Many natural systems remain far from thermodynamic equilibrium by exchanging matter, energy or information with their surroundings. As these transfers, or fluxes, break timereversal invariance, such processes are beyond the realm of traditional thermodynamics and their statistical fluctuations do not follow the principles of equilibrium statistical mechanics.
Though a fully general theory of non-equilibrium systems still remains to be constructed, a physical principle describing the macroscopic behaviour of diffusive systems far from equilibrium has been proposed by G. Jona-Lasinio and his collaborators in 2001: this is the Macroscopic Fluctuation Theory (MFT). In the MFT framework, macroscopic fluctuations far from equilibrium are determined by two coupled non-linear hydrodynamic equations. However, for a long time, the MFT equations have remained intractable.
In a recent work that has appeared in Physical Review Letters, K. Mallick (IPhT), H. Moriya and T.
More