 2))

— cubic equation for I' .

(2T 00 (1 4 AT +T2) 4+ 3p(1 + To)?(2 + T'o))
= 650 (1 + ') (3 + I'so)

with 'y, =1fora =p = 1.

oG 0
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Foelv) = (%) (2;)7 (v1) =3, (vf) = ? (v} = ?

Incident edges:

1 { [32+a) 11, 13 .
T 1) = = 1l =z - =
(5 1) = 5 (\/ 6 — 50 ) 3T g T

1 1 13
Poo(ezl) o g) POO(€:2): 67 POO(€:3): @7
100 1372
(e1) = 4, <€%> ~ T3 <€:f> — T3 J
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N

We may impose e = v by considering

I1(¢) = lim Foo(a,i) — % ( o1 —3)

a—0 Qo 2—1

n general, there are multiple nearest neighbors: ¢ > v

g.f. for the probability of having v neighbors, all simple.

The probability for having no multiple neighbors is

CWV1T-3
B 2

(1)
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Next-nearest neighbors

-

Probabillities for next-nearest neighbor vertices

P(v)
0.4
o
0.3 -
O Nearest neighbors
< Next nearest neighbors
02 ©
o
01 - 0000
o °97¢
&
I O <o > o
°0o o RPN
0.0 ‘ ‘ OQ000088888
0 5 10 20
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Scaling limit (1)
-

In the g.f. language

1 1 1 —49R
Up 41 Un 42 1 —3gR x gR
scaling limit: g = 5 (1 — %), n="=

gR=-(1—¢%), z=e Vo102

— continuum generating function F(r) for graphs with two
marked point at distance larger to r

]:(r):limR_Rn— :

—0 €R  sinh?(\/3/27)
. VI .
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Scaling limit (2)
-

In the probability language (fixed size N)

Ry gn 27{ Y R (9)

2irgN+1 "

for N large and n = aN1/4

Upon changing variable from g to V = gR, we get

dV (1 —6V)
Bnlgy = j'{ 2im(V (1 — 3V))N+1R”(g)

— saddle point V = 1 (1 + ZJLN)

- = N

|
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o N

2 .
g:i<1+€—>, an:V(l%—i]:(oz —z’f))

12 N VN
Ryl v ~ 4753;\;2 /Z dee2et (1 +F (a\/—Tg))

Probability ®(«) for a point (vertex or edge) to be at
geodesic distance less than «:

O(a) = %/OOO deg2e € x
cosh(2a/38) + cos(2av/3€) + 8 cosh(ay/3E€) cos(an/3€) — 10
(cosh(a/3E) — COS(@\/%))Q

N .
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-

p(a): point at distance equal to «

®(a) p(@)

0. 8}

.67

0
0.4
0.2

0.1
T SR SR () | 3 o

oa— 3 —> 00
pla) R0 Za?, pla) T exp (=3(3/8)%%at/?)

7
In agreement with (v,,) and with Fisher’s law § = % = ﬁ
with v = i =

v |
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Generalization

-

Graphs with faces of even valences 4,6, ---2(m + 1),
weights ¢;. per face of valence 2k — well-labeled mobiles

-

g.f. for mobiles with a root-label n

Up (w1, .oy wm ) Upys(wi, ..., W)
Upt1 (w1, ..oy Wiy ) Upa2(wy, ..., wp)

with R = 1/(1 — 37, grar (5H1) RF)

R, =R

Un(wl, e wm) = det [Un+2j—2(wi)]1§i,j§m

In terms of Chebyshev polynomials

m k
Lw = /T + —=roots of }_ gp11R* Y (%ZH) Usp,—o1(w) = 1 J
Ve k=0 =0
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Multicritical points
- 1

_(m—|—1) 6 k—1
Fine tuning: g, = ¢ *(—1)* m?kl"ﬂ) ( > with ¢ = ¢5
m
k-1

m

approaching the critical value g. = 6T T)

-

Scaling function:
: T : r
) ,sinh (a2§) ,...,sinh (am§))

21+)(

F(r)= —2d—2LOgW (smh (a1

dr?
=% = (%)
r=— € =

€

with v = 1/dp and dp = 2m + 2

Distance i

statistics in graphs — p. 21/30
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-

Probabillity distribution for a point to be at rescaled geodesic
distances less than a with o = n/N D

-

(o) = d
(O{) COS m(m—1) F( 1 ) 0 Sf ¢
2(m+1) m—+1

distances equal to a: p(a) = ¢'(«a)

a—0
- a2m—|—1

p(a) . pla) "~ exp(—Ca
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Treevslabels
-

In the simple critical case, the fractal dimension 4 for the
graph is the product of:

e the dimension 2 for the tree

e the dimension 2 for the labels

- mass /N (number of edges of the tree = number of faces of the graph)
- generation 7" along the tree
- position n (label n on the tree = distance on the graph)

o |
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Treevslabels
B -

In the simple critical case, the fractal dimension 4 for the
graph is the product of:

e the dimension @ for the tree

e the dimension 2 for the labels

- mass /N (number of edges of the tree = number of faces of the graph)
- generation 7" along the tree
- position n (label n on the tree = distance on the graph)

T ~ N1/2
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Treevslabels
-

In the simple critical case, the fractal dimension 4 for the
graph is the product of:

e the dimension 2 for the tree

e the dimension @ for the labels

- mass /N (number of edges of the tree = number of faces of the graph)
- generation 7" along the tree
- position n (label n on the tree = distance on the graph)

T~ NY2 g T2
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Treevslabels
-

In the simple critical case, the fractal dimension @ for the
graph is the product of:

e the dimension 2 for the tree

e the dimension 2 for the labels

- mass /N (number of edges of the tree = number of faces of the graph)
- generation 7" along the tree
- position n (label n on the tree = distance on the graph)

T~ NY2 T2 g~ N/
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-

multicritical case:

both the tree and the labels are multicritical
T~ Nwti, ne~To, n~ NTRD

m + 1
m

dp =2(m+1) = X 2m

tree labels

continuum limit — multicritical continuous random tree
(CRT)

.

Distance statist

|
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Generation T = t/N =+

Density profile (density of points at generation ¢)

o0 £m+1 m 7T
pt) = AmIm U degme T T = e
0
p(t) m=2
y =1
0.2 /

1 2 3 “t J
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-

The multicritical CRT has vertices
of valence 1, 2, ---, up to (m + 2)

with fine tuned couplings

with both signs and derivatives

m+2 [ p m+2—i (m+1)—p¢
1—1 \1—1
s = I | (<5) 7 O] ot
1=3 L _

witht =)t
. | |
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Branching processes

-

A random graph is the “superposition” of



Branching processes

-

A random graph is the “superposition” of

e a random planar tree



Branching processes

-

A random graph is the “superposition” of
e a random planar tree

e integer labels on the tree

N .
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Branching processes

-

A random graph is the “superposition” of T
e a random planar tree
e integer labels on the tree

e boundary condition (positive labels)
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Branching processes

o N

A random graph is the “superposition” of
e a random planar tree — genealogical tree
e integer labels on the tree

e boundary condition (positive labels)

A parent individual gives rise to k children with probability
p(k) = (1 =p)p¥, (average number of children )

o |
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Branching processes

-

A random graph is the “superposition” of
e a random planar tree — genealogical tree
e Integer labels on the tree — diffusion process in 1D

e boundary condition (positive labels)

A parent individual gives rise to k children with probability

p(k) = (1 =p)p¥, (average number of children )

The child of a parent at position » lives at position n,n £ 1
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Branching processes

-

A random graph is the “superposition” of
e a random planar tree — genealogical tree
e Integer labels on the tree — diffusion process in 1D

e boundary condition (positive labels) — walls, forbidden zone

A parent individual gives rise to k children with probability

p(k) = (1 =p)p¥, (average number of children )

The child of a parent at position » lives at position n,n £ 1

What is the probability P,,(p) for the population whose germ
IS at position n to reach position 0 ?

o |
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 Pulp) = 1— (1 — p)Ru(g) with g — 202 ]

3

L—[2p—1] (1—a™)(1—a"")
% (1— 2 (1 - ant?)

0 )
: 14+2[1—2p|—+/3|1—2p|+/2+|1—2p] > position
with = = 1\/_|1_2p| v | >
Y >
Pn(p) " S(p): survival probability
1 —[2p—1] 0 p<
S(p)=1- 2 — {Qpl

- S |
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Pn(p) =1-

generation

DO — DN —



|
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0.2 O0N4__ 076 0.8 1 o

1.

scaling behavior around p = 3:

3
Pul(p) ~ [2p — 1 +1
(p)~f2p =1 (Sinhz(\/S/QnQp 1]1/2)

>+(2p—1)

o |
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Summary

Quadrangulations as well labeled trees
Statistics of distances

Probabilities for immediate neighbors
Scaling limit

Generalization to multicritical points
(Multicritical) continuous random trees

© © o o o o ©

Application to branching processes

More to come:

Ising model, hard objects, ...
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